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Series Preface

Signal processing applications are now widespread. Relatively cheap consumer
products through to the more expensive military and industrial systems extensively
exploit this technology. This spread was initiated in the 1960s by the introduction of
cheap digital technology to implement signal processing algorithms in real-time for
some applications. Since that time semiconductor technology has developed rapidly
to support the spread. In parallel, an ever increasing body of mathematical theory
is being used to develop signal processing algorithms. The basic mathematical
foundations, however, have been known and well understood for some time.

Signal Processing and its Applications addresses the entire breadth and depth
of the subject with texts that cover the theory, technology and applications of signal
processing in its widest sense. This is reflected in the composition of the Editorial
Board, who have interests in:

(i) Theory – The physics of the application and the mathematics to model the
system;

(ii) Implementation – VLSI/ASIC design, computer architecture, numerical
methods, systems design methodology, and CAE;

(iii) Applications – Speech, sonar, radar, seismic, medical, communications (both
audio and video), guidance, navigation, remote sensing, imaging, survey,
archiving, non-destructive and non-intrusive testing, and personal entertain-
ment.

Signal Processing and its Applications will typically be of most interest to post-
graduate students, academics, and practising engineers who work in the field and
develop signal processing applications. Some texts may also be of interest to final
year undergraduates.

Richard C. Green
The Engineering Practice,

Farnborough, UK

v



For Yasome Ranasinghe



Contents

Preface xxv

Introduction 1

1 The Methods of Time-Series Analysis 3
The Frequency Domain and the Time Domain . . . . . . . . . . . . . . . 3
Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Autoregressive and Moving-Average Models . . . . . . . . . . . . . . . . . 7
Generalised Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 10
Smoothing the Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . 12
The Equivalence of the Two Domains . . . . . . . . . . . . . . . . . . . . 12
The Maturing of Time-Series Analysis . . . . . . . . . . . . . . . . . . . . 14
Mathematical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Polynomial Methods 21

2 Elements of Polynomial Algebra 23
Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Linear Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Circular Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Time-Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
The Lag Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Algebraic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Periodic Polynomials and Circular Convolution . . . . . . . . . . . . . . . 35
Polynomial Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
The Roots of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
The Polynomial of Degree n . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Matrices and Polynomial Algebra . . . . . . . . . . . . . . . . . . . . . . . 45
Lower-Triangular Toeplitz Matrices . . . . . . . . . . . . . . . . . . . . . . 46
Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
The Factorisation of Circulant Matrices . . . . . . . . . . . . . . . . . . . 50

3 Rational Functions and Complex Analysis 55
Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Euclid’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
The Expansion of a Rational Function . . . . . . . . . . . . . . . . . . . . 62
Recurrence Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Laurent Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Complex Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
The Cauchy Integral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 74
Multiply Connected Domains . . . . . . . . . . . . . . . . . . . . . . . . . 76
Integrals and Derivatives of Analytic Functions . . . . . . . . . . . . . . . 77
Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
The Autocovariance Generating Function . . . . . . . . . . . . . . . . . . 84
The Argument Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Polynomial Computations 89
Polynomials and their Derivatives . . . . . . . . . . . . . . . . . . . . . . . 90
The Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Müller’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Lagrangean Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Divided Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Difference Equations and Differential Equations 121
Linear Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Solution of the Homogeneous Difference Equation . . . . . . . . . . . . . . 123
Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Solutions of Difference Equations with Initial Conditions . . . . . . . . . . 129
Alternative Forms for the Difference Equation . . . . . . . . . . . . . . . . 133
Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 135
Solution of the Homogeneous Differential Equation . . . . . . . . . . . . . 136
Differential Equation with Complex Roots . . . . . . . . . . . . . . . . . . 137
Particular Solutions for Differential Equations . . . . . . . . . . . . . . . . 139
Solutions of Differential Equations with Initial Conditions . . . . . . . . . 144
Difference and Differential Equations Compared . . . . . . . . . . . . . . 147
Conditions for the Stability of Differential Equations . . . . . . . . . . . . 148
Conditions for the Stability of Difference Equations . . . . . . . . . . . . . 151

6 Vector Difference Equations and State-Space Models 161
The State-Space Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Conversions of Difference Equations to State-Space Form . . . . . . . . . 163
Controllable Canonical State-Space Representations . . . . . . . . . . . . 165
Observable Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . 168
Reduction of State-Space Equations to a Transfer Function . . . . . . . . 170
Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

viii



CONTENTS

Least-Squares Methods 179

7 Matrix Computations 181
Solving Linear Equations by Gaussian Elimination . . . . . . . . . . . . . 182
Inverting Matrices by Gaussian Elimination . . . . . . . . . . . . . . . . . 188
The Direct Factorisation of a Nonsingular Matrix . . . . . . . . . . . . . . 189
The Cholesky Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 191
Householder Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 195
The Q–R Decomposition of a Matrix of Full Column Rank . . . . . . . . 196

8 Classical Regression Analysis 201
The Linear Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Decomposition of the Sum of Squares . . . . . . . . . . . . . . . . . . 202
Some Statistical Properties of the Estimator . . . . . . . . . . . . . . . . . 204
Estimating the Variance of the Disturbance . . . . . . . . . . . . . . . . . 205
The Partitioned Regression Model . . . . . . . . . . . . . . . . . . . . . . 206
Some Matrix Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Computing a Regression via Gaussian Elimination . . . . . . . . . . . . . 208
Calculating the Corrected Sum of Squares . . . . . . . . . . . . . . . . . . 211
Computing the Regression Parameters via the Q–R Decomposition . . . . 215
The Normal Distribution and the Sampling Distributions . . . . . . . . . 218
Hypothesis Concerning the Complete Set of Coefficients . . . . . . . . . . 219
Hypotheses Concerning a Subset of the Coefficients . . . . . . . . . . . . . 221
An Alternative Formulation of the F statistic . . . . . . . . . . . . . . . . 223

9 Recursive Least-Squares Estimation 227
Recursive Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . 227
The Matrix Inversion Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 228
Prediction Errors and Recursive Residuals . . . . . . . . . . . . . . . . . . 229
The Updating Algorithm for Recursive Least Squares . . . . . . . . . . . 231
Initiating the Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Estimators with Limited Memories . . . . . . . . . . . . . . . . . . . . . . 236
The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
A Summary of the Kalman Equations . . . . . . . . . . . . . . . . . . . . 244
An Alternative Derivation of the Kalman Filter . . . . . . . . . . . . . . . 245
Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Innovations and the Information Set . . . . . . . . . . . . . . . . . . . . . 247
Conditional Expectations and Dispersions of the State Vector . . . . . . . 249
The Classical Smoothing Algorithms . . . . . . . . . . . . . . . . . . . . . 250
Variants of the Classical Algorithms . . . . . . . . . . . . . . . . . . . . . 254
Multi-step Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

ix



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

10 Estimation of Polynomial Trends 261
Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
The Gram–Schmidt Orthogonalisation Procedure . . . . . . . . . . . . . . 263
A Modified Gram–Schmidt Procedure . . . . . . . . . . . . . . . . . . . . 266
Uniqueness of the Gram Polynomials . . . . . . . . . . . . . . . . . . . . . 268
Recursive Generation of the Polynomials . . . . . . . . . . . . . . . . . . . 270
The Polynomial Regression Procedure . . . . . . . . . . . . . . . . . . . . 272
Grafted Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Recursive Generation of B-spline Ordinates . . . . . . . . . . . . . . . . . 284
Regression with B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

11 Smoothing with Cubic Splines 293
Cubic Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
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Preface

It is hoped that this book will serve both as a text in time-series analysis and signal
processing and as a reference book for research workers and practitioners. Time-
series analysis and signal processing are two subjects which ought to be treated
as one; and they are the concern of a wide range of applied disciplines includ-
ing statistics, electrical engineering, mechanical engineering, physics, medicine and
economics.

The book is primarily a didactic text and, as such, it has three main aspects.
The first aspect of the exposition is the mathematical theory which is the foundation
of the two subjects. The book does not skimp this. The exposition begins in
Chapters 2 and 3 with polynomial algebra and complex analysis, and it reaches
into the middle of the book where a lengthy chapter on Fourier analysis is to be
found.

The second aspect of the exposition is an extensive treatment of the numerical
analysis which is specifically related to the subjects of time-series analysis and
signal processing but which is, usually, of a much wider applicability. This be-
gins in earnest with the account of polynomial computation, in Chapter 4, and
of matrix computation, in Chapter 7, and it continues unabated throughout the
text. The computer code, which is the product of the analysis, is distributed
evenly throughout the book, but it is also hierarchically ordered in the sense that
computer procedures which come later often invoke their predecessors.

The third and most important didactic aspect of the text is the exposition of
the subjects of time-series analysis and signal processing themselves. This begins
as soon as, in logic, it can. However, the fact that the treatment of the substantive
aspects of the subject is delayed until the mathematical foundations are in place
should not prevent the reader from embarking immediately upon such topics as the
statistical analysis of time series or the theory of linear filtering. The book has been
assembled in the expectation that it will be read backwards as well as forwards, as
is usual with such texts. Therefore it contains extensive cross-referencing.

The book is also intended as an accessible work of reference. The computer
code which implements the algorithms is woven into the text so that it binds closely
with the mathematical exposition; and this should allow the detailed workings of
the algorithms to be understood quickly. However, the function of each of the Pascal
procedures and the means of invoking them are described in a reference section,
and the code of the procedures is available in electronic form on a computer disc.

The associated disc contains the Pascal code precisely as it is printed in the
text. An alternative code in the C language is also provided. Each procedure is
coupled with a so-called driver, which is a small program which shows the procedure
in action. The essential object of the driver is to demonstrate the workings of
the procedure; but usually it fulfils the additional purpose of demonstrating some
aspect the theory which has been set forth in the chapter in which the code of the
procedure it to be found. It is hoped that, by using the algorithms provided in this
book, scientists and engineers will be able to piece together reliable software tools
tailored to their own specific needs.
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The compact disc also contains a collection of reference material which includes
the libraries of the computer routines and various versions of the bibliography of
the book. The numbers in brackets which accompany the bibliographic citations
refer to their order in the composite bibliography which is to be found on the disc.
On the disc, there is also a bibliography which is classified by subject area.

A preface is the appropriate place to describe the philosophy and the motiva-
tion of the author in so far as they affect the book. A characteristic of this book,
which may require some justification, is its heavy emphasis on the mathematical
foundations of its subjects. There are some who regard mathematics as a burden
which should be eased or lightened whenever possible. The opinion which is re-
flected in the book is that a firm mathematical framework is needed in order to bear
the weight of the practical subjects which are its principal concern. For example,
it seems that, unless the reader is adequately appraised of the notions underlying
Fourier analysis, then the perplexities and confusions which will inevitably arise
will limit their ability to commit much of the theory of linear filters to memory.
Practical mathematical results which are well-supported by theory are far more
accessible than those which are to be found beneath piles of technological detritus.

Another characteristic of the book which reflects a methodological opinion is
the manner in which the computer code is presented. There are some who regard
computer procedures merely as technological artefacts to be encapsulated in boxes
whose contents are best left undisturbed for fear of disarranging them. An opposite
opinion is reflected in this book. The computer code presented here should be read
and picked to pieces before being reassembled in whichever way pleases the reader.
In short, the computer procedures should be approached in a spirit of constructive
play. An individual who takes such an approach in general will not be balked by
the non-availability of a crucial procedure or by the incapacity of some large-scale
computer program upon which they have come to rely. They will be prepared
to make for themselves whatever tools they happen to need for their immediate
purposes.

The advent of the microcomputer has enabled the approach of individualist
self-help advocated above to become a practical one. At the same time, it has
stimulated the production of a great variety of highly competent scientific software
which is supplied commercially. It often seems like wasted effort to do for oneself
what can sometimes be done better by purpose-built commercial programs. Clearly,
there are opposing forces at work here—and the issue is the perennial one of whether
we are to be the masters or the slaves of our technology. The conflict will never be
resolved; but a balance can be struck. This book, which aims to help the reader to
master one of the central technologies of the latter half of this century, places most
of its weight on one side of the scales.

D.S.G. POLLOCK
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CHAPTER 1

The Methods of
Time-Series Analysis

The methods to be presented in this book are designed for the purpose of analysing
series of statistical observations taken at regular intervals in time. The methods
have a wide range of applications. We can cite astronomy [539], meteorology [444],
seismology [491], oceanography [232], [251], communications engineering and signal
processing [425], the control of continuous process plants [479], neurology and elec-
troencephalography [151], [540], and economics [233]; and this list is by no means
complete.

The Frequency Domain and the Time Domain

The methods apply, in the main, to what are described as stationary or non-
evolutionary time series. Such series manifest statistical properties which are in-
variant throughout time, so that the behaviour during one epoch is the same as it
would be during any other.

When we speak of a weakly stationary or covariance-stationary process, we
have in mind a sequence of random variables y(t) = {yt; t = 0,±1,±2, . . .}, rep-
resenting the potential observations of the process, which have a common finite
expected value E(yt) = µ and a set of autocovariances C(yt, ys) = E{(yt − µ)(ys −
µ)} = γ|t−s| which depend only on the temporal separation τ = |t− s| of the dates
t and s and not on their absolute values. Usually, we require of such a process
that lim(τ → ∞)γτ = 0, which is to say that the correlation between increasingly
remote elements of the sequence tends to zero. This is a way of expressing the
notion that the events of the past have a diminishing effect upon the present as
they recede in time. In an appendix to the chapter, we review the definitions of
mathematical expectations and covariances.

There are two distinct yet broadly equivalent modes of time-series analysis
which may be pursued. On the one hand are the time-domain methods which
have their origin in the classical theory of correlation. Such methods deal pre-
ponderantly with the autocovariance functions and the cross-covariance functions
of the series, and they lead inevitably towards the construction of structural or
parametric models of the autoregressive moving-average type for single series and
of the transfer-function type for two or more causally related series. Many of the
methods which are used to estimate the parameters of these models can be viewed
as sophisticated variants of the method of linear regression.

On the other hand are the frequency-domain methods of spectral analysis.
These are based on an extension of the methods of Fourier analysis which originate
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in the idea that, over a finite interval, any analytic function can be approximated,
to whatever degree of accuracy is desired, by taking a weighted sum of sine and
cosine functions of harmonically increasing frequencies.

Harmonic Analysis

The astronomers are usually given credit for being the first to apply the meth-
ods of Fourier analysis to time series. Their endeavours could be described as the
search for hidden periodicities within astronomical data. Typical examples were
the attempts to uncover periodicities within the activities recorded by the Wolfer
sunspot index—see Izenman [266]—and in the indices of luminosity of variable
stars.

The relevant methods were developed over a long period of time. Lagrange
[306] suggested methods for detecting hidden periodicities in 1772 and 1778. The
Dutchman Buijs-Ballot [86] propounded effective computational procedures for the
statistical analysis of astronomical data in 1847. However, we should probably
credit Sir Arthur Schuster [444], who in 1889 propounded the technique of periodo-
gram analysis, with being the progenitor of the modern methods for analysing time
series in the frequency domain.

In essence, these frequency-domain methods envisaged a model underlying the
observations which takes the form of

y(t) =
∑
j

ρj cos(ωjt− θj) + ε(t)

=
∑
j

{
αj cos(ωjt) + βj sin(ωjt)

}
+ ε(t),

(1.1)

where αj = ρj cos θj and βj = ρj sin θj , and where ε(t) is a sequence of indepen-
dently and identically distributed random variables which we call a white-noise
process. Thus the model depicts the series y(t) as a weighted sum of perfectly
regular periodic components upon which is superimposed a random component.

The factor ρj =
√

(α2
j + β2

j ) is called the amplitude of the jth periodic com-
ponent, and it indicates the importance of that component within the sum. Since
the variance of a cosine function, which is also called its mean-square deviation, is
just one half, and since cosine functions at different frequencies are uncorrelated,
it follows that the variance of y(t) is expressible as V {y(t)} = 1

2

∑
j ρ

2
j + σ2

ε where
σ2
ε = V {ε(t)} is the variance of the noise.

The periodogram is simply a device for determining how much of the variance
of y(t) is attributable to any given harmonic component. Its value at ωj = 2πj/T ,
calculated from a sample y0, . . . , yT−1 comprising T observations on y(t), is given
by

I(ωj) =
2
T

[{∑
t

yt cos(ωjt)
}2

+
{∑

t

yt sin(ωjt)
}2
]

=
T

2
{
a2(ωj) + b2(ωj)

}
.

(1.2)
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Figure 1.1. The graph of a sine function.

 0 10 20 30 40 50 60 70 80 90

Figure 1.2. Graph of a sine function with small random fluctuations superimposed.

If y(t) does indeed comprise only a finite number of well-defined harmonic compo-
nents, then it can be shown that 2I(ωj)/T is a consistent estimator of ρ2

j in the
sense that it converges to the latter in probability as the size T of the sample of
the observations on y(t) increases.

The process by which the ordinates of the periodogram converge upon the
squared values of the harmonic amplitudes was well expressed by Yule [539] in a
seminal article of 1927:

If we take a curve representing a simple harmonic function of time, and
superpose on the ordinates small random errors, the only effect is to make
the graph somewhat irregular, leaving the suggestion of periodicity still
clear to the eye (see Figures 1.1 and 1.2). If the errors are increased in
magnitude, the graph becomes more irregular, the suggestion of periodic-
ity more obscure, and we have only sufficiently to increase the errors to
mask completely any appearance of periodicity. But, however large the
errors, periodogram analysis is applicable to such a curve, and, given a
sufficient number of periods, should yield a close approximation to the
period and amplitude of the underlying harmonic function.
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Figure 1.3. Wolfer’s sunspot numbers 1749–1924.

We should not quote this passage without mentioning that Yule proceeded to
question whether the hypothesis underlying periodogram analysis, which postulates
the equation under (1.1), was an appropriate hypothesis for all cases.

A highly successful application of periodogram analysis was that of Whittaker
and Robinson [515] who, in 1924, showed that the series recording the brightness or
magnitude of the star T. Ursa Major over 600 days could be fitted almost exactly by
the sum of two harmonic functions with periods of 24 and 29 days. This led to the
suggestion that what was being observed was actually a two-star system wherein the
larger star periodically masked the smaller, brighter star. Somewhat less successful
were the attempts of Arthur Schuster himself [445] in 1906 to substantiate the claim
that there is an 11-year cycle in the activity recorded by the Wolfer sunspot index
(see Figure 1.3).

Other applications of the method of periodogram analysis were even less suc-
cessful; and one application which was a significant failure was its use by William
Beveridge [51], [52] in 1921 and 1922 to analyse a long series of European wheat
prices. The periodogram of this data had so many peaks that at least twenty
possible hidden periodicities could be picked out, and this seemed to be many
more than could be accounted for by plausible explanations within the realm of
economic history. Such experiences seemed to point to the inappropriateness to

6
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economic circumstances of a model containing perfectly regular cycles. A classic
expression of disbelief was made by Slutsky [468] in another article of 1927:

Suppose we are inclined to believe in the reality of the strict periodicity of
the business cycle, such, for example, as the eight-year period postulated
by Moore [352]. Then we should encounter another difficulty. Wherein
lies the source of this regularity? What is the mechanism of causality
which, decade after decade, reproduces the same sinusoidal wave which
rises and falls on the surface of the social ocean with the regularity of day
and night?

Autoregressive and Moving-Average Models

The next major episode in the history of the development of time-series analysis
took place in the time domain, and it began with the two articles of 1927 by Yule
[539] and Slutsky [468] from which we have already quoted. In both articles, we
find a rejection of the model with deterministic harmonic components in favour
of models more firmly rooted in the notion of random causes. In a wonderfully
figurative exposition, Yule invited his readers to imagine a pendulum attached to
a recording device and left to swing. Then any deviations from perfectly harmonic
motion which might be recorded must be the result of errors of observation which
could be all but eliminated if a long sequence of observations were subjected to a
periodogram analysis. Next, Yule enjoined the reader to imagine that the regular
swing of the pendulum is interrupted by small boys who get into the room and
start pelting the pendulum with peas sometimes from one side and sometimes from
the other. The motion is now affected not by superposed fluctuations but by true
disturbances.

In this example, Yule contrives a perfect analogy for the autoregressive time-
series model. To explain the analogy, let us begin by considering a homogeneous
second-order difference equation of the form

y(t) = φ1y(t− 1) + φ2y(t− 2).(1.3)

Given the initial values y−1 and y−2, this equation can be used recursively to
generate an ensuing sequence {y0, y1, . . .}. This sequence will show a regular
pattern of behaviour whose nature depends on the parameters φ1 and φ2. If
these parameters are such that the roots of the quadratic equation z2 − φ1z −
φ2 = 0 are complex and less than unity in modulus, then the sequence of
values will show a damped sinusoidal behaviour just as a clock pendulum will
which is left to swing without the assistance of the falling weights. In fact, in
such a case, the general solution to the difference equation will take the form
of

y(t) = αρt cos(ωt− θ),(1.4)

where the modulus ρ, which has a value between 0 and 1, is now the damp-
ing factor which is responsible for the attenuation of the swing as the time t
elapses.

7
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Figure 1.4. A series generated by Yule’s equation
y(t) = 1.343y(t− 1)− 0.655y(t− 2) + ε(t).

 0 10 20 30 40 50 60 70 80 90

Figure 1.5. A series generated by the equation
y(t) = 1.576y(t− 1)− 0.903y(t− 2) + ε(t).

The autoregressive model which Yule was proposing takes the form of

y(t) = φ1y(t− 1) + φ2y(t− 2) + ε(t),(1.5)

where ε(t) is, once more, a white-noise sequence. Now, instead of masking the reg-
ular periodicity of the pendulum, the white noise has actually become the engine
which drives the pendulum by striking it randomly in one direction and another. Its
haphazard influence has replaced the steady force of the falling weights. Neverthe-
less, the pendulum will still manifest a deceptively regular motion which is liable,
if the sequence of observations is short and contains insufficient contrary evidence,
to be misinterpreted as the effect of an underlying mechanism.

In his article of 1927, Yule attempted to explain the Wolfer index in terms
of the second-order autoregressive model of equation (1.5). From the empirical
autocovariances of the sample represented in Figure 1.3, he estimated the values

8
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φ1 = 1.343 and φ2 = −0.655. The general solution of the corresponding homoge-
neous difference equation has a damping factor of ρ = 0.809 and an angular velocity
of ω = 33.96 degrees. The angular velocity indicates a period of 10.6 years which
is a little shorter than the 11-year period obtained by Schuster in his periodogram
analysis of the same data. In Figure 1.4, we show a series which has been gen-
erated artificially from Yule’s equation, which may be compared with a series, in
Figure 1.5, generated by the equation y(t) = 1.576y(t − 1) − 0.903y(t − 2) + ε(t).
The homogeneous difference equation which corresponds to the latter has the same
value of ω as before. Its damping factor has the value ρ = 0.95, and this increase
accounts for the greater regularity of the second series.

Neither of our two series accurately mimics the sunspot index; although the
second series seems closer to it than the series generated by Yule’s equation. An
obvious feature of the sunspot index which is not shared by the artificial series is the
fact that the numbers are constrained to be nonnegative. To relieve this constraint,
we might apply to Wolf’s numbers yt a transformation of the form log(yt + λ) or
of the more general form (yt + λ)κ−1, such as has been advocated by Box and Cox
[69]. A transformed series could be more closely mimicked.

The contributions to time-series analysis made by Yule [539] and Slutsky [468]
in 1927 were complementary: in fact, the two authors grasped opposite ends of
the same pole. For ten years, Slutsky’s paper was available only in its original
Russian version; but its contents became widely known within a much shorter
period.

Slutsky posed the same question as did Yule, and in much the same man-
ner. Was it possible, he asked, that a definite structure of a connection between
chaotically random elements could form them into a system of more or less regular
waves? Slutsky proceeded to demonstrate this possibility by methods which were
partly analytic and partly inductive. He discriminated between coherent series
whose elements were serially correlated and incoherent or purely random series of
the sort which we have described as white noise. As to the coherent series, he
declared that

their origin may be extremely varied, but it seems probable that an espe-
cially prominent role is played in nature by the process of moving summa-
tion with weights of one kind or another; by this process coherent series
are obtained from other coherent series or from incoherent series.

By taking, as his basis, a purely random series obtained by the People’s Com-
missariat of Finance in drawing the numbers of a government lottery loan, and
by repeatedly taking moving summations, Slutsky was able to generate a series
which closely mimicked an index, of a distinctly undulatory nature, of the English
business cycle from 1855 to 1877.

The general form of Slutsky’s moving summation can be expressed by writing

y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q),(1.6)

where ε(t) is a white-noise process. This is nowadays called a qth-order moving-
average model, and it is readily compared to an autoregressive model of the sort
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depicted under (1.5). The more general pth-order autoregressive model can be
expressed by writing

α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = ε(t).(1.7)

Thus, whereas the autoregressive process depends upon a linear combination of the
function y(t) with its own lagged values, the moving-average process depends upon
a similar combination of the function ε(t) with its lagged values. The affinity of the
two sorts of process is further confirmed when it is recognised that an autoregressive
process of finite order is equivalent to a moving-average process of infinite order
and that, conversely, a finite-order moving-average process is just an infinite-order
autoregressive process.

Generalised Harmonic Analysis

The next step to be taken in the development of the theory of time series was
to generalise the traditional method of periodogram analysis in such a way as to
overcome the problems which arise when the model depicted under (1.1) is clearly
inappropriate.

At first sight, it would not seem possible to describe a covariance-stationary
process, whose only regularities are statistical ones, as a linear combination of
perfectly regular periodic components. However, any difficulties which we might
envisage can be overcome if we are prepared to accept a description which is in
terms of a nondenumerable infinity of periodic components. Thus, on replacing the
so-called Fourier sum within equation (1.1) by a Fourier integral, and by deleting the
term ε(t), whose effect is now absorbed by the integrand, we obtain an expression
in the form of

y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
.(1.8)

Here we write dA(ω) and dB(ω) rather than α(ω)dω and β(ω)dω because there
can be no presumption that the functions A(ω) and B(ω) are continuous. As it
stands, this expression is devoid of any statistical interpretation. Moreover, if we
are talking of only a single realisation of the process y(t), then the generalised
functions A(ω) and B(ω) will reflect the unique peculiarities of that realisation and
will not be amenable to any systematic description.

However, a fruitful interpretation can be given to these functions if we consider
the observable sequence y(t) = {yt; t = 0,±1,±2, . . .} to be a particular realisation
which has been drawn from an infinite population representing all possible reali-
sations of the process. For, if this population is subject to statistical regularities,
then it is reasonable to regard dA(ω) and dB(ω) as mutually uncorrelated random
variables with well-defined distributions which depend upon the parameters of the
population.

We may therefore assume that, for any value of ω,

E{dA(ω)} = E{dB(ω)} = 0 and
E{dA(ω)dB(ω)} = 0.

(1.9)
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Figure 1.6. The spectrum of the process y(t) = 1.343y(t − 1) − 0.655y(t −
2) + ε(t) which generated the series in Figure 1.4. A series of a more regular
nature would be generated if the spectrum were more narrowly concentrated
around its modal value.

Moreover, to express the discontinuous nature of the generalised functions, we as-
sume that, for any two values ω and λ in their domain, we have

E{dA(ω)dA(λ)} = E{dB(ω)dB(λ)} = 0,(1.10)

which means that A(ω) and B(ω) are stochastic processes—indexed on the
frequency parameter ω rather than on time—which are uncorrelated in non-
overlapping intervals. Finally, we assume that dA(ω) and dB(ω) have a common
variance so that

V {dA(ω)} = V {dB(ω)} = dG(ω).(1.11)

Given the assumption of the mutual uncorrelatedness of dA(ω) and dB(ω), it
therefore follows from (1.8) that the variance of y(t) is expressible as

V {y(t)}=
∫ π

0

[
cos2(ωt)V {dA(ω)}+ sin2(ωt)V {dB(ω)}

]
=
∫ π

0

dG(ω).

(1.12)

The function G(ω), which is called the spectral distribution, tells us how much of
the variance is attributable to the periodic components whose frequencies range
continuously from 0 to ω. If none of these components contributes more than
an infinitesimal amount to the total variance, then the function G(ω) is absolutely
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continuous, and we can write dG(ω) = g(ω)dω under the integral of equation (1.11).
The new function g(ω), which is called the spectral density function or the spectrum,
is directly analogous to the function expressing the squared amplitude which is
associated with each component in the simple harmonic model discussed in our
earlier sections. Figure 1.6 provides an an example of a spectral density function.

Smoothing the Periodogram

It might be imagined that there is little hope of obtaining worthwhile estimates
of the parameters of the population from which the single available realisation y(t)
has been drawn. However, provided that y(t) is a stationary process, and provided
that the statistical dependencies between widely separated elements are weak, the
single realisation contains all the information which is necessary for the estimation
of the spectral density function. In fact, a modified version of the traditional
periodogram analysis is sufficient for the purpose of estimating the spectral density.

In some respects, the problems posed by the estimation of the spectral density
are similar to those posed by the estimation of a continuous probability density func-
tion of unknown functional form. It is fruitless to attempt directly to estimate the
ordinates of such a function. Instead, we might set about our task by constructing a
histogram or bar chart to show the relative frequencies with which the observations
that have been drawn from the distribution fall within broad intervals. Then, by
passing a curve through the mid points of the tops of the bars, we could construct
an envelope that might approximate to the sought-after density function. A more
sophisticated estimation procedure would not group the observations into the fixed
intervals of a histogram; instead it would record the number of observations falling
within a moving interval. Moreover, a consistent method of estimation, which aims
at converging upon the true function as the number of observations increases, would
vary the width of the moving interval with the size of the sample, diminishing it
sufficiently slowly as the sample size increases for the number of sample points
falling within any interval to increase without bound.

A common method for estimating the spectral density is very similar to the
one which we have described for estimating a probability density function. Instead
of being based on raw sample observations as is the method of density-function
estimation, it is based upon the ordinates of a periodogram which has been fitted
to the observations on y(t). This procedure for spectral estimation is therefore
called smoothing the periodogram.

A disadvantage of the procedure, which for many years inhibited its widespread
use, lies in the fact that calculating the periodogram by what would seem to be
the obvious methods be can be vastly time-consuming. Indeed, it was not until the
mid 1960s that wholly practical computational methods were developed.

The Equivalence of the Two Domains

It is remarkable that such a simple technique as smoothing the periodogram
should provide a theoretical resolution to the problems encountered by Beveridge
and others in their attempts to detect the hidden periodicities in economic and
astronomical data. Even more remarkable is the way in which the generalised
harmonic analysis that gave rise to the concept of the spectral density of a time
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series should prove to be wholly conformable with the alternative methods of time-
series analysis in the time domain which arose largely as a consequence of the failure
of the traditional methods of periodogram analysis.

The synthesis of the two branches of time-series analysis was achieved inde-
pendently and almost simultaneously in the early 1930s by Norbert Wiener [522]
in America and A. Khintchine [289] in Russia. The Wiener–Khintchine theorem
indicates that there is a one-to-one relationship between the autocovariance func-
tion of a stationary process and its spectral density function. The relationship is
expressed, in one direction, by writing

g(ω) =
1

2π

∞∑
τ=−∞

γτ cos(ωτ); γτ = γ−τ ,(1.13)

where g(ω) is the spectral density function and {γτ ; τ = 0, 1, 2, . . .} is the sequence
of the autocovariances of the series y(t).

The relationship is invertible in the sense that it is equally possible to express
each of the autocovariances as a function of the spectral density:

γτ =
∫ π

0

cos(ωτ)g(ω)dω.(1.14)

If we set τ = 0, then cos(ωτ) = 1, and we obtain, once more, the equation (1.12)
which neatly expresses the way in which the variance γ0 = V {y(t)} of the series
y(t) is attributable to the constituent harmonic components; for g(ω) is simply the
expected value of the squared amplitude of the component at frequency ω.

We have stated the relationships of the Wiener–Khintchine theorem in terms of
the theoretical spectral density function g(ω) and the true autocovariance function
{γτ ; τ = 0, 1, 2, . . .}. An analogous relationship holds between the periodogram
I(ωj) defined in (1.2) and the sample autocovariance function {cτ ; τ = 0, 1, . . . ,
T − 1} where cτ =

∑
(yt− ȳ)(yt−τ − ȳ)/T . Thus, in the appendix, we demonstrate

the identity

I(ωj) = 2
T−1∑
t=1−T

cτ cos(ωjτ); cτ = c−τ .(1.15)

The upshot of the Wiener–Khintchine theorem is that many of the techniques
of time-series analysis can, in theory, be expressed in two mathematically equivalent
ways which may differ markedly in their conceptual qualities.

Often, a problem which appears to be intractable from the point of view of one
of the domains of time-series analysis becomes quite manageable when translated
into the other domain. A good example is provided by the matter of spectral
estimation. Given that there are difficulties in computing all T of the ordinates of
the periodogram when the sample size is large, we are impelled to look for a method
of spectral estimation which depends not upon smoothing the periodogram but
upon performing some equivalent operation upon the sequence of autocovariances.
The fact that there is a one-to-one correspondence between the spectrum and the
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Figure 1.7. The periodogram of Wolfer’s sunspot numbers 1749–1924.

sequence of autocovariances assures us that this equivalent operation must exist;
though there is, of course, no guarantee that it will be easy to perform.

In fact, the operation which we perform upon the sample autocovariances is
simple. For, if the sequence of autocovariances {cτ ; τ = 0, 1, . . . , T − 1} in (1.15) is
replaced by a modified sequence {wτ cτ ; τ = 0, 1, . . . , T−1} incorporating a specially
devised set of declining weights {wτ ; τ = 0, 1, . . . , T − 1}, then an effect which is
much the same as that of smoothing the periodogram can be achieved (compare
Figures 1.7 and 1.8). Moreover, it may be relatively straightforward to calculate
the weighted autocovariance function.

The task of devising appropriate sets of weights provided a major research
topic in time-series analysis in the 1950s and early 1960s. Together with the task
of devising equivalent procedures for smoothing the periodogram, it came to be
known as spectral carpentry.

The Maturing of Time-Series Analysis

In retrospect, it seems that time-series analysis reached its maturity in the
1970s when significant developments occurred in both of its domains.

A major development in the frequency domain occurred when Cooley and
Tukey [125] described an algorithm which greatly reduces the effort involved in
computing the periodogram. The fast Fourier transform (FFT), as this algorithm
has come to be known, allied with advances in computer technology, has enabled
the routine analysis of extensive sets of data; and it has transformed the procedure
of smoothing the periodogram into a practical method of spectral estimation.

The contemporaneous developments in the time domain were influenced by
an important book by Box and Jenkins [70]. These authors developed the time-
domain methodology by collating some of its major themes and by applying it
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Figure 1.8. The spectrum of the sunspot numbers calculated from
the autocovariances using Parzen’s [383] system of weights.

to such important functions as forecasting and control. They demonstrated how
wide had become the scope of time-series analysis by applying it to problems as
diverse as the forecasting of airline passenger numbers and the analysis of com-
bustion processes in a gas furnace. They also adapted the methodology to the
computer.

Many of the current practitioners of time-series analysis have learnt their skills
in recent years during a time when the subject has been expanding rapidly. Lack-
ing a longer perspective, it is difficult for them to gauge the significance of the
recent practical advances. One might be surprised to hear, for example, that, as
late as 1971, Granger and Hughes [227] were capable of declaring that Beveridge’s
calculation of the periodogram of the wheat price index (see 14.4), comprising
300 ordinates, was the most extensive calculation of its type to date. Nowadays,
computations of this order are performed on a routine basis using microcomputers
containing specially designed chips which are dedicated to the purpose.

The rapidity of the recent developments also belies the fact that time-series
analysis has had a long history. The frequency domain of time-series analysis, to
which the idea of the harmonic decomposition of a function is central, is an inheri-
tance from Euler (1707–1783), d’Alembert (1717–1783), Lagrange (1736–1813) and
Fourier (1768–1830). The search for hidden periodicities was a dominant theme of
nineteenth century science. It has been transmogrified through the refinements of
Wiener’s generalised harmonic analysis [522] which has enabled us to understand
how cyclical phenomena can arise out of the aggregation of random causes. The
parts of time-series analysis which bear a truly twentieth-century stamp are the
time-domain models which originate with Slutsky and Yule and the computational
technology which renders the methods of both domains practical.
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The effect of the revolution in digital electronic computing upon the
practicability of time-series analysis can be gauged by inspecting the purely
mechanical devices (such as the Henrici–Conradi and Michelson–Stratton harmonic
analysers invented in the 1890s) which were once used, with very limited success, to
grapple with problems which are nowadays almost routine. These devices, some of
which are displayed in London’s Science Museum, also serve to remind us that many
of the developments of applied mathematics which startle us with their modernity
were foreshadowed many years ago.

Mathematical Appendix

Mathematical Expectations

The mathematical expectation or the expected value of a random variable x is
defined by

E(x) =
∫ ∞
−∞

xdF (x),(1.16)

where F (x) is the probability distribution function of x. The probability distribu-
tion function is defined by the expression F (x∗) = P{x ≤ x∗} which denotes the
probability that x assumes a value no greater than x∗. If F (x) is a differentiable
function, then we can write dF (x) = f(x)dx in equation (1.16). The function
f(x) = dF (x)/dx is called the probability density function.

If y(t) = {yt; t = 0,±1,±2, . . .} is a stationary stochastic process, then E(yt) =
µ is the same value for all t.

If y0, . . . , yT−1 is a sample of T values generated by the process, then we may
estimate µ from the sample mean

ȳ =
1
T

T−1∑
t=0

yt.(1.17)

Autocovariances

The autocovariance of lag τ of the stationary stochastic process y(t) is defined
by

γτ = E{(yt − µ)(yt−τ − µ)}.(1.18)

The autocovariance of lag τ provides a measure of the relatedness of the elements
of the sequence y(t) which are separated by τ time periods.

The variance, which is denoted by V {y(t)} = γ0 and defined by

γ0 = E
{

(yt − µ)2
}
,(1.19)

is a measure of the dispersion of the elements of y(t). It is formally the autocovari-
ance of lag zero.
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If yt and yt−τ are statistically independent, then their joint probability density
function is the product of their individual probability density functions so that
f(yt, yt−τ ) = f(yt)f(yt−τ ). It follows that

γτ = E(yt − µ)E(yt−τ − µ) = 0 for all τ 6= 0.(1.20)

If y0, . . . , yT−1 is a sample from the process, and if τ < T , then we may estimate
γτ from the sample autocovariance or empirical autocovariance of lag τ :

cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).(1.21)

The Periodogram and the Autocovariance Function

The periodogram is defined by

I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2
]
.(1.22)

The identity
∑
t cos(ωjt)(yt − ȳ) =

∑
t cos(ωjt)yt follows from the fact that, by

construction,
∑
t cos(ωjt) = 0 for all j. Hence the above expression has the same

value as the expression in (1.2). Expanding the expression in (1.22) gives

I(ωj) =
2
T

{∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}
,

(1.23)

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A − B), we can
rewrite this as

I(ωj) =
2
T

{∑
t

∑
s

cos(ωj [t− s])(yt − ȳ)(ys − ȳ)
}
.(1.24)

Next, on defining τ = t−s and writing cτ =
∑
t(yt− ȳ)(yt−τ − ȳ)/T , we can reduce

the latter expression to

I(ωj) = 2
T−1∑

τ=1−T
cos(ωjτ)cτ ,(1.25)

which appears in the text as equation (1.15).
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CHAPTER 2

Elements of
Polynomial Algebra

In mathematical terminology, a time series is properly described as a temporal
sequence; and the term series is reserved for power series. By transforming temporal
sequences into power series, we can make use of the methods of polynomial algebra.
In engineering terminology, the resulting power series is described as the z-transform
of the sequence.

We shall begin this chapter by examining some of the properties of sequences
and by defining some of the operations which may be performed upon them. Then
we shall examine briefly the basic features of time-series models which consist of lin-
ear relationships amongst the elements of two or more sequences. We shall quickly
reach the opinion that, to conduct the analysis effectively, some more mathematical
tools are needed. Amongst such tools are a variety of linear operators defined on
the set of infinite sequences; and it transpires that the algebra of the operators
is synonymous with the algebra of polynomials of some indeterminate argument.
Therefore, we shall turn to the task of setting forth the requisite results from the
algebra of polynomials. In subsequent chapters, further aspects of this algebra will
be considered, including methods of computation.

Sequences

An indefinite sequence x(t) = {xt; t = 0,±1,±2, . . .} is any function mapping
from the set of integers Z = {t = 0,±1,±2, . . .} onto the real line R or onto the
complex plane C. The adjectives indefinite and infinite may be used interchangeably.
Whenever the integers represents a sequence of dates separated by a unit time
interval, the function x(t) may be described as a time series. The value of the
function at the point τ ∈ Z will be denoted by xτ = x(τ). The functional notation
will be used only when τ ∈ Z, which is to say when τ ranges over the entire set of
positive and negative integers.

A finite sequence {α0, α1, . . . , αp} is one whose elements may be placed in a
one-to-one correspondence with a finite set of consecutive integers. Such sequences
may be specified by enumeration. Usually, the first (nonzero) element of a finite
sequence will be given a zero subscript. A set of T observations on a time series
x(t) will be denoted by x0, x1, . . . , xT−1. Occasionally, t itself will denote a nonzero
base index.

It is often convenient to extend a finite sequence so that it is defined over
the entire set of integers Z. An ordinary extension α(i) of a finite sequence
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{α0, α1, . . . , αp} is obtained by extending the sequence on either side by an in-
definite number of zeros. Thus

α(i) =
{
αi, for 0 ≤ i ≤ p;
0, otherwise.

(2.1)

A periodic extension α̃(i) of the sequence is obtained by replicating its elements
indefinitely in successive segments. Thus

α̃(i) =

{
αi, for 0 ≤ i ≤ p;
α(imod[p+1]), otherwise,

(2.2)

where (i mod [p+1]) is the (positive) remainder after the division of i by p+1. The
ordinary extension of the finite sequence {α0, α1, . . . , αp} and its periodic extension
are connected by the following formula:

α̃(i) =
∞∑

j=−∞
α(i+ [p+ 1]j).(2.3)

It is helpful to name a few sequences which are especially important for analytic
purposes. The sequence specified by the conditions

δ(τ) =
{ 1, if τ = 0;

0, if τ 6= 0
(2.4)

is called the unit impulse. The formulation which takes i as the index of this
sequence and which sets δ(i − j) = 1 when i = j and δ(i − j) = 0 when i 6= j
reminds us of Kronecker’s delta. The continuous-time counterpart of the impulse
sequence is known as Dirac’s delta.

The unit-step sequence is specified by

u(τ) =
{ 1, if τ ≥ 0;

0, if τ < 0.
(2.5)

This is related to the unit-impulse sequence by the equations

δ(τ) = u(τ)− u(τ − 1) and u(τ) =
τ∑

t=−∞
δ(t).(2.6)

Also of fundamental importance are real and complex exponential sequences.
A real exponential sequence is given by the function x(t) = ert = at where a = er

is a real number. A complex exponential sequence is given by x(t) = eiωt+φ with
i =
√
−1. A sinusoidal sequence is a combination of conjugate complex exponential

sequences:

x(t) = ρ cos(ωt− θ) =
1
2
ρ
{
ei(ωt−θ) + e−i(ωt−θ)

}
.(2.7)
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Here ω, which is a number of radians, is a measure of the angular velocity or angular
frequency of the sinusoid. The parameter ρ represents the amplitude or maximum
value of the sinusoid, whilst θ is its phase displacement.

A sequence x(t) is said to be periodic with a period of T if x(t + T ) = x(t)
for all integer values t or, equivalently, if x(t) = x(t mod T ). The function x(t) =
ρ cos(ωt−θ) is periodic in this sense only if 2π/ω is a rational number. If 2π/ω = T
is an integer, then it is the period itself. In that case, its inverse f = ω/2π is the
frequency of the function measured in cycles per unit of time.

In some cases, it is helpful to define the energy of a sequence x(t) as the sum of
squares of the moduli of its elements if the elements are complex valued, or simply
as the sum of squares if the elements are real:

J =
∑
|xt|2.(2.8)

In many cases, the total energy will be unbounded, although we should expect it
to be finite over a finite time interval.

The power of a sequence is the time-average of its energy. The concept is
meaningful only if the sequence manifests some kind of stationarity. The power of a
constant sequence x(t) = a is just a2. The power of the sequence x(t) = ρ cos(ωt) is
1
2ρ

2. This result can be obtained in view of the identity cos2(ωt) = 1
2{1+cos(2ωt)};

for the average of cos(2ωt) over an integral number of cycles is zero.
In electrical engineering, the measure of the power of an alternating current is

its so-called mean-square deviation. In statistical theory, the mean-square deviation
of a finite sequence of values drawn from a statistical population is known as the
sample variance. The notions of power and variance will be closely linked in this
text.

When the condition that ∑
|xt| <∞(2.9)

is fulfilled, the sequence x(t) = {xt; t = 0,±1,±2, . . .} is said to be absolutely
summable. A sequence which is absolutely summable has finite energy and vice
versa.

There are numerous operations which may be performed upon sequences.
Amongst the simplest of such operations are the scalar multiplication of the ele-
ments of a sequence, the pairwise addition of the elements of two sequences bearing
the same index and the pairwise multiplication of the same elements. Thus, if
λ is a scalar and x(t) = {xt} is a sequence, then λx(t) = {λxt} is the sequence
obtained by scalar multiplication. If x(t) = {xt} and y(t) = {yt} are two se-
quences, then x(t) + y(t) = {xt + yt} is the sequence obtained by their addition,
and x(t)y(t) = {xtyt} is the sequence obtained by their multiplication.

In signal processing, a multiplication of one continuous-time signal by another
often corresponds to a process of amplitude modulation. This entails superimposing
the characteristics of a (continuous-time) signal y(t) onto a carrier x(t) so that in-
formation in the signal can be transmitted by the carrier. Usually, the unmodulated
carrier, which should contain no information of its own, has a periodic waveform.

Also of fundamental importance are the operations linear and circular convo-
lution which are described in the next two sections.
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α0 α1 α2 0 0 0

β3 β2 β1 β0 0 0

Figure 2.1. A method for finding the linear convolution of two sequences.
The element γ4 = α1β3 +α2β2 of the convolution may be formed by multiply-
ing the adjacent elements on the two rulers and by summing their products.

Linear Convolution

Let {α0, α1, . . . , αp} and {β0, β1, . . . , βk} be two finite sequences, and consider
forming the pairwise products of all of their elements. The products can be arrayed
as follows:

α0β0 α0β1 α0β2 . . . α0βk

α1β0 α1β1 α1β2 . . . α1βk
α2β0 α2β1 α2β2 . . . α2βk

...
...

...
...

αpβ0 αpβ1 αpβ2 . . . αpβk.

(2.10)

Then a sequence γ0, γ1, . . . , γp+q can be defined whose elements are obtained by
summing the elements of the array along each of the diagonals which run in the
NE–SW direction:

γ0 =α0β0,

γ1 =α0β1 + α1β0,

γ2 =α0β2 + α1β1 + α2β0,
...

γp+k =αpβk.

(2.11)

The sequence {γj} is described as the convolution of the sequences {αj} and {βj}.
It will be observed that

p+k∑
j=0

γj =
( p∑
j=0

αj

)( k∑
j=0

βj

)
and that

p+k∑
j=0

|γj | ≤
( p∑
j=0

|αj |
)( k∑

j=0

|βj |
)
.

(2.12)
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Example 2.1. The process of linear convolution can be illustrated with a simple
physical model. Imagine two rulers with adjacent edges (see Figure 2.1). The lower
edge of one ruler is marked with the elements of the sequence {α0, α1, . . . , αp} at
equally spaced intervals. The upper edge of the other ruler is marked with the
elements of the reversed sequence {βk, . . . , β1, β0} with the same spacing. At first,
the rulers are placed so that α0 is above β0. The pair (α0, β0) is written down
and the product γ0 = α0β0 is formed. Next the lower ruler is shifted one space to
the right and the pairs (α0, β1) and (α1, β0) are recorded from which the sum of
products γ1 = α0β1 + α1β0 is formed. The lower ruler is shifted to the right again
and γ2 is formed. The process continues until the final product γp+k = αpβk is
formed from the pair (αp, βk).

The need to form the linear convolution of two finite sequences arises very
frequently, and a simple procedure is required which will perform the task. The
generic element of the convolution of {α0, α1, . . . , αp} and {β0, β1, . . . , βk}, is given
by

γj =
s∑
i=r

αiβj−i, where

r= max(0, j − k) and s = min(p, j).

(2.13)

Here the restriction r ≤ i ≤ s upon the index of the summation arises from the
restrictions that 0 ≤ i ≤ p and that 0 ≤ (j − i) ≤ k which apply to the indices of
αi and βj−i.

In the following procedure, which implements this formula, the elements γj are
generated in the order of j = p+ k, . . . , 0 and they are written into the array beta
which has hitherto contained the elements of {βj}.

(2.14) procedure Convolution(var alpha, beta : vector;
p, k : integer);

var
gamma : real;
i, j, r, s : integer;

begin
for j := p+ k downto 0 do

begin {j}
s := Min(j, p);
r := Max(0, j − k);
gamma := 0.0;
for i := r to s do
gamma := gamma+ alpha[i] ∗ beta[j − i];

beta[j] := gamma;
end; {j}

end; {Convolution}
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Some care must be exercised in extending the operation of linear convolution
to the case of indefinite sequences, since certain conditions have to be imposed to
ensure that the elements of the product sequence will be bounded. The simplest
case concerns the convolution of two sequences which are absolutely summable:

(2.15) If α(i) = {αi} and β(i) = {βi} are absolutely summable sequences
such that

∑
|αi| <∞ and

∑
|βi| <∞, then their convolution product,

which is defined by

α(i) ∗ β(i) =
∞∑

i=−∞
αiβ(j − i) =

∞∑
i=−∞

βiα(j − i),

is also an absolutely summable sequence.

Here the absolute summability of the product sequence, which entails its bounded-
ness, can be demonstrated by adapting the inequality under (2.12) to the case of
infinite sequences.

Circular Convolution

Indefinite sequences which are obtained from the periodic extension of finite
sequences cannot fulfil the condition of absolute summability; and the operation of
linear convolution is undefined for them. However, it may be useful, in such cases,
to define an alternative operation of circular convolution.

(2.16) Let α̃(i) = {α̃i} and β̃(i) = {β̃i} be the indefinite sequences
which are formed by the periodic extension of the finite sequences
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} respectively. Then the cir-
cular convolution of α̃(i) and β̃(i) is a periodic sequence defined by

γ̃(j) =
n−1∑
i=0

α̃iβ̃(j − i) =
n−1∑
i=0

β̃iα̃(j − i).

To reveal the implications of the definition, consider the linear convolution of the
finite sequences {αj} and {βj} which is a sequence {γ0, γ1, . . . , γ2n−2}. Also, let
α̃j = α(jmodn) and β̃j = β(jmodn) denote elements of α̃(i) and β̃(i). Then the
generic element of the sequence γ̃(j) is

γ̃j =
j∑
i=0

α̃iβ̃j−i +
n−1∑
i=j+1

α̃iβ̃j−i

=
j∑
i=0

αiβj−i +
n−1∑
i=j+1

αiβj+n−i

= γj + γj+n.

(2.17)

The second equality depends upon the conditions that α̃i = αi when 0 ≤ i < n,
that β̃j−i = βj−i when 0 ≤ (j − i) < n and that β̃j−i = β(j−i)modn = βj+n−i when
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Figure 2.2. A device for finding the circular convolution of two sequences.
The upper disc is rotated clockwise through successive angles of 30 degrees.
Adjacent numbers on the two discs are multiplied and the products are
summed to obtain the coefficients of the convolution.

−n < (j − i) < 0. Thus it can be seen that γ̃(j) represents the periodic extension
of the finite sequence {γ̃0, γ̃1, . . . , γ̃n−1} wherein

γ̃j = γj + γj+n for j = 0, . . . , n− 2 and γ̃n−1 = γn−1.(2.18)

Example 2.2. There is a simple analogy for the process of circular convolution
which also serves to explain the terminology. One can imagine two discs placed one
above the other on a common axis with the rim of the lower disc protruding (see Fig-
ure 2.2). On this rim, are written the elements of the sequence {α0, α1, . . . , αn−1} at
equally spaced intervals in clockwise order. On the rim of the upper disc are written
the elements of the sequence {β0, β1, . . . , βn−1} equally spaced in an anticlockwise
order. The circular disposition of the sequences corresponds to the periodic nature
of the functions α̃(i) and β̃(i) defined in (2.16).

At the start of the process of circular convolution, α0 and β0 are in alignment,
and the pairs (α0, β0), (α1, βn−1), . . . , (αn−1, β1) are read from the discs. Then,
the upper disc is turned clockwise through an angle 2π/n radians and the pairs
(α0, β1), (α1, β0), . . . , (αn−1, β2) are read and recorded. The process continues until
the (n − 1)th turn when the pairs (α0, βn−1), (α1, βn−2), . . . , (αn−1, β0) are read.
One more turn would bring the disc back to the starting position. From what has
been recorded, one can form the products γ̃0 = α0β0 + α1βn−1 + · · · + αn−1β1,
γ̃1 = α0β1 + α1β0 + · · · + αn−1β2, . . . , γ̃n−1 = α0βn−1 + α1βn−2 + · · · + αn−1β0

which are the coefficients of the convolution.

The Pascal procedure which effects the circular convolution of two sequences
is a straightforward one:

(2.19) procedure Circonvolve(alpha, beta : vector;
var gamma : vector;
n : integer);
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var
i, j, k : integer;

begin
for j := 0 to n− 1 do

begin {j}
gamma[j] := 0.0;

for i := 0 to n− 1 do
begin
k := j − i;
if k < 0 then
k := k + n;

gamma[j] := gamma[j] + alpha[i] ∗ beta[k];
end;

end; {j}
end; {Circonvolve}

Time-Series Models

A time-series model is one which postulates a relationship amongst a number
of temporal sequences or time series. Consider, for example, the regression model

y(t) = βx(t) + ε(t),(2.20)

where x(t) and y(t) are observable sequences indexed by the time subscript t and
ε(t) is an unobservable sequence of independently and identically distributed ran-
dom variables which are also uncorrelated with the elements of the explanatory
sequence of x(t). The purely random sequence ε(t) is often described as white
noise.

A more general model is one which postulates a relationship comprising any
number of consecutive elements of x(t), y(t) and ε(t). Such a relationship is ex-
pressed by the equation

p∑
i=0

αiy(t− i) =
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i),(2.21)

wherein the restriction α0 = 1 is imposed in order to identify y(t) as the output of
the model. The effect of the remaining terms on the LHS is described as feedback.
Any of the sums in this equation can be infinite; but, if the model is to be viable,
the sequences of coefficients {αi}, {βi} and {µi} must depend on a strictly limited
number of underlying parameters. Notice that each of the terms of the equation
represents a convolution product.

A model which includes an observable explanatory sequence or signal sequence
x(t) is described as a regression model. When x(t) is deleted, the simpler uncondi-
tional linear stochastic models are obtained. Thus the equation

p∑
i=0

αiy(t− i) =
q∑
i=0

µiε(t− i)(2.22)
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represents a so-called autoregressive moving-average (ARMA) process. When αi =
0 for all i > 0, this becomes a pure moving-average (MA) process. When µi = 0
for all i > 0, it becomes a pure autoregressive (AR) process.

Transfer Functions

Temporal regression models are more easily intelligible if they can be repre-
sented by equations in the form of

y(t) =
∑
i≥0

ωix(t− i) +
∑
i≥0

ψiε(t− i),(2.23)

where there is no lag scheme affecting the output sequence y(t). This equation
depicts y(t) as a sum of a systematic component h(t) =

∑
ωix(t−i) and a stochastic

component η(t) =
∑
ψiε(t − i). Both of these components comprise transfer-

function relationships whereby the input sequences x(t) and ε(t) are translated,
respectively, into output sequences h(t) and η(t).

In the case of the systematic component, the transfer function describes how
the signal x(t) is commuted into the sequence of systematic values which explain a
major part of y(t) and which may be used in forecasting it.

In the case of the stochastic component, the transfer function describes how a
white-noise process ε(t), comprising a sequence of independent random elements, is
transformed into a sequence of serially correlated disturbances. In fact, the elements
of h(t) represent efficient predictors of the corresponding elements of y(t) only when
η(t) = ψ0ε(t) is white noise.

A fruitful way of characterising a transfer function is to determine the response,
in terms of its output, to a variety of standardised input signals. Examples of such
signals, which have already been presented, are the unit-impulse δ(t), the unit-step
u(t) and the sinusoidal and complex exponential sequences defined over a range of
frequencies.

The impulse response of the systematic transfer function is given by the se-
quence h(t) =

∑
i ωiδ(t − i). Since i ∈ {0, 1, 2, . . .}, it follows that h(t) = 0 for all

t < 0. By setting t = {0, 1, 2, . . .}, a sequence is generated beginning with

h0 =ω0,
h1 =ω1,
h2 =ω2.

(2.24)

The impulse-response function is nothing but the sequence of coefficients which
define the transfer function.

The response of the transfer function to the unit-step sequence is given by
h(t) =

∑
i ωiu(t − i). By setting t = {0, 1, 2, . . .}, a sequence is generated which

begins with

h0 =ω0,
h1 =ω0 + ω1,
h2 =ω0 + ω1 + ω2.

(2.25)

Thus the step response is obtained simply by cumulating the impulse response.
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In most applications, the output sequence h(t) of the transfer function should
be bounded in absolute value whenever the input sequence x(t) is bounded.
This is described as the condition of bounded input–bounded output (BIBO)
stability.

If the coefficients {ω0, ω1, . . . , ωp} of the transfer function form a finite se-
quence, then a necessary and sufficient condition for BIBO stability is that |ωi| <∞
for all i, which is to say that the impulse-response function must be bounded.
If {ω0, ω1, . . .} is an indefinite sequence, then it is necessary, in addition, that
|
∑
ωi| < ∞, which is the condition that the step-response function is bounded.

Together, the two conditions are equivalent to the single condition that
∑
|ωi| <∞,

which is to say that the impulse response is absolutely summable.
To confirm that the latter is a sufficient condition for stability, let us consider

any input sequence x(t) which is bounded such that |x(t)| < M for some finite M .
Then

|h(t)| =
∣∣∣∑ωix(t− i)

∣∣∣ ≤M ∣∣∣∑ωi

∣∣∣ <∞,(2.26)

and so the output sequence h(t) is bounded. To show that the condition is necessary,
imagine that

∑
|ωi| is unbounded. Then a bounded input sequence can be found

which gives rise to an unbounded output sequence. One such input sequence is
specified by

x−i =


ωi
|ωi|

, if ωi 6= 0;

0, if ωi = 0.
(2.27)

This gives

h0 =
∑

ωix−i =
∑
|ωi|,(2.28)

and so h(t) is unbounded.
A summary of this result may be given which makes no reference to the specific

context in which it has arisen:

(2.29) The convolution product h(t) =
∑
ωix(t − i), which comprises a

bounded sequence x(t) = {xt}, is itself bounded if and only if the
sequence {ωi} is absolutely summable such that

∑
i |ωi| <∞.

In order to investigate the transfer-function characteristics of a relationship in
the form of the general temporal model of equation (2.21), it is best to eliminate
the lagged values of the output sequence y(t) which represent feedback. This may
be done in a number of ways, including a process of repeated substitution.

A simple example is provided by the equation

y(t) = φy(t− 1) + βx(t) + ε(t).(2.30)
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A process of repeated substitution gives

y(t) =φy(t− 1) + βx(t) + ε(t)
=φ2y(t− 2) + β

{
x(t) + φx(t− 1)

}
+ ε(t) + φε(t− 1)

...
=φny(t− n) + β

{
x(t) + φx(t− 1) + · · ·+ φn−1x(t− n+ 1)

}
+ ε(t) + φε(t− 1) + · · ·+ φn−1ε(t− n+ 1).

(2.31)

If |φ| < 1, then lim(n→∞)φn = 0; and it follows that, if x(t) and ε(t) are bounded
sequences, then, as the number of repeated substitutions increases indefinitely, the
equation will tend to the limiting form of

y(t) = β
∞∑
i=0

φix(t− i) +
∞∑
i=0

φiε(t− i),(2.32)

which is an instance of the equation under (2.23).
For models more complicated than the present one, the method of repeated

substitution, if pursued directly, becomes intractable. Thus we are motivated to
use more powerful algebraic methods to effect the transformation of the equation.

The Lag Operator

The pursuit of more powerful methods of analysis begins with the recognition
that the set of all time series {x(t); t ∈ Z, x ∈ R} represents a vector space. Various
linear transformations or operators may be defined over the space. The lag operator
L, which is the primitive operator, is defined by

Lx(t) = x(t− 1).(2.33)

Now, L{Lx(t)} = Lx(t− 1) = x(t− 2); so it makes sense to define L2 by L2x(t) =
x(t − 2). More generally, Lkx(t) = x(t − k) and, likewise, L−kx(t) = x(t + k).
Other important operators are the identity operator I = L0, the annihilator or zero
operator 0 = I − I, the forward-difference operator ∆ = L−1 − I, the backwards-
difference operator ∇ = L∆ = I − L and the summation operator S = (I + L +
L2 + · · ·).

The backwards-difference operator has the effect that

∇x(t) = x(t)− x(t− 1),(2.34)

whilst the summation operator has the effect that

Sx(t) =
∞∑
i=0

x(t− i).(2.35)

These two operators bear an inverse relationship to each other. On the one
hand, there is the following subtraction:

S = I + L+ L2 + · · ·
LS = L+ L2 + · · ·

S − LS = I.

(2.36)

33



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

This gives S(I − L) = S∇ = I, from which S = ∇−1. The result is familiar from
the way in which the sum is obtained of a convergent geometric progression. On
the other hand is expansion of S = I/(I − L). A process of repeated substitution
gives rise to

S= I + LS

= I + L+ L2S

= I + L+ L2 + L3S.

(2.37)

If this process is continued indefinitely, then the original definition of the summation
operator is derived. The process of repeated substitution is already familiar from
the way in which the equation under (2.30), which stands for a simple temporal
regression model, has been converted to its transfer-function form under (2.32).

Another way of expanding the operator S = I/(I − L) is to use the algorithm
of long division:

(2.38) I +L+L2 + · · ·

I − L
)
I

I − L

L
L−L2

L2

L2 −L3

If this process is stopped at any stage, then the results are the same as those from
the corresponding stage of the process under (2.37). The binomial theorem can also
be used in expanding S = (I − L)−1.

To all appearances, the algebra of the lag operator is synonymous with ordinary
polynomial algebra. In general, a polynomial of the lag operator of the form p(L) =
p0 + p1L+ · · ·+ pnL

n =
∑
piL

i has the effect that

p(L)x(t) = p0x(t) + p1x(t− 1) + · · ·+ pnx(t− n)

=
n∑
i=0

pix(t− i).
(2.39)

The polynomial operator can be used to re-express the temporal regression
model of (2.21) as

α(L)y(t) = β(L)x(t) + µ(L)ε(t).(2.40)

In these terms, the conversion of the model to the transfer-function form of equation
(2.23) is a matter of expanding the rational polynomial operators β(L)/α(L) and
µ(L)/α(L) in the expression

y(t) =
β(L)
α(L)

x(t) +
µ(L)
α(L)

ε(t).(2.41)
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We shall be assisted in such matters by having an account of the relevant algebra
and of the corresponding algorithms readily to hand.

Algebraic Polynomials

A polynomial of the pth degree in a variable z, which may stand for a real or a
complex-valued variable, or which may be regarded as an indeterminate algebraic
symbol, is an expression in the form of

α(z) = α0 + α1z + · · ·+ αpz
p,(2.42)

where it is understood that α0, αp 6= 0. When z ∈ C is a complex-valued variable,
α(z) may be described as the z-transform of the sequence {α0, α1, . . . , α1}. From
another point of view, α(z) is regarded as the generating function of the sequence.

Let α(z) = α0 + α1z + · · · + αpz
p and β(z) = β0 + β1z + · · · + βkz

k be two
polynomials of degrees p and k respectively. Then, if k ≥ p, their sum is defined by

α(z) + β(z) = (α0 +β0) + (α1 + β1)z + · · ·+ (αp + βp)zp

+βp+1z
p+1 + · · ·+ βkz

k.
(2.43)

A similar definition applies when k < p.
The product of the polynomials α(z) and β(z) is defined by

α(z)β(z) =α0β0 + (α0β1 + α1β0)z + · · ·+ αpβkz
p+k

= γ0 + γ1z + γ2z
2 + · · ·+ γp+kz

p+k

= γ(z).
(2.44)

The sequence of coefficients {γi} in the product is just the convolution of the se-
quences {αi} and {βi} of the coefficients belonging to its factors.

These operations of polynomial addition and multiplication obey the simple
rules of (i) associativity, (ii) commutativity and (iii) distributivity which are found
in arithmetic. If α(z), β(z) and γ(z) are any three polynomials, then

(i)
{
α(z)β(z)

}
γ(z) = α(z)

{
β(z)γ(z)

}
,{

α(z) + β(z)
}

+ γ(z) = α(z) +
{
β(z) + γ(z)

}
;

(ii) α(z) + β(z) = β(z) + α(z),
α(z)β(z) = β(z)α(z);

(iii) α(z)
{
β(z) + γ(z)

}
= α(z)β(z) + α(z)γ(z).

(2.45)

Periodic Polynomials and Circular Convolution

If the polynomial argument zj is a periodic function of the index j, then the set
of polynomials is closed under the operation of polynomial multiplication. To be
precise, let α(z) = α0 +α1z+ · · ·+αn−1z

n−1 and β(z) = β0 +β1z+ · · ·+βn−1z
n−1

be polynomials of degree n − 1 at most in an argument which is n-periodic such
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that zj+n = zj for all j, or equivalently z ↑ j = z ↑ (j mod n). Then the product
of γ(z) = α(z)β(z) is given by

γ(z) = γ0 + γ1z + · · ·+ γ2n−2z
2n−2

= γ̃0 + γ̃1z + · · ·+ γ̃n−1z
n−1,

(2.46)

where the elements of {γ0, γ1, . . . , γ2n−2} are the products of the linear convolution
of {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1}, and where

γ̃j = γj + γj+n for j = 0, . . . , n− 2 and γ̃n−1 = γn−1.(2.47)

These coefficients {γ̃0, γ̃1, . . . , γ̃n−1} may be generated by applying a pro-
cess of circular convolution to sequences which are the periodic extensions of
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1}.

The circular convolution of (the periodic extensions of) two sequences
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} may be effected indirectly via a method
which involves finding their discrete Fourier transforms. The Fourier transforms
of the sequences are obtained by evaluating their z-transforms α(z), β(z) at n
distinct points which are equally spaced around the circumference of a unit circle
in the complex plane. These points {zk; k = 0, . . . , n − 1} come from setting
zk = exp(−i2πk/n). From the values {α(zk); k = 0, . . . , n − 1} and {β(zk);
k = 0, . . . , n− 1}, the corresponding values {γ(zk) = α(zk)β(zk); k = 0, . . . , n− 1}
can be found by simple multiplication. The latter represent n ordinates of the poly-
nomial product whose n coefficients are being sought. Therefore, the coefficients
can be recovered by an application of an (inverse) Fourier transform.

It will be demonstrated in a later chapter that there are some highly effi-
cient algorithms for computing the discrete Fourier transform of a finite sequence.
Therefore, it is practical to consider effecting the circular convolution of two se-
quences first by computing their discrete Fourier transforms, then by multiplying
the transforms and finally by applying the inverse Fourier transform to recover the
coefficients of the convolution.

The Fourier method may also be used to affect the linear convolution of two
sequences. Consider the sequences {α0, α1, . . . , αp} and {β0, β1, . . . , βk} whose z-
transforms may be denoted by α(z) and β(z). If zj is periodic in j with a period
of n > p+ k, then

α(z)β(z) = γ0 + γ1z + · · ·+ γp+kz
p+k(2.48)

resembles the product of two polynomials of a non-periodic argument, and its co-
efficients are exactly those which would be generated by a linear convolution of the
sequences. The reason is that the degree p+k of the product is less than the period
n of the argument.

In the context of the discrete Fourier transform, the period of the argument z
corresponds to the length n of the sequence which is subject to the transformation.
In order to increase the period, the usual expedient is to extend the length of the
sequence by appending a number of zeros to the end of it. This is described as
“padding” the sequence.
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Consider the padded sequences {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} in
which αp+1 = · · · = αn−1 = 0 and βk+1 = · · · = βn−1 = 0. Let their z-transforms
be denoted by α̃(z) and β̃(z), and let the period of z be n > p+k. Then the product
γ̃(z) = α̃(z)β̃(z), will entail the coefficients γ̃0 = γ0, γ̃1 = γ1, . . . , γ̃p+k = γp+k of
the linear convolution of {α0, α1, . . . , αp} and {β0, β1, . . . , βk} together with some
higher-order coefficients which are zeros. Nevertheless, these are the coefficients
which would result from applying the process of circular convolution to the padded
sequences; and, moreover, they can be obtained via the Fourier method.

The result can be made intuitively clear by thinking in terms of the physical
model of circular convolution illustrated in Figure 2.2. If the sequences which are
written on the rims of the two discs are padded with a sufficient number of zeros,
then one sequence cannot engage both the head and the tail of the other sequence
at the same time, and the result is a linear convolution.

Polynomial Factorisation

Consider the equation α0 + α1z + α2z
2 = 0. This can be factorised as α2(z −

λ1)(z − λ2) where λ1, λ2 are the roots of the equation which are given by the
formula

λ =
−α1 ±

√
α2

1 − 4α2α0

2α2
.(2.49)

If α2
1 ≥ 4α2α0, then the roots λ1, λ2 are real. If α2

1 = 4α2α0, then λ1 = λ2. If α2
1 <

4α2α0, then the roots are the conjugate complex numbers λ = α+ iβ, λ∗ = α− iβ
where i =

√
−1.

It is helpful to have at hand a Pascal procedure for finding the roots of a
quadratic equation:

(2.50) procedure QuadraticRoots(a, b, c : real);
var
discriminant, root1, root2,modulus : real;

begin
discriminant := Sqr(b)− 4 ∗ a ∗ c;
if (discriminant > 0) and (a <> 0) then

begin
root1 := (−b+ Sqrt(discriminant))/(2 ∗ a);
root2 := (−b− Sqrt(discriminant))/(2 ∗ a);
Writeln(′Root(1) = ′, root1 : 10 : 5);
Writeln(′Root(2) = ′, root2 : 10 : 5);

end;
if (discriminant = 0) and (a <> 0) then

begin
root1 := −b/(2 ∗ a);
Writeln(′The roots coincide at the value = ′, root1 : 10 : 5);

end;
if (discriminant < 0) and (a <> 0) then
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begin
root1 := −b/(2 ∗ a);
root2 := Sqrt(−discriminant)/(2 ∗ a);
modulus := Sqrt(Sqr(root1) + Sqr(root2));
Writeln(′We have conjugate complex roots′);
Writeln(′The real part is ′, root1 : 10 : 5);
Writeln(′The imaginary part is ′, root2 : 10 : 5);
Writeln(′The modulus is ′,modulus : 10 : 5);

end;
end; {QuadraticRoots}

Complex Roots

There are three ways of representing the conjugate complex numbers λ and λ∗:

λ=α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗=α− iβ = ρ(cos θ − i sin θ) = ρe−iθ.
(2.51)

Here there are

ρ =
√
α2 + β2 and tan θ = β/α.(2.52)

The three representations are called, respectively, the Cartesian form, the trigono-
metrical form and the exponential form. The parameter ρ = |λ| is the modulus of
the roots and the parameter θ, which is sometimes denoted by θ = arg(λ), is the
argument of the exponential form. This is the angle, measured in radians, which λ
makes with the positive real axis when it is interpreted as a vector bound to the
origin. Observe that θ is not uniquely determined by this definition, since the value
of the tangent is unaffected if 2nπ is added to or subtracted from θ, where n is
any integer. The principal value of arg(λ), denoted Arg(λ), is the unique value of
θ ∈ (−π, π] which satisfies the definition.

The Cartesian and trigonometrical representations are understood by consid-
ering the Argand diagram (see Figure 2.3). The exponential form is understood by
considering the series expansions of cos θ and i sin θ about the point θ = 0:

cos θ=
{

1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ=
{
iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

}
.

(2.53)

Adding the series gives

cos θ + i sin θ=
{

1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

}
= eiθ.

(2.54)

Likewise, subtraction gives

cos θ − i sin θ = e−iθ.(2.55)

38



2: ELEMENTS OF POLYNOMIAL ALGEBRA

ρ

α

β

θ

−θ

λ

λ*

Re

Im

Figure 2.3. The Argand diagram showing a complex
number λ = α+ iβ and its conjugate λ∗ = α− iβ.

The equations (2.54) and (2.55) are known as Euler’s formulae. The inverse formu-
lae are

cos θ =
eiθ + e−iθ

2
(2.56)

and

sin θ = − i
2

(eiθ − e−iθ) =
eiθ − e−iθ

2i
.(2.57)

In some computer languages—for example, in FORTRAN—complex numbers
correspond to a predefined type; and the usual operations of complex arithmetic
are also provided. This is not the case in Pascal; and it is helpful to define the
complex type and to create a small library of complex operations. It is convenient
to use a record type:

(2.58) type
complex = record

re, im : real;
end;

The modulus of a complex number defined in (2.52) and its square are provided
by the following two functions:

(2.59) function Cmod(a : complex) : real;
begin
Cmod := Sqrt(Sqr(a.re) + Sqr(a.im));

end; {Cmod}
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function Cmodsqr(a : complex) : real;
begin
Cmodsqr := Sqr(a.re) + Sqr(a.im);

end; {Cmodsqr}

The addition of a pair of complex numbers is a matter of adding their real and
imaginary components:

(α+ iβ) + (γ + iδ) = (α+ γ) + i(β + δ).(2.60)

Functions are provided both for addition and for subtraction:

(2.61) function Cadd(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re+ b.re;
c.im := a.im+ b.im;
Cadd := c;

end; {Cadd}

function Csubtract(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re− b.re;
c.im := a.im− b.im;
Csubtract := c;

end; {Csubtract}

The product of the numbers

λ=α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

µ= γ + iδ = κ(cosω + i sinω) = κeiω
(2.62)

is given by

λµ=αγ − βδ + i(αδ + βγ)

= ρκ
{

(cos θ cosω − sin θ sinω) + i(cos θ sinω + sin θ cosω)
}

= ρκ
{

cos(θ + ω) + i sin(θ + ω)
}

= ρκei(θ+ω),

(2.63)

where two trigonometrical identities have been used to obtain the third equality.
In the exponential form, the product of the complex numbers comprises the

product of their moduli and the sum of their arguments. The exponential repre-
sentation clarifies a fundamental identity known as DeMoivre’s theorem:{

ρ(cos θ + i sin θ)
}n = ρn

{
cos(nθ) + i sin(nθ)

}
.(2.64)
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In exponential form, this becomes {ρeiθ}n = ρneinθ.
For the purposes of computing a complex multiplication, the Cartesian repre-

sentation is adopted:

(2.65) function Cmultiply(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re ∗ b.re− a.im ∗ b.im;
c.im := a.im ∗ b.re+ b.im ∗ a.re;
Cmultiply := c;

end; {Cmultiply}

The inverse of the number α+ iβ is

(α+ iβ)−1 =
α− iβ
α2 + β2

.(2.66)

This is obtained from the identity λ−1 = λ∗/(λ∗λ). A formula for the division of
one complex number by another follows immediately; and the trigonometrical and
polar forms of these identities are easily obtained. Separate code is provided for
the operations of inversion and division:

(2.67) function Cinverse(a : complex) : complex;
var
c : complex;

begin
c.re := a.re/(Sqr(a.re) + Sqr(a.im));
c.im := −a.im/(Sqr(a.re) + Sqr(a.im));
Cinverse := c;

end; {Cinverse}

function Cdivide(a, b : complex) : complex;
var
c : complex;

begin
c.re := (a.re ∗ b.re+ a.im ∗ b.im)/(Sqr(b.re) + Sqr(b.im));
c.im := (a.im ∗ b.re− b.im ∗ a.re)/(Sqr(b.re) + Sqr(b.im));
Cdivide := c;

end; {Cdivide}

Finally, there is the code for computing the square root of a complex number.
In this case, the polar representation is used:

(2.68) function Csqrt(a : complex) : complex;

const
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virtualZero = 1E − 12;
pi = 3.1415926;

var
rho, theta : real;
c : complex;

begin {complex square root}
rho := Sqrt(Sqr(a.re) + Sqr(a.im));
if Abs(a.re) < virtualZero then

begin
if a.im < 0 then
theta := pi/2
else
theta := −pi/2

end
else if a.re < 0 then
theta := ArcTan(a.im/a.re) + pi

else
theta := Arctan(a.im/a.re);

c.re := Sqrt(rho) ∗ Cos(theta/2);
c.im := Sqrt(rho) ∗ Sin(theta/2);
Csqrt := c;

end; {Csqrt : complex square root}

The Roots of Unity

Consider the equation zn = 1. This is always satisfied by z = 1; and, if n is
even, then z = −1 is also a solution. There are no other solutions amongst the set
of real numbers. The solution set is enlarged if z is allowed to be a complex number.
Let z = ρeiθ = ρ{cos(θ) + i sin(θ)}. Then zn = ρneiθn = 1 implies that ρn = 1 and
therefore ρ = 1, since the equality of two complex numbers implies the equality
of their moduli. Now consider zn = eiθn = cos(nθ) + i sin(nθ). Equating the real
parts of the equation zn = 1 shows that cos(nθ) = 1 which implies that nθ = 2πk,
where k is any integer. Equating the imaginary parts shows that sin(nθ) = 0 which,
again, implies that nθ = 2πk. Therefore, the solutions take the form of

z = exp
(
i2πk
n

)
= cos

2πk
n

+ i sin
2πk
n
.(2.69)

Such solutions are called roots of unity.
Since cos{2πk/n} and sin{2πk/n} are periodic functions with a period of k =

n, it makes sense to consider only solutions with values of k less than n. Also, if z
is a root of unity, then so too is z∗. The nth roots of unity may be represented by
n equally spaced points around the circumference of the unit circle in the complex
plane (see Figure 2.4).

The roots of unity are entailed in the process of finding the discrete Fourier
transform of a finite sequence. Later in the present chapter, and in Chapter 14,
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Figure 2.4. The 6th roots of unity inscribed in the unit circle.

where we consider the discrete Fourier transform of a sequence of data points yt; t =
0, . . . , T − 1, we adopt the notation

W jt
T = exp

(
−i2πjt
T

)
; t = 0, . . . , T − 1(2.70)

to describe the T points on the unit circle at which the argument zj is evaluated.

The Polynomial of Degree n

Now consider the general equation of the nth degree:

α0 + α1z + · · ·+ αnz
n = 0.(2.71)

On dividing by αn, a monic polynomial is obtained which has a unit associated
with the highest power of z. This can be factorised as

(z − λ1)(z − λ2) · · · (z − λn) = 0,(2.72)

where some of the roots may be real and others may be complex. If the coefficients
of the polynomial are real-valued, then the complex roots must come in conjugate
pairs. Thus, if λ = α + iβ is a complex root, then there is a corresponding root
λ∗ = α− iβ such that the product (z−λ)(z−λ∗) = z2 +2αz+(α2 +β2) is real and
quadratic. When the n factors are multiplied together, we obtain the expansion

0 = zn −
∑
i

λiz
n−1 +

∑
i 6=j

λiλjz
n−2 − · · · (−1)n(λ1λ2 · · ·λn).(2.73)

This can be compared with the expression (α0/αn) + (α1/αn)z + · · ·+ zn = 0. By
equating coefficients of the two expressions, it is found that (α0/αn) = (−1)n

∏
λi

or, equivalently,

αn = α0

n∏
i=1

(−λi)−1.(2.74)
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Thus the polynomial may be expressed in any of the following forms:∑
αiz

i =αn
∏

(z − λi)

=α0

∏
(−λi)−1

∏
(z − λi)

=α0

∏
(1− z/λi).

(2.75)

The following procedure provides the means for compounding the coefficients
of a monic polynomial from its roots. The n roots are contained in a complex array
lambda. When all the complex roots are in conjugate pairs, the coefficients become
the real elements of the complex array alpha.

(2.76) procedure RootsToCoefficients(n : integer;
var alpha, lambda : complexVector);

var
j, k : integer;
store : complex;

begin {RootsToCoefficients}
alpha[0].re := 1.0;
alpha[0].im := 0.0;

for k := 1 to n do
begin {k}
alpha[k].im := 0.0;
alpha[k].re := 0.0;
for j := k downto 1 do

begin {j}
store := Cmultiply(lambda[k], alpha[j]);
alpha[j] := Csubtract(alpha[j − 1], store);

end; {j}
alpha[0] := Cmultiply(lambda[k], alpha[0]);
alpha[0].re := −alpha[0].re;
alpha[0].im := −alpha[0].im

end; {k}

end; {RootsToCoefficients}

Occasionally it is useful to consider, instead of the polynomial α(z) of (2.71),
a polynomial in the form

α′(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn.(2.77)

This has the same coefficients as α(z), but is has declining powers of z instead of
rising powers. Reference to (2.71) shows that α′(z) = znα(z−1).
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If λ is a root of the equation α(z) =
∑
αiz

i = 0, then µ = 1/λ is a root of the
equation α′(z) =

∑
αiz

n−i = 0. This follows since
∑
αiµ

n−i = µn
∑
αiµ
−i = 0

implies that
∑
αiµ
−i =

∑
αiλ

i = 0. Confusion can arise from not knowing which
of the two equations one is dealing with.

Another possibility, which may give rise to confusion, is to write the factorisa-
tion of α(z) in terms of the inverse values of its roots which are the roots of α(z−1).
Thus, in place of the final expression under (2.75), one may write∑

αiz
i = α0

∏
(1− µiz).(2.78)

Since it is often convenient to specify α(z) in this manner, a procedure is provided
for compounding the coefficients from the inverse roots. In the procedure, it is
assumed that α0 = 1.

(2.79) procedure InverseRootsToCoeffs(n : integer;
var alpha,mu : complexVector);

var
j, k : integer;
store : complex;

begin
alpha[0].re := 1.0;
alpha[0].im := 0.0;

for k := 1 to n do
begin {k}
alpha[k].im := 0.0;
alpha[k].re := 0.0;
for j := k downto 1 do

begin {j}
store := Cmultiply(mu[k], alpha[j − 1]);
alpha[j] := Csubtract(alpha[j], store);

end; {j}
end; {k}

end; {InverseRootsToCoefficients}

To form the coefficients of a polynomial from its roots is a simple matter. To
unravel the roots from the coefficients is generally far more difficult. The topic of
polynomial factorisation is pursued is a subsequent chapter where practical methods
are presented for extracting the roots of polynomials of high degrees.

Matrices and Polynomial Algebra

So far, in representing time-series models, we have used rational polynomial
operators. The expansion of a rational operator gives rise to an indefinite power
series. However, when it comes to the numerical representation of a model, one is
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constrained to work with finite sequences; and therefore it is necessary to truncate
the power series. Moreover, whenever the concepts of multivariate statistical anal-
ysis are applied to the problem of estimating the parameters of time-series model,
it becomes convenient to think in terms of the algebra of vectors and matrices. For
these reasons, it is important to elucidate the relationship between the algebra of
coordinate vector spaces and the algebra of polynomials.

Lower-Triangular Toeplitz Matrices

Some of the essential aspects of the algebra of polynomials are reflected in the
algebra of lower-triangular Toeplitz matrices.

A Toeplitz matrix A = [αij ] is defined by the condition that αij = αi+k,j+k for
all i, j and k within the allowable range of the indices. The elements of a Toeplitz
matrix vary only when the difference of the row and column indices varies; and,
therefore, the generic element can be written as αij = αi−j . The n × n matrix
A = [αi−j ] takes the following form:

A =


α0 α−1 α−2 . . . α1−n
α1 α0 α−1 . . . α2−n
α2 α1 α0 . . . α3−n
...

...
...

. . .
...

αn−1 αn−2 αn−3 . . . α0

 .(2.80)

A lower-triangular Toeplitz A = [αi−j ] has αi−j = 0 whenever i < j. Such a
matrix is completely specified by its leading vector α = {α0, . . . , αn−1}. This vector
is provided by the equation α = Ae0 where e0 is the leading vector of the identity
matrix of order n which has a unit as its leading element and zeros elsewhere.
Occasionally, when it is necessary to indicate that A is completely specified by α,
we shall write A = A(α).

Any lower-triangular Toeplitz matrix A of order n can be expressed as a
linear combination of a set of basis matrices I, L, . . . , Ln−1, where the matrix
L = [e1, . . . , en−2, 0], which has units on the first subdiagonal and zeros elsewhere,
is formed from the identity matrix I = [e0, e1, . . . , en−1] by deleting the leading
vector and appending a zero vector to the end of the array:

L =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.(2.81)

This is a matrix analogue of the lag operator. When q < n, the matrix Lq, which
is the qth power of L, has units on the qth subdiagonal and zeros elsewhere. When
q ≥ n the matrix Lq is null; and therefore L is said to be nilpotent of degree n.
Thus the lower-triangular Toeplitz matrix A may be expressed as

A=α0I + α1L+ · · ·+ αn−1L
n−1

=α(L).(2.82)
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This can be construed as polynomial whose argument is the matrix L. The notation
is confusable with that of a polynomial in the lag operator L which operates on
the set of infinite sequences. Distinctions can be made by indicating the order of
the matrix via a subscript. The matrix L∞ is synonymous with the ordinary lag
operator.

According to the algebra of polynomials, the product of the pth degree polyno-
mial α(z) and the kth degree polynomial β(z) is a polynomial γ(z) = α(z)β(z) =
β(z)α(z) of degree p+ k. However, in forming the matrix product AB = α(L)β(L)
according the rules of polynomial algebra, it must be recognised that Lq = 0 for all
q ≥ n; which means that the product corresponds to a polynomial of degree n− 1
at most. The matter is summarised as follows:

(2.83) If A = α(L) and B = β(L) are lower-triangular Toeplitz matrices, then
their product Γ = AB = BA is also a lower-triangular Toeplitz matrix.
If the order of Γ exceeds the degree of γ(z) = α(z)β(z) = β(z)α(z),
then the leading vector γ = Γe1 contains the complete sequence of the
coefficients of γ(z). Otherwise it contains a truncated version of the
sequence.

If the matrices A, B and Γ were of infinite order, then the products of multiplying
polynomials of any degree could accommodated.

The notable feature of this result is that lower-triangular Toeplitz matrices
commute in multiplication; and this corresponds to the commutativity of polyno-
mials in multiplication.

Example 2.3. Consider the polynomial product

α(z)β(z) = (α0 + α1z + α2z
2)(β0 + β1z)

=α0β0 + (α0β1 + α1β0)z + (α1β1 + α2β0)z2 + α2β1z
3.

(2.84)

This may be compared with the following commutative matrix multiplication:
α0 0 0 0
α1 α0 0 0
α2 α1 α0 0
0 α2 α1 α0



β0 0 0 0
β1 β0 0 0
0 β1 β0 0
0 0 β1 β0

 =


γ0 0 0 0
γ1 γ0 0 0
γ2 γ1 γ0 0
γ3 γ2 γ1 γ0

 ,(2.85)

where

γ0 =α0β0,

γ1 =α0β1 + α1β0,

γ2 =α1β1 + α2β0,

γ3 =α2β1.

(2.86)

The inverse of a lower-triangular Toeplitz matrix A = α(L) is defined by the
identity

A−1A = α−1(L)α(L) = I.(2.87)
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Let α−1(z) = {ω0 +ω1z+ · · ·+ωn−1z
n−1 + · · ·} denote the expansion of the inverse

polynomial. Then, when L in put in place of z and when it is recognised that
Lq = 0 for q ≥ n, it will be found that

A−1 = ω0 + ω1L+ · · ·+ ωn−1L
n−1.(2.88)

The result may be summarised as follows:

(2.89) Let α(z) = α0 + α1z + · · ·+ αpz
p be a polynomial of degree p and let

A = α(L) be a lower-triangular Toeplitz matrix of order n. Then the
leading vector of A−1 contains the leading coefficients of the expansion
of α−1(z) = {ω0 + ω1z + · · ·+ ωn−1z

n−1 + · · ·}.

Notice that there is no requirement that n ≥ p. When n < p, the elements of the
inverse matrix A−1 are still provided by the leading coefficients of the expansion
of α−1(z), despite the fact that the original matrix A = α(L) contains only the
leading coefficients of α(z).

Example 2.4. The matrix analogue of the product of 1 − θz and (1 − θz)−1 =
{1 + θz + θ2z2 + · · ·} is

1 0 0 0
−θ 1 0 0
0 −θ 1 0
0 0 −θ 1




1 0 0 0
θ 1 0 0
θ2 θ 1 0
θ3 θ2 θ 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .(2.90)

This matrix equation is also the analogue of the product of (1− θz)/(1− θ4z4) and
1 + θz + θ2z2 + θ3z3.

Circulant Matrices

A circulant matrix is a Toeplitz matrix which has the general form of

A =


α0 αn−1 αn−2 . . . α1

α1 α0 αn−1 . . . α2

α2 α1 α0 . . . α3

...
...

...
. . .

...
αn−1 αn−2 αn−3 . . . α0

 .(2.91)

The vectors of such a matrix are generated by applying a succession of cyclic
permutations to the leading vector, which therefore serves to specify the matrix
completely. The elements of the circulant matrix A = [αij ] fulfil the condition that
αij = α{(i−j) mod n}. Hence, the index for the supradiagonal elements, for which
1− n < i− j < 0, becomes (i− j) mod n = n+ (i− j).

Any circulant matrix of order n can be expressed as a linear combination of a
set of basis matrices I,K, . . . ,Kn−1, where K = [e1, . . . , en−1, e0] is formed from
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the identity matrix I = [e0, e1, . . . , en−1] by moving the leading vector to the back
of the array:

K =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.(2.92)

This is a matrix operator which effects a cyclic permutation of the elements of any
(column) vector which it premultiplies. Thus, an arbitrary circulant matrix A of
order n can be expressed as

A=α0I + α1K + · · ·+ αn−1K
n−1

=α(K).
(2.93)

The powers of K form an n-periodic sequence such that Kj+n = Kj for all
j or, equivalently, K ↑ j = K ↑ (j mod n). The inverse powers of the operator
K are defined by the condition that K−qKq = K0 = I. It can be confirmed
directly that K−q = Kn−q. However, this also follows formally from the condition
that Kn = K0 = I. It may also be confirmed directly that the transpose of K is
K ′ = Kn−1 = K−1.

It is easy to see that circulant matrices commute in multiplication, since this
is a natural consequence of identifying them with polynomials. Thus

(2.94) If A = α(K) and B = β(K) are circulant matrices, then their product
Γ = AB = BA is also a circulant matrix whose leading vector γ =
Γe0 contains the coefficients of the circular convolution of the leading
vectors α = Ae0 and β = Be0.

Example 2.5. Consider the following product of circulant matrices:
α0 0 α2 α1

α1 α0 0 α2

α2 α1 α0 0
0 α2 α1 α0



β0 0 β2 β1

β1 β0 0 β2

β2 β1 β0 0
0 β2 β1 β0

 =


γ0 γ3 γ2 γ1

γ1 γ0 γ3 γ2

γ2 γ1 γ0 γ3

γ3 γ2 γ1 γ0

 .(2.95)

Here

γ0 =α0β0 + α2β2,

γ1 =α1β0 + α0β1,

γ2 =α2β0 + α1β1 + α0β2,

γ3 =α2β1 + α1β2,

(2.96)

represent the coefficients of the circular convolution of {α0, α1, α2, 0} and
{β0, β1, β2, 0}. Notice that, with β2 = 0, the coefficients {γ0, γ1, γ2, γ3} would
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be the same as those from the linear convolution depicted under (2.85). Thus
it is confirmed that the coefficients of the linear convolution of {α0, α1, α2} and
{β0, β1} may be obtained by applying the process of circular convolution to the
padded sequences {α0, α1, α2, 0} and {β0, β1, 0, 0}.

If A = α(K) is a circulant matrix, then its inverse is also a circulant matrix
which is defined by the condition

A−1A = α−1(K)α(K) = I.(2.97)

If the roots of α(z) = 0 lie outside the unit circle, then coefficients of the
expansion α(z)−1 = {ω0 +ω1z+ · · ·+ωn−1z

n−1 + · · ·} form a convergent sequence.
Therefore, by putting K in place of z and noting that K ↑ q = K ↑ (q mod n), it is
found that

A−1 =
∞∑
j=0

ωjn +
{ ∞∑
j=0

ω(jn+1)

}
K + · · ·+

{ ∞∑
j=0

ω(jn+n−1)

}
Kn−1

=ψ0 + ψ1K + · · ·+ ψn−1K
n−1.

(2.98)

Given that ωj → 0 as j → ∞, it follows that the sequence {ψ0, ψ1, . . . , ψn−1}
converges to the sequence {ω0, ω1, . . . , ωn−1} as n increases. If the roots of
α(z) = 0 lie inside the unit circle, then it becomes appropriate to express A as
A = K−1(αn−1 + αn−2K

−1 + · · · + α1K
2−n + α0K

1−n) = K−1α′(K−1) and to
defined the inverse of A by the condition

A−1A = α′−1(K−1)α′(K−1) = I.(2.99)

The expression under (2.98) must then be replaced by a similar expression in terms
of a convergent sequence of coefficients from the expansion of α′(z−1).

The Factorisation of Circulant Matrices

The matrix operator K has a spectral factorisation which is particularly useful
in analysing the properties of the discrete Fourier transform. To demonstrate this
factorisation, we must first define the so-called Fourier matrix. This is a symmetric
matrix U = n−1/2[W jt; t, j = 0, . . . , n − 1] whose generic element in the jth row
and tth column is W jt = exp(−i2πtj/n). On taking account of the n-periodicity
of W q = exp(−i2πq/n), the matrix can be written explicitly as

U =
1√
n


1 1 1 . . . 1
1 W W 2 . . . Wn−1

1 W 2 W 4 . . . Wn−2

...
...

...
...

1 Wn−1 Wn−2 . . . W

 .(2.100)

The second row and the second column of this matrix contain the nth roots of
unity. The conjugate matrix is defined as Ū = n−1/2[W−jt; t, j = 0, . . . , n − 1];
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and, by using W−q = Wn−q, this can be written explicitly as

Ū =
1√
n


1 1 1 . . . 1
1 Wn−1 Wn−2 . . . W
1 Wn−2 Wn−4 . . . W 2

...
...

...
...

1 W W 2 . . . Wn−1

 .(2.101)

It is readily confirmed that U is a unitary matrix fulfilling the condition

ŪU = UŪ = I.(2.102)

To demonstrate this result, consider the generic element in the rth row and the sth
column of the matrix UŪ = [δrs]. This is given by

δrs =
1
n

n−1∑
t=0

W rtW−st

=
1
n

n−1∑
t=0

W (r−s)t.

(2.103)

Here there is

W (r−s)t = W qt = exp(−i2πqt/n)
= cos(−i2πqt/n)− i sin(−i2πqt/n).

(2.104)

Unless q = 0, the sums of these trigonometrical functions over an integral number
of cycles are zero, and therefore

∑
tW

qt = 0. If q = 0, then the sine and cosine
functions assume the values of zero and unity respectively, and therefore

∑
tW

qt =
n. It follows that

δrs =
{ 1, if r = s;

0, if r 6= s,

which proves the result.

Example 2.6. Consider the matrix

U =
1
2


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

 =
1
2


1 1 1 1
1 W W 2 W 3

1 W 2 1 W 2

1 W 3 W 2 W

 .(2.105)

The equality comes from the 4-period periodicity of W q = exp(−πq/2). The con-
jugate matrix is

Ū =
1
2


1 1 1 1
1 W−1 W−2 W−3

1 W−2 W−4 W−6

1 W−3 W−6 W−9

 =
1
2


1 1 1 1
1 W 3 W 2 W
1 W 2 1 W 2

1 W W 2 W 3

 .(2.106)
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With W q = exp(−πq/2) = cos(−πq/2) − i sin(−πq/2), it is found that W 0 = 1,
W 1 = −i, W 2 = −1 and W 3 = i. Therefore,

UŪ =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .(2.107)

Consider postmultiplying the unitary matrix U of (2.100) by a diagonal matrix

D =


1 0 0 . . . 0
0 Wn−1 0 . . . 0
0 0 Wn−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W

 .(2.108)

Then it is easy to see that

UD = KU,(2.109)

where K is the circulant operator from (2.92). From this it follows that K = UDŪ
and, more generally, that

Kq = UDqŪ .(2.110)

By similar means, it can be shown that K ′ = UD̄Ū , where

D̄ = diag{1,W,W 2, . . . ,Wn−1}(2.111)

is the conjugate of D. The following conclusions can be reached in a straightforward
manner:

(2.112) If A = α(K) is a circulant matrix then

(i) A = α(K) = Uα(D)Ū ,
(ii) A′ = α(K ′) = Uα(D̄)Ū ,
(iii) A−1 = α(K) = Uα−1(D)Ū .

(2.113) If the elements of the circulant matrix A are real numbers, then the
matrix is its own conjugate and

A = Ā = Ūα(D̄)U.

Notice that the set of matrices Dk; k = 0, . . . , n − 1 forms a basis for an
n-dimensional complex vector space comprising all diagonal matrices of order n.
Therefore, provided that its coefficients can be complex numbers, the polynomial
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α(D) in the expressions above stands for an arbitrary diagonal matrix with real or
complex elements. If the coefficients of α(D) are constrained to be real, then the
jth element of the diagonal matrix takes the form of

δj =
∑
j

αjW
jt =

∑
j

αj
{

cos(ωjt)− i sin(ωjt)
}
,(2.114)

where ωj = 2πj/n. In that case, the sequence of complex numbers {δj ; j =
0, 1, . . . , n − 1} consists of a real part which is an even or symmetric function of t
and an imaginary part which is an odd or anti-symmetric function.

Example 2.7. Consider the equation

X = Ux(D)Ū = Ūx(D̄)U,(2.115)

which defines the real-valued circulant matrix X. The second equality follows from
the fact that matrix is its own conjugate. Observe that, if e0 = [1, 0, . . . , 0]′ is the
leading vector of the identity matrix of order n, then

Xe0 =x = [x0, x1, . . . , xn−1]′,

Ue0 = Ūe0 = i = [1, 1, . . . , 1]′,

x(D̄)i= ξ = [ξ0, ξ1, . . . , ξn−1]′ and

x(D)i= ξ∗ = [ξn−1, ξn−2, . . . , ξ0]′.

(2.116)

Here the vector ξ is the discrete Fourier transform of the vector x. Its elements
are the values {ξk = x(zk); k = 0, . . . , n − 1} which come from setting z = zk =
exp(−2πk/n) in x(z) which is the z-transform of the sequence. {x0, x1, . . . , xn−1}.
Premultiplying the equation X = Ūx(D̄)U from (2.115) by U and postmultiplying
it by e0 gives

Ux = ξ,(2.117)

which represents the direct Fourier transform of the vector x. Postmultiplying the
equation by e0 gives

x = Ūξ;(2.118)

and this represents the inverse Fourier transform by which x is recovered from ξ.

Example 2.8. Consider the multiplication of two circulant matrices

A=α(K) = Uα(D)Ū and

B=α(K) = Uβ(D)Ū .
(2.119)

Their product is

AB=Uα(D)ŪUβ(D)Ū

=Uα(D)β(D)Ū .
(2.120)
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On the LHS, there is a matrix multiplication which has already been interpreted
in Example 2.5 as the circular convolution of the sequences {α0, . . . , αn−1} and
{β0, . . . , βn−1} which are the coefficients of the polynomials of α(z) and β(z). On
the RHS there is a matrix multiplication α(D)β(D) which represents the pairwise
multiplication of the corresponding nonzero elements of the diagonal matrices in
question. These diagonal elements are the values {α(zk); k = 0, . . . , n − 1} and
{β(zk); k = 0, . . . , n − 1} of the discrete Fourier transforms of the sequences; and
they come from setting z = zk = exp(−2πk/n) in α(z) and β(z). Thus it can
be demonstrated that a convolution product in the time domain is equivalent to a
modulation product in the frequency domain.
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CHAPTER 3

Rational Functions
and Complex Analysis

The results in the algebra of polynomials which were presented in the previous
chapter are not, on their own, sufficient for the analysis of time-series models.
Certain results regarding rational functions of a complex variable are also amongst
the basic requirements.

Rational functions may be expanded as Taylor series or, more generally, as
Laurent series; and the conditions under which such series converge are a matter
for complex analysis.

The first part of this chapter provides a reasonably complete treatment of the
basic algebra of rational functions. Most of the results which are needed in time-
series analysis are accessible without reference to a more sophisticated theory of
complex analysis of the sort which pursues general results applicable to unspecified
functions of the complex variable. However, some of the classic works in time-series
analysis and signal processing do make extensive use of complex analysis; and they
are liable to prove inaccessible unless one has studied the rudiments of the subject.

Our recourse is to present a section of complex analysis which is largely self-
contained and which might be regarded as surplus to the basic requirements of time-
series analysis. Nevertheless, it may contribute towards a deeper understanding of
the mathematical foundations of the subject.

Rational Functions

In many respects, the algebra of polynomials is merely an elaboration of the
algebra of numbers, or of arithmetic in other words. In dividing one number by
another lesser number, there can be two outcomes. If the quotient is restricted to
be an integer, then there is liable to be a remainder which is also an integer. If no
such restriction is imposed, then the quotient may take the form of a interminable
decimal. Likewise, with polynomials, there is a process of synthetic division which
generates a remainder, and there is a process of rational expansion which is liable
to generate an infinite power-series.

It is often helpful in polynomial algebra, as much as in arithmetic, to be aware
of the presence of factors which are common to the numerator and the denominator.

Euclid’s Algorithm

Euclid’s method, which is familiar from arithmetic, can be used to discover
whether two polynomials α(z) = α0+α1z+· · ·+αpzp and β(z) = β0+β1z+· · ·+βkzk
possess a polynomial factor in common. Assume that the degree of α(z) is no less

55



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

than that of β(z) so that β(z) divides α(z) with a remainder of r(z). Then β(z)
can be divided by r(z) giving a remainder of r1(z), and then r(z) can be divided
by r1(z) giving a remainder of r2(z), and so on. Thus the following sequence is
generated:

α(z) = q(z)β(z) + r(z),

β(z) = q1(z)r(z) + r1(z),

r(z) = q2(z)r1(z) + r2(z),
...

rp−2(z) = qp(z)rp−1(z) + rp(z),

rp−1(z) = qp+1(z)rp(z) + c.

(3.1)

Now, the polynomials in the sequence {α(z), β(z), r(z), . . .} are of decreasing degree,
so it follows that the process must terminate. The final element rp+1(z) = c in the
sequence either vanishes or has a degree of zero, in which case c is a nonzero
constant.

Take the first case where rp+1(z) = c = 0 and all of its predecessors in the
sequence are nonzero. Then rp(z) is a factor of rp−1(z). It is also a factor of
rp−2(z) = qp(z)rp−1(z) + rp(z) and of all other elements of the sequence including
α(z) and β(z).

Conversely, any factor which is common to α(z) and β(z) is a factor of r(z) =
α(z)− q(z)β(z) and similarly of r1(z) = β(z)− q1(z)r(z), and so on down to rp(z).
Hence rp(z) includes every common factor of α(z) and β(z), and it must therefore
be the highest common factor of α(z) and β(z).

Now consider the case where rp+1(z) = c is a nonzero constant. As before,
it must include every factor common to α(z) and β(z). But, since c contains no
nonzero power of z, it can be said that α(z) and β(z) are relatively prime to each
other.

Next we shall prove that

(3.2) If rp(z) is the highest common factor of α(z) and β(z), then there exist
polynomials f(z) and g(z) such that

rp(z) = f(z)α(z) + g(z)β(z).

Proof. The result is implicit in Euclid’s algorithm. On setting rp+1(z) = c = 0,
the sequence of equations in (3.1) can be rewritten as

r(z) =α(z)− q(z)β(z),

r1(z) =β(z)− q1(z)r(z),
...

rp−1(z) = rp−3(z)− qp−1(z)rp−2(z),

rp(z) = rp−2(z)− qp(z)rp−1(z).

(3.3)
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Putting the expression for r(z) into the expression for r1(z) gives r1(z) = f1(z)α(z)
+g1(z)β(z) with f1(z) = −q1(z) and g1(z) = 1+q(z)q1(z). Putting this expression
into r2(z) gives r2(z) = f2(z)α(z) + g2(z)β(z). One can continue the substitutions
until the expression rp(z) = fp(z)α(z) + gp(z)β(z) is obtained. Then the equation
under (3.2) comes from suppressing the subscripts on fp(z) and gp(z).

Other polynomials, which can play the roles of f(z) and g(z) in equation (3.2),
can be derived from those generated by Euclid’s algorithm. Thus, if we set

F (z) = f(z)− p(z)β(z),

G(z) = g(z) + p(z)α(z),

where p(z) is an arbitrary polynomial, then we get

F (z)α(z) +G(z)β(z) = f(z)α(z) + g(z)β(z)

= rp(z).

The next result, which builds upon the previous one, is fundamental to the
theory of partial fractions:

(3.4) If α(z) and β(z) are relatively prime, then there exist unique polyno-
mials g(z) and f(z) of degrees less than α(z) and β(z) respectively
such that

c = f(z)α(z) + g(z)β(z).

Proof. If α(z) and β(z) are relatively prime, then, by virtue of Euclid’s algorithm,
there exists a pair of polynomials G(z) and F (z) for which

c = F (z)α(z) +G(z)β(z).(3.5)

The object is to replace F (z) and G(z) by polynomials f(z) and g(z) whose
degrees are less that those of β(z) and α(z) respectively.

Dividing, by β(z) and α(z) gives

F (z) = qβ(z)β(z) + rβ(z),

G(z) = qα(z)α(z) + rα(z),
(3.6)

where either or both of the quotients qβ(z), qα(z) may be zero. On multiplying
these equations by α(z) and β(z) respectively and rearranging them, we get

F (z)α(z)− rβ(z)α(z) = qβ(z)α(z)β(z),

G(z)β(z)− rα(z)β(z) = qα(z)α(z)β(z).
(3.7)

Adding these and using (3.5) gives

c− rβ(z)α(z)− rα(z)β(z) =
{
qβ(z) + qα(z)

}
α(z)β(z).(3.8)
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But now, unless qβ(z) + qα(z) = 0, the degree of the RHS cannot be less than that
of α(z)β(z), whilst the degree of the LHS must be less than that of α(z)β(z)—since
the degree of rβ(z) is less than that of β(z) and the degree of rα(z) is less than that
of α(z). Therefore, the factor in question must be zero, and so we have

c = rβ(z)α(z) + rα(z)β(z).(3.9)

Now it has to be demonstrated that rβ(z) = f(z) and rα(z) = g(z) are unique.
Imagine that c = f(z)α(z) + g(z)β(z), where f(z) 6= rβ(z) and g(z) 6= rα(z) have
degrees less than and β(z) and α(z) respectively. By subtracting, we should get
{rβ(z) − f(z)}α(z) = {g(z) − rα(z)}β(z) or α(z)/β(z) = {g(z) − rα(z)}/{rβ(z) −
f(z)}. But then the RHS is expressed in polynomials of lower degree than those
on the LHS; and, since α(z), β(z) are relatively prime, this is not possible. The
problem is averted only if rβ(z) = f(z) and g(z) = rβ(z).

(3.10) If γm(z) and γn(z) are relatively prime polynomials of degrees m and
n respectively, and if δ(z) is a polynomial of degree less than m + n,
then there is a unique representation

δ(z) = f(z)γm(z) + g(z)γn(z).

where g(z) and f(z) are polynomials of degrees less than m and n
respectively.

Proof. We begin by asserting that there always exists a representation in the form
of

δ(z) = F (z)γm(z) +G(z)γn(z);(3.11)

for, according to (3.4), we can always set c = f(z)γm(z) + g(z)γn(z), whence,
by multiplying throughout by δ(z)/c and defining F (z) = f(z)δ(z)/c and G(z) =
g(z)δ(z)/c, we get the desired result.

Next, we set about finding replacements for F (z) and G(z) which are of the
requisite degrees. We proceed as in the proof of (3.4). Dividing, by γn(z) and γm(z)
gives

F (z) = qF (z)γn(z) + rF (z),

G(z) = qG(z)γm(z) + rG(z).
(3.12)

On multiplying these equations by γm(z) and γn(z) respectively and rearranging
them, we get

F (z)γm(z)− rF (z)γm(z) = qF (z)γm(z)γn(z),

G(z)γn(z)− rG(z)γn(z) = qG(z)γm(z)γn(z).
(3.13)

Adding these and using (3.11) gives

δ(z)− rF (z)γm(z)− rG(z)γn(z) =
{
qF (z) + qG(z)

}
γm(z)γn(z).(3.14)
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But now, unless qF (z) + qG(z) = 0, the degree of the RHS cannot be less than that
of γm(z)γn(z), whilst the degree of the LHS must be less than that of γm(z)γn(z)—
since the degree of rF (z) is less than that of γn(z) and the degree of rG(z) is less
than that of γm(z). Therefore, the factor in question must be zero, and so we have

δ(z) = rF (z)γm(z) + rG(z)γn(z).(3.15)

Finally, it can be demonstrated, as in the proof of (3.4), that rF (z) = f(z) and
rG(z) = g(z) are unique.

Partial Fractions

The ratio ρ(z) = δ(z)/γ(z) of two polynomials δ(z) = δ0 + δ1z + · · · + δnz
n

and γ(z) = γ0 + γ1z + · · · + γmz
m is described as a rational function. The degree

of a rational function is defined as the degree of the numerator less the degree of
the denominator. If the degree is negative, then ρ(z) is a proper rational function,
otherwise ρ(z) is improper.

(3.16) If δ(z)/γ(z) = δ(z)/{γ1(z)γ2(z)} is a proper rational function and if
γ1(z) and γ2(z) have no common factors, then it is expressed uniquely
as

δ(z)
γ(z)

=
δ1(z)
γ1(z)

+
δ2(z)
γ2(z)

,

where δ1(z)/γ1(z) and δ2(z)/γ2(z) are proper rational functions.

Proof. According to (3.10), there is a unique expression in the form of δ(z) =
δ1(z)γ2(z) + δ2(z)γ1(z) where the degrees of δ1(z) and δ2(z) are less than those of
γ1(z) and γ2(z) respectively. Hence

δ(z)
γ(z)

=
δ1(z)γ2(z) + δ2(z)γ1(z)

γ1(z)γ2(z)

=
δ1(z)
γ1(z)

+
δ2(z)
γ2(z)

,

(3.17)

is a uniquely defined sum of proper fractions.

If γ1(z) or γ2(z) has polynomial factors, then the process which is represented
by (3.16) can be repeated until all of the distinct factors of γ(z) have been segre-
gated. Thus the rational function δ(z)/γ(z) can be expressed as a sum of partial
fractions in the form of

δ(z)
γ(z)

=
∑
j

δj(z)
γj(z)

,(3.18)

where no two denominators have any factors in common. These denominators will
assume the generic forms of (z2 + ρz + σ)r = {(z − λ)(z − λ∗)}r and (z − λ)s.
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The simplest case is when γ(z) =
∏

(z − λi), where all the factors (z − λi) are
real and distinct. Then

δ(z)
γ(z)

=
κ1

z − λ1
+

κ2

z − λ2
+ · · ·+ κm

z − λm
.(3.19)

To evaluate the constant κ1, for example, we may multiply by z − λ1 throughout
the equation to get

δ(z)(z − λ1)
γ(z)

= κ1 +
κ2(z − λ1)
z − λ2

+ · · ·+ κm(z − λ1)
z − λm

.(3.20)

On the left, there is δ(z)/
{

(z − λ2)(z − λ3) . . . (z − λm)
}

; and, from the right side,
it appears that, when z = λ1, this gives the value of κ1.

Example 3.1. Consider the equation

3z
1 + z − 2z2

=
3z

(1− z)(1 + 2z)

=
κ1

1− z
+

κ2

1 + 2z

=
κ1(1 + 2z) + κ2(1− z)

(1− z)(1 + 2z)
.

(3.21)

Equating the terms of the numerator gives

3z = (2κ1 − κ2)z + (κ1 + κ2),(3.22)

so that κ2 = −κ1, which gives 3 = (2κ1 − κ2) = 3κ1; and thus it is found that
κ1 = 1, κ2 = −1. We have pursued a more laborious method of finding κ1, κ2

in this example that the method which has been suggested above. However, the
method can be relied upon in all cases.

The case where γ(z) = γ1(z)γ2(z) contains a factor γ2(z) = z2 + ρz + σ =
(z−λ)(z−λ∗) is marginally more complicated than the case where the linear factors
are real. Now there is a partial fraction in the form of (az + b)/{(z − λ)(z − λ∗)}.
One should multiply throughout by (z−λ)(z−λ∗) and proceed to set z = λ to get

δ(λ)
γ1(λ)

= aλ+ b.(3.23)

This is a complex equation which can be separated into its real and imaginary parts.
The two parts constitute a pair of simultaneous equations which may be solved for
a and b. Of course, the same pair of simultaneous equations will be obtained from
(3.23) when λ is replaced by λ∗.

A partial fraction with a quadratic denominator can be decomposed into a pair
of fractions with complex numbers in their denominators:

az + b

(z − λ)(z − λ∗)
=

κ

z − λ
+

κ∗

z − λ∗
.(3.24)

Then it is found that κ = (aλ + b)/(λ − λ∗) and κ∗ = (aλ∗ + b)/(λ∗ − λ). These
are conjugate complex numbers.
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Example 3.2. Consider the equation

z2

(z + 1)(z2 + 4z + 5)
=

κ

z + 1
+

az + b

z2 + 4z + 5
,(3.25)

wherein z2 + 4z + 5 = (z− λ)(z− λ∗) with λ = −2− i. Multiplying throughout by
(z − λ)(z − λ∗) and setting z = λ gives the complex equation λ2/(λ+ 1) = aλ+ b
which can be written as 0 = (a − 1)λ2 + (b + a)λ + b. This amounts to two real
equations. The first, which comes from the real terms, is a−b−3 = 0. The second,
which comes from the imaginary terms, is 3a − b − 4 = 0. The solutions to the
equations are a = 1/2 and b = −5/2. Also, κ = 1/2.

Now consider the case where one of the partial fractions is δ1(z)/(z − λ)s.
We can write δ1(z) = π0 + π1(z − λ) + · · · + πs−1(z − λ)s−1. The coefficients
of this polynomial correspond to the values generated in the process of synthetic
division which is described in Chapter 4. Thus π0 is the remainder term in δ1(z) =
β1(z)(z−λ) +π0 and π1 is the remainder term in β1(z) = β2(z)(z−λ) +π1 and so
on. Using this form of δ1(z), the rational function can be written as

δ(z)
γ(z)

=
π0

(z − λ)s
+

π1

(z − λ)s−1
+ · · ·+ πs−1

(z − λ)
+
δ2(z)
γ2(z)

.(3.26)

Then, multiplying this by γ1(z) = (z − λ)s gives

δ(z)
γ2(z)

= π0 + π1(z − λ) + · · ·+ πs−1(z − λ)s−1 + γ1(z)
δ2(z)
γ2(z)

;(3.27)

and setting z = λ isolates the value of π0. Next, if we differentiate with respect to
z, we get

d

dz

[
δ(z)
γ2(z)

]
= π1 +2π2(z − λ) + · · ·+ (s− 1)πs−1(z − λ)s−2

+
d

dz

[
γ1(z)

δ2(z)
γ2(z)

]
;

(3.28)

and setting z = λ isolates π1. We can continue in this way until all of the coefficients
have been found.

Finally, there might be a repeated quadratic factor in γ(z). The corresponding
partial fraction would be δ1(z)/(z2 + ρz + σ)r. Since the denominator is of degree
2r, the degree of δ1(z) may be 2r−1 or less. By dividing δ1(z) by θ(z) = z2 +ρz+σ
in a process of synthetic division, we get remainders π0(z), π1(z), . . . , πr−1(z) which
are either linear functions of z or constants. With δ1(z) = π0(z) +π1(z)θ(z) + · · ·+
πr−1(z)θ(z)r−1, the partial fraction can be written as

δ1(z)
θ(z)r

=
π0(z)
θ(z)r

+
π1(z)
θ(z)r−1

+ · · ·+ πr−1(z)
θ(z)

.(3.29)

It is also possible to decompose the quadratic factor into two conjugate terms
involving complex roots and complex numerators. Then the terms can be written
in the form of (3.26).
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The Expansion of a Rational Function

In time-series analysis, models are often encountered which contain transfer
functions in the form of y(t) = {δ(L)/γ(L)}x(t). For this to have a meaningful
interpretation, it is normally required that the rational operator δ(L)/γ(L) should
obey the BIBO stability condition; which is to say that y(t) should be a bounded
sequence whenever x(t) is bounded.

The necessary and sufficient condition for the boundedness of y(t) is that the
series expansion {ω0+ω1z+· · ·} of ω(z) = δ(z)/γ(z) should be convergent whenever
|z| ≤ 1. We can determine whether or not the series will converge by expressing
the ratio δ(z)/γ(z) as a sum of partial fractions.

Imagine that γ(z) = γm
∏

(z − λi) = γ0

∏
(1 − z/λi) where the roots may be

complex. Then, assuming that there are no repeated roots, and taking γ0 = 1, the
ratio can be written as

δ(z)
γ(z)

=
κ1

1− z/λ1
+

κ2

1− z/λ2
+ · · ·+ κm

1− z/λm
.(3.30)

Since any scalar factor of γ(L) may be absorbed in the numerator δ(L), setting
γ0 = 1 entails no loss of generality.

If the roots of γ(z) = 0 are real and distinct, then the conditions for the
convergence of the expansion of δ(z)/γ(z) are straightforward. For the rational
function converges if and only if the expansion of each of its partial fractions in
terms of ascending powers of z converges. For the expansion

κ

1− z/λ
= κ

{
1 + z/λ+ (z/λ)2 + · · ·

}
(3.31)

to converge for all |z| ≤ 1, it is necessary and sufficient that |λ| > 1.
In the case where a real root occurs with a multiplicity of n, as in the expression

under (3.26), a binomial expansion is available:

1
(1− z/λ)n

= 1− nz
λ

+
n(n− 1)

2!

( z
λ

)2

− n(n− 1)(n− 2)
3!

( z
λ

)3

+ · · · .(3.32)

Once more, it is evident that |λ| > 1 is the necessary and sufficient condition for
convergence when |z| ≤ 1.

The expansion under (3.31) applies to complex roots as well as to real roots.
To investigate the conditions of convergence in the case of complex roots, it is
appropriate to combine the products of the expansion of a pair of conjugate factors.
Therefore, consider following expansion:

c

1− z/λ
+

c∗

1− z/λ∗
= c
{

1 + z/λ+ (z/λ)2 + · · ·
}

+ c∗
{

1 + z/λ∗ + (z/λ∗)2 + · · ·
}

=
∞∑
t=0

zt(cλ−t + λ∗−t).

(3.33)
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The various complex quantities can be represented in terms of exponentials:

λ = κ−1e−iω,
c = ρe−iθ,

λ∗ = κ−1eiω,
c∗ = ρeiθ.

(3.34)

Then the generic term in the expansion becomes

zt(cλ−t + c∗λ∗−t) = zt
{
ρe−iθκteiωt + ρeiθκte−iωt

}
= ztρκt

{
ei(ωt−θ) + e−i(ωt−θ)

}
= zt2ρκt cos(ωt− θ).

(3.35)

The expansion converges for all |z| ≤ 1 if and only if |κ| < 1. But |κ| = |λ−1| =
|λ|−1; so it is confirmed that the necessary and sufficient condition for convergence
is that |λ| > 1.

The case of repeated complex roots can also be analysed to reach a similar
conclusion. Thus a general assertion regarding the expansions of rational function
can be made:

(3.36) The expansion ω(z) = {ω0 +ω1z+ω2z
2 + · · ·} of the rational function

δ(z)/γ(z) converges for all |z| ≤ 1 if and only if every root λ of γ(z) = 0
lies outside the unit circle such that |λ| > 1.

So far, the condition has been imposed that |z| ≤ 1. The expansion of a rational
function may converge under conditions which are either more or less stringent in
the restrictions which they impose on |z|. If fact, for any series ω(z) = {ω0 +ω1z+
ω2z

2 + · · ·}, there exists a real number r ≥ 0, called the radius of convergence, such
that, if |z| < r, then the series converges absolutely with

∑
|ωi| < ∞, whereas, if

|z| > r, the series diverges.
In the case of the rational function δ(z)/γ(z), the condition for the convergence

of the expansion is that |z| < r = min{|λ1|, . . . , |λm|}, where the λi are the roots
of γ(z) = 0.

The roots of the numerator polynomial δ(z) of a rational function are com-
monly described as the zeros of the function, whilst the roots of the denominator
function polynomial γ(z) are described as the poles.

In electrical engineering, the z-transform of a sequence defined on the positive
integers is usually expressed in terms of negative powers of z. This leads to an inver-
sion of the results given above. In particular, the condition for the convergence of
the expansion of the function δ(z−1)/γ(z−1) is that |z| > r = max{|µ1|, . . . , |µm|},
where µi = 1/λi is a root of γ(z−1) = 0.

Example 3.3. It is often helpful to display a transfer function graphically by
means of a pole–zero plot in the complex plane; and, for this purpose, there is
an advantage in the form δ(z−1)/γ(z−1) which is in terms of negative powers of z
(see Figure 3.1). Thus, if the function satisfies the BIBO stability condition, then
the poles of δ(z−1)/γ(z−1) will be found within the unit circle. The numerator may
also be subject to conditions which will place the zeros within the unit circle. On
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− i
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Figure 3.1. The pole–zero diagram of the stable transfer function.

δ(z−1)

γ(z−1)
=

{1− (0.25± i0.75)z−1}
{1− (0.75± i0.25)z−1}{1 + (0.5± i0.5)z−1} .

The poles are marked with crosses and the zeros with circles.

the other hand, the poles of δ(z)/γ(z) will fall outside the unit circle; and they may
be located at a considerable distance from the origin, which would make a diagram
inconvenient.

Because the pole–zero diagram can be of great assistance in analysing a transfer
function, we shall adopt the negative-power z-transform whenever it is convenient
to do so.

Recurrence Relationships

We have seen that, if z is not a root of α(z), then β(z)/α(z) may be expanded
in powers of z:

β(z)
α(z)

= ω(z) = {ω0 + ω1z + ω2z
2 + · · ·}.(3.37)

When j ≥ p and j > k, where p and k are the degrees of α(z) and β(z) respectively,
the sequences of coefficients {ωj , ωj−1, . . . , ωj−p, } obey a recurrence relationship
such that

α0ωj + α1ωj−1 + · · ·+ αpωj−p = 0.(3.38)

Given the p consecutive values ωj−1, . . . , ωj−p, the relationship can be used to
generate the ensuing value ωj . Thus

ωj = − 1
α0
{α1ωj−1 + · · ·+ αpωj−p}.(3.39)
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This feature can be used in deriving an effective algorithm for the expansion of the
rational function.

A set of p instances of the relationship of (3.38) can also be used to infer the
values of the denominator coefficients α1, . . . , αp on the assumption that α0 = 1;
for then the relationships constitute a simple system of p linear equations in p
unknowns. Once the denominator coefficients have been found, it is straightforward
to find the values of the numerator coefficients β0, . . . , βk from ω0, . . . , ωk.

In order to derive the algorithm for expanding the rational function, the equa-
tion β(z)/α(z) = ω(z) may be written in the form of α(z)ω(z) = β(z). Then the
following expressions are obtained by equating the coefficients associated with the
same powers of z on both sides:

βj =
r∑
i=0

αiωj−i; 0 ≤ j ≤ k,

0 =
r∑
i=0

αiωj−i; j > k,

(3.40)

where r = min(p, j). The latter are rearranged to provide the equations for deter-
mining the coefficients of the expansion:

ωj = (βj −
r∑
i=1

αiωj−i)/α0; 0 ≤ j ≤ k,

ωj =−
r∑
i=1

αiωj−i/α0; j > k.

(3.41)

Example 3.4. When α(z) = α0 + α1z + α2z
2 + α3z

3 and β(z) = β0 + β1z, the
following system arises:

α0


ω0

ω1

ω2

ω3

ω4

 =


β0

β1

0
0
0

−


0 0 0
ω0 0 0
ω1 ω0 0
ω2 ω1 ω0

ω3 ω2 ω1



α1

α2

α3

0
0

 .(3.42)

The algorithm for generating the coefficients of the expansion of β(z)/α(z) is
implemented in the procedure which follows. The coefficients of the expansion are
written in place of the coefficients of β(z) in the array beta:

(3.43) procedure RationalExpansion(alpha : vector;
p, k, n : integer;
var beta : vector);

var
i, j, r : integer;
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begin
for j := 0 to n do

begin {j}
r := Min(p, j);
if j > k then
beta[j] := 0.0;

for i := 1 to r do
beta[j] := beta[j]− alpha[i] ∗ beta[j − i];

beta[j] := beta[j]/alpha[0]
end; {j}

end; {RationalExpansion}

The algorithm which is used to recover the coefficients of α(z) and β(z) from
those of the expansion ω(z) is also derived from the equations under (3.40). Thus, by
setting α0 = 1, which entails no loss of generality, and by letting j = k+1, . . . , k+p
in the second equation of (3.40), a linear system is derived which can be solved for
α1, . . . , αp. Then, by substituting these values into the first equation of (3.40) and
letting j = 0, . . . , k, the values of β0, . . . , βk are obtained.

Example 3.5. When α(z) = α0 +α1z+α2z
2 +α3z

3 and β(z) = β0 + β1z+ β2z
2,

we get the following system:
ω0 0 0 0
ω1 ω0 0 0
ω2 ω1 ω0 0
ω3 ω2 ω1 ω0

ω4 ω3 ω2 ω1

ω5 ω4 ω3 ω2



α0

α1

α2

α3

 =


β0

β1

β2

0
0
0

 .(3.44)

Given α0 = 1, we can take the last three equations in the form of ω2 ω1 ω0

ω3 ω2 ω1

ω4 ω3 ω2

 α1

α2

α3

 = −

 ω3

ω4

ω5

(3.45)

and solve them for α1, α2, α3. Then we can use these values in the first three
equations for finding the values of β0, β1, β2.

The Pascal procedure which implements the method which we have just de-
scribed invokes the procedure LUSolve of (7.28) for finding the solution of a set of
linear equations.

(3.46) procedure RationalInference(omega : vector;
p, k : integer;
var beta, alpha : vector);

var
i, j, r : integer;
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v : vector;
w : matrix;

begin {RationalInference}

{Solve for the alpha coefficients}
for i := 1 to p do

begin {i}
v[i] := −omega[k + i];
for j := 1 to p do

begin {j}
if k + i− j < 0 then
w[i, j] := 0.0

else
w[i, j] := omega[k + i− j];

end; {j}
end; {i}

LUsolve(1, p, w, alpha, v);
alpha[0] := 1.0;

{Find the beta coefficients}
for j := 0 to k do

begin {j}
r := Min(p, j);
beta[j] := 0.0;
for i := 0 to r do
beta[j] := beta[j] + alpha[i] ∗ omega[j − i];

end; {j}

end; {RationalInference}

Laurent Series

For some purposes, it is necessary to consider a two-sided or bilateral z-
transform of a sequence which extends over positive and negative integers. An
example is provided by the generating function of the cross-covariances of the
moving-average processes y(t) = µ(L)ε(t) and q(t) = θ(L)ε(t), where ε(t) is a
white-noise process with V {ε(t)} = σ2. The cross-covariance of y(t− τ) and q(t) is
the coefficient associated with zτ in the expansion of σ2µ(z−1)θ(z).

The product of µ(z−1) and θ(z) is given by(
µ0 +

µ1

z
+ · · ·+ µq

zq

)(
θ0 + θ1z + · · ·+ θhzh

)
=
θ0µq
zq

+
1

zq−1
(θ0µq−1 + θ1µq) + · · ·+ 1

z
(θ0µ1 + θ1µ2 + · · ·)

+ (θ0µ0 + θ1µ1 + · · ·)
+z(µ0θ1 + µ1θ2µ1 + · · ·) + · · ·+ zh−1(µ0θh−1 + µ1θh) + zhµ0θh.

(3.47)
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For greater generality, the case should be considered where the initial index of
µ(z−1) is p whilst the initial index of θ(z) is g. These initial indices may be positive
or negative, individually. Then the product is given by

( q∑
i=p

µiz
−i
)( h∑

j=g

θjz
j

)
=

h−p∑
k=g−q

( n∑
i=m

µiθi+k

)
zk =

h−p∑
k=g−q

ωkz
k,

where m = max(p, g − k) and n = min(q, h− k).

(3.48)

The limits on the index i are obtained by combining the restrictions p ≤ i ≤ q and
g ≤ j = i + k ≤ h or, equivalently, g − k ≤ i ≤ h − k; and the limits on k = j − i
are obtained by combining the restrictions g ≤ j ≤ h and −q ≤ −i ≤ −p.

The Pascal procedure for forming the coefficients of the product is as follows:

(3.49) procedure BiConvolution(var omega, theta,mu : vector;
p, q, g, h : integer);

var
i, k,m, n : integer;

begin
for k := g − q to h do

begin {k}
m := Max(p, g − k);
n := Min(q, h− k);
omega[k] := 0.0;
for i := m to n do
omega[k] := omega[k] +mu[i] ∗ theta[k + i];

end; {k}
end; {BiConvolution}

A more complicated circumstance arises when it is required to form the cross-
covariance generating function of the autoregressive moving-average processes y(t)
and q(t) defined by α(L)y(t) = µ(L)ε(t) and φ(L)q(t) = θ(L)ε(t) respectively. Let

α(z−1) = 1 +
α1

z
+ · · ·+ αp

zp
=

p∏
i=1

(1− λiz−1),

φ(z) = 1 + φ1z + · · ·+ φfz
f =

f∏
i=1

(1− κiz),

µ(z−1) = 1 +
µ1

z
+ · · ·+ µq

zq
=

q∏
i=1

(1− ρiz−1),

θ(z) = 1 + θ1z + · · ·+ θhz
h =

h∏
i=1

(1− νiz).

(3.50)
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Then, on the assumption that V {ε(t)} = 1, the generating function for the cross-
covariances of y(t) and q(t) is

γ(z) =
µ(z−1)θ(z)
α(z−1)φ(z)

=
ω(z)
ψ(z)

.(3.51)

The appropriate expansion is a Laurent series of the form

∞∑
i=−∞

γiz
i =

(
· · ·+ γ−2

z2
+
γ−1

z

)
+ γ0 +

(
γ1z + γ2z

2 + · · ·
)
.(3.52)

For such a series to converge, it is necessary and sufficient that the component
series in the parentheses should converge for a common value of z. A real number
r− can always be found such that, if |z| > r−, then the series in negative powers
converges absolutely. Likewise, a number r+ can be found such that, if |z| < r+,
then the series in positive powers converges absolutely. Therefore, if r− < r+, then
there exits an annulus bounded by concentric circles, in which the Laurent series
as a whole converges.

The simplest case is where the transfer functions µ(z)/α(z) and θ(z)/φ(z) both
fulfil the conditions of BIBO stability, which is to say that |λi| < 1 and |κj | < 1 for
all i and j. Then the function of (3.51) has poles at z = λi inside a circle within
the unit circle, and poles at z = κ−1

j outside a circle containing the unit circle.
Moreover, expansions at all points within the annulus containing the unit circle
and none of the poles will have the same coefficients. In particular, the coefficient
associated with zτ in the Laurent expansion of γ(z) is the cross-covariance of y(t−τ)
and q(t), which we shall call the cross-covariance of y(t) and q(t) at lag τ : the lag
being associated with the first-named sequence.

Unless µ(z−1)/α(z−1) and θ(z)/φ(z) are both proper rational functions, it is
easiest, in seeking to form the series γ(z), to expand the numerator and denominator
separately and then to form their product.

The partial-fraction expansion of α−1(z−1) is given by

1
α(z−1)

=
C1

1− λ1z−1
+ · · ·+ Cp

1− λpz−1
,(3.53)

where the generic coefficient is

Ci =
λp−1
i∏

j 6=i(λi − λj)
.(3.54)

Likewise, for φ−1(z), there is

1
φ(z)

=
D1

1− κ1z
+ · · ·+ Df

1− κfz
.(3.55)

It follows that the denominator of γ(z) is

1
ψ(z)

=
1

α(z−1)φ(z)
=
∑
i

∑
j

CiDj

(1− λiz−1)(1− κjz)
.(3.56)
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This expression may be evaluated using the result that

(3.57)
CiDj

(1− λiz−1)(1− κjz)
=

CiDj

(1− λiκj)

{
· · ·+ λ2

i

z2
+
λi
z

+ 1 + κjz + κ2
jz

2 + · · ·
}
.

An expression for the numerator of γ(z) is provided by the formula under (3.48).

Example 3.6. It will be useful for later reference to derive the variance of the
ARMA(2, 1) process defined by

y(t) =
µ(L)
α(L)

ε(t) =
1− ρL

(1− λ1L)(1− λ2L)
ε(t).(3.58)

The partial-fraction decomposition of the rational function µ(z)/α(z) is given by

1− ρz
(1− λ1z)(1− λ2z)

=
C1

1− λ1z
+

C2

1− λ2z
,(3.59)

wherein

C1 =
λ1 − ρ
λ1 − λ2

and C2 =
λ2 − ρ
λ2 − λ1

.(3.60)

The variance of the process is given by

γ0 =σ2
ε

{
C2

1

1− λ2
1

+
C2

2

1− λ2
2

+
2C1C2

1− λ1λ2

}
=σ2

ε

(1 + λ1λ2)(1 + ρ2)− 2ρ(λ1 + λ2)
(1− λ2

1)(1− λ2
2)(1− λ1λ2)

,

(3.61)

where the final equality is obtained by dint of some tedious manipulation. The
same expression will be obtained later by a different method.

Analytic Functions

The complex-valued function f(z) is said to have a limit φ as z approaches
z0, and we write lim(z → z0)f(z) = φ, if, for every real number ε, there exists a
corresponding real δ such that 0 < |z − z0| < δ implies |f(z)− φ| < ε. Notice that,
according to the definition, the function need not be defined at z0.

A function f is said to be continuous at the point z0 if lim(z → z0)f(z) = φ
and if f(z0) = φ. Thus, if a function is to be continuous at a point, it must be
defined at that point where it must also take a value equal to that of its limit.

Suppose that f and g are functions which are continuous at the point z0.
Then f + g is also continuous at z0. Moreover, if g(z0) 6= 0, then the function f/g
is continuous at z0. Finally, if g is a function which is continuous at each point in
a disc centred at φ0 = f(z0), then the composition g{f(z)} is continuous at z0.
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These facts indicate that any polynomial α(z) = α0 + α1z + · · · + αnz
n is

continuous on the complex plane. Also, if β(z) and α(z) are two polynomials,
then their quotient β(z)/α(z) = ω(z), which is described as a rational function, is
continuous except at the points where α(z) = 0, which are called the poles of ω(z).

We say that f(z) is differentiable at z0 if

∂f(z0)
∂z

= lim
h→0

f(z0 + h)− f(z0)
h

(3.62)

is uniquely defined, regardless of the manner in which h approaches zero. From the
identity

f(z) = f(z0) +
f(z)− f(z0)

z − z0
(z − z0)

= f(z0) +
f(z)− f(z0)

h
h,

(3.63)

it follows that, if f is differentiable at z0, then lim(z → z0)f(z) = f(z0), which is
to say that f is also continuous at z0. The converse is not true; for a function may
be continuous but nowhere differentiable in the sense of the foregoing definition.

Example 3.7. Let f(z) = z∗ where z = zre + izim and z∗ = zre − izim. This is a
continuous function; and it is found that

f(z0 + h)− f(z0)
h

=
(z0 + h)∗ − z∗0

h

=
hre − ihim

hre + ihim
.

(3.64)

Let him = 0, and let h → 0 along the real line. Then the value of the expression
is unity. On the other hand, let h = it where t is real. Then hre = 0 and h → 0
along the imaginary line as t → 0, and so the value is −1. Thus the limit of the
expression does not exist for any z, and f is nowhere differentiable.

A function f is said to be analytic at the point z0 if it is differentiable at every
point in a neighbourhood of z0. If it is analytic for every point in some domain D,
then it is said to be analytic in D.

The essential feature of an analytic function is that the limit in (3.62) is
uniquely defined no matter how z approaches z0. This condition leads to a re-
lationship between the partial derivatives of the real and imaginary parts of the
function.

(3.65) Let f = fre + if im be a complex function which is analytic in the
neighbourhood of a point z = x + iy. The derivatives of f at that
point satisfy the Cauchy–Riemann equations:

∂fre(x, y)
∂x

=
∂f im(x, y)

∂y
,

∂fre(x, y)
∂y

= −∂f
im(x, y)
∂x

.
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Proof. According to the definition of the derivative to be found under (3.62), h
can approach zero along any path. Let h→ 0 along the real line. Then

∂f(z)
∂z

= lim
t→0

fre(x+ h, y)− fre(x, y)
h

+ i lim
t→0

f im(x+ h, y)− f im(x, y)
h

=
∂fre(x, y)

∂x
+ i

∂f im(x, y)
∂x

.

Now let h = it, where t is real, so that h → 0 along the imaginary line as t → 0.
Then

∂f(z)
∂z

= lim
h→0

fre(x, y + t)− fre(x, y)
it

+ i lim
h→0

f im(x, y + t)− f im(x, y)
it

= −i∂f
re(x, y)
∂y

+
∂f im(x, y)

∂y
.

Equating the real and imaginary parts of the two expressions for the derivative
gives the Cauchy–Riemann equations.

A result which is the converse of (3.65) also holds. That is to say, if the four
partial derivatives of the complex function f exist and are continuous in the neigh-
bourhood of z0, and if, in addition, they satisfy the Cauchy–Riemann equations,
then f is differentiable at z0. It follows that, if these conditions hold throughout a
domain D, then f is analytic in that domain.

Complex Line Integrals

The integral of a complex function along a path in the complex plane may be
defined in much the same manner as a line integral in the real plane. We should
begin by considering lines in the complex plane.

Let a ≤ b be points on the real line and let γ(t) = x(t) + iy(t), with t ∈ [a, b],
be a continuous complex-valued function. Then the set of points {γ(t); a ≤ t ≤ b},
which is the range of γ, represents the trace of the curve γ in the complex plane.
Notice that two curves may share the same trace. Thus the curve γ(t) and its
reverse γ̄ = γ(a + b − t), where a ≤ t ≤ b, share the same trace. The function
z = γ(t) is described as the parametric equation of the curve.

A curve is γ is called simple if it does not cross itself; that is to say if γ(t1) 6=
γ(t2) when a < t1 < t2 < b. If γ(a) = γ(b), then the curve is closed.

Let γ1(t) with a1 ≤ t ≤ b1 and γ2(t) with a2 ≤ t ≤ b2 be two curves with
γ1(b1) = γ2(a2). Then their sum is defined by

γ1 + γ2 =

{
γ1(t), if a1 ≤ t ≤ b1;

γ2(t+ a2 − b1), if b1 ≤ t ≤ b1 + b2 − a2.
(3.66)

If the function γ(t) has a continuous derivative in every closed subset of [a, b],
then γ(t) is described as a contour. If γ(a) = γ(b), then it is a closed contour.

Now we are in a position to define a contour integral. Let γ(t) be a contour
in the complex plane and let f(z) be a complex-valued function for which the
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composition f{γ(t)} is a continuous function of t. Then the integral of f along the
contour γ is defined by ∫

γ

f(z)dz =
∫ b

a

f
{
γ(t)

}dγ(t)
dt

dt.(3.67)

By decomposing γ(t) = x(t) + iy(t) into its real and imaginary parts, we can write
the contour integral as∫

γ

f(z)dz=
∫ b

a

(
fre + if im

)(dx
dt

+ i
dy

dt

)
dt

=
∫
γ

(
fredx− f imdy

)
+ i

∫
γ

(
f imdx+ fredy

)
.

(3.68)

A closed contour has no evident beginning or end; and, when closure is as-
sumed, it is appropriate to modify the notation by writing the integral as∮

γ

f(z)dz.(3.69)

It is usually understood that the integration follows a counterclockwise direction;
and this is sometimes reflected in the symbol of the contour integral when a direc-
tional arrowhead is superimposed on the circle.

The following are some of the essential properties of contour integration:

(3.70) (i) For any pair of complex numbers κ and λ,∫
γ

{
κf(z) + λg(z)

}
dz = κ

∫
γ

f(z)dz + λ

∫
γ

g(z)dz.

(ii) If γ1, γ2 and γ = γ1 + γ2 are contours, then∫
γ

f(z)dz =
∫
γ1

f(z)dz +
∫
γ2

f(z)dz.

(iii) Changing the direction of integration reverses the sign of the inte-
gral so that, if γ(t) and γ̄(t) are the contour and its reverse, then∫

γ

f(z)dz = −
∫
γ̄

f(z)dz.

The last of these follows from the fact that, if γ̄(t) = γ(a+ b− t), then dγ̄(t)/dt =
−dγ(a+ b− t)/dt. This indicates that∫

γ̄

f(z)dz=
∫ b

a

f
{
γ̄(t)

}dγ̄(t)
dt

dt

=−
∫ b

a

f
{
γ(a+ b− t)

}dγ(a+ b− t)
dt

dt

=−
∫ b

a

f
{
γ(t)

}dγ(t)
dt

dt = −
∫
γ

f(z)dz.

(3.71)
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Example 3.8. Let the contour of integration γ be a circle in the complex plane of
radius ρ and centre z0. The parametric equation z = γ(t) for the circle takes the
form of

z= z0 + ρ
{

cos(t) + i sin(t)
}

= z0 + ρeit,
(3.72)

with 0 ≤ t ≤ 2π. Let f(z) = (z − z0)m. Along the contour, (z − z0)m = ρmeimt

and dz = iρeitdt. Therefore,∮
γ

f(z)dz =
∫ 2π

0

ρmeimtiρeitdt = iρm+1

∫ 2π

0

ei(m+1)tdt

= iρm+1

{∫ 2π

0

cos
{

(m+ 1)t
}
dt+ i

∫ 2π

0

sin
{

(m+ 1)t
}
dt

}
,

(3.73)

where the final equality follows from (2.54), which is Euler’s equation. When m 6=
−1, the integrals are zero, since each integrand is a whole number of cycles of a
trigonometrical function. When m = −1, we have ei(m+1) = e0 = 1 and ρm+1 =
ρ0 = 1, and the value of the integral is 2π. Thus∮

γ

(z − z0)mdz =
{ 2πi, if m = −1;

0, if m 6= −1.
(3.74)

In general, if we integrate the function f(z) from za = γ(a) to zb = γ(b) along
different paths, we get different values for the integral. Thus the value of a complex
integral depends not only on the endpoints but also on the geometric shape of the
path between them. However, with analytic functions it is different: it transpires
that the value of the integral is the same whatever the shape of the contour.

The Cauchy Integral Theorem

Cauchy’s integral theorem asserts that, under certain conditions, the integral
of a complex function around a closed contour is zero. The consequences of the
result are far reaching. One consequence is that integrals around certain paths may
be replaced by integrals around quite different paths which may lend themselves
more readily to analysis. This result, which is known as the invariance of complex
integration under the deformation of its path, lends a topological flavour to complex
analysis.

There are several versions of Cauchy’s theorem, which are distinguished from
each other by the degree of generality in the assumptions concerning the function to
be integrated. The simplest version makes use of the fundamental result of calculus
concerning definite integrals.

(3.75) Let f(z) = dF (z)/dz be continuous in the domain D where F (z) is
analytic. Then, for any curve γ(t) in D with a ≤ t ≤ b and za = γ(a),
zb = γ(b), we have ∫ zb

za

f(z)dz = F (zb)− F (za).
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Moreover, if γ(a) = γ(b) and if γ encloses only points in D, then∮
γ

f(z)dz = 0.

Proof. In terms of the parametric equation z = γ(t), the integral may be written
as ∫

γ

f(z)dz=
∫ b

a

f
{
γ(t)

}dγ(t)
dt

dt

=
∫ b

a

d

dt

{
F (γ)γ(t)

}
dt

=F (zb)− F (za).

(3.76)

An instance of this result is provided by the previous example. For, when we
integrate the function f(z) = (z− z0)m, wherein m ≥ 0, around a circle centred on
z0, we find, according to (3.74), that the result is zero.

In fact, the condition that f(z) is the derivative of an analytic function F (z)
implies that f(z) is itself analytic. If we do not assume that there exists such a
function F (z) but assume, merely, that the derivative of f(z) in D is continuous,
then we have to prove the following theorem in place of the previous one:

(3.77) Cauchy’s Theorem. Let f be an analytic function on the domain D
which has a continuous derivative, and let γ be a closed curve in D
whose inside also lies in D. Then∮

γ

f(z)dz = 0.

This may be proved by invoking Green’s theorem which indicates that, if f1(x, y)
and f2(x, y) are real-valued functions which, together with their partial derivatives,
are continuous throughout a region G in the plane which is bounded by the closed
contour γ, then ∫

γ

(f1dx+ f2dy) =
∫∫
G

(
df2

dx
− df1

dy

)
dxdy.(3.78)

This result enables us to evaluate a contour integral by integrating a volume and
vice versa. Now, according to (3.68), the contour integral can be written as∫

γ

f(z)dz =
∫
γ

(
fredx− f imdy

)
+ i

∫
γ

(
f imdx+ fredy

)
.(3.79)

In view of Green’s theorem, this may be written as∫
γ

f(z)dz =
∫∫
G

(
−df

im

dx
− dfre

dy

)
dxdy + i

∫∫
G

(
dfre

dx
− df im

dy

)
dxdy.(3.80)
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γ2
-

γ1

Figure 3.2. An annulus can be cut to form a simply connected domain.

But, according to the Cauchy–Riemann equations of (3.65), the integrands of these
two double integrals are zero throughout G, from which it follows that contour
integral is zero.

A more general version of the integral theorem is the Cauchy–Goursat theorem.
This proceeds without the assumption that f has a continuous first derivative and,
as a consequence, the proof becomes more elaborate. Since, as we shall show, an
analytic function possesses derivatives of all orders, it may seem that the extra
generality of this theorem is not always worth the effort of achieving it.

Multiply Connected Domains

A domain D in the complex plane is said to be simply connected if every closed
path γ encloses only points in D. A domain which is not simply connected is said to
be multiply connected or disconnected. An example of a doubly-connected domain
is an annulus bounded by an inner and an outer circle with a common centre—see
Figure 3.2.

In multiply connected domains, the versions of Cauchy’s theorem stated above
no longer apply. However, a multiply connected domain may be cut so that the
resulting domain becomes simply connected. The annulus provides an example.
The cut can be made along a radial line. The path surrounding the new simply
connected domain traverses the circumference of the inner circle in a clockwise
direction along the curve γ̄2 starting to the right of the cut. Then it follows the line
of the radius to the left of the cut before traversing the circumference of the outer
circle in a counterclockwise direction along the curve γ1. It returns to the point of
departure by following the line of the radius to the right of the cut. Since the line
of the radius is traversed in both directions, the corresponding integrals cancel, and
the value of the integral overall is given by∮

γ

f(z)dz =
∫
γ1

f(z)dz +
∫
γ̄2

f(z)dz.(3.81)

Reversing the direction of the integration around the inner circle from clockwise to
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counterclockwise gives ∮
γ

f(z)dz =
∫
γ1

f(z)dz −
∫
γ2

f(z)dz.(3.82)

Integrals and Derivatives of Analytic Functions

The result, known as Cauchy’s integral formula, indicates that, if a function f
is analytic at every point enclosed by a contour γ and on the contour itself, then
its values at the interior points are determined by its values on γ:

(3.83) Let f(z) be analytic in a simply connected domain D and let γ be a
closed path in D. If z0 is interior to γ, then

f(z0) =
1

2πi

∮
γ

f(z)
z − z0

dz.

Proof. Consider an annulus within D which is centred on the point z0. According
to the arguments of the previous section, we can cut the annulus to form a simply
connected domain; and, thereafter, we may apply Cauchy’s integral theorem to
show that ∮

γ

f(z)
z − z0

dz =
∫
γ0

f(z)
z − z0

dz,(3.84)

where γ is the circumference of the outer circle and γ0 is the inner circle surrounding
z0 which is traversed in a counterclockwise direction. The inner circle can be
represented parametrically by the equation z = z0 + ρeit, and the radius ρ can be
allowed to approach zero. Thus we have∮

γ0

f(z)
z − z0

dz= lim
ρ→0

∫ 2π

0

f(z0 + ρeit)
ρeit

ρieitdt

= if(z0)
∫ 2π

0

dt = 2πif(z0).

(3.85)

Putting the final expression in place of the RHS of (3.84) proves the theorem.

Cauchy’s integral formula can be used to obtain expressions for the derivatives
of an analytic function.

(3.86) If f(z) is analytic in a domain D, then its derivatives in D of all orders
are also analytic functions; and the nth derivative at the point z0,
enclosed by γ in D, is given by

f (n)(z0) =
n!

2πi

∮
γ

f(z)
(z − z0)n+1

dz.
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Proof. In view of the integral formula of (3.83), it can be seen that the derivative
of f(z) at z0 is the limit, as h→ 0, of

f(z0 + h)− f(z0)
h

=
1

2πih

{∮
f(z)

z − z0 − h
dz −

∮
f(z)
z − z0

dz

}
=

1
2πih

∮
hf(z)

(z − z0 − h)(z − z0)
dz.

(3.87)

Thus

f ′(z0) =
1

2πi

∮
γ

f(z)
(z − z0)2

dz,(3.88)

which is simply the result of differentiating the equation of (3.83) under the integral
sign with respect to z0. This technique for obtaining the derivative may be repeated
with f ′(z0 + h) and f ′(z0) replacing f(z0 + h) and f(z0) in equation (3.87); and it
will be found that

f (2)(z0) =
2

2πi

∮
γ

f(z)
(z − z0)3

dz.(3.89)

The general formula or the nth derivative may be obtained by induction.

It is significant that the requirement that f(z) be analytic is sufficient for the
existence of the derivatives of all orders.

Series Expansions

A power series with a nonzero radius of convergence represents an analytic
function at every point interior to the circle defined by that radius. Moreover, the
derivative of the analytic function can be obtained by differentiating the power
series term by term. We can also show that, conversely, every analytic function can
be represented by a power series; and for this purpose we use the integral formula.

(3.90) The Taylor Series. Let f(z) be analytic for every point in the open
set D = {z; |z − z0| < r} which is a disc of radius r centred on z0.
Then f may be represented uniquely as a power series

f(z) =
∞∑
n=0

an(z − z0)n with an =
1
n!
f (n)(z0).

Proof. Let s be a point on the circle γ of radius r and centre z0 which bounds the
set D containing z. Then, according to the integral formula of (3.83),

f(z) =
1

2πi

∮
γ

f(s)
s− z

ds

=
1

2πi

∮
γ

f(s)
(s− z0)− (z − z0)

ds

=
1

2πi

∮
γ

f(s)
(s− z0){1− (z − z0)/(s− z0)}

ds.

(3.91)
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The denominator of the final expression can be expanded using

1
1− (z − z0)/(s− z0)

= 1 +
z − z0

s− z0
+

(z − z0)2

(s− z0)2
+ · · ·

=
∞∑
n=0

(z − z0)n

(s− z0)n
,

(3.92)

where convergence is guaranteed by the condition that |z−z0| < |s−z0|. Therefore,
equation (3.91) can be written as

f(z) =
1

2πi

∮
γ

∞∑
n=0

(z − z0)nf(s)
(s− z0)n+1

ds

=
1

2πi

∞∑
n=0

(z − z0)n
∮
γ

f(s)
(s− z0)n+1

ds

=
∞∑
n=0

(z − z0)n
{
f (n)(z0)
n!

}
,

(3.93)

where the final equality comes from (3.86).

It is appropriate, at this stage, to prove a result which, hitherto, we have taken
for granted:

(3.94) If the power series
∑∞
n=0 an(z − z0)n converges at some point z1 and

diverges at some point z2, then it converges absolutely for all z such
that |z − z0| < |z1 − z0| and it diverges for all |z − z0| > |z2 − z0|.

Proof. Since
∑∞
n=0 an(z1 − z0)n converges, there exists a positive number δ such

that |an(z1 − z0)n| < δ for all n. Now let z be any point closer to z0 than is z1.
Then |z − z0| < |z1 − z0| and

∞∑
n=0

|an(z − z0)n| =
∞∑
n=0

|an(z1 − z0)n|
∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n < δ

∞∑
n=0

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n .
But |(z − z0)/(z1 − z0)| < 1, so it follows that the series converges absolutely at z.
The second part of this proposition is proved likewise.

Let f(z) be a function which is analytic at z0 for which the firstm−1 derivatives
f ′, f (2), . . . , fm−1 are all zero at z0. Then f is said to have a zero of the mth order
at z0.

This condition has an immediate consequence for the Taylor series expansion
of f about z0, for it implies that

f(z) =
{
am(z − z0)m + am+1(z − z0)m+1 + · · ·

}
= (z − z0)m

{
am + am+1(z − z0) + · · ·

}
= (z − z0)mg(z),

(3.95)

where g(z) is analytic and am 6= 0.
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If f(z) = (z − z0)mg(z), is analytic at a point z0, which is a zero of f , then
there is a neighbourhood of z0 throughout which f has no other zeros unless it is
identically zero. That is to say, the zeros of f are isolated. This is a consequence
of the condition that f is continuous at z0, whereby there exists a positive real
number δ such that |z − z0| < δ implies |g(z) − am| < |am|. From this, it follows
that g(z) 6= 0 for all points z such that |z − z0| < δ; for otherwise |am| < |am|,
which is a contradiction.

Example 3.9. It is easy to confirm that, if α(z) is a polynomial of degree p which
has m roots or zeros equal to λ, then the first m−1 derivatives are zero at λ whilst
the remaining derivatives are nonzero at λ. First we write α(z) = (z − λ)mγ(z),
where γ(λ) 6= 0. Differentiating once gives α′(z) = m(z−λ)m−1γ(z)+(z−λ)mγ′(z);
so α′(z) contains the factor (z−λ)m−1 in association with a cofactor mγ(z) + (z−
λ)γ′(z) which becomes mγ(λ) 6= 0 when z = λ. Differentiating a second time
shows, likewise, that α(2)(z) contains the factor z − λ with a multiplicity of m− 2.
We can proceed to show that the (m− 1)th derivative contains the factor once and
that the mth derivative is free of it.

It is sometimes necessary to expand a function f(z) around points at which
it may be singular. In that case, a Laurent expansion is called for. This is a
representation which is valid in an annulus bounded by an inner circle γ2 and an
outer circle γ1 which are concentric; and f(z) may be singular both at points inside
γ2 and at points outside γ1.

(3.96) The Laurent Series. Let f(z) be analytic for every point in the open
set {z; r2 < |z − z0| < r1}, which is an annulus enclosing a circle γ of
radius r centred on z0 with r2 < r < r1. Then f may be represented
by a Laurent series

f(z) =
∞∑
n=0

ai(z − z0)n +
∞∑
n=1

bn
(z − z0)n

with

an =
1

2πi

∮
γ

f(z)
(z − z0)n+1dz

, bn =
1

2πi

∮
γ

f(z)(z − z0)n−1dz.

Proof. The annulus may be converted to a simply connected domain D by cutting
it along a radial line in the manner described in a previous section and illustrated
by Figure 3.2. The contour, which bounds D, comprises the inner circle γ̄2, which
is traversed in a clockwise direction, the outer circle γ1, which is traversed in a
counterclockwise direction, and the lines running back and forth along either side
of the cut. The integrals over the latter will cancel each other.

When z is within the annulus, it follows from Cauchy’s integral formula (3.83)
that

f(z) =
1

2πi

∮
γ1

f(s)
s− z

ds− 1
2πi

∮
γ2

f(s)
s− z

ds,(3.97)
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where the negative sign on the second integral comes from reversing the direction
of integration on the inner circle from clockwise to counterclockwise. The denomi-
nators may be written as (s− z0)− (z − z0).

The points s on γ1 satisfy |s − z0| > |z − z0|. Therefore, the denominator of
the integral on γ1 may be expanded as

1
(s− z0)− (z − z0)

=
1/(s− z0)

1− (z − z0)/(s− z0)

=
1

(s− z0)

∞∑
n=0

(z − z0)n

(s− z0)n
.

(3.98)

The points on γ2, on the other hand, satisfy |s− z0| < |z − z0|. Therefore, the
denominator of the integral on γ2 may be expanded as

1
(s− z0)− (z − z0)

=
−1/(z − z0)

1− (s− z0)/(z − z0)

=−
∞∑
n=1

(s− z0)n−1

(z − z0)n
,

(3.99)

where it should be noted that summation begins at n = 1 and not at n = 0 as in
(3.98). It follows that

f(z) =
1

2πi

∞∑
n=0

(z − z0)n
∮
γ1

f(s)
(s− z0)n+1

ds

+
1

2πi

∞∑
n=1

(z − z0)−n
∮
γ2

(s− z0)n−1f(s)ds.
(3.100)

The portion of the Laurent series involving negative powers of z − z0 is called
the principal part of f at z0. The portion involving positive powers is called the
analytic part of f .

If the Laurent expansion takes the form of

f(z) =
∞∑
n=0

an(z − z0)n +
b1

z − z0
+

b2
(z − z0)2

+ · · ·+ bm
(z − z0)m

,(3.101)

where bm 6= 0, then the singular point z0 is described as a pole of order m. In
particular, if g(z) is analytic at z0 and has a zero of order m at that point, then
1/g(z) has a pole of order m at z0. The same is true of p(z)/g(z) if p(z) is analytic
at z0 and p(z0) 6= 0.

To see how the expression under (3.101) may arise, consider the function f(z) =
(z − z0)mg(z) of (3.95) which has a zero of the mth order at z0. Here g(z0) 6= 0 by
assumption, and g and f are analytic in some domain D = {z; 0 < |z − z0| < r}.
Also h(z) = 1/g(z) is analytic on the disc |z − z0| < r. Thus

1
f(z)

=
1

(z − z0)mg(z)
=

h(z)
(z − z0)m

;(3.102)
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and, by taking the Taylor-series expansion of h(z) about the point z0, we obtain
an expression in the form of (3.101).

Residues

The Cauchy integral theorem indicates that, if the function f is analytic at
all points enclosed by the contour γ, then its integral around the contour is zero-
valued. However, if the contour encloses a finite number of isolated singular points
where the function is not analytic, then each of these points will contribute to the
integral a specific value, called a residue.

Let z0 be an isolated singular point of f . Then there will be a set of points
{z; 0 < |z − z0| < r} not including z0, described as a punctured disc, where f is
analytic and where, consequently, it may be represented by the Laurent series

f(z) =
∞∑
n=0

an(z − z0)n +
{

b1
z − z0

+
b2

(z − z0)2
+ · · ·

}
.(3.103)

Here, according to (3.96), we have

bn =
1

2πi

∮
γ

f(z)(z − z0)n−1dz,(3.104)

where γ encloses z0. Setting n = 1, we see that

b1 =
1

2πi

∮
γ

f(z)dz.(3.105)

The number b1, which is the coefficient of 1/(z − z0) in the expansion, is described
as the residue of f at z0. It is commonly denoted as b1 = Res(f, z0).

The equation above provides a useful way of evaluating the contour integral;
for it is often easier to find the terms of the Laurent expansion than it is to perform
the integration directly.

If the singular point z0 is a pole of the function f , then there are other ways
of obtaining the residue which do not require us to form the expansion explicitly.
Imagine that z0 is a pole of order m. Then the expansion would take the form given
under (3.101). Multiplying by (z − z0)m gives

(z − z0)mf(z) = bm + bm−1(z − z0) + · · ·+ b1(z − z0)m−1

+
∞∑
n=0

an(z − z0)m+n.
(3.106)

This is just the Taylor series expansion of g(z) = (z − z0)mf(z); and the residue
b1 = Res(f, z0) has become the series coefficient associated with (z − z0)m−1. It
follows from (3.90), where the basic results concerning Taylor series are to be found,
that

b1 =
1

(m− 1)!
g(m−1)(z0);(3.107)
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The effective way of isolating the coefficient b1 is to differentiate g(z) =
(z − z0)mf(z) with respect to z m − 1 times and then to set z = z0 to eliminate
the other terms which would remain in a series expansion. Thus

Res(f, z0) =
1

(m− 1)!
dm−1

dzm−1

[
(z − z0)mf(z)

]
z=z0

.(3.108)

In the case of a pole of order one, the result simplifies to

b1 = Res(f, z0) = lim
z→z0

(z − z0)f(z).(3.109)

This is evident in the light of the Laurent expansion (3.101) which, for a pole of
order one, has just one term associated with a negative power of z − z0: namely
the term b1/(z − z0).

Example 3.10. Consider the function f(z) = 1/(z3 − z4). Writing z3 − z4 =
z3(1 − z) shows that f has singular points at z = 1 and z = 0. To integrate the
function around a circle γ defined by |z| = 1/2, we can find the Laurent expansion
about the origin which converges for 0 < |z| < 1:

1
z3 − z4

=
1
z3

+
1
z2

+
1
z

+
{

1 + z + z2 + · · ·
}
.

This comes from multiplying the expansion (1− z)−1 = {1 + z + z2 + · · ·} by z−3.
The residue, which is the coefficient associated with 1/z in the Laurent expansion,
is 1. Therefore, the value of the integral is 2π.

So far, we have considered the evaluation of integrals around contours which
enclose only one isolated singular point of the function. There is a simple extension
to the case where the contour encloses several isolated singularities of the integrand:

(3.110) The Residue Theorem. Let f(z) be a function which is analytic on a
simple closed contour γ and at the points inside γ with the exception
of a finite number of points z1, . . . , zk. Then

∮
γ

f(z)dz = 2πi
k∑
i=1

Res(f, zi).

To prove this, we may use the technique of cutting which was used in finding
the integral of a contour within an annulus surrounding one singular point. Now
each of the k singular points is surrounded by a clockwise circle γ̄i small enough not
to intersect with any of the circles surrounding neighbouring singular points. By
excluding the points interior to the circles, a multiply connected domain is created.
Each of these circles can be reached from the boundary contour γ by a straight
path which is described twice in opposite directions. The paths are the lines along
which the multiply connected domain is cut to form a simply connected domain—
see Figure 3.3. Since the integrals in opposite directions along the path cancel, it
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Figure 3.3. Isolated singularities enclosed by a contour may be encircled and
excluded from the domain. Then paths can be cut to so as to form a simply
connected domain.

follows from Cauchy’s integral theorem that the integral along the boundary of the
simply connected domain which winds around the circles is just

∮
γ

f(z)dz +
k∑
i=1

∮
γ̄i

f(z)dz = 0.(3.111)

By reversing the direction of the integration around the circles, we get

∮
γ

f(z)dz=
k∑
i=1

∮
γi

f(z)dz

=
k∑
i=1

Res(f, zi).

(3.112)

The Autocovariance Generating Function

The autocovariance generating function for the ARMA process described by
the equation α(L)y(t) = µ(L)ε(t) is given by

γ(z) =
µ(z)µ(z−1)
α(z)α(z−1)

= σ2
ε

∏q
j=1(1− ρjz)(1− ρjz−1)∏p
j=1(1− λjz)(1− λjz−1)

=σ2
εz
p−q

∏q
j=1(1− ρjz)(z − ρj)∏p
j=1(1− λjz)(z − λj)

.

(3.113)

The condition that the process be stationary imposes the restriction that the roots
of α(z) =

∏
j(1 − λzj) = 0 must lie outside the unit circle, which is to say that

|1/λj | > 1 for all j, whereas the restriction that the process be invertible imposes
the condition that the roots of µ(z) =

∏
j(1 − ρzj) = 0 must lie outside the unit

circle, which is to say that |1/ρj | > 1 for all j. The same conditions, when stated in
terms of the roots of α(z−1) = 0 and µ(z−1) = 0, require that |λj | < 1 and |ρj | < 1.
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It follows that the function γ(z) is analytic in some annulus around the unit
circle which includes neither the values λj which are encircled by the annulus, nor
their reciprocals, which are outside the annulus. If q > p, which is to say that the
moving-average order is greater that the autoregressive order, then γ(z) has a pole
of multiplicity q − p at zero.

The autocovariance generating function may be expanded as a Laurent series

γ(z) = · · ·+ γ2

z2
+
γ1

z
+ γ0 + γ1z + γ2z

2 + · · ·(3.114)

wherein the generic coefficient γ−τ = γτ represents the autocovariance at lag τ . If
the coefficient is taken in association with z−τ , then, according to the result under
(3.96) concerning the coefficients of a Laurent series, we have

γ−τ =
1

2πi

∮
zτ−1γ(z)dz

=
σ2
ε

2πi

∮
zp−q+τ−1

{∏q
j=1(1− ρjz)(z − ρj)∏p
j=1(1− λjz)(z − λj)

}
dz,

(3.115)

where the contour of integration is taken to be the unit circle; and this is also
the sum of the residues of fτ (z) = zτ−1γ(z) at the points of singularity which lie
within the unit circle. These residues correspond to the points of singularity of fτ
which are associated with the autoregressive roots λ1, . . . , λp and with the element
zp−q+τ−1 whenever its exponent is negative. According to the result under (3.109),
the residue associated with a simple pole at λj inside the circle is

Res(fτ , λk) = lim
z→λk

(z − λk)f(z)

=λp−q+τ−1
k

{ ∏q
j=1(1− ρjλk)(λk − ρj)∏p

j=1(1− λjλk)
∏p

j=1
j 6=k

(λk − λj)

}
.

(3.116)

According to the result under (3.108), the residue associated with the pole at zero
of multiplicity of q − p− τ + 1 in the case where p < q + 1 is given by

Res(f, 0) = lim
z→0

1
(q − p− τ)!

dq−p−τ

dzp−q−τ

{∏q
j=1(1− ρjz)(z − ρj)∏p
j=1(1− λjz)(z − λj)

}
.(3.117)

However, if p ≥ q + 1, then there are no poles at zero in the function γ(z) and the
problem is simplified. In that case, there are p poles within the unit circle which
are due to the autoregressive operator, and we get

γτ =
p∑
k=1

Res(fτ , λk),(3.118)

where Res(fτ , λk) is defined in (3.116). Note that, if p = q, then there remains a
single pole at zero in the function fτ (z) = zτ−1γ(z) when τ = 0.
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Example 3.11. Let us consider the case where the autoregressive order p exceeds
the moving-average order q. The variance of the process y(t) is given by combining
the equations (3.116) and (3.118):

γ0 =
p∑
k=1

Res(f0, λk) =
p∑
k=1

{
λp−q−1
k

∏q
j=1(1− ρjλk)(λk − ρj)∏p

j=1(1− λjλk)
∏p

j=1
j 6=k

(λk − λj)

}
.(3.119)

In the case of the ARMA(2, 1) process

(1− λ1L)(1− λ2L)y(t) = (1− ρL)ε(t),(3.120)

we have

γ0 =
σ2
ε(1− ρλ1)(λ1 − ρ)

(1− λ2
1)(1− λ1λ2)(λ1 − λ2)

+
σ2
ε(1− ρλ2)(λ2 − ρ)

(1− λ2
2)(1− λ1λ2)(λ2 − λ1)

=σ2
ε

(1 + λ1λ2)(1 + ρ2)− 2ρ(λ1 + λ2)
(1− λ2

1)(1− λ2
2)(1− λ1λ2)

.

(3.121)

This result has been derived already by another method, and it has been displayed
under (3.61).

The Argument Principle

Consider a function f(z) which is analytic in the domain D except at a finite
number of poles. Let γ be a contour in D which encloses P poles and N zeros of
f(z) and which passes through none of the poles or zeros.

If z0 is a zero of f of multiplicity or order r, then

f(z) = (z − z0)rg(z),(3.122)

where g(z) in a function which is analytic in a neighbourhood of z0 with g(z0) 6= 0.
Taking logarithms of this function and differentiating gives

d

dz
log f(z) =

f ′(z)
f(z)

=
r

z − z0
+
g′(z)
g(z)

.(3.123)

Since g′(z)/g(z) is analytic at z0, it follows that f ′(z)/f(z) has a simple pole at z0

which corresponds to a residue of Res{f ′(z)/f(z), z0} = r.
On the other hand, if w0 is a pole of f of multiplicity m, then

f(z) =
h(z)

(z − w0)m
,(3.124)

where h(z) in a function which is analytic in a neighbourhood of w0 with h(w0) 6= 0.
Then the derivative of the logarithm of f may be expressed as

d

dz
log f(z) =

f ′(z)
f(z)

=
h′(z)
h(z)

− m

z − w0
.(3.125)
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Since h′(z)/h(z) is analytic at w0, it follows that f ′(z)/f(z) has a simple pole at
w0 which corresponds to a residue of Res{f ′(z)/f(z), w0} = −m.

Thus it follows from the residue theorem that

1
2πi

∮
γ

f ′(z)
f(z)

dz=
∑
j

Res
(
f ′

f
, zj

)
−
∑
k

Res
(
f ′

f
, wk

)
=N − P,

(3.126)

which is the number of zeros N =
∑
j rj , including multiplicities, enclosed by

the contour γ less the the number of poles P =
∑
kmk, including multiplicities,

enclosed by γ.
The result which we have just obtained may be used in proving a theorem

which is important in investigating the stability of linear systems—as we shall do
in Chapter 5—and in demonstrating the phase effect of linear filters—which is a
major concern of Chapter 16:

(3.127) The Argument Principle. Let f(z) be a function which is analytic on
a domain D except at a finite number of poles. Let γ be a contour
in D which encloses P poles and N zeros of f(z)—where P and N
include multiplicities—and which passes through none of the poles or
zeros. Then, as z travels once around the contour γ in an anticlockwise
direction, the argument of f(z) will change by

∆γargf(z) = 2π(N − P ).

Proof. Consider the polar exponential representation of f(z) together with its
logarithm. These are

f(z) = |f(z)| exp
{
iargf(z)

}
and

ln f(z) = ln |f(z)|+ iargf(z).
(3.128)

Let za be the point on γ where the path of integration begins and let zb be the
point where it ends. Then ln |f(za)| = ln |f(zb)|, and so

1
2πi

∮
γ

f ′(z)
f(z)

dz=
1

2πi

∮
γ

{ d

dz
ln f(z)

}
dz

=
1

2πi

{
iargf(zb)− iargf(za)

}
=

1
2π

∆γargf(z).

(3.129)

But, according to equation (3.126), the expression on the LHS has the value of
N − P , and so the theorem is proved.
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CHAPTER 4

Polynomial Computations

Amongst the topics of numerical analysis which are of enduring interest are the
problems of polynomial root finding and of polynomial interpolation. These are
the principal concerns of the present chapter. Both topics have a history which
extends over hundreds of years, and both have received considerable attention in
recent years.

The need to find the roots of a polynomial arises in many areas of scientific
work. Much of the interest is due to the fact that the dynamic properties of linear
systems can be accounted for in terms of the roots of characteristic polynomial
equations.

The principle of superposition, which is the cornerstone of linear system theory,
indicates that the output of a higher-order dynamic system can be represented by
taking a linear combination of the outputs of a set of independent or “decoupled”
second-order systems. The behaviour of a second-order system can be accounted
for in terms of the roots of a characteristic quadratic equation.

This simple fact belies the practical difficulties which are involved in resolving a
higher-order system into its linear or quadratic components. These are precisely the
difficulties of root finding. Whereas closed-form solutions are available for polyno-
mial equations of degrees three and four, there are no generally applicable formulae
for finding the roots when the degree is greater than four. Therefore, we are bound
to consider iterative methods for finding the roots of polynomials in general.

The intractability of polynomial equations, before the advent of electronic com-
puters, encouraged mathematicians and engineers to look for other means of charac-
terising the behaviour of linear dynamic systems. The well-known criterion of Routh
[431] was the result of a prolonged search for a means of determining whether or not
a linear differential equation is stable without solving its characteristic equation.

In recent years, a wide variety of root-finding methods have been implemented
on computers. Roughly speaking, the methods fall into two categories. In the
first category are the so-called Newton methods. So long as they are provided with
adequate starting values, these methods are generally fast and efficient. However, to
find such starting values is not always an easy task; and the occasional annoyance at
having to resort to trial and error can be avoided only at the cost of a considerable
effort in programming. We shall make no attempt to find accurate starting values.

Much attention has been focused recently on the pathologies of the Newton
methods; for it has been discovered that the boundaries, within the complex plane,
which separate the regions of convergence for the various roots, are liable to have
a complicated fractal nature—see, for example, Curry, Garnett and Sullivan [134]
and Shub and Smale[453] and, in particular, the colour plate in Gleick [213, p. 114].
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In the second category are the so-called fail-safe methods which are guaranteed
to converge to a root from any starting point. Their disadvantage is that they can
be time consuming. We shall implement an algorithm which is due to Müller [356];
and we shall regard this method as our workhorse.

Müller’s method, which depends upon a quadratic approximation to the poly-
nomial function, provides an example of the technique of polynomial interpolation
which is the subject of the final section of this chapter. The topic is developed more
fully in the later chapters which deal with polynomial regression and cubic-spline
interpolation.

Before embarking on the major topics, we must lay some groundwork.

Polynomials and their Derivatives

In this section, we shall develop the means for evaluating a polynomial and its
derivatives at an arbitrary point, as well as the means for dividing one polynomial
by another. First, we consider shifted polynomials.

When the polynomial

α(x) = α0 + α1x+ α2x
2 + · · ·+ αpx

p(4.1)

is written as

α(x) = γ0 + γ1(x− ξ) + γ2(x− ξ)2 + · · ·+ γp(x− ξ)p,(4.2)

it is said to be in shifted power form with its centre at ξ.
The usefulness of the shifted form can be recognised when it is compared with

the Taylor-series expansion of α(x) about the point ξ:

α(x) = α(ξ) +
∂α(ξ)
∂x

(x− ξ) +
1
2!
∂2α(ξ)
∂x2

(x− ξ)2 + · · ·

· · · +
1
p!
∂pα(ξ)
∂xp

(x− ξ)p.
(4.3)

By comparing (4.2) and (4.3), it can be see that

γ0 = α(ξ) and γr =
1
r!
∂rα(ξ)
∂xr

; r = 1, . . . , p.(4.4)

The coefficients γ0, γ1, . . . , γr of the shifted form are obtained by the process
of synthetic division. First α(x) is divided by x − ξ to give a quotient β1(x) =
β10 + β11x + · · · + β1,p−1x

p−1 and a remainder γ0. Then the quotient β1(x) is
divided by x− ξ to give a quotient β2(x) and a remainder γ1. By continuing in this
way, the following scheme is generated:

α(x) = γ0 + β1(x)(x− ξ),
= γ0 + γ1(x− ξ) + β2(x)(x− ξ)2,

= γ0 + γ1(x− ξ) + γ2(x− ξ)2 + β3(x)(x− ξ)3,
...
= γ0 + γ1(x− ξ) + γ2(x− ξ)2 + · · ·+ γp(x− ξ)p.

(4.5)
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Here, βr(x) stands for a polynomial in x of degree p− r. We proceed from the rth
line to the (r + 1)th line via the equation

βr(x) = γr + βr+1(x)(x− ξ).(4.6)

Setting x = ξ in the first equation of (4.5) gives α(ξ) = γ0. This result, which has
been seen already under (4.4), is the subject of a well-known theorem:

(4.7) The Remainder Theorem states that the remainder obtained by divid-
ing the polynomial α(x) by x− ξ is α(ξ).

To derive an algorithm for synthetic division, consider writing the first of the
equations of (4.5) explicitly to give

α0 + α1x+ · · ·+ αpx
p = γ0 +

{
β10 + β11x+ · · ·+ β1,p−1x

p−1
}

(x− ξ).(4.8)

By equating coefficients associated with the same powers of x on either side of the
equation, we obtain the following identities:

αp =β1,p−1,

αp−1 =β1,p−2 − β1,p−1ξ,

αp−2 =β1,p−3 − β1,p−2ξ,

...
α1 =β10 − β11ξ,

α0 = γ0 − β10ξ.

(4.9)

These can be rearranged to give

β1,p−1 =αp,

β1,p−2 =β1,p−1ξ + αp−1,

β1,p−3 =β1,p−2ξ + αp−2,

...
β10 =β11ξ + α1,

γ0 =β10ξ + α0.

(4.10)

Here is a simple recursion which can be used to generate the coefficients β10,
β11, . . . , β1,p−1 of the quotient polynomial β1(ξ) as well as the value γ0 = α(ξ).
The recursion is known as Horner’s method of nested multiplication; and the code
for implementing it is as follows:

(4.11) procedure Horner(alpha : vector;
p : integer;
xi : real;
var gamma0 : real;
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var beta : vector);

var
i : integer;

begin
beta[p− 1] := alpha[p];
for i := 1 to p− 1 do
beta[p− i− 1] := beta[p− i] ∗ xi+ alpha[p− i];

gamma0 := beta[0] ∗ xi+ alpha[0];
end; {Horner}

If the only concern is to find γ0 = α(ξ), then the intermediate products
β1,p−1, . . . , β11, β10, may be eliminated via a process of repeated substitution run-
ning from top to bottom of (4.10). The result will be a nested expression in the
form of

α(ξ) =
[
· · ·
{

(αpξ + αp−1)ξ + αp−2

}
ξ + · · ·+ α1

]
ξ + α0,(4.12)

which may be evaluated by performing successive multiplications, beginning with
the innermost parentheses. The code of the procedure may be modified accordingly
to eliminate the array beta.

Once the coefficients of β1(ξ) have been found via the recursion in (4.10), the
value of the first derivative γ1 = ∂α(ξ)/∂x can be generated by a further recursion
of the same nature. From (4.6), it follows that

β1(x) = γ1 + β2(x)(x− ξ).(4.13)

Setting x = ξ shows that γ1 = β1(ξ); and, to find this value, Horner’s algorithm
can be used in the form of

β2,p−2 =β1,p−1,

β2,p−3 =β2,p−2ξ + β1,p−2,

β2,p−4 =β2,p−3ξ + β1,p−3,

...

β20 =β21ξ + β11,

γ1 =β20ξ + β10.

(4.14)

It should be easy to see how the succeeding values of the sequence γ2, . . . , γp could
be generated.

It is interesting to recognise that the recursion of (4.14) can also be obtained
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by differentiating directly each term of the recursion under (4.10) to give

∂(β1,p−1)
∂ξ

= 0,

∂(β1,p−2)
∂ξ

=β1,p−1,

∂(β1,p−3)
∂ξ

=
∂(β1,p−2)

∂ξ
ξ + β1,p−2,

...

∂(β10)
∂ξ

=
∂(β11)
∂ξ

+ β11,

∂(γ0)
∂ξ

=
∂(β10)
∂ξ

ξ + β10.

(4.15)

A version of the algorithm of nested multiplication can be presented which
generates all of the coefficients γ0, . . . , γp of the shifted power form under (4.2). In
this case, the coefficients α0, . . . , αp of the original form may be overwritten by the
new coefficients. Thus, in comparison with the code under (4.11), beta[p− i− 1] is
replaced by alpha[p − i] and beta[p − i] is replaced by alpha[p − i + 1]. Also, the
code is surrounded by an additional loop wherein j runs from 0 to p− 1:

(4.16) procedure ShiftedForm(var alpha : vector;
xi : real;
p : integer);

var
i, j : integer;

begin
for j := 0 to p− 1 do

for i := 1 to p− j do
alpha[p− i] := alpha[p− i] + alpha[p− i+ 1] ∗ xi;

end; {ShiftedForm}

There are occasions when a polynomial must be evaluated whose argument is a
complex number. This can be achieved by modifying the procedure Horner so that
the operations of addition and multiplication are defined for complex numbers. In
some computer languages, such as FORTRAN, the necessary complex operations
are predefined. In Pascal, they must be defined by the user; and a collection
of functions which perform complex operations has been provided already under
(2.58)–(2.68).

(4.17) procedure ComplexPoly(alpha : complexVector;
p : integer;
z : complex;
var gamma0 : complex;
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var beta : complexVector);

var
i : integer;

begin
beta[p− 1] := alpha[p];
for i := 1 to p− 1 do

begin
beta[p− i− 1] := Cmultiply(beta[p− i], z);
beta[p− i− 1] := Cadd(beta[p− i− 1], alpha[p− i]);

end;
gamma0 := Cmultiply(beta[0], z);
gamma0 := Cadd(gamma0, alpha[0]);

end; {ComplexPoly}

One can avoid using complex operations by computing the real and the imag-
inary parts of a complex number separately. Consider the generic equation of the
recursion under (4.10) which can be written as βj−1 = βjz + αj . If βj , αj and z
are complex numbers, then the equation can be expanded to give

βrej−1 + iβimj−1 = (βrej + iβimj )(zre + izim) + αrej + iαimj

= (βrej z
re − βimj zim) + αrej

+ i(βimj zre + βrej z
im) + iαimj .

(4.18)

By equating the real and the imaginary terms on both sides, we find that

βrej−1 =βrej z
re − βimj zim + αrej ,

βimj−1 =βimj zre + βrej z
im + αimj .

(4.19)

The Division Algorithm

So far, we have considered only the problem of dividing a polynomial α(x)
by the term x − ξ. It is instructive to consider the general problem of dividing a
polynomial of degree p by another polynomial of degree q ≤ p. Let

α(x) = αpx
p + αp−1x

p−1 + · · ·+ α1x+ α0(4.20)

be a polynomial of degree p and let

δ(x) = δqx
q + δq−1x

q−1 + · · ·+ δ1x+ δ0(4.21)

be a polynomial of degree q ≤ p. The object is to divide α(x) by δ(x) so as to
obtain an equation in the form of

α(x) = δ(x)β(x) + ρ(x),(4.22)
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where

β(x) = βp−qx
p−q + βp−q−1x

p−q−1 + · · ·+ β1x+ β0(4.23)

is the quotient polynomial of degree q − p, and

ρ(x) = ρq−1x
q−1 + ρq−2x

q−2 + · · ·+ ρ1x+ ρ0(4.24)

is the remainder polynomial of degree q − 1 at most.
The operation of dividing α(x) by δ(x) may be performed by the process known

at school as long division. First δ(x) is multiplied by {αp/δq}xp−q. The result is a
new polynomial with the same leading term as α(x). Then the new polynomial is
subtracted from α(x) to yield

γ1(x) = α(x)− βp−qxp−qδ(x), where βp−q = αp/δq.(4.25)

The resulting polynomial γ1(x) will have a degree of g1 ≤ p − 1 and a leading
term of (αp−1 − βp−qδq−1)xp−q−1. If g1 < q, then the process terminates here
and γ1(x) = ρ(x) is designated the remainder. Otherwise, with g1 ≥ q, we can
proceed to the next step which is to form a new polynomial by multiplying δ(x) by
{(αp−1 − βp−qδq−1)/δq}xp−q−1. The new polynomial is subtracted from γ1(x) to
yield

γ2(x) = γ1(x)− βp−q−1x
p−q−1δ(x),

where βp−q−1 = (αp−1 − βp−qδq−1)/δq.
(4.26)

The process may continue through further steps based on the generic equation

γn+1(x) = γn(x)− βp−q−nxp−q−nδ(x);(4.27)

but, ultimately, it must terminate when n = p− q.
When the process terminates, the results from each stage are substituted into

the next stage; and thus an expression is derived which corresponds to equation
(4.22):

γp−q−1(x) =α(x)− (βp−qxp−q + βp−q−1x
p−q−1 + · · ·+ β1x+ β0)δ(x)

= ρ(x).
(4.28)

Example 4.1. The familiar form in which long division is presented may be illus-
trated as follows:

(4.29) 4x2 + 2x+ 1

4x2 − 2x+ 1
)

16x4 + 4x2 + x

16x4 − 8x3 + 4x2

8x3 + x
8x3 − 4x2 + 2x

4x2 − x
4x2 − 2x+ 1

x− 1.
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The result can be expressed in the manner of (4.22) by writing

16x4 + 4x2 + x = (4x2 − 2x+ 1)(4x2 + 2x+ 1) + (x− 1).(4.30)

An alternative way of developing an algorithm to represent the process of long
division is to adopt the method of detached coefficients which has been employed in
the previous section in connection with the process of synthetic division. Consider
writing the equation (4.22) as

p∑
j=0

αjx
j =

p∑
j=0

( s∑
i=h

βiδj−i

)
xj +

q−1∑
j=0

ρjx
j ,(4.31)

where

h = max(0, j − q) and s = min(j, p− q).(4.32)

These limits on the index i are implied by the restriction 0 ≤ i ≤ p − q, which
corresponds to the range of the index i in the sequence β0, . . . , βi, . . . , βp−q, together
with the restriction 0 ≤ j− i ≤ q, which corresponds to the range of the index j− i
in the sequence δ0, . . . , δj−i, . . . , δq. By equating coefficients associated with the
same powers of x on both sides of the equation (4.31), it is found that

αj =
s∑
i=h

βiδj−i if j ≥ q,(4.33)

and that

αj =
s∑
i=h

βiδj−i + ρj if j < q.(4.34)

By rearranging these results, expressions for the coefficients of the quotient and
remainder polynomials are found in the form of

βj−q =
1
δq

(
αj −

s∑
i=j−q+1

βiδj−i

)
(4.35)

and

ρj = αj −
s∑
i=h

βiδj−i.(4.36)

An alternative and perhaps a neater expression for the division algorithm may
be derived from an equation which sets

αj =
s∑

i=j−q
βiδj−i for j = 0, . . . , p.(4.37)
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Here, in comparison with the expression under (4.33), the lower bound on the index
i has been relaxed so as to create the additional coefficients β−1, β−2, . . . , β−q. In
effect, these new coefficients replace the coefficients ρ0, ρ1, . . . , ρq−1 of the remainder
polynomial ρ(x) which is reparametrised as follows:

ρ(x) = ρq−1x
q−1 + ρq−2x

q−2 + · · ·+ ρ1x+ ρ0

=β−1(δqxq−1 + δq−1x
q−2 + · · ·+ δ2x+ δ1)

+β−2(δqxq−2 + δq−1x
q−3 + · · ·+ δ2)

+ · · ·
+β1−q(δqx+ δq−1)
+β−qδq.

(4.38)

The relationship between the two sets of parameters is expressed in an identity
ρq−1

ρq−2

...
ρ1

ρ0

 =


δq 0 . . . 0 0
δq−1 δq . . . 0 0

...
...

. . .
...

...
δ2 δ3 . . . δq 0
δ1 δ2 . . . δq−1 δq




β−1

β−2

...
β1−q
β−q

(4.39)

which entails a one-to-one mapping.
The new remainder parameters are found using equation (4.35). As j runs from

p down to q, the coefficients of the quotient polynomial are generated; and, as j
runs from q−1 to 0, the coefficients β−1, . . . , β−q, of the reparametrised form of the
remainder polynomial materialise. Once the full set of parameters βp−q, . . . , β−q,
has been generated, which includes the set of alternative parameters for the re-
mainder polynomial, we can obtain the ordinary parameters of the remainder from
the expression

ρj =
−1∑

i=j−q
βiδj−i.(4.40)

Example 4.2. Consider

α4x
4 + α3x

3 + α2x
2 + α1x+ α0

= (β2x
2 + β1x+ β0)(δ2x2 + δ1x+ δ0) + (ρ1x+ ρ0).

(4.41)

The coefficients of the quotient polynomial are found by the recursion

β2 =α4/δ2,

β1 = (α3 − β2δ1)/δ2,
β0 = (α2 − β2δ0 − β1δ1)/δ2.

(4.42)

Then the coefficients of the remainder are found via

ρ1 =α1 − β1δ0 − β0δ1,

ρ0 =α0 − β0δ0.
(4.43)

97



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

Alternatively, if we set

ρ1x+ ρ0 = β−1(δ2x+ δ1) + β−2δ2,(4.44)

then we can extend the recursion to generate the alternative coefficients of the
remainder:

β−1 = (α1 − β1δ0 − β0δ1)/δ2,
β−2 = (α0 − β0δ0 − β−1δ1)/δ2.

(4.45)

The following procedure for the division algorithm generates the alternative
parameters of the remainder and then it transforms them into the ordinary param-
eters:

(4.46) procedure DivisionAlgorithm(alpha, delta : vector;
p, q : integer;
var beta : jvector;
var rho : vector);

var
store : real;
h, s, j, i : integer;

begin

for j := p downto 0 do
begin {j}
s := Min(j, p− q);
store := 0.0;
for i := j − q + 1 to s do
store := store+ beta[i] ∗ delta[j − i];

beta[j − q] := (alpha[j]− store)/delta[q]
end; {j}

for j := 0 to q − 1 do
begin {j}
rho[j] := 0.0;
for i := j − q to − 1 do
rho[j] := rho[j] + beta[i] ∗ delta[j − i];

end; {j}

end; {DivisionAlgorithm}

Roots of Polynomials

A root of a polynomial α(x) is any real or complex value λ such that α(λ) = 0.

(4.47) If λ1, λ2, . . . , λr are distinct roots of the polynomial α(x), then α(x) =
(x− λ1)(x− λ2) · · · (x− λr)βr(x) for some polynomial βr(x).
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Proof. According to the remainder theorem, we can write α(x) = β1(x)(x− ξ) +
α(ξ). Setting ξ = λ1, and using α(λ1) = 0, gives α(x) = β1(x)(x − λ1); and this
proves the theorem for a single root.

Now assume that the theorem is true for r − 1 roots so that α(x) = (x −
λ1)(x − λ2) · · · (x − λr−1)βr−1(x) for some polynomial βr−1(x). Since α(λr) = 0
by assumption, and since (λr − λ1), . . . , (λr − λr−1) are all nonzero, it follows that
βr−1(λr) = 0. Therefore, setting ξ = λr in βr−1(x) = βr(x)(x− ξ) +βr−1(ξ) shows
that βr−1(x) = βr(x)(x− λr); and thus the theorem is proved.

The fundamental theorem of algebra asserts that every polynomial which is
defined over the complex plane has at least one root in that domain. From this, it
can be inferred that any polynomial of degree p > 1 is equal to the product of p
linear factors with complex coefficients.

The case of degree 1 requires no proof. The general case follows easily by
induction. Assume that the theorem holds for all polynomials of degrees less than
p, and let α(x) have a degree of p. Then, since α(x) has a root λ, it follows that
α(x) = (x − λ)β(x), where β(x) has a degree of p − 1. But, by assumption, β(x)
has p− 1 linear factors so α(x) must have p such factors.

On gathering together the factors of the polynomial α(x), we obtain

α(x) =αpx
p + · · ·+ α1x+ α0

=αp(x− λ1)r1 · · · (x− λs)rs .
(4.48)

Here λ1, . . . , λs are the distinct roots of α(x) whilst r1 + · · ·+ rs = p is the sum of
their multiplicities.

We shall take the view that, in practical applications, multiple roots rarely
arise, unless they represent a feature of the design of a model. In that case, their
values may well be known in advance. Therefore, in the algorithms for root finding
which we shall present in the following sections, we shall make no special provision
for multiple roots. We shall begin by presenting a time-honoured algorithm for
finding the real roots of a polynomial. Then we shall describe the more general
algorithms which are capable of finding both real and complex roots.

Real Roots

A common procedure for finding a real-valued solution or root of the polyno-
mial equation α(x) = 0 is the Newton–Raphson procedure which depends upon
approximating the curve y = α(x) by its tangent at a point near the root. Let this
point be [x0, α(x0)]. Then the equation of the tangent is

y = α(x0) +
∂α(x0)
∂x

(x− x0)(4.49)

and, on setting y = 0, we find that this line intersects the x-axis at

x1 = x0 −
[
∂α(x0)
∂x

]−1

α(x0).(4.50)
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x

y

x0

x1

x2

Figure 4.1. If x0 is close to the root of the equation
α(x) = 0, then we can expect x1 to be closer still.

If x0 is close to the root λ of the equation α(x) = 0, then we can expect x1 to be
closer still (see Figure 4.1). To find an accurate approximation to λ, we generate a
sequence of approximations {x0, x1, . . . , xr, xr+1, . . .} according to the algorithm

xr+1 = xr −
[
∂α(xr)
∂x

]−1

α(xr).(4.51)

One should beware that the Newton–Raphson algorithm will not work well
when two roots coincide; because, then, both the function α(x) and its derivative
will vanish in the neighbourhood of the roots.

In order to implement the algorithm, an efficient method is required for evalu-
ating the polynomial α(x) and is derivative ∂α(x)/∂x at an arbitrary point ξ. This
is provided by Horner’s method of nested multiplication which has been described
in a previous section. The following procedure takes in the values of the coefficients
of α(x) together with an initial estimate of a root λ. It returns an accurate value
of the root together with the coefficients of the quotient polynomial β(x) which is
defined by the equation α(x) = (x− λ)β(x).

(4.52) procedure RealRoot(p : integer;
alpha : vector;
var root : real;
var beta : vector);

var
x, oldx, f, fprime : real;
iterations : integer;
quotient : vector;
convergence : boolean;
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begin {Real Root}
x := root;
iterations := 0;
convergence := false;

repeat
Horner(alpha, p, x, f, beta);
Horner(beta, p− 1, x, fprime, quotient);
oldx := x;
x := x− f/fprime;
iterations := iterations+ 1;
if Abs(x− oldx) < Abs(x) ∗ 1E − 5 then
convergence := true

until (convergence) or (iterations > 20);

root := x;
if not convergence then
Writeln(′The program failed to converge′);

end; {RealRoot}

If λ1 is a root of the polynomial α(x), then the remainder on division by (x−λ1)
is zero, and so α(x) = (x−λ1)β1(x). Therefore, further roots of α(x) can be sought
by seeking the roots of the so-called deflated polynomial β1(x). The coefficients of
β1(x) are already available from the procedure above as the elements of the array
beta. To find a second root, the procedure can be applied a second time with beta
in place of alpha; and successive roots could be found in like manner.

The disadvantage of this method is that it is liable to lead to an accumulation
of errors. Therefore, once an initial estimate of a root λi+1 has been found from a
deflated polynomial βi(x), a more accurate estimate should be sought by applying
the procedure again to the original polynomial α(x) taking the initial estimate as
a starting value. Once the accurate estimate has been found, it can be used as a
starting value in a further application of the procedure aimed at producing a refined
estimate of the deflated polynomial βi+1(x) which is to be used in the next round
of root extraction. This strategy is represented by the following procedure which
invokes the preceding procedure RealRoot:

(4.53) procedure NRealRoots(p,NofRoots : integer;
var alpha, beta, lambda : vector);

var
i : integer;
root : real;
q : vector;

begin {NRealRoots}
beta := alpha;
for i := 0 to NofRoots− 1 do
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begin
root := 0;
RealPolyRoots(p− i, beta, root, q); {Initial value of root}
RealPolyRoots(p, alpha, root, q); {Refined value of root}
lambda[i+ 1] := root;
RealPolyRoots(p− i, beta, root, q); {Refined value of beta}
beta := q;

end;
end; {NRealRoots}

A disadvantage of the Newton–Raphson procedure is that it cannot be relied
upon, in general, to converge to a root of a polynomial unless the starting value is
sufficiently close. However, if all of the roots are real, then the procedure will find
them. In particular, it can be proved that

(4.54) If α(x) is a polynomial of degree n ≥ 2 with real coefficients, and if all
the roots λn ≥ λn−1 ≥ · · · ≥ λ1 of α(x) = 0 are real, then the Newton–
Raphson method yields a convergent strictly decreasing sequence for
any initial value x0 > λn.

A proof is given by Stoer and Bulirsh [474, p. 272].
The result implies that, if we start by finding the largest root, then we can

proceed, via a process of deflation, to find the next largest root with certainty,
and so on, down to the smallest root. However, in the procedure NRealRoots, the
starting value is invariably set to zero, with the effect that we tend to find the
roots in an ascending order of magnitude. In practice, this strategy will also work
reliably when all of the roots are real.

According to the version of Horner’s algorithm presented above, the coeffi-
cients of the deflated polynomial β0 + β1x + · · · + βn−1x

n−1 are computed in
the order βn−1, βn−2, . . . , β0. This procedure, which is know as forward defla-
tion, is numerically stable when the deflating factor contains the smallest absolute
root. If we were to deflate the polynomial by the factor containing the largest
root, then it would be appropriate to calculate the coefficients in reverse order.
The largest root of β(x) = 0 is, of course, the reciprocal of the smallest root of
xn−1β(x−1) = β0x

n−1 + β1x
n−2 + · · · + βn−1 = 0; and this helps to explain why

the procedure of backwards deflation is appropriate to the latter case.
There are numerous results which can help in locating approximate values of

the real roots in less favourable cases. The problem of determining the number of
real roots of a polynomial equation engaged the attention of mathematicians for
almost two hundred years. The period begins in 1637 with Descartes’ rule of signs
which establishes upper limits to the numbers of positive and negative real roots. It
ends with the solution of Sturm [476] which was announced in 1829 and published
in 1835. According to Sturm’s theorem,

(4.55) There exists a sequence of real polynomials f(x), f1(x), . . . , fp(x),
whose degrees are in descending order, such that, if b > a, then the
number of distinct real roots of α(z) = 0 between a and b is equal to the
excess of the number of changes of signs in the sequence f, f1, . . . , fp
when x = a over the number of changes of sign when x = b.
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There can be many Sturm sequences which fulfil these prescriptions. To show
how to construct one such sequence, let f(x) = 0 be a polynomial equation with
distinct roots. Then f(x) and its derivative f1(x) have only a nonzero constant fp
as their highest common factor. The Sturm sequence can be generated by the usual
process for finding the common factor which relies upon an adaptation of Euclid’s
algorithm which has been presented under (3.1):

f(x) = q1(x)f1(x)− f2(x),

f1(x) = q2(x)f2(x)− f3(x),
...

fp−2(x) = qp−1(x)fp−1(x)− fp.

(4.56)

Observe that, for a given values of x, no two consecutive polynomials of this
Sturm sequence can vanish since, otherwise, there would be fp = 0. Moreover, if λ
is a root of fi(x) = 0, then (4.56) shows that

fi−1(λ) = −fi+1(λ);(4.57)

and, from the continuity of the functions, it follows that fi−1(x) and fi+1(x) have
opposite signs in the neighbourhood of λ. Therefore, as x passes through the value
of λ, which is to say, as the sign of fi(x) changes, the sequence

fi−1(x), fi(x), fi+1(x)(4.58)

continues to display a single change of sign. Hence, when x increases through the
value of a root of any fi(x), the number of sign changes in the sequence remains
unaltered.

On the other hand, as x increases through a root of f(x) = 0, the signs of f(x)
and of its derivative f1(x) change from being opposite to being the same; and hence
the number of sign changes in the Sturm sequence decreases by one as x passes a
root of f(x) = 0. This establishes that the Sturm sequence of (4.56) fulfils the
prescriptions of (4.55).

For a fuller exposition of the theory of Sturm sequences, one may consult the
texts on the theory of equations of Todhunter [486], Dickson [157] and Uspensky
[495], or the more recent text in numerical analysis of Ralston and Rabinowitz [419].

In time-series analysis, root-finding methods are commonly applied to poly-
nomial equations of the form α(L) = 0 wherein L is the lag operator. Usually a
stability condition prevails which restricts the roots of the equation α(z−1) = 0
to lie within the unit circle. The Newton–Raphson procedure can be expected to
perform well under such circumstances, even when there is no attempt at finding
appropriate starting values.

In the next chapter, we shall present a means of assessing whether or not the
roots of α(z−1) = 0 lie within the unit circle which relieves us of the need to find
these roots directly. This can help us, sometimes, to avoid some heavy labour.
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Complex Roots

A more sophisticated version of the Newton–Raphson algorithm, which uses
complex arithmetic, can be employed for finding complex roots.

However, in the case of a polynomial with real coefficients, the complex roots
must occur in conjugate pairs which are to be found within quadratic factors of the
polynomial. Therefore, instead of looking for one complex root at a time, we may
look for the roots by isolating the quadratic factors. This idea leads to the method
of Bairstow.

Consider dividing α(x) by the quadratic δ(x) = x2 +δ1x+δ0. If the alternative
representation of the remainder polynomial is used which has been developed in the
context of the division algorithm, then this gives

αpx
p + αp−1x

p−1 + · · ·+ α1x+ α0 = β−1(x+ δ1) + β−2

+ (x2 + δ1x+ δ0)(βp−2x
p−2 + βp−3x

p−3 + · · ·+ β1x+ β0).
(4.59)

Here the terms β−1(x+δ1)+β−2 constitute the linear remainder; and, if the divisor
δ(x) is indeed a quadratic factor of α(x), then the remainder must be zero. In effect,
values of δ1 and δ0 must be sought which will satisfy the equations

β−1(δ1, δ0) = 0,
β−2(δ1, δ0) = 0.

(4.60)

Let d1 and d0 be values which come close to satisfying both equations. Then
the equations y1 = β−1(δ1, δ0) and y2 = β−2(δ1, δ0), can be approximated in the
neighbourhood of the point (d1, d0) by the following linear functions:

y1 =β−1(d1, d0) +
∂β−1

∂δ1
(δ1 − d1) +

∂β−1

∂δ0
(δ0 − d0),

y2 =β−2(d1, d0) +
∂β−2

∂δ1
(δ1 − d1) +

∂β−2

∂δ0
(δ0 − d0).

(4.61)

Here it is understood that the derivatives are also evaluated at the point (d1, d0).
Setting y1, y2 = 0 and putting the equations in a matrix format gives

 β−1

β−2

 =


∂β−1

∂δ1

∂β−1

∂δ0
∂β−2

∂δ1

∂β−2

∂δ0


 d1 − δ1

d0 − δ0

 ;(4.62)

and the solution is

 δ1
δ0

 =

 d1

d0

−

∂β−1

∂δ1

∂β−1

∂δ0
∂β−2

∂δ1

∂β−2

∂δ0


−1  β−1

β−2

 .(4.63)

Of course, the values of δ1 and δ0 which are determined by these equations are
still only approximations to the ones which satisfy the equations (4.60), yet they are

104



4: POLYNOMIAL COMPUTATIONS

expected to be better approximations than d1 and d0 respectively. Equation (4.63)
is in the form of a two-dimensional version of the Newton–Raphson algorithm, and
it may be used to generate a succession of improving approximations to the solution
of the equations (4.60).

To implement the algorithm for finding the parameters of the quadratic factor,
we must be able to generate the values of the functions β−1(δ1, δ0) and β−2(δ1, δ0)
and their derivatives corresponding to arbitrary values of δ1 and δ0. The division
algorithm may be used to generate β−1 and β−2. Setting q = 2 in equation (4.37)
an letting j run from p down to 0 generates the following sequence which ends with
the requisite values:

βp−2 =αp,

βp−3 =αp−1 − δ1βp−2,

βp−4 =αp−2 − δ1βp−3 − δ0βp−2,

...
β0 =α2 − δ1β1 − δ0β2,

β−1 =α1 − δ1β0 − δ0β1,

β−2 =α0 − δ1β−1 − δ0β0.

(4.64)

The derivatives, may be found by differentiating the recurrence relationship.
To simplify the notation, let (βj)1 = ∂βj/∂δ1. Then

(βp−2)1 = 0,
(βp−3)1 =−βp−2,

(βp−4)1 =−βp−3 − δ1(βp−3)1,

(βp−5)1 =−βp−4 − δ1(βp−4)1 − δ0(βp−3)1,

...
(β0)1 =−β1 − δ1(β1)1 − δ0(β2)1 = c0,

(β−1)1 =−β0 − δ1(β0)1 − δ0(β1)1 = c1,

(β−2)1 =−β−1 − δ1(β−1)1 − δ0(β0)1 = c2;

(4.65)

and the last two terms generated by this recurrence are two of the sought-after
derivatives: (β−1)1 = ∂β−1/∂δ1 and (β−2)1 = ∂β−2/∂δ1.

Next, by differentiating the recurrence relationship of (4.64) with respect to
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δ0, we get

(βp−2)0 = 0,

(βp−3)0 = 0,

(βp−4)0 =−βp−2,

(βp−5)0 =−δ1(βp−4)0 − βp−3,

...

(β0)0 =−δ1(β1)0 − δ0(β2)0 − β2,

(β−1)0 =−δ1(β0)0 − δ0(β1)0 − β1,

(β−2)0 =−δ1(β−1)0 − δ0(β0)0 − β0.

(4.66)

This provides us with the remaining two derivatives (β−1)0 = ∂β−1/∂δ0, and
(β−2)0 = ∂β−2/∂δ0. Notice, however, that the schemes under (4.65) and (4.66)
generate the same values, with (βj)0 = (βj+1)1. Therefore, the scheme under
(4.66) is actually redundant; and a single recurrence serves to generate the three
distinct values which are found within the matrix

∂β−1

∂δ1

∂β−1

∂δ0

∂β−2

∂δ1

∂β−2

∂δ0

 =

 (β−1)1 (β0)1

(β−2)1 (β−1)1

 =

 c1 c0
c2 c1

 .(4.67)

The values in (4.67), together with the values of β−1 and β−2, are generated
by the following procedure which implements the recursions of (4.64) and (4.66):

(4.68) procedure QuadraticDeflation(alpha : vector;
delta0, delta1 : real;
p : integer;
var beta : vector;
var c0, c1, c2 : real);

var
i : integer;

begin {QuadraticDeflation}
beta[p− 2] := alpha[p];
beta[p− 3] := alpha[p− 1]− delta1 ∗ beta[p− 2];
c1 := 0;
c2 := −beta[p− 2];

for i := 4 to p+ 2 do
begin
beta[p− i] := alpha[p− i+ 2]− delta1 ∗ beta[p− i+ 1];
beta[p− i] := beta[p− i]− delta0 ∗ beta[p− i+ 2];
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c0 := c1;
c1 := c2;
c2 := −beta[p− i+ 1]− delta1 ∗ c1− delta0 ∗ c0;

end;
end; {QuadraticDeflation}

The procedure QuadraticDeflation provides the various elements which are
needed in implementing the Newton–Raphson procedure depicted in equation
(4.63). Now this equation can be rewritten as

δ1 = d1 −
c1β−1 − c0β−2

c21 − c0c2
and

δ1 = d1 −
c1β−2 − c2β−1

c21 − c0c2
.

(4.69)

The following procedure implements the algorithm in a simple way:

(4.70) procedure Bairstow(alpha : vector;
p : integer;
var delta0, delta1 : real;
var beta : vector);

var
iterations : integer;
c0, c1, c2, det : real;
convergence : boolean;

begin {Bairstow}
iterations := 0;
convergence := false;

repeat
QuadraticDeflation(alpha, delta0, delta1, p, beta, c0, c1, c2);
det := Sqr(c1)− c0 ∗ c2;
delta1 := delta1− (c1 ∗ beta[−1]− c0 ∗ beta[−2])/det;
delta0 := delta0− (c1 ∗ beta[−2]− c2 ∗ beta[−1])/det;
iterations := iterations+ 1;
if (Abs(beta[−1]) < 1E − 5) and (Abs(beta[−2]) < 1E − 5) then
convergence := true;

until (convergence) or (iterations > 30);

if not convergence then
Writeln(′The program failed to converge′);

end; {Bairstow}
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The procedure delivers the coefficients of the quadratic factor x2 + δ1x + δ0;
and, from these, the roots are calculated readily as

λ1, λ2 =
−δ1 ±

√
δ2
1 − 4δ0

2
.(4.71)

The procedure also returns the coefficients of the deflated polynomial β(x).
We can proceed to extract further quadratic factors from the deflated polyno-

mial; but, in doing so, we should use the same processes of refinement as we have
applied to the calculation of real roots. That is to say, once an initial estimate
of a quadratic factor has been found from the deflated polynomial, it should be
recalculated from the original polynomial using the initial estimate as the starting
value. Then the deflated polynomial should be recalculated. These steps should be
taken in order to avoid an accumulation of rounding errors.

(4.72) procedure MultiBairstow(p : integer;
var alpha : vector;
var lambda : complexVector);

var
i, j, r : integer;
c0, c1, c2, delta0, delta1 : real;
beta, quotient : vector;

begin {MultiBairstow}

if Odd(p) then
r := (p− 1) div 2

else
r := p div 2;

beta := alpha;

for i := 0 to r − 1 do
begin
j := p− 2 ∗ i;
delta1 := 0;
delta0 := 0;
Bairstow(beta, j, delta0, delta1, quotient); {Initial value}
Bairstow(alpha, p, delta0, delta1, quotient); {Refined value}
RootsOfFactor(j, delta0, delta1, lambda);
QuadraticDeflation(beta, delta0, delta1, p, quotient, c0, c1, c2);
beta := quotient;

end;

if Odd(p) then
begin
lambda[1].re := −quotient[0];
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lambda[1].im := 0.0
end;

end; {MultiBairstow}

In order to extract the roots from the quadratic factors and to place
them within the complex vector lambda, the following procedure is called by
MultiBairstow:

(4.73) procedure RootsOfFactor(i : integer;
delta0, delta1 : real;
var lambda : complexVector);

begin

if Sqr(delta1) <= 4 ∗ delta0 then
begin {complex roots}
lambda[i].re := −delta1/2;
lambda[i− 1].re := −delta1/2;
lambda[i].im := Sqrt(4 ∗ delta0− Sqr(delta1))/2;
lambda[i− 1].im := −Sqrt(4 ∗ delta0− Sqr(delta1))/2;

end

else if Sqr(delta1) > 4 ∗ delta0 then
begin {real roots}
lambda[i].re := (−delta1 + Sqrt(Sqr(delta1)− 4 ∗ delta0))/2;
lambda[i− 1].re := (−delta1− Sqrt(Sqr(delta1)− 4 ∗ delta0))/2;
lambda[i].im := 0.0;
lambda[i− 1].im := 0.0;

end;

end; {RootsOfFactor}

Müller’s Method

Now we must face the problems which arise when Bairstow’s procedure fails
to converge from the rough starting values which we have provided.

There is an extensive and difficult literature relating to the problem of locating
the complex roots of a polynomial (see Marden [331], [332], for example); and it
should be possible to incorporate the lessons of these studies within a computer
program with the object of finding accurate starting values. However, this would
entail very extensive coding.

The approach which we shall follow here is to resort, in the case of an initial
failure, to a robust and slow method which is guaranteed to find a root no matter
which starting values are taken. We shall implement a method of Müller [356] which
is sometimes used in “hands-off” applications where there can be no intercession
from the user to guide the process of root finding.
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Müller’s method discovers the roots one at a time by ranging over the complex
plane. It uses quadratic approximations to the polynomial which are valid in the
vicinity of a root. If the root of the polynomial is real, then it may be approximated
by one of the roots of the quadratic. If the root of the polynomial is complex,
then the quadratic is also likely to have a complex root which can serve as an
approximation. In either case, if the approximation to the root is inadequate, then
a new quadratic function is calculated.

There is no need for an accurate initial approximation. All that is required, in
the beginning, is a set of three points z0, z1 and z2 in the complex plane together
with the corresponding values f0 = α(z0), f1 = α(z1) and f2 = α(z2) of the
polynomial.

It is straightforward to find the quadratic function which interpolates the co-
ordinates (z0, f0), (z1, f1) and (z2, f2). The matter is simplified by taking the
quadratic in the shifted form of q(z) = a(z − z2)2 + b(z − z2) + c with z2 as the
centre. The parameters a, b and c are found by solving the following equations:

f0 = a(z0 − z2)2 + b(z0 − z2) + c,

f1 = a(z1 − z2)2 + b(z1 − z2) + c,

f2 = a(z2 − z2)2 + b(z2 − z2) + c

= c.

(4.74)

On setting c = f2, these may be reduced to a pair of equations which, in matrix
form, are [

(z0 − z2)2 (z0 − z2)

(z1 − z2)2 (z1 − z2)

][
a

b

]
=

[
f0 − f2

f1 − f2

]
.(4.75)

It is easy to verify that

a=
(z1 − z2)(f0 − f2)− (z0 − z2)(f1 − f2)

(z0 − z2)(z1 − z2)(z0 − z1)
,

b=
(z0 − z2)2(f1 − f2)− (z1 − z2)2(f0 − f2)

(z0 − z2)(z1 − z2)(z0 − z1)
.

(4.76)

The root of the interpolating quadratic, which we denote by z3, may be deter-
mined from the formula

z3 − z2 =
−2c

b±
√
b2 − 4ac

.(4.77)

This formula relates to the problem of finding the roots of the auxiliary equation
a+ bw+ cw2 = 0 as opposed to the roots of the primary equation aw2 + bw+ c = 0.
In fact, we are seeking the roots of the primary equation. These are the reciprocals
of the roots of the auxiliary equation; and this accounts for the fact that the formula
appears to have been written upside down.
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The purpose of using the inverse formula is to allow us more easily to isolate
the root of the quadratic which has the smaller absolute value. This is a matter of
choosing the sign in (4.77) so that the absolute value of the denominator will be
as large as possible. When a and b are real numbers, the absolute value of a± b is
maximised by taking a+ b, when ab > 0, and a− b, when ab < 0. More generally,
when a and b are complex numbers, the modulus of a ± b is maximised by taking
a+ b, when arebre + aimbim > 0, and a− b, when arebre + aimbim < 0.

If z3 is not an adequate approximation to the root of the polynomial, then z0 is
discarded and new quadratic is found which interpolates the points (z1, f1), (z2, f2)
and (z3, f3), where f3 = α(z3). The smallest root of the new quadratic is liable to
be a better approximation to the root of the polynomial.

The following procedure implements Müller’s method. The need to invoke
various functions to perform operations in complex arithmetic detracts from the
appearance of the code which, otherwise, would be more compact.

(4.78) procedure Mueller(p : integer;
poly : complexVector;
var root : complex;
var quotient : complexVector);

const
almostZero = 1E − 15;

var
iterations, exit : integer;
convergence : boolean;
a, b, c, z0, z1, z2, z3, h, h1, h2, h3, f0, f1, f2, f3 : complex;
delta1, delta2, discrim, denom, store1, store2 : complex;

begin {Mueller}

{Set the initial values}
z2.re := −0.75 ∗ root.re− 1;
z2.im := root.im;
z1.re := 0.75 ∗ root.re;
z1.im := 1.2 ∗ root.im+ 1;
z0 := root;
ComplexPoly(poly, p, z0, f0, quotient);
ComplexPoly(poly, p, z1, f1, quotient);
ComplexPoly(poly, p, z2, f2, quotient);

iterations := 0;
exit := 0;
convergence := false;

while (not convergence) and (exit = 0)
and (iterations < 60) do
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begin
delta1 := Csubtract(f1, f2);
delta2 := Csubtract(f0, f2);
h1 := Csubtract(z1, z0);
h2 := Csubtract(z2, z0);
h3 := Csubtract(z1, z2);
h := Cmultiply(h1, h2);
h := Cmultiply(h, h3);
if Cmod(h) < almostZero then
exit := 1; {Cannot fit a quadratic to these points}

if exit = 0 then
begin {Calculate coefficients of the quadratic}
store1 := Cmultiply(h1, delta1);
store2 := Cmultiply(h2, delta2);
a := Csubtract(store2, store1);
a := Cdivide(a, h); {a = (h2δ2 − h1δ1)/h}
store1 := Cmultiply(store1, h1);
store2 := Cmultiply(store2, h2);
b := Csubtract(store1, store2);
b := Cdivide(b, h); {b = (h2

1δ1 − h2
2δ2)/h}

c := f0;
end;

if (Cmod(a) <= almostZero)
and (Cmod(b) <= almostZero) then
exit := 2; {Test if parabola is really a constant}

discrim := Cmultiply(b, b); {b2}
h := Cmultiply(a, c);
discrim.re := discrim.re− 4 ∗ h.re; {b2 − 4ac}
discrim.im := discrim.im− 4 ∗ h.im;
discrim := Csqrt(discrim); {

√
(b2 − 4ac)}

if (discrim.re ∗ b.re+ discrim.im ∗ b.im > 0) then
denom := Cadd(b, discrim)

else
denom := Csubtract(b, discrim);

if Cmod(denom) < almostZero then
begin {if b±

√
(b2 − 4ac) ' 0}

z3.re := 0;
z3.im := 0;

end
else

begin
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h := Cadd(c, c);
h := Cdivide(h, denom);
z3 := Csubtract(z0, h);

end;

ComplexPoly(poly, p, z3, f3, quotient);
if (Cmod(h) < 1E − 10) or (Cmod(f3) < 1E − 10) then
convergence := true;

z2 := z1;
f2 := f1;
z1 := z0;
f1 := f0;
z0 := z3;
f0 := f3;

iterations := iterations+ 1;
end; {while}

root := z3;

if not convergence then
Writeln(′The program failed to converge′);

end; {Mueller}

In implementing the procedure, we have had to guard against the possibility
that h = (z0 − z2)(z1 − z2)(z0 − z1) will come close to zero as a result of the
virtual coincidence of two or three successive values of z. Since this term represents
the denominator of the formulae for the quadratic coefficients a and b, the effect
would be a numerical overflow. However, if h is virtually zero, then the values of
x are likely to be close to the root of the polynomial, and the iterations may be
terminated.

An alternative way of calculating the quadratic coefficients which is less sen-
sitive to these problems is provided in an example in a subsequent section which
treats the topic of divided differences.

To find the full set of roots for a polynomial, the procedure above can be driven
by a further procedure similar to the one which drives the procedure Bairstow of
(4.70). This is provided below:

(4.79) procedure ComplexRoots(p : integer;
var alpha, lambda : complexVector);

var
i : integer;
root : complex;
quotient, beta : complexVector;
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begin {ComplexRoots}

beta := alpha;
for i := 0 to p− 2 do

begin
root.re := 0;
root.im := 0;
Mueller(p− i, beta, root, quotient);
lambda[i+ 1] := root;
beta := quotient;

end;
lambda[p].re := −beta[0].re;
lambda[p].im := −beta[0].im;

end; {ComplexRoots}

In this instance, we are ignoring the injunction to recalculate the roots from the
original polynomial after their values have been found from the deflated polynomial.
To compensate for this, the tolerances within the procedure Mueller of (4.78) have
been given stringent values. The procedure can be amended easily.

Polynomial Interpolation

The theory of interpolation has been important traditionally in numerical anal-
ysis since it shows how to find values for functions at points which lie in the inter-
stices of tables. Nowadays, with the widespread availability of computers, this role
has all but vanished since it is easy to evaluate the function anew at an arbitrary
point whenever the demand arises. However, the theory of polynomial interpola-
tion has acquired a new importance in engineering design and in statistics where it
provides a basis for a wide variety of curve-fitting algorithms.

Imagine that we are given a set of n+1 points (x0, y0), . . . , (xn, yn), with strictly
increasing values of x, which relate to a function y = y(x) which is continuously
differentiable n times. The object is to develop the facility for finding a value for y
to correspond to an arbitrary value of x in the interval [x0, xn]. For this purpose,
we may replace the unknown function y = y(x) by a polynomial P (x) of degree n
which passes through the n+ 1 points. Thus, at the point (xi, yi), we have

yi =P (xi)
=α0 + α1xi + · · ·+ αnx

n
i .

(4.80)

By letting i run from 0 to n, we generate a set of n + 1 equations which can be
solved for the polynomial coefficients α0, α1, . . . , αn; and, therefore, the problem of
finding the interpolating polynomial appears to be amenable to a straightforward
solution.
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The system of n+ 1 equations may be written in matrix form as
1 x0 x2

0 . . . xn0
1 x1 x2

1 . . . xn1
1 x2 x2

2 . . . xn2
...

...
...

...
1 xn x2

n . . . xnn




α0

α1

α2

...
αn

 =


y0

y1

y2

...
yn

 .(4.81)

The matrix of this system is known as the Vandermonde matrix. Its determinant
is given by ∏

i>k

(xi − xk) = (x1 − x0)(x2 − x0) · · · (xn − x0)

×(x2 − x1) · · · (xn − x1)

· · · · · · · · · · · · · · · · · ·
×(xn − xn−1) .

(4.82)

The formula is easily verified for n = 1, 2. It is established in general by Uspensky
[495, p. 214], amongst others. The value of the determinant is manifestly nonzero,
which proves that the matrix is nonsingular and that the solution of the equations
(4.81) is unique. Thus it follows that there is only one polynomial of degree less
than or equal to n which interpolates n+ 1 distinct points.

The matrix of (4.81) is liable to be ill-conditioned, which discourages us from
attempting to solve the equations directly in pursuit of the coefficients of the inter-
polating polynomial.

Lagrangean Interpolation

The principal object of interpolation is not to isolate the coefficients α0, . . . , αn
of the interpolating polynomial P (x). Rather, it is to calculate values in the range
of P (x); and most methods avoid finding the values of the coefficients explicitly. A
classical method of constructing an interpolating polynomial is Lagrange’s method.

A function which interpolates the points (x0, y0), . . . , (xn, yn) must be capable
of being written as

P (x) = y0l0(x) + y1l1(x) + · · ·+ ynln(x),(4.83)

where

lj(xi) =
{

0, if j 6= i;
1, if j = i.

The Lagrangean polynomials, which satisfy these conditions, can be written as

lj(x) =
(x− x0) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

=
∏
i 6=j

(x− xi)
(xj − xi)

.
(4.84)
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Putting the latter into (4.83) gives

P (x) =
n∑
j=0

yj
∏
i 6=j

(x− xi)
(xj − xi)

.(4.85)

From this, it can be seen that the leading coefficient associated with xn is

βn =
n∑
j=0

yj∏
i 6=j(xj − xi)

.(4.86)

To reveal an interesting feature of the Lagrangean polynomials, we may con-
sider expanding the generic polynomial to give

lj(xi) =
n∑
k=0

βjkx
k
i = δij ,(4.87)

where δij is Kronecker’s delta. Letting i, j = 0, . . . , n generates the following sys-
tem: 

1 x0 . . . xn0
1 x1 . . . xn1
...

...
...

1 xn . . . xnn



β00 β10 . . . βn0

β01 β11 . . . βn1

...
...

...
β0n β1n . . . βnn

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ;(4.88)

which shows that the coefficients of the jth Lagrangean polynomial are the elements
in the jth column of the inverse of the Vandermonde matrix of (4.81).

Some useful algebraic identities can be derived by setting yi = xqi in the defi-
nition of the interpolating polynomial P (x) under (4.83). Then P (x) interpolates
the points (x0, x

q
0), . . . , (xn, xqn). But there is only one polynomial of degree less

that or equal to n which interpolates n+ 1 points; so it follows that, if q ≤ n, then
xq and P (x) must coincide. Thus

xq = P (x) = xq0l0(x) + xq1l1(x) + · · ·+ xqnln(x).(4.89)

Moreover, setting q = 0 shows that
n∑
j=0

lj(x) = 1.(4.90)

Next consider expanding the numerator of lj(x) in (4.84) to give

lj(x) =
xn − xn−1

∑
i 6=j xi + · · · (−1)n

∏
i 6=j xi∏

i 6=j(xj − xi)
.(4.91)

Putting this into equation (4.89) shows that the coefficient of xn is

n∑
j=0

xqj∏
i 6=j(xj − xi)

= δqn,(4.92)
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where δqn is Kronecker’s delta. This accords with the result under (4.86). It follows,
by setting q = 0, that

∑
j

1∏
i6=j(xi − xj)

= 0.(4.93)

Divided Differences

The method of Lagrangean interpolation is rarely the most efficient way of
evaluating an interpolating polynomial P (x). Often, a more effective way is to use
Newton’s form of the polynomial. Consider a sequence of polynomials of increasing
degree defined recursively as follows:

P0(x) = γ0,

P1(x) =P0(x) + γ1(x− x0),
P2(x) =P1(x) + γ2(x− x0)(x− x1),

...
Pn(x) =Pn−1(x) + γn(x− x0) · · · (x− xn).

(4.94)

A process of substitution leads to the expression

Pn(x) = γ0 + γ1(x− x0) + γ2(x− x0)(x− x1) + . . .

+ γn(x− x0) · · · (x− xn−1)

=
n∑
j=0

γj

j−1∏
i=0

(x− xi),
(4.95)

which is Newton’s form for the polynomial of degree n. The polynomial can also
be written is a nested form:

Pn(x) = γ0 + (x− x0)
[
γ1 + · · ·

+ (x− xn−2)
{
γn−1 + (x− xn−1)γn

}
· · ·
]
;

(4.96)

and, given the parameters γ0, γ1, . . . , γn, the value of Pn(x) may be generated re-
cursively as follows:

qn = γn,
qn−1 = qn(x− xn−1) + γn−1,

...
Pn(x) = q0 = q1(x− x0) + γ0.

(4.97)

The coefficients γ0, . . . , γn of an interpolating polynomial in Newton’s form
may themselves be generated recursively. If Pn(x) is to interpolate the points
(x0, y0), . . . , (xn, yn), then it must satisfy a sequence of n+ 1 equations

y0 =Pn(x0) = γ0,

y1 =Pn(x1) = γ0 + γ1(x1 − x0),
y2 =Pn(x2) = γ0 + γ1(x2 − x0) + γ2(x2 − x0)(x2 − x1),

...
yn =Pn(x) = γ0 + γ1(xn − x0) + γ2(xn − x0)(xn − x1) + · · ·

+ γn(xn − x0) · · · (xn − xn−1).

(4.98)
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Reference to (4.94) shows that the generic equation of this sequence may be written
as

yk+1 = Pk(xk+1) + γk+1

k∏
i=0

(xk+1 − xi),

from which

γk+1 =
yk+1 − Pk(xk+1)∏k
i=0(xk+1 − xi)

.(4.99)

Thus one of the advantages of Newton’s form is that it enables us to construct
the polynomial Pk+1(x) which interpolates the k + 1 points (xi, yi), i = 0, . . . , k by
adding a term to the kth polynomial Pk(x) which interpolates the first k points.

The coefficients of Newton’s form are often described as divided differences:

(4.100) The coefficient γk of xk in the kth degree polynomial Pk(x) which
interpolates the points (x0, y0), . . . , (xk, yk) is said to be a divided dif-
ference of order k, and it is denoted by γk = f [x0, . . . , xk].

The following theorem justifies this terminology; and it indicates an alternative
recursive procedure for calculating these coefficients:

(4.101) Let f [x0, . . . , xk] and f [x1, . . . , xk+1] be divided differences of order k
and let f [x0, . . . , xk+1] be a divided difference of order k + 1. Then

f [x0, . . . , xk+1] =
f [x1, . . . , xk+1]− f [x0, . . . , xk]

xk+1 − x0
.

Proof. Let Pk be the polynomial of degree k which interpolates the points
(x0, y0), . . . , (xk, yk) and let Qk be the polynomial of degree k which interpolates
the points (x1, y1), . . . , (xk+1, yk+1). Then the function

Pk+1(x) =
(x− x0)Qk(x) + (xk+1 − x)Pk(x)

xk+1 − x0

clearly interpolates all k + 1 points (x0, y0), . . . , (xk+1, yk+1). Moreover, since
f [x0, . . . , xk] is the coefficient of xk in Pk and f [x1, . . . , xk+1] is the coefficient
of xk in Qk, it follows that f [x0, . . . , xk+1], as it is defined above, is indeed the
coefficient of xk+1 in the interpolating polynomial Pk+1.

A scheme for computing the divided differences is given in the following table
wherein the first column contains values of the function f(x) on a set of strictly
increasing values of x:

f(x1)
↘

f [x1, x2]
↗ ↘

f(x2) f [x1, x2, x3]↘ ↗ ↘
f [x2, x3] f [x1, x2, x3, x4]↗ ↘ ↗

f(x3) f [x2, x3, x4]↘ ↗
f [x3, x4]↗

f(x4)

(4.102)
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An elementary property of the divided difference f [xi, . . . , xi+n] of the nth order is
that it vanishes if f(x) is a polynomial of degree less than n.

Example 4.3. Consider the problem, which we have already faced in connection
with Müller’s method, of interpolating a quadratic q(x) through the points (x0, f0),
(x1, f1) and (x2, f2). Using divided differences and taking the points in reversed
order, we have

q(x) = f2 + f [x2, x1](x− x2) + f [x2, x1, x0](x− x2)(x− x1);(4.103)

where

f [x2, x1] =
f1 − f2

x1 − x2
and

f [x2, x1, x0] =
1

x0 − x2

{
f0 − f1

x0 − x1
− f1 − f2

x1 − x2

}
.

(4.104)

But

(x− x2)(x− x1) = (x− x2)2 + (x− x2)(x2 − x1).(4.105)

Therefore,we can write (4.103) as

q(x) = c+ b(x− x2) + a(x− x2)2,(4.106)

where

c= f2,

b= f [x2, x1] + f [x2, x1, x0](x2 − x1),

a= f [x2, x1, x0].

(4.107)

It may be confirmed that these are the same as the coefficients specified under
(4.74) and (4.75). A reason for preferring the latter formulae in the context of
Müller’s algorithm is that they enable us more easily to ensure that the coefficients
are well-determined by checking that the numerator (x0 − x2)(x1 − x2)(x0 − x1) is
not too close to zero.
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CHAPTER 5

Difference Equations and
Differential Equations

This chapter is concerned with the analysis of linear dynamic systems which are
driven by nonstochastic inputs. When time is treated as a continuum, the analysis
entails differential equations; when it is treated as a succession of discrete instants
separated by unit intervals, the analysis entails difference equations.

Until recently, it was common to find in textbooks of signal processing, and
even in research papers, passages declaring that difference equations are best under-
stood in reference to differential equations to which they are closely related. This
was a natural point of view to take when signal processing depended mainly on
analogue equipment. As the use of digital computers in signal processing increased,
the emphasis began to shift; and the point has now been reached where difference
equations deserve priority.

The concept of discrete time comes naturally to statisticians and time-series
analysts whose data are sampled at regular intervals; and, although it is well-
grounded in theory, a stochastic process in continuous time is hard to imagine. It
is also true that economists have shown a marked tendency over many years to
express their models in discrete time.

The question arises of whether difference and differential equations can be
used interchangeably in modelling continuous processes which are observed at reg-
ular intervals. Given that the general solutions to both varieties of equations are
represented, in the homogeneous case, by a sum of real and complex exponential
terms, the answer would seem to be in the affirmative. However, there is still
the question of whether periodic observations can reveal all that is happening in
continuous time. It transpires that, if none of the cyclical, or complex-exponential,
components which are present in the continuous process complete their cycles in
less time that it takes to make two observations, then no information is lost in the
process of sampling.

Our exposition of difference equations is mainly in terms of the lag operator
L. In other branches of mathematics, the difference operator is used instead. The
forward-difference operator ∆ bears a familiar relationship to the operator D which
produces derivatives; and, for the purpose of comparing differential and difference
equations, we show how to make the conversion from L to ∆.

The final sections of the chapter are concerned with the conditions which are
necessary and sufficient for the stability of linear systems. The stability of a system
depends upon the values taken by the roots of a characteristic polynomial equation.
Since it is time-consuming to evaluate the roots, we look for equivalent conditions
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which can be expressed in terms of the ordinary parameters of the systems.
The classical stability conditions for differential equations are the well-known

Routh–Hurwitz conditions (see [431] and [263]) which were discovered at the end of
the nineteenth century. From these, we may deduce the corresponding conditions
for the stability of difference equations, which are commonly know as the Samuelson
[436] conditions by economists and as the Schur–Cohn conditions by others (see
[443] and [118]). Whereas we shall state the Routh–Hurwitz conditions without
proof, we shall take care to establish the stability conditions for difference equations
from first principles. These conditions will also emerge elsewhere in the text as the
side products of other endeavours.

Linear Difference Equations

A pth-order linear difference equation with constant coefficients is a relation-
ship amongst p+ 1 consecutive elements of a sequence y(t) of the form

α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = u(t).(5.1)

Here u(t) is a specified sequence of inputs which is known as the forcing function.
The equation can also be written as

α(L)y(t) = u(t),(5.2)

where

α(L) = α0 + α1L+ · · ·+ αpL
p.(5.3)

If p consecutive values of y(t), say y0, y1, . . . , yp−1, are given, then equation
(5.1) may be used to find the next value yp. So long as u(t) is fully specified,
successive elements of the sequence can be found in this way, one after another.
Likewise, values of the sequence prior to t = 0 can be generated; and thus, in
effect, any number of elements of y(t) can be deduced from the difference equation.
However, instead of a recursive solution, we often seek an analytic expression for
y(t).

The analytic solution of the difference equation is a function y(t; c) compris-
ing a set of p coefficients in c = [c1, c2, . . . , cp]′ which can be determined once p
consecutive values of y(t) are given which are called initial conditions. The same
values would serve to initiate a recursive solution. The analytic solution can be
written as the sum y(t; c) = x(t; c) + w(t), where x(t) is the general solution of
the homogeneous equation α(L)x(t) = 0, and w(t) = α−1(L)u(t) is a particular
solution of the inhomogeneous equation (5.2).

The difference equation may be solved in three steps. The first step is to find
the general solution of the homogeneous equation; and this embodies the unknown
coefficients. The next step is to find the particular solution w(t) which contains
no unknown quantities. Finally, the p initial values of y may be used to deter-
mine the coefficients c1, c2, . . . , cp. We shall begin by discussing the solution of the
homogeneous equation.
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Solution of the Homogeneous Difference Equation

If λj is a root of the equation α(z) = α0 + α1z + · · · + αpz
p = 0 such that

α(λj) = 0, then yj(t) = (1/λj)t is a solution of the equation α(L)y(t) = 0. This
can be seen by considering the expression

α(L)yj(t) = (α0 + α1L+ · · ·+ αpL
p)(1/λj)t

=α0(1/λj)t + α1(1/λj)t−1 + · · ·+ αp(1/λj)t−p

= (α0 + α1λj + · · ·+ αpλ
p
j )(1/λj)

t

=α(λj)(1/λj)t.

(5.4)

Alternatively, one may consider the factorisation α(L) = α0

∏
i(1 − L/λi).

Within this product, there is the term 1− L/λj ; and, since

(1− L/λj)(1/λj)t = (1/λj)t − (1/λj)t = 0,(5.5)

it follows that α(L)(1/λj)t = 0.
Imagine that α(z) = 0 has p distinct roots λ1, λ2, . . . , λp, some of which may

be conjugate complex numbers. Then the general solution of the homogeneous
equation is given by

x(t; c) = c1(1/λ1)t + c2(1/λ2)t + · · ·+ cp(1/λp)t,(5.6)

where c1, c2, . . . , cp are the coefficients which are determined by the initial condi-
tions.

In the case where two roots coincide at a value of λ, the equation α(L)y(t)
= 0 has the solutions y1(t) = (1/λ)t and y2(t) = t(1/λ)t. To show this, let us
extract the term (1−L/λ)2 from the factorisation α(L) = α0

∏
j(1−L/λj). Then,

according to the previous argument, we have (1 − L/λ)2(1/λ)t = 0; but it is also
found that

(1− L/λ)2t(1/λ)t = (1− 2L/λ+ L2/λ2)t(1/λ)t

=
{
t− 2(t− 1) + (t− 2)

}
(1/λ)t

= 0.
(5.7)

More generally, it can be asserted that

(5.8) If α(z) = γ(z)(1− z/λ)r, which is to say that α(z) = 0 has a repeated
root of multiplicity r, then each of the r functions (1/λ)t, t(1/λ)t, . . . ,
tr−1(1/λ)t is a solution of the equation α(L)y(t) = 0.

Proof. This is proved by showing that, if r > n, then (1−L/λ)rtn(1/λ)t = 0. Let
fn(t) = tn, and consider

(1− L/λ)tn(1/λ)t = (1− L/λ)fn(t)(1/λ)t

=
{
fn(t)− fn(t− 1)

}
(1/λ)t

= fn−1(t)(1/λ)t.
(5.9)
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Here fn−1(t) = fn(t)−fn(t−1) is a polynomial in t of degree n−1. Next, consider

(1− L/λ)2tn(1/λ)t = (1− L/λ)fn−1(t)(1/λ)t

=
{
fn−1(t)− fn−1(t− 1)

}
(1/λ)t

= fn−2(t)(1/λ)t.
(5.10)

Here fn−2(t) is a polynomial in t of degree n − 2. After n steps, it will be found
that

(1− L/λ)ntn(1/λ)t = g(1/λ)t,(5.11)

where g is a polynomial of degree zero, which is a constant in other words. It follows
that (1− L/λ)rtn(1/λ)t vanishes when r > n; and this is what had to be proved.

A root of multiplicity r in the polynomial equation α(z) = 0 gives rise to r
different solutions of the homogeneous difference equation. If each root is counted
as many times as its multiplicity, then it can be said that the number of solutions
of a difference equation is equal to the number of roots of α(z) = 0, with is p. If
these solutions are denoted by y1(t), y2(t), . . . , yp(t), then the general solution of
the homogeneous equation may be expressed as

x(t; c) = c1y1(t) + c2y2(t) + · · ·+ cpyp(t),(5.12)

where c1, c2, . . . , cp are the coefficients which are determined by the initial condi-
tions.

Example 5.1. For some purposes, it is more convenient to describe the solution
of a difference equation in terms of the roots of the auxiliary equation α′(z) =
α0z

p + α1z
p−1 + · · · + αp = 0 than in terms of the roots of the primary equation

α(z) = α0 + α1z + · · · + αpz
p = 0. Since α′(z) = zpα(z−1), it follows that, if λ is

a root of the equation α(z) = 0 such that α(λ) = 0, then µ = 1/λ is a root of the
auxiliary equation such that α′(µ) = 0. The auxiliary equation of a second-order
difference equation takes the form of

α0z
2 + α1z + α2 =α0(z − µ1)(z − µ2)

=α0

{
z2 − (µ1 + µ2)z + µ1µ2

}
= 0,

(5.13)

where the roots are

µ1, µ2 =
−α1 ±

√
α2

1 − 4α0α2

2α0
.(5.14)

Complex Roots

The treatment of complex roots may be developed further to take account of
the fact that, if the coefficients of α(z) are real-valued, then such roots must occur
in conjugate pairs.
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Imagine that the equation α(z) = 0 has the conjugate complex roots λ = 1/µ
and λ∗ = 1/µ∗. The complex numbers may be expressed in various ways:

µ= γ + iδ = κ(cosω + i sinω) = κeiω,

µ∗= γ − iδ = κ(cosω − i sinω) = κe−iω.
(5.15)

The roots will contribute the following expression to the general solution of the
difference equation:

q(t) = cµt + c∗(µ∗)t

= c(κeiω)t + c∗(κe−iω)t.
(5.16)

This stands for a real-valued sequence; and, since a real variable must equal its own
conjugate, it follows that c and c∗ are conjugate numbers in the forms of

c∗= ρ(cos θ + i sin θ) = ρeiθ,

c= ρ(cos θ − i sin θ) = ρe−iθ.
(5.17)

Thus we have

q(t) = ρκt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρκt cos(ωt− θ).

(5.18)

To analyse the final expression, consider first the factor cos(ωt− θ). This is a
displaced cosine wave. The value ω, which is a number of radians per unit period,
is called the angular velocity or the angular frequency of the wave. The value
f = ω/2π is its frequency in cycles per unit period. If time is measured in seconds,
then f becomes a number of hertz. The duration of one cycle, also called the period,
is r = 2π/ω. The term θ is called the phase displacement of the cosine wave, and it
serves to shift the cosine function along the axis of t. The function cos(ωt) attains
it maximum value when t = 0, whereas a function cos(ωt− θ) defined over the real
line has a peak when t = θ/ω.

Next consider the term κt wherein κ =
√

(γ2 + δ2) is the modulus of the
complex roots. When κ has a value of less than unity, it becomes a damping factor
which serves to attenuate the cosine wave as t increases.

Finally, the factor 2ρ determines the initial amplitude of the cosine wave. Since
ρ is the modulus of the complex numbers c and c∗, and since θ is their argument,
amplitude and the phase are determined by the initial conditions.

The solution of a second-order homogeneous difference equation in the case of
complex roots is illustrated in Figure 5.1.

The condition which is necessary and sufficient for q(t) of (5.18) to tend to zero
as t increases is that κ = |µ| < 0. When it is expressed in terms of λ = 1/µ, the
condition is that |λ| > 0. The same result applies to the contribution of the real
roots on the understanding that the notation |λ| > 0 refers to an absolute value.
The cases of repeated roots, whether they be real or complex, are no different from
the cases of distinct roots since, within the products tj(1/λ)t; j = 1, . . . , r − 1, the
term (1/λ)t is dominant. Thus it can be asserted that
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Figure 5.1. The solution of the homogeneous difference equation (1 −
1.69L + 0.81L2)y(t) = 0 for the initial conditions y0 = 1 and y1 = 3.69.
The time lag of the phase displacement p1 and the duration of the cycle p2

are also indicated.

(5.19) The general solution of the homogeneous equation α(L)y(t) = 0 tends
to zero as t increases if and only if all of the roots of α(z) = 0 lie
outside the unit circle. Equivalently, it tends to zero if and only if all
of the roots of α′(z) = zpα(z−1) = 0 lie inside the unit circle.

Particular Solutions

The general solution of the difference equation α(L)y(t) = u(t) is obtained by
adding the general solution x(t; c) of the homogeneous equation α(L)x(t) = 0 to a
particular solution w(t) = u(t)/α(L) of the complete equation.

If the homogeneous equation is stable, then its contribution to the general
solution will be a transient component which will vanish with time. The component
which will persist in the long run is the particular solution which is liable to be
described as the steady-state solution or as the equilibrium time path of the system.

The business of evaluating the particular solution, so as to obtain an analytic
form, may be problematic if the forcing function u(t) is not of a tractable nature.
Matters are simplified when u(t) is itself the solution of a homogeneous difference
equation such that θ(L)u(t) = 0 for some θ(L). This is so whenever u(t) is a real
or complex exponential function or a polynomial in t, or some linear combination
of such functions.

In such cases, one approach to finding the particular solution is via the aug-
mented homogeneous equation θ(L)α(L)y(t) = θ(L)u(t) = 0. The particular so-
lution wp(t, c) of the original equation is that part of the general solution of the
augmented equation which corresponds to the roots of θ(L). The coefficients in
wp(t, c) are determined so as to satisfy the equation α(L)wp(t, c) = u(t).
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The approach which we shall follow in finding particular solutions deals directly
with the product w(t) = u(t)/α(L). We may begin by considering some basic results
concerning a polynomial operator in L:

(i) δ(L)λ−t = δ(λ)λ−t,

(ii) δ(L)
{
λ−tu(t)

}
= λ−tδ(λL)u(t),

(iii) δ(L)
{
v(t) + w(t)

}
= δ(L)v(t) + δ(L)w(t).

(5.20)

The first of these, which we have used already, comes from the identity Lnλ−t =
λn−t = λnλ−t, which can be applied to the terms of the polynomial operator.
The second result comes from the fact that Ln

{
λ−tu(t)

}
= λn−tu(t − n) =

λ−t{λL}nu(t). The third result indicates that δ(L) is a linear operator.
The same results are also available when the operator δ(L) is an infinite series

such as would result from the expansion of a rational function of L. It follows that

(i)
1

γ(L)
λ−t =

1
γ(λ)

λ−t if γ(λ) 6= 0,

(ii)
1

γ(L)
{
λ−tu(t)

}
= λ−t

1
γ(λL)

u(t),

(iii)
1

γ(L)
{
v(t) + w(t)

}
=

1
γ(L)

v(t) +
1

γ(L)
w(t).

(5.21)

The case of γ(λ) = 0, which affects the result under (i), arises when γ(L) =
(1 − L/λ)rγ1(L), where γ1(λ) 6= 0 and r is the multiplicity of the root λ. Then
another result may be used:

1
γ(L)

λ−t =
1

(1− L/λ)r

{
λ−t

γ1(L)

}
=

1
γ1(λ)

{
λ−t

(1− L/λ)r

}
=
trλ−t

γ1(λ)
.

(5.22)

Here the penultimate equality comes from (i). The final equality depends upon the
result that

λ−t

(I − L/λ)r
= trλ−t.(5.23)

This comes from applying the inverse operator (I − L/λ)−r to both sides of the
identity (I − L/λ)rtrλ−t = λ−t which is verified by using (5.20)(ii).

The result under (5.22) is used in finding a particular solution to the inho-
mogeneous equation α(L)y(t) = λ−t in the case where λ is a root of α(z) = 0 of
multiplicity r. This can also be understood by considering the augmented homoge-
neous equation (1− L/λ)α(L)y(t) = 0. The general solution of the latter contains
the terms (1/λ)t, t(1/λ)t, . . . , tr(1/λ)t. Of these, the first r are attributed to the
general solution of the homogeneous equation α(L)x(t) = 0, whilst the final term
is attributed to the particular solution of the inhomogeneous equation.

The following examples illustrate the method of finding particular solutions.
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Example 5.2. Let the difference equation be

(
6− 5L+ L2

)
y(t) =

(
1
4

)t
.(5.24)

Then the result under (5.21)(i) can be invoked to show that the particular solution
is

w(t) =
4−t

6− 5L+ L2

=
4−t

6− 5× 4 + 42

=
1
2

(
1
4

)t
.

(5.25)

Example 5.3. Consider the difference equation (1 − φL)y(t) = cos(ωt). We can
write

cos(ωt)− i sin(ωt) =
(

cosω + i sinω
)−t = λ−t,

where λ is a point on the unit circle in the complex plane. Since cos(ωt) = Re(λ−t),
the particular solution of the difference equation can be expressed as

y(t) =
cos(ωt)
1− φL

= Re
{

λ−t

1− φL

}
= Re

{
λ−t

1− φλ

}
,(5.26)

where the final equality is by virtue of (5.21)(i). The inverse of the complex number
1− φλ = (1− φ cosω)− iφ sinω is

1
1− φλ

=
(1− φ cosω) + iφ sinω

1− 2φ cosω + φ2
.(5.27)

Therefore, the particular solution is

y(t) =
Re
[{

(1− φ cosω) + iφ sinω
}{

cos(ωt)− i sin(ωt)
}]

1− 2φ cosω + φ2

=
(1− φ cosω) cos(ωt) + φ sinω sin(ωt)

1− 2φ cosω + φ2
.

(5.28)

The weighted sum of a sine and a cosine function of the same argument may be
expressed as a cosine function with a phase displacement. Therefore, the particular
or steady-state solution of the difference equation also takes the form of

y(t) =
1√

1− 2φ cosω + φ2
cos(ωt− θ),(5.29)
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where

θ = tan−1

(
φ sinω

1− φ cosω

)
.(5.30)

This result shows the two effects of applying the linear filter 1/(1−φL) to a cosine
signal. The first of these, which is described as the gain effect, is to alter the
amplitude of the signal. The second, which is described as the phase effect, is to
displace the cosine by θ radians.

Example 5.4. Let (1 + 1
2L)y(t) = t2. Then

w(t) =
t2

1 + 1
2 (I −∇)

=
2
3

t2

(I − 1
3∇)

=
2
3

{
1 +

1
3
∇+

1
9
∇2 +

1
27
∇3 + · · ·

}
t2.

(5.31)

But ∇t2 = 2t− 1, ∇2t2 = 2 and ∇nt2 = 0 for n > 2, so this gives

w(t) =
2
27
{

9t2 + 6t− 1
}
.(5.32)

Solutions of Difference Equations with Initial Conditions

The general solution of a pth-order difference equation contains p arbitrary
coefficients. In order to obtain a fully specified analytic solution, which is described
as a complete solution, a set of p additional conditions is required. These conditions
can take various forms, but, usually, they are provided by a set of consecutive obser-
vations on y(t) described as initial conditions. We shall assume that a set of values
are given such as y−1, . . . , y−p or y0, . . . , yp−1, and we shall describe alternative ways
of using them to obtain the arbitrary constants which are to be found within the
analytic expression for the general solution of the difference equation. The classical
method for incorporating the initial conditions can be described adequately through
an example:

Example 5.5. Consider the inhomogeneous second-order difference equation (α0+
α1L+α2L

2)y(t) = γ−t, and let λ1, λ2 be the roots of the equation α0+α1z+α2z
2 =

0. Then the general solution of the difference equation is y(t; c) = x(t; c) + w(t),
where

x(t; c) = c1

(
1
λ1

)t
+ c2

(
1
λ2

)t
(5.33)

is the general solution of the corresponding homogeneous equation and

w(t) =
γ−t

α0 + α1γ + α2γ2
=

δ

γt
(5.34)
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is the particular solution of the inhomogeneous equation. The method for obtaining
the particular solution has been illustrated in Example 5.2.

Imagine that the values y0 and y1 have been given. Then, by setting t = 0, 1
in the analytic expression y(t; c), the following system is derived: 1 1

1
λ1

1
λ2

 c1
c2

 =

 y0 − δ

y1 −
δ

γ

 ;(5.35)

and this is readily solved to provide the values of c1 and c2. The matrix on the
LHS of the equation is known as the Wronskian.

In the case of Example 5.2, where the roots of the associated homogeneous
equation are λ1 = 2 and λ2 = 3 and where γ = 4 and δ = 1/2, the general solution
is found to be

y(t) = c1

(
1
2

)t
+ c2

(
1
3

)t
+

1
2

(
1
4

)t
.(5.36)

The initial conditions y0 = 1 and y1 = 1/3 imply that c1 = c2 = 1/4.

An alternative method for finding a complete analytic solution satisfying given
initial conditions makes use of the z-transform of the one-sided sequence which
is formed from y(t) by discarding all of the elements prior to time t = 0. Let
y+(t) = {y0, y1, y2, . . .} denote the resulting sequence. Then, in advancing the
sequence by one period to form y+(t + 1) = {y1, y2, y3, . . .}, we must delete the
element y0; and, in lagging the sequence to form y+(t − 1) = {y−1, y0, y1, . . .}, we
must add the element y−1.

In forming the z-transforms of the lagged and the advanced sequences, we
must likewise take account of these end conditions. The correspondence between
the sequences and their z-transforms can be illustrated by a few instances. Let
y+(z) = {y0 + y1z + y2z

2 + · · ·}. Then

y+(t− 2)←→ z2y+(z) + zy−1 + y−2,

y+(t− 1)←→ zy+(z) + y−1,

y+(t)←→ y+(z),

y+(t+ 1)←→ z−1y+(z)− z−1y0,

y+(t+ 2)←→ z−2y+(z)− z−1y1 − z−2y0.

(5.37)

More generally, we have

y+(t− j)←→ zjy+(z) +
j−1∑
i=0

ziyi−j and

y+(t+ j)←→ z−jy+(z)−
j∑
i=1

z−iyj−i.

(5.38)
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Now consider the case of a pth-order homogeneous difference equation. The
one-sided version is

α0y+(t) + α1y+(t− 1) + α2y+(t− 2) + · · ·+ αpy+(t− p) = 0.(5.39)

The elements of the sum may be transformed separately and their transforms com-
bined in the z-domain. The elements and their transforms are

α0y+(t)←→α0y+(z),

α1y+(t− 1)←→α1zy+(z) + α1y−1,

α2y+(t− 2)←→α2z
2y+(z) + α2zy−1 + α2y−2,

...
αpy+(t− p)←→αpz

py+(z) + αpz
p−1y−1 + · · ·+ αpy−p.

(5.40)

Adding the transforms on the RHS gives

α(z)y+(z) +Q(z) = 0,(5.41)

where

Q(z) =
p−1∑
i=0

( p∑
j=i+1

αjyi−j

)
zi = Q0 +Q1z + · · ·+Qp−1z

p−1.(5.42)

This polynomial Q(z), which owes its existence to the end-effects in forming the
delayed sequences y+(t−1), y+(t−2), . . . , y+(t−p), embodies the p initial conditions
y−1, y−2, . . . , y−p.

The solution of the difference equation in the z-domain is provided by

y+(z) = −Q(z)
α(z)

;(5.43)

and, since the degree of Q(z) is p− 1, it follows that Q(z)/α(z) is a proper rational
function. Given the factorisation α(z) = α0(1− z/λ1) · · · (1− z/λp), and assuming
that α0 = 1, we can write the following partial-fraction expansion:

− Q(z)
α(z)

=
c1

1− z/λ1
+ · · ·+ cp

1− z/λp
.(5.44)

To find the solution in the time domain, we have to apply the inverse of the
z-transform. In view of the relationship

ci

(
1
λi

)t
←→ ci

1− z/λi
,(5.45)

it can be seen that equation (5.43) corresponds exactly to the general solution of
the homogeneous difference equation given under (5.6). However, the coefficients
c1, . . . , cp of equation (5.44), which embody the initial conditions, are fully deter-
mined, whereas the same coefficients in equation (5.6) were regarded as values which
remained to be determined.
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Example 5.6. Consider the homogeneous difference equation y(t)−φ2y(t−2) = 0
together with the initial conditions y−1 and y−2. With reference to (5.37), it can
be seen that the appropriate z-transform is y+(z)−φ2

{
z2y+(z) + zy−1 +y−2

}
= 0.

This gives

y+(z) =
zφ2y−1 + φ2y−2

1− z2φ2

=
c1

1− φz
+

c2
1 + φz

,

(5.46)

where

c1 =
φy−1 + φ2y−2

2
and c2 =

φ2y−2 − φy−1

2
.(5.47)

The latter are the constants in the general solution of the difference equation which
is y(t) = c1φ

t + c2(−φ)t. The same values for c1 and c2 could also be obtained by
solving the equation

 y−1

y−2

 =


1
φ

1
−φ

1
φ2

1
φ2


 c1
c2

 ,(5.48)

which comes from setting t = −1,−2 in the general solution.

Now consider the inhomogeneous difference equation

α(L)y(t) = (1 + α1L+ · · ·+ αpL
p)y(t) = u(t).(5.49)

The corresponding one-sided z-transform is

α(z)y+(z) = u+(z)−Q(z),(5.50)

and the solution is provided by

y+(z) =
u+(z)−Q(z)

α(z)
.(5.51)

Often we are assisted in finding the solution by discovering an expression for u+(z)
in a table.

Example 5.7. The previous example may be elaborated by adding a forcing
function which is a geometric sequence. This gives an equation in the form of
α(L)y(t) = u(t) where α(L) = 1 − φ2L2 and u(t) = γt. The z-transform of
u+(t) = {1, γ, γ2, . . .} is u+(z) = 1/(1− γz). The term, which is due to the forcing
function, has the following partial-fraction expansion:

u+(z)
α(z)

=
d1

1− φz
+

d2

1 + φz
+

d3

1− γz
,(5.52)
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where

d1 =
φ

2(φ− γ)
, d2 =

φ

2(φ+ γ)
and d3 =

γ2

γ2 − φ2
.(5.53)

The expression for Q(z)/α(z) may be taken from the previous example. By com-
bining some of the terms of Q(z)/α(z) and u+(z)/α(z), we derive the expression

y+(z) =
g1

1− φz
+

g2

1 + φz
+

d3

1− γz
,(5.54)

where g1 = c1 +d1 and g2 = c2 +d2 incorporate the constants defined in (5.47) and
(5.53). On translating this expression from the z-domain to the time domain, we
find that the complete solution to the difference equation is

y(t) = g1φ
t + g2(−φ)t +

γt+2

γ2 − φ2
.(5.55)

In practice, it is easier to obtain the partial-fraction decomposition of the
expression on the RHS of (5.51) without breaking it into its elements u+(z)/α(z)
and Q(z)/α(z) as we have done in the foregoing example. One of the advan-
tages of using the z-transform method in solving difference equations is that the
problem of incorporating the initial conditions may be solved without first deter-
mining a general solution for the difference equation. Thus an inhomogeneous
difference equation may be solved without first solving the corresponding homo-
geneous equation.

Alternative Forms for the Difference Equation

Difference equations derive their name from the fact that, in classical appli-
cations, they are commonly expressed in terms of the forward-difference operator
∆ = L−1 − I = F − I or the backward-difference operator ∇ = I − L.

It is always possible to derive expressions for a difference equation in terms of
any of the operators L,F,∆ and ∇. It seems natural to use the operators L and ∇
in representing a recurrence relation when this is used to generate successive values
of a sequence. For then the current value of the sequence will be expressed as a
function of the preceding values. However, if we wish to emphasise the affinities
between difference equations and differential equations, then we should employ
the forward-difference operator ∆, since this has a familiar relationship with the
differential operator D.

To convert a difference equation expressed in terms of powers of L to one which
incorporates powers of ∇, we may use the following binomial expansion:

Ln = (I −∇)n

= I − n∇+
n(n− 1)

2!
∇2 − · · · (−1)n∇n.

(5.56)
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To derive an expression in terms of ∆ is more problematic, since the expansion
of Ln = (∆ + I)−n gives rise to an infinite series. The appropriate recourse is to
express the original difference equation in terms of the operator F = L−1 and then
to use the expansion

Fn = (∆ + I)n

= ∆n + n∆n−1 +
n(n− 1)

2!
∆n−2 + · · ·+ I.

(5.57)

Consider the pth-order difference equation α(L)y(t) = u(t). Multiplying both
sides by the operator L−p, gives L−pα(L)y(t) = u(t+ p). Now

L−pα(L) = F pα(F−1) = α′(F ),

where α′(F ) = α0F
p + α1F

p−1 + · · ·+ αp;
(5.58)

so the equation can be written as α′(F )y(t) = u(t + p). Then the expansion of
Fn = (∆ + I)n can be used to recast it into the form of φ(∆)y(t) = u(t+ p), where
φ(∆) = φp + φp−1∆ + φp−2∆2 + · · ·+ φ0∆p. We should take note of the fact that
φ0 = α0, which also transpires in the following example.

Example 5.8. Consider the equation

u(t+ 2) =α0y(t+ 2) + α1y(t+ 1) + α2y(t)

= (α0 + α1L+ α2L
2)y(t+ 2).

(5.59)

An alternative form is

u(t+ 2) =α2y(t) + α1y(t+ 1) + α0y(t+ 2)

= (α2 + α1F + α0F
2)y(t).

(5.60)

Using F = I + ∆ and F 2 = I + 2∆ + ∆2, we can rewrite this as

u(t+ 2) = (φ2 + φ1∆ + φ0∆2)y(t),(5.61)

with

φ2 =α2 + α1 + α0,

φ1 =α1 + 2α0,

φ0 =α0.

(5.62)

It is clear that nothing essential is changed by recasting the equations in this
way. Thus, if y(t) = (1/λ)t is a solution of the equation α(L)y(t) = 0 when λ is
a root of the equation α(z) = 0, then it must also be a solution of the equation
φ(∆)y(t) = 0. However, if we were to adopt the latter form of the difference
equation, then it would be convenient to express the solution in terms of the roots
of the equation φ(z) = 0.
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If κ is a root of the equation φ(z) = φp+φp−1z+φp−2z
2 + · · ·+φ0z

p = 0 such
that φ(κ) = 0, then y(t) = (1 +κ)t is a solution of the equation φ(∆)y(t) = 0. This
follows in consequence of the fact that ∆(1 + κ)t = κ(1 + κ)t, which implies that
∆p(1 + κ)t = κp(1 + κ)t; for we have

φ(∆)(1 + κ)t = (φp + φp−1κ+ φp−2κ
2 + · · ·+ φ0κ

p)(1 + κ)t

=φ(κ)(1 + κ)t = 0.
(5.63)

The connection between the roots of the equations φ(z) = 0 and α(z) =
0, which is already indicated by the fact that both y(t) = (1 + κ)t and y(t) =
(1/λ)t are solutions for the difference equation, can be established using the identity
L−pα(L) = α′(F ) = φ(∆). On the one hand, using φ0 = α0, we find that

φ(∆) =φ0

p∏
i=1

(∆− κi)

=α0

∏{
L−1 − (1 + κi)

}
=α0L

−p
∏{

1− (1 + κi)L
}
.

(5.64)

On the other hand, there is

L−pα(L) = α0L
−p

p∏
i=1

(1− µiL),(5.65)

where µi = 1/λi. The comparison shows that µi = 1 + κi.

Linear Differential Equations

An pth-order linear differential equation with constant coefficients is a lin-
ear relationship amongst a continuous function y(t) and its derivatives dy(t)/dt
= Dy(t), d2y(t)/dt2 = D2y(t), . . . , dpy(t)/dtp = Dpy(t). The differential equation
may be presented in the form of

φ0
dpy(t)
dtp

+ φ1
dp−1y(t)
dtp−1

+ · · ·+ φpy(t) = u(t),(5.66)

where u(t), which is known as the forcing function, is a specified function of t. The
equation can also be written as

φ(D)y(t) = u(t),(5.67)

where

φ(D) = φ0D
p + φ1D

p−1 + · · ·+ φp.(5.68)

The variable y(t) and its p derivatives provide a complete description of the
state of a physical system at a point in time. Knowing these values and the relation-
ship which prevails amongst them at one point in time should enable us to predict
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the value of y(t) and hence the state of the system at any other point. Equivalent
information, equally appropriate for the purpose of predicting y(t), would be pro-
vided by observations on this variable at p separate instants. Such observations,
whether they relate to values of y(t) at different times or to its derivatives at a
point in time, are called initial conditions.

The function y(t; c), expressing the analytic solution of the differential equa-
tion, will comprise a set of p constants in c = [c1, c2, . . . , cp]′ which can be deter-
mined once a set of p initial conditions has been specified. The general analytic
solution of the equation φ(D)y(t) = u(t) may be expressed as y(t; c) = x(t; c)+w(t),
where x(t; c) is the general solution of the homogeneous equation φ(D)x(t) = 0, and
w(t) = φ−1(D)u(t) is a particular solution of the inhomogeneous equation.

The differential equation may be solved in the same manner as a difference
equation. There are three steps. First the general solution of the homogeneous
equation is found. Next, a particular solution w(t) is obtained which contains no
unknown quantities. Finally, the constants c1, c2, . . . , cp are determined in view of
the p initial values of y and its derivatives.

Solution of the Homogeneous Differential Equation

To assist in finding the solution of a differential equation, some results concern-
ing a polynomial operator in D may be used which are analogous to those which
have been given under (5.20) in connection with the lag operator L:

(i) φ(D)eκt = φ(κ)eκt,
(ii) φ(D)

{
eκtu(t)

}
= eκtφ(D + κ)u(t),

(iii) φ(D)
{
v(t) + w(t)

}
= φ(D)v(t) + φ(D)w(t).

(5.69)

The first of these results is proved by observing that Deκt = κeκt and that, more
generally, Dneκt = κneκt. The second result comes from observing that, according
to the product rule, Deκtu(t) = κeκtu(t) + eκtDu(t) = eκt(D + κ)u(t). Applying
the result recursively gives D2eκtu(t) = D

{
eκt(D + κ)u(t)

}
= eκt(D + κ)2u(t),

and so on. The result under (ii) is an immediate generalisation. The property (iii)
comes from the fact that D

{
v(t) + w(t)

}
= Dv(t) +Dw(t).

The result under (i) indicates that, if κj is a root of the auxiliary equation
φ(z) = φ0z

p + φ1z
p−1 + · · · + φp = 0 such that φ(κj) = 0, then yj(t) = eκjt is a

solution of the equation φ(D)y(t) = 0. Thus

φ(D)eκjt = φ(κj)eκjt = 0.(5.70)

Alternatively, we can consider the factorisation φ(D) = φ0

∏
i(D−κi). Within this

product, there is the term D − κj ; and, since

(D − κj)eκjt = κje
κjt − κjeκjt = 0,(5.71)

it follows that φ(D)eκjt = 0.
The general solution in the case where φ(z) = 0 has distinct roots is given by

y(t; c) = c1e
κ1t + c2e

κ2t + · · ·+ cpe
κpt,(5.72)
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where c1, c2, . . . , cp are the constants which are determined in view of the initial
conditions.

In the case where two roots coincide at a value of κ, the equation φ(D)y(t)
= 0 has the solutions y1(t) = eκt and y2(t) = teκt. We know already that y1(t)
is a solution. To show that y2(t) is also a solution, let us consider the factorisa-
tion φ(D) = φ0

∏
i(D − κj). If κ is a repeated root, then, from the expression

φ(D)y2(t) = φ(D)teκt, we can extract the factor

(D − κ)2teκt = (D2 − 2κD + κ2)teκt.(5.73)

But now the result under (5.69)(ii) serves to show that this is

(D2 − 2κD + κ2)teκt = eκt
{

(D + κ)2 − 2κ(D + κ) + κ2
}
t

= eκtD2t

= 0.

(5.74)

The result, in summary, is that (D − κ)2teκt = eκtD2t = 0; and this could be
inferred directly from (5.69)(ii). A more general result is that

(D − κ)ntn−1eκt = eκtDntn−1 = 0;(5.75)

and this can be used to show that, if there are r repeated roots, then eκt, teκt,
t2eκt, . . . , tr−1eκt are all solutions to the equation φ(D)y(t) = 0.

Differential Equation with Complex Roots

Imagine that the equation φ(z) = 0 has conjugate complex roots κ = γ + iω
and κ∗ = γ − iω. These will contribute to the general solution of the differential
equation a term in the form of

q(t) = ce(γ+iω)t + c∗e(γ−iω)t

= eγt
{
ceiωt + c∗e−iωt

}
.

(5.76)

This is a real-valued function; and, since a real term must equal its own conjugate,
c and c∗ must be conjugate numbers of the form

c∗= ρ(cos θ + i sin θ) = ρeiθ,

c= ρ(cos θ − i sin θ) = ρe−iθ.
(5.77)

It follows that

q(t) = ρeγt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρeγt cos(ωt− θ).

(5.78)

The condition which is necessary and sufficient for q(t) to tend to zero as t
increases is that Re{κ} = γ < 0, which is to say that the root κ must lie in the
left half of the complex plane. The condition applies both to real and to complex
roots. Thus
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(5.79) The general solution of the homogeneous equation φ(D)y(t) = 0 tends
to zero as t increases if and only if all of the roots of φ(z) = 0 lie in
the left half-plane.

Example 5.9. An idealised physical model of an oscillatory system consists of a
weight of mass m suspended from a helical spring of negligible mass which exerts
a force proportional to its extension. Let y be the displacement of the weight from
its position of rest and let h be Young’s modulus, which, according to Hooke’s law,
is the force exerted by the spring per unit of extension. Then Newton’s second law
of motion gives the equation

m
d2y

dt2
+ hy = 0.(5.80)

This is an instance of a second-order differential equation. The solution is

y(t) = 2ρ cos(ωnt− θ),(5.81)

where ωn =
√
h/m is the so-called natural frequency and ρ and θ are constants

determined by the initial conditions. There is no damping or frictional force in the
system and its motion is perpetual.

In a system which is subject to viscous damping, the resistance to the motion
is proportional to its velocity. Then the differential equation becomes

m
d2y

dt2
+ c

dy

dt
+ hy = 0,(5.82)

where c is the damping coefficient. The auxiliary equation of the system is

mz2 + cz + h=m(z − κ1)(z − κ2)
= 0,

(5.83)

and the roots κ1, κ2 are given by

κ1, κ2 =
−c±

√
c2 − 4mh

2m
.(5.84)

The character of the system’s motion depends upon the discriminant c2 − 4mh. If
c2 < 4mh, then the motion will be oscillatory, whereas, if c2 ≥ 4mh, the displaced
weight will return to its position of rest without overshooting. If c2 = 4mh, then the
system is said to be critically damped. The critical damping coefficient is defined
by

cc = 2
√
mh = 2mωn,(5.85)
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where ωn is the natural frequency of the undamped system. On defining the so-
called damping ratio ζ = c/cc, we may write equation (5.84) as

κ1, κ2 = −ζωn ± ωn
√
ζ2 − 1.(5.86)

In the case of light damping, where ζ < 1, the equation of the roots becomes

κ, κ∗=−ζωn ± iωn
√

1− ζ2

= γ ± iω;
(5.87)

and the motion of the system is given by

y(t) = 2ρeγt cos(ωt− θ)

= 2ρe−ζωnt cos
{

(1− ζ2)1/2ωnt− θ
}
.

(5.88)

Particular Solutions for Differential Equations

If u(t) is a polynomial in t or an exponential function or a combination of sines
and cosines, then it is a relatively simple matter to find the particular solution of
the equation φ(D)y(t) = u(t) which takes the form of y(t) = u(t)/φ(D). With
other types of function, the particular solution has to be expressed as a definite
integral.

To show how the more tractable problems may be solved, let us state the
inverse results corresponding to those given under (5.69):

(i)
1

φ(D)
eκt =

1
φ(κ)

eκt if φ(κ) 6= 0,

(ii)
1

φ(D)
{
eκtu(t)

}
= eκt

1
φ(D + κ)

u(t),

(iii)
1

φ(D)
{
u(t) + v(t)

}
=

1
φ(D)

u(t) +
1

φ(D)
u(t).

(5.89)

These are closely analogous to the results under (5.21) which concern the lag oper-
ator. The case of φ(κ) = 0, which affects (i), arises when φ(D) = (D − κ)rφ1(D),
where φ1(D) 6= 0 and r is the multiplicity of the root κ. Then (i) may be replaced
by the last of the following expressions:

1
φ(D)

eκt =
{

1
(D − κ)r

}{
eκt

φ1(D)

}
=
{

eκt

(D − κ)r

}{
1

φ1(κ)

}

=
{
eκt

Dr

}{
1

φ1(κ)

}
=

tr eκt

r! φ1(κ)
.

(5.90)

Here the penultimate equality comes from applying (ii) to the expression eκt/(D−
κ)r to give eκt/Dr. The final equality depends upon 1/Dr = tr/r! which is the
result of integrating unity r times in respect of t.
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The results above are used in the following examples which run parallel to
those which have illustrated the solution of difference equations.

Example 5.10. Consider the equation

d2y

dt2
+ 5

dy

dt
+ 6y = e3t.(5.91)

According (5.89)(i), the particular solution is

w(t) =
1

D2 + 5D + 6
e3t

=
1

32 + 5.3 + 6
e3t =

1
30
e3t.

(5.92)

Example 5.11. Let (D + 3)y(t) = t3. Then the particular solution is

w(t) =
1

3 +D
t3 =

1
3
.

1
1 + 1

3D
t3

=
1
3

(
1− 1

3
D +

1
9
D2 − 1

27
D3 + · · ·

)
t3

=
1
3
t3 − 1

3
t2 +

2
9
t− 2

27
.

(5.93)

Here the expansion of 1/(1− 1
3D) has been carried no further than the term in D3,

since all the higher-order derivatives of t3 vanish.

Example 5.12. Consider the differential equation

(D2 + φ1D + φ2)y(t) = δ cos(ωt).(5.94)

Using the identity eiωt = cos(ωt) + i sin(ωt), we can take cos(ωt) = Re(eiωt), which
is the real part of the complex function. This gives

y(t) = Re
{

δ

D2 + φ1D + φ2
eiωt

}
= Re

{
δ

(φ2 − ω2) + iφ1ω
eiωt

}
,

(5.95)

where (5.89)(i) has been used to obtain the second equality. By using the result
that (α + iβ)−1 = (α − iβ)/(α2 + β2) and by writing the complex exponential in
terms of a sine and a cosine, we get

y(t) = δRe
{

(φ2 − ω2)− iφ1ω

(φ2 − ω2)2 + φ2
1ω

2

[
cos(ωt) + i sin(ωt)

]}

= δ
(φ2 − ω2) cos(ωt) + φ1ω sin(ωt)

(φ2 − ω2)2 + φ2
1ω

2
.

(5.96)
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Figure 5.2. The frequency response of a second-order system with various
damping ratios. On the horizontal axis is the relative frequency ω/ωn. The
six curves, from the highest to the lowest, correspond to the damping ratios
ζ = 0.1, 0.15, 0.2, 0.3, 0.4, 0.6.

This can also be written as

y(t) =
δ cos(ωt− θ)√

(φ2 − ω2)2 + φ2
1ω

2
,(5.97)

where

θ = tan−1

(
φ1ω

φ2 − ω2

)
.(5.98)

This result may be applied to the problem of finding the steady-state solution
for a simple damped system which is driven by a sinusoidal forcing function. The
differential equation is an elaboration of equation (5.82):

m
d2y

dt2
+ c

dy

dt
+ hy = β cos(ωt).(5.99)

Setting φ1 = c/m, φ2 = h/m and δ = β/m in equations (5.97) and (5.98) shows
that the steady-state solution is given by

y(t) = γ cos(ωt− θ),(5.100)

where

γ =
β√

(h−mω2)2 + (cω)2
(5.101)
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and

θ = tan−1

(
cω

h−mω2

)
.(5.102)

The essential result, which is confirmed by common experience, is that an
oscillatory input at a given frequency gives rise to an oscillatory output at the
same frequency. Indeed, this result—under the guise of a trial solution—is the
premise upon which many texts of mechanical engineering base their derivation of
the formulae of (5.101) and (5.102).

The formulae may be expressed in terms of the following engineering quantities:

(i) ωn =

√
h

m
the natural frequency,

(ii) cc = 2mωn the critical damping coefficient,

(iii) ζ =
c

cc
the damping ratio.

(5.103)

Then the steady-state amplitude becomes

γ =
β/h[{

1− (ω/ωn)2
}2

+ 4ζ2 (ω/ωn)2

]1/2
,(5.104)

whilst the phase displacement is given by

tan θ =
2ζ (ω/ωn)

1− (ω/ωn)2 .(5.105)

In a lightly-damped system, the amplitude γ of the forced motion is great-
est when the frequency ω of the forcing function is in the vicinity of the natural
frequency ωn of the undamped system which is depicted in equation (5.80). The
large-amplitude oscillations of a system, which can result from a low-powered driv-
ing at such a frequency, is described as resonance. The phenomenon is illustrated in
Figure 5.2, which shows the gain γh/β in the amplitude of the output as a function
of the frequency ratio ω/ωn.

Example 5.13. Simple electric circuits containing elements of resistance, capaci-
tance and inductance are governed by second-order differential equations. There are
many electrical components which combine these characteristic in varying degrees;
but, in describing how such circuits function, some stylised components spring to
mind.

A resistor R is thought of as a long piece of thin wire, often tightly wound
in the shape of a cylinder, which impedes the flow of current. A capacitor or
condenser C, which stores electric charge, is thought of as a sandwich consisting
of two large conducting plates separated by an insulator. Equal electric charges
of opposite sign will accumulate on these plates if the capacitor is placed in a

142



5: DIFFERENCE EQUATIONS AND DIFFERENTIAL EQUATIONS

L R

− +
C

Figure 5.3. An LCR circuit incorporating an induction coil L, a resistor
R and a capacitor C. The electrical input is a fluctuating voltage.

circuit and if a difference in voltage between the two plates is established. An
inductance L is represented by the effect of a coil of wire of no intrinsic resistance
which, nevertheless, serves to impede the flow of current on account of an induced
electromotive force which acts in the opposite direction. This impedance is due to
the electromagnetic flux generated by the coil when the current varies.

The formulae relating the flow of current i to the voltage drop across these
components are

(i) VR = iR for resistance,

(ii) VL = L
di

dt
for induction,

(iii) C
dVC
dt

= i for a capacitor.

(5.106)

We shall use the results of Example 5.12 to analyse the case of a so-called
LCR circuit where the electrical input is a voltage fluctuating at a frequency of ω
(see Figure 5.3). This input may described as a signal. Since the components of
the circuit are wired in series, the sum of the potential differences or voltage drops
across each of them is equal to the signal voltage. Thus

VC(t) + VR(t) + VL(t) = V cos(ωt).(5.107)

To simplify the analysis, we shall consider the differential equation for the charge
q on the capacitor as a function of time instead of the equation for the current
i = dq/dt. The equation is

L
d2q

dt2
+R

dq

dt
+

1
C
q = V cos(ωt).(5.108)

This may be assimilated to the equation (5.94) by setting φ1 = R/L, φ2 = 1/(CL)
and δ = V/L. Then the steady-state solution for the system is found to be

q(t) =
V

LQ
cos(ωt− θ),(5.109)
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where

Q =

√(
1
CL
− ω2

)2

+
R2

L2
ω2(5.110)

and θ = RCω/(1− Cω).
The importance of the LCR circuit lies in the ease with which its natural

resonance frequency ωn =
√
{1/(CL)} may be adjusted by varying the capacitance

C. We may observe that the voltage gain VC/V = 1/(LQ) is greatest when the
resonance frequency is close to the signal frequency. If the signal is a radio trans-
mission, then the circuit can be tuned to discriminate in favour of this frequency by
amplifying it markedly in comparison with neighbouring frequencies. In this way,
a radio receiver can be tuned to one transmitter at a time.

Solutions of Differential Equations with Initial Conditions

A complete solution of a pth-order differential equation is achieved when the
arbitrary constants in the analytic expression y(t; c) of the general solution are
replaced by values which have been determined in the light of the initial conditions.
To find these values, we can proceed in a variety of ways which run parallel to those
which we have already described in connection with difference equations. The initial
conditions usually take the form of the value of y(t) and of its first p−1 derivatives
at the time t = 0. A common way of incorporating this information is to solve a
set of linear equations

Example 5.14. Let the difference equation be (D2 + 5D + 6)y(t) = 12et, and
assume that the initial conditions at time t = 0 are given by y(0) = 2 andDy(0) = 1.
In the manner of Example 5.10, the particular solution is found to be w(t) = et.
The general solution of the equation is

y(t) = c1e
−2t + c2e

−3t + et.(5.111)

Differentiating gives

Dy(t) = et − 2c1e−2t − 3c2e−3t.(5.112)

Substituting the values at t = 0 into the two equations gives 2 = 1 + c1 + c2 and
1 = 1− 2c1 − 3c2, from which c1 = 3 and c2 = −2.

Notice that this method of finding the coefficients can be adapted easily to
accommodate cases where the initial conditions are a sequence of observations on
y(t).

An alternative method for finding a complete solution, which can be applied
when the initial conditions are in the usual form of a sequence of derivatives, uses
the Laplace transformation.

(5.113) If y(t) is a function defined for t ≥ 0, then its Laplace transform is
Ly(t) = y+(s) =

∫∞
0
e−sty(t)dt where s = σ+ iω is a complex number

wherein σ > 0 is chosen so as to ensure that the integral will converge.
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The Laplace transform is the analogue of the one-sided z-transform; and it will
be used in seeking the solutions of differential equations in much the same way as
the z-transform has been used in connection with difference equations.

The properties of the transform which are used for incorporating the initial
conditions in the general solution are analogous to those for the z-transform which
are listed under (5.37). They concern the Laplace transform of the first p − 1
derivatives of the function y(t):

y(t)←→ y+(s),

Dy(t)←→ sy+(s)− y(0),

D2y(t)←→ s2y+(s)− sy(0)−Dy(0),

D3y(t)←→ s3y+(s)− s2y(0)− sDy(0)−D2y(0).

(5.114)

In general, we have

Djy(t)←→ sjy+(s)−
j∑
i=1

sj−iDi−1y(0).(5.115)

To demonstrate the formula for the transform of the first derivative of y(t), we
integrate e−stDy(t) by parts to give∫ ∞

0

e−stDy(t)dt= s

∫ ∞
0

e−sty(t)dt+
[
e−sty(t)

]∞
0

= sy+(s)− y(0).
(5.116)

The result can also be expressed by writing

LDy(t) = sLy(t)− y(0).(5.117)

To establish the transform of the second derivative, we may write

LD2y(t) =LD
{
Dy(t)

}
= sL

{
Dy(t)

}
−
{
Dy(0)

}
= s2Ly(t)− sy(0)−Dy(0).

(5.118)

The transforms of the higher-order derivatives can be found by proceeding recur-
sively.

Since the Laplace transform involves a linear operator, it is straightforward to
define the transform of the function φ(D)y(t) wherein φ(D) = φ0D

p + φ1D
p−1 +

· · ·+ φ0 is a polynomial of degree p in the differentiating operator. Thus we have

φ(D)y(t)←→ φ(s)y+(s)−Q(s),(5.119)

where

Q(s) =
p∑
j=1

φp−j

{ j∑
i=1

sj−iDi−1y(0)
}

= q0y(0) + q1Dy(0) + · · ·+ qp−1D
p−1y(0)

(5.120)
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is a polynomial of degree p− 1 in s which incorporates the values of y(t) and of its
first p− 1 derivatives at t = 0.

Before applying the Laplace transform to the problem in hand, we should also
show how the transforms of certain elementary functions may be obtained which
are liable to arise in the search for particular solutions. Consider the function eκt

where κ is a real-valued constant. Then

Leκt =
∫ ∞

0

e−steκtdt =
∫ ∞

0

e−(s−κ)tdt =
[
−e−(s−κ)t

s− κ

]∞
0

;(5.121)

and, therefore,

eκt ←→ 1
s− κ

.(5.122)

Differentiating the functions on both sides of the relationship n times with respect
to κ gives

tneκt ←→ n!
(s− κ)n−1

.(5.123)

If κ = γ − iω is a complex number, then we get

Le(γ−iω)t =Leγt(cosωt− i sinωt)

=
1

s− γ + iω
=

s− γ − iω
(s− γ)2 + ω2

.
(5.124)

Taking the real and imaginary parts separately, we find that

eγt cosωt←→ s− γ
(s− γ)2 + ω2

and

eγt sinωt←→ ω

(s− γ)2 + ω2
.

(5.125)

We can strip away the exponential factor by setting γ = 0.
Now let us consider using the Laplace transform in solving a differential equa-

tion in the form of

φ(D)y(t) = u(t).(5.126)

The Laplace transform of the equation is given by φ(s)y+(s)−Q(s) = u+(s), where
u+(s) = Lu(t) stands for the Laplace transform of the forcing function and where
Q(s) is the function embodying the initial conditions. It follows that the Laplace
transform of the complete solution is given by

y+(s) =
u+(s) +Q(s)

φ(s)
.(5.127)

To express the complete solution in the time domain, we must apply the inverse of
the Laplace transform. This may be done by first expressing the RHS of (5.127) in
partial fractions in order to use the appropriate standard forms of the transform.
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Example 5.15. Consider again the equation (D2 +5D+6)y(t) = 12et of Example
5.14 for which the initial conditions are y(0) = 2 and Dy(0) = 1. By applying the
results under under (5.114) to the LHS of the equation and the result under (5.122)
to the RHS, we find that its transform is

{
s2y+(s)− 2s− 1

}
+ 5
{
sy+(s)− 2

}
+ 6y+(s) =

12
s− 1

.(5.128)

By solving this, and using a partial-fraction expansion, we find that

y+(s) =
2s2 + 9s+ 1

(s− 1)(s+ 2)(s+ 3)

=
1

s− 1
+

3
s+ 2

− 2
s+ 3

.

(5.129)

The inverse of the Laplace transformation, which depends solely on the result under
(5.122), yields the following time-domain solution:

y(t) = et + 3e−2t − 2e−3t.(5.130)

This agrees with result which was derived in Example 5.14 by the classical method.

Difference and Differential Equations Compared

It is interesting to compare the solution y(t) = (1 + γ)t of the first-order dif-
ference equation (∆− γ)y(t) = 0 with the solution of the corresponding differential
equation. In the case of the difference equation, the parameter γ may be construed
as the proportional change in y(t) from one period to the next. It might represent,
for example, the rate of return on a financial investment which is compounded
annually. An investment which is compounded twice a year has a growth factor of
(1 + 1

2γ)2, and one which is compounded each quarter has an annual growth factor
of (1 + 1

4γ)4. If an investment were compounded continuously, then its growth
factor would be lim(n → ∞)(1 + 1

nγ)n = eγ . This is exactly the factor which is
entailed in the solution of the first-order differential equation (D−γ)y(t) = 0 which
is y(t) = ρeγt.

The issue arises of whether difference and differential equations may be used
interchangeably in representing continuous-time dynamic processes. Let us compare
the equations of (5.18) and (5.78) which represent the sinusoidal motions generated
respectively by difference and differential equations of the second order. By setting
κ = eγ , the two equations are rendered identical. However, in the differential equa-
tion, the argument t is a continuous variable whereas, in the difference equation, it
is integer-valued.

When t is continuous, there is a one-to-one correspondence between the set of
positive frequency values and the set of cosine functions y(t) = cos(ωt). When the
values of t are discrete, there are infinitely many frequency values which generate
the same ordinates of y(t). That is to say, when t ∈ {0,±1,±2, . . .}, the identity

y(t) = cos(ωt) = cos(2πjt+ ωt) = cos(2πjt− ωt)(5.131)
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holds for any positive or negative integer j. Thus the set

Ω(ω) = {2πj ± ω; j = 0,±1,±2, . . .}(5.132)

defines a class of equivalent frequencies. Moreover, since the set of equivalence
classes {Ω(ω);ω ∈ [−π, π)} defines a partition of the real line R = {ω;−∞ < ω <
∞}, the equivalence class of any frequency is completely specified by a value of ω
in the interval [−π, π).

When we take account of the symmetry of the cosine function which implies
that cos(ωt) = cos(−ωt), and of the fact that cos(ω1t) 6= cos(ω2t) when ω1, ω2 ∈
[0, π) are distinct values, it follows that, to each class of equivalent frequencies,
there corresponds a unique value of ω in the lesser interval [0, π).

The upshot of these results is that the cyclical components of a process in
continuous time can be identified uniquely from observations taken at unit intervals
only if their frequencies are known to be confined to the band [0, π). This means
that a component must take at least two periods to complete its cycle if it is not
to be confused with another component of lesser frequency which is in the same
equivalence class. In the event of such a confusion, the only recourse is to increase
the rate of sampling to an extent which succeeds in reducing the highest of the
frequencies amongst the components of the process to somewhat less than π radians
per sample period.

This result is the essence of the famous Nyquist–Shannon sampling theorem
(see [368] and [450]), to which we shall return in the chapters devoted to Fourier
analysis.

Conditions for the Stability of Differential Equations

In this section, we shall present, without proof, the procedure of Routh (see
[431] and [433]) for establishing whether or not a homogeneous differential equation
is stable. Let us continue to write the differential equation as φ(D)y(t) = 0. Then,
as we have already established, the necessary and sufficient condition for stability
is that the polynomial equation φ(z) = φ0z

p + φ1z
p−1 + · · ·+ φp = 0 has all of its

roots κj = γj + iωj in the left half of the complex plane, which is to say that γj < 0
for all j = 1, . . . , p.

The roots of the polynomial equation φ′(z) = φ0 + φ1z + · · · + φpz
p = 0 are

just the inverse values κ−1
j = (γj− iωj)/(γ2

j +ω2
j ). It follows that it is equivalent to

require that φ′(z) = 0 has all of its roots in the left half-plane. What this implies
for the Routh test is that it makes no odds if the coefficients of the polynomial are
taken in reverse order.

There is a preliminary test which should always be applied before embarking
on the Routh test. The test makes use of the fact that

(5.133) If φ(z) = φ0z
p + φ1z

p−1 + · · ·+ φp = φ0

∏
j(z − κj) = 0 is to have all

of its roots in the left half-plane when φ0 > 0, then it is necessary that
φj > 0 for all j.

Proof. The roots of φ(z) = 0 are either real or else they occur in conjugate pairs
κ, κ∗ = γ± iω. If κ = γ is a real root, then it contributes to the polynomial a linear
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factor z − γ which has a positive coefficient if γ < 0. A conjugate pair of complex
roots contributes a quadratic factor (z − γ − iω)(z − γ + iω) = z2 − 2γz + γ2 + ω2

which also has positive coefficients if γ < 0. Thus the condition that γj < 0 for
every root κj = γj + iωj implies that the coefficients of φ(z) must all be positive.

Example 5.16. When p = 2, the conditions φ2, φ1, φ0 > 0 are sufficient as well as
necessary for stability. In that case, the roots of φ0z

2 + φ1z + φ2 = 0 are given by

κ, κ∗ =
−φ1 ±

√
φ2

1 − 4φ0φ2

2φ0
.(5.134)

If the roots are real, then they must both be negative since
√

(φ2
1−4φ0φ2) < φ1. If

they are complex, then their real part is −φ1/(2φ0) which is also negative. When
p = 3, the conditions on the coefficients no longer guarantee that the real parts of
the roots are negative. For a counterexample, we may take the polynomial

z3 + 2z2 + 2z + 40 = (z + 4)(z2 − 2z + 10)

= (z + 4)
(
z − {1− i3}

)(
z − {1 + i3}

)
.

(5.135)

The roots of the quadratic factor are the conjugate complex numbers 1± i3, which
have a positive real part.

The test of Routh depends upon constructing an array whose rows are formed
from the coefficients of the polynomial by the repeated application of a simple rule
until a final row is generated which has a single element. The first and second rows
are formed by taking respectively the coefficients with even and odd indices. The
third row is formed from the first two in a way which should be evident:

φ0 φ2 φ4 φ6 . . .

φ1 φ3 φ5 φ7 . . .

φ2 −
φ0

φ1
φ3 φ4 −

φ0

φ1
φ5 φ6 −

φ0

φ1
φ7 . . .

(5.136)

The fourth row of the array is formed from the second and the third rows in the
same manner as the third row is formed from the first and second. The process
is continued as far as the (p + 1)th row which has a single nonzero element. The
system is stable according to Routh’s criterion if and only if all of the elements in
the first column of the array have the same sign.

One should note that, if any of the coefficients of the polynomial are zeros, then
the preliminary test indicates that the conditions of stability are violated. The test
breaks down if a zero is encountered in the first column of the array before the
pth row has been reached. In that case, the array cannot be completed since, in
attempting to form the next row, there would be a division by zero. A method of
dealing with such cases is given by Gantmacher [201].

We guard against such eventualities in the following algorithm by aborting the
process if a zero is encountered. Whereas such a condition may well arise when, by
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design, the coefficients of the polynomial are small integers, it is unlikely to arise
when they are the products of an empirical estimation.

The structure of our algorithm for implementing Routh’s test is complicated by
the fact that successive rows of the array are stored in a single vector by overwriting
previous elements which are no longer needed.

(5.137) procedure RouthCriterion(phi : vector;
p : integer;
var stable : boolean);

var
i, j : integer;
fact : real;

begin
stable := true;

{Preliminary Testing}
for i := 1 to p do

if phi[i] ∗ phi[i− 1] <= 0 then
stable := false;

if stable = true then
begin {Further Testing}
i := 2;
phi[p+ 1] := 0;
repeat
j := i;
fact := phi[i− 2]/phi[i− 1];
repeat
phi[j] := phi[j]− fact ∗ phi[j + 1];
j := j + 2;

until j > p;
if phi[i] ∗ phi[i− 1] <= 0 then
stable := false;

i := i+ 1
until (i = p+ 1) or (stable = false)

end; {Further Testing}

end; {RouthCriterion}

The conditions for the stability of a differential equation were given in terms
of determinants by Hurwitz [263] some years after Routh [431] had published his
results.

150



5: DIFFERENCE EQUATIONS AND DIFFERENTIAL EQUATIONS

The rth-order determinant of Hurwitz is defined by

δr = det



φ1 φ3 φ5 . . . φ2r−1

φ0 φ2 φ4 . . . φ2r−2

0 φ1 φ3 . . . φ2r−3

0 φ0 φ2 . . . φ2r−4

...
...

...
...

0 0 0 . . . φ2


.(5.138)

Having placed φ1 in the leading position, the rule for forming the remainder of the
array is to increase the indices on successive elements in each row by two and to
decrease the indices of successive elements in each column by one. If the index
exceeds the value of p, which is the degree of the polynomial, or if it becomes
negative, then a zero element is put in place. Assuming that φ0 > 0, the rule of
Hurwitz is that the system is stable if and only if each element in the sequence of
the determinants is positive:

δ1 > 0, δ2 > 0, . . . , δp > 0.(5.139)

It can be shown that the sequence of coefficients within the first column of the
array generated in Routh’s test is equivalent to the following sequence of ratios of
determinants:

δ1,
δ2
δ1
,

δ3
δ2
, . . . ,

δp
δp−1

.(5.140)

From this, the equivalence of the two criteria can be established. Indeed the two
criteria are often referred to jointly as the Routh–Hurwitz criterion.

Conditions for the Stability of Difference Equations

Now consider a difference equation of the form α(L)y(t) = 0. It has already
been established that the difference equation is stable if and only if all of the roots
λi of the primary polynomial equation α(z) = α0 + α1z + · · · + αpz

p lie outside
the unit circle. Equivalently, all of the roots µi = 1/λi of the auxiliary equation
α′(z) = zpα(z−1) = 0 must fall inside the unit circle.

One way of assessing the stability of the difference equation without evaluating
its roots is to convert the polynomial α′(z) to a form to which the Routh–Hurwitz
test may be applied. This requires converting the complex variable z into another
variable s = γ + iδ by a transformation which maps the unit circle into the left
half of the complex plane. This is achieved by the bilinear Möbius transformation
which is given, together with its inverse, by

s =
z + 1
z − 1

and z =
s+ 1
s− 1

.(5.141)

The restriction that z lies inside the unit circle may be expressed in terms of
the components of s:

|z| =
∣∣∣∣s+ 1
s− 1

∣∣∣∣ =
∣∣∣∣γ + iδ + 1
γ + iδ − 1

∣∣∣∣ < 1.(5.142)
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Squaring the moduli gives

(γ + 1)2 + δ2 < (γ − 1)2 + δ2,

whence γ < 0,
(5.143)

which is the restriction that s lies in the left half-plane.
Substituting the expression for z = z(s) into the equation α′(z) = α0z

p +
α1z

p−1 + · · ·+ αp−1z + αp = 0 gives

α0

(
s+ 1
s− 1

)p
+ α1

(
s+ 1
s− 1

)p−1

+ · · ·+ αp−1
s+ 1
s− 1

+ αp = 0.(5.144)

To clear the fractions, this may be multiplied throughout by (s − 1)p. The result
is a polynomial

φ(s) = φ0s
p + φ1s

p−1 + · · ·+ φp−1s+ φp = 0,(5.145)

to which Routh’s test may be applied.
The difficulty with this approach is the amount of algebraic manipulation

which is necessary to obtain the φ(s) from α(z). The approach was followed by
Samuelson [436], [437] in connection with economic dynamics and by Wise [529]
in a statistical context. However, it appears that the solution of the problem by
means of the Möbius transformation was reached originally by Herglotz [254] some
twenty years earlier.

Example 5.17. When p = 2, the transformed polynomial becomes

α0(s+ 1)2 + α1(s+ 1)(s− 1) + α2(s− 1)2

= (α0 + α1 + α2)s2 + 2(α0 − α2)s+ (α0 − α1 + α2)
= φ0s

2 + φ1s+ φ2.

(5.146)

From the previous example, we know that, on the assumption that φ0 > 0, the
necessary and sufficient condition for the roots to lie in the left half-plane when
p = 2 is that the other coefficients are also positive. Therefore, for the stability of
the difference equation α0y(t) + α1y(t − 1) + α2y(t − 2) = 0, it is necessary and
sufficient that

(i) α0 + α1 + α2 > 0,
(ii) α0 − α1 + α2 > 0,
(iii) α0 − α2 > 0.

(5.147)

Here (iii) may be replaced by α0 > α2 > −α0 to obtain the set of conditions which
are quoted, for example, by Box and Jenkins [70, p. 58]. The additional result that
α2 > −α0 is obtained by adding (i) and (ii).

There is indeed a wide variety of alternative ways of expressing the stability
conditions. The following versions are often quoted:

(a) α0 > 0,

(b) α2
0 > α2

2,

(c) (α0 + α2)2 > α2
1.

(5.148)
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To see that these imply the conditions under (5.147), first note that (b), which can
be written as α2

0 − α2
2 = (α0 − α2)(α0 + α2) > 0, implies (α0 − α2), (α0 + α2) > 0,

on the condition that α0 > 0, and hence α0 > α2 > −α0, which entails (iii). But
now (c) implies that α0 + α2 > ±α1 which gives (i) and (ii). It is easy to prove
that, conversely, the conditions under (5.147) imply those under (5.148); and thus
an equivalence may be established.

The condition that α2
0 > α2

2, which is necessary to ensure that a quadratic
equation α0 + α1z + α2z

2 = 0 has its roots outside the unit circle, is readily
generalised to higher-order cases.

(5.149) If α(z) = α0 + α1z + · · ·+ αpz
p = 0 is to have all of its roots outside

the unit circle, then it is necessary that α2
0 > α2

p.

To see this, we may consider the following factorisation of the pth-degree poly-
nomial:

α0 + α1z + · · ·+ αpz
p =αp

p∏
i=1

(z − λi)

=α0

p∏
i=1

(1− z/λi).

(5.150)

Here we have α0 = αp
∏
i(−λi); and, if |λi| > 1 for all i, then we must have

|α0| > |αp| or, equivalently,

δp = α2
0 − α2

p > 0.(5.151)

A criterion for the stability of a pth-order difference equation may be derived
which applies analogous conditions to a sequence of polynomials of decreasing de-
grees which are derived from the pth-degree polynomial via the repeated application
of a simple rule. Let the fp(z) = α(z) and f ′p(z) = zpα(z−1) stand for the primary
polynomial and for the corresponding auxiliary polynomial. Then the first of the
derived polynomials is

fp−1(z) =α0fp(z)− αpf ′p(z)
= δp + (α0α1 − αpαp−1)z + · · ·+ (α0αp−1 − αpα1)zp−1,

(5.152)

and the corresponding auxiliary polynomial is f ′p−1(z) = zp−1fp−1(z−1). The rule
is used to derive a sequence of polynomials fp−1(z), fp−2(z), . . . , f0(z) together with
the corresponding auxiliary polynomials. If the constant terms of these polynomials
are δp, δp−1, . . . , δ1, then the necessary and sufficient condition for all of the roots
of fp(z) = 0 to lie outside the unit circle is that δp, δp−1, . . . , δ1 > 0.

This result may be established with the help of the following lemma:
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(5.153) Let fn(z) = α0 + α1z + · · · + αnz
n be a polynomial with q zeros

within the unit circle and n − q zeros outside the circle, and let
f ′(z) = znf(z−1). Let δn be the coefficient associated with z0 in
the derived polynomial fn−1 = α0fn(z) − αnf ′n(z) which is of degree
n − 1. If δn > 0, then fn−1(z) has q zeros inside the unit circle and
n − q − 1 zeros outside, whereas, if δn < 0, then fn−1(z) has n − q
zeros inside and q − 1 outside.

Proof. First assume that α2
0 − α2

n = δn > 0 and consider the rational function

φ(z) =
fn−1(z)
α0fn(z)

= 1− αnf
′
n(z)

α0fn(z)
.(5.154)

On the unit circle, we have

|f ′n(z)| = |zn||fn(z−1)| = |fn(z−1)| = |fn(z)|,(5.155)

and, given that |αn/α0| < 1, it follows that∣∣∣∣anf ′n(z)
a0fn(z)

∣∣∣∣ < 1 and, therefore, Re
{
φ(z)

}
> 0.(5.156)

As z travels around the unit circle, the map of φ(z) defines a contour which lies
in the right half-plane and which does not enclose the origin. It follows from the
argument theorem of (3.127) that, if N and P are respectively the number of zeros
and poles of φ(z) which lie within the unit circle, then N − P = 0. The P poles of
φ(z), which are the q zeros of fn(z), are equal in number to the N zeros of φ(z),
which are the zeros of fn−1(z). So fn−1(z) has q zeros inside the unit circle, and
its remaining n− q − 1 zeros fall outside.

When α2
0 − α2

n = δn < 0, we may consider the rational function

θ(z) =
fn−1(z)
αnf ′n(z)

=
α0fn(z)
αnf ′n(z)

− 1.(5.157)

Given that |α0/αn| < 1 and that |fn(z)| = |f ′n(z)| on the unit circle, it follows that∣∣∣∣α0fn(z)
αnf ′n(z)

∣∣∣∣ < 1 and, therefore, Re
{
θ(z)

}
< 0.(5.158)

An argument can now be applied to show that, within the unit circle, the poles of
θ(z), which are the zeros of f ′n(z), are equal in number to the zeros of θ(z), which
are the zeros of fn−1(z). Thus fn−1(z) has n − q zeros inside the unit circle and
q − 1 outside.

Armed with this lemma, it is easy to establish the conditions for the stability
of the pth-order difference equation. First, the necessity of the conditions
δp, δp−1, . . . , δ1 > 0 is established by a recursion. We know that, if all the roots lie
outside the unit circle, then δp > 0. In that case, the lemma serves to demonstrate
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that the first of the derived polynomials fp−1(z) has all of its roots outside the
unit circle; from which it follows that δp−1 > 0. Further deductions follow likewise.

To prove the sufficiency of the conditions, it must be shown that, if some of
the roots of α(z) = 0 lie inside the unit circle, then some of the inequalities will be
reversed. Imagine that fp(z) has q zeros inside the unit circle and p−q outside, and
let fp−1(z), . . . , fq+1(z) be a sequence of p − q − 1 derived polynomials. Imagine
that the corresponding delta values are all positive: δp, δp−1, . . . , δq+1 > 0. Then,
according to the lemma, the next derived polynomial fq(z) has q zeros inside the
unit circle and none outside; and it follows that δq < 0. Thus there is a reversal in
the sequence of signs; and it is clear that, if a reversal does not occur before δq is
generated, then it must occur at that stage.

In fact, the lemma gives rise to a more sophisticated result. Let Pj =
δpδp−1 · · · δp−j+1 be the product of the first j delta values and let j = 1, . . . , p.
It may be deduced from the lemma that, if q of the products Pj are negative and if
the remaining p−q are positive, then α(z) = 0 has q of its roots inside the unit circle
and p−q outside the circle. Identical proofs of this proposition are given by Marden
[332, p. 196] and by Jury [273, p. 125]. The conditions of stability are commonly
known, amongst electrical engineers, as the Jury–Blanchard [275] conditions.

To assist in evaluating the conditions of stability, a table may be constructed
which is analogous to that of the Routh test. The leading rows of the table are as
follows:

α0 α1 α2 . . . αp−1 αp

αp αp−1 αp−2 . . . α1 α0

β0 β1 β2 . . . βp−1

βp−1 βp−2 βp−3 . . . β0

(5.159)

The third row is formed from the first and second by the rule βi = α0αi − αpαp−i.
This product may be regarded as the determinant of a 2 by 2 matrix formed from
the first and the (p − i)th columns within the first two rows. The fourth row of
the table is the third row reversed. Subsequent rows are generated in like manner
from the rows immediately above them until the (2p − 1)th row is reached or a
negative element is found in the first column in an even-numbered row. In the
former case, the difference equation is stable since the delta values, which are the
leading elements of the even-numbered rows, are all positive. In the latter case, the
difference equation is unstable.

Before embarking on the calculation of the delta values, a pair of preliminary
tests may be performed which depend upon calculating an ordinary sum of coeffi-
cients and a sum of signed coefficients:

α(1) =α0 + α1 + α2 + · · ·+ αn = α0

p∏
i=1

(
1− 1

λi

)
,

α(−1) =α0 − α1 + α2 − · · ·+ (−1)pαn = α0

p∏
i=1

(
1 +

1
λi

)
.

(5.160)

If |λi| > 1 for all i, then both of these sums must be positive since the factors in
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the products on the RHS will all be positive. Instances of these two conditions are
to be found under (5.147).

The following procedure conducts the preliminary tests before calculating as
many delta values as are necessary for assessing stability. The procedure avoids
using unnecessary storage by overwriting the elements of the original array alpha
with the coefficients of successive derived polynomials.

(5.161) procedure JuryCriterion(alpha : vector;
p : integer;
var stable : boolean);

var
i, j, n, fact : integer;
Q,R, a0, an, ai, anmi, temp : real;

begin
stable := true;

{Preliminary Testing}
if Abs(alpha[0]) <= Abs(alpha[p]) then
stable := false;

Q := alpha[0];
R := alpha[0];
fact := 1;
for i := 1 to p do

begin
fact := −1 ∗ fact;
Q := Q+ alpha[i];
R := R+ fact ∗ alpha[i];

end;
if (Q <= 0) or (R <= 0) then
stable := false;

if (stable = true) and (p > 2) then
begin {Further Testing}
n := p;
repeat

begin {repeat}
a0 := alpha[0];
an := alpha[n];
alpha[0] := a0 ∗ a0− an ∗ an;
for i := 1 to n div 2 do

begin {i}
anmi := alpha[n− i];
ai := alpha[i];
alpha[i] := a0 ∗ ai− an ∗ anmi;
alpha[n− i] := a0 ∗ anmi− an ∗ ai;

end; {i}
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if Abs(alpha[0]) <= Abs(alpha[n− 1]) then
stable := false;

n := n− 1;
end; {repeat}

until (n = 2);
end; {Further Testing}

end; {JuryCriterion}

The essential results concerning the number of zeros of a polynomial within
the unit circle are due to Schur [443] and Cohn [118], who expressed them in a
determinant form. According to Schur, the necessary and sufficient conditions for
the polynomial α(z) = α0 + α1z + · · · + αpz

p to have all of its roots lying outside
the unit circle is that the determinants of the matrices

∆j =



α0 0 . . . 0 αp αp−1 . . . αp−j+1

α1 α0 . . . 0 0 αp . . . αp−j+2
...

...
. . .

...
...

...
. . .

...

αj−1 αj−2 · · · α0 0 0 . . . αp

αp 0 . . . 0 α0 α1 . . . αj−1

αp−1 αp . . . 0 0 α0 . . . αj−2
...

...
. . .

...
...

...
. . .

...

αp−j+1 αp−j+2 . . . αp 0 0 . . . α0



(5.162)

where j = 1, . . . , p, should all be positive. The contribution of Cohn was to gen-
eralise these conditions by proving that α(z) = 0 has q zeros within the circle and
p− q outside if the sequence of matrices I,∆1,∆2, . . . ,∆p gives rise to a sequence
of determinants with q variations of sign.

As in the case of the analogous criterion of Hurwitz for the stability of differ-
ential equations, it is inconvenient to have to evaluate a sequence of determinants,
since the computation is burdensome whenever the maximum order is greater than
thee or four. However, it is possible to ease the burden by using the following
determinant identity which is proved, for example, by Rao [421, p. 32]:

det
[
E F
G H

]
= |EH − EGE−1F | = |HE −HFH−1G|.(5.163)

This relates to a partitioned matrix wherein the submatrices E and H are square
and nonsingular.

In terms of a summary notation, the determinant of the matrix ∆p defined in
(5.162) above becomes

det
[
A A∗
A′∗ A

′

]
= |AA′ −AA′∗A−1A∗| = |AA′ −A′∗A∗|.(5.164)
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Here the first equality follows from the first of the identities of (5.163). The second
equality follows from the identity AA′∗ = A′∗A which is due to the commutativity in
multiplication of lower-triangular Toeplitz matrices. There is also a further identity

AA′ −A′∗A∗ = A′A−A∗A′∗(5.165)

affecting the matrix on the RHS of (5.164) which is due to its bisymmetric nature
and which is indicated by the second identity under (5.163).

The matrix AA′ − A′∗A∗ is positive definite if and only if the determinants
of its principal minors are all positive. Since these determinants are identical to
those entailed by the conditions of Schur, it follows that the latter are equivalent
to the condition that the matrix be positive definite. The positive definiteness of
the matrix is easily evaluated by finding its Cholesky decomposition in the manner
described in Chapter 7.

This result is of particular interest in time-series analysis since the matrix in
question has the form of the inverse of the dispersion matrix of an autoregressive
process of order p, which is remarkable.
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CHAPTER 6

Vector Difference Equations
and State-Space Models

Modern control theory deals with systems which may have many inputs and outputs
which may be interrelated in a complicated time-varying manner. To analyse such
systems and to devise methods for controlling them, it is essential to reduce the
complexity of their mathematical expression. Therefore, control theory has resorted
increasingly to the so-called state-space methods which depict such systems in terms
of first-order vector differential or difference equations.

Since most electronic control systems are nowadays based on digital processors,
attention has been focused mainly on discrete-time systems involving difference
equations.

An nth-order difference equation can be represented as a first-order vector
equation with a state vector of n elements. Therefore, state-space analysis can be
applied to problems which might otherwise be treated by the classical methods pre-
sented in the previous chapter. Much of the present chapter is devoted to the task of
finding appropriate state-space representations for scalar difference equations with
the object of facilitating the application of state-space analysis.

This book shows a preference for treating single-equation problems by single-
equation methods. It appears that, whenever a state-space method is available
for treating a single-equation problem, a corresponding method can be discovered
which draws upon the classical analysis. Moreover, such single-equation methods
are often simpler from a conceptual point of view. Nevertheless, it is undeniable
that the development of single-equation methods has sometimes been motivated by
discoveries in the realms of state-space analysis.

We shall begin the analysis of this chapter by considering a simple first-order
vector equation.

The State-Space Equations

Consider the first-order difference equation

ξ(t) = Φξ(t− 1) + ν(t),(6.1)

wherein ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]′ and ν(t) = [ν1(t), ν2(t), . . . , νn(t)]′ are vec-
tors of time series and Φ is a matrix of order n × n. This is called a transition
equation or a process equation. The vector ξτ = ξ(τ) is described as a state vector
because it provides a complete description of the state of the system at a single
instant τ . Moreover, if one knows the value of the transition matrix Φ and the
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values of the elements of the sequence ν(t) for all t, then knowing the state vector
ξτ at an instant τ should enable one to infer the state of the system at any other
time.

The vector sequence ν(t) is described as the input sequence or the forcing
function. In some applications, ν(t) is a function of a set of control variables within
a vector u(t) of order m whose values may be manipulated so as to achieve a
desired outcome for ξ(t). In that case, it is appropriate to represent the system by
the equation

ξ(t) = Φξ(t− 1) +Bu(t),(6.2)

where B is a matrix of order n × m and Bu(t) = ν(t). This matrix serves to
distribute the effects of the control variables amongst the equations which determine
the variables of ξ(t). In a more elaborate model, one might find an additional set
of input variables which are not subject to control.

The information conveyed by the state vector ξ(t) is not affected in any fun-
damental way when ξ(t) is premultiplied by a nonsingular matrix T . The system
which determines the transformed vector ζ(t) = Tξ(t) is described by the equation

ζ(t) =T
{

Φξ(t− 1) + ν(t)
}

=
{
TΦT−1

}{
Tξ(t− 1)

}
+ Tν(t)

= Ψζ(t− 1) + υ(t);

(6.3)

and it is said to be equivalent to the original system of (6.1). The matrix Ψ =
TΦT−1 is said to be similar to the matrix Φ, and T is described as a similarity
transformation. The two matrices Ψ and Φ have the same characteristic roots and
they have a common characteristic equation. Thus, if Λ = diag(λ1, . . . , λn) is the
matrix of the characteristic roots of Φ and if Φ = QΛQ−1, then Ψ = RΛR−1, where
R = TQ.

A system without a forcing function is said to be free or homogeneous. Given
an initial value of ξ0, the homogeneous system ξ(t) = Φξ(t − 1) can be solved
recursively to generate the ensuing values:

ξ1 = Φξ0,

ξ2 = Φ2ξ0,
...

ξτ = Φτξ0.

(6.4)

These form a convergent sequence if and only if the sequence of matrices {Φ,Φ2,
. . . ,Φτ , . . .} converges.

The matter of convergence may be investigated in terms of the factorisation
Φ = QΛQ−1. It can be seen that Φ2 = QΛ2Q−1 and, more generally, that Φτ =
QΛτQ−1. It follows that the sequence {Φ,Φ2, . . . ,Φτ , . . .} converges if and only if
all elements of the diagonal matrix Λ, which are the roots of Φ, lie inside the unit
circle.
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The sequence of values generated by the forced or driven system in (6.1) can
be derived in the same way as the sequence generated by the free system. Thus,
given the initial value ξ0 together with the values of the sequence ν(t), the ensuing
values can be generated:

ξ1 = Φξ0 + ν1,

ξ2 = Φ2ξ0 + {ν2 + Φν1},
...

ξτ = Φτξ0 + {ντ + Φντ−1 + · · ·+ Φτ−1ν1}.

(6.5)

A fully-fledged state-space system of the sort studied by control engineers usu-
ally comprises a measurement or output equation which shows how the observations
on the system are related to the state variables. Also, the parameters of the system
are allowed to vary with time. For a linear time-invariant system, the transition
equation and the measurement equation may be written as

ξ(t) = Φξ(t− 1) +Bu(t),

y(t) = Γξ(t) + ∆u(t).
(6.6)

In this case, ξ(t) is the vector of state variables, u(t) is the vector of inputs and
y(t) is the vector of measured outputs. Ostensibly, the transition equation and the
measurement equation receive the same inputs. However, the matrices B and ∆
may be structured so that the two equations have no inputs in common. In the
sequel, we shall deal only with cases where y(t) is a scalar sequence.

Conversions of Difference Equations to State-Space Form

Ordinary scalar difference equations can be converted easily to equivalent sys-
tems of first-order vector equations. Therefore, much of the theory concerning
state-space models, such as the theory of Kalman filtering, can be applied to
autoregressive moving-average models which entail stochastic difference equations.

Before demonstrating how a difference equation is converted into a first-order
vector equation, it is useful to consider alternative ways of generating a sequence
of values which satisfy the difference equation.

Let us consider an equation in the form of

y(t) + α1y(t− 1) + · · ·+ αry(t− r)
=µ0ε(t) + µ1ε(t− 1) + · · ·+ µr−1ε(t− r + 1),

(6.7)

which can also be written in a rational transfer-function form:

y(t) =
µ(L)
α(L)

ε(t) =
µ0 + µ1L+ · · ·+ µrL

r−1

1 + α1L+ · · ·+ αrLr
ε(t).(6.8)

Here the autoregressive order r and the moving-average order r − 1 are maximum
orders. The equation is designed to accommodate autoregressive moving-average
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Figure 6.1. The direct realisation of the ARMA(2, 2) equation.

models of arbitrary orders; and this may be achieved by setting some of the higher-
order parameters in either part of the equation to zeros.

By separating the numerator and denominator of (6.8), the mapping from ε(t)
to y(t) can be depicted as the product of two successive operations. Thus

y(t) =
1

α(L)
{
µ(L)ε(t)

}
=

1
α(L)

ξ(t); ξ(t) = µ(L)ε(t).

(6.9)

This form suggests that, in generating y(t), one should begin by calculating an
element of ξ(t) = µ(L)ε(t) and proceed to calculate the corresponding element of
y(t) = α−1(L)ξ(t). Therefore, a two-stage algorithm might be devised which would
realise the following equations:

(i) ξ(t) =µ0ε(t) + µ1ε(t− 1) + · · ·+ µr−1ε(t− r + 1),

(ii) y(t) = ξ(t)− {α1y(t− 1) + · · ·+ αry(t− r)}.
(6.10)

Since the operations involved in forming y(t) are linear and time-invariant, the
order in which they are applied may be reversed. That is to say, an element of
ξ(t) = α−1(L)ε(t) might be generated followed by an element of y(t) = µ(L)ξ(t).
The net result of the two operations is y(t) = α−1(L)µ(L)ε(t) = µ(L)α−1(L)ε(t),
regardless of their ordering. It follows that equation (6.9) can be rewritten as

y(t) =µ(L)
{

1
α(L)

ε(t)
}

=µ(L)ξ(t); ξ(t) = α−1(L)ε(t).

(6.11)

Then, in place of the equations under (6.10), there would be

(i) ξ(t) = ε(t)−
{
α1ξ(t− 1) + · · ·+ αrξ(t− r)

}
,

(ii) y(t) =µ0ξ(t) + µ1ξ(t− 1) + · · ·+ µr−1ξ(t− r + 1).
(6.12)
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Figure 6.2. The direct realisation of the ARMA(2, 2)
equation using common delay registers.

The advantage of basing the computations upon the equations of (6.12) is
that their realisation, in terms of computer memory or other hardware, is bound
to be more economical. For, whereas a recursion based on the equations of
(6.10) would require values of ε(t), . . . , ε(t − r) and of y(t − 1), . . . , y(t − r) to
be stored, the recursions based on (6.12) would require only the storage of values
from ε(t), ξ(t− 1), . . . , ξ(t− r).

Example 6.1. Consider the ARMA(2, 2) equation

y(t) + α1y(t− 1) + α2y(t− 2) = µ0ε(t) + µ1ε(t− 1) + µ2ε(t− 2).(6.13)

The algorithm corresponding to the equations of (6.10) in this case can be repre-
sented in a block diagram (Figure 6.1) which portrays, in succession, the filtering
operations which give rise to ξ(t) = µ(L)ε(t) and y(t) = α−1(L)ξ(t). In the dia-
gram, the blocks labelled L are delay registers which give effect to the lag operator.
The circles correspond to operations of scalar multiplication and addition.

The alternative algorithm, which corresponds to the equations of (6.12), can
be depicted in a block diagram (Figure 6.2) which reverses the order of the ladders
in Figure 6.1 and which merges the two adjacent rails so as to halve the number of
delay registers.

Controllable Canonical State-Space Representations

Given that the values of y(t) are to be generated according to the equations
under (6.12), there remains the question of how to implement the recursion under
(6.12)(i). There is a choice of two schemes. The first scheme, which is described
as the direct method, requires that a set of r state variables should be defined as
follows:

ξ1(t) = ξ(t),

ξ2(t) = ξ1(t− 1) = ξ(t− 1),
...

ξr(t) = ξr−1(t− 1) = ξ(t− r + 1).

(6.14)
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Rewriting equation (6.12)(i) in terms of the variables defined on the LHS gives

ξ1(t) = ε(t)− {α1ξ1(t− 1) + · · ·+ αrξr(t− 1)}.(6.15)

Therefore, by defining a state vector ξ(t) = [ξ1(t), ξ2(t), . . . , ξr(t)]′ and by combining
(6.14) and (6.15), a linear system can be constructed in the form of

ξ1(t)
ξ2(t)

...
ξr(t)

 =


−α1 . . . −αr−1 −αr

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0



ξ1(t− 1)
ξ2(t− 1)

...
ξr(t− 1)

+


1
0
...
0

 ε(t).(6.16)

The sparse matrix on the RHS of this equation is an example of a so-called com-
panion matrix. The accompanying measurement equation which corresponds to
equation (6.1)(ii) is given by

y(t) = µ0ξ1(t) + · · ·+ µr−1ξr(t).(6.17)

In summary notation, equations (6.16) and (6.17) are represented respectively by

ξ(t) = Φξ(t− 1) + βε(t),(6.18)

and

y(t) = γ′ξ(t),(6.19)

where γ′ = [µ0, . . . , µr−1].
Equation (6.16) is often presented in the alternative form of

ξr(t)
...

ξ2(t)
ξ1(t)

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−αr −αr−1 . . . −α1



ξr(t− 1)

...
ξ2(t− 1)
ξ1(t− 1)

+


0
...
0
1

 ε(t),(6.20)

for which the accompanying measurement equation is

y(t) = µr−1ξr(t) + · · ·+ µ0ξ1(t).(6.21)

Equations (6.20) and (6.21) may be represented, respectively, by

ξ̃(t) = Φ̃ξ̃(t− 1) + β̃ε(t)(6.22)

and by

y(t) = γ̃′ξ̃(t),(6.23)

where ξ̃(t) contains the elements of ξ(t) in reverse order.
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To formalise the relationship between equations (6.18) and (6.22), a matrix J
of order r may be introduced which has units running along the NE–SW diagonal
and zeros elsewhere. When J premultiplies another matrix, the effect is to reverse
the order of the rows. When it postmultiplies a matrix, the effect is to reverse the
order of the columns. Multiplying J by itself gives JJ = I. Moreover Jξ(t) = ξ̃(t),
Jβ = β̃ and JΦJ = Φ̃. Therefore, when equation (6.18) is premultiplied by J , the
result is

Jξ(t) = JΦξ(t− 1) + Jβε(t)

=
{
JΦJ

}{
Jξ(t− 1)

}
+ Jβε(t)

= Φ̃ξ̃(t− 1) + β̃ε(t),

(6.24)

which is equation (6.22). To establish the relationship between (6.19) and (6.23) is
also straightforward.

An alternative way of generating y(t) in accordance with equation (6.12)(i)
depends upon a nested procedure. A simple recursion may be constructed using
the following definitions:

ξ1(t) =−α1ξ1(t− 1) + ξ2(t− 1) + ε(t),

ξ2(t) =−α2ξ1(t− 1) + ξ3(t− 1),
...

ξr−1(t) =−αr−1ξ1(t− 1) + ξr(t− 1),

ξr(t) =−αrξ1(t− 1).

(6.25)

By a process of substitutions running from the bottom to the top of the list, equation
(6.12)(i) may be recovered in the form of

ξ1(t) = ε(t)− {α1ξ1(t− 1) + · · ·+ αrξ1(t− r)}
= ε(t)− {α1ξ1(t− 1) + · · ·+ αrξr(t− 1)}.

(6.26)

The state-space representation for this system of equations (6.25) and (6.26)
is as follows:

ξ1(t)
...

ξr−1(t)
ξr(t)

 =


−α1 1 . . . 0

...
...

. . .
...

−αr−1 0 . . . 1
−αr 0 . . . 0




ξ1(t− 1)
...

ξr−1(t− 1)
ξr(t− 1)

+


1
0
...
0

 ε(t).(6.27)

The measurement equation continues to be written as

y(t) = µ0ξ1(t) + µ1ξ2(t) + · · ·+ µr−1ξr(t).(6.28)

The system under (6.20) and (6.21) and its variant under (6.27) and (6.28) are
examples of the so-called controllable canonical forms of the state-space equations.
We shall be able to explain this terminology later.
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Observable Canonical Forms

Alternative canonical forms for the state-space representation of the difference
equations can be derived which are as parsimonious in their use of delay registers
as the previous representations. These are the so-called observable forms.

Consider writing the equation of an ARMA(r, r − 1) model as

y(t) =
{
µ0ε(t)− α1y(t− 1)

}
+ · · ·+

{
µr−1ε(t− r + 1)− αry(t− r)

}
.(6.29)

This gives rise to a recursion in the form of

y(t) =−α1y(t− 1) + ξ2(t− 1) + µ0ε(t),

ξ2(t) =−α2y(t− 1) + ξ3(t− 1) + µ1ε(t),
...

ξr−1(t) =−αr−1y(t− 1) + ξr(t− 1) + µr−2ε(t),

ξr(t) =−αry(t− 1) + µr−1ε(t).

(6.30)

Equation (6.29) can be recovered by a process of substitutions running from the
bottom to the top of the list.

On defining ξ1(t) = y(t) and ξ1(t−1) = y(t−1), the corresponding state-space
transition equation can be constructed:

ξ1(t)
...

ξr−1(t)
ξr(t)

 =


−α1 1 . . . 0

...
...

. . .
...

−αr−1 0 . . . 1
−αr 0 . . . 0




ξ1(t− 1)
...

ξr−1(t− 1)
ξr(t− 1)

+


µ0

...
µr−2

µr−1

 ε(t).(6.31)

The measurement equation is provided by

y(t) = ξ1(t).(6.32)

Another canonical form which should be considered is the observable-form
counterpart of the equation under (6.20). Its derivation begins with the transfer
function ω(L) = µ(L)/α(L). Multiplying both sides by α(L) gives α(L)ω(L) =
µ(L). Equating coefficients from both sides of the latter equation which are asso-
ciated with the same powers of L gives the following identities:

µ0 =α0ω0,

µ1 =α0ω1 + α1ω0,
...

µr−2 =α0ωr−2 + α1ωr−3 + · · ·+ αr−2ω0,

µr−1 =α0ωr−1 + α1ωr−2 + · · ·+ αr−1ω0.

(6.33)

When α0 = 1, this becomes compatible with equation (6.7).
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Now consider using these expressions in the equation for an ARMA(r, r − 1)
model written as

α0y(t+ r − 1) + α1y(t+ r − 2) + · · ·+ αr−1y(t) + αry(t− 1)

= µ0ε(t+ r − 1) + µ1ε(t+ r − 2) + · · ·+ µr−2ε(t+ 1) + µr−1ε(t).
(6.34)

A straightforward substitution of the expressions from (6.33) into the RHS of (6.34)
gives

µ0ε(t+ r − 1) + µ1ε(t+ r − 2) + · · ·+ µr−2ε(t+ 1) + µr−1ε(t)

=α0

[
ω0ε(t+ r − 1) + ω1ε(t+ r − 2) + · · ·+ ωr−1ε(t)

]
+α1

[
ω0ε(t+ r − 2) + ω1ε(t+ r − 3) + · · ·+ ωr−2ε(t)

]
...

+αr−2

[
ω0ε(t+ 1) + ω1ε(t)

]
+αr−1ω0ε(t).

(6.35)

Therefore, on carrying the RHS across the equals sign, the ARMA(r, r−1) equation
can be expressed as

α0

{
y(t+ r − 1)−

[
ω0ε(t+ r − 1) + · · ·+ ωr−1ε(t)

]}
+α1

{
y(t+ r − 2)−

[
ω0ε(t+ r − 2) + · · ·+ ωr−2ε(t)

]}
...
+αr−2

{
y(t+ 1)−

[
ω0ε(t+ 1) + ω1ε(t)

]}
+αr−1

{
y(t)− ω0ε(t)

}
+αry(t− 1) = 0.

(6.36)

Within this equation, the following variables can be defined:

ξ1(t− 1) = y(t− 1),

ξ2(t− 1) = y(t)− ω0ε(t),

ξ3(t− 1) = y(t+ 1)−
[
ω0ε(t+ 1) + ω1ε(t)

]
,

...
ξr(t− 1) = y(t+ r − 2)−

[
ω0ε(t+ r − 2) + · · ·+ ωr−2ε(t)

]
.

(6.37)

These variables obey a simple recursion in the form of

ξ1(t) = ξ2(t− 1) + ω0ε(t),
ξ2(t) = ξ3(t− 1) + ω1ε(t),

...
ξr−1(t) = ξr(t− 1) + ωr−2ε(t).

(6.38)

Also, by substituting from (6.37) into (6.36), the following expression is obtained
for that equation:

α0

{
ξr(t)−ωr−1ε(t)

}
+α1ξr(t−1)+ · · ·+αr−1ξ2(t−1)+αrξ1(t−1) = 0.(6.39)
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The equations under (6.38) and (6.39), with α0 = 1, may be assembled into a
state-space transition equation:

ξ1(t)
...

ξr−1(t)
ξr(t)

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−αr −αr−1 . . . −α1




ξ1(t− 1)
...

ξr−1(t− 1)
ξr(t− 1)

+


ω0

...
ωr−2

ωr−1

 ε(t).(6.40)

The accompanying measurement equation is

y(t) = ξ1(t).(6.41)

Reduction of State-Space Equations to a Transfer Function

It should always be possible to find the transfer function which summarises
the mapping from the input ε(t) to the output y(t) which is effected by the state-
space equations. Consider writing the transition equation and the corresponding
measurement equation as

ξ(t) = Φξ(t− 1) + βε(t) and

y(t) = γ′ξ(t) + δε(t).
(6.42)

The lag operator can be used to rewrite the first of these as (I − ΦL)ξ(t) = βε(t),
which gives ξ(t) = (I − ΦL)−1βε(t). Putting this into the second equation, gives
rise to an expression for the transfer function:

y(t) =
{
γ′(I − ΦL)−1β + δ

}
ε(t)

=ω(L)ε(t).
(6.43)

When the state-space equations assume one or other of the canonical forms, this
reduction is usually accomplished with ease.

Example 6.2. Consider the case of an ARMA(3, 2) model for which the ordinary
difference equation is written as

y(t) + α1y(t− 1) + α2y(t− 2) + α3y(t− 3)

= µ0ε(t) + µ1ε(t− 1) + µ2ε(t− 2).
(6.44)

The corresponding transition equation, written in the form of (6.16), is ξ1(t)
ξ2(t)
ξ3(t)

=

−α1 −α2 −α3

1 0 0
0 1 0

 ξ1(t− 1)
ξ2(t− 1)
ξ3(t− 1)

+

 1
0
0

 ε(t)
= Φξ(t) + βε(t).

(6.45)

The measurement equation, which corresponds to (6.17), takes the form of

y(t) =
[
µ0 µ1 µ2

]  ξ1(t)
ξ2(t)
ξ3(t)


= γ′ξ(t).

(6.46)
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Here it is found that, in comparison with the measurement equation under (6.42),
the term δε(t) is absent.

An expression for the transfer function

ω(L) = γ′(I − ΦL)−1β

= γ′v(L),
(6.47)

is to be found by developing an expression for v(L) = (I − ΦL)−1β. Therefore,
consider recasting the equation (I − ΦL)v(L) = β in the form v(L) = ΦLv(L) + β
which, in the present instance, gives rise to following expression: v1(L)

v2(L)
v3(L)

 =

−α1 −α2 −α3

1 0 0
0 1 0

Lv1(L)
Lv2(L)
Lv3(L)

+

 1
0
0

 .(6.48)

These equations embody a recursion v2(L) = Lv1(L), v3(L) = Lv2(L) = L2v1(L),
which is represented separately in the equation v1(L)

v2(L)
v3(L)

 = v1(L)

 1
L
L2

 .(6.49)

The recursion also enables the leading equation within (6.48) to be written as

1 = v1(L) + α1Lv1(L) + α2Lv2(L) + α3Lv3(L)

= v1(L) + α1Lv1(L) + α2L
2v1(L) + α3L

3v1(L),
(6.50)

which gives

v1(L) =
1

1 + α1L+ α2L2 + α3L3
.(6.51)

The latter can be used in equation (6.49), which can be carried, in turn, to equation
(6.47). Then it can be seen that

ω(L) =
[
µ0 µ1 µ2

]  v1(L)
v2(L)
v3(L)


=

µ0 + µ1L+ µ2L
2

1 + α1L+ α2L2 + α3L3
.

(6.52)

Controllability

Consider, once more, the system of state equations

ξ(t) = Φξ(t− 1) + βu(t) and

y(t) = γ′ξ(t) + δu(t),
(6.53)

where Φ is a matrix of order r× r and y(t) and u(t) are scalar sequences. We shall
imagine that the elements of u(t) are within our control.
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(6.54) The system (6.53) is controllable if, by an appropriate choice of a
number of successive input values u1, . . . , uτ , the value of the state
vector can be changed from ξ0 = 0 at time t = 0 to ξ̄ at time τ , where
ξ̄ has an arbitrary finite value.

It can be proved that

(6.55) The system (6.53) is controllable if and only if the matrix Q =
[β,Φβ, . . . ,Φr−1β] has Rank(Q) = r.

To see that the rank condition is sufficient for controllability, consider the
recursion

ξ1 = Φξ0 + βu1,

ξ2 = Φ2ξ0 + {βu2 + Φβu1},
...

ξr = Φrξ0 + {βur + Φβur−1 + · · ·+ Φr−1βu1}.

(6.56)

When ξ0 = 0, the final equation can be written as

ξr = [β,Φβ, . . . ,Φr−1β]


ur
ur−1

...
u1


=Qu.

(6.57)

Given an arbitrary target value of ξr = ξ̄, the fulfilment of the rank condition
guarantees that equation (6.57) can always be solved for the vector u which contains
the controllable input values. Therefore, the condition guarantees that the target
value can be reached in r periods.

To show that the rank condition is necessary for controllability, it must be
shown that, if the target cannot be reached in r periods, then there is no guarantee
that it can ever be reached. In this connection, it should be recognised that, if
rank[β,Φβ, . . . ,Φr−1β] ≤ r, then rank[β,Φβ, . . . ,Φτ−1β] ≤ r for all τ . The latter
implies that, whatever the value of τ , there will always exist an unattainable value
ξ̄ for which the equation ξ̄ = [β,Φβ, . . . ,Φτ−1β]u(τ) has no solution in terms of
u(τ) = [uτ , uτ−1, . . . , u1]′. It follows that the proposition can be established if it
can be shown that

(6.58) If Φ is a matrix of order r × r, then rank [β,Φβ, . . . ,Φk−1β] = rank
[β,Φβ, . . . ,Φr−1β] for all k ≥ r.

In proving this, consider, at first, the case where Q(r) = [β,Φβ, . . . ,Φr−1β] has
the full rank of r. It is clear that Q(r+1) = [β,Φβ, . . . ,Φrβ] = [Q(r),Φrβ], which
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comprises Q(r) as a submatrix, must also have a rank of r. The same is true of the
succeeding matrices Q(r+2), . . . , Q(k). Next, consider the case where rank{Q(r)} =
p < r. Then, since the columns of Q(r) are linearly dependent, there exists a set
of scalars µ1, µ2, . . . , µr such that µ1β + µ2Φβ + · · · + µrΦr−1β = 0. Multiplying
this equation by Φ gives µ1Φβ+µ2Φ2β+ · · ·+µrΦrβ = 0. This shows that Φrβ is
linearly dependent on the columns of Q(r), so Rank{Q(r+1)} = Rank{Q(r)}. The
argument may be extended to show that all succeeding matrices Q(r+1), . . . , Q(k)

have the same rank as Q(r).
In the definition of controllability, the assumption has been made that the

initial state of the system is ξ0 = 0. This assumption is less restrictive than it
might appear to be; for it is clear from equation (6.56) that, if ξ0 6= 0, then the
sequence of inputs which will drive the system from ξ0 to ξr is the same as the
sequence which would drive the system from 0 to ξr − Φrξ0, which is certainly
available if the condition of controllability if fulfilled.

The next objective is to show that, if the transition equation of (6.53) can be
cast in the form of equation (6.16) or in the form of equation (6.27), which have
been described as controllable canonical forms, then the system does indeed satisfy
the condition of controllability under (6.58).

Let Φ stand for the transition matrix in equation (6.16). Then it is readily
confirmed that the matrix

[β,Φβ, . . . ,Φr−1β] =


1 −α1 . . . q r
0 1 . . . p q
...

...
. . .

...
...

0 0 . . . 1 −α1

0 0 . . . 0 1

(6.59)

is nonsingular, and therefore the condition of (6.58) is satisfied. A similar demon-
stration can be given when Φ stands for the transition matrix in equation (6.27).

It can also be shown that any state-space system which satisfies the condition
of controllability of (6.58) can be reduced to a controllable canonical form by means
of a similarity transformation R. Suppose that the equation

ξ(t) = Φξ(t− 1) + βu(t)(6.60)

belongs to a controllable system. Then the matrix

R = [Φr−1β, . . . ,Φβ, β](6.61)

is nonsingular, and it can be used in forming the equivalent system

R−1ξ(t) =
{
R−1ΦR

}{
R−1ξ(t− 1)

}
+R−1βu(t).(6.62)

It transpires immediately that

R−1β =


0
...
0
1

 ;(6.63)
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since this is just the trailing vector of the identity matrix R−1[Φr−1β, . . . ,Φβ, β]
= I. Also, it follows that

R−1ΦR= [Φrβ,Φr−1β, . . . ,Φβ]

=


−α1 1 . . . 0

...
...

. . .
...

−αr−1 0 . . . 1
−αr 0 . . . 0

 ,(6.64)

where the leading vector of the matrix is the only one which does not come from
the above-mentioned identity matrix.

On putting these results together, it is found that the transformed transition
equation of (6.62) takes the form of


ξ1(t)

...
ξr−1(t)
ξr(t)

 =


−α1 1 . . . 0

...
...

. . .
...

−αr−1 0 . . . 1
−αr 0 . . . 0




ξ1(t− 1)
...

ξr−1(t− 1)
ξr(t− 1)

+


0
...
0
1

 ε(t).(6.65)

Although equation (6.65) does represent a controllable canonical form, this
is not one of the forms which we have attributed to the ARMA(r, r − 1) model.
In the controllable-form representation under (6.27), the vector associated with
the disturbance ε(t) is e1 = [1, 0, . . . , 0]′, whereas, in the present equation, it is
er = [0, . . . , 0, 1]′. The difference is minor, but it cannot be overlooked.

Some further effort is required in order to discover the similarity transforma-
tion, represented by some matrix P = [pr−1, pr−2, . . . , p0], which will transform the
transition equation of (6.53) to the canonical form under (6.20).

Consider, therefore, the characteristic equation of the matrix Φ. This is

det(λI − Φ) = λn + α1λ
r−1 + · · ·+ αr−1λ+ αr = 0.(6.66)

At this stage, we need not foresee the connection between the coefficients in this
equation and the parameters of the ARMA model which are denoted by the same
symbols. The coefficients of the characteristic equation are used to define the
following recursion:

p0 =β,

p1 = Φp0 + α1p0,

p2 = Φp1 + α2p0,
...

pr = Φpr−1 + αrp0.

(6.67)
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By a succession of substitutions running from top to bottom, the following sequence
of vectors is obtained:

p0 =β,

p1 = Φβ + α1β,

p2 = Φ2β + α1Φβ + α2β,
...

pr = Φrβ + α1Φr−1β + · · ·+ αr−1Φβ + αrβ

= 0.

(6.68)

The final equality pr = 0 follows from the Cayley–Hamilton theorem which indicates
that

Φr + α1Φr−1 + · · ·+ αr−1Φ + αr = 0;(6.69)

which is to say that the matrix Φ satisfies its own characteristic equation.
The set of vectors from (6.68) may be gathered into the matrix

P = [pr−1, pr−2, . . . , p0].(6.70)

For this matrix to be nonsingular, it is necessary and sufficient that the condition
of controllability under (6.55) is satisfied. The final column of the matrix is Per =
[pr−1, pr−2, . . . , p0]er = β; and, given that P is nonsingular, it follows that

P−1β = er =


0
...
0
1

 .(6.71)

Now consider

P


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−αr −αr−1 . . . −α1

=
[
− p0αr, pr−1 − αr−1p0, . . . , p1 − α1p0

]
=
[
Φpr−1,Φpr−2, . . . ,Φp0

]
= ΦP,

(6.72)

where the second equality depends upon the definitions in (6.67) and the condition
that pr = 0 from (6.68). This shows that P−1ΦP is in the form of a companion
matrix. On putting these results together, it is found that the transformed transi-
tion equation

P−1ξ(t) =
{
P−1ΦP

}{
P−1ξ(t− 1)

}
+ P−1βu(t)(6.73)

has exactly the canonical form which was given under (6.20).
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Finally, by using the usual Laplace expansion for determinants, it can be shown
that the coefficients of characteristic equation det(λI − P−1ΦP ) = 0 are exactly
the parameters α1, . . . , αr. Given that det(λI − P−1ΦP ) = 0 and det(λI −Φ) = 0
are the same equation, we now have the justification for the notation which has
been used in equation (6.66).

Observability

A system is said to be observable if it is possible to infer its initial state by
observing its input u(t) and its output y(t) over a finite period of time. If the
initial state can be discovered and if all the relevant values of u(t) are known, then
it should be possible to obtain the values of y(t) for any time. A formal definition
is as follows:

(6.74) The system (53) is observable if, by setting u0 = · · · = uτ = 0 and
by observing the output values y0, . . . , yτ , where τ denotes a finite
number of periods, it is possible to infer the initial state ξ0.

It can be proved that

(6.75) The system (53) is observable if and only if the r × r matrix

S =


γ′

γ′Φ
...

γ′Φr−1

 has rank(S) = r.

To see that the rank condition is sufficient for observability, consider the se-
quence of observations generated by the equations of (6.53):

y0 = γ′ξ0 + δu0,

y1 = γ′Φξ0 + γ′βu1 + δu1,
...

yr−1 = γ′Φr−1ξ0 + γ′{βur−1 + Φβur−2 + · · ·+ Φr−2βu1}+ δur−1.

(6.76)

Setting u0 = · · · = ur−1 = 0 gives the equation
y0

y1

...
yr−1

 =


γ′

γ′Φ
...

γ′Φr−1

 ξ0,(6.77)

from which it follows that ξ0 can be inferred if the rank condition is fulfilled. To
see that the rank condition is necessary for observability, it needs to be recognised
that, if Rank(S) = q < r, then Rank[γ,Φ′γ, . . . , (Φτ−1)′γ] = q for all τ ≥ q. This is
demonstrated in the same way as the result under (6.58). The implication is that,
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if the initial state cannot be inferred from r observations on y(t), then it can never
be determined from such observations alone.

By checking the rank condition, it is straightforward to show that any system
which can be represented by the canonical forms under (6.31) and (6.32) or (6.40)
and (6.41) is observable. It can also be shown quite easily that any system which is
observable can be transformed so as to conform with one of the observable canonical
representations.

Consider the system

Sξ(t) =
{
SΦS−1

}{
Sξ(t− 1)

}
+ Sβu(t),

y(t) =
{
γ′S−1

}{
Sξ(t)

}
+ δu(t).

(6.78)

Here there is

γ′S−1 = [1, 0, . . . , 0],(6.79)

since this is the leading row of the identity matrix SS−1 = I. Also, there is

SΦS−1 =


γ′Φ

...
γ′Φr−1

γ′Φr

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−αr −αr−1 . . . −α1

 .(6.80)

Thus it transpires that the transformed equation has exactly the canonical form
which has been given under (6.41) and (6.40).
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CHAPTER 7

Matrix Computations

The purpose of this chapter is to provide some of the staple routines of matrix
computation which will be used in implementing many of the algorithms which
appear subsequently in the text.

One of the most common problems in matrix computation is that of solving a
set of consistent and independent linear equations where the number of equations
is equal to the number of unknowns. If nothing more is known about the structure
of the equations, then the efficient method of solution is that of Gaussian elimi-
nation which formalises and extends the method used in school to solve a pair of
simultaneous equations.

The method of Gaussian elimination can be subjected to a number of elabo-
rations and sophistications which are aimed, primarily, at improving its numerical
stability. Since it is important to have a robust all-purpose method for solving
linear equations, we shall devote considerable effort to this particular procedure.

In ordinary least-squares regression, the so-called normal equations, which are
solved to obtain the regression parameters, embody a symmetric positive-definite
matrix which is the cross-product of the data matrix and its own transpose. The
properties of this matrix may be exploited to achieve a procedure for solving the
equations which is simpler and more efficient than one which depends upon Gaus-
sian elimination. This is the Cholesky procedure which involves finding the factors
of the symmetric matrix in the form of a lower-triangular matrix and its transpose.

The simple Cholesky factorisation is available only when the symmetric matrix
is positive definite. If this property cannot be guaranteed, then another factorisation
must be used which interpolates a diagonal matrix as an additional factor between
the lower-triangular matrix and its transpose. The importance of this factorisation
is that it provides a test of the positive-definiteness of the original matrix; for the
matrix is positive definite if and only if all the elements of the diagonal factor are
positive. This factorisation also provides a means of calculating the determinant of
the matrix by forming the products of the elements of the diagonal factor matrix.
Such a facility is useful in testing the stability of linear dynamic systems.

The final algorithm to be presented in this chapter is a so-called Q–R decom-
position of a matrix of full column rank which is due to Householder [261]. The
Q–R decomposition can be used to advantage in the calculation of least-squares
regression estimates when it is feared that solution of the normal equations is ill-
determined. This alternative method of computation applies the Q–R decomposi-
tion directly to the data matrix rather than to the matrix of cross-products which
is comprised by the normal equations.

The majority of the algorithms which are presented in this chapter are exploited
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in the following chapter on linear regression analysis. Several other algorithms
of linear computation, which might have been placed in the present chapter, are
dispersed throughout the text where they arise in specialised contexts.

Solving Linear Equations by Gaussian Elimination

Our aim is to solve a system equations in the form of Ax = b for an unknown
vector x of order n when A = [aij ] is a known matrix of order n × n and b is a
known vector of order n.

The method of Gaussian elimination applies a sequence of transformations to
both sides of the equation so that A is reduced to an upper-triangular matrix U
whilst b is transformed into some vector q. Then the transformed system Ux = q
is solved quite easily for x by a process of back-substitution.

The matrix A is reduced to U by subjecting it to a series of elementary row
operations involving the permutation of pairs of rows and the subtraction of a mul-
tiple of one row from another. These operations can be effected by premultiplying
A by a succession of elementary matrices whose generic form is

E(λ, u, v) = I − λuv′.(7.1)

The elementary permutation matrix which interchanges the ith and the jth
rows is defined by

P = I − (ei − ej)(ei − ej)′,(7.2)

where ei and ej denote vectors with units in the ith and the jth positions respec-
tively and with zeros elsewhere. This matrix P may be formed from the identity
matrix by interchanging the ith and the jth rows. By performing the operation on
P itself, the identity matrix is recovered. Thus P 2 = I, and P is its own inverse.

The elementary matrix which can be used to subtract λ times the elements of
the jth row from those of the ith row takes the form of

Λ = I − λeie′j .(7.3)

This is obtained from the identity matrix by replacing the zero element in the ijth
position by −λ. The inverse of this matrix is just

Λ−1 = I + λeie
′
j .(7.4)

Notice that, when j 6= k, the product of two such matrices is

(I − λijeie′j)(I − λkleke′l) = I − λijeie′j − λkleke′l;(7.5)

and there is no difficulty in representing the product of several elementary opera-
tions.
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Example 7.1. To illustrate the use of elementary row operations in solving linear
equations, let us consider the system Ax = b for which

[
A b

]
=

 a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

 =

 6 3 9 9
4 2 10 10
2 4 9 3

 .(7.6)

On premultiplying [A, b] by the elimination matrix

Λ =

 1 0 0

−a21/a11 1 0

−a31/a11 0 1

 =


1 0 0

−2
3 1 0

−1
3 0 1

 ,(7.7)

we get

Λ
[
A b

]
=

 6 3 9 9
0 0 4 4
0 3 6 0

 .(7.8)

The elimination matrix Λ is just an instance of the product under (7.5) with
λ21 = a21/a11 and λ31 = a31/a11 in place of λij and λkl. When the matrix Λ[A, b]
is premultiplied by the permutation matrix

P =

 1 0 0
0 0 1
0 1 0

 ,(7.9)

it becomes

[
U q

]
=

 u11 u12 u13 q1

0 u22 u23 q2

0 0 u33 q3

 =

 6 3 9 9
0 3 6 0
0 0 4 4

 .(7.10)

Notice that [U, q] may also be obtained from A first by applying the permuta-
tion P and then by applying the elimination matrix

∆ = PΛP =

 1 0 0

−a31/a11 1 0

−a21/a11 0 1

 =

 1 0 0

− 1
3 1 0

− 2
3 0 1

 .(7.11)

The identity ∆PA = (PΛP )PA = PΛA follows, of course, from the fact that
P 2 = I.

The solution of the system Ux = q is given by the following process of back-
substitution:

x3 = q3/u33 = 1,

x2 = (q2 − u23x3)/u22 = −2,

x1 = (q1 − u13x3 − u12x2)/u11 = 1.

(7.12)

On carrying these results back to equation (7.6), it can be confirmed that Ax = b.
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To describe the general procedure for reducing a nonsingular n×n matrix A to
an upper-triangular matrix, let us imagine that a matrix has already been created
in which the subdiagonal elements of the first i− 1 columns are zeros:

A =



a11 . . . a1,i−1 a1i . . . a1n

...
. . .

...
...

...
0 . . . ai−1,i−1 ai−1,i . . . ai−1,n

0 . . . 0 aii . . . ain
0 . . . 0 ai+1,i . . . ai+1,n

...
...

...
...

0 . . . 0 ani . . . ann


.(7.13)

If the element aii is nonzero, then the subdiagonal elements ai+1,i, . . . , ani of the
ith column can be set to zero by subtracting the ith row multiplied by λki =
aki/aii from each of the rows indexed by k = i+ 1, . . . , n. These operations on the
subdiagonal elements of the ith column can be performed by premultiplying the
matrix of (7.13) by a lower-triangular matrix which is defined by

Λi =
n∏

k=i+1

(I − λkieke′i) = I −
n∑

k=i+1

λkieke
′
i,(7.14)

and which can be represented explicitly by

Λi =



1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . 1 0 . . . 0
0 . . . 0 1 . . . 0
0 . . . 0 −λi+1,i . . . 0
...

...
...

...
0 . . . 0 −λni . . . 1


.(7.15)

The inverse matrix Λ−1
i is obtained simply by changing the signs of the subdiagonal

elements of Λi.
The process by which A is reduced to an upper-triangular matrix may be

summarised by writing

(Λn−1 · · ·Λ2Λ1)A = ΛA = U,(7.16)

where Λ = Λn−1 · · ·Λ2Λ1. A fragment of a Pascal procedure which implements
the process on the assumption that none of the diagonal elements of A are zeros is
given below.

(7.17) for i := 1 to n− 1 do
begin {i}

for k := i+ 1 to n do
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begin {k}
lambda := a[k, i]/a[i, i];
for j := i+ 1 to n do
a[k, j] := a[k, j]− lambda ∗ a[i, j]

end; {k}
end; {i}

Applying the same sequence of operations to the vector b gives

(Λn−1 · · ·Λ2Λ1)b = Λb = q.(7.18)

Once q is available, the equations Ux = q can be solved for x by the process of
back-substitution. The following fragment provides the algorithm:

(7.19) for i := n downto 1 do
begin {i}
x[i] := q[i];
for j := i+ 1 to n do
x[i] := x[i]− u[i, j] ∗ x[j];

x[i] := x[i]/u[i, i]
end; {i}

If the matrix L = Λ−1 is available, then q can be obtained without operating
upon b. For, premultiplying q = Λb by L gives

Lq = b;(7.20)

and, since L is a lower-triangular matrix, this can be solved for q easily by a process
of forward-substitution which is the mirror image of the process described in (7.19).

To show how the matrix L is generated, let us write

Λ−1
i = I +

n∑
k=i+1

λkieke
′
i.(7.21)

Then L = Λ−1
1 Λ−1

2 · · ·Λ
−1
n−1 can be written as

L=
n−1∏
i=1

(
I +

n−1∑
k=i+1

λkieke
′
i

)

= I +
n−1∑
i=1

n−1∑
k=i+1

λkieke
′
i;

(7.22)

and this is nothing but a lower-triangular matrix containing the multipliers used in
the process of elimination:

L =


1 0 . . . 0
λ21 1 . . . 0

...
...

. . .
...

λn1 λn2 . . . 1

 .(7.23)

185



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

These multipliers may be stored in place of the elements of A which are reduced to
zeros.

If the ith diagonal element aii of A is zero, then a preliminary operation is
required which interchanges the ith row with some row indexed by l > i. The row
which is to be moved to the ith position may be chosen by selecting the element
amongst ai+1,i, . . . , ani which has the largest absolute value. The selected element
is described as the pivot.

In order to enhance the numerical accuracy of the elimination procedure, it
is worthwhile searching for an appropriate pivotal element even when the original
diagonal element is nonzero. Also, to allow for those cases where the scale of
the rows of A varies widely, it is best to choose the pivot by finding the element
amongst ai+1,i, . . . , ani which has the largest absolute value relative to the scale of
the other elements in its own row. If the scale of the kth row is measured by the
value of its largest element, then the element will be chosen which maximises the
function

|aki|/dk; dk = max
j
|akj |(7.24)

over the set of indices k = i+ 1, . . . , n.
If a strategy of pivotal selection is adopted, then the reduction of A is liable to

be accomplished by an alternating sequence of permutations and eliminations in a
manner which can be represented by writing

Λn−1Pn−1 · · ·Λ2P2Λ1P1A = U.(7.25)

This equation can also be written as

(∆n−1 · · ·∆2∆1)(Pn−1 · · ·P2P1)A= ∆PA

=U,
(7.26)

where ∆i = (Pn−1 · · ·Pi+1)Λi(Pi+1 · · ·Pn−1). The matrix ∆i differs from Λi of
(7.15) only by virtue of a permutation of the elements λi+1,i, . . . , λni which are to be
found below the diagonal in the ith column. Thus the matrix ∆i can be generated by
making successive amendments to the order of the subdiagonal elements of Λi, and
the matrix L = ∆−1 = ∆−1

1 ∆−1
2 · · ·∆

−1
n−1 can be accumulated in the places vacated

by the subdiagonal elements A. The actual order of the elements of Λ−1
1 within

the computer’s memory is not altered in practice. Only their notional ordering
is altered; and this is recorded in a vector of order n representing the product of
the permutations entailed so far by the strategy of pivotal selection. Thus, in the
Pascal program, an array p[i], whose elements are just the integers 1, 2, . . . , n in a
permuted order, records the actual location of the row which is currently designated
as the ith row.

When a strategy of pivotal selection is employed, the equation Ux = q will
have U = ∆PA and q = ∆Pb. Premultiplying both sides of the latter by L = ∆−1

gives

Lq = Pb.(7.27)
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Since Pb is obtained simply by re-indexing the elements of B, solving equation
(7.27) for q is no more difficult than solving equation (7.20).

The following is the code of a Pascal procedure for solving the system Ax = b
which incorporates a strategy of pivotal selection and which obtains the matrix q
by solving the equation Lq = Pb by forward-substitution:

(7.28) procedure LUSolve(start, n : integer;
var a : matrix;
var x, b : vector);

var
v, w, pivot, lambda : real;
i, j, k, pivotRow, g, h, finish : integer;
p : ivector;
d : vector;

begin {LUSolve}

finish := start+ n− 1;
for i := start to finish do

begin {i; determine the scale factors}
p[i] := i;
d[i] := 0.0;
for j := start to finish do

if d[i] < Abs(a[i, j]) then
d[i] := Abs(a[i, j]);

end; {i}

for i := start to finish− 1 do
begin {i; begin the process of reduction}

pivot := a[p[i], i];
for k := i+ 1 to finish do

begin {k; search for a better pivot}
v := Abs(pivot)/d[p[i]];
w := Abs(a[p[k], i])/d[p[k]];
if v < w then

begin {interchange rows if better pivot is found}
pivot := a[p[k], i];
pivotRow := p[k];
p[k] := p[i];
p[i] := pivotRow;

end; {end interchange}
end; {k; end the search for a pivot}

for k := i+ 1 to finish do
begin {k; eliminate a[k, i]}
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lambda := a[p[k], i]/pivot;
for j := i+ 1 to finish do
a[p[k], j] := a[p[k], j]− lambda ∗ a[p[i], j];

a[p[k], i] := lambda; {save the multiplier}
end; {k}

end; {i; reduction completed}

for i := start to finish do
begin {i; forward-substitution}
x[i] := b[p[i]];
for j := i− 1 downto start do
x[i] := x[i]− a[p[i], j] ∗ x[j];

end; {i; forward-substitution}

for i := finish downto start do
begin {i; back-substitution}

for j := i+ 1 to finish do
x[i] := x[i]− a[p[i], j] ∗ x[j];

x[i] := x[i]/a[p[i], i];
end; {i; back-substitution}

end; {LUSolve}

It should be noted that the initial and terminal values of the index j = 1, . . . , n
have been replaced in this procedure by start and finish = start+ (n− 1) respec-
tively. This adds a measure of flexibility which will allow the initial and terminal
indices to be set 0 and n− 1, respectively, when the occasion demands.

Inverting Matrices by Gaussian Elimination

The need to find the explicit inverse of a numerical matrix A is rare. One way
of finding the inverse would be to use an extended version of the procedure LUsolve
to solve the equation AX = I. For this purpose, one would have to accommodate
the identity matrix I in place of the vector b of the system Ax = b. A procedure
of this nature would begin by transforming the matrix A into an upper-triangular
matrix U . In effect, the equations AX = I would be transformed into the equivalent
equations UA−1 = Q. In the second stage of the procedure, the solution A−1 would
be found by a process of back-substitution.

An alternative way of finding the inverse is to use the method of Gaussian
elimination to reduce the matrix A completely to the identity matrix instead of
reducing it partially to an upper triangle U . In effect, the equations AX = I are
transformed into the equations IX = A−1. Thus, when the operations of Gaussian
elimination are applied to the combined matrix [A, I], what emerges, at length, is
the matrix [I,A−1]. At the ith stage of the transformation, the ith column ei of
the identity matrix would appear in the place originally occupied by the ith column
of matrix A. At the same time, the column ei would disappear from its original
position in the identity matrix on the RHS. In practice, there is no need to store
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any of the columns of the identity matrix; and so the inverse matrix A−1 may be
formed in the space originally occupied by A.

The following procedure inverts a matrix directly by the methods of Gaussian
elimination. Since no attention is paid to the problem of selecting appropriate
pivotal elements, it should be used only to invert well-conditioned matrices. In
fact, the procedure will be used only for inverting a symmetric positive-definite
matrix wherein the diagonal elements are all units and the off-diagonal elements
are constrained to lie in the open interval (−1, 1).

For inverting a matrix in its entirely, the parameter stop should be set to value
of n in calling the procedure. If stop is set to p < n then only p steps of the process
of inversion will be accomplished. The effect will be to invert the leading minor of
order p within the matrix A.

(7.29) procedure GaussianInversion(n, stop : integer;
var a : matrix);

var
lambda, pivot : real;
i, j, k : integer;

begin {GaussianInversion}

for i := 1 to stop do
begin {i}
pivot := a[i, i];
for k := 1 to n do

begin {k}
if k <> i then

begin
lambda := a[k, i]/pivot;
for j := 1 to n do
a[k, j] := a[k, j]− lambda ∗ a[i, j];

a[k, i] := −lambda
end;

end; {k}
for j := 1 to n do
a[i, j] := a[i, j]/pivot;

a[i, i] := 1/pivot;
end; {i; reduction completed}

end; {GaussianInversion}

The Direct Factorisation of a Nonsingular Matrix

Our method of solving the equation Ax = b by Gaussian elimination entails
the factorisation A = LU where L = [lij ] is a lower-triangular matrix with units on
the diagonal and U = [uij ] is an upper-triangular matrix.
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It is important to recognise that the L–U factorisation of a nonsingular matrix
A is unique if the factor L is constrained to have only units on the diagonal. To
show this, let us imagine that there are two such factorisations: LU = A and
L1U1 = A. Then there are L−1 = UA−1 and L1 = AU−1

1 ; and so

L−1L1 =UA−1AU−1
1

=UU−1
1 .

(7.30)

Now, if L and L1 are lower-triangular matrices with unit diagonals, then so are L−1

and L−1L1. On the other hand, UU−1
1 is an upper-triangular matrix. It follows

that the only way that the equality in (7.30) can be maintained is when L−1L1 = I
and UU−1

1 = I. But this implies that L = L1 and U = U1.
Gaussian elimination is only one of several ways of calculating the L–U fac-

torisation of A. Another way is to obtain L = [lij ] and U = [uij ] directly by solving
the equations LU = A element by element. Let us consider the equations in more
detail: 

l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
. . .

...
ln1 ln2 ln3 . . . lnn




u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u33 . . . u3n

...
...

. . .
...

0 0 0 . . . unn



=


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
an1 an2 an3 . . . ann

 .
(7.31)

If aij is on or above the diagonal with i ≤ j, then the generic equation takes the
form of

aij = li1u1j + · · ·+ li,i−1ui−1,j + liiuij ,(7.32)

whilst, if aij is below the diagonal with i > j, it takes the form of

aij = li1u1j + · · ·+ li,j−1uj−1,j + lijujj .(7.33)

Since lii = 1 for all i, equation (7.32) gives

uij = aij − li1u1j − · · · − li,i−1ui−1,j ,(7.34)

whereas, equation (7.33) gives

lij = (aij − li1u1j − · · · − li,j−1uj−1,j)/ujj .(7.35)

Equations (7.34) and (7.35) can be solved in any order which ensures that the
values required on the RHS are available when needed. One way is to calculate
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alternately the qth row of U and the qth column of L in the sequence q = 1, . . . , n.
This could be accomplished by a Pascal procedure incorporating the following frag-
ment:

(7.36) for q := 1 to n do
begin {q}

for j := q to n do
begin {j; find the qth row of U}
u[q, j] := a[q, j];
for k := 1 to q − 1 do
u[q, j] := u[q, j]− l[q, k] ∗ u[k, j];

end; {j}

for i := q + 1 to n do
begin {i; find the qth column of L}
l[i, q] := a[i, q];
for k := 1 to q − 1 do
l[i, q] := l[i, q]− l[i, k] ∗ u[k, q];

l[i, q] := l[i, q]/u[q, q];
end; {i}

end; {q}

In practice, computer memory should be conserved by writing the elements of
U and the subdiagonal elements of L in place of the corresponding elements of A.
There is no need to record the diagonal elements of L. To make this procedure
wholly practical, we would need to support it by a method of pivotal selection.
Instead of elaborating the procedure further, we shall consider only a special case
in which pivotal selection is unnecessary.

The Cholesky Decomposition

As Golub and Van Loan [220, p. 81] have asserted, one of the basic principles
of matrix computation is that one should seek to exploit any available knowledge of
the structure of a matrix with a view to making an algorithm quicker in execution
and more economical in its storage requirements.

There is scope for improving the efficiency of the algorithm for the L–U de-
composition of a nonsingular matrix whenever the matrix is symmetric. When the
matrix is also positive definite, the algorithm can be further simplified.

Recall that, if A is a nonsingular matrix, then there exits a unique decomposi-
tion A = LU wherein L is a lower-triangular matrix with units on the diagonal and
U is an unrestricted upper-triangular matrix. By interpolating a diagonal matrix
D = diag{d1, . . . , dn}, it is possible to obtain a factorisation A = LDM ′ where M ′

has units on the diagonal and DM ′ = U .
Now imagine that A is also a symmetric matrix with A = A′. Then

LDM ′ = MDL′, where L and M are lower-triangular and DM ′ and DL′ are
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upper-triangular. It follows from the uniqueness of the L–U factorisation that
M = L; and so the symmetric matrix can be written as A = A′ = LDL′.

The matrix A = A′ is positive definite if x′Ax > 0 for any nonzero value of x.
If A = LDL′ is positive definite, then so too is D = L−1AL−1′; which implies that
all of the elements of D = diag{d1, . . . , dn} must be positive. This result can be
deduced from the fact that every principal submatrix of a positive-definite matrix
is also positive definite.

Conversely, it is easy to see that that, if di > 0 for all i, then the condition
x′Ax = x′LDL′x = q′Dq > 0 prevails for all nonzero values of q or x. If di > 0,
then

√
di is real-valued and, therefore, a matrix D1/2 = diag{

√
d1, . . . ,

√
dn} can be

defined such that A = (LD1/2)(LD1/2)′. Thus a symmetric positive-definite matrix
can be factorised uniquely into the product of a lower-triangular matrix and its
transpose. This factorisation, which can be written more simply as A = A′ = LL′

by redefining L, is called the Cholesky decomposition.
The elements of the Cholesky factor L can be obtained from equations similar

to those of (7.35). A difference arises from the fact that, in general, the diagonal
elements of L are not units. Moreover, because of the symmetry of A, the amount
of arithmetic in computing the factorisation is halved.

Consider an element aij of the symmetric matrix A which is on or below the
diagonal such that i ≥ j:

aij = li1lj1 + · · ·+ li,j−1lj,j−1 + lij ljj .(7.37)

When i > j, this gives

lij = (aij − li1lj1 − · · · − li,j−1lj,j−1)/ljj ,(7.38)

which is just a specialisation of equation (7.35) which comes from setting uij = lji.
When i = j, equation (7.37) becomes

aii = l2i1 + · · ·+ l2i,i−1 + l2ii;(7.39)

and this gives

lii =
√

(aii − l2i1 − · · · − l2i,i−1).(7.40)

The matrix L can generated by progressing through its columns in a manner similar
to that which is indicated in second half of the fragment under (7.36):

(7.41) for j := 1 to n do
for i := j to n do

begin {i, j ; find the jth column of L}
l[i, j] := a[i, j];
for k := 1 to j − 1 do
l[i, j] := l[i, j]− l[i, k] ∗ l[j, k];

if i = j then
l[i, j] := Sqrt(l[i, j])

else
l[i, j] := l[i, j]/l[j, j]

end; {i, j}
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We shall embed the Cholesky decomposition within a procedure for solving
an equation system Ax = b, where A is positive definite. The procedure uses the
method of forward-substitution and back-substitution which is used within the more
general procedure LUSolve of (7.28) which solves an equation system by Gaussian
elimination. To explain this method, let us substitute the factorisation A = LL′

into the equation Ax = b to obtain LL′x = b. Setting

L′x = q(7.42)

within the equation, gives

Lq = b.(7.43)

Once the matrix L has been obtained, the equation (7.43) can be solved for q by
forward-substitution. When q has been drafted into equation (7.42), the latter can
be solved for x by back-substitution. The Pascal procedure for accomplishing these
operations is listed below:

(7.44) procedure Cholesky(n : integer;
var a : matrix;
var x, b : vector);

var
l : real;
i, j, k : integer;

begin {Cholesky}

for j := 1 to n do
for i := j to n do

begin {i; find the jth column of L}
l := a[i, j];
for k := 1 to j − 1 do
l := l − a[i, k] ∗ a[j, k];

if i = j then
a[i, j] := Sqrt(l)

else
a[i, j] := l/a[j, j];

end; {i}

for i := 1 to n do
begin {i; forward-substitution}
x[i] := b[i];
for j := i− 1 downto 1 do
x[i] := x[i]− a[i, j] ∗ x[j];

x[i] := x[i]/a[i, i];
end; {i; forward-substitution}
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for i := n downto 1 do
begin {i; back-substitution}

for j := i+ 1 to n do
x[i] := x[i]− a[j, i] ∗ x[j];

x[i] := x[i]/a[i, i];
end; {i; back-substitution}

end; {Cholesky}

The Cholesky decomposition of a symmetric matrix A depends crucially upon
the condition that A is positive definite. If A is not positive definite, then the
procedure will fail at the point where, in calculating one of the diagonal elements
of a Cholesky triangle, an attempt is made to find the square root of a nonpositive
number.

If the matrix A is indefinite, then the more general factorisation A = LDL′ is
called for, where L is a lower-triangular matrix with units on the diagonal and D
is a diagonal matrix.

Consider a generic element of A = [aij ] which is on or below the diagonal of
the matrix such that i ≥ j. It is readily confirmed that

aij =
j∑

k=1

dklikljk,(7.45)

where dk is the kth element of D and lik is an element from L. This equation gives
rise to a generic expression for the subdiagonal elements of the jth column of L,
and to an expression for the jth element of the diagonal matrix D:

lij =
1
dj

{
aij −

j−1∑
k=1

dklikljk

}
,

dj = ajj −
j−1∑
k=1

dkl
2
jk.

(7.46)

The following procedure uses the above equations in the process of factorising
A = LDL′. The complete matrix A is passed to the procedure. It is returned with
the subdiagonal elements of L replacing its own subdiagonal elements, and with
the elements of D along its principal diagonal. From the returned matrix, it is
easy to calculate the determinant of the original matrix A by forming the product
of the elements of D. Notice that this procedure generates successive rows of the
lower-triangular matrix L, which is in contrast to previous versions which generate
successive columns.
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(7.47) procedure LDLprimeDecomposition(n : integer;
var a : matrix);

var
i, j, k : integer;

begin

for i := 1 to n do
for j := 1 to i do

begin {i, j}
for k := 1 to j − 1 do
a[i, j] := a[i, j]− a[k, k] ∗ a[i, k] ∗ a[j, k];

if i > j then
begin
a[i, j] := a[i, j]/a[j, j];
a[j, i] := 0.0;

end;
end; {i, j}

end; {LDLprimeDecomposition}

Householder Transformations

An elementary reflector, or Householder transformation, is an orthonormal
matrix H defined by

H = I − 2uu′ with u′u = 1.(7.48)

For any vector a ∈ Rn, the effect of the transformation is to reverse the direction
of the component which lies along the axis of the vector u.

Let a = λu + v, where λ is some scalar and v is a vector which lies in the
subspace V which represents the orthogonal complement of the axis of u. Then
Hv = v and Hu = −u; and, therefore,

z=Ha

=H(λu+ v)

=−λu+ v.

(7.49)

The mapping of a into z is depicted in Figure 7.1 which shows that z = Ha is
the reflection of a about the subspace V orthogonal to the vector u.

The Householder transformation H is completely determined by the pair of
vectors a and z = Ha; and the vector u, which is found in the definition under
(7.48), may be expressed in terms of a and z. When a = λu+ v and z = −λu+ v,
there is a− z = 2λu. Now u′u = 1, which is to say that u has unit length; and, to
obtain u, it is sufficient to normalise the vector w = a − z, or, in other words, to
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λu− λu

V aHa = z

Figure 7.1. The vector z = Ha is the reflection of a
about the subspace V orthogonal to the vector u.

rescale it so that its length becomes unity. Thus

u=
(a− z)√

(a− z)′(a− z)
=

w√
w′w

.
(7.50)

Substituting from (7.50) into equation (7.48) gives

H = I − 2
(a− z)(a− z)′

(a− z)′(a− z)

= I − 2
ww′

w′w
.

(7.51)

This expression can be used in devising a transformation which will map the
vector a into the axis of some specified vector y so as to obtain Ha = z = κy. To
find the value of z to be used in constructing the desired transformation in the form
of (7.51), it is only necessary to find the scalar value κ. From the fact that H is an
orthonormal matrix, it follows that a′H ′Ha = a′a = κ2y′y. Thus it is found that

κ = ±

√(
a′a

y′y

)
.(7.52)

The Q–R Decomposition of a Matrix of Full Column Rank
Let A be an m × n matrix with m ≥ n and Rank(A) = n. Then there exists

an orthonormal transformation Q of order m×m such that

Q′A =
[
R
0

]
,(7.53)

where R is an upper-triangular matrix of order n.
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This reduction, which is described as a Q–R decomposition can be accom-
plished by premultiplying A by a succession of orthonormal Householder trans-
formations P1, . . . , Pn which are effective in eliminating the subdiagonal elements
from successive columns of the matrix and which together form the product
Q′ = Pn · · ·P2P1.

Consider the first of these transformations:

P1 = Im − 2u1u
′
1.(7.54)

Its effect is to reduce the leading vector a.1 of A = [a.1, . . . , a.n] to a vector κ1e1

which has a scalar κ1 in the leading position and zeros elsewhere. Setting z = κ1e1

and a = a.1 in (7.50) gives

u1 =
(a.1 − κ1e1)√

(a.1 − κ1e1)′(a.1 − κ1e1)
;(7.55)

and, according to (7.52), there is κ1 = ±
√

(a′.1a.1) since y′y = e′1e1 = 1. Therefore,
P1 is now specified apart from the choice of sign for κ1. The sign of κ1 is chosen
so that the leading term a11 − κ1 within the vector a.1 − κ1e1 is a sum rather than
a difference. This is to avoid any undesirable cancellation which might bring the
term close to zero, thereby prejudicing the numerical accuracy of the procedure.
Thus

κ1 = −sgn(a11)
√
a′.1a.1,(7.56)

whence it follows that

(a.1 − κ1e1)′(a.1 − κ1e1) = a′.1a.1 − 2κ1e
′
1a.1 + κ2

1e
′
1e1

= 2
(
κ2

1 + |κ1a11|
)
.

(7.57)

Now that the subdiagonal elements have been eliminated from the first column,
the first row and column of P1A may be ignored and attention may be turned to
the remaining submatrix. A transformation in the form of H2 = Im−1 − 2u2u

′
2,

can be applied to this submatrix so as to reduce its leading vector to one with
a leading nonzero element and with zeros elsewhere. Equivalently, a Householder
transformation

P2 =
[

1 0
0 H2

]
(7.58)

can be applied to the full matrix P1A to obtain a matrix P2P1A in which the
first and second columns contain only zero elements below the principal diagonal.
Proceeding in this way through n steps, we obtain

Pn · · ·P2P1A = Q′A =
[
R
0

]
,(7.59)

where P1, . . . , Pn and Q′ are all orthonormal matrices.
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To illustrate the jth step of the procedure in detail, let us define Aj−1 =
Pj−1 · · ·P2P1A, and let us consider PjAj−1 = Aj . The latter can be partitioned to
give [

Ij−1 0
0 Hj

] [
U D
0 C

]
=
[
U D
0 HjC

]
.(7.60)

This shows that, at the jth step, we are operating upon a submatrix C of order
(m− j + 1)× (m− j + 1).

In the Pascal procedure which follows, the Householder transformation Hj =
Im−j+1 − 2uju′j is written in the alternative form of

Hj = Im−j+1 − βjwjw′j ,(7.61)

where

wj =


ajj − κj
aj+1,j

...
amj

 ,

κj =−sgn(ajj)
√( m∑

i=j

a2
i,j

)
and

βj =
(
κ2
j + |κjajj |

)−1
= 2(w′jwj)

−1.

(7.62)

The transformation of the matrix Aj−1 by Pj entails the transformation of C in
(7.60) by Hj . This is carried out by calculating

yj = βjw
′
jC

and then modifying C to give

HjC = C − wjyj .

The jth diagonal element ajj of Aj is just κj , as can be seen from the appropriate
substitutions. The subdiagonal elements of a.j are mapped into zeros. Of course,
these results follow from the fact that Hj has been constructed precisely for the
purpose of mapping the vector [ajj , . . . , amj ]′ into the axis of the leading vector of
the identity matrix Im−j+1.

The procedure has a provision for subjecting an auxiliary matrix B of order
m× q to the same series of transformations as A. For example, one might specify
B = Im. Then the procedure would return the matrix Q′ in place of B. Finally, it
should noted that, in implementing the procedure, nothing is gained by setting the
subdiagonal elements of A to zero. The discarded by-products of the calculations
can be allowed to accumulate in the positions where, in theory, there should be
zeros.
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(7.63) procedure Householder(var a, b : matrix;
m,n, q : integer);

var
i, j, k : integer;
S, sigma, kappa, beta, yPrime : real;

begin
for j := 1 to n do

begin {major loop}

sigma := 0.0; {find the value of kappa}
for i := j to m do
sigma := sigma+ Sqr(a[i, j]);

S := Sqrt(sigma);
beta := 1/(sigma+Abs(S ∗ a[j, j]));
if a[j, j] < 0 then
kappa := S

else
kappa := −S;

a[j, j] := a[j, j]− kappa;

for k := j + 1 to n do
begin {k}
yPrime := 0.0;
for i := j to m do
yPrime := yPrime+ a[i, j] ∗ a[i, k];

yPrime := beta ∗ yPrime;
for i := j to m do
a[i, k] := a[i, k]− a[i, j] ∗ yPrime;

end; {k}

for k := 1 to q do
begin {k}
yPrime := 0.0;
for i := j to m do
yPrime := yPrime+ a[i, j] ∗ b[i, k];

yPrime := yPrime ∗ beta;
for i := j to m do
b[i, k] := b[i, k]− a[i, j] ∗ yPrime;

end; {k}

a[j, j] := kappa;
end; {major loop}

end; {Householder}
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CHAPTER 8

Classical Regression Analysis

In this chapter, we shall present the basic theory of the classical statistical method
of regression analysis. The method can be applied in its own right to numerous
problems within time-series analysis; and this alone should justify our giving it an
extensive treatment. However, its importance is greatly enhanced by the fact that
it contains many of the elements from which sophisticated methods are constructed
for analysing time series in the time domain.

The routines of regression analysis which are presented in this chapter make use
of the staple procedures for orthogonalising, triangularising and inverting matrices
which have been presented in the previous chapter.

The Linear Regression Model

A regression equation of the form

yt =xt1β1 + xt2β2 + · · ·+ xtkβk + εt

=xt.β + εt
(8.1)

explains the value of a dependent variable yt in terms of a set of k observable
variables in xt. = [xt1, xt2, . . . , xtk] and an unobservable random variable εt. The
vector β = [β1, β2, . . . , βk]′ contains the parameters of a linear combination of the
variables in xt.. A set of T successive realisations of the regression relationship,
indexed by t = 1, 2, . . . , T , can be compiled into a system

y = Xβ + ε,(8.2)

wherein y = [y1, y2, . . . , yT ]′ and ε = [ε1, ε2, . . . , εT ]′ are vectors of order T and
X = [xtk] is a matrix of order T × k. We shall assume that X is a nonstochastic
matrix with rank(X) = k which requires that T ≥ k.

According to the classical assumptions, the elements of the disturbance vector
ε are distributed independently and identically with expected values of zero and a
common variance of σ2. Thus

E(ε) = 0 and D(ε) = E(εε′) = σ2IT .(8.3)

The matrix D(ε), which is described as the variance–covariance matrix or the dis-
persion matrix of ε, contains the common variance σ2 = E[{εt − E(εt)}2] in each
of its diagonal locations. Its other locations contain zero-valued elements, each of
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which corresponds to the covariance E[{εt − E(εt)}{εs − E(εs)}′] of two distinct
elements of ε.

The value of β may be estimated according to the principle of ordinary least-
squares regression by minimising the quadratic function

S = ε′ε = (y −Xβ)′(y −Xβ).(8.4)

The problem can be envisaged as one of finding a value for µ = Xβ residing, at a
minimum distance from the vector y, in the subspace or the manifold spanned by
the columns of X. This interpretation comes from recognising that the function
S = (y − Xβ)′(y − Xβ) represents the square of the Euclidean distance between
the two vectors.

The minimising value of β is found by differentiating the function S(β) with
respect to β and setting the result to zero. This gives the condition

∂S

∂β
= 2β′X ′X − 2y′X = 0.(8.5)

By rearranging the condition, the so-called normal equations are obtained

X ′Xβ = X ′y,(8.6)

whose solution is the ordinary least-squares estimate of the regression parameters:

β̂ = (X ′X)−1X ′y.(8.7)

The estimate of the systematic component of the regression equations is

Xβ̂=X(X ′X)−1X ′y

=Py.
(8.8)

Here P = X(X ′X)−1X ′, which is called the orthogonal or perpendicular projector
on the manifold of X, is a symmetric idempotent matrix with the properties that
P = P ′ = P 2.

The Decomposition of the Sum of Squares

Ordinary least-squares regression entails the decomposition of the vector y
into two mutually orthogonal components. These are the vector Py = Xβ̂, which
estimates the systematic component of the regression equation, and the residual
vector e = y −Xβ̂, which estimates the disturbance vector ε. The condition that
e should be orthogonal to the manifold of X in which the systematic component
resides, such that X ′e = X ′(y − Xβ̂) = 0, is precisely the condition which is
expressed by the normal equations (8.6).

Corresponding to the decomposition of y, there is a decomposition of the sum
of squares S = y′y. To express the latter, let us write Xβ̂ = Py and e = y−Xβ̂ =
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y

e

γ

Xβ^

Figure 8.1. The vector Py = Xβ̂ is formed by the orthogonal projection of
the vector y onto the subspace spanned by the columns of the matrix X.

(I − P )y. Then, in consequence of the condition P = P ′ = P 2 and the equivalent
condition P ′(I − P ) = 0, it follows that

y′y=
{
Py + (I − P )y

}′{
Py + (I − P )y

}
= y′Py + y′(I − P )y

= β̂′X ′Xβ̂ + e′e.

(8.9)

This is simply an instance of Pythagoras theorem; and the identity is expressed by
saying that the total sum of squares y′y is equal to the regression sum of squares
β̂′X ′Xβ̂ plus the residual or error sum of squares e′e. A geometric interpretation
of the orthogonal decomposition of y and of the resulting Pythagorean relationship
is given in Figure 8.1.

It is clear from intuition that, by projecting y perpendicularly onto the manifold
of X, the distance between y and Py = Xβ̂ is minimised (see Figure 8.1). In order
to establish this point formally, imagine that γ = Pg is an arbitrary vector in the
manifold of X. Then the Euclidean distance from y to γ cannot be less than the
distance from y to Xβ̂. The square of the former distance is

(y − γ)′(y − γ) =
{

(y −Xβ̂) + (Xβ̂ − γ)
}′{(y −Xβ̂) + (Xβ̂ − γ)

}
=
{

(I − P )y + P (y − g)
}′{(I − P )y + P (y − g)

}
.

(8.10)

The properties of the projector P which have been used in simplifying equation
(8.9), indicate that

(y − γ)′(y − γ) = y′(I − P )y + (y − g)′P (y − g)

= e′e+ (Xβ̂ − γ)′(Xβ̂ − γ).
(8.11)
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Since the squared distance (Xβ̂ − γ)′(Xβ̂ − γ) is nonnegative, it follows that (y −
γ)′(y − γ) ≥ e′e, where e = y −Xβ̂; and this proves the assertion.

A summary measure of the extent to which the ordinary least-squares regres-
sion accounts for the observed vector y is provided by the coefficient of determina-
tion. This is defined by

R2 =
β̂′X ′Xβ̂

y′y

=
y′Py

y′y
.

(8.12)

The measure is just the square of the cosine of the angle between the vectors y and
Py = Xβ̂; and the inequality 0 ≤ R2 ≤ 1 follows from the fact that the cosine of
any angle must lie between −1 and +1.

Some Statistical Properties of the Estimator

The expectation, or mean, of the vector β̂, and its dispersion matrix as well,
may be found from the expression

β̂= (X ′X)−1X ′(Xβ + ε)

=β + (X ′X)−1X ′ε.
(8.13)

On the assumption that the elements of X are nonstochastic, the expectation is
given by

E(β̂) =β + (X ′X)−1X ′E(ε)

=β.
(8.14)

Thus β̂ is an unbiased estimator. The deviation of β̂ from its expected value is
β̂ − E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains the
variances and covariances of the elements of β̂, is

D(β̂) =E
[{
β̂ − E(β̂)

}{
β̂ − E(β̂)

}′]
= (X ′X)−1X ′E(εε′)X(X ′X)−1

=σ2(X ′X)−1.

(8.15)

The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator of
least dispersion. This dispersion is usually characterised in terms of the variance
of an arbitrary linear combination of the elements of β̂, although it may also be
characterised in terms of the determinant of the dispersion matrix D(β̂). Thus

(8.16) If β̂ is the ordinary least-squares estimator of β in the classical linear
regression model, and if β∗ is any other linear unbiased estimator
of β, then V (q′β∗) ≥ V (q′β̂) where q is any constant vector of the
appropriate order.
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Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) = AE(y) =
AXβ = β, which implies that AX = I. Now set A = (X ′X)−1X ′ + G. Then
AX = I implies that GX = 0. Given that D(y) = D(ε) = σ2I, it follows that

D(β∗) =AD(y)A′

=σ2
{

(X ′X)−1X ′ +G
}{
X(X ′X)−1 +G′

}
=σ2(X ′X)−1 + σ2GG′

=D(β̂) + σ2GG′.

(8.17)

Therefore, for any constant vector q of order k, there is the identity

V (q′β∗) = q′D(β̂)q + σ2q′GG′q

=V (q′β̂) + σ2q′GG′q;
(8.18)

and this implies the inequality V (q′β∗) ≥ V (q′β̂).

Estimating the Variance of the Disturbance

The principle of least squares does not, of itself, suggest a means of estimat-
ing the disturbance variance σ2 = V (εt). However, it is natural to estimate the
moments of a probability distribution by their empirical counterparts. Given that
et = y−xt.β̂ is an estimate of εt, it follows that T−1

∑
t e

2
t may be used to estimate

σ2. However, it transpires that this is biased. An unbiased estimate is provided by

σ̂2 =
1

T − k

T∑
t=1

e2
t

=
1

T − k
(y −Xβ̂)′(y −Xβ̂).

(8.19)

The unbiasedness of this estimate may be demonstrated by finding the expected
value of (y−Xβ̂)′(y−Xβ̂) = y′(I−P )y. Given that (I−P )y = (I−P )(Xβ+ε) =
(I − P )ε in consequence of the condition (I − P )X = 0, it follows that

E
{

(y −Xβ̂)′(y −Xβ̂)
}

= E(ε′ε)− E(ε′Pε).(8.20)

The value of the first term on the RHS is given by

E(ε′ε) =
T∑
t=1

E(e2
t ) = Tσ2.(8.21)

The value of the second term on the RHS is given by

E(ε′Pε) = Trace
{
E(ε′Pε)

}
= E

{
Trace(ε′Pε)

}
= E

{
Trace(εε′P )

}
= Trace

{
E(εε′)P

}
= Trace

{
σ2P

}
= σ2Trace(P )

=σ2k.

(8.22)
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The final equality follows from the fact that Trace(P ) = Trace(Ik) = k. Putting
the results of (8.21) and (8.22) into (8.20), gives

E
{

(y −Xβ̂)′(y −Xβ̂)
}

= σ2(T − k);(8.23)

and, from this, the unbiasedness of the estimator in (8.19) follows directly.

The Partitioned Regression Model

In testing hypotheses, it is helpful to have explicit expressions for the subvectors
within β̂ = [β̂′1, β̂

′
2]. To this end, the equations of (8.2) may be written as y =

X1β1 +X2β2 +ε, and the normal equations of (8.6) may be partitioned conformably
to give

X ′1X1β1 +X ′1X2β2 = X ′1y and

X ′2X1β1 +X ′2X2β2 = X ′2y.
(8.24)

Premultiplying the first of these by X ′2X1(X ′1X1)−1 and subtracting it from the
second gives{

X ′2X2 −X ′2X1(X ′1X1)−1X ′1X2

}
β2 = X ′2y −X ′2X1(X ′1X1)−1X ′1y.(8.25)

When the projector P1 = X1(X ′1X1)−1X ′1 is defined, the equation may be written
more intelligibly as X ′2(I −P1)X2β2 = X ′2(I −P1)y. The estimate of β2 is given by

β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y.(8.26)

An analogous expression is available for β̂1. However, knowing the value of β̂2

enables us to obtain β̂1 alternatively from the expression

β̂1 = (X ′1X1)−1X ′1(y −X2β̂2)(8.27)

which comes directly from the first equation of (8.24).

Some Matrix Identities

The estimators of β1 and β2 may also be derived by using the partitioned form
of the matrix (X ′X)−1. This is given by[

X ′1X1 X
′
1X2

X ′2X1 X
′
2X2

]−1

=

[ {
X ′1(I − P2)X1

}−1 −
{
X ′1(I − P2)X1

}−1
X ′1X2(X ′2X2)−1

−
{
X ′2(I − P1)X2

}−1
X ′2X1(X ′1X1)−1

{
X ′2(I − P1)X2

}−1

](8.28)

The result is easily verified by postmultiplying the matrix on the RHS by the
partitioned form of X ′X to give a partitioned form of the identity matrix.
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Figure 8.2. The decomposition of the vector Py = Xβ̂ = X1β̂1 +X1β̂1.

By forming the projector P = X(X ′X)−1X ′ from X = [X1,X2] and from the
partitioned form of (X ′X)−1, it may be shown that

P =P1/2 + P2/1, where

P1/2 =X1

{
X ′1(I − P2)X1

}−1
X ′1(I − P2) and

P2/1 =X2

{
X ′2(I − P1)X2

}−1
X ′2(I − P1).

(8.29)

In the notation of the regression model, the identity Py = P1/2y+P2/1y is expressed
as Xβ̂ = X1β̂1 +X2β̂2 (see Figure 8.2).

The restriction of the transformation P1/2 to the manifold of X may be de-
scribed as the oblique projection onto the manifold of X1 along the manifold of X2.
This means that the manifold of X2 falls within the null space of the projector.
The corresponding conditions P1/2X1 = X1 and P1/2X2 = 0 are readily confirmed.
Thus

P1/2P1 =P1,

P1/2P2 = 0.
(8.30)

Likewise, P2/1X2 = X2 and P2/1X1 = 0. These conditions indicate that

PP1 = (P1/2 + P2/1)P1

=P1

=P1P.

(8.31)

The final equality follows from the symmetry of P1 and P .
Now consider premultiplying and postmultiplying the partitioned form of

(X ′X)−1 by (I − P2)X = [(I − P2)X1, 0] and its transpose respectively. Reference
to (8.28) shows that this gives

(I − P2)X(X ′X)−1X ′(I − P2) = (I − P2)P (I − P2)

= (I − P2)X1

{
X ′1(I − P2)X1

}−1
X ′1(I − P2).

(8.32)
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But the conditions PP2 = P2P = P2 can be used to show that (I−P2)P (I−P2) =
P − P2. Thus an important identity is derived in the form of

(I − P2)X1

{
X ′1(I − P2)X1

}−1
X ′1(I − P2) = P − P2.(8.33)

This result, which can also be found in another book by Pollock [397] which treats
regression analysis, will be used in the sequel.

Computing a Regression via Gaussian Elimination

The traditional way of computing the ordinary least-squares regression esti-
mates, which is still the prevalent way, is to solve the normal equationsX ′Xβ = X ′y
as they stand. This can be done using the Cholesky algorithm, presented under
(7.44) in the previous chapter, which finds the L–U decomposition of the symmetric
matrix X ′X = LL′. Having created the lower-triangular matrix L, the procedure
solves the equation Lq = X ′y by a recursive process of forward-substitution to
obtain q = L′β̂. Then the equation q = L′β̂ is solved for β̂ by a converse process of
back-substitution.

As an alternative to the Cholesky method, the Gaussian algorithm for matrix
inversion, which appears under (7.29) in the previous chapter, can be used to find
the inverse matrix (X ′X)−1. Then the product (X ′X)−1X ′y = β̂ may be formed.

In a notional sense, the Gaussian algorithm for inverting X ′X uses elementary
row operations to transform the pair [X ′X, I] into the pair [I, (X ′X)−1]. At each
stage of the procedure, a column belonging to the identity matrix of order k dis-
appears from the right-hand matrix and is recreated in the left-hand matrix where
the contents of the nondiagonal cells of one of the columns are swept out and a
unit is placed in the diagonal cell. However, in practice, there is no need to store
the columns of the identity; and so the inverse matrix (X ′X)−1 can be formed in
the space originally occupied by the matrix X ′X.

By a minor elaboration of the Gaussian inversion procedure, some of the
other regression quantities can be generated as by-products. Consider replacing
the matrix [X ′X, I], by the augmented matrix[

X ′X X ′y I 0

y′X y′y 0 1

]
.(8.34)

The matrices on either side of the major partition have k + 1 rows and columns.
The first k columns of the matrix on the left may be swept out by applying k
steps of the inversion procedure. The effect of this operation is summarised in the
following equation: [

(X ′X)−1 0

−y′X(X ′X)−1 1

][
X ′X X ′y I 0

y′X y′y 0 1

]

=

[
I (X ′X)−1X ′y (X ′X)−1 0

0 y′y − y′X(X ′X)−1X ′y −y′X(X ′X)−1 1

]
.

(8.35)
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Here the aggregate effect of the elementary row operations is achieved by premul-
tiplying the matrix of (8.34) by the appropriate partitioned matrix. If the new
columns which appear on the left of the major partition are accumulated in place
of columns of the identity which appear on the right, then, after k steps, the matrix
will take the form of[

(X ′X)−1 (X ′X)−1X ′y

−y′X(X ′X)−1 y′y − y′X(X ′X)−1X ′y

]
=

[
(X ′X)−1 β̂

−β̂′ σ̂2(T − k)

]
.(8.36)

Apart from the ordinary least-squares estimate of β, the matrix contains the el-
ements from which the estimates of V (εt) = σ2 and D(β̂) = σ2(X ′X)−1 can be
constructed immediately.

In many instances of the regression model, the leading column of the matrix
X is a vector of units i = [1, . . . , 1]′ which is associated with a so-called intercept
parameter β1. In such cases, it is appropriate to set X = [i, Z] and β = [β1, β

′
z]′ so

as to express the regression equations as

y = iβ1 + Zβz + ε.(8.37)

From the formulae given under (8.26) and (8.27), it follows that the estimates of
the parameters can be expressed as

β̂z =
{
Z ′(I − Pi)Z

}−1
Z ′(I − Pi)y and

β̂1 = (i′i)−1i′(y − Zβ̂z),
(8.38)

where Pi = i(i′i)−1i′.
If x = [x1, . . . , xT ]′ is any vector of sample values, then (i′i)−1i′x = x̄ is the

sample mean and (I − Pi)x = [x1 − x̄, . . . , xT − x̄]′ is the vector of their deviations
about the mean. Moreover, as a result of the symmetry and idempotency of the
matrix (I − Pi), it follows that, if w is any other matrix of T elements, then{

(I − Pi)w
}′{(I − Pi)x

}
= w′(I − Pi)x. In view of these results, it can be seen

that β̂z may be obtained by applying the regression procedure to variables which
are in deviation form. Also, the intercept term, which can be written as

β̂1 = ȳ − T−1i′Zβ̂z

= ȳ − (x̄2β̂2 + · · ·+ x̄kβ̂k),
(8.39)

is a function only of the sample means and of the estimated parameters in β̂z =
[β̂2, . . . , β̂k]′. Therefore it is readily calculated once β̂z becomes available.

The dispersion of β̂z is given by the matrix

D(β̂z) = σ2
{
Z ′(I − Pi)Z

}−1
.(8.40)

This follows from the partitioned form of D(β̂) = σ2(X ′X)−1 when X = [i, Z].
The variance of β̂1 is given by

D(β̂1) =σ2
{
i′(I − Pz)i

}−1

=σ2 1
T 2

[T + i′Z
{
Z ′(I − Pi)Z

}−1
Z ′i].

(8.41)
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The first form follows in the same way as the form under (8.40). The second form
follows from setting X1 = i and X2 = Z in the identity

(X ′1X1)−1 +(X ′1X1)−1X ′1X2

{
X ′2(I − P1)X2

}−1
X ′2X1(X ′1X1)−1

=
{
X ′1(I − P2)X1

}−1
.

(8.42)

The identity itself is deduced from

I = X ′1X1

{
X ′1(I −P2)X1

}−1−X ′1X2

{
X ′2(I −P1)X2

}−1
X ′2X1(X ′1X1)−1,(8.43)

which comes from the partitioned form of the identity I = X ′X(X ′X)−1 which
may be constructed from equation (8.28).

The covariance of β̂z and β̂1 is given by

C(β̂z, β̂1) = −σ2T−1
{
Z ′(I − Pi)Z

}−1
Z ′i;(8.44)

and this follows from the partitioned form of D(β̂) = σ2(X ′X)−1.
One is not bound to pay any special attention to the fact that a regression

model contains an intercept term; for β = [β1, β
′
z]
′ can be estimated by applying

the Gaussian inversion procedure to the matrix[
X ′X X ′y
y′X y′y

]
,(8.45)

wherein X = [i, Z]. However, βz can be estimated on its own by applying the
procedure to the matrix [

Z ′(I − Pi)Z Z ′(I − Pi)y
y′(I − Pi)Z y′(I − Pi)y

]
,(8.46)

which is simply T times the empirical variance–covariance matrix of the variables.
The estimate of β1 can then be obtained from the formula in (8.39).

When the Gaussian procedure is applied to the matrix of (8.45), it generates,
as a by-product, the quantity

y′y − y′X(X ′X)−1X ′y= (y −Xβ̂)′(y −Xβ̂)

= (T − k)σ̂2.
(8.47)

When the procedure is applied to the matrix of (8.46), it generates

y′(I − Pi)y − y′(I − Pi)Z
{
Z ′(I − Pi)Z

}−1
Z ′(I − Pi)y

=
{

(I − Pi)(y − Zβ̂z)
}′{(I − Pi)(y − Zβ̂z)

}
.

(8.48)

To demonstrate that this is the same quantity, we need only confirm that

(I − Pi)(y − Zβ̂z) = y − Zβ̂z − i(i′i)−1i(y − Zβ̂z)

= y − iβ̂1 − Zβ̂z
= y −Xβ̂.

(8.49)

The second of these equalities follows from the second equation under (8.38).

210



8: CLASSICAL REGRESSION ANALYSIS

The advantage of taking deviations of the variables before estimating the re-
gression parameters is that this reduces the disparities in the scale of the cross-
products of the variables. This should diminish the rounding errors which beset
the subsequent calculations. The accuracy of these calculations can be further
enhanced by using the correlation matrix in place of the matrix of corrected sums
of squares and cross-products of (8.46). The values of all the elements of the
correlation matrix lie in the interval [−1, 1].

Using the correlation matrix in calculating the regression parameters is tan-
tamount to dividing each of the regressors by the appropriate standard deviation
calculated from the T sample observations. The associated regression parame-
ters are multiplied by the standard deviations. If the dependent variable is also
scaled by its standard deviation, then the regression equation of (8.1) is transformed
into

yt
sy

=
xt1
s1

{s1

sy
β1

}
+ · · ·+ xtk

sk

{sk
sy
βk

}
+
εt
sy
.(8.50)

On the completion of the calculations, the the original scales must be restored to
the estimated regression parameters.

Calculating the Corrected Sum of Squares

The use of the method of Gaussian elimination in calculating the ordinary
least-squares regression estimates has been criticised on the grounds of numerical
inaccuracy. The method works best when the elements of the cross-product matrix
have a limited range of values; and, to reduce this range, it is best, whenever
possible, to take the variables in deviation form. However, some care must be
exercised in calculating the corrected sums of squares and cross-products if they
are not to become an additional source of inaccuracy.

To show the nature of the problem, we may consider the matter of calculating
the variance s2 of a sample [x1, . . . , xT ]. This can be calculated from the sum of
squares of the deviations of the sample values about their mean m:

s2 =
1
T

T∑
t=1

(xt −m)2; m =
1
T

T∑
t=1

xt.(8.51)

Alternatively, it may be calculated by adjusting the raw sum of squares of the
sample values:

s2 =
1
T

{ T∑
t=1

x2
t − Tm2

}
.(8.52)

The latter formula is commonly recommended for hand calculations since it entails
less labour. However, it can lead to significant errors if it is implemented on a
computer whose arithmetic operations are of limited precision.

To understand this, consider a random sample of independently and identically
distributed elements, xt = µ+εt; t = 1, . . . , T . Let E(εt) = 0 and V (εt) = σ2. Then
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the expected values of the two components in the formula of (8.52) are E(
∑
x2
t ) =

T (µ2 + σ2) and E(Tm2) ' Tµ2. If the coefficient of variation σ/µ is small, then
there may be insufficient digits in the ordinary floating-point representations to
reflect accurately the small but crucial difference between the values of

∑
x2
t and

Tm2. Hence the subtraction of one from the other may give an inaccurate value
for the corrected sum of squares. This problem is likely to be a serious one only in
extreme cases.

The problem of rounding error manifests itself more acutely in the business
of cumulating the raw sum of squares

∑
x2
t . (See, amongst others, Gregory [228],

Ling [319] and Malcolm [329].) As the number of the elements which have been
assimilated increases, the size of the running total grows relative to that of its
increments; and there may be a point in the sample beyond which the terms in εt
within the increment x2

t = (µ+ εt)2 cease to have any numerical significance.
One way of dealing with these problems is to use extra digits in the registers to

which the sum
∑
xt = Tm and the sum of squares

∑
x2
t are accumulated. Another

way is to resort to the method of calculating the corrected sum of squares which is
indicated by the formula in (8.51). If there is no concern over the time taken in the
calculations, then one might consider calculating the following sequence of values:

m1 =
1
T

T∑
t=1

xt,

m2 =m1 +
1
T

T∑
t=1

(xt −m1) and

s2 =
1
T

T∑
t=1

(xt −m2)2.

(8.53)

Recalculating the mean as m2 after finding a trial value m1 is an effective way of
overcoming the problems of cumulation which can arise when T is large and when
the number of digits in the register is limited.

The formulae under (8.53) are used in the following Pascal procedure which is
for calculating the correlation matrix corresponding to n data series contained in a
matrix of order T × n.

(8.54) procedure Correlation(n, Tcap : integer;
var x, c : matrix;
var scale,mean : vector);

var
i, j, t, d : integer;
proMean : real;

begin
for j := 1 to n do

begin {j; form the jth sample mean}
proMean := 0.0;
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for t := 1 to Tcap do
proMean := proMean+ x[t, j];

proMean := proMean/Tcap;
mean[j] := 0.0;
for t := 1 to Tcap do
mean[j] := mean[j] + (x[t, j]− proMean);

mean[j] := mean[j]/Tcap+ proMean;
end; {j}

d := 0;
while d < n do

begin {while}
for i := d+ 1 to n do

begin {i}
j := i− d;
c[i, j] := 0.0;
for t := 1 to Tcap do
c[i, j] := c[i, j] + (x[t, i]−mean[i]) ∗ (x[t, j]−mean[j]);

if i <> j then
c[i, j] := c[i, j]/Sqrt(c[i, i] ∗ c[j, j]);

end; {i}
d := d+ 1;

end; {while}
for i := 1 to n do

begin
scale[i] := Sqrt(c[i, i]/Tcap);
c[i, i] := 1.0;

end;

for i := 1 to n do
for j := i+ 1 to n do
c[i, j] := c[j, i];

end; {Correlation}

If the correlation matrix is used in place of the matrix of corrected cross-
products, then what emerges from the Gaussian inversion procedure is the matrix

S′z
{
Z ′(I − Pi)Z

}−1
Sz β̂z

S′z
sy

−β̂′z
Sz
sy

(T −K)
T

σ̂2

s2
y

 ,(8.55)

where Sz is a diagonal matrix of scale factors which are the standard deviations of
the variables in Z and where sy is the standard deviation of the dependent variable.

The following procedure calculates the elements of the matrix of (8.55) which
are then rescaled to obtain the estimates of β and σ2.
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(8.56) procedure GaussianRegression(k, Tcap : integer;
var x, c : matrix);

var
i, j : integer;
intercept : real;
scale,mean : vector;

begin

Correlation(k, Tcap, x, c, scale,mean);
GaussianInversion(k, k − 1, c);
for i := 1 to k do

for j := 1 to k do
begin

if (i < k) and (j < k) then
c[i, j] := c[i, j]/(scale[i] ∗ scale[j])

else if (i < k) and (j = k) then
c[i, j] := (c[i, j] ∗ scale[j])/scale[i]

else if (j < k) and (i = k) then
c[i, j] := (c[i, j] ∗ scale[i])/scale[j]

else
c[i, j] := c[i, j] ∗ Tcap ∗ Sqr(scale[i])/(Tcap− k);

end;
intercept := mean[k];
for i := 1 to k − 1 do
intercept := intercept−mean[i] ∗ c[i, k];

c[k, 1] := intercept;

end; {GaussianRegression}

The procedure takes as one of its parameters the array x which contains the
variables ofX = [Z, y]. On completion, it delivers the moment matrix Z ′(I−Pi)Z in
the locations c[i, j]; i, j := 1 to k−1 and the elements of β̂ in c[i, k]; i := 1 to k−1.
The intercept term α̂ is contained in c[k, 1] whilst the value of σ̂2 is found in c[k, k].

In some applications, it may be desirable to calculate the correlation matrix
in a single pass, even at the cost of sacrificing numerical accuracy. This can be
achieved by calculating the sample moments recursively according to an updating
method which revises the estimates as each new data point is added.

To derive a recursive formula for the sample mean, consider the expressions

(t− 1)mt−1 =x1 + · · ·+ xt−1 and
tmt =x1 + · · ·+ xt−1 + xt

= (t− 1)mt−1 + xt.

(8.57)

Dividing the second equation by t and rearranging gives

mt = mt−1 +
1
t
(xt −mt−1),(8.58)
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which indicates the appropriate algorithm. Here the term xt −mt−1 may be con-
strued as a prediction error; and the recursive scheme which is based upon the
equation is the simplest example of a prediction-error algorithm.

The sample variance s2
t , calculated from t observations, is defined by

ts2
t =

t∑
i=0

(xi −mt)2

= (xt −mt)2 +
t−1∑
i=0

{
(xi −mt−1) + (mt−1 −mt)

}2

= (xt −mt)2 +
t−1∑
i=0

(xi −mt−1)2 + (t− 1)(mt−1 −mt)2.

(8.59)

Here, the third equality is by virtue of a vanishing cross-product. In the final
expression, there are

(xt −mt)2 =
(t− 1)2

t2
(mt−1 − xt)2,

t−1∑
i=0

(xi −mt−1)2 = (t− 1)s2
t−1,

(t− 1)(mt−1 −mt)2 =
t− 1
t2

(xt −mt−1)2.

(8.60)

The first of these comes directly from (8.58) as does the third. The second provides
a definition of s2

t−1, which is the sample variance calculated from t−1 observations.
The three terms on the RHS of the equations combine to give the following recursive
formula which expresses s2

t in terms of s2
t−1:

ts2
t = (t− 1)s2

t−1 −
t− 1
t

(mt−1 − xt)2.(8.61)

Some algebra of a more complicated nature will serve to show that the covariance
ct of the vectors [x1, . . . , xt] and [y1, . . . , yt] may be calculated recursively via the
formula

tct = (t− 1)ct−1 +
t− 1
t

(xt −mt−1)(yt − nt−1),(8.62)

where nt−1 stands for the mean of [y1, . . . , yt−1].
Recursive methods for calculating the ordinary least-squares estimates are

treated at some length in the following chapter where the calculation of the vector
β̂ itself is the subject of a recursion.

Computing the Regression Parameters via the Q–R Decomposition

Experience of the numerical inaccuracies of poorly coded procedures which use
Gaussian elimination in calculating ordinary least-squares regression estimates has
led some authorities to declare that the normal equations ought never to be formed.
(See, for example, Chambers [99, p. 106].)
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The methods which avoid the formation of the normal equations depend upon
finding the so-called Q–R decomposition of the matrix X. This is a matter of
premultiplying X by a series of orthonormal matrices P1, . . . , Pk so as to eliminate
the subdiagonal elements from successive columns. By these means, a matrix is
generated in the form of

Q′X =

[
Q′rX

Q′eX

]
=
[
R
0

]
,(8.63)

where Q′ = Pk · · ·P2P1 is also an orthonormal matrix such that Q′Q = QQ′ = I,
and where R is a nonsingular upper-triangular matrix of order k × k.

An orthonormal matrix represents an isometric transformation. If the vectors
of the matrix X = [x.1, x.2, . . . , x.k] are subjected to such a transformation, then
their lengths and the angles between them are unaffected, and only their orientation
relative to the axes of a fixed coordinate system is altered.

It is clear that an orthonormal transformation P1 can be found which brings the
leading vector x.1 into alignment with the first axis e1 = [1, 0, . . . , 0]′ of the natural
coordinate system. Once this has been accomplished, a second transformation P2

can be found which leaves the first vector unaffected and which brings the second
vector x.2 into alignment with the plane spanned jointly by e1 and the vector
e2 = [0, 1, . . . , 0]′ which lies along the second axis of the coordinate system.

In general, a transformation Pj can be found, to be used at the jth stage of
the procedure, which leaves the leading j − 1 vectors unaffected and brings the jth
vector into alignment with ej . By taking k steps of this procedure, one can obtain
the Q–R decomposition of X which is represented by (8.63) above.

The Pascal code for the Householder method of Q–R decomposition was pre-
sented in the previous chapter under (7.63). Other methods which are available
are the Givens procedure and the Gram–Schmidt procedure. The code for the
Gram–Schmidt procedure is presented in Chapter 10 under (10.26).

To understand the use of the Q–R decomposition in calculating the regres-
sion estimates, consider premultiplying the equation (8.63) by Q = [Qr, Qe]. In
consequence of the condition QQ′ = I, this gives

X = QrR.(8.64)

Substituting the expression on the right into the normal equations X ′Xβ = X ′y
gives

R′Q′rQrRβ̂ = R′Q′ry.(8.65)

By premultiplying this equation by R−1 and by using the condition Q′rQr = I, an
equivalent system is derived in the form of

Rβ̂ = Q′ry.(8.66)

Since R is an upper-triangular matrix, the latter equations can be solved easily for
β̂ = [β̂1, . . . , β̂k]′ by a process of back-substitution beginning with β̂k.
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The elements of equation (8.66) are obtained by subjecting the augmented
matrix [X, y] to the series of Householder transformations comprised in Q′ =
Pk · · ·P2P1. The result is the matrix

Q′[X, y] =
[
R Q′ry
0 Q′ey

]
.(8.67)

In calculating Q′[X, y], a quantity Q′ey is obtained from which the estimate
of the variance σ2 = V (εt) of the disturbances is readily formed. Consider the
expression

(T − k)σ̂2 = y′(I − P )y

= y′
{
I −X(X ′X)−1X ′

}
y

= y′(I −QrQ′r)y.
(8.68)

Given that QrQ′r +QeQ
′
e = QQ′ = I, it follows that I −QrQ′r = QeQ

′
e. Hence

σ̂2 =
y′QeQ

′
ey

T − k
.(8.69)

In addition to the estimates of β and σ2, the value of σ̂2(X ′X)−1 = σ̂2R−1R′
−1

is sought which is the estimate of the dispersion matrix D(β̂). For this purpose,
the matrix B = R−1 may be found by solving the equation RB = I by back-
substitution. The matrix X ′X, which might also be needed, is available in the
form of R′R.

It is interesting to note that the expression X ′X = R′R is just an instance
of the Cholesky decomposition of the moment matrix. In the previous chapter,
the decomposition has been written as X ′X = LL′ where L is a lower-triangular
matrix; and it has been asserted that L is uniquely determined. The uniqueness is
maintained by specifying that the diagonal elements of L are all positive. If this
condition is not imposed on the matrix R, then R′ = LJ , where J is a diagonal
matrix whose nonzero elements have values of 1 and −1.

Presented below is an unadorned procedure for calculating the regression esti-
mates β̂ and σ̂2 using the Householder method for performing the Q–R decompo-
sition of X. To accommodate a model with an intercept term, it is necessary to fill
the leading column of X with units.

(8.70) procedure QRregression(Tcap.k : integer;
var x, y, beta : matrix;
var varEpsilon : real);

var
i, j, t : integer;

begin

Householder(x, y, T cap, k, 1);
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Backsolve(x, beta, y, k, 1);

varEpsilon := 0.0;
for t := k + 1 to Tcap do
varEpsilon := varEpsilon+ y[t, 1] ∗ y[t, 1];

varEpsilon := varEpsilon/(Tcap− k);

end; {QRregression}

The procedure calls upon a subsidiary procedure for solving the equations
Rβ = Q′1y by back-substitution:

(8.71) procedure Backsolve(var r, x, b : matrix;
n, q : integer);

var
i, j, k : integer;

begin {Backsolve}

for j := 1 to q do
begin {j}

for k := n downto 1 do
begin {k}
x[k, j] := b[k, j];
for i := k + 1 to n do
x[k, j] := x[k, j]− r[k, i] ∗ x[i, j];

x[k, j] := x[k, j]/r[k, k];
end; {k}

end; {j}

end; {Backsolve}

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vector
ε within the regression equations y = Xβ + ε are distributed independently and
identically according to a normal law. Under this assumption, the sampling dis-
tributions of the estimates may be derived and various hypotheses relating to the
underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean of
E(x) = µ and a dispersion matrix of D(x) = Σ, we shall write x ∼ N(µ,Σ). A
vector z ∼ N(0, I) with a mean of zero and a dispersion matrix of D(z) = I is
described as a standard normal vector. Any normal vector x ∼ N(µ,Σ) can be
standardised:

(8.72) If T is a transformation such that TΣT ′ = I and T ′T = Σ−1 and if
x ∼ N(µ,Σ), then T (x− µ) ∼ N(0, I).
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Associated with the normal distribution are a variety of so-called sampling
distributions which occur frequently in problems of statistical inference. Amongst
these are the chi-square distribution, the F distribution and the t distribution.

If z ∼ N(0, I) is a standard normal vector of n elements, then the sum of
squares of its elements has a chi-square distribution of n degrees of freedom; and this
is denoted this by z′z ∼ χ2(n). With the help of the standardising transformation
of (8.72), it can be shown that,

(8.73) If x ∼ N(µ,Σ) is a vector of order n, then (x−µ)′Σ−1(x−µ) ∼ χ2(n).

The sum of any two independent chi-square variates is itself a chi-square variate
whose degrees of freedom equal the sum of the degrees of freedom of its constituents.
Thus,

(8.74) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates of m
and n degrees of freedom respectively, then (u + v) ∼ χ2(m + n) is a
chi-square variate of m+ n degrees of freedom.

The ratio of two independent chi-square variates divided by their respective
degrees of freedom has a F distribution which is completely characterised by these
degrees of freedom. Thus

(8.75) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates, then
the variate F = (u/m)/(v/n) has an F distribution of m and n degrees
of freedom; and this is denoted by writing F ∼ F (m,n).

The sampling distribution which is most frequently used is the t distribution.
A t variate is a ratio of a standard normal variate and the root of an independent
chi-square variate divided by its degrees of freedom. Thus

(8.76) If z ∼ N(0, 1) and v ∼ χ2(n) are independent variates, then t =
z/
√

(v/n) has a t distribution of n degrees of freedom; and this is
denoted by writing t ∼ t(n).

It is clear that t2 ∼ F (1, n).

Hypothesis Concerning the Complete Set of Coefficients

We shall develop the common hypothesis tests of the classical model in two
versions. The first version reflects the algebra of the Q–R decomposition and the
second reflects that of the regression estimates which are obtained via the method
of Gaussian elimination.

A start is made by considering the orthogonal decomposition of the disturbance
vector (y − Xβ) = ε ∼ N(0, σ2IT ). Let Q = [Qr, Qe] be the orthonormal matrix
of equation (8.63) which is effective in reducing X to an upper-triangular matrix.
Since Q′Q = QQ′ = I, it follows that Q′ε ∼ N(0, σ2IT ); and, on partitioning, this
becomes [

Q′r
Q′e

]
ε ∼ N

([
0
0

]
, σ2

[
Ik 0
0 IT−k

])
.(8.77)
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1.0 2.0 3.0 4.0

Figure 8.3. The critical region, at the 10% significance level, of an F (5, 60) statistic.

Thus it can be seen that Q′rε ∼ N(0, σ2Ik) and Q′eε ∼ N(0, σ2IT−k) are uncorre-
lated normal vectors which are therefore statistically independent. From this result,
it follows that the equation

ε′ε

σ2
=
ε′QrQ

′
rε

σ2
+
ε′QeQ

′
eε

σ2
(8.78)

represents the decomposition of the chi-square variate ε′ε/σ2 ∼ χ2(T ) into two
independent chi-square variates which are ε′QrQ′rε/σ

2 ∼ χ2(k) and ε′QeQ′eε/σ
2 ∼

χ2(T − k).
As an immediate corollary to this result, it can be deduced that the ratio

F =

{
ε′QrQ

′
rε

k

/
ε′QeQ

′
eε

T − k

}
(8.79)

has an F (T − k, k) distribution.
To see how this ratio can be used in testing an hypothesis relating to the

parameter vector β, consider applying the identities Q′rX = R and Q′eX = 0 to the
equations Q′ry = Q′rXβ +Q′rε and Q′ey = QeXβ +Q′eε. It will be found that

Q′ry=Rβ +Q′rε = Rβ̂,

Q′ey= Q′eε.
(8.80)

The first of these indicates that R(β̂ − β) = Q′rε, from which it follows that (β̂ −
β)′R′R(β̂ − β) = ε′QrQ

′
rε. The second indicates that y′QeQ′ey = ε′QeQ

′
eε. It

follows that a test the hypothesis that β = β�, where β� is some specified value,
can be performed by assessing the value of the statistic

F =

{
(β̂ − β�)′R′R(β̂ − β�)

k

/
y′QeQ

′
ey

T − k

}
,(8.81)
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which will be distributed as an F (k, T − k) variate if the hypothesis is true. If the
value of this F statistic falls in the critical region in the upper tail of the F (k, T−k)
distribution, then the hypothesis is liable to be rejected (see Figure 8.3).

An alternative expression for the statistic, which is compatible with the nota-
tion used in describing the method of Gaussian elimination, is

F =

{
(β̂ − β�)′X ′X(β̂ − β�)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

=
1
σ̂2k

(β̂ − β�)′X ′X(β̂ − β�).

(8.82)

This form of the statistic, which may be understood in reference to equations (8.47),
(8.68) and (8.69), is more intelligible than the form under (8.81), since it indicates
that the test is based on a measure of the distance between the hypothesised value
Xβ� of the systematic component of the regression and the value Xβ̂ which is
suggested by the data. If the two values are remote from each other, then we may
suspect that the hypothesis is at fault.

In the case of the hypothesis β� = 0, the test statistic assumes a particularly
simple form; for then the numerator of (8.81) becomes y′QrQ

′
ry = β̂′R′Rβ̂ =

β̂′X ′Xβ̂. However, it is unusual to postulate that all the elements of β are zeros.
It is more usual to allow one nonzero element in association with a vector of units,
which is tantamount to maintaining the hypothesis that the elements of the vector
y have a common nonzero expected value.

Hypotheses Concerning a Subset of the Coefficients

It is usual to suppose that a subset of the elements of the parameter vector
β are zeros. This represents an instance of a class of hypotheses which specify
values for a subvector β2 within the partitioned model y = X1β1 +Xβ2 +ε without
asserting anything about the values of the remaining elements in the subvector β1.
An appropriate test statistic can be derived by refining the equations (8.80) so as
to take account of the partitioning of X = [X1,X2] wherein X1 has k1 columns and
X2 has k2 = k − k1 columns:

Q′r1y=R11β1 +R12β2 +Q′r1ε = R11β̂1 +R12β̂2,

Q′r2y= R22β2 +Q′r2ε = R22β̂2,

Q′ey= Q′eε.

(8.83)

The second equation indicates that R22(β̂2 − β2) = Q′r2ε. Since Qr2 is a matrix
of k2 orthonormal columns, it follows that Q′r2ε ∼ N(0, σ2I), where I now stands
for the identity matrix of order k2. Therefore, ε′Qr2Q′r2ε/σ

2 ∼ χ2(k2) is a chi-
square variate which is independent of ε′QeQ′eε/σ

2 = y′QeQ
′
ey/σ

2 ∼ χ2(T − k). It
follows that the hypothesis that β2 = β2� can be tested by assessing the value of
the statistic

F =

{
(β̂2 − β2�)′R′22R22(β̂2 − β2�)

k2

/
y′QeQ

′
ey

T − k

}
,(8.84)
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which will be distributed as an F (k2, T −k) variate if the hypothesis is true. In the
case of the hypothesis that β2 = 0, the numerator of this statistic can be rendered
as β̂′2R

′
22R22β̂2/k2 = y′Qr2Q

′
r2y/k2.

These results may be expressed in alternative forms which are more appropriate
when the regression is computed via the method of Gaussian elimination. Consider
the identity

ε′ε= ε′Qr1Q
′
r1ε+ ε′Qr2Q

′
r2ε+ ε′QeQ

′
eε

= ε′P1ε+ ε′(P − P1)ε+ ε′(I − P )ε.
(8.85)

For testing an hypothesis relating to β2, the relevant term of this decomposition is

ε′Qr2Q
′
r2ε= ε′(P − P1)ε

= (Pε)′(I − P1)Pε.
(8.86)

Given that Pε = P (y − Xβ) = Xβ̂ − Xβ and that (I − P1)(Xβ̂ − Xβ) = (I −
P1)(X2β̂2 −X2β2) since (I − P1)X1 = 0, it follows that

ε′Qr2Q
′
r2ε = (β̂2 − β2)′X ′2(I − P1)X2(β̂2 − β2).(8.87)

Therefore an alternative expression for the statistic for testing the hypothesis that
β2 = β2� is

F =
1

σ̂2k2
(β̂2 − β2�)′X ′2(I − P1)X2(β̂2 − β2�).(8.88)

Reference to (8.28) shows that the matrix X ′2(I−P1)X2 may be obtained by invert-
ing a principal minor of the matrix (X ′X)−1. This a laborious operation compared
with the ease with which R′22R22 = X ′2(I−P1)X2 can be formed from the products
of the Q–R decomposition of X.

A limiting case of the F statistic concerns the test of an hypothesis affecting a
single element βi within the vector β. By specialising the expression under (8.88),
a statistic may be derived in the form of

F =
(β̂i − βi�)2

σ̂2wii
,(8.89)

wherein wii stands for the ith diagonal element of (X ′X)−1 = (R′R)−1. If the
hypothesis is true, then this will be distributed according to the F (1, T − k) law.
However, the usual way of assessing such an hypothesis is to relate the value of the
statistic

t =
(β̂i − βi�)√

(σ̂2wii)
(8.90)

to the tables of the t(T − k) distribution. The advantage of the t statistic is that
it shows the direction in which the estimate of βi deviates from the hypothesised
value as well as the size of the deviation.
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Xβ*

Xβ^

y

Figure 8.4. The test of the hypothesis β2 = β2� is based on a measure of
the proximity of the restricted estimate Xβ∗, and the unrestricted estimate
Xβ̂. The USS is the squared distance ‖y −Xβ̂‖2. The RSS is the squared
distance ‖y −Xβ∗‖2.

An Alternative Formulation of the F statistic

An alternative way of forming the F statistic uses the products of two separate
regressions. Consider the identity

ε′(P − P1)ε = ε′(I − P1)ε− ε′(I − P )ε.(8.91)

The term of the LHS is the quadratic product which appears in the numerator of
the F statistic of (8.84) and (8.88). The first term on the RHS can be written as

ε′(I − P1)ε= (y −Xβ)′(I − P1)(y −Xβ)

= (y −X2β2)′(I − P1)(y −X2β2).
(8.92)

Under the hypothesis that β2 = β2�, the term amounts to the residual sum of
squares from the regression of y−X2β2� on X1. It may be described as the restricted
residual sum of squares and denoted by RSS. The second term on the RHS of (8.91)
is just the ordinary residual sum of squares

ε′(I − P )ε= (y −Xβ)′(I − P )(y −Xβ)

= y′(I − P )y.
(8.93)

This may be obtained, equally, from the regression of y on X or from the regression
of y − X2β2� on X; and it may be described as the unrestricted residual sum of
squares and denoted by USS. From these considerations, it follows that the statistic
for testing the hypothesis that β2 = β2� can also be expressed as

F =

{
RSS − USS

k2

/
USS

T − k

}
.(8.94)
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As a matter of interpretation, it is interesting to note that the numerator of
the F statistic is also the square of the distance between Xβ∗, which is the estimate
of the systematic component from the restricted regression, and Xβ̂, which is its
estimate from the unrestricted regression (see Figure 8.4). The restricted estimate
is

Xβ∗=P1(y −X2β2�) +X2β2�

=P1y + (I − P1)X2β2�,
(8.95)

and the unrestricted estimate is

Xβ̂=X1β̂1 +X2β̂2

=Py.
(8.96)

The difference between the two estimates is

Xβ̂ −Xβ∗= (P − P1)y − (I − P1)X2β2�

= (I − P1)(Py −X2β2�)

= (I − P1)(X2β̂2 −X2β2�).

(8.97)

Here the final identity comes from the fact that (I − P1)X1β̂1 = 0. It then follows
from the idempotency of (I−P1) that the square of the distance between Xβ∗ and
Xβ̂ is

(Xβ̂ −Xβ∗)′(Xβ̂ −Xβ∗) = (β̂2 − β2�)′X ′2(I − P1)X2(β̂2 − β2�).(8.98)

The expression on the RHS repeats the expression found in (8.88).
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CHAPTER 9

Recursive Least-Squares
Estimation

In this chapter, we shall develop recursive algorithms which facilitate the revision
of least-squares estimates when new observations become available.

As Young [537] has observed, the theory of recursive least-squares estimation
was first expounded by Gauss [204] in his original tract on the method of least
squares. However, little attention was paid to this aspect of least-squares theory,
which lay dormant for almost a century and a half before it was rediscovered on
two separate occasions. The first rediscovery was by Plackett [395] in 1950, which
was before the advent of efficient on-line electronic computing; and this also passed
almost unnoticed. It was the second rediscovery of the recursive algorithms in 1960
in the context of control theory which was the cue to a rapid growth of interest.
Stemming from the papers of Kalman [281] and Kalman and Bucy [282], a vast
literature on Kalman filtering has since accumulated.

We shall begin the chapter by developing the recursive formulae for estimating
the parameters of an ordinary regression model in the manner of Plackett. Then
we shall develop more general versions of the formulae within the wider context of
the model of Kalman.

Recursive Least-Squares Regression

Imagine that we have already calculated the ordinary least-squares estimate
β̂t−1 of β in the model (Yt−1;Xt−1β, σ

2I), where Y ′t−1 = [y1, . . . , yt−1] is a vector of
t− 1 scalar observations and X ′t−1 = [x′1., . . . , x

′
t−1.] is a matrix of order k× (t− 1)

comprising t− 1 successive observations of a vector of k explanatory variables. In
this notation, xt. = [xt1, . . . , xtk] stands for a row vector of k observations taken at
the time t. Given the new information which is provided by the observations yt,
xt., we wish to form a revised or updated estimate of β in the manner which makes
best use of the previous calculations.

The existing ordinary least-squares estimator β̂t−1 may be defined as the so-
lution of the equation

X ′t−1Xt−1β̂t−1 = X ′t−1Yt−1,(9.1)

which may be written as

Mt−1β̂t−1 = qt−1,(9.2)
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where Mt−1 = X ′t−1Xt−1 and qt−1 = X ′t−1Yt−1. If we define

Mt = Mt−1 + x′t.xt. and qt = qt−1 + x′t.yt,(9.3)

then the equations from which the new estimate β̂t is derived may be expressed as

Mtβ̂t = qt.(9.4)

On the RHS of this expression, there is

qt = qt−1 + x′t.yt

= (Mt − x′t.xt.)β̂t−1 + x′t.yt

=Mtβ̂t−1 + x′t.(yt − xt.β̂t−1).

(9.5)

On putting the final expression into (9.4) and rearranging the result, we find that

β̂t = β̂t−1 +M−1
t x′t.(yt − xt.β̂t−1)

= β̂t−1 + κt(yt − xt.β̂t−1);
(9.6)

and it can be seen that the updated estimate β̂t differs from the previous estimate
β̂t−1 by a function of the error ht = yt − xt.β̂t−1 which comes from predicting yt
by xt.β̂t−1.

The method by which the revised estimate of β is obtained may be described
as a filtering process which maps the sequence of prediction errors into a sequence
of revisions; and the vector κt = M−1

t x′t. may be described as the gain of the filter.
It is notable that, as the value of t increases, the values of the elements in M−1

t ,
and therefore the values of those in κt, will decrease. Thus, the impact of successive
prediction errors upon the values of the estimate of β will diminish as the amount
of information already incorporated in the estimate increases.

The Matrix Inversion Lemma

The burden of computation can be eased by employing a scheme for calculating
the inverse matrix M−1

t by modifying the value of M−1
t−1. The scheme depends upon

the so-called matrix inversion lemma which provides an expression for the inverse
of the matrix sum

A = C ′DC +B,(9.7)

wherein B and D are nonsingular matrices. To find the inverse, we may begin by
premultiplying the sum by A−1 and postmultiplying it by B−1 which gives

B−1 = A−1C ′DCB−1 +A−1.(9.8)

Then, if we postmultiply by C ′, we get

B−1C ′=A−1C ′DCB−1C ′ +A−1C ′

=A−1C ′D(CB−1C ′ +D−1),
(9.9)
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which leads to the identity

B−1C ′(CB−1C ′ +D−1)−1 =A−1C ′D

= (C ′DC +B)−1C ′D.
(9.10)

Postmultiplying again by CB−1 gives

B−1C ′(CB−1C ′ +D−1)−1CB−1 = A−1C ′DCB−1.(9.11)

When the expression on the LHS is used in equation (9.8), we can derive the identity

A−1 = (C ′DC +B)−1

=B−1 −B−1C ′(CB−1C ′ +D−1)−1CB−1.
(9.12)

This formula can be applied directly to show that

M−1
t = (Mt−1 + x′t.xt.)

−1

=M−1
t−1 −M

−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + 1)−1xt.M

−1
t−1.

(9.13)

Given that M−1
t−1 has a known value, the only inversion which is entailed in finding

M−1
t concerns the scalar quantity 1 + xt.M

−1
t−1x

′
t..

The expression under (9.13) may be substituted into the formula for the re-
cursive least-squares estimator β̂t which is to be found under (9.6). In fact, the
formula contains the factor κt = M−1

t x′t.. The identity under (9.10) serves to show
that

κt =M−1
t x′t.

= (Mt−1 + x′t.xt.)
−1x′t.

=M−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + 1)−1.

(9.14)

Using this expression in (9.6), we get

β̂t = β̂t−1 +M−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + 1)−1(yt − xt.β̂t−1).(9.15)

Prediction Errors and Recursive Residuals

Consider more closely the error of predicting yt as xt.β̂t−1. Let the vector of
the disturbances, which are independently and identically distributed, be written
as Et−1 = [ε1, . . . , εt−1]′. Then the prediction error is

yt − xt.β̂t−1 = yt − xt.(X ′t−1Xt−1)−1X ′t−1Yt−1

= (xt.β + εt)− xt.(X ′t−1Xt−1)−1X ′t−1(Xt−1β + Et−1)

= εt − xt.M−1
t−1X

′
t−1Et−1

=ht.

(9.16)
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We shall assume that there is no prior information about the parameter vector β.
Then, if the t × k matrix Mt has rank(Mt) = min{t, k}, the first k observations
can used in forming an initial estimate of β. Given that E(εt) = 0 for all t, and
assuming that the recursion starts at t = k + 1, it is clear that E(ht) = 0 for all
t ≥ k + 1. Also, it follows from (9.16) that

V (ht) =V (εt) + xt.M
−1
t−1X

′
t−1D(Et−1)Xt−1M

−1
t−1x

′
t.

=σ2(1 + xt.M
−1
t−1x

′
t.),

(9.17)

since D(Et−1) = σ2It−1 and C(εt, Et−1) = 0.
The prediction errors are uncorrelated. The covariance of the errors ht and hs

is given by

C(ht, hs) = E

[{
εt − xt.M−1

t−1

t−1∑
j=1

x′j.εj

}{
εs − xs.M−1

s−1

s−1∑
l=1

x′l.εl

}′]
.(9.18)

When t < s, the terms of the product, disregarding their signs, are

E(εtεs) = 0,

E

[{
xt.M

−1
t−1

∑t−1
j=1 x

′
j.εt

}
εs

]
= 0,

E

[
εt

{
xs.M

−1
s−1

∑s−1
l=1 x

′
l.εl

}′]
= σ2xs.M

−1
s−1x

′
t.,

E

[{
xt.M

−1
t−1

∑t−1
j=1 x

′
j.εj

}{
xs.M

−1
s−1

∑s−1
l=1 x

′
l.εl

}′]
= σ2xt.M

−1
s−1x

′
s..

(9.19)

Taking account of the signs of the terms, we find that

C(ht, hs) = 0.(9.20)

Imagine now that the disturbances εt are distributed independently, identically
and normally for all t. Then it follows that the standardised prediction errors
ωt = σ2ht/V (ht) are also distributed normally, independently and identically with
a variance of σ2.

We can also write a decomposition of the residual sum of squares in terms of
the prediction errors. Consider the following identities:

St = (Yt −Xtβ̂t)′(Yt −Xtβ̂t)

= (Yt −Xtβ̂t−1)′(Yt −Xtβ̂t−1)− (β̂t − β̂t−1)′X ′tXt(β̂t − β̂t−1)

=
{
St−1 + (yt − xt.β̂t−1)2

}
− xt.(X ′tXt)−1x′t.(yt − xt.β̂t−1)2.

(9.21)

Here the second equality depends upon the identity X ′tYt = X ′tXtβ̂t, whilst the
final equality uses the identity from (9.6). On rearranging the terms, we get

St = St−1 +
(
1− xt.M−1

t x′t.
)
(yt − xt.β̂t−1)2.(9.22)
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Here the recursion starts when t = k + 1 with Sk = 0 as the initial condition.
Now observe that (9.14) implies that

1− xt.M−1
t x′t. =

1
xt.M

−1
t−1x

′
t. + 1

.(9.23)

It follows that (9.22) may be rewritten as

St =St−1 +
(yt − xt.β̂t−1)2

xt.M
−1
t−1x

′
t. + 1

=St−1 + w2
t =

t∑
j=k+1

w2
j .

(9.24)

In interpreting this formula, we should note that σ2M−1
t−1 = D(β̂t−1) is the

dispersion matrix of the pre-existing estimate of β, whilst σ2(1 + xt.M
−1
t−1x

′
t.) =

V (ht) is the variance of the prediction error ht = yt − xt.β̂t−1. It follows that
wk+1, wk+2, . . . , wt is a sequence of uncorrelated errors with E(wj) = 0 and
E(wj) = σ2 for all j. These are commonly described as recursive residuals—see
Brown et al. [82].

The Updating Algorithm for Recursive Least Squares

At this stage, it is appropriate to provide the code which will serve to generate
the updated values M−1

t and β̂t from the previous values M−1
t−1 and β̂t−1 and

from the observations yt and xt.. The algorithm may be generalised slightly by
the inclusion of an additional parameter λt, together with a choice of sign, whose
purpose will become apparent in subsequent sections. The updated values may be
obtained via the following sequence of computations:

(i) ht = yt − xt.β̂t−1,(9.25)

(ii) gt = M−1
t−1x

′
t.,

(iii) ft = xt.gt ± λt
= xt.M

−1
t−1x

′
t. ± λt,

(iv) κt = gtf
−1
t

= M−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. ± λt)−1,

(v) β̂t = β̂t−1 + κtht

= β̂t−1 + κt(yt − xt.β̂t−1),

(vi) M−1
t =

1
λ

{
M−1
t−1 − κtg′t

}
=

1
λ

{
M−1
t−1 −M

−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. ± λt)−1xt.M

−1
t−1

}
.
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In the following code, which implements these computations, the elements of the
matrix M−1 are contained in the array P .

(9.26) procedure RLSUpdate(x : vector;
k, sign : integer;
y, lambda : real;
var h : real;
var beta, kappa : vector;
var p : matrix);

var
f : real;
g : vector;
i, j : integer;

begin {RLSUpdate}
h := y;
f := sign ∗ lambda;

for i := 1 to k do
begin {i}
g[i] := 0.0;
for j := 1 to k do
g[i] := g[i] + p[i, j] ∗ x[j];

f := f + g[i] ∗ x[i];
h := h− x[i] ∗ beta[i];

end; {i}

for i := 1 to k do
begin {i}
kappa[i] := g[i]/f ;
beta[i] := beta[i] + kappa[i] ∗ h;
for j := i to k do

begin
p[i, j] := (p[i, j]− kappa[i] ∗ g[j])/lambda;
p[j, i] := p[i, j];

end;
end; {i}

end; {RLSUpdate}

Experience with this algorithm indicates that it is sensitive to the effects of
rounding error which occur when two quantities of the same sign are subtracted.
It is also possible that the computed values of the matrix M−1, or P as it is
represented in the code, might lose the property of positive-definiteness. This may
occur if some of the values of β̂ become virtually constant in consequence of an
abundance of data.
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To avert such problems, one may use the so-called square-root filter which is
commonly regarded as being, numerically, the most stable updating algorithm. The
square-root algorithm depends upon a factorisation of the form M−1 = SS′ which
enables one to write the updated moment matrix

M−1
t =

1
λ

{
M−1
t−1 −M

−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + λt)−1xt.M

−1
t−1

}
(9.27)

as

StS
′
t =

1
λ
St−1

{
I − S′t−1x

′
t.(xt.St−1S

′
t−1x

′
t. + λt)−1xt.St−1

}
S′t−1

=
1
λ
St−1

{
I − gtg

′
t

g′tgt + λt

}
S′t−1,

(9.28)

where gt = S′t−1x
′
t.. Using the factorisation

I − gg′

g′g + λ
= (I − αgg′)2,(9.29)

one may form the updated value of S according to

St =
1√
λ
St−1(I − αtgtg′t).(9.30)

To find the value for the scalar α, one must solve a quadratic equation in the
form of

α2g′g − 2α+ (λ+ g′g)−1 = 0 or, equivalently,

α2(f − λ)− 2α+ f−1 = 0,
(9.31)

where f = λ+ g′g. The solution is

α =
1±

√
λf−1

f − λ
=

1
f ±
√
fλ

;(9.32)

and, to avoid cancellation, one should take the positive square root in the final
expression.

The updated values St, βt may be obtained from the previous values St−1,
βt−1 and from the observations yt, xt. by pursuing the following sequence of
computations:
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(9.33) (i) ht = yt − xt.β̂t−1,

(ii) gt = S′t−1x
′
t.,

(iii) ft = λt + g′tgt

= λt + xt.M
−1
t−1x

′
t.,

(iv) ρt = St−1gt

= M−1
t−1x

′
t.,

(v) β̂t = β̂t−1 + ρtf
−1
t ht

= β̂t−1 + κt(yt − xt.β̂t−1),

(vi) αt = (f +
√
fλ)−1,

(vii)
√
λSt = St−1 − αtρtg′t

= St−1(I − αtgtg′t).

The computations are implemented in the following code:

(9.34) procedure SqrtUpdate(x : vector;
k : integer;
y, lambda : real;
var h : real;
var beta, kappa : vector;
var s : matrix);

var
f, alpha, sqrtlambda : real;
g, rho : vector;
i, j : integer;

begin {RLSUpdate}
h := y;
f := lambda;
for i := 1 to k do

begin {i}
g[i] := 0.0;
for j := 1 to k do
g[i] := g[i] + s[j, i] ∗ x[j];

f := f + g[i] ∗ g[i];
h := h− x[i] ∗ beta[i];

end; {i}

alpha := 1/(f + Sqrt(f ∗ lambda));
sqrtlambda := Sqrt(lambda);
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for i := 1 to k do
begin {i}
rho[i] := 0;
for j := 1 to k do
rho[i] := rho[i] + s[i, j] ∗ g[j];

kappa[i] := rho[i]/f ;
beta[i] := beta[i] + rho[i] ∗ h/f ;
for j := 1 to k do
S[i, j] := (S[i, j]− alpha ∗ rho[i] ∗ g[j])/sqrtlambda;

end; {i}

end; {SqrtUpdate}

Initiating the Recursion

It is necessary to specify some starting values for the recursive least-squares
algorithm. Here we have wide discretion. If the object is simply to replicate the
values of the ordinary least-squares estimates of β = [β1, . . . , βk]′ for each value of
the sample size in excess of t = k, then we must begin the recursion at the point
t = k + 1 using the initial values

β̂k = (X ′kXk)−1X ′kYk

=X−1
k Yk and

Mk =X ′kXk.

(9.35)

Here it is assumed that rank(Xk) = k, which is to say that the k × k matrix
X ′k = [x′1., . . . , x

′
k.] is nonsingular and is therefore capable of generating an estimate.

On the other hand, we may be prepared to attribute to β a prior value β̂0, even
before making any observations. This can be done by attributing to the parameter
vector a complete prior probability density function with β̂0 as the expected value.
In that case, a dispersion matrix σ2M−1

0 = D(β̂0 − β) must also be specified. If
there is doubt about the accuracy of β̂0, then large values should be given to the
elements of D(β̂0−β). In this way, the prior assumptions are prevented from having
too great an effect upon the subsequent estimates of β.

The business of incorporating the prior assumptions into the initial recursive
estimates is straightforward in the case of a normal prior probability density func-
tion; for it is simply a matter of estimating the parameter β in the system[

β̂0

y1

]
=
[
Ik
x1.

]
β +

[
η0

ε1

]
,(9.36)

where η0 = β̂0 − β. The dispersion matrix for the combined disturbance term is

D

[
η0

ε1

]
= σ2

[
M−1

0 0

0 1

]
.(9.37)
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For a regression equation in the form of g = Wβ+ ε, where ε has D(ε) = σ2Q,
the efficient generalised least-squares estimator of β is given by

β̂ = (W ′Q−1W )−1W ′Q−1g,(9.38)

whilst the dispersion of the estimator is given by

D(β̂) = σ2(W ′Q−1W )−1.(9.39)

It follows that the efficient estimator of β in equation (9.36) is given by

β̂1 = (M0 + x′1.x1.)−1(M0β̂0 + x′1.y1)

= (M0 + x′1.x1.)−1(q0 + x′1.y1)

=M−1
1 q1.

(9.40)

This is the estimator which one might expect in view of equations (9.3) and (9.4).

Estimators with Limited Memories

The form of the ordinary least-squares estimator indicates that the data com-
prised in the estimate β̂ are equally weighted, with the effect that recent data and
ancient data are valued equally. This is appropriate if the process generating the
data is invariant. However, if there is doubt about the constancy of the regression
parameters, then it may be desirable to give greater weight to the more recent data;
and it might even be appropriate to discard data which has reached a certain age
and has passed its retirement date.

The simplest way of accommodating parametric variability is to base the es-
timate on only the most recent portion of the data. As each new observation is
acquired, another observation may be removed; so that, at any instant, the estima-
tor comprises only n data points.

The recursive updating of the estimate can be accomplished in two stages.
Imagine that an estimate calculated at time t− 1 is at hand which is given by

β̂t−1 = M−1
t−1qt−1,(9.41)

where

Mt−1 =
n∑
j=1

x′t−j.xt−j.(9.42)

and

qt−1 =
n∑
j=1

x′t−j.yt−j .(9.43)

The first step is to remove the data which was acquired at time t− n. Let

M∗t = Mt−1 − x′t−n.xt−n.(9.44)
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and

q∗t = qt−1 − x′t−n.yt−n.(9.45)

Then an intermediate estimate is defined by

β̂∗t = M∗−1
t q∗t .(9.46)

Here the term q∗t may be expressed as follows:

q∗t = qt−1 − x′t−n.yt−n
=Mt−1β̂t−1 − x′t−n.yt−n
= (M∗t + x′t−n.xt−n.)β̂t−1 − x′t−n.yt−n
=M∗t β̂t−1 − x′t−n.(yt−n − xt−n.β̂t−1).

(9.47)

Therefore, the intermediate estimator is given by

β̂∗t = β̂t−1 −M∗−1
t x′t−n.(yt−n − xt−n.β̂t−1)

= β̂t−1 +M−1
t−1x

′
t−n.(xt−n.M

−1
t−1x

′
t−n. − 1)−1(yt−n − xt−n.β̂t−1),

(9.48)

where the second equality is by virtue of the identity

M∗−1
t x′t−n. = (Mt−1 − x′t−n.xt−n.)x′t−n.

=−M−1
t−1x

′
t−n.(xt−n.M

−1
t−1x

′
t−n. − 1)−1,

(9.49)

which can be demonstrated using (9.10).
The term M∗−1

t in isolation is found by applying the matrix inversion formula
of (9.12) to (9.44):

M∗−1
t = M−1

t−1 −M
−1
t−1x

′
t−n.(xt−n.M

−1
t−1x

′
t−n. − 1)−1xt−n.M

−1
t−1.(9.50)

In the second stage, the new information is included. Let

Mt = M∗t + x′t.xt.(9.51)

and

qt = q∗t−1 + x′t.yt.(9.52)

Then the updated estimator is defined by

β̂t = M−1
t qt.(9.53)

The latter is calculated as

β̂t = β̂∗t +M∗−1
t x′t.(xt.M

∗−1
t x′t. + 1)−1(yt − xt.β̂∗t ),(9.54)
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whilst the inverse of the moment matrix is calculated according to

M−1
t = M∗−1

t −M∗−1
t x′t.(xt.M

∗−1
t x′t. + 1)−1xt.M

∗−1
t .(9.55)

The two updating steps of rolling regression, depicted respectively by the equa-
tions (9.48) and (9.54), can both be realised via the RLSUpdate procedure of (9.26).

Discarding observations which have passed a date of expiry is an appropriate
procedure when the processes generating the data are liable, from time to time, to
undergo sudden structural changes. For it ensures that any misinformation which
is conveyed by data which predate a structural change will not be kept on record
permanently. However, if the processes are expected to change gradually in a more
or less systematic fashion, then a gradual discounting of old data may be more
appropriate. An exponential weighting scheme might serve this purpose.

Let the cross-product matrices of the discounted data be represented by

Mt =
t−1∑
j=0

λjx′t−j.xt−j. + λtM0(9.56)

and

qt =
t−1∑
j=0

λjx′t−j.yt−j + λtq0.(9.57)

Then the corresponding estimate of β at time t may be defined, once more, by an
equation in the form of (9.53). However, if M0 = 0 and q0 = 0, then the estimator,
which cannot be calculated before t = k, can also be written in the form of a
generalised least-squares estimator:

β̂t = (X ′tΛXt)−1X ′tΛYt,(9.58)

with Λ = diag(λt−1, . . . , λ, 1).
The moment matrices can be expressed in an incremental form. Consider

subtracting

λMt−1 =
t−1∑
j=1

λjx′t−j.xt−j. + λtM0(9.59)

from Mt defined above in (9.56). This gives x′t.xt. = Mt − λMt−1 or

Mt = x′t.xt. + λMt−1.(9.60)

Likewise, by subtracting

λqt−1 =
t−1∑
j=1

λjx′t−j.qt−j + λtq0(9.61)
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from qt, one finds that

qt = x′t.yt + λqt−1.(9.62)

To derive a recursive formula, we may write the estimator in the form of

β̂t = β̂t−1 +M−1
t x′t.(yt − xt.β̂t−1),(9.63)

which is familiar from equation (9.6). Then we may use the identities of (9.10) and
(9.12) to show that

M−1
t = (λMt−1 + x′t.xt.)

−1

=
1
λ

{
M−1
t−1 −M

−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + λ)−1xt.M

−1
t−1

}
,

(9.64)

and that

M−1
t x′t. = M−1

t−1x
′
t.(xt.M

−1
t−1x

′
t. + λ)−1.(9.65)

The latter may be used in equation (9.63) to give

β̂t = β̂t−1 +M−1
t−1x

′
t.(xt.M

−1
t−1x

′
t. + λ)−1(yt − xt.β̂t−1).(9.66)

We should end this section by noting that it is possible to combine the two
memory processes which we have described by applying an exponential weighting
scheme to the recent data and by discarding data which has become too old.

The Kalman Filter

We turn now to the topic of the Kalman filter. This may be regarded as a
natural extension of the preceding topic which is the recursive estimation of the
classical regression model; and it should be possible to build upon the results which
are already established. However, in the ensuing sections, we shall provide a self-
contained account of the Kalman filter; and a new notation will be adopted.

The Kalman filter is a system which accommodates a very wide range of mod-
els; and by adopting a new notation one can avoid making references automatically
to the regression model. As will be seen in an example, only a few elaborations
are needed to develop the regression model and the associated system of recursive
estimation into a fully-fledged Kalman system. The consequence is that some of the
recursive formulae which have been derived in the context of the regression model—
such as those under (9.63)–(9.66)—will reappear in the more general context of the
Kalman filter.

The technique of Kalman filtering depends upon a model consisting of two
vector equations. The first equation describes the evolution of a vector ξt whose
elements record the state of a system at a point in time. This so-called state-
transition equation has the form of

ξt = Φtξt−1 + νt,(9.67)
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wherein Φt is the transition matrix and νt is a vector of stochastic disturbances
which is independent of ξt−1 and which has E(νt) = 0 and D(νt) = Ψt. It may be
assumed that the values of Φt and Ψt are known.

In general, the state variables will not be directly observable. Instead, the
information on the state of the system is conveyed by a vector of observations yt
which is related to the state vector ξt via the measurement equation

yt = Htξt + ηt.(9.68)

This is the second of the two equations. Here Ht, which has a known value, is
the so-called measurement matrix and ηt is a vector of measurement errors. It is
assumed that ηt is independent of ξt and that it has E(ηt) = 0 and D(ηt) = Ωt,
where Ωt is known.

In many applications, the quantities Φt, Ψt, Ht and Ωt will be constant, and
their temporal subscripts may be deleted.

The aim of the Kalman filter is to estimate the state vector ξt. A process of
estimation which keeps pace with the data by generating an estimate of the current
state vector ξt with each new observation yt is described as filtering. The retro-
spective enhancement of a state estimate using data which has arisen subsequently
is described as smoothing. The estimation of a future state vector is described as
prediction. We shall treat each of these matters in turn.

Example 9.1. An example of the equations (9.67) and (9.68) is provided by a
regression model with time-varying coefficients. The equations of this model at
time t are

βt = Φβt−1 + νt,(9.69)

yt = xt.βt + εt,(9.70)

where νt is a random variable with V (νt) = λ for all t. The first of these equations,
which indicates that the regression coefficients follow a first-order vector autore-
gressive process, corresponds to the state-transition equation (9.67). The second
equation, which is in the form of the ordinary regression equation, corresponds to
the measurement equation (9.68).

The flexibility of the state-space formulation is demonstrated when equation
(9.69) is replaced by the more general equation

βt − µ = Φ(βt−1 − µ) + νt.(9.71)

This specification is to be preferred whenever it is reasonable to assume that the
distribution of βt is centred on a nonzero value of µ. By defining δt = βt − µ and
µt = µ for all t, we can write the system comprising equations (9.70) and (9.71) as[

µt
δt

]
=
[
I 0
0 Φ

] [
µt−1

δt−1

]
+
[

0
νt

]
,(9.72)

yt =
[
xt. xt.

] [ µt
δt

]
+ εt.(9.73)
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Filtering

The object of Kalman filtering is to find unbiased estimates of the sequence
of the state vectors ξt via a recursive process of estimation. The process starts at
time t = 1; and it is assumed that prior information on the previous state vector
ξ0 is available in the form of an unbiased estimate x0 which has been drawn from
a distribution with a mean of ξ0 and a dispersion matrix of P0.

If the process described by equation (9.68) is stationary, then we should set
x0 = E(ξ0) = 0, which is the unconditional expectation; and it should be possible
to infer the corresponding dispersion matrix P0 from the other parameters of the
model.

If the process is nonstationary, then it may be necessary to estimate the initial
state vector from data which is set aside for the purpose. At the same time, large
values should be attributed to the elements of P0 to reflect the low precision of
the initial estimate. In the terminology of Bayesian statistics, this is a matter of
attributing a diffuse prior distribution to ξ0; and, recently, the procedure has been
formalised in a model described as the diffuse Kalman filter—see De Jong [148] and
Ansley and Kohn [25].

In each time period, new information on the system is provided by the vector
yt; and estimates of ξt may be formed both before and after the receipt of this
information. The estimate of the state at time t formed without a knowledge of yt
will be denoted by xt|t−1; whilst the estimate which incorporates the information
of yt will be denoted by xt.

In the absence of the information of yt, the estimate xt|t−1 of ξt comes directly
from equation (9.67) when ξt−1 is replaced by xt−1 and νt is replaced by E(νt) = 0.
Thus

xt|t−1 = Φtxt−1.(9.74)

The mean-square-error dispersion matrix of this estimator will be denoted by

Pt|t−1 = E
{

(ξt − xt|t−1)(ξt − xt|t−1)′
}
,(9.75)

whilst that of the updated estimator xt will be denoted by

Pt = E
{

(ξt − xt)(ξt − xt)′
}
.(9.76)

These dispersion matrices may be given a classical interpretation by considering
ξt to have a fixed unknown value and by imagining its estimates xt|t−1 and xt to
be subject to sampling variability—see Duncan and Horn [163], for example. In
a subsequent Bayesian reinterpretation, ξt becomes a random variable with xt|t−1

and xt as its conditional expectations.
To derive the expression for Pt|t−1 in terms of Pt−1, we subtract equation (9.74)

from equation (9.67) to give

ξt − xt|t−1 = Φt(ξt−1 − xt−1) + νt.(9.77)
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Then, since ξt−1 − xt−1 and νt are statistically independent, and since E(νtν′t) =
D(νt) = Ψt, it follows that

Pt|t−1 = ΦtPt−1Φ′t + Ψt.(9.78)

Before learning its value, we may predict yt from equation (9.68) by replacing
ξt by its estimate xt|t−1 and replacing ηt by E(ηt) = 0. This gives

ŷt|t−1 = Htxt|t−1.(9.79)

The mean-square-error dispersion matrix of this prediction is

Ft = E
{

(yt − ŷt|t−1)(yt − ŷt|t−1)′
}
.(9.80)

To express Ft in terms of Pt|t−1, we subtract equation (9.79) from equation
(9.68) to give

et = yt − ŷt|t−1

=Ht(ξt − xt|t−1) + ηt.
(9.81)

Then, since ξt − xt|t−1 and ηt are statistically independent, and since E(ηη′t) =
D(ηt) = Ωt, it follows that

Ft = HtPt|t−1H
′
t + Ωt.(9.82)

The business of incorporating the new information provided by yt into the
estimate of the state vector may be regarded as a matter of estimating the parameter
ξt in the system [

xt|t−1

yt

]
=

[
Ik

Ht

]
ξt +

[
ζt

ηt

]
,(9.83)

where ζt = xt|t−1 − ξt. The system is similar to the regression equation under
(9.36), but it is distinguished from the latter by the fact that ξt is not a constant
parameter but is, instead, a value realised by a random variable. The dispersion
matrix for the combined disturbance term is

D

[
ζt

ηt

]
=

[
Pt|t−1 0

0 Ωt

]
.(9.84)

By applying the method of generalised least squares, we may obtain an estimating
equation for ξt in the form of

xt = (P−1
t|t−1 +H ′tΩ

−1
t Ht)−1(P−1

t|t−1xt|t−1 +H ′tΩ
−1
t yt)

=Pt(P−1
t|t−1xt|t−1 +H ′tΩ

−1
t yt),

(9.85)

242



9: RECURSIVE LEAST-SQUARES ESTIMATION

where

Pt = (P−1
t|t−1 +H ′tΩ

−1
t Ht)−1(9.86)

is the dispersion matrix of the estimator. Using the matrix inversion lemma, we
can rewrite this as

Pt = Pt|t−1 − Pt|t−1H
′
t(HtPt|t−1H

′
t + Ωt)−1HtPt|t−1,(9.87)

which is a generalisation of the equation to be found under (9.13).
Combining equation (9.87) with the expression for Pt+1|t which is indicated by

equation (9.78) gives the so-called Riccati equation:

Pt+1|t = Φt+1

{
Pt|t−1−Pt|t−1H

′
t(HtPt|t−1H

′
t + Ωt)−1HtPt|t−1

}
Φ′t+1+Ψt+1.(9.88)

This is a difference equation which provides a means for generating recursively the
dispersion of the state prediction.

To give equation (9.85) a form which is amenable to a recursive procedure, we
may consider the identity

P−1
t|t−1xt|t−1 +H ′tΩ

−1yt = (P−1
t −H ′tΩ−1

t Ht)xt|t−1 +H ′tΩ
−1
t yt

=P−1
t xt|t−1 +H ′tΩ

−1
t (yt −Htxt|t−1).

(9.89)

Using this on the RHS of equation (9.85) gives

xt =xt|t−1 + PtH
′
tΩ
−1
t (yt −Htxt|t−1)

=xt|t−1 +Kt(yt −Htxt|t−1)

= (I −KtHt)xt|t−1 +Ktyt,

(9.90)

wherein Kt = PtH
′
tΩ
−1
t is commonly described as the Kalman gain. Using (9.86)

and the identity of (9.10), we can show that

Kt =PtH
′
tΩ
−1
t

= (P−1
t|t−1 +H ′tΩ

−1
t Ht)−1H ′tΩ

−1
t

=Pt|t−1H
′
t(HtPt|t−1H

′
t + Ωt)−1.

(9.91)

Therefore the estimating equation can be written as

xt = xt|t−1 + Pt|t−1H
′
t(HtPt|t−1H

′
t + Ωt)−1(yt −Htxt|t−1).(9.92)

Example 9.2. A specialised version of equation (9.92) has already appeared under
(9.15) in the context of the recursive estimation of the ordinary regression model.
Another, more general, version the equation is to be found under (9.66) where it
relates to the discounted least-squares estimator which applies an exponentially
decaying memory to the data. The performance of discounted least squares is
similar to that of the estimator which arises from applying the techniques of Kalman
filtering to a regression model with time-varying coefficients of the sort depicted by
equations (9.69) and (9.70) when Φ = I within the former.
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A Summary of the Kalman Equations

The algebra associated with the Kalman filter is extensive, and it needs to be
summarised. In the table below, which provides a synopsis, we use It = {y1, . . . , yt}
and It−1 = {y1, . . . , yt−1} to denote the information available at times t and t− 1
respectively. The numbers under which the equations have appeared previously are
written on the right.

THE SYSTEM EQUATIONS

ξt = Φtξt−1 + νt,

yt = Htξt + ηt,

State Transition

Observation

(9.67)

(9.68)

E(νt) = 0, D(νt) = Ψt,

E(ηt) = 0, D(ηt) = Ωt.

System Disturbance

Measurement Error

CONDITIONAL EXPECTATIONS

E(ξt|It−1) = xt|t−1, D(ξt|It−1) = Pt|t−1,

E(ξt|It) = xt, D(ξt|It) = Pt,

E(yt|It−1) = ŷt|t−1, D(yt|It−1) = Ft.

State Prediction

State Estimate

Observation Prediction

THE KALMAN FILTER

State Prediction

xt|t−1 = Φtxt−1,

Pt|t−1 = ΦtPt−1Φ′t + Ψt,

State Prediction

Prediction Variance

(9.74)

(9.78)

Observation Prediction

ŷt|t−1 = Htxt|t−1,

Ft = HtPt|t−1H
′
t + Ωt,

Observation Prediction

Prediction Variance

(9.79)

(9.82)

Auxiliary Variables

et = yt −Htxt|t−1,

Kt = Pt|t−1H
′
tF
−1
t ,

Prediction Error

Kalman Gain

(9.81)

(9.91)

State Prediction Updating

xt = xt|t−1 +Ktet,

Pt = Pt|t−1 −KtF
−1
t K ′t.

State Estimate

Estimate Variance

(9.92)

(9.87)
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An Alternative Derivation of the Kalman Filter

An alternative derivation of the Kalman filter is available which is based on
the calculus of conditional expectations. Consider the jointly distributed random
vectors x and y which bear the linear relationship E(y|x) = α + B′{x − E(x)}.
Then the following conditions apply:

(9.93) (i) E(y|x) = E(y) + C(y, x)D−1(x)
{
x− E(x)

}
,

(ii) D(y|x) = D(y)− C(y, x)D−1(x)C(x, y),

(iii) E
{
E(y|x)

}
= E(y),

(iv) D
{
E(y|x)

}
= C(y, x)D−1(x)C(x, y),

(v) D(y) = D(y|x) +D
{
E(y|x)

}
,

(vi) C
{
y − E(y|x), x

}
= 0.

Here the familiar forms of the conditional expectation and the conditional
dispersion are given under (i) and (ii). The result under (iii) follows from (i) when
it is recognised that, on the RHS, we have E{x− E(x)} = 0. To obtain the result
under (iv), we may begin by recognising that, on the RHS of (i), only the second
term is stochastic. To find the dispersion of this term, we may use the fact that
D[A{x − E(x)}] = AD(x)A′. The result under (v) is simply a combination of (ii)
and (iv). Finally, to obtain the result under (vi), which indicates that the error
associated with the conditional expectation is uncorrelated with the conditioning
variable x, we begin by writing the error as

y − E(y|x) =
{
y − E(y)

}
− C(y, x)D−1(x)

{
x− E(x)

}
.(9.94)

Then, on postmultiplying by x′ and taking expectations, we get

C
{
y − E(y|x), x

}
=C(y, x)− C(y, x)D−1(x)D(x)
= 0,(9.95)

which is the desired result.
In applying the results under (9.93) to the task of deriving the equations of

the Kalman filter, we must adopt a purely Bayesian interpretation in which the
initial state vector ξ0 is regarded as a random variable. Its mean x0 = E(ξ0) and
its dispersion matrix P0 = D(ξ0) are given in advance.

The initial values x0 and P0 give rise to the parameters x1|0 = E(ξ1|I0) and
P1|0 = D(ξ1|I0) of a prior distribution pertaining to the state vector ξ1 of the
first sample period. The task at this stage is to determine the parameters x1 =
E(ξ1|I1) and P1 = D(ξ1|I1) of a posterior distribution in the light of the information
provided by the first observation y1 which is included in I1. The task of the tth
stage, which stands for all the subsequent stages, is to form the state prediction
xt|t−1 = E(ξt|It−1) and its dispersion Pt|t−1 = D(ξt|It−1) and thence to determine
xt = E(ξt|It) and Pt = D(ξt|It) in the light of the observation yt.
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The first object is to derive the formulae for the state prediction and its dis-
persion. We use (9.93)(iii) to show that

E(ξt|It−1) =E
{
E(ξt|ξt−1, It−1)

}
=E

{
Φtξt−1|It−1

}
= Φtxt−1.

(9.96)

We can use (9.93)(v) to show that

D(ξt|It−1) =D(ξt|ξt−1, It−1) +D
{
E(ξt|ξt−1, It−1)

}
= Ψt +D

{
ΦtE(ξt−1|It−1)

}
= Ψt + ΦtPt−1Φ′t.

(9.97)

Thus we have

xt|t−1 = Φtxt−1 and Pt|t−1 = ΦtPt−1Φ′t + Ψt,(9.98)

which are equations that have already appeared under (9.74) and (9.78) respectively.
The next purpose is to find an updated estimate of ξt which incorporates the

information of yt. From (9.93)(i), it follows that

E(ξt|It) = E(ξt|It−1)− C(ξt, yt|It−1)D−1(yt|It−1)
{
yt − E(ξt|It−1)

}
.(9.99)

Here there is

C(ξt, yt|It−1) =E
{

(ξt − xt|t−1)(yt − ŷt|t−1)
}

=E
{

(ξt − xt|t−1)(Htξt + ηt −Htxt|t−1)′
}

=Pt|t−1H
′
t.

(9.100)

On substituting this expression into (9.99) and using other definitions which are
available in the synopsis, we get the updated state estimate

xt = xt|t−1 + Pt|t−1H
′
t(HtPt|t−1H

′
t + Ωt)−1(yt −Htxt|t−1),(9.101)

which is to be found also under (9.92). From (9.93)(ii), we have

D(ξt|It) = D(ξt|It−1)− C(ξt, yt|It−1)D−1(yt|It−1)C(yt, ξt|It−1).(9.102)

This gives the dispersion matrix for the updated estimate which is to be found
under (9.87):

Pt = Pt|t−1 − Pt|t−1H
′
t(HtPt|t−1H

′
t + Ωt)−1HtPt|t−1.(9.103)

246



9: RECURSIVE LEAST-SQUARES ESTIMATION

Smoothing

In some circumstances, we may wish to improve our estimate xt of the state
vector at time t using information which has arisen subsequently. For the suc-
ceeding observations {yt+1, yt+2, . . .} are bound to convey information about the
state vector ξt which can supplement the information It = {y1, . . . , yt} which was
available at time t.

The retrospective enhancement of the state estimators using ex post informa-
tion is conventionally described as a process of smoothing. The terminology is
somewhat misleading; but we shall adhere to it nevertheless.

There are several ways in which we might effect a process of smoothing. In
the first place, there is fixed-point smoothing. This occurs whenever the object is
to enhance the estimate of a single state variable ξn repeatedly using successive
observations. The resulting sequence of estimates is described by{

xn|t = E(ξn|It); t = n+ 1, n+ 2, . . .
}
. Fixed-point smoothing(9.104)

The second mode of smoothing is fixed-lag smoothing. In this case, enhanced
estimates of successive state vectors are generated with a fixed lag of, say, n periods:{

xt−n|t = E(ξt−n|It); t = n+ 1, n+ 2, . . .
}
. Fixed-lag smoothing(9.105)

Finally, there is fixed-interval smoothing. This is a matter of revising each of
the state estimates for a period running from t = 1, to t = n once the full set of
observations in In = {y1, . . . , yn} has become available. The sequence of revised
estimates is{

xn−t|n = E(ξt|In); t = 1, 2, . . . , n− 1
}
. Fixed-interval smoothing(9.106)

Here, instead of xt|n, we have taken xn−t|n as the generic element which gives the
sequence in reverse order. This it to reflect the fact that, with most algorithms, the
smoothed estimates are generated by running backwards through the initial set of
estimates.

There is also a variant of fixed-interval smoothing which we shall describe
as intermittent smoothing. For it transpires that, if the fixed-interval smoothing
operation is repeated periodically to take account of new data, then some use can
be made of the products of the previous smoothing operation.

For each mode of smoothing, there is an appropriate recursive formula. We
shall derive these formulae, in the first instance, from a general expression for the
expectation of the state vector ξt conditional upon the information contained in
the set of innovations {e1, . . . , en} which, as we shall show in the next section, is
identical to the information contained in the observations {y1, . . . , yn}.

Innovations and the Information Set

The task of this section is to establish that the information of It = {y1, . . . , yt}
is also conveyed by the prediction errors or innovations {e1, . . . , et} and that the
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latter are mutually uncorrelated random variables. For this purpose, it will helpful
to define some additional matrix quantities:

Mt = ΦtKt−1 and(9.107)

Λt = Φt(I −Kt−1Ht−1).(9.108)

We begin by demonstrating that each error et is a linear function of y1, . . . , yt.
From equations (9.92), (9.81) and (9.74), which are to be found in the synopsis,
we obtain the equation xt|t−1 = Λtxt−1|t−2 +Mtyt−1. Repeated back-substitution
gives

xt|t−1 =
t−1∑
j=1

Λt,j+2Mj+1yj + Λt,2x1|0,(9.109)

where Λt,j+2 = ΛtΛt−1 · · ·Λj+2 is a product of matrices which specialises to Λt,t =
Λt and to Λt,t+1 = I. It follows that

et = yt −Htxt|t−1

= yt −Ht

t−1∑
j=1

Λt,j+2Mj+1yj −HtΛt,2x1|0.
(9.110)

Next, we demonstrate that each yt is a linear function of e1, . . . , et. By back-
substitution in the equation xt|t−1 = Φtxt−1|t−2 +Mtet−1 obtained from (9.74) and
(9.92), we get

xt|t−1 =
t−1∑
j=1

Φt,j+2Mj+1ej + Φt,2x1|0,(9.111)

wherein Φt,j+2 = ΦtΦt−1 · · ·Φj+2 is a product of matrices which specialises to
Φt,t = Φt and to Φt,t+1 = I. It follows that

yt = et +Htxt|t−1

= et +Ht

t−1∑
j=1

Φt,j+2Mj+1ej +HtΦt,2x1|0.
(9.112)

Given that there is a one-to-one linear relationship between the observations
and the prediction errors, it follows that we can represent the information set
in terms of either. Thus we have It−1 = {e1, . . . , et−1}; and, given that et =
yt−E(yt|It−1), it follows from (9.93)(vi) that et is uncorrelated with the preceding
errors e1, . . . , et−1. The result indicates that the prediction errors are mutually
uncorrelated.
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Conditional Expectations and Dispersions of the State Vector

Given that the sequence e1, . . . , en of Kalman-filter innovations are mutually
independent vectors with zero expectations, it follows from (9.93)(i) that, for any
indices m and n > m,

E(ξt|In) = E(ξt|Im) +
n∑

j=m+1

C(ξt, ej)D−1(ej)ej .(9.113)

In a similar way, we see from equation (9.93)(ii) that the dispersion matrix satisfies

D(ξt|In) = D(ξt|Im)−
n∑

j=m+1

C(ξt, ej)D−1(ej)C(ej , ξt).(9.114)

The task of evaluating the expressions under (9.113) and (9.114) is to find the
generic covariance C(ξt, ek). For this purpose, we must develop a recursive formula
which represents ek in terms of ξt−E(ξt|It−1) and in terms of the state disturbances
and observation errors which occur from time t.

Consider the expression for the innovation

ek = yk −Hkxk|k−1

=Hk(ξk − xk|k−1) + ηk.
(9.115)

Here the term ξk − xk|k−1 follows a recursion which is indicated by the equation

ξk − xk|k−1 = Λk(ξk−1 − xk−1|k−2) + (νk −Mkηk−1).(9.116)

The latter comes from subtracting from the transition equation (9.67) the equation
xt|t−1 = Λtxt−1|t−2+Mt(Ht−1ξt−1+ηt−1), obtained by substituting the observation
equation (9.68) into (9.90) and putting the result, lagged one period, into (9.74).
By running the recursion from time k back to time t, we may deduce that

ξk − xk|k−1 = Λk,t+1(ξt − xt|t−1) +
k−1∑
j=t

Λk,j+2(νj+1 −Mj+1ηj),(9.117)

wherein Λk,k+1 = I and Λk,k = Λk. It follows from (9.115) and (9.117) that, when
k ≥ t,

C(ξt, ek) =E
{
ξt(ξt − xt|t−1)Λ′k,t+1H

′
k

}
=Pt|t−1Λ′k,t+1H

′
k.

(9.118)

Using the identity Φt+1Pt = Λt+1Pt|t−1 which comes via (9.87), we get for k > t

C(ξt, ek) = PtΦ′t+1Λ′k,t+2H
′
k.(9.119)

Next we note that

C(ξt+1, ek) = Pt+1|tΛ′k,t+2H
′
k.(9.120)
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It follows, from comparing (9.119) and (9.120), that

C(ξt, ek) = PtΦ′t+1P
−1
t+1|tC(ξt+1, ek).(9.121)

If we substitute the expression under (9.118) into the formula of (9.113) where
m ≥ t− 1, and if we set D−1(ej) = F−1

j , then we get

E(ξt|In) =E(ξt|Im) +
n∑

j=m+1

C(ξt, ej)D−1(ej)ej

=E(ξt|Im) +
n∑

j=m+1

Pt|t−1Λ′j,t+1H
′
jF
−1
j ej

=E(ξt|Im) + Pt|t−1Λ′m+1,t+1

n∑
j=m+1

Λ′j,m+2H
′
jF
−1
j ej .

(9.122)

An expression for the dispersion matrix is found in a similar way:

D(ξt|In) = D(ξt|Im)

−Pt|t−1Λ′m+1,t+1

{ n∑
j=m+1

Λ′j,m+2H
′
jF
−1
j HjΛj,m+2

}
Λm+1,t+1Pt|t−1.

(9.123)

Notice that the sums in the two final expressions may be accumulated using recur-
sions running backwards in time of the form

qt =
n∑
j=t

Λ′j,t+1H
′
jF
−1
j ej

=H ′tF
−1
t et + Λ′t+1qt+1

(9.124)

and

Qt =
n∑
j=t

Λ′j,t+1H
′
jF
−1
j HjΛj,t+1

=H ′tF
−1
t Ht + Λ′t+1Qt+1Λt+1.

(9.125)

These recursions are initiated with qn = H ′nF
−1
n en and Qn = H ′nF

−1
n Hn.

The Classical Smoothing Algorithms

An account of the classical smoothing algorithms is to be found in the book by
Anderson and Moore [12] which has become a standard reference for the Kalman
filter.

Anderson and Moore have adopted a method for deriving the filtering equations
which depends upon an augmented state-transition equation wherein the enlarged
state vector contains a sequence of the state vectors from the original transition
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equation. This approach is common to several authors including Willman [526], who
deals with fixed-point smoothing, Premier and Vacroux [408], who treat fixed-lag
smoothing and Farooq and Mahalanabis [181], who treat fixed-interval smoothing.
It seems that an approach via the calculus of conditional expectations is more
direct.

The fixed-point smoother. Of the classical smoothing algorithms, the fixed-point
smoothing equations are the easiest to derive. The task is as follows: given xt|n =
E(ξt|e1, . . . , en), we must find an expression for xt|n+1 = E(ξt|e1, . . . , en+1) with
n ≥ t. That is to say, we must enhance the estimate of ξt by incorporating the
extra information which is afforded by the new innovation en+1. The formula is
simply

E(ξt|In+1) = E(ξt|In) + C(ξt, en+1)D−1(en+1)en+1.(9.126)

Now, (9.118) gives

C(ξt, en) =Pt|t−1Λ′n,t+1H
′
n

=LnH
′
n

(9.127)

and

C(ξt, en+1) =Pt|t−1Λ′n+1,t+1H
′
n+1

=LnΛ′n+1H
′
n+1.

(9.128)

Therefore, we may write the fixed-point algorithm as

E(ξt|In+1) = E(ξt|In) + Ln+1H
′
n+1F

−1
n+1en+1

where Ln+1 = LnΛ′n+1 and Lt = Pt|t−1.
(9.129)

The accompanying dispersion matrix can be calculated from

D(ξt|In+1) = D(ξt|In)− Ln+1H
′
n+1F

−1
n+1Hn+1L

′
n+1.(9.130)

The fixed-point smoother is initiated with values for E(ξt|It), D(ξt|It) and
Lt = Pt|t−1, which are provided by the Kalman filter. From these initial quantities,
a sequence of enhanced estimates of ξt is calculated recursively using subsequent
observations. The values of en+1, Fn+1 and Kn, needed in computing (9.129) and
(9.130), are also provided by the Kalman filter, which runs concurrently with the
smoother.

The fixed-interval smoother. The next version of the smoothing equation to be
derived is the fixed-interval form. Consider using the identity of (9.121) to rewrite
equation (9.113), with m set to t, as

E(ξt|In) = E(ξt|It) + PtΦ′t+1P
−1
t+1|t

n∑
j=t+1

C(ξt+1, ej)D−1(ej)ej .(9.131)
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Now

E(ξt+1|In) = E(ξt+1|It) +
n∑

j=t+1

C(ξt+1, ej)D−1(ej)ej ;(9.132)

so it follows that equation (9.131) can be rewritten in turn as

E(ξt|In) = E(ξt|It) + PtΦ′t+1P
−1
t+1|t {E(ξt+1|In)− E(ξt+1|It)} .(9.133)

This is the formula for the fixed-interval smoother.
A similar strategy is adopted in the derivation of the dispersion of the smoothed

estimate. According to (9.114), we have

D(ξt|In) = D(ξt|It)−
n∑

j=t+1

C(ξt, ej)D−1(ej)C(ej , ξt)(9.134)

and

D(ξt+1|In) = D(ξt+1|It)−
n∑

j=t+1

C(ξt+1, ej)D−1(ej)C(ej , ξt+1).(9.135)

Using the identity of (9.121) in (9.134) and taking the result from (9.135) enables
us to write

Pt|n = Pt − PtΦ′t+1P
−1
t+1|t{Pt+1|t − Pt+1|n}P−1

t+1|tΦt+1Pt.(9.136)

An interpretation. Consider E(ξt|In), and let us represent the information set, at
first, by

In = {It, ht+1, et+2, . . . , en} where ht+1 = ξt+1 − E(ξt+1|It).(9.137)

We may begin by finding

E(ξt|It, ht+1) = E(ξt|It) + C(ξt, ht+1|It)D−1(ht+1|It)ht+1.(9.138)

Here we have

C(ξt, ht+1|It) = E{ξt(ξt − xt)′Φ′t+1 + ξtν
′
t

∣∣It} = PtΦ′t+1 and

D(ht+1|It) = Pt+1|t.
(9.139)

It follows that

E(ξt|It, ht+1) = E(ξt|It) + PtΦ′t+1P
−1
t+1|t{ξt+1 − E(ξt+1|It)}.(9.140)

Of course, the value of ξt+1 in the RHS of this equation is not observable. However,
if we take the expectation of the equation conditional upon all of the information
in the set In = {e1, . . . , en}, then ξt+1 is replaced by E(ξt+1|In) and we get the
formula under (9.133). This interpretation was published by Ansley and Kohn
[24]. It highlights the notion that the information which is used in enhancing the
estimate of ξt is contained entirely within the smoothed estimate of ξt+1.
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The intermittent smoother. Consider the case where smoothing is intermittent
withm sample points accumulating between successive smoothing operations. Then
it is possible to use the estimates arising from the previous smoothing operation.

Imagine that the operation is performed when n = jm points are available.
Then, for t > (j−1)m, the smoothed estimate of the state vector ξt is given by the
ordinary fixed-interval smoothing formula found under (9.133). For t ≤ (j − 1)m,
the appropriate formula is

(9.141)
E(ξt|In) = E(ξt|I(j−1)m) + PtΦ′t+1P

−1
t+1|t{E(ξt+1|In)− E(ξt+1|I(j−1)m)}.

Here E(ξt|I(j−1)m) is being used in place of E(ξt|It). The advantage of the algo-
rithm is that it does not require the values of unsmoothed estimates to be held in
memory when smoothed estimates are available.

A limiting case of the intermittent smoothing algorithm arises when the
smoothing operation is performed each time a new observation is registered. Then
the formula becomes

E(ξt|In) = E(ξt|In−1) + PtΦ′t+1P
−1
t+1|t{E(ξt+1|In)− E(ξt+1|In−1)}.(9.142)

The formula is attributable to Chow [106] who provided a somewhat lengthy deriva-
tion. Chow proposed this algorithm for the purpose of ordinary fixed-interval
smoothing, for which it is clearly inefficient.

The fixed-lag smoother. The task is to move from the smoothed estimate of ξn−t
made at time n to the estimate of ξn+1−t once the new information in the prediction
error en+1 has become available. Equation (9.93)(i) indicates that

E(ξn+1−t|In+1) = E(ξn+1−t|In) + C(ξn+1−t, en+1)D−1(en+1)en+1,(9.143)

which is the formula for the smoothed estimate, whilst the corresponding formula
for the dispersion matrix is

D(ξn+1−t|In+1) = D(ξn+1−t|In)− C(ξn+1−t, en+1)D−1(en+1)C(en+1, ξn+1−t).

(9.144)

To evaluate (9.143), we must first find the value of E(ξn+1−t|In) from the value
of E(ξn−t|In). On setting t = k in the fixed-interval formula under (9.133), and
rearranging the result, we get

E(ξk+1|In) = E(ξk+1|Ik) + Pk+1|kΦ′−1
k+1P

−1
k {E(ξk|In)− E(ξk|Ik)}.(9.145)

To obtain the desired result, we simply set k = n− t, which gives

E(ξn+1−t|In) = E(ξn+1−t|In−t)

+Pn+1−t|n−tΦ′−1
n+1−tP

−1
n−t{E(ξn−t|In)− E(ξn−t|In−t)}.

(9.146)
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The formula for the smoothed estimate also comprises

C(ξn+1−t, en+1) = Pn+1−t|n−tΛ′n+1,n+2−tH
′
n+1.(9.147)

If Λn+1−t is nonsingular, then Λn+1,n+2−t = Λn+1{Λn,n+1−t}Λ−1
n+1−t; and thus we

may profit from the calculations entailed in finding the previous smoothed estimate
which will have generated the matrix product in the parentheses.

In evaluating the formula (9.144) for the dispersion of the smoothed estimates,
we may use the following expression for D(ξn+1−t|In) = Pn+1−t|n:

Pn+1−t|n = Pn+1−t|n−t

−Pn+1−t|n−tΦ′−1
n+1−tP

−1
n−t(Pn−t − Pn−t|n)P−1

n−tΦ
−1
n+1−tPn+1−t|n−t.

(9.148)

This is demonstrated is the same manner as equation (9.146).
A process of fixed-lag smoothing, with a lag length of t, is initiated with a

value for E(ξ1|It+1). The latter is provided by running the fixed-point smoothing
algorithm for t periods. After time t+ 1, when the (n+ 1)th observation becomes
available, E(ξn+1−t|In) is calculated from E(ξn−t|In) via equation (9.146). For this
purpose, the values of xn+1−t|n−t, xn−t, Pn+1−t|n−t and Pn−t must be available.
These are generated by the Kalman filter in the process of calculating en−t, and
they are held in memory for t periods. The next smoothed estimate E(ξn+1−t|In+1)
is calculated from equation (9.143), for which the values of en+1, Fn+1 and Kn are
required. These are also provided by the Kalman filter which runs concurrently.

Variants of the Classical Algorithms

The attention which statisticians have paid to the smoothing problem recently
has been focused upon fixed-interval smoothing. This mode of smoothing is, per-
haps, of less interest to communications engineers than the other modes; which
may account for the fact that the statisticians have found scope for improving the
algorithms.

Avoiding an inversion. There are some modified versions of the classical fixed-
interval smoothing algorithm which avoid the inversion of the matrix Pt|t−1. In
fact, the basis for these has been provided already in a previous section. Thus, by
replacing the sums in equations (9.122) and (9.123) by qm+1 and Qm+1, which are
the products of the recursions under (9.124) and (9.125), we get

E(ξt|In) = E(ξt|Im) + Pt|t−1Λ′m+1,t+1qm+1,(9.149)

D(ξt|In) = D(ξt|Im)− Pt|t−1Λ′m+1,t+1Qm+1Λm+1,t+1Pt|t−1.(9.150)

These expressions are valid for m ≥ t− 1.
Setting m = t − 1 in (9.149) and (9.150) gives a useful alternative to the

classical algorithm for fixed-interval smoothing:

xt|n = xt|t−1 + Pt|t−1qt,(9.151)
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Pt|n = Pt|t−1 − Pt|t−1QtPt|t−1.(9.152)

We can see that, in moving from qt+1 to qt via equation (9.124), which is the first
step towards finding the next smoothed estimate xt−1|n, there is no inversion of
Pt|t−1. The equations (9.151) and (9.152) have been derived by De Jong [146].

The connection with the classical smoothing algorithm is easily established.
From (9.151), we get qt+1 = P−1

t+1|t(xt+1|n − xt+1|t). By setting m = t in (9.149)
and substituting for qt+1, we get

xt|n =xt + Pt|t−1Λ′t+1P
−1
t+1|t(xt+1|n − xt+1|t)

=xt + PtΦ′t+1P
−1
t+1|t(xt+1|n − xt+1|t),

(9.153)

where the final equality follows from the identity Φt+1Pt = Λt+1Pt|t−1 already used
in (9.119). Equation (9.153) is a repetition of equation (9.133) which belongs to
the classical algorithm.

Equation (9.136), which also belongs to the classical algorithm, is obtained by
performing similar manipulations with equations (9.150) and (9.152).

Smoothing via state disturbances. Given an initial value for the state vector, a
knowledge of the sequence of the state-transition matrices and of the state distur-
bances in subsequent periods will enable one to infer the values of subsequent state
vectors. Therefore the estimation of a sequence of state vectors may be construed
as a matter of estimating the state disturbances. The information which is relevant
to the estimation of the disturbance νt is contained in the prediction errors from
time t onwards. Thus

E(νt|In) =
n∑
j=t

C(νt, ej)D−1(ej)ej .(9.154)

Here, for j ≥ t, the generic covariance is given by

C(νt, ej) =E
{
νtν
′
tΛ
′
j,t+1H

′
j

}
= ΨtΛ′j,t+1H

′
j ,

(9.155)

which follows from the expression for et which results from substituting (9.117) in
(9.155). Putting (9.155) into (9.154) and setting D−1(ej) = F−1

j gives

E(νt|In) = Ψt

n∑
j=t

Λ′j,t+1H
′
jF
−1
j ej

= Ψtqt,

(9.156)

where qt is a sum which may be accumulated using the recursion under (9.124).
By taking the expectation of the transition equation conditional upon all of the

information in the fixed sample, we obtain the recursive equation which generates
the smoothed estimates of the state vectors:

xt|n = Φtxt−1|n + E(νt|In)

= Φtxt−1|n + Ψtqt.
(9.157)
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The initial value is x0|n = x0 + P0Φ′1q1. This is obtained by setting t = 0 in the
equation xt|n = xt + PtΦ′t+1qt+1 which comes from (9.153).

Equation (9.157) has been presented recently in a paper by Koopman [299]. A
similar approach has been pursued by Mayne [339].

With some effort, a connection can be found between equation (9.157) and
equation (9.151) which is its counterpart in the previous algorithm. From (9.74)
and (9.92), we get xt|t−1 = Φt(xt−1|t−2 + Kt−1et−1). From (9.78) and (9.87), we
get Pt|t−1 = ΦtPt−1|t−2(I −Kt−1Ht−1)′Φ′t + Ψt. Putting these into (9.151) gives

xt|n = Φtxt−1|t−2 + Ψtqt + Φt(Kt−1et−1 + Pt−1|t−2Λ′tqt).(9.158)

Equation (9.151) lagged one period also gives an expression for xt−1|t−2 in terms
of xt−1|n:

xt−1|t−2 = xt−1|n − Pt−1|t−2qt−1.(9.159)

Using the identity qt−1 = H ′t−1F
−1
t−1et−1 + Λ′tqt and the latter equation, we can

rewrite (9.158) as

xt|n = Φtxt−1|n + Ψtqt − ΦtPt−1|t−2(H ′t−1F
−1
t−1et−1 + Λ′tqt)

+ Φt(Kt−1et−1 + Pt−1|t−2Λ′tqt)

= Φtxt−1|n + Ψtqt,

(9.160)

where the final equality follows from equation (9.91). This is (9.157) again.
An alternative algorithm exists which also uses estimates of the state distur-

bances. In contrast to the previous algorithm, it runs backwards in time rather
than forwards. The basic equation is

xt−1|n = Φ−1
t xt|n − Φ−1

t Ψtqt,(9.161)

which comes directly from (9.157). The value of qt is obtained via equation (9.124).
However, because we have a backward recursion in (9.161), an alternative recursion
for qt is available, which reduces the number of elements which must be held in
memory. A reformulation of equation (9.124) gives

qt =H ′tF
−1
t et + Λ′t+1qt+1

=H ′tF
−1
t et + (I −KtHt)′Φ′t+1qt+1

=H ′tst + Φ′t+1qt+1,

(9.162)

where st is defined as

st = F−1
t et −K ′tΦ′t+1qt+1.(9.163)

Now, consider the smoothed estimates of the observation errors. Because ηt is
independent of y1, . . . , yt−1, these are given by

E(ηt|In) =
n∑
j=t

C(ηt, ej)D−1(ej)ej .(9.164)
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The covariances follow once more from equations (9.115) and (9.117). For j > t,
we get

C(ηt, ej) = −ΩtM ′t+1Λ′j,t+2H
′
j ,(9.165)

whereas, for j = t, we have C(ηt, et) = Ωt. Substituting these in (9.164) gives

E(ηt|In) = Ωt
{
F−1
t et −M ′t+1

n∑
j=t+1

Λ′j,t+2H
′
jF
−1
j ej

}
= Ωt

{
F−1
t et −K ′tΦ′t+1qt+1

}
= Ωtst;

(9.166)

from which

st = Ω−1
t E(ηt|In) = Ω−1

t {yt −Htxt|n},(9.167)

where the final equality is justified by the observation equation (9.68). Notice that,
in order to calculate st from this expression, we need xt|n, which is available only
because we are using a backward smoothing algorithm. Thus st is calculated from
(9.167) using the previous smoothed estimate. Then it is substituted in (9.162)
to obtain qt. Finally, the smoothed estimate of the state vector is obtained from
equation (9.161). Whittle [517] has derived this algorithm by maximising a log-
likelihood function.

Multi-step Prediction

Consider a sequence of predictions into the future which are made at time t,
and let us juxtapose with these predictions the expressions for the corresponding
values of the true state variables. Then, on the assumption that Φt = Φ is a
constant matrix, we have

xt+1|t = Φxt,

xt+2|t = Φ2xt,

xt+3|t = Φ3xt,
...

xt+n|t = Φnxt,

ξt+1 = Φξt + νt+1,

ξt+2 = Φ2ξt + Φνt+1 + νt+2,

ξt+3 = Φ3ξt + Φ2νt+1 + Φνt+2 + νt+3,
...

ξt+n = Φnξt +
n−1∑
j=0

Φjνt+n−j .

(9.168)

It follows that the error in predicting n periods into the future is given by

xt+n|t − ξt+n = Φn(xt − ξt)−
n−1∑
j=0

Φjνt+n−j .(9.169)

The vectors νt+j are statistically independent and have dispersion matrices which
are denoted by D(νt+j) = Ψt+j . Therefore the dispersion of the error in predicting
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the state is just

Pt+n|t = ΦnPt(Φn)′ +
n−1∑
j=0

ΦjΨt+n−j(Φj)′.(9.170)
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CHAPTER 10

Estimation of
Polynomial Trends

In many time series, broad movements can be discerned which evolve more grad-
ually than do the other motions which are evident. These gradual changes are
described as trends. The changes which are of a transitory nature are described as
fluctuations.

In some cases, the trend should be regarded as nothing more than the accu-
mulated effect of the fluctuations. In other cases, we feel that the trends and the
fluctuations reflect different sorts of influences, and we are inclined to decompose
the time series into the corresponding components.

It may be possible to capture the salient features of a trend with a polynomial
function of a low degree; and, sometimes, a simple physical analogy suggests why
this is appropriate. A body which possesses a high degree of inertia will tend to
travel in a straight line with constant velocity and it will not be diverted much by
minor impacts. The resulting motion will give rise to a linear time-trend. A body
which is subject to a constant force which is independent of its velocity will be
accelerated at a constant rate; and, therefore, it will follow a quadratic time-trend.
If the objects which are observed are attached, in ways which are more or less
flexible, to such inexorable motions, then, in the long run, their underlying trends
will be strongly expressed.

Even when there is no theory to specify the trend as a particular function of
time, a polynomial may, nevertheless, stand in place of a more complicated yet
unknown function. In the early parts of this chapter, we shall deal, at length, with
the means of estimating polynomial time-trends.

In other classes of phenomena, a polynomial has insufficient flexibility for cap-
turing the trend. Some trends are due to gradual and continuous processes, such
as the processes of biological growth, which are affected by the events which occur
during the course of their evolution. Such trends may be extracted from the data via
a process of smoothing. The classical methods of data-smoothing rely on weighted
averages and other filtering devices. In the latter half of this chapter, we shall
present an alternative method of trend estimation which makes use of functions
which are constructed from polynomial segments. In the following chapter, we
shall develop this method further when we present the so-called smoothing spline
which can serve the same purpose as a smoothing filter.

Polynomial Regression

The topic of polynomial regression may be approached by considering the
problem of approximating a function whose values at the points x0, . . . , xn are
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known only via the observations y0, . . . , yn which are subject to error. If we choose
to represent the underlying function by a polynomial in x of degree q ≤ n, then we
are led to a model in the form of

yt = β0 + β1xt + β2x
2
t + · · ·+ βqx

q
t + εt; t = 0, . . . , n.(10.1)

In matrix notation, this becomes

y = Xβ + ε,(10.2)

where y = [y0, . . . , yn]′, X = [xjt ], β = [β0, . . . , βq]′ and ε = [ε0, . . . , εn]′. This is just
a case of the usual regression model with the peculiar feature that the independent
variables are powers of x. Therefore the problem of determining the coefficients
β0, . . . , βq appears to fall well within the ambit of the regression procedures which
are described in Chapter 8. Such procedures are often adequate when the degree of
the polynomial in no greater than three or four. However, as the degree increases,
they are beset by worsening problems of numerical instability.

In the case of a procedure which determines the parameter vector β by solving
the normal equations T−1X ′Xβ = T−1X ′y, where T = n+1, the instability may be
attributed to the ill-conditioned nature of the moment matrix X ′X/T . The generic
element in the (i + 1)th row and (j + 1)th column of this matrix has the value
of T−1

∑
t x

i+j
t . A simple statistical analogy suggests that, if the sample points

x0, . . . , xn are distributed uniformly in the interval [0, 1] and if n is large, then the
value of the element can be approximated by

∫ 1

0

xi+jdx =
1

i+ j + 1
.(10.3)

Therefore the moment matrix as a whole can be approximated by

1 1
2

1
3 . . . 1

q+1

1
2

1
3

1
4 . . . 1

q+2

1
3

1
4

1
5 . . . 1

q+3

...
...

...
...

1
q+1

1
q+2

1
q+3 . . . 1

2q+1


.(10.4)

This is an instance of the notoriously ill-conditioned Hilbert matrix whose inverse
has elements with values which are very large and which increase rapidly with the
order of the matrix. It follows that any rounding error associated with the floating-
point representation of an element of the matrix X is liable to be greatly magnified
in the process of inverting the moment matrix. This makes it impossible to compute
an accurate solution to the normal equations. Later, we shall see that, in practice,
when x is not confined to the interval [0, 1], the numerical problems can be far more
severe that the foregoing example suggests that they are.
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To avoid the numerical problems which can arise from the attempt to fit the
equation under (10.1), the powers 1, x, x2, . . . , xq may be replaced by a set of polyno-
mials φ0(x), φ1(x), φ2(x), . . . , φq(x) which are mutually orthogonal. Thus equation
(10.1) may be replaced by an equation

yt =α0φ0(xt) + α1φ1(xt) + · · ·+ αqφq(xt) + εt

=α0φt0 + α1φt1 + · · ·+ αqφtq + εt
(10.5)

wherein the values φtj = φj(xt); t = 0, . . . , n, generated by the polynomial functions
at the points x0, x1, . . . , xn, are subject to the orthogonality conditions∑

t

φtjφtk =

{
0, if j 6= k;

λj , if j = k.
(10.6)

Let α = [α0, α1, . . . , αq]′ be the vector of the coefficients of (10.5) and let
Φ = [φtj ] be the matrix of the values of the polynomials. Then the regression
equation of (10.2) may be rewritten as

y = Φα+ ε with Φ = XR−1 and α = Rβ,(10.7)

where R is a nonsingular matrix of order q + 1. Given that Φ′Φ = Λ is a
diagonal matrix, it follows that the ordinary least-squares estimating equations
α = (Φ′Φ)−1Φ′y = Λ−1Φ′y resolve themselves into a set of q + 1 simple regression
equations of the form

αj =
∑
t φtjyt∑
t φ

2
tj

; j = 0, 1, . . . , q.(10.8)

The orthogonalisation of the vectors of observations on an arbitrary set of
functions can be accomplished using the Gram–Schmidt procedure. Two versions
of this procedure will be described in the following sections. However, a recursive
method for generating an orthogonal set of polynomials is also available; and this
will be used in a procedure dedicated to the task of fitting polynomial regressions
which will be presented in a later section.

The Gram–Schmidt Orthogonalisation Procedure

The polynomial functions φ0(x), φ1(x), . . . , φq(x) are said to be linearly inde-
pendent over the domain {x0, x1, . . . , xn}, where n ≥ q, if the condition that

µ0φ0(xt) + µ1φ1(xt) + · · ·+ µqφq(xt) = 0 for t = 0, 1, . . . , n(10.9)

can be satisfied only by setting µ0 = µ1 = · · · = µq = 0. If the polynomials are
linearly independent over a restricted domain, then they will be linearly dependent
over an enlarged domain which includes the restricted domain.

The sets of polynomials p0(x), . . . , pq(x) and φ0(x), . . . , φq(x) are equivalent
over the real line if there exist sets of scalars λi0, . . . , λiq and µj0, . . . , µjq such that

pi(x) =
∑
j

λijφj(x) and φj(x) =
∑
i

µjipi(x)(10.10)

for all x and for all i, j = 0, . . . , q.
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An arbitrary set of linearly independent polynomials can be transformed to
an equivalent orthogonal set by subjecting it to the Gram–Schmidt procedure. A
convenient choice for these linearly independent polynomials p0(x), p1(x), p2(x), . . . ,
pq(x) is the set of powers 1, x, x2, . . . , xq whose use in the regression equation was
rejected on the grounds of numerical instability.

We shall use pj = [p0j , p1j , . . . , pnj ]′ to denote the vector containing the
values of the function pj(x) at the points {x0, x1, . . . , xn}, and we shall use
φj = [φ0j , φ1j , . . . , φnj ]′ to denote the analogous vector corresponding to the func-
tion φj(x) which belongs to the set of orthogonal polynomials.

The process of orthogonalising the polynomials starts by setting φ0 = p0. Then
the component of p1 which is orthogonal to φ0 becomes φ1. The latter may written
as

φ1 = p1 − r01φ0,(10.11)

where the scalar r01 is determined so as to satisfy the orthogonality condition
φ′0φ1 = 0. The condition yields the equation 0 = φ′0p1 − r01φ

′
0φ0; from which it

follows that

r01 =
φ′0p1

φ′0φ0
.(10.12)

The second step entails finding the component φ2 of p2 which is orthogonal to
both φ0 and φ1. We write

φ2 = p2 − r02φ0 − r12φ1,(10.13)

and we use the orthogonality conditions φ′0φ2 = φ′1φ2 = 0 to determine the coeffi-
cients

r02 =
φ′0p2

φ′0φ0
, r12 =

φ′1p2

φ′1φ1
.(10.14)

The process can be continued through successive steps until the set of vectors
{pj} has been exhausted. In the kth step, we set

φk = pk − r0kφ0 − r1kφ1 − · · · − rk−1,kφk−1;(10.15)

and the orthogonality conditions φ′iφj = 0; i, j = 0, 1, . . . , k, i 6= j serve to determine
the coefficients

r0k =
φ′0pk
φ′0φ0

, r1k =
φ′1pk
φ′1φ1

, . . . , rk−1,k =
φ′k−1pk

φ′k−1φk−1
.(10.16)

These can be construed as the coefficients of the regression of pk upon the vectors
φ0, φ1, . . . , φk−1. The vector φk is the residual of this multiple regression.

The orthogonalisation procedure can also be described in the terminology of
orthogonal projection which is established at the beginning of Chapter 8. The kth
orthogonal vector φk is simply the projection of pk onto the orthogonal complement
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of the subspace spanned by the columns of the matrix Φk−1 = [φ0, φ1, . . . , φk−1].
Thus φk = (I −Wk−1)pk, where Wk−1 = Φk−1(Φ′k−1Φk−1)−1Φ′k−1. The conditions
under (10.6), which declare that the columns of Φ′k−1 are mutually orthogonal,
indicate that

Wk−1pk =
k−1∑
j=0

(
φjφ

′
j

φ′jφj

)
pk

=
k−1∑
j=0

(
φ′jpk

φ′jφj

)
φj =

k−1∑
j=0

rjkφj ;

(10.17)

and, by putting the final expression into the equation φk = pk−Wk−1pk, we derive
the expression under (10.15).

The sequence of equations

φ0 = p0,
φ1 = p1 − r01φ0,
φ2 = p2 − r02φ0 − r12φ1,

...
φq = pq − r0qφ0 − r1qφ1 − · · · − rq−1,qφq−1,

(10.18)

which summarise the orthogonalisation procedure, can be rearranged as a matrix
equation: 

p00 p01 . . . p0q

p10 p11 . . . p1q

...
...

...
pn0 pn1 . . . pnq

 =


φ00 φ01 . . . φ0q

φ10 φ11 . . . φ1q

...
...

...
φn0 φn1 . . . φnq




1 r01 . . . r0q

0 1 . . . r1q

...
...

. . .
...

0 0 . . . 1

 .(10.19)

This may be written as P = ΦR; and thus the Gram–Schmidt procedure is recog-
nised as a means of effecting the Q–R decomposition of the matrix P . The House-
holder procedure, which achieves the same end, generates the orthogonal matrix
Q = [Q1, Q2] of order T = n + 1 as an adjunct of a process by which the T × k
matrix X = Q1R is triangulated. That is to say, the matrix X—which is to be
compared with P—is transformed into

Q′X =
[
Q′1
Q′2

]
Q1R =

[
R
0

]
.(10.20)

The Gram–Schmidt procedure, which approaches the problem from a different di-
rection, generates an upper-triangular matrix R as a by-product of a process de-
signed to create a matrix Φ comprising q+ 1 orthogonal vectors of order T = n+ 1,
which is comparable to the matrix Q1.

In order to generate a matrix of orthonormal vectors via the Gram–Schmidt
procedure, we would need to rescale the column vectors of Φ = [φ0, . . . , φq]. The
lengths of these vectors are given by the diagonal elements of the matrix Φ′Φ =
Λ = diag[λ0, . . . , λq]. Let Λ−1/2 = diag[1/

√
λ0, . . . , 1/

√
λq]. Then C = ΦΛ−1/2 is

an orthonormal matrix with C ′C = Iq+1.
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A Modified Gram–Schmidt Procedure

There is a modified version of the Gram–Schmidt procedure which is superior,
in terms of its numerical stability, to the classical version described above.

The classical procedure generates each orthogonal vector φk in turn in a single
step. In the modified procedure, the process of generating φk is spread over k
steps. At the start of the modified procedure, the vector which will become φk is
given the value of p(0)

k = pk. In the first step, this vector is updated to become
p

(1)
k = p

(0)
k − r0kφ0, where φ0 = p0; and, at the same time, the procedure generates

φ1 = p
(0)
1 − r01φ0. By continuing in this way, the procedure generates, in the kth

step, the vector

φk = p
(k−1)
k − rk−1,kφk−1.(10.21)

A simple process of back-substitution shows that this vector can be written as

φk = p
(0)
k − r0kφ0 − r1kφ1 − · · · − rk−1,kφk−1;(10.22)

and this repeats the expression under (10.15) which belongs to the classical proce-
dure. Thus the algebraic equivalence of the two procedures is demonstrated.

To illustrate the modified procedure, we may portray its initial conditions and
its first two steps as follows:

Step 0

φ0 = p0

p
(0)
1 = p1

.........

p
(0)
q = pq

Step 1

φ0

φ1 = p
(0)
1 − r01φ0

p
(1)
2 = p

(0)
2 − r02φ0

......

p
(1)
q = p

(0)
q − r0qφ0

Step 2

φ0

φ1

φ2 = p
(1)
2 − r12φ1

p
(2)
3 = p

(1)
3 − r13φ1

...
p

(2)
q = p

(1)
q − r1qφ1.

(10.23)

In the modified procedure, the coefficients rk−1,j with j = k, . . . , q, which are
generated in the kth step, can be calculated as

rk−1,j =
φ′k−1p

(k−1)
j

φ′k−1φk−1
.(10.24)

These coefficients belong to the (k − 1)th row of the matrix R of (10.19). The
kth step of the classical procedure, described in the previous section, generates the
coefficients of the kth column of R. Since the orthogonality conditions which prevail
amongst the vectors φ0, φ1, . . . , φk−1 indicate that

φ′k−1p
(k−1)
j =φ′k−1

(
pj − r0jφ0 − r1jφ1 − · · · − rk−2,jφk−2

)
=φ′k−1pj ,

(10.25)
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it follows that the formula of (10.24) gives a value for rk−1,j which would be iden-
tical to the one generated by the classical procedure, if there were no rounding
error. The advantage of using equation (10.24) in the modified procedure is that
there is no need to remember the value of the vector pj , which is lost when the
vector is modified in the first step. The superior numerical stability of the modified
procedure is due largely to the fact that p(k−1)

j is used in place of pj in calculating
the coefficient rk−1,j .

The difference between the classical and the modified Gram–Schmidt pro-
cedures can be summarised in a few words. Both procedures take an arbitrary
set of linearly independent vectors—the source set—and they transform them
one-by-one into the vectors of an orthonormal set—the destination set. In the
classical procedure, a source vector remains unaltered until the time comes to
transform it and to transfer it to the destination set. In the modified proce-
dure, the destination set and the source set remain mutually orthogonal at all
times. As each vector is transferred from the source to the destination, the mutual
orthogonality of the two sets is re-established by transforming the entire source
set.

The modified Gram–Schmidt procedure is implemented in the following Pascal
procedure.

(10.26) procedure GramSchmidt(var phi, r : matrix;
n, q : integer);

var
t, j, k : integer;
num, denom : real;

begin
for k := 1 to q do

begin {k}
denom := 0.0;
for t := 0 to n do
denom := denom+ Sqr(phi[t, k − 1]);

for j := k to q do
begin {j}
num := 0.0;
for t := 0 to n do
num := num+ phi[t, j] ∗ phi[t, k − 1];

r[k − 1, j] := num/denom;
for t := 0 to n do
phi[t, j] := phi[t, j]− r[k − 1, j] ∗ phi[t, k − 1];

end; {j}
end; {k}

end; {GramSchmidt}

The variables which are passed to this procedure are the array phi which
corresponds to the matrix P of (10.19) and the array r which corresponds to an
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identity matrix. The procedure, which effects the decomposition represented by
(10.19), returns an array of orthogonal vectors in phi corresponding to the matrix
Φ and an array in r corresponding to the upper-triangular matrix R.

Uniqueness of the Gram Polynomials

The so-called Gram polynomials, which are obtained by orthogonalising the
powers p0(x) = 1, p1(x) = x, p2(x) = x2, . . . , pq(x) = xq, are uniquely defined.
The conditions of orthogonality that serve to define these polynomials are based
upon the natural inner product for finite-dimensional vectors which is described as
a Euclidian inner product.

The proof of uniqueness rests upon the following result:

(10.27) If φ0(x), φ1(x), . . . , φq(x) is a sequence of polynomials which are or-
thogonal over the set {x0, x1, . . . , xn} and which are indexed by
degree—with φk(x) having a degree of k—then φk(x) is orthogonal
to every polynomial of degree less than k.

To understand this, recall that the polynomials φ0(x), φ1(x), . . . , φk−1(x) form an
orthonormal basis of the k-dimensional space of all polynomials of degree less than
k which are defined over {x0, x1, . . . , xn}. Therefore any polynomial p(x) of a
degree less than k can be written in the form of p(x) = π0φ0(x) + π1φ1(x) + · · ·+
πk−1φk−1(x). Hence it follows, by virtue of the orthogonality conditions of (10.6),
that

∑
t p(xt)φk(xt) = p′φk = 0; and this proves the assertion.

The proposition regarding the uniqueness of the polynomials is that

(10.28) If φ0(x), φ1(x), . . . , φq(x) and θ0(x), θ1(x), . . . , θq(x) are sequences of
polynomials which are indexed by degree and which are orthogonal
over {x0, x1, . . . , xn}, then, for each k, φk(x) and θk(x) are scalar
multiples of each other.

To prove this, we express θk(x) in terms of the basis φ0(x), φ1(x), . . . , φk(x):

θk(x) = r0φ0(x) + r1φ1(x) + · · ·+ rkφk(x).(10.29)

By letting x = x0, . . . , xn and by defining the vectors θk = [θk(x0), . . . , θk(xn)]′

and φj = [φj(x0), . . . , φj(xn)]′; j = 0, 1, . . . , k, we can obtain the following vector
equation:

θk = r0φ0 + r1φ1 + · · ·+ rkφk.(10.30)

Here the coefficient rj = φ′jθk/φ
′
jφj is found by premultiplying the equation by φ′j

and then using the orthogonality conditions φ′jφi = 0 to show that φ′jθk = φ′jφjrj .
Now, let us recall that θk(x) belongs to a set of polynomials indexed by degree
which are orthonormal over the domain {x0, x1, . . . , xn}. Then it can be seen that
the result under (10.27) implies that, for j = 0, 1, . . . , k − 1, there is φ′jθk = 0 and
hence rj = 0. Therefore θk = rkφk and also θk(x) = rkφk(x); and this proves the
present assertion.
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This result implies that, disregarding scalar multiples of the elements, there is
only one orthogonal basis of the space of polynomials which is indexed by degree.
Thus the basis polynomials would be specified uniquely if it were decreed that they
should each be a monic polynomial with unity as the coefficient of the highest power
of x.

This result may come as a surprise if one is aware of the many kinds of or-
thogonal polynomials which are to be found in the literature. However, the variety
comes from varying the domain of the polynomials and from varying the definition
of the inner product associated with the conditions of orthogonality.

Example 10.1. The specification of the Gram polynomials depends upon the do-
main of the orthogonality conditions which are entailed in their definition. In Figure
10.1, the domain of definition is the set of points xi = 0.25i− 1; i = 0, . . . , 8 which
range, with intervals of 0.25, from −1 to +1.

The Gram polynomials are sometimes described as Legendre polynomials.
However, the latter are usually defined as the set of polynomials Pn(x);n =
0, 1, 2 . . . , which satisfy the differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n− 1)y = 0,(10.31)

and which obey the orthogonality relation∫ 1

−1

Pm(x)Pn(x)dx = 0 for m 6= n.(10.32)

These functions arise in studies of systems with three-dimensional spherical sym-
metry; and they are important in quantum mechanics and in other physical appli-
cations. See, for example, Arfken [28].

In common with all sets of orthogonal polynomials, the Legendre polynomials
satisfy a three-term recurrence relationship which is of great assistance in finding
their formulae and in generating their ordinates. Thus, the (n + 1)th Legendre
polynomial is given by

Pn+1 =
2n+ 1
n+ 1

xPn −
n

n+ 1
Pn−1.(10.33)

This result remains valid in the case of n = 0 if, by definition, P−1 = 0.
Taking P0(x) = 1, and applying the formula successively, gives the following
sequence:

P0(x) = 1,

P2(x) =
3
2
x2 − 1

2
,

P4(x) =
35
8
x4 − 15

4
x2 +

3
8
,

P1(x) = x,

P3(x) =
5
2
x2 − 3

2
x,

P5(x) =
68
8
x4 − 35

4
x3 +

15
8
x.

(10.34)
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Figure 10.1. The Gram polynomials φ0(x), . . . , φ4(x) which are
orthogonal over the domain 0.25i− 1; i = 0, . . . , 8.

It is easy to envisage that, if we define the Gram polynomials over a set of
equally spaced points in the interval [−1, 1] and if we allow the number of points
to increase indefinitely, then the Gram polynomials will approximate the Legen-
dre polynomials with ever-increasing accuracy. This suggests that the problems
of numerical instability in polynomial regression might be largely overcome by
using the Legendre polynomials in place of the powers 1, x, . . . , xn. That is to
say, if they are spaced more of less evenly, the data points x0, x1, . . . , xn may be
mapped, via a linear function, into n + 1 points on the interval [−1, 1], whence
they can be associated with the values taken by the Legendre polynomials at those
points.

Recursive Generation of the Polynomials

The Gram–Schmidt procedure has been treated at length because of its the-
oretical importance and because it provides a method of obtaining the Q–R de-
composition of a matrix which is a useful alternative to the Householder method.
However, there exists a more efficient method for generating orthogonal polyno-
mials which is based on the so-called three-term recurrence relation, of which an
example is given under (10.33). This relation enables the orthogonal polynomial
φk+1(x) of degree k + 1 to be found from the preceding polynomials φk(x) and
φk−1(x).

To derive the recurrence relation, let us begin by writing the sought-after
polynomial as

φk+1(x) =xφk(x) + µkφk(x) + µk−1φk−1(x) + · · ·+ µ0φ0(x)

= (x+ µk)φk(x) + µk−1φk−1(x) + · · ·+ µ0φ0(x).
(10.35)

This is a linear combination of a set of polynomials xφk(x), φk(x), φk−1(x), . . . ,
φ0(x) whose degrees decline from k + 1 to 0. The leading coefficient of the com-
bination is unity because φk+1(x) and xφk(x) are both monic polynomials with
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unity as the coefficient of the term xk+1. Now, if we multiply this equation by
φj(x), where j < k − 1, and sum over {x0, x1, . . . , xn}, then, in consequence of the
orthogonality conditions which affect the polynomials φ0(x), . . . , φk+1(x) over this
domain, we shall find that

0 =
∑
t

φj(xt)
{
xtφk(xt)

}
+ µj

∑
t

φ2
j (xt).(10.36)

But, given that φk(x) is orthogonal to all polynomials of degree less than k, in-
cluding the polynomial xφj(x) which has a degree of j + 1 < k, it follows that

∑
t

φj(xt)
{
xtφk(xt)

}
=
∑
t

φk(xt)
{
xtφj(xt)

}
= 0.(10.37)

Therefore equation (10.36) implies that µj = 0 for all j < k − 1. Thus we have
demonstrated that the relationship in (10.35) must take the form of

φk+1(x) = (x+ µk)φk(x) + µk−1φk−1(x).(10.38)

In placing this equation in the context of a recursive scheme, it is convenient
to rewrite it as

φk+1(x) = (x− γk+1)φk(x)− δk+1φk−1(x),(10.39)

where γk+1 and δk+1 are coefficients which have yet to be determined. This is
the three-term recurrence relationship. The initial conditions of the recursion are
specified by

φ0(x) = 1 and φ−1(x) = 0.(10.40)

Now the values must be found for the coefficients γk+1 and δk+1 which will
ensure that φk+1(x) is orthogonal to its predecessors. For this purpose, we multiply
equation (10.39) by φk−1(x) and sum over x to get

0 =
∑
t

xtφk−1(xt)φk(xt)− δk+1

∑
t

φ2
k−1(xt).(10.41)

But, with k in place of k + 1, equation (10.39) becomes

φk(x) = (x− γk)φk−1(x)− δkφk−2(x);(10.42)

and, when this is multiplied by φk(x) and then summed over x, it is found that∑
t

xtφk−1(xt)φk(xt) =
∑
t

φ2
k(xt).(10.43)
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Substituting the latter into (10.41) and rearranging the result gives

δk+1 =
∑
t φ

2
k(xt)∑

t φ
2
k−1(xt)

.(10.44)

Finally, when equation (10.39) is a multiplied by φk(x) and summed over x, we get

0 =
∑
t

xtφ
2
k(xt)− γk+1

∑
t

φ2
k(xt),(10.45)

which gives

γk+1 =
∑
t xtφ

2
k(xt)∑

t φ
2
k(xt)

.(10.46)

The Polynomial Regression Procedure

The three-term recurrence is used in a Pascal procedure for fitting a polynomial
in x to a data series (x0, y0), . . . , (xnyn). The fitted polynomial equation has the
form

yt =α0φ0(xt) + α1φ1(xt) + · · ·+ αqφq(xt) + et

=β(xt) + et,
(10.47)

and the regression coefficients are given by

αk =
∑
t φk(xt)yt∑
t φ

2
k(xt)

=
∑
t φk(xt)e

(k−1)
t∑

t φ
2
k(xt)

,(10.48)

where

e
(k−1)
t = yt − α0φ0(xt)− α1φ1(xt)− · · · − αk−1φk−1(xt)(10.49)

represents the residual of yt after fitting a polynomial of degree k − 1 to the data.

(10.50) procedure PolyRegress(x, y : vector;
var alpha, gamma, delta, poly : vector;
q, n : integer);

var
phi, philag : vector;
denom, lagdenom, temp : real;
i, k, t, Tcap : integer;

begin {PolyRegress}
Tcap := n+ 1;
alpha[0] := 0.0;
gamma[1] := 0.0;
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for t := 0 to n do
begin
alpha[0] := alpha[0] + y[t];
gamma[1] := gamma[1] + x[t];

end;

alpha[0] := alpha[0]/Tcap;
gamma[1] := gamma[1]/Tcap;
lagdenom := Tcap;

for t := 0 to n do
begin
philag[t] := 1.0;
phi[t] := x[t]− gamma[1];
poly[t] := alpha[0];

end;

for k := 1 to q do
begin {k}

alpha[k] := 0.0;
gamma[k + 1] := 0.0;
denom := 0.0;

for t := 0 to n do
begin {t}
alpha[k] := alpha[k] + y[t] ∗ phi[t];
denom := denom+ Sqr(phi[t]);
gamma[k + 1] := gamma[k + 1] + Sqr(phi[t]) ∗ x[t];

end; {t}

alpha[k] := alpha[k]/denom;
gamma[k + 1] := gamma[k + 1]/denom;
delta[k + 1] := denom/lagdenom;
lagdenom := denom;

for t := 0 to n do
begin {t}
poly[t] := poly[t] + alpha[k] ∗ phi[t];
temp := phi[t];
phi[t] := (x[t]− gamma[k + 1]) ∗ phi[t]

−delta[k + 1] ∗ philag[t];
philag[t] := temp;

end; {t}

end; {k}

end; {PolyRegress}
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We might wish to examine the values of the coefficients of the power-series
representation of the fitted polynomial:

β(x) = β0 + β1xt + β2x
2
t + · · ·+ βqx

q
t .(10.51)

The following procedure is provided for this purpose:

(10.52) procedure OrthoToPower(alpha, gamma, delta : vector;
var beta : vector;
q : integer);

var
phiplus : real;
phi, philag : vector;
i, k : integer;

begin
phi[−1] := 0;
phi[0] := −gamma[1];
phi[1] := 1;
philag[0] := 1;
philag[1] := 0;
beta[0] := alpha[0];

{Find the power-form coefficients}
for k := 1 to q do

begin {k}
beta[k] := 0.0;
for i := k downto 0 do

begin
beta[i] := beta[i] + alpha[k] ∗ phi[i];
phiplus := phi[i− 1]− gamma[k + 1] ∗ phi[i]

−delta[k + 1] ∗ philag[i];
philag[i] := phi[i];
phi[i] := phiplus;

end;
phi[k + 1] := 1;
philag[k + 1] := 0;

end; {k}

end; {OrthoToPower}

There should be a means of generating the value of the fitted polynomial β(x)
at an arbitrary point in its domain which is not one of the data points. Such a
facility might be used in plotting the function accurately.

The means of expressing the polynomial as a function of rising powers of its
argument x is already available; and so one way of generating the requisite value
is to use Horner’s method of nested multiplication given under (4.11). However,
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an alternative method is available which avoids the conversion to power-series form
and which depends upon the three-term recurrence relationship.

The fitted polynomial is

β(x) = α0φ0(x) + α1φ1(x) + · · ·+ αqφq(x),(10.53)

wherein φ0(x), φ1(x), . . . , φq(x) are the orthogonal polynomials. The three-term
recurrence relationship of (10.39) may be used to eliminate the orthogonal polyno-
mials from this expression successively, beginning with the polynomial of highest
degree q. The recurrence relationship indicates that

φq(x) = (x− γq)φq−1(x)− δqφq−2(x).(10.54)

Putting this into (10.53) gives

β(x) = α0φ0(x) + α1φ1(x) + · · ·+ (αq−2 − αqδq)φq−2(x)

+ {αq−1 + αq(x− γq)}φq−1(x);
(10.55)

and, on defining

dq = αq and dq−1 = αq−1 + dq(x− γq),(10.56)

the latter becomes

β(x) = α0φ0(x) + α1φ1(x) + · · ·+ (αq−2 − dqδq)φq−2(x) + dq−1φq−1(x).(10.57)

Now the three-term recurrence can be used again to give

φq−1(x) = (x− γq−1)φq−2(x)− δq−1φq−3(x)(10.58)

and, when this is substituted into (10.57), we get

β(x) = α0φ0(x)+α1φ1(x)+· · ·+(αq−3−dq−1δq−1)φq−3(x)+dq−2φq−2(x),(10.59)

wherein

dq−2 = αq−2 + dq−1(x− γq−1)− dqδq.(10.60)

The process, of which we have given the first two steps, can be continued down to
d0 = β(x) using

dj = αj + dj+1(x− γj+1)− dj+2δj+2; j = q − 2, . . . , 0.(10.61)

The following function evaluates the polynomial β(x) at the point x using the
relationships (10.56) and (10.61):
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(10.62) function PolyOrdinate(x : real;
alpha, gamma, delta : vector;
q : integer) : real;

var
d : vector;
i, j : integer;

begin
d[q] := alpha[q];
d[q − 1] := alpha[q − 1] + d[q] ∗ (x− gamma[q]);
for j := q − 2 downto 0 do
d[j] := alpha[j] + d[j + 1] ∗ (x− gamma[j + 1])

−d[j + 2] ∗ delta[j + 2];
PolyOrdinate := d[0];

end; {PolyOrdinate}

Example 10.2. Table 10.1, which is due to Tintner [482, p. 195], gives the
consumption of meat per head in the United States in each year from 1919 to 1941.

The raw data present acute difficulties when attempts are made to fit the
power-series form of a polynomial directly by means of an ordinary regression algo-
rithm. Attempts which have been made by the author to fit polynomials to these
data using the appropriate options for polynomial regression in statistical packages
which are sold commercially have usually met with failure. In one notable case, the
program was unable to fit a cubic polynomial on account of “data singularity”.

The procedures PolyRegress of (10.50) and OrthoToPower of (10.52) give rise
to the following estimated coefficients for a cubic polynomial:

α0 = 166.191, 28
α1 = −0.379, 05
α2 = 0.073, 57
α3 = 0.022, 12

β0 = −158, 774, 192.000, 00
β1 = 246, 945.765, 62
β2 = −128.025, 85
β3 = 0.022, 12.

(10.63)

Table 10.1. Annual consumption of meat in the United States
1919–1941 measured in pounds per capita.

1919 171.5 1929 163.0 1939 165.4
1920 167.0 1930 162.1 1940 174.7
1921 164.5 1931 160.2 1941 178.7
1922 169.3 1932 161.2
1923 179.4 1933 165.8

1924 179.2 1934 163.5
1925 172.6 1935 146.7
1926 170.5 1936 160.2
1927 168.6 1937 156.8
1928 164.7 1938 156.8
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Figure 10.2. A cubic function fitted to the data on
meat consumption in the United States, 1919–1941.

The α coefficients relate to the regression with orthogonal polynomials whilst the
β coefficients relate to the corresponding power-series regression.

One of the reasons for the failure of the ordinary regression algorithm is the
disparity in the sizes of the β coefficients; for it is clear that such values cannot
coexist without the danger of serious rounding errors. If an ordinary regression
algorithm is to be used for fitting a polynomial to such data, then the data must
first be put into deviation form and the elements of the cross-product matrix must
be scaled. Such steps are taken by the GaussianRegression procedure of (8.56).
By putting the data in deviation form, the difficulties caused by the large absolute
value of the intercept coefficient β0 can be overcome.

The appropriate degree for the polynomial may be determined by the formal
methods of statistical hypothesis testing described in Chapter 6. These methods
have been discussed at length by Anderson [16] who also uses Tintner’s data to
provide an example. However, in this example, there is no difficulty in recognising
that the appropriate polynomial is a cubic. The residual sum of squares from
fitting polynomials with degrees up to five are as follows:

S0 = 1, 369.538

S1 = 1, 224.413

S2 = 1, 032.400

S3 = 452.833

S4 = 430.152

S5 = 430.151.

(10.64)

The goodness of fit improves very slowly when the degree of the polynomial is
raised beyond three. Figure 10.2 depicts a cubic polynomial which has been fitted
to the data.
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ξ0 ξ1 ξ2 ξ3 ξk−2 ξk−1 ξk

Figure 10.3. A cubic spline with knots at ξ0, . . . , ξk
,

Grafted Polynomials

A polynomial curve has certain characteristics which may make it inappropri-
ate as a means of modelling a trend. The most notable of these is its behaviour
beyond the range of the data. The branches of the polynomial tend to plus or minus
infinity at an increasing rate. Moreover, the degree of the polynomial has only to be
changed by one, and one of the branches will change its direction. Often, the most
radical form of extrapolation which we are prepared to consider is a linear trend;
and we may envisage upper and lower bounds for the quantity being extrapolated.
In such cases, an extrapolation based on a polynomial is clearly at odds with our
preconceptions.

There is another, more fundamental, reason why a polynomial, as much as any
other analytic function, may be inappropriate for modelling a trend. This is the
inability of such a function to adapt to local variations in a trend without endowing
them with global consequences. An analytic function has a Taylor series expansion
which is valid for all points in its domain. The expansion may be defined in terms
of the derivatives of the function at an arbitrary point; and, from the knowledge of
these derivatives, the value of the function at any other point may be inferred.

One way of modelling the local characteristics of a trend without prejudicing its
global characteristics is to use a segmented curve. In many applications, it has been
found that a curve with cubic polynomial segments is appropriate. The segments
must be joined in a way which avoids evident discontinuities; and, in practice, the
requirement is usually for continuous first-order and second-order derivatives (see
Figure 10.3).

(10.65) The function S(x) is a piecewise cubic polynomial on the inter-
val [x0, xn] if it is continuous and if there exists a set of points
{ξi; i = 0, 1, . . . , k} of strictly increasing values with x0 = ξ0 < ξ1 <
· · · < ξk = xn such that S(x) is a polynomial of degree three at most on
each of the sub-intervals [ξi−1, ξi]; i = 1, . . . , k. If S(x) has continuous
derivatives up to the second order, then it is a cubic spline.

The property of second-order continuity is denoted by writing S(x) ∈ C2. The
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x

ξ0 ξ1 ξ2 ξ3

Figure 10.4. The truncated cubic power functions (x− ξi)3
+; i = 0, . . . , 3.

points ξ0, . . . , ξk are described as knots whilst the coordinates {ξ0, S(ξ0)}, . . . ,
{ξk, S(ξk)}, which include the endpoints, are described as nodes. The joints or
meeting points of the segments are {ξ1, S(ξ1)}, . . . , {ξk−1, S(ξk−1)}.

If S(x) is a cubic spline with joints at ξ1, . . . , ξk−1, then it can be written in
the form of

S(x) =
3∑
j=0

cjx
j +

k−1∑
j=1

dj(x− ξj)3
+

=
k−1∑
j=−3

dj(x− ξj)3
+,

(10.66)

where

(x− ξj)+ = max[0, x− ξj ].(10.67)

The “+” notation means simply that u+ = u if u ≥ 0 and u+ = 0 if u ≤ 0. It
is known, amongst engineers, as the Heaviside notation. The function (x − ξj)p+
is described as a truncated power. In Figure 10.4, the continuous curves represent
truncated cubic power functions. The discontinuous curves are the parts which are
discarded.

In a special case, which will be treated in the next chapter, the knots {ξi; i =
0, 1, . . . , k} coincide with the data points x0, . . . , xn. For the present, we shall
consider cases where the segments in S(x) are fewer that n − 1 and where the
placement of the joints of the segments is at the discretion of the investigator. We
shall describe S(x) as a grafted polynomial curve whenever k < n.

The following extended example examines more closely the formulation of
(10.66); and it demonstrates the second-order continuity of functions which are
expressed in this way:

Example 10.3. Let P (x) and Q(x) be cubic polynomial functions defined on the
interval [ξ0, ξn] which meet at the point ξ1 ∈ [ξ0, ξn] where P (ξ1) = Q(ξ1). The
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difference between these functions is also a cubic:

R(x) =Q(x)− P (x)

= r0 + r1(x− ξ1) + r2(x− ξ1)2 + r3(x− ξ1)3.
(10.68)

The derivatives of the difference function are

R′(x) = r1 + 2r2(x− ξ1) + 3r3(x− ξ1)2,

R′′(x) = 2r2 + 6r3(x− ξ1),

R′′′(x) = 6r3.

(10.69)

At the meeting point, or knot, x = ξ1, we find that

R(ξ1) = r0 = 0,

R′(ξ1) = r1,

R′′(ξ1) = 2r2,

R′′′(ξ1) = 6r3;
(10.70)

and so, if the functions P (x) and Q(x) are to have the same first and second
derivatives at this point, then we must have r0 = r1 = r2 = 0 and hence

R(x) = r3(x− ξ1)3.(10.71)

Now consider the composite function S(x) ∈ C2 defined by

S(x) =

{
P (x), if x ≤ ξ1;

Q(x), if x ≥ ξ1.
(10.72)

Using the Heaviside notation, this can be written as

S(x) =P (x) +
{
Q(x)− P (x)

}
+

=P (x) +R(x)+

=P (x) + r3(x− ξ1)3
+,

(10.73)

where P (x) =
∑3
j=0 cjx

j is an ordinary cubic function. It should be easy to imagine
how a further cubic segment may grafted into the function S(x) at a point ξ2 ∈
[ξ1, ξn]; and therefore the first expression on the RHS of (10.66) should now be
intelligible.

The cubic function P (x) can also be expressed in terms of the Heaviside no-
tation. For this purpose, the points ξ−1, ξ−2, and ξ−3 must be defined such that
ξ−3 < ξ−2 < ξ−1 < ξ0. When x ∈ [ξ0, ξn], the four functions (x−ξ−3)3, . . . , (x−ξ0)3

form a basis for the set of all cubic functions of x; and, in this domain, the powers
and the truncated powers coincide. Therefore, there exists a set of scalars d−3, d−2,
d−1, d0 such that, for x ∈ [ξ0, xn], we have

P (x) =
3∑
j=0

cjx
j

=
0∑

j=−3

dj(x− ξj)3
+.

(10.74)

280



10: ESTIMATION OF POLYNOMIAL TRENDS

Putting this into (10.73) and defining d1 = r3 gives the expression

S(x) =
1∑

j=−3

dj(x− ξj)3
+,(10.75)

which corresponds to the second phase of equation (10.66).

One can approach the problem of fitting a grafted polynomial in the way in
which the problem of polynomial regression was approached at first. Thus, given the
observations x0, x1, . . . , xn, the coefficients d−3, d−2, . . . , dk−1 in equation (10.66)
can be determined by finding the values which minimise the function

n∑
t=0

{
yt − S(xt)

}2

=
n∑
t=0

{
yt −

k−1∑
j=−3

dj(xt − ξj)3
+

}2

.(10.76)

The estimator may be expressed in matrix notation. Let β = [d−3, , . . . , dk−1]′ be
the vector of coefficients, and let X = [xtj ] be the design matrix whose generic
element is xtj = (xt− ξj)3

+. Then the elements of β can be determined in the usual
manner via the method of ordinary least-squares regression.

The method of estimation described above, which uses ordinary truncated
power functions, is straightforward to implement. However, it is beset by numer-
ical instabilities which get worse as the length of the interval [x0, xn] increases.
Therefore it is desirable to investigate the use of other sets of basis functions which
are better conditioned.

B-Splines

A more sophisticated method of fitting a grafted polynomial uses an alternative
set of basis functions which are themselves polynomial splines. These are the so-
called B-spline functions, and they allow the grafted polynomial to be written in
the form of

S(x) =
k−1∑
j=−3

λjBj(x).(10.77)

The number k + 3 of the functions in the basis B−3, . . . , Bk−1 is the same as the
number of the parameters c0, . . . , c3, d1, . . . , dk−1 in the representation of S(x) under
(10.66).

The concept of the B-splines may be introduced by considering the problem of
choosing a set of basis functions Bj(x); j = −3, . . . , k − 1 such that each function
is zero over a large part of the range [x0, xn].

Since we are confining our attention to a grafted polynomial which is a cubic
spline, the B-spline functions must also be based on cubic polynomials. The generic
cubic B-spline can be written, in terms of the Heaviside notation of the previous
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section, as

Bp(x) =
q∑
i=p

di(x− ξi)3
+

=
q∑
i=p

di
(
x3 − 3x2ξi + 3xξ2

i − ξ3
i

)
+
.

(10.78)

Two features may be observed. The first is that Bp(x) = 0 if x ≤ ξp. The
second is that Bp(x) ∈ C2, which is to say that the function exhibits second-order
continuity over the entire range [x0, xn]. In effect, the function and its first two
derivatives rise from zero at the point ξp and vary thereafter without discontinuity.

We choose the coefficients dp, dp+1, . . . , dq and, at the same time, we fix the
value of q so that Bp 6= 0 only if x ∈ [ξp, ξq]. The interval over which the B-spline
is nonzero is described as its support. Since we already have Bp(x) = 0 if x ≤ ξp,
the problem is to ensure that Bp(x) = 0 if x ≥ ξq. In view of (10.78), the necessary
and sufficient condition for this is that

q∑
i=p

diξ
k
i = 0, for k = 0, . . . , 3.(10.79)

To guarantee the consistency of these equations, we must take q ≥ p + 4. To
determine the coefficients dp, dp+1, . . . , dq uniquely, it is sufficient to set q = p + 4
and to attribute a value of unity to dp. Then the four remaining coefficients are
determined by the system

1 1 1 1
ξp+1 ξp+2 ξp+3 ξp+4

ξ2
p+1 ξ2

p+2 ξ2
p+3 ξ2

p+4

ξ3
p+1 ξ3

p+2 ξ3
p+3 ξ3

p+4



dp+1

dp+2

dp+3

dp+4

 = −


1
ξp

ξ2
p

ξ3
p

 .(10.80)

One should recognise that the values which satisfy the equations of (10.79) will
also satisfy the equations

q∑
i=p

di(ξi − θ)k = 0, for k = 0, . . . , 3,(10.81)

wherein θ is an arbitrary constant. This indicates that the coefficients of the B-
spline are determined only by the relative positions of the knots ξi and are not
affected their absolute positions. If the knots are equally spaced, then the B-
splines in what is then described as the uniform basis Bj ; j = −3, . . . , k − 1 will
have an identical form. The support of each successive B-spline will be shifted to
the right by a constant amount.

In order to construct a basis set comprising k + 3 cubic B-splines, some extra
support points must be added to the set ξ0, . . . , ξk. Given that the support of
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each cubic B-spline comprises 5 points, it follows that the original set of points
can support only k − 3 functions. A further 6 points are needed. These should be
placed outside the interval [ξ0, ξk] at both ends. If the extra points are denoted by
ξ−3, ξ−2, ξ−1, and ξk+1, ξk+2, ξk+3, then we should have

ξ−3 < ξ−2 < ξ−1 < ξ0 and ξk < ξk+1 < ξk+2 < ξk+3.(10.82)

Example 10.4. Let p = −2 and q = 2 in the formula (10.78) and let ξi = i; i =
p, . . . , q be equally spaced knots, which gives us the points −2, 1, 0, 1, 2. Then, if
we set d−2 = 1, the equations of (10.79) can be written as

1 1 1 1
−1 0 1 2
1 0 1 4
−1 0 1 8



d−1

d0

d1

d2

 =


−1
2
−4
8

 .(10.83)

The solution gives d−1 = −4, d0 = 6, d1 = −4, and d2 = 1. When these values are
substituted into the equation under (10.78), we find that the basis function Bp(x)
is composed of the following segments over the range [−2, 2] which constitutes its
support:

x3 + 6x2 + 12x+ 8, −2 ≤ x ≤ −1,

−3x3 − 6x2 + 4, −1 ≤ x ≤ 0,

3x3 − 6x2 + 4, 0 ≤ x ≤ 1,

−x3 + 6x2 − 12x+ 8, 1 ≤ x ≤ 2.

(10.84)

Each of these segments can be expressed as a function of a variable t ∈ [0, 1]. Thus,
when t = (x − ξi)/(ξi+1 − ξi), we have x = ξi + t(ξi+1 − ξi); and this gives the
following parametric equations for the segments:

t3, −2 ≤ x ≤ −1,

−3t3 + 3t2 + 3t+ 1, −1 ≤ x ≤ 0,

3t3 − 6t2 + 4, 0 ≤ x ≤ 1,

−t3 + 3t2 − 3t+ 1, 1 ≤ x ≤ 2.

(10.85)

The segments of Bp(x) are shown in Figure 10.5.
Closed algebraic expressions can be found for the parameters dp, . . . , dq using

a result which is given under (4.92). The result indicates that

q∑
i=p

ξki∏
j 6=i(ξj − ξi)

= δk,(q−p),(10.86)

where δk,(q−p) is Kronecker’s delta. This expression is to be compared with the
equations under (10.79) which determine the parameters of the cubic B-spline. In
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ξ−2 ξ−1 ξ0 ξ1 ξ2

Figure 10.5. A uniform cubic B-spline B−2(x) with the support [ξ−2, ξ2].

the case where k = 0, . . . , 3 and q − p = 4, the appropriate solutions are

di =
p+4∏
j=p
j 6=i

1
(ξj − ξi)

, where i = p, . . . , p+ 4.(10.87)

Therefore the cubic B-spline with a support [ξp, ξp+4] can be represented by

B3
p(x) =

p+4∑
i=p

[
p+4∏
j=p
j 6=i

1
(ξj − ξi)

]
(x− ξi)3

+.(10.88)

Reference to equation (4.86) shows that this is an expression for the leading
coefficient of a polynomial of degree 4 which interpolates the coordinates of the
function (x−ξi)3

+ at the points ξp, . . . , ξp+4. The expression is therefore synonymous
with the fourth-order divided difference of the truncated power function. Indeed,
B-splines are commonly defined in terms of divided differences; see, for example,
de Boor [138].

Recursive Generation of B-spline Ordinates

The B-spline of degree k with the support [ξp, ξp+k+1] is given by the formula

Bkp (x) =
p+k+1∑
i=p

[
p+k+1∏
j=p
j 6=i

1
(ξj − ξi)

]
(x− ξi)k+,(10.89)

which is evidently a generalisation of (10.88). A recursive scheme for generating
such splines is indicated by the following theorem:
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(10.90) Let Bk−1
p (x) and Bk−1

p+1 (x) be B-splines of degree k−1 whose respective
supports are the intervals [ξp, ξp+k] and [ξp+1, ξp+k+1]. Then the B-
spline of degree k whose support is the interval [ξp, ξp+k+1] is given by
the convex combination

Bkp (x) =
(x− ξp)Bk−1

p (x) + (ξp+k+1 − x)Bk−1
p+1 (x)

ξp+k+1 − ξp
.

To prove the theorem, it is only necessary to only confirm that, if Bk−1
p and

Bk−1
p+1 fulfil their defining conditions, then the function defined by the RHS of the for-

mula has the correct degree of k, that it is nonzero only over the interval [ξp, ξp+k+1]
and that it satisfies the conditions of second-order continuity. This is easily done.

It may also be confirmed directly that the function defined in (10.89) does
indeed satisfy the recursion of (10.90). First we can confirm that the RHS of the
formula of (10.90) agrees with Bkp (x) defined in (10.89) in the interval [ξp, ξp+1).
Now consider the point ξi ∈ [ξp+1, ξp+k+1]. The recursive formula indicates that,
as x passes the point ξi, a term is added to the function which takes the form of
the polynomial (x− ξi)k−1/(ξp+k+1 − ξp) multiplied by

(x− ξp)
p+k∏
j=p
j 6=i

1
(ξj − ξi)

+ (ξp+k+1 − x)
p+k+1∏
j=p+1
j 6=i

1
(ξj − ξi)

= (x− ξi)(ξp+k+1 − ξp)
p+k+1∏
j=p
j 6=i

1
(ξj − ξi)

.

(10.91)

This agrees with the term which is deduced from the formula of (10.89)
In computing the recursion, we start with the B-spline function of zero degree.

The generic function has a constant value over the support [ξp, ξp+1] and a zero
value elsewhere. Specifically,

B0
p(x) = 0 if x < ξp,

B0
p(x) = (ξp+1 − ξp)−1 if ξp ≤ x < ξp+1,

B0
p(x) = 0 if ξp+1 ≤ x.

(10.92)

The generic linear B-spline is computed as

B1
p(x) =

(x− ξp)B0
p(x) + (ξp+2 − x)B0

p+1(x)
ξp+2 − ξp

.(10.93)
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ξp−3 ξp−2 ξp−1 ξp ξp+1 ξp+2

ξp−3 ξp−2 ξp−1 ξp ξp+1 ξp+2

ξp−3 ξp−2 ξp−1 ξp ξp+1 ξp+2

ξp−3 ξp−2 ξp−1 ξp ξp+1 ξp+2

Figure 10.6. The B-splines of degrees 0, . . . , 3 generated recursively over
the interval [ξp−3, . . . , ξp+2].

This is a tent-shaped function whose support is the interval [ξp, ξp+2]. The function
rises to a peak at ξp+1. In particular

B1
p(x) = 0 if x ≤ ξp,

B1
p(x) =

x− ξp
(ξp+2 − ξp)(ξp+1 − ξp)

if ξp ≤ x ≤ ξp+1,

B1
p(x) =

ξp+2 − x
(ξp+2 − ξp)(ξp+2 − ξp+1)

if ξp+1 ≤ x ≤ ξp+2,

B1
p(x) = 0 if ξp+2 ≤ x.

(10.94)
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The quadratic B-spline, which is computed as a convex combination of linear
splines, is a bell-shaped function. Finally, the cubic spline, which is formed from
quadratic splines, is also a bell-shaped function, as was shown in Figures 10.5 and
10.6.

There is an alternative version of the recursive scheme which uses the formula

Nk
p (x) =

(x− ξp)
(ξp+k − ξp)

Nk−1
p (x) +

(ξp+k+1 − x)
(ξp+k+1 − ξp+1)

Nk−1
p+1 (x),(10.95)

where

Nk
p = (ξp+k+1 − ξp)Bkp (x)(10.96)

is simply a rescaled version of the B-spline defined in (10.90). Notice that the
two denominators on the RHS of (10.95) correspond to the lengths of the supports
of the constituent B-splines Nk−1

p (x) and Nk−1
p+1 (x) of degree k − 1, whereas the

common denominator in the definition under (10.90) is the length of the support
of the B-spline Bkp (x) on the LHS.

The initial conditions for the algorithm of (10.95), which replace those of
(10.92), are

N0
p (x) =

{ 1, if ξp ≤ x < ξp+1;

0, otherwise.
(10.97)

A facility is required for evaluating the ordinates of the cubic B-spline at an
arbitrary point x. Give that a cubic B-spline is nonzero over a support consisting
of four consecutive intervals, it follows that there are only four such splines which
are not automatically zero at x. The aim is to evaluate each of these functions; and
a simple recursive algorithm based on (10.90) is available for the purpose.

Imagine that x ∈ [ξp, ξp+1]. Then there is one B-spline of zero degree which is
nonzero in the interval, there are two of the first degree which are nonzero, there
are three of the second degree and four of the third degree. The following diagram
illustrates the relationship amongst these splines:

B0
p

↙ ↘
B1
p−1 B1

p

↙ ↘ ↙ ↘
B2
p−2 B2

p−1 B2
p

↙ ↘ ↙ ↘ ↙ ↘
B3
p−3 B3

p−2 B3
p−1 B3

p

(10.98)

287



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

In algebraic terms, the relationships are

B1
p−1 =

(
1− λ1

1

)
B0
p ,

B1
p =λ1

0B
0
p ,

B2
p−2 =

(
1− λ2

2

)
B1
p−1,

B2
p−1 =λ2

1B
1
p−1 +

(
1− λ2

1

)
B1
p ,

B2
p =λ2

0B
1
p ,

B3
p−3 =

(
1− λ3

3

)
B2
p−2,

B3
p−2 =λ3

2B
2
p−2 +

(
1− λ3

2

)
B2
p−1,

B3
p−1 =λ3

1B
2
p−1 +

(
1− λ3

1

)
B2
p ,

B3
p =λ3

0B
2
p .

(10.99)

Here λki and 1− λki are the weights of the convex combinations defined in (10.90).
Notice that the elements on the borders of the triangular array comprise a zero-
valued function as one of the elements of this combination.

The following procedure generates the ordinates of the four cubic B-splines
B3
p−i; i = 0, . . . , 3 which are nonzero at the point x ∈ [ξp, ξp+1]; and it returns

the values under the index i = 0, . . . , 3, in the array b. In fact, the algorithm
generates in turn each of the elements in the display of (10.99) running from top to
bottom. However, because the elements are successively overwritten, only the final
four emerge from the procedure.

(10.100) procedure BSplineOrdinates(p : integer;
x : real;
xi : vector;
var b : vector);

var
k, j : integer;
lambda : real;

begin
b[−1] := 0;
b[0] := 1/(xi[p+ 1]− xi[p]);
b[1] := 0;

for k := 1 to 3 do
begin {k}

for j := k downto 0 do
begin {j}
lambda := (x− xi[p− j])/(xi[p− j + k + 1]− xi[p− j]);
b[j] := lambda ∗ b[j] + (1− lambda) ∗ b[j − 1];

end; {j}
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b[k + 1] := 0;
end; {k}

end; {BSplineOrdinates}

Another task which arises is that of finding the coefficients of the polynomial
segments which constitute the cubic B-splines. These coefficients may be useful in
plotting the individual B-splines or in plotting a curve which is a linear combination
of the B-splines. The task is accomplished by the following procedure which builds
upon the previous one:

(10.101) procedure BSplineCoefficients(p : integer;
xi : vector;
mode : string;
var c : matrix);

var
i, j, k : integer;
denom : real;

begin
for i := 0 to 1 do

for j := −1 to 1 do
c[i, j] := 0;

c[0, 0] := 1/(xi[p+ 1]− xi[p]);
for k := 1 to 3 do {degree}

begin {k}
c[k, k] := 0;
for j := k downto 0 do {the splines}

begin {j}
for i := k downto 0 do {spline coefficients}

begin {i}
denom := (xi[p− j + k + 1]− xi[p− j]);
c[i, j] := c[i− 1, j]− xi[p− j] ∗ c[i, j];
c[i, j] := c[i, j]− c[i− 1, j − 1];
c[i, j] := c[i, j] + xi[p− j + k + 1] ∗ c[i, j − 1];
c[i, j] := c[i, j]/denom;
c[i, k + 1] := 0;

end; {i}
c[k + 1, j] := 0;

end; {j}
c[k + 1,−1] := 0;

end; {k}

if mode = ′local′ then
begin {Find shifted-form coefficients}

for j := 0 to 3 do
for k := 0 to 2 do
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for i := 1 to 3− k do
c[3− i, j] := c[3− i, j] + c[3− i+ 1, j] ∗ xi[p];

end; {Shifted-form coefficients}

end; {BSplineCoefficients}

The output of this procedure is governed by the parameter mode. If this string is set
to ′global′, then the procedure finds the coefficients cij of the power representations
P 3
p−j =

∑3
i=0 cijx

i of the four cubic B-spline segments B3
p−j ; j := 0, . . . , 3 which are

nonzero in the interval [ξp, ξp+1]. If the string is set to ′local′, then the coefficients
of the shifted power forms S3

p−j =
∑3
i=0 cij(x − ξp)i, which are centred on ξp, are

delivered instead. The final segment of the code, which effects the recentring, is
copied from the procedure ShiftedForm of (4.16).

The recentred polynomials are in the same form as the segments of the cubic
splines which are to be described in the next chapter. Therefore their coefficients
can be supplied directly to the procedure SplineToBezier of (11.50) which generates
the corresponding Bézier control points which are the arguments of the curveto
command of the PostScript graphics language.

Regression with B-Splines

Imagine that a choice has been made of a sequence of knots ξ0, . . . , ξk which
serves to demarcate the k segments of a piecewise cubic polynomial S(x). The
piecewise polynomial is to be fitted to the data points (x0, y0), . . . , (xn, yn) of which
the abscissae form a sequence of increasing values which fall in the interval [ξ0, ξk]
spanned by the knots.

When six supplementary knots ξ−3, ξ−2, ξ−1, and ξk+1, ξk+2, ξk+3 are added
to the beginning and the end of the sequence of knots, there is sufficient support
for a total of k + 3 B-spline functions. Then, each xi ∈ [x0, xn] will fall in some
interval [ξj , ξj+1] over which four functions, Bj(x), Bj−1(x), Bj−2(x), Bj−3(x), are
defined. The values of these functions at the data point xi, which are generated by
the procedure BSplineOrdinates of (10.100), may be recorded as four consecutive
nonzero elements in the ith row of a matrix X of order (n+ 1)× (k + 3).

The structure of the matrix X is typified by the following display:

∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ 0 0 . . . 0
0 ∗ ∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ ∗ 0 . . . 0
0 0 ∗ ∗ ∗ ∗ . . . 0
0 0 ∗ ∗ ∗ ∗ . . . 0
...

...
...

...
...

...
0 0 . . . 0 ∗ ∗ ∗ ∗
0 0 . . . 0 ∗ ∗ ∗ ∗


.(10.102)

The matrix X together with the vector y = [y0, . . . , yn]′ of the corresponding ordi-
nates of the data points may be subjected to a procedure for calculating a vector
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of k + 3 regression parameters β = [λ−3, . . . , λk−1]′. The fitted polynomial is then
the function

S(x) =
k−1∑
j=−3

λjBj(x).(10.103)

It can be seen, in view of the structure of the matrix X, that X ′X is a sym-
metric matrix of seven diagonal bands. This fact may be exploited in creating a
specialised procedure for solving the normal equations X ′Xβ = X ′y of the least-
squares regression. Indeed, if the number of knots is large, then it may be necessary
to use such a procedure in the interests of conserving computer memory and of
saving time. Procedures of this nature have been provided by de Boor [138].

The placement of the knots ought to be at the discretion of the user. Placing a
cluster of knots in a certain area allows the curve S(x) to follow the local features of
the data closely. Conversely, a wider spacing of the knots over the region will result
in a smoother curve. However, If the knots are numerous, it may be necessary to
use an automatic procedure for placing them in appropriate positions along the
x-axis. Failing this, they should be placed at regular intervals. In that case, some
of the essential advantages of using B-splines in constructing grafted polynomial
curves are lost; and it becomes appropriate to adopt the alternative procedure of
estimating a least-squares smoothing spline in which the knots coincide with the
data points. The cubic smoothing spline is the subject of the next chapter.
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CHAPTER 11

Smoothing with
Cubic Splines

A spline function is a curve constructed from polynomial segments which are subject
to conditions of continuity at their joints. In this chapter, we shall develop the
algorithm of the cubic smoothing spline and we shall justify its use in estimating
trends in time series.

Considerable effort has been devoted over several decades to developing the
mathematics of spline functions. Much of the interest is due to the importance
of splines in industrial design. In statistics, smoothing splines have been used in
fitting curves to data ever since workable algorithms first became available in the
late 1960s—see Schoenberg [442] and Reinsch [423]. However, many statisticians
have felt concern at the apparently arbitrary nature of this device.

The difficulty is in finding an objective criterion for choosing the value of the
parameter which governs the trade-off between the smoothness of the curve and
its closeness to the data points. At one extreme, where the smoothness is all that
matters, the spline degenerates to the straight line of an ordinary linear least-
squares regression. At the other extreme, it becomes the interpolating spline which
passes through each of the data points. It appears to be a matter of judgment where
in the spectrum between these two extremes the most appropriate curve should lie.

One attempt at overcoming this arbitrariness has led to the criterion of cross-
validation. Here the underlying notion is that the degree of smoothness should be
chosen so as to make the spline the best possible predictor of any points in the data
set to which it has not been fitted. Instead of reserving a collection of data points
for the sole purpose of making this choice, it has been proposed that each of the
available points should be left out in turn while the spline is fitted to the remainder.
For each omitted point, there is then a corresponding error of prediction; and the
optimal degree of smoothing is that which results in the minimum sum of squares
of the prediction errors.

To find the optimal degree of smoothing by the criterion of cross-validation can
require an enormous amount of computing. An alternative procedure, which has
emerged more recently, is based on the notion that the spline with an appropriate
smoothing parameter represents the optimal predictor of the path of a certain
stochastic differential equation of which the observations are affected by noise.
This is a startling result, and it provides a strong justification for the practice of
representing trends with splines. The optimal degree of smoothing now becomes
a function of the parameters of the underlying stochastic differential equation and
of the parameters of the noise process; and therefore the element of judgment in
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x

y

Figure 11.1. A cubic spline.

fitting the curve is eliminated.
We shall begin this chapter by establishing the algorithm for an ordinary in-

terpolating spline. Thereafter, we shall give a detailed exposition of the classical
smoothing spline of which the degree of smoothness is a matter of choice. In the
final section, we shall give an account of a model-based method of determining an
optimal degree of smoothing.

It should be emphasised that a model-based procedure for determining the
degree of smoothing will prove superior to a judgmental procedure only if the model
has been appropriately specified. The specification of a model is itself a matter of
judgment.

Cubic Spline Interpolation

Imagine that we are given a set of coordinates (x0, y0), (x1, y1), . . . , (xn, yn) of
the function y = y(x), where the values of x are in ascending order. The object
is to bridge the gap between adjacent points (xi, yi), (xi+1, yi+1) using the cubic
functions Si; i = 0, . . . , n − 1 so as to piece together a curve with continuous first
and second derivatives. Such a curve, which is described as a cubic spline, is the
mathematical equivalent of a draughtsman’s spline which is a thin strip of flexible
wood used for drawing curves in engineering work. The junctions of the cubic
segments, which correspond to the points at which the draughtsman’s spline would
be fixed, are known as knots or nodes (see Figure 11.1).

The function Si can be expressed as

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di,(11.1)

where x ranges from xi to xi+1.
The first and second derivatives of this function are

S′i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci and

S′′i (x) = 6ai(x− xi) + 2bi.
(11.2)
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The condition that the adjacent functions Si−1 and Si for i = 1, . . . , n should meet
at the point (xi, yi) is expressed in the equation

Si−1(xi) = Si(xi) = yi or, equivalently,

ai−1h
3
i−1 + bi−1h

2
i−1 + ci−1hi−1 + di−1 = di = yi,

(11.3)

where hi−1 = xi−xi−1. The condition that the first derivatives should be equal at
the junction is expressed in the equation

S′i−1(xi) = S′i(xi) or, equivalently,

3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1 = ci;

(11.4)

and the condition that the second derivatives should be equal is expressed as

S′′i−1(xi) = S′′i (xi) or, equivalently,

6ai−1hi−1 + 2bi−1 = 2bi.
(11.5)

It is also necessary to specify the conditions which prevail at the endpoints
(x0, y0) and (xn, yn). The first derivatives of the cubic functions at these points
can be set to the values of the corresponding derivatives of y = y(x) thus:

S′0(x0) = c0
= y′(x0) and S′n−1(xn) = cn

= y′(xn).(11.6)

This is described as clamping the spline. By clamping the spline, additional infor-
mation about the function y = y(x) is introduced; and this should result in a better
approximation. However, extra information of an equivalent nature can often be
obtained by assessing the function at additional points close to the ends.

If the ends are left free, then the conditions

S′′0 (x0) = 2b0
= 0 and

S′′n−1(xn) = 2bn
= 0(11.7)

will prevail. These imply that the spline is linear when it passes through the
endpoints. The latter conditions may be used when the information about the first
derivatives of the function y = y(x) is hard to come by.

We shall begin by treating the case of the natural spline which has free ends. In
this case, the values of b0 and bn are known, and we can begin by determining the re-
maining second-degree parameters b1, . . . , bn−1 from the data values y0, . . . , yn and
from the conditions of continuity. Once the values for the second-degree parameters
have been found, the values can be determined of the remaining parameters of the
cubic segments.

Consider, therefore, the following four conditions relating to the ith segment:

(i) Si(xi) = yi,

(iii) S′′i (xi) = 2bi,

(ii) Si(xi+1) = yi+1,

(iv) S′′i (xi+1) = 2bi+1.
(11.8)
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If bi and bi+1 were known in advance, as they would be in the case of n = 1, then
these conditions would serve to specify uniquely the four parameters of Si. In the
case of n > 1, the conditions of first-order continuity provide the necessary link
between the segments which enables the parameters b1, . . . , bn−1 to be determined
simultaneously.

The first of the four conditions specifies that

di = yi.(11.9)

The second condition specifies that aih3
i + bih

2
i + cihi+di = yi+1, whence it follows

that

ci =
yi+1 − yi

hi
− aih2

i − bihi.(11.10)

The third condition may be regarded as an identity. The fourth condition specifies
that 6aihi + 2bi = 2bi+1, which gives

ai =
bi+1 − bi

3hi
.(11.11)

Putting this into (11.10) gives

ci =
(yi+1 − yi)

hi
− 1

3
(bi+1 + 2bi)hi;(11.12)

and now the parameters of the ith segment are expressed in terms of the second-
order parameters bi+1, bi and the data values yi+1, yi.

The condition S′i−1(xi) = S′i(xi) of first-order continuity, which is to be found
under (11.4), can now be rewritten with the help of equations (11.11) and (11.12)
to give

bi−1hi−1 + 2bi(hi−1 + hi) + bi+1hi =
3
hi

(yi+1 − yi)−
3

hi−1
(yi − yi−1).(11.13)

By letting i run from 1 to n− 1 in this equation and by taking account of the end
conditions b0 = bn = 0, a tridiagonal system of n− 1 equations is generated in the
form of 

p1 h1 0 . . . 0 0
h1 p2 h2 . . . 0 0
0 h2 p3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pn−2 hn−2

0 0 0 . . . hn−2 pn−1





b1
b2
b3
...

bn−2

bn−1


=



q1
q2
q3
...

qn−2

qn−1


,(11.14)

where

pi = 2(hi−1 + hi) = 2(xi+1 − xi−1) and

qi =
3
hi

(yi+1 − yi)−
3

hi−1
(yi − yi−1).

(11.15)
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These can be reduced by Gaussian elimination to a bidiagonal system

p′1 h1 0 . . . 0 0
0 p′2 h2 . . . 0 0
0 0 p′3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . p′n−2 hn−2

0 0 0 . . . 0 p′n−1





b1
b2
b3
...

bn−2

bn−1


=



q′1
q′2
q′3
...

q′n − 2
q′n−1


,(11.16)

which may be solved by back-substitution to obtain the values b1, . . . , bn−1. The
values of ai; i = 0, . . . , n − 1 can be obtained from (11.11). The value of c0 can
be obtained from (11.12) and then the remaining values ci; i = 1, . . . , n− 1 can be
generated by a recursion based on the equation

ci = (bi + bi−1)hi−1 + ci−1,(11.17)

which comes from substituting into equation (11.4) the expression for ai−1 given
by (11.11).

The following procedure calculates the parameters of a cubic spline of which
the ends have been left free in accordance with the conditions under (11.7):

(11.18) procedure CubicSplines(var S : SplineV ec;
n : integer);

var
i : integer;
h, p, q, b : vector;

begin {CubicSplines}

h[0] := S[1].x− S[0].x;
for i := 1 to n− 1 do

begin
h[i] := S[i+ 1].x− S[i].x;
p[i] := 2 ∗ (S[i+ 1].x− S[i− 1].x);
q[i] := 3 ∗ (S[i+ 1].y − S[i].y)/h[i]

−3 ∗ (S[i].y − S[i− 1].y)/h[i− 1];
end;

{Gaussian elimination}
for i := 2 to n− 1 do

begin
p[i] := p[i]− h[i− 1] ∗ h[i− 1]/p[i− 1];
q[i] := q[i]− q[i− 1] ∗ h[i− 1]/p[i− 1];

end;

{Back-substitution}
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b[n] := 0;
b[n− 1] := q[n− 1]/p[n− 1];
for i := 2 to n− 1 do
b[n− i] := (q[n− i]− h[n− i] ∗ b[n− i+ 1])/p[n− i];

{Spline parameters}
S[0].a := b[1]/(3 ∗ h[0]);
S[0].b := 0;
S[0].c := (S[1].y − S[0].y)/h[0]− b[1] ∗ h[0]/3;
S[0].d := S[0].y;
S[n].b := 0;

for i := 1 to n− 1 do
begin
S[i].a := (b[i+ 1]− b[i])/(3 ∗ h[i]);
S[i].b := b[i];
S[i].c := (b[i] + b[i− 1]) ∗ h[i− 1] + S[i− 1].c;
S[i].d := S[i].y;

end;

end; {CubicSplines}

The procedure must be placed in an environment containing the following type
statements:

(11.19) type
SplineParameters = record

a, b, c, d, x, y : real
end;

SplineVec = array[0..dim] of SplineParameters;

At the beginning of the procedure, the record S[i] contains only the values of
xi and yi which are held as S[i].x and S[i].y respectively. At the conclusion of the
procedure, the parameters ai, bi, ci, di of the ith cubic segment are held in S[i].a,
S[i].b, S[i].c and S[i].d respectively.

Now let us consider the case where the ends of the spline are clamped. Then
the values of c0 and cn are known, and we may begin by determining the remaining
first-degree parameters c1, . . . , cn−1 from the data points y0, . . . , yn and from the
continuity conditions. Consider, therefore, the following four conditions relating to
the ith segment:

(i) Si(xi) = yi,

(iii) S′i(xi) = ci,

(ii) Si(xi+1) = yi+1,

(iv) S′i(xi+1) = ci+1.
(11.20)

If ci and ci+1 were known in advance, as they would be in the case of n = 1,
then these four conditions would serve to specify the parameters of the segment.
The first and second conditions, which are the same as in the case of the natural
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spline, lead to equation (11.10). The third condition is an identity, whilst the fourth
condition specifies that

ci+1 = 3aih2
i + 2bihi + ci.(11.21)

The equations (11.10) and (11.21) can be solved simultaneously to give

ai =
1
h2
i

(ci + ci+1) +
2
h3
i

(yi − yi+1)(11.22)

and

bi =
3
h2
i

(yi+1 − yi)−
1
hi

(ci+1 + 2ci).(11.23)

The condition S′′i−1(xi) = S′′i (xi) of second-order continuity, which is to be
found under (11.5), can now be rewritten with the help of equations (11.22) and
(11.23) to give

ci−1

hi−1
+ 2
( 1
hi−1

+
1
hi

)
ci +

ci+1

hi
=

3
h2
i−1

(yi − yi−1) +
3
h2
i

(yi+1 − yi).(11.24)

This is similar to the expression under (11.13); and, by letting i run from 1 to n−1,
the following system of equations is generated:

f1 h−1
1 0 . . . 0 0

h−1
1 f2 h−1

2 . . . 0 0
0 h−1

2 f3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . fn−2 h−1

n−2

0 0 0 . . . h−1
n−2 fn−1





c1
c2
c3
...

cn−2

cn−1


=



g1 − c0h−1
0

g2

g3

...
gn−2

gn−1 − cnh−1
n−1


,(11.25)

where

fi = 2(h−1
i−1 − h

−1
i ) and

gi =
3

h2
i−1

(yi − yi−1) +
3
h2
i

(yi+1 − yi).
(11.26)

These may be solved for the values c1, . . . , cn−1 in the same manner as the equations
under (11.14) are solved for b1, . . . , bn−1, by reducing the tridiagonal matrix to
a bidiagonal matrix and then using a process of back-substitution. The values
a0, . . . , an−1 may then be obtained from equation (11.22). The value b0 can be
obtained from (11.23), and then the remaining values b1, . . . , bn can be generated
using a recursion based on the equation

bi = bi−1 + 3ai−1hi−1,(11.27)

which comes from (11.5).
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The alternative procedure for calculating the clamped spline requires the sys-
tem of (11.14) to be extended so as to accommodate the additional information
concerning the values of the first derivatives at the endpoints. Since the conditions
under (11.7) no longer prevail, there are two more parameters to be determined.

The value of the derivative at x0 affects the parameters of the spline via the
equation

y′0 = c0 =
y1 − y0

h0
− 1

3
(b1 + 2b0)h0,(11.28)

which comes from combining the first condition under (11.6) with the equation
under (11.12). This becomes

p0b0 + h0b1 = q0(11.29)

when we define

p0 = 2h0 and q0 =
3
h0

(y1 − y0)− 3y′0.(11.30)

The value of the derivative at xn affects the parameters of the spline via the
equation

y′n = cn = 3an−1h
2
n−1 + 2bn−1hn−1 + cn−1,(11.31)

which comes from combining the second condition under (11.6) with the condition
under (11.4). Using (11.11) and (11.12), this can be rewritten as

y′n −
(yn − yn−1)

hn−1
=

2
3
bnhn−1 +

1
3
bn−1hn−1(11.32)

which becomes

hn−1bn−1 + pnbn = qn(11.33)

when we define

pn = 2hn and qn = 3y′n −
3

hn−1
(yn − yn−1).(11.34)

The extended system can now be written as

p0 h0 0 . . . 0 0
h0 p1 h1 . . . 0 0
0 h1 p2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pn−1 hn−1

0 0 0 . . . hn−1 pn





b0
b1
b2
...

bn−1

bn


=



q0
q1
q2
...

qn−1

qn


.(11.35)
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Cubic Splines and Bézier Curves

Parametric cubic splines have been much used in the past in ship-building and
aircraft design and they have been used, to a lesser extent, in the design of car
bodies. However, their suitability to an iterative design process is limited by the
fact that, if the location of one of the knots is altered, then the whole spline must
be recalculated. In recent years, cubic splines have been replaced increasingly in
computer-aided design applications by the so-called cubic Bézier curve.

A testimony to the versatility of cubic Bézier curves is the fact that the
PostScript [3] page-description language, which has been used in constructing the
letter forms on these pages, employs Bézier curve segments exclusively in construct-
ing curved paths, including very close approximations to circles.

The usual parametrisation of a Bézier curve differs from the parametrisation
of the cubic polynomial to be found under (11.1). Therefore, in order to make
use of the Bézier function provided by a PostScript-compatible printer, we need to
establish the correspondence between the two sets of parameters. The Bézier func-
tion greatly facilitates the plotting of functions which can be represented exactly
or approximately by cubic segments.

The curve-drawing method of Bézier [53], [54] is based on a classical method
of approximation known as the Bernstein polynomial approximation. Let f(t) with
t ∈ [0, 1] be an arbitrary real-valued function taking the values fk = f(tk) at the
points tk = k/n; k = 0, . . . , n which are equally spaced in the interval [0, 1]. Then
the Bernstein polynomial of degree n is defined by

Bn(t) =
n∑
k=0

fk
n!

k!(n− k)!
tk(1− t)n−k.(11.36)

The coefficients in this sum are just the terms of the expansion of the binomial

{
t+ (1− t)

}n =
n∑
k=0

n!
k!(n− k)!

tk(1− t)n−k;(11.37)

from which it can be seen that the sum of the coefficients is unity.
Bernstein (1912) [49] used this polynomial in a classic proof of the Weierstrass

approximation theorem [508] which asserts that, for any ε > 0, there exists a
polynomial Pn(t) of some degree n = n(ε) such that |f(t) − Pn(t)| < ε. The
consequence of Bernstein’s proof is that Bn(t) converges uniformly to f(t) in [0, 1]
as n→∞.

The restriction of the functions to the interval [0, 1] is unessential to the theo-
rem. To see how it may be relieved, consider a continuous monotonic transformation
x = x(t) defined over an interval bounded by x0 = x(0) and x1 = x(1). The inverse
function t = t(x) exists; and, if f(x) = f{t(x)} and Bn(x) = Bn{t(x)}, then Bn(x)
converges uniformly to f(x) as Bn(t) converges to f(t).

Whilst the Bernstein polynomials lead to an elegant constructive proof of the
Weierstrass theorem, they do not in themselves provide useful polynomial approx-
imations. One reason for their inadequacy is the slowness of their convergence to
f(t), which means that, in order to obtain a good approximation, a polynomial
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t

f

Figure 11.2. Adjacent cubic Bézier segments linked by a condition of first-
order continuity. The solid lines link the Bézier control points in sequence.
The dotted lines complete the boundaries of the convex hulls.

of a high degree is required. However, a high-degree polynomial is liable to have
undesirable ripples. Until the advent of computer-aided design and the discoveries
of Bézier, the Bernstein polynomials were regarded as little more that an adjunct
to a proof of the Weierstrass theorem—see Achieser [2]. The approach of Bézier in
designing a smooth curve is to use Bernstein polynomials of low degree to construct
short segments which are linked by conditions of first-order continuity. An ordered
set of n+ 1 points (tk, fk); k = 0, . . . , tn which serves to define a Bernstein polyno-
mial of degree n also defines a convex hull containing the path of the polynomial
(see Figure 11.2).

This path, which is known as the Bézier curve, has two important features.
On the one hand, it passes through the endpoints (t0, f0), (tn, fn) which define the
boundaries of a segment. This can be seen by setting t = 0 and t = 1 in (11.36) to
give

Bn(0) = f0 and Bn(1) = fn.(11.38)

On the other hand, the slopes of the vectors which are tangent to the Bézier curve
at the endpoints are equal to the slopes of the adjacent sides of the polygon which
forms the convex hull. Thus, maintaining assumption that the n+1 points t0, . . . , tn
are equally spaced in the interval [0, 1], we have

B′n(0) = n(f0 − f1)

=
f0 − f1

t0 − t1
and

B′n(1) = n(fn − fn−1)

=
fn − fn−1

tn − tn−1
.

(11.39)

If the endpoints of the Bézier curve are regarded as fixed, then the intermediate
points (t1, f1), . . . , (tn−1, fn−1) may be adjusted in an interactive manner to make
the Bézier curve conform to whatever shape is desired.
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Example 11.1. Consider the cubic Bernstein polynomial

B3(t) = f0(1− t)3 + 3f1t(1− t)2 + 3f2t
2(1− t) + f3t

3

=αt3 + βt2 + γt+ δ.
(11.40)

Equating the coefficients of the powers of t shows that

α= f3 − 3f2 + 3f1 − f0,

β= 3f2 − 6f1 + 3f0,

γ= 3f1 − 3f0,

δ= f0.

(11.41)

Differentiating B3(t) with respect to t gives

B′3(t) = −3f0(1− t)2 + 3f1t(1− 4t+ 3t2) + 3f2(2t− 3t2) + 3f3t
2,(11.42)

from which it can be see that the conditions under (11.39) are satisfied:

B′3(0) = 3(f0 − f1) and B′3(1) = 3(f3 − f2).(11.43)

In order to exploit the Bézier command which is available in the PostScript
language, we need to define the relationship between the ordinates f0, f1, f2, f3 of
the four control points of a cubic Bézier curve and the four parameters a, b, c, d of
the representation of a cubic polynomial which is to be found under (11.1).

Let us imagine that the Bézier function B3(t) ranges from f0 to f3 as t ranges
from t0 = 0 to t3 = 1, and let

S(x) = a(x− x0)3 + b(x− x0)2 + c(x− x0) + d(11.44)

be a segment of the cubic spline which spans the gap between two points which are
(x0, y0) and (x1, y1) with y0 = f0 and y1 = f3. Then, if we define

x(t) = (x1 − x0)t+ x0

=ht+ x0,
(11.45)

we can identify the function S(x) with the function B(x) = B{t(x)}. Thus, on
taking B(t) = αt3 + βt2 + γt+ δ and putting t(x) = (x− x0)/h, with h = x1 − x0,
in place of t, we get

S(x) =
α

h3
(x− x0)3 +

β

h2
(x− x0)2 +

γ

h
(x− x0) + δ

= a(x− x0)3 + b(x− x0)2 + c(x− x0) + d.

(11.46)

The mapping from the ordinates of the Bézier control points to the parameters
α, β, γ, δ is given by

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



f0

f1

f2

f3

 =


α
β
γ
δ

 =


ah3

bh2

ch
d

 .(11.47)
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The inverse of mapping is given by
f0,
f1

f2

f3

 =


0 0 0 1
0 0 1/3 1
0 1/3 2/3 1
1 1 1 1



ah3

bh2

ch
d

 .(11.48)

The PostScript Bézier command is the curveto command which takes as its
arguments the values z1, f1, z2, f2, z3, f3 and adds a cubic Bézier segment to the
current path between the current point (z0, f0) and the point (z3, f3) using (z1, f1)
and (z2, f2) as the control points. Then (z3, f3) becomes the new current point.
The curveto function is based upon a pair of parametric cubic equations:

z(t) = azt
3 + bzt

2 + czt+ z0,

y(t) = ayt
3 + byt

2 + cyt+ f0.
(11.49)

The parameters az, bz, cz are obtained from the abscissae z0, z1, z2, z3 via the trans-
formation of (11.47) which is used to obtain ay, by, cy from f0, f1, f2, f3.

The parametric equation z = z(t) enables the t-axis to be expanded, contracted
and even folded back on itself. There is therefore no requirement that values
z0, z1, z2, z3 should be equally spaced. More significantly, curves may be plotted
which do not correspond to single-valued functions of z. For our own purposes, the
function reduces to z(t) = ht + z0 with h = z3 − z0, where z0 = xi and z3 = xi+1

are the values of adjacent knots of a spline curve.
The conversion of the parameters of the cubic function under (11.1) to the

parameters of the cubic Bézier curve may be accomplished using the following
procedure.

(11.50) procedure SplineToBezier(S : SplineVec;
var B : BezierVec;
n : integer);

var
i : iinteger;
h, delt : real;

begin {SplineToBezier}
for i := 0 to n− 1 do

begin {i}
h := S[i+ 1].x− S[i].x;
delt := h/3;
with B[i], S[i] do

begin {with}
z0 := x;
z1 := z0 + delt;
z2 := z1 + delt;
z3 := z2 + delt;
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f0 := d;
f1 := f0 + c ∗ h/3;
f2 := f1 + (c+ b ∗ h) ∗ h/3;
f3 := f0 + (c+ (b+ a ∗ h) ∗ h) ∗ h

end; {with}
end; {i}

end; {SplineToBezier}

The BezierVec type is defined in the following statements which must be in-
cluded in the program which calls the procedure:

(11.51) type
BezierPoints = record

z0, f0, z1, f1, z2, f2, z3, f3 : real
end;

BezierVec = array[0..dim] of BezierPoints;

The Minimum-Norm Property of Splines

The draughtsman’s spline assumes a shape which minimises the potential
energy due to the bending strain. The strain energy is approximately propor-
tional to the integral of the square of the second derivative along the path of the
spline; and therefore the minimisation of the potential energy leads to a property
of minimum curvature. It can be demonstrated that the cubic spline has a similar
property, which justifies us in likening it to the draughtsman’s spline.

Let f(x) ∈ C2 be any function defined over the interval [x0, xn] which has a
continuous second-order derivative. Then a measure of the curvature of the function
is provided by the squared norm

‖f‖2 =
∫ xn

x0

{
f ′′(x)

}2
dx.(11.52)

This differs from the ideal measure of curvature which would be the line integral
of {f ′′(x)}2 along the path of the function. Thus the squared norm provides only
a rough approximation to the potential energy of the draughtsman’s spline.

Our object is to show that, amongst all functions f(x) ∈ C2, which pass through
the points (xi, yi); i = 0, . . . , n, it is the spline function which minimises the squared
norm.

Let the spline be denoted by S(x), where x ∈ [x0, xn], and let the ith segment
continue to be expressed as

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di,(11.53)

where x ∈ [xi, xi+1]. The derivatives of this function are

S′i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci,

S′′i (x) = 6ai(x− xi) + 2bi,

S′′′i (x) = 6ai.

(11.54)
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The minimum-norm property of the cubic spline can be established using the
following result:

(11.55) Let f(x) ∈ C2 be a function defined on the interval [x0, xn] which
passes through the points (xi, yi); i = 0, . . . , n which are the knots of
the spline function S(x). Then

‖f − S‖2 = ‖f‖2 − ‖S‖2 − 2
[
S′′(x)

{
f ′(x)− S′(x)

}]xn
x0

.

Proof. By definition, there is

‖f − S‖2 = ‖f‖2 − 2
∫ xn

x0

f ′′(x)S′′(x)dx+ ‖S‖2

= ‖f‖2 − 2
∫ xn

x0

S′′(x)
{
f ′′(x)− S′′(x)

}
dx− ‖S‖2.

(11.56)

Within this expression, it is found, through integrating by parts, that∫ xn

x0

S′′(x)
{
f ′′(x)− S′′(x)

}
dx=

[
S′′(x)

{
f ′(x)− S′(x)

}]xn
x0

−
∫ xn

x0

S′′′(x)
{
f ′(x)− S′(x)

}
dx.

(11.57)

Since S(x) consists of the cubic segments Si(x); i = 0, . . . , n− 1, it follows that the
third derivative S′′′(x) is constant in each open interval (xi, xi+1), with a value of
S′′′i (x) = 6ai. Therefore

∫ xn

x0

S′′′(x)
{
f ′(x)− S′(x)

}
dx=

n−1∑
i=0

∫ xi+1

xi

6ai
{
f ′(x)− S′(x)

}
dx

=
n−1∑
i=0

6ai
[
f(x)− S(x)

]xi+1

xi
= 0,

(11.58)

since f(x) = S(x) at xi and xi+1; and hence (11.57) becomes∫ xn

x0

S′′(x)
{
f ′′(x)− S′′(x)

}
dx =

[
S′′(x)

{
f ′(x)− S′(x)

}]xn
x0

.(11.59)

Putting this into (11.56) gives the result which we wish to prove.

Now consider the case of the natural spline which satisfies the conditions
S′′(x0) = 0 and S′′(xn) = 0. Putting these into the equality of (11.55) reduces
it to

‖f − S‖2 = ‖f‖2 − ‖S‖2,(11.60)
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x

y

Figure 11.3. An cubic interpolating spline—the dotted path—and a cubic
smoothing spline—the continuous path. Here, the parameter of the convex
combination of equation (11.62) has been given the value of µ = 0.5.

which demonstrates that ‖f‖2 ≥ ‖S‖2. In the case of a clamped spline with
S′(x0) = f ′(x0) and S′(xn) = f ′(xn), the equality of (11.55) is also reduced to
that of (11.60). Thus it can be seen that, in either case, the cubic spline has the
minimum-norm property.

Smoothing Splines

The interpolating spline provides a useful way of approximating a smooth
function f(x) ∈ C2 only when the data points lie along the path of the function
or very close to it. If the data are scattered at random in the vicinity of the
path, then an interpolating polynomial, which is bound to follow the same random
fluctuations, will belie the nature of the underlying function. Therefore, in the
interests of smoothness, we may wish to allow the spline to depart from the data
points (see Figure 11.3).

We may imagine that the ordinates of the data are given by the equation

yi = f(xi) + ηi,(11.61)

where ηi; i = 0, . . . , n form a sequence of independently distributed random vari-
ables with V (ηi) = σ2

i . In that case, we can attempt to reconstitute the function
f(x) by constructing a spline function S(x) which minimises the value of

L = µ

n∑
i=0

(
yi − Si
σi

)2

+ (1− µ)
∫ xn

x0

{
S′′(x)

}2
dx,(11.62)

wherein Si = S(xi).
The parameter µ ∈ [0, 1] reflects the relative importance which we give to

the conflicting objectives of remaining close to the data, on the one hand, and of
obtaining a smooth curve, on the other hand. Notice that a linear function satisfies
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the equation ∫ xn

x0

{
S′′(x)

}2
dx = 0,(11.63)

which suggests that, in the limiting case, where µ = 0 and where smoothness is
all that matters, the spline function S(x) will become a straight line. At the other
extreme, where µ = 1 and where the closeness of the spline to the data is the only
concern, we will obtain an interpolating spline which passes exactly through the
data points.

Given the piecewise nature of the spline, the integral in the second term on
the RHS of (11.62) can be written as

∫ xn

x0

{
S′′(x)

}2
dx =

n−1∑
i=0

∫ xi+1

xi

{
S′′i (x)

}2
dx.(11.64)

Since the spline is composed of cubic segments, the second derivative in any interval
[xi, xi+1] is a linear function which changes from 2bi at xi to 2bi+1 at xi+1. Therefore
we have ∫ xi+1

xi

{
S′′i (x)

}2
dx= 4

∫ hi

0

{
bi

(
1− x

hi

)
+ bi+1

x

hi

}2

dx

=
4hi
3
(
b2i + bibi+1 + b2i+1

)
,

(11.65)

where hi = xi+1 − xi; and the criterion function can be rewritten as

L =
n∑
i=0

(
yi − di
σi

)2

+ 2λ
n−1∑
i=0

hi
(
b2i + bibi+1 + b2i+1

)
,(11.66)

wherein di = Si(xi) and λ = 2(1− µ)/3µ, which is the so-called smoothing param-
eter.

We shall treat the case of the natural spline which passes through the knots
(xi, di); i = 0, . . . , n and which satisfies the end conditions S′′(x0) = 2b0 = 0 and
S′′(xn) = 2bn = 0. The additional feature of the problem of fitting a smoothing
spline, compared with that of fitting an interpolating spline, is the need to determine
the ordinates di; i = 0, . . . , n which are no longer provided by the data values
yi; i = 0, . . . , n.

We can concentrate upon the problem of determining the parameters bi, di; i =
0, . . . , n if we eliminate the remaining parameters ai, ci; i = 1, . . . , n− 1. Consider,
therefore, the ith cubic segment which spans the gap between the knots (xi, di) and
(xi+1, di+1) and which is subject to the following conditions:

(i) Si(xi) = di,

(iii) S′′i (xi) = 2bi,

(ii) Si(xi+1) = di+1,

(iv) S′′i (xi+1) = 2bi+1.
(11.67)
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The first condition may be regarded as an identity. The second condition, which
specifies that aih3

i + bih
2
i + cihi + di = di+1, gives

ci =
di+1 − di

hi
− aih2

i + bihi.(11.68)

The third condition is again an identity, whilst the fourth condition, which specifies
that 2bi+1 = 6aihi + 2bi, gives

ai =
bi+1 − bi

3hi
.(11.69)

Putting this into (11.68) gives

ci =
di+1 − di

hi
− 1

3
(bi+1 − 2bi)hi.(11.70)

Here we have expressions for ai and ci which are in terms of bi+1, bi and
di+1, di. To determine the latter parameters, we must use the conditions of first-
order continuity to link the segments. The condition S′i−1(xi) = S′i(xi) specifies
that

3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1 = ci.(11.71)

On replacing ai−1 and ci−1 by expressions derived from (11.69) and (11.70) and
rearranging the result, we get

bi−1hi−1 + 2bi(hi−1 + hi) + bi+1hi =
3
hi

(di+1 − di)−
3

hi−1
(di − di−1),(11.72)

where hi = xi+1 − xi and hi−1 = xi − xi−1. This is similar to the condition under
(11.13). By letting i run from 1 to n− 1 and taking account of the end conditions
b0 = bn = 0, we can obtain the following matrix system:

p1 h1 0 . . . 0 0
h1 p2 h2 . . . 0 0
0 h2 p3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pn−2 hn−2

0 0 0 . . . hn−2 pn−1





b1
b2
b3
...

bn−2

bn−1



=


r0 f1 r1 0 . . . 0 0
0 r1 f2 r2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . rn−2 0
0 0 0 0 . . . fn−1 rn−1





d0

d1

d2

d3

...
dn−1

dn


,

(11.73)
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where

pi = 2(hi−1 + hi),

ri =
3
hi

and

fi =−
(

3
hi−1

+
3
hi

)
= −(ri−1 + ri).

(11.74)

The matrix equation can be written in a summary notation as

Mb = Q′d.(11.75)

This notation can also be used to write the criterion function of (11.66) as

L = (y − d)′Σ−1(y − d) + λb′Mb,(11.76)

where Σ = diag{σ0, . . . , σn}. Using b = M−1Q′d, which comes from (11.75), en-
ables us to write the function solely in terms of the vector d which contains the
ordinates of the knots:

L(d) = (y − d)′Σ−1(y − d) + λd′QM−1Q′d.(11.77)

The optimal values of the ordinates are those which minimise the function L(d).
Differentiating with respect to d and setting the result to zero gives

− (y − d)′Σ−1 + λd′QM−1Q′ = 0,(11.78)

which is the first-order condition for minimisation. This gives

Σ−1(y − d) =λQM−1Q′d

=λQb.
(11.79)

When this equation is premultiplied by Q′Σ and rearranged with further help from
the identity Mb = Q′d of (11.75), we get(

M + λQ′ΣQ
)
b = Q′y.(11.80)

Once this has been solved for b, the value of d can be obtained from equation
(11.79). Thus

d = y − λΣQb.(11.81)

The value of the criterion function is given by

L = (y − d)′Σ−1(y − d) = λ2b′Q′ΣQb.(11.82)

The matrix A = M+λQ′ΣQ of equation (11.80) is symmetric with five diagonal
bands; and the structure of the matrix may be exploited in deriving a specialised
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procedure for solving the equation. The procedure is as follows. First the factorisa-
tion A = LDL′ is found, where L is a lower-triangular matrix and D is a diagonal
matrix. Then the system LDL′b = Q′y is cast in the form of Lx = Q′y and solved
for x whose elements are stored in place of those of Q′y. Finally, L′b = D−1x is
solved for b whose elements replace those of x.

The procedure Quincunx, which effects this solution, takes as arguments the
vectors u, v and w which are, respectively, the diagonal, the first supradiagonal
and the second supradiagonal of the banded matrix A = M + λQ′ΣQ. The vector
Q′y on the RHS of the equation (11.80) is placed in the array q which contains the
solution vector b on the completion of the procedure.

(11.83) procedure Quincunx(n : integer;
var u, v, w, q : vector);

var
j : integer;

begin {Quincunx}
{Factorisation}
u[−1] := 0;
u[0] := 0;
v[0] := 0;
w[−1] := 0;
w[0] := 0;
for j := 1 to n− 1 do

begin
u[j] := u[j]− u[j − 2] ∗ Sqr(w[j − 2])− u[j − 1] ∗ Sqr(v[j − 1]);
v[j] := (v[j]− u[j − 1] ∗ v[j − 1] ∗ w[j − 1])/u[j];
w[j] := w[j]/u[j];

end;

{Forward-substitution}
q[0] := 0;
q[−1] := 0;
for j := 1 to n− 1 do
q[j] := q[j]− v[j − 1] ∗ q[j − 1]− w[j − 2] ∗ q[j − 2];

for j := 1 to n− 1 do
q[j] := q[j]/u[j];

{Back-substitution}
q[n+ 1] := 0;
q[n] := 0;
for j := n− 1 downto 1 do
q[j] := q[j]− v[j] ∗ q[j + 1]− w[j] ∗ q[j + 2];

end; {Quincunx}
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The procedure which calculates the smoothing spline may be envisaged as a
generalisation of the procedure CubicSplines of (11.18) which calculates an inter-
polating spline. In fact, by setting λ = 0, we obtain the interpolating spline. Figure
11.4, which uses the same data on the consumption of meat as Figure 10.2, gives
an example of the effects of varying the smoothing parameter.

The SmoothingSpline procedure is wasteful of computer memory, since there
is no need to store the contents of the vectors r and f which have been included
in the code only for reasons of clarity. At any stage of the iteration of the index j,
only two consecutive elements from each of these vectors are called for; and one of
these elements may be calculated concurrently. However, the waste of memory is
of little concern unless one envisages applying the procedure to a very long run of
data. In that case, it should be straightforward to modify the procedure.

(11.84) procedure SmoothingSpline(var S : SplineVec;
sigma : vector;
lambda : real;
n : integer);

var
h, r, f, p, q, u, v, w : vector;
i, j : integer;

begin {SmoothingSpline}

h[0] := S[1].x− S[0].x;
r[0] := 3/h[0];
for i := 1 to n− 1 do

begin
h[i] := S[i+ 1].x− S[i].x;
r[i] := 3/h[i];
f [i] := −(r[i− 1] + r[i]);
p[i] := 2 ∗ (S[i+ 1].x− S[i− 1].x);
q[i] := 3 ∗ (S[i+ 1].y − S[i].y)/h[i]

−3 ∗ (S[i].y − S[i− 1].y)/h[i− 1];
end;

r[n] := 0;
f [n] := 0;

for i := 1 to n− 1 do
begin
u[i] := Sqr(r[i− 1]) ∗ sigma[i− 1]

+Sqr(f [i]) ∗ sigma[i] + Sqr(r[i]) ∗ sigma[i+ 1];
u[i] := lambda ∗ u[i] + p[i];
v[i] := f [i] ∗ r[i] ∗ sigma[i] + r[i] ∗ f [i+ 1] ∗ sigma[i+ 1];
v[i] := lambda ∗ v[i] + h[i];
w[i] := lambda ∗ r[i] ∗ r[i+ 1] ∗ sigma[i+ 1];
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end;

Quincunx(n, u, v, w, q);

{Spline parameters}
S[0].d := S[0].y − lambda ∗ r[0] ∗ q[1] ∗ sigma[0];
S[1].d := S[1].y − lambda ∗ (f [1] ∗ q[1] + r[1] ∗ q[2]) ∗ sigma[0];
S[0].a := q[1]/(3 ∗ h[0]);
S[0].b := 0;
S[0].c := (S[1].d− S[0].d)/h[0]− q[1] ∗ h[0]/3;
r[0] := 0;

for j := 1 to n− 1 do
begin
S[j].a := (q[j + 1]− q[j])/(3 ∗ h[j]);
S[j].b := q[j];
S[j].c := (q[j] + q[j − 1]) ∗ h[j − 1] + S[j − 1].c;
S[j].d := r[j − 1] ∗ q[j − 1] + f [j] ∗ q[j] + r[j] ∗ q[j + 1];
S[j].d := S[j].y − lambda ∗ S[j].d ∗ sigma[j];

end;
S[n].d := S[n].y − lambda ∗ r[n− 1] ∗ q[n− 1] ∗ sigma[n];

end; {SmoothingSpline}

A Stochastic Model for the Smoothing Spline

A disadvantage of the smoothing spline is the extent to which the choice of
the value for the smoothing parameter remains a matter of judgment. One way
of avoiding such judgments is to adopt an appropriate model of the process which
has generated the data to which the spline is to be fitted. Then the value of the
smoothing parameter may be determined in the process of fitting the model.

Since the smoothing spline is a continuous function, it is natural to imagine that
the process underlying the data is also continuous. A model which is likely to prove
appropriate to many circumstances is a so-called integrated Wiener process which
is the continuous analogue of the familiar discrete-time unit-root autoregressive
processes commonly described as a random walk. To the continuous process, a
discrete process is added which represents a set of random errors of observation.
Thus, the estimation of the trend becomes a matter of signal extraction.

A Wiener process Z(t) consists of an accumulation of independently distributed
stochastic increments. The path of Z(t) is continuous almost everywhere and dif-
ferentiable almost nowhere. If dZ(t) stands for the increment of the process in the
infinitesimal interval dt, and if Z(a) is the value of the function at time a, then the
value at time τ > a is given by

Z(τ) = Z(a) +
∫ τ

a

dZ(t).(11.85)
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Figure 11.4. Cubic smoothing splines fitted to data on
meat consumption in the United States, 1919–1941.
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Moreover, it is assumed that the change in the value of the function over any finite
interval (a, τ ] is a random variable with a zero expectation:

E
{
Z(τ)− Z(a)

}
= 0.(11.86)

Let us write ds∩dt = ∅ whenever ds and dt represent nonoverlapping intervals.
Then the conditions affecting the increments may be expressed by writing

E
{
dZ(s)dZ(t)

}
=
{

0, if ds ∩ dt = ∅;
σ2dt, if ds = dt.

(11.87)

These conditions imply that the variance of the change over the interval (a, τ ] is
proportional to the length of the interval. Thus

V
{
Z(τ)− Z(a)

}
=
∫ τ

s=a

∫ τ

t=a

E
{
dZ(s)dZ(t)

}
=
∫ τ

t=a

σ2dt = σ2(τ − a).
(11.88)

The definite integrals of the Wiener process may be defined also in terms of
the increments. The value of the first integral at time τ is given by

Z(1)(τ) =Z(1)(a) +
∫ τ

a

Z(t)dt

=Z(1)(a) + Z(a)(τ − a) +
∫ τ

a

(τ − t)dZ(t),
(11.89)

The mth integral is

Z(m)(τ) =
m∑
k=0

Z(m−k)(a)
(τ − a)k

k!
+
∫ τ

a

(τ − t)m

m!
dZ(t).(11.90)

The covariance of the changes Z(j)(τ) − Z(j)(a) and Z(k)(τ) − Z(k)(a) of the
jth and the kth integrated processes derived from Z(t) is given by

C(a,τ)

{
z(j), z(k)

}
=
∫ τ

s=a

∫ τ

t=a

(τ − s)j(τ − t)k

j!k!
E
{
dZ(s)dZ(t)

}
=σ2

∫ τ

a

(τ − t)j(τ − t)k

j!k!
dt = σ2 (τ − a)j+k+1

(j + k + 1)j!k!
.

(11.91)

The simplest stochastic model which can give rise to the smoothing spline is
one in which the generic observation is depicted as the sum of a trend component
described by an integrated Wiener process and a random error taken from a discrete
white-noise sequence. We may imagine that the observations y0, y1, . . . , yn are made
at the times t0, t1, . . . , tn. The interval between ti+1 and ti is hi = ti+1 − ti which,
for the sake of generality, is allowed to vary. These points in time replace the
abscissae x0, x1, . . . , xn which have, hitherto, formed part of our observations.
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In order to conform to the existing notation, we define

ci = Z(ti) and di = Z(1)(ti)(11.92)

to be, respectively, the slope of the trend component and its level at time ti, where
Z(ti) and Z(1)(ti) are described by equations (11.85) and (11.89). Also, we define

εi+1 =
∫ ti+1

ti

dZ(t) and νi+1 =
∫ ti+1

ti

(ti+1 − t)dZ(t).(11.93)

Then the integrated Wiener process of (11.89), which is the model of the underlying
trend, can be written is state-space form as follows:[

di+1

ci+1

]
=

[
1 hi

0 1

][
di

ci

]
+

[
νi+1

εi+1

]
,(11.94)

whilst the equation of the corresponding observation is

yi+1 =
[

1 0
] [ di+1

ci+1

]
+ ηi+1.(11.95)

Using the result under (11.91), we find that the dispersion matrix for the state
disturbances is

D

[
νi+1

εi+1

]
= σ2

ηφ

[ 1
3h

3
i

1
2h

2
i

1
2h

2
i hi

]
,(11.96)

where σ2
ηφ = σ2

ε is the variance of the Wiener process expressed as the product of
the variance σ2

η of the observations errors and of the signal-to-noise ratio φ = σ2
ε/σ

2
η.

The estimation of the model according to the criterion of maximum likelihood
could be accomplished by a straightforward application of the Kalman filter which
serves to generate the prediction errors whose sum of squares is the major element
of the criterion function. In fact, when it has been concentrated in respect of σ2

η,
the criterion function has the signal-to-noise ratio φ as its sole argument. Once the
minimising value of φ has been determined, the definitive smoothed estimates of the
state parameters ci, di for i = 0, . . . , n may be obtained via one of the algorithms
presented in Chapter 9. The values should coincide with those which would be
generated by the SmoothingSpline algorithm given the appropriate value of the
smoothing parameter.

The advantage of the SmoothingSpline algorithm of (11.84) is that it automat-
ically generates the remaining parameters of the cubic segments which bridge the
gaps between the points (ti, di) and which serve, thereby, to estimate the underlying
trend.

In order to estimate the path of the trend on the basis of the postulated Wiener
process, it is necessary to represent the values which lie between the adjacent points
(ti, di), (ti+1, di+1) by an interpolated function whose first derivatives at the two
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points are given by ci and ci+1. It has been demonstrated by Craven and Wahba
[130] that the curve which represents the minimum-mean-square-error estimator of
a trend generated by an integrated Wiener process is indeed a smoothing spline.

The practical details of constructing the spline within the framework of a
Wiener process have been set forth by Wecker and Ansley [506]. A lucid exposition,
which we shall follow here, has been provided recently by de Vos and Steyn [149].

The problem of estimating the intermediate value of the trend between the
times ti and ti+1 of two adjacent observations is that of finding its expectation
conditional upon the values ξi = (ci, di) and ξi+1 = (ci+1, di+1). Let t ∈ (ti, ti+1]
be the date of the intermediate values ct and dt; and let us define the following
quantities which represent the stochastic increments which accumulate over the
sub-intervals (ti, t] and (t, ti+1]:

εt =
∫ t

t1

dZ(τ),

νt =
∫ t

t1

(t− ti)dZ(τ),

ε̄t =
∫ ti+1

t

dZ(τ),

ν̄t =
∫ ti+1

t

(ti+1 − t)dZ(τ).
(11.97)

In these terms, the stochastic increments over the entire interval (ti, ti+1] are given
by [

νi+1

εi+1

]
=

[
1 (ti+1 − t)
0 1

][
νt

εt

]
+

[
ν̄t

ε̄t

]
,(11.98)

which is a variant of equation (11.94).
The values of the slope and the level of the Wiener process at time t can be

given in terms of two of the quantities under (11.97) as follows:

ct = ci + εt and

dt = di + (t− ti)ci + νt.
(11.99)

After the rest of the interval from t to ti+1 has been covered, the slope and the
level become

ci+1 = ct + ε̄t and

di+1 = dt + (ti+1 − t)ct + ν̄t,
(11.100)

which entail the remaining quantities under (11.97). Substituting for ct and dt in
these expressions gives

ci+1 = ci + εt + ε̄t and

di+1 = di + hici + (ti+1 − t)εt + νt + ν̄t,
(11.101)

wherein (ti+1 − t)εt + νt + ν̄t = νi+1 is an expression which is also provided by
equation (11.98).
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The equations of (11.99) and (11.101) enable us to evaluate the joint moments
of dt, di+1 and ci+1 conditional upon the values ci and di. Thus, with reference to
the result under (11.91), we find that

C(dt, ci+1) = C(νt, εt) =
1
2

(t− ti)2(11.102)

and that

C(dt, di+1) = (ti+1 − t)C(νt, εt) + V (νt)

=
1
2

(ti+1 − t)(t− ti)2 +
1
3

(t− ti)3.
(11.103)

The conditional expectation of the intermediate trend value dt is given by the
regression equation

E
(
dt
∣∣Ii+1

)
= E

(
dt
∣∣Ii)+ C

(
dt, ξi+1

)
D
(
ξi+1

)−1(
ξi+1 − E

{
ξi+1|Ii

})
,(11.104)

where ξi+1 = (di+1, ci+1), and where Ii and Ii+1 represent the information available
at ti and ti+1 which is conveyed, in fact, by the values of ξi and ξi+1.

On the RHS of the expression there is

E
(
dt
∣∣Ii) = di + (t− ti)ci and

ξi+1 − E
{
ξi+1|Ii

}
=

[
di+1 − di − hici

ci+1 − ci

]
.

(11.105)

Of the remaining terms on the RHS, the elements of the vector C(dt, ξi+1) =
[C(dt, di+1), C(dt, ci+1)] are found under (11.102) and (11.103), whilst the disper-
sion matrix D(ξi+1) = D[νi+1, εi+1] is to be found under (11.96).

Detailed computation shows that the regression equation of (11.104) is a cubic
function of t of the form

f(t) = ai(t− ti)3 + bi(t− ti)2 + ci(t− ti) + di(11.106)

wherein

ai =
1
h2
i

(ci + ci+1) +
2
h3
i

(di − di+1)(11.107)

and

bi =
3
h2
i

(di+1 − di)−
1
hi

(ci+1 + 2ci).(11.108)

The expressions for ai and bi could be obtained from those under (11.22) and
(11.23) simply by substituting di+1 and di for yi+1 and yi respectively. The latter
expressions relate to a segment of an interpolating spline of which the ends have
been clamped.
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The mere fact that the estimate of the stochastic trend between the points
(ti, di) and (ti+1, di+1) has the same form as a segment of a spline does not establish
that the estimated trend function as a whole is equivalent to a smoothing spline.
It has to be shown, in addition, that the knots of the segmented trend curve are
identical to those which would be generated by a smoothing spline for a particular
value of the smoothing parameter. A demonstration of this result, which is on an
abstract level, has been provided by Wahba [498].

We shall be able to demonstrate the result, more easily, at a later stage when, in
Chapter 19, we derive anew the part of the algorithm of the smoothing spline which
generates the knots. Then we shall concentrate solely on the problem of estimating
the trend values at the points of observation. For this purpose, we shall rely upon
a discrete-time model to depict the trend values. In the appendix to this chapter,
we demonstrate the necessary result, which is that the exact observations of an
integrated Wiener process, taken at equally spaced intervals, follow an ordinary
integrated moving-average IMA(2, 1) discrete-time process.

Appendix: The Wiener Process and the IMA Process

The values at the times t0, t1, . . . , tn which are generated by an integrated Wiener
process follow a Markov process which is depicted in equation (11.94). Our object
is to show that this can also be expressed as an integrated moving-average (IMA)
process ξ(t). Then it will become a straightforward matter to apply the Wiener–
Kolmogorov theory of signal extraction to the problem of estimating the values of
ξ(t) from a sequence of observations y(t) = ξ(t) + η(t) which are afflicted by a
white-noise error process η(t).

In Chapter 19, we shall present a finite-sample version of the Wiener–
Kolmogorov filter which shares its algorithm with the Reinsch smoothing spline.
The filter will be based upon the IMA process which will be revealed in this ap-
pendix.

On the assumption that observations are equally spaced at unit intervals, which
is the assumption that ht = 1 for all t, the model of equation (11.94), which depicts
the values of an integrated Wiener process, can be written is state-space form as
follows: [

ξt

ζt

]
=

[
1 1

0 1

][
ξt−1

ζt−1

]
+

[
νt

εt

]
.(11.109)

Here νt and εt are from mutually correlated white-noise processes. According to
the result under (11.96), the dispersion matrix for these state disturbances is

D

[
νt

εt

]
= σ2

ε

[
1
3

1
2

1
2 1

]
,(11.110)

where σ2
ε is the variance of the Wiener process.

The discrete-time processes entailed in equation (11.109) can be written as

∇ξ(t) = ξ(t)− ξ(t− 1) = ζ(t− 1) + ν(t) and

∇ζ(t) = ζ(t)− ζ(t− 1) = ε(t).
(11.111)
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Applying the difference operator a second time to the first of these and substituting
for ∇ζ(t− 1) = ε(t− 1) gives

∇2ξ(t) =∇ζ(t− 1) +∇ν(t)

= ε(t− 1) + ν(t)− ν(t− 1).
(11.112)

On the RHS of this equation is a sum of stationary stochastic processes which can
be expressed as an ordinary first-order moving-average process. Thus

ε(t− 1) + ν(t)− ν(t− 1) = η(t) + µη(t− 1),(11.113)

where η(t) is a white-noise process with V {η(t)} = σ2
η.

The parameters of the latter process may be inferred from its autocovariances
which arise from a combination of the autocovariances of ε(t) and ν(t). The variance
γ0 of the MA process is given by the sum of the elements of the matrix

E

 ν2
t −νtνt−1 νtεt−1

−νt−1νt ν2
t−1 −νt−1εt−1

εt−1νt −εt−1νt−1 ε2
t−1

 = σ2
ε

 1
3 0 0
0 1

3 −1
2

0 −1
2 1

 .(11.114)

Thus it is found that γ0 = 4σ2
ε/6. The first autocovariance γ1 of the MA process is

given by the sum of the elements of the matrix

E

 νtνt−1 −νtνt−2 νtεt−2

−ν2
t−1 νt−1νt−2 −νt−1εt−2

εt−1νt−1 −εt−1νt−2 εt−1εt−2

 = σ2
ε

 0 0 0
− 1

3 0 0
1
2 0 0

 .(11.115)

Thus γ1 = σ2
ε/6. The values of the moving-average parameters are found by solving

the equations

γ0 =
2σ2

ε

3
= σ2

η(1 + µ2) and γ1 =
σ2
ε

6
= σ2

ηµ.(11.116)

There are two solution for µ; and we should take the one which fulfils the condition
of invertibility: µ = 2−

√
3.
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CHAPTER 12

Unconstrained Optimisation

A usual way of estimating the parameters of a statistical model is to seek the values
which maximise or minimise a criterion function such as a likelihood function or a
sum of squares of prediction errors. If the criterion function is a quadratic function
of the unknown parameters, then the first-order conditions for its optimisation will
give rise to a set of linear estimating equations which are easily solved to obtain
the estimates.

If the criterion function is not a quadratic, then we cannot expect the first-
order conditions to have an analytic or closed-form solution. There are two ways
of overcoming this difficulty. Either one may endeavour to solve the nonlinear
estimating equations by iterative methods, or else one may use iterative techniques
to find the values which optimise the criterion function. In this chapter, we shall
pursue the latter approach.

In a formal sense, the two approaches are equivalent. In practice, however,
they can be quite different. An approach which is aimed at solving the first-order
conditions can take account of the particular features of the problem at hand. An
optimisation approach, in contrast, must rely upon a general theory of nonlinear
functions. If an optimisation technique is to be widely applicable, then it must be
capable of dealing with all manner of contingencies; and, therefore, robust methods
tend to be complex.

In view of the complexity of modern optimisation techniques, and in view of
the likelihood that naive implementations of the techniques will run into problems,
some authorities—with Gill et al. [211, p. 5] amongst them—have sought to dis-
courage the typical user from writing their own programs. They have suggested
that, instead, one should use algorithms selected from high-quality mathematical
software libraries. This opinion is too unremitting; for, if a relatively simple and
well-understood technique is applied, and if its performance is closely monitored,
then the dangers can be averted. Such monitoring is barely possible, even if it is
unnecessary, when library routines are used; and the consequence is that some of
the more interesting features of the problem at hand may be missed.

Conditions of Optimality

In discussing optimisation methods, we shall consider only the minimisation
of functions, since a problem of maximisation can be solved by minimising the
negative of the function in question. The functions are assumed to be continuous
and smooth, which means that they must be twice-differentiable.

We should begin by giving a precise definition of the minimum of a multivariate
function.
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(12.1) A point θ∗ is said to be a strict minimum of the function S(θ) if
S(θ∗) < S(θ∗+ d) for all d in a convex set B = {d : 0 < ‖d‖ ≤ ε}. The
point is said to be a weak minimum of S(θ) if S(θ∗) ≤ S(θ∗ + d) for
all d ∈ B.

In effect, the point θ∗ is a strict minimum if the value of S increases locally in
all directions departing from θ∗, whereas it is a weak minimum if the function
decreases in none of the directions and may increase in some. In general, a function
may exhibit these properties at a number of points which are described as local
minima. If there is a unique point at which the function is lowest, then this is
called a global minimum.

It is not possible to demonstrate that an analytic function has a global mini-
mum without a complete knowledge of its derivatives of all orders. The conditions
which are sufficient for the existence of a local minimum are modest by comparison.

(12.2) The function S(θ) ∈ C2 has a strict minimum at the point θ∗ if and
only if γ = ∂S/∂θ = 0 at θ∗ and the Hessian matrixH = ∂(∂S/∂θ)′/∂θ
is positive definite in a neighbourhood of θ∗ such that d′Hd > 0 for
any d 6= 0.

Proof. We may set d = λp, where λ is a scalar and p is a vector. Then the
mean-value theorem indicates that

S(θ∗ + λp) = S(θ∗) + λγ′(θ∗)p+
1
2
λ2p′H(θ∗ + κλp)p,(12.3)

where the κ satisfies 0 ≤ κ ≤ 1.
The condition S(θ∗ + λp) ≥ S(θ∗) implies that γ′p+ 1

2λp
′Hp ≥ 0; and letting

λ→ 0 shows that γ′p ≥ 0.
The condition S(θ∗ − λp) ≥ S(θ∗) also holds when |λ| is small enough. Ac-

cording to the mean-value theorem, this condition implies that −γ′p+ 1
2λp

′Hp ≥ 0.
Letting λ → 0 shows that −γ′p ≥ 0; and this can be reconciled with the previous
inequality only if γ′p = 0 which implies that γ = 0, since p is arbitrary. This is a
necessary condition for a minimum.

Now, if γ(θ∗) = 0, then the inequality S(θ∗ + d) ≥ S(θ∗) holds for all d = λp
in a neighbourhood of zero if and only if d′Hd ≥ 0. Therefore, γ = 0 and d′Hd ≥ 0
are jointly the necessary and sufficient conditions for a minimum. If d′Hd > 0,
then there is a strict minimum.

The multivariate minimisation methods discussed in this chapter are iterative
methods which begin with an initial vector θ0 and proceed to generate a sequence
θ1, . . . , θz ending in a value which minimises the function S(θ) approximately.

The (r+1)th element of the sequence is found from its predecessor θr according
to the updating formula

θr+1 = θr + λrpr.(12.4)

This embodies the direction vector pr and the step-adjustment scalar λr. The
decrement of the objective function for a unit change in λ, evaluated at θr, is

∂S(θr)
∂λ

=
∂S(θr)
∂θ

∂θ

∂λ
= γ′rpr,(12.5)
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whilst the so-called directional derivative γ′rpr/‖pr‖ is obtained by normalising the
length of the direction vector.

Since our object is to devise methods which are applicable to any continuous
twice-differentiable objective function, the form of this function will not be specified
in any of the computer code which we shall present. Instead, we shall use a generic
function call of the form Funct(lambda, theta, pvec, n) wherein lambda is the step-
adjustment scalar, theta is the value of the function’s argument from the end of
the previous iteration, pvec is the new direction vector and n is the order of theta
and pvec.

As an example of the function call, which is intended only for illustrative
purposes, we may consider the following:

(12.6) function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var
i : integer;

begin
if lambda <> 0 then

for i := 1 to n do
theta[i] := theta[i] + lambda ∗ pvec[i];

Funct := 3 ∗ Sqr(theta[1]− 1) + 2 ∗ Sqr(theta[2]− 2)
+ Sqr(theta[3]− 3);

end;

Notice that, by setting lambda = 0 or n = 0, the function can be evaluated at theta
instead of theta+ lambda ∗ pvec.

A means of evaluating γ(θ), the gradient vector of the function at the point
θ, is often required. If γ is not available in an analytic form, then it may have
to be determined by numerical means. In the present case, the gradient vector is
provided by the following procedure:

(12.7) procedure gradient(var gamma : vector;
theta : vector;
n : integer);

begin
gamma[1] := 6 ∗ (theta[1]− 1);
gamma[2] := 4 ∗ (theta[2]− 2);
gamma[3] := 2 ∗ (theta[3]− 3);

end;

The typical optimisation procedure has two main elements. The first is a
routine for determining the direction vector pr in equation (12.4). The second is
a routine which determines the value of λr. Usually, the value of λr corresponds
approximately to the minimum of the objective function along the line θ = θr +
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λpr. Finding such a value is a matter of univariate minimisation. Procedures for
univariate minimisation are presented in the sections which follow immediately.

Univariate Search

Imagine that it is known that the interval [a, b] contains a unique local minimum
of the univariate function f(x). To find a smaller interval which contains the
minimum, we should have to evaluate the function at no fewer than two additional
points in [a, b]; for if the function were evaluated only at x1 ∈ [a, b] there would be
no way of telling which of the sub-intervals [a, x1] and [x1, b] contains the minimum.

Therefore, let us assume that the function has been evaluated at the two points
x1, x2 ∈ [a, b], where x1 < x2. Then there are three possibilities. If f(x1) > f(x2),
then the minimum must lie in [x1, b] since it may be excluded from [a, x1] on the
grounds that f(x) is declining monotonically as x increases from a to x1. Likewise,
if f(x1) < f(x2), then the minimum must lie in [a, x2] since it may be excluded
from [x2, b], where f(x) is rising monotonically. Finally, if f(x1) = f(x2), then the
minimum must lie in [x1, x2]. In practice, however, this is such an unlikely event
that we can afford to ignore it by taking either of the wider sub-intervals [a, x2],
[x1, b] instead (see Figure 12.1).

We have to decide how to locate the points x1, x2 within [a, b]. It is desirable
that the two overlapping sub-intervals [a, x2], [x1, b] which might contain the mini-
mum should be of equal length. If it transpires, after evaluating the function at the
points x1, x2, that the minimum lies within [x1, b], then we should place the next
point x3 in such a way as ensure that next two sub-intervals which might contain
the minimum, namely [x1, x3] and [x2, b], are also of equal length.

Let us denote the length of the interval [x, y] by I = |x, y|. Then, with reference
to Figure 12.1, it can be seen that, if the requirements of equal sub-intervals are
fulfilled, then

I0 = |a, b| = |a, x2|+ |x2, b|,
I1 = |x1, b| = |a, x2|,
I2 = |x1, x3| = |x2, b|;

(12.8)

and it follows that I0 = I1 + I2. In general, the relationship

Ij = Ij+1 + Ij+2(12.9)

should hold between the interval sizes of successive iterations of a search procedure.
This prescription is not enough to determine the interval length completely. To do
so, we may impose the further requirement that the ratio of successive lengths is
constant such that

Ij+1 = κIj and Ij+2 = κIj+1 = κ2Ij .(12.10)

Combining the two requirements gives

Ij = κIj + κ2Ij .(12.11)
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x
a bx2x1 x3

I0

I1

I1

I2

I2

Figure 12.1. Two overlapping sub-intervals whose union overlays the mini-
mum should be equal length, and the lengths of successive sub-intervals within
a nested sequence should bear a constant ratio.

Solving the resulting quadratic equation κ2 + k − 1 = 0 gives

κ =
√

5− 1
2

' 0.618.(12.12)

A rectangle with the proportions 1 : 0.618 was described in classical architec-
ture as a golden section, and it was said to be one of the most aesthetically pleasing
of geometric forms. The search procedure in which the successive intervals have
this ratio is called a golden-section search.

(12.13) procedure GoldenSearch(function Funct(x : real) : real;
var a, b : real;
limit : integer;
tolerance : real);

var
x1, x2, f1, f2, kappa : real;
iteration : integer;

begin
kappa := (Sqrt(5.0)− 1)/2.0;
iteration := 0;
x1 := b− kappa ∗ (b− a);
x2 := a+ kappa ∗ (b− a);
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f1 := Funct(x1);
f2 := Funct(x2);

while (b− a > tolerance) and (iteration < limit) do
begin

if f1 > f2 then
begin
a := x1;
x1 := x2;
x2 := a+ kappa ∗ (b− a);
f1 := f2;
f2 := Funct(x2);

end
else if f1 <= f2 then

begin
b := x2;
x2 := x1;
x1 := b− kappa ∗ (b− a);
f2 := f1;
f1 := Funct(x1);

end;

iteration := iteration+ 1;
end; {while}

end; {GoldenSearch}

In this procedure, which is liable to be applied only to problems of univariate
minimisation, we have replaced the generic function call of (12.6) by the simpler
function call Funct(x). The latter is passed to the GoldenSearch procedure as a
formal parameter; and, therefore, the heading of the procedure contains the full
declaration function Funct(x : real) : real. When the procedure is called, the
name of an actual function must be supplied. The actual function must have the
same number and types of parameters as the formal function which is found in the
heading of the procedure; and it must deliver a result of the same type.

The purpose of this construction is to enable the procedure GoldenSearch
to be applied to several functions which may coexist within the same block of a
program. The device of passing a function as a parameter will be used in all of the
optimisation procedures which are to presented in this chapter.

Quadratic Interpolation

In the process of searching the interval [a, b], we acquire information which
can help us to discern the shape of the function f(x) which we desire to minimise.
Such information might lead us more rapidly to an accurate assessment of where
the minimum is located than does a process of successive bracketing based on a
series of sub-intervals of predetermined sizes.
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Recall that, if the minimum is to be located in a sub-interval of [a, b], then
the function f(x) must be evaluated at least at two internal points c, z ∈ [a, b].
Imagine that we already have one internal point c and that we wish to locate a
second point. We might suppose that f(x) could be usefully approximated over
[a, b] by the quadratic g(x) which agrees with f(x) at the points a, b and c, where
f(a) = fa, f(b) = fb and f(c) = fc. In that case, it would be reasonable to locate
z at the point where the approximating quadratic function has its minimum.

By evaluating f(x) at c and z, we can find a sub-interval containing the mini-
mum in the manner of the GoldenSearch procedure of (12.13):

(12.14) if (z < c) and (fz <= fc) then
begin {discard [c, b]}
b := c;
c := z;

end;

if (c < z) and (fz <= fc) then
begin {discard [a, c]}
a := c;
c := z;

end;

if (z < c) and (fz > fc) then
a := z; {discard [a, z]}

if (c < z) and (fz > fc) then
b := z; {discard [z, b]}

The code of the algorithm which selects the sub-interval is complicated slightly
by the fact that we can no longer tell in advance whether z < c or z > c.

The quadratic function g(x) which approximates f(x) over [a, b] can be found
by the method of Lagrangean interpolation. Thus we have

g(x) = fa
(x− b)(x− c)
(a− b)(a− c)

+ fb
(x− a)(x− c)
(b− a)(b− c)

+ fc
(x− a)(x− b)
(c− a)(c− b)

.(12.15)

This can also be written as

g(x) = px2 + qx+ r,(12.16)

where

p =
fa(b− c) + fb(c− a) + fc(a− b)

(a− b)(a− c)(b− c)
(12.17)

and

− q =
fa(b2 − c2) + fb(c2 − a2) + fc(a2 − b2)

(a− b)(a− c)(b− c)
.(12.18)
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The value which minimises the quadratic function g(x) is

z = − q

2p
.(12.19)

The parameters p and q are calculated by the following procedure:

(12.20) procedure Quadratic(var p, q : real;
a, b, c, fa, fb, fc : real);

const
epsilon = 10E − 10;

var
num, denom : real;

begin
num := fa ∗ (b ∗ b− c ∗ c);
num := num+ fb ∗ (c ∗ c− a ∗ a);
num := num+ fc ∗ (a ∗ a− b ∗ b);
denom := (a− b) ∗ (a− c) ∗ (b− c);
p := 0;
q := 0;

if (Abs(num) > epsilon) and (Abs(denom) > epsilon) then
begin {if}
q := −num/denom;
num := fa ∗ (b− c) + fb ∗ (c− a) + fc ∗ (a− b);
p := num/denom;

end; {if}

end; {Quadratic}

If the approximating quadratic for the jth iteration is constructed using the
points aj , bj and cj and their corresponding function values, then we can be assured
that its minimum zj will lie in [aj , bj ], which is the current interval of uncertainty.

In spite of this assurance, the procedure for quadratic interpolation, as it
stands, is not to be recommended. To understand how it can fail, consider the
case where, on the jth iteration, we find that zj < cj and f(zj) < f(cj). The
response of the algorithm is to set aj+1 = aj , cj+1 = zj and bj+1 = cj and to
discard the sub-interval [cj , bj ]. Imagine also that f(aj) greatly exceeds f(cj) and
that f(cj) exceeds f(zj) by very little. Then it is likely that the (j + 1)th iteration
will be a replica of the jth iteration. Thus we may find that zj+1 < cj+1 and
f(zj+1) < f(cj+1). Once more, the response of the algorithm will be to discard
a sub-interval [cj+1, bj+1] on the RHS of the interval of uncertainty [aj+1, bj+1].
Successive iterations may continue in like fashion with ever smaller sub-intervals
being subtracted from the RHS; and thus the progress in diminishing the interval
of uncertainty will continue to worsen.
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It is clear that the main cause of this problem is the retention throughout these
iterations of the point on the LHS which has the highest function value. This is an
inappropriate point to use in constructing the approximating quadratic function.
The problem can be overcome if we are prepared to keep a record of some of the
points which have been most recently evaluated. From amongst such points, we can
find three which will enable us to construct an appropriate quadratic approximation
over the current interval of uncertainty. Clearly, cj is one of these points since f(cj)
is the lowest function value to be found so far. The second point is wj which has
the next lowest function value, and the third point is vj which is where the second
lowest function value was formerly located.

It is possible for vj and wj to coincide with aj and bj . In that case, the
minimum of the approximating quadratic will be found in [aj , bj ] and it will serve
as the updating point zj . If vj and wj do not coincide with aj and bj , then it is
possible that the minimum of the quadratic will lie outside the interval [aj , bj ]. In
that case, zj must be determined by another means. We can imitate the strategy
of the GoldenSearch procedure of (12.13) by taking

zj =

{
cj − (1− κ)(cj − aj), if cj ≥ (aj + bj)/2;

cj + (1− κ)(bj − cj), if cj < (aj + bj)/2.
(12.21)

This places zj in whichever is the longer of the intervals [aj , cj ] and [cj , bj ]. The
resulting algorithm, which is due to Brent [74], is presented below.

(12.22) procedure QuadraticSearch(function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var a, b, c, fa, fb, fc : real;
theta, pvec : vector;
n : integer);

var
z, kappa, p, q, v, w, fm, fz, fv, fw : real;
termination : boolean;

begin
kappa := (Sqrt(5.0)− 1)/2.0;
v := a;
w := b;
fv := fa;
fw := fb;

repeat {until termination}
Quadratic(p, q, v, w, c, fv, fw, fc);

if (p <> 0) then
z := −q/(2 ∗ p);
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if (z < a) or (b < z) or (p = 0) then
if c >= (a+ b)/2 then
z := c− (1− kappa) ∗ (c− a)

else
z := c+ (1− kappa) ∗ (b− c);

fz := Funct(z, theta, pvec, n);

if (fz <= fc) then
begin

if (z < c) then
begin {discard [c, b]}
b := c;
fb := fc;

end;

if (c < z) then
begin {discard [a, c]}
a := c;
fa := fc;

end;

v := w;
w := c;
c := z;
fv := fw;
fw := fc;
fc := fz;

end{fz <= fc}

else if (fz > fc) then
begin

if (z < c) then
begin {discard [a, z]}
a := z;
fa := fz;

end;

if (c < z) then
begin {discard [z, b]}
b := z;
fb := fz

end;

if (fz <= fw) or (w = c) then
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begin
v := w;
w := z;
fv := fw;
fw := fz;

end
else if (fz <= fv) or (v = c) or (v = w) then

begin
v := z;
fv := fz;

end;

end; {fz > fc}

termination := Check(′weak′, a, b, c, fa, fb, fc, fw);
until termination;

end; {QuadraticSearch}

It remains to specify the function which determines, at the end of each of its
iterations, whether or not the QuadraticSearch procedure should be terminated.
There are a variety of criteria which can be used to test for the convergence of a
sequence {fi = f(xi)} when f(x) is a continuous differentiable function. Amongst
these are

|xi − xi−1| ≤ ε and

|fi − fi−1| ≤ ε.
(12.23)

Also, it is wise to impose a predetermined limit on the number of iterations.
In the context of a multivariate optimisation procedure, we usually conduct a

line search aimed at minimising the function in the direction which is being pursued
in the current iteration. Since there may be many iterations, and since accurate
line searches are expensive to carry out, we might wish to weaken the criterion of
convergence considerably and to look only for an adequate decrease in the value of
the function. However, merely requiring a decrease in the function in each iteration
does not ensure the convergence to the minimum; for a sequence of ever-decreasing
decrements could tend to limiting value which is greater than the minimum.

To show how we can guarantee a significant reduction in the value of f(x), let
us consider the case where the updating point z lies in the interval [a0, b0], where
b0 is such that f(b0) = f(a0) (see Figure 12.2). Then we have to ensure that z is
close neither to a0 nor to b0. We can distance z from b0 by requiring that

f(z) < f(a0) + ρ(z − a0)f ′(a0),(12.24)

where ρ is some value obeying the condition 0 ≤ ρ ≤ 1
2 and f ′(a0) is the first

derivative of f(x) evaluated at a0. The function on the RHS represents a line
L1 through a0 which descends less steeply that does f(x) at that point. We can
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Figure 12.2. The set of acceptable points is indicated
by the span of the double-headed arrow.

distance z from a0 by requiring that

f(z) > f(a0) + (1− ρ)(z − a0)f ′(a0).(12.25)

Here the function on the RHS represents a line L2 through a0 which descends more
steeply than L1. The abscissae of the intersections of L1 and L2 with the curve of
the function f(x) define an interval containing the set of acceptable points for z. As
ρ→ 1

2 , the lines come together and the interval between the points of intersection
vanishes. As ρ→ 0, the interval approaches that of [a0, b0].

Unfortunately, the conditions under (12.24) and (12.25) depend upon the val-
ues of the derivative of f at the point a0, and this might not be available. However,
we may replace f ′(a0) by g′(a0) which is the derivative at a0 of the approximating
quadratic.

The following Pascal function Check incorporates both the strong conditions
for convergence found under (12.23) above and the weak conditions of termination
given by (12.24) and (12.25). If the string ′strong ′ is assigned to the parametermode
in the statement which invokes Check, then the conditions of strong convergence
are imposed. If another string is assigned, then the procedure will terminate when
the weak conditions are fulfilled.

(12.26) function Check(mode : string;
a, b, c, fa, fb, fc, fw : real) : boolean;

const
xtol = 0.001;
ftol = 0.0001;
rho = 0.25;

var
p, q, dv : real;
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begin
Check := false;

if ((b− a) < xtol) or (Abs(fc− fw) < ftol) then
Check := true

else if mode <> ′strong ′ then
begin
Quadratic(p, q, a, b, c, fa, fb, fc);
dv := 2 ∗ p ∗ a+ q;
if (fc < fa+ rho ∗ (c− a) ∗ dv)

and (fc > fa+ (1− rho) ∗ (c− a) ∗ dv) then
Check := true

end;

end; {Check};

Bracketing the Minimum

Both of the methods of univariate minimisation which we have presented
require that we have an interval [a, b] which is known to contain a minimum of the
function. There has been a tacit assumption that there is only one minimum within
the interval, but this is unnecessary. When the univariate minimisation is part of
a line-search procedure within a multivariate minimisation, the interval has to be
located by a preliminary computation. We shall describe a method which makes use
of the existing facility for interpolating a quadratic function through three points.

Imagine that we are given only the point a which is supposed to be reasonably
close to a minimum of the function f(x). Then, by evaluating f(x) at a and at
an adjacent point c > a, we can tell in which direction the function is decreasing.
If fa > fc, then the function declines to the right and the additional point b may
be placed to the right of c to form an interval [a, b]. If fa < fc, then the function
declines to the left. In that case, we relabel the original point as c and we place an
interval [a, b] around it.

Let us assume that we are confronted by the case where fa > fc, and let us
ignore the other case which is its mirror image. If fb > fc as well, then we have
an interval which brackets a minimum and there is nothing more to be done. If
we are not so fortunate, then the next step is to interpolate a quadratic function
g(x) through the points (a, fa), (c, fc) and (b, fb). The sign of the second derivative
g′′(x) = 2p indicates whether g(x) is convex or concave.

If g(x) is convex or linear, which is when p ≤ 0, then it has no minimum, and
we should not use it as an approximation for f(x). However, we do know that f(x)
has a minimum to the right of c. Therefore, we should establish a new interval by
extending to the right as far as we are prepared to go and by discarding [a, c] on
the left.

If g(x) is concave, then it has a minimum z which lies either in [a, b] or to the
right of b. If z ∈ [a, b] and if it transpires that fz < fa, fb, then we have an interval
which brackets a minimum. If, on the other hand, fz ≥ fa or fz ≥ fb, then we have
failed to find a bracketing interval and we should move b to the right.
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If z falls to the right of b, which means that fa > fc > fb, then we should
expand the interval by moving b to the right. We can use the value of z to provide
a new value for b provided that it is at an acceptable distance from the old value.
At the same time, we can discard [a, c] on the left.

At the conclusion of these evaluations, we have a new set of points a, c, b
together with their corresponding function values; and we are in a position either
to accept these values or to embark upon a new round.

The method which we have described is due to Powell [406]. It is incorpo-
rated in the LineSearch procedure which follows. The latter forms a shell around
the procedure QuadraticSearch of (12.22) which is invoked once an interval [a, b]
has been found which brackets a minimum. Thus LineSearch, together with its
subsidiary procedures, forms a fully fledged method of univariate minimisation. In
fact, we shall use it in the context of a multivariate optimisation procedure where
it will serve to locate the minima along predetermined directions of search. To
use the procedure for ordinary univariate minimisation, we need only replace the
generic multivariate function call of (12.6) by a univariate function call Funct(z).

(12.27) procedure LineSearch(function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var a : real;
theta, pvec : vector;
n : integer);

var
b, c, z, p, q, fa, fb, fc, fz, step,maxstep : real;

begin
step := 0.15;
maxStep := 0.3;
c := a+ step;
fa := Funct(a, theta, pvec, n);
fc := Funct(c, theta, pvec, n);

if fc < fa then {the function declines to the right}
begin
b := c+ step;
fb := Funct(b, theta, pvec, n);

end

else {if fa <= fc, then the function declines to the left}
begin
b := c;
c := a;
a := a− step;
fb := fc;
fc := fa;
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fa := Funct(a, theta, pvec, n);
end;

while (fc > fb) or (fc > fa) do
begin {while}

Quadratic(p, q, a, b, c, fa, fb, fc);

if p > 0 then {the quadratic is concave}
begin {p > 0}
z := −q/(2 ∗ p);
if Abs(z − a) < step then
z := a− step;

if Abs(b− z) < step then
z := b+ step;

if (z < a−maxStep) then
z := a−maxStep;

if (b+maxStep < z) then
z := b+maxStep;

end; {p > 0}

if p <= 0 then {the quadratic is convex or linear}
begin {p <= 0}

if fa > fc then
z := b+maxStep;

if fa < fc then
z := a−maxStep;

end; {p <= 0}

fz := Funct(z, theta, pvec, n);

if (fc < fa) and (b < z) then
begin {extend b to the right and discard [a, c]}
a := c;
c := b;
b := z;
fa := fc;
fc := fb;
fb := fz;

end

else if (fa <= fc) and (z < a) then
begin {extend a to the left and discard [c, b]}
b := c;
c := a;
a := z;
fb := fc;
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fc := fa;
fa := fz;

end

else if (a < z) and (z < b) then
begin
Writeln(′z falls in the interval [a, b]′);
if (fz < fa) and (fz < fb) then

begin
Writeln(′fz is less than fa, fb : set fc := fz′);
c := z;
fc := fz;

end
else if (fc < fa) then
b := b+ step

else if (fa <= fc) then
a := a− step

end;

end; {while}

QuadraticSearch(Funct, a, b, c, fa, fb, fc, theta, pvec, n);
a := c;

end; {LineSearch}

Unconstrained Optimisation via Quadratic Approximations

In this section, we shall consider iterative methods for finding the minimum
value of a multivariate function S = S(θ) by seeking the values which satisfy the
equation γ = (∂S/∂θ)′ = 0 and which render the Hessian matrixH = ∂(∂S/∂θ)′/∂θ
positive definite.

Recall that the (r+ 1)th approximation to the minimising value is found from
its predecessor according to the formula

θr+1 = θr + dr = θr + λrpr,(12.28)

where pr is the vector specifying the direction of the search and λr is the step-
adjustment scalar. The so-called gradient methods, to which we shall now confine
our attention, conform to the scheme

θr+1 = θr − λrQrγr,(12.29)

whereby the (r + 1)th approximation to the solution is obtained by subtracting
from the rth approximation a vector of adjustments based on the gradient vector
γr determined at the point θr. The vector of adjustments also depends upon a
direction matrix Qr and the step-adjustment scalar λr. Both Q and λ are also
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liable to be determined in the current iteration, although, in some applications, λ
remains fixed.

The choice of Q is influenced by the requirement that any step which is confined
to the immediate neighbourhood of θr ought to result in a decreased value for S.
To discover what this requirement entails, let us consider the linear approximation
to the function S = S(θ) in the neighbourhood of θr which is provided by the first
two terms of a Taylor-series expansion. The approximating function can be written
as

Sl = Sr + γ′rdr,(12.30)

where Sr = S(θr) is the value of the function at θr and dr = θ − θr is the step
which takes us away from θr. According to (12.29), we have

dr = −λrQrγr.(12.31)

On substituting this into (12.30) and on rearranging the resulting expression, we
find that

Sl − Sr = −λrγ′rQrγr.(12.32)

Assuming that λr > 0, the quantity Sl−Sr will be negative for any value of γ if and
only if Qr is positive definite; and this constitutes the condition that a reduction in
the value of S will always result from minimal steps with λ close to zero. However,
the larger the step from θr, the less accurate will be the linear approximation of
(12.30); and, if we step too far, we may find that the actual value of S = S(θ) has
increased even though the linear approximation suggests a decrease.

The choices of λ and Q are made usually with reference to a quadratic approx-
imation of the function S = S(θ) in the neighbourhood of θr which is based on the
first three terms of the Taylor-series expansion. The approximating function can
be written as

Sq = Sr + γ′rdr +
1
2
d′rHrdr,(12.33)

where Hr = ∂{∂S(θr)/∂θ}′∂θ is the value of the Hessian at θr.
The quadratic function Sq provides the simplest model of S which can be used

for testing the performance of the proposed algorithms. Also, their performance in
more complicated circumstances is apt to be described in terms of their response
to the invalidity of the quadratic approximation to S.

The Method of Steepest Descent

The gradient vector points in the direction of the maximum increase in S(θ)
in departing from θr. To see this, we may refer to equation (12.30) which shows
that, when dr is small, the change in the value of the function is given by

kr+1 =Sl − Sr
= γ′rdr.

(12.34)
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This can also be expressed as

kr+1 = ‖γr‖ ‖dr‖ cos θ,(12.35)

where cos θ is the angle between the vectors γr and dr. For a fixed step length ‖dr‖
and a given gradient vector γr, this quantity is maximised by setting θ = 0, which
implies that the maximising step dr lies in the direction of γr. The minimising step
lies in the direction of −γr.

The optimisation procedure known as the method of steepest descent is the
result of setting Q = I in equation (12.29) to give the following algorithm:

θr+1 = θr − λrγr.(12.36)

If the step length λr is determined so as to maximise the change in the value
of the function, then there is a simple consequence for the sequence of directions
which are pursued by the procedure. Let the direction of the (r + 1)th step be
given by the vector pr. Then the value of the function along this axis is given by
S(θr + λpr) and the derivative is given by γ(θr + λpr). The first-order condition
for a minimum is therefore

∂S

∂λ
= γ′(θr + λpr)

∂

∂λ
(θr + λpr)

= γ′r+1pr = 0,
(12.37)

where γr+1 = γ(θr+1) denotes the value of the gradient vector at the minimising
point θr+1. This condition implies that, at the end of the step, the direction of the
next departure, which is given by −γr+1 = pr+1, is at right angles to the previous
direction, which was given by pr.

An advantage of the method of steepest descent is that the requirement that
Q should be positive definite is invariably fulfilled. A disadvantage is that it takes
no account of the global structure of the function to be minimised. An adverse con-
sequence of this shortsightedness can be illustrated by considering the case where
S = S(θ) is a concave quadratic function giving rise to elongated elliptical con-
tours over the plane. It is possible that, from certain starting points, the direction
of steepest ascent will be almost at right angles from the direction in which the
minimum lies (see Figure 12.3).

The fact that the steepest-descent property is only a local property means that,
in descending a narrow valley, the procedure is liable to follow a zig-zag path to
the minimum with small steps and frequent changes of direction.

The Newton–Raphson Method

The Newton–Raphson method makes full use of the quadratic approximation
of S in choosing the direction vector. On putting dr = θ − θr into (12.33), we get
the quadratic approximating function in the form of

Sq = Sr + γ′r(θ − θr) +
1
2

(θ − θr)′Hr(θ − θr).(12.38)
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Figure 12.3. In descending a narrow valley with elliptical contours, the method of
steepest descent is liable to follow a zig-zag path.

By differentiating Sq in respect of θ and setting the result to zero, we obtain the
condition

0 = γ′r + (θ − θr)′Hr.(12.39)

The value which minimises the function is therefore

θr+1 = θr −H−1
r γr;(12.40)

and this expression describes the Newton–Raphson algorithm. If the function to be
minimised is indeed a concave quadratic, then the Newton–Raphson procedure will
attain the minimum in a single step. Notice also that, if H = I, then the method
coincides with the method of steepest descent with λ = 1. In the case of H = I,
the contours of the quadratic function are circular.

The disadvantages of the Newton–Raphson procedure arise when the value
of the Hessian matrix at θr is not positive definite. In that case, the step from
θr to θr+1 is liable to be in a direction which is away from the minimum value.
This hazard can be illustrated by a simple diagram which relates to the problem
of finding the minimum of a function defined over the real line. The problems only
arise when the approximation θr is remote from the true minimum of the function.
Of course, in the neighbourhood of the minimising value, the function is concave;
and, provided that the initial approximation θ0, with which the iterations begin,
is within this neighbourhood, the Newton–Raphson procedure is likely to perform
well.

A Modified Newton Procedure

In an attempt to overcome the problems which can beset the Newton–Raphson
procedure when θr is remote from the minimising value, we may adopt two expedi-
ents. The first of these is to replace the Hessian matrix Hr, whenever it fails to be
positive definite, by some alternative matrix Q. The second expedient is to limit
the size of the step length ‖dr‖ =

√
{(θr+1 − θr)′(θr+1 − θr)}. These expedients

should guarantee that each iteration of the algorithm leads to a reduction in the
value of S.
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Imagine that we have limited the step length to ‖dr‖ = l, and let us seek to
maximise the reduction in the value of the approximating quadratic function Sq
subject to this restriction. Then, given that

Sq − Sr = γ′rdr +
1
2
d′rHrdr,(12.41)

it follows that we can seek this optimal improvement by evaluating the Lagrangean
expression

L = γ′rdr +
1
2
d′rHrdr +

1
2
κ(d′rdr − l2).(12.42)

By differentiating L with respect to dr and setting the result to zero, we obtain the
condition

0 = γ′r + d′rHr + κd′r

= γ′r + (θ − θr)′(Hr + κI).
(12.43)

The value which ensures the maximum change in the criterion function Sq is there-
fore given by

θr+1 = θr − (Hr + κI)−1γr;(12.44)

and, provided that the matrix Hr + κI is positive definite, the change will be a
decrease. We can easily prove the following:

(12.45) The matrix H +κI is positive definite if and only if κ+µs > 0, where
µs is smallest latent root of H.

Proof. Since H is a symmetric matrix, there exist an orthonormal matrix C, such
that C ′C = I, which gives C ′HC = M , where M = diag(µ1, . . . , µn) contains the
latent roots of H. The matrix C also provides the matrix containing the latent
roots of H + κI in the form of C ′(H + κI)C = M + κC ′C = M + κI. For H + κI
to be positive definite, it is necessary and sufficient that µi + κ > 0 for all i; and
this proves the result.

This result might encourage us to adopt the following modified Newton method
which has been described by Goldfeld et al. [219]:

(12.46) (i) Find the smallest latent root µs of Hr and test whether µs > 0.

(ii) If µs ≤ 0, then set κr = ε− µs for some small value ε and proceed
to calculate

θr+1 = θr − (Hr + κrI)−1γr.

(iii) If µs > 0, then set κr = 0 and proceed to calculate

θr+1 = θr −H−1
r γr.
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The scalar µs is both the smallest latent root of H and the largest root of H−1. It
is easily calculated from H−1 by the power method which entails only a succession
of matrix multiplications.

To investigate the question of the step length, let us write

‖dr‖2 = (θr+1 − θr)′(θr+1 − θr)
= γ′r(Hr + κrI)−2γr

= γ′rC
′(M−2

r + κ−2
r I)Cγr.

(12.47)

From the final expression, it is clear that the step length is a declining function
of κr. Therefore, a simple interpretation of the procedure defined in (12.46) is
available. For, when κ = 0, we have a Newton–Raphson procedure; and, as the
value of κ increases, we have a procedure whose behaviour increasingly resembles
that of the method of steepest descent. Also, as the value of κ increases, the size
of the step length decreases.

The Minimisation of a Sum of Squares

In statistics, we often encounter the kind of optimisation problem which re-
quires us to minimise a sum-of-squares function

S(θ) = ε′(θ)ε(θ),(12.48)

wherein ε(θ) is a vector of residuals which is a nonlinear function of a vector θ.
The value of θ corresponding to the minimum of the function commonly represents
the least-squares estimate of the parameters of a statistical model. Such problems
may be approached using the Newton–Raphson method which we have described
in the previous section. However, the specialised nature of the function S(θ) al-
lows us to pursue a method which avoids the trouble of finding its second-order
derivatives and which has other advantages as well. This is the Gauss–Newton
method, and it depends upon a linear approximation of the function ε = ε(θ). In
the neighbourhood of θr, the approximating function is

e = ε(θr) +
∂ε(θr)
∂θ

(θ − θr),(12.49)

where ∂ε(θr)/∂θ stands for the first derivative of ε(θ) evaluated at θ = θr. This
gives rise, in turn, to an approximation to S in the form of

Sg = ε′(θr)ε(θr) + (θ − θr)′
{
∂ε(θr)
∂θ

}′{
∂ε(θr)
∂θ

}
(θ − θr)

+ 2ε′(θr)
∂ε(θr)
∂θ

(θ − θr).
(12.50)

By differentiating Sg in respect of θ and setting the result to zero, we obtain the
condition

0 = 2(θ − θr)′
{
∂ε(θr)
∂θ

}′{
∂ε(θr)
∂θ

}
+ 2ε′(θr)

∂ε(θr)
∂θ

.(12.51)
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The value which minimises the function Sg is therefore

θr+1 = θr −
[{

∂ε(θr)
∂θ

}′{
∂ε(θr)
∂θ

}]−1{
∂ε(θr)
∂θ

}′
ε(θr).(12.52)

This equation represents the algorithm of the Gauss–Newton procedure, and it
provides the formula by which we can find the (r+1)th approximation to the value
which minimises sum of squares once we have the rth approximation. Since the
gradient of the function S = S(θ) is given by γ = {∂ε(θ)/∂θ}′ε(θ), it is clear that
the Gauss–Newton method is a gradient method of the sort which is represented
by equation (12.29). Moreover, the affinity of the Gauss–Newton and the Newton–
Raphson methods is confirmed when we recognise that the direction matrix in
(12.52) is simply an approximation to the Hessian matrix of the sum-of-squares
function which is

∂(∂S/∂θ)′

∂θ
= 2

[(
∂ε

∂θ

)′(
∂ε

∂θ

)
+
∑
t

εt

{
∂(∂εt/∂θ)′

∂θ

}′]
.(12.53)

The direction matrix of the Gauss–Newton procedure is always positive semi-
definite; and, in this respect, the procedure has an advantage over the Newton–
Raphson procedure.

Quadratic Convergence

There is a need for alternatives to the Newton–Raphson procedure and its
variants whenever the second derivatives of the function S(θ) are unavailable or are
too laborious to compute. If there is no analytic expression for these derivatives,
then it may prove impractical to evaluate them by numerical means.

The method of steepest descent is one method which dispenses with second
derivatives, but it is ruled out of consideration by its rate of convergence which is
liable to be very slow, even when S(θ) is a quadratic function. A standard by which
to judge the rate of convergence is indicated by the fact that, if S(θ) is a quadratic
function in n arguments, then, using only information provided by the gradient
vector, we should be able to reach the overall minimum in, at most, n steps.

To understand this result, let us imagine, to begin with, that the quadratic
function has spherical contours. Then

S(θ) = S(θ0) + γ′(θ0)(θ − θ0) +
1
2

(θ − θ0)′(θ − θ0);(12.54)

and, to find the minimum, we might search in turn along each of the directions
defined by the vectors e1, . . . , en which are comprised by the identity matrix In.
Such a procedure would amount to a series of partial minimisations of the function
in respect of each its arguments within the vector θ.

The minimum could also be found by searching in the mutually orthogonal
directions specified by the vectors of a matrix Q = [q0, . . . , qn−1] such that Q′Q =
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diag(f0, . . . , fn−1). In that case, the vector θ, which is reached after taking n steps
away from θ0, can be represented by

θ = θ0 +
n−1∑
i=0

λiqi = θ0 +Qλ,(12.55)

where λ = [λ0, . . . , λn−1]. Setting θ − θ0 = Qλ in (12.54) gives

S(θ) =S(θ0) + γ′0Qλ+
1
2
λ′Q′Qλ

=S(θ0) +
n−1∑
i=0

(
γ′0qiλi +

1
2
λ2
i f

2
i

)
,

(12.56)

where γ0 = γ(θ0). This sum comprises n simple quadratic functions, each with a
unique argument λi. Therefore, it can be minimised in n steps by minimising each
of the constituent quadratic terms individually.

A similar search procedure can be used to find the minimum of an arbitrary
quadratic function. Such a function takes the form of

S(θ) = S(θ0) + γ′(θ0)(θ − θ0) +
1
2

(θ − θ0)′H(θ − θ0).(12.57)

Now, instead of searching in directions which are mutually orthogonal in the or-
dinary sense, we must search in directions which are orthogonal or conjugate in
respect of a metric defined by the Hessian matrix H. An appropriate set of direc-
tions is specified by any matrix P = [p0, . . . , pn−1] which serves to reduce H to a
diagonal matrix: P ′HP = D = diag(d0, . . . , dn−1). Let us therefore express the
argument of the function as

θ = θ0 +
n−1∑
i=0

λipi = θ0 + Pλ.(12.58)

Setting θ − θ0 = Pλ in (12.57) gives

S(θ) =S(θ0) + γ′0Pλ+
1
2
λ′P ′HPλ

=S(θ0) +
n−1∑
i=0

(
γ′0piλi +

1
2
λ2
i d

2
i

)
.

(12.59)

In effect, we have reduced the problem to one which is akin to the former problem
by transforming the coordinate system in such a way as to decouple the arguments
which are now the elements of λ = P−1(θ − θ0). Once more, it follows that the
function can be minimised in n steps.

The proposition concerning the termination of the search procedure, which
defines the concept of quadratic convergence, may be stated formally as follows:
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(12.60) If the minimum of an arbitrary concave quadratic function in the form
of S(θ) of (12.57) is sought by locating the exact minima along a
sequence of directions p0, . . . , pn−1 which are mutually conjugate with
respect to its positive-definite Hessian matrix H, such that p′iHpj = 0
for all i 6= j, then the minimum of the function will be found in n
searches at most.

Although we have proved this already by constructive arguments, we shall
prove it again more formally since, in so doing, we can develop some algebra which
will be useful in the sequel. Therefore, consider differentiating the function S(θ)
with respect to θ to obtain

γ(θ) = γ(θ0) +H(θ − θ0).(12.61)

This gives γ(θj) = γ(θ0) +H(θj − θ0) and γ(θj+1) = γ(θ0) +H(θj+1 − θ0) and, by
taking one from the other, we find that

γj+1 − γj =H(θj+1 − θj)

=λjHpj ,
(12.62)

where, for simplicity, we have written γj+1 = γ(θj+1) and γj = γ(θj). Here pj is
the direction vector for the step from θj to θj+1 and λj is the length of the step.

Now consider the identity

γk = γi+1 +
k−1∑
j=i+1

(γj+1 − γj).(12.63)

Premultiplying by p′i gives

p′iγk = p′iγi+1 +
k−1∑
j=i+1

p′i(γj+1 − γj)

=
k−1∑
j=i+1

p′i(γj+1 − γj).
(12.64)

Here the second equality follows from the condition p′iγi+1 = 0 of (12.37) which
indicates that the gradient γi+1 at the point θi+1, which is where the minimum
is found in the (i + 1)th search, is orthogonal to the direction of the search. On
putting the expression from (12.62) into (12.64), we find, in view of the conditions
of conjugacy, that

p′iγk =
k−1∑
j=i+1

λjp
′
iHpj

= 0 when k > i.

(12.65)
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This means that the gradient vector γk at the end of the kth search is orthogonal
not just to the direction of that search, as in (12.37), but also to the directions of
all previous searches. It follows that, after n searches, we have

γ′n[p0, . . . , pn−1] = 0.(12.66)

Since [p0, . . . , pn−1] = P is a matrix of full rank, this can only imply that γn = 0,
which is to say that θn is a stationary point. Finally, given that H is a positive-
definite matrix, it follows that the stationary point corresponds to a minimum of
the function.

There is one particular set of conjugate directions which also fulfils an ordinary
condition of orthogonality. These are the characteristic vectors of the Hessian
matrix H which are defined by the conditions

Hpi = λipi; i = 0, . . . , n− 1,(12.67)

and which therefore fulfil the conditions

λip
′
ipj = λjp

′
ipj = p′iHpj .(12.68)

If λi 6= λj , then the only way in which this equality can be maintained is if p′ipj =
0; which is to say that characteristic vectors corresponding to distinct roots are
orthogonal. Thus

p′ipj = 0 and p′iHpj = 0, when i 6= j.(12.69)

Of course, it would be impractical to pursue a method of optimisation which
depends upon finding the characteristic vectors of the Hessian matrix; for this would
require far too much computation.

The Conjugate Gradient Method

In view of the definition of conjugacy, it might seem that we should need to
know the matrix H in order to implement an algorithm for searching along mutually
conjugate directions. However, if we knew the value of this matrix, then we should
be able to implement a Newton method which, doubtless, we would prefer on the
grounds that it should enable us to locate the minimum of a quadratic function in
a single step.

It transpires that we can find the conjugate directions without knowing H. To
show this, let us recall the condition under (12.62). Premultiplying by p′i gives

p′i(γj+1 − γj) =λp′iHpj
= 0 when i 6= j.

(12.70)

Here is a version of the condition of conjugacy which depends only on the gradient
vectors; and this is what makes it practical to use a conjugate search procedure.
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We can endeavour to determine the search direction pr for the (r+ 1)th stage
by finding the component of γr which is conjugate with respect to all of p0, . . . , pr−1.
Consider, therefore, an expression of the form

pr = −γr +
r−1∑
j=0

βjpj .(12.71)

Now, the conditions of conjugacy give

p′rHpi =−γ′rHpi +
r−1∑
j=0

βjp
′
jHpi

=−γ′rHpi + βip
′
iHpi = 0.

(12.72)

It follows that

βi =
γ′rHpi
p′iHpi

=
γ′r(γi+1 − γi)
p′i(γi+1 − γi)

,(12.73)

where the second equality comes from (12.62). Next, we can show that this term
βi is zero-valued unless i = r− 1. For this, we premultiply an equation in the form
of (12.71) by γ′k , where k > i, to give

γ′kpi = −γ′kγi +
i−1∑
j=0

βjγ
′
kpj .(12.74)

The condition γ′kpi = 0 of (12.65), which characterises a conjugate search procedure,
enables us to set terms on both sides of the equation to zero, leaving only 0 = γ′kγi;
which indicates, in general, that

γ′iγj = 0 for i 6= j.(12.75)

It follows, from equation (12.73), that βi = 0 for i = 0, . . . , r − 2. Therefore,
equation (12.71) becomes

pr = −γr + βr−1pr−1 where βr−1 =
γ′r(γr − γr−1)
p′r(γr − γr−1)

.(12.76)

This serves to define the conjugate gradient procedure.
It is notable that the sequences of the gradient vectors γi and the direction

vectors pi, which are generated by the conjugate gradient procedure in the case of
a quadratic function, obey conditions of orthogonality and conjugacy, respectively,
which are similar to the conditions under (12.69) which pertain to the characteristic
vectors of the Hessian matrix.

We can simplify both the numerator and the denominator of the expression
for βr−1 under (12.76). For the denominator, we have

(γr − γr−1)′pr−1 = γ′rpr−1 − γ′r−1pr−1

=−γ′r−1(−γr−1 + βr−2pr−2)

= γ′r−1γr−1,

(12.77)
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where the second equality comes from using (12.65) and (12.76) and the third from
using (12.65) again. In view of (12.75), the numerator can be simplified to give

(γr − γr−1)′γr = γ′rγr.(12.78)

Thus we can express βr−1 as

βr−1 =
(γr − γr−1)′γr
γ′r−1γr−1

(12.79)

and as

βr−1 =
γ′rγr

γ′r−1γr−1
.(12.80)

Although these alternative expressions for βr−1 are equivalent in the context of a
quadratic function, they will differ in value when the function to be minimised is
only approximately quadratic. There are arguments in favour of the use of either
of these formulae. However, we shall adopt the expression under (12.80) which has
been advocated by Fletcher and Reeves [189].

The algorithm of the conjugate gradient procedure is specified by the equations
(12.76) and (12.80) together with the updating equation

θr+1 = θr + λrpr(12.81)

which defines the (r + 1)th step. The value of λr is determined so as to provide
a good approximation to the minimum of the objective function along the line
defined by the equation θ = θr+λpr. The choice of a starting value θ0 is, of course,
arbitrary, whilst the initial direction p0 may be provided by the gradient vector
γ0 = γ(θ0).

When the conjugate gradient procedure is applied to a nonquadratic function,
it cannot be expected that a minimum will be attained in n steps or minor iterations.
Usually, several cycles of minor iterations are required, each of which begins by
resetting the direction vector to the value of the current gradient vector. A cycle
of minor iterations may be described as a major iteration.

A procedure which implements the conjugate gradient method is presented
below. The brevity of the code belies the fact that a major part of the algorithm
consists of the LineSearch procedure of (12.27) for determining the value of λ which
has been presented in an earlier section. However, a line search forms an essential
part of any multivariate optimisation procedure which is intended to be robust.

(12.82) procedure ConjugateGradients(function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var theta : vector;
n : integer);

const

349



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

tolerance = 0.01;

var
gamma, gammaLag, pvec : vector;
num, denom, beta, lambda : real;
i, j : integer;

function SqrNorm(gamma : vector;
n : integer) : real;

var
i : integer;
s : real;

begin
s := 0.0;
for i := 1 to n do
s := s+ Sqr(gamma[i]);

SqrNorm := s;
end; {SqrNorm}

begin {ConjugateGradients}
for i := 1 to n do
pvec[i] := 0;

repeat {major iterations}
Gradient(Funct, gamma, theta, n);
beta := 0;

for j := 0 to n− 1 do
begin {minor iterations}

for i := 1 to n do
pvec[i] := −gamma[i] + beta ∗ pvec[i];

lambda := 0.0;
LineSearch(Funct, lambda, theta, pvec, n);
for i := 1 to n do
theta[i] := theta[i] + lambda ∗ pvec[i];

for i := 1 to n do
gammaLag[i] := gamma[i];

Gradient(Funct, gamma, theta, n);
num := SqrNorm(gamma, n);
denom := SqrNorm(gammaLag, n);
beta := num/denom;

end; {minor iterations}
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until Sqrt(num)/n < tolerance;
end; {ConjugateGradients}

Numerical Approximations to the Gradient

It may not always be practical, or even possible, to obtain the derivatives of
the objective function by analytic means. In some circumstances, we might think of
replacing them by numerical approximations obtained by finite-difference methods.
Formally, such numerical derivatives are based either on a linear or a quadratic
approximation to the function at the point in question.

Consider the Taylor-series expansion of S(θ) about the point S(θ+hej), where
ej stands for the jth column of the identity matrix In and h is a small increment.
Then

S(θ + hej)'S(θ) + he′jγ(θ) +
1
2
h2e′jH(θ)ej

=S(θ) + hγj(θ) +
1
2
h2Hjj(θ),

(12.83)

and, likewise,

S(θ − hej) ' S(θ)− hγj(θ) +
1
2
h2Hjj(θ).(12.84)

The forward-difference approximation, which is exact for a linear function, is

γj(θ) '
S(θ + hej)− S(θ)

h
.(12.85)

This is obtained from (12.83) by suppressing the term containing the second deriva-
tive Hjj . The central-difference approximation, which is exact for a quadratic
function, is

γj(θ) '
S(θ + hej)− S(θ − hej)

2h
.(12.86)

This is obtained by subtracting (12.84) from (12.83). The approximation amounts
to the derivative, at the point θ, of the quadratic function which passes through
the coordinates {θ − hej , S(θ − hej)}, {θ, S(θ)} and {θ + hej , S(θ + hej)}. The
enhanced accuracy of the central-difference approximation is purchased, of course,
at the cost of increasing the number of function evaluations which are necessary in
computing the derivatives.

Further accuracy might be purchased by increasing the degree of the approxi-
mating polynomial, leading to yet more function evaluations. However, it is doubt-
ful whether even the extra computation entailed by the central-difference approx-
imation is justified if all that is being sought are the first derivatives. For the
purpose of the derivatives is to provide the directions for the line searches; and, so
long as an adequate search procedure is available, great accuracy is not required in
these directions.
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Another problem is to choose the step size h to be sufficiently small so that
the truncation errors incurred by the approximations are minor, but not so small
as invite cancellation errors resulting from the subtraction, in the numerator, of
two virtually equal function values. The choice of h can become the subject of a
sophisticated computation, see for example Gill et al. [211, p. 127], but it depends
largely on the precision of the computer.

In the following procedure for computing the forward-difference approxima-
tions, a rather simple criterion for choosing h is employed which also depends upon
the size of the element θj .

(12.87) procedure FdGradient(function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var gamma : vector;
theta : vector;
n : integer);

var
i, j : integer;
epsilon, lambda, stepSize, ftheta, fjstep : real;
hvec : vector;

begin
epsilon := 0.5E − 4;
for i := 1 to n do
hvec[i] := 0.0;

lambda := 1;
ftheta := Funct(lambda, theta, hvec, n);

for j := 1 to n do
begin {j}
stepSize := Rmax(epsilon ∗Abs(theta[j]), epsilon);
hvec[j] := stepSize;
fjstep := Funct(lambda, theta, hvec, n);
gamma[j] := (fjstep− ftheta)/stepSize;
hvec[j] := 0.0;

end; {j}

end; {FdGradient}

Quasi-Newton Methods

If we evaluate the gradient of the quadratic function Sq = Sq(θ) at two points θr
and θr+1, then we obtain complete information about the curvature of the function
along the line passing through these points. If we evaluate the gradient at n + 1
points, where n is the number of elements of the argument θ, then we should have
enough information to reconstitute the Hessian matrix of the quadratic function.
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To understand this result, consider the condition under (12.62), which is char-
acteristic of a quadratic function. This may be written as

qr = Hdr, where qr = γr+1 − γr and dr = θr+1 − θr.(12.88)

Imagine that the gradient is evaluated at the starting point θ0 of an iterative pro-
cedure for optimising the quadratic function, and thereafter at n successive points
θ1, . . . , θn. Then, from (12.88), we could form the equation

Q = [q0, . . . , qn−1] = H[d0, . . . , dn−1] = HD.(12.89)

If the line segments dr joining consecutive points θr and θr+1 correspond to a set
of linearly independent vectors, then we should be able to invert the matrix D so
as to obtain the Hessian matrix

H = QD−1.(12.90)

A powerful idea springs to mind: an approximation to the curva-
ture of a nonlinear function can be computed without evaluating the Hes-
sian matrix in its entirety at any one point. If the function were
quadratic, then, after n steps, we should have gathered enough informa-
tion to form the Hessian matrix. At that stage, we should be in a
position to apply the Newton procedure and, if we had not already ar-
rived, one more step would bring us to the minimum of the quadratic
function.

Our aim should be to form an ever-improving approximation M to the Hessian
matrix H as each step provides additional gradient information. A reasonable crite-
rion is that, at the end of the rth step, a quadratic function based upon the updated
Hessian approximation Mr+1 should have the same curvature in the direction of
that step as the function Sq which is based upon the true matrix H. The direction
is given by pr or dr = λpr; and, since Hdr = qr, we require that

Mr+1dr = qr.(12.91)

This is the so-called quasi-Newton condition.
There is also a question of the directions in which the steps are to be taken.

Here it seems reasonable to imitate the Newton–Raphson algorithm so that, in
place of equation (12.40), we have

θr+1 = θr − λrM−1
r γr or, equivalently, dr = −λrM−1

r γr.(12.92)

The latter equation suggests that, instead of approximating the Hessian matrix,
we might chose to approximate the inverse of the Hessian matrix by a matrix W .
Then, given that dr = H−1qr, the corresponding quasi-Newton condition for the
rth step would be the requirement that

dr = Wr+1qr.(12.93)
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Let us concentrate, for a start, on approximating the Hessian matrix rather
than its inverse, and let the updated approximation be

Mr+1 = Mr + vv′,(12.94)

in which a symmetric matrix vv′ of rank one is added to Mr. In that case, the
quasi-Newton condition becomes

(Mr + vv′)dr = qr, or vv′dr = qr −Mrdr,(12.95)

which indicates that v must be proportional to qr−Mrdr. The constant of propor-
tionality is v′dr and its square is (v′dr)2 = d′r(qr −Mrdr). Therefore, the updated
approximation to the Hessian matrix is

Mr+1 = Mr +
(qr −Mrdr)(qr −Mrdr)′

d′r(qr −Mrdr)
.(12.96)

This is the so-called symmetric rank-one update—and it is clearly uniquely deter-
mined. For a starting value, we can take any symmetric positive-definite matrix;
but, in the absence of any prior information, it seems reasonable to set M0 = I.

It can be shown that, if it does not fail by becoming undefined, and if d1, . . . , dn
are linearly independent, then the rank-one update method reaches the minimum
of a quadratic function in n + 1 steps at most. Also Mn+1 = H, which is to say
that the exact value of the Hessian matrix is recovered at the end.

There are two problems which can affect the performance of the rank-one
update algorithm, even when it is applied to a quadratic function. The first is
that there is no guarantee that the updated matrix Mr+1 will retain the property
of positive definiteness. The second is that the denominator term d′r(qr −Mrdr)
may come dangerously close to zero, which can affect the numerical stability of the
algorithm.

Rank-Two Updating of the Hessian Matrix

A more satisfactory quasi-Newton algorithm is one which is based upon an
updating matrix of rank two. The idea is to update the approximation to the
Hessian matrix by incorporating the gradient information provided by qr and by
removing the previous version of the same information which is contained in the
vector Mrdr. The updated matrix is in the form of

Mr+1 = Mr + αqrq
′
r − βMrdrd

′
rMr,(12.97)

where α and β are scaling factors. The quasi-Newton condition of (12.91) requires
that

Mr+1dr = Mrdr + {αq′rdr}qr − {βd′rMrdr}Mrdr = qr;(12.98)

and, if we choose to set αq′rdr = βd′rMrdr = 1, then α and β are determined, and
the updated matrix becomes

Mr+1 = Mr +
qrq
′
r

q′rdr
− Mrdrd

′
rMr

d′rMrdr
.(12.99)
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This corresponds to the formula which was proposed severally by Broyden [83],
Fletcher [187], Goldfarb [218] and Shanno [449] in 1970 and which is known as the
BFGS formula. Once more, it seems reasonable to take M0 = I as the starting
value for the sequence of Hessian approximations. The direction vectors for the
procedure continue to be specified by equation (12.92).

There are two points regarding the BFGS procedure which need to be estab-
lished. The first is that, in normal circumstances, we may be assured that the
matrix Mr+1 will be positive definite if Mr is positive definite. The second point
is that, if accurate line searches are conducted in each step of the procedure, and
if the function S = S(θ) is quadratic, then the outcome of n steps will be a matrix
Mn = H equal to the Hessian matrix.

To demonstrate that Mr+1 is liable to be positive definite, let z be an arbitrary
vector and consider the quantity

z′Mr+1z = z′Mrz +
(z′qr)2

q′rdr
− (z′Mrdr)2

d′rMrdr
.(12.100)

Since it is positive definite by assumption, Mr can be factorised as Mr = G′G for
some matrix G. Therefore, if we define a = Gz and b = Gdr, then a′a = z′Mrz,
b′b = d′rMrdr and a′b = z′Mrdr, and we have

z′Mr+1z = a′a− (a′b)2

b′b
+

(z′qr)2

q′rdr
.(12.101)

Now, the Cauchy–Schwarz inequality asserts that (a′b)2 < (a′a)(b′b) for any two
vectors a, b which are not collinear. Therefore, the sum of the first and second
terms of the RHS of (12.101) is positive; and we shall have z′Mr+1z > 0 provided
that q′rdr = (γr+1−γr)′dr > 0. The latter is simply the condition that the steepness
of the gradient along the direction of the rth step diminishes in passing from the
point θr to the point θr+1. This must happen if the function S(θ) which is to
be minimised is a quadratic; and it is virtually guaranteed to happen in all other
circumstances where the quadratic approximation used in our line-search algorithm
is valid.

We can demonstrate that H = Mn by showing that Q = MnD, because this is
identical to the equation Q = HD under (12.89) which yields H = QD−1. What
has to be shown is that

qj = Mr+1dj whenever r ≥ j.(12.102)

The latter condition, which is described as the inheritance condition, means that the
gradient information which is obtained in the jth step, and which is used to form
the Hessian approximation Mj+1, is preserved in all subsequent approximations
Mr+1.

When r = j, the inheritance condition, which is then just the quasi-Newton
condition, is satisfied by construction. When r > j, we must consider the expression

Mr+1dj = Mrdj +
qr
q′rdr
{q′rdj} −

Mrdr
d′rMrdr

{d′rMrdj}.(12.103)
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We can see that the inheritance condition of (12.102) is fulfilled if the previous
inheritance condition qj = Mrdj is granted and if

q′rdj = d′rHdj = d′rMrdj = 0 whenever r > j.(12.104)

The latter are described as the conditions of conjugacy.
To establish the conditions under (12.104), we proceed by induction. We begin

by noting the quasi-Newton condition q0 = Hd0 = M1d0 which must be fulfilled by
the first revision M1 of the Hessian approximation. The condition implies that

d0 = M−1
1 Hd0.(12.105)

We proceed to deduce the first of the conditions of conjugacy, which is that
d′1Hd0 = d′1M1d0 = 0. Consider the expression

d1 = λ1p1 = −λ1M
−1
1 γ1,(12.106)

which comes from (12.92). In view of (12.105), this gives

d′1Hd0 =−λ1γ
′
1M
−1
1 Hd0

=−λ1γ
′
1d0 = −λ1λ0γ

′
1p0.

(12.107)

But, if exact line searches are used, then the gradient γ1, at the end of the first
search, will be orthogonal to the direction of the search. Therefore, γ′1p0 = 0 and,
since M1d0 = Hd0 = q0 in consequence of the quasi-Newton condition, it follows,
on setting (12.107) to zero, that

q′1d0 = d′1Hd0 = d′1M1d0 = 0.(12.108)

This condition of conjugacy is used together with the quasi-Newton condition in
demonstrating the following inheritance condition:

M2d0 =M1d0 +
q1
q′1d1

{
q′1d0

}
− M1d1

d′1M1d1

{
d′1M1d0

}
= q0 +

q1

q′1d1

{
d′1Hd0

}
− M1d1

d′1M1d1

{
d′1Hd0

}
= q0.

(12.109)

At this stage, we may observe that we have another quasi-Newton condition in the
form of q1 = Hd1 = M2d1.

The process of establishing the inheritance conditions proceeds in the manner
indicated. To establish the conditions in their full generality, we may assume that
qj = Mrdj for some r and for all j < r, and that the conjugacy conditions d′iHdj =
d′iMidj = 0 hold for j < i < r. Then the object is to deduce the further conjugacy
condition d′rHdj = d′rMrdj = 0 and to show that qj = Mr+1dj .

From (12.61), we may obtain the expressions γr = γ0 +H(θr − θ0) and γj+1 =
γ0 +H(θj+1 − θ0). Taking one from the other gives

γr = γj+1 +H
(
θr − θj+1

)
= γj+1 +H

(
dj+1 + dj+2 + · · ·+ dr−1

)
.

(12.110)
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Transposing and postmultiplying by dj gives

γ′rdj = γ′j+1dj +
{
d′j+1Hdj + d′j+2Hdj + · · ·+ d′r−1Hdj

}
= 0,(12.111)

which follows by the fact that every term on the RHS is equal to zero. Here the
condition γ′j+1dj = 0 is a property of the line search procedure which finds an exact
minimum in the jth stage. The conditions d′iHdj for i = j + 1, . . . , r − 1 are the
conjugacy conditions, which are true by assumption.

Now use the condition qj = Mrdj = Hdj to write

dj = M−1
r Hdj ;(12.112)

and also recall that, in the jth stage, we have dr = −λrM−1
r γr by virtue of (12.92).

It follows from (12.111) that

0 = γ′rM
−1
r Hdj

=
1
λr
d′rHdj .

(12.113)

When this is joined with the condition qj = Hdj = Mrdj , which is true by as-
sumption, we obtain the conjugacy condition of (12.104). Then we have all the
conditions which are required to ensure that equation (12.103) reduces to

qj = Mr+1dj .(12.114)

This completes the proof.
In implementing the BFGS procedure, we need to generate the direction vector

pr = M−1
r γr which is to be found in equation (12.92). There are two possibilities

here. The first is to obtain pr simply by solving the equation Mrpr = γr in each
iteration of the procedure. The second possibility is to generate the sequence of
approximations Wr to the inverse of the Hessian matrix H−1 in place of the matrices
Mr, which are the approximations to H. Then pr = Wrγr, and the essential
equation of the BFGS procedure becomes

θr+1 = θr − λrWrγr.(12.115)

It can be shown by some algebraic manipulation, which is straightforward but
tedious, that, if Wr = M−1

r , then the inverse of the matrix Mr+1 of (12.99) is given
by

Wr+1 =Wr +
drd
′
r

d′rqr
− Wrqrq

′
rWr

q′rWrqr
+ q′rWrqrhrh

′
r

=Wr + αdrd
′
r − βWrqrq

′
rWr + δhrh

′
r,

(12.116)

where

α =
1

d′rqr
, β =

1
q′rWrqr

, δ = q′rWrqr,(12.117)
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and

hr =
dr
d′rqr

+
Wr

q′rWrqr

=αdr + βWrqr.

(12.118)

An implementation of the BFGS procedure which uses W instead of M , and
which is based on equations (12.115)–(12.118), is presented below.

(12.119) procedure BFGS(function Funct(lambda : real;
theta, pvec : vector;
n : integer) : real;

var theta : vector;
n : integer);

const
epsilon = 1.0E − 5;
tolerance = 1.0E − 5;

var
failure, convergence : boolean;
i, j, iterations : integer;
lambda, S, Slag, alpha, beta, delta : real;
pvec, qvec, dvec, hvec : vector;
gamma, gammaLag,Wq : vector;
W : matrix;

begin {BFGS : Broyden, Fletcher, Goldfarb, Shanno}

{Initialise the matrix W}
for i := 1 to n do

begin {i}
pvec[i] := 0.0
for j := 1 to n do

begin {j}
if i = j then
W [i, i] := 1.0

else
W [i, j] := 0.0;

end; {j}
end; {i}

failure := false;
convergence := false;
iterations := 0;
S := Funct(0, theta, pvec, n);
Gradient(Funct, gamma, theta, n);
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repeat {major iterations}
iterations := iterations+ 1;

{Calculate the direction vector and step length}
for i := 1 to n do

begin {i}
pvec[i] := 0.0;
for j := 1 to n do
pvec[i] := pvec[i]−W [i, j] ∗ gamma[j]

end; {i}

lambda := 0.0;
LineSearch(Funct, lambda, theta, pvec, n);
for i := 1 to n do

begin {i}
dvec[i] := lambda ∗ pvec[i];
theta[i] := theta[i] + dvec[i];

end; {i}

{New function value and gradient}
Slag := S;
for i := 1 to n do
gammaLag[i] := gamma[i];

S := Funct(0, theta, pvec, n);
Gradient(Funct, gamma, theta, n);

if (Abs(Slag− S) <= tolerance ∗Abs(S) + epsilon) then
convergence := true;

if iterations > 200 then
failure := true;

if not (failure or convergence) then
begin {Approximation W of the Hessian inverse }

{Calculate elements for updating W}
for i := 1 to n do

begin {i}
qvec[i] := gamma[i]− gammaLag[i];
Wq[i] := 0.0;

end; {i}
for i := 1 to n do

for j := 1 to n do
Wq[i] := Wq[i] +W [i, j] ∗ qvec[j];

alpha := 0.0;
delta := 0.0;
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for i := 1 to n do
begin
alpha := alpha+ qvec[i] ∗ dvec[i];
delta := delta+ qvec[i] ∗Wq[i]

end;
alpha := 1.0/alpha;
beta := 1.0/delta;
for i := 1 to n do
hvec[i] := alpha ∗ dvec[i]− beta ∗Wq[i];

{Update the matrix W}
for i := 1 to n do

for j := 1 to n do
begin {i, j}
W [i, j] := W [i, j] + alpha ∗ dvec[i] ∗ dvec[j];
W [i, j] := W [i, j]− beta ∗Wq[i] ∗Wq[j];
W [i, j] := W [i, j] + delta ∗ hvec[i] ∗ hvec[j];

end; {i, j}

end; {Approximation of the Hessian inverse}

until failure or convergence;
{end of iterations}

if failure then
Writeln(′no convergence in 200 iterations′);

end; {BFGS}
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CHAPTER 13

Fourier Series and
Fourier Integrals

A Fourier method is a technique for analysing a mathematical function, which
may be continuous or discrete, by representing it as a combination of trigono-
metrical functions, or, equivalently, as a combination of complex exponentials.
Such a Fourier combination is either a weighted sum or a weighted integral of
the trigonometrical functions. The weighting function, whether it be a sequence or
a continuous function, is what is known as the Fourier transform.

In the case of a Fourier sum, or a Fourier series as it is liable to be called
when the summation is infinite, the weighting function defines a discrete spectrum.
In the case of a Fourier integral, the weighting function defines a spectral density
function.

The Fourier transforms which are described in this chapter and the next can
be assigned to one of four categories which are the product of a pair of dichotomies.
On the one hand, there is the question of whether the function to be transformed
is a continuous function defined over the real line or a discrete function defined on
the set of integers. If the original function is discrete, then its Fourier transform
will be a periodic function. Otherwise, if the original function is continuous, then
the transform will be aperiodic. On the other hand is the question of whether
the original function is periodic or aperiodic. If it is periodic, then the Fourier
transform will be a sequence. If it is aperiodic, then the Fourier transform will be
a continuous function.

The result is a fourfold classification given in Table 13.1. A discrete peri-
odic function has a discrete periodic transform—the discrete Fourier transform. A

Table 13.1. The classes of Fourier transforms*

Periodic Aperiodic
Continuous Discrete aperiodic Continuous aperiodic

Fourier series Fourier integral
Discrete Discrete periodic Continuous periodic

Discrete FT Discrete-time FT

* The class of the Fourier transform depends upon the nature of the function
which is transformed. This function may be discrete or continuous and it may be
periodic or aperiodic. The names and the natures of corresponding transforms
are shown in the cells of the table.
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continuous aperiodic function has a continuous aperiodic transform—the Fourier
integral. The other two cases are mixed: a continuous periodic function transform-
ing to a discrete aperiodic sequence and vice versa—the Fourier series and the
discrete-time Fourier transform.

There is no extra complication in taking account of functions which are defined
only over an interval of the real line or over a finite set of consecutive integers. Such
functions can be treated as if they represent just one cycle of a periodic function.
The idea here is that there is no significance in what happens to the function outside
its domain of definition; and therefore to imagine that it replicates itself in each
successive interval is an acceptable fiction which happens to facilitate the analysis.

This chapter is subdivided in accordance with the classification which we have
outlined above. The first section of the chapter deals with the classical mode of
Fourier analysis where a continuous periodic function is transformed into a discrete
Fourier series. The continuous function, which is assigned to the time domain,
represents a time-varying quantity. The coefficients of its Fourier transform are in
the frequency domain.

The second section, which deals with the discrete-time Fourier transform, con-
cerns the transformation of an aperiodic sequence in the time domain into a con-
tinuous periodic function of the frequency variable. The time-domain sequence
represents either a signal or a sequence of filter coefficients—which is the same
thing as the output response of the filter to a unit-impulse input. Compared with
the classical mode, the roles of the frequency domain and the time domain are inter-
changed. Now the direct transform from the time domain to the frequency domain
is comparable to the inverse transform of the classical mode of analysis, which is
from the frequency domain to the time domain. By exploiting this comparison, we
can save ourselves the trouble of repeating some of the analysis of the first section.

The third section deals with continuous aperiodic functions. Such functions
do not have Fourier-series expansions any more than do aperiodic sequences.
Nevertheless, if they fulfil certain conditions of convergence, they too have a Fourier
representation, which is now in terms of integrals. In this case, the weighting func-
tion is a continuous aperiodic function. Therefore, the original function and its
Fourier transform are of the same nature.

A well-known application of the Fourier integral transformation is in mathe-
matical physics, where a finite wave train is resolved into sinusoidal waves. The
inverse relationship between the dispersion of the wave train and that of its Fourier
transform is expressed in the famous uncertainty principle of Heisenberg.

In the context of time-series analysis and signal processing, the question arises
as to how we should analyse a continuous function or “analogue” function for which
only a set of discrete observations are available. The sampling theorem indicates
that there are conditions under which the analogue-to-discrete conversion entails
no loss of information.

The remaining species of Fourier transform is the discrete Fourier transform
which entails a one-to-one mapping between a finite (or periodic) sequence in the
time domain and a finite (or periodic) sequence in the frequency domain. This
transform is of great practical importance since it provides the discrete approxi-
mations which allow us to evaluate all manner of Fourier transforms with a digital
computer. The discrete Fourier transform and the fast Fourier transform, which
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is an efficient means of computing it, are dealt with at length in two succeeding
chapters. The chapter on the discrete Fourier transform offers an alternative point
of entry into the realms of Fourier analysis to any reader who is, at first, daunted
by the complicated structure of the present chapter.

Fourier Series

A trigonometrical series is one which can be expressed in the form of

x(t) = α0 +
∞∑
j=1

αj cos(jωt) +
∞∑
j=1

βj sin(jωt),(13.1)

where the coefficients αj and βj are assumed to be real and where t is any real
number.

The series is assumed to converge for all values of ωt under consideration. The
frequencies {ω, 2ω, 3ω, . . .}, which are multiples of the fundamental frequency ω,
are said to constitute an harmonic sequence. The corresponding sine and cosine
functions complete an integral number of cycles in a space of T = 2π/ω units which
is the fundamental period. The functions cos(ωt) and sin(ωt) complete just one
cycle in this period. Thus, x(t) is a periodic function with x(t) = x(t+T ) for all t;
and it follows that it is completely defined in terms of the values which it assumes
over the interval (0, T ]. Thus, in talking of a function defined on (0, T ], we are
talking equally of a periodic function.

The alternative trigonometrical expression for the series is

x(t) = α0 +
∞∑
j=1

ρj cos(jωt− θj).(13.2)

Here ρj cos(jωt− θj) is described as the jth harmonic component of x(t). The am-
plitude of this component is ρj whilst its phase displacement, measured in radians,
is θj . The effect of the phase displacement is to delay, by θj/(jω) time periods, the
peak of the cosine function, which would occur, otherwise, at t = 0.

In view of the identity cos(jωt−θj) = cos θj cos(jωt)+sin θj sin(jωt), it follows,
from comparing (13.1) and (13.2), that

αj = ρj cos θj and βj = ρj sin θj .(13.3)

Therefore

ρ2
j = α2

j + β2
j and θj = tan−1(βj/αj).(13.4)

It is often more convenient to write the series in terms of complex exponentials.
According to Euler’s equations,

cos(jωt) =
1
2
(
eijωt + e−ijωt

)
and sin(jωt) =

−i
2
(
eijωt − e−ijωt

)
,(13.5)
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where i =
√
−1. Therefore, equation (13.1) can be expressed as

x(t) = α0 +
∞∑
j=1

αj + iβj
2

e−iωjt +
∞∑
j=1

αj − iβj
2

eiωjt.(13.6)

If all the terms are gathered under a single summation sign, then this can be written
as

x(t) =
∞∑

j=−∞
ξje

iωjt,(13.7)

where

ξ0 = α0, ξj =
αj − iβj

2
and ξ−j = ξ∗j =

αj + iβj
2

.(13.8)

The condition ξ−j = ξ∗j guarantees that the function x(t) defined in (13.7)
will be real-valued. In developing the theory of the Fourier transform, it is often
appropriate to set aside such conditions and to proceed as if the subjects of the
transform were complex-valued. This enhances the symmetry of the relationship of
the Fourier transform and its inverse, thereby simplifying the theory.

A fundamental question which arises in Fourier analysis is whether it is always
possible to represent a prescribed function x(t) over the interval from t = 0 to
t = 2π/ω by a trigonometrical series. The question, which was much debated by
Fourier’s contemporaries, was answered by Dirichlet who, in 1829, gave sufficient
conditions for the convergence of the series. The result of Dirichlet states that, if
x(t) is bounded in the interval (0, T ], where T = 2π/ω, in the sense that∫ T

0

|x(t)|dt <∞,(13.9)

and if it has a only a finite number of discontinuities and only a finite number
of maxima and minima in the interval, then there exists a Fourier series which
converges at any point t to the sum

1
2
{
x(t+) + x(t−)

}
,(13.10)

where x(t+) is the value of x as t is approached from the right x(t−) is the value of
x as t is approached from the left. The endpoints of the interval can be included
in this prescription by using the fact that x(t + T ) = x(t). The condition that
there be only a finite number of discontinuities means that, for all but a finite set
of points, x(t+) and x(t−) will be equal. A function which fulfils this condition will
be described as piecewise continuous.

Dirichlet’s conditions, which are sufficient rather than necessary, are somewhat
restrictive. Nevertheless, it is often declared in textbooks that they are valid for
most functions which arise in mathematical physics. This assertion is out of date;
and, as we shall see in a later chapter, the conditions are certainly not fulfilled
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by the functions which are the subject of Wiener’s generalised harmonic analysis
[522] and which are entailed in the spectral representation of a stationary stochastic
process. However, such generalisations of Fourier analysis are sought not so much
by weakening Dirichlet’s conditions as by generalising the concept of integration.

To obtain the coefficients of the trigonometrical Fourier series, we make use
of the orthogonality conditions which prevail amongst the harmonic components.
They are as follows:

∫ T

0

cos(jωt) cos(kωt)dt =


0, if j 6= k;

T/2, if j = k > 0;

T, if j = k = 0;

(13.11)

∫ T

0

sin(jωt) sin(kωt)dt =
{ 0, if j 6= k;

T/2, if j = k > 0;

∫ T

0

cos(jωt) sin(kωt)dt = 0 for all j, k.

Here the range of the integration, which is over one complete cycle of the fundamen-
tal harmonic component, can be replaced be any interval from an arbitrary point
t0 to a point t1 = t0 + T , where T is the length of the period. These results, which
are proved in the appendix, become transparent when the integrands are rewritten
with the help of the compound-angle formulae of trigonometry. They may be used
to show that the coefficients of the trigonometrical Fourier series of equation (13.1)
are

α0 =
1
T

∫ T

0

x(t)dt,

αj =
2
T

∫ T

0

x(t) cos(ωjt)dt for j > 0,

βj =
2
T

∫ T

0

x(t) sin(ωjt)dt for j > 0.

(13.12)

The results follow immediately on replacing x(t) by the expression under (13.1).
The coefficients of the complex exponential series of (13.7) may be obtained

from the above results using the definitions of (13.8). They can also be obtained
more readily from (13.7) itself using the orthogonality conditions for the complex
exponentials. The conditions indicate that∫ T

0

eiω(j−k)tdt =
{ 0, if j 6= k;

T, if j = k.
(13.13)

Thus, when the Fourier transform and its inverse are displayed together, we have

ξj =
ω

2π

∫ π/ω

−π/ω
x(t)e−iωjtdt =

1
T

∫ T/2

−T/2
x(t)e−iωjtdt,(13.14)
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x(t) =
∞∑

j=−∞
ξje

iωjt.(13.15)

Here, we have written T = 2π/ω and we have disposed the limits of integration
symmetrically about t = 0 in order to facilitate a subsequent comparison.

To demonstrate that the function x(t) is indeed the inverse of the sequence
{ξj}, let us substitute equation (13.15) into equation (13.14) with the object of
obtaining an identity. When 1/T is put in place of ω/(2π), and when the integral
is taken from 0 to T , this gives

ξj =
1
T

∫ T

0

x(t)e−iωjtdt =
1
T

∫ T

0

{∑
k

ξke
iωkt

}
e−iωjtdt

=
1
T

∑
k

ξk

{∫ T

0

eiω(k−j)tdt

}
= ξj ,

(13.16)

where the final equality is by virtue of the orthogonality conditions of (13.13).
There are advantages and disadvantages in both the exponential and trigon-

ometric forms of the Fourier series. The exponential form provides a neater set of
expressions, but this is sometimes at the cost of concealing interesting details.

Example 13.1. Consider a periodic square wave x(t) = x(t + T ), with a (funda-
mental) frequency of ω = 2π/T , which is defined by

x(t) =

{
1, if |t| < τ ;

0, if τ < |t| < T/2.
(13.17)

In finding the coefficients of the Fourier series, it is convenient, in view of
the symmetry of x(t) about t = 0, to perform the integration over the interval
−T/2 ≥ t > T/2 (see Figure 13.1). Setting j = 0 in (13.14) and taking x(t) from
(13.17) gives

ξ0 =
1
T

∫ τ

−τ
dt =

2τ
T

=
τω

π
.(13.18)

For j 6= 0, we find that

ξj =
1
T

∫ τ

−τ
e−iωjtdt=

2
jωT

{
eiωjτ − e−iωjτ

2i

}
=

2 sin jωτ
jωT

=
sin jωτ
jπ

,

(13.19)

where the final equality comes from setting setting ωT = 2π.
If x(t) assumes the alternate values of 1 and 0 with equal duration, then τ =

T/4 and ωτ = π/2, and we get

ξ0 =
1
2
, ξj =

sin(πj/2)
jπ

=
{±1/(jπ), if j is odd;

0, if j is even.
(13.20)
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0 T/4 T/2−T/4−T/2 −12  0 12

Figure 13.1. A periodic square wave and its Fourier coefficients.

Also ξj = ξ−j . Therefore the equation under (13.15) can be written as

x(t) =
1
2

+
{
eiωt + e−iωt

π
− eiω3t + e−iω3t

3π
+
eiω5t + e−iω5t

5π
− · · ·

}
=

1
2

+
2
π

{
cos(t)− 1

3
cos(3t) +

1
5

cos(5t)− · · ·
}
.

(13.21)

The expression following the second equality can be subsumed equally under equa-
tions (13.1) and (13.2).

This example shows two important features which are the consequence of the
fact that the original real-valued function is even, or symmetric, about t = 0.
First, there is no phase displacement amongst the harmonic components of equation
(13.2). Secondly, the coefficients of the complex exponentials are all real-valued.

If the original function had been real-valued and odd, as in the case where
y(t) = 1 if 0 < t < T/2 and y(t) = 0 if T/2 < t < T , then the coefficients of the
complex exponentials would have taken the form of ξj = −iβj/2 with ξ−j = −ξj .
Then the expression under (13.1) would be in terms of sine functions only; which is
to say that each of the harmonic components of the cosine expression under (13.2)
would incorporate a phase displacement of π radians.

Convolution

Let f(t) and g(t) be two continuous functions defined over the interval (0, T ]
which are bounded in the sense of (13.9). Then their convolution product is defined
by

f(t) ∗ g(t) =
1
T

∫ T

0

f(τ)g(t− τ)dτ =
1
T

∫ T

0

f(t− τ)g(τ)dτ.(13.22)

Likewise, if φ(j) = {φj} and γ(j) = {γj} are two sequences which are absolutely
summable with

∑
|φj | < ∞ and

∑
|γj | < ∞, then their convolution product

ξ(j) = φ(j) ∗ γ(j) is the sequence whose elements are

ξj =
∞∑

τ=−∞
φτγj−τ =

∞∑
τ=−∞

φj−τγτ .(13.23)

A basic theorem states that a convolution in the time domain corresponds to
a multiplication in the frequency domain:
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(13.24) Let the sequences γ(j) = {γj} and φ(j) = {φj} represent the Fourier
transforms of the (piecewise) continuous periodic functions g(t) and
f(t) respectively. Then the Fourier transform of the convolution f(t)∗
g(t) is the sequence φ(j)γ(j) = {γjφj}.

Proof. The functions f(t) and g(t) are related to their Fourier transforms {φj}
and {γj} by equations in the forms of (13.14) and (13.15). Therefore

1
T

∫ T

0

f(τ)g(t− τ)dτ =
1
T

∫ T

0

f(τ)
{ ∞∑
j=−∞

γje
iωj(t−τ)

}
dτ

=
∞∑

j=−∞
γje

iωjt

{
1
T

∫ T

0

f(τ)e−iωjτdτ
}

=
∞∑

j=−∞
γjφje

iωjt.

(13.25)

Thus it can be see that the convolution f(t) ∗ g(t) is the Fourier transform of the
sequence φ(j)γ(j) = {γjφj}.

There is an analogous theorem which asserts that a convolution in the fre-
quency domain corresponds to a multiplication in the time domain, which is also
described as the modulation of one function of time by another:

(13.26) Let the sequences γ(j) = {γj} and φ(j) = {φj} represent the Fourier
transforms of the (piecewise) continuous periodic functions g(t) and
f(t). Then their convolution γ(j)∗φ(j) is the Fourier transform of the
modulation product g(t)f(t).

Proof. We may model the proof on the previous proof by interchanging the roles
of integration and summation. Thus the convolution of the sequences is∑

τ

φτγj−τ =
∑
τ

φτ

{
1
T

∫ T

0

g(t)e−iω(j−τ)tdt

}
=

1
T

∫ T

0

g(t)e−iωjt
{∑

τ

φτe
iωτt

}
dt

=
1
T

∫ T

0

g(t)f(t)e−iωjtdt;

(13.27)

and this is just the Fourier transform of the product g(t)f(t).

Closely related to these theorems on convolution are Parseval’s relationships:

(13.28) Let f(t) and g(t) be complex-valued piecewise-continuous periodic
functions whose Fourier-series expansions have the coefficients φj and
γj , and let g∗(t) be the complex conjugate of g(t). Then

1
T

∫ T

0

f(t)g∗(t)dt =
∞∑

j=−∞
φjγ
∗
j .
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This is demonstrated by writing∫ T

0

f(t)g∗(t)dt=
∫ T

0

f(t)
{ ∞∑
j=−∞

γ∗j e
−iωjt

}
dt

=
∞∑

j=−∞
γ∗j

{∫ T

0

f(t)e−iωjtdt
}

=T

∞∑
j=−∞

γ∗j φj .

(13.29)

It follows that, when f(t) = g(t) = x(t), we get

1
T

∫ T

0

|x(t)|2dt =
∞∑

j=−∞
|ξj |2.(13.30)

This is Parseval’s equation for a Fourier series. If x(t) is, in fact, a real-valued time-
varying periodic function, then this can be interpreted to mean that the power of
the signal may be determined either from the original function or from its transform.

Notice that, upon setting t = 0 in the expression

1
T

∫ T

0

f(τ)g(t− τ)dτ =
∑
j

φjγje
iωjt,(13.31)

which comes from (13.25), we get

1
T

∫ T

0

f(τ)g(−τ)dτ =
∑
j

φjγj .(13.32)

This is equivalent to the equation of (13.28) when γ∗j = γj is real-valued, for which
it is necessary and sufficient that g∗(τ) = g(−τ). The latter is the analogue of the
condition ξ∗j = ξ−j of (13.8) which ensures that the function x(t) from the time
domain is real-valued.

It may be useful to have a summary of the results of this section:

(13.33) Let the correspondence between a continuous periodic function x(t)
and its Fourier transform ξ(j) be denoted by x(t)←→ ξ(j). Likewise,
let f(t) ←→ φ(j) and g(t) ←→ γ(j). Then the following conditions
apply:

Convolution and Modulation

(i) f(t) ∗ g(t)←→ γ(j)φ(j),

(ii) f(t)g(t)←→ γ(j) ∗ φ(j),
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Parseval’s Theorem

(iii)
∫ T

0

f(t)g∗(t)dt = T

∞∑
j=−∞

γ∗j φj ,

(iv)
∫ T

0

|x(t)|2dt = T

∞∑
j=−∞

|ξj |2.

Example 13.2. If x(t) = ρ cos(ωt) represents a voltage applied across a resistance
of one ohm, then the power dissipated will be ρ2/2 watts. The result is not affected
by a shift in the phase of the cycle. Thus, by using the compound-angle formula
(13.126)(c) from the appendix of this chapter, it can be shown that

1
T

∫ T

0

{
ρ cos(ωt− θ)

}2
dt =

ρ2

2T

∫ T

0

{
1 + cos(2ωt− 2θ)

}
dt.(13.34)

Since the integral of the cosine term is over two complete cycles, its value is zero;
and thus the expression as a whole is evaluated as ρ2/2. Any of the expressions
from the identities

ρ cos(ωt− θ) = α cosωt+ β sinωt = ξeiωt + ξ∗e−iωt,(13.35)

where 2ξ = ρe−iθ, may be used in place of the integrand. It follows that

ρ2

2
=
α2 + β2

2
= 2ξξ∗.(13.36)

The same result can be obtained via Parseval’s equation (13.30). This becomes
ρ2/2 =

∑1
j=−1 |ξj |2, where |ξ−1| = |ξ1| = ρ/2 and |ξ0| = 0. The latter condition

reflects the fact that there is no D.C. component in the current.

Fourier Approximations

Let

f(t) =
∑
j

φje
iωjt and g(t) =

∑
j

γje
iωjt(13.37)

be two functions defined on the interval (0, T ], and let the summations be finite or
infinite. Then a measure of the squared distance between the functions is given by

‖f(t)− g(t)‖2 = ‖f(t)‖2 + ‖g(t)‖2 − 2〈f(t), g(t)〉,(13.38)

where

‖f(t)‖2 =T
∑
j

|φj |2,

‖g(t)‖2 =T
∑
j

|γj |2,

〈f(t), g(t)〉=T
∑
j

φ∗jγj .

(13.39)
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When g(t) = f(t), there is 〈f(t), f(t)〉 = ‖f(t)‖2.
Suppose that we are given the function f(t) and that we wish to approximate

it in the interval (0, T ] by a function gn(t) of the type defined in (13.37) with a
finite summation which runs from −n to n:

gn(t) = γ0 +
n∑
j=1

{
γje

iωjt + γ−je
−iωjt} .(13.40)

When γ−j = γ∗j , which is to say that γrej = γre−j and γimj = −γim−j , this function gn(t)
is real-valued, and it becomes an ordinary trigonometrical polynomial of degree n
of the form

gn(t) = γ0 +
n∑
j=1

{
γrej
(
eiωjt + e−iωjt

)
+ iγimj

(
eiωjt − e−iωjt

)}
= γ0 + 2

n∑
j=1

{
γrej cos(ωjt)− γimj sin(ωjt)

}
.

(13.41)

Let fn(t) be the function defined in the same manner as gn(t) but with the
leading coefficients φ−n, . . . , φ0, . . . , φn of f(t) in place of γ−n, . . . , γ0, . . . , γn. Then
fn(t) is the best approximation of its type, and it can be asserted that

‖f(t)− fn(t)‖2 ≤ ‖f(t)− gn(t)‖2.(13.42)

This implies, in particular, that, amongst all of the trigonometrical polynomials of
degree n, the one which gives the best approximation to a given real-valued function
f(t) is the so-called Fourier polynomial which is based on a partial sum comprising
terms of the Fourier expansion of f(t) up to the nth order.

The result depends upon the fact that fn represents the minimum-distance
projection of f onto the linear subspace spanned by the set of functions e±iωjt;
j = 0, . . . , n which constitute a basis for functions of the type gn.

To prove this result, we can employ the method which has been used in proving
the minimum-distance property of an ordinary-least squares regression. Consider

‖f − gn‖2 = ‖f‖2 + ‖gn‖2 − 2〈f, gn〉(13.43)

and

‖f − fn‖2 = ‖f‖2 + ‖fn‖2 − 2〈f, fn〉
= ‖f‖2 − ‖fn‖2,

(13.44)

where the second equality of (13.44) follows from 〈f, fn〉 = 〈fn, fn〉 = ‖fn‖2. Taking
one from the other gives

‖f − gn‖2 − ‖f − fn‖2 = ‖gn‖2 + ‖fn‖2 − 2〈f, gn〉
= ‖gn‖2 + ‖fn‖2 − 2〈fn, gn〉
= ‖gn − fn‖2.

(13.45)
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Figure 13.2. The Fourier approximation of a square wave.

On rearranging the expression, we obtain the inequality of (13.42), in view of the
nonnegativity of the squares.

From the construction of fn, it follows that

‖f − fn‖2 = T

∞∑
j=n+1

{
|φj |2 + |φ−j |2

}
.(13.46)

This comprises the tails of the convergent series

∫ T

0

|f(t)|2dt = T
∞∑

j=−∞
|φj |2(13.47)

which is given by Parseval’s equation. It follows that the quantity in (13.46) can
be made smaller than any preassigned number by ensuring that n is large enough.
This result is known as the mean-square convergence of the Fourier approximation.

If f is, in fact, a continuous periodic function, then its Fourier series expansion
converges to the value of the function at every point in the interval (0, T ]. The
consequence is that any continuous periodic function can be uniformly approxi-
mated by trigonometrical polynomials. This is the trigonometrical form of the
famous Weierstrass approximation theorem [508], of which the following is a formal
statement:

(13.48) Let f(t) be a continuous real-valued function on the interval [0, T ] and
suppose that f(T ) = f(0). Then, given any real number ε > 0, there
exists a trigonometrical polynomial fn(t) such that |f(t) − fn(t)| < ε
for all t ∈ [0, T ].
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It should be emphasised that this result of uniform pointwise convergence does not
apply unless f is strictly continuous. If f is only piecewise-continuous, then only
the mean-square convergence of fn to f is assured.

Some important practical consequence of the failure of a Fourier series to con-
verge uniformly to the values of a piecewise continuous function were discovered
at the end of the nineteenth century. The American physicist Michelson had con-
structed a mechanical apparatus—the Michelson–Stratton Harmonic Analyser—
which could be used both for the Fourier analysis of a function and for its synthesis
from a set of trigonometrical components. He discovered that the apparatus was
capable of synthesising a square wave successfully everywhere except at the points
of discontinuity where the series approximation was liable to overshoot the value
of the function. Michelson published his finding in 1898 in a letter to Nature [346].
An explanation of it was provided by the mathematical physicist J.W. Gibbs in two
further letters, [208], [209]; and Michelson’s discovery came to be known as Gibbs’
Phenomenon.

This phenomenon is illustrated in Figure 13.2 where it is apparent that not
all of the oscillations in the partial sums are decreasing at a uniform rate as n
increases. Instead, the oscillations which are adjacent to the point of discontinuity
are tending to a limiting amplitude which is about 9% of the jump. However, as n
increases, the width of these end-oscillations becomes vanishingly small; and thus
the mean-square convergence of the Fourier series is assured.

Discrete-Time Fourier Transform

If x(t) = {xt; t = 0 ± 1,±2, . . .} is an absolutely summable sequence of real
values such that

∞∑
t=−∞

|xt| <∞,(13.49)

then its elements may be expressed as

xt =
1

2π

∫ π

0

α(ω) cos(ωt)dω +
1

2π

∫ π

0

β(ω) sin(ωt)dω

=
1

2π

∫ π

0

{
α(ω)− iβ(ω)

2

}
eiωtdω +

1
2π

∫ π

0

{
α(ω) + iβ(ω)

2

}
e−iωtdω,

(13.50)

where α(ω) = α(−ω) and β(−ω) = −β(ω) are periodic functions of ω which are an
even function and an odd function respectively.

We have written the expression this manner simply for the purpose of com-
paring it with the trigonometrical expression for the Fourier series which is given
under (13.1). On defining

ξ(ω) =
α(ω)− iβ(ω)

2
and ξ(−ω) = ξ∗(ω) =

α(ω) + iβ(ω)
2

,(13.51)

the expression under (13.50) together with its inverse may be written as

xt =
1

2π

∫ π

−π
ξ(ω)eiωtdω,(13.52)
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ξ(ω) =
∞∑

t=−∞
xte
−iωt.(13.53)

Equation (13.53) represents the so-called discrete-time Fourier transform of
the temporal sequence x(t). This alternative form makes two points apparent.
The first is that, if we allow the variables on both sides of the Fourier transforms
to be complex-valued, then the equations under (13.52) and (13.53) bear a dual
relationship with the equations under (13.14) and (13.15). The latter equations
define the Fourier transform of a continuous periodic function and its inverse.

To affirm this point, we may change the variable of integration in the expression
for ξj under (13.14) from t to ψ = −ωt. Then the two equations become

ξj =
1

2π

∫ π

−π
x(ψ)eiψjdψ,(13.54)

x(ψ) =
∞∑

j=−∞
ξje
−iψj ;(13.55)

and these forms, which should be quickly forgotten for fear of confusing the nota-
tion, are isomorphic with the equations under (13.52) and (13.53).

The second point is that the expression for ξ(ω) under (13.53) is simply the
z-transform of the sequence x(t) = {xt} which has been specialised by setting
z = e−iω or, equivalently, by constraining z to lie on the unit circle. Moreover, if
we change the variable of integration in the expression for xt under (13.52) from ω
to z = eiω, then we get

xt =
1

2πi

∮
ξ(z)zt

dz

z
,(13.56)

which is an expression for the generic coefficient of the Laurent series ξ(z) =
∑
xtz

t

which is in accordance with the formula given under (3.94).

Symmetry Properties of the Fourier Transform

The basic properties of the sine and cosine functions which underlie the Fourier
transform give rise to certain symmetry conditions which are useful in understand-
ing the frequency-response functions of linear systems. These properties, which we
shall develop in the context of the discrete-time Fourier transform, are common to
all the species of Fourier transforms. Thus they also lead to useful simplifications
in the computing of the discrete Fourier transform of a finite sequence.

To demonstrate the symmetry conditions, it is appropriate to expand equations
(13.52) and (13.53) so as to make the trigonometrical functions explicit as well as
to reveal the real and imaginary components. First, we may write equation (13.53)
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as

ξ(ω) =
∞∑

t=−∞

{
xret + iximt

}{
cos(ωt)− i sin(ωt)

}
=

∞∑
t=−∞

{
xret cos(ωt) + ximt sin(ωt)

}
−i

∞∑
t=−∞

{
xret sin(ωt)− ximt cos(ωt)

}
=

1
2
{
α(ω)− iβ(ω)

}
.

(13.57)

Here there is no presumption that α(ω) is an even function or that β(ω) is odd.
When there is no presumption that xt is real, equation (13.52) can be written
likewise as

xt =
1

4π

∫ π

−π

{
α(ω)− iβ(ω)

}{
cos(ωt) + i sin(ωt)

}
dω

=
1

4π

∫ π

−π

{
α(ω) cos(ωt) + β(ω) sin(ωt)

}
dω

+i
1

4π

∫ π

−π

{
α(ω) sin(ωt)− β(ω) cos(ωt)

}
dω

=xret + iximt .

(13.58)

This is a generalisation of (13.50).
Consider setting xret = xt and ximt = 0 in (13.57), which is the case when

x(t) = {xt} is a real-valued sequence. Then the equation becomes

ξ(ω) =
∞∑

j=−∞

{
xt cos(ωt)− ixt sin(ωt)}

=
1
2
{
α(ω)− iβ(ω)

}
;

(13.59)

and, in view of the properties of the trigonometrical functions, it can be seen that
x(t) has a Fourier transform of which the real part α(ω) = α(−ω) is now an even
function and the imaginary part β(ω) = −β(−ω) is now an odd function. When the
latter conditions are applied to equation (13.58), it can be seen that the imaginary
term vanishes, since the integral over (−π, 0] cancels with the integral over (0, π].
Thus equation (13.58) is reduced to equation (13.50).

Other useful symmetry properties of a similar nature can also be deduced
directly from the equations (13.57) and (13.58). They are presented in Table 13.2.
It is possible to deduce the symmetry conditions in a more abstract manner by
referring to some fundamental relationships which are give below and which may
themselves be confirmed by reference to equations (13.52) and (13.53):
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Table 13.2. Symmetry properties of the Fourier transform

Time domain Frequency domain
x(t) ξ(ω)

Real Real even, imaginary odd
Imaginary Real odd, imaginary even
Real even, imaginary odd Real
Real odd, imaginary even Imaginary
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Complex and even Complex and even
Complex and odd Complex and odd

(13.60) Let x(t) be a complex-valued sequence, and let ξ(ω) be its Fourier
transform. Then the following relationships exist:

(i) x(t)←→ ξ(ω),

(iii) x∗(t)←→ ξ∗(−ω),

(ii) x(−t)←→ ξ(−ω),

(iv) x∗(−t)←→ ξ∗(ω).

Using the result under (iii), we can readily prove the first of the symmetry conditions
of Table 13.2:

(13.61) If ξ(ω) = {α(ω) − iβ(ω)}/2 is the Fourier transform of a real-valued
sequence x(t), then α(ω) = α(−ω) is an even function and β(ω) =
−β(−ω) is an odd function.

Proof. If x(t) is real-valued, then x(t) = x∗(t) and therefore ξ(ω) = ξ∗(−ω), or,
equivalently, α(ω) − iβ(ω) = α(−ω) + iβ(−ω). Equating separately the real and
imaginary parts of this equation proves the result.

From here it is a small step to prove that, if x(t) is real and even, then ξ(ω)
is real and even. For, with x(t) = x(−t) and hence ξ(ω) = ξ(−ω), it follows that
α(ω) = α(−ω) and β(ω) = β(−ω). But if x(t) is real, then β(ω) = −β(−ω); and
the two conditions on β(ω) can be reconciled only if β(ω) = 0.

The other results in Table 13.2 are proved in the same manner with equal
facility.

The Frequency Response of a Discrete-Time System

The Fourier series and the discrete-time Fourier transform bear a dual rela-
tionship to each other which makes them mathematically identical. (See Table
13.1). Nevertheless, in the context of signal processing, they have quite different
interpretations, since one of them transforms a continuous periodic signal from the
time domain into a discrete aperiodic sequence of the frequency domain, whereas
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the other transforms an aperiodic time-domain sequence into a continuous periodic
frequency-domain function.

The differences are heightened if the time-domain functions are restricted to
be real-valued; for given that, in general, the frequency-domain transforms will be
complex, this specialisation destroys the duality of the two Fourier transforms.

One of the principal uses of the discrete-time Fourier transform in signal pro-
cessing is in describing the effects upon arbitrary signals of discrete-time transfer
functions which are also called filters. In the case of a linear filter, a filtered sequence
y(t) is derived from an input sequence x(t) via a relationship of the form

y(t) = ψ(L)x(t) =
∑
j

ψjx(t− j).(13.62)

Here, ψ(L) =
∑
ψLj is, in general, a two-sided transfer function which comprises

both positive and negative powers of the lag operator L.
A natural way of characterising a filter is to specify the sequence ψ(j) = {ψj}

of the filter coefficients. However, a filter may also be characterised usefully by
describing its effect upon a variety of standardised input signals. The simplest of
these signals is the unit impulse specified by

δ(t) =
{ 1, if t = 0;

0, if t 6= 0.
(13.63)

Setting x(t) = δ(t) in (13.62) gives

y(t) = ψ(L)δ(t) =
∑
j

ψjδ(t− j) = ψ(t).(13.64)

For a given value of t, the equation yields the filter coefficient ψt. As a whole, the
sequence y(t) = ψ(t), which is described as the impulse response of the filter, is
synonymous with the sequence of filter coefficients.

It is also appropriate to consider the response to the complex exponential input
x(t) = eiωt = cos(ωt) + i sin(ωt). The equation

y(t) =ψ(L)eiωt =
∑
j

ψje
iω(t−j)

=
{∑

j

ψje
−iωj

}
eiωt = ψ(ω)eiωt

(13.65)

indicates that the output sequence is formed by multiplying the input sequence by
a complex-valued function

ψ(ω) =
∑
j

ψje
−iωj .(13.66)

This function, which is the discrete-time Fourier transform of the impulse-response
sequence ψ(j) = {ψj}, is called the frequency-response function of the filter. Given
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that the transfer function ψ(L) satisfies the BIBO stability condition, which is that∑
j |ψj | < ∞, it follows that the condition of convergence given under (13.49) is

satisfied—which guarantees the existence of the transform.
To reveal the effect of the filter upon the complex exponential input, the fre-

quency response function may be cast in the form of

ψ(ω) = |ψ(ω)|e−iθ(ω) = |ψ(ω)|
[
cos
{
θ(ω)

}
− i sin

{
θ(ω)

}]
.(13.67)

Then the output response of the filter to the complex-exponential input, given
under (13.65), becomes

y(t) = |ψ(ω)|ei{ωt−θ(ω)}

= |ψ(ω)|
[
cos
{
ωt− θ(ω)

}
+ i sin

{
ωt− θ(ω)

}]
.

(13.68)

This indicates that, on passing through the filter, a sinusoidal input at frequency
ω will have its amplitude altered by a factor of |ψ(ω)|, described as the gain effect,
and it will have its phase displaced by a amount equal to θ(ω) radians, described
as the phase effect.

An alternative approach to the derivation of the frequency response is to apply
a transformation directly to equation (13.64) which depicts the impulse response.
The fact that the Fourier transform is a linear operator indicates that the transform
of a sum is a sum of transforms. The Fourier transform of the sequence δ(t − j),
which is zero-valued apart from a unit impulse at t = j, is e−iωj . Therefore the
transform of the sum on the RHS of equation (13.64) is the sum of transformed
impulses found under (13.66).

Example 13.3. Consider an ideal lowpass filter with a frequency response defined
by

ψ(ω) =

{
1, if |ω| < ωc;

0, if ωc < |ω| ≤ π.
(13.69)

This function is periodic, but one may imagine that the frequencies of the input
signal do not exceed π. The coefficients of the filter are found by means of the
(inverse) Fourier transform of (13.52). Thus

ψj =
1

2π

∫ ωc

−ωc
eiωjdω =

sinωcj
πj

.(13.70)

The integral has appeared already under (13.19) in connection with a previous
example. In particular, the sequence of filter coefficients has a profile which is the
same as the sequence of Fourier coefficients presented in Figure 13.1. This result
illustrates the duality of the Fourier series and the discrete-time Fourier transform.

Since this particular frequency-response function ψ(ω) is real-valued and equal
everywhere to its modulus |ψ(ω)|, there is no phase effect. Such is the case whenever
the filter coefficients are symmetric about the point j = 0.
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−5  0  5 0 π/2 π−π/2−π

Figure 13.3. The Fourier transform of a uniform sequence yields the Dirichlet kernel.

The coefficients of the filter are nonzero for j < 0, and therefore the filter is
not available for real-time signal processing where filters must look backwards in
time. Also, the coefficients constitute an infinite sequence which must be truncated
before filter can be implemented. Nevertheless, the ideal filter does represent a
standard which practical filters are often designed to emulate; and something close
to it is available for the processing of digitally recorded sound when there is not a
real-time constraint and when the sampling rate of the recording is high. However,
such filter designs are not particularly favoured in sound engineering because, even
at relatively high sampling rates, the impulse response of the filter appears to be
under-damped, which corresponds, in sound, to the phenomenon of ringing.

Example 13.4. As a further example of the frequency response, consider the sim-
ple n-point moving-average operator

ψ(L) = n−1(I + L+ · · ·+ Ln−1).(13.71)

The frequency response of this filter is given by

ψ(ω) =
1
n

n−1∑
j=0

e−iωj =


1, if ωj = 0;

1
n

1− e−iωn

1− e−iω
, otherwise.

(13.72)

Multiplying top and bottom of nψ(ω) by exp(iωn/2) gives

nψ(ω) =
eiωn/2 − e−iωn/2

eiω(n−1)/2(eiω/2 − e−iω/2)
=

sin(ωn/2)
sin(ω/2)

e−iω(n−1)/2.(13.73)

The ratio of the sine functions divided by n gives the gain of the filter, whilst the
phase effect is θ(ω) = (n− 1)ω/2. This is a linear effect which indicates that each
harmonic component in the input signal is delayed by θ(ω)/ω = (n− 1)/2 periods.

Imagine that n is an odd integer, and define a symmetric two-sided moving-
average filter by

κ(L) =L(1−n)/2 + · · ·+ L−1 + I + L+ · · ·+ L(n−1)/2

=nL(1−n)/2ψ(L).
(13.74)

Then the frequency response becomes

κ(ω) = nψ(ω)eiω(n−1)/2 =
sin(ωn/2)
sin(ω/2)

,(13.75)
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t
−T/2 0 T/2 3T/2

Figure 13.4. A periodic function may be constructed by replicating, in successive
intervals, a segment of a function which is absolutely integrable over the real line.

and there is no longer any phase effect. It transpires, from this example, that
the factor e−iω(n−1)/2 is the frequency-domain equivalent of the operator L(n−1)/2.
The function defined is (13.75) is known as the Dirichlet kernel—see, for example,
Titchmarsh [484, p. 402]. The function is illustrated in Figure 13.3

The Fourier Integral

Continuous aperiodic signals do not have Fourier series expansions, and it is
necessary to represent them in terms of an nondenumerable infinity of sinusoidal
components which are gathered under an integral.

The Fourier integral can be developed from the Fourier series by allowing the
period T of the function x(t) = x(t+ T ) to increase indefinitely whilst maintaining
the condition of (13.9) that the function is absolutely integrable over the interval
(−T/2, T/2]. One may imagine that the periodic function x(t) was defined, in the
first place, by replicating, in successive intervals, a segment of a function which
is absolutely integrable over the real line. (See Figure 13.4). Then the process of
increasing T is a matter of extending this segment in both directions.

Consider rewriting equation of (13.1) as

x(t) =
1

2π

∞∑
j=0

{
dA(ωj) cos(jωt) + dB(ωj) sin(jωt)

}
,(13.76)

where dA(ωj) = 2παj stands for the increments of a step function or “staircase”
function A at the points of discontinuity ωj where it rises vertically. These points
are integer multiples of the fundamental frequency ω = 2π/T . In the limit, as
T → ∞, the intervals between the successive harmonic frequencies, which are the
treads of the staircase, vanish and the increments dA(ωj) also become vanishingly
small. Then the summation is replaced by integration and the expression becomes

x(t) =
1

2π

∫ ∞
0

cos(ωt)dA(ω) +
1

2π

∫ ∞
0

sin(ωt)dB(ω)

=
1

2π

∫ ∞
0

α(ω) cos(ωt)dω +
1

2π

∫ ∞
0

β(ω) sin(ωt)dω.

(13.77)
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Here ω no longer stands for the fundamental frequency. Instead, it now repre-
sents the continuous variable of integration. Also, A(ω) and B(ω) have become
continuous functions which have the derivatives α(ω) and β(ω) respectively.

The Fourier integral and its inverse may be expressed in terms of the complex
exponential function. Thus

x(t) =
1

2π

∫ ∞
−∞

ξ(ω)eiωtdω,(13.78)

ξ(ω) =
∫ ∞
−∞

x(t)e−iωtdt,(13.79)

where ξ(ω) = {α(ω) + iβ(ω)}/2. A condition which is sufficient for the existence
of the Fourier integral is that of absolute integrability which corresponds to the
condition under (13.9): ∫ ∞

−∞
|x(t)|dt <∞.(13.80)

Signals which are absolutely integrable have a finite energy.
But for the factor 1/2π, the Fourier integral and its inverse are symmetrically

related to each other; and a perfect symmetry could be achieved by sharing the
factor equally between the Fourier transform and its inverse, which is the practice
of some authors. Also, the factor disappears if ordinary frequency f = ω/2π is used
in place of angular frequency ω as an argument. However, to use f in place of ω
poses an impediment to complex analysis. The duality of the relationship between
the Fourier integral and its inverse can be expressed by writing

x(t)←→ ξ(ω) and ξ(t)←→ 2πx(−ω).(13.81)

The properties of the Fourier integral are the natural analogues of those of the
Fourier series and of the discrete-time Fourier transform; and once this is recognised
there is no need to restate these results. Nevertheless, to illustrate the proposition,
let us take the example of the convolution operations.

Let g(t) and γ(ω) be a pair of Fourier functions which have the same forms as
x(t) of (13.78) and ξ(ω) of (13.79) respectively. Then the time-domain convolution
of x(t) and g(t) leads to the identity

g(t) ∗ x(t) =
∫
τ

g(τ)x(t− τ)dτ =
1

2π

∫
ω

γ(ω)ξ(ω)eiωtdω.(13.82)

This is the analogue of the equation under (13.25). On the other hand, the
frequency-domain convolution of γ(ω) and ξ(ω) leads to the identity

γ(ω) ∗ ξ(ω) =
∫
λ

γ(λ)ξ(ω − λ)dλ = 2π
∫
t

g(t)x(t)e−iλtdt,(13.83)

which is the analogue of the result under (13.27). The summary of these results,
which corresponds to the statement under (13.33), is as follows:
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(13.84) Let the correspondence between a continuous aperiodic function x(t)
and its Fourier transform ξ(ω) be denoted by x(t)←→ ξ(ω). Likewise,
let g(t)←→ γ(j). Then the following conditions apply:

(i) x(t) ∗ g(t)←→ γ(ω)ξ(ω),

(ii) x(t)g(t)←→ 1
2π
γ(ω) ∗ ξ(ω).

Example 13.5. Consider an isolated rectangular pulse defined by

x(t) =

{
1, if |t| ≤ τ ;

0, if τ < |t|.
(13.85)

The condition of (13.80) is certainly fulfilled, and therefore there is a Fourier trans-
form which is the so-called sinc function:

ξ(ω) =
∫ τ

−τ
e−iωtdt =

2 sinωτ
ω

.(13.86)

This is to be compared with equation (13.19) which defines the jth coefficient ξj of
the Fourier expansion of a periodic square wave. Multiplying the latter by T gives

Tξj =
2 sin jωτ

jω
.(13.87)

The periodic wave approaches the single rectangular pulse as its period T becomes
large relative to 2τ , which is the width of the pulse. Also, the Fourier coefficients
of the wave scaled by T become more densely spaced under their envelope, which
is the same function as the Fourier transform of the pulse.

The Uncertainty Relationship

There is an inverse relationship between the dispersion of a function and the
range of the frequencies which are present in its transform. Thus one finds that,
the shorter is the duration of a transient signal, the wider is the spread of the
frequencies in its transform.

In electrical engineering, this notion finds expression in the so-called bandwidth
theorem. In mathematical physics, an analogous relationship between the spatial
dispersion of a wave train and its frequency dispersion is the basis of the uncertainty
principle of Heisenberg.

To illustrate the relationship, we may consider a Gaussian or normal distribu-
tion. This is defined in terms of the random variable x by

f(x) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
.(13.88)
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The Fourier transform of f(x), which in known in mathematical statistics as the
characteristic function of the normal distribution, is given by

φ(ω) =
1√

2πσ2

∫ ∞
−∞

exp
{
iωx− 1

2σ2
(x− µ)2

}
dx

= exp
{
iωµ− 1

2
σ2ω2

} 1√
2πσ2

∫ ∞
−∞

exp
{
− 1

2σ2
(x− µ− iσ2ω)2

}
dx.

(13.89)

The integral here is that of the function exp{z2/(2σ2)}, where z is a complex
variable which runs along a line parallel to the real axis. This can be shown to
be equal to the integral of the corresponding real function which has the value of
σ
√

2π. Therefore the characteristic function is

φ(ω) = exp
{
iωµ− 1

2
σ2ω2

}
.(13.90)

The characteristic function is so-called because it completely characterises the
distribution. The parameters of the distribution are the mean µ and the variance
σ2 which measures the dispersion of x. The distribution is symmetric about the
value µ; and if, µ = 0, then φ(ω) is real-valued, as we are led to expect from the
symmetry properties of the Fourier transform.

The inverse relationship between the dispersions of f(x) and φ(ω) is manifest
from the comparison of the two functions which, apart from a scalar factor, have
the same form when µ = 0. Thus, if the dispersion of f(x) is represented by σ,
then that of φ(ω) is directly related to σ−1.

The measure of dispersion which is used in mathematical statistics, and which
is based on the presumption that the function is nonnegative, is inappropriate for
measuring the width of an oscillatory signal or a wave train. In such cases, the
usual measure of dispersion of x is

∆2
x =

∫ ∞
−∞

x2|f(x)|2dx
/∫ ∞

−∞
|f(x)|2dx.(13.91)

The dispersion ∆2
ω in the frequency domain is defined likewise.

In quantum mechanics, a particle is also depicted as a De Broglie wave.
Schrödinger’s wave function ψ(x) serves to define the spatial extent of the wave
train, and its dispersion ∆x is liable to be interpreted as a measure of the uncer-
tainty of our knowledge of the particle’s position.

The formulation of De Broglie [141] also relates the momentum ρ of a particle to
its wavelength λ = 1/ω according to the formula ρ = h/λ, where h is Planck’s con-
stant. Thus, the spread of momentum is ∆ρ = h∆ω; and the position–momentum
uncertainty principle states that

∆x∆ρ ≥
h

4π
.(13.92)

It can be shown that the Gaussian wave train is the only one which leads to an
equality in this relationship.
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The Delta Function

For completeness, it is useful to extend the definition of the Fourier integral so
that it can be applied to periodic as well as to aperiodic signals. Also, we should
like to subsume the case of a discrete-time process under the general theory of the
Fourier integral.

The problem in attempting to define the Fourier transform of a periodic func-
tion is that the function fails to satisfy the condition under (13.80). A natural
interpretation of this feature is that a continuous periodic function represents a
process which, over time, dissipates an indefinite amount of energy.

The problem in attempting to define the Fourier transform of a discrete-time
process is, in a sense, the diametric opposite of the previous problem: it is that the
process possesses negligible energy. It transpires that there is a species of duality
between the two problems, both of which can be treated with the help of Dirac’s
delta function [160].

The Dirac delta function is a mathematical idealisation of the mechanical con-
cept of an impulse which is defined as an indefinitely large force acting instan-
taneously so as to impart a finite momentum to the body on which it impinges.
The unit impulse in the time domain is a delta function which fulfils the following
conditions:

δ(t) = 0 for all t 6= 0,∫ ∞
−∞

δ(t)dt = 1.
(13.93)

A consequence of these two properties is that δ(t) must be infinite at t = 0. A
frequency-domain impulse function δ(ω) may also be defined which fulfils condi-
tions which are derived from those of (13.93) simply by replacing the time-domain
argument t by the frequency-domain argument ω.

The delta function δ(t) may be approximated by any number of functions
which integrate to unity and which have a minimal dispersion about the point
t = 0. An easy way of conceptualising the function is to consider a rectangle of
unit area defined on the interval [0,∆]. The height of the rectangle, which is 1/∆,
increases indefinitely as ∆ → 0; and, in the limit, we obtain Dirac’s function. An
alternative approach is to consider the normal density function of statistics whose
expression is to be found under (13.88). The integral of the function over the real
line is unity, and, as the variance σ2 tends to zero, it too becomes an increasingly
accurate representation of a unit impulse.

An essential property of the Dirac delta is the so-called sifting property whereby

f(τ) =
∫ ∞
−∞

f(t)δ(t− τ)dt

=
∫ ∞
−∞

f(t)δ(τ − t)dt.
(13.94)

This equation, which has a discrete-time counterpart in equation (13.64), may be
explained by representing the delta function in terms of a unit-area rectangle defined
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over the interval [τ, τ + ∆]. The value of the integral is approximated by the area
of the rectangle times the average of the values which the function attains over the
interval. As ∆→ 0, this average tends to the value of the function at the point τ ,
which is fτ = f(τ). Notice that it also follows from the conditions under (13.93)
that

f(t)δ(t− τ) = f(τ)δ(t− τ).(13.95)

The Fourier transform of the Dirac function δ(t− τ) can be obtained directly
from the formula of (13.79) by setting x(t) = δ(t− τ). From (13.94), it follows that

ξ(ω) =
∫ ∞
−∞

e−iωtδ(t− τ)dt = e−iωτ .(13.96)

When τ = 0, we have ξ(ω) = 1; which is to say that the transform of the impulse
is a constant function which is dispersed over the entire real line. In effect, every
frequency is needed in order to synthesise the impulse.

In contemplating the idea that an impulse comprises all of the frequencies,
one is reminded of the fact that, to investigate the harmonics of a bell, all that
is required—in order to excite the resonant frequencies—is a sharp stroke of the
clapper, which is an impulse in other words.

It is now possible to write down the frequency-domain expression for a signal
which comprises a train of impulses, each separated by a unit time interval and
each weighted by a value from the sequence {xk}:

f(t) =
∑
k

xkδ(t− k).(13.97)

Equation (13.96) indicates that the Fourier transform of f(t) is just

φ(ω) =
∑
t

xte
−iωt;(13.98)

and we notice that this corresponds precisely to the Fourier transform of the
discrete-time sequence x(k) = {xk} already given under (13.53). In effect, we
have managed to subsume the case of discrete aperiodic functions under the theory
of the Fourier integral.

The expression under (13.97), which is for a continuous-time signal, is indis-
tinguishable from an expression in terms of the discrete-time unit impulse function
such as the one appearing under (13.64). The fault—if it is one—lies in our use of
the same symbol to denote both the discrete-time and the continuous-time impulse.

Now let us consider the problem of applying the Fourier transform to a signal
which is a continuous periodic function of t. We may tackle this case in a seemingly
roundabout way by considering a function x(t) whose Fourier transform ξ(ω) is a
single frequency-domain impulse at ω = ω0 with an area of 2π:

ξ(ω) = 2πδ(ω − ω0).(13.99)
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On applying the inverse Fourier transform which is defined under (13.78), we find
that this transform of (13.99) belongs to the function

x(t) =
1

2π

∫ ∞
−∞

2πδ(ω − ω0)eiωtdω

= eiω0t.

(13.100)

A comparison with equation (13.96), which gives the frequency-domain represen-
tation of a time-domain impulse, suggests that time-domain and frequency-domain
impulses can be treated in ways which are mathematically equivalent.

Now imagine that ξ(ω) is a linear combination of a set of impulses equally
spaced in frequency of the form

ξ(ω) =
∞∑

j=−∞
ξj2πδ(ω − jω0).(13.101)

Then the inverse Fourier transform yields

x(t) =
∞∑

j=−∞
ξje

iω0jt.(13.102)

This corresponds exactly to the Fourier-series representation of a periodic signal
which is given under (13.7). Thus, in effect, we have subsumed the case of contin-
uous periodic functions under the theory of the Fourier integral.

It may be observed that, in the absence of the factor 2π, the relationship
f(t) ←→ φ(ω), which connects the functions of (13.97) and (13.98), would be
identical to the relationship ξ(ω) ←→ x(t), which connects those of (13.101) and
(13.102). This is a consequence of the duality of the Fourier integral transform and
its inverse which is expressed in (13.81).

It might be helpful to summarise the results of this section and to reveal two
further implications.

(13.103) Let δ(t) and δ(ω) represent Dirac’s delta function in the time domain
and in the frequency domain respectively. Then the following condi-
tions apply:

(i) δ(t)←→ 1,

(ii) 1←→ 2πδ(ω),

(iii) δ(t− τ)←→ eiωτ ,

(iv) eiω0t ←→ 2πδ(ω − ω0),

(v) cos(ω0t)←→ π
{
δ(ω − ω0) + δ(ω − ω0)

}
,

(vi) sin(ω0t)←→ iπ
{
δ(ω − ω0)− δ(ω − ω0)

}
.

The last two of these results are nothing but alternative renditions of the Euler
equations, seen previously under (13.5).
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Impulse Trains

In describing the periodic sampling of a continuous-time signal, as we shall in
the next section, it is useful consider a train of impulses separated by a time period
of T . This is represented by the function

g(t) =
∞∑

j=−∞
δ(t− jT )(13.104)

which is both periodic and discrete. The periodic nature of this function indicates
that it can be expanded as a Fourier series

g(t) =
∞∑
j−∞

γje
iωjt.(13.105)

The coefficients of this expansion may be determined, according to the formula of
(13.14), by integrating over just one cycle. Thus

γj =
1
T

∫ T

0

δ(t)e−iω0jtdt =
1
T
,(13.106)

wherein ω0 = 2π/T represents the fundamental frequency. On setting γj = T−1

for all j in the Fourier-series expression for g(t) and invoking the result under
(13.103)(iv), it is found that the Fourier transform of the continuous-time impulse
train g(t) is the function

γ(ω) =
2π
T

∞∑
j=−∞

δ
(
ω − j 2π

T

)
=ω0

∞∑
j=−∞

δ
(
ω − jω0

)
.

(13.107)

Thus it transpires that a periodic impulse train g(t) in the time domain corresponds
to a periodic impulse train γ(ω) in the frequency domain. Notice that there is
an inverse relationship between the length T of the sampling interval in the time
domain and the length 2π/T of the corresponding interval between the frequency-
domain pulses.

Example 13.6. The impulse train in the time domain may be compared with the
discrete-time sequence {δt = 1; t = 0,±1,±2, . . .}. The latter may be regarded as
a limiting case, as M →∞, of the rectangular window sequence defined by

κt =

{
1, if |t| ≤M ;

0, if |t| > M ,
(13.108)
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Figure 13.5. The Dirichlet function with n = 11, plotted over five cycles.

which comprises n = 2M + 1 consecutive units centred on t = 0. The Fourier
transform of the window sequence is the Dirichlet kernel

κ(ω) =
M∑

t=−M
e−iωt = 1 + 2

M∑
t=1

cos(ωt).(13.109)

This can also be expressed, in the manner of (13.75), as a ratio of sine functions,
except in the case where ω = 2πj for any integer j. It can be observed that, by
sampling the Dirichlet function at the points ω = 2πj/n, one obtains a discrete
impulse train in the frequency domain which takes a value of n at every nth point
and which takes zero values on the other points. Thus

κ

(
2π
n
j

)
=
{
n, for j mod n = 0;

0, otherwise.
(13.110)

These features are readily discernible from Figure 13.5.
It is interesting to witness how the Dirichlet function approximates an impulse

train in the frequency domain with ever-increasing accuracy as the length n of the
window function increases. As n increases, the main lobe becomes more prominent,
whereas the side lobes are attenuated.

The Sampling Theorem

Under certain conditions, a continuous-time signal can be completely repre-
sented by a sequence of values which have been sampled at equally spaced intervals.
This fact, which is expressed in the so-called sampling theorem, is the basis of much
of the modern signal-processing technology. In many applications, an analogue sig-
nal is converted to a digital signal to enable it to be processed numerically. After
the processing, the signal is restored to analogue form. The sampling theorem
indicates that these steps may be carried out without the loss of information. A
familiar example of such processing is provided by the sound recordings which are
available on compact discs.
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The mathematical representation of the sampling process depends upon the
periodic impulse train or sampling function g(t) which is already defined under
(13.104). The period T is the sampling interval, whilst the fundamental frequency
of this function, which is ω0 = 2π/T , is the sampling frequency.

The activity of sampling may be depicted as a process of amplitude modulation
wherein the impulse train g(t) is the carrier signal and the sampled function x(t)
is the modulating signal. In the time domain, the modulated signal is described by
the following multiplication of g(t) and x(t):

xs(t) =x(t)g(t)

=
∞∑

j=−∞
x(jT )δ(t− jT ).

(13.111)

The Fourier transform ξs(ω) of xs(t) is the convolution of the transforms of x(t)
and g(t) which are denoted by ξ(ω) and γ(ω) respectively. Thus, from (13.83),

ξs(ω) =
∫ ∞
−∞

xs(t)e−iωtdt

=
1

2π

∫ ∞
−∞

γ(λ)ξ(ω − λ)dλ.
(13.112)

On substituting the expression for γ(λ) found under (13.107), we get

ξs(ω) =
ω0

2π

∫ ∞
−∞

ξ(ω − λ)
{ ∞∑
j=−∞

δ
(
λ− jω0

)}
dλ

=
1
T

∞∑
j=−∞

{∫ ∞
−∞

ξ(ω − λ)δ
(
λ− jω0

)
dλ

}
=

1
T

∞∑
j=−∞

ξ
(
ω − jω0

)
.

(13.113)

The final expression indicates that ξs(ω), which is the Fourier transform of the sam-
pled signal xs(t), is a periodic function consisting repeated copies of the transform
ξ(ω) of the original continuous-time signal x(t). Each copy is shifted by an integral
multiple of the sampling frequency before being superimposed.

Imagine that x(t) is a band-limited signal whose frequency components are
confined to the interval [0, ωc], which is to say that the function ξ(ω) is nonzero
only over the interval [−ωc, ωc]. If

2π
T

= ω0 > 2ωc,(13.114)

then the successive copies of ξ(ω) will not overlap; and therefore the properties of
ξ(ω), and hence those of x(t), can be deduced from those displayed by ξs(ω) over
the interval [0, ω0]. In principle, the original signal could be recovered by passing
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its sampled version through an ideal lowpass filter which transmits all components
of frequency less that ω0 and rejects all others.

If, on the contrary, the sampling frequency is such that ω0 < 2ωc, then the
resulting overlapping of the copies of ξ(ω) will imply that the spectrum of the
sampled signal is no longer simply related to that of the original; and no linear
filtering operation can be expected to recover the original signal from its sampled
version. The effect of the overlap is to confound the components of the original
process which have frequencies greater that π/T with those of frequencies lower
than π/T ; and this is described as the aliasing error.

The foregoing results are expressed in the famous sampling theorem which is
summarised as follows:

(13.115) Let x(t) be a continuous-time signal with a transform ξ(ω) which is
zero-valued for all ω > ωc. Then x(t) can be recovered from its samples
provided that the sampling rate ω0 = 2π/T exceeds 2ωc.

An alternative way of expressing this result is to declare that the rate of sam-
pling sets an upper limit to the frequencies which can be detected in an underlying
process. Thus, when the sampling provides one observation in T seconds, the
highest frequency which can be detected has a value of π/T radians per second.
This is the so-called Nyquist frequency.

The sampling theorem was known in various forms long before is application to
signal processing. The essence of the sampling theorem is contained, for example,
in Whittaker’s [516] tract on functional interpolation. The theorem has also been
attributed to Nyquist [368] and to Shannon [450].

The Frequency Response of a Continuous-Time System

The Fourier integral may be used in clarifying some concepts associated with
continuous-time systems which correspond closely to those which have been devel-
oped in a previous section in connection to discrete-time systems.

A linear system which transforms a continuous-time signal x(t) into an output
y(t) may be described by an equation in the form of

y(t) = ϕ(D)x(t),(13.116)

wherein ϕ(D) is a polynomial or a rational function in the operator D which finds
the derivative of a function of t. Equation (13.116) is the continuous-time analogue
of the discrete-time equation (13.62). It is assumed that the system is causal and
stable. The causal nature of the system implies that only positive powers of D
are present in the series expansion of the operator. The necessary and sufficient
condition for stability is that all of the poles of the function ϕ(z) must lie in the
left half of the complex plane.

If x(t), which is the system’s input, possesses a Fourier representation in the
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form of (13.78) then y(t), which is its output, will be given by

y(t) =ϕ(D)

{
1

2π

∫ ∞
−∞

ξ(ω)eiωtdω

}

=
1

2π

∫ ∞
−∞

ϕ(D)eiωtξ(ω)dω

=
1

2π

∫ ∞
−∞

ϕ(iω)ξ(ω)eiωtdω.

(13.117)

Here the final equality depends upon the result that ϕ(D)eiωt = ϕ(iω)eiωt which is
to be found under (5.69)(i). The Fourier representation of the output is therefore

y(t) =
1

2π

∫ ∞
−∞

υ(ω)eiωtdω =
1

2π

∫ ∞
−∞

φ(ω)ξ(ω)eiωtdω.(13.118)

Here φ(ω) = ϕ(iω) is the complex-valued frequency response function; and the only
purpose in changing the notation is to suppress the imaginary number i.

The continuous-time frequency-response function can be written in the same
manner the discrete-time result of (13.67):

φ(ω) = |φ(ω)|eiθ(ω).(13.119)

Here the RHS incorporates the gain |φ(ω)| of the filter ϕ(D) and its phase θ(ω).
Now consider the matter of the impulse response of the filter. This is

f(t) = ϕ(D)δ(t),(13.120)

where δ(t) is the impulse in the time domain which satisfies the conditions under
(13.93). These indicate that the Fourier transform of the impulse function x(t) =
δ(t) is just the constant function ξ(ω) = 1. On substituting the latter into equation
(13.118) and putting y(t) = f(t), we get

f(t) =
1

2π

∫ ∞
−∞

φ(ω)eiωtdω.(13.121)

This indicates that the impulse response function f(t) is the (inverse) Fourier trans-
form of the frequency response function φ(ω). Thus f(t) and φ(ω) are a Fourier
pair.

A further relationship is established when the function y(t) of (13.118) is ex-
pressed as a convolution of functions in the time domain. In the manner of equation
(13.82), we may write

f(t) ∗ x(t) =
∫
τ

f(τ)x(t− τ)dτ =
1

2π

∫
ω

φ(ω)ξ(ω)eiωtdω.(13.122)
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Therefore

y(t) =
∫ ∞
−∞

f(τ)x(t− τ)dτ.(13.123)

Some additional terminology is also used in describing the attributes of a linear
system. Thus, the operator ϕ(D) is often described as the system function. Also,
the Laplace transform of the impulse-response function, which is given by

ϕ(s) =
∫ ∞

0

e−stf(t)dt,(13.124)

where s = α + iω with α > 0, is usually described as the transfer function. The
advantage of using the Laplace transform in place of the Fourier transform is that
it enables the foregoing analysis to be applied to cases where the input signal x(t)
does not fulfil the finite-energy condition of (13.80).

Appendix of Trigonometry

The addition theorems or compound-angle theorems are familiar from elemen-
tary trigonometry where they are proved by geometric means. See, for example,
Abbot [1]. The theorems are as follows:

(a) cos(A+B) = cosA cosB − sinA sinB,
(b) cos(A−B) = cosA cosB + sinA sinB,
(c) sin(A+B) = sinA cosB + cosA sinB,
(d) sin(A−B) = sinA cosB − cosA sinB.

(13.125)

We can also prove these using Euler’s equations from (13.5). Consider, for example,
the first equation (a). We have

cos(A+B) =
1
2
{

exp
(
i[A+B]

)
+ exp

(
− i[A+B]

)}
=

1
2
{

exp(iA) exp(iB) + exp(−iA) exp(−iB)
}

=
1
2
{

(cosA+ i sinA)(cosB + i sinB)

+ (cosA− i sinA)(cosB − i sinB)
}

= cosA cosB − sinA sinB.

The other relationships are established likewise.
From the addition theorems, we can directly establish the following sum–

product transformations:

(a) sinA cosB =
1
2
{

sin(A+B) + sin(A−B)
}
,

(b) cosA sinB=
1
2
{

sin(A+B)− sin(A−B)
}
,

(c) cosA cosB=
1
2
{

cos(A+B) + cos(A−B)
}
,

(d) sinA sinB =
1
2
{

cos(A−B)− cos(A+B)
}
.

(13.126)
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Orthogonality Conditions

In Fourier analysis, we make use of certain fundamental orthogonality condi-
tions which prevail amongst harmonically related trigonometrical functions. They
are as follows:

(a)
∫ 2π

0

cos(jx) cos(kx)dx =


0, if j 6= k;

π, if j = k > 0;

2π, if j = k = 0;

(b)
∫ 2π

0

sin(jx) sin(kx)dx =
{

0, if j 6= k;

π, if j = k > 0;

(c)
∫ 2π

0

cos(jx) sin(kx)dx = 0, for all j, k.

(13.127)

To prove the results in (13.127)(a), we may use (13.126)(c) to rewrite the integral
as ∫ 2π

0

cos(jx) cos(kx)dx =
1
2

∫ 2π

0

{
cos([j + k]x) + cos([j − k]x)

}
dx.

If j 6= k, then both the cosine terms complete an integral number of cycles over the
range [0, 2π]; and therefore they integrate to zero. If j = k > 0, then the second
cosine becomes unity, and therefore it integrates to 2π over the range [0, 2π], whilst
the first cosine term integrates to zero. If j = k = 0, then both cosine terms become
unity and both have integrals of 2π.

The results under (13.127)(b) and (13.127)(c) are also established easily using
the relevant results from (13.126).

Bibliography

[1] Abbott, P., (1940), Teach Yourself Trigonometry , Teach Yourself Books, En-
glish Universities Press, London.

[72] Bracewell, R.N., (1986), The Fourier Transform and its Applications, Second
Edition, MGraw-Hill, New York.

[98] Carslaw, H.S., (1925), A Historical Note on Gibb’s Phenomenon in Fourier
Series and Integrals, Bulletin of the American Mathematical Society , 31, 420–
424.

[100] Champeney, D.C., (1973), Fourier Transforms and their Physical Applica-
tions, Academic Press, New York.

[140] De Broglie, L., (1953), The Revolution in Physics, (translated by R.W.
Niemeyer), Noonday Press, New York.

[141] De Broglie, L., (1955), Physics and Microphysics, (translated by M. David-
son), Hutchinson.

[160] Dirac, P.A.M., (1958), The Principles of Quantum Mechanics, Fourth Edi-
tion, Oxford University Press, Oxford.

397



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

[170] Dym, H., and H.P. McKean, (1972), Fourier Series and Integrals, Academic
Press, New York.

[195] French, A.P., and E.F. Taylor, (1978), An Introduction to Quantum Physics,
Van Nostrand Reinhold, Wokingham.

[208] Gibbs, J.W., (1898), Fourier’s Series: A Letter to the Editor, Nature, Decem-
ber 29 1898, 59, 200.

[209] Gibbs, J.W., (1899), Fourier’s Series: A Letter to the Editor, Nature, April
27 1899, 58, 606.

[308] Lanczos, C., (1961), Linear Differential Operators, Van Nostrand Co., Lon-
don.

[309] Lanczos, C., (1966), Discourse on Fourier Series, Oliver and Boyd, Edinburgh
and London.

[317] Lighthill, M.J., (1958), Introduction to Fourier Analysis and Generalised
Functions, Cambridge University Press, Cambridge..

[334] Marshall, A.G., and F.R. Verdun, (1990), Fourier Transforms in NMR, Op-
tical and Mass Spectrometry , Elsevier Science Publishers, Amsterdam.

[346] Michelson, A.A., (1898), Fourier’s Series: A Letter to the Editor, Nature,
October 6 1898, 58, 544–545.

[368] Nyquist, H., (1928), Certain Topics in Telegraph Transmission Theory, AIEE
Journal , 47, 214–216.

[377] Papoulis, A., (1962), The Fourier Integral and its Applications, McGraw-Hill,
New York.

[428] Robinson, P.D., (1968), Fourier and Laplace Transforms, Routledge Kegan
and Paul, London.

[450] Shannon, C.E., (1949), Communication in the Presence of Noise, Proceedings
of the IRE , 37, 10–21.

[471] Sneddon, I.N., (1961), Fourier Series, Routledge Kegan and Paul, London.

[483] Titchmarsh, E.C., (1939), Theory of Functions, Second Edition, Oxford Uni-
versity Press, London.

[484] Titchmarsh, E.C., (1948), Introduction to the Theory of Fourier Integrals,
Second Edition, Oxford, Clarendon Press.
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CHAPTER 14

The Discrete
Fourier Transform

In the previous chapter, a classification was established for the Fourier represen-
tations of four classes of time-domain functions which depends upon whether the
functions are discrete or continuous and on whether they are periodic or aperiodic.
The functions which are both discrete and periodic were set aside for a separate
and extended treatment which is provided by the present chapter.

A discrete periodic function may be represented completely by a finite sequence
which contains one or more complete cycles of the function; and it makes sense to
concentrate one’s attention upon a single cycle. Equally, any finite sequence may
be treated as if it were a single cycle of a periodic sequence. Therefore, in general,
periodic sequences and finite sequences are to be regarded as synonymous for the
purposes of Fourier analysis; and their Fourier representation entails the so-called
discrete Fourier transform (DFT).

The fact that the data for time-series analysis is in the form of finite sequences
implies that the DFT is of prime importance. However, finite sequences are also
used to approximate other classes of functions in order to make them amenable to
digital computation; and this enhances its importance. The efficient algorithm for
computing the DFT is called the fast Fourier transform (FFT). This is treated at
length in the next chapter

We shall maintain two ways of looking at the DFT. The first is as a device
for uncovering hidden periodicities in real-valued data sequences. The business
of finding the coefficients of the Fourier representation of a finite sequence can be
interpreted as a regression analysis wherein the explanatory variables are the values
taken by a variety of sine and cosine functions throughout the sample period. The
advantage of this viewpoint is that it provides a context within which to develop an
understanding of the DFT which also encompasses the periodogram and the power
spectrum.

The second way in which we shall look at the DFT is as a computational
realisation of the other kinds of Fourier transform. From this point of view,
it is more appropriate to work with the complex-exponential representation of
the trigonometrical functions and, ultimately, to replace the real-valued data se-
quence, which is the subject of the analysis in the first instance, by a complex-
valued sequence. One of our concerns is to assess the accuracy of the approxi-
mations which are entailed in using the DFT. The accuracy may be affected by
the problems of aliasing and leakage which will be discussed at length in the
sequel.
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Trigonometrical Representation of the DFT

Imagine a sequence yt; t = 0, 1, . . . , T −1 which comprises T consecutive values
of a time series sampled at equal intervals from a continuous process. The object
is to uncover any underlying periodic motions which might be present in the time
series.

There are two approaches which might be followed. The first of these is to
perform a regression analysis in which the explanatory variables are the ordinates
of a limited number of sine and cosine functions with carefully chosen frequencies
aimed at approximating the frequencies of the underlying motions. The chosen
frequencies might be adjusted in a systematic manner until the most appropriate
values have been found. A thorough account of the relevant procedure, described
as trigonometrical regression, has been provided by Bloomfield [67].

A second approach to uncovering the hidden motions is to employ a maxi-
mal set of linearly independent trigonometric functions, with frequencies which are
equally spaced throughout the feasible range, with the aim of constructing a net
which is sufficiently fine to capture the hidden motions. This approach leads to the
Fourier decomposition of the sequence.

In the Fourier decomposition of the sequence yt; t = 0, 1, . . . , T − 1, the values
are expressed as

yt =
n∑
j=0

(
αj cosωjt+ βj sinωjt

)
=

n∑
j=0

(
αjcjt + βjsjt

)
,

(14.1)

where ωj = 2πj/T is a so-called Fourier frequency. The set of scalars αj , βj ;
j = 0, 1, . . . , n are called the Fourier coefficients. The value of n, which is the limit
of the summation, is given by

n =

{
1
2T, if T is even;
1
2 (T − 1), if T is odd.

(14.2)

We shall consider the two cases in succession.
If T is even, then ωj = 0, 2π/T, . . . , π as j = 0, 1, . . . , T/2. Thus the expression

in (14.1) seems to entail T + 2 functions. However, for integral values of t, it
transpires that

c0(t) = cos 0 = 1,

s0(t) = sin 0 = 0,

cn(t) = cos(πt) = (−1)t,

sn(t) = sin(πt) = 0;

(14.3)

so, in fact, there are only T nonzero functions; and the expression can be written
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as

yt = α0 +
n−1∑
j=1

(αj cosωjt+ βj sinωjt) + αn(−1)t.(14.4)

If T is odd, then ωj = 0, 2π/T , . . . , π(T − 1)/T , and the expression becomes

yt = α0 +
n∑
j=1

(αj cosωjt+ βj sinωjt);(14.5)

so, if the constant function is counted, then, again, T functions are entailed.
The angular velocity ωj = 2πj/T relates to a pair of trigonometrical functions,

sin(ωjt) and cos(ωjt), which accomplish j cycles in the T periods which are spanned
by the data. The lowest of the angular velocities is ω1 = 2π/T , which relates to
a cosine function which takes T periods to complete one cycle. The highest of the
velocities is ωn = π which relates to a function which takes two periods to complete
a cycle. The function cn(t) = cos(πt) = (−1)t is present in equation (14.1) only if
T is even.

The velocity π corresponds to the so-called Nyquist frequency fn = 1/2. To
detect, within the process which has generated the data, any component whose
frequency exceeds this value would require a greater acuity of observation than is
afforded by the sampling interval. It follows that the effects within the process of
the components whose frequencies are greater than the Nyquist value are liable to
be confounded with the effects of those whose frequencies fall below it.

Imagine, for example, that the process contains a component which is a pure
cosine wave of unit amplitude and zero phase for which the angular frequency ω is
in excess of the Nyquist value. Suppose that ω obeys the condition π < ω < 2π,
and define ω∗ = 2π − ω. The frequency ω∗ < π is below the Nyquist value. For all
values of t = 0, . . . , T − 1, the following identity holds:

cos(ωt) = cos(2πt− ω∗t)
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)

= cos(ω∗t).

(14.6)

Therefore the components at the frequencies ω and ω∗ are observationally indistin-
guishable. The pseudo-frequency ω∗ < π is described as the alias of ω > π. Figure
14.1 provides a graphical illustration of the phenomenon of aliasing.

This result is nothing more than a restatement of the sampling theorem which
is to be found under (13.115). In that context, the concern was to determine a
rate of sampling sufficient to detect the highest frequency which is present in a
continuous-time process. In the present context, the rate of sampling is assumed
to be fixed and the concern is to specify the highest detectable frequency—which
is the Nyquist frequency.

Example 14.1. For an illustration of the problem of aliasing, let us imagine that
a person observes the sea level at 6 a.m. and 6 p.m. each day. He should notice

401



D.S.G. POLLOCK: TIME-SERIES ANALYSIS
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Figure 14.1. The values of the function cos{(11/8)πt} coincide with those
of its alias cos{(5/8)πt} at the integer points {t = 0,±1,±2, . . .}.

a very gradual recession and advance of the water level, the frequency of the cycle
being f = 1/28, which amounts to one tide in 14 days. In fact, the true frequency
is f = 1− 1/28, which gives 27 tides in 14 days. Observing the sea level every six
hours should enable him to infer the correct frequency.

The nature of the relationship between the sequence of observations and the
sequence of Fourier coefficients is clarified by writing the T instances of equation
(14.1) in a matrix format. In the case where T is even, these become

y0

y1

y2

...
yT−2

yT−1


=



1 1 0 . . . 1
1 c11 s11 . . . cn1

1 c12 s12 . . . cn2

...
...

...
...

1 c1,T−2 s1,T−2 . . . cn,T−2

1 c1,T−1 s1,T−1 . . . cn,T−1





α0

α1

β1

...
βn−1

αn


.(14.7)

The equations can be written more easily in a summary notation by separating
the sine functions from the cosine functions. Define

nc =

{
1
2T, if T is even,
1
2 (T − 1), if T is odd,

ns =

{
1
2T − 1, if T is even,
1
2 (T − 1), if T is odd.

(14.8)

Then equation (14.1) can be written as

yt =
nc∑
j=0

αj cosωjt+
ns∑
j=1

βj sinωjt

=
nc∑
j=0

αjcjt +
ns∑
j=1

βjsjt.

(14.9)

In matrix notation, the set of equations for t = 0, 1, . . . , T − 1 can be rendered as

y =
[
C S

] [ α
β

]
,(14.10)
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where y is the vector on the LHS of (14.7), where

C = [cjt]; j = 0, 1, . . . , nc,

S= [sjt]; j = 1, 2, . . . , ns,
(14.11)

and where α = [α0, . . . , αnc ]
′ and β = [β1, . . . , βns ]

′ are the Fourier coefficients.
The matrix [C,S] of the mapping from the Fourier coefficients to the data

values is square and nonsingular; and, in the light of this fact, the mere existence
of the Fourier representation under (14.1) seems unremarkable. The Fourier coeffi-
cients are recoverable from the data values by solving the equations. This may be
done easily in a way which does not require a matrix inversion; and, in fact, the
coefficients may be found one at a time.

Determination of the Fourier Coefficients

For heuristic purposes, one can imagine calculating the Fourier coefficients
using an ordinary regression procedure to fit equation (14.1) to the data. In this
case, there are no regression residuals, for the reason that we are “estimating” a
total of T coefficients from T data points; and this is a matter of solving a set of T
linear equations in T unknowns.

A reason for not using a multiple regression procedure is that, in this case, the
vectors of “explanatory” variables are mutually orthogonal. Therefore T applica-
tions of a univariate regression procedure would be sufficient for the purpose.

Let cj = [c0j , . . . , cT−1,j ]′ and sj = [s0j , . . . , sT−1,j ]′ represent vectors of T
values of the generic functions cos(ωjt) and sin(ωjt) respectively. Also observe
that s0 = [0, 0, . . . , 0]′, that c0 = [1, 1, . . . , 1]′ is the summation vector and that
the vector associated with the Nyquist frequency, in the case where T = 2n is
even, is cn = [1,−1, . . . , 1,−1]′. Amongst these vectors the following orthogonality
conditions hold:

c′icj = 0 if i 6= j,

s′isj = 0 if i 6= j,

c′isj = 0 for all i, j.

(14.12)

In addition, there are some sums of squares which can be taken into account in
computing the coefficients of the Fourier decomposition:

c′0c0 = T,

s′0s0 = 0,

c′jcj = 1
2T,

s′jsj = 1
2T.

}
for j = 1, . . . , n− 1.

(14.13)

For j = n, there are

s′nsn = 1
2T,

c′ncn = 1
2T,

}
if 2n = T − 1,

s′nsn = 0,

c′ncn = T,

}
if 2n = T ;

(14.14)
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which correspond, respectively, to the cases where T is odd and T is even. These
various results are established in an appendix to the chapter.

The “regression” formulae for the Fourier coefficients can now be given. First
there is

α0 = (i′i)−1i′y =
1
T

∑
t

yt = ȳ.(14.15)

Then, for j = 1, . . . , n− 1, there are

αj = (c′jcj)
−1c′jy =

2
T

∑
t

yt cosωjt,(14.16)

and

βj = (s′jsj)
−1s′jy =

2
T

∑
t

yt sinωjt.(14.17)

Finally, if T = 2n − 1 is odd, then the formulae above serve for the case where
j = n. If T = 2n is even, then there is no coefficient βn and there is

αn = (c′ncn)−1c′ny =
1
T

∑
t

(−1)tyt.(14.18)

By pursuing the analogy of multiple regression, it can be seen, in view of the
orthogonality relationships, that there is a complete decomposition of the sum of
squares of the elements of the vector y which is given by

y′y = α2
0i
′i+

nc∑
j=1

α2
jc
′
jcj +

ns∑
j=1

β2
j s
′
jsj .(14.19)

The formulae of this section can be rendered compactly in a matrix nota-
tion. Consider the matrix [C, S] of equation (14.10). The conditions under (14.12),
(14.13) and (14.14) indicate that this consists of a set of orthogonal vectors. Hence[

C ′C C ′S
S′C S′S

]
=
[

Λc 0
0 Λs

]
,(14.20)

where Λc and Λs are diagonal matrices. Also

I =C(C ′C)−1C ′ + S(S′S)−1S′

=CΛ−1
c C ′ + SΛ−1

s S′.
(14.21)

The vectors of Fourier coefficients can be rendered as

α= (C ′C)−1C ′y = Λ−1
c C ′y and

β= (S′S)−1S′y = Λ−1
s S′y.

(14.22)

The decomposition of (14.19) is then

y′y= y′C(C ′C)−1C ′y + y′S(S′S)−1S′y

=α′Λcα+ β′Λsβ.
(14.23)
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The Periodogram and Hidden Periodicities

The variance of the sample y0, y1, . . . , yT−1 is given by

1
T

(y′y − i′iα2
0) =

1
T

T∑
t=0

y2
t − ȳ2

=
1
T

T∑
t=0

(yt − ȳ)2.

(14.24)

This can be used in rearranging equation (14.19). Also, the inner products c′jcj
and s′jsj within equation (14.19) can be replaced using the results under (14.13)
and (14.14). If T is even, then it will be found that

1
T

T∑
t=0

(yt − ȳ)2 =
1
2

n−1∑
j=1

(α2
j + β2

j ) + α2
n

=
1
2

n−1∑
j=1

ρ2
j + α2

n,

(14.25)

whereas, if T is odd, the result will be

1
T

T∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j )

=
1
2

n∑
j=1

ρ2
j .

(14.26)

Here ρj =
√

(α2
j + β2

j ) is the amplitude of the jth harmonic component

ρj cos(ωjt− θj) = ρj cos θj cos(ωjt) + ρj sin θj sin(ωjt)

=αj cos(ωjt) + βj sin(ωjt).
(14.27)

The RHS of the equations (14.25) and (14.26) stands for the variance of the sample
y0, . . . , yT−1. Thus ρ2

j/2 is the contribution of the jth harmonic to the sample
variance; and, indeed, the two equations are tantamount to a classical statistical
analysis of variance.

For a further interpretation of equation (14.27), one can imagine that the mean-
adjusted data points yt − ȳ; t = 0, 1, . . . , T − 1 represent a set of observations on a
continuous periodic process of period T . As is established in the Example 13.2, the
power which is attributable to the jth harmonic component of the process is

1
T

∫ T

0

{
ρj cos(ωjt− θj)

}2
dt =

1
2
ρ2
j .(14.28)
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Figure 14.2. The power spectrum of the vibrations transduced from the
casing of an electric motor in the process of a routine maintenance inspection.
The units of the horizontal axis are hertz. The first peak at 16.6 hertz corre-
sponds to a shaft rotation speed of 1000 rpm. The prominence of its successive
harmonics corresponds to the rattling of a loose shaft. (By courtesy of Chris
Ward, VISTECH Ltd.)
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Figure 14.3. A velocity spectrum transduced from a fan installation. The
units of the horizontal axis are hertz and the units on the vertical axis are
mm/sec. The prominence of the highest peak at the RMS level of 8.3mm/sec
indicates that the installation is in an unstable condition. Further measure-
ments indicated a serious problem with the flexibility of the mounting frame.
(By courtesy of Chris Ward, VISTECH Ltd.)
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Under this construction, the sample variance stands for the power of the periodic
process and the assemblage of values ρ2

1, . . . , ρ
2
n (with ρ2

n = 2α2
n in the case that T

is even) represents its power spectrum.
The process in question may be thought of as a fluctuating voltage signal

associated with an electric current. In that case, the mean adjustment represents
the removal of a D.C. component. If the current were taken from the mains supply,
then, of course, there would be a dominant periodic component at 50 Hz (as in
Europe) or at 60 Hz (as in the United States) or thereabouts. In the idealised
representation of the mains current, no other components are present; and the
mains frequency is apt to be described as the fundamental frequency. If the time
span T of the sample were an integral multiple of the period of the mains frequency,
then the sample would consist of a number of exact repetitions of a unique cycle.

In a set of empirical observations, one might expect to detect other frequency
components in addition to the mains component; and the measured cycles would
not be identical. In performing a Fourier analysis of such a record, one proceeds as
if the entire record of T observations represents just one cycle of a periodic process;
and then it is the frequency of this notional process which is liable to be described
as the fundamental frequency.

The case must also be considered where the sample span of T periods does
not coincide with with an integral multiple of the period of the mains frequency.
Then none of the harmonic Fourier frequencies ωj = 2πj/T will coincide with
the nonharmonic mains frequency; and the power of the mains frequency will be
attributed, in various measures, to all of the Fourier frequencies. The nearest of
the Fourier frequencies will acquire the largest portion of the power; but, if none of
them is close, then an undesirable phenomenon of leakage will occur whereby the
power is widely dispersed. This phenomenon will be analysed in a later section.

In a statistical Fourier analysis, the number of the Fourier frequencies increases
at the same rate as the sample size T . Therefore, if the variance of the sample
remains finite, and if there are no regular harmonic components in the process
generating the data, then we can expect the proportion of the variance attributed
to the individual frequencies to decline as the sample size increases. If there is such
a regular component within the process, then we can expect the proportion of the
variance attributable to it to converge to a finite value as the sample size increases.

In order provide a graphical representation of the decomposition of the sam-
ple variance, the squared amplitudes of the harmonic components are scaled by a
factor of T . The graph of the function I(ωj) = (T/2)(α2

j + β2
j ) is known as the

periodogram. We should note that authors differ widely in their choice of a scalar
factor to apply to α2

j + β2
j in defining the periodogram, albeit that the factor is

usually proportional to T .
There are many impressive examples where the estimation of the periodogram

has revealed the presence of regular harmonic components in a data series which
might otherwise have passed undetected. One of the best-known examples concerns
the analysis of the brightness or magnitude of the star T. Ursa Major. It was shown
by Whittaker and Robinson [515] in 1924 that this series could be described almost
completely in terms of two trigonometrical functions with periods of 24 and 29 days.
Figures 14.2 and 14.3 illustrate a common industrial application of periodogram
analysis.
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Figure 14.4. The periodogram of the Beveridge’s
trend-free wheat price index 1500–1869.

The attempts to discover underlying components in economic time-series have
been less successful. One application of periodogram analysis which was a notorious
failure was its use by William Beveridge [51], [52] in 1921 and 1922 to analyse a
long series of European wheat prices. The periodogram had so many peaks that
at least twenty possible hidden periodicities could be picked out, and this seemed
to be many more than could be accounted for by plausible explanations within the
realms of economic history (see Figure 14.4).

Such findings seem to diminish the importance of periodogram analysis in
econometrics. However, the fundamental importance of the periodogram is estab-
lished once it is recognised that it represents nothing less than the Fourier transform
of the sequence of empirical autocovariances.

The Periodogram and the Empirical Autocovariances

The periodogram of the sample y0, . . . , yT−1 is the function

I(ωj) =
2
T

{[∑
t

yt cos(ωjt)
]2

+
[∑

t

yt sin(ωjt)
]2
}

=
T

2
{
α2(ωj) + β2(ωj)

}
.

(14.29)

The ordinates of the periodogram are just the values ρ2
j/2 scaled by a factor of T .

This scaling ensures that the magnitude of the ordinates will not diminish as T
increases.
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The estimate of the autocovariance at lag τ is

cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).(14.30)

There is a fundamental theorem which relates the periodogram to the estimated
autocovariance function:

(14.31) The Wiener–Khintchine Theorem states that

I(ωj) = 2
{
c0 + 2

T−1∑
τ=1

cτ cos(ωjτ)
}

= 2
{
c0 +

T−1∑
τ=1

(
cτ + cT−τ

)
cos(ωjτ)

}
.

Proof. First consider

I(ωj) =
T

2
{
α2(ωj) + β2(ωj)

}
=
T

2
{
α(ωj)− iβ(ωj)

}{
α(ωj) + iβ(ωj)

}
.

(14.32)

Now

α(ωj)− iβ(ωj) =
2
T

∑
t

yt
{

cos(ωjt)− i sin(ωjt)
}

=
2
T

∑
t

(yt − ȳ)
{

cos(ωjt)− i sin(ωjt)
}

=
2
T

∑
t

(yt − ȳ)e−iωjt,

(14.33)

where the second equality follows from the identity
∑
t cos(ωjt) =

∑
t sin(ωjt) = 0,

which is given in the appendix under (14.78). Likewise, it can be shown that

α(ωj) + iβ(ωj) =
2
T

∑
s

(ys − ȳ)eiωjs,(14.34)

On recombining the conjugate complex numbers and setting t− s = τ , we get

I(ωj) =
2
T

T−1∑
t=0

T−1∑
s=0

(yt − ȳ)(ys − ȳ)e−iωj(t−s)

= 2
T−1∑

τ=1−T
cτe
−iωjτ

= 2
{
c0 + 2

T−1∑
τ=1

cτ cos(ωjτ)
}
,

(14.35)
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which gives the first expression on the RHS of (14.31). Now consider the identity

cos(ωjτ) = cos(2πjτ/T )

= cos(2πj[T − τ ]/T )

= cos(ωj [T − τ ]).

(14.36)

By using this in the final expression of (14.35), the second expression on the RHS
of (14.31) can be derived.

The Exponential Form of the Fourier Transform

A concise and elegant formulation of the Fourier representation of a finite
sequence is achieved by expressing the trigonometrical functions in terms of complex
exponential functions.

Consider again the equation which expresses the value of yt as a Fourier sum
of sines and cosines. If T is even, then n = T/2; and the equation takes the form of

yt = α0 +
n−1∑
j=1

(αj cosωjt+ βj sinωjt) + αn(−1)t,(14.37)

which was given previously under (14.4). According to Euler’s equations,

cosωjt =
1
2
(
eiωjt + e−iωjt

)
and sinωjt =

−i
2
(
eiωjt − e−iωjt

)
.(14.38)

It follows that

yt =α0 +
n−1∑
j=1

{
αj + iβj

2
e−iωjt +

αj − iβj
2

eiωjt
}

+ αn(−1)t

=
n−1∑
j=1

ζ∗j e
−iωjt + ζ0 +

n−1∑
j=1

ζje
iωjt + ζn(−1)t,

(14.39)

where we have defined

ζj =
αj − iβj

2
,

ζ0 = α0

ζ∗j =
αj + iβj

2
,

and ζn = αn.

(14.40)

Equation (14.39) can be written more compactly by gathering its terms under
a single summation sign. For this purpose, a set of negative frequencies ω−j = −ωj
are defined for j = 1, . . . , n. Then, setting ζ−j = ζ∗j for j = 1, . . . , n gives

yt =
n∑

j=1−n
ζje

iωjt, where n =
T

2
and T is even.(14.41)
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In comparing this expression with the equation (14.39), it should be recognised that
the terms associated with ζ0 and ζn are exp{iω0t} = 1 and exp{iωnt} = exp{iπt} =
(−1)t respectively.

When T is odd, there is n = (T − 1)/2; and equation (14.37) is replaced by

yt = α0 +
n∑
j=1

(αj cosωjt+ βj sinωjt),(14.42)

which has been given previously under (14.5). On substituting into this the expres-
sions for cosωjt and sinωjt from (14.38), and by using the definitions

ζn =
αn − iβn

2
, ζ−n =

αn + iβn
2

,(14.43)

we find that we can write

yt =
n∑

j=−n
ζje

iωjt, where n =
T − 1

2
and T is odd.(14.44)

If defining negative frequencies seems to conflict with intuition, then an al-
ternative way of compacting the expressions is available which extends the range
of the positive frequencies. Consider the fact that the exponential function
exp(−iωj) = exp(−i2πj/T ) is T -periodic in the index j. This implies that

exp(iω−j) = exp(iωT−j).(14.45)

By using this identity and by taking ζT−j = ζ−j = ζ∗j , we can rewrite both equation
(14.41) and equation (14.44) as

yt =
T−1∑
j=0

ζje
iωjt.(14.46)

In this sum, there are frequencies which exceed the Nyquist value; and this
might also conflict with intuition. However, such problems with intuition arise only
if we expect the complex exponential functions to behave in the same way as the
real trigonometrical functions which are their parents.

The equations of (14.46) may be written in a matrix format similar to that
of equation (14.7) which represents the Fourier transform in terms of trigonomet-
rical functions rather than complex exponentials. For this purpose, we adopt the
traditional notation WT = exp(−2π/T ) so that the exponential expression within
equation (14.46) becomes

exp(iωjt) = exp(2πjt/T )

=
(
W−jT

)t
.

(14.47)
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Then, if the subscript T in WT is suppressed, the T instances of equation (14.46)
with t = 0, . . . , T − 1 can be written as

y0

y1

y2

...
yT−1

 =


1 1 1 . . . 1
1 W−1 W−2 . . . W 1−T

1 W−2 W−4 . . . W 2(1−T )

...
...

...
...

1 W 1−T W 2(1−T ) . . . W−(T−1)2




ζ0
ζ1
ζ2
...

ζT−1

 .(14.48)

A way can also be found of representing the value of ζj in terms of the val-
ues yt; t = 0, . . . , T − 1 which is as parsimonious as the expression under (14.46).
Consider

ζj =
1
T

{∑
t

yt cosωjt− i
∑
t

yt sinωjt
}

(14.49)

which comes from substituting the expressions

αj =
2
T

∑
t

yt cosωjt and βj =
2
T

∑
t

yt sinωjt,(14.50)

given previously under (14.16) and (14.17), into the expression for ζj given under
(14.40). By using Euler’s equations, this can be rewritten as

ζj =
1
T

T−1∑
t=0

yte
−iωjt.(14.51)

The latter represents the inverse of the transformation in (14.46). The rela-
tionship is confirmed by writing

ζj =
1
T

T−1∑
t=0

{
T−1∑
k=0

ζke
iωkt

}
e−iωjt

=
1
T

T−1∑
k=0

ζk

{
T−1∑
t=0

ei(ωk−ωj)t

}(14.52)

and by recognising that

T−1∑
t=0

ei(ωk−ωj)t = Tδkj

takes the value of T if k = j and the value of zero otherwise.
In terms of the notation under (14.47), the equation of (14.51) for t = 0, . . . ,

T − 1 can be written as
ζ0
ζ1
ζ2
...

ζT−1

 =
1
T


1 1 1 . . . 1
1 W 1 W 2 . . . WT−1

1 W 2 W 4 . . . W 2(T−1)

...
...

...
...

1 WT−1 W 2(T−1) . . . W (T−1)2




y0

y1

y2

...
yT−1

 .(14.53)
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Figure 14.5. The function sin(Tλ/2)/{T sin(λ/2)} has zeros
at the values λ = 2πj/T where j/T are fractional values.

Leakage from Nonharmonic Frequencies

The complex exponential representation of the Fourier transform facilitates
an understanding of the phenomenon of leakage. This occurs whenever the signal
which is to be analysed contains a nonharmonic component which does not complete
an integral number of cycles in the time spanned by the data. Imagine that the
component in question is a simple cosine function

cos(ω̄t− θ) =
1
2
[
exp

{
i(ω̄t− θ)

}
+ exp

{
− i(ω̄t− θ)

}]
.(14.54)

In that case, it is sufficient to consider the Fourier transform of exp(iω̄t) alone,
since that of exp(iθ) represents only a scale factor. The transform of the sequence
{yt = exp(iω̄t); t = 0, . . . , T − 1} is a sequence whose jth coefficient is given by
equation (14.51). By means of the manipulations which have given rise to equation
(13.73), an expression for the coefficient is found in the form of

ζj =
1
T

T−1∑
t=0

exp
{
i(ω̄ − ωj)t

}
=

sin{T (ω̄ − ωj)/2}
T sin{(ω̄ − ωj)/2}

exp
{
i(T − 1)(ω̄ − ωj)

2

}
.

(14.55)

Here the first equality delivers a value of unity if ω̄ = ωj , whilst the second equality
presupposes that ω̄ 6= ωj .

Imagine that ω̄ = ωk = 2πk/T , which is to say that the frequency of the
component coincides with a Fourier frequency. Then, if j = k, the transform takes
the value of unity, whereas, if j 6= k, it takes the value of zero. Therefore the power
of the component is attributed entirely to the appropriate Fourier frequency.

If ω̄ is not a Fourier frequency, then the transform will assume nonzero values
at other Fourier frequencies in addition to the Fourier frequency which is closest
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to ω̄. The appearance of nonzero terms in the transform over the entire range of
Fourier frequencies is described as the phenomenon of leakage; and its effect is to
give a misleading impression of the dispersion of the power of a signal which may, in
truth, be concentrated on a single frequency or on a limited number of frequencies.

The function δ(λ) = sin(Tλ/2)/{T sin(λ/2)}, which is entailed in equation
(14.55), is an instance of the Dirichlet kernel. (Its graph is plotted in Figure 14.5.)
Its argument is λ = ω − ωj ; and its zeros are the nonzero values λj = 2πj/T ,
other than integer multiples of 2π, which are separated by the distance between
adjacent Fourier frequencies. The ordinates of the function at the points λ = ω̄−ωj
give the amplitudes of the components entailed in the Fourier decomposition of the
sequence exp(iω̄t); and, as the value of |ω̄−ωj | increases towards π, these amplitudes
decline. The amplitudes of all but the leading components are smaller the closer ω̄
is to a Fourier frequency and the larger is the value of T . Also, as T increases, the
bandwidth spanned by adjacent Fourier frequencies diminishes, which means that
the phenomenon of leakage becomes more localised.

The Fourier Transform and the z-Transform

It may be helpful to present some of the foregoing results in the notation of the
z-transform. Consider the z-transforms of the data sequence yt; t = 0, 1, . . . , T − 1
and of the sequence of the corresponding Fourier coefficients ζj ; t = 0, 1, . . . , T − 1.
Recall that the Fourier transform of a real sequence is a complex sequence in which
the real part is even and the imaginary part is odd. This implies that ζT−j = ζ∗j .
The two z-transforms are

ζ(z) =
T−1∑
j=0

ζjz
j ,(14.56)

y(z) =
T−1∑
t=0

ytz
t.(14.57)

Now set z = W−t in (14.56), and set z = W j in (14.57) and divide the latter by T .
The results are

yt = ζ
(
W−t

)
=
T−1∑
j=0

ζj
(
W−t

)j
,(14.58)

ζj =
1
T
y
(
W j
)

=
1
T

T−1∑
t=0

yt
(
W j
)t
.(14.59)

These are just the generic expressions for the equations comprised by the matrix
systems of (14.48) and (14.53), respectively, which stand for the discrete Fourier
transform and its inverse.

Now consider the two autocovariance generating functions defined by

c(z) =
T−1∑

τ=1−T
cτz

τ = c0 +
T−1∑
τ=1

(
cτz

τ + cT−τz
τ−T ),(14.60)
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c◦(z) =
T−1∑
τ=0

c◦τz
τ = c0 +

T−1∑
τ=1

(
cτ + cT−τ

)
zτ .(14.61)

The first of these is the generating function for the ordinary autocovariances {cτ ; τ =
0,±1, . . . ,±T − 1}, whereas the second is the generating function for the circular
autocovariances {c◦τ ; τ = 0, 1, . . . , T − 1} which are defined by c◦0 = c0 and c◦τ =
cτ +cT−τ ; τ = 1, . . . , T −1. The ordinary autocovariances satisfy the condition that
cτ = c−τ , whereas the circular autocovariances, which are elements of a periodic
sequence of period T , satisfy the condition that c◦τ = c◦T−τ . When z = W j , the
argument is T -periodic such that (W j)τ−T = (W j)τ . It follows that

T−1∑
τ=1−T

cτ (W j)τ =
T−1∑
τ=0

c◦τ (W j)τ .(14.62)

Now observe that, when j 6= 0, the condition
∑
t(W

j)t = 0 holds. Therefore
equation (14.59) can be written as

ζj =
1
T

T−1∑
t=0

(yt − ȳ)(W j)t.(14.63)

It follows that

Tζjζ
∗
j =

1
T

{
T−1∑
t=0

(yt − ȳ)(W j)t
}{

T−1∑
s=0

(ys − ȳ)(W j)−s
}

=
T−1∑

τ=1−T

{
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ)

}
(W j)τ

=
T−1∑
t=1−T

cτ (W j)τ ,

(14.64)

wherein τ = t− s.
Equation (14.64) is the basis of the Wiener–Khintchine theorem of (14.31)

which relates the sequence of periodogram ordinates {Ij} to the sequence of auto-
covariances {cτ}. This relationship is demonstrated anew by observing, in reference
to (14.29) and (14.40), that

Ij =
T

2
{
α2
j + β2

j

}
= 2Tζjζ∗j .(14.65)

There are altogether T distinct ordinary autocovariances in the set {cτ ; τ =
0, 1, . . . , T − 1}, whereas there are only n ordinates of the periodogram {Ij , j =
0, 1, . . . , n} corresponding to n distinct frequency values, where n is defined by
(14.2). Therefore the ordinary autocovariances cannot be recovered from the
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{c◦τ}
DFT←−−−−−−−−→ {Ij}xacv.

xmod.
{yt}

DFT←−−−−−−−−→ {ζj}

Figure 14.6. The relationship between time-domain
sequences and the frequency-domain sequences.

periodogram. However, consider an extended periodogram sequence {Ij ; j =
0, . . . T −1} defined over T points, instead of only n points, which is real-valued and
even with IT−j = Ij . Then it is manifest that there is a one-to-one relationship
between the periodogram ordinates and the sequence of circular autocovariances
which can be expressed in terms of a discrete Fourier transform and its inverse
defined on T points:

Ij = 2
T−1∑
τ=0

c◦τ
(
W j
)τ
,(14.66)

c◦τ =
1

2T

T−1∑
j=0

Ij
(
W−τ

)j
.(14.67)

As we have already observed, the circular autocovariances {c◦j ; j = 0, . . . , T − 1}
also constitute a sequence which is real and even. Thus the two sequences fulfil
one of the symmetry relationships between Fourier pairs which is detailed in Table
13.2.

The relationships amongst the various sequences which have been considered
in this section are depicted in Figure 14.6.

The Classes of Fourier Transforms

The nature of a time-domain function or signal determines the nature of its
Fourier transform, which is a function in the frequency domain. The signal is classi-
fied according to whether it is discrete or continuous—i.e. its continuity attribute—
and according to whether it is periodic or aperiodic—i.e. its periodicity attribute.
Its Fourier transform is classified likewise.

The manner in which the class of the signal corresponds to that of its transform
is indicated in Table 13.1 which is to be found at the start of the previous chapter.
The fourfold classification of the table is based upon the time-domain attributes
of the signal. The frequency-domain attributes of the corresponding transforms,
which are revealed in the course of Chapter 13, are represented by annotations
within the body of the table.

The information of the table is reproduced in Table 14.1. Here, the Fourier
transformations are classified in terms of their twofold attributes in both domains.
The class of a transformation is specified equally by a pair of time-domain attributes
or by a pair of frequency-domain attributes. It is also specified by declaring the
periodicity attributes of the transformation in both domains or by declaring its
continuity attributes. The various Fourier transforms are illustrated in Figure 14.7.
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The Fourier integral: Ref. (13.78), (13.79)

x(t) =
1

2π

∫ ∞
−∞

ξ(ω)eiωtdω ←→ ξ(ω) =
∫ ∞
−∞

x(t)e−iωtdt

The classical Fourier series: Ref. (13.14), (13.15)

x(t) =
∞∑

j=−∞
ξje

iωjt ←→ ξj =
1
T

∫ T

0

x(t)e−iωjtdt

The discrete-time Fourier transform: Ref. (13.52), (13.53)

xt =
1

2π

∫ π

−π
ξ(ω)eiωtdω ←→ ξ(ω) =

∞∑
t=−∞

xte
−iωt

The discrete Fourier transform: Ref. (14.46), (14.51)

xt =
T−1∑
j=0

ξje
iωjt ←→ ξj =

1
T

T−1∑
t=0

xte
−iωjt

Figure 14.7. The classes of the Fourier transforms.
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Table 14.1. The classes of Fourier transformations*

Aperiodic in frequency Periodic in frequency

Continuous in time Discrete in time

Aperiodic in time
Fourier integral Discrete-time FT

Continuous in frequency

Periodic in time
Fourier series Discrete FT

Discrete in frequency

* Each cell of the table contains the name of a transform which is the product of a Fourier
transformation mapping from the time domain to the frequency domain. The nature of
the transform is determined by the nature of the signal (i.e., the time-domain function)—
which is continuous or discrete, and periodic or aperiodic.

We may regard the signals which are continuous and aperiodic as the most gen-
eral class of functions within the time domain. Such functions are defined over the
entire domain {t ∈ (−∞,∞)}. A time-limited function is one which takes nonzero
values only over a finite interval of this domain. The transform of a continuous
aperiodic signal, which is obtained via the Fourier integral, is also continuous and
aperiodic; and it is defined over the entire frequency domain {ω ∈ (−∞,∞)}. The
transform is said to be band-limited if it is nonzero only over a finite frequency
interval. A time-limited signal cannot have a band-limited transform.

Whereas the Fourier integral is the dominant transformation in a theoretical
perspective, it is the discrete Fourier transform (DFT), together with its realisation
via the fast Fourier transform (FFT), which is used in practice for computing all
classes of Fourier transforms. In order to reduce a time-domain function which
is continuous and aperiodic, and which would be subject to the Fourier integral,
to one which is discrete and finite and which is amenable to the DFT, two mod-
ifications are necessary. The first modification entails a process of time-domain
sampling which converts the function from a continuous one to a discrete one. The
second modification is the truncation of the signal which serves to restrict it to a
finite interval. In the following sections, we shall examine the effects of these two
modifications.

Sampling in the Time Domain

By the process of time-domain sampling, a continuous function of time is re-
duced to a discrete sequence. A temporal sequence possesses a discrete-time Fourier
transform, which is a continuous periodic function. Thus the act of sampling a sig-
nal is accompanied by the repeated copying of its transform at regular frequency
intervals so as to create a periodic function. The length of the frequency-domain
intervals is inversely related to the frequency of the time-domain sampling. If the
sampling is not sufficiently rapid, then the copying of the transform at close intervals
along the frequency axis will lead to an overlapping which constitutes the problem
of aliasing. These results concerning time-domain sampling have been established
already in the previous chapter under the heading of the sampling theorem—see
(13.115). Nevertheless, it seems worthwhile to reiterate them here.
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(a) A function and its Fourier transform:

(b) The effect of sampling in the time domain:

(c) The effect of a truncation in the time domain:

(d) The effect of sampling in the frequency domain:

Figure 14.8. The effects of sampling and truncation. The time-domain
functions appear on the left and their Fourier transforms, which are functions
in the frequency domain, appear on the right.
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In the previous chapter, a representation of a sampled signal was given which
is based upon the notion of an impulse train. The impulse train is represented by

g(t) =
∞∑

j=−∞
δ(t− jT0),(14.68)

where δ(t) is Dirac’s delta function and where T0 is the interval between the pulses.
The Fourier transform of a time-domain impulse train is an impulse train in the
frequency domain which is specified by

γ(ω) = ω0

∞∑
j=−∞

δ(ω − jω0),(14.69)

where ω0 = 2π/T0 is the so-called sampling frequency, which is the distance in
radians which separates successive pulses. The sampled version of the signal x(t)
is the modulated signal

xs(t) = x(t)g(t) =
∞∑

j=−∞
x(t)δ(t− jT0),(14.70)

which is obtained by multiplying together the original signal and the impulse train.
The multiplication of two signals in the time domain corresponds to the convo-

lution of their transforms in the frequency domain. Thus, if x(t) and ξ(ω) are the
signal and its Fourier transform, then the relationship between the sampled signal
and its transform is represented by writing

xs(t) = x(t)g(t)←→ γ(ω) ∗ ξ(ω) = ξs(ω).(14.71)

Using this relationship, it has been shown under (13.113) that the Fourier
transform of the sampled signal is given by

ξs(ω) =
1
T0

∞∑
j=−∞

ξ(ω − jω0).(14.72)

Thus it transpires that the transform of the sampled signal is a periodic function
ξs(ω) constructed from copies of the original function ξ(ω) superimposed at equal
intervals separated by ω0 radians. These copies will overlap each other unless
ξ(ω) = 0 for all |ω| ≥ 1

2ω0—see Figure 14.8(b). The consequence is that the
values of ξs(ω) over the interval [−ω0, ω0] will represent a sum of the values of
the original function plus the values of the tails of the shifted functions functions
ξ(ω ± jω0); j = {0, 1, 2, . . .} which extend into this interval.

In virtually all time-series applications, we can afford to set T0 = 1; which is to
say that the sampling interval can be taken as the unit interval. In that case, the
sampling frequency is 2π; and the condition that no aliasing occurs is the condition
that the signal contains no components with frequencies equal to or in excess of the
Nyquist frequency of π.
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Truncation in the Time Domain

The second modification which is applied to the continuous-time signal in order
to make it amenable to digital computation is that of truncation. The truncation
severs the tails of the function which lie outside the finite interval; and, if these tails
form a significant part of the original function, then the effect upon the transform
of the function is also liable to be significant.

Recall that there is an inverse relationship between the dispersion of a signal
in the time domain and the dispersion of its transform in the frequency domain.
Imagine that the signal xs(t) = g(t)x(t) which is to be processed is a infinite se-
quence which has been sampled from a continuous function x(t) with a band-limited
transform. The truncated version of the signal, which is time-limited, cannot have a
band-limited transform. In effect, the truncation of the signal must be accompanied
by the spreading of its transform over the entire frequency domain. This extension
of the dispersion of the transform is described as the problem of leakage.

The truncation of a continuous-time signal is achieved formally by multiplying
the signal by a window function defined by

k(t) =
{ 1, if t ∈ [a, a+ T );

0, otherwise,
(14.73)

where T = nT0 is the length of a period which spans n sample points. The
truncation of the sampled signal xs(t) = x(t)g(t) will give rise to the function
xk(t) = x(t)g(t)k(t). Notice that the factors on the RHS of this expression can be
written in any order. The implication is that, in mathematical terms, the order in
which the operations of windowing and sampling are performed is immaterial.

The window function, which can be regarded as a rectangular pulse, has the
sinc function of (13.86) as its Fourier transform. Therefore the Fourier transform
of the windowed or truncated version of the sampled signal xs(t) is the following
convolution:

ξk(ω) =
1
πω

∫ ∞
−∞

ξs(λ)sinc
(
T

2
ω − λ

)
dλ.(14.74)

At first sight, it appears that, in general, an expression such as this requires to be
evaluated by numerical integration. The difficulty stems from the nature of the
quasi-continuous function xs(t) which has been obtained from the original signal
x(t) by means of Dirac’s delta function. When xs(t) is replaced by an ordinary
sequence {xt; t = 0 ± 1 ± 2, . . .}, the difficulty vanishes. In that case, the function
ξk(ω) can be replaced by the readily accessible discrete-time Fourier transform of
the sequence {xtkt}, wherein kt takes the value of unity for t = 0, 1, . . . , n− 1 and
the value of zero elsewhere.

The Fourier transform of the sequence {xtkt}, whose elements are the prod-
ucts of those of {xt} and {kt}, is just the (frequency-domain) convolution of the
respective Fourier transforms, ξs(ω) and κ(ω):

ξk(ω) =
1

2π

∫ π

−π
ξs(λ)κ(ω − λ)dλ.(14.75)
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The function κ(ω) is, in fact, the Dirichlet kernel defined under (13.75). The
number n of sample points falling within the truncation interval is the number of
consecutive nonzero values of {kt}. When n is large, the aperiodic sinc function,
which is found in equation (14.74), is closely approximated, over the appropriate
interval, by a single cycle of the periodic Dirichlet kernel.

The effect of the convolution of (14.75) is to smear and spread the profile of
ξs(ω) so that any peaks which it might posses will lose some of their prominence.
The convolution will also induce ripples in the profile—see Figure 14.8(c). The
classical example of these effects is provided by Gibbs’ phenomenon which has
been described in the previous chapter and which is represented by Figure 13.2.
In its original context, the phenomenon arises from the truncation of the sequence
of the coefficients entailed in the Fourier-series representation of a periodic square
wave. To apply the example to the present context, we need only interchange
the frequency domain and the time domain so that the Fourier coefficients are re-
interpreted as a sequence of points in the time domain and their transform becomes
a periodic function in the frequency domain.

We may note that, in the limit as n→∞, the Dirichlet kernel becomes Dirac’s
delta function. In that case, it follows from the so-called sifting property of the
delta function—see (13.94)—that the convolution would deliver the function ξs(ω)
unimpaired.

Sampling in the Frequency Domain

The effect of applying the operations of sampling and truncation to a contin-
uous signal x(t) is to deliver a discrete-time signal sequence {xt}, which is nonzero
only over a finite interval, and which, in theory, possesses a continuous periodic
transform ξk(ω) which is described as a discrete-time Fourier transform (DTFT)—
see Figure 14.8(c). However, the discrete Fourier transformation or DFT, which is
to be applied in practice to the signal sequence, has been represented as a mapping
from one finite (or periodic) sequence in the time domain to another equivalent
finite (or periodic) sequence in the frequency domain.

This apparent discrepancy is easily resolved by applying a notional process
of frequency-domain sampling to the continuous Fourier transform ξk(ω) so as to
obtain a discrete version ξr(ωj)—see Figure 14.8(d). An accompanying effect of
this sampling process is to generate the periodic extension xr(t) of the finite signal
sequence {xt}. Now there exists a one-to-one relationship xr(t)←→ ξr(ωj) between
two discrete periodic sequences each comprising the same number of elements per
cycle; and such a relationship is the object of the DFT, which is depicted under
(14.48), and its inverse, which is depicted under (14.53).

To demonstrate that frequency sampling need have no substantive effect, let
us consider expressing the sampled transform as

ξr(ω) = γ(ω)ξk(ω),(14.76)

where γ(ω) is the impulse train in the frequency domain specified by (14.69). The
time-domain function xr(t) corresponding to ξr(ω) is obtained from the convolution
of x(t), which is the ordinary extension of {xt} defined according to (2.1), with the
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time-domain impulse train g(t) of (14.68). Thus

xr(t) =
∫
τ

x(t− τ)
{ ∞∑
j=−∞

δ
(
τ − jT0

)}
dτ

=
∞∑

j=−∞

{∫ ∞
−∞

x(t− τ)δ
(
τ − jT0

)
dτ

}
=

∞∑
j=−∞

x
(
t− jT0

)
.

(14.77)

The final expression indicates that xr(t), is a periodic function consisting of repeated
copies of x(t) separated by a time interval of T0. Imagine that T0 = T and that the
signal is time limited to the interval [0, T ). Then it follows that there will be no
aliasing effect in the time domain in consequence of the notional frequency-domain
sampling which is at intervals of 2π/T ; and therefore xr(t) is simply the periodic
extension of {xt} defined according to (2.2).

Appendix: Harmonic Cycles

If a trigonometrical function completes an integral number of cycles in T peri-
ods, then the sum of its ordinates at the points t = 0, 1, . . . , T − 1 is zero. We state
this more formally as follows:

(14.78) Let ωj = 2πj/T where j ∈ {0, 1, . . . , T/2}, if T is even, and j ∈
{0, 1, . . . , (T − 1)/2}, if T is odd. Then

T−1∑
t=0

cos(ωjt) =
T−1∑
t=0

sin(ωjt) = 0.

Proof. We have

T−1∑
t=0

cos(ωjt) =
1
2

T−1∑
t=0

{exp(iωjt) + exp(−iωjt)}

=
1
2

T−1∑
t=0

exp(i2πjt/T ) +
1
2

T−1∑
t=0

exp(−i2πjt/T ).

(14.79)

By using the formula 1 + λ+ · · ·+ λT−1 = (1− λT )/(1− λ), we find that

T−1∑
t=0

exp(i2πjt/T ) =
1− exp(i2πj)

1− exp(i2πj/T )
.

But Euler’s equation indicates that exp(i2πj) = cos(2πj) + i sin(2πj) = 1, so the
numerator in the expression above is zero, and hence

∑
t exp(i2πj/T ) = 0. By
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similar means, it can be show that
∑
t exp(−i2πj/T ) = 0; and, therefore, it follows

that
∑
t cos(ωjt) = 0.

An analogous proof shows that
∑
t sin(ωjt) = 0.

The proposition of (14.78) is used to establish the orthogonality conditions
affecting functions with an integral number of cycles.

(14.80) Let ωj = 2πj/T and ψk = 2πk/T where j, k ∈ 0, 1, . . . , T/2 if T is
even and j, k ∈ 0, 1, . . . , (T − 1)/2 if T is odd. Then

(a)
T−1∑
t=0

cos(ωjt) cos(ψkt) = 0 if j 6= k,

T−1∑
t=0

cos2(ωjt) = T/2,

(b)
T−1∑
t=0

sin(ωjt) sin(ψkt) = 0 if j 6= k,

T−1∑
t=0

sin2(ωjt) = T/2,

(c)
T−1∑
t=0

cos(ωjt) sin(ψkt) = 0 if j 6= k.

Proof. From the formula cosA cosB = 1
2{cos(A+B) + cos(A−B)}, we have

T−1∑
t=0

cos(ωjt) cos(ψkt) =
1
2

∑
{cos([ωj + ψk]t) + cos([ωj − ψk]t)}

=
1
2

T−1∑
t=0

{cos(2π[j + k]t/T ) + cos(2π[j − k]t/T )} .
(14.81)

We find, in consequence of (14.78), that if j 6= k, then both terms on the RHS
vanish, which gives the first part of (a). If j = k, then cos(2π[j−k]t/T ) = cos 0 = 1
and so, whilst the first term vanishes, the second terms yields the value of T under
summation. This gives the second part of (a).

The proofs of (b) and (c) follow along similar lines once the relevant sum–
product relationships of (13.126) have been invoked.
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CHAPTER 15

The Fast Fourier Transform

In the late 1960s, an efficient method for computing the discrete Fourier transform
became available which has revolutionised many fields of applied science and en-
gineering where, hitherto, problems of computing had posed a serious obstacle to
progress. The algorithm, which became known as the fast Fourier transform or as
the FFT for short, has been attributed primarily to J.W. Cooley and J.W. Tukey
[125] who presented a version of it in a seminal paper of 1965. Subsequent enquiry
(see Cooley et al. [126]) has shown that the principles behind the algorithm have
been understood by others at earlier dates. Nevertheless, there is no doubt that
the paper of Cooley and Tukey acted as the catalyst for one of the most important
advances in applied mathematics of this century.

Basic Concepts

To assist our understanding of the nature of the economies which can result
from the use of the fast Fourier transform, we shall begin by showing a matrix
formulation of the transformation.

The discrete Fourier transform represents a one-to-one mapping from the se-
quence of data values yt; t = 0, . . . , T − 1, which are to be regarded as complex
numbers, to the sequence of Fourier coefficients ζj ; j = 0, . . . , T − 1 which are,
likewise, complex. The equation of the transform can be written as

ζj =
1
T

T−1∑
t=0

yte
−iωjt; ωj = 2πj/T,(15.1)

wherein ωj is a so-called Fourier frequency. The complex multiplications which are
entailed by this expression take the form of

yte
−iωjt = (yret + iyimt )(cosωjt− i sinωjt)

= (yret cosωjt+ yimt sinωjt) + i(yimt cosωjt− yret sinωjt).
(15.2)

Equation (15.2) can be rewritten conveniently in terms of WT , which is the
first of the T th roots of unity when these are taken in the clockwise order:

ζj =
1
T

T−1∑
t=0

ytW
jt
T ; WT = exp(−i2π/T ).(15.3)
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Now consider, as an illustration, the case where T = 6. Then, if the subscript
on WT is suppressed, the T instances of equation (15.3) can be written as

T


ζ0
ζ1
ζ2
ζ3
ζ4
ζ5

 =


W 0 W 0 W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3 W 4 W 5

W 0 W 2 W 4 W 6 W 8 W 10

W 0 W 3 W 6 W 9 W 12 W 15

W 0 W 4 W 8 W 12 W 16 W 20

W 0 W 5 W 10 W 15 W 20 W 25




y0

y1

y2

y3

y4

y5

 .(15.4)

After a cursory inspection of this equation, it might be imagined that to compute the
mapping from the vector y = [y0, y1, . . . , yT−1]′ to the vector ζ = [ζ0, ζ1, . . . , ζT−1]′

would require a total of T 2 = 36 complex multiplications and T (T − 1) = 30
complex additions. However, a more careful inspection shows that some of the
multiplications are repeated several times.

To begin, it may be observed that Wα = exp(−i2πα/T ) is a T -periodic func-
tion of the integer sequence {α = 0, 1, 2, . . .}. Thus, if q = α div T and r = α mod T
are, respectively, the quotient and the remainder from the division of α by T , then
α = Tq + r and Wα = (WT )qW r = W r, where r = 1, 2, . . . , T − 1 and WT = 1.

The next point to observe is that the identity exp(±iπ) = −1 implies that

W q+T/2 = exp(−i2πq/T ) exp(−iπ)
=−W q.

(15.5)

This property, which is described as the half-wave symmetry of the periodic func-
tion, further reduces the number of distinct values of Wα which need to be consid-
ered when T is even.

The consequence of the T -periodicity of Wα for the example under (15.4),
where T = 6, is that only the values W 0 = 1,W 1, . . . ,W 5 are present. The half-
symmetry of Wα implies that W 3 = −1, W 4 = −W and W 5 = −W 2. Therefore,
the matrix in (15.4) can be written as


1 1 1 1 1 1
1 W 1 W 2 W 3 W 4 W 5

1 W 2 W 4 1 W 2 W 4

1 W 3 1 W 3 1 W 3

1 W 4 W 2 1 W 4 W 2

1 W 5 W 4 W 3 W 2 W

 =


1 1 1 1 1 1
1 W W 2 −1 −W −W 2

1 W 2 −W 1 W 2 −W
1 −1 1 −1 1 −1
1 −W W 2 1 −W W 2

1 −W 2 −W −1 W 2 W

 .(15.6)

On putting the matrix on the RHS in place of the matrix in equation (15.4), it
becomes clear that the elements ζ0, ζ1, ζ2 are formed from the same components
as the elements ζ3, ζ4, ζ5 respectively.

A much greater potential for reducing the number of operations in computing
the transform comes from the next step, which is to factorise the matrix in (15.4).
It is readily confirmed that, ignoring the half-symmetry of Wα, the matrix can be
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written as the following product:
1 0 1 0 1 0
0 1 0 W 0 W 2

1 0 W 2 0 W 4 0
0 1 0 W 3 0 1
1 0 W 4 0 W 2 0
0 1 0 W 5 0 W 4




1 0 0 1 0 0
1 0 0 W 3 0 0
0 1 0 0 1 0
0 1 0 0 W 3 0
0 0 1 0 0 1
0 0 1 0 0 W 3

 .(15.7)

Here the leading matrix contains P = 3 elements in each row whilst the following
matrix contains Q = 2 in each row. The factorisation enables the transformation
of y into ζ to be performed in two steps which together involve less computation
than does the single step depicted in (15.4).

To obtain a rough measure of the economies which can be achieved by using the
two-step procedure, let us ignore any economies which may result from the periodic
nature of the function W jt. Then it can be can seen that, if T = PQ, the number of
operations entailed by the two-step procedure increases, as a function of the length
T of the data sequence, at the same rate as T (P + Q). This is to be compared
with the number of operations in the single-step procedure which increases at the
rate of T 2. Of course, with T = PQ = 3 × 2, the difference between T 2 = 36 and
T (P + Q) = 30 is not great. However, when T = 143 = 13 × 11, the difference
between T 2 = 20, 449 and T (P +Q) = 3, 432 is already beginning to show.

The principle of factorisation can be exploited more fully in a multistep proce-
dure. Thus, if the sample size is a highly composite number which can be factorised
as T = N1N2 · · ·Ng, then the transformation from y to ζ can be accomplished in
g steps which entail, altogether, a number of operations which is proportional to
T (N1+N2+· · ·+Ng). A special case arises when T = 2g. Then the number of opera-
tions entailed in a g-step procedure is proportional to 2Tg; and this increases with T
at the same rate as T log T . Apart from allowing a dramatic economy in the number
of computational operations, the cases with T = 2g can be treated in a compara-
tively simple computer program. The consequence is that, in many applications,
the length of the data sequence is contrived, wherever possible, to be a power of 2.

There are two ways of ensuring that a data sequence has a length of T = 2g.
The first way is to truncate a sequence whose original length is T ′ so as to retain
T = 2g observations. The other way is to supplement the T ′ observations with
zeros. This is described as padding the sequence.

An effect of padding the sequence will be to change the definition of the Fourier
frequencies. In certain applications, where the frequencies are of no intrinsic in-
terest, padding is the appropriate recourse. An example is when the FFT is used
for convoluting two sequences. In other applications, such as in the calculation of
the periodogram, padding may be unacceptable; for it may cause a severe spectral
leakage. Then, either the loss of data which is occasioned by truncation must be
accepted, or else a version of the FFT must be used which can cope with numbers
T with arbitrary factors. Usually, we are prepared to suffer a small loss of data
in pursuit of a number which is sufficiently composite to allow for a reasonably
efficient exploitation of the FFT algorithm. Numbers tend to become increasingly
composite as they increase in size; and it is relevant to recall that, according to
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the prime number theorem, the relative frequency of the prime numbers in the set
{1, . . . , T} tends to 1/ lnT as T increases.

The following procedure represents a simple but effective way of finding the
factors of T = N1N2 · · ·Ng. The procedure attempts to arrange the factors in the
form of palindrome with N1+l = Ng−l. This is not always possible; and the value
taken by the Boolean variable palindrome at the end of the operations indicates
whether or not the object has been achieved.

(15.8) procedure PrimeFactors(Tcap : integer;
var g : integer;
var N : ivector;
var palindrome : boolean);

var
i, p, T, first, last, store : integer;

function Next(p : integer) : integer;
begin

if p = 2 then
Next := 3

else
Next := p+ 2

end; {Next}

begin {PrimeFactors}
palindrome := false;
g := 1;
p := 2;
T := Tcap;

{Find the prime factors}
while Sqr(p) <= T do

begin {while}
if T mod p = 0 then

begin
T := T div p;
N [g] := p;
g := g + 1

end
else
p := Next(p);

end; {while}
N [g] := T ;

first := 1;
last := g;
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{Rearrange the factors}
while (N [first] <= N [first+ 1]) do

begin {while}
store := N [first];
for i := first to last− 1 do
N [i] := N [i+ 1];

N [last] := store;
if (N [first] = N [last]) then
first := first+ 1;

last := g + 1− first;
end; {while}

if (last− first <= 0) and (g <> 1) then
palindrome := true

end; {PrimeFactors}

In the following sections, we shall begin by considering, in detail, the case
where T has two factors. This is for illustrative purposes. We shall proceed to
develop carefully an algorithm for the case where T has arbitrary factors. We shall
end by presenting an algorithm for the case where T = 2g.

The Two-Factor Case

The basic algebraic features of the fast Fourier transform can be seen by con-
sidering the case where T = PQ has just two factors. Then the indices t and j,
both of which run from 0 to T − 1, can be expressed as

t = Pr + s and j = l +Qk,

where s, k = 0, 1, . . . , P − 1 and
r, l = 0, 1, . . . , Q− 1.

(15.9)

The indices r, s are the digits in a mixed-base or mixed-radix representation of the
number t. When P = Q = 10, then, of course, r and s stand for “tens” and “units”
respectively. The indices k and l of the expression for j can be characterised in the
same way.

The new indices can be used notionally to arrange the elements of {yt; t =
0, . . . , T − 1} and {ζj ; j = 0, . . . , T − 1} in two matrix arrays of orders Q × P
whose respective elements are y(r, s) = yt and ζ(l, k) = ζj . With the new notation,
equation (15.3) can be rewritten as

ζ(l, k) =
1
T

P−1∑
s=0

Q−1∑
r=0

y(r, s)W (Pr+s)(l+Qk)
T

=
1
T

P−1∑
s=0

{Q−1∑
r=0

y(r, s)W (Pr+s)l
T

}
W

Q(Pr+s)k
T .

(15.10)

In the outer sum of this expression, there is the factor

W
Q(Pr+s)k
T =

(
WQ
T

)Prk(
WQ
T

)sk
.(15.11)
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Given that WQ
T = exp(−2π/P ) = WP , it follows that

(
WQ
T

)sk =W sk
P and(

WQ
T

)Prk =WPrk
P = 1, for all k.

(15.12)

Therefore,

W
Q(Pr+s)k
T = W sk

P .(15.13)

By applying the same principles to the factor in the inner sum, it is found that

W
(Pr+s)l
T = W rl

QW
sl
T .(15.14)

When the results of (15.13) and (15.14) are substituted into equation (15.10),
the latter can be written as

ζ(l, k) =
1
T

P−1∑
s=0

[{Q−1∑
r=0

y(r, s)W rl
Q

}
W sl
T

]
W sk
P

=
1
T

P−1∑
s=0

[
ξ(l, s)W sl

T

]
W sk
P

=
1
T

P−1∑
s=0

ϕ(l, s)W sk
P .

(15.15)

The factor W sl
T which is associated with ξ(l, s) in this equation has been called the

twiddle factor by Gentleman and Sande [206].
The elements ζ(l, k), which are the end-products of the transformation, are

found by proceeding through four stages. The first stage generates

ξ(l, s) =
Q−1∑
r=0

y(r, s)W rl
Q(15.16)

for l = 0, 1, . . . , Q − 1 and s = 0, 1, . . . , P − 1. For each value of s, the elements
ξ(l, s); l = 0, 1, . . . , Q− 1 entail the same Q data points y(r, s); r = 0, 1, . . . , Q− 1,
which are contained in the sth column of the notional Q×P data matrix. For any
two distinct values of s, say p and q, the elements ξ(l, p) and ξ(l, q) entail disjoint
sets of data points from different columns of the notional matrix. Therefore, once
a group of Q elements ξ(l, s); l = 0, 1, . . . , Q − 1 has been computed, they can be
written in place of the data elements y(r, s); r = 0, 1, . . . , Q − 1 from which they
have been derived and for which there is no further need. In effect, the sequence
yt; t = 0, 1, . . . , T − 1 can be sorted into a set of P subsequences of length Q, each
of which can be transformed separately and then returned to its place of origin.
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To illustrate this stage, let us reconsider the example where T = PQ = 6 with
P = 3 and Q = 2. Then there is

ξ(0, 0)
ξ(0, 1)
ξ(0, 2)
ξ(1, 0)
ξ(1, 1)
ξ(1, 2)

 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 W 3 0 0
0 1 0 0 W 3 0
0 0 1 0 0 W 3




y(0, 0)
y(0, 1)
y(0, 2)
y(1, 0)
y(1, 1)
y(1, 2)

 .(15.17)

By careful inspection, three separate transformations can be picked out, each of
which is a Fourier transform in microcosm:[

ξ(0, s)
ξ(1, s)

]
=
[

1 1
1 W 3

] [
y(0, s)
y(1, s)

]
; s = 0, 1, 2.(15.18)

For each value of s, the elements ξ(0, s) and ξ(1, s) are calculated, and then they
are written in place of the elements y(0, s) and y(1, s) which are no longer needed.
We may recall that the half-wave symmetry of the function Wα implies that
W 3 = −1. Therefore, ξ(0, s) and ξ(1, s) are respectively the sum and the difference
of y(0, s) and y(1, s).

The second stage of the procedure is to compute

ϕ(l, s) = ξ(l, s)W sl
T(15.19)

for each value of l and s. This is a straightforward matter of using the so-called
twiddle factor to scale each element of the vector ξ. The mapping from ξ to ϕ is
therefore associated with a diagonal matrix. In the example, the mapping is given
by 

ϕ(0, 0)
ϕ(0, 1)
ϕ(0, 2)
ϕ(1, 0)
ϕ(1, 1)
ϕ(1, 2)

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 W 0
0 0 0 0 0 W 2




ξ(0, 0)
ξ(0, 1)
ξ(0, 2)
ξ(1, 0)
ξ(1, 1)
ξ(1, 2)

 .(15.20)

The third stage of the procedure is compute the transformation

ζ(l, k) =
1
T

P−1∑
s=0

ϕ(l, s)W sk
P .(15.21)

Here we can use the methods which have already been applied to equation (15.16).
Thus, for a given value of l, each of the elements ζ(l, k); k = 0, 1, . . . , P − 1 are
computed from the same P elements ϕ(l, s); s = 0, 1, . . . , P − 1; and then they are
written in place of the latter. In the example, this stage of the procedure takes
the form of

T


ζ(0, 0)
ζ(0, 1)
ζ(0, 2)
ζ(1, 0)
ζ(1, 1)
ζ(1, 2)

 =


1 1 1 0 0 0
1 W 2 W 4 0 0 0
1 W 4 W 2 0 0 0
0 0 0 1 1 1
0 0 0 1 W 2 W 4

0 0 0 1 W 4 W 2




ϕ(0, 0)
ϕ(0, 1)
ϕ(0, 2)
ϕ(1, 0)
ϕ(1, 1)
ϕ(1, 2)

 .(15.22)
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Table 15.1. The correspondence between the digits
of t and j for the case where P = 3 and Q = 2.

r = l s = k t = Pr + s j = l +Qk

0 0 0 0
0 1 1 2
0 2 2 4
1 0 3 1
1 1 4 3
1 2 5 5

The fourth and final stage of the procedure is necessitated by the fact that
the elements ζj = ζ(l, k) have been obtained in an order which differs from the
natural order of the index j. For, as a result of the strategy of overwriting, which is
designed to minimise the use of the computer’s memory, the elements ζj = ζ(l, k)
are to be found in the places which were originally occupied by the data values
yt = y(r, s). This means that the indices l and k vary in step with the indices r
and s respectively. Given that t = Pr + s and j = l + Qk, it is clear that setting
l = r and k = s implies that, in general, t 6= j; and so it is not possible for both t
and j to follow the natural order.

The scrambling of the index j which occurs in the example is shown in Table
15.1, which gives the corresponding values of t and j.

The order of the elements ζj = ζ(l, k) can be unscrambled by a permutation
transformation. In the example, the transformation takes the following form:

ζ(0, 0)
ζ(1, 0)
ζ(0, 1)
ζ(1, 1)
ζ(0, 2)
ζ(1, 2)

 =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




ζ(0, 0)
ζ(0, 1)
ζ(0, 2)
ζ(1, 0)
ζ(1, 1)
ζ(1, 2)

 .(15.23)

The FFT for Arbitrary Factors

The fast Fourier transform achieves its greatest efficiency when the sample size
T is a highly composite number with many factors which is written as

T =
g∏
l=1

Nl.(15.24)

In that case, the Fourier transform, which is given by the matrix equation ζ =
T−1Wy, can be accomplished in g stages with T/Nl transforms of order Nl in the
lth stage. The g-fold decomposition of the transformation matrix W can be written
as

W = PFgFg−1 · · ·F2F1,(15.25)
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where P is a permutation matrix which restores the elements ζj ; j = 0, . . . , T − 1
to the natural order. The individual transformations Fl can be decomposed as

Fl = RlWl,(15.26)

where Rl is a diagonal matrix containing the twiddle factors. The virtue of this fur-
ther decomposition is that the T/Nl submatrices into which Wl can be partitioned
are now identical in form.

The easiest way of expounding the algebra of the multifactor Fourier transform
is to concentrate on the details of the three-factor case; for the algebra remains
simple, whilst the generalisation to the multifactor case follows immediately.

Let us therefore imagine that

T = N1N2N3,(15.27)

and let us define

P1 = N2N3,

P2 = N3,

P3 = 1,

Q1 = 1,

Q2 = N1,

Q3 = N2N1.

(15.28)

Then the indices t and j can be expressed as

t= t1N2N3 + t2N3 + t3

= t1P1 + t2P2 + t3P3,

j= j1 + j2N1 + j3N2N1

= j1Q1 + j2Q2 + j3Q3,

(15.29)

where

t1, j1 ∈ {0, 1, . . . , N1 − 1},
t2, j2 ∈ {0, 1, . . . , N2 − 1},
t3, j3 ∈ {0, 1, . . . , N3 − 1}.

(15.30)

More generally, when T = N1N2 · · ·Ng, there are

t = t1P1 + t2P2 + · · ·+ tgPg

with Pi = Ni+1Ni+2 · · ·Ng and Pg = 1
(15.31)

and

j = j1Q1 + j2Q2 + · · ·+ jgQg

with Qi = N1N2 · · ·Ni−1 and Q1 = 1,
(15.32)

where ti, ji ∈ {0, 1, . . . , Ni − 1}.
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Using the expressions from (15.29), the equation (15.3) for the Fourier coeffi-
cients, which was written as ζj = T−1

∑
t yt(WT )jt, can now be expressed, for the

three-factor case, as

ζ(j1, j2, j3) =
1
T

∑
t1

∑
t2

∑
t3

y(t1, t2, t3)WT ↑ [tj]

=
1
T

∑
t1

∑
t2

∑
t3

y(t1, t2, t3)WT ↑
[(∑

m

tmPm

)(∑
l

jlQl

)]
,

(15.33)

where the upward arrow signifies exponentiation. Now, in view of (15.28), it can
be seen that, if m < l, then PmQl = αT is an integer multiple of T ; and, given
that Wα

T is a T -periodic function of α, it follows that WαT
T = 1. This result, which

holds for any number of factors, leads to the following identity:

WT ↑ [tj] =WT ↑

[( g∑
m=1

tmPm

)( g∑
l=1

jlQl

)]

=WT ↑
[

g∑
l=1

jl

( g∑
m=l

tmPm

)
Ql

]

=
g∏
l=1

{
WT ↑

[
jl

( g∑
m=l+1

tmPm

)
Ql

]
WNl ↑ [jltl]

}
.

(15.34)

The second equality comes from discarding, from the sum in the exponent, all
elements with m < l. The final identity is obtained by extracting the factor

WT ↑
[
jltlPlQl

]
= WNl ↑ [jltl],(15.35)

wherein WT ↑ [PlQl] = WNl . This serves to isolate the twiddle factor

WT ↑

[
jl

( g∑
m=l+1

tmPm

)
Ql

]
.(15.36)

With g = 3, the three factors of WT ↑ [tj] are

f1 =WT ↑ [j1(t1P1 + t2P2 + t3P3)Q1]
=WT ↑ [j1(t2P2 + t3P3)Q1]WN1 ↑ [j1t1],

f2 =WT ↑ [j2(t2P2 + t3P3)Q2]
=WT ↑ [j2t3P3Q2]WN2 ↑ [j2t2],

f3 =WT ↑ [j3t3P3Q3] = WN3 ↑ [j3t3].

(15.37)

The factors f1 and f2 are decomposed here into a twiddle factor and a residual
factor.

Substituting the decomposition WT ↑ [tj] = f1f2f3 into equation (15.33) gives

Tζ(j1, j2, j3) =
1
T

∑
t3

{∑
t2

{∑
t1

y(t1, t2, t3)f1

}
f2

}
f3.(15.38)
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This expression represents the transformation from y(t1, t2, t3) to ζ(j1, j2, j3) as the
product of three successive transformations which can be represented, in turn, as
follows:

ζ1(j1, t2, t3) =
{∑

t1

y(t1, t2, t3)WN1 ↑ [j1t1]
}
WT ↑ [j1(t2P2 + t3P3)Q1]

= ξ1(j1, t2, t3)WT ↑ [j1(t2P2 + t3P3)Q1],

ζ2(j1, j2, t3) =
{∑

t2

ζ1(j1, t2, t3)WN2 ↑ [j2t2]
}
WT ↑ [j2t3P3Q2]

= ξ2(j1, j2, t3)WT ↑ [j2t3P3Q2],

ζ3(j1, j2, j3) =
∑
t3

ζ2(j1, j2, t3)WN3 ↑ [j3t3].

(15.39)

The algorithm of the three-factor case can be generalised easily to the case of
g factors. The lth stage of the g-factor algorithm is represented by

(15.40)
ζl(j1, . . . , jl, tl+1, . . . , tg)

=
{∑

tl

ζl−1(j1, . . . , jl−1, tl, . . . , tg)WNl ↑ [jltl]
}
WT ↑

[( g∑
m=l+1

tmPm

)
jlQl

]
= ξl(j1, . . . , jl−1, tl, . . . , tg)WT ↑

[( g∑
m=l+1

tmPm

)
jlQl

]
.

In the lth stage of the algorithm, the elements of ζl−1 are transformed in self-
contained groups or subsequences of Nl at a time. Each group of elements is
subjected to the same transformation which is a Fourier transform on a small scale.
The resulting elements of ξl are multiplied by their corresponding twiddle factors
to convert them to the elements of ζl. This can be done at any time from the
moment that an element is available until the beginning of the next stage of the
algorithm. However, as we shall discover, there is an advantage in performing the
twiddle as soon as the elements of a subsequence of ζl−1 have been transformed
into the corresponding elements of ξl.

Locating the Subsequences

In the lth stage of the algorithm for computing the FFT, the vector ζl−1 is
divided into a T/Nl disjoint subsequences, each of length Nl, which are transformed
separately. To locate the elements of a given subsequence, the indices j1, . . . , jl−1

and tl+1, . . . , tg must be held constant while the value of the index tl is increased
from 0 to Nl − 1. To pass from one subsequence to the next, the other indices
are varied in their natural order. In fact, there is no need to vary j1, . . . , jl−1

and tl+1, . . . , tg explicitly; for they can be replaced by the composite indices a =
j1P1 + · · ·+ jl−1Pl−1 and c = tl+1Pl+1 + · · ·+ tgPg, wherein Pm = Nm+1 · · ·Ng. It
will be recognised that c is a value which is already incorporated in the expression
for the twiddle factor given under (15.36).
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For an example of how the subsequences may be located in practice, let us
consider the case where T = N1N2N3 so that, according to (15.29),

t= t1N2N3 + t2N3 + t3

= a+ b+ c,
(15.41)

with

a= t1N2N3 = t1P1,

b= t2N3 = t2P2,

c= t3 = t3P3.

(15.42)

Let us imagine that the purpose is to calculate the elements

ξ2(j1, j2, t3) =
∑
t2

ζ1(j1, t2, t3)WN2 ↑ [j2t2](15.43)

from the second stage of the transformation under (15.39). Then the indices should
be varied by gearing them to each other in a such a way that a single increment
of t3 follows after a complete cycle of t2 and an increment of j1 = t1 follows after
a cycle of t3. This can be accomplished by the following algorithm in which the
indices i, j and k are proxies for t1, t2 and t3 respectively:

(15.44) begin
a := 0;
b := 0;
c := 0;
t := 0;

for i := 0 to N1− 1 do
begin {i}

for k := 0 to N3− 1 do
begin {k}

for j := 0 to N2− 1 do
begin {j}
t := a+ b+ c;
Writeln(t : 10);
b := b+N3

end; {j}
b := 0;
c := c+ 1;

end; {k}
c := 0;
a := a+N2 ∗N3;

end; {i}
end;
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Table 15.2. The index t in natural order and permuted order.

Natural order
t1 t2 t3 t

Permuted order
t1 t2 t3 t

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
0 2 0 4
0 2 1 5
1 0 0 6
1 0 1 7
1 1 0 8
1 1 1 9
1 2 0 10
1 2 1 11

0 0 0 0
0 1 0 2
0 2 0 4
0 0 1 1
0 1 1 3
0 2 1 5
1 0 0 6
1 1 0 8
1 2 0 10
1 0 1 7
1 1 1 9
1 2 1 11

An example of the output of this algorithm is given in Table 15.2 which shows,
for the case where N1 = 2, N2 = 3 and N3 = 2, the effect of varying the indices in
their natural order and in the order of the algorithm.

To apply the algorithm to the lth stage of a multifactor transformation with
T = (N1 · · ·Nl−1)Nl(Nl+1 · · ·Ng) = QlNlPl, we need only replace N1, N2 and N3

by Ql, Nl and Pl respectively.

The Core of the Mixed-Radix Algorithm

In effect, the fragment under (15.44) provides a basic framework for the mixed-
radix FFT algorithm. In place of the inner Writeln statement indexed by j, three
operations must be inserted.

The first operation is to make a copy of the designated subsequence. The
second operation is to effect the transformation from ζl−1(j1, . . . , jl−1, tl, . . . , tg) to
ξl(j1, . . . , jl−1, jl, . . . , tg) for each value of the index tl = jl. In the third operation,
each element of the transformed subsequence is scaled by the relevant twiddle factor
so as to give ζl(j1, . . . , jl−1, jl, . . . , tg).

The iterations of the indices i and k carry the algorithm from one subsequence
to the next. The index l corresponds to the stages of the FFT. At the beginning of
each stage, the matrix is constructed of the transformation which is to be applied
identically to each of the subsequences. Altogether, there are g stages, which is the
number of factors in T ; and, in the final stage, the twiddle factors are all unity,
which eliminates the scaling operations.

The values Ql, and Pl, which are generated at the outset of the lth stage, are
written into the vectors Q and P which are empty when passed to the procedure.

(15.45) procedure MixedRadixCore(var yReal, yImag : vector;
var N,P,Q : ivector;
Tcap, g : integer);
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const
twopi = 6.283185;

type
Wvector = array[0..23] of real;
Wmatrix = array[0..23] of Wvector;

var
a, b, c, t, i, j, k, l, r : integer;
W,Wl, theta : real;
yR, yI : Wvector;
cosine, sine : Wmatrix;

begin {MixedRadixCore}

W := twopi/Tcap;
Q[0] := 1;
N [0] := 1;
P [0] := Tcap;
b := 0;
c := 0;

for l := 1 to g do
begin {l : this is the major loop}
a := 0;
t := 0;
Q[l] := Q[l − 1] ∗N [l − 1];
P [l] := P [l − 1] div N [l];

{Construct the transformation matrix}
Wl := twopi/N [l];
for j := 0 to N [l]− 1 do
for r := j to N [l]− 1 do
begin {r, j}
theta := Wl ∗ ((j ∗ r) mod N [l]);
cosine[j, r] := Cos(theta);
sine[j, r] := Sin(theta);
cosine[r, j] := cosine[j, r];
sine[r, j] := sine[j, r];

end; {r, j}

for i := 0 to Q[l]− 1 do
begin {i}
for k := 0 to P [l]− 1 do
begin {k}

{subsequences are indexed by i, k jointly}
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{Copy a subsequence of the data}
for j := 0 to N [l]− 1 do
begin {j}
t := a+ b+ c;
yR[j] := yReal[t];
yI[j] := yImag[t];
b := b+ P [l];

end; {j}
b := 0;

{Transform the subsequence}
for j := 0 to N [l]− 1 do
begin {j}
t := a+ b+ c;
yReal[t] := 0.0;
yImag[t] := 0.0;
for r := 0 to N [l]− 1 do
begin {r}
yReal[t] := yReal[t] + yR[r] ∗ cosine[j, r]

+ yI[r] ∗ sine[j, r];
yImag[t] := yImag[t] + yI[r] ∗ cosine[j, r]

− yR[r] ∗ sine[j, r];
end; {r}
b := b+ P [l];

end; {j}
b := 0;

{Scale the subsequence by the twiddle factors}
if l < g then
begin {if}
for j := 0 to N [l]− 1 do
begin {j : twiddle factors}
t := a+ b+ c;
theta := W ∗ ((j ∗ c ∗Q[l]) mod Tcap);
yR[0] := yReal[t];
yI[0] := yImag[t];
yReal[t] := yR[0] ∗ Cos(theta) + yI[0] ∗ Sin(theta);
yImag[t] := yI[0] ∗ Cos(theta)− yR[0] ∗ Sin(theta);
b := b+ P [l];
end; {j : twiddle factors}
b := 0;

end; {if}

c := c+ 1;
end; {k}
c := 0;
a := a+N [l] ∗ P [l];
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end; {i}
end; {l : the major loop}

end; {Mixed Radix Core}

Unscrambling

On the completion of the gth stage of the transformation, a set of Fourier
coefficients ζj is obtained which is indexed by a sequence j = j(t) which is a
permutation of the natural sequence of t = 0, 1, . . . , T −1. Access to the coefficients
in their natural order is obtained by computing the inverse function t = t(j) for
j = 1, . . . , T − 1. This enables the Fourier coefficient ζj to be recovered from
the scrambled array which is indexed by t. Therefore, a correspondence must be
established between t = t1P1 + · · ·+ tgPg and j = j1Q1 + · · ·+ jgQg when ji = ti
for all i.

To begin, the digits of j = (j1, . . . , jg) must be found. Given that Qi divides
Qj if and only if i ≤ j, it follows that, if j = j1Q1 + · · ·+ jlQl + · · ·+ jgQg, then

j mod Ql+1 = j1Q1 + · · ·+ jlQl.(15.46)

Therefore,

jl = (j mod Ql+1) div Ql(15.47)

is provided by the integral part from the division of j mod Ql+1 by Ql. Next, if
ti = ji for all i, it follows that

t= j1P1 + · · ·+ jg−1Pg−1 + jgPg

= {(j mod Q2) div Q1}P1 + · · ·
+ {(j mod Qg) div Qg−1}Pg−1 + (j div Qg)Pg.

(15.48)

This expression is incorporated in the following algorithm:

(15.49) function tOfj(j, g : integer;
P,Q : ivector) : integer;

var
i, t : integer;

begin
t := (j div Q[g]) ∗ P [g];
for i := g − 1 downto 1 do
t := t+ ((j mod Q[i+ 1]) div Q[i]) ∗ P [i];

tOfj := t
end; {tOfj}
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Table 15.3. The reordering of the index j = j1+j2N1+j2N2N1 whenN1 =
2, N2 = 2, and N3 = 3. In this example, the reordering is accomplished
by three permutation cycles. The presence of two bracketed elements in a
column signifies the completion of a permutation cycle.

j3
t3

j2
t2

j1
t1

t j = j(t) Successive reordering

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 4 [1] 1 1 1 1 1 1
2 0 0 2 8 8 8 [2] 2 2 2 2
0 1 0 3 2 2 2 [ ] [3] 3 3 3
1 1 0 4 6 6 [4] 4 4 4 4 4
2 1 0 5 10 10 10 10 10 10 [5] 5
0 0 1 6 1 [ ] [6] 6 6 6 6 6
1 0 1 7 5 5 5 5 5 5 [ ] [7]
2 0 1 8 9 9 9 9 9 [8] 8 8
0 1 1 9 3 3 3 3 [ ] [9] 9 9
1 1 1 10 7 7 7 7 7 7 7 [10]
2 1 1 11 11 11 11 11 11 11 11 11

The ease with which the elements ζj can be accessed in their natural order
diminishes the incentive to reorder the sequence in which they are stored. It is
important that any method which is used for reordering the elements should not
waste computer memory.

An effective way of reordering the elements of the scrambled vector is to pursue
a chain of replacements. This begins with a misplaced element which is removed
from its location and set aside. Then the empty place is filled with its appropriate
element whose removal from another location will create another empty space. This
space is filled, in turn, with its appropriate element. The process continues until an
empty space occurs which can be filled with the element which was put aside at the
start. Such a chain of replacements is known as a permutation cycle. Table 15.3
shows the effect of using three permutation cycles to reorder the numbers j = j(t)
in the case where N1 = 2, N2 = 2 and N3 = 3.

A problem with this procedure is the difficulty of knowing when to initiate a
permutation cycle. If we were to begin a new cycle with each successive element
of the scrambled vector, then we should be reordering the same elements several
times; and there would be no guarantee that, at the end, we should succeed in
unscrambling the vector. We might be tempted, therefore, to keep a record to show
which of the elements have been restored already to their proper places. However,
since such a record would require T entries, the object of conserving computer
memory would be defeated.

The proper recourse is to test each permutation cycle before applying it to the
elements of the vector. Imagine that the previous permutation cycle has begun and
ended at the (r − 1)th location. Then we should proceed to test the cycle which
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begins at the rth location. If this cycle leads to a location preceding the rth, then
it should be abandoned on the grounds that the same cycle, albeit with a different
starting point, has been applied already to the vector. If the cycle is completed
without leading to any location preceding the rth location, then it can be applied
safely.

If the factorisation T = N1N2 · · ·Ng is in the form of a palindrome with N1+l =
Ng−l, then there is a straightforward correspondence between t = t1P1 + · · ·+ tgPg
and j = j1Q1 + · · · + jgQg when ti = ji for all i. It can be seen, with reference
to the example under (15.28), that, in this case, P1 = Qg, . . . , Pg = Q1. It follows
that t = t(j) = j1Qg + · · ·+ jgQ1, which is to say that the value of t is obtained by
reversing the order of the digits in the mixed-base representation of the number j.
The consequence is that the elements of the scrambled vector ζ can be reordered
through pairwise interchanges; and time is not wasted in testing permutation cycles.
To secure this advantage, the procedure PrimeFactors, given under (15.8), arranges
the factors of T in the form of a palindrome whenever possible.

(15.50) procedure ReOrder(P,Q : ivector;
Tcap, g : integer;
var yImag, yReal : vector);

var
r, t, j, Pcount : integer;

procedure Pcycle(r : integer;
var yImag, yReal : vector;
var Pcount : integer);

var
j, t : integer;
Rstore, Istore : real;

begin {Pcycle}
j := r;
t := tOfj(j, g, P,Q);
if t = j then
Pcount := Pcount+ 1

else
begin {else}
Rstore := yReal[j];
Istore := yImag[j];
repeat {t}
yReal[j] := yReal[t];
yimag[j] := yImag[t];
Pcount := Pcount+ 1;
j := t;
t := tOfj(j, g, P,Q);
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until t = r;
yReal[j] := Rstore;
yimag[j] := Istore;
Pcount := Pcount+ 1;

end; {else}
end; {Pcycle}

begin {ReOrder}
r := 1;
Pcount := 1;
Pcycle(r, yImag, yReal, Pcount);

repeat {r}
r := r + 1;
j := r;
repeat {j}
t := tOfj(j, g, P,Q);
j := t;

until j <= r;
if j = r then
Pcycle(r, yImag, yReal, Pcount);

until (r = Tcap− 1) or (Pcount = Tcap− 1);

end; {ReOrder}

The Shell of the Mixed-Radix Procedure

Now the operations of factorisation, transformation and unscrambling can be
gathered together to form a coherent program for the mixed-radix FFT. To ensure
that the efficiencies inherent in the FFT are exploited sufficiently, it is worth sac-
rificing a few points of data in order to obtain a number T = N1 · · ·Ng for the
sample size which is reasonably composite. The amount of data which needs to be
sacrificed is usually small.

To obtain the composite number, we shall impose the condition that T must
have at least three factors and that the value of none of them should exceed 23.
These prescriptions are somewhat arbitrary, and they can be varied easily. The
restriction on the size of the prime factors also defines the maximum order of the
transformation matrix which is constructed at the beginning of each stage of the
FFT. The effects of these restrictions are illustrated in Table 15.4, which shows a
short sequence of numbers which fulfil the conditions.

In order to find a number which satisfies the conditions, only one or two data
points need to be sacrificed in most cases; and in no case covered by the table is it
necessary to discard more than five points.

It is interesting to see that the palindromes are relatively frequent. One should
recall that the process of unscrambling the sequence of Fourier coefficients is greatly
assisted when the factors of T can be arranged in this form.
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Table 15.4. The numbers T = N1 · · ·Ng in the interval 300 ≥ T > 240 which
fulfil the conditions max(Ni) ≤ 23 and g ≥ 3. The palindromes with N1+i =
Ng−i are marked with asterisks.

300 = 2× 5× 3× 5× 2 ∗ 270 = 3× 2× 3× 5× 3
297 = 3× 3× 11× 3 266 = 2× 7× 19
294 = 7× 2× 3× 7 264 = 2× 2× 3× 11× 2
288 = 2× 2× 3× 2× 3× 2× 2 ∗ 260 = 2× 5× 13× 2
286 = 2× 11× 13 256 = 2× 2× 2× 2× 2× 2× 2× 2 ∗

285 = 3× 5× 19 255 = 3× 5× 17
280 = 2× 2× 5× 7× 2 252 = 2× 3× 7× 3× 2 ∗

276 = 2× 3× 23× 2 250 = 5× 2× 5× 5
275 = 5× 11× 5 ∗ 245 = 7× 5× 7 ∗

273 = 3× 7× 13 243 = 3× 3× 3× 3× 3 ∗

272 = 2× 2× 17× 2× 2 ∗ 242 = 11× 2× 11 ∗

The following Pascal procedure, which represents the shell of the mixed-radix
FFT, incorporates a routine which searches for an appropriate value for T :

(15.51) procedure MixedRadixFFT(var yReal, yImag : vector;
var Tcap, g : integer;
inverse : boolean);

var
t, i,Nmax : integer;
Q,N,P : ivector;
palindrome : boolean;

begin {MixedRadixFFT}
g := 0;
Tcap := Tcap+ 1;

repeat {Find a composite number for T}
Tcap := Tcap− 1;
PrimeFactors(Tcap, g,N, palindrome);
Nmax := 0;
for i := 1 to g do

if N [i] > Nmax then
Nmax := N [i];

until; (g >= 3) and (Nmax <= 23)

for t := 0 to Tcap− 1 do
begin {t}

if inverse = true then
yImag[t] := −Imag[t]
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else
begin {else}
yReal[t] := yReal[t]/Tcap;
yImag[t] := Imag[t]/Tcap

end; {else}
end; {t}

MixedRadixCore(yReal, yImag,N, P,Q, Tcap, g);
ReOrder(P,Q, Tcap, g, yImag, yReal);

end; {MixedRadixFFT}

Amongst the arguments of the procedure is the Boolean variable inverse. If
the value of this variable is false, then the direct form of the FFT, indicated by
equation (15.1), is calculated. The scale factor T−1 is therefore applied to the data
prior to its transformation. If the value of inverse is true, then the inverse form of
the FFT is calculated. In that case, the scale factor is omitted and the sign of the
imaginary part of the data sequence is reversed.

The Base-2 Fast Fourier Transform

When the data is available rapidly and in abundance, there should be little
hesitation in sacrificing some of it in order to benefit from the speed and efficiency
of an FFT procedure which caters specifically to the case when the sample size T
is a power of 2.

The advantages of the condition T = 2g, which are usually exploited by such al-
gorithms, are the highly composite nature of T and the ease with which the sequence
of Fourier coefficients can be unscrambled by pairwise interchanges. A further ad-
vantage, which is available if a twiddle-factor version of the FFT algorithm is used,
is the avoidance of several of the multiplications involving trigonometrical functions.
The evaluation of trigonometrical functions is a relatively time-consuming business;
and most of the hard-wired implementations of the FFT incorporate permanent
trigonometrical tables to help in speeding the process.

When T = 2g, there are T/2 = T/Nl two-point subsequences to be transformed
in the lth stage of the procedure. If the twiddle-factor algorithm is used, then each
subsequence is subjected to the same transformation. Moreover, when Nl = 2 for all
l, the transformation is the same in every stage. The matrix of this transformation
takes the form of [

1 1
1 WNl

]
.(15.52)

With Nl = 2 for all l, there is WNl = exp(−i2π/Nl) = exp(−iπ) = −1. Therefore,
the transformation involves nothing more than the sum and the difference of two
elements. The only recourse to trigonometrical functions is in forming the twiddle
factor.

These features are readily discernible in the code of the base-2 FFT procedure
which follows. In constructing the procedure, the real and imaginary components
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of the input have been placed in a single array which takes the form of

[yre0 , y
re
1 , . . . , y

re
T−1, y

im
0 , yim1 , . . . , yimT−1].(15.53)

Thus yret and yimt are coded as y[t] and y[Tcap+ t] respectively.

(15.54) procedure Base2FFT(var y : longVector;
Tcap, g : integer);

const
twopi = 6.283185;

var
a, c, t, i, j, k, l, P,Q : integer;
W, theta, sine, cosine : real;
yR, yI : real;

function BitReverse(j, g : integer) : integer;

var
t, tl, r, l : integer;

begin
t := 0;
r := j;
for l := 1 to g do
begin
tl := r mod 2;
t := t ∗ 2 + tl;
r := r div 2;

end;
BitReverse := t

end; {BitReverse}

begin {Base2FFT}
W := twopi/Tcap;
P := Tcap;
c := 0;

for l := 1 to g do
begin {l : this is the major loop}
a := 0;
t := 0;
if l = 1 then
Q := 1

else
Q := Q ∗ 2;
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P := P div 2;

for i := 0 to Q− 1 do
begin {i}
for k := 0 to P − 1 do
begin {k : transform the subsequence}
t := a+ c;
yR := y[t];
yI := y[t+ Tcap];
y[t] := y[t] + y[t+ P ];
y[t+ Tcap] := y[t+ Tcap] + y[t+ P + Tcap];
y[t+ P ] := yR− y[t+ P ];
y[t+ P + Tcap] := yI− y[t+ P + Tcap];

if l < g then
begin {twiddle}
theta := W ∗ ((c ∗Q) mod Tcap);
cosine := Cos(theta);
sine := Sin(theta);
yR := y[t+ P ];
yI := y[t+ P + Tcap];
y[t+ P ] := yR ∗ cosine+ yI ∗ sine;
y[t+ P + Tcap] := yI ∗ cosine− yR ∗ sine;

end; {twiddle}

c := c+ 1;
end; {k}
c := 0;
a := a+ 2 ∗ P ;

end; {i}
end; {l : the major loop}

for j := 1 to Tcap− 2 do
begin {t : unscramble the vector}
t := BitReverse(j, g);
if t > j then
begin {t}
yR := y[t];
yI := y[t+ Tcap];
y[t] := y[j];
y[t+ Tcap] := y[j + Tcap];
y[j] := yR;
y[j + Tcap] := yI;

end; {t}
end; {t : the vector is unscrambled}

end; {Base2FFT}
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The above procedure can be seen as a specialisation of the mixed-radix FFT
procedure presented in earlier sections. The specialisation extends to the algorithm
for unscrambling the Fourier coefficients. Thus, in place of the function tOfj,
the function BitReverse is used which maps from j = j1 + j22 + · · · + jg2g−1 to
t = j12g−1 + j22g−2 + · · · + jg. This function exploits the fact that factors of
T = 2g form a palindrome. The need for a lengthy evaluation of each permutation
cycle, before applying it to the elements of the coefficient vector or discarding it,
is avoided. Now, all of the permutation cycles are of length 2, which is to say that
they involve nothing more than pairwise interchanges. The tth and jth elements of
the vector of coefficients are interchanged if and only if it is found that t(j) = t > j.

FFT Algorithms for Real Data

So far, in our exposition of the FFT, the data sequence y(t) = yre(t) + iyim(t)
has been regarded as complex-valued. However, measurements taken in the real
world are invariably real-valued, and so the task of transforming a sequence which
is purely real often arises in practice. However, even when the elements of the
imaginary vector are set to zero, the algorithm still performs the multiplications
involving yim(t), and this is inefficient. There are several strategies which may be
adopted which are aimed at overcoming such inefficiencies.

Let us begin by imagining that the object is to obtain the Fourier transforms
φ(j) and δ(j) of two real sequences f(t) and d(t). This can be done via a single
application of the FFT. The procedure is to construct a synthetic complex sequence

y(t) = f(t) + id(t)(15.55)

and to recover φ(j) and δ(j) from its Fourier transform which is

ζ(j) = φ(j) + iδ(j).(15.56)

Here φ(j) and δ(j) are complex-valued sequences. However, their sum can be recast
as the sum of a purely real sequence and a purely imaginary sequence. Thus

ζ(j) = ζre(j) + iζim(j)
=
{
ζree (j) + ζreo (j)

}
+ i
{
ζime (j) + ζimo (j)

}
,

(15.57)

where

ζree (j) =
1
2
{
ζre(j) + ζre(T − j)

}
,

ζime (j) =
1
2
{
ζim(j) + ζim(T − j)

}(15.58)

are even functions, whilst

ζreo (j) =
1
2
{
ζre(j)− ζre(T − j)

}
,

ζimo (j) =
1
2
{
ζim(j)− ζim(T − j)

}(15.59)
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are odd functions. Now, it is easy to see, with reference to equations (15.1) and
(15.2), that, if f(t) is purely real, then its Fourier transform φ(j) must have a real
part which is even and an imaginary part which is odd. Conversely, if id(t) is purely
imaginary, then its Fourier transform iδ(j) must have a real part which is odd and
an imaginary part which is even. Therefore, in comparing (15.56) with (15.57), it
can be seen that

φ(j) = ζree (j) + iζimo (j),(15.60)

and that

iδ(j) = ζreo (j) + iζime (j) or, equivalently,

δ(j) = ζime (j)− iζreo (j).
(15.61)

These identities show how φ(j) and δ(j) can be recovered from ζ(j).
It should be recognised that the T -periodicity of the Fourier transform implies

that ζre(T ) = ζre(0) and ζim(T ) = ζim(0), whence the definitions under (15.58)
and (15.59) imply that ζree (0) = ζre(0), ζime (0) = ζim(0) and ζreo (0) = ζimo (0) = 0.
Therefore, (15.60) and (15.61) imply that

φ(0) = ζre(0),

δ(0) = ζim(0);
(15.62)

and these conditions are reflected in the procedure below which treats φ(0) and
δ(0) separately from the remaining elements of the vectors. The procedure returns
φret and φimt as f [t] and f [Tcap+ t] respectively. Likewise δret and δimt are returned
as d[t] and d[Tcap+ t] respectively.

(15.63) procedure TwoRealFFTs(var f, d : longVector
Tcap, g : integer);

var
y : longVector;
t,Ncap : integer;

begin {TwoRealFFTs}

Ncap := 2 ∗ Tcap;
for t := 0 to Tcap− 1 do

begin
y[t] := f [t];
y[Tcap+ t] := d[t]

end;

Base2FFT(y, Tcap, g);
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f [0] := y[0];
f [Tcap] := 0;
d[0] := y[Tcap];
d[Tcap] := 0;

for t := 1 to Tcap− 1 do
begin
f [t] := (y[t] + y[Tcap− t])/2;
f [Tcap+ t] := (y[Tcap+ t]− y[Ncap− t])/2;
d[t] := (y[Tcap+ t] + y[Ncap− t])/2;
d[Tcap+ t] := (y[Tcap− t]− y[t])/2

end;

end; {TwoRealFFTs}

FFT for a Single Real-valued Sequence

The foregoing technique can be extended in order to transform a single
real-valued sequence in an efficient manner. Given the real sequence x(t) =
{x0, x1, . . . , xN−1}, where N = 2T , a synthetic complex-valued sequence y(t) can
be constructed by assigning the even-numbered elements of x(t) to the real part
and the odd-numbered elements to the imaginary part. Thus

y(t) =x(2t) + ix(2t+ 1)

= f(t) + id(t),
(15.64)

where t = 0, 1, . . . , T − 1. The transform of y(t) is denoted ζ(j) = φ(j) + iδ(j) as
before, with φ(j) and δ(j) as the transforms of f(t) and d(t) respectively. To see
how the transform of x(t) can be constructed from φ(j) and δ(j), we may consider
writing it in the following form:

Tξ(j) =
N−1∑
t=0

x(t)W jt
N

=
T−1∑
t=0

x(2t)W j(2t)
N +

T−1∑
t=0

x(2t+ 1)W j(2t+1)
N

=
T−1∑
t=0

x(2t)W jt
T +W j

N

T−1∑
t=0

x(2t+ 1)W jt
T

=T
{
φ(j) +W j

Nδ(j)
}
.

(15.65)

Here, we have used W 2t
N = exp(−i2π{2t}/N) = exp(−i2πt/T ) = W t

T . Now, as in
the previous instance, there are the identities

φ(j) = ζree (j) + iζimo (j),

δ(j) = ζime (j)− iζreo (j),
(15.66)
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which arise from the fact that f(t) and d(t) are real-valued sequences. On sub-
stituting these into the equation ξ(j) = φ(j) + W j

Nδ(j) of (15.65) and using
W j
N = exp(−iπj/T ) = cos(θj) − i sin(θj), where θj = πj/T , we find that the

real and imaginary parts of ξ(j) = ξre(j) + iξim(j) are given by

ξre(j) = ζree (j) + cos(θj)ζime (j)− sin(θj)ζreo (j),

ξim(j) = ζimo (j)− cos(θj)ζreo (j)− sin(θj)ζime (j),
(15.67)

where the index j runs from 0 to T − 1. The remainder of the sequence ξ(j) for
j = T, . . . , N − 1 is obtained from the condition that ξ(N − j) = ξre(j) − iξim(j)
which arises from the fact that x(t) itself is a real-valued sequence whose transform
ξ(j) has a real part which is even and an imaginary part which is odd. However,
there is no need to recover the second half of the sequence since it is composed of
values which are already present in the first half.

A further economy in computation arises from the half-wave symmetries
whereby cos(θj) = − cos(θT−j) and sin(θj) = sin(θT−j). These, in conjunction
with the fact that ζree (T − j) = ζree (j) and ζimo (T − j) = −ζimo (j), imply that

ξre(T − j) = ζree (j)− cos(θj)ζime (j) + sin(θj)ζreo (j),

ξim(T − j) =−ζimo (j)− cos(θj)ζreo (j)− sin(θj)ζime (j).
(15.68)

Thus, the components of ξ(T − j) are composed of the same elements as those of
ξ(j) and, therefore, they can be calculated at the same time.

Finally, by taking account of the T -periodicity of ζre(j) and ζim(j), it can be
seen that the definitions under (15.58) imply that

ζree (0) = ζree (T ) = ζre(0),

ζime (0) = ζime (T ) = ζim(0).
(15.69)

Likewise, the conditions under (15.59) imply that

ζreo (0) = ζreo (T ) = 0,

ζimo (0) = ζimo (T ) = 0.
(15.70)

Therefore, since cos(θ0) = 1 and cos(θT ) = −1, it follows from (15.67) that

ξre(0) = ζre(0) + ζim(0),

ξim(0) = 0,

ξre(T ) = ζre(0)− ζim(0),

ξim(T ) = 0.

(15.71)

In constructing a procedure, attempts should be made to conserve computer
storage. Thus, instead of creating the vector

y= [f0, f1, . . . , fT−1, d0, d1, . . . , dT−1]

= [x0, x2, . . . , xN−2, x1, x3, . . . , xN−1]
(15.72)
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in a new array, one might wish to contain it in the space originally occupied by the
data vector

x = [x0, x1, . . . , xT−1, xT , xT+1, . . . , xN−1].(15.73)

The process of rearranging the elements of x to form the vector y can be
accomplished by the following procedure which is an adapted form of the procedure
ReOrder of (15.50) which was used for unscrambling the product of the mixed-radix
FFT:

(15.74) procedure OddSort(Ncap : integer;
var y : longVector);

var
Tcap, t, j, k : integer;
store : real;

begin
Tcap := Ncap div 2;

for j := 1 to Tcap− 1 do
begin {j}
k := j;
if j > 1 then

repeat {Test the cycle}
k := (2 ∗ k) mod (2 ∗ Tcap− 1);

until k <= j;
if k = j then {ReOrder}

begin {if}
store := y[j];
t := j;
repeat
k := t;
t := (2 ∗ k) mod (2 ∗ Tcap− 1);
y[k] := y[t];

until t = j;
y[k] := store;

end; {if}
end; {j}

end; {OddSort}

Further scope for saving computer storage derives from a fact already remarked
upon, which is that the Fourier transform ξ(j) = ξre(j)+iξim(j); j ∈ {0, 1, . . . , N−
1} of the real-valued data sequence x(t); t ∈ {0, 1, . . . , N−1} contains only N = 2T
distinct elements. Therefore, in place of

ξ= [ξre0 , ξ
re
1 , . . . , ξ

re
T−1, ξ

re
T , ξ

re
T−1, . . . , ξ

re
2 , ξ

re
1 ]

+ i[0, ξim1 , . . . , ξimT−1, 0,−ξimT−1, . . . ,−ξim2 ,−ξim1 ],
(15.75)
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we need only record the vector

[ξre0 , ξ
re
1 , . . . , ξ

re
T−1, ξ

re
T , ξ

im
1 , . . . , ξimT−1].(15.76)

Moreover, the latter may be created in the space occupied originally by the data
vector. Only a small amount of extra space needs to be set aside to facilitate the
work in hand.

The resulting procedure is as follows:

(15.77) procedure CompactRealFFT(var x : longVector;
Ncap, g : integer);

const
pi = 3.1415926;

var
t, Tcap : integer;
xReven, xRodd, xIeven, xIodd, store : real;
theta, increment, sine, cosine : real;

begin {RealFFT}
Tcap := Ncap div 2;
increment := pi/Tcap;
theta := 0;

OddSort(Ncap, x);

g := g − 1;
Base2FFT(x, Tcap, g);

for t := 1 to Tcap div 2 do
begin
theta := theta+ increment;
cosine := Cos(theta);
sine := Sin(theta);

xReven := (x[t] + x[Tcap− t])/2;
xRodd := (x[t]− x[Tcap− t])/2;
xIeven := (x[t+ Tcap] + x[Ncap− t])/2;
xIodd := (x[t+ Tcap]− x[Ncap− t])/2;

x[t] := xReven+ cosine ∗ xIeven− sine ∗ xRodd;
x[Tcap− t] := xReven− cosine ∗ xIeven+ sine ∗ xRodd;
x[t+ Tcap] := xIodd− cosine ∗ xRodd− sine ∗ xIeven;
x[Ncap− t] := −xIodd− cosine ∗ xRodd− sine ∗ xIeven;

end;
store := x[0];
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x[0] := x[0] + x[Tcap];
x[Tcap] := store− x[Tcap];

end; {RealFFT}
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CHAPTER 16

Linear Filters

The theory of linear filtering was a major concern of electrical engineers long before
it became practical to use digital computers to process the rapid sequences which
come from sampling continuous-time signals at high frequencies. This helps to
explain why much of the theory of digital signal processing still makes reference to
the theory of analogue filters. In fact, some very effective digital filters are obtained
simply by translating analogue designs into digital terms; and many engineers derive
their intuition in matters of linear filtering by thinking in terms of the electrical
circuits of analogue filters.

Digital filters fall into two classes which are know as the finite impulse-response
(FIR) filters and the infinite impulse-response (IIR) filters. For linear filters, these
classes correspond, respectively, to finite polynomial lag operators and rational
lag operators. In analogue signal processing, the natural device is an IIR filter
which is implemented in simple LCR circuits comprising resistors capacitors and
inductors. An FIR filter is not easily implemented in an analogue electrical circuit;
and this accounts for the preponderance of IIR filtering techniques in analogue
signal processing.

In this chapter, we shall deal with FIR filters and IIR filters in succession.
Some of the results relating to FIR filters will be directly relevant to the problem
of smoothing the periodogram of a stationary time series, which is the subject of
Chapter 23. Some of the results relating to IIR filters will be invoked in Chapter 19
in connection with the problem of signal extraction.

Frequency Response and Transfer Functions

Whenever we form a linear combination of successive elements of a discrete-
time signal x(t), we are performing an operation which is described as linear filter-
ing. Such an operation can be represented by the equation

y(t) = ψ(L)x(t) =
∑
j

ψjx(t− j)(16.1)

wherein ψ(L) = {· · ·+ ψ−1L
−1 + ψ0 + ψ1L+ · · ·} is described as the linear filter.

The sequence {ψj} of the filter’s coefficients constitutes its response, on the
output side, to an input in the form of a unit impulse. If the sequence is finite, then
ψ(L) is described as a moving-average filter or as a finite impulse-response (FIR)
filter. When the filter produces an impulse response of an indefinite duration, it
is called an infinite impulse-response (IIR) filter. The filter is said to be causal or
backward-looking if none of its coefficients is associated with a negative power of L.
In that case, the filter is available for real-time signal processing.
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A practical filter, which is constructed from a limited number of components
of hardware or software, must be capable of being expressed in terms of a finite
number of parameters. Therefore, linear IIR filters which are causal correspond
invariably to recursive structures of the form

γ(L)y(t) = δ(L)x(t),(16.2)

wherein γ(L) = γ0 + γ1L + · · · + γgL
g and δ(L) = δ0 + δL + · · · + δdL

d are
finite-degree polynomials of the lag operator. The leading coefficient of γ(L) may
be set to unity without loss of generality; and thus y(t) in equation (16.2) becomes
a function not only of past and present inputs but also of past outputs, which are
described as feedback.

The recursive equation may be assimilated to the equation under (16.1) by
writing it in rational form:

y(t) =
δ(L)
γ(L)

x(t) = ψ(L)x(t).(16.3)

On the condition that the filter is stable, the expression ψ(L) stands for the series
expansion of the ratio of the polynomials.

The input signal x(t) may be regarded as a sequences of impulses. Therefore,
the effect of the filter upon the signal is completely summarised by its response
to a unit impulse. This provides the so-called time-domain description of the
filter. However, the signal may be represented equally as a Fourier combination
of trigonometrical or complex-exponential functions. Thus, for example, if x(t) is
generated by a stationary stochastic process, then it may be represented by the
Fourier–Stieltjes integral

x(t) =
∫ π

−π
eiωtdZ(ω),(16.4)

wherein the dZ(ω) are the discontinuous increments of a cumulative weighting
function. (See Chapter 18).

The effects of a linear filter upon the cyclical components which constitute a
signal are twofold. First, the filtering is liable to alter the amplitude of any compo-
nent. This effect, which will vary according to the frequency of the component, is
described as the gain of the filter. Secondly, the filter will translate the components
along the time axis; and, for any component of a given frequency, there will be a
corresponding displacement in terms of an alteration of the phase angle.

A linear filtering operation does not alter the frequencies of the components
which constitute the signal; so that, if a simple sinusoidal component with a given
frequency is passed through a linear filter, then the output will be a sinusoid of the
same frequency.

To understand these results, let us consider the case of an elementary complex
exponential function which is one of the components subsumed under the integral
of (16.4):

x(t) = eiωt = cos(ωt) + i sin(ωt).(16.5)
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Re

Im

Figure 16.1. The path described in the complex plane by the frequency-
response function ψ(ω) of the differencing filter ψ(L) = L2−L3 as ω increases
from −π to π. The corresponding gain and phase functions are given by
Figures 16.2 and 16.3. The trajectory originates in the point on the real axis
marked by a dot. It traverses the origin when ω = 0 and it returns to the dot
when ω = π.

When this is passed through the filter, it becomes

y(t) =ψ(L)eiωt =
∑
j

ψje
iω(t−j)

=
{∑

j

ψje
−iωj

}
eiωt = ψ(ω)eiωt.

(16.6)

Thus the effects of the filter are summarised by the complex-valued frequency-
response function

ψ(ω) =
∑
j

ψje
−iωj .(16.7)

This is just the discrete-time Fourier transform of the sequence of filter coefficients.
Equally, it is the z-transform ψ(z−1) =

∑
ψjz
−1 evaluated at the points z = eiω.

Notice that this transform is in terms of z−1 rather than z.
There is a one-to-one correspondence between the coefficients and their Fourier

transform. Therefore, the frequency-domain description of the filter, which is pro-
vided by the frequency-response function, is equivalent to the time-domain descrip-
tion, which is provided by the impulse-response function.

As ω progresses from −π to π, or, equally, as z = eiω travels around the unit
circle, the frequency-response function defines a trajectory in the complex plane
which becomes a closed contour when ω reaches π. The points on the trajectory
are characterised by their polar coordinates. These are the modulus |ψ(ω)|, which
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is the length of the radius vector joining ψ(ω) to the origin, and the argument
Arg{ψ(ω)} = −θ(ω) which is the (anticlockwise) angle in radians which the radius
makes with the positive real axis.

To demonstrate the effects of the filter in these terms, consider writing the
frequency-response function in polar form:

ψ(ω) = |ψ(ω)|e−iθ(ω) = |ψ(ω)|
[
cos
{
θ(ω)

}
− i sin

{
θ(ω)

}]
.(16.8)

Then the final expression under (16.6) becomes

y(t) = |ψ(ω)|ei{ωt−θ(ω)}

= |ψ(ω)|
[
cos
{
ωt− θ(ω)

}
+ i sin

{
ωt− θ(ω)

}]
.

(16.9)

This shows that the amplitude of the input signal, which is the complex exponential
function x(t) = eiωt of (16.5), is multiplied by the gain |ψ(ω)|, due to the modulus
of the frequency-response function. It also shows that the phase of the signal is
displaced by an angle of θ(ω), due to the argument of the function.

If the phase shift is divided by ω, then it becomes the phase delay, which is
a measure of the time delay experienced by the signal x(t) in passing through the
filter:

τ(ω) =
θ(ω)
ω

.(16.10)

The group delay of the filter is the derivative of the phase function with respect to ω:

τ̃(ω) =
dθ(ω)
dω

.(16.11)

The gain and the phase are periodic functions of the angular frequency ω which
are completely characterised by the values which they take over the interval (−π, π].
Moreover, the functions are often plotted only for values of ω in the interval [0, π]
in the knowledge that, for real-valued impulse responses, the gain |ψ(−ω)| = |ψ(ω)|
is an even function and the phase θ(−ω) = −θ(ω) is an odd function.

Whereas the frequency response ψ(ω) is an analytic function, the corresponding
argument and modulus are not. The slope of the modulus may become discontin-
uous when the modulus itself assumes a value of zero. The argument also is liable
to show discontinuities. It increases by jumps of π at the points where |ψ(ω)| has a
zero value and a discontinuous slope. It also jumps to −π whenever it looks set to
exceed a value of π. These features can be understood in reference to a diagram of
the trajectory of ψ(ω). (See Figure 16.1 and the related diagrams of Figures 16.2
and 16.3.) A jump in θ(ω) from π to −π occurs whenever the trajectory crosses
the real axis to the left of the origin. A jump of π occurs whenever the trajectory
passes through the origin, which happens whenever z = eiω coincides with a zero
of ψ(z−1) located on the unit circle.

These various discontinuities are consequences of definitions which may be
amended easily. A trigonometrical function which has a lag of θ∗ ∈ [π, 2π] is
indistinguishable, in effect, from one which has a lead of 2π − θ∗ = θ ∈ [0, π];
and, according to the definition of the Arg function, when a lag exceeds π it is

462



16: LINEAR FILTERS

0.0

0.5

1.0

1.5

2.0

0 π/2−π/2 π−π

Figure 16.2. The gain |ψ(ω)| of the differencing filter ψ(L) = L2 − L3.

0 π/2 π−π/2−π

π

−π

Figure 16.3. The phase −Arg{ψ(ω)} of the differencing filter ψ(L) = L2 − L3.
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instantly commuted into a lead. The corresponding jump of 2π would not occur
if the phase lag were allowed to accumulate continuously to reflect the fact that a
linear filter imposes virtually the same delay upon components of the signal with
adjacent frequencies. The jumps in θ(ω) of π, which occur when the trajectory of
ψ(ω) passes through the origin, are the consequence of not allowing the modulus
to change its sign. The sign change of −1 = e±iπ is bound to be absorbed by the
phase function. If the appropriate sign were applied instead to the modulus, then
there would be no phase jump.

Example 16.1. Consider the application of a four-point moving average to an
quarterly economic time series—the object being to remove the seasonal component
from the series. Imagine that the data is processed with a three-month delay. Then,
if x(t) is the quarterly series, the deseasonalised series, which is published at time
t, will be given by

y(t) =
1
4
{
x(t− 1) + · · ·+ x(t− 4)

}
.(16.12)

The z-transform of the corresponding filter is

ψ(z−1) =
1
4
(
z−1 + z−2 + z−3 + z−4

)
=

1
4z4

(z + 1)(z + i)(z − i).
(16.13)

The factorisation indicates that ψ(z−1) has roots of z = −1 and z = ±i. These
correspond to points on the unit circle at the angles ω = ±π and ω = ±π/2. Figure
16.4 shows that the gain is zero at the latter frequencies and unity at the zero
frequency. The zero gain at ω = ±π/2 corresponds to the removal of a four-period
(i.e. annual) cycle, whilst the unit gain at zero frequency indicates that the trend
in the series is preserved.

To understand the phase function which is depicted in Figure 16.5, consider
writing the frequency-response function as

ψ(ω) = e−iω
1
4
(
1 + e−iω + e−i2ω + e−i3ω

)
= e−i5ω/2

1
4
(
ei3ω/2 + eiω/2 + e−iω/2 + e−i3ω/2

)
=

1
2
{

cos(1
2ω) + cos(3

2ω)
}
e−i5ω/2.

(16.14)

The final expression is the product of a real-valued factor and a complex exponential
factor. The real-valued factor is the amplitude function of which the modulus |ψ(ω)|
is the absolute value. The exponential term bears an exponent which corresponds
to a continuous version of the phase function from which the jumps have been
eliminated. This function indicates that the filter imposes a delay of 2 1

2 periods
upon the deseasonalised series which is uniform over the range of frequencies.

The linearity of the phase effect is apparent in Figure 16.5. There are four
jumps in the phase function θ(ω) in the interval [0, π]. The first jump of 2π radians
occurs at ω = (2/5)π, which is where the value of 5ω/2 equals π. The second jump,
which is of π radians, occurs at ω = π where the real-valued amplitude function
changes sign. The remaining jumps have similar explanations.
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0 π/2−π/2 π−π

Figure 16.4. The gain of the deseasonalising filter ψ(L) = 1
4
(L+ · · ·+ L4).

0 π/2 π−π/2−π

π

−π

Figure 16.5. The phase effect of the deseasonalising filter ψ(L) = 1
4
(L+ · · ·+ L4).
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Computing the Gain and Phase Functions

To provide more explicit expressions for the gain and the phase displacement,
which will help in computing, consider decomposing ψ(ω) into its real and imaginary
components. Then (16.7) becomes

ψ(ω) = ψre(ω) + iψim(ω)(16.15)

with

ψre(ω) =
∑
j

ψj cos(ωj) and ψim(ω) = −
∑
j

ψj sin(ωj),(16.16)

The squared-gain of the filter is given by

|ψ(ω)|2 =
{
ψre(ω)

}2 +
{
ψim(ω)

}2
,(16.17)

whilst its phase displacement is given by

θ(ω) = −Arg
{
ψre(ω) + iψim(ω)

}
.(16.18)

In general, the filter ψ(L) = δ(L)/γ(L) is expressible as the ratio of two polyno-
mials in the lag operator. There is no need to generate the sequence {ψj} of filter
coefficients by expanding the rational function. Instead, the real and imaginary
parts of ψ(ω) may be obtained via the equation

ψ(ω) =
δre(ω) + iδim(ω)
γre(ω) + iγim(ω)

=

{
δre + iδim

}{
γre − iγim

}{
γre
}2 +

{
γim

}2

=

{
δreγre + δimγim

}
+ i
{
δimγre − δreγim

}{
γre
}2 +

{
γim

}2 .

(16.19)

The following Pascal procedure calculates both the gain and the phase for a given
value of the ω.

(16.20) procedure GainAndPhase(var gain, phase : real;
delta, gamma : vector;
omega : real;
d, g : integer);

var
i, j : integer;
gamm, delt, psi : complex;
numerator, denominator : real;

begin
delt.re := 0.0;
delt.im := 0.0;

466



16: LINEAR FILTERS

for j := 0 to d do
begin
delt.re := delt.re+ delta[j] ∗ Cos(omega ∗ j);
delt.im := delt.im+ delta[j] ∗ Sin(omega ∗ j);

end;

gamm.re := 0.0;
gamm.im := 0.0;
for j := 0 to g do

begin
gamm.re := gamm.re+ gamma[j] ∗ Cos(omega ∗ j);
gamm.im := gamm.im+ gamma[j] ∗ Sin(omega ∗ j);

end;

psi.re := delt.re ∗ gamm.re+ delt.im ∗ gamm.im;
psi.im := delt.im ∗ gamm.re− delt.re ∗ gamm.im;
numerator := Sqr(psi.re) + Sqr(psi.im);
denominator := Sqr(gamm.re) + Sqr(gamm.im);
gain := Sqrt(numerator)/denominator;
phase := −Arg(psi);

end; {GainAndPhase}

The procedure uses a special function for calculating −θ(ω) = Arg{ψre(ω)
+ iψim(ω)}. The value of Arg(z) is simply the angle which the vector z = α + iβ
makes with the positive real axis. In FORTRAN, this would be found using the
function ATAN2 which takes as its arguments the real numbers α and β. In Pascal,
we have to make use of the function arctan(x) which finds the angle in radians
corresponding to a positive or negative tangent x = β/α. The difference between
arctan(x) and Arg(z) is illustrated in Figure 16.6.

There is some variation amongst texts of signal processing and elsewhere in
the definition of the arctan function. Thus, for example, Oppenheim and Schafer
[372, p. 215] regard it as synonymous with the Arg function. We shall adopt the
definition of arctan which is common in programming languages. Moreover, we
shall persist in using tan−1(β/α) to denote a function which is synonymous with
Arg(α+ iβ) for all β ≥ 0.

The Arg function, which is defined for all α and β, is coded in Pascal as follows:

(16.21) function Arg(psi : complex) : real;

var
theta : real;

begin
if psi.re = 0 then
theta := Sign(psi.im) ∗ pi/2;

if psi.re <> 0 then
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Figure 16.6. The function Arg(α + iβ) finds the angle in radians which
z = α+ iβ makes with the positive real axis. The function arctan(β/α) finds
the angle in radians corresponding to a positive or negative tangent.

theta := ArcTan(psi.im/psi.re);
if psi.re < 0 then
theta := theta+ Sign(psi.im) ∗ pi;

Arg := theta;
end;

An alternative way of computing the squared gain is available if there is no
interest in calculating the phase. Consider the equation

|ψ(ω)|2 =
(∑

j

ψje
−iωj

)(∑
k

ψke
iωk

)
=
∑
j

∑
k

ψjψke
−iω(j−k)

=
∑
τ

(∑
j

ψjψj−τ

)
e−iωτ ; τ = j − k.

(16.22)

On defining

φτ =
∑
j

ψjψj−τ ,(16.23)

this can be written as

|ψ(ω)|2 =
∑
τ

φτe
−iωτ = φ0 + 2

∑
τ>0

φτ cos(ωτ),(16.24)

where the final expression depends upon the conditions φτ = φ−τ and the identity
(eiωτ + e−iωτ ) = 2 cos(ωτ) which is from the familiar Euler equation. The squared
gain is calculated from (16.23) and (16.24).
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The same expressions for the squared gain can be derived by expanding equa-
tion (16.17):

|ψ(ω)|2 =
{∑

j

ψj cos(ωj)
}2

+
{∑

j

ψj sin(ωj)
}2

=
{∑

j

∑
k

ψjψk cos(ωj) cos(ωk)
}

+
{∑

j

∑
k

ψjψk sin(ωj) sin(ωk)
}
.

(16.25)

The identity cos(A) cos(B) + sin(A) sin(B) = cos(A − B) indicates that this may
be written as

|ψ(ω)|2 =
∑
j

∑
k

ψjψk cos(ω[j − k])

=
∑
τ

φτ cos(ωτ).
(16.26)

In the final expression, the sum is over positive and negative values of τ . Since
φτ = φ−τ and since the cosine is an even function, the final expression may be
rewritten as the one-sided sum of (16.24).

In the case of an FIR filter, these formulae lend themselves to more rapid com-
putation than do those which are incorporated in the Pascal procedure. However,
they do not assist us in computing the phase.

The interest in the phase effect of linear filtering varies greatly amongst prac-
tical applications. Whereas it is usually necessary to take account of the phase
effect in communications engineering, the effect is of minor interest in the analysis
of random mechanical vibrations.

The Poles and Zeros of the Filter

The characteristics of a linear filter ψ(L) = δ(L)/γ(L), which are manifested
in its frequency-response function, can be explained in terms of the location in the
complex plane of the poles and zeros of ψ(z−1) = δ(z−1)/γ(z−1) which include the
roots of the constituent polynomials γ(z−1) and δ(z−1). Consider, therefore, the
expression

ψ(z−1) = zg−d
δ0z

d + δ1z
d−1 + · · ·+ δd

γ0zg + γ1zg−1 + · · ·+ γg
.(16.27)

This stands for a causal or backward-looking filter. In fact, the restriction of causal-
ity is unnecessary, and the action of the filter can be shifted in time without affecting
its essential properties. Such a shift would be represented by multiplying the filter
by a power of z. There would be no effect upon the gain of the filter, whilst
the effect upon the phase would be linear, in the sense that each component of a
signal, regardless of its frequency, would be advanced (if the power were positive)
or delayed (if the power were negative) by the same amount of time.
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The numerator and denominator of ψ(z−1) may be factorised to give

ψ(z−1) = zg−d
δ0
γ0

(z − µ1)(z − µ2) · · · (z − µd)
(z − κ1)(z − κ2) · · · (z − κg)

,(16.28)

where µ1, µ2, . . . , µd are zeros of ψ(z−1) and κ1, κ2, . . . , κg are poles. The term
zg−d contributes a further g zeros and d poles at the origin. If these do not cancel
completely, then they will leave, as a remainder, a positive or negative power of z
whose phase-shifting effect has been mentioned above.

The BIBO stability condition requires that ψ(z−1) must be finite-valued for
all z with |z| ≥ 1, for which it is necessary and sufficient that |κj | < 1 for all
j = 1, . . . , g.

The effect of the filter can be assessed by plotting its poles and zeros on an
Argand diagram. The frequency-response function is simply the set of the values
which are assumed by the complex function ψ(z−1) as z travels around the unit
circle; and, at any point on the circle, we can assess the contribution which each
pole and zero makes to the gain and phase of the filter. Setting z = eiω in (16.28),
which places z on the circumference of the unit circle, gives

ψ(e−iω) = ei(g−d)ω
δ0
γ0

(eiω − µ1)(eiω − µ2) · · · (eiω − µd)
(eiω − κ1)(eiω − κ2) · · · (eiω − κg)

.(16.29)

The generic factors in this expression can be written in polar form as

eiω − µj = |eiω − µj |eiφj(ω)

= ρj(ω)eiφj(ω)
and

eiω − κj = |eiω − κj |eiϕj(ω)

= λj(ω)eiϕj(ω).
(16.30)

When the frequency-response function as a whole is written in polar form, it be-
comes ψ(ω) = |ψ(ω)|e−iθ(ω), with

|ψ(e−iω)|=
∣∣∣∣ δ0γ0

∣∣∣∣ |eiω − µ1| |eiω − µ2| · · · |eiω − µd|
|eiω − κ1| |eiω − κ2| · · · |eiω − κg|

=
∣∣∣∣ δ0γ0

∣∣∣∣ ∏ ρj(ω)∏
λj(ω)

(16.31)

and

θ(ω) = (d− g)ω −
{
φ1(ω) + · · ·+ φd(ω)

}
+
{
ϕ1(ω) + · · ·+ ϕg(ω)

}
.(16.32)

The value of λj = |eiω−κj | is simply the distance from the pole κj to the point
z = eiω on the unit circle whose radius makes an angle of ω with the positive real
axis. It can be seen that the value of λj is minimised when ω = Arg(κj) and max-
imised when ω = π+Arg(κj). Since λj is a factor in the denominator of the function
|ψ(ω)|, it follows that the pole κj makes its greatest contribution to the gain of the
filter when ω = Arg(κj) and its least contribution when ω = π+Arg(κj). Moreover,
if κj is very close to the unit circle, then its contribution to the gain at ω = Arg(κj)
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Figure 16.7. The pair of conjugate zeros µj , j = 1, 2 are evaluated at the
point z = eiω on the unit circle by finding the moduli ρj = |z − µj | and the
arguments φj = Arg(z − µj) of the corresponding factors.

will be very large. The effect of the zeros upon the gain of the filter is the opposite
of the effect of the poles. In particular, a zero µj which lies on the perimeter of the
unit circle will cause the gain of the filter to become zero at the frequency value
which coincides with the zero’s argument—that is to say, when ω = Arg(µj).

The effect of the placement of the poles and zeros upon the phase of the filter
may also be discerned from the Argand diagram. Thus it can be seen that the value
of the derivative dArg(eiω − µj)/dω is maximised an the point on the circle where
ω = Arg(µj). Moreover, the value of the maximum increases with the diminution
of |eiω − µj |, which is the distance between the root and the point on the circle.

The results of this section may be related to the argument principle which is
stated under (3.127). According to the principle, the number of times the trajectory
of a function f(z) encircles the origin as z = eiω travels around the unit circle is
equal to the number N of the zeros of f(z) which lie within the circle less the
number P of the poles which lie within the circle.

In applying the principle in the present context, one must observe the fact that
the polynomials comprised by the rational function ψ(z−1) are in terms of negative
powers of z. For, on factorising the numerator polynomial δ(z−1) = δ0 + δ1z

−1 +
· · · + δdz

−d, it is found that δ(z−1) = δ0
∏
j(1 − µj/z) = z−dδ0

∏
j(z − µ), which

indicates that the polynomial contributes d poles as well as d zeros to the rational
function.

Example 16.2. Consider the FIR filter

ψ(L) = (1− µ1L)(1− µ2L) = 1− (µ1 + µ2)L+ µ1µ2L
2.(16.33)

With z−1 in place of L, this becomes

ψ(z−1) = (1− µ1z
−1)(1− µ2z

−1) =
(z − µ1)(z − µ2)

z2
,(16.34)
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from which it can be seen that there is a double pole located at zero and two zeros
at the points µ1 and µ2. We shall assume for, the sake of generality, that the zeros
are conjugate complex numbers µ1 = µ = ρeiθ and µ2 = µ∗ = ρe−iθ. Then, with
z = eiω, the first factor 1− µ1z becomes

1− ρeiθe−iω = 1− ρ
{

cos(θ − ω) + i sin(θ − ω)
}

= 1− ρ cos(ω − θ) + iρ sin(ω − θ).
(16.35)

The case where µ is real can be accommodated simply by setting θ = 0.
The contribution of this factor to the squared gain of the filter is

|1− ρeiθe−iω|2 =
{

1− ρei(θ−ω)
}{

1− ρe−i(θ−ω)
}

= 1− ρ
{
ei(θ−ω) + e−i(θ−ω)

}
+ ρ2

= 1− 2ρ cos(θ − ω) + ρ2;

(16.36)

and it is manifest that, as the geometry of Figure 16.7 suggests, this is minimised
when ω = θ, which is when the cosine takes the value of 1. Notice also that the
same result would be obtained from z − µ1, which is to say the extra factor z−1,
which corresponds to a pole at zero, has no effect upon the gain of the filter. The
contribution of the conjugate factor 1− ρe−iθe−iω is

|1− ρe−iθe−iω|2 = 1− 2ρ cos(ω + θ) + ρ2.(16.37)

The contribution to the phase of the first factor is −Arg
(
1 − ρei(θ−ω)). It can be

seen, in reference to the expression for a complex exponential under (16.5), that
Arg(1 − ρeiθ−ω) = 0 when ω = θ. For a given value of ρ, the variations in the
value of θ have the effect simply of shifting the phase curve along the horizontal
axis. The combined contributions to the phase of the factor 1 − ρeiφe−iω and its
conjugate 1− ρe−iφe−iω are plotted in Figure 16.8.

It is sometimes useful to have an explicit expression for the group delay at-
tributable to the factor of the filter polynomial. It can be shown that

− d

dω
Arg

{
1− ρei(θ−ω)

}
=

ρ2 − ρ cos(ω − θ)
1− 2ρ cos(ω − θ) + ρ2

.(16.38)

Example 16.3. Consider the second-order IIR filter

ψ(L) =
1

(1− κL)(1− κ∗L)
,

with κ = λeiϕ, where |λ| < 1 to ensure stability. The effects of this filter can be
inferred from the effects of the corresponding IIR filter of which it represents the
inverse. That is to say, at any particular frequency, the product of the gain of the
FIR filter with that of the inverse IIR filter will be unity. Therefore, a peak in the
gain of the IIR filter corresponds to a trough in the gain of the FIR filter. The
phase effect of the IIR filter is simply the negative of the phase effect of the inverse
FIR filter.
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Figure 16.8. The gain and the phase effect of the second-order FIR filter
(1−µL)(1−µ∗L) where µ = ρeiθ with ρ = 0.5 and θ = π/2. The contributions
of the individual zeros are represented by the continuous lines. Their joint
contribution is represented by the dashed lines.
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Figure 16.9. The gain and the phase effect of the second-order IIR filter
{(1 − κL)(1 − κ∗L)}−1 where κ = λeiϕ with λ = 0.5 and ϕ = π/4. The
contributions of the individual poles are represented by the continuous lines.
Their joint contribution is represented by the dashed lines.
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The magnitude of the gain at the frequency ω of the second-order FIR filter
will be the reciprocal of the products of the lengths of the vectors z−κ and z−κ∗,
where z = eiω is the point on the unit circle which makes an angle of ω with the
positive real axis. If κ is close to the unit circle, then its contribution to the gain
at the frequency ω = Arg(κ) will dominate the contribution of the conjugate pole
κ∗. In that case, there will be a peak in the gain at a frequency close to the value
of Arg(κ).

In Figure 16.9, where κ is remote from the unit circle, the gain has a peak in the
interval [0, π] at a frequency which is significantly below the value of π/4 = Arg(κ).

Inverse Filtering and Minimum-Phase Filters

The question sometimes arises of whether it is possible to recover the original
form of a signal after it has been subjected to a process of linear filtering. The ques-
tion has practical importance since it relates to the problem of removing distortions
from observed signals which have been introduced by measuring instruments or by
the physical medium through which the signal has been transmitted. If these effects
can be modelled by a linear filter, then the issue is a matter of whether or not the
distorting filter is invertible.

A filter may noninvertible for two reasons. On the one hand, the filter may
impose an irreversible delay upon the signal. This, in itself, implies no disadvantage
unless there is a requirement for rapid processing in real time. On the other hand,
the filter may destroy part of the information in the original signal which becomes
irrecoverable.

A filter which has both of these effects is to be found in Example 16.1 which
concerns a method for processing a quarterly economic time series in order to remove
its seasonal component. This filter, which imposes a real-time delay upon the signal,
incorporates several zeros located on the unit circle at various angles. The filter
annihilates the components of the original signal whose frequencies correspond to
the phase angles of the zeros.

The necessary and sufficient condition for the invertibility of a linear filter is
discussed at length in Chapter 17 on linear time-series models, where the invert-
ibility of an autoregressive moving-average filter is investigated. A stable causal
filter ψ(L) = δ(L)/γ(L) is invertible if and only if there exists an inverse function
ψ−1(L) = γ(L)/δ(L) such that ψ−1(L)ψ(L) = 1. A necessary and sufficient con-
dition for the existence of ψ−1(L) is that the roots of the numerator polynomial
δ(z−1) = 0, i.e. the zeros of ψ(z−1), fall inside the circle. From the presumption
that the filter is stable, it follows that the roots of γ(z−1) = 0, i.e. the poles of
ψ(z−1), also fall inside the circle.

A noninvertible filter ψ̂(L) is one for which some of the zeros of the function
ψ̂(z−1) fall on or outside the unit circle. A filter with zeros outside the unit circle
may be converted to an invertible filter with an identical gain simply by replacing
these zeros by their reciprocal values and by applying a scale factor, which is the
product of the zeros, to the filter as a whole. The factor is, of course, real-valued
on the assumption that the complex roots are in conjugate pairs.

Conversely, any noninvertible filter may be depicted as the product of an invert-
ible filter ψ(L) and a noninvertible filter α(L) described as an allpass filter. The
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rational function α(z−1) corresponding to the allpass filter contains poles which
cancel some of the zeros of ψ(z−1) and it contains a new set of zeros, outside the
unit circle, which are the reciprocals of the cancelled zeros. As its name suggests,
an allpass filter has no gain effect, but it does have a phase effect which induces
delays at all frequencies.

To clarify these matters, consider the factorisation of ψ(z−1) given under
(16.28), and imagine that this relates to an invertible filter. Then the noninvertible
filter, which replaces r of the zeros of ψ(z−1) by their reciprocals, may be written
as

ψ̂(z−1) = ψ(z−1)
r∏
j=0

µj
z − µ−1

j

z − µj
= ψ(z−1)α(z−1).(16.39)

The generic factor of the allpass function α(z−1) is

ζ(z−1) = µj
z − µ−1

j

z − µj
= −z−1 1− µjz

1− µjz−1
.(16.40)

Setting z = eiω gives the frequency response of the factor:

ζ(ω) = e−iω
1− µjeiω

1− µje−iω
.(16.41)

From this, it is easy to see that, in the case where µj is real, the gain of the factor
is |ζ(ω)| = 1; which is to say that the factor does not affect the gain of the filter. In
the case where µj is complex, the factor ζ(ω) is combined with its conjugate factor
ζ∗(ω), and the gain of the combination is shown to be unity with the same ease.

In demonstrating the phase effect of the allpass filter, we shall take µj = ρje
iθ

to be complex number, for the sake of generality. Observe that ρj = |µj | < 1, since
the original filter ψ(L), to whose numerator the root µj belongs, is assumed to be
invertible. In this case, we are bound to take the generic factor in conjunction with
its conjugate. We find that

Arg{ζ(ω)ζ∗(ω)} = Arg
{

(e−iω − ρeiθ)(e−iω − ρe−iθ)
(1− ρeiθe−iω)(1− ρe−iθe−iω)

}
= −2ω − 2Arg

{
1− ρ−i(ω−θ)

}
− 2Arg

{
1− ρ−i(ω+θ)

}
.

(16.42)

It transpires that Arg{ζ(ω)ζ∗(ω)} ≤ 0 for ω ∈ [0, π]. The same result can be
demonstrated for a factor containing a real-valued root. This implies that, via their
phase effects, the factors impose delays upon components of all frequencies. Since
the phase effect of the allpass filter α(L) is just the sum the phase effects of its
factors, the inference is that an allpass filter creates delays at all frequencies.

We are now in a position to give an important syllogism which highlights an
essential characteristic of an invertible filter. The first premise is that an allpass
filter imposes a delay upon signal components of all frequencies. The second premise
is that a noninvertible filter may be represented as the product of an allpass filter
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and an invertible filter. The conclusion which follows is that an invertible filter
imposes the least delay of all the filters which share the same gain. For this reason,
an invertible filter is commonly described as a minimum-phase filter. The condition
of invertibility is often described as the miniphase condition.

Linear-Phase Filters

In designing a filter which selects certain frequencies from signals and rejects
others, the gain should be made approximately constant amongst the selected fre-
quencies and the phase effect, if there is one, should be linear so as to impose the
same delay at each of the frequencies. A filter with a nonlinear phase effect would
distort the shape of the signal; and the frequency components would be advanced
in time or retarded to varying extents.

Digital filters with a finite-duration impulse response have the advantage that
they can achieve exactly linear phase effects.

An FIR filter which achieves a linear phase effect may be a regarded as the
product of a filter which imposes a simple delay and a filter which has no phase
effect. That is to say, the frequency-response function of a linear-phase system may
be written in the form of

ψ(ω) = µ(ω)e−iωM ,(16.43)

where e−iωM is the Fourier transform of the function δ(t−M) which represents a
unit impulse delayed by M periods and where µ(ω) is a function, with no phase
effect, which is either purely real or purely imaginary. To understand the relevance
of the latter condition, we may note that, if the trajectory of µ(ω) is confined to
one or other of the axes of the complex plane, then the only variation in the phase
angle will be the jump of π when the origin is traversed. Such a phase jump is a
mathematical construct for which there is no corresponding effect in the signal.

The sequence of filter coefficients {µj} must be chosen so as to bestow the
requisite properties upon the function µ(ω) which is its Fourier transform. This is
achieved by exploiting some of the symmetry properties of the Fourier transform
which are recorded in Table 13.2. The table indicates that, if a sequence of real-
valued filter coefficients constitutes an even or symmetric function with ψj = ψ−j ,
then the Fourier transform will be real valued, whereas, if the sequence constitutes
an odd or antisymmetric function with −ψj = ψ−j , then Fourier transform will be
purely imaginary.

It is easiest to demonstrate the effect of the conditions by considering first the
case of the filter

µ(L) = ψ−ML
−M + · · ·+ ψ−1L

−1 + ψ0 + ψ1L+ · · ·+ ψML
M(16.44)

which comprises an odd number of q+1 = 2M+1 coefficients disposed equally about
the central coefficient ψ0. This is a noncausal filter which looks both backwards
and forwards in time; and it is of the sort that can be used only in processing a
recorded signal.
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If a condition of symmetry is imposed on µ(L) to the effect that ψj = ψ−j for
j = 1, . . . ,M , then the frequency-response function can be written as

µ(ω) =
M∑

j=−M
ψje
−iωj = ψ0 +

M∑
j=1

ψj
(
eiωj + e−iωj

)
=ψ0 + 2

M∑
j=1

ψj cos(ωj).

(16.45)

This function, which is the Fourier transform of an even sequence, is real-valued
with µre(ω) = µ(ω) and µim(ω) = 0. It follows that the phase response is

Arg
{
µ(ω)

}
=

{
0, if µ(ω) > 0;

±π, if µ(ω) < 0.
(16.46)

Thus, apart from the jump of π radians which occurs when µ(ω) changes sign, there
is no phase effect.

Now consider the case where the q + 1 = 2M + 1 filter coefficients of (16.44)
form an odd or antisymmetric sequence with ψ0 = 0 as the central coefficient. Then
ψj = −ψ−j for j = 1, . . . ,M , and the frequency-response function is

µ(ω) =
M∑
j=1

ψj
(
eiωj − e−iωj

)
=−2i

M∑
j=1

ψj sin(ωj).

(16.47)

Here µ(ω) = iµim(ω), which is the Fourier transform of an odd sequence, is a purely
imaginary function of the frequency ω. It follows that the phase response is

Arg
{
µ(ω)

}
=

{
π/2, if µim(ω) > 0;

π/2± π, if µim(ω) < 0.
(16.48)

Now let us consider the general case of a causal linear-phase filter

ψ(L) = ψ0 + ψL+ · · ·+ ψqL
q,(16.49)

which may have an odd or an even number of filter coefficients. Let M = q/2 be
the midpoint of the sequence of coefficients, which will coincide with the central
coefficient if q is an even number, and which will fall between two coefficients if
q is an odd number. The value of M will also give the length of the least time
delay imposed by the filter if it is to be completely causal. The frequency-response
function of the filter is

ψ(ω) =
q∑
j=0

ψje
−iωj

= e−iωM
q∑
j=0

ψje
−iω(j−M) = e−iωMµ(ω).

(16.50)
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Since q = 2M , this can also be written as

ψ(ω) = e−iωM
{
ψ0e

iωM + ψ1e
iω(M−1) + · · ·

+ ψq−1e
−iω(M−1) + ψqe

−iωM}
= e−iωM

{
(ψ0 + ψq) cos(ωM) + i(ψ0 − ψq) sin(ωM)

+ (ψ1 + ψq−1) cos(ω[M − 1])
+ i(ψ1 − ψq−1) sin(ω[M − 1]) + · · ·

}
.

(16.51)

We can proceed to impose some structure upon the set of filter coefficients. There
are four cases to consider. The first two depend upon the symmetry conditions
ψj = ψq−j . When the degree q is even, which is to say that there is an odd number
of filter coefficients, then we have Case 1:

µ(ω) = ψM + 2
M−1∑
j=0

ψj cos(ω[M − j]).(16.52)

When q is odd and there is an even number of coefficients, we have Case 2:

µ(ω) = 2
(q−1)/2∑
j=0

ψj cos(ω[M − j]).(16.53)

Apart from the indexing of the parameters, these two equations are instances of
equation (16.45) which gives rise to the conditions of (16.46). The second pair of
cases depend upon the condition of antisymmetry: ψj = −ψq−j . When q is even,
we have Case 3:

µ(ω) = 2i
M−1∑
j=0

ψj sin(ω[M − j]).(16.54)

Here, the condition of antisymmetry sets ψM = 0, since this is the central coefficient
of the filter. When q is odd, we have Case 4:

µ(ω) = 2i
(q−1)/2∑
j=0

ψj sin(ω[M − j]).(16.55)

These equations are instances of equation (16.47) which generates the conditions
of (16.48).

Locations of the Zeros of Linear-Phase Filters

The conditions of symmetry and antisymmetry, which are associated with a
linear phase effect, impose restrictions on the placement of the zeros of the filter.
Consider the primary polynomial ψ(z), obtained as the z-transform of the filter
coefficients, together with the corresponding auxiliary polynomial ψ′(z):

ψ(z) =ψ0 + ψ1z + · · ·+ ψq−1z
q−1 + ψqz

q,

ψ′(z) =ψq + ψq−1z + · · ·+ ψ1z
q−1 + ψ0z

q.
(16.56)
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Figure 16.10. The coefficients and zero locations of four linear-phase FIR filters.
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Figure 16.11. The gain of four linear-phase FIR filters.
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In this application, it makes no difference whether we consider ψ(z−1) or ψ(z), and
the latter presents an tidier notation. Notice that ψ′(z) = zqψ(z−1).

The condition of symmetry is simply that ψ(z) = ψ′(z). Now, if λ is a zero
of ψ(z) such that ψ(λ) = 0, then 1/λ is a zero of ψ(z−1) and, therefore, of ψ′(z).
But, if ψ(z) = ψ′(z), then it is implied that both the zero λ and its reciprocal 1/λ
are present in the factors of ψ(z). However, if a zero lies on the unit circle, then its
reciprocal is its complex conjugate.

The condition of antisymmetry is that ψ(z) = −ψ′(z) or, equivalently, that
ψ(z)+ψ′(z) = 0. Setting z = 1 indicates that

∑
ψj = 0, from which it follows that

λ = 1 must be a zero of ψ(z) such that ψ(z) = (1− z)β(z). Now consider

ψ′(z) = zqψ(z−1)

= zq
(

1− 1
z

)
β(z−1)

= zq
(

1− 1
z

){
z1−qβ′(z)

}
= (z − 1)β′(z).

(16.57)

We see immediately that the condition

ψ(z) = (1− z)β(z) = −ψ′(z) = (1− z)β′(z)(16.58)

implies that β(z) = β′(z). Therefore, the antisymmetric polynomial ψ(z) = −ψ′(z)
is the product of a symmetric polynomial β(z) and the antisymmetric factor (1−z).
Given that (1 − z)2n is a symmetric polynomial and that (1 − z)2n+1 is an anti-
symmetric polynomial, we infer that the condition ψ(z) = −ψ′(z) of antisymmetry
implies that the zero λ = 1 must be present in an odd number of the factors of
ψ(z). The condition ψ(z) = ψ′(z) of symmetry, on the other hand, implies that,
if the zero λ = 1 is present amongst the factors, then it must occur with an even
multiplicity.

A final inference regarding the placement of the zeros concerns a polynomial
of odd degree. This must have an odd number of zeros. If the polynomial is either
symmetric or antisymmetric, then the only zeros which do not come in pairs or
quadruples—which are complex conjugate pairs of reciprocal pairs—are the real-
valued zeros which lie on the unit circle. Therefore, if the order q of ψ(z) is odd,
then the polynomial must comprise one or other of the zeros λ = 1, λ = −1 with
an odd multiplicity.

One can be more specific. If ψ(z) is symmetric and of odd degree, then it must
contain the zero λ = −1 with an odd multiplicity. If ψ(z) is antisymmetric and
of odd degree, then it must contain the zero λ = 1 with an odd multiplicity and,
if the zero λ = −1 is present, this must be of even multiplicity. Finally, if ψ(z) is
antisymmetric and of even degree then it must contain both λ = 1 and λ = −1.

The significance of these results concerning the presence of roots on the unit
circle is that they indicate the frequencies at which the filter will have zero gain.
Thus, for example, an antisymmetric filter which is bound to have zero gain at zero
frequency (on account of the zero λ = 1) is inappropriate as a lowpass filter. It
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might be used as a highpass filter; but, in that case, the order q of ψ(z) should be
odd to avoid having zero gain at the frequency ω = π (which, in the case of an even
q, is due to the presence of the zero λ = −1).

It may be useful to have a summary of the results of this section:

(16.59) Case 1: q = 2M is even, ψ(z) = ψ′(z) is symmetric

(i) ψj = ψq−j ; j = 0, . . . ,M − 1.

Case 2: q is odd, ψ(z) = ψ′(z) is symmetric

(i) ψj = ψq−j ; j = 0, . . . , (q − 1)/2,

(ii) ψ(ω) = 0 at ω = π.

Case 3: q = 2M is even, ψ(z) = −ψ′(z) is antisymmetric

(i) ψj = −ψq−j ; j = 0, . . . ,M − 1,

(ii) ψM = 0,

(iii) ψ(ω) = 0 at ω = 0,

(iv) ψ(ω) = 0 at ω = π.

Case 4: q is odd, ψ(z) = −ψ′(z) is antisymmetric

(i) ψj = −ψq−j ; j = 0, . . . , (q − 1)/2,

(ii) ψ(ω) = 0 at ω = 0.

These four cases are illustrated in Figure 16.10, which displays the coefficients
and the zeros of the filters, and in Figure 16.11, which shows the corresponding gain
of the filters. The illustration of Case 1 is a prototype of a lowpass filter whereas
that of Case 4 is a prototype of a highpass filter.

In fact, the highpass filter can be converted to a lowpass filter and vice versa
by reflecting the zeros about the imaginary axis. This is a matter of altering the
signs of the real parts of the zeros. It can be inferred from equation (2.73), which
expresses the coefficients of a polynomial in terms of its roots, that the effect of this
alteration will be to convert the polynomial ψα(z) =

∑
j ψjz

j into a polynomial
ψβ(z) =

∑
j(−1)jψjzj , which is a matter of reversing the signs of the coefficients

associated with odd powers of z.
Practical filters, which are designed to show a gain which is approximately

constant over the range of the selected frequencies, and which should show a rapid
transition from the passband to the stopband, are likely to require many more
coefficients than the numbers which are present in the foregoing examples.

FIR Filter Design by Window Methods

A simple idea for the design of a linear filter is to specify the desired frequency-
response function in terms of its gain and phase characteristics and then to attempt
to find the corresponding filter coefficients by applying an inverse Fourier transform.
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 0

Figure 16.12. The central coefficients of the Fourier transform of a square
wave with a jump at ωc = π/4. The sequence of coefficients, which represents
the impulse response of an ideal lowpass filter, extends indefinitely in both
directions.

Often it is possible to specify the gain of the filter as a nonnegative function
ψ(ω) of the frequency ω ∈ (−π, π] which is real-valued and even. Then, since
there is no phase effect to be taken into account, the gain is synonymous with the
frequency response of the filter. Therefore, it follows, in view of Table 13.2, that
the transform

ψj =
1

2π

∫ π

−π
ψ(ω)eiωjdω(16.60)

gives rise to a sequence of coefficients {ψj} which is also real-valued and even.
Provided that the sequence is finite with a limited number of elements, say

2M + 1, then the coefficients may be used directly in constructing a filter of the
form ψ(L) = ψ−ML

−M + · · ·+ψ0 + · · ·+ψML
M . However, if the filter is to be used

in real-time signal processing, then a delay of M periods at least must be imposed
to ensure that first nonzero coefficient is associated with a nonnegative power of
the lag operator.

This simple prescription in not always a practical one; for the resulting filter
coefficients may be very numerous or even infinite in number. (See, for example,
Figure 16.12.) In that case, the sequence has to be truncated; after which some
further modification of its elements is likely to be desirable.

Lowpass filters are amongst the most common filters in practice, and the ideal
lowpass filter will provide a useful model for much of our subsequent discussion.
Such a filter is specified by the following frequency-response function:

ψ(ω) =

{
1, if |ω| < ωc;

0, if ωc < |ω| ≤ π.
(16.61)

Within the interval [0, π], the subinterval [0, ωc) is the passband whilst the remain-
der (ωc, π] is the stopband.

The coefficients of the lowpass filter are given by the (inverse) Fourier transform
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0 π− π − ωc ω c 0 ω0 π− ω0− π

Figure 16.13. Two copies may be made of the passband, which covers the interval
[−ωc, ωc], and the copies shifted so that their centres lie at −ω0 and at ω0, whereas,
formerly, they were at zero.

of the periodic square wave:

ψj =
1

2π

∫ ωc

−ωc
eiωjdω =


ωc
π
, if j = 0;

sin(ωcj)
πj

, if j 6= 0 .
(16.62)

However these coefficients constitute a sequence which extends indefinitely in both
directions; and, since only a limited number of central coefficients can be taken into
account, we are bound to accept approximations to the ideal filter.

It may seem restrictive to concentrate on the case of a lowpass filter. Other
related devices such as highpass filters, bandpass filters and bandstop filters are
also of interest. However, it is a relatively straightforward matter to transform a
lowpass filter into another of these filters by the device of frequency shifting.

Example 16.4. Consider a bandpass filter ψ̄(L) with the specification that

ψ̄(ω) =

{
1, if |ω| ∈ (ω1, ω2);

0, if |ω| < ω1 and ω2 < |ω| < π.
(16.63)

By a straightforward evaluation, the coefficients of the filter are found to be

ψ̄j =
1

2π

∫ −ω1

−ω2

eiωjdω +
1

2π

∫ ω2

ω1

eiωjdω

=


1
π

(ω2 − ω1), if j = 0;

1
πj

{
sin(ω2j)− sin(ω1j)

}
, if j 6= 0.

(16.64)

Thus, in effect, the coefficients of the bandpass filter are obtained by subtracting the
coefficients of the lowpass filter with a cutoff at ω1 from those of the lowpass filter
with a cutoff at ω2. However, the same results may be obtained by the technique
of frequency shifting.

Let ω1 = ω0 − ωc and ω2 = ω0 + ωc where ω0 is the central frequency of
the passband in the bandpass filter of (16.63) and ωc is the cutoff frequency in
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the lowpass filter of (16.61). Then, in order to convert the lowpass filter to the
bandpass filter, two copies are made of the lowpass passband, which covers the
interval [−ωc, ωc], and the copies are shifted so that their new centres lie at the
frequencies −ω0 and ω0 (see Figure 16.13).

Now, if the frequency response of the lowpass filter is ψ(ω) =
∑
ψje
−iωj , then

the response of one of its shifted copies is

ψ(ω − ω0) =
∑
j

ψje
−i(ω−ω0)j

=
∑
j

{
ψje

iω0j
}
e−iωj ,

(16.65)

and that of the other is ψ(ω + ω0). If follows that the frequency response of the
bandpass filter is given by

ψ̄(ω) =ψ(ω − ω0) + ψ(ω + ω0)

= 2
∑
j

{
ψj

(
eiω0j + e−iω0j

2

)}
e−iωj

= 2
∑
j

{
ψj cos(ω0j)

}
e−iωj .

(16.66)

This result may be reconciled easily with the expression for ψ̄j under (16.64). Thus,
from the trigonometrical identities in the appendix of Chapter 13, it can be seen
that

ψ̄j =
1
πj
{sin(ω2j)− sin(ω1j)}

=
1
πj

[
sin
{

(ω0 + ωc)j
}
− sin

{
(ω0 − ωc)j

}]
=

2
πj

sin(ωcj) cos(ω0j) = 2ψj cos(ω0j),

(16.67)

where the final equality depends upon the definition of the coefficient ψj =
sin(ωcj)/(πj) of the lowpass filter found under (16.62).

A leading example of frequency shifting, which has been mentioned already,
concerns the conversion of a lowpass filter to a highpass filter so that the passband
over the interval [0, ωc] becomes a passband over the interval [π − ωc, π]. This is
achieved by multiplying each of the lowpass coefficients ψj by a factor of cos(πj) =
(−1)j , with the effect that the signs of the coefficients with odd-valued indices are
reversed. Another evident means of converting a lowpass filter ψ(ω) to a highpass
filter which does not entail frequency shifting is by forming 1 − ψ(ω). Then the
passband becomes the stopband and vice versa.
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Truncating the Filter

Now let us turn our attention to the fact that, in practice, the ideal lowpass
filter, which entails an infinite number of coefficients, must be represented by an
approximation. The simplest way of approximating the Fourier series ψ(ω) =∑
j ψje

−iω which corresponds to the frequency-response function of the ideal filter
is to take a partial sum

ψM (ω) =
M∑

j=−M
ψje
−iωj(16.68)

with j extending to ±M . The coefficients of this sum may be regarded as the
products of the Fourier coefficients and the coefficients κj of a rectangular window
sequence defined by

κj =

{
1, if |j| ≤M ;

0, if |j| > M .
(16.69)

Let κ(ω) be the Fourier transform of the rectangular window. Then, according
to a fundamental theorem, the Fourier transform of the sequence {κjψj}, whose
elements are the products of the elements of {ψj} and {κj}, is just the (frequency-
domain) convolution of the respective Fourier transforms, ψ(ω) and κ(ω):

ψM (ω) =
1

2π

∫ π

−π
ψ(λ)κ(ω − λ)dλ.(16.70)

The convolution represents a species of smoothing operation applied to the
ideal frequency-response function ψ(ω). The function κ(ω), which is described as a
kernel, represents the weighting function in this operation. To see how the operation
distorts the shape of the frequency-response function, we need to reveal the form
of the kernel function. The latter may be expressed as

κ(ω) = e−iωM + · · ·+ e0 + · · ·+ eiωM

= e−iωM (1 + eiω + · · ·+ eiω2M )

= e−iωM
1− eiω(2M+1)

1− eiω
=

1− eiω(2M+1)

eiωM − eiω(M+1)
.

(16.71)

On multiplying top and bottom by − exp{−iω(2M + 1)/2}, this becomes

κ(ω) =
eiω(2M+1)/2 − e−iω(2M+1)/2

eiω/2 − e−iω/2

=
sin{ω(2M + 1)/2}

sin(ω/2)
.

(16.72)

This is the Dirichlet kernel which is to be found in the classical proof of the con-
vergence of the Fourier-series expansion of a piecewise-continuous function.
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We may note that, in the limit as M → ∞, the Dirichlet kernel in (16.72)
becomes Dirac’s delta function. In that case, it follows from the so-called sifting
property of the delta function—see (13.94)—that the convolution would deliver
the ideal frequency-response function ψ(ω) unimpaired. This convergence of the
convolution integral is in spite of the fact that the kernel function itself does not
converge to a limit with M . (See Lanczos [308, pp. 68–71] for example.)

Now consider the effects of the convolution of the Dirichlet kernel with the
ideal frequency-response function. First, because of the dispersion of the kernel,
the sharp discontinuity at ωc in the ideal function is liable to become a gradual
transition. A curious phenomenon of overshooting and undershooting also occurs
in the vicinity of the discontinuity. In the second place, the side lobes of the kernel
function have the effect of transferring some of the power from the passband of
the ideal function into the stopband where the desired response is zero. The latter
phenomenon is described as leakage.

The main lobe of the Dirichlet function—which is the portion of the function
κ(ω) between the points on either side of ω = 0 where it first assumes a zero value—
has a width of 8π/(2M+1). Since this width diminishes as the number of the Fourier
coefficients increases, we can expect that the transition from passband to stopband
will become sharper as the order of the FIR filter increases. Unfortunately, the
effects of the sidelobes do not diminish at the same rate; and, although the width
of its oscillation diminishes, the overshoot at the point of discontinuity tends to a
value of approximately 9% of the jump. This is an instance of Gibbs’ phenomenon
which has already been discussed in Chapter 13 on Fourier series.

The leakage which results from the use of a rectangular window is fully evident
from the second of the diagrams of Figure 16.14 which displays the real-valued
amplitude function ψM (ω) of the filter. The ordinary gain |ψM (ω)| is derived by
taking absolute values.

In some applications where the leakage is less evident, and where it needs to
be accentuated for the purposes of a graphical representation, it is appropriate to
plot the logarithm of the gain. The decibel quantity 20 log10 |ψ(ω)| is displayed
in the lower diagram of Figure 16.14. Decibels are also an appropriate measure
when there is a wide range of intensities amongst the components of a signal or
where the quantity measured is a stimulus to a human response. Most human
sensations, including vision, hearing and the sensitivity to mechanical vibrations,
are logarithmically related to the stimulus, such that, each time the stimulus is
doubled, the sensation increases by a constant amount. The intensity of sound, for
example, is universally measured in decibels.

To reduce the extent of the leakage and of the overshoot, one may consider
alternative window sequences whose transforms have smaller sidelobes. The design
of such windows is, to a large extent, an ad hoc affair; and, in the past, considerable
ingenuity has been devoted to the task.

The simplest suggestion for how to improve the approximation to the ideal
lowpass filter is to employ a device due to Fejér which is to be found in classical
Fourier analysis. Instead of obtaining approximations merely by terminating the
Fourier series to form a partial sum ψM (ω), a new approximation is constructed
by taking the arithmetic means of successive partial sums. Thus the Mth-order
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Figure 16.14. The results of applying an 11-point rectangular window to the
coefficients of an ideal lowpass filter. In (a) is the Dirichlet kernel which is
the Fourier transform of the window. In (b) is the frequency response of the
windowed sequence. In (c) is the log magnitude (in decibels) of the frequency
response.
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Figure 16.15. The results of applying an 11-point triangular window to the
coefficients of an ideal lowpass filter. In (a) is the Féjer kernel which is the
Fourier transform of the window. In (b) is the frequency response of the
windowed sequence. In (c) is the log magnitude (in decibels) of the frequency
response.
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approximation is

SM =
1
M

{
ψ0(ω) + ψ1(ω) + · · ·+ ψM (ω)

}
.(16.73)

This approximation, which is described as a Cesàro sum, will still converge to ψ(ω)
as M → ∞ if ψM (ω) does so. The new approximation SM (ω), which places less
emphasis on the higher-order terms, has better convergence properties than the
original function ψM (ω). In fact, by using this device, Fejér was able to extend the
validity of the Fourier series to a much wider class of functions than those which
satisfy the Dirichlet conditions.

It is easy to see that Fejér’s function is formed by applying the following tri-
angular weighting function to the sequence of the Fourier coefficients ψj :

dj =

 1− |j|
M + 1

, if |j| ≤M ;

0, if |j| > M .
(16.74)

This is sometimes known as the Bartlett window. The coefficients of the window
are formed from the (time-domain) convolution of two rectangular sequences of
M + 1 units. That is to say,

dj =
1

M + 1

∑
k

mkmj−k,(16.75)

where

mt =
{ 1, if 0 ≤ j ≤M + 1;

0, otherwise.
(16.76)

The Fourier transform of the rectangular sequence is

m(ω) =
1− e−iω(M+1)

1− e−iω
=

sin{ω(M + 1)/2}
sin(ω/2)

e−iωM/2.(16.77)

The Fourier transform of the sequence {dj} is product of m(ω) with is complex
conjugate m∗(ω). On dividing by M + 1, we obtain the Fejér kernel

κ(ω) =
sin2{ω(M + 1)/2}
(M + 1) sin2(ω/2)

.(16.78)

The effect of using a triangular window in place of a rectangular window in deriving
a lowpass filter can be assessed through the comparison of Figures 16.14 and 16.15.
It can be see that the problem of Gibbs’ phenomenon is considerably alleviated.
However, the leakage is not noticeably reduced. Overall, the improvements are
not impressive, and they are purchased at the expense of widening the transitional
region which falls between the passband and the stopband of the filter. There are
several simple window functions which are far more effective than the triangular
window.
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Cosine Windows

Considerable ingenuity has been exercised in the design of windows and of
kernel functions which mitigate the phenomenon of leakage and which ensure a
transition from the passband to the stopband which is as rapid as possible. The
desirable characteristics of the kernel function are easily described. The function
should have minimal sidelobes and the width of the main lobe should be the least
possible. Given that there is a limit to the number of filter coefficients, which is
the number of coefficients from which the kernel function can be crafted, it is clear
that these objectives can be realised only in part and that they are liable to be in
conflict.

A family of windows which are both simple in theory and straightforward to
apply are based upon cosine functions. The prototype of such windows is the
Hanning window, which is named after the Austrian physicist Julius von Hann.
The time-domain coefficients of this window have the profile of a cosine bell. The
bell is described by the function cos(ω) over the interval [−π, π]. Its profile is raised
so that that it comes to rest on the horizontal axis, and it is also scaled so that its
maximum value is unity. Thus the window coefficients are given by

κj =

 1
2

{
1 + cos

(πj
M

)}
, if |j| ≤M ;

0, if |j| ≥M .
(16.79)

Notice that the coefficients κ±M at the ends are zeros so that, in fact, there are
only N = 2M − 1 nonzero coefficents in this specification.

The kernel function which corresponds to the Hanning window has sidelobes
which are much reduced in comparison with those of the kernel functions of the
rectangular and triangular windows. Its characteristics are displayed in Figure 16.16
which also shows the frequency response of the filter constructed by applying the
Hanning window to the coefficients of the ideal lowpass filter. Since the width of the
main lobe of the Hanning kernel is no greater than that of the Fejér kernel which
corresponds to the triangular window, the Hanning window is clearly superior.

This reduction in the sidelobes of the Hanning kernel and the consequent re-
duction in the leakage of the lowpass filter can be attributed to the absence of sharp
discontinuities in the profile of the coefficients of the Hanning window. It can also
be explained at a more fundamental level by analysing the structure of the kernel.

The analysis begins with the observation that the coefficients κj of the Hanning
window can be construed as the products of the coefficients βj of a raised cosine
sequence, which extends indefinitely over the set of integers {j = 0 ± 1,±2, . . .},
with the corresponding coefficients γj of the rectangular window sequence of (16.64),
which are nonzero only for |j| ≤M . That is to say, we have

κj =
1
2

{
1 + cos

(πj
M

)}
γj

=
{

1
4
e−iπj/M +

1
2

+
1
4
eiπj/M

}
γj = βjγj .

(16.80)
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Figure 16.16. The results of applying an 11-point Hannning window to the
coefficients of an ideal lowpass filter. In (a) is the Hannning kernel which is
the Fourier transform of the window. In (b) is the frequency response of the
windowed sequence. In (c) is the log magnitude (in decibels) of the frequency
response.
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Figure 16.17. The results of applying an 11-point Blackman window to the
coefficients of an ideal lowpass filter. In (a) is the Blackman kernel which is
the Fourier transform of the window. In (b) is the frequency response of the
windowed sequence. In (c) is the log magnitude (in decibels) of the frequency
response.
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Figure 16.18. The Hanning kernel—the bold line—is the sum of three
Dirichlet kernels—the dotted lines—which have been scaled and/or shifted
in frequency. The attenuation of the sidelobes of the Hanning kernel is due to
the destructive interference of the sidelobes of the Dirichlet kernels.

The kernel is therefore given by the convolution

κ(ω) =
1

2π

∫ π

−π
β(λ)γ(ω − λ)dλ,(16.81)

where β(ω) and γ(ω) are the Fourier transforms of the sequences {βj} and {γj}.
The function γ(ω) is just the Dirichlet kernel. However, since {βj} is composed
only of a constant term and a cosine function of an angular frequency of ω = π/M ,
its Fourier transform is just the sum of three Dirac functions:

β(ω) = 2π
{

1
4
δ
(
ω − π

M

)
+

1
2
δ(ω) +

1
4
πδ
(
ω +

π

M

)}
.(16.82)

It follows from the sifting property of the Dirac function that the convolution
of (16.81) amounts to a sum of three Dirichlet functions which have undergone
operations of scaling and shifting. The three scale factors are 0.25, 0.5, 0.25 and
the centres of the functions are at the points ω = −π/M , ω = 0, ω = π/M which
are the locations of the Dirac impulses.

Figure 16.18 shows how the kernel of Figure 16.16 is composed of the three
Dirichlet functions. The explanation for the small amplitude of the sidelobes of the
Hanning kernel is to be found in the destructive interference of the sidelobes of the
constituent Dirichlet functions.

A derivative of the Hanning window is the window due to R.W. Hamming
[237]—who also named the Hanning window. The coefficients κj of the latter
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follow a profile which may be described as a raised cosine with a platform:

κj =

 0.54 + 0.46 cos
(πj
M

)
, if |j| ≤M ;

0, if |j| > M .
(16.83)

The corresponding kernel function is therefore a combination of the three
Dirichlet functions which form the Hanning kernel, but with weights of 0.23,
0.54, 0.23 instead of 0.25, 0.5, 0.25. These Hamming weights are chosen so
as to minimise the maximum of the sidelobe amplitudes of the kernel function.
Whereas the sidelobe amplitudes of the Hanning kernel decline with rising fre-
quency, those of the Hamming function display an almost constant amplitude
throughout the stopband, which might be regarded as a disadvantage in some ap-
plications. The main lobes of the Hamming and the Hanning kernels have the same
width.

The final elaboration on the theme of cosine windows is provided by the Black-
man window—see Blackman and Tukey [65]. Here the coefficients are given by

κj = 0.42 + 0.5 cos
(πj
M

)
+ 0.08 cos

(2πj
M

)
where |j| ≤M.(16.84)

The kernel function of the Blackman window is composed of five Dirichlet functions
which are shifted and scaled before being added. The weights are 0.04, 0.25, 0.42,
0.25, 0.04 and the corresponding locations are ω = −2π/M , ω = −π/M , ω = 0,
ω = π/M , ω = 2π/M .

The effects of the Blackman window are shown in Figure 16.17. The width of
the main lobe of the Blackman kernel is greater than that of the other kernel func-
tions which we have examined. Therefore, when the Blackman window is applied
to the coefficients of the ideal lowpass filter, the result is a filter whose frequency
response has a rather gradual transition between the passband and the stopband.
However, the Blackman kernel does have the advantage of a much diminished side-
lobe amplitude, which implies that the leakage from the passband of the resulting
lowpass filter does not extend too far into the higher frequencies.

Design of Recursive IIR Filters

The memory span of an FIR filter is a function of the order of the associated
moving-average operator. That is to say, a long memory is usually achieved only
at the cost of a large number of coefficients and a heavy burden of computation. A
recursive filter is one which bases its memory upon feedback. A single feedback term
will endow the filter with an infinite memory span. Therefore, recursive filters can
sometimes achieve the same effects as nonrecursive filters with far fewer coefficients
and at the cost of much less computation.

A filter with an infinite memory span is also one with a impulse response which
continues for ever. It is therefore referred to as an infinite impulse-response (IIR)
filter. Since it can be written in the form of (16.3), a recursive filter is also described
as a rational filter.
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Figure 16.19. The gain of an IIR notch filter designed to eliminate
a signal component at the frequency of 3π/4 radians per period.

The rational form of an IIR filter suggest that its advantage also lies in the
power of rational functions to provide approximations to arbitrary impulse re-
sponses. The added flexibility is due to the presence of parameters in the numerator
of the transfer function which are at the disposal of the designer of the filter. A
testimony to the power of rational functions in achieving approximations is provided
by their widespread use in autoregressive moving-average (ARMA) models and in
rational transfer function (RTM) models of the sort which are fitted to stochastic
data sequences.

A disadvantage of causal IIR filters is that they cannot achieve a linear phase
response. This is a corollary of the evident fact that an infinite impulse response
cannot assume a form which is symmetrical with respect to a central point with-
out comprising both values which predate and values which succeed the impulse.
In many applications, such as in the digital processing of sound recordings, the
nonlinear phase response of causal IIR filters virtually disbars their use. A fur-
ther impediment is that it is far more difficult to design an IIR filter to achieve
a frequency-domain specification than it is to design an FIR filter for the same
purpose.

One way of designing an FIR filter is by a judicious placement of its poles and
its zeros in view of a clear understanding of the effects which these are likely to
have upon the gain of the filter. Perhaps the best-known example of this method
is provided by the so-called notch filter, which is aimed at eliminating a signal
component at a specific frequency. An example of an unwanted component is
provided by the interference in the recordings of sensitive electronic transducers
which is caused by the inductance of the alternating current of the main electrical
supply. The frequency of the supply is commonly at 50 or 60 Hertz.

The unwanted component can be eliminated by a filter which incorporates a
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zero on the unit circle, together with its complex conjugate, whose argument cor-
responds exactly to the frequency in question. However, unless some compensation
is provided, the effect of such a zero is likely to be felt over the entire frequency
range. Therefore, it must be balanced by a pole in the denominator of the filter’s
transfer function located at a point in the complex plane near to the zero. The
pole should have the same argument as the zero and a modulus which is slightly
less than unity.

At any frequency which is remote from the target frequency, the effect of the
pole and the zero in the filter will virtually cancel, thereby ensuring that the gain
of the filter is close to unity. However, at frequencies close to the target frequency,
the effect of the zero, which is on the unit circle, will greatly outweigh the effect
of the pole which is at a short distance from it; and a narrow notch will be cut
in the gain. This result is illustrated in Figure 16.19. Here the target frequency
is (3/4)π, whilst the moduli of the pole and the zero are 0.95 and 1.0 respectively
The resulting second-order filter is given by

ψ(L) =
1− 1.41421L+ 1.0L2

1− 1.3435L+ 0.9025L2
.(16.85)

IIR Design via Analogue Prototypes

One way of designing an IIR filter, which is often followed, is to translate an
analogue design into digital terms. The theory of analogue filters was built up over
a period of sixty years or more, and it still represents a valuable resource. Analogue
filters are preponderantly of the all-pole variety; and to use them means sacrificing
the advantages of a rational transfer function with a free choice of parameters in
both numerator and denominator. The fact that designers are willing to make
this sacrifice is an indication of the underdeveloped state of the theory of rational
transfer-function design. The incentive to develop the theory is diminished with
each advance in processor speed which mitigates the disadvantages of computation-
ally burdensome FIR designs.

There are two distinct approaches which may be followed in converting an
analogue filter to a digital filter. Both of them aim to convert a stable analogue
filter into a stable IIR filter with similar frequency-response characteristics.

The first of approach, which is called the impulse-invariance technique, is to
derive the impulse-response function f(t) of the analogue filter and then to design
a digital filter whose impulse response is a sampled version of f(t). Such a filter is
designed as a set of first-order and second-order sections which are joined in parallel
or in series. Each of these sections mimics the response of the corresponding section
of the analogue filter. The parallel sections are, in effect, a set of subfilters which
take a common input and whose outputs are added together to produce the same
output as the series filter. To express the filter in a parallel form, we use the partial-
fraction decomposition; and, for this purpose, it is necessary to evaluate the poles
of the filter.

The second approach in converting analogue filters to digital form is to use the
bilinear Möbius transformation to map the poles of a stable analogue filter, which
must lie in the left half of the complex plane, into the corresponding poles of a stable
digital filter, which must lie inside the unit circle. This bilinear transformation has
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been used already in Chapter 5 in describing the relationship between the stability
conditions for differential and difference equations. The second approach is both
the easier and the more successful of the two; and we shall follow it exclusively in
the sequel.

The Butterworth Filter

The simplest of the analogue prototypes is the Butterworth filter. This is
defined by the squared magnitude of its frequency response. The frequency response
of an analogue filter whose system function is ϕ(D) is obtained by evaluating the
function ϕ(s) along the imaginary frequency axis s = iΩ. Therefore, the squared
magnitude of the response is

|ϕ(s)|2 = ϕ(s)ϕ(−s), where s = iΩ.(16.86)

In the case of the nth-order lowpass Butterworth filter, this is

|ϕ(iΩ)|2 =
1

1 + (Ω/Ωc)2n
.(16.87)

Here Ωc is the cutoff frequency. For Ω < Ωc, the series expansion of the function
takes the form of

|ϕ(iΩ)|2 =
{

1− (Ω/Ωc)
2n + (Ω/Ωc)

4n − · · ·
}
.(16.88)

It follows that the derivatives of the function with respect to Ω vanish at Ω = 0
for all orders up to 2n− 1. For this reason, the frequency response is described as
maximally flat at zero; and the feature is clearly apparent in Figure 16.20 which
plots the gain |ϕ(iΩ)| of the filter.

The poles of the analogue Butterworth filter ϕ(s) are a selection of half of the
2n values in the s-plane which satisfy the equation

1 +
( s

iΩc

)2n

= 0,(16.89)

which comes from replacing Ω by s/i = −is in the denominator of (16.87).
The problem of finding these poles is akin to that of finding the roots of unity.

Observe that −1 = exp(iπ) = exp{iπ(2k − 1)}, where 2k − 1 stands for any odd-
valued integer. It follows that the roots λk must satisfy the equation(

λk
iΩc

)2n

= −1 = exp
{
iπ(2k − 1)

}
.(16.90)

The equation can be simplified by reducing the LHS to λk/iΩc and by dividing the
exponent on the RHS by 2n. Then, multiplying both sides by iΩc gives the solution
in the form of

λk = iΩc exp
{
iπ

2

(
2k − 1
n

)}

=−Ωc sin
{
π

2

(
2k − 1
n

)}
+ iΩc cos

{
π

2

(
2k − 1
n

)}
,

(16.91)
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Figure 16.20. The gain of the lowpass Butterworth filter with n = 5, 8, 16.
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Figure 16.21. The location of the poles of the lowpass Butterworth filters
with n = 3, 4 in the case where Ωc = 1.

with k = 1, 2, . . . , 2n. These values are equally spaced on the circumference of
a circle of radius Ωc at angles which increase in steps of π/n (see Figure 16.21).
Notice, in particular, that none of them falls on the imaginary axis. Values in the
left half-plane, with negative real parts, are obtained when k = 1, 2, . . . , n; and
these are the poles of ϕ(s). This selection of poles ensures that the filter is stable.
The remaining values become the poles of ϕ(−s).

The object is to derive an expression for the filter which is in terms of the
poles. We begin by observing that, if λk = Ωcµk is a root of the equation (16.89),
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as specified in (16.91), then its inverse is given by

λ−1
k =

µ∗k
Ωc

= λ∗k,(16.92)

where λ∗k is the complex conjugate of λk and where µk = i exp{iπ(2k − 1)/2n}.
This follows from the fact that µkµ∗k = 1. The appropriate expression for the filter
is therefore

ϕ(s) =
1∏n

k=1(1− s/λk)
=

Ω
n
c∏n

k=1(Ωc − sµ∗k)
.(16.93)

Notice that, if µ∗k is present in the denominator of ϕ(s), then µk will be present
also. This follows from the fact any pair of conjugate complex numbers must fall
in the same half of the complex plane—which is the left half in this case.

When n is even, the denominator of ϕ(s) can be expressed as a product of
quadratic factors of the form

(Ωc − sµk)(Ωc − sµ∗k) = Ω
2
c − 2Ωc(µk + µ∗k)s+ s2

= Ω
2
c + 2Ωc sin

{
π

2

(
2k − 1
n

)}
s+ s2,

(16.94)

where k = 1, 2, . . . , n/2. When n is odd, there are (n − 1)/2 quadratic factors of
this form in the denominator together with a single real factor of the form (Ωc+ s).

The Chebyshev Filter

In common with the Butterworth filter, the Chebyshev filter is defined by a
function which specifies the magnitude of its frequency response. In the case of
the nth-order lowpass Chebyshev analogue filter with a cutoff frequency of Ωc, the
squared magnitude function is

|ϕ(iΩ)|2 =
1

1 + ε2T 2
n(Ω/Ωc)

,(16.95)

where ε is a parameter chosen by the designer and where Tn(Ω) is the Chebyshev
polynomial of degree n.

The ordinates of the Chebyshev polynomial of degree k are given by

Tk(Ω) =

{
cos
{
k cos−1(Ω)

}
, if |Ω| ≤ 1;

cosh
{
k cosh−1(Ω)

}
, if |Ω| > 1,

(16.96)

where

cosh(θ) =
eθ + e−θ

2
= cos(iθ)(16.97)

is the hyperbolic cosine.
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Observe that, when |Ω| ≤ 1, there is a straightforward relationship between a
cosine function Ω = cos(θ) defined on the interval [0, π], and its inverse θ = cos−1(Ω).
However, when |Ω| > 1, the quantity cos−1(Ω) becomes imaginary which is to say
that

cos−1(Ω) = iθ = i cosh−1(Ω).(16.98)

In that case,

cos
{
k cos−1(Ω)

}
= cos

{
ik cosh−1(Ω)

}
= cosh

{
k cosh−1(Ω)

}
.

(16.99)

Over the interval [−1, 1], the function Tk(Ω) attains its bounds of±1 alternately
at the k + 1 points Ωj = cos{π(k − j)/k} where j = 0, . . . , k. This is evident from
the fact that

cos
{
k cos−1(Ωj)

}
= cos

{
kπ(k − j)/k

}
= cos

{
π(k − j)

}
= (−1)k−j .

(16.100)

Another feature of the Chebyshev polynomials is that they are orthogonal over the
interval [−1, 1] in terms of a certain inner product, in which respect they resemble
the Legendre polynomials.

In common with other orthogonal polynomials, the Chebyshev polynomials
obey a three-term recurrence relationship. By setting A = kθ and B = θ in the
trigonometrical identity cos(A + B) = 2 cos(B) cos(A) − cos(A − B), it is easy to
show that

Tk+1(Ω) = 2ΩTk(Ω)− Tk−1(Ω).(16.101)

The initial values, which are indicated by (16.96), are T0(Ω) = 1 and T1(Ω) = Ω. In
fact, the above relationship holds for all values of Ω, as can be shown by using the
trigonometrical identity with the hyperbolic cosine in place of the ordinary cosine;
and the relationship is of great assistance in rapidly generating the ordinates of the
function under (16.95).

The general features of the Chebyshev filter can be explained by observing that
the alternation of the function Tn(Ω) over the interval [−1, 1] between its bounds
of ±1 causes the graph of the gain |ϕ(iΩ)| to vary between 1 and 1/

√
(1 + ε2). For

|Ω| > 1, where the value of Tn(Ω) increases rapidly with Ω, the gain tends rapidly
to zero. The ripples in the passband of the Chebyshev filter are an undesirable
feature which is the price that is paid for achieving a sharper cutoff than that of
the Butterworth filter of the same order (see Figure 16.22). The sharpness of the
cutoff is inversely related to the value of the design parameter ε which controls the
magnitude of the ripples.

To obtain the poles of the Chebyshev filter, we may set Ω = s/i within
Tn(Ω/Ωc) = cos{n cos−1(Ω/Ωc)}. Then, equating the denominator of (16.95) to
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Figure 16.22. The gain of a lowpass Chebyshev Filter
for n = 5 when the ripple amplitude is 0.25.

zero gives

0 = 1 +
{
ε Tn

(
s

iΩc

)}2

= 1 + ε2 cos2

{
n cos−1

(
s

iΩc

)}
.

(16.102)

The poles of the filter are amongst the roots of this equation. Rearranging the
equation and taking the square root gives

i

ε
= ± cos

{
n cos−1

(
s

iΩc

)}
= sin

{
n cos−1

(
s

iΩc

)
+
π

2
(2k − 1)

}
,(16.103)

where k is an integer. Here the second equality reflects the fact that a sine wave
is just a cosine wave with a phase lag of π/2 radians. As k takes successive values,
the sign of the term on the RHS will alternate. The equation can be rearranged to
give a solution for the pole s = λk in the form of

λk = iΩc cos
{

1
n

sin−1

(
i

ε

)
− π

2

(
2k − 1
n

)}

=−αΩc sin
{
π

2

(
2k − 1
n

)}
+ iβΩc cos

{
π

2

(
2k − 1
n

)}
,

(16.104)

where

α = −i sin
{

1
n

sin−1

(
i

ε

)}
= sinh

{
1
n

sinh−1

(
1
ε

)}
(16.105)
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and

β = cos
{

1
n

sin−1

(
i

ε

)}
= cosh

{
1
n

sinh−1

(
1
ε

)}
.(16.106)

The second equality of (16.104) depends upon the trigonometrical identity cos(A−
B) = cosA cosB + sinA sinB, whilst that of (16.105) invokes the definition of a
hyperbolic sine:

sinh(θ) =
eθ − e−θ

2
= −i sin(iθ).(16.107)

The poles with negative real parts, which belong to the function ϕ(s), are obtained
from (16.104) by setting k = 1, 2, . . . , n. The poles lie on an ellipse in the s plane.
The major axis of the ellipse lies along the imaginary line where the radius has the
value of βΩc. The minor axis lies along the real line where the radius has the value
of αΩc. Observe that α2 − β2 = 1.

Expressions for α and β can be found which avoid the direct use of the hyper-
bolic functions. Consider the following identities:

sinh−1(ε−1) = ln
(
ε−1 +

√
ε−2 + 1

)
= ln(q),

q = exp
{

sinh−1(ε−1)
}

= ε−1 +
√
ε−2 + 1.

(16.108)

The expression for the inverse of the sinh(θ), which we are invoking here, is eas-
ily confirmed by direct substitution. In the light of these identities, it is readily
confirmed, in reference to the definitions of cosh(θ) and sinh(θ), that

α =
1
2
(
q1/n − q−1/n

)
and β =

1
2
(
q1/n + q−1/n

)
.(16.109)

The Bilinear Transformation

Once an analogue filter has been specified in terms of the coefficients or the
poles and zeros of its transfer function ϕ(s), it is a relatively straightforward matter
to use the bilinear transformation to convert it to a digital filter. The business is
simplified if the analogue filter can be decomposed into parallel first-order and
second-order sections by use of the partial-fraction decomposition or if it can be
decomposed into a cascade or series of low-order filters. This presents no difficulties
when the poles of the filter are already known via analytic formulae, as is the case
for the Butterworth and Chebyshev filters.

The relevant bilinear transformation is given by the function

s(z) =
z − 1
z + 1

,(16.110)

which is a mapping from the z-plane, which contains the poles of the discrete-
time digital filter, to the s-plane, which contains the poles of the continuous-time
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Figure 16.23. The frequency warping of the bilinear transformation whereby
the analogue frequencies Ω, which range over the real line, are mapped by the
function ω = 2 tan−1(Ω) into the digital frequencies ω which fall in the interval
(−π, π).

analogue filter. To understand the effect of the transformation, consider writing
z = α− iβ. In these terms, the transformation becomes

s =
(α− 1)− iβ
(α+ 1)− iβ

=

{
(α2 + β2)− 1

}
− 2iβ

(α+ 1)2 + β2
.(16.111)

If s = σ + iΩ, then it follows, from the expression above, that σ < 0 if and only if
α2 + β2 = |z|2 < 1. Thus, values within the unit circle on the z-plane are mapped
into values which are in the left half of the s-plane, and vice versa.

The squared gain of the digital filter can be found from that of the analogue
filter without finding the coefficients of the digital transfer function. Consider
setting z = eiω in equation (16.110), with ω representing the digital frequency.
This gives

s
(
eiω
)

=
eiω − 1
eiω + 1

=
eiω/2 − e−iω/2

eiω/2 + e−iω/2

= i
sin(ω/2)
cos(ω/2)

= i tan(ω/2).
(16.112)

If the latter is put in place of the variable s = iΩ wherever it is found in the function
|ϕ(s)| =

√
{ϕ(s)ϕ(−s)}, then the result will be the gain or amplitude function of

the digital filter.
The function Ω = tan(ω/2), which is obtained from (16.112) by setting s = iΩ,

is, in effect, a mapping from the digital frequency ω ∈ [−π, π] to the unbounded
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analogue frequency Ω. The inverse mapping ω = 2 tan−1(Ω), which is illustrated by
Figure 16.23, describes the frequency warping which accompanies the conversion
of the analogue filter to the digital filter. The mapping is virtually linear within
the neighbourhood of zero. However, as Ω increases beyond 0.5, an ever-increasing
range of analogue frequencies are mapped into a given range of digital frequencies.

In the process of frequency warping, a disparity is liable to emerge between the
cutoff frequencies of the digital and the analogue filters. Since the digital filter is the
one which is to be used in the processing of signals, the analogue cutoff frequency
Ωc must be selected so as to give rise to the desired digital value ωc. Thus the
appropriate cutoff frequency for the analogue prototype is given by Ωc = tan(ωc/2).
The business of choosing an analogue frequency which will map into a designated
digital frequency is described as pre-warping the frequency.

When the technique of pre-warping is applied, for example, to the analogue
Butterworth filter depicted in (16.87), the squared gain of its digital counterpart
becomes ∣∣φ(ω)

∣∣2 =
1

1 +
{

tan(ω/2)
tan(ωc/2)

}2n .(16.113)

The Butterworth and Chebyshev Digital Filters

There is some advantage in applying the bilinear transformation directly to
the first-order factors of an analogue filter since, in that case, one may easily check
that the poles fulfil the conditions of stability. If, for some reason such as numerical
rounding error, the poles violate the conditions, then it should be possible to correct
their values. Once the poles and zeros of the digital filter have been found, they
can be knit together to provide the numerical coefficients of the filter.

In the case of the Butterworth analogue lowpass filter, which is specified by
(16.93), and in the case of the analogous Chebyshev filter, the kth first-order factor
takes the form of

f(s) =
1

1− s/λk
=

λk
λk − s

,(16.114)

where λk is the analogue pole. Substituting for s = (z−1)/(z+1) in this expression
gives the factor of the corresponding digital filter:

f(z−1) =
λk(z + 1)

(λk − 1)z + (λk + 1)
.(16.115)

The digital factor has a zero at z = −1 and a pole which is given by

z =
1 + λk
1− λk

=
1 + (λk − λ∗k)− λkλ∗k
1− (λk + λ∗k) + λkλ∗k

,(16.116)

where the final expression, which has a real-valued denominator, comes from mul-
tiplying top and bottom of the second expression by 1− λ∗k.

506



16: LINEAR FILTERS

From the expressions for the Butterworth analogue pole found under (16.91),
the following components of equation (16.116) can be assembled:

λkλ
∗
k = Ω

2
c ,

λk − λ∗k = i2Ωc cos
{
π

2

(
2k − 1
n

)}
,

λk + λ∗k =−2Ωc sin
{
π

2

(
2k − 1
n

)}
.

(16.117)

Here Ωc is the pre-warped cutoff frequency of the analogue lowpass filter which is
given by Ωc = tan(ωc/2), where ωc is the desired digital cutoff frequency. It follows
that the poles ρk; k = 1, 2, . . . , n of the Butterworth digital filter are given by

ρk =
1− Ω

2
c

δk
+ i

2Ωc

δk
cos
{
π

2

(
2k − 1
n

)}
,(16.118)

where

δk = 1 + 2Ωc sin
{
π

2

(
2k − 1
n

)}
+ Ω

2
c .(16.119)

The expression under (16.116) also serves in finding the poles of the Chebyshev
digital filter. From the expressions for the Chebyshev analogue pole given under
(16.104), the following components are found:

λkλ
∗
k = Ω

2
cα

2 sin
{
π

2

(
2k − 1
n

)}
+ Ω

2
cβ

2 cos
{
π

2

(
2k − 1
n

)}
,

λk − λ∗k = i2βΩc cos
{
π

2

(
2k − 1
n

)}
,

λk + λ∗k =−2Ωcα sin
{
π

2

(
2k − 1
n

)}
.

(16.120)

These can be assembled in expressions which are analogous to those under (16.118)
and (16.119). The requisite values for α and β may be determined from the equa-
tions under (16.108) and (16.109).

Frequency-Band Transformations

In the preceding sections, the discussion of the techniques for designing IIR
filters has concentrated on the case of a lowpass filter with a cutoff point at the
analogue frequency of Ωc. It is straightforward to generalise the results to the
cases of lowpass, highpass, bandstop and bandpass filters with arbitrary cutoff
frequencies.

There are two ways of deriving the more elaborate types of digital filter. The
first way is to transform the lowpass filter to the desired form within the analogue
domain and then to convert the result into a digital filter. The second way is to
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convert the lowpass analogue filter into a lowpass digital filter and then to transform
the digital filter to the desired form. The two techniques produce similar results.

The first technique originates in the theory of analogue networks; and the
transformations reflect the nature of the analogue hardware. The frequency-band
transformations are defined relative to a prototype analogue lowpass filter with a
positive-frequency cutoff at Ω = 1 and a negative-frequency cutoff at Ω = −1.

The first of the analogue transformations is one which causes the (positive-
frequency) cutoff point to be transposed to the frequency Ωc. This is achieved by
restoring the parameter Ωc to the places in the filter formulae where it has been
suppressed—i.e. set to unity—for the purpose of defining the prototype filter. The
change may be denoted by

s −→ s

Ωc
or iΩ −→ iΩ

Ωc
.(16.121)

The second expression reflects the fact that the gain of a filter ϕ(D) is evaluated
by setting s = iΩ in the function |ϕ(s)| and letting Ω range from 0 to ∞.

The second of the transformations maps the lowpass prototype into a highpass
filter by letting

s −→ Ωc

s
or iΩ −→ −iΩc

Ω
.(16.122)

As Ω ranges from 0 to ∞, the function g(Ω) = −Ωc/Ω ranges from −∞ to 0.
Therefore, the effect of putting g(Ω) in place of Ω is that the negative-frequency
passband of the prototype filter, which stands on the interval [−1, 0], becomes
a positive-frequency passband on the interval [Ωc,∞). In terms of an analogue
network, the change is brought about by replacing inductors by capacitors and
capacitors by inductors. See, for example, Van Valkenburg [497].

The next operation is to convert the prototype analogue lowpass filter into a
bandpass filter. That is achieved by combining the previous two operations so that

s −→ β

(
s

Ω0
+

Ω0

s

)
or iΩ −→ iβ

(
Ω

Ω0
− Ω0

Ω

)
.(16.123)

Now, as Ω ranges from 0 to∞, the function g(Ω) = β{(Ω/Ω0)− (Ω0/Ω)} ranges from
−∞ to ∞. The effect is that the passband of the prototype filter, which stands on
the interval [−1, 1] is transposed into the positive half of the frequency range.

There are now two parameters, Ω0 and β, at the disposal of the designer. Their
values are chosen so that −Ωc = −1, which is the negative-frequency cutoff point of
the prototype filter, is mapped into Ωl > 0, which is the lower limit of the passband,
whilst Ωc = 1, which is the positive-frequency cutoff, is mapped into the Ωu > 0,
which is the upper limit of the passband. Thus Ω0 and β are determined by the
simultaneous solution of the equations

− 1 = β

(
Ωl

Ω0
− Ω0

Ωl

)
and 1 = β

(
Ωu

Ω0
− Ω0

Ωu

)
;(16.124)
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and it is easy to confirm that

Ω0 =
√

ΩlΩu and β =
Ω0

Ωu − Ωl
.(16.125)

The frequency Ω0, which is the geometric mean of Ωl and Ωu, may be described as
the bandpass centre.

The final operation is one which transforms the prototype filter into a bandstop
filter. This can be achieved by taking the stopband of a prototype highpass filter,
which stands on the interval [−1, 1], and transposing it into the positive-frequency
interval; and the transformation under (16.123) would serve the purpose. All that
is required in order to convert the prototype lowpass filter to a bandstop filter is to
compound the latter transformation with that of (16.122), which turns a lowpass
filter into a highpass filter, so as to give

s −→ 1
β

(
sΩ0

s2 + Ω2
0

)
or iΩ −→ i

1
β

(
ΩΩ0

Ω2 + Ω2
0

)
,(16.126)

where β and Ω0 are given by the expression under (16.125).
The four cases may be summarised as follows:

lowpass−→ lowpass s −→ s

Ωc
,

lowpass−→ highpass s −→ Ωc

s
,

lowpass−→ bandpass s −→ s2 + ΩlΩu

s(Ωu − Ωl)
,

lowpass−→ bandstop s −→ s(Ωu − Ωl)
s2 + ΩlΩu

.

(16.127)

Here the expressions for the bandpass and bandstop conversions are obtained by
substituting the expressions of β and Ω0 into equations (16.123) and (16.126) re-
spectively.

When the bandpass and bandstop conversions are applied to the first-order
sections of lowpass filters, they will generate second-order sections. It is usually
helpful to re-factorise the latter into pairs of first-order sections before converting
the analogue filter to a digital filter via the bilinear transformation.

The labour of re-factorising the filter sections can be avoided by effecting the
frequency transformations after the prototype lowpass filter has been translated into
the digital domain. An exposition of the technique of converting a lowpass digital
filter to other forms within the digital domain has been provided by Constantinides
[121].

Let β be the cutoff frequency of a prototype digital lowpass filter and let
ωc be a desired cutoff frequency. Also, let ωu and ωl be the upper and lower
cutoff frequencies of a desired bandpass or bandstop filter. Then the appropriate
transformations for converting the prototype are as follows:
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Lowpass to lowpass

z −→ z − α
1− αz

, α =
sin{(β − ωc)/2}
sin{(β + ωc)/2}

.(16.128)

Lowpass to highpass

z −→ − z + α

1 + αz
, α =

cos{(β + ωc)/2}
cos{(β − ωc)/2}

.(16.129)

Lowpass to bandpass

z −→ −
z2 − 2αk

k + 1
z +

k − 1
k + 1

k − 1
k + 1

z2 − 2αk
k + 1

z + 1
,

α =
cos{(ωu + ωl)/2}
cos{(ωu − ωl)/2}

,

k = cot
(ωu − ωl

2

)
tan

(β
2

)
.

(16.130)

Lowpass to bandstop

z −→
z2 − 2α

1 + k
z +

1− k
1 + k

1− k
1 + k

z2 − 2α
1 + k

z + 1
,

α =
cos{(ωu + ωl)/2}
cos{(ωu − ωl)/2}

,

k = tan
(ωu − ωl

2

)
tan

(β
2

)
.

(16.131)

These formulae may appear complicated; but, in practice, the transformations
can be simplified by a judicious choice of the prototype frequency β.

Consider, for example, the lowpass-to-highpass transformation. If β is chosen
such that β + ωc = π, then a value of α = 0 will result and the transformation will
become z −→ −z. To see the effect of this, consider the individual poles and zeros
of a Butterworth or Chebyshev lowpass filter.

Given that the poles and the zeros of a filter come in conjugate pairs, the
change from lowpass to highpass may be accomplished by changing the signs on
the real parts of the poles and zeros. From the point of view of the frequency-
response diagram, the changes entail the reflection of the graph about the axis of
ω = π/2. In terms of the Argand diagram, the transformation is achieved via a
reflection about the vertical imaginary axis.

For the lowpass-to-bandpass and lowpass-to-bandstop transformations, mat-
ters may be simplified by contriving the values of β so as to ensure that k = 1.

Example 16.5. Consider the conversion of a lowpass filter to a bandpass filter.
The expression for the generic first-order section of the prototype lowpass filter,
which is given under (16.115), may be rewritten as

γ(1 + z)
z − ρ

where γ =
λ

λ− 1
, ρ =

λ+ 1
1− λ

.(16.132)

Here λ is a pole of the prototype analogue filter whilst ρ is a pole of the corre-
sponding digital filter. The formula for the conversion of the digital prototype is
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given under (16.130). To simplify matters, let the cutoff frequency of the prototype
lowpass filter be set to β = ωu − ωl. Then k = 1, and the conversion formula
becomes

z −→ z2 − αz
αz − 1

.(16.133)

The generic second-order segment of the bandpass filter is obtained by making this
substitution within equation (16.132) to give

γ

{
1 +

z2 − αz
αz − 1

}{
z2 − αz
αz − 1

− ρ
}−1

= γ

{
z2 − 1

z2 − α(1 + ρ)z + ρ

}
.(16.134)

This section has a pair of zeros and a pair of poles given, respectively, by

z=±1 and

z=
α(1 + ρ)±

√
α2(1 + ρ)2 − 4ρ
2

.
(16.135)

The formula for the poles entails complex arithmetic. The placement of the zeros
is intuitively intelligible; for it ensures that the gain of the filter is zero both at the
zero frequency and at the maximum Nyquist frequency of π.

The squared gain of the filter, which is a function of the digital frequency value
ω, may be found without knowing the coefficients of the filter. It is obtained by
making the substitution

tan(ω/2) −→ cos(ω)− α
sin(ω)

(16.136)

within the relevant filter formula. This conversion is derived first by applying the
substitution of (16.133) to the formula (16.110) for the bilinear transformation and
then by setting z = eiω, in the manner of (16.112).

The formula for the squared gain of the Butterworth bandpass digital filter,
which is derived from (16.113), is

∣∣φ(ω)
∣∣2 =

1

1 +
{

cos(ω)− α
tan(ωc/2) sin(ω)

}2n .(16.137)
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CHAPTER 17

Autoregressive and
Moving-Average Processes

Amongst the simplest and most widely-used models of stationary stochastic pro-
cesses are the autoregressive moving-average or ARMA models. A simple autore-
gressive or AR model is a linear difference equation with constant coefficients in
which the forcing function is a white-noise process. A moving-average or MA model
is one which expresses an observable stochastic sequence as a linear combination of
the current value of a white-noise process and a finite number of lagged values. An
ARMA model is a stochastic difference equation in which the forcing function is a
moving-average process.

An explanation for the ubiquity of ARMA models begins with the Cramér–
Wold theorem which indicates that virtually every stationary stochastic process
has a moving-average representation. This important result will be established in a
subsequent chapter. The theorem provides only a weak justification for the use of
MA models on their own, since the latter embody a limited number of parameters,
whereas the theorem establishes the existence of an infinite-order moving-average
representation. In practice, finite-order MA models are used only infrequently.
Indeed, an AR model has an infinite-order MA representation which is often very
poorly approximated by a finite-order MA model with a manageable number of
parameters.

The ability of a low-order AR model to approximate an arbitrary stationary
process is also limited; and it is wishful thinking to imagine that low-order models
are widely applicable. It is true that adequate approximations can be achieved often
by high-order AR models; but, in that case, large amounts of data are required in
order to find stable values for the estimated parameters.

When the AR and MA components are combined in a mixed model, the ability
accurately to approximate the Cramér–Wold representation with a limited number
of parameters is greatly increased. In such approximations, both the AR and the
MA components of the model have their parts to play. This is the true justification
for ARMA models.

Although mixed ARMA models are more serviceable that simple AR and MA
models, we shall begin the chapter with extensive treatments of the latter. This is
for ease of exposition. Once the theory of the pure models has been developed, that
of the mixed models becomes readily accessible by combining established results.

One of the principal concerns of this chapter is to discover the relationship
between the parameters of ARMA processes and their autocovariances. We shall
show that it is straightforward to find the values of the autocovariances from the
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values of the parameters. To go in the other direction is only slightly more difficult.
The programs which are presented will enable one to move in both directions; and
their accuracy may be tested by connecting them in a cycle passing back and forth
between the parameters and the autocovariances.

Stationary Stochastic Processes

A temporal stochastic process is a sequence of random variables indexed by a
time subscript. We shall denote such a process by x(t) so that the element of the
sequence with the time index t = τ has the value of xτ = x(τ).

Let {xτ+1, xτ+2, . . . , xτ+n} denote n consecutive elements of the sequence.
Then the process is said to be strictly stationary if the joint probability distribution
of these elements does not depend on τ , regardless of the size of n. This means
that any two segments of the sequence of equal length will have identical probabil-
ity distribution functions. If the moments in question are finite, then stationarity
implies that

E(xt) = µ for all t and C(xt, xs) = γ|t−s|.(17.1)

The second of the conditions indicates that the covariance of any two elements
depends only on their temporal separation |t − s|. It should be observed that,
in a stationary process which is completely characterised by its first and second
moments, there is nothing to indicate the direction of time.

Notice that, if the elements of the sequence are normally distributed, then
the two conditions of (17.1) are sufficient to guarantee strict stationarity, for the
reason that a normal distribution is characterised completely by moments of the
first and second orders. On their own, the conditions imply weak or second-order
stationarity.

The second condition of (17.1) also implies that V (xt) = γ0 for all t, which is
to say that the elements share a common variance. Therefore, the Cauchy–Schwarz
inequality serves to show that

− 1 ≤ C(xt, xs)√
V (xt)V (xs)

=
γ|t−s|

γ0
≤ 1,(17.2)

which, in view of the nonnegativity of the variance, is expressed more succinctly
as the condition that γ0 ≥ |γτ | for all τ . Thus the scale of the variance dominates
that of the ensuing autocovariances.

In graphical representations of the autocovariances, such as those which are to
be found in this chapter, it is usually desirable to normalise the scale by dividing
each of them by the variance γ0. This gives rise to the sequence of autocorrelations
{ρτ = γτ/γ0}.

The condition that the autocovariances are functions solely of the temporal
separation of the elements in question implies that the dispersion matrix of the
vector of the n elements x0, x1, . . . , xn−1 is a bisymmetric Laurent matrix of the
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form

Γ =


γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

γ2 γ1 γ0 . . . γn−3

...
...

...
. . .

...
γn−1 γn−2 γn−3 . . . γ0

 .(17.3)

This dispersion matrix is positive definite, as is the dispersion matrix of any nonde-
generate multivariate distribution. The result follows immediately when one consid-
ers an arbitrary quadratic product in the elements of the matrix. The product may
be expressed in terms of the elements of the mean-adjusted process y(t) = x(t)−µ
as follows:

n−1∑
t=0

n−1∑
s=0

ctcsγt−s =
n−1∑
t=0

n−1∑
s=0

ctcsE(ytys)

=E

{( n−1∑
t=0

ctyt

)2
}
> 0.

(17.4)

The autocovariance generating function is a power series whose coefficients are
the autocovariances γτ for successive values of τ and whose argument is a complex
variable z. This will be denoted by

γ(z) =
{
γ0 + γ1(z + z−1) + γ2(z2 + z−2) + · · ·

}
=
∑
τ

γτz
τ .

(17.5)

Here it must be noted that the summation is over positive and negative values of
τ and that γ−τ = γτ . The function may be described as the z-transform of the
sequence of autocovariances.

The autocovariance generating function γ(z) of a stationary process is positive
definite in the sense that it fulfils the condition that

0 <
1

2πi

∮
c(z)γ(z)c(z−1)

dz

z
,(17.6)

where the contour of integration is the circumference of the unit circle, and where
c(z) 6= 0 is any rational function which is analytic within an annulus surrounding
the circumference. This integral has the value of the coefficient of c(z)γ(z)c(z−1)
associated with z0, which is

∑
ctcsγ|t−s|. Thus (17.7) is equivalent to the condition

of positive definiteness under (17.4) when the order n of the dispersion matrix is
indefinitely large.

The dispersion matrix Γ of (17.3) may be derived from the autocovariance
generating function by replacing positive powers of the argument z by positive
powers of the n × n matrix L, which has units on the first subdiagonal and zeros
elsewhere, and by replacing negative powers of z by powers of L′. The matrix
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Figure 17.1. The graphs of 125 observations on three simulated series: (a)
a unit-variance white-noise process ε(t), (b) an MA(1) process y(t) = (1 +
0.9L)ε(t) and (c) an AR(1) process (1− 0.9L)y(t) = ε(t).
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L = [e1, . . . , en−1, 0], which is nilpotent of degree n, such that Lj = 0 for all j ≥ n,
is obtained from the identity matrix In = [e0, e1, . . . , en−1] of order n by deleting
the leading vector and by appending a zero vector to the end of the array. Its
transpose L′ = [0, e0, . . . , en−2] is obtained by deleting the trailing vector of In and
by appending a zero vector to the front of the array.

In seeking an overview of the algebraic results of this chapter, it may be helpful
to bear the autocovariance generating function in mind. In the following chapter,
it will give rise to the spectral density function when the locus of z becomes the
perimeter of the unit circle.

Given that a finite sequence of observations represents only a segment of a sin-
gle realisation of the underlying stochastic process x(t), it might be thought that
there is little chance of making valid statistical inferences about the parameters of
the process. However, if the process is stationary and if the statistical dependencies
between widely separated elements are weak, then it is possible to estimate consis-
tently a limited number of autocovariances which express the statistical dependence
of proximate elements of the sequence. If an ARMA model is to be fitted to the
process, then these autocovariances comprise all the information which is required
for the purpose of estimating the parameters.

Moving-Average Processes

The qth-order moving-average process, or MA(q) process, is defined by the
equation

y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q),(17.7)

where ε(t), which has E{ε(t)} = 0, is a white-noise process generating a sequence of
independently and identically distributed random variables with zero expectations.
The equation may be normalised either by setting µ0 = 1 or by setting V {ε(t)} =
σ2
ε = 1; and the usual choice is to set µ0 = 1. The equation may be represented, in

a summary notation, by y(t) = µ(L)ε(t) where µ(L) = µ0 + µ1L+ · · ·+ µqL
q is a

polynomial in the lag operator.
A moving-average process is stationary by definition, since any two ele-

ments yt and ys represent the same function of identically distributed sequences
{εt, εt−1, . . . , εt−q} and {εs, εs−1, . . . , εs−q}. The process is often required to be
invertible, as well, such that it can be expressed in the form of µ−1(L)y(t) = ε(t)
where µ−1(L) = ψ(L) is an power series in L whose coefficients fulfil the condition
of absolute summability, which is that

∑
i |ψi| < ∞. This is an infinite-order

autoregressive representation of the process. The representation is available only if
all the roots of the equation µ(z) = µ0 + µ1z + · · ·+ µqz

q = 0 lie outside the unit
circle. This conclusion follows from the result under (3.36).

Example 17.1. Consider the first-order moving-average process which is defined
by

y(t) = ε(t)− θε(t− 1) = (1− θL)ε(t).(17.8)

The process is illustrated in Figure 17.1. Provided that |θ| < 1, the inverse operator
(1 − θL)−1 can be expanded to give the following autoregressive representation of
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the process:

ε(t) = (1− θL)−1y(t)
=
{
y(t) + θy(t− 1) + θ2y(t− 2) + · · ·

}
.

(17.9)

Imagine that |θ| > 1 instead. Then, to obtain an autoregressive representation, we
should have to write

y(t+ 1) = ε(t+ 1)− θε(t)

=−θ
(

1− F

θ

)
ε(t),(17.10)

where F = L−1 and Fε(t) = ε(t+ 1). This gives

ε(t) =−1
θ

(
1− F

θ

)−1

y(t+ 1)

=−1
θ

{
y(t+ 1) +

y(t+ 2)
θ

+
y(t+ 3)
θ2

+ · · ·
}
.

(17.11)

Often, an expression such as this, which embodies future values of y(t), has no
reasonable meaning.

It is straightforward to generate the sequence of autocovariances of an MA(q)
process from a knowledge of the parameters of the moving-average process and of
the variance of the white-noise process which powers it. Consider

γτ =E(ytyt−τ )

=E

{(∑
i

µiεt−i

)(∑
j

µjεt−τ−j

)}
=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

(17.12)

Since ε(t) is a white-noise sequence of independently and identically distributed
random variables with zero expectations, it follows that

E(εt−iεt−τ−j) =
{ 0, if i 6= τ + j,

σ2
ε , if i = τ + j.

(17.13)

Therefore,

γτ = σ2
ε

q−τ∑
j=0

µjµj+τ .(17.14)

Now let τ = 0, 1, . . . , q. This gives

γ0 =σ2
ε

(
µ2

0 + µ2
1 + · · ·+ µ2

q

)
,

γ1 =σ2
ε

(
µ0µ1 + µ1µ2 + · · ·+ µq−1µq

)
,

...
γq =σ2

εµ0µq.

(17.15)
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For τ > q, there is γτ = 0.
The cut-off in the autocorrelation function at lag q, which is liable to be mir-

rored in its empirical counterpart, provides a means of identifying the order of a
moving-average model—see Figure 17.2(b).

Example 17.2. A first-order moving-average process y(t) = ε(t) − θε(t − 1) has
the following autocovariances:

γ0 =σ2
ε(1 + θ2),

γ1 =−σ2
εθ,

γτ = 0 if τ > 1.

(17.16)

A vector [y0, y1, . . . , yT−1] comprising T consecutive elements from the process has
a dispersion matrix of the form

Γ = σ2
ε


1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 −θ . . . 0
0 −θ 1 + θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + θ2

 .(17.17)

In general, the dispersion matrix of a qth-order moving-average process has q subdi-
agonal and q supradiagonal bands of nonzero elements and zero elements elsewhere.

It should recognised that the equations of (17.16) impose restrictions on the
admissible values of the autocovariances of the MA(1) process. The ratio of the
autocovariances is

γ1

γ0
=
−θ

1 + θ2
= ρ;(17.18)

and the solution for θ is

θ =
−1±

√
1− 4ρ2

2ρ
,(17.19)

which is real-valued only if |ρ| ≤ 1
2 . The latter is also a necessary condition for

the nonnegative-definiteness of the autocovariance function. To demonstrate this,
consider a quadratic function of the nth-order dispersion matrix Γ = [γ|t−s|] in the
form of

Q =
n−1∑
t=0

n−1∑
s=0

ctγ|t−s|cs, where cj = (−1)j(17.20)

and where γ|t−s| is defined by (17.16). If ρ > 1
2 , then there would be

Q = σ2
ε(1 + θ2)

{
n− 2(n− 1)ρ

}
< 0 for n >

2ρ
2ρ− 1

,(17.21)
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Figure 17.2. (a) The graph of 125 observations on a simulated series gen-
erated by an MA(2) process y(t) = (1 + 1.25L + 0.80L2)ε(t), together with
(b) the theoretical and empirical autocorrelations and (c) the theoretical and
empirical partial autocorrelations. The theoretical values correspond to the
solid bars.
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which is a violation of the condition of nonnegative-definiteness. Therefore, |ρ| ≤ 1
2

is necessary. The fact that it is also a sufficient condition for the nonnegative-
definiteness of the autocovariance function will emerge from an example in the
following chapter.

The autocovariance generating function of the qth-order moving-average pro-
cess can be found quite readily. Consider the product

µ(z)µ(z−1) =
(∑

i

µiz
i

)(∑
j

µjz
−j
)

=
∑
i

∑
j

µiµjz
i−j

=
∑
τ

(∑
j

µjµj+τ

)
zτ , τ = i− j.

(17.22)

When the expression for the autocovariance of lag τ of a moving-average process
given under (17.14) is referred to, it can be see that the autocovariance generating
function is just

γ(z) = σ2
εµ(z)µ(z−1).(17.23)

The decomposition of γ(z) into the factors µ(z), µ(z−1) and σ2
ε is known as the

Cramér–Wold factorisation.
Given the correspondence which exists between the autocovariance generat-

ing function γ(z) of a stationary process and the dispersion matrix Γ of a (finite)
sequence of its elements, one might expect to find a straightforward matrix represen-
tation of the Cramér–Wold factorisation. Consider, therefore, the lower-triangular
Toeplitz matrix M = µ(L) obtained by replacing the argument z of the polynomial
µ(z) by the L = [e1, . . . , en−1, 0] which is a matrix analogue of the lag operator.
Then it transpires that the product σ2

εMM ′, which is the analogue of σ2
εµ(z)µ(z−1),

is only an approximation to the MA dispersion matrix Γ. An exact expression for
Γ, of which the matrix σ2

εMM ′ is the essential part, is to be found under (22.58).
Another matrix relationship which may also be construed as an analogue of

the Cramér–Wold factorisation is the Cholesky decomposition Γ = WDW ′ of the
dispersion matrix, wherein W is a lower-triangular matrix which approximates to
M = µ(L) and D = diag{d0, . . . , dn−1} is a diagonal matrix whose elements may
be construed as successive approximations to σ2

ε . This representation is discussed
in Chapter 19 in connection with the Gram–Schmidt prediction-error algorithm.

Figure 17.2 illustrates the autocorrelation function of a moving-average process,
and it shows the relationship of the latter to the partial autocorrelation function
which is to be considered in detail later.

Computing the MA Autocovariances

A straightforward procedure which is modelled on the equations in (17.15) can
be used to calculate the autocovariances once the values have been provided for the
parameters µ0, µ1, . . . , µq and σ2

ε :
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(17.24) procedure MACovariances(var mu, gamma : vector;
var varEpsilon : real;
q : integer);

var
i, j : integer;

begin
for i := 0 to q do

begin
gamma[i] := 0.0;
for j := 0 to q − i do
gamma[i] := gamma[i] +mu[j] ∗mu[j + i];

gamma[i] := gamma[i] ∗ varEpsilon
end;

end; {MACovariances}

MA Processes with Common Autocovariances

Several moving-average processes can share the same autocovariance function.
Thus, for example, the equations under (17.15) are generated not only by the
process y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q) but also by the process x(t) =
µqε(t) + µq−1ε(t− 1) + · · ·+ µ0ε(t− q), which is formed by reversing the sequence
of coefficients.

If the equation of the original process is y(t) = µ(L)ε(t), then the equation of
the process with the coefficients in reversed order is x(t) = µ′(L)ε(t), wherein the
operator µ′(L) = Lqµ(L−1) is obtained from µ(L) by inverting all of its roots.

To see the effect of inverting a single root of the operator µ(L), one may
consider the autocovariance function under (17.23) in the light of the factorisation

µ(z) = µ0

q∏
i=1

(
1− z

λi

)
.(17.25)

Let λ be a real-valued root of µ(z) = 0. Then λ is inverted by multiplying µ(z) by
1− λz and dividing it by 1− z/λ. The result is

µ̃(z) = µ(z)
(1− λz)

(1− zλ−1)
,(17.26)

which gives

µ̃(z)µ̃(z−1) =µ(z)µ(z−1)
(1− λz)(1− λz−1)

(1− zλ−1)(1− {zλ}−1)
=λ2µ(z)µ(z−1);

(17.27)

and it follows that the autocovariance generating function of (17.23) can also be
factorised as

γ(z) = σ̃2
ε µ̃(z)µ̃(z−1), where σ̃2

ε =
σ2
ε

λ2
.(17.28)
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If λ is a complex-valued root of µ(z) = 0, then inverting it on its own would
lead to a complex-valued function µ̃(z). For µ̃(z) to be real-valued, it is necessary
to invert both λ and its complex conjugate λ∗ at the same time. In that case, σ2

ε

must be scaled by a factor of |λ|−4.
Clearly, an arbitrary selection of the roots of µ(z) can be inverted in this way

without affecting the autocovariance generating function. By taking account of
all such inversions, the complete class of the processes which share the common
autocovariance function can be defined. Amongst such a class, there is only one
process which satisfies the condition of invertibility which requires every root of
µ(z) = 0 to lie outside the unit circle.

A particular feature of the invertible model in comparison with others which
share the same autocovariances is that the corresponding transfer function entails
the minimum time delays in the mapping from ε(t) to y(t). This is the so-called
minimum-phase-delay or “miniphase” property of the invertible model.

Computing the MA Parameters from the Autocovariances

The equations of (17.15) define a mapping from the set of parameters to the
sequence of autocovariances. If none of the roots of the polynomial equation µ(z) =
0 lie on the unit circle, then the equations also serve to define an inverse mapping
from the autocovariances to a set of parameters which correspond to a unique
stationary process which satisfies the condition of invertibility. The equations which
must be solved to obtain these parameters can be written, in two alternative ways,
as 

γ0

γ1

...
γq−1

γq

=σ2
ε


µ0 µ1 . . . µq−1 µq
µ1 µ2 . . . µq 0
...

... . . .
...

...
µq−1 µq . . . 0 0
µq 0 . . . 0 0




µ0

µ1

...
µq−1

µq



=σ2
ε


µ0 µ1 . . . µq−1 µq
0 µ0 . . . µq−2 µq−1

...
...

. . .
...

...
0 0 . . . µ0 µ1

0 0 . . . 0 µ0




µ0

µ1

...
µq−1

µq

 .
(17.29)

The equations may be written in summary notation as

γ = σ2
εM

#µ = σ2
εM
′µ,(17.30)

where M# is a so-called Hankel matrix. The objective is to find a solution, in terms
of the vector µ, for the system

f(µ) = γ − σ2
εM

#µ = 0.(17.31)

Since this system is nonlinear, its solution must be found via an iterative procedure.
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There are several methods which can be used in solving this system. To reveal
one of the simplest methods, let us consider setting µ0 = 1 and rewriting all but
the first of the equations of (17.29) as

µ1

µ2

...
µq−1

µq

 =
1
σ2
ε


γ1

γ2

...
γq−1

γq

−

µ2 . . . µq−1 µq
µ3 . . . µq 0
... . . .

...
...

µq . . . 0 0
0 . . . 0 0




µ1

µ2

...
µq−2

µq−1

 .(17.32)

Here the generic equation takes the form of

µi =
γi
σ2
ε

−
q−i∑
j=1

µjµj+i,(17.33)

whilst the first equation of (17.29), which has been omitted from (17.32), can be
rearranged to give

σ2
ε =

γ0

1 +
∑
µ2
i

.(17.34)

In solving these equations iteratively, one can start by setting µ1 = µ2 = · · · =
µq = 0 and by setting σ2

ε = γ0, which, in that case, is the value implied by (17.34).
Then the equations of (17.32) can be solved from bottom to top for successive
values of µi with i = q, q − 1, . . . , 1 and with the solutions for µi+1, µi+2, . . . , µq
replacing the starting values as soon as they become available. The first round of
the procedure is completed by finding a revised value for σ2

ε from equation (17.34)
using the newly found values of µ1, . . . , µq. The latter also become the starting
values for the next round.

The convergence of this procedure is not particularly rapid; and it is wise to
impose a limit on the number of its iterations. Its attractions, in comparison with
other procedures, are its simplicity and the speed of its execution. The code for
the procedure is as follows:

(17.35) procedure MAParameters(var mu : vector;
var varEpsilon : real;

gamma : vector;
q : integer);

var
r, i, j : integer;
denom, oldVar, temp, test : real;

begin
r := 0;
varEpsilon := gamma[0];
mu[0] := 1;
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for i := 1 to q do
mu[i] := 0;

repeat {until convergence}

for i := q downto 1 do
begin {q}
temp := gamma[i]/varEpsilon;
for j := 1 to q − i do
temp := temp−mu[j] ∗mu[j + i];

mu[i] := temp;
end; {q}

oldVar := varEpsilon;
denom := 1;
for i := 1 to q do
denom := denom+mu[i] ∗mu[i];

varEpsilon := gamma[0]/denom;
test := (oldVar− varEpsilon)/varEpsilon;
r := r + 1;

until (Abs(test) < 0.00001) or (r = 99);

end; {MAParameters}

A more sophisticated procedure, which is a liable to find the moving-average
parameters in fewer iterations, is the procedure of Tunnicliffe–Wilson [527] which
depends upon the Newton–Raphson algorithm. In this case, the (r + 1)th approx-
imation to the solution, which is µr+1, is obtained from the rth approximation µr
according to the formula

µr+1 = µr − {Df(µr)}−1f(µr).(17.36)

Here f(µr) and Df(µr) stand, respectively, for the vector function of (17.31) and
its matrix first derivative evaluated at the point µ = µr. It is easily to verify that

Df(µ) = −σ2
ε(M# +M ′).(17.37)

Therefore, the algorithm can be written as

µr+1 = µr +
{
σ2
ε(M# +M ′)

}−1

r
(γ − σ2

εM
#µ)r,(17.38)

where the subscript on the RHS is to indicate that the elements are to be evaluated
at µ = µr.

This iterative procedure for finding the MA parameters requires some starting
values. Recall that the equation of the moving average can be normalised either by
setting σ2

ε = 1 or by setting µ0 = 1. If σ2
ε = 1 is chosen, then it is reasonable to

begin the iterations with µ0 = γ0 and µ1 = µ2 = · · · = µq = 0. Once the iterative
procedure has converged, the equation can be re-normalised so that µ0 = 1.
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The equations of (17.31) have multiple solutions. Nevertheless, the selection of
starting values makes it virtually certain that the iterative procedure will converge
upon the parameter values which correspond to the uniquely defined invertible MA
model. The following display gives the Pascal code for implementing the procedure:

(17.39) procedure Minit(var mu : vector;
var varEpsilon : real;
gamma : vector;
q : integer);

var
d : matrix;
delta, f : vector;
i, j, iterations, start, finish : integer;
tolerance : real;
convergence : boolean;

begin {Minit}
tolerance := 1.0E − 5;

{Initialise the vector mu}
for i := 0 to q do
mu[i] := 0.0;

mu[0] := Sqrt(gamma[0]);
convergence := false;
iterations := 0;

while (convergence = false) and (iterations < 10) do
begin

{Form the matrix of derivatives}
for i := 0 to q do

for j := 0 to q do
begin
d[i, j] := 0.0;
if (j − i) >= 0 then
d[i, j] := mu[j − i];

if (i+ j) <= q then
d[i, j] := d[i, j] +mu[i+ j];

end;

{Find the function value}
for j := 0 to q do

begin
f [j] := gamma[j];
for i := 0 to q − j do
f [j] := f [j]−mu[i] ∗mu[i+ j]

end;
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{Find the updating vector}
LUsolve(0, q + 1, d, delta, f);

{Update the value of mu}
for i := 0 to q do
mu[i] := mu[i] + delta[i];

iterations := iterations+ 1;

{Check for convergence}
convergence := CheckDelta(tolerance, q, delta,mu);

end; {while}

{Renormalise the results}
varEpsilon := 1.0;
for i := 1 to q do

begin {i}
mu[i] := mu[i]/mu[0];
varEpsilon := varEpsilon+mu[i] ∗mu[i];

end; {i}
mu[0] := 1;
varEpsilon := gamma[0]/varEpsilon;

end; {Minit}

The test of the convergence of the algorithm is conducted by the following
function which will be used again in another context:

(17.40) function CheckDelta(tolerance : real;
q : integer;
var delta,mu : vector) : boolean;

var
i, j : integer;
muNorm, deltaNorm : real;

begin
muNorm := 0.0;
deltaNorm := 0.0;
for i := 0 to q do

begin
muNorm := muNorm+ Sqr(mu[i]);
deltaNorm := deltaNorm+ Sqr(delta[i])

end;
if (deltaNorm/muNorm) > tolerance then
CheckDelta := false

else
CheckDelta := true;

end {CheckDelta};
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Before closing this section, we should mention yet another way in which the
MA parameters may be inferred from the autocovariances. This is by using the
Gram–Schmidt prediction-error algorithm of Chapter 19 to effect the Cholesky
decomposition of the dispersion matrix Γ. This generates a lower-triangular matrix
L, with units on its diagonal, and a diagonal matrix D such that LDL′ = Γ. Given
that the dispersion matrix Γ of an MA(q) process has q supradiagonal bands and
q subdiagonal bands, and zero-valued elements elsewhere, it follows that L is a
matrix of q subdiagonal bands. As the order n of Γ and L increases, it will be
found that the values of the q nonzero off-diagonal elements in the final row of L,
as well as those in other higher-order rows, will converge upon the values of the q
MA parameters µ1, . . . , µq. This convergence is a reason for regarding the Cholesky
decomposition as a matrix analogue of the Cramér–Wold factorisation.

Autoregressive Processes

The pth-order autoregressive process, or AR(p) process y(t), is defined by the
equation

α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = ε(t).(17.41)

This equation is normalised, invariably, by setting α0 = 1, although it would be
possible to set σ2

ε = 1 instead. The equation can be written more concisely as
α(L)y(t) = ε(t), where α(L) = α0 + α1L + · · · + αpL

p. For the process to be
stationary, the roots of the equation α(z) = α0 + α1z + · · · + αpz

p = 0 must
lie outside the unit circle. When this condition is satisfied, the autoregressive
process can be represented as an infinite-order moving-average process in the form
of y(t) = α−1(L)ε(t).

Example 17.3. Consider the first-order autoregressive process which is defined by

ε(t) = y(t)− φy(t− 1)

= (1− φL)y(t).
(17.42)

Provided that the process is stationary with |φ| < 1, this can be written in moving-
average form as

y(t) = (1− φL)−1ε(t)

=
{
ε(t) + φε(t− 1) + φ2ε(t− 2) + · · ·

}
.

(17.43)

The Autocovariances and the Yule–Walker Equations

Since a stationary autoregressive process is equivalent to an infinite-order
moving-average process, its autocovariances can be found using the formula under
(17.14), which is applicable to moving-average processes of any order. For the
same reason, the autocovariance generating function of the autoregressive process
y(t) = α−1(L)ε(t) is given by

γ(z) =
σ2
ε

α(z)α(z−1)
.(17.44)
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Figure 17.3. (a) The graph of 125 observations on a simulated series
generated by an AR(2) process (1 − 0.273L + 0.81L2)y(t) = ε(t), to-
gether with (b) the theoretical and empirical autocorrelations and (c)
the theoretical and empirical partial autocorrelations. The theoretical
values correspond to the solid bars.
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This is to be compared with the autocovariance generating function of a moving-
average process which is given under (17.23). The decomposition of γ(z) into
1/α(z), 1/α(z−1) and σ2

ε may be described as the Yule–Walker factorisation of the
autocovariance generating function.

In view of the correspondence which exists between the autocovariance gener-
ating function γ(z) of a stationary process and the dispersion matrix Γ, one might
look for a matrix analogue of the Yule–Walker factorisation. Therefore, consider
the lower-triangular Toeplitz matrix A = α(L) which is derived by replacing the
argument z of the polynomial α(z) by the matrix L = [e1, . . . , en−1, 0]. Then
the form of the autocovariance generating function suggests that the AR dispersion
matrix Γ may be approximated by σ2

εA
−1A′−1. An exact matrix relationship which

entails Γ and A−1A′−1 is to be found under (22.22).
The Cholesky decomposition of Γ may also be construed as an analogue the

Yule–Walker factorisation. This decomposition, which is effected by the Levinson–
Durbin algorithm, is presented later in this chapter.

Example 17.4. Consider again the first-order autoregressive process depicted in
equations (17.42) and (17.43). From equation (17.43), it follows that

γτ =E(ytyt−τ )

=E

{(∑
i

φiεt−i

)(∑
j

φjεt−τ−j

)}
=
∑
i

∑
j

φiφjE(εt−iεt−τ−j).

(17.45)

Because of the absence of correlations amongst the elements of the sequence ε(t),
which is reflected in the conditions under (17.13), this equation becomes

γτ =σ2
ε

∑
j

φjφj+τ

=
σ2
εφ

τ

1− φ2
.

(17.46)

Therefore, a vector y = [y0, y1, . . . , yT−1]′ of T consecutive elements from a first-
order autoregressive process has a dispersion matrix of the form

D(y) =
σ2
ε

1− φ2


1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

φ2 φ 1 . . . φT−3

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1

 .(17.47)

The method of finding the autocovariances which is exemplified above is alge-
braically intractable for all but a first-order process. For a practical way of finding
the autocovariances of the pth-order process, consider multiplying

∑
i αiyt−i = εt
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by yt−τ and taking expectations to give∑
i

αiE(yt−iyt−τ ) = E(εtyt−τ ).(17.48)

Taking α0 = 1 and writing yt−τ = εt−τ−α1yt−τ−1−· · ·−αpyt−τ−p helps to confirm
that

E(εtyt−τ ) =

{
σ2
ε , if τ = 0,

0, if τ > 0.
(17.49)

These results depend upon the fact that elements of ε(t) have no correlation with
the elements of y(t) which precede them in time. Therefore, (17.48) becomes

∑
i

αiγ|τ−i| =

{
σ2
ε , if τ = 0,

0, if τ > 0.
(17.50)

The equation
∑
i αiγτ−i = 0 is a homogeneous difference equation which serves to

generate the sequence {γp, γp+1, . . .} given p starting values γ0, γ1, . . . , γp−1.
The variance of ε(t) is also given by the following quadratic form:

σ2
ε =E

{(∑
i

αiyt−i

)(∑
j

αjyt−τ−j

)}
=
∑
i

∑
j

αiαjγi−j .
(17.51)

This is the coefficient associated with z0 on the left-hand side of the identity
α(z)γ(z)α(z−1) = σ2

ε which comes directly from (17.44). The identity

∑
i

∑
j

αiαjγi−j =
∑
j

αj

(∑
i

αiγi−j

)
=
∑
i

αiγi,

(17.52)

which relates the alternative expressions for this variance found under (17.50) and
(17.51), comes from the fact that

∑
i αiγi−j = 0 for all j > 0 and from the normal-

isation α0 = 1.
By letting τ = 0, 1, . . . , p in (17.50), a set of p + 1 equations are generated

which can be arrayed in matrix form as follows:
γ0 γ1 γ2 . . . γp
γ1 γ0 γ1 . . . γp−1

γ2 γ1 γ0 . . . γp−2

...
...

...
. . .

...
γp γp−1 γp−2 . . . γ0




1
α1

α2

...
αp

 =


σ2
ε

0
0
...
0

 .(17.53)
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These are called the Yule–Walker equations, and they can be used either for ob-
taining the values γ0, γ1, . . . , γp from the values α1, . . . , αp, σ

2
ε or vice versa.

The Yule–Walker equations may be derived directly from the autocovariance
generating function of (17.44), which can be rearranged to give

γ(z)α(z) = σ2
ε

1
α(z−1)

.(17.54)

The p + 1 equations of (17.53) are obtained by equating the coefficients on either
side of the equation above which are associated with the z0, z, . . . , zp.

The parameters α1, . . . , αp are uniquely determined by the system
γ0 γ1 . . . γp−1

γ1 γ0 . . . γp−2

...
...

. . .
...

γp−1 γp−2 . . . γ0



α1

α2

...
αp

 = −


γ1

γ2

...
γp

(17.55)

which comprises all but the first equation of (17.53) and which may be described
as the normal equations of the regression of y(t) on y(t−1), . . . , y(t−p). The value
of σ2

ε is obtained from the first equation of (17.53) using the previously determined
values of α1, . . . , αp.

To derive the equations which allow the autocovariances to be found from the
parameters, let us define g = γ0/2 in order to write the LHS of (17.53) as

g 0 . . . 0
γ1 g . . . 0
...

...
. . .

...
γp γp−1 . . . g




1
α1

...
αp

+


g γ1 . . . γp
0 g . . . γp−1

...
...

. . .
...

0 0 . . . g




1
α1

...
αp



=


1 0 . . . 0
α1 1 . . . 0
...

...
. . .

...
αp αp−1 . . . 1



g
γ1

...
γp

+


1 . . . αp−1 αp
α1 . . . αp 0
... . . .

...
...

αp . . . 0 0




g
...

γp−1

γp

 .
(17.56)

Then, by recombining the matrices, the following alternative version of equation
(17.53) is derived:

1 α1 . . . αp−1 αp
α1 1 + α2 . . . αp 0
...

...
...

...
αp−1 αp−2 + αp . . . 1 0
αp αp−1 . . . α1 1




γ0

γ1

...
γp−1

γp

 =


σ2
ε

0
...
0
0

 .(17.57)

This serves to determine uniquely the set of autocovariances γ0, γ1, . . . , γp. The set
contains one more element than is needed to begin the recursion based on equation
(17.50) by which the succeeding autocovariances can be generated.
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Example 17.5. For an example of the two uses of the Yule–Walker equations, let
us consider the second-order autoregressive process. In that case, there is

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

 1
α1

α2

 =

 α2 α1 1 0 0
0 α2 α1 1 0
0 0 α2 α1 1



γ2

γ1

γ0

γ1

γ2


=

 1 α1 α2

α1 1 + α2 0
α2 α1 1

 γ0

γ1

γ2

 =

 σ2
ε

0
0

 .
(17.58)

Notice how the matrix following the first equality is folded across the axis which
divides it vertically to create the matrix which follows the second equality. Pleasing
effects of this sort abound in time-series analysis.

If the values for γ0, γ1, γ2, are known, then the equations can be solved for the
parameter values

α1 =
γ0γ1 − γ1γ2

γ2
0 − γ2

1

,

α2 =
γ0γ2 − γ2

1

γ2
0 − γ2

1

.

(17.59)

Then σ2
ε = γ0 + α1γ1 + α2γ2 can be found. Conversely, to obtain the first two

autocovariances, the second equation of (17.58) may be reduced to[
1− α2

2 α1(1− α2)
α1 1 + α2

] [
γ0

γ1

]
=
[
σ2
ε

0

]
.(17.60)

Solving this gives

γ0 =
σ2
ε(1 + α2)

(1− α2)(1 + α2 + α1)(1 + α2 − α1)
,

γ1 =
−σ2

εα1

(1− α2)(1 + α2 + α1)(1 + α2 − α1)
.

(17.61)

The denominator in these expressions can be parsed in a variety of ways. Given
the values of γ0 and γ1, we can proceed to find γ2 = −α2γ0 − α1γ1.

In should be emphasised that the sequence of autocovariances which is gen-
erated by solving the system under (17.57) will give rise to a positive-definite dis-
persion matrix only if the parameters α0, α1, . . . , αp correspond to a stationary AR
process. Conversely, the AR parameters which are obtained by solving equation
(17.55) will correspond to a stationary process if and only if the matrix of auto-
covariances is positive definite. We may express this more succinctly by declaring
that
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(17.62) The polynomial equation α(z) = α0 + α1z + · · · + αpz
p = 0, has all

of its roots outside the unit circle if and only if the autocovariance
function γ(z) of the corresponding AR process is positive definite.

Proof. If the roots of α(z) = 0 are outside the unit circle, then the AR pro-
cess is stationary and, by definition, there are well-defined positive-definite dis-
persion matrices corresponding to segments of y(t) of any length. In particular,
the condition of (17.6) is satisifed by the AR autocovariance generating function
γ(z) = {α(z)α(z−1)}−1. It is only the converse that has to be proved.

Therefore, consider the factorisation α(z) = δ(z)φ(z), where δ(z) = 1 + δ1z +
δ2z

2 is any of the quadratic factors of α(z). Then the equation in z under (17.54),
from which the Yule–Walker equations for the AR(p) process may be derived, can
be rewritten as

ρ(z)δ(z) =
{
φ(z−1)γ(z)φ(z)

}
δ(z)

=σ2
ε

1
δ(z−1)

,
(17.63)

where ρ(z) = φ(z−1)γ(z)φ(z) is the autocovariance generating function of the fil-
tered sequence φ(L)y(t). By equating the coefficients associated with z0, z1 and z2

on both sides, the following equations are derived: ρ0 ρ1 ρ2

ρ1 ρ0 ρ1

ρ2 ρ1 ρ0

 1
δ1
δ2

 =

 1 δ1 δ2
δ1 1 + δ2 0
δ2 δ1 1

 ρ0

ρ1

ρ2

 =

 σ2
ε

0
0

 .(17.64)

Solving the second equation for the autocovariances gives

ρ0 =
σ2
ε(1 + δ2)

(1− δ2)({1 + δ2}2 − δ2
1)
,

ρ1 =
−σ2

εδ1
(1− δ2)({1 + δ2}2 − δ2

1)
.

(17.65)

If the function γ(z) is positive definite, then so too is ρ(z). The condition that ρ(z)
is positive definite implies that ρ0 > 0 and that ρ2

0 − ρ2
1 > 0. Given that σ2

ε > 0, it
is easy to see that these imply that

(1 + δ2)2 > δ2
1 and

1 + δ2
1− δ2

> 0 or, equivalently, 1− δ2
2 > 0.

(17.66)

The latter conditions, which correspond to those listed under (5.148), are necessary
and sufficient to ensure that the roots of δ(z) lie outside the unit circle.

This analysis can be repeated for every other quadratic factor of the polynomial
α(z) in order to show that all of the complex roots must lie outside the unit circle
in consequence of the positive definite nature of ρ(z). It is easy to show, along
similar lines, that the real roots must lie outside the unit circle.
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Computing the AR Parameters

To obtain the autoregressive parameters α1, . . . , αp and σ2
ε from the autoco-

variances γ0, . . . , γp, a straightforward procedure may be devised which solves the
Yule–Walker equations. In calling the procedure listed below, one must set q = 0.
The matrix which is notionally inverted in the process of finding the parameters is,
in fact, symmetric as can be seen from (17.55). Therefore, it might be more efficient
to employ an inversion algorithm which recognises this symmetry in place of the
procedure LUsolve of (7.28), which does not. However, there will be an occasion
later when it will be necessary to infer the autoregressive parameters from a set
of autocovariances which do not give rise to a symmetric matrix; and this is the
reason for invoking LUsolve.

(17.67) procedure YuleWalker(p, q : integer;
gamma : vector;
var alpha : vector;
var varEpsilon : real);

var
a : matrix;
b : vector;
i, j, k : integer;

begin {YuleWalker}
for i := 1 to p do

begin {i}
b[i] := −gamma[q + i];
for j := 1 to p do

begin {j}
k := Abs(q + i− j);
a[i, j] := gamma[k];

end{j}
end; {i}

LUsolve(1, p, a, alpha, b);
alpha[0] := 1;
varEpsilon := 0;
for i := 0 to p do
varEpsilon := varEpsilon+ alpha[i] ∗ gamma[i];

end; {YuleWalker}
The autoregressive parameters may be computed, alternatively, by a recur-

sive method which delivers, on the rth iteration, a set of coefficients, denoted by
α1(r), . . . , αr(r), which are the parameters belonging to the unique autoregressive
process of order r which generates the values γ0, γ1, . . . , γr as its first r autocovari-
ances.

The sequence {αr(r); r = 1, 2, . . .} is known as the partial autocorrelation func-
tion. If, in fact, the autocovariances have been generated by a process of order p,
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and if p < r, then it will be found that αr(r) = 0. If, in place of the true auto-
covariances, which might be unknown, one were to use a set of empirical values
determined from sample data, then this result would no longer hold. Nevertheless,
one could expect the corresponding empirical value of αr(r), for any r > p, to be
close to zero; and this should provide a useful indication of the order of the process
underlying the data.

The relationship between the theoretical and the empirical autocorrelation
functions is illustrated in Figure 17.3 for the case of p = 2. The figure supports the
notion that the order of an AR process can be discerned by inspecting the empirical
partial autocorrelation function.

The recursive algorithm for generating the sequence of partial autocorrelations
was first discovered by Levinson [314] in 1946. It was rediscovered by Durbin [166]
in 1960 who gave it an alternative form. It has a startling simplicity.

To derive the algorithm, let us imagine that the values α1(r), . . . , αr(r) are
already available. Then, by extending the set of rth-order Yule–Walker equations
to which these values correspond, we can derive the system


γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




1

α1(r)

...
αr(r)

0

 =


σ2

(r)

0
...
0
g

 ,(17.68)

wherein

g =
r∑
j=0

αj(r)γr+1−j with α0(r) = 1.(17.69)

The system can also be written as
γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




0

αr(r)
...

α1(r)

1

 =


g
0
...
0

σ(r)2

 .(17.70)

Now let us combine the two systems of equations under (17.68) and (17.70) to
give


γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




1

α1(r) + cαr(r)
...

αr(r) + cα1(r)

c

 =


σ2

(r) + cg

0
...
0

g + cσ2
(r)

 .(17.71)
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If the coefficient of the combination, which is described as the reflection coefficient,
is taken to be

c = − g

σ2
(r)

,(17.72)

then the final element in the vector on the RHS becomes zero and the system
becomes the set of Yule–Walker equations of order r + 1. The solution of the
equations, from the last element αr+1(r+1) = c through to the variance term σ2

(r+1),
is given by

αr+1(r+1) =
−1
σ2

(r)

{ r∑
j=0

αj(r)γr+1−j

}
,

 α1(r+1)

...
αr(r+1)

=

 α1(r)

...
αr(r)

+ αr+1(r+1)

 αr(r)...
α1(r)

 ,
σ2

(r+1) =σ2
(r)

{
1− (αr+1(r+1))2

}
.

(17.73)

Thus the solution of the Yule–Walker system of order r + 1 is easily derived from
the solution of the system of order r, and there is scope for devising a recursive
procedure. The starting values for the recursion are

α1(1) = −γ1/γ0 and σ2
(1) = γ0

{
1− (α1(1))2

}
.(17.74)

The Levinson–Durbin algorithm is implemented in the following Pascal proce-
dure:

(17.75) procedure LevinsonDurbin(gamma : vector;
p : integer;
var alpha, pacv : vector);

var
r, j, jstop : integer;
c, g, astore : real;
sigsqr : vector;

begin {LevinsonDurbin}
alpha[0] := 1.0;
pacv[0] := 1.0;
sigsqr[0] := gamma[0];
r := 0;

while r < p do
begin
g := 0.0;
for j := 0 to r do
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g := g + alpha[j] ∗ gamma[r + 1− j];
c := g/sigsqr[r];
jstop := r div 2;

for j := 1 to jstop do
begin {j}
astore := alpha[j];
alpha[j] := astore− c ∗ alpha[r + 1− j];
alpha[r + 1− j] := alpha[r + 1− j]− c ∗ astore;

end; {j}

j := jstop+ 1;
if Odd(r) then
alpha[j] := alpha[j] ∗ (1− c);

alpha[r + 1] := −c;
sigsqr[r + 1] := sigsqr[r] ∗ (1− Sqr(alpha[r + 1]));
r := r + 1;
pacv[r] := −c;

end; {while}
end; {LevinsonDurbin}

It is interesting to recognise that the Levinson–Durbin algorithm generates
the factors of the Cholesky decomposition of the matrix Γ of the autocovariances.
Consider the following equation:

γ0 γ1 . . . γr
γ1 γ0 . . . γr−1

...
...

. . .
...

γr γr−1 . . . γ0




1 α1(1) . . . αr(r)
0 1 . . . αr−1(r)

...
...

. . .
...

0 0 . . . 1



=


γ0 0 . . . 0
q11 σ

2
(1) . . . 0

...
...

. . .
...

qr1 qr2 . . . σ2
(r)

 .
(17.76)

The elements on and above the diagonal of the matrix product are explained by
a succession of Yule–Walker equations of increasing order which are in the same
inverted form as equation (17.70). Equation (17.76) may be expressed in summary
notation as ΓA′ = L.

Now consider premultiplying by A to give AΓA′ = AL. Since A and L are
lower-triangular matrices, it follows that AL is lower-triangular. Also, since A has
units on the diagonal, it follows that AL must have the same diagonal elements
as L. Finally, AL = AΓA′ is symmetric; so the elements both above and below
its diagonal must be zeros. Thus AΓA′ = D = diag{γ0, σ

2
(1), . . . , σ

2
(r)}; and there

is a Cholesky decomposition of Γ in the form of Γ = A−1DA′−1 together with a
corresponding decomposition of its inverse in the form of Γ−1 = A′D−1A.
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It may be recalled that, for a matrix such as Γ to be positive definite, it is
necessary and sufficient that the elements in the diagonal matrix D of the Cholesky
decomposition should all be positive. As we shall see in the next example, it
transpires that this is also a necessary and sufficient condition for the stability of an
autoregressive process with the parameters α1(r), . . . , αr(r); but, in fact, this point
has already been established through the proof of the proposition under (17.62).

The Durbin–Levinson algorithm can be construed as a procedure which gen-
erates recursively a sequence of polynomials of ever-increasing degrees. The poly-
nomials of the rth degree are

αr(z) = 1 + α1(r)z + · · ·+ αr−1(r)z
r−1 + αr(r)z

r, and

α′r(z) =αr(r) + αr−1(r)z + · · ·+ α1(r)z
r−1 + zr.

(17.77)

The polynomials of degree r + 1, whose coefficients are provided by the equations
under (17.73), are

αr+1(z) =αr(z) + zcr+1α
′
r(z),

α′r+1(z) = zα′r(z) + cr+1αr(z),
(17.78)

where cr+1 = αr+1(r+1) is the reflection coefficient of (17.72), to which a subscript
has been added to identify its order in the recursive scheme.

The Durbin–Levinson procedure can be put into reverse. That is to say, it is
possible to devise an algorithm which generates αr(z) and α′r(z) from αr+1(z) and
α′r+1(z). The equations are

αr(z) =
1

1− c2r+1

{
αr+1(z)− cr+1α

′
r+1(z)

}
,

α′r(z) =
z−1

1− c2r+1

{
α′r+1(z)− cr+1αr+1(z)

}
.

(17.79)

It is remarkable to discover that this inverse algorithm is a straightforward variant
of the Schur–Cohn algorithm which serves to determine whether or not a linear
difference equation is stable.

Example 17.6. The Schur–Cohn algorithm—see (5.153)—generates a succession
of polynomials of decreasing degrees whose leading coefficients are all required to
be positive if the roots of the first polynomial in the sequence are to lie outside
the unit circle. According to equation (5.152), the polynomials of degree p− 1 are
generated from those of degree p via the following equations:

fp−1(z) =α0fp(z)− αpf ′p(z),
f ′p−1(z) = z−1

{
α0f

′
p(z)− αpfp(z)

}
.

(17.80)

Inverting the transformation gives

fp(z) =
1

α2
0 − α2

p

{
α0fp−1(z) + zαpf

′
p−1(z)

}
,

f ′p(z) =
1

α2
0 − α2

p

{
zα0f

′
p−1(z) + αpfp−1(z)

}
.

(17.81)
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Here equation (17.81) corresponds to equation (17.78) and equation (17.80)
corresponds to equation (17.79). There are minor differences of notation which
have to be taken into account in making the comparison. Thus, for example,
cr+1 = αr+1(r+1) of equations (17.78) and (17.79) becomes αp in equations (17.80)
and (17.81). The substantive differences in the two sets of equations are attributable
wholly to the normalisation α0 = 1 which is applied to the leading coefficients of
the polynomials in the case of the Durbin–Levinson algorithm but not in the case
of the Schur–Cohn algorithm as we have presented it.

A necessary condition for the polynomial equation αp(z) = α0 + α1z + · · · +
αpz

p = 0 to have all if its roots outside the unit circle, which is given under (5.151),
is that α2

0−α2
p > 0. The necessary and sufficient condition is that all such products,

calculated from the sequence of polynomials fp(z), fp−1(z), . . . , f1(z), should be
positive. In terms of the Durbin–Levinson algorithm, the first of these conditions
becomes 1− α2

r+1(r+1) > 0 which, according to equation (17.73), implies that

σ2
(r)

{
1− α2

r+1(r+1)

}
= σ2

(r+1) > 0(17.82)

if σ2
(r) > 0. A condition which is necessary and sufficient for the roots of αr+1(z) = 0

to lie outside the unit circle, which emerges from the Durbin–Levinson algorithm, is
that γ0, σ

2
(1), . . . , σ

2
(r+1) > 0; for, as we have seen, this is equivalent to the condition

that the dispersion matrix Γ = [γ|i−j|] is positive definite.

Autoregressive Moving-Average Processes

The autoregressive moving-average process y(t) of orders p and q, which is
known for short as an ARMA(p, q) process, is defined by the equation

α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p)
= µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

(17.83)

The equation is normalised by setting α0 = 1 and by setting either µ0 = 1 or
σ2
ε = 1. The equation may also be expressed, in a summary notation, by writing
α(L)y(t) = µ(L)ε(t). It is assumed that α(z) and µ(z) have no factors in common.

Provided that the roots of α(z) = 0 lie outside the unit circle, the ARMA
process can be represented by y(t) = α−1(L)µ(L)ε(t), which corresponds to an
infinite-order moving-average process. Also, provided the roots of the equation
µ(z) = 0 lie outside the unit circle, the process can be represented by the equa-
tion µ−1(L)α(L)y(t) = ε(t), which corresponds to an infinite-order autoregressive
process.

By considering the moving-average form of the process, and by noting the form
of the corresponding autocovariance generating function which is given by equation
(17.23), it can be recognised that the autocovariance generating function for the
autoregressive moving-average process is given by

γ(z) = σ2
ε

µ(z)µ(z−1)
α(z)α(z−1)

.(17.84)
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Figure 17.4. (a) The graph of 125 observations on a simulated se-
ries generated by an ARMA(2, 1) process (1 − 0.273L + 0.81L2)y(t) =
(1 + 0.9L)ε(t), together with (b) the theoretical and empirical autocor-
relations and (c) the theoretical and empirical partial autocorrelations.
The theoretical values correspond to the solid bars.
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To find the autocovariances of the ARMA process, we may begin by multiplying
the equation

∑
i αiyt−i =

∑
i µiεt−i of (17.83) by yt−τ and by taking expectations.

This gives

p∑
i=0

αiγτ−i =
q∑
i=0

µiδi−τ ,(17.85)

where γτ−i = E(yt−τyt−i) and δi−τ = E(yt−τεt−i). Since εt−i is uncorrelated with
yt−τ whenever it postdates to the latter, it follows that δi−τ = 0 if τ > i. Since
i = 0, 1, . . . , q in the moving-average operator on the RHS of the equation (17.85),
it follows that

p∑
i=0

αiγτ−i = 0 when τ > q.(17.86)

Given the q + 1 nonzero values δ0, δ1, . . . , δq, and p initial values γ0, γ1, . . . , γp−1

for the autocovariances, the equation above can be solved recursively to obtain the
subsequent autocovariances {γp, γp+1, . . .}.

To find the requisite values δ0, δ1, . . . , δq, consider multiplying the equation∑
i αiyt−i =

∑
i µiεt−i by εt−τ and taking expectations. This gives

τ∑
i=0

αiδτ−i = σ2
εµτ ,(17.87)

where δτ−i = E(εt−τyt−i). Here it should be noted that δτ−i = 0 when i > τ .
Equation (17.87) can be rewritten as

δτ =
1
α0

(
µτσ

2
ε −

τ∑
i=1

αiδτ−i

)
,(17.88)

and, by setting τ = 0, 1, . . . , q, the required values δ0, δ1, . . . , δq can be generated
recursively.

The schematic aspects of this derivation become clearer when generating func-
tions are used. Multiplying the autocovariance generating function γ(z) of (17.84)
by α(z) gives

α(z)γ(z) = µ(z)δ(z−1),(17.89)

where

δ(z−1) = σ2
ε

µ(z−1)
α(z−1)

.(17.90)

Equation (17.85) is obtained by equating the coefficients of the same powers of z
on the two sides of (17.89). Next, by rearranging the equation defining δ(z−1), it
is found that

α(z−1)δ(z−1) = σ2
εµ(z−1).(17.91)
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This corresponds to equation (17.87). By solving equations (17.89) and (17.91) for
γ(z), and by eliminating, δ(z−1) in the process, the expression for the autocovari-
ance generating function given under (17.84) can be recovered.

An example of the autocorrelation function of an ARMA process is provided
by Figure 17.4(b). This relates to an ARMA(2, 1) process which has the same
autoregressive operator as the AR(2) process which has given rise to the autocorre-
lation function depicted in Figure 17.3 (b). The autocorrelation functions of the two
processes are barely distinguishable. However, there is a marked difference in the
corresponding partial autocorrelation functions which are represented in Figures
14.3(c) and 14.4(c)

The identification of the orders of an ARMA model on the basis if its autocor-
relation functions poses a difficult problem.

Example 17.7. Consider the ARMA(2, 2) model which gives the equation

α0yt + α1yt−1 + α2yt−2 = µ0εt + µ1εt−1 + µ2εt−2.(17.92)

On multiplying by yt, yt−1 and yt−2 and taking expectations, we get γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

 α0

α1

α2

 =

 δ0 δ1 δ20 δ0 δ1
0 0 δ0

 µ0

µ1

µ2

 .(17.93)

On multiplying by εt, εt−1 and εt−2 and taking expectations, we get δ0 0 0
δ1 δ0 0
δ2 δ1 δ0

 α0

α1

α2

 =

 σ2
ε 0 0

0 σ2
ε 0

0 0 σ2
ε

 µ0

µ1

µ2

 .(17.94)

When the latter equations are written as α0 0 0
α1 α0 0
α2 α1 α0

 δ0δ1
δ2

 = σ2
ε

 µ0

µ1

µ2

 ,(17.95)

they can be solved recursively for δ0, δ1 and δ2 on the assumption that the values
of the other elements are known. Notice that, when we adopt the normalisation
α0 = µ0 = 1, we get δ0 = σ2

ε . When the equations (17.93) are rewritten as α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

 γ0

γ1

γ2

 =

 µ0 µ1 µ2

µ1 µ2 0
µ2 0 0

 δ0δ1
δ2

 ,(17.96)

they can be solved for γ0, γ1 and γ2. Thus the starting values are obtained which
enable the equation

α0γτ + α1γτ−1 + α2γτ−2 = 0; τ > 2(17.97)

to be solved recursively to provide the succeeding values {γ3, γ4, . . .} of the auto-
covariances.

The methods described in this section for finding the autocovariances of an
ARMA process are implemented in the following procedure which can also be used
in connection with pure autoregressive and pure moving-average processes:
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(17.98) procedure ARMACovariances(alpha,mu : vector;
var gamma : vector;
var varEpsilon : real;
lags, p, q : integer);

var
i, j, t, tau, r : integer;
delta, f : vector;
a : matrix;

{Find the delta values}
begin
r := Max(p, q);

for t := 0 to q do
begin
delta[t] := mu[t] ∗ varEpsilon;
tau := Min(t, p);
for i := 1 to tau do
delta[t] := delta[t]− delta[t− i] ∗ alpha[i];

delta[t] := delta[t]/alpha[0]
end;

for i := 0 to r do
for j := 0 to r do

begin {i, j : form the matrix of alpha values}
a[i, j] := 0.0;
if ((i− j) >= 0) and ((i− j) <= p) then
a[i, j] := alpha[i− j];

if ((i+ j) <= p) and (j > 0) then
a[i, j] := a[i, j] + alpha[i+ j];

end; {i, j}

for i := 0 to r do
begin {i : form the RHS vector}
f [i] := 0.0;
for j := i to q do
f [i] := f [i] +mu[j] ∗ delta[j − i]

end; {i}

{Solve for the initial autocovariances}
LUsolve(0, r + 1, a, gamma, f);

{Find the succeeding autocovariances}
for i := r + 1 to lags do

begin {i}
gamma[i] := 0.0;
for j := 1 to p do
gamma[i] := gamma[i]− alpha[j] ∗ gamma[i− j];
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gamma[i] := gamma[i]/alpha[0];
end; {i}

end; {ARMACovariances}

Calculating the ARMA Parameters from the Autocovariances

Given a set of autocovariances γ0, . . . , γp+q from the ARMA(p, q) process, it
is possible to infer the values of the parameters. Let us reconsider the equation of
(17.85):

p∑
i=0

αiγi−τ =
q∑
i=0

µiδi−τ .(17.99)

By running τ from 0 to p+ q, the following equations are generated:

γ0 γ1 . . . γp
γ1 γ0 . . . γp−1

...
...

...
γq γq−1 . . . γp−q

. . . . . . . . . . . . . . . . . . . . . . . .
γq+1 γq . . . γp−q−1

...
...

. . .
...

γq+p γq+p+1 . . . γq




α0

α1

...
αp

 =



δ0 δ1 . . . δq
0 δ0 . . . δq − 1
...

...
. . .

...
0 0 . . . δ0
. . . . . . . . . . . . . . . .
0 0 . . . 0
...

...
...

0 0 . . . 0




µ0

µ1

...
µp

 .(17.100)

Thus, if we let τ = q + 1, . . . , q + p, we obtain the system
γq γq−1 . . . γq−p+1

γq+1 γq . . . γq−p
...

...
. . .

...
γq+p−1 γq+p−2 . . . γq



α1

α2

...
αp

 = −α0


γq+1

γq+2

...
γq+p

 ;(17.101)

and, if the normalisation α0 = 1 is imposed, this can be solved for the parameters
α1, . . . , αp. The Yule–Walker procedure for finding the parameters of an AR(p)
process, which was presented under (17.67), has been devised to solve the equations
under (17.101) as well as the equation under (17.55).

Now let us reconsider the original equation of the ARMA(p, q) model which is

ψt =
p∑
i=0

αiyt−i =
q∑
i=0

µiεt−i.(17.102)

On the one hand, this gives

E(ψtψt−τ ) =E

{(∑
i

µiεt−i

)(∑
j

µjεt−τ−j

)}
=
∑
i

∑
j

µiµjE(εt−iεt−τ−j)

=σ2
ε

∑
j

µjµj+τ .

(17.103)
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On the other hand, there is

E(ψtψt−τ ) =E

{(∑
i

αiyt−i

)(∑
j

αjyt−τ−j

)}
=
∑
i

∑
j

αiαjE(yt−iyt−τ−j)

=
∑
i

∑
j

αiαjγτ+j−i.

(17.104)

Putting these two together gives∑
i

∑
j

αiαjγτ+j−i = σ2
ε

∑
j

µjµj+τ ;(17.105)

and, if the elements of the LHS are already known, we can let τ = 0, . . . , q in order
to generate a set of equations which can be solved for the values of µ1, . . . , µq and
σ2
ε once the normalisation µ0 = 1 has been imposed. These parameters of the

moving-average component may be obtained via the procedure Minit of (17.39)
which is also used for obtaining the parameters of a pure MA(q) model.

(17.106) procedure ARMAParameters(p, q : integer;
gamma : vector;
var alpha,mu : vector;
var varEpsilon : real);

var
t, i, j, k : integer;
temp : real;
a : matrix;
b, psi : vector;

begin {ARMAParameters}

YuleWalker(p, q, gamma, alpha, temp);

for t := 0 to q do
begin {t}
psi[t] := 0.0;
for i := 0 to p do

for j := 0 to p do
begin {i, j}
k := Abs(t+ j − i);
psi[t] := psi[t] + alpha[i] ∗ alpha[j] ∗ gamma[k];

end; {i, j}
end; {t}
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if q > 0 then
Minit(mu, varEpsilon, psi, q)

else
varEpsilon := temp;

end; {ARMAParameters}
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CHAPTER 18

Time-Series Analysis in
the Frequency Domain

In this chapter, we shall provide an analysis of stationary stochastic processes from
the point of view of their spectral representation. This complements the analysis
of stationary processes from the point of view of the time domain, which was the
subject of the previous chapter. The previous chapter has dealt specifically with
linear time-series models of the ARMA variety.

At the outset, we shall make only weak assumptions about the mechanisms
which generate the time series; and, therefore, we shall be proceeding at a higher
level of generality than hitherto. Nevertheless, a strong justification for linear time-
series models models will emerge when we succeed in demonstrating that virtually
every stationary stochastic process which has no regular or deterministic compo-
nents of any significant magnitude can be represented as a moving-average process.
This result, which is commonly know as the Cramér–Wold theorem, depends cru-
cially upon the concepts underlying the spectral representation of time series.

The spectral representation is rooted in the basic notion of Fourier analysis
which is that well-behaved functions can be approximated over a finite interval,
to any degree of accuracy, by a weighted combination of sine and cosine functions
whose harmonically rising frequencies are integral multiples of a fundamental fre-
quency. Such linear combinations are described as Fourier sums or Fourier series.
Of course, the notion applies to sequences as well; for any number of well-behaved
functions may be interpolated through the coordinates of a finite sequence.

We shall approach the Fourier analysis of stochastic processes via the exact
Fourier representation of a finite sequence. This is extended to provide a represen-
tation of an infinite sequence in terms of an infinity of trigonometrical functions
whose frequencies range continuously in the interval [0, π]. The trigonometrical
functions and their weighting functions are gathered under a Fourier–Stieltjes in-
tegral. It is remarkable that, whereas a Fourier sum serves only to define a strictly
periodic function, a Fourier integral provides the means of representing an aperiodic
time series generated by a stationary stochastic process.

The Fourier integral is also used to represent the underlying stochastic process.
This is achieved by describing the stochastic processes which generate the weighting
functions. There are two such weighting processes, associated respectively with the
sine and cosine functions; and the function which defines their common variance is
the so-called spectral distribution function whose derivative, when it exists, is the
spectral density function or the “spectrum”.

The relationship between the spectral density function and the sequence of
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autocovariances, which is summarised in the Wiener–Khintchine theorem, provides
a link between the time-domain and the frequency-domain analyses. The sequence
of autocovariances may be obtained from the Fourier transform of the spectral
density function and the spectral density function is, conversely, a Fourier transform
of the autocovariances. (Figure 18.1 provides a graphical example of the relationship
between the autocovariance function of stationary stochastic process and its spectral
density function.)

For many practical purposes, it is this relationship between the autocovariances
and the spectral density function which is of primary interest; and, in many texts of
a practical orientation, the other aspects of frequency-domain analysis are ignored.
In contrast to such a straightforward approach is the detailed analytic treatment
to be found in some of the classic texts of time-series analysis, amongst which are
the works of Doob [162], Wold [530] and Grenander and Rosenblatt [229], which
are closely related, both in time and in spirit, to the original pioneering work.

Much of this early work was concerned primarily with stochastic processes in
continuous time. Results for discrete-time processes, which have proved, subse-
quently, to be more important in practice, were often obtained as side-products
by other authors at later dates. This feature makes it difficult to give the correct
attribution to some of the leading results and even to name them appropriately.
The reader who wishes to pursue these issues may consult the above-mentioned
texts. The text of Yaglom [536] also contains a number of historical observations
which illustrate the perspectives of the Russian school.

Stationarity

Consider two vectors of n+ 1 consecutive elements from the process y(t):

[yt, yt+1, . . . , yt+n] and [ys, ys1 , . . . , ys+n].(18.1)

Then y(t) = {yt; t = 0,±1,±2, . . .} is strictly stationary if the joint probability
density functions of the two vectors are the same for all values of t and s regardless
of the size of n. On the assumption that the first and second-order moments of the
distribution are finite, the condition of stationarity implies that all the elements
of y(t) have the same expected value and that the covariance between any pair of
elements of the sequences is a function only of their temporal separation. Thus,

E(yt) = µ and C(yt, ys) = γ|t−s|.(18.2)

On their own, the conditions of (18.2) constitute the conditions of weak stationarity.
A normal process is completely characterised by its mean and its autocovari-

ances. Therefore, a normal process which satisfies the conditions for weak station-
arity is also stationary in the strict sense.

The Filtering of White Noise

A white-noise process is a sequence ε(t) of uncorrelated random variables with
a mean of zero and a common variance σ2

ε . Thus

E(εt) = 0 for all t, and E(εtεs) =

{
σ2
ε , if t = s;

0, if t 6= s.
(18.3)
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Figure 18.1. (a) The graph of 125 points generated by a simulated AR(4)
process (1− 1.061L+ 1.202L2 − 0.679L3 + 0.360L4)y(t) = ε(t), together with
(b) the theoretical and empirical autocorrelations and (c) the spectral density
function.
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By means of linear filtering, a variety of time series may be constructed whose
elements display complex interdependencies. A linear filter, also called a moving-
average operator, is a function of the lag operator of the form µ(L) = {· · · +
µ−1L

−1 + µ0 + µ1L + · · ·}. The effect of this filter on ε(t) is described by the
equation

y(t) =µ(L)ε(t)

=
∑
i

µiε(t− i).
(18.4)

The operator µ(L) is also be described as the transfer function which maps the
input sequence ε(t) into the output sequence y(t).

In many practical applications, such as in forecasting, one is constrained to
employ one-sided or “causal” moving-average operators of the form µ(L) = {µ0 +
µ1L+µ2L

2 + · · ·}. In a practical filtering operation, the order of the operator—i.e.
the highest index on a nonzero coefficient—must be finite, or else the coefficients
{µ0, µ1, µ2, . . .} must be functions of a limited number of fundamental parameters,
as in the case of the expansion of a rational function. In addition, if y(t) is always
to remain bounded when ε(t) is bounded, then it is necessary, and sufficient, that∑

i

|µi| <∞.(18.5)

Given the value of σ2
ε = V {ε(t)}, the autocovariances of the filtered sequence

y(t) = µ(L)ε(t) may be determined by evaluating the expression

γτ =E(ytyt−τ )

=E

(∑
i

µiεt−i
∑
j

µjεt−τ−j

)
=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

(18.6)

From equation (18.3), it follows that

γτ = σ2
ε

∑
j

µjµj+τ ;(18.7)

and so the variance of the filtered sequence is

γ0 = σ2
ε

∑
j

µ2
j .(18.8)

The condition under (18.5) guarantees that these quantities are finite, as is required
by the condition of stationarity.

In the subsequent analysis, it will prove helpful to present the results in the
notation of the z-transform. The z-transform of a sequence of autocovariances is
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called the autocovariance generating function. For the moving-average process, this
is given by

γ(z) =σ2
εµ(z)µ(z−1)

=σ2
ε

∑
i

µiz
i
∑
j

µjz
−j

=
∑
τ

{
σ2
ε

∑
j

µjµj+τ

}
zτ ; τ = i− j

=
∞∑

τ=−∞
γτz

τ .

(18.9)

The final equality is by virtue of equation (18.7).

Cyclical Processes

The present section, which is devoted to cyclical processes, may be regarded
as a rehearsal for the development of the spectral representation of a stationary
stochastic process.

An elementary cyclical process, which has the same fundamental importance
in the analysis of stationary time series as a white-noise process, is the defined by
the equation

y(t) =α cos(ωt) + β sin(ωt)

= ζeiωt + ζ∗e−iωt,
(18.10)

wherein ω ∈ (0, π] is an angular frequency and

ζ =
α+ iβ

2
and ζ∗ =

α− iβ
2

,(18.11)

are complex-valued conjugate random variables compounded from the real-valued
random variables α and β. Such a process becomes strictly periodic when 2π/ω is
a rational number. Otherwise, it is liable to be described as almost periodic. The
autocovariance of the elements yt and ys is given by

E(ytys) = E
[
ζ2eiω(t+s) + ζζ∗

{
eiω(t−s) + eiω(s−t)

}
+ ζ∗2e−iω(t+s)

]
.(18.12)

For the process to be stationary, this must be a function of |t − s| only, for which
it is necessary that E(ζ2) = E(ζ∗2) = 0. These conditions imply that

E(α2) = E(β2) = σ2 and E(αβ) = 0.(18.13)

It follows that the autocovariance of (18.12) is

γτ = σ2 cosωτ, where τ = t− s.(18.14)
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The process y(t) may also be written as

y(t) = ρ cos(ωt− θ),(18.15)

where

ρ2 = α2 + β2 and θ = tan−1

(
β

α

)
(18.16)

are respectively the squared amplitude and the phase displacement. These are a pair
of random variables whose values, which are generated at the outset, determine the
values of all of the elements of the realisation of y(t). For this reason, one is tempted
to describe the process as a deterministic one. If α and β are normally distributed,
then ρ2 is proportional to a chi-square variate of two degrees of freedom whilst θ is
uniformly distributed over the interval (0, 2π], in consequence of the symmetry of
the normal distribution.

A more general cyclical process may be considered which is a sum of uncorre-
lated elementary processes. This is

y(t) =
n∑
j=0

{αj cos(ωjt) + βj sin(ωjt)}

=
n∑
j=0

{
ζje

iωjt + ζ∗j e
−iωjt

}
,

(18.17)

wherein

ζj =
αj + iβj

2
and ζ∗j =

αj − iβj
2

(18.18)

are complex-valued random variables whose components fulfil the conditions

E(α2
j ) = E(β2

j ) = σ2
j and E(αjβj) = 0.(18.19)

The autocovariance of the elements yt and ys is given by

E(ytys) =
m∑
j=0

m∑
k=0

E
[
ζjζke

i(ωjt+ωks) + ζjζ
∗
ke
i(ωjt−ωks)

+ζ∗j ζke
i(ωks−ωjt) + ζ∗j ζ

∗
ke
−i(ωjt+ωks)

]
.

(18.20)

The condition of stationarity now requires, in addition to the conditions of (18.19),
that, whenever j 6= k, there is

E(ζjζk) = E(ζ∗j ζ
∗
k) = E(ζ∗j ζk) = E(ζjζ∗k) = 0.(18.21)

The consequence is that the autocovariance of the process at lag τ = t− s is given
by

γτ =
n∑
j=0

σ2
j cosωjτ.(18.22)
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Notice that the variance of the process is just

γ0 =
n∑
j=0

σ2
j ,(18.23)

which is the sum of the variances of the n elementary processes.
Equation (18.23) represents the so-called spectral decomposition of the vari-

ance. The spectrum of the process y(t) is an array of vertical lines rising from the
horizontal frequency axis and terminating in the points (ωj , σj). The cumulated
spectrum, also described as the spectral distribution function, is defined by

F (ω) =
∑
ωj≤ω

σ2
j .(18.24)

This is a staircase with a step or saltus of σ2
j at each frequency value ωj . These

effects are reminiscent of the emission and absorption spectra of chemical elements.
One is liable to regard y(t) as a deterministic process which is masquerading

as a stochastic process. There are two features which suggest this notion. First,
the process depends upon only a finite number of randomly determined parameters
ζ0, . . . , ζn, whereas its realisation is an indefinite sequence of numbers. Secondly,
the random elements are determined in advance of the realisation of the process. It
is as if they were picked out of a hat and recorded in a log before participating in
the purely mechanical business of generating the sequence. Such ideas, which might
inhibit a proper understanding the spectral representation of a stochastic process,
can be held in abeyance until the developments of the following sections have been
considered, which concern the spectral representation of stationary processes.

The Fourier Representation of a Sequence

According to the basic result of Fourier analysis, it is always possible to approx-
imate an arbitrary analytic function defined over a finite interval of the real line,
to any desired degree of accuracy, by a weighted sum of sine and cosine functions
of harmonically increasing frequencies.

Similar results apply in the case of sequences, which may be regarded as
functions mapping from the set of integers onto the real line. For a sample of
T observations y0, . . . , yT−1, it is possible to devise an expression in the form

yt =
n∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} ,(18.25)

wherein ωj = 2πj/T is a multiple of the fundamental frequency ω1 = 2π/T . Thus,
the elements of a finite sequence can be expressed exactly in terms of sines and
cosines. This expression is called the Fourier decomposition of yt, and the set of
coefficients {αj , βj ; j = 0, 1, . . . , n} are called the Fourier coefficients.

One should observe that equation (18.25), which is to be regarded for the
moment as a device of descriptive statistics, is identical in form to equation (18.17)
of the previous section, which relates to a so-called cyclical stochastic process.
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When T is even, we have n = T/2; and it follows that

sin(ω0t) = sin(0) = 0,

cos(ω0t) = cos(0) = 1,

sin(ωnt) = sin(πt) = 0,

cos(ωnt) = cos(πt) = (−1)t.

(18.26)

Therefore, equation (18.25) becomes

yt = α0 +
n−1∑
j=1

{αj cos(ωjt) + βj sin(ωjt)}+ αn(−1)t.(18.27)

When T is odd, we have n = (T − 1)/2; and then equation (18.25) becomes

yt = α0 +
n∑
j=1

{αj cos(ωjt) + βj sin(ωjt)} .(18.28)

In both cases, there are T nonzero coefficients amongst the set {αj , βj ; j =
0, 1, . . . , n}; and the mapping from the sample values to the coefficients constitutes
a one-to-one invertible transformation.

In equation (18.27), the frequencies of the trigonometric functions range from
ω1 = 2π/T to ωn = π; whereas, in equation (18.28), they range from ω1 = 2π/T to
ωn = π(T−1)/T . The frequency π is the so-called Nyquist frequency. Although the
process generating the data may contain components of frequencies higher than the
Nyquist frequency, these will not be detected when it is sampled regularly at unit
intervals of time. In fact, the effects on the process of components with frequencies
in excess of the Nyquist value will be confounded with those whose frequencies fall
below it.

To demonstrate this, consider the case where the process contains a component
which is a pure cosine wave of unit amplitude and zero phase whose frequency ω
lies in the interval π < ω < 2π. Let ω∗ = 2π − ω. Then

cos(ωt) = cos
{

(2π − ω∗)t
}

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)

= cos(ω∗t);

(18.29)

which indicates that ω and ω∗ are observationally indistinguishable. Here, ω∗ < π
is described as the alias of ω > π.

The Spectral Representation of a Stationary Process

We shall begin this section by extending the Fourier representation to encom-
pass sequences of indefinite length. We shall proceed to develop a stochastic model
of a process which can be deemed to have generated the sequence. It transpires
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that the model in question is simply a generalisation of the cyclical model of the
previous section which arises when the number of its sinusoidal components becomes
indefinitely large.

By allowing the value of n in the expression (18.25) to tend to infinity, it is
possible to express a sequence of indefinite length in terms of a sum of sine and
cosine functions. However, in the limit as n → ∞, the coefficients αj , βj tend to
vanish; and therefore an alternative representation in terms of differentials is called
for.

By writing αj = dA(ωj), βj = dB(ωj), where A(ω), B(ω) are step functions
with discontinuities at the points {ωj ; j = 0, . . . , n}, the expression (18.25) can be
rendered as

yt =
∑
j

{cos(ωjt)dA(ωj) + sin(ωjt)dB(ωj)} .(18.30)

In the limit, as n → ∞, the summation is replaced by an integral to give the
expression

y(t) =
∫ π

0

{cos(ωt)dA(ω) + sin(ωt)dB(ω)} .(18.31)

Here, cos(ωt) and sin(ωt), and therefore y(t), may be regarded as infinite sequences
defined over the set Z = {t = 0,±1,±2, . . .} of all positive and negative integers.

Since A(ω) and B(ω) are discontinuous functions for which no derivatives exist,
one must avoid using α(ω)dω and β(ω)dω in place of dA(ω) and dB(ω). Moreover,
the integral in equation (18.31) is a Fourier–Stieltjes integral which is more general
than the usual Riemann integral.

This representation may be compared with the expression under (13.50) which
stands for the Fourier representation of a discrete-time sequence subject to the con-
dition of absolute summability under (13.49). In the case of an indefinite sequence
generated by a stationary stochastic process, the condition of summability cannot
apply. Therefore the spectral representation of the process lies beyond the realms
of ordinary Fourier analysis; and it belongs, instead, to the domain of Wiener’s
generalised harmonic analysis [522]. For an intuitive understanding of the differ-
ence between the ordinary and the generalised Fourier forms, one may compare the
“fractal” nature of the generalised functions A(ω) and B(ω), which corresponds
to the irregularities of the stochastic process, with the more regular nature of the
continuous and differentiable functions α(ω) and β(ω) which are entailed in the
Fourier representation of an absolutely summable sequence.

In order to derive a statistical theory for the process which generates y(t),
one must make some assumptions concerning the functions A(ω) and B(ω). So
far, the sequence y(t) has been interpreted as a realisation of a stochastic process.
If y(t) is regarded as the stochastic process itself, then the functions A(ω), B(ω)
must, likewise, be regarded as stochastic processes defined over the interval (0, π].
A single realisation of these processes now corresponds to a single realisation of the
process y(t).

The first assumption to be made is that the functions A(ω) and B(ω) represent
a pair of stochastic processes of zero mean which are indexed on the continuous
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parameter ω. Thus

E
{
dA(ω)

}
= E

{
dB(ω)

}
= 0.(18.32)

The second and third assumptions are that the two processes are mutually
uncorrelated and that nonoverlapping increments within each process are uncorre-
lated. Thus

E
{
dA(ω)dB(λ)

}
= 0 for all ω, λ,

E
{
dA(ω)dA(λ)

}
= 0 if ω 6= λ,

E
{
dB(ω)dB(λ)

}
= 0 if ω 6= λ.

(18.33)

The final assumption is that the variance of the increments is given by

V
{
dA(ω)

}
= V

{
dB(ω)

}
= 2dF (ω).(18.34)

The function F (ω), which is defined initially over the interval (0, π], is described
as the spectral distribution function. The properties of variances imply that it
is a nondecreasing function of ω. In the case where the process y(t) is purely
nondeterministic, F (ω) is a continuous differentiable function. Its derivative f(ω),
which is nonnegative, is described as the spectral density function.

In order to express equation (18.31) in terms of complex exponentials, we may
define a pair of conjugate complex stochastic processes:

dZ(ω) =
1
2
{
dA(ω)− idB(ω)

}
,

dZ∗(ω) =
1
2
{
dA(ω) + idB(ω)

}
.

(18.35)

Also, we may extend the domain of the functions A(ω), B(ω) from (0, π] to (−π, π]
by regarding A(ω) as an even function such that A(−ω) = A(ω) and by regarding
B(ω) as an odd function such that B(−ω) = −B(ω). Then we have

dZ∗(ω) = dZ(−ω).(18.36)

From conditions under (18.33), it follows that

E
{
dZ(ω)dZ∗(λ)

}
= 0 if ω 6= λ,

E
{
dZ(ω)dZ∗(ω)

}
= dF (ω),

(18.37)

where the domain of F (ω) is now extended to the interval (−π, π]. These results
may be used to re-express equation (18.31) as

y(t) =
∫ π

0

{
(eiωt + e−iωt)

2
dA(ω)− i (e

iωt − e−iωt)
2

dB(ω)
}

=
∫ π

0

{
eiωt
{dA(ω)− idB(ω)}

2
+ e−iωt

{dA(ω) + idB(ω)}
2

}
=
∫ π

0

{
eiωtdZ(ω) + e−iωtdZ∗(ω)

}
.

(18.38)
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When the integral is extended over the range (−π, π], the equation becomes

y(t) =
∫ π

−π
eiωtdZ(ω).(18.39)

This is commonly described as the spectral representation of the process y(t).
The spectral representation is sufficiently general to accommodate the case

of a discrete spectrum where the spectral distribution function F (ω) is constant
except for jumps of magnitude σ2

1 , . . . , σ
2
k at the points ω1, . . . , ωk. In that case,

the spectral representation of the process reduces to

y(t) =
k∑

j=−k

e−iωjtζj ,(18.40)

where

ζj = Z(ω+
j )− Z(ω−j )(18.41)

is the saltus in Z(ω) at the point ωj , and where the conditions ζ−j = ζ∗j and
ω−j = −ωj may be imposed to ensure that the process is real-valued. This is
equation (18.17) again, which relates to a so-called cyclical process which can be
regarded now as a prototype of a more general stationary stochastic process.

The Autocovariances and the Spectral Density Function
The sequence of the autocovariances of the process y(t) may be expressed in

terms of the spectrum of the process. From equation (18.39), it follows that the
autocovariance of y(t) at lag τ = t− s is given by

γτ = C(yt, ys) =E

{∫
ω

eiωtdZ(ω)
∫
λ

e−iλsdZ(−λ)
}

=
∫
ω

∫
λ

eiωte−iλsE
{
dZ(ω)dZ∗(λ)

}
=
∫
ω

eiωτE
{
dZ(ω)dZ∗(ω)

}
=
∫ π

−π
eiωτdF (ω).

(18.42)

Here the final equalities are derived by using the conditions under (18.36) and
(18.37). The first of the conditions under (18.37) ensures that the autocovariance
is a function only of the temporal separation |t− s| of the elements of y(t) and not
of their absolute dates, as is required by the condition of stationarity. In the case
of a continuous spectral distribution function, we may write dF (ω) = f(ω)dω in
the final expression, where f(ω) is the spectral density function.

The necessary and sufficient condition for the existence of a bounded spectral
density function is the condition that the sequence of autocovariances is absolutely
summable:

∞∑
τ=−∞

|γτ | <∞.(18.43)
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In that case, the autocovariances are the coefficients of an ordinary Fourier-series
representation of the spectral density function which takes the form of

f(ω) =
1

2π

∞∑
τ=−∞

γτe
−iωτ

=
1

2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}
.

(18.44)

The second expression, which depends upon the condition that γ−τ = γτ , indicates
that, for a real-valued sequence, the spectral density function is an even-valued
function of ω such that f(−ω) = f(ω). As a consequence, it is an almost invariable
practice, in displaying the graph of f(ω), to plot the function only for positive values
of ω and to ignore the remainder of the interval (−π, π]. Indeed, some authors define
the spectrum of a real-valued process as g(ω) = 2f(ω) with ω ∈ (0, π], which has
the same effect. This definition is appropriate to a spectral representation of y(t)
which is in terms of trigonometrical functions rather than complex exponentials.

This function f(ω) is directly comparable to the periodogram of a data se-
quence which is represented by (14.35). However, the periodogram has T empirical
autocovariances c0, . . . , cT−1 in place of an indefinite number of theoretical auto-
covariances. Also, it differs from the spectrum by a scalar factor of 4π. In many
texts, equation (18.44) serves as the primary definition of the spectrum.

To demonstrate the relationship which exists between equations (18.42) and
(18.44) when the spectral density function exists, we may substitute the latter into
the former to give

γτ =
∫ π

−π
eiωτ

{
1

2π

∞∑
κ=−∞

γκe
−iωκ

}
dω

=
1

2π

∞∑
κ=−∞

γκ

∫ π

−π
eiω(τ−κ)dω.

(18.45)

From the fact that ∫ π

−π
eiω(τ−κ)dω =

{ 2π, if κ = τ ;

0, if κ 6= τ ,
(18.46)

it can be seen that the RHS of the equation reduces to γτ . This serves to show
that, when dF (ω) = f(ω)dω, equations (18.42) and (18.44) do indeed represent a
Fourier transform and its inverse. The relationship between the sequence γ(τ) and
the function f(ω) is liable to be described as the Wiener–Khintchine relationship.

The essential interpretation of the spectral distribution function is indicated
by the equation

γ0 =
∫ π

−π
dF (ω) = F (π),(18.47)

which comes from setting τ = 0 in equation (18.42). This equation shows how the
variance or “power” of y(t), which is γ0, is attributed to the cyclical components
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of which the process is composed. The analogous equation for a cyclical process is
to be found under (18.23).

It is easy to see that a flat spectral density function corresponds to the auto-
covariance function which characterises a white-noise process ε(t). Let fε = fε(ω)
be the flat spectrum. Then, from equation (18.44), it follows that

γ0 =
∫ π

−π
fε(ω)dω

= 2πfε,
(18.48)

and, from equation (18.42), it follows that

γτ =
∫ π

−π
fε(ω)eiωτdω

= fε

∫ π

−π
eiωτdω

= 0.

(18.49)

These are the same as the conditions under (18.3) which have served to define a
white-noise process. When the variance is denoted by σ2

ε , the expression for the
spectrum of the white-noise process becomes

fε(ω) =
σ2
ε

2π
.(18.50)

The Theorem of Herglotz and the Decomposition of Wold

Some authorities base their account of the spectral theory of stationary pro-
cesses primarily upon the relationship between the sequence of autocovariances
and the spectral distribution function. This has the advantage of mathematical
simplicity. If y(t) is a purely nondeterministic process which possesses a continuous
differentiable spectral distribution function, then, as we have shown already, there is
an ordinary one-to-one Fourier relationship connecting the spectral density function
to the sequence of autocovariances. Often this is the only aspect of spectral analysis
which needs to exposed.

If a purely analytic approach to the spectral theory of stationary processes
is taken, then it is necessary to establish the properties of the spectral distribu-
tion function by showing that it is a nondecreasing function of ω on the interval
(−π, π]. This feature has already emerged naturally, via equation (18.34), in the
constructive approach which we have been pursuing so far. Moreover, if the spectral
density function f(ω) exists, then it is easy to show, via equation (18.44), that a
nonnegative-definite autocovariance function implies that f(ω) ≥ 0, which is, once
more, the required result.

When a discontinuous or partially discontinuous spectral distribution function
is considered, it is more laborious to establish the requisite properties. In that case,
the essential result which supports the analytic approach is a theorem of Herglotz:
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(18.51) The sequence γ(τ) of the autocovariances is nonnegative-definite if and
only if its elements can be expressed as

γτ =
∫ π

−π
eiωτdF (ω),

where F (ω), is a nondecreasing function defined on the interval (−π, π].

Proof. First assume that γτ can be expressed in terms of the formula above wherein
F (ω) is a nondecreasing function of ω. Then an arbitrary quadratic function of the
elements of a T th-order dispersion matrix constructed from the autocovariances
may be expressed as follows:

T−1∑
t=0

T−1∑
s=0

csγ|t−s|ct =
∫ π

−π

T−1∑
s=0

T−1∑
t=0

cscte
iω(t−s)dF (ω)

=
∫ π

−π

∣∣∣ T−1∑
τ=0

cτe
iωτ
∣∣∣2dF (ω) ≥ 0,

(18.52)

where the squared term is a complex modulus. Since this holds for all T , it follows
that γ(τ) is a nonnegative-definite function.

Now, in order to prove the converse, assume that γ(τ) is a nonnegative-definite
function. Take ct = e−iωt and cs = eiωs in the LHS of equation (18.52) and divide
by 2πT . This gives

fT (ω) =
1

2πT

T−1∑
t=0

T−1∑
s=0

γ|t−s|e
−iω(t−s)

=
1

2π

T−1∑
τ=1−T

γτ

(
1− |τ |

T

)
e−iωτ ≥ 0.

(18.53)

Here fT (ω) is expressed as a finite Fourier sum wherein the coefficients are given
by an inverse Fourier transformation:

γτ

(
1− |τ |

T

)
=
∫ π

−π
eiωτfT (ω)dω

=
∫ π

−π
eiωτdFT (ω).

(18.54)

The final expression entails a nondecreasing cumulative distribution function

FT (ω) =
∫ ω

−π
fT (ω)dω.(18.55)

Now it is only necessary to show that FT (ω) → F (ω) as T → ∞. Since FT (ω)
is monotonically increasing and bounded by FT (π) = γ0, we can apply Helly’s
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theorem to show that there is a subsequence {Tj} of the values of {T} such that
FTj → F (ω) as T, Tj →∞.

Observe that, in the case where the elements of the autocovariance function are
absolutely summable in the manner of (18.43), and where, consequently, a spectral
density function f(ω) exists, the condition that f(ω) ≥ 0 emerges directly from
equation (18.53) via the convergence of fT (ω)→ f(ω) as T →∞.

Example 18.1. Consider the first-order moving average process y(t) = ε(t) −
θε(t− 1) to be found under (17.8). The autocovariances of the process are

γτ =


σ2
ε(1 + θ2) if τ = 0;

−σ2
εθ if τ = 1;

0 if τ > 1.

(18.56)

Therefore, according to (18.44), the spectral density function is

f(ω) =
1

2π
{
γ0 + 2γ1 cos(ω)

}
=
σ2
ε

2π
(1 + θ2)

{
1 + 2ρ cos(θ)

}
,

(18.57)

wherein ρ = γ1/γ0 is an autocorrelation coefficient. This function is nonnegative if
and only if |ρ| ≤ 1

2 . It has been shown already, in Example 17.2, that the latter is
a necessary condition for the positive-definiteness of the autocovariance function.
It now transpires that it is both a necessary and a sufficient condition.

The theorem of Herglotz may be coupled with a result which establishes the in-
verse mapping from the autocovariances to the spectral distribution function which
subsumes equation (18.44) as a special case:

(18.58) Let F (ω) be the spectral distribution function corresponding to auto-
covariance function γ(τ) defined in (18.51), and let λ and µ > λ be
any two points of continuity of F (ω). Then

F (µ)− F (λ) = lim
n→∞

1
2π

n∑
τ=−n

γτ
e−iµτ − e−iλτ

−iτ
.

Proof. Consider the term

bτ =
e−iµτ − e−iλτ

−iτ
=
∫ µ

λ

e−iωτdω =
∫ π

−π
e−iωτβ(ω)dω,(18.59)

where we are employing a rectangular function defined on the interval (−π, π]:

β(ω) =


1, if ω ∈ (λ, µ);
1
2 , if ω = λ, µ;

0, if ω 6∈ [λ, µ].

(18.60)
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We may observe in passing that −iτ in the denominator of bτ cancels with terms in
the series expansion of the numerator. Therefore the term is also defined at τ = 0
where it takes the value of b0 = µ− λ. Now bτ is nothing but the τth coefficient in
the Fourier-series expansion of β(ω), from which it follows that

∑
|bτ | <∞. Hence∑

bτγτ is bounded, and, taking the expression for γτ from (18.51), we have

lim
n→∞

1
2π

n∑
τ=−n

bτγτ = lim
n→∞

∫ π

−π

n∑
τ=−n

bτe
iωτdF (ω)

=
∫ π

−π
β(ω)dF (ω) = F (µ)− F (λ),

(18.61)

which is the required result.

The results of this section point to a decomposition of the spectral distribution
function into three components:

F (ω) = F1(ω) + F2(ω) + F3(ω).(18.62)

The first of these is a continuous differentiable function. The second is a function
which increases by jumps only at the points of discontinuity of F (ω). The third
is a singular function defined on a set of measure zero where F (ω) is continuous
but where the derivative f(ω) either does not exist or is infinite. Indeed such a
decomposition is available for any monotonic nondecreasing function defined on a
finite interval which has a finite or a denumerably infinite number of discontinuities.

In the so-called decomposition of Wold—which Wold [530, p. 68], in fact, at-
tributes to Cramér [129]—F1(ω) corresponds to the spectral distribution function of
a purely nondeterministic process whilst F2(ω) is the spectral distribution function
of cyclical or “almost periodic” process of the sort depicted by equation (18.17). The
singular component F3(ω), which is essentially negligible, has no straightforward
interpretation. Since their spectral distribution functions are confined to disjoint
subsets which form a partition (−π, π], the three process are mutually uncorrelated.

The Frequency-Domain Analysis of Filtering

It is a straightforward matter to derive the spectrum of a process y(t) =
µ(L)x(t) which is formed by mapping the process x(t) through a linear filter.

Taking the spectral representation of the process x(t) to be

x(t) =
∫
ω

eiωtdZx(ω),(18.63)

we have

y(t) =
∑
j

µjx(t− j)

=
∑
j

µj

{∫
ω

eiω(t−j)dZx(ω)
}

=
∫
ω

eiωt
(∑

j

µje
−iωj

)
dZx(ω).

(18.64)
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Figure 18.2. The gain of the transfer function (1 + 2L2)/(1− 1.69L+ 0.81L2).
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π

−π

Figure 18.3. The phase diagram of the transfer function (1 + 2L2)/(1−1.69L+ 0.81L2).
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On writing
∑
µje
−iωj = µ(ω), this becomes

y(t) =
∫
ω

eiωtµ(ω)dZx(ω)

=
∫
ω

eiωtdZy(ω).
(18.65)

If the process x(t) has a spectral density function fx(ω), which allows one to write
dF (ω) = f(ω)dω in equation (18.37), then the spectral density function fy(ω) of
the filtered process y(t) will be given by

fy(ω)dω=E
{
dZy(ω)dZ∗y (ω)

}
=µ(ω)µ∗(ω)E

{
dZx(ω)dZ∗x(ω)

}
= |µ(ω)|2fx(ω)dω.

(18.66)

The complex-valued function µ(ω), which is entailed in the process of linear
filtering, can be written as

µ(ω) = |µ(ω)|e−iθ(ω),(18.67)

where

|µ(ω)|2 =
{ ∞∑
j=0

µj cos(ωj)
}2

+
{ ∞∑
j=0

µj sin(ωj)
}2

,

θ(ω) = arctan
{∑

µj sin(ωj)∑
µj cos(ωj)

}
.

(18.68)

The function |µ(ω)|, which is described as the gain of the filter, indicates the
extent to which the amplitude of the cyclical components of which x(t) is composed
are altered in the process of filtering.

The function θ(ω), which is described as the phase displacement and which
gives a measure in radians, indicates the extent to which the cyclical components
are displaced along the time axis.

The substitution of expression (18.67) in equation (18.65) gives

y(t) =
∫ π

−π
ei{ωt−θ(ω)}|µ(ω)|dZx(ω).(18.69)

The virtue of this equation is that it summarises the two effects of the filter.
Figures 18.2 and 18.3 represent respectively the gain and the phase effect of a

simple rational transfer function.

The Spectral Density Functions of ARMA Processes

Autoregressive moving-average or ARMA models are obtained by applying
one-sided linear filters to white-noise processes. In the case of a pure MA model,
denoted by

y(t) = µ(L)ε(t),(18.70)
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the filter µ(L) = 1+µ1L+ · · ·+µqL
q is a polynomial of degree q in the lag operator

L. In the case of the ARMA model, which is denoted by

α(L)y(t) = µ(L)ε(t) or by y(t) =
µ(L)
α(L)

ε(t),(18.71)

there is an additional operator α(L) = 1 +α1L+ · · ·+αpL
p which is a polynomial

of degree p. The condition is imposed that α(z) and µ(z) should have no factors
in common. Also, the condition of stationarity requires that the roots of α(z),
which are the poles of the rational function µ(z)/α(z), should lie outside the unit
circle. This implies that the region of convergence for the series expansion of the
rational function includes the unit circle. Such an expansion gives rise to a so-called
infinite-order moving-average representation of the ARMA process.

These features have been discussed at length in the previous chapter, where
the effects of the condition of invertibility, which is that the roots of µ(z) must lie
outside the unit circle, are also described. In the present context, we shall make
no such requirement; and, indeed, we shall admit the case where µ(z) has zeros on
the unit circle.

In Chapter 17, it has been shown that the autocovariance generating function
of an ARMA process is given by

γ(z) = σ2
ε

µ(z)µ(z−1)
α(z)α(z−1)

.(18.72)

Given the conditions on the roots of α(z) and µ(z), this represents a function which
is analytic in an annulus surrounding the unit circle; and it is usually understood
the LHS stands for the Laurent expansion of the RHS.

When z = e−iω, it is convenient to denote the two polynomials by α(ω) and
µ(ω) respectively. In that case, it follow from (18.44) that the spectral density
function of the ARMA process is given by

f(ω) =
σ2
ε

2π
α(ω)α∗(ω)
µ(ω)µ∗(ω)

=
σ2
ε

2π
|α(ω)|2

|µ(ω)|2
.(18.73)

Example 18.2. The second-order moving-average MA(2) process denoted by the
equation

y(t) = ε(t) + µ1ε(t− 1) + µ2ε(t− 2)(18.74)

has the following nonzero autocovariances:

γ0 =σ2
ε(1 + µ2

1 + µ2
2),

γ1 =σ2
ε(µ1 + µ1µ2),

γ2 =σ2
εµ2.

(18.75)
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0
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0 π/4 π/2 3π/2 π

Figure 18.4. The spectral density functions of the MA(2) model y(t) =
(1− {2ρ cosωn}L+ ρ2L2)ε(t) when ω = 90◦ and ρ = 0.8, 0.75, 0.7, 0.6, 0.5.
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Figure 18.5. The spectral density functions of the AR(2) model when
ω = 45◦ and ρ = 0.8, 0.75, 0.7, 0.6, 0.5 in the equation (1 − {2ρ cosωn}L +
ρ2L2)y(t) = ε(t).
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The spectral density function is therefore

f(ω) =
1

2π
{
γ0 + 2γ1 cos(ω) + 2γ2 cos(2ω)

}
.(18.76)

To find the stationary points of the function, one may differentiate it with respect
to ω and set the result to zero to obtain the equation

0 =−2γ1 sin(ω)− 4γ2 sin(2ω)

=−2γ1 sin(ω)− 8γ2 sin(ω) cos(ω).
(18.77)

Here the second equality comes from the trigonometrical identity sin(2A) =
2 cos(A) sin(A) which is deduced from (13.125)(c). The solution to the equation
is

ω = cos−1

{
−γ1

4γ2

}
= cos−1

{
−µ1(1 + µ2)

4µ2

}
.(18.78)

Consider the case where the polynomial 1 + µ1z + µ2z
2 has the conjugate complex

roots z = ρ exp{±iλ}. Then µ1 = −2ρ cos(λ) and µ2 = ρ2, and hence

ω = cos−1

{
ρ(1 + ρ2) cosλ

2ρ2

}
.(18.79)

This is the frequency value for which the ordinate of the spectral density function
is at a minimum. In the case where the roots are located on the unit circle, which
is when ρ = 1, the equation delivers ω = λ which is, of course, a point where the
spectral ordinate is zero-valued.

Figure 18.4 represents the spectral density functions of a range of MA(2) pro-
cesses of which the MA operators have conjugate complex roots which differ only
in respect of the value of the modulus ρ.

Example 18.3. The second-order autoregressive AR(2) process is denoted by the
equation

y(t) + α1y(t− 1) + α2y(t− 2) = ε(t).(18.80)

The corresponding autocovariance generating function is

γ(z) =
σ2
ε

(1 + α1z + α2z2)(1 + α1z−1 + α2z−2)

=
σ2
ε

(1 + α2
1 + α2

2) + (α1 + α1α2)(z + z−1) + α2(z2 + z−2)
.

(18.81)

When z = e−iω, the term zj + z−j becomes

eiωj + e−iωj = 2 cos(jω).(18.82)
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Therefore, on setting z = e−iω in the autocovariance generating function and di-
viding by 2π, we obtain the spectral density function

f(ω) =
σ2
ε/2π

(1 + α2
1 + α2

2) + 2(α1 + α1α2) cos(ω) + 2α2 cos(2ω)
.(18.83)

Apart from a scalar factor, this is simply the inverse of the spectral density function
of an MA(2) process. Moreover, it follows that the AR spectrum has a peak at the
point where the corresponding MA function would have a trough.

Consider the AR(2) process with complex conjugate roots. These may be
denoted by z = ρ exp{±iωn}, whence the equation for the process can be written
as

y(t)− (2ρ cosωn)y(t− 2) + ρ2y(t− 2) = ε(t).(18.84)

Here ρ ∈ [0, 1) is the modulus of the roots, which determines the damping of
the system, whilst ωn is their argument, which may be described as the natural
frequency of an undamped system wherein ρ = 1. By drawing upon the results of
the previous example, it is straightforward to show that the peak of the spectrum
is located at the point

ω = cos−1

{
ρ(1 + ρ2) cosωn

2ρ2

}
.(18.85)

Moreover, as ρ→ 1, the value increases towards that of ωn, which is the natural or
resonant frequency of the undamped system.

Figure 18.5 depicts the spectral density functions of a range of AR(2) processes
which differ only in respect of the modulus of the complex roots of the AR operator.
This figure is reminiscent of Figure 5.2 which shows the frequency response of a
second-order linear dynamic system with various damping ratios.

Canonical Factorisation of the Spectral Density Function

It is a basic result of time-series analysis that every stationary process y(t)
with a continuous spectrum may be represented as a moving-average process. In
general, the moving-average operator entailed in such a representation is both two-
sided and of infinite order. Nevertheless, under some fairly mild restrictions, it is
possible to show that a one-sided operator is available which expresses the process
is terms of the current and previous values of a white-noise sequence.

Often, the existence of a moving-average representation can be demonstrated,
almost trivially, by showing that there exists an operator, say φ(L)—not necessarily
a linear filter—which reduces the process y(t) to a white-noise sequence ε(t) =
φ(L)y(t). Then, a linear filter θ(L) can be found can which reverses the operation, so
that we have y(t) = θ(L)ε(t) = {θ(L)φ(L)}y(t), which is the desired representation.

The simplest case is where y(t) is a stationary stochastic process with a spec-
trum fy(ω) > 0 which is everywhere nonzero. It is always possible to find a complex
function µ(ω) such that

fy(ω) =
1

2π
µ(ω)µ∗(ω).(18.86)
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Given that fy(ω) > 0, it follows that µ(ω) has none of its roots on the unit circle.
Therefore

dZε(ω) =
1

µ(ω)
dZy(ω)(18.87)

exists for all values of ω, and the spectral representation of the process y(t) given
in equation (18.39), may be rewritten as

y(t) =
∫
ω

eiωtµ(ω)dZε(ω).(18.88)

Expanding µ(ω) as a Fourier series and interchanging the order of integration
and summation gives

y(t) =
∫
ω

eiωt
(∑

j

µje
−iωj

)
dZε(ω)

=
∑
j

µj

{∫
ω

eiω(t−j)dZε(ω)
}

=
∑
j

µjε(t− j),

(18.89)

where we have defined

ε(t) =
∫
ω

eiωtdZε(ω).(18.90)

The spectrum of ε(t) is determined by the equation

E
{
dZε(ω)dZ∗ε (ω)

}
=E

{
dZy(ω)dZ∗y (ω)
µ(ω)µ∗(ω)

}
=

fy(ω)
µ(ω)µ∗(ω)

dω

=
1

2π
dω.

(18.91)

Hence ε(t) is identified as a white-noise process with unit variance. Therefore
equation (18.89) represents a moving-average process.

In the case where f(ω) = 0 in respect of a set of values of ω of a nonzero
measure, it is no longer possible to transform y(t), via a process of linear filtering,
to a white-noise process ε(t) with a flat spectrum. In this case, the conversion of
y(t) to white noise requires the supplementation of the process Zy(ω) by a further
process which adds power to the spectrum in the frequency ranges where there is
none. Let Zs(ω) be the relevant supplementary process which has uncorrelated
increments dZs(ω) for which

E
{
dZs(ω)

}
= 0 and V

{
dZs(ω)

}
= E

{
dZs(ω)dZ∗s (ω)

}
= dω.(18.92)
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Then the process entailed in spectral representation of the reconstructed white-noise
process is specified by

Zε(ω) =
∫
A

dZs(λ) +
∫
Ac

1
µ(λ)

dZy(λ),(18.93)

where A is the set of values of λ in the frequency interval (−π, ω] for which f(ω) = 0,
and where Ac is the complementary set.

In certain circumstances there exists a one-sided moving-average representation
of the process y(t):

(18.94) The stationary process y(t) has a one-sided moving-average represen-
tation in the form of equation (18.70) if it has a spectrum f(ω) ≥ 0
which is zero-valued at most on a set of measure zero and if∫ π

−π
ln
{
f(ω)

}
dω > −∞.

Proof. If the conditions of the theorem are true and f(ω) has only isolated zeros in
the interval (−π, π], then ln{f(ω)} has a Fourier-series representation of the form

ln
{
f(ω)

}
=

∞∑
j=−∞

φje
−iωj ,(18.95)

with coefficients which are given by

φj =
1

2π

∫ π

−π
eiωj ln

{
f(ω)

}
dω = φ−j ,(18.96)

where the condition that φj = φ−j reflects the fact that f(ω) is real-valued and
symmetric. Since the sum in (18.95) converges, as do the separate sums over positive
and negative integers, the following convergent Fourier series may also be defined:

µ(ω) =
∞∑
i=0

γie
−iω = exp

{ ∞∑
j=1

φje
−ωj

}
.(18.97)

Therefore the spectral density function may be factorised as

f(ω) = exp{φ0}µ(ω)µ∗(ω).(18.98)

If the factor exp{φ0} is identified with σ2
ε/2π, then this factorisation is identical to

the expression for the spectral density function for an MA process which is obtained
from (18.72) when α(z) = 1; and the condition emerges that

exp{φ0} =
σ2
ε

2π
= exp

{
1

2π

∫ π

−π
ln
{
f(ω)

}
dω

}
> 0;(18.99)
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for which the condition stated under (18.94) is clearly necessary. If the condition
is not met, then the process in question is deterministic.

It can be proved that the condition under (18.94) is also necessary for the
existence of a one-sided moving-average representation of a stationary process—
see, for example, Doob [162, pp. 106, 577]. The necessity of the condition is readily
intelligible. In its absence, the case would be admitted where the spectrum of
the process is zero-valued over a finite interval. Since the zeros of a polynomial
µ(z) = 1 +µz+ · · ·+µqz

q—or, indeed, those of a rational function—correspond to
isolated points in the complex plane, it is clearly impossible for a finite-order ARMA
model to generate such a spectrum. Equally it is impossible that such a spectrum
could arise from a one-side moving average of infinite order. Nevertheless, it is one
of the objectives of signal processing to construct filters which can virtually nullify
the spectral density function over a designated frequency range. The foregoing
results indicate that such an objective can never be achieved completely.
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CHAPTER 19

Prediction and
Signal Extraction

In classical time-series analysis, there are two branches of prediction theory. In the
so-called problem of pure prediction, the object is to forecast the value of a time
series for several steps ahead on the basis of the observed history of the series. In
the problem of signal extraction, the object is to infer the value of a signal from a
record which is affected by superimposed noise. In this case, the requirement may
be for an estimate of the signal at any period: past, present or future. The signal-
extraction problem is, therefore, more general than the problem of pure prediction.
The fundamental problem is that of predicting one series from the record of another;
and this is where we shall begin the account.

The dominant approach to the theory of prediction stems from the work of
Wiener [523] and Kolmogorov [298], who reached their solutions independently at
much the same time. Kolmogorov dealt with the problem in terms of the time
domain, whereas Wiener used concepts from the frequency domain. Despite these
differences of approach, the two solutions were essentially equivalent; and nowadays
they are often expounded in a manner which transcends the distinctions. A good
example is provided by Whittle’s [519] account.

The statistical theory of Wiener and Kolmogorov is restricted to stationary
stochastic processes. In the case of the pure prediction problem, such series are
assumed to extend into the indefinite past. This is a convenient theoretical fiction;
and, in practice, if the series is long enough and if its current values are not too
strongly influenced by the past, then the falsity of the fiction does little harm to
the quality of the forecasts. In the case of the signal-extraction problem, it is often
assumed that the record of the process also extends into the indefinite future. This
is also likely to be a harmless fiction if the record is long enough and if it can be
played forwards and backwards at will, as in the case of a digital sound recording,
for example.

Many of the problems of prediction in the social sciences, and in such scien-
tific areas as climatology, concern time series which are manifestly nonstationary.
The Wiener–Kolmogorov theory can be adapted to deal with such series as well,
provided that they can be reduced to stationarity by use of a de-trending device,
such as the difference operator, which may be accompanied by a prior logarithmic
transformation. Nevertheless, there is a sleight of hand in this approach which can
have deleterious consequences if insufficient care is taken.

The means which are best adapted to coping with problems of predicting non-
stationary series from finite records are those which are provided by the recursive

575



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

algorithms which we shall present in the second half of this chapter. The Kalman
filter and the associated smoothing filter also provide appropriate methods in such
cases. However, the algebra of the Kalman filter is extensive and the manner in
which it relates to a specific problem may be obscure. This contrasts with the
lucidity of the Wiener–Kolmogorov theory. Therefore, in this chapter, our recourse
will be to develop the basic results within the context of the classical theory be-
fore translating them, where necessary, into the more elaborate versions which are
associated with the finite-sample prediction algorithms and with the Kalman filter.

Before embarking on the main topics, we need to establish some basic results
concerning minimum-mean-square-error prediction.

Mean-Square Error

The criterion which is commonly used in judging the performance of an es-
timator or predictor ŷ of a random variable y is its mean-square error defined by
E{(y−ŷ)2}. If all of the available information on y is summarised in its marginal dis-
tribution, then the minimum-mean-square-error prediction is simply the expected
value E(y). However, if y is statistically related to another random variable x whose
value can be observed, and if the form of the joint distribution of x and y is known,
then the minimum-mean-square-error prediction of y is the conditional expectation
E(y|x). This proposition may be stated formally:

(19.1) Let ŷ = ŷ(x) be the conditional expectation of y given x, which is also
expressed as ŷ = E(y|x). Then E{(y − ŷ)2} ≤ E{(y − π)2}, where
π = π(x) is any other function of x.

Proof. Consider

E
{

(y − π)2
}

=E
[{

(y − ŷ) + (ŷ − π)
}2
]

=E
{

(y − ŷ)2
}

+ 2E
{

(y − ŷ)(ŷ − π)
}

+ E
{

(ŷ − π)2
}
.

(19.2)

In the second term of the final expression, there is

E
{

(y − ŷ)(ŷ − π)
}

=
∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫
x

{∫
y

(y − ŷ)f(y|x)∂y
}

(ŷ − π)f(x)∂x

= 0.

(19.3)

Here the second equality depends upon the factorisation f(x, y) = f(y|x)f(x)
which expresses the joint probability density function of x and y as the product of
the conditional density function of y given x and the marginal density function of x.
The final equality depends upon the fact that

∫
(y−ŷ)f(y|x)∂y = E(y|x)−E(y|x) =

0. Putting (19.3) into (19.2) shows that E{(y−π)2} = E{(y− ŷ)2}+E{(ŷ−π)2} ≥
E{(y − ŷ)2}; and the assertion is proved.
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The definition of the conditional expectation implies that

E(xy) =
∫
x

∫
y

xyf(x, y)∂y∂x

=
∫
x

x

{∫
y

yf(y|x)∂y
}
f(x)∂x

=E(xŷ).

(19.4)

When the equation E(xy) = E(xŷ) is rewritten as

E
{
x(y − ŷ)

}
= 0,(19.5)

it takes the form of an orthogonality condition. This condition indicates that the
prediction error y − ŷ is uncorrelated with x. The result is intuitively appealing;
for, if the error were correlated with x, then some part of it would be predictable,
which implies that the information of x could be used more efficiently in making
the prediction of y.

The proposition of (19.1) is readily generalised to accommodate the case where,
in place of the scalar x, there is a finite sequence {xt, xt−1, . . . , xt−p} or even an
indefinite sequence.

In practice, we are liable to form our predictions of y from linear combinations
of a finite number of consecutive values of x and from lagged values of y. If the
joint distribution of these various elements is a normal distribution, then, indeed,
the conditional expectation of y will be a linear function of the remaining elements.
However, even when the assumption of a normal distribution cannot be sustained
realistically, we are still liable to predict y via a linear function.

The projection theorem, which we shall discuss more fully at a later stage,
indicates that the linear combination ŷ which fulfils the orthogonality condition of
(19.5) is also the linear estimator with the minimum-mean-square prediction error.
Therefore, we shall make extensive use of the orthogonality condition.

It is largely a matter of style whether, in our account of the theory of prediction,
we choose to take the assumption of normality as a universal premise or whether
we choose, instead, to remind ourselves that, in truth, we are dealing only with the
linear theory of prediction. In fact, there is no other general theory of prediction.
Having discussed these issues at the outset, we shall largely ignore them hereafter.

Predicting one Series from Another

Let {xt, yt} be a sequence of jointly distributed random variables generated by
a stationary stochastic process, and imagine that the intention is to use a linear
function of the values in the information set It = {xt−j ; j ∈ Q} to predict the value
of yt. Then the prediction may be denoted by

ŷt =
∑
j∈Q

βjxt−j .(19.6)

For the moment, we may omit to specify the limits for the summation which would
indicate the extent of the information set.
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Let et = yt − ŷt be the error of prediction. Then the indefinite sequence
y(t) = {yt} can be decomposed as

y(t) = β(L)x(t) + e(t),(19.7)

where β(L) =
∑
j βjL

j is a polynomial or a power series of the lag operator, and
where x(t) = {xt} and e(t) = {et} are indefinite sequences.

The principle of orthogonality implies that the minimum-mean-square-error
estimate of yt will be obtained by finding the coefficients {βj} which satisfy the
conditions

0 =E
{
xt−k(yt − ŷt)

}
=E(xt−kyt)−

∑
j

βjE(xt−kxt−j)

= γxyk −
∑
j

βjγ
xx
k−j

(19.8)

for all k ∈ Q.
The precise nature of the solution depends upon the extent of the information

set which is determined by the index set Q. In practice, the set will comprise only a
finite number of elements. For theoretical purposes, however, it is also appropriate
to consider sets with comprise an infinite number of elements from the past, as well
as sets which comprise infinite numbers of elements stretching into the past and
the future.

Let us begin by considering the case where It = {xt, xt−1, . . . , xt−p}. Then,
with k = 0, 1, . . . , p, the orthogonality conditions of (19.8) become the normal
equations of a linear regression. These equations can be compiled into a matrix
format as follows: 

γxy0

γxy1

...

γxyp

 =


γxx0 γxx1 · · · γxxp
γxx1 γxx0 · · · γxxp−1

...
...

. . .
...

γxxp γxxp−1 · · · γxx0




β0

β1

...

βp

 .(19.9)

The normal equations can also be expressed in terms of z-transform polyno-
mials. Multiplying the jth equation by zj gives

γxyj zj = γxxj zjβ0 + γxxj−1z
j−1β1z + · · ·+ γxxp−jz

j−pβpz
p.(19.10)

The full set of equations for j = 0, 1, . . . , p can now be expressed as

γxy(z)(0,p) =
[
γxx(z)β(z)

]
(0,p)

,(19.11)

where β(z) = β0 + β1z + · · · + βpz
p stands for the z-transform of the sequence of

coefficients and where the subscript (0, p) indicates that only the terms associated
with z0, z1, . . . , zp have been taken from γxy(z) and γxx(z)β(z).
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The virtue of this formulation is that it accommodates the case where the
sequence {βj} comprises an indefinite number of nonzero coefficients, as is the case
when β(z) = δ(z)/α(z) represents the series expansion of a rational function. In
that case, the sequence of equations obtained by letting p increase indefinitely is
denoted by

γxy(z)+ =
[
γxx(z)β(z)

]
+
,(19.12)

where the subscripted + sign indicates that only nonnegative powers of z have been
taken from γxy(z) and γxx(z)β(z). This notation is due to Whittle [519].

The Technique of Prewhitening

At first sight, there seems to be little hope of finding the coefficients of β(z)
from those of γxx(z) and γxy(z) unless there is a finite number of them. However,
let us consider the canonical factorisation of the autocovariance function of the
stationary process x(t). This can be written as

γxx(z) = σ2
ξψ(z)ψ(z−1),(19.13)

where ψ(z) = {ψ0 + ψ1z + · · ·}. Now define the white-noise process ξ(t) =
ψ−1(L)x(t). Then, on setting x(t) = ψ(L)ξ(t) in equation (19.7), we get

y(t) =β(L)ψ(L)ξ(t) + e(t)

= ρ(L)ξ(t) + e(t),
(19.14)

where ρ(L) = β(L)ψ(L). Now observe that

E(ξt−kξt−j) =

{
σ2
ξ , if j = k;

0, if j 6= k.
(19.15)

In effect, the autocovariance generating function of ξ(t) takes the form of γξξ(z) =
σ2
ξ . Thus, when ξ(t) = ψ−1(L)x(t) replaces x(t), the matrix on the RHS of equation

(19.9) is replaced by an identity matrix scaled by the value of σ2
ξ . Also, equation

(19.12) assumes the simplified form of

γξy(z)+ =
[
γξξ(z)ρ(z)

]
+

= σ2
ξρ(z).(19.16)

Now γξy(z) = γxy(z)/ψ(z−1) and β(z) = ρ(z)/ψ(z), so it follows that

β(z) =
1

σ2
ξψ(z)

[
γxy(z)
ψ(z−1)

]
+

.(19.17)

This is an equation which we shall depend upon later.
The virtue of replacing the signal x(t) by the white-noise sequence ξ(t) is that

it enables the coefficients of ρ(z) to be found one at a time from the elements of the
covariance function γξy(z). The coefficients of β(z) = ρ(z)/ψ(z) can also be found
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one at a time by the simple algorithm for expanding a rational function described
in Chapter 3.

The coefficients of β(z) may also be found directly from the elements of the
covariance function γξq(z) of ξ(t) and q(t) = ψ−1(L)y(t). To understand this,
consider premultiplying equation (19.7) by ψ−1(L) to give

q(t) =ψ−1(L)y(t)

=β(L)ψ−1(L)x(t) + ψ−1(L)ε(t)

=β(L)ξ(t) + η(t).

(19.18)

Then

γξq(z)+ =
[
γξξ(z)β(z)

]
+

= σ2
ξβ(z),(19.19)

which is to say that the coefficients βj = C(ξt−j , qt)/V (ξt) can be obtained from
simple univariate regressions. This method of obtaining the coefficients is described
as the prewhitening technique. In practice, it will usually require the estimation
of the polynomial ψ(z) which is unlikely to be known a priori. This is a matter of
building an autoregressive moving-average (ARMA) model for x(t).

If β(z) = δ(z)/α(z) represents the series expansion of a rational function, then
it should be straightforward to recover the coefficients of the polynomials δ(z) and
α(z) from the leading coefficients of the series. Having recovered δ(z) and α(z),
we are in a position to generate an indefinite number of the coefficients of β(z) via
a simple recursion. Thus the technique of prewhitening enables the parameters of
an infinite-impulse-response (IIR) transfer function to be estimated without undue
difficulty.

Extrapolation of Univariate Series

Now let us consider the problem of predicting the value of a stationary uni-
variate series y(t) for h steps ahead on the basis of the values which have been
observed up to time t. Eventually, we shall show that this problem can be placed
in the same framework as that of predicting one series from another. However, we
shall begin by treating the problem in its own terms.

For a start, it can be assumed, without any loss of generality, that y(t) is
generated by an ARMA process. A stationary and invertible ARMA model can be
represented in three different ways:

α(L)y(t) = µ(L)ε(t), Difference-equation form(19.20)

y(t) =
µ(L)
α(L)

ε(t) = ψ(L)ε(t), Moving-average form(19.21)

α(L)
µ(L)

y(t) = π(L)y(t) = ε(t). Autoregressive form(19.22)

The moving-average representation provides the simplest context in which to es-
tablish the basic results concerning the minimum-mean-square-error predictors.
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Consider making a prediction at time t for h steps ahead on the basis of an
information set which stretches into the indefinite past. If ψ(L) is known, then the
sequence {εt, εt−1, εt−2, . . .} can be recovered from the sequence {yt, yt−1, yt−2, . . .}
and vice versa; so either of these constitute the information set. In terms of the
moving-average representation, the value of the process at time t+ h is

yt+h = {ψ0εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1}
+ {ψhεt + ψh+1εt−1 + · · ·}.

(19.23)

The first term on the RHS embodies disturbances subsequent to the time t,
and the second term embodies disturbances which are within the information set
{εt, εt−1, εt−2, . . .}. A linear forecasting function, based on the information set,
takes the form of

ŷt+h|t = {ρhεt + ρh+1εt−1 + · · ·}.(19.24)

Then, given that ε(t) is a white-noise process, it follows that the mean square of
the error in the forecast h periods ahead is

E
{

(yt+h − ŷt+h|t)2
}

= σ2
ε

h−1∑
i=0

ψ2
i + σ2

ε

∞∑
i=h

(ψi − ρi)2.(19.25)

This is minimised by setting ρi = ψi; and so the optimal forecast is given by

ŷt+h|t = {ψhεt + ψh+1εt−1 + · · ·}.(19.26)

This forecasting formula might have been derived from the equation y(t + h) =
ψ(L)ε(t + h), which generates the true value of yt+h, simply by putting zeros in
place of the unobserved disturbances εt+1, εt+2, . . . , εt+h which lie in the future
when the forecast is made.

On the assumption that the process is stationary, the mean-square error of the
forecast, which is given by

E
{

(yt+h − ŷt+h|t)2
}

= σ2
ε

h−1∑
i=0

ψ2
i ,(19.27)

tends to the value of the variance of the process y(t) as the lead time h of the
forecast increases.

The optimal forecast may also be derived by specifying that the forecast error
should be uncorrelated with the disturbances up to the time of making the forecast.
For, if the forecast errors were correlated with some of the elements of the infor-
mation set, then, as we have noted before, we would not be using the information
efficiently, and we could generate better forecasts.

Now let us reconcile the results of this section with those of the previous section
which relate to the problem of predicting the values of y(t) from previous values of
x(t). Consider writing

y(t+ h) =β(L)y(t) + e(t)

= ρ(L)ε(t) + e(t),
(19.28)
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where ρ(L) = β(L)ψ(L). This is to be compared with equation (19.14). The only
difference is the replacement of x(t) = ψ(L)ξ(t) on the RHS of (19.14) by y(t) =
ψ(L)ε(t). The autocovariance generating function of x(t), which was denoted by
γxx(z) and which is to be found under (19.13), is now replaced by the autocovariance
generating function of y(t):

γ(z) = σ2
εψ(z)ψ(z−1).(19.29)

By making the appropriate replacements in the formula of (19.17), it can be seen
that the expression for β(L) in (19.28) is

β(z) =
1

σ2
εψ(z)

[
z−hγ(z)
ψ(z−1)

]
+

.(19.30)

Here z−hγ(z) stands for the covariance of y(t + h) and y(t). However, in view of
the expression for γ(z), this can also be written as

β(z) =
1

ψ(z)
[
z−hψ(z)

]
+
,(19.31)

from which it follows that

ρ(z) = β(z)ψ(z) =
[
z−hψ(z)

]
+
.(19.32)

This agrees with the formula under (19.26).

Example 19.1. Consider the ARMA(1,1) process y(t) described by the equation

(1− φL)y(t) = (1− θL)ε(t).(19.33)

Then ψ(z) = (1− θz)(1− φz)−1; and it follows from equation (19.32) that

ρ(z) =
[
z−h

(1− θz)
(1− φz)

]
+

=
[
z−h

{
1 +

(φ− θ)z
(1− φz)

}]
+

= φh−1 (φ− θ)
(1− φz)

,(19.34)

Therefore, the filter which is applied to the sequence y(t) for the purpose of gener-
ating the forecasts is

β(z) =
ρ(z)
ψ(z)

= φh−1 (φ− θ)
(1− θz)

.(19.35)

It may be instructive to follow a more direct derivation of the one-step-ahead
forecast. Consider taking expectations in the equation

y(t+ 1) = φy(t) + ε(t+ 1)− θε(t)(19.36)
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conditional upon the information available at time t. Since E(εt+h|It) = 0 for all
h > 0, this gives

ŷ(t+ 1|t) =φy(t)− θε(t)

=φy(t)− θ (1− φL)
(1− θL)

y(t)

=
(φ− θ)

(1− θL)
y(t).

(19.37)

Also, the equation

ŷ(t+ h|t) = φŷ(t+ h− 1|t)(19.38)

holds for all h > 1, from which it follows that

ŷ(t+ h|t) = φh−1 (φ− θ)
(1− θL)

y(t).(19.39)

Forecasting with ARIMA Models

A common way of modelling nonstationary time series is to incorporate a
number of difference factors ∇ = I −L in the autoregressive operator of an ARMA
model. The resulting model is called an autoregressive integrated moving-average
(ARIMA) model in reference to the fact that the inverse of the difference operator,
which is ∇−1 = {I + L+ L2 + · · ·}, is a species of integration operator.

An ARIMA(p, d, q) model takes the form of

α(L)∇dy(t) = µ(L)ε(t),(19.40)

where ∇dy(t) = z(t), which is the dth difference of the observable nonstationary
process y(t), follows a stationary ARMA(p, q) process.

The series y(t) may be forecast by forecasting its dth difference z(t). The
forecasts of the difference can then be aggregated—or integrated d times, in other
words—so as to generate the forecasts of the level of the series. In order to gener-
ate ŷt+1|t, . . . , ŷt+h|t by integrating the values ẑt+1|t, . . . , ẑt+h|t, one needs d initial
values zt, . . . , zt−d+1.

An alternative procedure for forecasting the values of y(t), which we shall
outline shortly, makes use of a recursion based directly on (19.40) which represents
the difference-equation form of the model.

Notwithstanding of the presence of the unit roots in the autoregressive operator
α(L)(I−L)d, it is possible to represent an ARIMA model in any of the three forms
given under (19.20)–(19.22).

In the case of the autoregressive form π(L)y(t) = ε(t), there is

π(z) =
α(z)
µ(z)

(1− z)d

=
{
π0 + π1z + π2z + · · ·

}
,

(19.41)
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where π0 = 1 on the assumption that the leading coefficients of α(z) and µ(z) are
also units. Setting z = 1 shows that the sum of the coefficients of π(z) is zero, which
is to say that

∑∞
j=1 πj = −1. Also, provided that the moving-average polynomial

µ(z) is invertible, the coefficients form a convergent sequence with πj → 0 as j →∞.
Therefore, provided that the elements in the information set {yt, yt−1, yt−2, . . .} are
bounded, it follows that the value of yt can be approximated, to any degree of
accuracy, by summing a sufficient number of the leading terms of the autoregressive
expansion

yt = εt −
{
π1yt−1 + π2yt−2 + · · ·

}
.(19.42)

The moving-average-representation of the ARIMA model is more problematic.
Given that the roots of (1− z)d are units, it follows that the series expansion of the
moving-average operator

ψ(z) =
µ(z)

(1− z)dα(z)

= {ψ0 + ψ1z + ψ2z
2 + · · ·},

(19.43)

does not converge when z = 1; which is to say that the sum of the moving-average
coefficients is infinite. The consequence is that the value of yt cannot be obtained
directly by summing the leading terms of the expression

yt = {ψ0εt + ψ1εt−1 + ψ2εt−2 + · · ·}.(19.44)

This appears to place a serious impediment in the way of extending a theory of the
prediction of stationary series which is based upon the moving-average represen-
tation. Nevertheless, the crucial results of that theory do retain their validity in
the case of ARIMA processes; and the difficulties to which we have alluded can be
largely circumvented by adopting the autoregressive representation of the process
or by adopting the difference equation representation as we shall do in the next
section.

The difficulties can be circumvented completely by espousing a more sophis-
ticated theory of prediction, such the theory which results from the application of
the Kalman filter to finite data sequences.

Example 19.2. Consider the integrated moving-average IMA(1, 1) process which
is described by the equation

(1− L)y(t) = (1− θL)ε(t).(19.45)

This comes from setting φ = 1 in the equation of the ARMA(1, 1) process which is
found under (19.33).

By following the example of the ARMA(1, 1) process, it can be seen that the
one-step-ahead forecast function can be represented by

ŷ(t+ 1|t) =
(1− θ)

(1− θL)
y(t)

= (1− θ)
{
y(t) + θy(t− 1) + θ2y(t− 1) + · · ·

}
.

(19.46)
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This is the autoregressive formulation of the forecast function, and it corresponds
to the method of forecasting known as exponential smoothing. Notice that the sum
of the coefficients is unity. Since θj → 0 as j → ∞, it is possible to truncate the
sum in the confidence that, if the past values of the sequence fall within sufficiently
narrow bounds, then the discarded terms will have insignificant values.

The moving-average form of the forecast function is

ŷ(t+ 1|t) =
(1− θ)
(1− L)

ε(t)

= (1− θ)
{
ε(t) + ε(t− 1) + ε(t− 2) + · · ·

}
.

(19.47)

The boundedness of ŷ(t+1|t) entails the boundedness of the sum of the white-noise
processes on the RHS. However, this indefinite sum cannot be approximated by any
partial sum.

Generating the ARMA Forecasts Recursively

The optimal (minimum-mean-square error) forecast of yt+h is the condi-
tional expectation of yt+h given the values of {εt, εt−1, εt−2, . . .} or the values of
{yt, yt−1, yt−2, . . .} which constitute the information set It equally when the param-
eters of the process are known. This forecast is denoted by ŷt+h|t = E(yt+h|It).
Elements, such as yt−j and εt−j , which lie within the information set are unaffected
by the operator which generates the conditional expectations. Also, the information
of It is of no assistance in predicting an element of the disturbance sequence which
lies in the future, such as εt+k. The effects of the expectations operator can be
summarised as follows:

E(yt+k|It) = ŷt+k|t if k > 0,

E(yt−j |It) = yt−j if j ≥ 0,

E(εt+k|It) = 0 if k > 0,

E(εt−j |It) = εt−j if j ≥ 0.

(19.48)

In this notation, the forecast h periods ahead is

E(yt+h|It) =
h∑
k=1

ψh−kE(εt+k|It) +
∞∑
j=0

ψh+jE(εt−j |It)

=
∞∑
j=0

ψh+jεt−j .

(19.49)

This is equation (19.26) again.
In practice, we may generate the forecasts using a recursion based on the

difference-equation form of the ARMA model.

y(t) =−
{
α1y(t− 1) + α2y(t− 2) + · · ·+ αpy(t− p)

}
+µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

(19.50)
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This equation can also represent an ARIMA model if the difference factors are
absorbed into the autoregressive operator. By taking the conditional expectation
of the function, we get

ŷt+h =−{α1ŷt+h−1 + · · ·+ αpyt+h−p}
+µhεt + · · ·+ µqεt+h−q when 0 < h ≤ p, q,

(19.51)

ŷt+h = −{α1ŷt+h−1 + · · ·+ αpyt+h−p} if q < h ≤ p,(19.52)

ŷt+h =−{α1ŷt+h−1 + · · ·+ αpŷt+h−p}
+µhεt + · · ·+ µqεt+h−q if p < h ≤ q,

(19.53)

and

ŷt+h = −{α1ŷt+h−1 + · · ·+ αpŷt+h−p} when p, q < h.(19.54)

Equation (19.54) indicates that when h > p, q, the forecasting function becomes a
pth-order homogeneous difference equation in y. The p values of y(t) from t = r =
max(p, q) to t = r − p+ 1 serve as the starting values for the equation.

The behaviour of the forecast function beyond the reach of the starting values
can be characterised in terms of the roots of the autoregressive operator. We can
assume that none of the roots of α(L) = 0 lie inside the unit circle. If all of the
roots are greater than unity in modulus, which is the case of a stationary process,
then ŷt+h will converge to zero as h increases. If one of the roots of α(L) = 0
is unity, then we have an ARIMA(p, 1, q) model; and the general solution of the
homogeneous equation of (19.54) will include a constant term which represents the
product of the unit root with a coefficient which is determined by the starting
values. Hence the forecast will tend to a nonzero constant. If two of the roots
are unity, then the general solution will embody a linear time trend which is the
asymptote to which the forecasts will tend. In general, if d of the roots are unity,
then the general solution will comprise a polynomial in t of order d− 1.

The forecasts can be updated easily once the coefficients in the expansion of
ψ(L) = µ(L)/α(L) have been obtained. Consider

ŷt+h|t+1 = {ψh−1εt+1 + ψhεt + ψh+1εt−1 + · · ·} and

ŷt+h|t = {ψhεt + ψh+1εt−1 + ψh+2εt−2 + · · ·}.
(19.55)

The first of these is the forecast for h− 1 periods ahead made at time t+ 1 whilst
the second is the forecast for h periods ahead made at time t. It can be seen that

ŷt+h|t+1 = ŷt+h|t + ψh−1εt+1,(19.56)

where εt+1 = ŷt+1|t − yt+1 is the current disturbance at time t + 1. The latter is
also the prediction error of the one-step-ahead forecast made at time t.
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Figure 19.1. The graph of 150 observations on a simulated series generated
by the AR(2) process (1−1.884L+0.951L2)y(t) = ε(t) followed by 45 forecast
values. The broken lines represent a confidence interval.

Physical Analogies for the Forecast Function

To understand the nature of the forecasts, it is helpful to consider some physical
analogies. One such analogy was provided by Yule [539], whose article of 1927
introduced the concept of a second-order autoregressive process and demonstrated
that it is capable of generating a quasi-cyclical output. The equation of such a
process can be written

y(t) = {ρ cosω}y(t− 1)− ρ2y(t− 2) + ε(t),(19.57)

where ω represents the natural frequency and ρ ∈ [0, 1) represents the damping
factor.

Yule likened the trajectory of the process to that of a pendulum bombarded by
peas. The impacts of the peas were compared with the disturbances of the white-
noise forcing function ε(t) which drives the process. If these impacts were to cease,
then the pendulum would swing with a regular oscillation of an amplitude which
would be reduced gradually by frictional forces. The trajectory, from the moment
that the bombardments cease, corresponds to the forecasts of the autoregressive
process (see Figure 19.1).

Example 19.3. For an example of the analytic form of the forecast function, we
may consider the integrated autoregressive IAR(1, 1) process defined by{

1− (1 + φ)L+ φL2
}
y(t) = ε(t),(19.58)

wherein φ ∈ [0, 1). The roots of the auxiliary equation z2 − (1 + φ)z + φ = 0 are

587



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

0

50

100

150

200

0

−50

−100

0 50 100 150

Figure 19.2. The graph of 150 observations on a simulated series generated
by the IAR(1, 1) process (1− 1.9L+ 0.9L2)y(t) = ε(t) followed by 45 forecast
values. The broken lines represent a confidence interval.

z = 1 and z = φ. The solution of the homogeneous difference equation{
1− (1 + φ)L+ φL2

}
ŷ(t+ h|t) = 0,(19.59)

which defines the forecast function, is

ŷ(t+ h|t) = c1 + c2φ
h,(19.60)

where c1 and c2 are constants which reflect the initial conditions. These constants
are found by solving the equations

yt−1 = c1 + c2φ
−1,

yt = c1 + c2.
(19.61)

The solutions are

c1 =
yt − φyt−1

1− φ
and c2 =

φ

φ− 1
(yt − yt−1).(19.62)

The long-term forecast is ȳ = c1 which is the asymptote to which the forecasts tend
as the lead period h increases.

The model of this example has a straightforward physical analogy. One can
imagine a particle moving in a viscous medium under the impacts of its molecules
which are in constant motion. The particle is subject to a so-called Brownian
motion. Its velocity v(t) is governed by the equation (1 − φL)v(t) = ε(t), where
φ ∈ [0, 1) is a factor which reflects the viscosity of the medium and which governs
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the decay of the particle’s velocity. The equation (1− L)y(t) = v(t), which derives
from equation (19.58), gives the position of the particle. The forecast function
reflects the fact that, if the impacts which drive the particle through the medium
were to cease, then it would come to rest at a point. Figure 19.2 represents these
circumstances.

Interpolation and Signal Extraction

Now let us turn to the problem of interpolation. Imagine a sequence of obser-
vations {yt} on a stationary random signal {ξt} which are afflicted by errors {ηt}
of zero mean which are independently and identically distributed and whose values
are also independent of those of the signal. Then

y(t) = ξ(t) + η(t).(19.63)

If the sequence ξ(t) underlying the observations is serially correlated, then there
will be some scope for deriving better estimates of its values than those which are
provided by the sequence y(t) of the observations. In that case, an estimate of ξ(t)
may be obtained by filtering y(t) to give

x(t) = β(L)y(t).(19.64)

For the sake of mathematical tractability, we may begin by assuming that, at
any time t, an indefinite sequence of the values of y(t) is available which stretches
backwards and forwards in time. The use of data that lies ahead of t implies that
the estimation of ξt cannot be conducted in real time and that it must be performed
off-line.

A good example is provided by the processing of digital sound recordings where
the object is to enhance the sound quality by removing various noise corruptions
in the form of scratchings and hissings which overlie the music and which can
be regarded in the same light as errors of observation. In such cases, the digital
recording can be regarded as a sequence of indefinite length.

The coefficients of the filter β(L) =
∑
j βjL

j are estimated by invoking the
minimum-mean-square-error criterion. The errors in question are the elements of
the sequence e(t) = ξ(t)−x(t). The principle of orthogonality, by which the criterion
is fulfilled, indicates that the errors must be uncorrelated with the elements in the
information set It = {yt−k; k = 0,±1,±2, . . .}. Thus

0 =E
{
yt−k(ξt − xt)

}
=E(yt−kξt)−

∑
j

βjE(yt−kyt−j)

= γyξk −
∑
j

βjγ
yy
k−j

(19.65)

for all k. The equation may be expressed, in terms of the z transform, as

γyξ(z) = γyy(z)β(z),(19.66)
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where β(z) stands for an indefinite two-sided Laurent sequence comprising both
positive and negative powers of z.

From the assumption that the elements of the noise sequence η(t) are indepen-
dent of those of the signal ξ(t), it follows that

γyy(z) = γξξ(z) + γηη(z) and γyξ(z) = γξξ(z),(19.67)

whence

β(z) =
γyξ(z)
γyy(z)

=
γξξ(z)

γξξ(z) + γηη(z)
.(19.68)

Now, by setting z = eiω, one can derive the frequency-response function of the filter
which is used in estimating the signal ξ(t). The effect of the filter is to multiply
each of the frequency components of y(t) by the fraction of its variance which is
attributable to the signal. The same principle applies to the estimation of the noise
component. The noise-estimation filter is just the complementary filter

ρ(z) = 1− β(z) =
γηη(z)

γξξ(z) + γηη(z)
.(19.69)

To provide some results of a more specific nature, let us assume that the signal
ξ(t) is generated by an autoregressive moving-average process such that φ(L)ξ(t) =
θ(L)ν(t), where ν(t) is a white-noise sequence with V {ν(t)} = σ2

ν . Also, let the
variance of the white-noise error process be denoted by V {η(t)} = σ2

η. Then

y(t) =
θ(L)
φ(L)

ν(t) + η(t),(19.70)

whence

γξξ(z) = σ2
ν

θ(z)θ(z−1)
φ(z)φ(z−1)

and γyy(z) = σ2
ν

θ(z)θ(z−1)
φ(z)φ(z−1)

+ σ2
η.(19.71)

It follows from (19.68) that

β(z) =
σ2
νθ(z)θ(z

−1)
σ2
νθ(z)θ(z−1) + σ2

ηφ(z)φ(z−1)
=
σ2
ν

σ2
ε

θ(z)θ(z−1)
µ(z)µ(z−1)

.(19.72)

Here the denominator corresponds to the autocovariance generating function of a
synthetic moving-average process

µ(L)ε(t) = θ(L)ν(t) + φ(L)η(t).(19.73)

The autocovariances of this process are obtained by adding the autocovariances
of the constituent processes on the RHS. The coefficients of the Cramér–Wold
factorisation of the generating function σ2

εµ(z)µ(z−1) may be obtained via the
procedureMinit of (17.39). The factors of the numerator of β(z) are already known.
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In order to realise the bidirectional filter β(L), it is necessary to factorise it into
two parts. The first part, which incorporates positive powers of the lag operator,
runs forwards in time in the usual fashion. The second part of the filter, which
incorporates negative powers of the lag operator, runs in reversed time.

Given this factorisation, the sequence x(t), which estimates ξ(t), can be found
via two operations which are represented by

z(t) =
θ(L)
µ(L)

y(t) and x(t) =
θ(F )
µ(F )

z(t),(19.74)

where F = L−1 stands for the forward-shift operator whose effect is described by
the equation Fz(t) = z(t+ 1). The reversed-time filtering which converts z(t) into
x(t) is analogous to the smoothing operation which is associated with the Kalman
filter. Taken together, the two filtering operations will have no net phase effect.

It is notable that the filter which is appropriate for estimating the signal com-
ponent ξ(t) = {θ(L)/φ(L)}ν(t) of the sequence y(t) defined in (19.70) is equally
appropriate for estimating the signal ξ(t) = θ(L)ν(t) within

y(t) = θ(L)ν(t) + φ(L)η(t).(19.75)

Example 19.4. Consider the process specified by

y(t) = ξ(t) + η(t)

= (1 + L)nν(t) + (1− L)nε(t).
(19.76)

Then the filter which estimates ξ(t) takes the form of

β(z) =
σ2
ν(1 + z)n(1 + z−1)n

σ2
ν(1 + z)n(1 + z−1)n + σ2

ε(1− z)n(1− z−1)n

=
1

1 + λ

(
i
1− z
1 + z

)2n ,
(19.77)

where λ = σ2
ε/σ

2
ν . Reference to (16.113) will help to show that, when z = eiω, this

can be written as

β(eiω) =
1

1− λ{tan(ω/2)}2n
.(19.78)

Here is the basis of the formula for the Butterworth lowpass digital filter which
is given by (16.114). The latter has λ = {1/ tan(ωc)}2n, where ωc is the nominal
cut-off point of the filter.

Extracting the Trend from a Nonstationary Sequence

The results of the previous section are not significantly altered in the case where
the signal sequence ξ(t) is generated by a process which owes its nonstationarity to
the presence of unit roots in the autoregressive operator. In that case, ξ(t) is liable
to be described as the trend underlying the process y(t) = ξ(t) + η(t).
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Let us consider a leading example where

y(t) = ξ(t) + η(t)

=
1

(1− L)2
ν(t) + η(t).

(19.79)

This equation represents a second-order random walk which is obscured by errors
of observation. The equation can be written alternatively as

(1− L)2y(t) = d(t) = ν(t) + (1− L)2η(t),(19.80)

which can be construed as an instance of equation (19.75). Notice, in particular,
that the elements in this expression are stationary processes. The filter which is
designed to extract ν(t) from d(t) = (1− L)2y(t) is

β(z) =
σ2
ν

σ2
η(1− z)2(1− z−1)2 + σ2

ν

=
1

λ(1− z)2(1− z−1)2 + 1
,

(19.81)

where λ = σ2
η/σ

2
ν . This filter will also serve to extract ξ(t) from y(t).

Equation (19.81) defines the so-called Hodrick–Prescott filter (see Cogley and
Nason [116] and Harvey and Jaeger [248]). The parameter λ−1 corresponds to the
signal-to-noise ratio, which is the ratio of the variance of the white-noise process
ν(t) which drives the random walk and the variance of the error process η(t) which
obscures its observations.

It is usual to describe λ = σ2
η/σ

2
ν as the smoothing parameter. For any par-

ticular combination of the signal and noise variances, there is a unique value of
the smoothing parameter which gives rise to the optimum (minimum-mean-square-
error) trend-estimation filter. However, the filter can be used without any reference
to the nature of the processes which generate the data. In such cases, the value of
λ must be determined from heuristic considerations.

The Hodrick–Prescott filter is closely related to the Reinsch smoothing spline
of which the algorithm has been presented in Chapter 11. The spline represents
the optimal predictor of the trajectory of an integrated Wiener process which is
obscured by white-noise errors of observation.

An integrated Wiener process is just the continuous-time analogue of a second-
order random walk; and, as we shown in an appendix to Chapter 11, a sequence of
equally spaced (exact) observations of the process follows a discrete-time integrated
moving-average IMA(2, 1) process described by the equation

(I − L)2ξ(t) = (1 + µL)ν(t).(19.82)

Here µ = 2−
√

3 and V {ν(t)} = σ2
ν are solutions of the equations

4κ = σ2
ν(1 + µ2) and κ = σ2

νµ,(19.83)

wherein κ is a scale parameter which is affected only by σ2
ν . These results have been

presented previously under (11.116). The equations represent the autocovariances
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of the moving-average process on the RHS of equation (19.82). The formula of the
signal-extraction filter for estimating ξ(t) from y(t) = ξ(t) + η(t) is

β(z) =
σ2
ν(1 + µz)(1 + µz−1)

σ2
η(1− z)2(1− z−1)2 + σ2

ν(1 + µz)(1 + µz−1)
.(19.84)

Finite-Sample Predictions: Hilbert Space Terminology

The remaining sections of this chapter are devoted to the refinements which
result from our taking proper account of the finite nature of the sample data from
which the predictions are derived.

Our attention will be devoted to two closely related algorithms for generating
optimal predictions. The first of these is the Durbin–Levinson algorithm which has
been expounded already in Chapter 17. We shall re-examine the algorithm and we
shall offer an alternative derivation. The second is the Gram–Schmidt prediction-
error algorithm which is based upon the Cholesky factorisation of a positive-definite
matrix described in Chapter 7.

The two algorithms are recursive in nature. That is to say, they generate
sequences of predictions which keep step with the growing sample. As the size
of the sample increases, the recursively generated finite-sample predictions should
converge upon those generated by applying the practical versions of the infinite-
sample methods which have been described in the previous sections. The simplest
way of making such methods practical, in the case of a stationary process, is to
replace the unobserved presample and postsample data values by zeros. Thus, in
general, the methods of the ensuing sections can be seen as generalisations of the
existing methods.

The exposition of the finite-sample methods is assisted by using some of the
concepts and the terminology of infinite-dimensional Hilbert spaces. In this way,
the intuitions which are associated with ordinary finite-dimensional Euclidean
spaces can be used to elucidate relationships which might otherwise remain obscure.

We shall use the Hilbert-space concepts only to provide alternative proofs of
propositions already established by other means; and we shall give the proofs a
subsidiary status by confining them to examples. Brief accounts of Hilbert spaces
are provided by Anderson [16] and Caines [95]. An exposition of the theory of
linear regression in terms of finite-dimensional vector spaces has been provided by
Pollock [397].

The essential idea is that the random variables yt; t ∈ {0,±1,±2, . . .}, which
are elements of the sequence y(t) defined over the set of positive and negative
integers, may be construed as points in an infinite-dimensional Hilbert space. The
dimension of the space corresponds not to the temporal dimension of the sequence
but rather to the range of the individual random variables which are its elements.
Finite linear combinations of the elements in the form of

∑
φjyt−j are also points

in the space. The space is completed by including all random variables which are
limits in the mean-square norm—as defined below—of the random variables or
points already in the space.

For any two elements x, y in the space, an inner product is defined by

〈x, y〉 = E(xy).(19.85)
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The norm or length of an element x is given by

‖x‖ =
√
〈x, x〉,(19.86)

whilst the distance between two random variables x and y, conceived of as points
in the space, is

‖x− y‖ =
√
〈x− y, x− y〉.(19.87)

Since E{(y − ŷ)2} = ‖y − ŷ‖2, finding the minimum-mean-square-error linear
predictor of y given the variables x1, . . . , xn which generate a subspace or manifold
M is a matter of finding the point ŷ in M which is closest to y. This result is
expressed in the following theorem which is analogous to the theorem for a finite-
dimensional linear space:

(19.88) The Projection Theorem. IfM is a subspace of a Hilbert space H and
y is an element of H, then there exists a unique element ŷ ∈ M such
that ‖y − ŷ‖ ≤ ‖y − x‖ and 〈y − ŷ, x〉 = 0 for all x ∈M.

This theorem can be extended to the case whereM is a linear manifold spanned
by an infinite set of vectors. In particular, it follows that the best linear predictor of
yt+h given {yt, yt−1, . . .}, which represents the entire history of the sequence y(t), is
given by the orthogonal projection of yt+h on the space spanned by {yt, yt−1, . . .}.

Let ŷt+h be the best predictor based on an infinite history and let ŷpt+h be the
predictor based on the elements {yt, . . . , yt−p}. Then it may be shown that

lim(p→∞)E
{

(ŷpt+h − ŷt+h)2
}

= 0.(19.89)

This implies that a prediction based on a finite history approximates the prediction
based on an infinite history.

Recursive Prediction: The Durbin–Levinson Algorithm

Imagine that y(t) is a stationary process with known autocovariances and with
a zero expectation. The object is to form a sequence ŷ1, ŷ2, . . . , ŷt+1 of one-step-
ahead predictions on the basis of a growing sample of observations y0, y1, . . . , yt.

At the start, before any sample information is available, the predicted value
of y0 is its unconditional expectation ŷ0 = E(y0) = 0. The error of the predic-
tion is the realised value e0 = y0. The minimum-mean-square-error predictions
of the succeeding values are the conditional expectations ŷ1 = E(y1|y0), ŷ2 =
E(y2|y1, y0), . . . , ŷt+1 = E(yt+1|yt, . . . , y1, y0). If the process is normal, then these
predictions are provided by a set of linear regression equations which take the form
of

ŷ1 =−α1(1)y0,
ŷ2 =−α1(2)y1 − α2(2)y0,

...
ŷt+1 =−α1(t+1)yt − · · · − α2(t+1)y1 − αt+1(t+1)y0.

(19.90)
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Even if the assumption of normality cannot be sustained, the same equations will
continue, nevertheless, to represent the minimum-mean-square-error linear predic-
tions.

The generic equation from (19.90) can be written as

ŷt = −
t∑

j=1

αj(t)yt−j .(19.91)

Defining et = yt − ŷt and setting α0(t) = 1 for all t gives rise to the following
equation for the prediction error:

et =
t∑

j=0

αj(t)yt−j ; α0(t) = 1.(19.92)

The set of the first t+ 1 of such equations may be ordered in the following manner:
1 0 0 . . . 0

α1(1) 1 0 . . . 0
α2(2) α1(2) 1 . . . 0

...
...

...
. . .

...
αt(t) αt−1(t) αt−2(t) . . . 1




y0

y1

y2

...
yt

 =


e0

e1

e2

...
et

 .(19.93)

As the sample size t increases, the coefficients αt−j(t); j = 1, . . . , t, together
with the values ν2

(t) = E(e2
t ) for the variance of the prediction errors, may be

obtained by solving a succession of Yule–Walker systems of increasing order.
According to the projection theorem of (19.88), the sequence of prediction er-

rors {e0, e1, . . . , et} obey the conditions E(etyt−j) = 0; j = 1, . . . , t. It follows from
equation (19.92) that they also obey the conditions E(etet−j) = 0; j = 1, . . . , t.
Therefore, the prediction errors form a sequence of mutually uncorrelated elements
with a diagonal dispersion matrix. Thus the sequence of regressions entailed by
the minimum-mean-square-error predictions are associated with the following diag-
onalisation of the dispersion matrix of the sample elements {y0, y1, . . . , yt}:

1 0 . . . 0
α1(1) 1 . . . 0

...
...

. . .
...

αt(t) αt−1(t) . . . 1



γ0 γ1 . . . γt
γ1 γ0 . . . γt−1

...
...

. . .
...

γt γt−1 . . . γ0




1 α1(1) . . . αt(t)
0 1 . . . αt−1(t)

...
...

. . .
...

0 0 . . . 1



=


γ0 0 . . . 0
0 σ2

(1) . . . 0
...

...
. . .

...
0 0 . . . σ2

(t)

 .
(19.94)

This process of diagonalisation is also associated with a Cholesky decomposition of
the inverse of the dispersion matrix. Thus, if the equation of (19.94) is written is
summary notation as AΓA′ = D, then it follows that

Γ = A−1DA′−1 and Γ−1 = A′D−1A.(19.95)
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The increasing burden of computation, imposed by the task of generating suc-
cessive predictions, may be reduced by exploiting the previous calculations. A
recursive scheme for calculating the coefficients is provided by the Durbin–Levinson
algorithm which was presented in Chapter 16.

The algorithm, which is also displayed under (17.73), enables the coefficients
of the (t+ 1)th iteration to be derived for those of the tth iteration:

αt+1(t+1) =
−1
ν2

(t)

{ t∑
j=0

αj(t)γt+1−j

}
,

 α1(t+1)

...
αt(t+1)

=

 α1(t)

...
αt(t)

+ αt+1(t+1)

 αt(t)...
α1(t)

 ,
ν2

(t+1) = ν2
(t)

{
1− (αt+1(t+1))2

}
.

(19.96)

The starting values for the recursion are

α1(1) = −γ1/γ0 and ν2
(1) = γ0

{
1− (α1(1))2

}
.(19.97)

The parameter αt+1(t+1), which is the crucial element in the (t + 1)th stage of
the algorithm, is commonly described, in texts of signal processing, as a reflection
coefficient. In a statistical context, it is described as a partial autocorrelation
coefficient.

Example 19.5. The equations of the Durbin–Levinson algorithm can be derived in
a way which makes use of the concepts of Hilbert space and which also alludes to the
theory of linear regression. The coefficients of the best linear predictor of yt given
the previous p observations are obtained by projecting the random variable yt onto
the manifoldMp =M{yt−1, . . . , yt−p} spanned by the lagged values yt−1, . . . , yt−p.
Let the projection operator with respect to this manifold be denoted by Pp. Then,
for the predicted value of yt, we have

Ppyt = −
p∑
j=1

αj(p)yt−j ,(19.98)

whilst the variance of the prediction error is

ν2
(p) = ‖(I − Pp)yt‖2.(19.99)

Now let the manifold be augmented by the addition of the lagged variable
yt−p−1. Then the augmented manifold Mp+1 can be decomposed as the direct
sum the original manifold Mp and a one-dimensional subspace which is obtained
by projecting the augmenting variable yt−p−1 into the orthogonal complement of
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Mp. Thus Mp+1 =Mp ⊕ (I − Pp)yt−p−1; and the appropriate projection for the
prediction of yt based on p+ 1 observations is

Pp+1yt =Ppyt − αp+1(p+1)(I − Pp)yt−p−1

=−αp+1(p+1)yt−p−1 +
{
Ppyt + αp+1(p+1)Ppyt−p−1

}
,

(19.100)

where

− αp+1(p+1) =
〈yt, (I − Pp)yt−p−1〉
‖(I − Pp)yt−p−1‖2

(19.101)

is the coefficient of the regression of yt on (I − Pp)yt−p−1.
Since the process y(t) is stationary and reversible, the backwards prediction of

yt−p−1 givenMp is formed using the same coefficients as the forward prediction of
yt provided by (19.98). The difference is that the coefficients which are associated
with the variables are in reversed order. Thus

Ppyt−p−1 = −
p∑
j=1

αp+1−j(p)yt−j .(19.102)

Also, the denominator of (19.101) is

‖(I − Pp)yt−p−1‖2 = ‖(I − Pp)yt‖2 = ν2
(p).(19.103)

On carrying these results of (19.102) and (19.103) into (19.101), we find that

αp+1(p+1) =
−1
ν2

(p)

{
〈yt, yt−p−1〉+

p∑
j=1

αp+1−j(p)〈yt, yt−j〉
}

=
−1
ν2

(p)

{ p∑
j=0

αj(p)γp+1−j

}
,

(19.104)

since 〈yt, yt−j〉 = γj and αj(p) = 1. Also, using (19.98) and (19.102) in equation
(19.100), it can be seen that the remaining coefficients of the projection on Mp+1,
which are associated with yt, . . . , yt−p, are just

αj(p+1) = αj(p) + αp+1(p+1)αp+1−j(p); j = 1, . . . , p.(19.105)

To find a recursive formula for the variance of the prediction error, we refer to
equation (19.100). Subtracting that equation from yt and forming the modulus of
the remainder gives∥∥(I − Pp+1)yt

∥∥2 =
∥∥(I − Pp)yt − αp+1(p+1)(I − Pp)yt−p−1

∥∥2

=
∥∥(I − Pp)yt

∥∥2 + α2
p+1(p+1)

∥∥(I − Pp)yt−p−1

∥∥2

−2αp+1(p+1)

〈
(I − Pp)yt, (I − Pp)yt−p−1

〉
.

(19.106)
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On the RHS, there is〈
(I − Pp)yt, (I − Pp)yt−p−1

〉
=
〈
yt, (I − Pp)yt−p−1

〉
=−αp+1(p+1)

∥∥(I − Pp)yt−p−1‖2.
(19.107)

Here, the first equality follows from the symmetry and idempotency of the operator
I−Pp, and the second equality comes directly from (19.101). On putting this back
into (19.106) and and using (19.103), we get∥∥(I − Pp+1)yt

∥∥2 = ν2
(p+1) = ν2

(p) − α
2
p+1(p+1)ν

2
(p),(19.108)

which is the result which we have been seeking. Equations (19.104), (19.105) and
(19.108), which recapitulate the equations of (19.96), define the Durbin–Levinson
algorithm.

The Durbin–Levinson algorithm provides a way of finding the minimum-mean-
square-error predictions regardless of the nature of the stationary stochastic process
to which the autocovariances correspond. There is no presumption that the process
is autoregressive. However, if the process is described by an AR(p) equation of the
form (1 + α1L + · · · + αpL

p)y(t) = ε(t), then, for t > p, it will be found that
α1(t) = α1, α2(t) = α2, . . . , αp(t) = αp, whilst αp+1(t) = · · · = αt(t) = 0. Also, for
t > p, the prediction error will coincide with the white-noise disturbance, so that
et = εt.

A facility for reducing a serially dependent sequence of random variables
y0, . . . , yt to a sequence of uncorrelated prediction errors e0, . . . , et greatly facili-
tates the computation of the exact likelihood function of the sample of data. We
shall exploit this in a subsequent chapter which deals with the estimation of linear
stochastic models.

Example 19.6. The transformation of the elements y0, . . . , yt into a sequence of
independently distributed random variables e0, . . . , et may be construed as a process
of orthogonalisation. A set of random variables y0, . . . , yt with expected values of
E(yj) = 0 for all j and with covariances of C(yi, yj) = γij constitutes a basis of a
vector space S of dimension t on the condition that their dispersion matrix Γ = [γij ]
is positive definite. The inner product of two elements x, y ∈ S may be defined as
〈x, y〉 = C(x, y) which is just their covariance, and the condition of orthogonality
is the condition that 〈x, y〉 = C(x, y) = 0.

The process of orthogonalisation begins by setting e0 = y0. Then e1 is defined
to be the component of y1 which is orthogonal to y0, and which is, therefore,
uncorrelated with e0 = y0. This component is just the residual from the regression
of y0 on y1. The next orthogonal element e2 is the component of y2 which is
orthogonal to y0 and y1; and this is just the residual from the regression of y2

on y0 and y1. Since e2 is orthogonal to y0 and y1 and since e1 = y0 + α1y1 is a
linear combination of these variables, it follows that e2 is uncorrelated with e1. The
process of orthogonalisation continues in this fashion; and it is, of course, nothing
but the process of solving a succession of Yule–Walker equations which we have
detailed above.
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A Lattice Structure for the Prediction Errors

There is an efficient method of generating the sequence of prediction errors
which depends upon the Durbin–Levinson algorithm. Consider the prediction er-
rors associated with a filter of order p which has the coefficients 1, α1(p), . . . , αp(p).
Applying the filter to the the data sequence yt, yt−1, . . . , yt−p generates a one-step-
ahead prediction error:

et(p) = yt + α1(p)yt−1 + · · ·+ αp(p)yt−p

= yt − ŷt.
(19.109)

Reversing the order of the coefficients and applying them again to the data generates
the one-step-back prediction error:

bt(p) =αp(p)yt + · · ·+ α1(p)yt−p+1 + yt−p

= yt−p − ŷt−p.
(19.110)

Now suppose that the order of the filter is increased by one. Then the error of
the one-step-ahead prediction becomes

et(p+1) =
p+1∑
j=0

αj(p+1)yt−j

= yt +
p∑
j=1

αj(p+1)yt−j + cp+1yt−p−1,

(19.111)

where cp+1 = αp+1(p+1) is the reflection coefficient from the Durbin–Levinson al-
gorithm. Equation (19.96) of the algorithm provides the expressions

αj(p+1) = αj(p) + cp+1αp+1−j(p), j = 1, . . . , p.(19.112)

Substituting these into equation (19.111) gives

et(p+1) =
{
yt +

p∑
j=1

αj(p)yt−j

}
+ cp+1

{ p∑
j=1

αp+1−j(p)yt−j + yt−p−1

}
= et(p) + cp+1bt−1(p).

(19.113)

An analogous expression may be derived for the backwards prediction. Con-
sider

bt(p+1) =
p+1∑
j=0

αp+1−j(p+1)yt−j

= cp+1yt +
p∑
j=1

αp+1−j(p+1)yt−j + yt−p−1.

(19.114)
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Figure 19.3. The initial segments of the signal diagram of the lattice
filter used in generating forwards and backwards prediction errors.

Equation (19.96) provides the expressions

αp+1−j(p+1) = αp+1−j(p) + cp+1αj(p), j = 1, . . . , p.(19.115)

Substituting these in (19.114) gives

bt(p+1) = cp+1

{
yt +

p∑
j=1

αj(p)yt−j

}
+
{ p∑
j=1

αp+1−j(p)yt−j + yt−p−1

}
= cp+1et(p) + bt−1(p).

(19.116)

On juxtaposing the results of (19.113) and (19.116), we find that

et(p+1) = et(p) + cp+1bt−1(p),

bt(p+1) = cp+1et(p) + bt−1(p).
(19.117)

These two equations describe an algorithm for constructing an autoregressive pre-
diction filter in successive stages. Setting p = 0 gives the initial conditions

et(0) = bt(0) = yt.(19.118)

Increasing the value of p by one at a time, adds successive stages to the filter, thereby
increasing its order. The signal diagram of the filter (Figure 19.3) has a crisscross
or lattice appearance in consequence of the cross-coupling of the backwards and
forwards prediction errors which is evident in the equations.

It is interesting to discover that expressions for the reflection coefficient cp+1 =
αp+1(p+1) can be derived from the equations under (19.117). Consider the mean-
square error of the forward prediction expressed as

E
[{
et(p+1)

}2
]

= E
[{
et(p) + cp+1bt−1(p)

}2
]

=E
[{
et(p)

}2
]

+ 2cp+1E
[
et(p)bt−1(p)

]
+ c2p+1E

[{
bt−1(p)

}2
]
.

(19.119)
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Minimisation with respect to cp+1 = αp+1(p+1) yields

− αp+1(p+1) =
E
[
et(p)bt−1(p)

]
E
[{
bt−1(p)

}2
] .(19.120)

Since the forward and backwards mean-square errors are equal, the above equation
can be written in the symmetrical form of

− αp+1(p+1) =
2E
[
et(p)bt−1(p)

]
E
[{
et(p)

}2 +
{
bt−1(p)

}2
] .(19.121)

When the various expected values are replaced in this formula by sample analogues,
we obtain Burg’s [89] algorithm for estimating the prediction coefficients. This
algorithm will be presented in a later chapter.

Recursive Prediction: The Gram–Schmidt Algorithm

Equation (19.93) indicates that the vector of one-step-ahead prediction errors
can be expressed as a simple linear transformation of the vector of observations.
The matrix of the transformation in this equation is manifestly nonsingular; and,
therefore, an inverse relationship can be defined in the form of

y0

y1

y2

...
yt

 =


1 0 0 . . . 0

µ1(1) 1 0 . . . 0
µ2(2) µ1(2) 1 . . . 0

...
...

...
. . .

...
µt(t) µt−1(t) µt−2(t) . . . 1




e0

e1

e2

...
et

 .(19.122)

Thus the vector of observations can be expressed as a linear transform of the vector
of prediction errors. If equation (19.93) is regarded as an autoregressive formulation,
then, clearly, equation (19.122) is its moving-average counterpart. Observe that,
if the matrix of the equation is denoted by M , if the dispersion matrix of the
observations is denoted by Γ and if the diagonal dispersion matrix of the errors is
denoted by D, then there is a Cholesky decomposition of Γ in the form of

Γ = MDM ′.(19.123)

The counterpart to the Durbin–Levinson algorithm is an algorithm which gen-
erates recursively the values of the coefficients µt−j(t); j = 0, . . . , t−1 for successive
values of t. Consider the generic equation of (19.122) which takes the form of

yt =
t∑

j=0

µj(t)et−j ; µ0(t) = 1.(19.124)
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Multiplying both sides of this equation by ei, with i ≤ t and taking expectations,
gives

E(ytei) =
t∑

j=0

µj(t)E(et−jei)

=µt−i(t)E(e2
i ),

(19.125)

since E(et−jei) = 0 if (t − j) 6= i. Using the notation ν2
(i) = E(e2

i ), this can be
written as

µt−i(t) =
1
ν2

(i)

E(ytei).(19.126)

But equation (19.124) indicates that

ei = yi −
i∑

j=1

µj(i)ei−j ,(19.127)

so the expected value on the RHS of (19.126) becomes

E(ytei) =E(ytyi)−
i∑

j=1

µj(i)E(ytei−j)

=E(ytyi)−
i∑

j=1

µj(i)µt−i+j(t)E(e2
i−j),

(19.128)

where the result that E(ytei−j) = µt−i+j(t)E(e2
i−j), which is indicated by (19.125),

is used for the final equality. On defining k = i− j and using the notation γt−i =
E(ytyi) and ν2

(i−j) = E(e2
i−j), the equation (19.126) can be written as

µt−i(t) =
1
ν2

(i)

{
γt−i −

i−1∑
k=0

µi−k(i)µt−k(t)ν
2
(k)

}
.(19.129)

This is closely related to equation (17.33) which specifies the relationship between
the parameters and the autocovariances of a moving-average process.

An expression must be found for ν2
(t) = E{(et)2} = E{(yt − ŷt)2} which is

the variance of the prediction error. This may be derived by considering equation
(19.124). Since the RHS of that equation is a sum of statistically independent
terms, it follows that

γ0 =
t∑

j=0

µ2
j(t)ν

2
(t−j)

= ν2
(t) +

t∑
j=1

µ2
j(t)ν

2
(t−j),

(19.130)
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where γ0 = V (yt) and ν2
(t−j) = V (e2

t−j). This gives

ν2
(t) = γ0 −

t∑
j=1

µ2
j(t)ν

2
(t−j).(19.131)

Example 19.7. For an example of the recursive generation of the coefficients,
consider the case where t = 4. Then equation (19.129), with i = 0, . . . , 3, supplies
the first four of the following equations:

µ4(4) =
1
ν2

(0)

γ4,

µ3(4) =
1
ν2

(1)

[
γ3 −

{
µ1(1)µ4(4)ν

2
(0)

}]
,

µ2(4) =
1
ν2

(2)

[
γ2 −

{
µ2(2)µ4(4)ν

2
(0) + µ1(2)µ3(4)ν

2
(1)

}]
,

µ1(4) =
1
ν2

(3)

[
γ1 −

{
µ3(3)µ4(4)ν

2
(0) + µ2(3)µ3(4)ν

2
(1) + µ1(3)µ2(4)ν

2
(2)

}]
,

ν2
(4) =

[
γ0 −

{
µ2

4(4)ν
2
(0) + µ2

3(4)ν
2
(1) + µ2

2(4)ν
2
(2) + µ2

1(4)ν
2
(3)

}]
.

(19.132)

The fifth equation of the scheme, which generates the variance E(e2
4) = ν2

(4) of the
prediction error, is derived by setting t = 4 in equation (19.131). It can also be
derived by setting t = i = 4 in (19.129) and rearranging the result in view of the
identity µ0(4) = 1.

Example 19.8. The prediction-error algorithm may be construed as an imple-
mentation of the classical Gram–Schmidt orthogonalisation procedure. Let the
random variables y0, . . . , yt be regarded as vectors which span a subspace of a
Hilbert space H. For any two elements x, y ∈ H, an inner product is defined
by 〈x, y〉 = E(x, y), and the condition that these elements are orthogonal is the
condition that 〈x, y〉 = E(x, y) = 0. By applying the Gram–Schmidt procedure to
the set of random variables, the following sequence is derived:

e0 = y0,

e1 = y1 −
〈y1, e0〉
〈e0, e0〉

e0,

e2 = y2 −
〈y2, e0〉
〈e0, e0〉

e0 −
〈y2, e1〉
〈e1, e1〉

e1,

...

et = yt −
t−1∑
i=0

〈yt, ei〉
〈ei, ei〉

ei.

(19.133)
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The final equation can be written as

et = yt −
t−1∑
i=0

µt−i(t)ei,(19.134)

where

µt−i(t) =
〈yt, ei〉
〈ei, ei〉

.(19.135)

Substituting for ei = yi −
∑i−1
k=0 µi−k(i)ek in the latter expression gives

µt−i(t) =
1

〈ei, ei〉

{
〈yt, yi〉 −

i−1∑
k=0

µi−k(i)〈yt, ek〉
}

=
1

〈ei, ei〉

{
〈yt, yi〉 −

i−1∑
k=0

µi−k(i)µt−k(t)〈ek, ek〉
}

=
1
ν2

(i)

{
γt−i −

i−1∑
k=0

µi−k(i)µt−k(t)ν
2
(k)

}
.

(19.136)

This is a repetition of equation (19.129).

As in the case of the Durbin–Levinson algorithm, the present scheme for gen-
erating the minimum-mean-square-error predictions entails no presumption about
the nature of the underlying process which corresponds to the sequence of au-
tocovariances, other than that it is stationary and that it admits a moving-
average representation. Nevertheless, it is clear, from a comparison of the equa-
tion (19.129) with the equation under (17.33), that the Gram–Schmidt prediction-
error algorithm has a special affinity with finite-order moving-average processes.
Thus if the underlying process is described by an MA(q) equation in the form of
y(t) = (1 + µ1L + · · · + µqL

q)ε(t), then we can expect that, as t increases, the
leading q coefficients in the sequence {µ1(t), µ2(t), . . . , µq(t), . . .} will converge upon
the values of µ1, µ2, . . . , µq whilst the remaining coefficients will be identically zero.

In the case of an AR(p) process, the prediction equations of the Durbin–
Levinson algorithm assume their asymptotic form after p steps when t ≥ p. By
contrast, when the underlying process is MA(q), the prediction equations of the
prediction-error algorithm approach their asymptotic form gradually as t → ∞.
One can expect the convergence to be rapid nevertheless, so long as the roots of
the MA process are reasonably remote from the boundary of the unit circle.

Example 19.9. Consider the MA(1) process defined by the equation y(t) = ε(t)−
θε(t− 1). The autocovariances are

γ0 =σ2
ε(1 + θ2),

γ1 =−σ2
εθ,

γτ = 0 for τ > 1.

(19.137)
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It follows, from (19.129) and (19.131), that

θτ(t) = 0 for τ > 1,

θ1(t) =− σ2
ε

ν2
(t−1)

θ,

ν2
(0) =σ2

ε(1 + θ2) and

ν2
(t) =σ2

ε

(
1 + θ2 − σ2

ε

ν2
(t−1)

θ2

)
.

(19.138)

As t→∞, it will be found that ν2
(t) → σ2

ε .

In the following procedure for calculating the prediction errors, there is a pro-
vision from limiting the order q of the filter. This is appropriate to the case where
y(t) is indeed a qth-order moving-average process. The procedure takes as its
input a sequence {y0, . . . , yn} of observations on y(t) and returns, in its place, the
corresponding vector of prediction errors.

(19.139) procedure GSPrediction(gamma : vector;
y : longVector;
var mu : matrix;
n, q : integer);

var
t : integer;

procedure MuLine(t : integer);
var
i, k : integer;

begin {t}
for i := 0 to t do

begin {i}
mu[t− i, t] := gamma[t− i];
for k := 0 to i− 1 do
mu[t− i, t] := mu[t− i, t]

−mu[i− k, i] ∗mu[t− k, t] ∗mu[0, k];
if i < t then
mu[t− i, t] := mu[t− i, t]/mu[0, i];
end; {i}

end; {MuLine}

procedure Shiftmu;
var
t, j : integer;

begin
for t := 0 to q − 1 do
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for j := 0 to t do
mu[j, t] := mu[j, t+ 1];

end; {Shiftmu}

procedure PredictionError(q : integer);
var
k : integer;

begin
for k := 1 to q do
y[t] := y[t]− y[t− k] ∗mu[q − k, q];

end; {PredictionError}

begin {Main Procedure}

for t := 0 to q do
begin {t}
MuLine(t);
PredictionError(t);

end; {t}

for t := q + 1 to n do
begin {t}
Shiftmu;
MuLine(q);
PredictionError(q);

end; {Main Procedure}

end; {GSPrediction}

It is interesting to compare the code of the sub-procedure MuLine, which im-
plements equation (19.129), with that of the procedure LDLprimeDecomposition
of (7.47) which factorises a symmetric matrix A = LDL′ in terms of a lower-
triangular matrix L and a diagonal matrix D = diag{d1, . . . , dn}. The inner loop
of this procedure, which finds the ith row of L and the ith diagonal element of
D, accomplishes the same task as MuLine; and a careful comparison, which takes
account of different ways in which the variables are indexed in the two procedures,
will reveal a one-to-one correspondence between the two sets of code.

The GSPrediction algorithm is sparing in its use of storage. It retains only
as much of the matrix of moving-average coefficients as is needed for generating
subsequent rows and for calculating the current prediction error.

The sub-procedure Shiftmu is responsible for moving the coefficients through
the store, which is a square matrix of order q+1. It is activated as soon as q+1 rows
of coefficients have been generated. Thereafter, at the start of each new iteration of
the main procedure, it removes the oldest row from the store and it displaces each
of the remaining coefficients. In terms of the matrix which is displayed in (19.122),
the coefficients are moved one step to the left and one step upwards.
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Signal Extraction from a Finite Sample

The task of adapting the Wiener–Kolmogorov theory of signal extraction to
the circumstance of a limited sample often causes difficulties and perplexity. The
problems arise from not knowing how to supply the initial conditions with which
to start a recursive filtering process. By choosing inappropriate starting values for
the forwards or the backwards pass, one can generate a so-called transient effect
which is liable, in fact, to affect all of the processed values.

Of course, when the values of interest are remote from either end of a long
sample, one can trust that they will be barely affected by the start-up conditions.
However, in many applications, such as in the processing of economic data, the
sample is short and the interest is concentrated at the upper end where the most
recent observations are to be found.

One approach to the problem of the start-up conditions relies upon the ability
to extend the sample by forecasting and backcasting. The additional extra-sample
values can be used in a run-up to the filtering process wherein the filter is stabilised
by providing it with a plausible history, if it is working in the direction of time, or
with a plausible future, if it is working in reversed time. Sometimes, very lengthy
extrapolations are called for (see Burman [92] for example).

The approach which we shall adopt in this chapter is to avoid the start-up
problem altogether by deriving specialised finite-sample versions of the filters on the
basis of the statistical theory of conditional expectations. This is the appropriate
approach when the data is well matched by the statistical model which gives rise
to the filter.

However, it must be recognised that filters are usually selected not for their
conformity with a model of the processes generating the data, but, instead, with a
view to their frequency-response characteristics. Therefore, there is no guarantee
that our approach will be valid in general. We are pursuing it here because it has
heuristic advantages and because it lends itself to a simpler exposition than do any
of the alternatives such as, for example, the sophisticated methodology proposed
by Chornoboy [105] or the methodology of the diffuse Kalman filter developed by
de Jong [148].

Signal Extraction from a Finite Sample: the Stationary Case

Consider the case of a signal sequence ξ(t) which is described by an ordinary
ARMA model, and imagine that the observations y(t) are contaminated by a white-
noise error η(t) which is assumed to be statistically independent of ξ(t). Then we
should have

y(t) = ξ(t) + η(t)(19.140)

with

α(L)ξ(t) = µ(L)ν(t),(19.141)

where ν(t) is a white-noise sequence. A set of T observations running from t = 0
to t = T − 1 can be gathered in a vector

y = ξ + η.(19.142)
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Here, ξ is a vector which is assumed to have a normal distribution with

E(ξ) = 0 and D(ξ) = σ2
νQ,(19.143)

whilst η is a normal vector with

E(η) = 0 and D(η) = σ2
ηI.(19.144)

The theory of conditional expectations indicates that an optimal estimate of
the signal would be provided by

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y)
{
y − E(y)

}
.(19.145)

From the assumptions under (19.143) and (19.144), and from the assumption that
η and ξ are independent, it follows that

D(y) = σ2
νQ+ σ2

ηI and C(ξ, y) = σ2
νQ.(19.146)

Therefore,

E(ξ|y) = x = σ2
νQ(σ2

νQ+ σ2
ηI)−1y.(19.147)

This equation must be solved in a way which does not make excessive demands on
the memory of the computer—for the T × T matrix σ2

νQ+ σ2
ηI may be very large,

and it is clear that we cannot afford to find the inverse by a direct method which
pays no attention to the structure of the matrix.

The practical methods of solving the equation (19.147) depend upon finding a
factorisation of the matrix Q where the factors, or their inverses, are band-limited
matrices. In Chapter 22, we provide a factorisation of the dispersion matrix of an
ARMA(p, q) process which is in the form of

σ2
νQ = σ2

νA
−1V A′−1,(19.148)

where A is a banded lower-triangular Toeplitz matrix which has the autoregressive
parameters α0, . . . , αp as its coefficients, and where V is a symmetric matrix with
zeros above the rth supradiagonal band, where r = max(p, q), and with zeros below
the rth subdiagonal band.

Consider rewriting equation (19.147) as

x=A−1V A′−1(A−1V A′−1 + λI)−1y

=A−1V (V + λAA′)−1Ay,
(19.149)

where λ = σ2
η/σ

2
ν . This can be recast as

h = (V + λAA′)g, where V g = Ax and h = Ay.(19.150)

The matrix V +λAA′ is symmetric with zeros above the rth supradiagonal band
and below the rth subdiagonal band. It is amenable to a Cholesky decomposition
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in the form of V + λAA′ = LDL′ where L is a lower-triangular matrix and D is a
diagonal matrix. The system LDL′g = h can be cast in the form of Lk = h and
solved for k. Then L′g = D−1k can be solved for g and, finally, x can be recovered
from the equation V g = Ax.

The equations for k, g and x entail triangular matrices with a limited number
of subdiagonal or supradiagonal bands; and their solution involves only simple
recursions. The vector x is our estimate of the trend.

Signal Extraction from a Finite Sample: the Nonstationary Case

Imagine that the observable sequence is described by

y(t) = ξ(t) + η(t)

=
µ(L)

(1− L)2
ν(t) + θ(L)ε(t),

(19.151)

where ν(t) and ε(t) are statistically independent sequences generated by normal
white-noise processes. Here ξ(t) follows an integrated moving-average process which
can be thought of as a trend which underlies the data. The data, and the underlying
trend, can be reduced to stationarity by taking second differences. Applying the
difference operator to equation (19.151) gives

(1− L)2y(t) =µ(L)ν(t) + (1− L)2θ(L)ε(t)

= ζ(t) + κ(t),
(19.152)

where ζ(t) = (1 − L)2ξ(t) = µ(L)ν(t) and κ(t) = (1 − L)2η(t) = (1 − L)2θ(L)ε(t)
both follow moving-average processes.

A set of T observations running from t = 0 to t = T − 1 are represented, as
before, by the equation (19.142). To find the finite-sample counterpart of equation
(19.152), we need to represent the second-order difference operator (1− L)2 in the
form of a matrix. The matrix which finds the differences d2, . . . , dT−1 of the data
points y0, y1, y2, . . . , yT−1 is in the form of

Q′ =


1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −2 1

 .(19.153)

Premultiplying equation (19.142) by this matrix gives

d = Q′y=Q′ξ +Q′η

= ζ + κ,
(19.154)

where ζ = Q′ξ and κ = Q′η. The first and second moments of the vector ζ may be
denoted by

E(ζ) = 0 and D(ζ) = σ2
νM,(19.155)
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Figure 19.4. Northern hemisphere annual temperature anomalies 1880–1990:
(a) the series with an interpolated trend, (b) the deviations from the trend
and (c) the gain of the bidirectional fourth-order Butterworth lowpass filter,
with a nominal cut-off frequency of π/8 radians, which is used in constructing
the trend.
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and those of κ by

E(κ) = 0 and D(κ) =Q′D(η)Q,

=σ2
εQ
′ΣQ,

(19.156)

where both M and Σ are symmetric Toeplitz matrices with a limited number of
nonzero diagonal bands. The generating functions for the coefficients of these ma-
trices are, respectively, µ(z)µ(z−1) and θ(z)θ(z−1).

The optimal predictor z of the twice-differenced signal vector ζ = Q′ξ is given
by the following conditional expectation:

E(ζ|d) =E(ζ) + C(ζ, d)D−1(d)
{
d− E(d)

}
=M(M + λQ′ΣQ)−1d = z,

(19.157)

where λ = σ2
ε/σ

2
ν . The optimal predictor k of the twice-differenced noise vector

κ = Q′η is given, likewise, by

E(κ|d) =E(κ) + C(κ, d)D−1(d)
{
d− E(d)

}
=λQ′ΣQ(M + λQ′ΣQ)−1d = k.

(19.158)

It may be confirmed that z + k = d.
The estimates are calculated, first, by solving the equation

(M + λQ′ΣQ)g = d(19.159)

for the value of g and, thereafter, by finding

z = Mg and k = λQ′ΣQg.(19.160)

The solution of equation (19.159) is found via a Cholesky factorisation which sets
M + λQ′ΣQ = LDL′, where L is a lower-triangular matrix and D is a diagonal
matrix. The system LDL′g = d may be cast in the form of Lh = d and solved for
h. Then L′g = D−1h can be solved for g.

Our object is to recover from z an estimate x of the trend vector ξ. This would
be conceived, ordinarily, as a matter of integrating the vector z twice via a simple
recursion which depends upon two initial conditions. The difficulty is in discovering
the appropriate initial conditions with which to begin the recursion.

We can circumvent the problem of the initial conditions by seeking the solution
to the following problem:

Minimise (y − x)′Σ−1(y − x) subject to Q′x = z.(19.161)

The problem is addressed by evaluating the Lagrangean function

L(x, µ) = (y − x)′Σ−1(y − x) + 2µ′(Q′x− z).(19.162)
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By differentiating the function with respect to x and setting the result to zero, we
obtain the condition

Σ−1(y − x)−Qµ = 0.(19.163)

Premultiplying by Q′Σ gives

Q′(y − x) = Q′ΣQµ.(19.164)

But, from (19.159) and (19.160), it follows that

Q′(y − x) = d− z
=λQ′ΣQg,

(19.165)

whence we get

µ= (Q′ΣQ)−1Q′(y − x)

=λg.
(19.166)

Putting the final expression for µ into (19.163) gives

x = y − λΣQg.(19.167)

This is our solution to the problem of estimating the trend vector ξ. Notice that
there is no need to find the value of z explicitly, since the value of x can be expressed
more directly in terms of g = M−1z.

It is notable that there is a criterion function which will enable us to derive
the equation of the trend estimation filter in a single step. The function is

L(x) = (y − x)′Σ−1(y − x) + λx′QM−1Q′x,(19.168)

wherein λ = σ2
ε/σ

2
ν as before.

After minimising this function with respect to x, we may use the identity
Q′x = z which comes from equation (19.165), and the identity M−1z = g which
comes from equation (19.160). Then it will be found that criterion function is
minimised by the value specified in (19.167).

The criterion becomes intelligible when we allude to the assumptions that
y ∼ N(ξ, σ2

εΣ) and that Q′ξ = ζ ∼ N(0, σ2
νM); for then it plainly resembles a

combination of two independent chi-square variates.
An example of the use of the signal-extraction technique in estimating a trend is

provided by Figure 19.4. This illustrates the effects of a bidirectional fourth-order
Butterworth filter. Such a filter would be the appropriate device for estimating
the sequence ξ(t) in equation (19.151) in the case where µ(L) = (1 + L)4 and
θ(L) = (1− L)2.

Example 19.10. Consider the case of an integrated moving-average IMA(2, 1)
process of which the observations are affected by independently and identically
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distributed errors. The sequence of the observations can be represented by the
equation

y(t) = ξ(t) + η(t)

=
1 + µL

(1− L)2
ν(t) + η(t),

(19.169)

and, when it is multiplied throughout by the operator (1− L)2, this becomes

(1− L)2y(t) = (1 + µL)ν(t) + (1− L)2η(t),

= ζ(t) + κ(t) = d(t).
(19.170)

A set of T observations on y(t) are represented, as before, by the equations y = ξ+η,
and their second differences are represented by Q′y = d = ζ+κ. Now the dispersion
matrices are

D(ζ) = σ2
νM and D(κ) = σ2

ηQ
′Q.(19.171)

A comparison of the latter with equation (19.156) shows that the present assump-
tions have resulted in the specialisation Σ = I. It follows that equation (19.157)
now takes the form of

z = M(M + λQ′Q)−1d.(19.172)

This to be compared with an equation in the form of z(t) = β(L)d(t) which rep-
resents the application of the Wiener–Kolmogorov filter β(L) of (19.84) to the
differenced sequence d(t). The polynomial (1 + µz)(1 + µz−1) of the numerator
of equation (19.84) is the generating function of the coefficients of the matrix M ,
whilst the polynomial (1 − z)2(1 − z−1)2 from the denominator is the generating
function of the coefficients of the matrix Q′Q.

It was asserted, in the context of equation (19.84), that the IMA(2, 1) process
provides a model for a sequence of observations on an integrated Wiener process
which are afflicted by white-noise errors. Subject to an appropriate choice of the
smoothing parameter, the Reinsch smoothing spline of Chapter 11 provides an
optimal predictor of the underlying Wiener process.

Now we are in a position to compare the equations of the spline with those of
the signal-extraction algorithm. Consider, therefore, the specialisations of equations
(19.159) and (19.163) which arise when Σ = I. These are, respectively, an equation
in the form of

(M + λQ′Q)g = Q′y,(19.173)

which is solved for g via a Cholesky factorisation, and an equation in the form of

x = y − λQg,(19.174)

which generates the estimate of the trend. After some minor changes of notation,
these equations become identical, respectively, to the spline equations (11.80) and
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(11.81), when Σ = I. We might also note that, subject to these specialisations, the
concentrated criterion function of (19.168) is identical to the function under (11.77)
which is entailed in the derivation of the smoothing spline.
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CHAPTER 20

Estimation of the Mean
and the Autocovariances

A stationary stochastic process x(t) can be characterised, for most practical pur-
poses, by its first-order and second-order moments, which are its mean µ and its
autocovariances which form the sequence γ(τ) = {γτ ; τ = 0,±1,±2, . . .}. If the
elements of the process are normally distributed, then these moments describe the
statistical properties of the process completely.

The first-order and second-order moments are all that are needed in order to
infer the parameters of a linear stochastic process of the ARMA variety. Therefore,
a crucial role in the processes of inference is played by the corresponding estimates.
Moreover, these estimates can be used in identifying the orders of the ARMA model
which is supposed to have generated the data.

We shall begin this chapter by considering the estimation of the mean, for
which we shall establish the requisite sampling properties. Then we shall consider
the problems of estimating the autocovariance function and the autocorrelation
function. The natural estimator of an autocovariance is the corresponding empirical
product moment.

It transpires that, in the case of a finite-order moving-average model, the
product-moment estimator of the autocovariances is statistically inefficient. This
explains why the method of maximum likelihood is used, instead of the more direct
method of moments, when efficient estimates are required of the parameters of a
linear stochastic model with a moving-average component.

Estimating the Mean of a Stationary Process

Given a sample x0, . . . , xT−1 of T observations from a stationary process x(t),
it is natural to estimate the mean E(xt) = µ of the process by the sample mean
x̄ = T−1

∑T−1
t=0 xt. This is an unbiased estimator, since its expected value is

E(x̄) =
1
T

T−1∑
t=0

E(xt) = µ.(20.1)

The sample mean can also be expressed as x̄ = (i′i)−1i′x = i′x/T , where i′ =
[1, . . . , 1] is a vector of T units and x = [x0, . . . , xT−1]′ is the vector of sample
elements. In terms of this notation, the variance of x̄ is

V (x̄) = T−2V (i′x) = T−2i′D(x)i,(20.2)
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where

D(x) =


γ0 γ1 γ2 . . . γT−1

γ1 γ0 γ1 . . . γT−1

γ2 γ1 γ0 . . . γT−3

...
...

...
. . .

...
γT−1 γT−2 γT−3 . . . γ0

(20.3)

is the variance–covariance matrix or dispersion matrix of x, of which the generic
element is the autocovariance at lag τ defined by

γτ =E
{

(xt − µ)(xt−τ − µ)
}

=E(xtxt−τ )− µ2.
(20.4)

The expression i′D(x)i stands for the sum of all the elements of the symmetric
Toeplitz matrix D(x); and, by examining the structure of this matrix, it can be
seen that

i′D(x)i=
T−1∑
t=0

T−1∑
s=0

γ|t−s|

=
T−1∑

τ=1−T
γτ (T − |τ |).

(20.5)

Thus the sum of the elements of a Toeplitz matrix becomes the so-called Cesàro
sum of the sequence of autocovariances. There will be further instances in this
chapter of the process by which the double summation over the indices t and s
becomes a summation over the single index τ . The expression under (20.5) is the
basis for the following expression for the variance of x̄:

V (x̄) =
1
T

T−1∑
τ=1−T

γτ

(
1− |τ |

T

)

=
2
T

T−1∑
τ=0

γτ

(
1− τ

T

)
− γ0

T
.

(20.6)

A basic concern is to discover the conditions under which x̄ represents a con-
sistent estimator of µ. Since x̄ is an unbiased estimator, it will be a consistent
estimator as well if its variance tends to zero as the size of the sample increases. In
fact, it can be proved that

(20.7) The sample mean x̄T is a consistent estimator of µ, with E(x̄T ) = µ
for all T and V (x̄T ) → 0 as T → ∞, if and only if the sequence of
autocovariances {γτ} converges to zero in arithmetic mean, which is
the condition that

1
T

T−1∑
τ=0

γτ → 0 as T →∞.
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Proof. Given that T−1
∑T−1
τ=0 γτ ≥ T−1

∑T−1
τ=0 γτ (1− τ/T ), it follows that the first

term of the final expression of (20.6) will vanish if lim(T → ∞)T−1
∑T−1
τ=0 γτ = 0.

Also, the second term γ0/T will vanish as T → ∞. Therefore, the condition of
(20.7) is sufficient for the consistency of the estimator. To show that it is also a
necessary condition, consider writing

1
T

T−1∑
τ=0

γτ =C(x0, {x0 + x1 + · · ·+ xT−1}/T )

=C(x0, x̄T ).

(20.8)

The Cauchy–Schwarz inequality indicates that {C(x0, x̄)}2 ≤ V (x0)V (x̄) = γ0V (x̄);
and thus it follows that V (x̄T )→ 0 implies T−1

∑T−1
τ=0 γτ → 0.

The condition for the consistency of the estimator x̄ stated in (20.7) is a weak
one. A sufficient condition which is stronger is that lim(T →∞)γτ = 0. Since it is
usual to invoke the latter condition, it is useful to record the following result:

(20.9) The sample mean x̄T is a consistent estimator of the expected value
of the process x(t) if the covariance γ|t−s| of the elements xt and xs
tends to zero as their temporal separation |t− s| increases.

Asymptotic Variance of the Sample Mean

The sequence of autocovariances generated by an ARMA process is absolutely
summable such that

∑
τ |γτ | < ∞. This condition, which is stronger still than

the condition that lim(τ → ∞)γτ = 0, enables an expression to be derived for the
limiting form of the variance of x̄. For, if

∑∞
τ=−∞ |γτ | <∞, then

∑∞
τ=−∞ γτ <∞;

and, therefore,

lim
T→∞

TV (x̄T ) = lim
T→∞

T−1∑
τ=1−T

γτ

(
1− |τ |

T

)
=

∞∑
τ=−∞

γτ .

(20.10)

Also, if
∑∞
τ=−∞ |γτ | <∞, then the process x(t) has a spectral density function of

the form

f(ω) =
1

2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωt)
}

;(20.11)

and, therefore, it follows that

TV (x̄)→
∞∑

τ=−∞
γτ = 2πf(0).(20.12)
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Example 20.1. Consider an AR(1) process x(t) such that {x(t) − µ} = φ{x(t −
1) − µ} + ε(t), where ε(t) is a white-noise process with E(εt) = 0 and V (εt) = σ2

ε

for all t. We know, from (17.46), that

γτ =
σ2
εφ
|τ |

1− φ2
= γ0φ

|τ |.(20.13)

Therefore,

∞∑
τ−∞

γτ = γ0

∞∑
τ−∞

φ|τ |= γ0
(1 + φ)
(1− φ)

,(20.14)

where the final equality can be deduced from the fact that {1 + φ + φ2 + · · ·} =
1/(1− φ) and {· · ·+ φ3 + φ2 + φ} = φ/(1− φ). According to (20.10), there is the
approximation

V (x̄) ' γ0

T

(1 + φ)
(1− φ)

.(20.15)

It can seen that, as φ → 1, the variance increases without bound. When φ = 0,
the process x(t) generates a sequence of independent and identically distributed
random variables; and the variance of the sample mean is given exactly by the
familiar formula V (x̄) = T−1γ0.

Estimating the Autocovariances of a Stationary Process

The autocovariance of lag τ is defined as

γτ =E
{

(xt − µ)(xt−τ − µ)
}

=E(xtxt−τ )− µ2.
(20.16)

Given a sample x0, . . . , xT−1 of T observations, it is usual to estimate γτ by

cτ =
1
T

T−1∑
t=τ

(xt − x̄)(xt−τ − x̄)

=
1
T

T−1−τ∑
t=0

(xt − x̄)(xt+τ − x̄).

(20.17)

It is natural to question whether T is the appropriate divisor in the formula
for the sample autocovariance cτ which is the usual estimate of γτ . The choice of
T − τ would seem more natural, since this is the number of elements comprised by
the sum. The justification for the formula is that it guarantees that the matrix

C =


c0 c1 c2 . . . cT−1

c1 c0 c1 . . . cT−1

c2 c1 c0 . . . cT−3

...
...

...
. . .

...
cT−1 cT−2 cT−3 . . . c0

(20.18)
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will be positive-semidefinite; and this reflects an important property of the cor-
responding matrix of the true autocovariances. The fact the C is a positive-
semidefinite matrix can be recognised when it is expressed as C = T−1Ỹ ′Ỹ , where

Ỹ =



ỹ0 0 . . . 0
ỹ1 ỹ0 . . . 0
...

...
. . .

...
ỹT−1 ỹT−2 . . . ỹ0

0 ỹT−1 . . . ỹ1

...
...

. . .
...

0 0 . . . ỹT−1


(20.19)

is a matrix containing the deviations ỹt = xt − x̄ of the sample elements about the
sample mean.

For the purposes of analysing the properties of the estimator cτ , it is often
helpful to replace the formula for cτ by the surrogate formula

c∗τ =
1
T

T−1∑
t=0

(xt − µ)(xt+τ − µ)

=
1
T

T−1∑
t=0

ytyt+τ ,

(20.20)

where yt = xt − µ. Since E(c∗τ ) = γτ , this would provide an unbiased estimator
of γτ . The formula depends upon the unknown value of the mean µ together
with a set of elements xT , . . . , xT+τ−1 which lie outside the sample. Therefore, it
cannot be used in practice. However, provided that x̄ is a consistent estimator of
µ and provided that τ is held constant, the practical estimator cτ will tend to c∗τ
in probability as the sample size increases.

The consistency of the usual estimator cτ can be investigated by seeking the
conditions under which the surrogate estimator c∗τ , which is unbiased, has a variance
which tends asymptotically to zero as the sample size increases. Within the formula
for c∗τ under (20.20), the sum

∑
ytyt−τ is analogous to the sum

∑
xt entailed by the

formula for the sample mean. According to (20.7), the consistency of the sample
mean x̄ = T−1

∑
xt as an estimator of µ depends upon the convergence to zero in

arithmetic mean of the sequence of the autocovariances

γ|t−s| = C(xt, xs) = E(xtxs)− µ2(20.21)

when these are indexed on τ = |t − s|. By the same reasoning, the consistency of
the estimator c∗τ of γτ depends upon the convergence to zero in arithmetic mean of
the sequence of the fourth-order moments

δτ,|t−s|=C
{

(xt − µ)(xt−τ − µ), (xs − µ)(xs−τ − µ)
}

=E
{

(xt − µ)(xt−τ − µ)(xs − µ)(xs−τ − µ)
}
− γ2

τ

(20.22)

when these are indexed on |t− s| = κ.
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The result is not affected if µ is replaced by x̄, provided that x̄ is a consistent
estimator of µ by virtue of the convergence in arithmetic mean of the sequence
of autocovariances. In that case, the surrogate estimator c∗τ and the practical
estimator cτ are asymptotically equivalent. Therefore, it can be declared, in the
manner of the statement under (20.7), that

(20.23) The covariance γτ is consistently estimated by the sample autocovari-
ance cτ if and only if both T−1

∑
τ γτ → 0 and T−1

∑
κ δτ,κ → 0 as

T →∞.

These necessary and sufficient conditions are somewhat weaker than they need
be, since we are usually prepared to assume that the moments δτ,κ have a conver-
gence which is more rapid than is demanded here. Thus, in the manner of (20.9),
it can be asserted that that

(20.24) The sample autocovariance cτ is a consistent estimator of the autoco-
variance γτ of the process x(t) if the covariance γ|t−s| of xt and xs and
the covariance δτ,|t−s| of (xt − µ)(xt−τ − µ) and (xs − µ)(xs−τ − µ)
both tend to zero as the temporal separation |t− s| increases.

Asymptotic Moments of the Sample Autocovariances

If one is prepared to assume that x(t) is generated by a linear stochastic process
of the ARMA variety, then formulae can be derived which provide the asymptotic
values of the dispersion parameters of the estimates of the autocovariances. Before
establishing these formulae, we need to derive a preliminary result concerning the
fourth-order moments of such processes.

Consider four sequences a(t) = {at}, b(t) = {bt}, c(t) = {ct} and d(t) =
{dt} generated by filtering the same white-noise process ε(t) which has E(εt) = 0,
E(ε2

t ) = σ2 and E(ε4
t ) = ησ4. Here η is a scalar which is peculiar to the distribution

of the elements of ε(t) and which takes the value of η = 3 when this is normal. The
elements of the four sequences may be expressed as

at =
∞∑

i=−∞
αiεt−i,

ct =
∞∑

i=−∞
γiεt−i,

bt =
∞∑

i=−∞
βiεt−i,

dt =
∞∑

i=−∞
δiεt−i.

(20.25)

Then, using the result that

E(εqεrεsεt) =


ησ4, if q = r = s = t

σ4, if q = r 6= s = t

0, if q 6= r, q 6= s and q 6= t,

(20.26)

it can be shown that

E(atbtgtdt) = (η − 3)σ4
∑
i

αiβiγiδi + σ4
∑
i

αiβi
∑
j

γiδi

+σ4
∑
i

αiγi
∑
j

βiδi + σ4
∑
i

αiδi
∑
j

βiγi.
(20.27)
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To be convinced of this formula, one needs to recognise that the subtraction of
3 within the factor η−3 of the leading term is to prevent the same product αiβiγiδi
from being counted there and within the three remaining terms when i = j. It will
also be recognised that σ2

∑
j γjδj , for example, is just the covariance of g(t) and

d(t). Therefore, equation (20.27) can also be written as

E(atbtgtdt) = (η − 3)σ4
∑
i

αiβiγiδi + C(at, bt)C(gt, dt)

+C(at, gt)C(bt, dt) + C(at, dt)C(bt, gt).
(20.28)

This result can be used in proving the following proposition:

(20.29) Let y(t) = ψ(L)ε(t), where ε(t) is a white-noise process such that
E(εt) = 0, V (εt) = σ2 and E(ε4

t ) = ησ4 for all t, and where the
coefficients of the operator ψ(L) are absolutely summable such that∑∞
i=−∞ |ψi| < ∞. Then the limiting value of the covariance of the

estimates cτ and cκ of γτ and γκ is given by

lim
T→∞

TC(cτ , cκ) = (η − 3)γτγκ +
∞∑

q=−∞

{
γq−κγq−τ + γq+κγq−τ

}
.

Proof. It simplifies the proof if cτ and cκ are replaced by the quantities c∗τ and
c∗κ, defined by the equation (20.20), which are asymptotically equivalent on the
supposition that x̄→ µ. Therefore, it is appropriate to consider the formula

C(c∗τ , c
∗
κ) =E(c∗τ c

∗
κ)− E(c∗τ )E(c∗κ)

=
1
T 2

T−1∑
t=τ

T−1∑
s=κ

E(ytyt+τysys+κ)− γτγκ.
(20.30)

The elements under the expectation operator are

yt =
∞∑

i=−∞
ψiεt−i,

ys =
∞∑

i=−∞
ψi+s−tεt−i,

yt−τ =
∞∑

i=−∞
ψi+τεt−i,

ys−κ =
∞∑

i=−∞
ψi+s−t+κεt−i.

(20.31)

By applying the result under (20.28) to E(ytyt+τysys+κ), and by subtracting
the term γτγκ, it is found that

C(cτ , cκ) = A+B,(20.32)
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where

A=
1
T 2

T−1∑
t=0

T−1∑
s=0

{
γs−tγs−t+κ−τ + γs−t+κγs−t−τ

}
=

1
T

T−1∑
q=1−T

(
1− |τ |

T

){
γqγq+κ−τ + γq+κγq−τ

}
,

(20.33)

and

B=
(η − 3)σ4

T 2

T−1∑
t=0

T−1∑
s=0

{∑
i

ψiψi+τψi+s−tψi+s−t+κ

}

=
(η − 3)σ4

T

T−1∑
q=1−T

(
1− |τ |

T

){∑
i

ψiψi+τψi+qψi+q+κ

}
.

(20.34)

The second expression in either case represents a Cesàro sum which has been ob-
tained by defining a new index q = s − t. By taking limits as T → ∞, it will be
found that

lim
T→∞

TA =
∞∑

q=−∞

{
γqγq−τ+κ + γq+κγq−τ

}
.(20.35)

Here it will be observed that, since the sum is infinite, one can set
∑
γqγq−τ+κ =∑

γq−κγq−τ . Likewise, it will be found that

lim
T→∞

TB= (η − 3)σ4
∞∑

q=−∞

∞∑
i=−∞

ψiψi+τψqψq+κ

= (η − 3)γτγκ.
(20.36)

Putting the expressions together to form limTC(c∗τ , c
∗
κ) = limTC(cτ , cκ) gives the

result of (20.29).

When y(t) is a normal process, there is E(ε4
t ) = 3σ4. Therefore, the formula

for the covariance of cτ and cκ simplifies to give

lim
T→∞

TC(cτ , cκ) =
∞∑

q=−∞

{
γq−κγq−τ + γq+κγq−τ

}
.(20.37)

Asymptotic Moments of the Sample Autocorrelations

We are also concerned to discover the sampling properties of the estimates of
the autocorrelation coefficients of a stationary process. The autocorrelation at lag
τ is defined as

ρτ =
γτ
γ0

;(20.38)
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and it is reasonable to estimate this by

rτ =
cτ
c0
.(20.39)

The following theorem, due to Bartlett [35], provides an approximation for the
covariance of a pair of empirical autocorrelation coefficients:

(20.40) Bartlett’s Formula. Let y(t) = ψ(L)ε(t), where ε(t) is a white-noise
process with E(εt) = 0 , V (εt) = σ2 and E(ε4

t ) = ησ4 for all t. Let
the sequence of coefficients of ψ(L) be absolutely convergent such that∑∞
i=−∞ |ψi| <∞. Then the limiting value of the covariance of rτ and

rκ is given by

limT→∞ TC(rτ , rκ) =
∞∑

s=−∞

{
ρs+τρs+κ + ρs+κρs−τ

−2ρsρκρs−τ − 2ρsρτρs−κ + 2ρτρκρ2
s

}
.

Proof. The deviations of the estimated autocorrelation rτ about its expected value
can be approximated via the following formula:

d
(u
v

)
' vdu− udv

v2
.(20.41)

We may set u = E(cτ ) and v = E(c0). Then the differentials are du = cτ − E(cτ ),
dv = c0 − E(c0) and d(u/v) = rτ − E(rτ ). Equation (20.41) indicates that

rτ − E(rτ )' cτ − E(cτ )
E(c0)

− E(cτ ){c0 − E(c0)}
{E(c0)}2

' cτ − γτ
γ0

− γτ{c0 − γ0}
γ2

0

.

(20.42)

A similar approximation is available for {rκ − E(rκ)}. Therefore,

{
rτ − E(rτ )

}{
rκ − E(rκ)

}
' (cτ − γτ )(cκ − γκ)

γ2
0

− γτ
(c0 − γ0)(cκ − γκ)

γ3
0

−γκ
(cτ − γτ )(c0 − γ0)

γ3
0

+ γτγκ
(c0 − γ0)2

γ4
0

.

(20.43)

Taking expectations gives

C(rτ , rκ)' 1
γ2

0

{
C(cτ , cκ)− ρτC(c0, cκ)

−ρκC(cτ , c0) + ρτρκV (c0)
}
,

(20.44)
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where the expressions for C(cτ , cκ) etc. are provided by the formula of (20.29).
When these are drafted into the equation, the terms in (η−3) vanish. The resulting
expression is

C(rτ , rκ)' 1
T

∞∑
s=−∞

{
ρs−κρs−τ + ρs+κρs−τ

−2ρsρκρs−τ − 2ρsρτρs−κ + 2ρτρκρ2
s

}
,

(20.45)

from which the result of (20.40) follows directly.

It is useful to recognise the fact that the expression

ρs−κρs−τ + ρs+κρs−τ − 2ρsρκρs−τ − 2ρsρτρs−κ + 2ρτρκρ2
s(20.46)

is reduced to zero by setting s = 0. This helps in verifying the identity

∞∑
s=−∞

{
ρsρs−τ+κ + ρs+κρs−τ − 2ρsρκρs−τ − 2ρsρτρs−κ + 2ρτρκρ2

s

}
=
∞∑
s=1

{
ρs+τ + ρs−τ − 2ρsρτ

}{
ρs+κ + ρs−κ − 2ρsρκ

}
,

(20.47)

which indicates a form of the expression for C(rτ , rκ) which may be more convenient
for the purposes of computing.

The asymptotic expression for the variance of the estimated autocorrelation
coefficients is obtained by specialising the formula of (20.40) to give

V (rτ ) ' 1
T

∞∑
s=−∞

{
ρ2
s + ρs−τρs+τ − 4ρsρτρs−τ + 2ρ2

τρ
2
s

}
.(20.48)

In the case of a moving-average process of order q, there is ρτ = 0 when τ > q.
Therefore, when τ > q, all terms within the parentheses except the first term vanish
leaving

V (rτ ) ' 1
T

{
1 + 2(ρ2

1 + ρ2
2 + · · ·+ ρ2

q)
}
.(20.49)

The confidence intervals for the estimated autocovariances, which can be established
with this result, may be used in assessing the hypothesis that a data sequence has
been generated by an qth-order moving-average process. If any of the autocovari-
ances after the qth exceeds 1.96 times the variance, then it is usually deemed to be
significantly different from zero, and doubt is cast upon the hypothesis.

The corresponding expressions for the estimated autocorrelation coefficients of
an autoregressive process are not so easily obtained. However, the difficulty is not
as inconvenient as it might seem, since the order of an autoregressive process is
usually assessed by examining the partial autocorrelation function rather than the
autocorrelation function.
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Example 20.2. Consider the AR(1) process defined by the equation y(t) = φy(t−
1)+ε(t). In order to determine the asymptotic form of the variance of the estimated
autocorrelations, we can make use of the result that ρτ = φ|τ |. Using the formula
under (20.48), it can be shown that

V (rτ )' 1
T

τ∑
s=1

φ2τ
(
φ−s − φs

)2 +
1
T

∞∑
s=τ+1

φ2s
(
φ−τ − φτ

)2
=

1
T

{
(1− φ2τ )(1 + φ2)

1− φ2
− 2τφ2τ

}
.

(20.50)

Calculation of the Autocovariances

There are numerous ways of calculating the estimate

cτ =
1
T

T−1∑
t=τ

(xt − x̄)(xt−τ − x̄)(20.51)

of the autocovariance of lag τ and of calculating approximations to it. One might
consider expanding the formula to give

cτ =
1
T

{
T−1∑
t=τ

xtxt−τ − x̄
T−1∑
t=τ

(xt + xt−τ ) + (T − τ)x̄2

}
.(20.52)

Then, since the differences between

T−1∑
t=τ

xt,
T−1∑
t=τ

xt−τ and (T − τ)x̄ =
T − τ
T

T−1∑
t=0

xt

are marginal, the approximation

cτ '
1
T

{
T−1∑
t=τ

xtxt−τ − (T − τ)x̄2

}
,(20.53)

which entails considerably fewer numerical operations, recommends itself. However,
only if the speed of calculation is a priority is there any virtue in this formula, which
is prone to rounding errors and which may give rise to a matrix of autocovariances
which violates the condition of positive-definiteness. The preferred way of calculat-
ing the autocovariances is to apply the formula

cτ =
1
T

T−1∑
t=τ

ytyt−τ(20.54)

to the deviations yt = xt − x̄. The virtue of this procedure lies in the fact that
there is less danger of rounding error in cumulating the sum of the adjusted elements
ytyt−τ than there is in cumulating the unadjusted elements xtxt−τ .

To ensure that the deviations are calculated accurately, it may be worth calcu-
lating the sample mean x̄ in two passes. This is a useful precaution in cases where
the coefficient of variation—which is the ratio of the standard deviation of the data
to its mean—is small.
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(20.55) procedure Autocovariances(Tcap, lag : integer;
var y : longVector;
var acovar : vector);

var
ybar,mean : real;
t, j : integer;

begin {Autocovariances}

{Calculate the mean}
ybar := 0.0;
mean := 0.0;
for t := 0 to Tcap− 1 do {first pass}
mean := mean+ y[t];

mean := mean/Tcap;
for t := 0 to Tcap− 1 do {second pass}
ybar := ybar+ y[t]−mean;

ybar := ybar/Tcap+mean;
Writeln(′ybar = ′, ybar : 4 : 5);

{Calculate the deviations}
for t := 0 to Tcap− 1 do
y[t] := y[t]− ybar;

{Calculate the autocovariances}
for j := 0 to lag do

begin {j}
acovar[j] := 0.0;
for t := j to Tcap− 1 do
acovar[j] := acovar[j] + y[t− j] ∗ y[t];

acovar[j] := acovar[j]/Tcap;
end; {j}

end; {Autocovariances}

An alternative way of calculating the sequence of autocovariances depends
upon the Fourier transform. To explain the method, we should begin by considering
the z-transform of the mean-adjusted data sequence sequence {y0, . . . , yT−1}. This
is the polynomial

y(z) = y0 + y1z + · · ·+ yT−1z
T−1.(20.56)

It is easy to see that the sequence of autocovariances is simply the sequence of co-
efficients {c1−T , . . . , c0, . . . , cT−1} associated with the positive and negative powers
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of z in the product

1
T
y(z)y(z−1) =

1
T

T−1∑
t=0

T−1∑
s=0

ytysz
t−s

=
T−1∑

τ=1−T

(
1
T

T−1∑
t=τ

ytyt−τ

)
zτ

=
T−1∑

τ=1−T
cτz

τ .

(20.57)

Here the final expression depends upon the fact that c−τ = cτ .
The z-transform of the sequence {y0, . . . , yT−1} becomes a Fourier transform

when zτ = e−iωτ . In particular, the discrete Fourier transform results from setting
ω = ωj = 2πj/T with j = 0, . . . , T − 1. In that case, zt becomes T -periodic such
that zτ−T = zτ . Also, there is the condition cτ−T = cT−τ . It follows that the
product in (20.57) can be written as

1
T
y(z)y(z−1) =

T−1∑
τ=1−T

cτz
τ

= c0 +
T−1∑
τ=1

(
cτ + cT−τ

)
zτ

=
T−1∑
τ=0

c◦τz
τ ,

(20.58)

where c◦τ = cτ + cT−τ is a so-called circular autocovariance.
The periodogram of y(t) is just the function I(z) = (2/T )y(z)y(z−1) eval-

uated over the set of points zj = exp(−i2πj/T ); j = 0, . . . , T − 1 which lie at
equal intervals around the circumference of the unit circle in the complex plane.
Therefore, we might expect to be able to recover the sequence of autocovari-
ances {cτ ; τ = 0, . . . , cT−1} by applying an inverse Fourier transform to the or-
dinates of a periodogram evaluated over the set of so-called Fourier frequencies
ωj ; j = 0, . . . , T − 1. In fact, the inverse Fourier transform would deliver the se-
quence of coefficients c◦τ = cτ + cT−τ ; j = 0, . . . , T − 1; from which the ordinary
autocovariances cannot be recovered. Nevertheless, the low-order coefficients c◦τ will
be close to the corresponding autocovariances cτ if the higher-order autocovariances
are close to zero.

To isolate the ordinary autocovariances, we should would have to turn the
higher-order autocovariances into zeros. This is easily accomplished by padding the
tail of the sequence {yt} with zero elements. Thus, when p zero elements are added
to the tail of {yt}, the same number of zero elements will appear in the tail of the
sequence of autocovariances. Therefore, the first p coefficients which are delivered
by the inverse Fourier transform will coincide with the ordinary autocovariances.

The following procedure calculates the autocovariances by the Fourier method
described above. The value of p, which is the number of autocovariances we wish
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to calculate, is specified in the parameter lag. The sequence y(t), which is assumed
to be in deviation form, is padded by a number of zeros which is no less that p and
which is sufficient to bring the total length to a number which is a power of 2. This
is to allow the use of the base-2 FFT.

This algorithm is presented in order to show how the autocovariances may be
calculated as a side-product of the calculation of the ordinates of the periodogram.
If there is no interest in the periodogram and if only small handful of autocovari-
ances are required, then it is not appropriate to use the algorithm.

(20.59) procedure FourierACV(var y : longV ector;
lag, Tcap : integer);

var
Ncap,Nover2, g, t, j : integer;

begin {FourierACV}

Ncap := 1;
g := 0;
repeat

begin
Ncap := Ncap ∗ 2;
g := g + 1

end;
until Ncap >= (Tcap+ lag);
Nover2 := Ncap div 2;

for t := Tcap to Ncap do
y[t] := 0.0;

CompactRealFFT(y,Ncap, g);

y[0] := Sqr(y[0])/(Ncap ∗ Tcap);
y[Nover2] := Sqr(y[Nover2])/(Ncap ∗ Tcap);

for j := 1 to Nover2− 1 do
y[j] := (Sqr(y[j]) + Sqr(y[Nover2 + j]))/(Ncap ∗ Tcap);

for j := 1 to Nover2− 1 do
y[Ncap− j] := y[j];

CompactRealFFT(y,Ncap, g);
end; {FourierACV};

Inefficient Estimation of the MA Autocovariances

The sample autocovariances do not provide statistically efficient estimates of
the autocovariances of a moving-average process y(t) = µ(L)ε(t). This becomes
apparent when we pursue a maximum-likelihood approach in deriving estimates of
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the parameters of the moving-average operator µ(L). The method of maximum
likelihood is known to generate efficient estimates under very general conditions.
Therefore, the mere fact that there is no direct connection between the maximum-
likelihood estimates of the MA parameters and the product-moment estimates of
the corresponding autocovariances is virtually a proof of the inefficiency of the
latter.

The inefficiency is confirmed when the product-moment estimates are used
as a basis for estimating the parameters of the moving-average operator. The
asymptotic value of the sampling variance of the resulting estimates is usually far
greater than the asymptotic sampling variance of the corresponding maximum-
likelihood estimates.

Example 20.3. Consider the case of the MA(1) process defined by the equation
y(t) = ε(t)− θε(t− 1). The autocovariances are given by

γ0 =σ2
ε(1 + θ2),

γ1 =−σ2
εθ and

γτ = 0 for τ > 1;

(20.60)

and, therefore, the autocorrelation for a lag of one period is

ρ1 =
γ1

γ0
=
−θ

1 + θ2
.(20.61)

It follows that the parameter θ satisfies the equation θ2ρ1 + θ+ ρ1 = 0. By solving
the equation subject to |θ| < 1, which is the condition of invertibility, it is found
that

θ =
−1 +

√
1− 4ρ2

1

2ρ1
.(20.62)

Since θ is real-valued, the condition that 0 < |ρ1| ≤ 0.5 must prevail.
Replacing ρ1 in equation (20.62) by the estimate r1 = c1/c0 gives rise to

following system for estimating θ:

θ̂=
−1 +

√
1− 4r2

1

2r1
if 0 < |r1| ≤ 0.5,

= 1 if r1 < −0.5,
=−1 if r1 > 0.5.

(20.63)

The variance of the estimate is approximated by

V (θ̂) '
{
∂θ̂

∂r1

}2

V (r1).(20.64)

This may be expressed in terms of θ by taking the inverse of

∂ρ1

∂θ
=

θ2 − 1
(1 + θ2)2

(20.65)
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to be the asymptotic form of the derivative ∂θ̂/∂r1. The asymptotic form of the
variance of r1 is obtained from equation (20.41):

TV (r1)' 1− 3ρ2
1 + 4ρ4

1

=
1 + θ2 + 4θ4 + θ6 + θ8

(1 + θ2)4
.

(20.66)

It follows that

TV (θ̂) ' 1 + θ2 + 4θ4 + θ6 + θ8

(1− θ2)2
.(20.67)

This is to be compared with the asymptotic variance of the maximum-likelihood
estimate of θ which has the value of T−1(1− θ2) (see Figure 20.1).

The formula of (20.67) is valid only for large values of T and it is of little worth
when θ is near the boundary values of −1 and 1, where it suggests that the limiting
variance of

√
T θ̂ is unbounded. Clearly, the variance of the estimator is affected by

the truncation of its distribution at the boundary points, and no account is taken
of this in the asymptotic formula. Nevertheless it is worthwhile plotting the ratio
of the asymptotic variance of the maximum likelihood and the asymptotic variance
of θ̂, if only to emphasise the inefficiency of the latter.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Figure 20.1. The asymptotic efficiency of the moments estimator of the
parameter θ of the MA(1) process y(t) = ε(t) − θε(t) relative to that of the
maximum-likelihood estimator for values of θ from 0 to 1.

Efficient Estimates of the MA Autocorrelations

One reason which can given for the inefficiency of the sample autocorrelations
in estimating the corresponding population autocorrelations of a moving-average
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process is that they take no account of the fact that, for a process of order q, there
is γτ = 0 when τ > q. Some more efficient estimates of the autocorrelations can be
obtained by imposing this restriction.

One way of deriving such estimates, which is due to Walker [504], makes use of
the information which is conveyed by a set of M > q sample autocorrelations. It can
be assumed, for the sake of the derivation, that the sample autocorrelations, which
are contained in the vector r = [r1, . . . , rq, . . . , rM ]′, have a normal distribution
which is given by

N(r; ρ,Σ) = (2π)−T/2|Σ|−1/2 exp
{
− 1

2 (r − ρ)′Σ−1(r − ρ)
}
,(20.68)

wherein ρ = [ρ1, . . . , ρq, 0, . . . 0]′ is a vector of order M representing the true auto-
correlations. This expression also comprises the dispersion matrix Σ = D(r) of the
sample autocorrelations. The log of the likelihood function is

lnL = −T
2

ln(2π)− 1
2

ln |Σ| − 1
2

(r − ρ)′Σ−1(r − ρ).(20.69)

The dominant term within the function is the quadratic form (r−ρ)′Σ−1(r−ρ), in
comparison with which the other terms become negligible as T → ∞. Also, when
T is large, the dispersion matrix Σ is adequately approximated by a matrix W
whose elements are given by the formula under (20.40). Therefore, estimates of the
autocorrelations may be obtained from the vector ρ which minimises the function
(r − ρ)′W−1(r − ρ) subject to the restriction that ρq+1 = · · · = ρM = 0.

The restrictions on ρ can be expressed in the equations Hρ = 0, wherein
H = [0, IM−q] is a matrix of order (M − q) ×M . The corresponding Lagrangean
criterion function, for which the restricted estimates are derived, is

Q = (r − ρ)′W−1(r − ρ)− 2λ′Hρ.(20.70)

From the condition for minimisation, which is that ∂Q/∂ρ = 0, we get

W−1(r − ρ)−H ′λ = 0.(20.71)

Rearranging this gives

ρ = r −WH ′λ.(20.72)

When latter is premultiplied by (HWH ′)−1H and when the condition Hρ = 0 is
invoked, it is found that

λ = (HWH ′)−1Hr.(20.73)

Putting λ back into equation (20.72) gives the vector of estimates in the form of

ρ̂ =
{
I −WH(HWH ′)−1H

}
r.(20.74)

The matrix I −WH(HWH ′)−1H, which is idempotent, may be described as
a minimum-distance projector of the M -dimensional space, in which the vector r
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resides, onto the null space of the matrix H; and it will be observed that Hp̂ = 0,
which is to say only the leading q elements of p̂ are nonzero. The matrix W
may be partitioned, in a manner which is conformable with the partitioning of
H = [0, IN−q], to give

W =
[
W11 W12

W21 W22

]
.(20.75)

The vector ρ̂� = [ρ̂1, . . . , ρ̂q]′, which contains all of the estimates, can then be
expressed as

ρ̂� = r� −W12W
−1
22 r��,(20.76)

where r� contains the first q elements of r and r�� contains the remainder. In this
way, ρ̂� is depicted as a corrected version of r�.
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CHAPTER 21

Least-Squares Methods
of ARMA Estimation

In this chapter, we shall describe methods of estimating autoregressive moving-
average (ARMA) models which fulfil the criterion of minimising the sum of squares
of the one-step-ahead prediction errors within the compass of the sample period.
We shall describe the resulting estimates as the least-squares estimates. In the
following chapter, we shall consider alternative methods of ARMA estimation which
are derived from the maximum-likelihood criterion.

The least-squares estimators, which are simpler to implement, are appropriate
to circumstances where there is ample data. When they are correctly constructed,
they are guaranteed to fulfil the conditions of stationarity and invertibility. How-
ever, when the sample is small, the moduli of the roots of the autoregressive oper-
ator tend to be underestimated; and the severity of this bias increases as the roots
approach the unit circle. The maximum-likelihood methods pay more attention to
the problems arising when the size of the sample is limited; and they tend, in these
circumstances, to suffer less from bias.

The criteria of least-squares estimation and of maximum-likelihood estimation
converge as the sample size increases; and it is reasonable to depict the least-squares
estimates as approximate versions of their maximum-likelihood counterparts. How-
ever, the complexities of the exact maximum-likelihood estimators can obscure the
features which are shared with the least-squares counterparts. Moreover, the cal-
culations of the maximum-likelihood estimators have to be executed in a different
manner from those of the least-squares estimators. These circumstances justify our
dividing the topic of ARMA estimation between two chapters.

The present chapter pursues an additional theme. ARMA models may be
defined in terms of a simple algebra of rational functions. However, some of the sim-
plicity is lost when we work with approximations which are constrained to fit within
finite-series representations. These approximations are conveniently expressed in
terms of a matrix algebra; and throughout the chapter, we shall be seeking to eluci-
date the relationship between the polynomial algebra and the corresponding matrix
algebra. Some of these relationships have been explored already in Chapter 2.

Representations of the ARMA Equations

Imagine that T observations, running from t = 0 to t = T −1, have been taken
on a stationary and invertible ARMA(p, q) process y(t) which is described by the
equation

(1 + α1L+ · · ·+ αpL
p)y(t) = (1 + µ1L+ · · ·+ µqL

q)ε(t),(21.1)
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wherein ε(t) is a white-noise sequence of independently and identically distributed
random variables of zero mean. Corresponding to the observations, there is a set
of T equations which can be arrayed in a matrix format:

y0 y−1 . . . y−p
y1 y0 . . . y1−p
...

...
. . .

...
yp yp−1 . . . y0

...
...

. . .
...

yT−1 yT−2 . . . yT−p−1




1
α1

...
αp

 =



ε0 ε−1 . . . ε−q
ε1 ε0 . . . ε1−q
...

...
. . .

...
εq εq−1 . . . ε0

...
...

. . .
...

εT−1 εT−2 . . . εT−q−1




1
µ1

...
µq

 .(21.2)

Here the generic equation is

p∑
i=0

αiyt−i =
q∑
i=0

µiεt−i, where α0 = µ0 = 1.(21.3)

Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1 which fall within the
sample period, these equations comprise the presample values y−p, . . . , y−1 and
ε−q, . . . , ε−1 which are to be found in the top-right corners of the matrices.

An alternative representation of the system of equations can be given which is
in terms of polynomials. Thus, if

y(z) = y−pz
−p + · · ·+ y0 + y1z + · · ·+ yT−1z

T−1,

ε(z) = ε−qz
−q + · · ·+ ε0 + ε1z + · · ·+ εT−1z

T−1,

α(z) = 1 + α1z + · · ·+ αpz
p and

µ(z) = 1 + µ1z + · · ·+ µqz
q,

(21.4)

then

y(z)α(z) = ε(z)µ(z).(21.5)

By performing the polynomial multiplication of both sides of (21.5) and by equating
the coefficients of the same powers of z, it will be found that the equation associated
with zt is precisely the generic equation under (21.3).

In estimating the ARMA model from the data series y0, . . . , yT−1, it is common
to set the presample elements y−p, . . . , y−1 and ε−q, . . . , ε−1 to zeros. In general,
when the presample elements have been set to zero and when the coefficients of
α(z) and µ(z) assume arbitrary values, the equality of (21.5) can be maintained
only by allowing the residual polynomial ε(z) to be replaced by an indefinite series.
There are exceptions.

First, if µ(z) = 1, then the equality can be maintained by allowing the residual
polynomial to take the form of ε(z) = ε0 + ε1z + · · · + εT−1+pz

T−1+p, which is a
polynomial of degree T − 1 + p.

Secondly, if the polynomial argument zj is nilpotent of degree T in the index
j, such that zj = 0 for all j ≥ T , then all polynomial products are of degree T − 1
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at most, and the equality may be maintained without the degree of ε(z) exceeding
T −1. Making zj nilpotent of degree T will enable us to construct a correspondence
between the algebra of the polynomials of degree T − 1 and the algebra of the class
of T × T lower-triangular Toeplitz matrices.

Thirdly, if the polynomial argument zj is a T -periodic function of the index j,
such that zj+T = zj for all j, then, again, all polynomial products are of degree T−1
at most. Making zj a T -periodic function, enables us to construct a correspondence
between the algebra of the polynomials of degree T − 1 and the algebra of the class
of T × T circulant Toeplitz matrices.

A polynomial of degree T − 1 is completely specified by the values which it
assumes at T equally spaced points on the circumference of the unit circle in the
complex plane which are eiωj ; j = 0, . . . , T − 1, where ωj = 2πj/T . In particular,
a product γ(z) = α(z)β(z) of two periodic polynomials is completely specified by
γ(eiωj ) = α(eiωj )β(eiωj ); j = 0, . . . , T − 1. Therefore, when the polynomials have
an T -periodic argument, the time-consuming business of polynomial multiplication
can be circumvented by performing an equivalent but a simpler set of operations
at the frequency points ωj .

The Least-Squares Criterion Function

Using the polynomial algebra, we can define a criterion function for ARMA
estimation which takes the form of

S =
1

2πi

∮
ε(z−1)ε(z)

dz

z
.(21.6)

The value of S is nothing more than the coefficient associated with z0 in the Laurent
expansion of ε(z−1)ε(z). Now consider the expression

ε(z) =
α(z)
µ(z)

y(z),(21.7)

which comes from equation (21.5). Substituting this in (21.6) gives

S=
1

2πi

∮
y(z−1)y(z)

α(z−1)α(z)
µ(z−1)µ(z)

dz

z

=T
σ2
ε

2πi

∮
c(z)
γ(z)

dz

z
.

(21.8)

Here the denominator of the second expression is

γ(z) =σ2
ε

µ(z−1)µ(z)
α(z−1)α(z)

=
{
γ0 + γ1(z + z−1) + · · ·+ γT−1(zT−1 + z1−T ) + · · ·

}
.

(21.9)

When the coefficients in α(z) and µ(z) assume their true values, this becomes the
autocovariance generating function of the ARMA process. On setting z = eiω,
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it becomes the spectral density function of the process. The numerator of the
expression is

c(z) =
1
T
y(z−1)y(z)

= c0 + c1(z + z−1) + · · ·+ cT−1(zT−1 + z1−T ).
(21.10)

On the assumption that the presample elements within y(z) have been set to zeros,
it will be found that

cτ =
1
T

T−1∑
t=τ

ytyt−τ(21.11)

is the ordinary empirical autocovariance of lag τ for the case where E{y(t)} =
0. Thus c(z) becomes the empirical autocovariance generating function. When
z = exp{−i2πj/T}, it becomes the periodogram which is defined on the points
j = 0, . . . , T/2 when T is even and on the points j = 0, . . . , (T − 1)/2 if T is odd.

The criterion function of (21.8) is amenable to some further analysis. For a
start, it may be observed that, if the coefficients of α(z) and µ(z) were to assume
their true values and if the presample elements y−p, . . . , y−1 were incorporated in
y(z), then S would be equal to the sum of squares of the disturbances ε−q, . . . , εT−1.

Next, we may consider how the criterion function evolves as T increases. Ac-
cording to the result under (20.23), the sample covariance cτ is a consistent esti-
mator of the true autocovariance γ̄τ . It follows that, as T increases, the empirical
autocovariance generating function c(z) converges to its theoretical counterpart γ̄(z)
which is a product of the true parameter values. On this basis, it is straightforward
to prove that the functions α(z) and µ(z) obtained by minimising S will likewise
converge to their true values ᾱ(z) and µ̄(z). Therefore, to prove the consistency of
the estimates, it is enough to show that

(21.12) If c(z) = γ̄(z), then the function S achieves its minimum value of σ2
ε

when γ(z) = γ̄(z), or equivalently when α(z) = ᾱ(z) and µ(z) = µ̄(z).

Proof. The true autocovariance generating function of the ARMA process may
be written as γ̄(z) = σ2

ε ω̄(z−1)ω̄(z) where µ̄(z)/ᾱ(z) = ω̄(z) = {1 + ω̄1z + ω̄2z
2 +

· · ·}. Here the leading term of the expansion of ω̄(z) is unity on account of the
normalisation of the leading coefficients of µ̄(z) and ᾱ(z). In the same manner, the
ratio of the estimates may be written as µ(z)/α(z) = ω(z) = {1+ω1z+ω2z

2 + · · ·}.
Thus the criterion function S may be expressed as

S = T
σ2
ε

2πi

∮
ω̄(z−1)ω̄(z)
ω(z−1)ω(z)

dz

z
= T

σ2
ε

2πi

∮
θ(z−1)θ(z)

dz

z
,(21.13)

where ω̄(z)/ω(z) = θ(z) = {1+θ1z+θ2z
2+· · ·}. Therefore the value of the function

is given by the sum of squares S = σ2
ε{1 + θ2

1 + θ2
2 + · · ·}. The latter assumes its

minimum value of S = σ2
ε when ω(z) = ω̄(z). But, on the assumption that there

are no factors common to ᾱ(z) and µ̄(z), this entails the equalities α(z) = ᾱ(z) and
µ(z) = µ̄(z).
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The Yule–Walker Estimates

In the case of the pure autoregressive (AR) model, the criterion function of
(21.8) assumes the simplified form of

S=
1

2πi

∮
y(z−1)y(z)α(z−1)α(z)

dz

z

=T

p∑
j=0

p∑
k=0

αkαjc|k−j|

=
T−1∑
t=0

T−1∑
s=0

ytysλ|t−s|.

(21.14)

Here λ|t−s| is a coefficient of the self-reciprocal polynomial

λ(z) =α(z−1)α(z)

= {λ0 + λ1(z + z−1) + · · ·+ λp(zp + z−p)}
(21.15)

which corresponds to the autocovariance generating function of a synthetic pth-
order moving-average process y(t) = α(L)ε(t) based on a sequence ε(t) of unit-
variance white-noise disturbances.

The estimating equations for the autoregressive parameters are obtained by
differentiating S/T =

∑
j

∑
k αkαlc|k−j| with respect to α1, . . . , αp and setting the

results to zero. Taking account of the normalisation α0 = 1, the resulting first-order
conditions may be assembled to produce the following matrix equation:

c0 c1 . . . cp−1

c1 c0 . . . cp−2

...
...

. . .
...

cp−1 cp−2 . . . c0



α1

α2

...
αp

 = −


c1
c2
...
cp

 .(21.16)

These are the empirical Yule–Walker equations which are derived from their
theoretical counterparts found under (17.55) by replacing the autocovariances
γτ ; τ = 0, . . . , p by their estimates cτ ; τ = 0, . . . , p obtained from the formula of
(21.11). The matrix C = [c|j−k|] of the leading p + 1 empirical autocovariances is
positive-definite. Therefore the following result applies:

(21.17) Let S/T =
∑p
j=0

∑p
k=0 αkαjc|j−k| = α′Cα, where C = [c|j−k|]

is a symmetric positive-definite Toeplitz matrix and where α =
[1, α1, . . . , αp]′. If α is chosen so as to minimise the value of S, then
all the roots of the equation α(z) = 1 + α1z + · · · + αpz

p = 0 will lie
outside the unit circle.

This theorem, which establishes that the Yule–Walker estimates obey the condition
of stationarity, is simply a restatement of the assertion under (17.62) which has been
proved already.
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A procedure for estimating the parameters of an AR model may be derived by
joining the Autocovariances procedure, which is to be found under (20.55), with
the YuleWalker procedure from (17.67) which serves to solve the equations under
(21.16) as well as their theoretical counterparts under (17.55). An alternative iter-
ative procedure may be derived by using the LevinsonDurbin procedure of (17.75)
which solves the equations recursively and which, in the process, generates estimates
of a sequence of AR models of increasing orders up to the required order of p.

An alternative estimator the AR parameters, which might be preferred to the
Yule–Walker method when the sample size is small, is the Burg estimator. This
will be presented later in this chapter.

Estimation of MA Models

Now let us consider the form of the criterion function in the case of a pure
moving-average (MA) model. Let the series expansion of the inverse of µ(z) be
written as µ−1(z) = {1 + ψ1z + ψ2z

2 + · · ·}. Then the criterion function, which is
obtained by simplifying the expression of (21.8), can be expressed as

S=
1

2πi

∮
y(z−1)y(z)
µ(z−1)µ(z)

dz

z

=T
∞∑
j=0

∞∑
k=0

ψkψjc|k−j|

=
T−1∑
t=0

T−1∑
s=0

ytysδ|t−s|.

(21.18)

Here δ|t−s| is a coefficient of the self-reciprocal polynomial

δ(z) =
1

µ(z−1)µ(z)

= {δ0 + δ1(z + z−1) + δ2(z2 + z−2) + · · ·}
(21.19)

which corresponds to the autocovariance generating function of a synthetic qth-
order AR process y(t), defined by µ(L)y(t) = ε(t), which is based on a sequence
ε(t) of unit-variance white-noise disturbances.

The following theorem, which concerns the invertibility of the estimated MA
model, is analogous to the theorem of (21.17) concerning the stationarity of the
estimated AR model:

(21.20) Let S = T
∑∞
j=0

∑∞
k=0 ψkψjc|k−j| where ψk,ψj are coefficients in the

expansion of the inverse polynomial µ−1(z) = {1 + ψ1z + · · ·}. If the
coefficients of µ(z) = 1 +µ1z+ · · ·+µqz

q are chosen so as to minimise
the value of S, then all the roots of the equation µ(z) = 0 will lie
outside the unit circle.

Indeed, this theorem is almost self-evident. For S will have a finite value if and
only if

∑
|ψi| < ∞; and, for this to arise, it is necessary and sufficient that the

roots µ(z) = 0 lie outside the unit circle.
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The feature which distinguishes the criterion function for MA estimation
from its AR counterpart is the indefinite nature of the summations entailed
in (21.18) and (21.19), which are due to the series expansions of µ−1(z) and
δ(z) = {µ(z−1)µ(z)}−1. The corresponding summations for the AR case, found
under (21.14) and (21.15), are finite. In practice, the indefinite summations en-
tailed by the MA criterion must be truncated. If the condition of invertibility
is to be fulfilled by the estimates with any assurance, then it is important not
truncate the summations too drastically. The closer the roots of µ(z) are to the
perimeter of the unit circle, the slower is the rate of convergence of the coefficients
of the expansion of µ−1(z) and the greater must be the number of elements in the
truncated summation.

The MA criterion function in the form of

1
T
S=

1
T

∑
τ

∑
t

ytyt−τδτ

= c0 + 2
T−1∑
t=1

cτδτ

(21.21)

has been considered by Godolphin [216]. He has devised a specialised method for
minimising the function which makes use of some approximations to the derivatives
dδτ/dµj which are based on truncated power-series expansions. However, his itera-
tive procedure has only a linear rate of convergence; and it is not clear how well the
desirable properties of the criterion function survive the process of approximation.

Instead of deriving a specialised procedure for estimating a pure MA model, we
shall concentrate of the producing a general algorithm of ARMA estimation which
can also be used to estimate pure AR and pure MA models. It will be observed that
the ARMA criterion function under (21.8) combines the features of the specialised
AR and MA criteria functions of (21.14) and (21.18). The theorems under (21.17)
and (21.20) together serve to show that the values of α1, . . . , αp and µ1, . . . , µq
which minimise the function correspond to a model which satisfies conditions both
of stationarity and invertibility.

Representations via LT Toeplitz Matrices

Now let us look for the appropriate matrix representations of the ARMA model
and of the criterion function. Consider setting to zero the presample elements
y−p, . . . , y−1 and ε−q, . . . , ε−1 within the matrices of the equations under (21.2). If
the matrices are also extended to a full set of T columns, then the resulting system
will take the form of

y0 0 . . . 0
y1 y0 . . . 0
...

...
. . .

...
yT−1 yT−2 . . . y0




1
α1

...
0

 =


ε0 0 . . . 0
ε1 ε0 . . . 0
...

...
. . .

...
εT−1 εT−2 . . . ε0




1
µ1

...
0

 .(21.22)

This may be represented, in summary notation, by

Y α = Eµ.(21.23)
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Here Y and E are so-called lower-triangular (LT) Toeplitz matrices which are
completely characterised by their leading vectors. These vectors are given by
Ee0 = ε = [ε0, . . . , εT−1]′ and Y e0 = y = [y0, . . . , yT−1]′, where e0 is the leading
vector of the identity matrix of order T . On the same principle, we can define lower-
triangular Toeplitz matrices A and M which are characterised by their respective
leading vectors α = [1, α1, . . . , αp, 0, . . . , 0]′ and µ = [1, µ1, . . . , µq, 0, . . . , 0]′ which
are found in equations (21.22) and (21.23).

Lower-triangular Toeplitz matrices can be represented as polynomial functions
of a matrix L = [e1, . . . , eT−1, 0] which has units on the first subdiagonal and zeros
elsewhere and which is formed from the identity matrix I = [e0, e1, . . . , eT−1] by
deleting the leading vector and appending a zero vector to the end of the array.
Thus the matrix A = A(α) can be written as

A=α(L)

= I + α1L+ · · ·+ αpL
p.

(21.24)

We may note that Lj is nilpotent of degree T in the index j such that Lj = 0 for
j ≥ T .

In some respects, the algebra of the matrices resembles the ordinary algebra
of polynomials with a real or complex argument:

(i) The matrices commute such that AY = Y A, whence
Ay = (AY )e0 = (Y A)e0 = Y α,

(ii) If A, Y are LT Toeplitz matrices, then so is AY = Y A,

(iii) If A is an LT Toeplitz matrix, then so is A−1. In particular,
A−1e0 = [ω0, ω1, . . . , ωT−1]′ has the leading coefficients of
the expansion of α−1(z) as its elements.

(iv) G = M ′M is not a Toeplitz matrix.

Now consider the matrix representation of the criterion function. As an ap-
proximation of the function S of (21.8), we have

Sz = e′0(Y ′A′M ′−1M−1AY )e0 = y′A′M ′−1M−1Ay.(21.25)

This is just the coefficient associated with I = L0 in the expansion of

ε(L′)ε(L) = y(L′)α(L′)µ−1(L′)µ−1(L)α(L)y(L)

=
y(L′)α(L′)α(L)y(L)

µ(L′)µ(L)
,

(21.26)

where L′ = [0, e0, . . . , eT−2]. We can afford to write this function in rational form
on account of the commutativity in multiplication of the LT Toeplitz matrices.

The vectors α and µ which minimise the function Sz contain what Box and
Jenkins [70] described as the conditional least-squares estimators. These estimators
are not guaranteed to satisfy the conditions of stationarity and invertibility.
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Consider the specialisation of the criterion function to the case of a pure AR
model. Scaling by T−1 gives

1
T
Sz =

1
T
y′A′Ay

=
1
T
α′Y ′Y α.

(21.27)

The first way of gauging the difference between this function and the model
least-squares criterion function of (21.14) is to compare the matrix A′A with the
Toeplitz matrix Λ = [λ|t−s|] which, as we have already indicated, corresponds to
the dispersion matrix of a synthetic pth-order MA process.

The second way is to compare the matrix

1
T
Y ′Y =


ĉ00 ĉ01 . . . ĉ0,T−1

ĉ10 ĉ11 . . . ĉ1,T−1

...
...

...
ĉT−1,0 ĉT−1,1 . . . ĉT−1,T−1

(21.28)

with the matrix C = [c|j−k|] which contains the usual estimates of the autocovari-
ances of the process. The matrix Y ′Y/T does not have the Toeplitz form which is
required if the condition of stationarity is to be fulfilled in all cases.

Imagine that p zero elements are added to the tail of the vector y =
[y0, . . . , yT−1]′ and that an LT Toeplitz matrix Ȳ of order T + p is formed from
the “padded” vector in the manner in which Y = Y (y) is formed from y. Then
we should find that the principal minor of order p + 1 of the matrix Ȳ Ȳ /T would
coincide with that of the matrix C. Now let ᾱ be formed from the vector α by
the addition of p zeros. Then ᾱ′Ȳ Ȳ ᾱ/T = α′Cα, and it follows that the criterion
function has become equivalent to the function which delivers the stationary Yule–
Walker estimates.

Now consider specialising the criterion function to the case of the pure MA
model. Then

Sz = y′M ′−1M−1y

=ψ′Y ′Y ψ,
(21.29)

where ψ = M−1e0 contains the first T coefficients of the expansion of µ−1(z). This
function may be compared with the function S of (21.18) which can be written as
S = y′∆y, where ∆ = [δ|t−s|] is the dispersion of a synthetic AR process.

In pursuit of estimates which fulfil the condition of invertibility, we can improve
the approximation of M ′−1M−1 to ∆ = ∆(µ) by adding extra rows to the matrix
M−1 so as to include additional coefficients of the series expansion of µ−1(z). In
practice, this object may be achieved, in the context of a computer procedure for
estimating the parameters, by padding the tail of the vector y with zeros.

Representations via Circulant Matrices

The following is as example of a circulant matrix:

Y =


y0 y3 y2 y1

y1 y0 y3 y2

y2 y1 y0 y3

y3 y2 y1 y0

 .(21.30)
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Circulant matrices can be represented as polynomial functions of a matrix K =
[e1, . . . , eT−1, e0] which is formed from the identity matrix I = [e0, e1, . . . , eT−1] by
moving the leading vector to the back of the array. Thus the circulant matrix
A = A(α) can be written as

A=α(K)
= I + α1K + · · ·+ αpK

p.
(21.31)

We may note that Kj+T = Kj for all j and that K−1 = K ′.
The algebra of circulant matrices closely resembles that of polynomials:

(i) The matrices commute in multiplication, AY = Y A,

(ii) If A, Y are circulant, then so is AY = Y A,

(iii) If A is circulant, then so are A′ and A−1,

(iv) If M is circulant, then M ′M = MM ′ and (M ′M)−1 are circulant Toeplitz
matrices.

Let Y = y(K), A = α(K) and M = µ(K) be circulant matrices constructed
from the same vectors y, α, µ as were the corresponding LT Toeplitz matrices.
Then we can construct the following criterion function:

Sc = e′0(Y ′A′M ′−1M−1AY )e0 = y′A′M ′−1M−1Ay.(21.32)

This is just the coefficient associated with I = K0 in the expansion of

ε(K)ε(K−1) =
y(K−1)α(K−1)α(K)y(K)

µ(K−1)µ(K)

=Tσ2
ε

c(K)
γ(K)

,

(21.33)

where K−1 = [eT−1, e0, . . . , eT−2], and where c(K) = y(K−1)y(K)/T and γ(K) =
α(K−1)α(K)/µ(K−1)µ(K).

The role of the matrix K in the above expression is essentially that of an
indeterminate algebraic symbol, and it may be replaced by any other quantity
which is a T -periodic function of the index j. In particular, we may replace Kj by
eiωj = exp{i2πj/T}. Then we have the result that

Sc =
T−1∑
j=0

y(e−iωj )α(e−iωj )α(eiωj )y(eiωj )
µ(e−iωj )µ(eiωj )

=Tσ2
ε

T−1∑
j=0

c(eiωj )
γ(eiωj )

.

(21.34)

This follows from the fact that

T−1∑
j=0

eiωj =
{ 0 if j 6= 0,

T if j = 0,
(21.35)
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which indicates that the coefficient associated with eiω0 = 1 can be isolated by
summing over j.

The sum in (21.34) is manifestly an approximation to the function

S = T
σ2
ε

2π

∫ π

−π

c(eiω)
γ(eiω)

dω(21.36)

which is derived from (21.8) by taking the unit circle as the contour of integration.
The approximation of Sc to S can be made arbitrarily close by increasing the
number of frequency points ωj at which the function is evaluated or, equivalently,
by increasing the order of the matrix K. If the data series is of a fixed length T ,
then this is achieved by padding the vector y with zeros.

Consider specialising the criterion function to the case of a pure AR model.
Then T−1Sc = T−1y′A′Ay = T−1α′Y ′Y α has the form of the function of (21.27)
apart from the fact that the matrices A = α(K) and Y = y(K) are circulant
matrices instead of LT Toeplitz matrices. The matrix c(K) = Y ′Y/T is given by

c(K) = cT−1K
1−T + · · ·+ c1K

−1 + c0I + c1K + · · ·+ cT−1K
T−1

= c0I + (c1 + cT−1)K + (c2 + cT−2)K2 + · · ·+ (cT−1 + c1)KT−1,
(21.37)

where the elements c0, . . . , cT−1 come from (21.11). The equality follows from the
fact that Kj−T = Kj .

Given that c(K) = Y ′Y/T is a positive-definite Toeplitz matrix, it follows from
the theorem of (21.17) that the values which minimise the AR criterion function
will correspond to a model which satisfies the condition of stationarity. The esti-
mates will differ slightly from the Yule–Walker estimates because of the differences
between c(K) = Y ′Y/T and C = [c|j−k|].

Consider the effect of adding p zeros to the tail of the vector y to create a
vector ỹ and a corresponding matrix Ỹ = ỹ(K) where K is now of order T + p and
KT+p = I. Then, if c̃(K) = Ỹ ′Ỹ /T , we have

c̃(K) = c0I + · · ·+ cpK
p + (cp+1 + cT−1)Kp+1 + · · ·

+(cT−1 + cp+1)KT−1 + · · ·+ c1K
T−1+p.

(21.38)

It can be seen that the principal minor of order p + 1 of the matrix C̃ = c̃(K) is
identical to that of the matrix C = [c|k−j|], and it follows that the criterion function
has become equivalent to the function which delivers the Yule–Walker estimates.

Finally, let us comment on the specialisation of the criterion function to the
case of the pure MA model. The criterion function has the form of the function
under (21.29), albeit with circulant matrices Y = y(K) and M = µ(K) in place of
LT Toeplitz matrices. The conditions of the theorem of (21.20), which guarantee
that the MA estimates will satisfy the condition of invertibility, are no longer ful-
filled. Nevertheless, if there is any danger that the condition of invertibility may be
violated, the simple expedient of padding the tail of the vector y with a sufficient
number of zeros will avert the problem.

The representation of the least-squares criterion function which is in terms of
circulant matrices is of some practical interest since, in the guise of equation (21.34),
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it is the criterion function which is entailed in the frequency-domain estimation of
ARMA models. This method of estimation was expounded by Hannan [239] and has
been investigated in some detail by Pukkila [413], [414]. Cameron and Turner [96]
have show how to implement the method within the context of a flexible regression
package.

The distinguishing feature of a frequency-domain ARMA estimation is the
use of the fast Fourier transform (FFT) in performing the convolutions which are
entailed in the multiplication of the polynomials or in the multiplication of the
analogous matrices. There is little, if anything, to be gained from using the FFT
when the data sample contains fewer than several hundred points.

Nowadays ARMA models are being used increasingly in signal-processing ap-
plications where there may be an abundance of data and where speed of compu-
tation is important. In such cases, a well-coded frequency-domain method may be
far superior to a corresponding time-domain method.

The Gauss–Newton Estimation of the ARMA Parameters

In describing the Gauss–Newton (G–N) method for estimating the parameters
of an ARMA model, we shall have in mind, principally, an LT Toeplitz representa-
tion of the ARMA equations. One can imagine that the data has been supplemented
by extensive zero-padding. By this device, the criterion function can be made to
approximate, to any degree of accuracy, the ideal criterion of estimation given
under (21.8). It will be clear, however, that every aspect of the algorithm is equally
applicable to a representation of the ARMA equations which is in terms of circulant
matrices.

The object is to estimate the unknown elements of the parameter vector θ =
[α1, . . . αp, µ1, . . . , µq]′ by finding the values which minimise the criterion function

Sz(θ) = ε′ε = y′A′M ′−1M−1Ay(21.39)

which has been given previously under (21.25). The minimisation is achieved via
the Gauss–Newton procedure of (12.52) which is described by the algorithm

θ(r+1) = θ(r) − λ(r)

{
∂ε′

∂θ

∂ε

∂θ

}−1

(r)

{
∂ε′

∂θ
ε

}
(r)

,(21.40)

where (∂ε/∂θ)(r) is the derivative of ε(θ) = M−1Ay evaluated at θ = θ(r) and
where λ(r) is a step-adjustment scalar which will be set to unity in the sequel.

The immediate problem is to find the requisite derivatives. Consider the ex-
pression ε(z) = µ−1(z)α(z)y(z). The ordinary rules of differentiation can be applied
to show that

∂ε(z)
∂αj

=µ−1(z)y(z)zj

=α−1(z)ε(z)zj ,
(21.41)

and that

∂ε(z)
∂µj

=−µ−2(z)α(z)y(z)zj

=−µ−1(z)ε(z)zj .
(21.42)
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When the matrix L is substituted for the argument z, we obtain the derivatives
in the form of Toeplitz matrices. The leading vectors are isolated by postmultiplying
the matrices by e0, which is the leading vector of the identity matrix of order T .
Thus ∂ε/∂αj = {∂ε(L)/∂αj}e0 and ∂ε/∂µj = {∂ε(L)/∂µj}e0. Using the result
that Lje0 = ej , it is found that

∂ε

∂αj
= M−1Y ej and

∂ε

∂µj
= −M−1Eej ,(21.43)

where, apart from E = ε(L), there are the LT Toeplitz matrices Y = y(L) and
M = µ(L). The full set of derivatives are gathered together to form

∂ε

∂θ
=
[
M−1Y1.p −M−1E1.q

]
,(21.44)

where Y1.p = Y [e1, . . . , ep] and E1.q = E [e1, . . . , eq] represent the appropriate selec-
tions from the columns of Y and E respectively. When this expression is inserted
into the equation (21.40), the expression for the Gauss–Newton algorithm becomes[

α1.p

µ1.q

]
(r+1)

=

[
α1.p

µ1.q

]
(r)

−

[
Y ′1.pM

′−1M−1Y1.p −Y ′1.pM ′−1M−1E1.q
−E ′1.qM ′−1M−1Y1.p E ′1.qM ′−1M−1E1.q

]−1

(r)

 Y ′1.pM
′−1ε

−E ′1.qM ′−1ε


(r)

.

(21.45)

However, the identity

ε = M−1Y α = M−1y +M−1Y1.pα1.p,(21.46)

wherein α1.p = [α1, . . . , αp]′, indicates that[
Y ′1.pM

′−1ε

−E ′1.qM ′−1ε

]
=

[
Y ′1.pM

′−1M−1Y1.pα1.p + Y ′1.pM
′−1M−1y

−E ′1.qM ′−1M−1Y1.pα1.p − E ′1.qM ′−1M−1y

]
.(21.47)

The latter can be used in deriving alternative expressions for the RHS of equation
(21.45).

An Implementation of the Gauss–Newton Procedure

In deriving the algorithm for the Gauss–Newton procedure, we have regarded
Y = y(L) and A = α(L) and M = µ(L) as LT Toeplitz matrices. In that case,
E = M−1AY is also an LT Toeplitz matrix. However, the symmetric products

∂ε′

∂α1.p

∂ε

∂α1.p
=Y ′1.pM

′−1M−1Y1.p and

∂ε′

∂µ1.q

∂ε

∂µ1.q
= E ′1.qM ′−1M−1E1.q,

(21.48)
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which are to be found within the equation for the G–N algorithm, are not Toeplitz
matrices. Nor is the cross-product matrix

∂ε′

∂µ1.q

∂ε

∂α1.p
= −E ′1.qM ′−1M−1Y1.p(21.49)

a Toeplitz matrix. Nevertheless, as the sample size T increases, these various
products come to approximate Toeplitz matrices with increasing accuracy. The
same convergence ensues when the data is supplemented or “padded” with zeros.

Since a Toeplitz matrix of order T has only T distinct elements compared with
the (T 2 + T )/2 elements of an arbitrary symmetric matrix, there are considerable
computational advantages in adopting Toeplitz forms for the products which enter
the G–N algorithm.

A further advantage from using Toeplitz matrices in the G–N algorithm, which
is indicated by the theorem under (21.17), is that the resulting estimates of the
autoregressive parameters are guaranteed to fulfil the conditions of stationarity.
Also, the theorem under (21.20) indicates that the conditions of invertibility will
be fulfilled almost certainly by the estimates of the moving-average parameters if a
large number of the coefficients of the expansion of µ−1(z) are used instead of the
limited number contained within of µ−1(L) = M−1.

The differences between the Toeplitz and the non-Toeplitz representations may
be illustrated in terms of the cross-product under (21.49). Consider the generic
element

∂ε′

∂µi

∂ε

∂αj
= −e′iE ′M ′−1M−1Y ej .(21.50)

In the Toeplitz representation, this is replaced by

1
2πi

∮
∂ε(z−1)
∂µi

∂ε(z)
∂αj

dz

z
=
−1
2πi

∮
zj−i

ε(z−1)y(z)
µ(z−1)µ(z)

dz

z
,(21.51)

which is the coefficient associated with zi−j in the Laurent expansion of

ε(z−1)y(z)
µ(z−1)µ(z)

=
{
· · ·+ q−2

z2
+
q−1

z
+ q0 + q1z + q2z

2 + · · ·
}
.(21.52)

Whereas the element of (21.50) is a function of both its indices i and j, the element
of (21.51) which replaces it is a function only of the difference of the indices.

The formula of (21.50) suggests that the elements might be found via op-
erations of matrix multiplication. However, the formula of (21.51) indicates that,
when a Toeplitz representation is adopted, they should be found by the processes of
convolution and of rational expansion which are entailed in finding the coefficients
of polynomial products and of rational functions. For this purpose, we can use
the procedures Convolution and RationalExpansion which are to be found under
(2.14) and (3.43) respectively.

These procedures must be modified to accommodate data vectors which are
of the longVector type. Thus, for example, a series of n > T coefficients of the
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expansion of y(z)/µ(z), where µ(z) = µ0 + µ1z + · · · + µqz
q and y = y0 + y1z +

· · ·+ yT z
T , may be found via the call

RationalExpansion(mu, q, T, n, y)(21.53)

On the completion of the procedure, the coefficients of the expansion will be found
in the longVector array y which has previously contained the coefficients of y(z).
A similar call may be used in finding the coefficients of ε(z−1)/µ(z−1).

The central coefficients of a Laurent expansion of (21.52) may be found
by a procedure which finds the covariances of two mean-adjusted data series
x0, x1, . . . , xn and y0, y1, . . . , yn. When n = T−1, the covariances correspond to the
coefficients of the product cxy(z) = T−1x(z−1)y(z). In particular, the covariance
at lag j is the product

c(xy)j =
1
T

T−1∑
t=j

xt−jyt =
1

2Tπi

∮
zjx(z)y(z−1)

dz

z
.(21.54)

The procedure, which would also serve to find the coefficients of the autocovariance
generating function c(z) = T−1y(z)y(z−1), is as follows:

(21.55) procedure Covariances(x, y : longVector;
var covar : jVector;
n, p, q : integer);

var
t, j, s, f : integer;

begin {Covariances}
for j := −p to q do

begin {j}
s := Max(0, j);
f := Min(n, n+ j);
covar[j] := 0.0;
for t := s to f do
covar[j] := covar[j] + x[t− j] ∗ y[t];

covar[j] := covar[j]/(n+ 1);
end; {j}

end; {Covariances}

It is helpful to have a procedure which places the elements of the Laurent
product within a matrix of the form

c(yy)0 . . . c(yy)p−1 c(xy)0 . . . c(xy)q−1

...
. . .

...
...

. . .
...

c(yy)p−1 . . . c(yy)0 c(xy)1−p . . . c(xy)q−p
c(xy)0 . . . c(xy)1−p c(xx)0 . . . c(xx)q−1

...
. . .

...
...

. . .
...

c(xy)q−1 . . . c(xy)q−p c(xx)q−1 . . . c(xx)0


.(21.56)
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The following procedure serves to construct such a matrix from the arrays covarY Y ,
covarXX and covarXY which contain the requisite elements:

(21.57) procedure MomentMatrix(covarYY, covarXX, covarXY : jVector;
p, q : integer;

var moments : matrix);

var
i, j : integer;

begin {MomentMatrix}
for i := 1 to p+ q do

for j := 1 to p+ q do
if i >= j then

begin {i, j : fill the lower triangle}
if (i <= p) and (j <= p) then
moments[i, j] := covarYY[i− j];

if (i > p) and (j <= p) then
moments[i, j] := covarXY[(i− p)− j];

if (i > p) and (j > p) then
moments[i, j] := covarXX[i− j];

moments[j, i] := moments[i, j]
end; {i, j}

end; {MomentMatrix}

The above procedure serves the purpose of constructing a Toeplitz version of
the matrix on the RHS of the equation under (21.45) which describes the G–N
algorithm. The vector on the RHS is constructed with the help of the following
procedure, which depends upon the products of the previous one.

(21.58) procedure RHSVector(moments : matrix;
covarYY, covarXY : jVector;
alpha : vector;
p, q : integer;
var rhVec : vector);

var
i, j : integer;

begin {RHSVector}
for i := 1 to p do
rhVec[i] := covarYY[i];

for i := p+ 1 to p+ q do
rhVec[i] := covarXY[i− p];

for i := 1 to p+ q do
for j := 1 to p do
rhVec[i] := rhVec[i] +moments[i, j] ∗ alpha[j];

end; {RHSVector}
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The Gauss–Newton procedure itself, which makes use of the procedures listed
above, can be constructed with various elaborations designed to speed its conver-
gence and to avert failures. We shall present only the simplest implementation of
the algorithm. Additional features may be added at will.

(21.59) procedure GaussNewtonARMA(p, q, n : integer;
y : longVector;
var alpha,mu : vector);

var
rhVec, delta, theta, newtheta, newAlpha, newMu : vector;
crossYY, crossEY, crossEE : jVector;
storeY, storeE : longVector;
moments : matrix;
stepScalar, oldSS, newSS : real;
i, iterations : integer;
convergence : boolean;

begin {GaussNewtonARMA}
convergence := false;
iterations := 0;
alpha[0] := 1;
mu[0] := 1;
newAlpha[0] := 1;
newMu[0] := 1;

{Prepare vectors using initial parameters}
for i := 0 to n do
storeE[i] := −y[i];

RationalExpansion(mu, q, n, n, storeE);
Convolution(alpha, storeE, p, n);
Covariances(storeE, storeE, crossEE, n, 0, 0);
oldSS := crossEE[0];

while (convergence = false) and (iterations < 20) do
begin {while : beginning of the major loop}

{Form the moment matrix and the RHS vector}
if q > 0 then
RationalExpansion(mu, q, n, n, storeE);

for i := 0 to n do
storeY[i] := y[i];

if q > 0 then
RationalExpansion(mu, q, n, n, storeY);

Covariances(storeY, storeY, crossYY, n, 0, p);
if q > 0 then

begin
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Covariances(storeE, storeY, crossEY, n, p, q);
Covariances(storeE, storeE, crossEE, n, 0, q);

end;
MomentMatrix(crossYY, crossEE, crossEY, p, q,moments);
RHSVector(moments, crossYY, crossEY, alpha, p, q, rhVec);

{Find the updating vector}
Cholesky(p+ q,moments, delta, rhVec);

{Update the value of theta}
stepScalar := −Sqrt(2);
repeat {until newSS < oldSS}
stepScalar := −stepScalar/sqrt(2);
for i := 1 to p+ q do
delta[i] := stepScalar ∗ delta[i];

for i := 1 to p do
newAlpha[i] := alpha[i]− delta[i];

for i := 1 to q do
newMu[i] := mu[i]− delta[p+ i];

for i := 0 to n do
storeE[i] := −y[i];

if q > 0 then
RationalExpansion(newMu, q, n, n, storeE);

if p > 0 then
Convolution(newAlpha, storeE, p, n);

Covariances(storeE, storeE, crossEE, n, 0, 0);
newSS := crossEE[0];

until (newSS < oldSS ∗ 1.0001);

iterations := iterations+ 1;
oldSS := newSS;

for i := 1 to p+ q do
begin {i}

if i <= p then
begin
alpha[i] := newAlpha[i];
theta[i] := alpha[i];

end
else if i > p then

begin
mu[i− p] := newMu[i− p];
theta[i] := mu[i− p];

end;
end; {i}

{Check for convergence}
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if q = 0 then
convergence := true

else
convergence := CheckDelta(p+ q, delta, theta);

end; {while : end of the major loop}
end; {GaussNewtonARMA}

This implementation incorporates a step-adjustment scalar which is called into
play only if the parameter values computed by a straightforward iteration of the
G–N procedure fail to secure a reduction in the value of the criterion function. In
that case, the scalar, which is represented by λ(r) in equation (21.40), is given a
succession of trial values

λ =
(−1√

2

)j
; j = {1, 2, 3, . . .},(21.60)

which tend towards zero. The trials cease when a reduction has been secured
or when something close to the previous value of the criterion function has been
recovered.

The estimation procedure terminates either when the sequence of G–N esti-
mates is deemed to have converged or when the number of iterations exceeds a pre-
determined value. The test of convergence is performed by the function CheckDelta
which is listed under (17.40).

The success of the G–N procedure depends largely upon the quality of the
initial values which are supplied to it as parameters. These initial values may be
obtained by use of the procedure ARMAParameters of (17.106) which finds the
parameters of an ARMA process from the values of its autocovariances. In the
present context, the autocovariances are, of course, determined empirically from
the data.

Asymptotic Properties of the Least-Squares Estimates

If y(t) is generated by a causal and invertible ARMA process, then the
least-squares estimates of the parameters are equivalent, asymptotically, to the
maximum-likelihood estimates which will be derived in the next chapter.

In the Chapter 25, we derive the ordinary theory of maximum-likelihood esti-
mation under the assumption that the sample points are distributed independently
and identically with well-defined moments up to the fourth order. The theory
presented in the appendix is the prototype of a more general theory of maximum-
likelihood estimation which extends to cases where the sample points are serially
correlated. The results of the ordinary theory also prevail in the more general
context.

The inferential theory of linear stochastic ARMA models has been developed
to a high level of generality by Hannan [240] who has extended the results of
Walker [505] and Whittle [518]. The article of Hannan makes use of a sophisticated
central limit theorem for martingales. A more limited exposition of the theory
which relies upon a central limit theorem for m-dependent sequences, which is
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due to Hoeffding and Robbins [257], has been provided by Brockwell and Davis
[79]. The observations on an m-dependent sequence are independent provided that
they are separated by more than m time periods. Therefore the theory is best
suited to finite-order moving-average processes. However, the value of m can be
increased indefinitely; and therefore the theory accommodates autoregressive and
autoregressive moving-average processes which can be construed as infinite-order
moving-average processes.

It follows from the theory of maximum-likelihood estimation, as well as from
the general theory of least-squares estimation, that the estimate θ̂ of the ARMA
parameters will have a limiting distribution with an expected value equal to the
vector θ0 of the true parameter values and with a vanishing dispersion. Moreover,
the appropriate version of the central limit theorem will show that the limiting dis-
tribution is a normal distribution. Thus the asymptotic tendency can be expressed
by

T−1/2(θ̂ − θ) D−→ N(0, V ),(21.61)

where

V = σ2
εplim

{
1
T

∂ε′(θ0)
∂θ

∂ε(θ0)
∂θ

}−1

.(21.62)

The notation of equation (21.62) is intended to indicate that the derivatives are
evaluated at the point of the true parameters values.

Our purpose now is to demonstrate how an expression may be found for the
dispersion matrix V which is in terms of the parameters which are to be estimated.
However, we should note that the matrix can be approximated usefully using the
matrix of derivatives which is part of equation (21.45). The law of large number
guarantees that the cross-products of the derivatives scaled by T−1 will converge
to the corresponding expected values at T →∞.

To demonstrate these results, we need first to find the limiting value of
T−1ε(z)ε(z−1). Consider the assumption that ε(t) is a white-noise process. It
follows that, for any two elements εt, εs, there is

E(εtεs) =

{
σ2
ε , if t = s;

0, if t 6= s.
(21.63)

Now, if the coefficients of α(z) and µ(z) were to assume their true values and if the
presample elements y−p, . . . , y−1 where incorporated in y(z), then the coefficients
of ε(z) would be the true disturbances. In that case, we should have

E
{
ε(z)ε(z−1)

}
=
T−1∑
t=0

T−1∑
s=0

E(εtεs)zt−s = Tσ2
ε .(21.64)

An analogous result prevails in the limit as T → ∞. For, as the parameter esti-
mates converge to the true values, the residuals will converge to the corresponding
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disturbances. Therefore, it follows from the law of large numbers that

plim(T →∞)
1
T
ε(z)ε(z−1) = plim

1
T

T−1∑
t=0

T−1∑
s=0

εtεsz
t−s = σ2

ε .(21.65)

To find the analytic expressions for the elements of V , we take the forms of
the derivatives found under (21.41) and (21.42) and we apply limits:

plim
{

1
T

∂ε(z−1)
∂αi

∂ε(z)
∂αj

}
= plim

{
1
T

ε(z)ε(z−1)
α(z−1)α(z)

zj−i
}

=
σ2
ε

α(z−1)α(z)
zj−i,

(21.66)

plim
{

1
T

∂ε(z−1)
∂µi

∂ε(z)
∂αj

}
= plim

{
1
T

ε(z)ε(z−1)
µ(z−1)µ(z)

zj−i
}

=
σ2
ε

µ(z−1)µ(z)
zj−i,

(21.67)

plim
{

1
T

∂ε(z−1)
∂µi

∂ε(z)
∂αj

}
= plim

{
1
T

ε(z)ε(z−1)
µ(z−1)α(z)

zj−i
}

=
σ2
ε

µ(z−1)α(z)
zj−i.

(21.68)

The products which we are seeking, which are the elements of the dispersion
matrix V indexed by i, j, are the coefficients associated with zj−i in the Laurent
expansion of the expressions on the RHS of these equations. Whenever the roots
of the polynomials µ(z) and α(z) are available, it is straightforward to evaluate the
Laurent expansion using the partial-fraction formula of (3).

Example 21.1. In the case of an ARMA(1, 1) process described by the equation
(1 + αL)y(t) = (1 + µL)ε(t), we find that the dispersion matrix is

V =

[
(1− α2)−1 (1− αµ)−1

(1− αµ)−1 (1− µ2)−1

]−1

=
1− αµ

(α− µ)2

[
(1− α2)(1− αµ) −(1− α2)(1− µ2)

−(1− α2)(1− µ2) (1− µ2)(1− αµ)

]
.

(21.69)

The Sampling Properties of the Estimators

Concern is sometimes expressed over the small-sample properties of the Yule–
Walker estimator of a pure AR process. In particular, it appears that, in small
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samples, the moduli of the roots of the AR operator tend to be underestimated;
and the severity of this bias increases as the roots approach the unit circle. The
peaks of the estimated AR spectral density function which correspond to these roots
assume less prominence that they should, and they may even disappear altogether.
Evidence on these matters has been gathered by Lysne and Tjøstheim [326] and by
Tjøstheim and Paulsen [485].

There is less evidence on the small-sample properties of the estimator of a
pure MA model. However, it appears that there is a tendency to underestimate the
moduli of the roots of the MA operator in small samples; and this is exacerbated
when one resorts to the device of padding.

There are alternative ways of reaching an intuitive explanation of the small-
sample bias of the Yule–Walker estimates which lead to various suggestions for
improving their properties. These explanations make reference either to the se-
quence of empirical autocovariances or to the sequence of periodogram ordinates
which represents the Fourier transform of the autocovariances.

To begin, consider the empirical autocovariance of lag τ which, on the assump-
tion of that E(yt) = 0, is given by

cτ =
1
T

T−1∑
t=τ

ytyt−τ .(21.70)

The expected value is

E(cτ ) = γτ

(
1− |τ |

T

)
,(21.71)

where γτ is the true value. If T is small, then the sequence of the estimated
autocovariances is liable to decline more rapidly than it should as the lag value τ
increases.

To understand the consequences of the over-rapid decline of the empirical
autocovariances, we may consider the fact there is a one-to-one correspondence
between the sequence c0, . . . , cp and the Yule–Walker estimates of the parameters
σ2 = V (εt), α1, . . . , αp. In particular, the estimated parameters satisfy the equation

− cτ = α1cτ−1 + · · ·+ αpcτ−p for τ = 1, . . . , p.(21.72)

This is a difference equation in {cτ}. If {c0, . . . , cp} is declining too rapidly, then
the solution of the difference equation is liable to be over-damped, which means
that the roots of the polynomial equation α(z) = 0 will be too far from the unit
circle.

One way of addressing the problem of bias is to replace the divisor T in the
formula for cτ by a divisor of T − τ so as to obtain unbiased estimates of the
autocovariances. However, the resulting matrix of autocovariances is no longer
guaranteed to be positive-definite; and this can lead to the violation of the condition
of stationarity.

Another recourse is to adopt a two-stage estimation procedure. The initial
Yule–Walker estimates can be used in forecasting sequences of postsample and
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presample values which are added to the sample. The forecast values in both
directions will converge or “taper” to zero as the distance from the sample increases.
At the points where the values are judged to be sufficiently close to zero, the
sequences may be terminated. The Yule–Walker estimates which are obtained from
the supplemented data have less bias than the initial estimates.

Recently, Pukkila [415] has proposed a modified Yule–Walker estimator which
is calculated from autocorrelations which are obtained indirectly via the partial
autocorrelation function. His sampling experiments suggest that the properties of
the estimator are as good as, if not better than, those of the Burg estimator which
is to be treated in the next section (see, for example, Burg [89], Ulrych and Bishop
[493] and Giordano and Hsu [212]). In recent years, this estimator has provided a
benchmark for small-sample performance.

The alternative way of explaining the bias in the Yule–Walker estimates is
to consider the expectation of the periodogram which is the Fourier transform of
sequence of the expected values of the empirical autocovariances:

E
{
c(eiω)

}
=

1
2π

∫ π

−π
γ
(
eiλ
)
κ
(
ei{ω−λ}

)
dλ.(21.73)

The expected periodogram is also the convolution of the spectral density function
γ(eiω) with the Fejér kernel κ(eiω). The former represents the Fourier transform
of the sequence of true autocovariances whilst the latter represents the Fourier
transform of the triangular sequence of the weights

dτ =

{
1− |τ |/T if |τ | < T ,

0 if |τ | ≥ T ,
(21.74)

which appear in the expression for E(cτ ) under (21.71).
The convolution represents a smoothing operation, performed upon the spec-

tral density function, which has the Fejér kernel as its weighting function. The
effect of the operation is to diffuse the spectral power which spreads from the peaks
of the spectrum, where it is concentrated, into the valleys. This is described as
spectral leakage. The dispersion of the Fejér kernel diminishes as T increases, and,
in the limit, it becomes a Dirac delta function. When the Dirac function replaces
the Fejér kernel, the convolution delivers the spectral density function γ(eiω) unim-
paired.

An explanation of the presence of the Fejér kernel can be obtained from the
notion that the sample values yt; t := 0, . . . , T − 1 are obtained by applying the
weights

wt =
{ 1 if 0 ≤ t < T ,

0 otherwise,
(21.75)

of a rectangular data window to the elements of an infinite sequence. The tri-
angular weighting function dτ = T−1

∑
t wtwτ−t = 1 − |τ |/T of (21.74), which

affects the sequence of autocovariances, and whose transform is the Fejér kernel,
is formed from the convolution of two rectangular widows. By modifying the data
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window, we may alter the kernel function so as to reduce the leakage. In general,
the leakage may be reduced by applying a taper to the ends of the rectangular
window.

Investigations into the use of data-tapering in autoregressive estimation were
pioneered by Pukkila [413] who modified the rectangular window by removing its
corners to create a trapezoidal form. More recently, Dahlhaus [135] has investigated
the effects upon the leakage of a tapered window obtained by splitting a cosine bell
and inserting a sequence of units between the two halves. The sampling experiments
of both Pukkila and Dahlhaus reveal dramatic improvements in the bias of the
autoregressive estimates and in the resolution of the spectral density function which
is inferred from these estimates.

Ideally the degree of tapering—which, in the case of Dahlhaus, is the ratio of
the width of the cosine bell to the width of the data window—should be attuned
to the values of the roots of α(z). A high degree of tapering is called for when the
modulus of the dominant root is close to unity, which is usually the case when there
is a prominent peak in the spectral density function.

The emphasis which has been placed, in the literature, upon the sampling
properties of AR estimators should not detract from the importance of the MA
component in time-series models. Its presence can greatly enhance the flexibility
of the model in approximating transfer functions. An example is provided by the
case of an AR process which has been corrupted by a white-noise error.

A white-noise corruption, which might arise simply from rounding error in
the observations, increases the variance of the data, leaving its autocovariances
unaffected. The inflated variance increases the damping of the autocovariances
at the start of the sequence. This can lead to a severe underestimation of the
moduli of the autoregressive roots. Formally, an AR(p) model with added white
noise gives rise to an ARMA(p, p) process. Nevertheless, the noise corruption can
often be accommodated by adding just a few moving-average parameters to the
model.

The Burg Estimator

The Burg estimator is a close relative of the Yule–Walker estimator. It entails
a recursive algorithm which is aimed at finding the sequence of values which consti-
tute the (empirical) partial autocorrelation function and which are also described as
reflection coefficients. Successive stages of the algorithm correspond to autoregres-
sive models of increasing orders. At each stage, the autoregressive parameters may
be obtained from the reflection coefficients and from the autoregressive parameters
generated in the previous stage. The procedure by which this is accomplished is
shared with the Durbin–Levinson algorithm which is the means of generating the
Yule–Walker estimates recursively.

There is a crucial difference in the criterion functions which the two estimators
are designed to minimise. The Yule–Walker estimator finds the values of α1, . . . , αp
which minimise the sum of squares of one-step-ahead prediction errors which is

660



21: LEAST-SQUARES METHODS OF ARMA ESTIMATION

defined as

S =
T−1∑
t=0

e2
t = T

p∑
i=0

p∑
j=0

αiαjc|i−j| with α0 = 1,(21.76)

where c|i−j| is the empirical autocovariance defined according to the formula of
(21.11). The Burg algorithm depends upon a sequence of criterion functions which
pertain to the estimation of successive reflection coefficients. In the rth stage of
the algorithm, a reflection coefficient cr = αr(r) is determined which minimises the
sum of squares of forward and backwards prediction errors:

S(r) =
T−1∑
t=r

{
e2
t(r) + b2t(r)

}
.(21.77)

These errors are defined as

et(r) = yt + α1(r)yt−1 + · · ·+ αr(r)yt−r,

bt(r) =αr(r)yt + · · ·+ α1(r)yt−r+1 + yt−r.
(21.78)

The index t of the sum of squares takes an initial value of t = r. The problem of
attributing values to presample elements of the sequence y(t) is thereby avoided.
In the case of the Yule–Walker estimates, the presample elements are set to zero.

According to equation (19.117), the prediction errors under (21.78) may be
formulated as

et(r) = et(r−1) + crbt−1(r−1),

bt(r) = cret(r−1) + bt−1(r−1),
(21.79)

where cr = αr(r) is the rth reflection coefficient and et(r−1) and bt−1(r−1) are pre-
diction errors generated by the autoregressive filter of order r−1. If the coefficients
of the latter filter are given, then the reflection coefficient cr is the only parameter
which needs to be estimated directly in the rth stage. The remaining rth-order
autoregressive parameters are obtained from the equations α1(r)

...
αr−1(r)

 =

 α1(r−1)

...
αr−1(r−1)

+ αr(r)

 αr−1(r−1)

...
α1(r−1)

 .(21.80)

The estimator of the rth reflection coefficient is derived from the function
obtained by substituting the expressions for et(r) and bt(r) under (21.79) into the
sum of squares under (21.77). The result is

S(r) =
T−1∑
t=r

[{
et(r−1) + crbt−1(r−1)

}2 +
{
cret(r−1) + bt−1(r−1)

}2
]

=
(
1 + c2r

) T−1∑
t=r

{
e2
t(r−1) + b2t−1(r−1)

}
+ 4cr

T−1∑
t=r

et(r−1)bt−1(r−1).

(21.81)
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Differentiating the function with respect to cr and setting the result to zero gives
a first-order condition from which it is deduced that the optimum value of the
reflection coefficient is

cr = −
2
∑T−1
t=r et(r−1)bt−1(r−1)∑T−1

t=r

{
e2
t(r−1) + b2t−1(r−1)

} .(21.82)

The denominator in this expression is

T−1∑
t=r

{
e2
t(r−1) + b2t−1(r−1)

}
= S(r−1) − e2

r−1(r−1) − b
2
T−1(r−1),(21.83)

which is easily calculated when the components on the RHS are available. Also, it
may be confirmed that the minimised sum of squares of the prediction errors from
the rth stage of the algorithm is

S(r) =
(
1− c2r

) T−1∑
t=r

{
e2
t(r−1) + b2t−1(r−1)

}
,(21.84)

which is obtained immediately from the denominator. Therefore the labour in the
rth stage is mainly in calculating the numerator of (21.82).

The starting values for the algorithm, which are obtained by setting r = 0 in
(21.78), are

et(0) = bt(0) = yt; t = 0, . . . , T − 1.(21.85)

It follows that

S(0) = 2
T−1∑
t=0

y2
t .(21.86)

In the following Pascal procedure, which implements the Burg algorithm,
the segment which generates the autoregressive parameters via the scheme under
(21.80) is shared with the LevinsonDurbin procedure which is listed under (17.75):

(21.87) procedure BurgEstimation(var alpha, pacv : vector;
y : longVector;
p, Tcap : integer);

var
t, r, n, j, jstop : integer;
b, e : longVector;
S, c, numer, denom, astore : real;

begin {BurgEstimation}
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n := Tcap− 1;
S := 0;
alpha[0] := 1;
for t := 0 to n do

begin {t}
S := S + 2 ∗ y[t] ∗ y[t];
e[t] := y[t];
b[t] := y[t];

end; {t}

for r := 1 to p do
begin {r}
denom := S − e[r − 1] ∗ e[r − 1]− b[n] ∗ b[n];
numer := 0.0;
for t := r to n do
numer := numer+ 2 ∗ e[t] ∗ b[t− 1];

c := −numer/denom;
S := (1− c ∗ c) ∗ denom;
for t := n downto r do

begin {t}
b[t] := b[t− 1] + c ∗ e[t];
e[t] := e[t] + c ∗ b[t− 1];

end; {t}

{Determine the autoregressive parameters}
jstop := (r − 1) div 2;
for j := 1 to jstop do

begin {j}
astore := alpha[j];
alpha[j] := astore+ c ∗ alpha[r − j];
alpha[r − j] := alpha[r − j] + c ∗ astore;

end; {j}
j := jstop+ 1;
if odd(r − 1) then
alpha[j] := alpha[j] ∗ (1 + c);

alpha[r] := c;
pacv[r] := c

end; {r}

end; {BurgEstimation}
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CHAPTER 22

Maximum-Likelihood Methods
of ARMA Estimation

The current value generated by a temporal stochastic process will depend upon the
values generated in the past. Therefore, whenever a short sequence of consecutive
values is recorded, much of the information which would help in explaining it is
contained in unknown presample values. If the process is heavily dependent upon
the past, then the decision of how to represent the presample values may have a
significant effect upon the quality of the estimates of the parameters of the process.
In particular, the more tractable methods of estimating the parameters are subject
to the hazard that, if the roots of the autoregressive or moving-average polynomial
operators of the underlying process are close to the boundary of the unit circle,
then the stationarity and invertibility conditions are liable to be violated by the
estimates.

There seems to be little doubt that the best method, in theory, of coping
with the presample problem, and of fulfilling the conditions of stationarity and
invertibility, is to use the estimating systems which are derived unequivocally from
the principle of maximum likelihood. The resulting estimates are commonly de-
scribed as the exact maximum-likelihood estimates. However, the exact criterion is
difficult to fulfil, and the estimates are laborious to compute. Therefore, if the data
is sufficiently abundant to make the starting-value problem negligible, or if there is
a reason to believe that the estimates will be affected only slightly by the way the
problem is handled, then more tractable estimation procedures, such as the ones
given in the previous chapter, may be adopted.

In this chapter, we shall present a variety of maximum-likelihood methods.
The primary purpose is to present the algorithms of exact maximum-likelihood
estimation. A secondary purpose is to show how some of the methods of least-
squares estimation may be construed as conditional maximum-likelihood methods
which adopt differing approaches to the starting-value problem. In order to pursue
these two purposes within the compass of a single chapter, we have to adopt a
notation of sufficient generality which is also capable of showing the finer details.
The burden of these details would be less if our only purpose were to present the
algorithms of exact likelihood estimation.

Matrix Representations of Autoregressive Models

A stationary autoregressive process y(t) of order p—known for short as an
AR(p) process—is represented by the equation

α(L)y(t) = ε(t),(22.1)
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where α(L) = 1+α1L+· · ·+αpLp and where ε(t) is a sequence of independently and
identically distributed random variables with expectations of zero. This equation
can also be written as

y(t) = α−1(L)ε(t) = φ(L)ε(t),(22.2)

where φ(L) = {1 + φ1L + φ2L
2 + · · ·} is an infinite series; from which it appears

that the current value of y(t) depends upon the entire history of the disturbance
sequence ε(t). However, when we write y(t) = −α1y(t− 1)−· · ·−αpy(t− p) + ε(t),
we can see that the effects of this history are summarised by a few previous values
of the sequence y(t).

A sample of T elements from y(t) may be represented in a corresponding vector
equation:

A∗y∗ +Ay = ε.(22.3)

Here y = [y0, y1, . . . , yT−1]′ and ε = [ε0, ε1, . . . , εT−1]′ are the vectors of order T
containing, respectively, the elements of y(t) and ε(t) which fall within the sample
period, whilst y∗ = [y−p, . . . , y−2, y−1]′ contains the requisite presample elements
of y(t).

The banded lower-triangular matrix A, which is of order T ×T , is the analogue
of the polynomial α(L), whilst the T × p matrix A∗ is an extension of A which is
due to the presample elements. The two matrices can be represented explicitly as
follows:

A∗ =



αp . . . α1

...
. . .

...
0 . . . αp
0 . . . 0
...

...
0 . . . 0
0 . . . 0


, A =



1 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
αp−1 . . . 1 0 . . . 0 0
αp . . . α1 1 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . αp αp−1 . . . 1 0
0 . . . 0 αp . . . α1 1


.(22.4)

It will prove helpful to express equation (22.2) in a more detailed notation
which distinguishes the first p elements of the sample within y from the remainder:[

A1∗ A11 0
0 A21 A22

] y∗y1

y2

 =
[
ε1

ε2

]
.(22.5)

The first p observations are contained in the vector y1 = [y0, . . . , yp−1]′ whilst
the remainder are in y2 = [yp, . . . , yT−1]′. The vectors ε1 = [ε0, . . . , εp−1]′ and
ε2 = [εp, . . . , εT−1]′ contain the corresponding elements of ε(t). The submatrices
A1∗ and A11, which are both of order p× p, are defined as

A1∗ =


αp αp−1 . . . α1

0 αp . . . α2

...
...

. . .
...

0 0 . . . αp

 , A11 =


1 0 . . . 0
α1 1 . . . 0
...

...
. . .

...
αp−1 αp−2 . . . 1

 .(22.6)
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The submatrix A21 may be formed by taking the first T − p rows of A∗, whilst the
submatrix A22 is a principal minor of order (T − p) × (T − p) taken from A. A
comparison of equations (22.3) and (22.5) indicates the following identities:

A∗ =
[
A1∗
0

]
, A =

[
A11 0
A21 A22

]
,(22.7)

y =
[
y1

y2

]
, ε =

[
ε1

ε2

]
.(22.8)

Combining the T equations of (22.3) with the trivial identity y∗ = Ipy∗ leads
to the equations [

y∗

ε

]
=

[
Ip 0

A∗ A

][
y∗

y

]
,(22.9) [

y∗

y

]
=

[
Ip 0

−A−1A∗ A
−1

][
y∗

ε

]
.(22.10)

The vectors y∗ and ε in these equations are statistically independent with a zero
covariance matrix C(y∗, ε) = 0. Therefore, with D(y∗) = σ2

εQp and D(ε) = σ2
εIT ,

the joint dispersion matrix is

D(y∗, ε) = σ2
ε

[
Qp 0

0 IT

]
.(22.11)

It follows from (22.10) that the joint dispersion matrix of y and y∗ is

D(y∗, y) =σ2
ε

[
I 0

−A−1A∗ A
−1

][
Qp 0

0 I

][
I −A′∗A′−1

0 A′−1

]

=σ2
ε

[
Qp −QpA′∗A′−1

−A−1A∗Qp A
−1(A∗QpA′∗ + I)A′−1

]
.

(22.12)

The inverse of this matrix is given by

D−1(y∗, y) =
1
σ2
ε

[
A′∗A∗ +Q−1

p A′∗A

A′A∗ A′A

]
.(22.13)

The AR Dispersion Matrix and its Inverse

The matrix of (22.10) has units on its principal diagonal and zeros above.
Therefore its determinant is unity. It follows from the factorisation under (22.12)
that D(y∗, y) has a determinant which is equal to that of D(y∗, ε). This, in turn,
is equal to σ2(T+p)

ε |Qp|. Thus detD(y∗, y) = σ
2(T+p)
ε |Qp|. Similar reasoning leads

to the result that

detD(y) = σ2T
ε |QT | = σ2T

ε |Qp|.(22.14)
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Our procedures for evaluating the exact likelihood function depend upon hav-
ing tractable expressions for the quadratic form y′Q−1

T y and for the determinant
detD(y). Consider, therefore, the dispersion matrix

D(y) = σ2
εA
−1(A∗QpA′∗ + I)A′−1.(22.15)

This is a submatrix of D(y, y∗); and it is contained within the final expression under
(22.12). Using the formula for the inverse of a sum of matrices found under (9.12),
we get

D−1(y) =
1
σ2
ε

{
A′A−A′A∗(A′∗A∗ +Q−1

p )−1A′∗A
}
.(22.16)

However, the latter expression comprises the matrix Q−1
p which is, as yet, of an

unknown form. To find an expression for Q−1
p , consider

D−1(y∗, y1) =
1
σ2
ε

[
A′1∗A1∗ +Q−1

p A′1∗A11

A′11A1∗ A′11A11

]
,(22.17)

which is a matrix of order 2p derived by specialising the expression under (22.13)
using the notation of equation (22.7). The symmetry of this matrix about its NE–
SW axis implies that

A′1∗A1∗ +Q−1
p = A11A

′
11.(22.18)

Here it should be recognised that, if B# denotes the transpose of a matrix B about
its NE–SW diagonal, then (A′11A11)# = A11A

′
11. This is a consequence of the

fact that A11 is a lower-triangular Toeplitz matrix. On writing A11A
′
11 in place of

A′∗A∗ +Q−1
p = A′1∗A1∗ +Q−1

p in equation (22.16), we get

D−1(y) =
1
σ2
ε

{
A′A−A′A∗(A11A

′
11)−1A′∗A

}
=

1
σ2
ε

{
A′A−

[
A′11A1∗(A11A

′
11)−1A′1∗A11 0

0 0

]}
.

(22.19)

Next, since they are banded upper-triangular matrices of the same order, A′11 and
A1∗ commute in multiplication to give A′11A1∗ = A1∗A

′
11. Therefore, within (22.19),

there is

A′11A1∗(A11A
′
11)−1A′1∗A11 =A1∗A

′
11(A11A

′
11)−1A11A

′
1∗

=A1∗A
′
1∗;

(22.20)

and it follows that

D−1(y) =
1
σ2
ε

{
A′A−A∗A′∗

}
.(22.21)
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This is the result which we have been seeking. By using the expression for the
inverse of a sum of matrices, it can be shown that

D(y) = σ2
εA
−1
{
I −A∗(A′∗A∗ + I)−1A′∗

}
A′−1,(22.22)

and this expression replaces the one under (22.15) which is in terms of Qp.
In forming the equation L′L = Q−1

p which is to be solved for L, we may use
the expression

Q−1
p = A′11A11 −A1∗A

′
1∗,(22.23)

which is derived by specialising the expression Q−1
T = A′A+A∗A

′
∗ from (22.21).

The matrix A′A − A∗A′∗ has been encountered already under (5.165) in con-
nection with the conditions which are necessary and sufficient for the stability of
a pth-order difference equation. These are known as the Schur–Cohn conditions.
The difference equation is stable if and only if the matrix A′A− A∗A′∗ is positive-
definite. This condition may be evaluated via the Cholesky decomposition of the
matrix.

Example 22.1. In the case of an AR(2) process, the matrix Q−1
p = A′11A11 −

A1∗A
′
1∗ = L′L is given by[

α2
0 − α2

2 α1α0 − α1α2

α1α0 − α1α2 α2
0 − α2

2

]
=

[
l211 + l221 l21l22

l22l21 l222

]
,(22.24)

where α0 = 1. The solutions of the equations

l222 =α2
0 − α2

2,

l21l22 =α1α0 − α1α2,

l211 + l221 =α2
0 − α2

2,

(22.25)

are given by

l22 =
√

(α2
0 − α2

2),

l21 =
α1(α0 − α2)√

(α2
0 − α2

2)
= α1

√
(α0 − α2)√
(α0 + α2)

,

l11 =
[

(α0 − α2)
(α0 + α2)

{
(α0 + α2)2 − α2

1

}]1/2

.

(22.26)

The solutions will be real-valued if and only if

α2
0 − α2

2 > 0 and (α0 + α2)2 > α2
1;(22.27)

and these are the conditions for the stability of a second-order difference equation
which are to be found under (5.148).
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Density Functions of the AR Model

Now let us assume that the elements of ε(t) are distributed independently, iden-
tically and normally. Then ε ∼ N(0, σ2

εI). It follows that the elements of y(t) will
be normally distributed also, so that y∗ ∼ N(0, σ2

εQp) and y ∼ N(0, σ2
εQT ). Given

that they are statistically independent, vectors ε and y∗ have a joint distribution
which is just the product of the marginal distributions:

N(y∗, ε) =N(y∗)N(ε)

= (2πσ2
ε)−p/2|Qp|−1/2 exp

{ −1
2σ2

ε

y′∗Q
−1
p y∗

}
×(2πσ2

ε)−T/2 exp
{ −1

2σ2
ε

ε′ε
}
.

(22.28)

The joint distribution of y∗ and y is given by N(y∗, y) = N{y∗, ε(y∗, y)}|J |,
where ε(y∗, y) stands for the expression which gives ε in terms of y∗ and y, and
where |J | is the Jacobian of the transformation of (22.9) from (y∗, y) to (y∗, ε).
Since the Jacobian matrix is triangular with units on the principal diagonal, it
follows that |J | = 1. Therefore,

N(y∗, y) =N(y∗)N(y|y∗)

= (2πσ2
ε)−p/2|Qp|−1/2 exp

{ −1
2σ2

ε

y′∗Q
−1
p y∗

}
×(2πσ2

ε)−T/2 exp
{ −1

2σ2
ε

(A∗y∗ +Ay)′(A∗y∗ +Ay)
}
.

(22.29)

The marginal distribution of y may be expressed as

N(y) = (2πσ2
ε)−T/2|QT |−1/2 exp

{ −1
2σ2

ε

y′Q−1
T y

}
.(22.30)

When y is partitioned into y1 and y2, the corresponding form for the inverse of QT
is

Q−1
T =

[
A′21A21 +Q−1

p A′21A22

A′22A21 A′22A22

]
.(22.31)

Since |QT | = |Qp|, it follows that N(y) can be factorised as

N(y) =N(y1)N(y2|y1)

= (2πσ2
ε)−p/2|Qp|−1/2 exp

{ −1
2σ2

ε

y′1Q
−1
p y1

}
×(2πσ2

ε)(p−T )/2 exp
{ −1

2σ2
ε

(A21y1 +A22y2)′(A21y1 +A22y2)
}
.

(22.32)

This has the same form as the expression for N(y∗, y) under (22.29). It serves to
show that the starting-value problem is a transient one which affects the density
function of y only via first p elements of the sample.
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A further expression which can be derived in the context of the normal density
function is the conditional expectation of y∗ given y:

E(y∗|y) =C(y∗, y)D−1(y)y

=−QpA′∗
(
A∗QpA

′
∗ + I

)−1
Ay

=−
(
A′∗A∗ +Q−1

p

)−1
A′∗Ay.

(22.33)

Here the second equality depends upon the expression for C(y∗, y) from (22.12) and
the expression for D(y) from (22.15). The final equality is by virtue of the matrix
identity AB′(BAB′ + I)−1 = (A−1 + B′B)−1B′. The final expression can also be
obtained directly from the elements of the matrix under (22.13).

The Exact M-L Estimator of an AR Model

The criterion function for the exact maximum-likelihood estimation of the
parameter σ2

ε , α1, . . . , αp of an AR(p) process is based on the marginal density
function N(y) of (22.30). The log of the likelihood function is

L = −T
2

log(2π)− T

2
log σ2

ε −
1
2

log |QT | −
1

2σ2
ε

y′Q−1
T y.(22.34)

By maximising L partially with respect to σ2
ε , we obtain the estimating equation

σ2
ε =

1
T
y′Q−1

T y.(22.35)

By substituting this expression back into (22.34), and by taking |QT | = |Qp|, we
get the concentrated function

Lc = −T
2
{

log(2π) + 1
}
− T

2
log
(y′Q−1

T y

T

)
− 1

2
log |Qp|.(22.36)

It can be seen that maximising the likelihood function in respect of the auto-
regressive parameters is equivalent to minimising the function

S∗ =
y′Q−1

T y

T
|Qp|1/T .(22.37)

Since |Qp|1/T tends to unity as the sample size T increases, it is tempting to
adopt the criterion of minimising simply the quadratic function

y′Q−1
T y = y′1Q

−1
p y1 + (A21y1 +A22y2)′(A21y1 +A22y2),(22.38)

of which the expression on the RHS is obtained from (22.31). However, it is the pres-
ence of the determinant |Qp|1/T which ensures that the exact maximum-likelihood
estimates satisfy the conditions of stationarity. This can be understood in view of
an expression provided by Anderson and Mentz [19]:

|Qp|−1 =
p∏

i,j=1

(1− λiλj),(22.39)
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where λ1, . . . , λp are the roots of the polynomial 1+α1z+ · · ·+αpzp = 0. Whenever
any of these roots approaches the boundary of the unit circle, the factor |Qp|1/T
will tend to infinity.

The exact maximum-likelihood estimates of an AR process may be found by
an iterative procedure using one of the algorithms for nonlinear optimisation which
are to found in Chapter 12. These algorithms depend upon a facility for evaluating
the criterion function and its derivatives at an arbitrary point within an admissible
parameter space. Since it is difficult to find analytic expressions for the derivatives
of the present criterion function, these must be found by numerical means.

It is appropriate to take the Yule–Walker estimates or the Burg estimates as
starting values; for these are guaranteed to satisfy the conditions of stationarity
or stability. If the maximising values of the criterion function fall close to the
boundary of the region of stationarity, then there is a danger that, in taking a
small step away from a stationary value, one may cross the boundary. To guard
against this, it is important to check the parameter values for stability prior to
evaluating the criterion function.

The following Pascal procedure ARLikelihood is designed to provide the value
of the expression S∗ of (22.37). It may be used in conjunction with the optimisation
routines of Chapter 12 by embedding it in a function which has the generic form of
Funct(lambda, theta, pvec, n), wherein lambda is the step-adjustment scalar, theta
is the value of the function’s argument from the end of the previous iteration, pvec
is the new direction vector and n is the order of theta and pvec. Such a function
will serve to pass the value of S∗ to the optimisation procedure.

(22.40) procedure ARLikelihood(var S, varEpsilon : real;
var y : longVector;
alpha : vector;
Tcap, p : integer;
var stable : boolean);

var
i, j, k, t : integer;
e, det : real;
q : matrix;

begin {ARLikelihood}

{Find the Inverse Dispersion matrix}
S := 0.0;
for i := 0 to p− 1 do

for j := 0 to i do
begin {i, j}
q[i, j] := 0.0;
for k := 0 to p− 1− i do

begin {k}
q[i, j] := q[i, j] + alpha[k] ∗ alpha[k + i− j];
q[i, j] := q[i, j]− alpha[p− k] ∗ alpha[p− k − i+ j];
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end; {k}
if i <> j then
S := S + 2 ∗ y[i] ∗ q[i, j] ∗ y[j]

else {if i = j}
S := S + y[i] ∗ q[i, i] ∗ y[i];

end; {i, j}

{Evaluate the determinant}
det := 1;
stable := true;
for i := 0 to p− 1 do

begin {i}
for j := 0 to i do

begin {j}
for k := 0 to j − 1 do
q[i, j] := q[i, j]− q[k, k] ∗ q[i, k] ∗ q[j, k];

if i > j then
q[i, j] := q[i, j]/q[j, j];

end; {j}
det := det ∗ q[i, i];
if det <= 0 then
stable := false;

end; {i}

{Evaluate the criterion function}
if stable then

begin {if}
for t := p to Tcap− 1 do

begin {t}
e := y[t];
for j := 1 to p do
e := e+ alpha[j] ∗ y[t− j];

S := S + e ∗ e;
end; {i}

varEpsilon := S/Tcap;
S := varEpsilon ∗ Exp(Ln(1/det)/Tcap)

end; {if}

end; {ARLikelihood}

The first operation within the procedure ARLikelihood is to form the matrix
Q−1
p . Then the determinant of the matrix is evaluated by forming the product of

the elements of the diagonal matrix D = diag{d0, . . . , dp−1} which is a factor of
the Cholesky decomposition of Q−1

p = LDL′ wherein L is a lower-triangular matrix
with units for its diagonal elements. The code of the segment which performs these
operations is borrowed from the procedure LDLPrimeDecomposition which is to
be found under (7.48).

675



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

The condition of stability, which is that Q−1
p must be positive-definite, is ful-

filled if and only if the successive products
∏r
i=0 di; r = 0, . . . , p− 1 are all positive.

If this condition is fulfilled, then the quadratic term y′Q−1
T y is calculated in the

manner indicated by the RHS of (22.38). Otherwise the procedure is aborted; and
this will be indicted by the Boolean variable stability which will take the value of
false.

In cases where the condition of stability is violated, it should be possible to
overcome the problem by reducing the length of the step which departs from a
previous value of the parameter vector which must have fulfilled the condition. To
accommodate such a facility, the function Funct(lambda, theta, pvec, n) must be
replaced by a procedure which is capable of redetermining step-length parameter
lambda. The likelihood of a violation of the condition of stability is much reduced
by using accurate estimates for the starting values of the optimisation procedure.
The latter may be generated by the procedure YuleWalker of (17.67) or by the
procedure BurgEstimation of (21.87).

The above procedure is presented in the belief that it represents the most
efficient way of computing the value of the likelihood function of an AR model.
However, an alternative procedure of a similar efficiency can be devised which is
based upon the Levinson–Durbin algorithm which was first presented in Chapter
17 and which has been discussed further in Chapter 19.

Given the dispersion matrix Γ = σ2
εQp, the Levinson–Durbin procedure will

find the factors A and D = diag{d0, . . . , dp−1} of Γ−1 = A′D−1A = Q−1
p /σ2

ε and of
Γ = A−1DA′−1. Since A is a lower-triangular matrix with units on the diagonal,
it follows that

∏
i di = |Γ| = σ2p

ε |Qp|. These are the essential elements which are
needed for evaluating the likelihood function.

The circumstance which favours the method represented by the procedure
ARLikelihood is the relative ease with which the inverse matrix Q−1

p may be gen-
erated from the values of α1, . . . , αp compared with the labour of finding Qp by
generating the autocovariances.

Conditional M-L Estimates of an AR Model

The complexities of the exact maximum-likelihood estimator are due, in large
measure, to the effect of the starting values. The estimation can be simplified
considerably if these values are preassigned or if their estimation can be separated
from that of the principal parameters of the model. This may be achieved via a
conditional-likelihood approach,

The conditional distribution of y given y∗, which may be extracted from
(22.29), is

N(y|y∗) = (2πσ2
ε)−T/2 exp

{ −1
2σ2

ε

(A∗y∗ +Ay)′(A∗y∗ +Ay)
}
.(22.41)

Once a value has been attributed to y∗, the conditional maximum-likelihood es-
timates of the parameters α1, . . . , αp may be found by locating the values which
minimise the function

S = (A∗y∗ +Ay)′(A∗y∗ +Ay).(22.42)
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The simplest way of representing the presample elements is to set them equal to
their unconditional expectations, which are zeros, to give S = y′A′Ay.

Let Y be the banded lower-triangular matrix which has y = Y e0 as its leading
vector, where e0 is the leading vector of an identity matrix of order T . This matrix
has the same structure as the matrix A, and therefore the two matrices commute in
multiplication such that AY = Y A. It follows that the criterion function of (22.42)
with y∗ = 0 can also be written as

S= y′A′Ay

= e′0(Y ′A′AY )e0 = e′0(A′Y ′Y A)e0

=α′Y ′Y α,

(22.43)

where α = Ae0 = [1, α1, . . . , αp, 0, . . . , 0]′ is the leading vector of the matrix A.
Thus S is a quadratic function of both y and α. To express S in a more revealing
form, let us define

Y1.p = Y [e1, . . . , ep] and α′1.p = α′[e1, . . . , ep],(22.44)

where ej stands for the (j + 1)th column of the identity matrix of order T . Then
the criterion may be written as

S = (y + Y1.pα1.p)′(y + Y1.pα1.p).(22.45)

This is the criterion function of an ordinary linear least-squares regression.
One is not bound to set the presample elements to zero. Instead, they might

regarded as nuisance parameters which should be estimated at the same time as the
parameters in α1, . . . , αp. An estimating equation for the vector of presample values
may be found by minimising the function S = (A∗y∗ + Ay)′(A∗y∗ + Ay) partially
in respect of y∗ when the other quantities are fixed. The minimising vector is

y∗ = −(A′∗A∗)
−1A′∗Ay;(22.46)

and it is notable that this estimate differs from the conditional expectation given
under (22.33). On substituting the estimate back into the S, we get the concen-
trated criterion function

Sc = y′A′
{
I −A∗(A′∗A∗)−1A′∗

}
Ay

=
[
y′1 y

′
2

] [A′11 A
′
21

0 A′22

][
0 0

0 IT−p

][
A11 0

A21 A22

][
y1

y2

]
= (A21y1 +A22y2)′(A21y1 +A22y2).

(22.47)

This criterion function has a structure which is analogous to that of the original
function S = (A∗y∗ + Ay)′(A∗y∗ + Ay). However, in the new function, the role of
the vector y∗ = [y−p, . . . , y−1]′ of the p presample values is played by the vector
y1 = [y0, . . . , yp−1]′ comprising the first p observations.
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It is clear that the estimates which are obtained by minimising Sc are equivalent
to those which would be obtained by minimising the conditional likelihood function

N(y2|y1) = (2πσ2
ε)(p−T )/2 exp

{ −1
2σ2

ε

(A21y1 +A22y2)′(A21y1 +A22y2)
}
.(22.48)

The conditional-likelihood estimators do not impose the condition of stability upon
the autoregressive parameters. This could be a desirable property in some circum-
stances.

Matrix Representations of Moving-Average Models

Consider a qth-order moving-average process—which is described as an MA(q)
process for short. This may be represented by the equation

y(t) = (1 + µ1L+ · · ·+ µqL
q)ε(t),(22.49)

where ε(t) is a sequence of independently and identically distributed random vari-
ables. The current value of the process is explained in terms of a finite number of
unobservable disturbances. If the roots of µ(z) = 1 + µ1z + · · · + µqz

q lie outside
the unit circle, then the process is invertible and it can be represented by

µ−1(L)y(t) = ψ(L)y(t) = ε(t),(22.50)

where ψ(L) = {1+ψ1L+ψ2L
2+· · ·}. Then y(t) = ε(t)−{ψ1y(t−1)+ψ2y(t−2)+· · ·}.

This shows that the current value of y(t) and the current value of the prediction-
error sequence ε(t) depend upon the entire past history of the observable sequence.
This is in contrast to the AR(p) process where the current values of y(t) and ε(t)
depend only on p lagged values. The unlimited dependence of the prediction errors
of the MA process on the past values of y(t) greatly complicates the evaluation of
the MA likelihood function.

A set of T realisations of y(t) may be represented in matrix form by

y = M∗ε∗ +Mε.(22.51)

Here y = [y0, y1, . . . , yT−1]′ and ε = [ε0, ε1, . . . , εT−1]′ are the vectors of order T
containing the elements of y(t) and ε(t), respectively, which fall within the sample
period, whilst ε∗ = [εq, . . . , ε−2, ε−1]′ contains the requisite presample elements of
ε(t). The matrices M∗ and M can be represented explicitly as follows:

M∗ =



µq . . . µ1

...
. . .

...
0 . . . µq
0 . . . 0
...

...
0 . . . 0
0 . . . 0


, M =



1 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
µq−1 . . . 1 0 . . . 0 0
µq . . . µ1 1 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . µq µq−1 . . . 1 0
0 . . . 0 µq . . . µ1 1


.(22.52)
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Combining the T realisations of the MA(q) model given in equation (22.51) with
the trivial identity ε∗ = Iqε∗, leads to the equations[

ε∗

y

]
=

[
Iq 0

M∗ M

][
ε∗

ε

]
,(22.53)

for which the inverse is [
ε∗

ε

]
=

[
Iq 0

−M−1M∗ M
−1

][
ε∗

y

]
=Kε∗ +Ny,

(22.54)

where

K =

[
Iq

−M−1M∗

]
, N =

[
0

M−1

]
.(22.55)

Given that the vectors ε∗ and ε contain the elements of a white-noise process,
it follows that D(ε∗) = σ2

εIq and D(ε) = σ2
εIT . Therefore, the joint dispersion

matrix of ε∗ and y is

D(ε∗, y) = σ2
ε

[
Ip M ′∗

M∗ MM ′ +M∗M
′
∗

]
= σ2

ε

[
Ip 0

M∗ M

][
Ip M

′
∗

0 M ′

]
.(22.56)

The inverse of this matrix is

D−1(ε∗, y) =
1
σ2
ε

[
I +M ′∗(MM ′)−1M∗ −M ′∗(MM ′)−1

−(MM ′)−1M ′∗ (MM ′)−1

]

=
1
σ2
ε

[
K ′K K ′N

N ′K N ′N

]
.

(22.57)

The MA Dispersion Matrix and its Determinant

Within (22.56), is found the dispersion matrix

D(y) = σ2
ε(MM ′ +M∗M

′
∗).(22.58)

By using the formula for the inverse of a sum of matrices which is found under
(9.12), we may obtain the inverse of this matrix:

D−1(y) =
1
σ2
ε

M ′−1
[
IT −M−1M∗

{
Iq +M ′∗(MM ′)−1M∗

}−1
M ′∗M

′−1
]
M−1

=
1
σ2
ε

N ′
{
IT+q −K(K ′K)−1K ′

}
N.

(22.59)
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A tractable expression for detD(y) is also required. Therefore, let us recon-
sider the triangular factorisation of D(ε∗, y) which appears under (22.56). Clearly,
detD(ε∗, y) = σ

2(T+q)
ε , since the diagonal elements of its triangular factors are all

units. However, by applying the formula

det
[
E F
G H

]
= |E||H −GE−1F | = |H||E − FH−1G|(22.60)

to (22.57), which stands for the inverse of the dispersion matrix, we find that

σ2(T+q)
ε detD−1(ε∗, y) = |K ′K||N ′N −N ′K(K ′K)−1K ′N |

=σ2T
ε |K ′K||D−1(y)|,

(22.61)

where the final equality comes from (22.59). Since the value of this expression is
unity, it follows immediately that

detD(y) = σ2T
ε |K ′K|.(22.62)

The implication of (22.62) is that we can evaluate the determinant of the
dispersion matrix of order T by assessing the determinant of an equivalent matrix
of order q. This represents an advantage from the point of view of computation;
for, given that q is a relatively small order, it is possible to form and to store the
matrix K ′K in its entirely. By contrast, unless the number T of the observations
is strictly limited, there is no possibility of forming the matrix D(y) in its entirety.
However, given that there are only q + 1 distinct nonzero autocovariances in the
dispersion matrix, we should not think of devoting more than q + 1 registers to its
storage. In fact, as we shall see later, an efficient way of calculating the value of
|QT | = |K ′K| is to form the product of the elements of the diagonal matrix D of
the factorisation QT = LDL′.

Density Functions of the MA Model

Now let us assume that the elements of ε(t) are distributed independently
identically and normally. Then

N(ε∗, ε) =N(ε∗)N(ε)

= (2πσ2
ε)−(q+T )/2 exp

{ −1
2σ2

ε

(ε′∗ε∗ + ε′ε)
}
.

(22.63)

The joint distribution of ε∗ and y is given by N(ε∗, y) = N{ε∗, ε(ε∗, y)}|J |,
where ε(ε∗, y) stands for the expression which gives ε in terms of ε∗ and y, and
where |J | is the Jacobian of the transformation of (22.54) from (ε∗, y) to (ε∗, ε).
The value of the Jacobian is unity. Therefore,

N(ε∗, y) =N(y|ε∗)N(ε∗)

= (2πσ2
ε)−T/2 exp

{ −1
2σ2

ε

(y −M∗ε∗)′(MM ′)−1(y −M∗ε∗)
}

×(2πσ2
ε)−q/2 exp

{ −1
2σ2

ε

ε′∗ε∗

}
.

(22.64)

680



22: MAXIMUM-LIKELIHOOD METHODS OF ARMA ESTIMATION

With the help of the expressions for D−1(y) = (1/σ2
ε)Q−1

T and detD(y), which may
be found under (22.59) and (22.62), the marginal distribution of y may be expressed
as

N(y) = (2πσ2
ε)−T/2|QT |−1/2 exp

{ −1
2σ2

ε

y′Q−1
T y

}
= (2πσ2

ε)−T/2|K ′K|−1/2 exp
{ −1

2σ2
ε

y′N ′
[
I −K(K ′K)−1K ′

]
Ny
}
.

(22.65)

It is also appropriate, at this point, to derive the conditional expectation of ε∗
given y:

E(ε∗|y) =M ′∗(MM ′ +M∗M
′
∗)
−1y

=
{
I +M ′∗(MM ′)−1M∗

}−1
M ′∗(MM ′)−1y

=−(K ′K)−1K ′Ny.

(22.66)

The first expression on the RHS comes from putting the expressions for C(ε∗, y)
and D(y) from (22.56) into the formula E(ε∗|y) = C(ε∗, y)D−1(y)y. The second
expression is by virtue of the identity B′(A + BB′)−1 = (I + B′A−1B)−1B′A−1.
The final expression, which depends upon the definition of K under (22.55), can
also be obtained directly from the elements of the matrix under (22.57).

The Exact M-L Estimator of an MA Model

The criterion function for the exact maximum-likelihood estimation of the
parameters σ2

ε , µ1, . . . , µq of an MA(q) process is based on the marginal density
function N(y) of (22.65). The logarithm of the likelihood function is

L(y, σ2
ε) = −T

2
log(2π)− T

2
log(σ2

ε)− 1
2

log |QT | −
1

2σ2
ε

y′Q−1
T y(22.67)

which, as it stands, is indistinguishable from the corresponding expression for the
likelihood equation for the autoregressive model.

The variance σ2
ε may be eliminated from the expression by replacing it by

the relevant estimating equation. Differentiating L(y, σ2
ε) with respect to σ2

ε and
setting the result to zero gives a first-order condition which leads to the estimating
equation

σ2
ε =

1
T
y′Q−1

T y.(22.68)

When the latter is substituted into equation (22.67), a concentrated function is
obtained in the form of

Lc = −T
2
{

log(2π) + 1
}
− T

2
log(y′Q−1

T y/T )− 1
2

log |QT |.(22.69)

Maximising Lc is equivalent to minimising the function

S∗ =
y′Q−1

T y

T
|QT |1/T .(22.70)
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Substituting the expression of (22.59) for the inverse of the dispersion matrix
D(y) = σ2

εQT gives

y′Q−1
T y= y′N ′

{
IT+q −K(K ′K)−1K ′

}
Ny

=
{
Ny −K(K ′K)−1K ′Ny

}′{
Ny −K(K ′K)−1K ′Ny

}
=
{
Ny +KE(ε∗|y)

}′{
Ny +KE(ε∗|y)

}
,

(22.71)

wherein the expression for E(ε∗|y) is from (22.66). In fact, this quadratic form may
be derived by minimising the sum of squares

ε′ε+ ε′∗ε∗= (Ny +Kε∗)′(Ny +Kε∗)

= (y −M∗ε∗)′(MM ′)−1(y −M∗ε∗) + ε′∗ε∗
(22.72)

in respect of ε∗.
There are two contrasting approaches which have been followed in constructing

algorithms for evaluating the exact likelihood function of an MA model. The first
of these approaches is in the spirit of Box and Jenkins [70] who originally proposed
to ignore the determinant |QT |1/T , which should be close to unity for large values
of T , and to adopt the quadratic term S = y′Q−1

T y as a minimand. However,
several authors, including Kang [283] and Osborn [374], observed that to omit the
determinant was to run the risk that the estimates would violate the condition of
invertibility; and, in an appendix to the second edition of their book, Box and
Jenkins [70, p. 284] also drew attention to the danger.

Imagine that values are available for µ1, . . . , µq and for σ2
ε . Then the first task

in evaluating the criterion function is to find the vector E(ε∗|y) of the conditional
expectations of presample disturbances. This can be obtained via the formula of
(22.66). However, as Box and Jenkins [70, p. 213] have indicated, its values can be
generated by a simple procedure of “back-forecasting”.

Given a value for ε∗ = E(ε∗|y), one can proceed to find ζ = y −M∗ε∗. This
is a matter of adjusting the first q elements of the vector y. Next, the elements of
ε = M−1(y −M∗ε∗) may be formed in turn, one at a time. The lower-triangular
Toeplitz matrix M−1 is characterised by its leading vector ψ = M−1e0 of which
all the elements are liable to be nonzero. Therefore, the tth element of ε might be
formed from a weighted sum of the first t elements of ζ wherein the corresponding
elements of ψ are the weights. This operation becomes more laborious as the value
of t increases; and the method is not to be recommended.

A more efficient way of calculating the elements of ε is to employ the pro-
cedure RationalExpansion, found under (3.43), which generates the coefficients
ε0, . . . , εT−1 of the series expansion of the rational function ε(z) = ζ(z)/µ(z), where
ζ(z) = ζ0 + ζ1z + · · ·+ ζT−1z

T−1 and µ(x) = 1 + µ1z + · · ·+ µqz
q. The remaining

task of forming the sum of squares S = ε′ε+ ε′∗ε∗ is straightforward.
To find the value of the criterion function for exact likelihood estimation, the

determinant |QT |1/T = |K ′K|1/T must also be evaluated. To calculate this via
the matrix K ′K requires the formation of the T × q matrix M−1M∗. The labour
involved in this operation and in forming the elements of K ′K is proportional to the
size T of the sample. However, the matrix K ′K is of order q; and its determinant
is easily evaluated.
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The second method of evaluating the exact likelihood function of an MA model
depends upon the use of the Gram–Schmidt prediction-error algorithm which has
been presented in Chapter 19. Once the matrix QT has been determined from
the values of the parameters µ1, . . . , µq, the algorithm may be used in finding the
factors of the Cholesky decomposition QT = LDL′. Here L is a lower-triangular
matrix with units along its diagonal and with q nonzero subdiagonal bands, whilst
D = diag{d0, . . . , dT−1} is a diagonal matrix. From the matrix L and the vector y,
a vector η = L−1y of one-step-ahead prediction errors may be found such that

η′D−1η = y′L′−1D−1L−1y = y′Q−1
T y.(22.73)

The determinant of the matrix QT is available as the product |QT | =
∏T−1
t=0 dt

of the diagonal elements of D. Thus, all of the essential elements of the criterion
function S∗ of (22.70) are generated by the algorithm.

The prediction-error algorithm requires very little storage space. In the tth iter-
ation, the q off-diagonal nonzero elements, l1(t), . . . , lq(t) of a new row of L are com-
puted from a q×q lower-triangular matrix whose elements are taken from the previ-
ous q rows. Also, the element dt, which is used in evaluating the determinant and in
rescaling the prediction errors, is calculated and stored as l0(t). The tth prediction
error ηt = yt − l1(t)ηt−1 − · · · − lr(t)ηt−r is formed from the newly calculated coeffi-
cients and from a store of r = min(q, t) previous prediction errors. The matrix in-
version which is indicated by the expression η = L−1y is notional rather than actual.

(22.74) procedure MALikelihood(var S, varEpsilon : real;
var y : longVector;
mu : vector;
Tcap, q : integer);

var
i, j, k, t : integer;
det : real;
gamma, eta : vector;
L : matrix;

procedure MuLine(t : integer);
var
i, k : integer;

begin
for i := 0 to t do

begin {i}
L[t− i, t] := gamma[Abs(t− i)];
for k := 0 to i− 1 do
L[t− i, t] := L[t− i, t]− L[i− k, i] ∗ L[t− k, t] ∗ L[0, k];

if i < t then
L[t− i, t] := L[t− i, t]/L[0, i];

end; {i}
end; {MuLine}
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procedure ShiftL;
var
t, j : integer;

begin
for t := 0 to q − 1 do

begin {t}
eta[t] := eta[t+ 1];
for j := 0 to t do
L[j, t] := L[j, t+ 1];

end; {t}
end; {ShiftL}

procedure FormError(i : integer);
var
j : integer;

begin
eta[i] := y[t];
for j := 1 to Min(q, i) do
eta[i] := eta[i]− L[j, i] ∗ eta[i− j];

end; {FormError}

begin {MALikelihood}

{Find the elements of the matrix Q}
for j := 0 to q do

begin {j}
gamma[j] := 0.0;
for k := 0 to q − j do
gamma[j] := gamma[j] +mu[k] ∗mu[k + j];

end; {j}

det := 1.0;
S := 0.0;

for t := 0 to q do
begin {t}
MuLine(t);
FormError(t);
det := det ∗ L[0, t];
S := S + eta[t] ∗ eta[t]/L[0, t];

end; {t}

for t := q + 1 to Tcap− 1 do
begin {t}
ShiftL;
MuLine(q);
FormError(q);
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det := det ∗ L[0, q];
S := S + eta[q] ∗ eta[q]/L[0, q];

end; {t}

varEpsilon := S/Tcap;
S := varEpsilon ∗ Exp(Ln(det)/Tcap);

end; {MALikelihood}

This procedure for evaluating the maximum-likelihood criterion function must
be used in association with a procedure for minimising a multivariate function. In
common with the procedure ARLikelihood, of (22.40) it may be used in conjunction
with the optimisation routines of Chapter 12 by embedding it in a function which
has the form of Funct(lambda, theta, pvec, n). This is to enable the value of S∗

to be passed to the optimisation procedure. The starting values for the optimi-
sation procedure, which are the initial estimates of the moving-average parame-
ters, may be generated by passing the empirical autocovariances to the procedure
MAParameters of (17.35) or to the procedure Minit of (17.39).

One might wish to ensure that the estimates of the moving-average parameters
fulfil the condition of invertibility. However, one can be assured that the procedure
MALikelihood will operate over both invertible and noninvertible regions of the
parameter space with no danger of numerical overflow. If minimising values are
found in the noninvertible region of the parameter space, then there will always
exist a corresponding set of invertible values which can be recovered by inverting
some of the roots of the polynomial µ(z) = 1 + µ1z + · · ·+ µqz

q.
An effective way of recovering the invertible parameters is to form the values of

the autocovariances γ0, . . . , γq from the available parameter values and to pass them
to the procedure MAParameters or to the procedure Minit. These procedures will
deliver the invertible values in return.

Conditional M-L Estimates of an MA Model

The conditional distribution of y given ε∗, which may be extracted from
(22.64), is

N(y|ε∗) = (2πσ2
ε)−T/2 exp

{ −1
2σ2

ε

(y −M∗ε∗)′(MM ′)−1(y −M∗ε∗)
}
.(22.75)

Once a value has been attributed to ε∗, we can find conditional maximum-likelihood
estimates of µ1, . . . , µq by determining the values which minimise the least-squares
function

S(y, ε∗) = (y −M∗ε∗)′(MM ′)−1(y −M∗ε∗).(22.76)

Setting ε∗ to its unconditional expectation E(ε∗) = 0 gives the simple criterion
of minimising the function

S∗(y) = y′(MM ′)−1y.(22.77)
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To find the minimising values, one may employ the a Gauss–Newton procedure
of the sort which has already been described fully in the previous chapter, where
strategies for avoiding the problem of non-invertibility are also discussed.

A more sophisticated way of dealing with the presample values was advocated
by Phillips [390]. His suggestion was that ε∗ might be regarded as a nuisance
parameter to be estimated in common with the moving-average parameters. It
might be supposed that, by taking more care of the presample values, the danger
of violating the conditions of invertibility, which besets the simpler conditional
least-squares estimator, will be avoided or at least mitigated.

To derive an expression for the estimator of the presample vector, the quadratic
function S(y, ε∗) of equation (22.76) is differentiated with respect to ε∗ and the
result is set to zero. The solution of the resulting first-order condition is

ε∗ =
{
M ′∗(MM ′)−1M∗

}−1
M ′∗(MM ′)−1y.(22.78)

This differs from the expression for E(ε|y) given under (22.66). Substituting this
estimate into the function S(y, ε∗) gives

S∗p(y) = y′M ′−1
[
IT −M−1M∗

{
M ′∗(MM ′)−1M∗

}−1
M ′∗M

′−1
]
M−1y.(22.79)

The criterion function of Phillips differs only marginally from the so-called uncondi-
tional least-squares function of Box and Jenkins [70] which is, in fact, the quadratic
function y′Q−1

T y. This becomes apparent when it is recognised that unconditional
least-squares function may be derived by minimising the sum of squares under
(22.72) in respect of ε. The latter sum of squares differs from S(y, ε∗) of (22.76)
only in so far as it incorporates the extra term ε′∗ε∗.

Matrix Representations of ARMA models

Consider an ARMA(p, q) model which is represented by the equation

α(L)y(t) = µ(L)ε(t),(22.80)

where α(L) = 1 + α1L+ · · ·+ αpL
p and µ(L) = 1 + µ1L+ · · ·+ µqL

q. A segment
of T values from the ARMA(p, q) model from t = 0 to t = T − 1 is comprised in
the equation

A∗y∗ +Ay = M∗ε∗ +Mε.(22.81)

The explicit forms of the various matrices in this expression have been given under
(22.4) and (22.52) in the contexts of the AR and the MA models respectively.

Equation (22.81) may be written alternatively as

Ay = Mε+ V u∗,(22.82)

where V and u∗ are respectively a T ×(p+q) matrix and a (p+q)×1 vector defined
as

V =
[
−A∗ M∗

]
and u∗ =

[
y∗
ε∗

]
.(22.83)
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The matrix V may be written alternatively as

V =
[
V1

0

]
,(22.84)

where V1 is a matrix of order r × (p+ q), with r = max(p, q).
Solving for ε and y in equation (22.82) and combining the results with the

trivial identity u∗ = Ip+qu∗ leads to the equation[
u∗

y

]
=
[
Ip+q 0
A−1V A−1M

] [
u∗

ε

]
,(22.85)

and to its inverse [
u∗

ε

]
=
[

Ip+q 0
−M−1V M−1A

] [
u∗

y

]
.(22.86)

Since the elements of ε(t) are assumed to be independently and identically dis-
tributed, it follows that ε ∼ N(0, σ2

εIT ). Also u∗ ∼ N(0, σ2
εΩ), and, consequently,

D(u∗, ε) = σ2
ε

[
Ω 0
0 IT

]
.(22.87)

It follows that the joint dispersion matrix of u∗ and y is

D(u∗, y) = σ2
ε

[
Ω ΩV ′A′−1

A−1V Ω A−1(V ΩV ′ +MM ′)A′−1

]
.(22.88)

The dispersion matrix for y is

D(y) = σ2
εA
−1(V ΩV ′ +MM ′)A′−1;(22.89)

and, using the formula of (9.12), its inverse is found to be

(22.90)

D−1(y) =
1
σ2
ε

A′M ′−1[IT −M−1V {Ω−1 + V ′(MM ′)−1V }−1V ′M ′−1]M−1A.

It is easy to verify that the matrices under (22.89) and (22.90) can be specialised to
give their AR counterparts under (22.15) and (22.16) and their MA counterparts
under (22.58) and (22.59).

Density Functions of the ARMA Model

Now let us assume that the elements of ε(t) are distributed independently
identically and normally. Then the joint distribution of u∗ and ε is

N(u∗, ε) =N(u∗)N(ε)

= (2πσ2
ε)−(p+q)/2|Ω|−1/2 exp

{ −1
2σ2

ε

(u′∗Ω
−1u∗)

}
×(2πσ2

ε)−T/2 exp
{ −1

2σ2
ε

(ε′ε)
}
.

(22.91)
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The joint distribution of u∗ and y is given by N(u∗, y) = N{u∗, ε(u∗, y)}|J |,
where ε(u∗, y) stands for the expression from (22.86) which gives ε in terms of u∗
and y, and where |J | is the Jacobian of the transformation from (ε∗, y) to (u∗, ε).
The value of the Jacobian is unity. Therefore,

N(u∗, y) =N(y|u∗)N(u∗)

= (2πσ2
ε)−T/2 exp

{ −1
2σ2

ε

(Ay∗ − V u∗)′(MM ′)−1(Ay∗ − V u∗)
}

×(2πσ2
ε)−(p+q)/2|Ω|−1/2 exp

{ −1
2σ2

ε

u′∗Ω
−1u∗

}
.

(22.92)

Using the expression for D(y) from (22.89), the marginal distribution of y may be
expressed as

N(y) = (2πσ2
ε)−T/2|QT |−1/2 exp

{ −1
2σ2

ε

y′Q−1
T y

}
= (2πσ2

ε)−T/2|QT |−1/2 exp
{ −1

2σ2
ε

y′A′(V ΩV ′ +MM ′)−1Ay
}
.

(22.93)

Exact M-L Estimator of an ARMA Model

The exact maximum-likelihood of estimates of the ARMA model may be found
by minimising the criterion function

|QT |1/T y′Q−1
T y = |V ΩV ′ +MM ′|1/T y′A′(V ΩV ′ +MM ′)−1Ay,(22.94)

or by minimising the logarithm of the function. Here the determinant on the RHS
is explained by the identity

|QT |= |A−1(V ΩV ′ +MM ′)A′−1|
= |A|−2|V ΩV ′ +MM |
= |V ΩV ′ +MM ′|,

(22.95)

where the final equality follows from the fact that |A| = 1.
The requirement is for a facility for evaluating the criterion function at an

arbitrary point in the admissible parameter space which consists of the set of
parameters fulfilling the conditions of stationarity and invertibility.

The central problem is that of evaluating the quadratic term

yQ−1
T y= y′A′(V ΩV ′ +MM ′)−1Ay

= z′L′−1D−1L−1z,
(22.96)

where z = Ay, and where the lower-triangular matrix L and the diagonal matrix
D = diag{d0, . . . , dT−1} are the Cholesky factors of

W =V ΩV ′ +MM ′

=LDL′.
(22.97)
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Here W is a symmetric matrix which has zeros below the rth subdiagonal and above
the rth supradiagonal, where r = max(p, q). Also, beyond the leading submatrix
of order r, it is identical to the matrix MM ′. It follows that L also has zeros below
the rth subdiagonal. Therefore, it is possible to compute the rows of L one at a
time, with only a small set of elements from the previous r rows held in memory.
Moreover, the contents of the matrix W , which is the subject of the decomposition,
is represented completely by the leading submatrix of order r + 1, where the final
row and column, which contain the elements of MM ′, serve to characterise the
remainder of the matrix.

The elements of η = z′L′−1 may be obtained by a simple recursion, based
on a row of the equation Lη = z, which keeps step with the process of Cholesky
decomposition and which avoids inverting the matrix L. The determinant of (22.95)
is calculated as a product of the diagonal elements of D.

The procedure for calculating the exact likelihood of an ARMA model has the
same basic structure as the procedure MALikelihood of (22.74) above. However,
In spite of the simplicity of its summary description, it is complex and extensive.
Therefore, we shall break it into parts which will become the local procedures
organised within a main procedure called ARMALikelihood. It will be necessary
to insert the code of the local procedures into the body of the main procedure at
places which are indicated by comment statements.

The greatest labour is in forming the leading submatrix of W = V ΩV ′+MM ′.
The calculation of this matrix is simplest when r = p = q. In fact, this becomes
the general case if, whenever the orders p and q are unequal, we are prepared to
supplement the autoregressive parameters α0, . . . , αp by r − p ≥ 0 zeros and the
moving-average parameters µ0, . . . , µq by r − q ≥ 0 zeros, where r = max(p, q).

When r = p = q, the matrices M∗ and M may be partitioned in the same way
as the matrices A∗ and A are partitioned under (22.7):

M∗ =
[
M1∗

0

]
, M =

[
M11 0
M21 M22

]
.(22.98)

Then, given that

σ2
εΩ =

[
D(y∗) C(y∗, ε∗)
C(ε∗, y∗) D(ε∗)

]
= σ2

ε

[
Qr ∆′

∆ Ir

]
,(22.99)

the leading submatrix of W of order r becomes

W11 =V1ΩV ′1 +M11M
′
11

=
[
−A1∗ M1∗

] [Qr ∆′

∆ Ir

] [
−A′1∗
M ′1∗

]
+M11M

′
11

=A1∗QrA
′
1∗ −M1∗∆A′1∗ −A1∗∆′M ′1∗ +M1∗M

′
1∗ +M11M

′
11.

(22.100)

It is notable that, in the case of a pure MA model, this reduces to the matrix
M1∗M

′
1∗ +M11M

′
11 which conforms with the expression under (22.58). In the case

of a pure AR model, the reduction is to a matrix A1∗QpA
′
1∗ + I which is a factor

in the expression under (22.15).
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The elements of D(y∗) = Γ = σ2
εQ and of C(ε∗, y∗) = σ2

ε∆, which are needed
in forming W11, are delivered, in the arrays gamma and delta respectively, by the
procedure ARMACovariances, which is listed under (17.98).

The following procedure generates the leading submatrix of W of order r + 1
which comprises the matrix W11 together with a final row and column which also
belong to the matrix MM ′ and which serve to characterise the remainder of W :

(22.101) procedure FormW;
var
i, j, k, t : integer;
temp, store : real;

begin {FormW}
for i := 0 to r − 1 do

for j := 0 to r − 1 do
begin {i, j}

if j >= i then
begin
w[i, j] := 0.0;
w[j, i] := 0.0;

end;

{Form M1∗∆A1∗ +A1∗∆′M ′1∗ }
store := 0.0;
for k := j to (r − 1) do

begin {k}
temp := 0.0;
for t := 0 to Min(r, k − i) do
temp := temp+mu[r − t] ∗ delta[k − t− i];

w[i, j] := w[i, j] + temp ∗ alpha[r − k + j)];
end; {k}

w[i, j] := w[i, j]− store;
w[j, i] := w[j, i]− store;

if j >= i then
begin {if j >= i}

{Form A1∗QrA
′
1∗ }

store := 0.0;
for k := j to r − 1 do

begin {k}
temp := 0.0;
for t := i to r − 1 do
temp := temp+ alpha[r − t+ i] ∗ gamma[Abs(t− k)];

store := store+ temp ∗ alpha[r − k + j];
end; {k}

w[i, j] := w[i, j] + store;
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w[j, i] := w[i, j];

{Form M1∗M
′
1∗ }

store := 0.0;
for t := Max(i, j) to r − 1 do
store := store+mu[r − t+ i] ∗mu[r − t+ j];

w[i, j] := w[i, j] + store;
w[j, i] := w[i, j];

{Form M11M
′
11 }

store := 0.0;
for t := 0 to Min(i, j) do
store := store+mu[i− t] ∗mu[j − t];

w[i, j] := w[i, j] + store;
w[j, i] := w[i, j];

end{if j >= i}
end; {i, j}

{Calculate the final row and column}
for j := 0 to r do

begin {j}
w[r, j] := 0.0;
for i := 0 to j do

begin
w[r, j] := w[r, j] +mu[i] ∗mu[r − j + i];
w[j, r] := w[r, j];

end;
end{j}

end; {FormW}

Having generated the elements of the matrix W = LDL′, we are in a position
to find the rows of the lower-triangular matrix L and the corresponding elements
of the diagonal matrix D. These are generated one at a time by the procedure
CholeskyRow which is equivalent to the procedure MuLine within MALikelihood.

(22.102) procedure CholeskyRow(t : integer);
var
j, k : integer;

begin
for j := 0 to t do

begin {j}
l[t, j] := w[t, j];
for k := 0 to j − 1 do
l[t, j] := l[t, j]− l[k, k] ∗ l[t, k] ∗ l[j, k];

if t > j then
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l[t, j] := l[t, j]/l[j, j];
end; {j}

end; {CholeskyRow}

The process of generating rows continues uniformly until the factorisation of
W11 is complete. Before generating the next row of L, which is the (r + 2)th row
indexed by t = r + 1, the first row and column, which are no longer needed in the
subsequent computations, are discarded and the remaining rows and columns are
shifted by moving every element one place up and one place to the left within the
array which stores it. Likewise, the previous prediction errors are shifted upwards
within the array eta to make space of a new value to be appended at the bottom.
Similar shifts occur for all subsequent values of t.

(22.103) procedure ShiftL;
var
t, j : integer;

begin
for t := 0 to r − 1 do

begin {t}
eta[t] := eta[t+ 1];
for j := 0 to t do
l[t, j] := l[t+ 1, j + 1]

end; {t}
end; {ShiftL}

The final subprocedure to be invoked by the main procedure is for finding the
current value of the prediction error. When t > r, the prediction error ηt is given
by the equations:

zt = yt + α1yt−1 + · · ·+ αyt−p,

ηt = zt − lt,t−1ηt−1 − · · · − lt,t−qηt−q.
(22.104)

(22.105) procedure FormError(i : integer);

var
j : integer;

begin
eta[i] := y[t];
for j := 1 to Min(p, i) do
eta[i] := eta[i] + alpha[j] ∗ y[t− j];

for j := 1 to Min(r, i) do
eta[i] := eta[i]− l[i, i− j] ∗ eta[i− j];

end; {FormError}

The body of the procedure for evaluating the likelihood of an ARMA model is
as follows:
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(22.106) procedure ARMALikelihood(var S, varEpsilon : real;
alpha,mu : vector;
y : longVector;
Tcap, p, q : integer);

var
i, t, r : integer;
det : real;
eta, gamma, delta : vector;
W,L : matrix;

{Insert FormW here}

{Insert CholeskyRow here}

{Insert ShiftL here}

{Insert FormError here}

begin {MainProcedure}

r := Max(p, q);
for i := p+ 1 to r do
alpha[i] := 0.0;

for i := q + 1 to r do
mu[i] := 0.0;

ARMACovariances(alpha,mu, gamma, delta, 1, r, r);
FormW;

S := 0.0;
det := 1.0;

for t := 0 to r do
begin {t}
CholeskyRow(t);
FormError(t);
det := det ∗ l[t, t];
S := S + eta[t] ∗ eta[t]/l[t, t];

end; {t}

for t := r + 1 to Tcap− 1 do
begin {t}
ShiftL;
CholeskyRow(r);
FormError(r);
det := det ∗ l[r, r];
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S := S + eta[r] ∗ eta[r]/l[r, r];
end; {t}

VarEpsilon := S/Tcap;
S := varEpsilon ∗ Exp(Ln(det)/Tcap);

end; {ARMALikelihood}
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CHAPTER 23

Nonparametric Estimation of
the Spectral Density Function

The topic of this chapter is the nonparametric estimation of the spectral density
function of a stationary stochastic process. The basis of the nonparametric spectral
estimates is the periodogram of a time series which has been described at length in
Chapter 14 which is devoted to the discrete Fourier transform. The periodogram
was viewed, in that context, as a device for uncovering periodic components hidden
within data series, such as the harmonic components in a record of a mechanical
vibration or the periodic components in a record of the luminosity of a pulsating
star.

The applicability of the periodogram to other kinds of data, such as socioe-
conomic data, where the regularities are of a more tenuous nature, seems, at first
sight, to be questionable; and the immediate results from applying the device often
appear to be quite incoherent. This was the experience of such pioneers as Moore
[352] in 1914, who used the periodogram to study the rainfall in the Ohio valley, and
of Beveridge [52] in 1922, who studied a long series of wheat prices from Western
Europe—see Figure 14.4. Such experiences tended to suggest that the practical
usefulness of periodogram analysis was limited.

The subsequent development of the theory of stationary stochastic processes
broadened the scope of the problems which could be treated to include stationary
series exhibiting irregular cycles; and it reaffirmed the importance of the periodo-
gram, which was recognised as the empirical counterpart of the spectral density
function of a stationary process.

The profile of the spectral density function of a stationary stochastic pro-
cess, such as an ARMA process, is expected to be smooth, whereas the profile
of a periodogram calculated from the corresponding data has a distinctly rough
or volatile appearance. Some means of smoothing the profile of the periodogram
must be applied in order to obtain an estimate which has the appearance of a
spectrum—see Figure 23.1. A substantial part of this chapter is devoted, therefore,
to the problem of smoothing.

The question arises of why one is motivated to use a nonparametric estimate
of the spectral density function when an estimated spectrum with the appropriate
properties is readily available as a product of the parameters of an ARMA model
which could be fitted to the data. However, in fitting a model, one is making a
judgment about the nature of the underlying stochastic process; and to estimate a
parametric spectrum without first examining a nonparametric version is to prejudge
the issue of how the model should be specified.
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Figure 23.1. The graph of a periodogram calculated from 245 observations on
a simulated series generated by an AR(2) process (1−1.131L+0.640L2)y(t) =
ε(t). The spectral density function belonging to the model which has generated
the data has been superimposed upon the periodogram.

The form of the parametric spectrum of an ARMA model is crucially affected
by the choice of the orders of the autoregressive and moving-average components;
and it is in helping to discern the appropriate orders that the nonparametric spectral
estimator is particularly effective. By applying varying degrees of smoothing to
the periodogram, a judgment can be made as to which of its features represent
systematic effects and which of them are purely accidental. The orders of an ARMA
model can be chosen to reflect such judgments.

The traditional way of determining the orders of an ARMA model has been by
inspecting the empirical autocovariances generated by the data series in question.
When they are defined in the appropriate manner, the periodogram ordinates and
the sequence of the empirical autocovariances bear a one-to-one relationship to each
other; and so it should follow that any judgment which is reached by inspecting
one of them can be reached just as well by inspecting the other. However, the
possibility of applying varying degrees of smoothing to the periodogram makes the
frequency-domain approach to the determination of the model orders more flexible
than the time-domain methods which rely upon an unmodified sequence of empirical
autocovariances.

The Spectrum and the Periodogram

The spectral density function or “spectrum” of a stationary stochastic process
y(t) is obtained via the discrete-time Fourier transform (DTFT) of the sequence
γ(τ) = {γτ ; τ = 0,±1,±2, . . .} of the autocovariances of the process. The spectrum,
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which may be represented by the expressions

f(ω) =
1

2π

∞∑
τ=−∞

γτe
−iωτ

=
1

2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}
,

(23.1)

is, therefore, a continuous periodic function with a period of 2π. The symme-
try condition γτ = γ−τ , which characterises the autocovariances, implies that
f(ω) = f(−ω) is an even function of ω; and, therefore, it is customary to plot the
function only over the interval [0, π]. However, in the sequel, it will be important
to remember that the function is properly defined in terms of the values which it
attains over the interval (−π, π].

In fact, any interval of length 2π will serve in defining the function, and it
is also convenient to use the interval [0, 2π), as we shall do in most of the sequel.
This proves to be the more convenient interval when we come to consider a set of
T equally spaced frequency points; for we wish to avoid splitting the set in two at
the point of zero frequency. The split is bound to be unequal if we are to avoid
including both endpoints.

An natural way of attempting to estimate the spectrum is to replace the un-
known autocovariances {γτ} by the corresponding empirical moments {cτ} calcu-
lated from the data vector [y0, y1, . . . , yT−1]. These are defined by

cτ =
1
T

T−1∑
t=τ

(yt−τ − ȳ)(yt − ȳ) if τ ≤ T − 1.(23.2)

Notice that, beyond a lag of τ = T −1, the autocovariances are not estimable, since

cT−1 =
1
T

(y0 − ȳ)(yT−1 − ȳ)(23.3)

comprises the first and the last elements of the sample. Therefore, cτ = 0 when
τ > T − 1. Thus a sample spectrum is obtained in the form of

fr(ω) =
1

2π

T−1∑
τ=1−T

cτe
−iωτ

=
1

2π

{
c0 + 2

T−1∑
τ=1

cτ cos(ωτ)
}
.

(23.4)

This may be associated with an inverse function in the form of

cτ =
∫ π

−π
fr(ω)eiωτdω.(23.5)

which maps from the continuous sample spectrum, which is defined over the real
line, to the sequence of autocovariances, which may be defined formally over the
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entire set of all positive and negative integers without regard to the fact that cτ = 0
when |τ | > T − 1. We describe such a infinite sequence as the ordinary extension
of the finite sequence {cτ ; τ = 0,±1, . . . ,±(T − 1)}, and we may denote it by c(τ).

In fact, the empirical autocovariances constitute a finite sequence, comprising
T distinct values which must be specified by enumeration. The information in the
sample spectrum can be summarised likewise by a set of T ordinates. In recovering
the autocovariances, it is appropriate to apply a discrete Fourier transform (DFT)
to a finite set of ordinates of the sample spectrum. This is instead of attempting
the process of Fourier integration which is suggested by equation (23.5).

In practice, the DFT should be applied to a sequence of 2T − 1 ordinates
corresponding to a set of equally spaced values in the frequency interval (−π, π];
and, in consequence of the symmetry of the sample spectrum, there are indeed
only T distinct values amongst these ordinates. The product of the DFT will be
the (symmetric) autocovariance sequence {c1−T , . . . , c−1, c0, c1, . . . , cT−1}, wherein
cτ = c−τ , which also comprises 2T − 1 elements that take T distinct values.

The sample spectrum is closely related to the periodogram which is defined
under (14.31) by the expression

I(ωj) = 2
{
c0 + 2

T−1∑
τ=1

cτ cos(ωjτ)
}

= 2
{
c0 +

T−1∑
τ=1

(
cτ + cT−τ

)
cos(ωjτ)

}
.

(23.6)

This stands for a periodic function of period 2π which is defined over the discrete
the set of Fourier frequency values

ωj =
2πj
T

; j = {0,±1,±2, . . .}.(23.7)

When I(ωj) is scaled by a factor of 1/(4π), its ordinates coincide with those of the
sample spectrum at the points ωj . Thus we have the identity

fr(ωj) =
1

4π
Ij .(23.8)

In fact, various scalar factors are applied to the periodogram by different
authors; and our own choice of scale has been made in view of certain physical
analogies rather than for mathematical convenience.

An alternative expression for periodogram, which uses the notation WT =
exp(−i2π/T ) which is conventionally associated with the discrete Fourier transform
(DFT), has been given, together with and expression for its Fourier inverse, under
(14.66) and (14.67):

Ij = 2
T−1∑
τ=0

c◦τ
(
W j
T

)τ
,(23.9)
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c◦τ =
1

2T

T−1∑
j=0

Ij
(
W−τT

)j
.(23.10)

Here

c◦0 = c0 and c◦τ = cτ + cT−τ(23.11)

are the so-called circular autocovariances; and these are to be regarded as elements
of a periodic function. Equations (23.9) and (23.10) define a one-to-one relationship
between the sequence of periodogram ordinates {Ij ; j = 0, . . . , T − 1}, defined on
the frequency values ωj = 2πj/T ∈ [0, 2π), and the sequence of empirical circular
autocovariances {c◦τ ; τ = 0, . . . , T − 1}; and it is notable that the ordinary auto-
covariances {cτ ; τ = 1, . . . , T − 1} defined by (23.2) are not recoverable from this
limited set of T periodogram ordinates.

As we have already asserted, in order to recover the ordinary autocovariances,
the number of frequency points at which the periodogram or the sample-spectrum
is sampled must be all but doubled. Let N = 2T − 1, and define a new set of
frequency points

ω′j =
2πj
N

; j = {0,±1,±2, . . .} with N = 2T − 1.(23.12)

Also, let WN = exp(−i2π/N) and let c̃(τ) = {c̃τ} stand for the periodic extension
of the sequence of ordinary autocovariances defined by

c̃τ =

{
cτ if |τ | ≤ T ;

c(τmodT ), otherwise.
(23.13)

Then the following one-to-one relationship may be defined between the periodogram
ordinates {I ′j ; j = 0, . . . , N − 1} at the new frequency points ω′j and the ordinary
autocovariances {c̃τ ; τ = 0, . . . , N − 1}:

I ′j = 2
N−1∑
τ=0

c̃τ
(
W j
N

)τ
,(23.14)

c̃τ =
1

2N

N−1∑
j=0

I ′j
(
W−τN

)j
.(23.15)

The inability to recover the ordinary autocovariances from a sequence of T
periodogram ordinates may be regarded as an instance of the problem of aliasing.
According to the result represented by equation (14.77), the Fourier transform of
the sampled spectrum, when the sample points are separated by intervals of 2π/T
radians, is given by

c◦(τ) =
∞∑

j=−∞
c(τ − jT ).(23.16)
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This represents a periodic function constructed from copies of the ordinary exten-
sion c(τ) of the original autocovariance function superimposed at equal intervals
separated by T time periods. At the rate of sampling in question, there is a com-
plete overlap between the elements of c(τ) and c(T − τ) for τ = 1, . . . , T − 1; and
this explains how the sequence of circular autocovariances {c◦τ = cτ + cT−τ ; τ =
1, . . . , T−1} arises. By sampling the spectrum at points separated by 2π/N radians,
where N = 2T − 1, which implies virtually doubling the sampling rate, one can
ensure that there is no overlap between the nonzero elements of c(τ) and c(N − τ).

In practice, the problem of frequency-domain aliasing can be overcome by the
crude but effective device of supplementing the data vector [y0, . . . , yT−1], from
which the autocovariances and the periodogram are calculated, by a set of T − 1
zero-valued elements. This technique, which is described as padding the vector, has
been discussed in Chapter 20.

The Expected Value of the Sample Spectrum

At first sight, the sample spectrum defined under (23.4) appears to be the
natural and appropriate estimator of the spectral density function defined under
(23.1). Apart from the replacement of the unknown autocovariances γτ by their
product-moment estimates cτ , the only other modification to equation (23.1) is the
truncation of the sum which is occasioned by the fact that cτ = 0 for τ > T − 1.

The sample autocovariances are asymptotically unbiased estimates of the pop-
ulation parameters such that lim(T → ∞)E(cτ ) = γτ ; and it is easy to show that
this convergence implies that the sample spectrum is, likewise, an asymptotically
unbiased estimator of the spectral density function. The result may be expressed
formally as follows:

(23.17) Let y(t) be a stationary stochastic process with E(yt) = 0 for all
t and with an autocovariance function {γτ ; t = 0,±1,±2, . . .} which
is absolutely summable such that

∑
τ |γτ | < ∞. Then the sample

spectrum fr(ω) is an asymptotically unbiased estimator of the spectral
density function such that lim(T →∞)E{fr(ω)} = f(ω).

Proof. The expected value of the autocovariance cτ is

E(cτ ) =
1
T

T−1∑
t=τ

E(ytyt−τ ) =
T − τ
T

γτ .(23.18)

Putting this into the expression for fr(ω) under (23.4) gives

E
{
fr(ω)

}
=
{
γ0 + 2

T−1∑
τ=1

γτ cos(ωτ)
}
− 2

T−1∑
τ=1

τ

T
γτ cos(ωτ).(23.19)

Here the term in braces on the RHS tends to the value of the spectral density
function at ω as T →∞. The remaining term obeys the inequality

2
T−1∑
τ=1

τ

T
γτ cos(ωτ) < 2

T−1∑
τ=1

τ

T
|γτ |.(23.20)
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Now, for any T and N < T , there is the further inequality

T−1∑
τ=1

τ

T
|γτ | <

N∑
τ=1

τ

T
|γτ |+

∞∑
τ=N+1

|γτ |.(23.21)

But the first term on the RHS of this inequality vanishes as T →∞, and the second
term may be made arbitrarily small by choosing N to be large enough. Thus the
second term on the RHS of (23.19) vanishes as T →∞; and the result under (23.17)
is proved.

Although the sample spectrum is an asymptotically unbiased estimator of the
spectral density function, its dispersion does not decrease as the sample size T
increases. It follows that it is not a consistent estimator. This will be demon-
strated in the following section where the limiting values of the covariances of the
periodogram ordinates are derived. However, the result can be apprehended easily
for the special case where the y(t) constitutes a sequence of random variables with
independent and identical zero-mean normal distributions.

Consider representing the ordinates of the periodogram, in the manner of
(14.29), as

I(ωj) =
T

2

(
α2
j + β2

j

)
,(23.22)

where

αj = (c′jcj)
−1c′jy =

2
T

T−1∑
t=1

yt cosωjt,(23.23)

βj = (s′jsj)
−1s′jy =

2
T

T−1∑
t=1

yt sinωjt.(23.24)

Here cj = [c0j , . . . , cT−1,j ]′ and sj = [s0j , . . . , sT−1,j ]′ represent vectors of T values
of the functions cos(ωjt) and sin(ωjt) respectively, whilst y = [y0, . . . , yT−1]′ is the
vector of the observations.

When ωj 6= 0, π, it is found that c′jcj = s′jsj = T/2. These conditions have
been recorded under (14.13). We may also recall the orthogonality conditions of
(14.12). In particular, we note that c′icj = s′isj = 0 if i 6= j and that c′isj = 0 for
all i, j.

Given a dispersion matrix for the data vector in the form of D(y) = σ2I and
assuming that E(y) = 0, it follows, in line with the familiar algebra of ordinary
least-squares regression, that

V (αj) =E
{

(c′jcj)
−1c′jyy

′cj(c′jcj)
−1
}

= (c′jcj)
−1c′jD(y)cj(c′jcj)

−1

=
2σ2

T
,

(23.25)
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that

V (βj) =E
{

(s′jsj)
−1s′jyy

′sj(s′jsj)
−1
}

= (s′jsj)
−1s′jD(y)sj(s′jsj)

−1

=
2σ2

T
,

(23.26)

and that

C(αj , βj) =E
{

(c′jcj)
−1c′jyy

′sj(s′jsj)
−1
}

= (c′jcj)
−1c′jD(y)sj(s′jsj)

−1

= 0.

(23.27)

Therefore, on the assumption that y ∼ N(0, σ2I), we find that

αj ∼ N
(

0,
2σ2

T

)
and βj ∼ N

(
0,

2σ2

T

)
(23.28)

are independently distributed normal variates, and it follows that

I(ωj) =
T

2

(
α2
j + β2

j

)
∼ σ2χ2(2).(23.29)

The expected value of a χ2(2) variate is 2 and its variance is 4; and, from the
identity of (23.8), it is deduced that, in this case, the sample spectrum is an unbiased
estimator of the spectral density function with a variance of

V {fr(ωj)} =
σ4

4π2
= f2(ωj).(23.30)

Here, the final equality corresponds to the fact that a white-noise process with a
variance of σ2 has a constant spectral density function of f(ω) = σ2/2π. Clearly,
the variance does not diminish as T increases and, therefore, the sample spectrum
fr(ω) does not provide a consistent estimator of the true spectrum.

It also follows from the orthogonality conditions affecting the vectors ci and sj
that, in the case of white-noise data which is normally distributed, the ordinates of
the periodogram will be statistically independent.

In fact, the Fourier transform which generates the coefficients αj , βj constitutes
an orthogonal transformation of the vector y which amounts to a rotation. If the
elements of this data vector are both normally distributed and mutually indepen-
dent, then the vector has a spherical distribution . The spherical property survives
the transformation. Thus it follow that the periodogram ordinates Ij , which are
compounded from the Fourier coefficients, will also be independently distributed.

The properties which we have discussed are evident in Figure 23.2 which rep-
resents the periodogram of a normal white-noise process. The volatility of the
periodogram, which contrasts markedly with the smoothness of the white-noise
spectrum, is easily accounted for at an intuitive level. For, if we recall that the
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Figure 23.2. The graph of a periodogram calculated from 245 observations
on a simulated series generated by a white-noise process. The uniform spectral
density function of the process is superimposed upon the periodogram.

periodogram has half as many ordinates as the original white-noise data series,
then we can envisage that it has inherited its volatile nature directly from the data.

A similar but a more sophisticated intuition will serve to explain the contrast
between the periodogram of an AR(2) process represented in Figure 23.1 and the
spectrum of the process which is superimposed upon it.

Asymptotic Distribution of The Periodogram

The result of (23.30) may be generalised so that it applies, in an asymptotic
sense, to any linear stochastic process. It is somewhat laborious to demonstrate this
proposition; and it is easiest to begin by finding the asymptotic form of the second-
order moments for a white-noise process, which need not be a normal process.

(23.31) Let y(t) be a white-noise process such that E(yt) = 0, V (yt) = σ2 and
E(y4

t ) = ησ4 for all t, and let I(ωj), which has E{I(ωj)} = 2σ2, be a
value of the periodogram calculated from T consecutive observations.
Then

V {I(ωj)} =
{

4T−1(η − 3)σ4 + 8σ4, if ωj = 0, or π,
4T−1(η − 3)σ4 + 4σ4, if 0 < ωj < π,

and

C
{
I(ωj), I(ωk)

}
= 4T−1(η − 3)σ4, if ωj 6= ωk.

Proof. The covariance of the spectral ordinates is given by

C
{
I(ωj), I(ωk)

}
= E

{
I(ωj)I(ωk)

}
− E

{
I(ωj)

}
E
{
I(ωk)

}
.(23.32)

705



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

Here

T

2
E
{
I(ωj)

}
=
T−1∑
s=0

T−1∑
t=0

E(ysyt)eiωj(t−s)

=Tσ2,

(23.33)

and

T 2

4
E
{
I(ωj)I(ωk)

}
=
T−1∑
q=0

T−1∑
r=0

T−1∑
s=0

T−1∑
t=0

E(yqyrysyt)eiωj(r−q)eiωk(t−s).(23.34)

To evaluate the latter, we use the result that

E(yqyrysyt) =



ησ4, if q = r = s = t,
σ4, if q = r 6= s = t,
σ4, if q = s 6= r = t,
σ4, if q = t 6= r = s,
0, otherwise.

(23.35)

Here η is a scalar which characterises the distribution of the data points. In the
case of a normal distribution, the value is η = 3.

There are, therefore, four cases to consider which correspond to the nonzero
terms in (23.34). First, there are T instances of the case where q = r = s = t, each
of which gives rise to a term in (23.34) in the form of

E(yqyrysyt)eiωj(r−q)eiωk(t−s) =E(y4
q )

= ησ4.
(23.36)

Next, the condition that (q = r) 6= (s = t) expropriates a set of terms in (23.34)
which can be written as ∑

q 6=s

∑
s 6=q

E(y2
qy

2
s) = (T 2 − T )σ4.(23.37)

Third is the condition (q = s) 6= (r = t). This gives rise to a set of terms which
can be written as{∑

q 6=r

E(y2
q )e−i(ωj+ωk)q

}{∑
r 6=q

E(y2
r)ei(ωj+ωk)r

}
.(23.38)

Finally, there is the condition (q = t) 6= (r = s). This gives rise to a set of terms
which can be written as{∑

q 6=r

E(y2
q )e−i(ωj−ωk)q

}{∑
r 6=q

E(y2
r)ei(ωj−ωk)r

}
.(23.39)
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By combining the terms, it is found that

T 2

4
E
{
I(ωj)I(ωk)

}
= T (η − 3)σ4

+σ4

(
T 2 +

∣∣∣∣ T−1∑
t=0

ei(ωj+ωk)t

∣∣∣∣2 +
∣∣∣∣ T−1∑
s=0

ei(ωj−ωk)s

∣∣∣∣2),
(23.40)

where the squared terms within the final parentheses stand for complex moduli.
Notice that both of these terms include T elements which are due to the squares of
the quadratics. To avoid counting these elements, which do not belong to (23.34),
an adjustment is made to the leading term on the RHS.

The sums of the exponentials are evaluated in view of the result that

T−1∑
t=0

eiωjt =

{
0, if ωj 6= 0 or nπ;

T, if ωj = 0 or 2nπ.
(23.41)

When ωj 6= ωk, both sums in (23.40) vanish. When ωj = ωk 6= 0 or π, then one of
the sums vanishes and the other assumes the value of T 2. When ωj = ωk = 0 or π,
then both sums assume the value of T 2. By taking account of these results, and by
subtracting T 2E{I(ωj)}E{I(ωk)}/4 = T 2σ4 from (23.40), the various expressions
under (23.31) may be derived.

At this stage, we can pause to confirm that the results which have just been
proved are, indeed, generalisations of those which were derived on the assumption
of a normally distributed white-noise process.

In the case of a normal distribution, the fourth moment is E(y4) = ησ4 = 3σ4.
Setting η = 3 in the expressions of (23.31) gives V {I(ωj)} = 4σ4 for 0 < ωj < π and
C{I(ωi, ωj)} = 0 for ωi 6= ωj . These are in accordance with the previous results.
It is also true that these two results correspond to the limiting case as T → ∞.
That is to say, the periodogram ordinates retain a finite variance as the sample size
increases and also, in the limit, they are mutually uncorrelated.

The next object is to find the values of the variances and the covariances of
the periodogram ordinates in the case where y(t) = ψ(L)ε(t) represents a linear
stochastic process. For the sake generality, and for convenience, we shall assume
that ψ(L) =

∑
j ψL

j is a two-sided moving-average operator which extends indef-
initely in both directions. Then the essential result, which relates the spectrum
fy(ω) of the process to the spectrum fε(ω) = σ2

ε/2π of the white noise, is that

fy(ω) = |ψ(ω)|2fε(ω) =
σ2
ε

2π
|ψ(ω)|2.(23.42)

In view of this relationship, we would expect the variance of the sample spec-
trum of y(t) to be equal—asymptotically, at least—to the variance of the sample
spectrum of ε(t) times a scalar factor which is due to the gain of the transfer
function ψ(ω). In order to show that this is the case, we need to show that the
relationship which exists between the periodogram ordinates, which are Iy(ωk) and
Iε(ωk), is essentially analogous to the relationship which exists between the spectral
ordinates fy(ω) and fε(ω).
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(23.43) Let y(t) = ψ(L)ε(t), where ε(t) is a white-noise process such that
E(εt) = 0, V (εt) = σ2 for all t, and where the coefficients of the oper-
ator ψ(L) are absolutely summable such that

∑∞
j=−∞ |ψj | <∞. Then

the periodogram of y(t), based on T observations, can be represented,
at the Fourier frequency ωk, by

Iy(ωk) = |ψ(ωk)|2Iε(ωk) +R(ωk),

where E{R(ωk)} → 0 as T →∞.

Proof. Using equation (14.65), we may express the ordinate of periodogram
of y(t) at the Fourier frequency ω as Iy(ω) = 2Tζy(ω)ζ∗y (ω), where ζy(ω) =
T−1

∑
t yte

−iωt. (We omit the index of the Fourier frequency ωk to simplify
the notation.) Likewise the periodogram of ε(t) is Iε(ω) = 2Tζε(ω)ζ∗ε (ω), where
ζε(ω) = T−1

∑
t εte

−iωt. Since yt =
∑
j ψjεt−j , it follows that

Tζy(ω) =
T−1∑
t=0

{ ∞∑
j=−∞

ψjεt−j

}
e−iωt

=
∞∑

j=−∞
ψje
−iωj

{ T−1∑
t=0

εt−je
−iω(t−j)

}
.

(23.44)

Here, within the braces, there is

Sj(ω) =
T−1∑
t=0

εt−je
−iω(t−j) =

T−j−1∑
t=−j

εte
−iωt

=
T−1∑
t=0

εte
−iωt + Pj(ω) = Tζε(ω) + Pj(ω),

(23.45)

where Pj(ω) is a term which arises out of the disparity between Sj(ω) and Tζε(ω)
in respect of the range of summation. Using (23.45) in equation in (23.44), and
defining ψ(ω) =

∑
j ψje

−iωj , gives

Tζy(ω) = Tψ(ω)ζε(ω) +Qj(ω).(23.46)

where

Qj(ω) =
∞∑

j=−∞
ψje
−iωjPj(ω).(23.47)

Since Iy(ω) = 2Tζy(ω)ζ∗y (ω) and Iε(ω) = 2Tζε(ω)ζ∗ε (ω), it follows that

Iy(ω) = |ψ(ω)|2Iε(ω) +Rj(ω),(23.48)
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where

1
2
Rj(ω) = Qj(ω)ζ∗ε (ω)ψ∗(ω) + ψ(ω)ζε(ω)Q∗j (ω) + T−1|Qj(ω)|2.(23.49)

It is remains to show that the term Rj(ω) has an expected value which tends to
zero asymptotically in consequence of T−1 → 0.

Therefore, consider the term Pj(ω) = Sj(ω)−Tζε(ω) which is a factor of Qj(ω).
If |j| < T , which is to say that Sj(ω) and Tζε(ω) have overlapping summations,
then Pj(ω) is a sum comprising 2|j| elements of the white-noise process ε(t) each
multiplied by a complex number of unit modulus. However, If |j| ≥ T , which is to
say that the ranges of the two summations do not overlap, then Pj(ω) is of a sum
of 2T such elements. Thus

E
{
|Pj(ω)|2

}
= 2σ2

ε min
{
|j|, T

}
and

E
{
|Qj(ω)|2

}
≤ 2σ2

ε

[∑
j

|ψj |
(

min{|j|, T}
)1/2]2

.
(23.50)

Now take any fixed positive integer N < T and consider

T−1/2
∑
j

|ψj |
(

min{|j|, T}
)1/2 ≤ T−1/2

∑
|j|≤N

|ψj ||j|1/2 +
∑
|j|>N

|ψj |.(23.51)

As T →∞, the first term on the RHS vanishes. Also, the second term can be made
arbitrarily small by making N large enough. It follows from (23.50) that

lim
T→∞

T−1E
{
|Qj(ω)|2

}
= 0,(23.52)

which indicates that the expected value of the final term on the RHS of (23.49)
tends to zero as T →∞.

Next we observe that the Cauchy–Schwarz inequality implies that

[
E
{
|Qj(ω)ζ∗ε (ω)|2

}]2 ≤ T−1E
{
|Qj(ω)|2

}
E
{
|T 1/2ζε(ω)|2

}
.(23.53)

Also, we know from (23.30) that 2E{|T 1/2ζε(ω)|2} = E{Iε(ω)} = 2σ2. It follows
that the expected values of the remaining terms of Rj(ω) tend to zero; and thus
the proposition of (23.43) is established.

The relationship of (23.43) enables us to establish the asymptotic sampling
properties of the periodogram ordinates Iy(ωj) directly from the the results regard-
ing the properties of Iε(ωj) which were given under (23.31).
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(23.54) Let y(t) = ψ(L)ε(t), where ε(t) is a white-noise process such that
E(εt) = 0, V (εt) = σ2 and E(ε4

t ) = ησ4 for all t. Let f(ω) be the
spectral density function of y(t). Then the second-order moments of
the periodogram of y(t), which is denoted by Iy(ωj) have the following
limiting values:

lim
T→∞

V {I(ωj)} =

{
2(4π)2f2(0), if ωj = 0, or π;

(4π)2f2(ωj), if 0 < ωj < π = k,

and

lim
T→∞

C
{
I(ωj), I(ωk)

}
= 0, if ωj 6= ωk.

Smoothing the Periodogram

One way of improving the properties of the estimate of the spectral ordinate
f(ωj) is to comprise within the estimator several adjacent values from the periodo-
gram. Thus we may define a smoothing estimator in the form of

fs(ωj) =
k=M−1∑
k=1−M

µkf
r(ωj−k).(23.55)

In addition to the value of the periodogram at the central point ωj , this comprises a
further M−1 adjacent values falling on either side. The set of smoothing coefficients

{µ1−M , . . . , µ−1, µ0, µ1, . . . , µM−1}(23.56)

should sum to unity as well being symmetric in the sense that µ−k = µk. They
define what is known as a spectral window.

As its stands, the formula of (23.55) appears to be defined only for the values
j = M −1, . . . , T −M . For j = 0, . . . ,M −2 and for j = T −M +1, . . . , T −1 there
are end-effects which seem to require special treatment. However, the problem
disappears when it is recognised that fr(ωj) is a periodic function with a domain
which extends indefinitely beyond the interval [0, 2π].

In order to accommodate the end effects, it is appropriate to replace the ordi-
nary convolution in equation (23.55) by a periodic convolution. For this purpose,
it is necessary define a periodic smoothing sequence to replace the finite sequence
of weights entailed in equation (23.55). Let µ(k) be the ordinary extension of
the sequence {µ1−M , . . . , µ−1, µ0, µ1, . . . , µM−1} which is obtained by appending
to that sequence an indefinite number of preceding and succeeding zeros. Then the
periodic smoothing sequence is defined by

µ̃(k) =
∞∑

j=−∞
µ(k + jT ).(23.57)
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The elements of µ̃(k), which can be specified by writing

µ̃k =


µk, for k = 0, . . . ,M − 1,
0, for k = M, . . . , T −M ,
µT−k, for k = T −M + 1, . . . , T − 1,

(23.58)

fulfil the condition of symmetry, which is µ̃k = µ̃−k for all k, and the condition of
periodicity, which is that µ̃k = µ̃T−k for all k.

In these terms, the smoothed estimator of the spectral ordinate at the frequency
ωj may be specified as

fs(ωj) =
1

4π
I(j) ∗ µ̃(j) =

1
4π

T−1∑
k=0

µ̃kI(ωj−k),(23.59)

where ∗ denotes the operation of circular convolution and where I(j) denotes the
periodogram defined over the set of the integers which are the indices of the fre-
quency points.

The estimate fs(ωj) comprises a total of 2M − 1 ordinates of the periodogram
which span an interval of Q = 4(M −1)π/T radians. This number of radians is the
so-called bandwidth of the estimator. If M increases at the same rate as T , then
Q will remain constant. This means that, in spite of the increasing sample size, we
are denied the advantage of increasing the acuity or resolution of our estimation;
so that narrow peaks in the spectrum, which have been smoothed over, may escape
detection. Conversely, if we maintain the value of M , then the size of the bandwidth
will decrease with T , and we may retain some of the disadvantages of the original
periodogram. Ideally, we should allow M to increase at a slower rate than T so
that, as M → ∞, we will also have Q → 0. This would be achieved, for example,
by making M proportional to

√
T . In fact, the object can be achieved by making

M proportional to Tλ for any λ in the open interval (0, 1).
In choosing a smoothing function for a specified value of M , one is strik-

ing a compromise between the bias of the spectral estimator and its variance. A
smoothing function which assigns equal weights to a broad band of frequencies will
produce an estimate which achieves smoothness at the expense of bias. Conversely,
a smoothing function which assigns most of the weight to a narrow band of central
frequencies will produce an estimator with a small bias but with a relatively large
variance.

There is no definitive set of smoothing coefficients which can be recommended
above all others. The best approach is to experiment with a variety of smoothing
schemes in pursuit of one which smooths the periodogram adequately while pre-
serving the features which are considered to be systematic rather than accidental.

Figure 23.3 shows an estimate of the spectral density function plotted in Figure
23.1. The remarkable accuracy of the estimate is attributable to a well-chosen set
of smoothing coefficients.

It is helpful if the choice of the smoothing coefficients can be systematised. An
approach which seems to be reasonably flexible is to adopt a generating function
in the form of

µ(z) =
1

(p+ 1)2n
(1 + z−1 + · · ·+ z−p)n(1 + z + · · ·+ zp)n(23.60)
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Figure 23.3. An estimated spectrum calculated from 245 data points. The
spectrum is calculated by smoothing the periodogram. The smoothing func-
tion is a weighted average which spans a total of 21 frequency points. The
estimated spectrum has been superimposed upon the periodogram.

which depends upon two parameters p and n. The smoothing coefficients are the
coefficients of the resulting polynomial; and they span a set of 2np + 1 frequency
points. In general, the coefficients have a bell-shaped profile and, when p = 1, they
correspond to the ordinates of a binomial distribution. Conversely, when n = 1,
the coefficients have a triangular profile.

An alternative family of smoothing functions, which includes an ordinary av-
erage of adjacent ordinates of the periodogram, is generated by the polynomial

µ(z) =
1

(2p+ 1)n
(z−p + · · ·+ z−1 + 1 + z + · · · zp)n.(23.61)

The coefficients span a total of 2pn+ 1 frequency points, as in the previous case.
A feature of such smoothing schemes is that they can be implemented either in

a single pass or in several successive applications. Thus, by setting n = 1, a basic
smoothing sequence is derived which can be applied n times in succession. After
each application, the results can be inspected so as to gain a useful impression of
how the estimate of the spectrum is evolving.

An alternative approach to smoothing the periodogram involves splitting the
sample of T points into K segments of M points each. For each segment, the
periodogram is computed. Then the average of the periodograms becomes the
spectral estimate; and the variance of the periodogram ordinates is thereby reduced
by a factor of K.

This procedure can save time, since it is more efficient to compute K short
FFTs that it is to compute one long one. One should recall that the number
of operations entailed in an FFT of T = 2g points is proportional to T log T .
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Therefore, splitting the sample into K segments is liable to reduce the time spent
in computing by a factor of logK. Splitting the sample is the appropriate way of
dealing with a long run of data which has been generated by a process which can
be relied upon to remain unchanged over the sample period.

Weighting the Autocovariance Function

An alternative approach to spectral estimation is to give differential weighting
to the estimated autocovariances comprised in the formula for the sample spectrum,
so that diminishing weights are given to the values of cτ as τ increases. This seems
reasonable, since the precision of these estimates decreases as τ increases. If the
series of weights associated with the autocovariances c0, c1, . . . , cT−1 are denoted
by m0,m1, . . . ,mT−1, then our revised estimator for the spectrum takes the form
of

fw(ω) =
1

2π

{
m0c0 + 2

T−1∑
τ=1

mτ cτ cos(ωτ )
}
.(23.62)

The series of weights define what is described as a lag window. If the weights are
zero-valued beyond wM−1, then we describe M as the truncation point.

From a theoretical perspective, weighting the autocovariance function is equiv-
alent to smoothing the periodogram. Weighting the autocovariance function is
tantamount to the modulation in the time domain of the sequence c(τ) by the
sequence m(τ). On the other hand, smoothing the periodogram is tantamount to
the frequency-domain convolution of the periodogram, which is the Fourier trans-
form of the autocovariance sequence, and the smoothing sequence, which is the
Fourier transform of the weighting sequence m(τ) which has been applied to the
autocovariances. The equivalence of the two sets of operations may be asserted
formally as follows:

(23.63) Let c◦(τ) = {c◦τ} be the empirically determined sequence of circu-
lar autocovariances and let I(j) be the periodogram. Likewise, let
m̃(τ) = {mτ} be a periodic weighting sequence and µ̃(j) = {µ̃j} be
the corresponding sequence of Fourier coefficients from the DFT of
m̃(τ). Then the following relationships prevail:

m̃τ =
1
T

∑
k

µ̃kW
−kτ ←→ µ̃k =

∑
τ

m̃τW
kτ ,

c◦τ =
1
T

∑
k

Ij
2
W−jτ ←→ Ij

2
=
∑
τ

c◦τW
jτ ;

and, on defining the (circular) convolution of µ̃(ωj) and I(ωj) to be
the sequence µ̃(ωj) ∗ I(ωj) whose generic elements is Isj =

∑
µ̃kIj−k,

we find that

c◦(τ)m̃(τ)←→ µ̃(ωj) ∗
I(ωj)

2
.
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Proof. We have ∑
k

µk
Ij−k

2
=

1
T

∑
k

µk

{∑
τ

c◦τW
(j−k)τ

}
=
∑
τ

c◦τW
jτ

{
1
T

∑
k

µkW
−kτ
}

=
∑
k

m̃τ c
◦
τW

jτ ,

(23.64)

which represents the mapping from the weighted autocovariance function to the
smoothed periodogram. The inverse mapping can be represented likewise.

The proposition of (23.63) seems to indicate that it is a matter of indifference
whether the spectrum is estimated by smoothing the periodogram or by weighting
the autocovariance function. The two approaches appear to be equivalent. In fact,
when a number of practical issues are taken into account, some firm distinctions
arise which serve to separate the approaches.

For a start, it should be recognised that, notwithstanding the features of our
formal representation of the smoothing operation in equation (23.59), it is unlikely
that the estimates of each of the spectral ordinates will be based on a weighted
average of the full set of T ordinates of the periodogram. In practice, the smoothing
function is liable to be a band-limited function comprising a set of 2M − 1 < T
elements, such as those of the finite sequence of (23.56).

The limitation in the number of nonzero elements of the smoothing function
µ(j) serves to reduce the amount of computation which is entailed in smoothing
the periodogram. Moreover, one is also inclined to limit the bandwidth of the
smoothing function in order to impose limits on the problem of leakage, which is
the tendency of the smoothing operation to disperse the power of the periodogram
over a range of neighbouring frequencies.

On the other hand, it is likely that we should wish to limit the number of
the weighted autocovariances which are subject to the cosine Fourier transform
of (23.62). In the first place, by limiting the number of nonzero elements in the
weighting function m(τ), we can to reduce burden of computing the transform.
In the second place, we are inclined to doubt the worth of the estimates of the
autocovariances at high lag values; and this also leads us to imposes a lag limit (i.e.
a time limit) on the weighting function m(τ).

Now let us recall that a time-limited function cannot possess a band-limited
transform. Then we can see that the equivalence of the two methods of spectral esti-
mation, which we have established in theory, breaks down in practice. That is to say,
we recognise that a practical estimation which entails weighting and truncating the
autocovariance function cannot be wholly equivalent to any of the alternative meth-
ods of estimation which involve the band-limited smoothing of the periodogram.

Weights and Kernel Functions

The original approach to nonparametric spectral estimation, which predated
the advent of the fast Fourier transform (FFT), was based upon the method weight-
ing the autocovariance function. The conventional presentation of the method is in
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terms of the continuous periodic function

fw(ω) =
1

2π

T−1∑
τ=1−T

mτ cτe
−iωτ ,(23.65)

which comes from applying the discrete-time Fourier transform (DTFT) to a trun-
cated and weighted sequence of autocovariances. Here it is to be assumed that
mτ = 0 for |τ | > M − 1. The DTFT of the weighting sequence {mτ} is itself a
continuous periodic function µ(ω) which is described as the smoothing kernel; and
this replaces the smoothing sequence of the previous section which resulted from
applying the discrete Fourier transform (DFT) to the weighting sequence. Thus

µ(ω) =
1

2π

∞∑
τ=−∞

mτe
−iωτ(23.66)

and

mτ =
∫ π

−π
µ(ω)eiωτ dω(23.67)

constitute a Fourier pair which bear the same relationship to each other as do
the sample spectrum defined in (23.1) and the autocovariance function defined in
(23.5).

It is desirable that the weighting function should integrate to unity over the
relevant range, and this requires us to set m0 = 1. The latter is exactly the value
by which we would expect to weight the estimated variance c0 within the formula
in (23.65) which defines the spectral estimator fw(ω).

On substituting the expression for cτ from (23.5) into (23.65), we get

fw(ω) =
1

2π

T−1∑
τ=1−T

mτ

{∫ π

−π
f(λ)eiλτdλ

}
e−iωτ

=
∫ π

−π
f(λ)

{
1

2π

T−1∑
τ=1−T

mτe
−i(ω−λ)τ

}
dλ

=
∫ π

−π
f(λ)µ(ω − λ)dλ.

(23.68)

This shows, once more, that the technique of weighting the autocovariance function
corresponds, in general, to a technique of smoothing the periodogram; albeit that, in
the present instance, the operation of smoothing employs a convolution integral as
compared with the circular convolution of the previous presentation. (See equation
(23.59), for example.)

In the classical treatment of the problem of nonparametric spectral estimation,
the interest centres on the nature of the smoothing kernel µ(ω). The object is to
find a form which minimises the spectral leakage while smoothing the profile of the
sample spectrum; and this can be achieved only by a careful choice of the weighting
function.
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Figure 23.4. The profiles of three of the window functions which may be
used to weight and to truncate a sequence of empirical autocovariances. An
estimate of the spectral density function is obtained from the Fourier transform
of the modified sequence.

The results which indicate how the choice should be made are provided by
the theory of FIR filters which has been presented already in Chapter 16. In that
context, the object was to discover how best to approximate the square-wave fre-
quency response of an ideal lowpass filter using a finite sequence of filter coefficients.
First a limited number of central coefficients were taken from the Fourier-series
representation of the square wave. Then the leakage occasioned by the truncation
of the Fourier series was minimised by applying the appropriate weights to the
coefficients.

The general effect of a weighting function was demonstrated by plotting its
Fourier transform, which is the corresponding frequency-domain kernel function.
The specific effect of applying the weights to the filter coefficients was demon-
strated by plotting the Fourier transform of the weighted coefficients, which is
also the function which results from the convolution of the kernel with the fre-
quency response of the unweighted filter. Examples are provided by Figures 16.14
to 16.18.

In the present context, our purpose is to reveal the effect of applying such
weights to the coefficients of the autocovariance function. This can be demonstrated
by plotting Fourier transform of the weighted autocovariances, which is the function
which results from the convolution of the kernel function with the sample spectrum
defined in (23.2).

Below, we record a variety of window functions together with some of the
Fourier transforms which are the corresponding kernel functions. In Figure 23.4 we
plot the profiles of the window functions, and in Figure 23.5 we plot the kernels.
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Figure 23.5. The kernel functions corresponding to three of the windows
which may be applied to a sequence of empirical autocovariances. The Fourier
transform of the modified sequence represents an estimate of the spectral
density function.

Rectangular window ←→ Dirichlet kernel: Ref. (16.72)

mτ =

{
1, if |τ | < M ;

0, if |τ | ≥M.

}
←→ µ(ω) =

sin{ω(2M − 1)/2}
sin(ω/2)

.(23.69)

Bartlett (triangular) window ←→ Fejér kernel: Ref. (16.78)

mτ =

 1− |τ |
M
, if |τ | ≤M ;

0, if |τ | ≥M.

←→ µ(ω) =
sin2{ωM/2}
M sin2(ω/2)

.(23.70)

Hanning (raised cosine) window: Ref. (16.79)

mτ =


1
2

{
1 + cos

(πτ
M

)}
, if |τ | ≤M ;

0, if |τ | ≥M.

(23.71)

Hamming window: Ref. (16.83)

mτ =

 0.54 + 0.46 cos
(πτ
M

)
, if |τ | ≤M ;

0, if |τ | ≥M.

(23.72)
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Parzen window

mτ =


1− 6

( τ
M

)2

+ 6
∣∣∣ τ
M

∣∣∣3 , if 0 ≤ |τ | ≤ M

2
;

2
(

1− τ

M

)3

, if
M

2
≤ |τ | ≤M ;

0, if |τ | ≥M.

(23.73)

The rectangular window gives rise to the Dirichlet kernel, which is seriously
affected by the problem of leakage. It also has the disadvantage that its ordinates
become negative for certain values of ω. Therefore, the spectral estimates obtained
from the truncated periodogram may also, on occasion, assume negative values,
which is in conflict with the fact that the spectral density function is a nonnegative
function—as is the sample spectrum also. The purpose of considering the rectan-
gular window together with the truncated periodogram is to provide a benchmark
against which any improvements which result from a more careful choice of the
window can be assessed.

The second proposal which bears investigating is the use of the triangular
window in generating the so-called Bartlett [36] spectral estimate. This window
gives rise to a Fejér kernel function. The coefficients of the triangular window are
formed from the convolution of two rectangular sequences of M units. It follows
that the Fejér kernel takes the form of the square of the Dirichlet kernel. Since this
kernel function is nonnegative and since the original periodogram ordinates as well
as the ordinates of the sample spectrum are nonnegative, it also follows that the
Bartlett estimate has the desirable property that its ordinates are guaranteed to be
nonnegative.

The Bartlett [36] estimate has an interesting provenance. It originates in the
idea that the spectrum may be estimated by taking the average of K sample spectra,
each of which is derived from a separate segment of M successive elements belonging
to a sample of T = KM elements.

Recall that, if the autocovariance of lag τ is calculated from a sample of T
points in the usual way, then, according to (23.18), an estimate cT ,τ of the under-
lying parameter γτ is produced which has an expected value of

E(cT ,τ ) =
T − |τ |
T

γτ .(23.74)

The expected value of an estimate obtained from a sample of M points is given
likewise by

E(cM,τ ) =
M − τ
M

γ|τ |

=
(

1− |τ |
M

)(
1− |τ |

T

)−1

E(cT ,τ ).
(23.75)

Now consider a sample spectrum calculated from a segment of M elements. The
formula would be

frM(ω) =
1

2π

M−1∑
τ=1−M

cM,τe
−iωτ .(23.76)
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But, in view of the formula of (23.75), we can see that averaging the sample spectra
obtained from K such segments would produce much the same result as would the
replacement of cM,τ in (23.76) by the quantity (1−|τ |/M)(1−|τ |/T )−1cT ,τ . In this
way, we would obtain the spectral estimator

f b(ω) =
1

2π

M−1∑
τ=1−M

(
1− |τ |

M

)(
1− |τ |

T

)−1

cτe
−iωτ ,(23.77)

where cτ is the usual estimate based on a sample of T points.
The estimate of (23.77) is the one originally proposed by Bartlett [36]; and

it provides a good illustration of how a technique of averaging (i.e. smoothing)
the ordinates of the periodogram or of the sample spectrum can be commuted
into a technique of weighting the autocovariance function. If the length M of the
segments, which is the maximum value of τ , is much smaller than the length T of
the entire sample, then the factor (1−|τ |/T )−1 can be approximated by unity, and
the weighting scheme of Bartlett assumes the simpler form given in (23.70) above.

Reference to Figure 23.5—or to Figure 16.15, equally—shows that that the
Bartlett window is still associated with a high degree of leakage. The Hanning
(or Tukey–Hanning) window fares somewhat better. However, the Hamming [237]
window of equation (23.72) is usually regarded as marginally superior for reasons
which have been stated in Chapter 16. (See, also, Blackman and Tukey [65].)
Nevertheless, it is doubtful whether the differences are perceptible in the context
of the nonparametric estimation of the spectrum.

Of the window functions listed above, the one which is undoubtedly the most
frequently employed in spectral estimation is the Parzen [384] window. This shows
very little leakage beyond the range of its principal lobe. However, for a given
value of M , the principal lobe has the widest dispersion. This is the reason why
the Parzen window is not used in signal-processing applications for reducing the
leakage of practical lowpass filters, for example. For the cost of reducing the leakage
would be an unacceptable widening of the transition band, which obscures the cut-
off point which is supposed to separate the pass band from the stop band.

The width of the transition band may be reduced by increasing the value
of M , which means increasing the span of the averaging filter; but, in practical
signal processing applications, this often signifies increasing the number of hardware
components and incurring extra costs.
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CHAPTER 24

Statistical Distributions

The purpose of this chapter and of the following chapter is to provide a brief
summary of certain salient results in statistical theory which are referred to in
the body of the text. A more thorough treatment can be found in very many
textbooks. Two texts which together are all but definitive for our purposes are
T.W. Anderson’s Introduction to Multivariate Statistical Analysis [18] and C.R.
Rao’s Linear Statistical Inference and its Applications [421].

We shall be concerned exclusively with random vectors and scalars of the con-
tinuous type which—roughly speaking—can assume a nondenumerable infinity of
values in any interval within their range. We shall restrict our attention to vari-
ates that have either the normal distribution or some associated distribution. The
justification for this comes not from any strong supposition that the data are dis-
tributed in such ways, but rather from the central limit theorem which indicates
that, for large samples at least, the distributions of our statistical estimates will be
approximately normal. We begin with the basic definitions.

Multivariate Density Functions

An n-dimensional random vector x ∈ R is an ordered set of real numbers
x = [x1, x2, . . . , xn]′ each of which represents some aspect of a statistical event. A
scalar-valued function F (x), whose value at φ = [φ1, φ2, . . . , φn]′ is the probability
of the event (x1 ≤ φ1, x2 ≤ φ2, . . . , xn ≤ φn), is called a cumulative probability
distribution function.

(24.1) If F (x) has the representation

F (x) =
∫ xn

−∞
· · ·
∫ x1

−∞
f(x1, . . . , xn)dx1 · · · dxn,

which can also be written as

F (x) =
∫ x

−∞
f(x)dx,

then it is said to be absolutely continuous; in which case f(x) =
f(x1, . . . , xn) is called a continuous probability density function.

When x has the probability density function f(x), it is said to be distributed as
f(x), and this is denoted by writing x ∼ f(x).
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The function f(x) has the following properties:

(24.2) (i) f(x) ≥ 0 for all x ∈ Rn.

(ii) If A ⊂ Rn is a set of values for x, then the probability that x is
in A is P (A) =

∫
A f(x)dx.

(iii) P (x ∈ Rn) =
∫
x
f(x)dx = 1.

Strictly speaking, the set A ⊂ Rn must be a Borel set of a sort that can
be formed by a finite or a denumerably infinite number of unions, intersections
and complements of a set of half-open intervals of the type (a < x ≤ b). The
probability P (A) can then be expressed as a sum of ordinary multiple integrals.
However, the requirement imposes no practical restrictions, since any set in Rn can
be represented as a limit of a sequence of Borel sets.

One may wish to characterise the statistical event in terms only of a subset of
the elements in x. In that case, one is interested in the marginal distribution of the
subset.

(24.3) Let the n × 1 random vector x ∼ f(x) be partitioned such that x′ =
[x1, x2]′ where x′1 = [x1, . . . , xm] and x′2 = [xm+1, . . . , xn]. Then, with
f(x) = f(x1, x2), the marginal probability density function of x1 can
be defined as

f(x1) =
∫
x2

f(x1, x2)dx2,

which can also be written as

f(x1, . . . , xm)

=
∫
xn

· · ·
∫
xm+1

f(x1, . . . , xm, xm+1, . . . , xn)dxm+1 · · · dxn.

Using the marginal probability density function, the probability that x2 will
assume a value in the set B can be expressed, without reference to the value of the
vector x1, as

P (B) =
∫
B
f(x2)dx2.

Next, we consider conditional probabilities.

(24.4) The probability of the event x1 ∈ A given the event x2 ∈ B is

P (A|B) =
P (A ∩ B)
P (B)

=

∫
B
∫
A f(x1, x2)dx1dx2∫
B f(x2)dx2

.

We also wish to define the probability P (A|x2 = φ) of the event x1 ∈ A given
that x2 has the specific value φ. This problem can be approached by finding the
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limiting value of P (A|φ < x2 ≤ φ+ ∆x2) as ∆x2 tends to zero. Defining the event
B = {x2;φ < x2 ≤ φ+ ∆x2}, it follows from the mean value theorem that

P (B) =
∫ φ+∆x2

φ

f(x2)dx2 = f(φ0)∆x2,

where φ ≤ φ0 ≤ φ+ ∆x2. Likewise, there is

P (A ∩ B) =
∫
A
f(x1, φ

∗)∆x2dx1,

where φ ≤ φ∗ ≤ φ+ ∆x2. Thus, provided that f(φ0) > 0, it follows that

P (A|B) =

∫
A f(x1, φ

∗)dx
f(φ0)

;

and the probability P (A|x2 = φ) can be defined as the limit this integral as ∆x2

tends to zero and both φ0 and φ∗ tend to φ. Thus, in general,

(24.5) If x′ = [x′1, x
′
2], then the conditional probability density function of x1

given x2 is defined as

f(x1|x2) =
f(x)
f(x2)

=
f(x1, x2)
f(x2)

.

Notice that the probability density function of x can now be written
as f(x) = f(x1|x2)f(x2) = f(x2|x1)f(x1).

We can proceed to give a definition of statistical independence.

(24.6) The vectors x1, x2 are statistically independent if their joint distribu-
tion is f(x1, x2) = f(x1)f(x2) or, equivalently, if f(x1|x2) = f(x1)
and f(x2|x1) = f(x2).

Functions of Random Vectors

Consider a random vector y ∼ g(y) which is a continuous function y = y(x) of
another random vector x ∼ f(x), and imagine that the inverse function x = x(y)
is uniquely defined. Then, if A is a statistical event defined as a set of values of x,
and if B = {y; y = y(x), x ∈ A} is the same event defined in terms of y, it follows
that ∫

A
f(x)dx=P (A)

=P (B) =
∫
B
g(y)dy.

(24.7)

When the probability density function f(x) is know, it should be straightforward
to find g(y).
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For the existence of a uniquely defined inverse transformation x = x(y), it
is necessary and sufficient that the determinant |∂x/∂y|, known as the Jacobian,
should be nonzero for all values of y; which means that it must be either strictly
positive or strictly negative. The Jacobian can be used in changing the variable
under the integral in (24.7) from x to y to give the identity∫

B
f
{
x(y)

} ∣∣∣∣∂x∂y
∣∣∣∣ dy =

∫
B
g(y)dy.

Within this expression, there are f{x(y)} ≥ 0 and g(y) ≥ 0. Thus, if |∂x/∂y| > 0,
the probability density function of y can be identified as g(y) = f{x(y)}|∂x/∂y|.
However, if |∂x/∂y| < 0, then g(y) defined in this way is no longer positive. The
recourse is to change the signs of the axes of y. Thus, in general, the probability
density function of y is defined as g(y) = f{x(y)}‖∂x/∂y‖ where ‖∂x/∂y‖ is the
absolute value of the determinant. The result may be summarised as follows:

(24.8) If x ∼ f(x) and y = y(x) is a monotonic transformation with a
uniquely defined inverse x = x(y), then y ∼ g(y) = f{x(y)}‖∂x/∂y‖,
where ‖∂x/∂y‖ is the absolute value of the determinant of the matrix
∂x/∂y of the partial derivatives of the inverse transformation.

Even when y = y(x) has no uniquely defined inverse, it is still possible to
find a probability density function g(y) by the above method provided that the
transformation is surjective, which is to say that the range of the transformation is
coextensive with the vector space within which the random vector y resides.

Imagine that x is a vector in Rn and that y is a vector in Rm where m < n.
Then the technique is to devise an invertible transformation q = q(x) where q′ =
[y′, z′] comprises, in addition to the vector y, a vector z of n−m dummy variables.
Once the probability density function of q has been found, the marginal probability
density function g(y) can be obtained by a process of integration.

Expectations

(24.9) If x ∼ f(x) is a random variable, its expected value is defined by

E(x) =
∫
x

f(x)dx.

In determining the expected value of a variable which is a function of x, one can
rely upon the probability density function of x. Thus

(24.10) If y = y(x) is a function of x ∼ f(x), and if y ∼ g(y), then

E(y) =
∫
y

g(y)dy =
∫
x

y(x)f(x)dx.

It is helpful to think of an expectations operator E which has the following prop-
erties amongst others:
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(24.11) (i) If x ≥ 0, then E(x) ≥ 0.

(ii) If c is a constant, then E(c) = c.

(iii) If c is a constant and x is a random variable, then E(cx) = cE(x).

(iv) E(x1 + x2) = E(x1) + E(x2).

(v) If x1, x2 are independent random variables, then E(x1x2) =
E(x1)E(x2).

These are readily established from the definitions (24.9) and (24.10). Taken to-
gether, the properties (iii) and (iv) imply that

E(c1x1 + c2x2) = c1E(x1) + c2Ex2),

when c1, c2 are constants. Thus the expectations operator is seen to be a linear
operator.

Moments of a Multivariate Distribution

Next, we shall define some of the more important moments of a multivariate
distribution and we shall record some of their properties.

(24.12) The expected value of the element xi of the random vector x ∼ f(x)
is defined by

E(xi) =
∫
x

xif(x)dx =
∫
xi

xif(xi)dxi,

where f(xi) is the marginal distribution of xi.

The variance of xi is defined by

V (xi) = E
[
{xi − E(xi)}2

]
=
∫
x

{xi − E(xi)}2f(x)dx =
∫
xi

{xi − E(xi)}2f(xi)dxi.

The covariance of xi and xj is defined as

C(xi, xj) = E
{

[xi − E(xi)][xj − E(xj)]
}

=
∫
x

{xi − E(xi)}{xj − E(xj)}f(x)dx

=
∫
xj

∫
xi

{xi − E(xi)}{xj − E(xj)}f(xi, xj)dxidxj ,

where f(xi, xj) is the marginal distribution of xi and xj .
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The expression for the covariance can be expanded to give C(xi, xj) = E[xixj −
E(xi)xj − E(xj)xi + E(xi)E(xj)] = E(xixj) − E(xi)E(xj). By setting xj = xi, a
similar expression is obtained for the variance V (xi) = C(xi, xi). Thus

C(xi, xj) = E(xixj)− E(xi)E(xj),

V (xi) = E(x2
i )− {E(xi)}2.

(24.13)

The property of the expectations operator given under (24.11)(i) implies that
V (xi) ≥ 0. Also, by applying the property under (24.11)(v) to the expression for
C(xi, xj), it can be deduced that

(24.14) If xi, xj are independently distributed, then C(xi, xj) = 0.

Another important result is that

V (xi + xj) = V (xi) + V (xj) + 2C(xi, xj).(24.15)

This comes from expanding the final expression in

V (xi + xj) = E
[
{(xi + xj)− E(xi + xj)}2

]
= E

[
{xi − E(xi)}+ {xj − E(xj)}2

]
.

It is convenient to assemble the expectations, variances and covariances of a
multivariate distribution into matrices.

(24.16) If x ∼ f(x) is an n× 1 random vector, then its expected value

E(x) = [E(x1), . . . , E(xn)]′

is a vector comprising the expected values of the n elements. Its dis-
persion matrix or variance–covariance matrix

D(x) = E{[x− E(x)][x− E(x)]′}

= E(xx′)− E(x)E(x′)

is a symmetric n× n matrix comprising the variances and covariances
of its elements. If x is partitioned such that x′ = [x′1, x

′
2], then the

covariance matrix

C(x1, x2) = E{[x1 − E(x1)][x2 − E(x2)]′}

= E(x1x
′
2)− E(x1)E(x′2)

is a matrix comprising the covariances of the two sets of elements.

The dispersion matrix is nonnegative definite. This is confirmed via the identity
a′D(x)a = a′{E[x−E(x)][x−E(x)]′}a = E{[a′x−E(a′x)]2} = V (a′x) ≥ 0, which
reflects the fact that variance of any scalar is nonnegative. The following are some
of the properties of the operators:
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(24.17) If x, y, z are random vectors of appropriate orders, then

(i) E(x+ y) = E(x) + E(y),

(ii) D(x+ y) = D(x) +D(y) + C(x, y) + C(y, x),

(iii) C(x+ y, z) = C(x, z) + C(y, z).

Also,

(24.18) If x, y are random vectors and A,B are matrices of appropriate orders,
then

(i) E(Ax) = AE(x),

(ii) D(Ax) = AD(x)A′,

(iii) C(Ax,By) = AC(x, y)B′.

Degenerate Random Vectors

An n-element random vector x is said to be degenerate if its values are con-
tained within a subset of Rn of Lebesgue measure zero. In particular, x is degener-
ate if it is confined to a vector subspace or an affine subspace of Rn. Let A ⊂ Rn
be the affine subspace containing the values of x, and let a ∈ A be any fixed value.
Then A− a is a vector subspace, and there exists a nonzero linear transformation
R on Rn such that R(x − a) = 0 for all x ∈ A. Clearly, if x ∈ A, then E(x) ∈ A,
and one can set a = E(x). Thus

(24.19) The random vector x ∈ Rn is degenerate if there exists a nonzero
matrix R such that R[x− E(x)] = 0 for all values of x.

An alternative characterisation of this sort of degenerate random vector, comes
from the fact that

(24.20) The condition R[x−E(x)] = 0 is equivalent to the condition RD(x) =
0.

Proof. The condition R[x − E(x)] = 0 implies E{R[x − E(x)][x − E(x)]′R′} =
RD(x)R′ = 0 or, equivalently, that RD(x) = 0. Conversely, if RD(x) = 0, then
RD(x)R′ = D{R[x− E(x)]} = 0. But, by definition, E{R[x− E(x)]} = 0, so this
implies R[x− E(x)] = 0 with a probability of 1.

The minimal vector subspace A− E(x) = S ⊂ Rn containing ε = x− E(x) is
called the support of ε. If dim(S) = q, a matrix R can be found with null(R) = q
and with a null space N (R) = S which is identical to the support of ε. It follows
from (24.20) that this null space will also be identical to the manifoldM{D(x)} of
the dispersion matrix of x. Thus

(24.21) If S is the minimal vector subspace containing ε = x − E(x), and if
D(x) = Q, then S = M(Q) and, for every ε, there is some vector λ
such that ε = Qλ.

729



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

A useful way of visualising the degenerate random vector x with E(x) = µ and
D(x) = Q is to imagine that it is formed as x = Lη+ µ, where η has E(η) = 0 and
D(η) = I, and L is an n× q matrix such that LL′ = Q. To demonstrate that x =
µ+ ε can always be expressed in this form, let T be a nonsingular matrix such that

TQT ′ =
[
Iq 0
0 0

]
.

On partitioning Tx to conform with this matrix, we get[
T1x
T2x

]
=
[
T1µ
T2µ

]
+
[
η
0

]
,

where η ∼ (0, Iq). Now define [L,M ] = T−1. Then x = [L,M ]Tx =
LT1µ+MT2µ+ Lη = Lη + µ, or simply x = Lη + µ, as is required.

Finally, it should be recognised that a degenerate random vector has no density
function in the ordinary meaning of this term. This is because the probability
density is zero everywhere in Rn except over a set A which, having a measure of
zero, is of negligible extent.

The Multivariate Normal Distribution

The n× 1 random vector x is normally distributed with a mean E(x) = µ and
a dispersion matrix D(x) = Σ if its probability density function is

N(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp
{
−1

2 (x− µ)′Σ−1(x− µ)
}
.(24.22)

It is understood that x is nondegenerate with rank(Σ) = n and |Σ| 6= 0. To denote
that x has this distribution, we can write x ∼ N(µ,Σ). We shall demonstrate two
notable features of the normal distribution. The first feature is that the conditional
and marginal distributions associated with a normally distributed vector are also
normal. The second is that any linear function of a normally distributed vector is
itself normally distributed. We shall base our arguments on two fundamental facts.
The first fact is that

(24.23) If x ∼ N(µ,Σ) and if y = A(x − b), where A is nonsingular, then
y ∼ N{A(µ− b), AΣA′}.

This may be illustrated by considering the case where b = 0. Then, according to
the result in (24.8), y has the distribution

N(A−1y;µ,Σ)‖∂x/∂y‖

= (2π)−n/2|Σ|−1/2 exp
{
− 1

2 (A−1y − µ)′Σ−1(A−1y − µ)
}
‖A−1‖

= (2π)−n/2|AΣA′|−1/2 exp
{
− 1

2 (y −Aµ)′(AΣA′)−1(y −Aµ)
}

;

(24.24)

so, clearly, y ∼ N(Aµ,AΣA′).
The second of the fundamental facts is that
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(24.25) If x ∼ N(µ,Σ) can be written in partitioned form as[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 0
0 Σ11

])
,

then x1 ∼ N(µ1,Σ11) and x2 ∼ N(µ2,Σ22) are independently dis-
tributed normal variates.

This can be seen by considering the quadratic form

(x− µ)′Σ−1(x− µ) = (x1 − µ1)′Σ−1
11 (x1 − µ1) + (x2 − µ2)′Σ−1

22 (x2 − µ2)

which arises in this particular case. Substituting the RHS into the expression for
N(x;µ,Σ) in (24.22) and using |Σ| = |Σ11||Σ22|, gives

N(x;µ,Σ) = (2π)−m/2|Σ11|−1/2 exp
{
−1

2 (x1 − µ1)′Σ−1
11 (x1 − µ1)

}
×(2π)(m−n)/2|Σ22|−1/2 exp

{
− 1

2 (x2 − µ2)′Σ−1
22 (x2 − µ2)

}
= N(x1;µ1,Σ1)N(x2;µ2,Σ22).

The latter can only be the product of the marginal distributions of x1 and x2, which
proves that these vectors are independently distributed.

The essential feature of the result is that

(24.26) If x1 and x2 are normally distributed with C(x1, x2) = 0, then they
are mutually independent.

A zero covariance does not generally imply statistical independence.
Even when x1, x2 are not independently distributed, their marginal distribu-

tions are still formed in the same way from the appropriate components of µ and
Σ. This is entailed in the first of our two main results which is that

(24.27) If x ∼ N(µ,Σ) is partitioned as[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ11

])
,

then the marginal distribution of x1 is N(µ1,Σ11) and the conditional
distribution of x2 given x1 is

N(x2|x1;µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22 − Σ21Σ−1

11 Σ12).

Proof. Consider a nonsingular transformation[
y1

y2

]
=
[
I 0
F I

] [
x1

x2

]
,
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such that C(y2, y1) = C(Fx1 + x2, x1) = FD(x1) + C(x2, x1) = 0. Writing this
condition as FΣ11 + Σ21 = 0 gives F = −Σ21Σ−1

11 . It follows that

E

[
y1

y2

]
=
[

µ1

µ2 − Σ21Σ−1
11 µ1

]
;

and, since D(y1) = Σ11, C(y1, y2) = 0 and

D(y2) = D(Fx1 + x2)

= FD(x1)F ′ +D(x2) + FC(x1, x2) + C(x2, x1)F ′

= Σ21Σ−1
11 Σ11Σ−1

11 Σ12 + Σ22 − Σ21Σ−1
11 Σ12 − Σ21Σ−1

11 Σ12

= Σ22 − Σ21Σ−1
11 Σ12,

it also follows that

D

[
y1

y2

]
= D

[
Σ11 0
0 Σ22 − Σ21Σ−1

11 Σ12

]
.

Therefore, according to (24.25), the joint density function of y1, y2 can be written
as

N(y1;µ1,Σ11)N(y2;µ2 − Σ21Σ−1
11 µ1,Σ22 − Σ21Σ−1

11 Σ12).

Integrating with respect to y2 gives the marginal distribution of x1 = y1 as
N(y1;µ1,Σ11).

Now consider the inverse transformation x = x(y). The Jacobian of this trans-
formation is unity. Thus, an expression for N(x;µ,Σ), is obtained by writing
y2 = x2 − Σ21Σ−1

11 x1 and y1 = x1 in the expression for the joint distribution of
y1, y2. This gives

N(x;µ,Σ) = N(x1;µ1,Σ11)

×N(x2 − Σ21Σ−1
11 Σ12x1;µ2 − Σ21Σ−1

11 µ1,Σ22 − Σ21Σ−1
11 Σ12),

which is the product of the marginal distribution of x1 and the conditional distri-
bution N(x2|x1;µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12) of x2 given x1.

The linear function E(x2|x1) = µ2 + Σ21Σ−1
11 (x1 − µ1), which defines the ex-

pected value of x2 for given values of x1, is described as the regression of x2 on x1.
The matrix Σ21Σ−1

11 is the matrix of the regression coefficients.
Now that the general the form of the marginal distribution has been estab-

lished, it can be shown that any nondegenerate random vector which represents a
linear function of a normal vector is itself normally distributed. To this end we
prove that

(24.28) If x ∼ N(µ,Σ) and y = B(x− b) where null(B′) = 0 or, equivalently,
B has full row rank, then y ∼ N(B(µ− b), BΣB′).
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Proof. If B has full row rank, then there exists a nonsingular matrix A′ = [B′, C ′]
such that

q =
[
y
z

]
=
[
B
C

]
(x− b).

Then q has the distribution N(q;A(µ− b), AΣA′) where

A(µ− b) =
[
B(µ− b)
C(µ− b)

]
, AΣA′ =

[
BΣB′ BΣC ′

CΣB′ CΣC ′

]
.

It follows from (24.27) that y has the marginal distribution

N{B(µ− b), BΣB′}.

It is desirable to have a theory which applies to all linear transformations
of a normal vector without restriction. In order to generalise the theory to that
extent, a definition of a normal vector is required which includes the degenerate
case. Therefore we shall say that

(24.29) A vector x with E(x) = µ and D(x) = Q = LL′, where Q may be
singular, has a normal distribution if it can be expressed as x = Lη+µ
where η ∼ N(0, I).

Then, regardless of the rank of Q, the normality of x may be expressed by writing
x ∼ N(µ,Q). Now it can be asserted, quite generally, that

(24.30) If x ∼ N(µ,Σ) is an n× 1 random vector and if y = B(x− b), where
B is any q × n matrix, then y ∼ N(B(µ− b), BΣB′).

All that needs to be demonstrated, in order to justify this statement, is that y
can be written in the form y = Nη + p where η ∼ N(0, I) and p = E(y). This
is clearly so, for x can be written as x = Lη + µ where LL′ = Σ, whether or
not it is degenerate, whence y = BLη + B(µ − b) = Nη + p with N = BL and
p = B(µ− b) = E(y).

Distributions Associated with the Normal Distribution

(24.31) Let η ∼ N(0, I) be an n × 1 vector of independently and identically
distributed normal variates ηi ∼ N(0, 1); i = 1, . . . , n. Then η′η has a
chi-square distribution of n degrees of freedom denoted by χ2(n).

The cumulative chi-square distribution is tabulated in most statistics textbooks;
typically for degrees of freedom from n = 1 to n = 30. We shall not bother with
the formula for the density function; but we may note that, if w ∼ χ2(n), then
E(w) = n and V (w) = 2n.
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(24.32) Let x ∼ N(0, 1) be a standard normal variate, and let w ∼ χ2(n) be a
chi-square variate of n degrees of freedom. Then the ratio t = x/

√
w/n

has a t distribution of n degrees of freedom denoted by t(n).

The t distribution, which is perhaps the most important of the sampling distribu-
tions, is also extensively tabulated. Again, we shall not give the formula for the
density function; but we may note that the distribution is symmetrical and that
E(t) = 0 and V (t) = n/(n − 2). The distribution t(n) approaches the standard
normal N(0, 1) as n tends to infinity. This results from the fact that, as n tends
to infinity, the distribution of the denominator in the ratio defining the t variate
becomes increasingly concentrated around the value of unity, with the effect that
the variate is dominated by its numerator. Finally,

(24.33) Let w1 ∼ χ2(n) and w2 ∼ χ2(m) be independently distributed chi-
square variates of n and m degrees of freedom respectively. Then
F = {(w1/n)/(w2/m)} has an F distribution of n and m degrees of
freedom denoted by F (n,m).

We may record that E(F ) = m/(m − 2) and V (F ) = 2m2[1 + (m − 2)/n]/(m −
2)2(m− 4).

It should be recognised that

(24.34) If t ∼ t(n), then t2 ∼ F (1, n).

This follows from (24.33) which indicates that t2 = {(x2/1)/(w/n)}, where w ∼
χ2(n) and x2 ∼ χ2(1), since x ∼ N(0, 1).

Quadratic Functions of Normal Vectors

Next, we shall establish a number of specialised results concerning quadratic
functions of normally distributed vectors. The standard notation for the dispersion
of the random vector ε now becomes D(ε) = Q. When it is important to know that
the random vector ε ∼ N(0, Q) has the order p× 1, we shall write ε ∼ Np(0, Q).

We begin with some specialised results concerning the standard normal distri-
bution N(η; 0, I).

(24.35) If η ∼ N(0, I) and C is an orthonormal matrix such that C ′C = CC ′ =
I, then C ′η ∼ N(0, I).

This is a straightforward specialisation of the basic result in (24.23). More generally,

(24.36) If η ∼ Nn(0, I) is an n×1 vector and C is an n×r matrix of orthonormal
vectors, where r ≤ n, such that C ′C = Ir, then C ′η ∼ Nr(0, I).

This is a specialisation of the more general result under (24.28). Occasionally, it is
necessary to transform a nondegenerate vector ε ∼ N(0, Q) to a standard normal
vector.
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(24.37) Let ε ∼ N(0, Q), where null(Q) = 0. Then there exists a nonsingular
matrix T such that T ′T = Q−1, TQT ′ = I, and it follows that Tε ∼
N(0, I).

This result can be used immediately to prove the first result concerning
quadratic forms:

(24.38) If ε ∼ Nn(0, Q) and Q−1 exists, then ε′Q−1ε ∼ χ2(n).

This follows since, if T is a matrix such that T ′T = Q, TQT ′ = I, then η = Tε ∼
Nn(0, I); whence, from (24.31), it follows that η′η = ε′T ′Tε = ε′Q−1ε ∼ χ2(n).

This result shows how a chi-square variate can be formed from a normally
distributed vector by standardising it and then forming the inner product. The
next result shows that, given a standard normal vector, there are a limited variety
of ways in which a chi-square variate can be formed.

(24.39) If η ∼ Nn(0, I), then η′Pη ∼ χ2(p) when P is symmetric if and only
if P = P 2 and rank(P ) = p.

Proof. If P is symmetric and idempotent such that P = P ′ = P 2, and if rank(P ) =
p, then there exists a matrix C, comprising p orthonormal vectors, such that CC ′ =
P and C ′C = Ip. Thus, η′Pη = η′CC ′η = z′z, where z = C ′η ∼ Np(0, I), according
to (24.35), which implies η′Pη = z′z ∼ χ2(p).

Conversely, if P is a symmetric matrix, then there exists an orthonormal matrix
C, comprising n vectors, such that C ′PC = Λ is a diagonal matrix of the character-
istic roots of P . Now, since C ′C = CC ′ = I, it follows that η′Pη = η′CC ′PCC ′η =
η′CΛC ′η = z′Λz, where z = C ′η ∼ Nn(0, I). Hence η′Pη = z′Λz ∼ χ2(p) only if
the diagonal matrix comprises p units and T − p zeros on the diagonal and zeros
elsewhere. This implies that rank(P ) = p and Λ = Λ2. Furthermore, C ′PC = Λ
implies P = CΛC ′. Hence P 2 = CΛC ′CΛC ′ = CΛ2C ′ = CΛC = P , so P must
also be idempotent.

The only n × n idempotent matrix of rank n is the identity matrix. Thus it
follows, as a corollary of (24.39), that, if η ∼ Nn(0, I), then η′Pη ∼ χ2(n) if and
only if P = I.

The result (24.39) may be used to prove a more general result concerning the
formation of chi-square variates from normal vectors.

(24.40) Let ε ∼ Nn(0, Q), where Q may be singular. Then, when A is symmet-
ric, ε′Aε ∼ χ2(p) if and only if QAQAQ = QAQ and rank(QAQ) = p.

Proof. Let Q = LL′ with null(L) = 0, so that ε = Lη where η ∼ N(0, I).
Then, by the previous theorem, η′L′ALη ∼ χ2(p) if and only if (L′AL)2 = L′AL
and rank(L′AL) = p. It must be shown that these two conditions are equivalent
to QAQAQ = QAQ and rank(QAQ) = p respectively. Premultiplying the equa-
tion (L′AL)2 = L′AL by L and postmultiplying it by L′ gives LL′ALL′ALL′ =
QAQAQ = LL′ALL′ = QAQ.
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Now the condition null(L) = 0 implies that there exist matrices LL and L′R

such that LLL = I and L′L′R = I. Therefore the equation QAQAQ = QAQ can
be premultiplied and postmultiplied by such matrices to obtain LLQAQAQL′R =
L′ALL′AL = (L′AL)2 = LLQAQLR = L′AL. Thus the first equivalence is estab-
lished. To establish the second equivalence, it is argued that null(L) = 0 implies
rank(QAQ) = rank(LL′ALL′) = rank(L′AL).

A straightforward corollary of the result (24.40) which is also an immediate
generalisation of (24.38) is that

(24.41) If ε ∼ Nn(0, Q), then ε′Aε ∼ χ2(q), where q = rank(Q) and A is a
generalised inverse of Q such that QAQ = Q.

This follows because, the condition QAQ = Q implies that QAQAQ = QAQ and
rank(QAQ) = rank(Q).

The Decomposition of a Chi-square Variate

We have shown that, given any kind of normally distributed vector in Rn, we
can construct a quadratic form which is distributed as a chi-square variate. We
shall now show that this chi-square variate can be decomposed, in turn, into a sum
of statistically independent chi-square variates of lesser orders.

Associated with the decomposition of the chi-square variate is a parallel decom-
position of the normal vector into a sum of independently distributed component
vectors residing in virtually disjoint subspaces of Rn. Each component of the de-
composed chi-square variate can be expressed as a quadratic form in one of these
components of the normal vector. The algebraic details of these decompositions
depend upon the specification of the distribution of the normal vector. We shall
deal successively with the standard normal vector η ∼ N(0, I), and a nondegener-
ate normal vector ε ∼ N(0, Q). The results can also be extended to the case of a
degenerate normal vector (see Pollock [397]).

Let us begin by considering the transformation of the standard normal vector
into k mutually orthogonal vectors. Our purpose is to show that the ordinary
inner products of these vectors constitute a set of mutually independent chi-square
variates. The transformation of η into the k vectors P1η, . . . , Pkη is effected by
using a set of symmetric idempotent matrices P1, . . . , Pk with the properties that
Pi = P 2

i and PiPj = 0. The condition Pi = P 2
i implies that the matrices are

projectors, and the condition PiPj = 0 implies that R(Pi) ⊥ R(Pj), which means
that every vector in the range space of Pi is orthogonal to every vector in the range
space of Pj . To understand the latter, consider any two vectors x, y ∈ Rn. Then
x′PiPjy = x′P ′iPjy = 0, so that Pix ⊥ Pjy. The condition PiPj = 0 also implies
that R(Pi)∩R(Pj) = 0, so that R(P1)⊕· · ·⊕R(Pk) = 0 is a direct sum of virtually
disjoint subspaces.

ln proving the theorem, we shall make use of the following result.

(24.42) Let P1, . . . , Pk be a set of symmetric idempotent matrices such that
Pi = P 2

i and PiPj = 0 when i 6= j. Then there exists a partitioned
matrix of orthonormal vectors C = [C1, . . . , Ck] such that CiC ′i = Pi
and C ′iCj = 0 when i 6= j.
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Proof. Let Ci be an orthonormal matrix whose vectors constitute a basis of R(Pi).
Then CiC

′
i = Pi satisfies the conditions P ′i = Pi = P 2

i . Also, since PiPj = 0, it
follows that C ′iCj = 0. For, if null(Cj) = 0 and null(Cj) = 0, then rank(C ′iCj) =
rank(CiC ′iCjC

′
j) = rank(PiPj) = 0 or, equivalently, C ′iCj = 0.

There are, in fact, several of alternative ways of characterising the set of pro-
jectors P1, . . . , Pk. To begin with,

(24.43) Let C = [C1, . . . , Ck] be a matrix of orthonormal vectors such that
C ′iCj = 0 when i 6= j. Then C ′C = I, and CC ′ = C1C

′
1 + · · ·+ CkC

′
k

is a sum of symmetric idempotent matrices. Denoting CC ′ = P and
CiC

′
i = Pi, we have

(a) P 2
i = Pi,

(b) PiPj = 0,

(c) P 2 = P ,

(d) rank(P ) =
∑k
i=1 rank(Pi).

All of this is easily confirmed. The alternative characterisations arise from the
following result:

(24.44) Given condition (c), conditions (a), (b), and (d) of (24.43) are equiv-
alent. Also conditions (a), (b) together imply condition (c).

Proof. (i) The conditions (c), (d) imply the conditions (a), (b): with P = P1 +
· · · + Pk, (d) implies that R(P ) = R(P1) ⊕ · · · ⊕ (Pk) is a direct sum of virtually
disjoint subspaces. (c) implies that y = Py if y ∈ R(P ). Consider y = Pjx ∈ R(P ).
Then Pjx = PPjx = (

∑
Pi)Pjx. But the range spaces of P1, . . . , Pk are virtually

disjoint, so this implies that PiPjx = 0 and P 2
j x = Pjx for all x, or PiPj = 0,

P 2
i = Pi.

(ii) The conditions (c), (b) imply the condition (a): (b) implies PPi =
(
∑
Pj)Pi = P 2

i . Let λ and x be any latent root and vector of Pi such that
λx = Pix. Then λPx = PPix = P 2

i x = λPix. Cancelling λ from λPx = λPix
gives Px = Pix = λx, so λ and x are also a characteristic root and vector of P .
Now Pi = P 2

i if and only if Pix = λx implies λ = 0 or 1. But, by (c), P = P 2, so
Px = λx implies λ = 0 or 1; hence Pix = λx implies P 2

i = Pi.
(iii) The conditions (c), (a) imply the condition (d): (a) implies rank(Pi) =

trace(Pi) and (c) implies rank(P ) = trace(P ); hence trace(P ) = trace(
∑
Pi) =∑

{trace(Pi)} implies rank(P ) =
∑

rank(Pi).
We have shown that (c), (d) =⇒ (b), that (c), (b) =⇒(a) and that (c), (a) =⇒

(d). Thus, given (c), we have (d) =⇒ (b) =⇒(a) =⇒(d); so the conditions (a), (b),
(d) are equivalent.

(iv) Conditions (a), (b) imply (c): with P =
∑
Pi, (a) implies P 2 =

∑
P 2
i +∑

i 6=j PiPj =
∑
Pi +

∑
i6=j PiPj , whence (b) implies P 2 =

∑
P 2
i =

∑
Pi = P .
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An alternative and logically equivalent way of stating the theorem in (24.44) is
to say that any two of the conditions (a), (b), (c) in (24.43) imply all four conditions
(a), (b), (c), (d), and the conditions (c), (b) together imply the conditions (a), (b).

These equivalences amongst sets of conditions provide us with a number of
alternative ways of stating our basic theorem concerning the formation of a set
of mutually independent chi-square variates from the standard normal vector η ∼
N(0, I). Our preferred way of stating the theorem, which is known as Cochran’s
theorem, is as follows:

(24.45) Let η ∼ N(0, I), and let P =
∑
Pi be a sum of k symmetric matrices

with rank(P ) = r and rank(Pi) = ri such that Pi = P 2
i and PiPj = 0

when i 6= j. Then η′Piη ∼ χ2(ri); i = 1, . . . , k are independent chi-
square variates such that

∑
η′Piη = η′Pη ∼ χ2(r) with r =

∑
ri.

Proof. If the conditions of the theorem are satisfied, then there exists a partitioned
n× r matrix of orthonormal vectors C = [C1, . . . , Ck] such that C ′C = I, C ′iCj = 0
and CiC

′
i = Pi. If η ∼ Nn(0, I), then C ′η ∼ Nr(0, I); and this can be written as

C ′η =


C ′1η
C ′2η

...
C ′kη

 ∼ Nr



0
0
...
0

 ,

Ir1 0 . . . 0
0 Ir2 . . . 0
...

...
...

0 0 . . . Irk


 ,

wherein Ciη ∼ Nri(0, I) for i = 1, . . . , k are mutually independent standard normal
variates. Thus η′CC ′η ∼ χ2(r) is a chi-square variate and also η′CiC

′
iη ∼ χ2(ri)

for i = 1, . . . , k constitute a set of mutually independent chi-square variates. Now
observe that η′CC ′η = η′[C1C

′
1+· · ·+CkC ′k]η =

∑
η′CiC

′
iη. Thus, using Pi = CiC

′
i

and the notation P = CC ′, we have
∑
η′Piη = η′Pη ∼ χ2(r). Finally, it is clear

from the construction that r =
∑
ri.

In fact, the conditions Pi = P 2
i and PiPj = 0 are both necessary and sufficient

for the result. For, according to (24.39), η′Piη is a chi-square if and only if Pi =
P 2
i and, according to a theorem which has not been proved, η′Piη and η′Pjη are

independent if and only if PiPj = 0. The theorem in (24.45) was originally proved
by Cochran for the case where P = In, with the implicit condition P = P 2 and the
condition

∑
rank(Pi) = n replacing Pi = P 2

i and PiPj = 0.
The theorem of (24.45) can be generalised readily to apply to the case of a

nondegenerate random vector ε ∼ N(0, Q).

(24.46) Let ε ∼ N(0, Q), and let P =
∑
Pi be a sum of k Q−1-symmetric

matrices, such that (Q−1Pi)′ = Q−1Pi for all i, with rank(P ) = r and
rank(Pj) = ri, such that Pi = P 2

i and PiPj = 0. Then ε′PiQ
−1Piε =

ε′Q−1Piε ∼ χ2(ri); i = 1, . . . , k are independent chi-square variates,
such that

∑
ε′P ′iQ

−1Piε = ε′P ′Q−1Pε = ε′Q−1Pε ∼ χ2(r) with r =∑
ri.

Proof. Since Pi is Q−1-symmetric, it follows that Q−1Pi = P ′iQ
−1. With Pi = P 2

i ,
it follows that P ′iQ

−1Pi = Q−1PiPi = Q−1Pi, which explains the alternative ways
of writing the variates.
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Now let T be a nonsingular matrix such that TQT ′ = I, T ′T = Q−1. Then
TPiT

−1, TPjT−1 are symmetric matrices such that (TPiT−1)2 = (TPiT−1) and
(TPiT−1)(TPjT−1) = 0. It follows that

∑
TPiT

−1 = T (
∑
Pi)T−1 = TPT−1 is

a sum of symmetric matrices obeying the conditions of the theorem (24.45). Next
consider that ε ∼ N(0, Q) implies ε = T−1η where η ∼ N(0, I). Therefore it follows
from the theorem that ε′P ′iQ

−1Piε = η′T ′−1P ′iT
′TPiT

−1η = η′(TPiT−1)2η ∼
χ2(ri); i = 1, . . . , k are independent chi-square variates.

Finally, PiPj = 0 gives
∑
P ′iQ

−1Pi = (
∑
Pi)′Q−1(

∑
Pi) = P ′Q−1P . Also∑

P ′iQ
−1Pi =

∑
Q−1Pi = Q−1P . Thus the two expressions for the sum of the

variates are justified.

Limit Theorems

Consider making repeated measurements of some quantity where each mea-
surement is beset by an unknown error. To estimate the quantity, we can form the
average of the measurements. Under a wide variety of conditions concerning the
propagation of the errors, we are liable to find that the average converges upon the
true value of the quantity.

To illustrate this convergence, let us imagine that each error is propagated
independently with a zero expected value and a finite variance. Then there is an
upper bound on the probability that the error will exceed a certain size. In the
process of averaging the measurements, these bounds are transmuted into upper
bounds on the probability of finite deviations of the average from the true value
of the unknown quantity; and, as the number of measurements comprised in the
average increases indefinitely, this bound tends to zero.

We shall demonstrate this result mathematically. Let {xt; t = 1, . . . , T, . . .}
be a sequence of measurements, and let µ be the unknown quantity. Then the
errors are xt − µ and, by our assumptions, E(xt − µ) = 0 and E{(xt − µ)2} = σ2

t .
Equivalently, E(xt) = µ and V (xt) = σ2

t .
We begin by establishing an upper bound for the probability P (|xt − µ| > ε).

Let g(x) be a nonnegative function of x ∼ f(x), and let S = {x; g(x) > k} be the
set of all values of x for which g(x) exceeds a certain constant. Then

E{g(x)}=
∫
x

g(x)f(x)dx

≥
∫
S
kf(x)dx = kP{g(x) > k};

(24.47)

and it follows that

(24.48) If g(x) is a nonnegative function of a random variable x, then, for
every k > 0, we have P{g(x) > k} ≤ E{g(x)}/k.

This result is know as Chebyshev’s inequality. Now let g(xt) = |xt − µ|2. Then
E{g(xt)} = V (xt) = σ2

t and, setting k = ε2, we have P (|xt − µ|2 > ε2) ≤ σ2
t /ε

2.
Thus
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(24.49) If xt ∼ f(xt) has E(xt) = µ and V (xt) = σ2
t , then P (|xt − µ| > ε) ≤

σ2
t /ε

2;

and this gives an upper bound on the probability that an error will exceed a certain
magnitude.

Now consider the average x̄ =
∑
xt/T . Since the errors are independently dis-

tributed, we have V (x̄) =
∑
V (xt)/T 2 =

∑
σ2
t /T

2. Also E(x̄) = µ. On replacing
xt, E(xt) and V (xt) in the inequality in (24.49) by x̄T , E(x̄T ) and V (xT ), we get

P (|x̄T − µ| > ε) ≤
∑

σ2
t /(εT )2;(24.50)

and, on taking limits, we find that

lim(T →∞)P (|x̄T − µ| > ε) = 0.(24.51)

Thus, in the limit, the probability that x̄ diverges from µ by any finite quantity is
zero. We have proved a version of a fundamental limit theorem known as the law
of large numbers.

Although the limiting distribution of x̄ is degenerate, we still wish to know how
x̄ is distributed in large samples. If we are prepared to make specific assumptions
about the distributions of the elements xt, then we may be able to derive the distri-
bution of x̄. Unfortunately, the problem is liable to prove intractable unless we can
assume that the elements are normally distributed. However, what is remarkable
is that, given that the elements are independent, and provided that their sizes are
constrained by the condition that

lim(T →∞)P
(∣∣∣(xt − µ)

/ T∑
t=1

σ2
t

∣∣∣ > ε
)

= 0,(24.52)

the distribution of x̄ tends to the normal distribution N(µ,
∑
σ2
t /T

2). This result,
which we shall prove in a restricted form, is known as the central limit theorem.

The law of large numbers and the central limit theorem provide the basis for
determining the asymptotic properties of statistical estimators. In demonstrating
these asymptotic properties, we are usually faced with a number of subsidiary
complications. To prove the central limit theorem and to dispose properly of the
subsidiary complications, we require a number of additional results. Ideally these
results should be stated in terms of vectors, since it is mainly to vectors that they
will be applied. However, to do so would be tiresome, and so our treatment is
largely confined to scalar random variables. A more extensive treatment of the
issues raised in the following section can be found in Rao [421].

Stochastic Convergence

It is a simple matter to define what is meant by the convergence of a sequence {an}
of nonstochastic elements. We say that the sequence is convergent or, equivalently,
that it tends to a limiting constant a if, for any small positive number ε, there
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exists a number N = N(ε) such that |an − a| < ε for all n > N . This is indicated
by writing lim(n→∞)an = a or, alternatively, by stating that an → a as n→∞.

The question of the convergence of a sequence of random variables is less
straightforward, and there are a variety of modes of convergence.

(24.53) Let {xt} be a sequence of random variables and let c be a constant.
Then

(a) xt converges to c weakly in probability, written xt
P−→ c or

plim(xt) = c, if, for every ε > 0,

lim(t→∞)P (|xt − c| > ε) = 0,

(b) xt converges to c strongly in probability or almost certainly,
written xt

a.s.−→ c, if, for every ε > 0,

lim(τ →∞)P
( ⋃
t>τ

|xt − c| > ε
)

= 0,

(c) xt converges to c in mean square, written xt
m.s.−→ c, if

lim(t→∞)E(|xt − c|2) = 0.

In the same way, we define the convergence of a sequence of random variables to a
random variable.

(24.54) A sequence {xt} of random variables is said to converge to a random
variable x in the sense of (a), (b) or (c) of (24.53) if the sequence
{xt − x} converges to zero in that sense.

Of these three criteria of convergence, weak convergence in probability is the
most commonly used in statistics. The other criteria are too stringent. Consider
the criterion of almost sure convergence which can also be written as lim(τ →
∞)P (

⋂
t>τ |xt − c| ≤ ε) = 1. This requires that, in the limit, all the elements

of {xt} with t > τ should lie simultaneously in the interval [c − ε, c + ε] with
a probability of one. The condition of weak convergence in probability requires
much less: it requires only that single elements, taken separately, should have a
probability of one of lying in this interval. Clearly

(24.55) If xt converges almost certainly to c, then it converges to c weakly in
probability. Thus xt

a.s.−→ c implies xt
P−→ c.

The disadvantage of the criterion of mean-square convergence is that it requires
the existence of second-order moments; and, in many statistical applications, it
cannot be guaranteed that an estimator will possess such moments. In fact,
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(24.56) If xt converges in mean square, then it also converges weakly in prob-
ability, so that xt

m.s.−→ c implies xt
P−→ c.

This follows directly from Chebyshev’s inequality whereby

P (|xt − c| > ε) ≤ E{(xt − c)2}
ε2

.(24.57)

A result which is often used in establishing the properties of statistical estima-
tors is the following:

(24.58) If g is a continuous function and if xt converges in probability to x,
then g(xt) converges in probability to g(x). Thus xt

P−→ x implies
g(xt)

P−→ g(x).

Proof. If x is a constant, then the proof is straightforward. Let δ > 0 be an
arbitrary value. Then, since g is a continuous function, there exists a value ε
such that |xt − x| ≤ ε implies |g(xt) − g(x)| ≤ δ. Hence P (|g(xt) − g(x)| ≤ δ) ≥
P (|xt−x| ≤ ε); and so xt

P−→ x, which may be expressed as limP (|xt−x| ≤ ε) = 1,
implies limP (|g(xt)− g(x)| ≤ δ) = 1 or, equivalently, g(xt)

P−→ g(x).
When x is random, we let δ be an arbitrary value in the interval (0, 1), and we

choose an interval A such that P (x ∈ A) = 1− δ/2. Then, for x ∈ A, there exists
some value ε such that |xt − x| ≤ ε implies |g(xt)− g(x)| ≤ δ. Hence

P (|g(xt)− g(x)| ≤ δ)≥P ({|xt − x| ≤ ε} ∩ {x ∈ A})

≥P (|xt − x| ≤ ε) + P (x ∈ A)− 1.
(24.59)

But there is some value τ such that, for t > τ , we have P (|xt − x| ≤ ε) > 1− δ/2.
Therefore, for t > τ , we have P (|g(xt)−g(x)| ≤ δ) > 1−δ, and letting δ → 0 shows
that g(xt)

P−→ g(x).

The proof of such propositions are often considerably more complicated than
the intuitive notions to which they are intended to lend rigour. The special case of
the proposition above where xt converges in probability to a constant c is frequently
invoked. We may state this case as follows:

(24.60) If g(xt) is a continuous function and if plim(xt) = c is a constant, then
plim{g(xt)} = g{plim(xt)}.

This is known as Slutsky’s theorem.
The concept of convergence in distribution has equal importance in statistics

with the concept of convergence in probability. It is fundamental to the proof of
the central limit theorem.
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(24.61) Let {xt} be a sequence of random variables and let {Ft} be the cor-
responding sequence of distribution functions. Then xt is said to
converge in distribution to a random variable x with a distribution
function F , written xt

D−→ x, if Ft converges to F at all points of
continuity of the latter.

This means simply that, if x∗ is any point in the domain of F such that F (x∗)
is continuous, then Ft(x∗) converges to F (x∗) in the ordinary mathematical sense.
We call F the limiting distribution or asymptotic distribution of xt.

Weak convergence in probability is sufficient to ensure a convergence in distri-
bution. Thus

(24.62) If xt converges to a random variable x weakly in probability, it also
converges to x in distribution. That is, xt

P−→ x implies xt
D−→ x.

Proof. Let F and Ft denote the distribution functions of x and xt respectively,
and define z = x−xt. Then xt

P−→ x implies limP (|zt| > ε) = 0 for any ε > 0. Let
y be any continuity point of F . Then

P (xt < y) =P (x < y + zt)

=P ({x < y + zt} ∩ {zt ≤ ε}) + P ({x < y + zt} ∩ {zt > ε})
≤P (x < y + ε) + P (zt > ε),

(24.63)

where the inequality follows from the fact that the events in the final expression
subsume the events of the preceding expressions. Taking limits at t → ∞ gives
limP (xt < y) ≤ P (x < y+ε). By a similar argument, we may show that limP (xt <
y) ≥ P (x < y − ε). By letting ε → 0, we see that limP (xt < y) = P (x < y) or
simply that limFt(y) = F (y), which proves the theorem.

A theorem of considerable importance, which lies on our way towards the
central limit theorem, is the Helly–Bray theorem as follows:

(24.64) Let {Ft} be a sequence of distribution functions converging to the
distribution function F , and let g be any bounded continuous function
in the same argument. Then

∫
gdFt →

∫
gdF as t→∞.

A proof of this may be found in Rao [421, p. 97]. The theorem indicates, in
particular, that, if g(xt) = µrt is the rth moment of xt and if g(x) = µr is the
rth moment of x, then xt

D−→ x implies µrt → µr. However, this result must be
strongly qualified, for it presumes that the rth moment exists for all elements of
the sequence {xt}; and this cannot always be guaranteed.

It is one of the bugbears of statistical estimation that whereas, for any reason-
able estimator, there is usually a limiting distribution possessing finite moments
up to the order r, the small-sample distributions often have no such moments. We
must therefore preserve a clear distinction between the moments of the limiting
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distribution and the limits of the moments of the sampling distributions. Since the
small-sample moments often do not exist, the latter concept has little operational
validity.

We can establish that a sequence of distributions converges to a limiting dis-
tribution by demonstrating the convergence of their characteristic functions.

(24.65) The characteristic function of a random variable x is defined by φ(h) =
E(exp{ihx}), where i =

√
−1.

The essential property of a characteristic function is that it uniquely determined
by the distribution function. In particular, if x has a probability density function
f(x) so that

φ(h) =
∫ +∞

−∞
eihxf(x)dx,

then an inversion relationship holds whereby

f(x) =
1

2π

∫ +∞

−∞
e−ihxφ(h)dh.

Thus the characteristic function and the probability density function are just
Fourier transforms of each other.

Example 24.1. The standard normal variate x ∼ N(0, 1) has the probability den-
sity function

f(x) =
1√
2π
e−x

2/2.

The corresponding characteristic function is

φ(h) =
1√
2π

∫ +∞

−∞
eihx−x

2/2dx

= e−h
2/2 1√

2π

∫
e−(x−ih)2/2dx

= e−h
2/2 1√

2π

∫
e−z

2/2dz,

where z = x − ih is a complex variable. The integral of the complex function
exp{−z2/2} can be shown to be equal to the integral of the corresponding function
defined on the real line. The latter has a value of

√
2π, so

φ(h) = e−h
2/2.

Thus the probability density function and the characteristic function of the standard
normal variate have the same form. Also, it is trivial to confirm, in this instance,
that f(x) and φ(h) satisfy the inversion relation.
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The theorem which is used to establish the convergence of a sequence of dis-
tributions states that

(24.66) If φt(h) is the characteristic function of xt and φ(h) is that of x, then
xt converges in distribution to x if and only if φT (h) converges to φ(h).
That is xt

D−→ x if and only if φt(h)→ φ(h).

Proof. The Helly–Bray theorem establishes that φt → φ if xt
D−→ x. To establish

the converse, let F be the distribution function corresponding to φ and let {Ft} be
a sequence of distribution functions corresponding to the sequence {φt}. Choose a
subsequence {Fm} tending to a nondecreasing bounded function G. Now G must be
a distribution function; for, by taking limits in the expression φm(h) =

∫
eihxdFm,

we get φ(h) =
∫
eihxdG, and setting h = 0 gives φ(0) =

∫
dG = 1 since, by

definition, φ(0) = e0
∫
dF = 1. But the distribution function corresponding to

φ(h) is unique, so G = F . All subsequences must necessarily converge to the same
distribution function, so φt → φ implies Ft → F or, equivalently xt

D−→ x.

We shall invoke this theorem in proving the central limit theorem.

The Law of Large Numbers and the Central Limit Theorem

The theorems of the previous section contribute to the proofs of the two limit
theorems which are fundamental to the theory of estimation. The first is the law
of large numbers. We have already proved that

(24.67) If {xt} is a sequence of independent random variables with E(xt) = µ

and V (xt) = σ2
t , and if x̄ =

∑T
t=1 xt/T , then

lim(T →∞)P (|x̄− µ| > ε) = 0.

This theorem states that x̄ converges to µ weakly in probability and it is called,
for that reason, the weak law of large numbers. In fact, if we assume that the
elements of {xt} are independent and identically distributed, we no longer need the
assumption that their second moments exist in order to prove the convergence of
x̄. Thus Khintchine’s theorem states that

(24.68) If {xt} is a sequence of independent and identically distributed random
variables with E(xt) = µ, then x̄ tends weakly in probability to µ.

Proof. Let φ(h) = E{exp(ihxt)} be the characteristic function of xt. Expanding
in a neighbourhood of h = 0, we get

φ(h) = E

{
1 + ihxt +

(ihxt)2

2!
+ · · ·

}
and, since the mean E(xt) = µ exists, we can write this as

φ(h) = 1 + iµh+ o(h),
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where o(h) is a remainder term of a smaller order than h, such that lim(h →
0){o(h)/h} = 0. Since x̄ =

∑
xt/T is a sum of independent and identically dis-

tributed random variables xt/T , its characteristic function can be written as

φ∗T = E
[

exp
{
ih
(x1

T
+ · · ·+ xT

T

)}]
=

T∏
t=1

E
(

exp
{ ihxt

T

})
=
[
φ
( h
T

)]T
.

On taking limits, we get

lim(T →∞)φ∗T = lim
{

1 + i
h

T
µ+ o

( h
T

)}T
= exp{ihµ},

which is the characteristic function of a random variable with the probability mass
concentrated on µ. This proves the convergence of x̄.

It is possible to prove Khinchine’s theorem without using a characteristic func-
tion as is show for example, by Rao [421]. However, the proof that we have just
given has an interesting affinity with the proof of the central limit theorem. The
Lindeberg–Levy version of the theorem is as follows:

(24.69) Let {xt} be a sequence of independent and identically distributed
random variables with E(xt) = µ and V (xt) = σ2. Then zT =
(1/
√
T )
∑T
t=1(xt − µ)/σ converges in distribution to z ∼ N(0, 1).

Equivalently, the limiting distribution of
√
T (x̄ − µ) is the normal

distribution N(0, σ2).

Proof. First we recall that the characteristic function of the standard normal
variate z ∼ N(0, 1) is φ(h) = exp{−h2/2}. We must show that the characteristic
function φT of zT converges to φ as T →∞. Let us write zT = T−1/2

∑
zt, where

zt = (xt−µ)/σ has E(zt) = 0 and E(z2
t ) = 1. The characteristic function of zt can

now be written as

φ0(h) = 1 + ihE(zt)−
h2E(z2

t )
2

+ o(h2)

= 1− h2

2
+ o(h2).

Since zT = T−1/2
∑
zt is a sum of independent and identically distributed random

variables, it follows that its characteristic function can be written, in turn, as

φT

( h√
T

)
=
[
φ0
( h√

T

)]T
=
[
1− h2

2T
+ 0
(h2

T

)]T
.

Letting T →∞, we find that limφT = exp{−h2/2} = φ, which proves the theorem.
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CHAPTER 25

The Theory of Estimation

This chapter summarises some results in the classical theory of statistical inference
which depends heavily on the method of maximum-likelihood estimation.

One of the attractions of the method is that, granted the fulfilment of the
assumptions on which it is based, it can be shown that the resulting estimates
have optimal properties. Thus, the estimates are statistically consistent and their
asymptotic distributions have the least possible variance.

Springing from the asymptotic theory of maximum-likelihood estimation is a
powerful theory of hypothesis testing which makes use of a collection of alterna-
tive, but asymptotically equivalent, test statistics which are the Wald statistic, the
likelihood-ratio statistic and the Lagrangean multiplier statistic.

The practical virtue of the method of maximum likelihood is that it often
leads directly to a set of estimating equations which could have been derived more
laboriously and more doubtfully from other principles of estimation. In other words,
the method can be used as a vehicle for reaching the objectives of estimation.

When the estimating equations are in hand, one is often inclined to discard
some of the original assumptions which have been used in their derivation. The
assumptions might be unrealistic and that they might not be crucial to the validity
of the estimation procedure. In that case, one is inclined to describe the estimates
as quasi maximum-likelihood estimates.

Principles of Estimation

Let Y ′ = [y1, . . . , yT ] be a data matrix comprising T realisations of a random
vector y whose marginal probability density function f(y; θ) is characterised by the
parameter vector θ = [θ1, . . . , θk]′. Then any function θ̂ = θ̂(Y ) of the data which
purports to provide a useful approximation to the parameter vector is called a point
estimator.

The joint probability density function of the elements of Y can be expressed
as the product

L(Y ; θ) = f(yT |yT−1, . . . , y1) · · · f(y2|y1)f(y1)

= f(y1)
T∏
t=2

f(yt|yt−1, . . . , y1),
(25.1)

where f(yt|yt−1, . . . , y1) is the conditional probability density function of yt given
the preceding values yt−1, . . . , y1 and f(y1) is the marginal probability density func-
tion of the initial vector y1. In classical theory, the vectors of the sequence y1, . . . , yT
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are assumed to be independently and identically distributed, which enables us to
write

L(Y ; θ) = f(yT ) · · · f(y2)f(y1)

=
T∏
t=1

f(yt)
(25.2)

in place of (25.1).
The set S comprising all possible values of the data matrix Y is called the

sample space, and the set A of all values of θ which conform to whatever restrictions
have been postulated is called the admissible parameter space. A point estimator
is, therefore, a function which associates with every value Y in S a unique value θ̂
in A.

There are numerous principles which can be used in constructing estimators.
The principle of maximum-likelihood estimation is a fundamental one. The idea is
that we should estimate θ by choosing the value which maximises the probability
measure attributed to Y . Thus

(25.3) A maximum-likelihood estimate θ̂ = θ̂(Y ) is an element of the admis-
sible parameter space for which L(Y ; θ̂) ≥ L(Y ; θ) for every θ ∈ A.

Another common principle of estimation is the method of moments. In many
cases, it will be possible to estimate the moments of the density function f(y) in
a straightforward manner. If the parameter vector θ is expressible as a function of
these moments, then an estimator can be constructed which uses the same function
and which replaces the moments by their estimates.

We shall concentrate primarily on the method of maximum likelihood which is
widely applicable, and we shall demonstrate that maximum-likelihood estimators
have certain optimal properties. Usually, we are able to justify the estimators which
are derived from other principles by showing that, as the size of the data sample
increases, they tend to approximate to the corresponding maximum-likelihood es-
timators with increasing accuracy.

Identifiability

Before examining the properties of maximum-likelihood estimators in detail, we
should consider some preconditions which must be satisfied before any reasonable
inferences can be made about the parameter θ. We can estimate θ only if its
particular value is somehow reflected in the realised value of Y . Therefore, a basic
requirement is that distinct values of θ should lead to distinct probability density
functions. Thus we may declare that

(25.4) The parameter values in A are identifiable if, for any two distinct
values θ1, θ2 ∈ A, we have L(Y ; θ1) 6= L(Y ; θ2) for all Y in a subset of
S which has a nonzero probability measure in respect of either of the
distributions implied by θ1, θ2.
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There are numerous ways of comparing the values L(Y ; θ1) and L(Y ; θ2) over
the set S. However, the requirement of (25.4) would certainly be fulfilled if the
measure ∫

S

{
logL(Y ; θ1)− logL(Y ; θ2)

}
L(Y ; θ2)dY(25.5)

were nonzero for all values of θ1, θ2 which are distinct.
A concept which may sometimes serve in place of identifiability is that of

unbiased estimability. We say that

(25.6) The parameter θ is unbiasedly estimable if and only if there exists
some function θ̂ = θ̂(Y ) such that E(θ̂) = θ.

A parameter which is unbiasedly estimable is certainly identifiable accord-
ing to the previous criterion (25.4); for if θ1 = E(θ̂|θ1) =

∫
θ̂L(Y ; θ1)dY and

θ2 = E(θ̂|θ2) =
∫
θ̂L(Y ; θ2)dY are distinct values, then it must be true that

L(Y ; θ1) 6= L(Y ; θ2) over a measurable set in S. Unfortunately, the concept of
unbiased estimability is of limited use since it is often difficult, if not impossible,
to prove that an unbiased estimator exists. Indeed, there are cases where none of
the estimators which are worth considering have finite moments of any order.

The criterion of identifiability under (25.4) may be too stringent, for it is
difficult to talk broadly of the generality of values in A. It may be that some
elements of A are identifiable whilst others are not. Therefore, in the main, we
have to be content with saying that

(25.7) The parameter vector θ0 ∈ A is identifiable if there exists no other
θ ∈ A such that L(Y ; θ) = L(Y ; θ0) with a probability of 1 when
Y is regarded as a random variable. If L(Y ; θ0) = L(Y ; θ1) with a
probability of 1, then θ0, θ1 are observationally equivalent.

By concentrating our attention on the point θ0, we can put out of mind the pitfalls
which may be lurking elsewhere in the parameter space A.

Our object must be to establish necessary and sufficient conditions for iden-
tifiability which can be checked easily. For this purpose, it is useful to consider
the so-called information integral. Imagine, therefore, that L(Y ; θ0) is the proba-
bility density function of the process which generates the data, and let L(Y ; θ) be
construed as a function of θ ∈ A. Then the information integral is defined as the
function

H(θ; θ0) =
∫
S

log
{
L(Y ; θ)
L(Y ; θ0)

}
L(Y ; θ0)dY

=E

[
log
{
L(Y ; θ)
L(Y ; θ0)

}]
.

(25.8)

This function, which is an instance of the function under (25.5), provides a measure
of the extent to which the statistical implications of θ differ from those of θ0.
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The expectation is formed under the presumption that θ0 is the true value. It is
straightforward to show that

H(θ; θ0) ≤ 0 with H(θ; θ0) = 0 when θ = θ0.(25.9)

Proof. It is clear that H(θ0, θ0) = 0. To show that H(θ, θ0) ≤ 0, we may employ
Jensen’s inequality which indicates that, if x ∼ f(x) is a random variable and g(x)
is a strictly concave function, then E{g(x)} < g{E(x)}. This result, which is little
more than a statement that λg(x1) + (1 − λ)g(x2) < g{λx1 + (1 − λ)x2} when
0 < λ < 1, is proved by Rao [421]. Noting that log(z) is a strictly concave function,
we find that

H(θ, θ0) =E

[
log
{
L(Y ; θ)
L(Y ; θ0)

}]
≤ log

[
E

{
L(Y ; θ)
L(Y ; θ0)

}]
= log

∫
S

{
L(Y ; θ)
L(Y ; θ0)

}
L(Y ; θ0)dY

= log 1 = 0.

(25.10)

It follows, from the definition of the information measure and from the condi-
tions under (25.9), that

(25.11) The parameter vector θ0 is identifiable if and only if there is no other
vector θ sharing the maximum information measure. Equivalently, θ0

is identifiable if and only if the equation H(θ; θ0) = 0 has the unique
solution θ = θ0.

The condition for the identifiability of θ0 is, therefore, the condition that
H(θ; θ0) should achieve a unique global maximum at this point. Conditions for
global maximisation are hard to come by. The conditions for local maximisation
and, therefore, for local identifiability are more accessible. In saying that θ0 is lo-
cally identified, we mean that there is no other point in the neighbourhood sharing
the maximum information measure. Thus

(25.12) IfH(θ, θ0) has continuous first and second derivatives in an open neigh-
bourhood of the parameter point θ0, then a necessary and sufficient
condition for the local identifiability of θ0, is that ∂H/∂θ = 0 and that
∂{∂H/∂θ}′/∂θ is negative definite at this point.

The points in A in whose neighbourhood the derivatives are continuous may
be described as regular points. Usually, we can make assumptions which guarantee
that the irregular points of A, where the derivatives are discontinuous, constitute
a set of measure zero.
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The Information Matrix

The condition for identifiability given under (25.12) can be expressed in terms
of a classical statistical construct known as Fisher’s information matrix. In order
to demonstrate this connection, we need to derive a series of fundamental identities
which are used throughout the development of the theory of estimation. First let
us consider the identity

∂L(Y ; θ)
∂θ

=
∂ logL(Y ; θ)

∂θ
L(Y ; θ).(25.13)

This comes from rearranging the equation ∂ logL/∂θ = (1/L)∂L/∂θ. Next we may
consider the condition

1 =
∫
S
L(Y ; θ)dY.(25.14)

Differentiating under the integral with respect to θ and using (25.13) gives a further
useful identity:

0 =
∫
S

∂L(Y ; θ)
∂θ

dY =
∫
S

∂ logL(Y ; θ)
∂θ

L(Y ; θ)dY.(25.15)

Setting θ = θ0 in this equation gives the condition

E

{
∂ logL(Y ; θ0)

∂θ

}
= 0.(25.16)

Differentiating (25.15) with the help of (25.13) gives

(25.17)

0 =
∫
S

[
∂(∂ logL(Y ; θ)/∂θ)′

∂θ
+
{
∂ logL(Y ; θ)

∂θ

}′{
∂ logL(Y ; θ)

∂θ

}]
L(Y ; θ)dY.

Setting θ = θ0 in the latter serves to show that

E

[{
∂ logL(Y ; θ0)

∂θ

}′{
∂ logL(Y ; θ0)

∂θ

}]
=−E

[
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

]
=Q(θ0).

(25.18)

Also, in the light of equation (25.16), we can interpret the first expression of (25.18)
as the dispersion matrix of the derivative ∂ logL(Y ; θ)/∂θ evaluated at θ = θ0; and
thus we can write

Q(θ0) = D

(
∂ logL(Y ; θ0)

∂θ

)
.(25.19)

The matrix Q(θ0) is known as Fisher’s information matrix.
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The information matrix is, in fact, the negative of the matrix of second deriva-
tives of the information measure H(θ; θ0) at the point θ = θ0. Consider the first
derivative of the measure:

∂H(θ; θ0)
∂θ

=
∫
S

∂

∂θ

{
logL(Y ; θ)− logL(Y ; θ0)

}
L(Y ; θ0)dY

=
∫
S

∂ logL(Y ; θ)
∂θ

L(Y ; θ0)dY.
(25.20)

Setting θ = θ0 delivers the identity under (25.16); and this reflects the fact that
θ0 is a stationary point of the function. Differentiating a second time and setting
θ = θ0 gives

∂(∂H(θ0; θ0)/∂θ)′

∂θ
=E

[
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

]
=−Q(θ0).

(25.21)

This is the negative of Fisher’s information matrix. In view of the statement under
(25.12), we may conclude that

(25.22) The parameter vector θ0 is identifiable if the information matrix Q(θ0)
is positive definite.

The Efficiency of Estimation

To be of any worth, a estimator must possess a probability distribution which is
closely concentrated around the true value of the unknown parameter. The easiest
way of characterising such a distribution is in terms its moments. However, as we
have already indicated, these moments might not exist. Nevertheless, it is usually
the case that, as the size of the sample increases, an estimator will converge in
probability upon a random variable whose distribution has well-defined moments.
We must content ourselves, in the main, with analysing such limiting distributions.
For the moment, we shall imagine that our estimator θ̂ = θ̂(Y ) is unbiased and that
it has a finite variance.

For an unbiased estimator, the natural measure of concentration is the variance.
For any given sample, there is a bound below which the variance of an unbiased
estimator cannot be reduced.

(25.23) Let L(Y ; θ0) be the density function of the sample Y . If θ̂ = θ̂(Y ) is an
unbiased estimator of θ, and if q is any vector of the same order, then
we have V (q′θ̂) ≥ q′Q(θ0)q, where Q(θ0) is the information matrix
specified in (25.18) and (25.19). This is the Cramér–Rao inequality.

Proof. Let us consider the condition which asserts that θ̂ = θ̂(Y ) is an unbiased
estimator:

E
{
θ̂(Y )

}
=
∫
S
θ̂(Y )L(Y ; θ0)dY

= θ0.

(25.24)
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The derivative is

∂E{θ̂(Y )}
∂θ

=
∫
S
θ̂(Y )

∂ logL(Y ; θ0)
∂θ

L(Y ; θ0)dY

=E

{
θ̂(Y )

∂ logL(Y ; θ0)
∂θ

}
= I.

(25.25)

Now a pair of random vectors a, b have a covariance of C(a, b) = E(ab′) when
E(b) = 0. Therefore, since E{∂ logL(Y ; θ0)/∂θ} = 0, it follows that the final
equality under (25.25) can be written as

C

(
θ̂,
∂ logL(θ0)

∂θ

)
= I.(25.26)

The joint dispersion matrix of θ̂ and ∂ logL(Y ; θ0)/∂θ is

D


θ̂(

∂ logL(θ0)
∂θ

)′
=


D
(
θ̂
)

C

(
θ̂,
∂ logL(θ0)

∂θ

)
C

(
∂ logL(θ0)

∂θ
, θ̂

)
D

(
∂ logL(θ0)

∂θ

)


=

[
D
(
θ̂
)

I

I Q(θ0)

]
.

(25.27)

This is a positive-semidefinite matrix. It follows that

[
q′ −q′Q−1(θ0)

] [D(θ̂) I

I Q(θ0)

][
q

−Q−1(θ0)q

]
= q′D(θ̂)q − q′Q−1(θ0)q ≥ 0.(25.28)

Using q′D(θ̂)q = V (q′θ̂), we can write this inequality as V (q′θ̂) ≥ q′Q(θ0)q which
is the desired result.

Now consider the case where θ̂ attains the minimum variance bound. Then
V (q′θ̂)− q′Q−1(θ0)q = 0 or, equivalently,

[
q′ −q′Q−1(θ0)

]
D

 θ̂(
∂ logL(θ0)

∂θ

)′

 q

−Q−1(θ0)q

 = 0.(25.29)

But this is equivalent to the condition that

[
q′ −q′Q−1(θ0)

]  θ̂ − E(θ̂)(
∂ logL(θ0)

∂θ

)′
− E

(
∂ logL(θ0)

∂θ

)′
 = 0,(25.30)
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whence, using the condition of unbiasedness E(θ̂) = θ0 and the condition
E{∂ logL(θ0)/∂θ} = 0 from (25.16), we get

q′(θ̂ − θ0)− q′Q−1(θ0)
(
∂ logL(θ0)

∂θ

)′
= 0.(25.31)

Since this holds for all q, we must have θ̂ − θ0 = Q−1(θ0)(∂ logL(θ0)/∂θ)′. What
we have shown is that

(25.32) Subject to regularity conditions, there exists an unbiased estima-
tor θ̂(Y ) whose variance attains the Cramér–Rao minimum-variance
bound if and only if ∂ logL(Y ; θ)/∂θ can be expressed in the form(

∂ logL
∂θ

)′
= −E

{
∂(∂ logL/∂θ)′

∂θ

}
(θ̂ − θ).

This is, in fact, a rather strong requirement; and, therefore, it is only in exceptional
circumstances that the minimum-variance bound can be attained. However, as we
shall see shortly, whenever the regularity conditions are satisfied, the variance asso-
ciated with the limiting distribution of the maximum-likelihood estimates invariably
attains the bound. Indeed, the equation

(θ̂ − θ) = −
[
E

{
∂(∂ logL/∂θ)′

∂θ

}]−1(
∂ logL
∂θ

)′
(25.33)

is the prototype of a form of asymptotic equation which the maximum-likelihood
estimators satisfy in the limit when the sample size becomes indefinitely large.

Unrestricted Maximum-Likelihood Estimation

(25.34) If θ̂ is the maximum-likelihood estimator obtained by solving the equa-
tion ∂ logL(Y ; θ)/∂θ = 0, and if θ0 is the true parameter value, then√
T (θ̂ − θ0), has the limiting distribution N(0,M−1) where

M = − 1
T
E

{
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

}

=
1
T
E

[{
∂ logL(Y ; θ0)

∂θ

}′{
∂ logL(Y ; θ0)

∂θ

}]
=

1
T
Q(θ0).

Proof. It follows from the mean-value theorem that

∂ logL(Y ; θ0)
∂θ

=
∂ logL(Y ; θ̂)

∂θ

+ (θ0 − θ̂)′
∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ
,

(25.35)
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where θ∗ is a value subject to the condition ‖θ∗ − θ0‖ ≤ ‖θ̂ − θ0‖, which is to say
that it lies between θ̂ and θ0. By the definition of θ̂, we have ∂ logL(Y ; θ̂)/∂θ = 0,
so the above expression can be rearranged to give

√
T (θ̂ − θ0) = −

{
1
T

∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ

}−1
{

1√
T

∂ logL(Y ; θ̂)
∂θ

}′
.(25.36)

Now θ̂
P−→ θ0, which denotes the consistency of the maximum-likelihood estimator,

implies that θ∗
P−→ θ0. Therefore, in the limit, both factors on the RHS of (25.36)

may be evaluated at θ0; and we may use the following results:

(25.37) (i) By the law of large numbers, the term

1
T

∂(∂ logL(Y ; θ0)/∂θ)′

∂θ
=

1
T

∑
t

∂(∂ log f(yt; θ0)/∂θ)′

∂θ

converges to its expected value of M ,

(ii) By the central limit theorem, the term

1√
T

∂ logL(Y ; θ0)
∂θ

=
1√
T

∑
t

∂ log f(yt; θ0)
∂θ

has a limiting normal distribution N(0,M).

It follows immediately that
√
T (θ̂− θ0) tends in distribution to a random variable

M−1η, where η ∼ N(0,M); and, therefore, we conclude that
√
T (θ̂ − θ0) has the

limiting distribution N(0,M−1). Equivalently,
√
T (θ̂− θ0) tends in distribution to

a random variable φ� = (Z ′Z)−1Z ′ε, where ε ∼ N(0, I) is a standard normal vector
and where Z ′Z = M . Finally, we may recognise that the equivalence of the two
expressions for M follows from equation (25.18).

It is apparent that the asymptotic form of the maximum-likelihood estimator
is identical to that of a least-squares regression estimator of the parameter φ in the
distribution N(ε;Zφ, I). We can exploit this least-squares analogy to demonstrate
that

(25.38) If θ̂ is the maximum-likelihood estimator obtained by solving the equa-
tion ∂ logL(Y ; θ)/∂θ = 0, and if θ0 is the true parameter value, then
the quantity

−
√
T (θ̂ − θ0)′

{
1
T

∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ

}
√
T (θ̂ − θ0)

has a limiting distribution which is identical to that of the variate
φ�′Z ′Zφ� = ε′Z(Z ′Z)−1Z ′ε = ε′Pε ∼ χ2(k).
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This result can be used in testing an hypothesis relating to the vector θ0. The
theory of least-squares estimation, which is expounded in chapter 8, will help us to
devise tests relating to subsets of the elements of θ0.

Restricted Maximum-Likelihood Estimation

Often, we wish to consider a model which can be expressed in terms of the
likelihood function L(Y ; θ) where θ ∈ Rk is subject to a set of restrictions in the
form of a vector function r(θ) = 0 of j < k elements. These restrictions will have
the effect of confining θ to some subset A ⊂ Rk. One approach to estimating
θ, which may be fruitful, is to reexpress the restrictions in the form of θ = θ(α)
where α is an vector of k − j unrestricted elements. Once we have an estimate α̂
of the unrestricted elements, we can obtain a restricted estimate of θ in the form
of θ∗ = θ(α̂). The alternative approach is to maximise the function L(Y ; θ) with
respect to θ subject to the restrictions. Our criterion function is then

L∗ = logL(Y ; θ)− λ′r(θ),(25.39)

where λ is a j × 1 vector of Lagrangean multipliers corresponding to the j restric-
tions.

The first-order conditions for maximisation are

∂ logL(Y ; θ)
∂θ

− λ′R(θ) = 0,

r(θ) = 0,
(25.40)

where R(θ) = ∂r(θ)/∂θ is a j × k matrix of the derivatives of the restrictions
with respect to the unknown parameters. The solution of the equations (25.40)
is the restricted maximum-likelihood estimator θ∗. The equations are liable to be
nonlinear so that, in order to investigate the properties of the estimator, we must
rely upon a Taylor-series expansion to provide the appropriate linear approximation.
As the sample size increases, the linear approximation should become increasingly
valid.

Consider the following expansion about the true value θ0 of the first derivative
of the log-likelihood function at θ∗:

∂ logL(Y ; θ∗)
∂θ

=
∂ logL(Y ; θ0)

∂θ

+ (θ∗ − θ0)′
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ
+ ζ ′.

(25.41)

Here ζ stands for the higher-order terms. Also consider the expansion

r(θ∗) = r(θ0) +R(θ0)(θ∗ − θ0)− ξ
=R(θ0)(θ∗ − θ0)− ξ.

(25.42)
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On substituting the RHS of (25.41) in place of ∂ logL(Y ; θ)/∂θ in (25.40) and on
dividing the resulting expressions by

√
T , we get, after some minor manipulations,

−
{

1
T

∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

}√
T (θ∗ − θ0) +R′

λ√
T

=
1√
T

{
∂ logL(Y ; θ0)

∂θ

}′
+

1√
T
ζ.

(25.43)

When this is combined with the equation
√
TR(θ0)(θ∗ − θ0) =

√
Tξ(25.44)

which comes from (25.42), we obtain the following representation of the first-order
conditions of (25.40):−

1
T

∂(∂ logL(θ0)/∂θ)′

∂θ
R′(θ0)

R(θ0) 0



√
T (θ∗ − θ0)

λ√
T



=


1√
T

{
∂ logL(θ0)

∂θ

}′
0

+


ζ√
T

√
Tξ

 .
(25.45)

As the sample size T increases, the terms involving the first and the second deriva-
tives of the log-likelihood function tend to their probability limits. Given that the
restricted estimate θ∗ is consistent, the remainder terms ζ/

√
T and

√
Tξ will tend

in probability to zero. To find the limiting distribution of the estimator, we use
again the two results under (25.37) concerning the central limit theorem and the
law of large numbers. It follows that the vectors

√
T (θ∗ − θ0) and λ/

√
T have a

limiting normal distribution which is identical to the distribution of the vectors φ∗

and µ which are determined by the linear system[
Z ′Z R′

R 0

] [
φ∗

µ

]
=
[
Z ′ε
0

]
,(25.46)

wherein Z is such that Z ′Z = M and ε ∼ N(0, I) is a vector with a standard
normal distribution, and where R = R(θ0).

The solutions for φ∗ and µ are obtained from the equations[
C1 C2

C ′2 C3

] [
Z ′ε
0

]
=
[
φ∗

µ

]
.(25.47)

The elements of the partitioned matrix are defined by the following identities:

(i) Z ′ZC1 +R′C ′2 = I,

(iii) RC1 = 0,

(ii) Z ′ZC2 +R′C3 = 0,

(iv) RC2 = I.
(25.48)
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From these conditions, we may easily obtain the following identities:

(i) C1Z
′ZC1 = C1,

(iii) C ′2Z
′ZC2 = −C3.

(ii) C1Z
′ZC2 = 0,

(25.49)

Using the latter, we may confirm that the dispersion matrix of φ∗ and µ is given
by

D

[
φ∗

µ

]
=
[
C1 C2

C ′2 C3

] [
Z ′Z 0

0 0

] [
C1 C2

C ′2 C3

]
=
[
C1 0
0 −C3

]
.

(25.50)

Since the systems under (25.45) and (25.46) are equivalent asymptotically, we may
draw the following conclusions:

(25.51) If θ∗ is the restricted maximum-likelihood estimator and θ0 is the true
value of the parameter, then

√
T (θ∗− θ0) has a limiting normal distri-

bution N(0, C1) which is the same as the distribution of the random
variable φ∗ = C1Z

′ε ∼ N(0, C1). If λ is the Lagrangean multiplier
associated the restrictions, then λ/

√
T has a limiting normal distribu-

tion N(0,−C3) which is the same as the distribution of the random
variable µ = C ′2Z

′ε ∼ N(0,−C3).

We can exploit these results in order to establish an asymptotic result
which relates the restricted and the unrestricted maximum-likelihood estimators.
Consider the vectors φ� = (Z ′Z)−1Z ′ε and φ∗ = C1Z

′ε. From these vectors, we
may construct

− Z(φ∗ − φ�) = (P − ZC1Z)ε,(25.52)

where P = Z(Z ′Z)−1Z is a symmetric idempotent matrix such that P = P ′ = P 2

and PZ = Z. We find that

(φ∗ − φ�)′Z ′Z(φ∗ − φ�) = ε′(P − ZC1Z
′)′(P − ZC1Z

′)ε

= ε′(P − ZC1Z
′)ε.

(25.53)

Now consider the identity

ε′Pε = ε′(P − ZC1Z
′)ε+ ε′ZC1Z

′ε.(25.54)

Since P� = (P −ZC1Z
′) and P∗ = ZC1Z

′ are symmetric idempotent matrices with
P�P∗ = 0, and given that Rank(P ) = k and Rank(ZC1Z

′) = Rank(C1) = j, we
can apply Cochran’s theorem of (24.45) to show that equation (25.54) represents
the decomposition of a chi-square variate. Thus

ε′(P − ZC1Z
′)ε ∼ χ2(j),

ε′ZC1Z
′ε ∼ χ2(k − j),

ε′Pε ∼ χ2(k).

(25.55)

We can conclude that
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(25.56) If θ̂ and θ∗ are, respectively, the restricted maximum-likelihood es-
timate and the unrestricted maximum-likelihood estimate, then the
quantity

−
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ

}√
T (θ∗ − θ̂)

has a limiting distribution which is identical to that of the variate
(φ∗ − φ�)′Z ′Z(φ∗ − φ�) = ε′(P − ZC1Z

′)ε ∼ χ2(j).

Tests of the Restrictions

Three closely related methods are available for testing the hypothesis that
θ0 ∈ A, where A = {θ; r(θ) = 0} is the parameter set defined by the restrictions.
These are the likelihood-ratio test, the Wald test and the Lagrangean-multiplier
test. They are based, respectively, on the measures

−
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(θ̂)/∂θ)′

∂θ

}√
T (θ∗ − θ̂),(25.57)

−
√
Tr′(θ̂)

[
R(θ̂)

{
1
T

∂(∂ logL(θ̂)/∂θ)′

∂θ

}−1

R′(θ̂)
]−1√

Tr(θ̂),(25.58)

and

− λ′√
T
R(θ∗)

{
1
T

∂(∂ logL(θ∗)/∂θ)′

∂θ

}−1

R′(θ∗)
λ′√
T

= − 1√
T

{
∂ logL(θ∗)

∂θ

}{
1
T

∂(∂ logL(θ∗)/∂θ)′

∂θ

}−1 1√
T

{
∂ logL(θ∗)

∂θ

}′
,

(25.59)

wherein θ∗ is the restricted maximum-likelihood estimator and θ̂ is the unrestricted
estimator. These statistics are asymptotically equivalent and they share the same
limiting distribution.

The ideas which give rise to these statistics are easily explained. The likelihood-
ratio statistic in the form given under (25.57) embodies a measure of the proximity
of the estimator θ∗, which incorporates the information of the restrictions, and the
estimator θ̂, which freely reflects the information of the sample data in Y . If θ∗

is remote from θ̂, then doubt will be cast upon the validity of restrictions. The
limiting distribution of the statistic is given in (25.56) above.

The likelihood ratio itself, from which our statistic is derived remotely, is de-
fined as

κ =
max{θ ∈ A}L(Y ; θ)
max{θ ∈ Rk}L(Y ; θ)

=
L(Y ; θ∗)

L(Y ; θ̂)
.(25.60)

By taking the logarithm, we get

− 2 log κ = 2 logL(Y ; θ̂)− 2 logL(Y ; θ∗).(25.61)
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To show how this form relates to the measure under (25.57), we may take the Tay-
lor’s series expansion of logL(Y ; θ∗) about the point of the unrestricted estimator
θ̂. This gives

logL(Y ; θ∗)≈ logL(Y ; θ̂) +
∂ logL(Y ; θ̂)

∂θ
(θ∗ − θ̂)

+
1
2

(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂)

≈ logL(Y ; θ̂) +
1
2

(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂).

(25.62)

The second expression follows by virtue of the fact that ∂ logL(Y ; θ̂)/∂θ = 0, since
θ̂ satisfies the first-order condition for maximising logL(Y ; θ). Hence

− 2 log κ≈−(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂)

≈−
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ

}
√
T (θ∗ − θ̂).

(25.63)

The Wald statistic under (25.58) measures the extent to which the unrestricted
estimator θ̂ fails to satisfy the restrictions r(θ) = 0. If its value is significant, then
doubt will be cast, once more, upon the validity of the restrictions.

The Lagrange multiplier statistic uses λ to measure the strength of the con-
straint which must be imposed to ensure that the estimator θ∗ obeys the restrictions.
The alternative form of the statistic is obtained using the equality

∂ logL(Y ; θ∗)
∂θ

= λ′R(θ∗),(25.64)

which comes from the first-order conditions (25.40). The quantity ∂ logL(Y ; θ)/∂θ
is know as the score vector, which accounts for the alternative description of the
Lagrangean-multiplier statistic as the score statistic.

Our choice of a statistic for testing the validity of the restrictions will be
influenced by the relative ease with which we can obtain the restricted and unre-
stricted estimates. If both θ̂ and θ∗ are readily available, then we might use the
likelihood-ratio statistic. If the unrestricted estimator θ̂ is available and we wish
to test the validity of the restrictions r(θ) = 0 before imposing them upon our
estimates, then we should use the Wald statistic to perform a test of specification.
If only the restricted estimator θ∗ is available, then we should test the validity of
the restrictions using the Lagrangean-multiplier statistic. This is a test of whether
θ∗ embodies a misspecification.

We wish to demonstrate that these three statistics are equivalent asymptoti-
cally and to show that they have the same limiting χ2 distribution. To begin, let
us recall that the limiting distribution of

√
T (θ̂−θ0) is the same as the distribution

of vector φ� = (Z ′Z)−1Z ′ε, and that the limiting distribution of
√
T (θ∗ − θ0) is

the same as the distribution of vector φ∗ = C1Z
′ε. Then it is straightforward to

demonstrate the following:
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(25.65) (i) The likelihood ratio under (25.57) has a limiting distribution
which is identical to that of (φ∗ − φ�)′Z ′Z(φ∗ − φ�),

(ii) The Wald statistic under (25.58) has a limiting distribution
which is identical to that of φ�′R′{R(Z ′Z)−1R′}−1φ�,

(iii) The Lagrange multiplier statistic under (25.59) has a limiting
distribution which is identical to that of µ′R(Z ′Z)−1R′µ.

In order to demonstrate the asymptotic equivalence of the three statistics, it
only remains to show that

(φ∗ − φ�)′Z ′Z(φ∗ − φ�) =−φ�′R′C3Rφ
�

=−µ′C−1
3 µ,

(25.66)

and that

− C3 = {R(Z ′Z)−1R′}−1.(25.67)

To demonstrate the equalities in (25.66), we make use of the identities in (25.48).
First, we may postmultiply (25.48)(ii) by R and transpose the result to give

R′C3R = −R′C ′2Z ′Z.(25.68)

Next, by postmultiplying (25.48)(i) by Z ′Z and rearranging, we get

Z ′(I − ZC1Z
′)Z = R′C2Z

′Z.(25.69)

Taking these two results together, we get

−R′C3R = Z ′(I − ZC1Z
′)Z.(25.70)

Now, from (25.47), we get φ∗ = C1Z
′ε and we also have φ� = (Z ′Z)−1Z ′ε; so,

using (25.70), we can establish the first equality in (25.66).
To help in establishing the second equality of (25.66), we premultiply the ex-

pression in (25.48)(ii) by Z ′(Z ′Z)−1 and transpose the result to give

C ′2Z
′ = −C3R(Z ′Z)−1Z ′.(25.71)

Using this result in the expression for µ given by (25.47), we find that

µ=C ′2Z
′ε

=−C3R(Z ′Z)−1Z ′ε

=−C3Rφ
�.

(25.72)

The second equality follows immediately.
Finally, we must demonstrate the identity of (25.67). For this, we premultiply

(25.48)(ii) by R(Z ′Z)−1 to give

RC2 + {R(Z ′Z)−1R′}C3 = 0.(25.73)
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The result follows from using RC2 = I from (25.48)(iv).
Having established that the three statistics are asymptotically equivalent, it

remains to determine their common limiting distribution. We know that the j × 1
vector µ of (25.47) has the distribution N(0,−C3). Therefore it follows that

− µ′C−1
3 µ ∼ χ2(j).(25.74)

Thus the limiting distribution of the three statistics is a chi-square with j degrees
of freedom.
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341, 343
Aliasing, 399, 401, 556
All-pole filter, 498
Allpass filter, 475, 476
Almost sure convergence in probability,

741
Amplitude modulation, 25, 393
Amplitude, of a Fourier component, 405
Analogue filter, 498

Butterworth, 499
Chebyshev, 501

Analogue network, 508
Analysis of variance, 405
Analytic functions, 71, 278
Anderson, B.D.O., 250
Anderson, T.W., 277, 593, 673, 723
Annulus, 69, 76
Ansley, C.F., 241, 252, 317
Approximation

Fourier, 375
quadratic, 339, 340
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AR(p) model, 10, 528
AR(1) model, 528, 530
AR(2) model, 8, 543, 569, 671
ArcTangent, 467
Arfken, G., 269
Arg function, 462, 467
Argand diagram, 38, 470, 471
Argument principle, 87, 154, 471
Argument, of a complex number, 38
ARIMA(p, d, q) model, 583
ARMA(p, q) model, 31, 540, 637, 686
ARMA(1, 1) model, forecasting, 582
ARMA(2, 1) model, 70, 86, 543
ARMA(2, 2) model, 543
Astronomy, 3
Asymptotic distribution

of least-squares ARMA estimates,
656

of periodogram ordinates, xiv, 705,
707, 709

Autocorrelation estimates, 626
asymptotic moments of, 627

Autocorrelations, 514
partial, 535, 536

Autocovariance estimates, 622
asymptotic moments of, 625
statistical consistency of, 623, 624

Autocovariance generating function, 84,
414, 515, 530, 552

of a moving average process, 521
of an autoregressive moving average

process, 84, 540, 567, 639
of an autoregressive process, 528

Autocovariances, 16
calculation of, 629
circular, 415, 631, 701
empirical, 17, 408, 409
of a pth-order AR(p) autoregressive

process, 530
of a qth-order MA(q) moving average
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process, 518
of a first-order AR(1) autoregressive

process, 530
of a first-order MA(1) moving

average process, 519, 563, 633
of a second-order MA(2) moving

average process, 567
of an ARMA(p, q) autoregressive

moving average process, 543
ordinary, 415, 631, 701

Automobile design, car bodies, 301
Autoregressive integrated moving

average model, 583
Autoregressive model, 7, 31, 513, 667

first-order AR(1), 528, 530
infinite order, 517, 540
likelihood function, 672
pth-order AR(p), 10, 528
second-order AR(2), 8, 543, 569, 671

Autoregressive moving average model,
31, 497, 513, 540, 637, 686

autoregressive form, 580
difference equation form, 580
moving average form, 580

Autoregressive moving average
parameters

computed from autocovariances, 545
estimation, 637, 667
exact maximum-likelihood estimates,

688, 692
Autoregressive parameters

Burg estimates, 601, 662
computed from autocovariances, 535
conditional maximum-likelihood

estimates, 676, 678
exact maximum-likelihood estimates,

674

Backwards prediction
(back-forecasting), 597, 599, 682

Backwards-difference operator, 33, 133
Bairstow’s method, of finding roots,

104, 108
Band-limited spectrum, 418, 421
Bandpass filter, 485, 509
Bandstop filter, 485, 509
Bandwidth theorem, 386

Bandwidth, of spectrum estimator, 711,
714

Bartlett (triangular) window, 491, 716
Bartlett’s formula, 627
Bartlett, M.S., 627, 718, 719
Bayesian inference, 241, 245
Bernstein polynomials, 301, 303
Bernstein, S.N., 301
Beveridge, W.H., 6, 15, 408, 697
Bézier curves, 290, 301, 302, 304
Bézier, P., 301
Bidirectional filter, 591, 612
Bilinear Möbius transformation, 151,

498, 504
Binomial theorem, 34
Biological growth, 261
Bishop, T.N., 659
Blackman kernel, 496
Blackman window, 496
Blackman, R.B., 496, 719
Block diagram (signal diagram), 165,

600
Bloomfield, P., 400
Borel set, 724
Bounded input bounded output

(BIBO) stability, 32, 62, 382,
470

Box, G.E.P., 9, 14, 152, 644, 682, 686
Box–Cox transformation, 9
Bracketing a minimum, 335
Brent, R.P., 331
Brockwell, P.J., 656
Brown, R.L., 231
Brownian motion, 588
Broyden, C.G., 355
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) optimisation method,
355, 357, 358

B-spline, cubic, 282, 284, 288
B-splines, 281
Bucy, R.S., 227
Buijs-Ballot, C.D.H., 4
Bulirsh, R., 102
Burg estimator, of autoregressive

parameters, 601, 662
Burg, J.P., 659
Burman, J.P., 607
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Butterworth filter, 499

analogue, 499
bidirectional digital, 612
digital, xii, 506, 511, 591
poles of, 499

Caines, P.E., 593
Cameron, M.A., 648
Canonical forms

controllable, 167, 172
observable, 168, 176

Capacitance, electrical, 142, 459
Cauchy’s integral theorem, 75
Cauchy–Goursat theorem, 76
Cauchy–Riemann equations, 71
Cauchy–Schwarz inequality, 355, 514,

709
Causal (backward-looking) filter, 459,

469, 475, 497
Central limit theorem, 723, 740

for m-dependent sequences, 655
for martingales, 655
of Lindeberg and Levy, 746

Cesàro sum, 491
Chambers, J.M., 215
Characteristic equation, 89, 162
Characteristic function, 387, 744
Characteristic roots, 162
Chebyshev filter, 501

analogue, 501
digital, xii, 506
poles of, 502
ripple amplitude, 502

Chebyshev polynomials, 501
Chebyshev’s inequality, 739
Chi-square distribution, 219, 733
Chi-square variate, decompositions of,

220, 736
Cholesky factorisation, 158, 181, 192,

208, 217, 538, 593
Chornoboy, E.S., 607
Circuit, electrical LCR, 143, 459
Circulant matrices, 48, 639, 646

factorisation of, vii, 50
Circular autocovariances, 415, 631, 701

Circular convolution, vii, 28, 29, 35, 36,
49

Classical linear regression model, 201,
204, 219

Cochran’s theorem, 738
Coefficient of determination, 204
Cogley, T., 592
Cohn, A., 122, 157
Commissariat of Finance, 9
Communications engineering, 3, 469
Commutativity of circulant matrices,

49, 646
Commutativity of L-T Toeplitz

matrices, 47, 644
Commutativity of polynomial

multiplication, 47
Compact discs, 392
Companion matrix, 166
Complex analysis, 55
Complex numbers, 38

addition of, 40
argument of, 38
complex exponential representation,

38
conjugate, 37, 38
inversion of, 41
modulus of, 38, 39
multiplication of, 40
polar representation, 38
square root of, 41
subtraction of, 40
trigonometrical representation, 38

Compound angle formulae of
trigonometry, 396

Compound interest, 147
Computer-aided design, 301
Concentrated likelihood function

for autoregressive estimation, 673
for moving average estimation, 681

Condenser (capacitor), 142
Conditional expectation, of a random

variable, 245, 576, 594
Conditional least-squares estimates, of

autoregressive moving average
parameters, 644

Conditional maximum-likelihood
estimates
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of autoregressive parameters, 676,
678

of moving average parameters, 685
Conditional probability density

function, 725
Conjugacy, conditions of, 356
Conjugate directions, 346, 347
Conjugate gradient procedure, 348, 349
Consistency (statistical)

of estimated autocovariances, 623,
624

of estimated mean, 620
Continuity

of a function, 70
second order (C2), 278

Continuous time, 121
Continuous-time frequency response,

395
Contour integration, 73
Contours, 72
Control engineering, 3, 161
Control theory, 161
Control variables, 162
Controllability, rank condition for, 172
Controllable canonical forms, 167, 172
Convergence

criterion in optimisation (see also
quadratic convergence), 333, 334

in distribution, 742
in mean square, 741
in probability strongly, 741
in probability weakly, 741
of a nonstochastic sequence, 62, 63,

740
of Fourier approximations, 376
quadratic, x, 344, 345
radius of, 63, 78

Convolution, vii, 26, 28
circular, vii, 28, 29, 35, 36, 49
integral, 371
linear, vii, 26, 36

Convolution and modulation, 54, 372,
393, 420

Cooley, J.W., 14, 427
Corrected sums of squares, 211
Correlation matrix, 211, 212
Cosh (hyperbolic cosine), 501

Cosine bell, 492
raised, 492

Cosine window, 492, 496
Covariance, 727
Covariance matrix, 728
Cox, D.R., 9
Cramér, H., 564
Cramér–Rao inequality, 754
Cramér–Wold factorisation, 521, 528,

564
Cramér–Wold theorem, 513, 549, 564
Craven, P., 317
Cross-validation, 293
Cubic B-spline, 282, 284, 288
Cubic spline, 279
Cumulative probability distribution

function, 16, 723
Curry, J.H., 89
Cyclic permutations, 48
Cyclical stochastic process, 553–555

d’Alembert, 15
Dahlhaus, R., 660
Damping

critical, 138, 142
light, 139
ratio, 139, 142
viscous, 138

Davis, R.A., 656
de Boor, C., 291
De Broglie wave, 387
De Broglie, L., 387
De Jong, P., 241, 607
de Vos, A.F., 317
De-trending, 575
Decibels, 488
Decomposition of a chi-square variate,

220, 736
Degenerate random vector, 729
Delta function, Dirac’s, 24, 388, 390,

422, 488
sifting property of, 388, 422

Delta, Kronecker’s, 24
DeMoivre’s theorem, 40
Density function

(probability) for a moving-average
model, 681
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(probability) for an autoregressive
model, 672

(probability) for an autoregressive
moving-average model, 688

probability, 723
spectral, 12, 365, 549, 558, 697, 698

Derivatives, directional, 325
Derivatives, numerical, 351
Deseasonalising filter, 464
Dickson, E.L., 103
Difference equation, 7, 121, 161

alternative forms, viii, 133
analytic solution, 122
augmented homogeneous equation,

126
damping factor, 125
forcing function, 122, 126, 162
general solution, 122, 123, 126
homogeneous, 122
inhomogeneous, 122
initial amplitude, 125
initial conditions for, 122, 123, 129
particular solution, 122, 126
phase displacement, 125
recursive solution, 122
second-order, 7
stability of, viii, 122, 151
transient component, 126
with complex roots, 125
with repeated roots, 123
Wronskian matrix, 130
z-transform method, 130

Difference operator
backward, 33, 133
forward, 33, 121, 133

Differentiable function, 71
Differential equation, 121, 135

analytic solution, 136
forcing function, 135
general solution, 138, 144
homogeneous, 136
inhomogeneous, 136
initial conditions for, 144
Laplace transform method, 144
stability of, 122, 148

Differential operator, 133
Diffuse Kalman filter, 241, 607

Digital processors, 161
Digital signal processing, 392, 459
Digitally recorded sound, 383, 392, 589
Dirac’s delta function, 24, 388, 390,

422, 488
sifting property of, 388, 422

Dirac, P.A.M., 388
Direct current (DC), 407
Direction vector, 324
Directional derivatives, 325
Dirichlet kernel, 384, 392, 414, 422,

487, 716
Dirichlet’s conditions, 368, 491
Dirichlet, P.G.L, 368
Discrete Fourier transform, 36, 42, 53,

366, 399, 414, 418
Discrete time, 121
Discrete-time Fourier transform, 366,

378, 381, 418
Dispersion (variance–covariance)

matrix, 201, 728
Dispersion matrix

mean-square error, 241
of a moving average process, 521,

528, 679
of a stationary stochastic process,

514, 515
of an AR(1) first-order autoregressive

process, 530
of an autoregressive moving average

process, 687
of an autoregressive process, 530, 670
of an MA(1) first-order moving

average process, 519
Distribution

chi-square, 219, 733
F distribution, 219, 734
normal, 219, 723
standard normal, 218
t distribution, 219, 734

Distribution function
cumulative probability, 16, 723
spectral, 11, 555

Disturbance vector, 201, 218
Divided differences, 113, 118, 284
Division algorithm, 96, 98
Doob, J.L., 550, 573
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Draughtsman’s, spline, 294, 305
Duncan, D.B., 241
Durbin, J., 536
Durbin–Levinson algorithm, 530,

536–538, 593, 596, 598
Dynamic systems, linear, 121

Economics, 3
Electric current

alternating, 374, 497
direct, 407

Electrical circuit, 142, 459
LCR circuit, 143, 459

Electroencephalography, 3
Elementary row operations, 182
Emission spectrum, 555
Energy

of a signal, 25, 385
potential, 305

Errors from rounding, 212
Errors of observation (measurement),

240, 313, 589
Errors of prediction, 215, 228, 229, 323
Estimability, 751
Estimation of

autocorrelations, 626
autocovariances, 622
autoregressive moving average

parameters, 637, 667, 688, 692
autoregressive parameters, xiii, 641,

674, 676, 678
moving average parameters, xiii, 642,

681, 683, 685
regression parameters, 202
the spectral density function, 697

Euclid’s algorithm, vii, 55
Euler’s equations, 39, 367, 390, 410
Euler, L., 15
European wheat prices, 6, 15, 408, 697
Expansion

Laplace, 176
Laurent series, 55, 69, 80
of a rational function, 45, 55, 63, 65
Taylor’s series, 55, 78, 90

Expectation, conditional, 245, 576, 594
Expectations operator, 726
Expected value, 16, 726

Exponential weighting (smoothing),
238, 585

Extension of a sequence
ordinary, 23, 422, 700
periodic, 24, 28, 422, 701

Factorisation
Cholesky, 158, 181, 192, 208, 217,

538, 593
of circulant matrices, vii, 50
L–U , 190
of polynomials, vii, 37, 45

Farooq, M., 251
Fast Fourier transform (FFT), 14, 366,

399, 427
base-2 algorithm, 447
for single real sequence, 452
for two real sequences, 450
mixed-radix algorithm, 439, 445

F distribution, 219, 734
Feedback, 30, 32, 460, 496
Fejér kernel, 491, 659
Filter

all-pole, 498
allpass, 475, 476
analogue, 498
bandpass, 485, 509
bandstop, 485, 509
bidirectional, 591, 612
Butterworth analogue, 499
Butterworth digital, xii, 506, 511, 591
causal (backward-looking), 459, 469,

475, 497
Chebyshev analogue, 501
Chebyshev digital, xii, 506
deseasonalising, 464
finite impulse response (FIR), 459,

496
for trend estimation, 612
gain of, 228, 460, 466, 566
highpass, 483, 485, 509
Hodrick–Prescott, 592
infinite impulse response (IIR), 459,

496
invertible, 475
Kalman, 163, 227, 239, 250, 576
lowpass, 382, 483, 484, 509
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memory of, 496
minimum phase (miniphase), 477
noninvertible, 475
notch, 497
phase effect of, 460, 466, 472, 566
recursive, 459, 469, 475
square root, 233

Filtering
Kalman, 241
linear, 552, 564

Financial investment, 147
Finite difference methods

central differences, 351
forward differences, 351, 352

Finite impulse response (FIR) filters,
459, 496

Finite-dimensional vector space, 593
First-order AR(1) autoregressive

model, 528, 530
First-order MA(1) moving average

model, 517, 519, 563, 604, 633
Fisher’s information matrix, 753, 754
Fixed-interval smoothing, 247, 251
Fixed-lag smoothing, 247, 253
Fixed-point smoothing, 247, 251
Fletcher, R., 349, 355
Fluctuations in a time series, 261
Forcing function

of difference equation, 122, 126, 162
of differential equation, 135

FORTRAN computer language, 39, 93,
467

Forward-difference operator, 33, 121,
133

Fourier analysis, 3
Fourier approximations, 375

convergence of, 376
Fourier coefficients, 369, 402, 403, 414,

427
Fourier component, amplitude of, 405
Fourier frequency, 400, 407, 413, 427,

700
Fourier integral, 10, 365, 384, 418
Fourier polynomial, 375
Fourier series (sum), 10, 365–367, 370,

410
Fourier transform, 365

discrete, 36, 42, 53, 366, 399, 414, 418
discrete-time, 366, 378, 381, 418
fast (FFT), 14, 366, 399, 427
integral transform, 366
symmetry conditions, 378, 379

Fourier, J-B-J., 368
Fourier–Stieltjes integral, 460, 549, 557
Fractals, 89, 557
Frequency

Fourier, 400, 407, 413, 427, 700
fundamental, 367, 407
mains, 407, 497
negative, 410
Nyquist, 394, 401, 556
resonant (natural), 139, 142

Frequency domain, and linear filtering,
564

Frequency response, 461, 462, 469
in continuous-time , 395
in discrete time, 381, 382

Frequency shifting, 485, 486
Frequency transformations

for analogue filters, 507–509
for digital filters, 508, 509

Frequency warping (pre-warping), 506
Frequency-domain methods, 3
Function

analytic, 71, 278
continuous, 70
differentiable, 71
piecewise continuous, 368
pole of, 63, 81
rational, 55
zero of, 63

Fundamental frequency, 367, 407
Fundamental theorem of algebra, 99

Gain of a filter, 228, 460, 466, 566
Gantmacher, F.R., 149
Garnett, L., 89
Gauss–Markov theorem, 204
Gauss–Newton method

for estimating an ARMA model, 653
of minimisation, 343, 648

Gaussian distribution (normal
distribution), 219, 386
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Gaussian elimination, 181, 182, 208,
211, 219, 222

pivotal selection, 186
Gaussian matrix inversion algorithm,

189, 208, 211
Generalised harmonic analysis, vii, 10,

15, 369, 557
Generalised least-squares regression,

236, 238
Generating function, 35

for autocovariances, 84, 414, 515,
530, 552

for autocovariances of a moving
average process, 521

for autocovariances of an
autoregressive moving average
process, 540, 567, 639

for autocovariances of an
autoregressive process, 528

Gentleman, W.M., 432
Gibbs’ phenomenon, 377, 422, 488
Gibbs, J.W., 377
Gill, P.E., 323, 352
Giordano, A.A., 659
Givens procedure, 216
Gleick, J., 89
Global minimum of a function, 324
Godolphin, E.J., 643
Golden section, 327
Golden section search, 327
Goldfarb, D., 355
Goldfeld, S.M., 342
Golub, G., 191
Gradient methods of optimisation, 338
Gradient vector, 325, 338

central difference approximation, 351
forward difference approximation,

351, 352
Grafted polynomials, 279
Gram polynomials, 268, 269
Gram–Schmidt prediction-error

algorithm, 593, 601, 683
Gram–Schmidt procedure, 216,

263–265, 270
classical, 267, 603
modified, 266, 267

Granger, C.W.J., 15

Green’s theorem, 75
Gregory, J., 212
Grenander, U., 550
Group delay, 462
Growth, biological, 261

Half-wave symmetry, 428, 433, 453
Hamming Kernel, 496
Hamming window, 495, 716
Hamming, R.W., 495, 719
Hann, Julius von, 492
Hannan, E.J., 648, 655
Hanning Kernel, 492, 496
Hanning window, 492, 716
Harmonic analyser

Henrici–Conradi, 16
Michelson–Stratton, 16, 377

Harmonic component
amplitude of, 405

Harmonic sequence, 367
Harvey, A.C., 592
Hearing, 488
Heaviside notation, 279, 280
Heisenberg’s uncertainty principle, 366,

386
Helly, theorem of, 562
Helly–Bray theorem, 743
Herglotz, G., 152
Herglotz, theorem of, 561, 563
Hessian matrix, 324, 338, 339, 341, 344,

352
Hidden periodicities, 4, 6, 15, 399, 408,

697
Highest common factor, 56
Highpass filter, 483, 485, 509
Hilbert matrix, 262
Hilbert space, 593
Hodrick–Prescott filter, 592
Hoeffding, W., 656
Hooke’s law, 138
Horn, S.D., 241
Horner’s method of nested

multiplication, 91, 100
Householder method, of Q–R

decomposition, 197, 216, 217,
265, 270

Householder transformation, 195, 217
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Householder, A.S., 181
Hsu, F.M., 659
Hughes, A.O., 15
Hurwitz, A., 122, 150, 157
Hyperbolic cosine (cosh), 501
Hyperbolic sine (sinh), 504
Hypothesis tests, 219

for a single regression coefficient, 222
for all of the regression coefficients,

220
for subsets of regression coefficients,

221

Ideal lowpass filter, 382, 484
Idempotent matrix, 202
Identifiability, 750
Identification

of the order of an AR model, 536
of the order of an MA model, 519
of the orders of an ARMA model,

543, 619, 698
Impulse

in continuous time, 388
in discrete time, 381, 382
in the frequency domain, 389, 422
mechanical, 388

Impulse response, 31, 381, 461
Impulse train, 420, 422

in continuous time, 391
Impulse-invariance technique, 498
Independence, statistical, 725
Inductance, electrical, 142, 459
Industrial design, 293
Inertia, mechanical, 261
Infinite impulse response (IIR) filters,

459, 496
Infinite-order autoregressive process,

517, 540
Infinite-order moving average process,

513, 528, 540, 567
Information matrix of Fisher, 753
Information measure, 752
Information set, 247, 577
Inheritance condition, of quasi-Newton

optimisation methods, 355, 356
Innovations, (prediction errors) in the

Kalman filter, 247

Integrability, absolute, 384, 385
Integral

contour, 72
Fourier–Stieltjes, 460, 549, 557

Integrated autoregressive IAR(1, 1)
model, 587

Integrated moving average
IMA(1, 1) model, 584
IMA(2, 1) model, 319, 592

Integrated Wiener process, 313, 315,
319, 592

Intercept parameter, of a regression,
209, 217

Intermittent smoothing, 247, 253
Interpolating polynomial, 89
Interpolating spline, 293, 294, 307, 308
Interpolation, 114

Lagrangean, 115, 329
polynomial, 114
quadratic, x, 110, 328, 330

Interpolation and Signal Extraction,
589

Inverse matrix, partitioned, 206
Inversion lemma, for matrices, 228
Inversion, of a matrix, 189
Invertibility conditions, for moving

average models, 475, 517, 637
Invertibility of moving average

estimates, 642
Invertible filter, 475
Invertible moving average model, 475,

517
Investment, financial, 147
Isometric transformation, 216
Izenman, A.J., 4

Jaeger, A., 592
Jenkins, G.M., 14, 152, 644, 682, 686
Jensen’s inequality, 752
Jury, E.I., 155
Jury–Blanchard stability conditions,

155

Kalman filter, 163, 227, 239, 250, 576
diffuse, 241, 607

Kalman gain, 243
Kalman, R.E., 227
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Kang, K.M., 682
Kernel, for smoothing the periodogram,

715, 716
Khintchine’s theorem, 745
Khintchine, A., 13
Knots, 279, 294, 301
Kohn, R., 241, 252
Kolmogorov, A.N., 575
Koopman, S.J., 256
Kronecker’s delta, 24

Lag operator, 33, 121
Lag operator polynomial, 34
Lagrange multiplier statistic, 749, 761
Lagrange, J.L., 4, 15
Lagrangean interpolation, 115, 329
Lagrangean polynomials, 116
Lanczos, C., 488
Laplace expansion, 176
Laplace transform, 144, 396
Laplace transform method, of solving

differential equations, 144
Lattice structure, for linear filters, 600
Laurent matrix, 514
Laurent series, 55, 69, 80
Laurent series expansion, 55, 80
Law of large numbers, 740
Law of large numbers, weak, 745
LCR electrical circuit, 143, 459
Leakage, 399, 407, 413, 414, 488
Least-squares estimates

of ARMA parameters, 637, 667
of regression parameters, 202

Least-squares regression
generalised, 236, 238
ordinary, 181, 202
recursive, 227

Legendre polynomials, 269
Levinson, N., 536
Levinson–Durbin algorithm, 530,

536–538, 593, 596, 598
Likelihood function, 323

for a moving average model, 681, 683
for an autoregressive model, 672, 674
for an autoregressive moving average

model, 688, 692
Likelihood-ratio statistic, 749, 761

Limit, mathematical, 70, 740
Limiting distribution, 754

of least-squares ARMA estimates,
656

of periodogram ordinates, xiv, 705,
707, 709

Lindeberg–Levy central limit theorem,
746

Line search, 333, 335, 344, 349
Line spectrum, 555
Linear convolution, vii, 26, 36
Linear dynamic systems, 121
Linear filtering, 552, 564

and the frequency domain, 564
Linear operator, 727
Linear systems

in continuous time, 121
in discrete time, 121
stability of, 121, 181

Linear time trend, 261
Ling, R.F., 212
Local minimum of a function, 324
Long division, 34, 95
Lower-triangular Toeplitz matrices, 46,

158, 639, 644
Lowpass filter, 483, 484, 509

ideal, 382, 484
L–U factorisation, 190
Lysne, D., 658

Möbius bilinear transformation, 151,
498, 504

Müller’s method, for finding roots, 90,
110, 111, 119

Müller, W.E., 90, 110
MA(q) model, 9, 517
MA(1) model, 517, 519, 563, 604, 633
MA(2) model, 567
Mahalanabis, A.K., 251
Mains frequency, 407, 497
Malcolm, M.A., 212
Marden, M., 109, 155
Marginal probability density function,

724
Matrix

circulant, 48, 639, 646
elementary, 182
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elementary permutation, 182
elementary reflection, 195
Hessian, 324, 338, 339, 341, 344, 352
Hilbert, 262
idempotent, 202
Laurent, 514
nilpotent, 46
orthonormal, 195, 216
positive definite, 158, 181
Toeplitz, 46, 158, 639, 644
Vandermonde, 115
Wronskian, 130

Matrix inversion, 189
Matrix inversion lemma, 228
Maximum-likelihood estimates

of ARMA parameters, 667
Maximum-likelihood estimation, 749,

750
Maximum-likelihood estimator

limiting distribution of the restricted
estimator, 760

limiting distribution of the
unrestricted estimator, 756

restricted, xiv, 758, 760
unrestricted, xiv, 756

Mayne, D.Q., 256
Mean of a sample, 619
Mean-square convergence, 741
Mean-square error

dispersion matrix, 241
Mean-square error, of forecast, 581, 585
Measurement equation, 163, 166, 240
Measurement errors, 240, 313, 589
Measurement matrix, 240
Meat consumption in the U.S., 276, 312
Mechanical impulse, 388
Mechanical vibrations, 469, 488, 697
Memories, of recursive estimators, ix,

236, 239
Memory span, of filter, 496
Mentz, R.P., 673
Meteorology, 3
Method of moments, 750
Michelson, A.A., 16, 377
Minimisation

multivariate, 323, 333, 335, 349
univariate, 326, 328, 336

Minimum of a function
global, 324
local, 324
strict, 324
weak, 324

Minimum phase (miniphase) filter, 477
Minimum variance bound, (Cramér

Rao inequality), 754
Minimum-distance property, of

ordinary least-squares
regression, 203, 375

Minimum-mean-square-error
prediction, 576, 578, 580, 594

Mixed-radix arithmetic, 431, 444
Mixed-radix FFT algorithm, 439, 445
Modulation and convolution, 54, 372,

393, 420
Modulation product, 54, 372, 393
Modulation, amplitude, 25, 393
Modulus, of a complex number, 38, 39
Moments

of a multivariate distribution, 727
Monic polynomial, 43
Moore, H.L., 7, 697
Moore, J.B., 250
Moving average model, 9, 31, 513, 678

first-order MA(1), 517, 519, 563, 604,
633

infinite order, 513, 528, 540, 567
invertible, 517
likelihood function, 681, 688
qth-order MA(q), 9, 517
second-order MA(2), 567

Moving average parameters
computed from autocovariances, 523
conditional maximum-likelihood

estimates, 685
exact maximum-likelihood estimates,

681, 683
Moving average representation of a

stationary stochastic process,
570, 572

Multivariate normal distribution, 219
standard normal distribution, 218

Multivariate optimisation, 323, 333,
335, 349
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Nason, J.M., 592
Natural (resonant) frequency, 139, 142
Network, analogue, 508
Neurology, 3
Newton method, for finding roots, 89,

99, 102
Newton’s difference form of a

polynomial, 117, 118
Newton’s second law of motion, 138
Newton–Raphson algorithm, 99, 102,

105, 340, 341, 343
Nodes, 279, 294
Noninvertible filter, 475
Nonparametric spectral estimation, 12,

697
Normal distribution, 219, 723

characteristic function, 387
multivariate, 219, 730
standard, 218, 734
univariate, 386

Normal equations, of a linear
regression, 181, 202, 215, 262,
578

Notation of Heaviside, 279, 280
Notation of Whittle, 579
Notch filter, 497
Numerical derivatives, 351
Nyquist frequency, 394, 401, 556
Nyquist, H., 148, 394
Nyquist–Shannon sampling theorem,

148, 366, 392, 394, 401, 418

Objective function, 325
Observability, rank condition for, 176
Observable canonical forms, 168, 176
Observational (measurement) errors,

240
Oceanography, 3
Ohio valley, rainfall, 697
Operator

backwards-difference, 33, 133
derivative (differential), 133
expectations, 726
forward-difference, 33, 121, 133
lag (backward shift), 33, 121
linear, 727
rational, 34, 45

summation, 33
Oppenheim, A.V., 467
Optimisation

gradient methods, 338
multivariate, 323, 333, 335, 349
univariate, 326, 328, 336

Order identification
for an AR model, 536
for an ARMA model, 543, 619, 698
for an MA model, 519

Ordinary autocovariances, 415, 631, 701
Ordinary extension of a sequence, 23,

422, 700
Ordinary least-squares regression, 181,

202
Orthogonal decomposition of a vector,

219
Orthogonal polynomials, 264, 269, 270
Orthogonal projector, 202, 264
Orthogonality conditions

for complex exponentials, 369
for trigonometrical functions, 369,

397
for trigonometrical sequences, 403,

424
Orthogonality principle, of linear

prediction, 577, 578, 589
Orthonormal matrix, 195, 216
Osborn, D.R., 682
Overshooting, 138

Padding a sequence with zeros, 36, 429,
631

Palindrome, 430, 444, 445
Parseval’s relation, 372
Partial autocorrelation, 535, 536
Partial fractions, 59, 69
Partitioned inverse matrix, 206
Partitioned regression model, ix, 206
Parzen window, 716, 719
Parzen, E., 719
Pascal computer language, 39, 93, 467
Passband, of a filter, 483
Paulsen, J., 658
Pea shooter, 7, 587
Pendulum, 7, 587
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Periodic extension of a sequence, 24,
28, 422, 701

Periodic polynomial, vii, 35
Periodic square wave, 370, 386
Periodicities, hidden, 4, 6, 15, 399, 408,

697
Periodogram, 4, 17, 407, 409, 697

asymptotic properties of, xiv, 705,
707, 709

Periodogram analysis, 6, 408
Periodogram smoothing, vii, 12, 14,

697, 710–712
Permutation cycle, 443
Perpendicular projector, 202, 264
Perpetual motion, 138
Phase delay, 462
Phase displacement, 367
Phase effect, linear, 464
Phase effect, of a filter, 460, 466, 472,

566
Phillips’ criterion, for estimating a

moving average model, 686
Phillips, A.W., 686
Piecewise continuous function, 368
Pivotal selection, in Gaussian

elimination, 186
Plackett, R.L., 227
Planck’s constant, 387
Pole–zero diagram, 64, 469, 470
Poles of a rational function, 63, 81, 154,

469, 470
Pollock, D.S.G., 208, 736
Polynomial algebra, 23, 34
Polynomial interpolation, 89, 114
Polynomial lag operator, 34
Polynomial regression, 261
Polynomial time trend, 261, 278
Polynomials

Bernstein, 301, 303
Chebyshev, 501
factorisation of, vii, 37, 45
Fourier, 375
grafted, 279
Gram, 268, 269
in nested form, 92, 117
in Newton’s form, 117
in power form, 274

in shifted power form, 90
Lagrangean, 116
Legendre, 269
monic, 43
orthogonal, 264, 269, 270
periodic, vii, 35
piecewise cubic, 278
synthetic division of, 55, 61, 91, 96
trigonometrical, 375

Positive definite matrix, 181
PostScript graphics language, 290, 301,

303
Potential difference, 143
Powell, M.J.D., 336
Power, 25, 560

of a Fourier component, 405, 413
of a signal, 25, 373
of an alternating current, 374

Power form of a polynomial, 274
Power method, 343
Power spectrum, 407, 560
Pre-warping of filter frequencies, 506
Prediction, 575

backwards, 597, 599, 682
of state variables, 257
orthogonality principle, 577, 578, 589
via autoregressive integrated moving

average ARIMA models, xii, 583
with minimum mean-square error,

576, 578, 580, 594
Prediction errors, 215, 228, 229, 323,

594
(innovations) in the Kalman filter,

247
one step ahead, 594, 599, 601

Prediction-error algorithm, 215, 228
Gram–Schmidt, 593, 601, 683

Premier, R., 251
Presample values, of an ARMA

process, 638
Prewhitening technique, 580
Prime factors of a number, 430
Prime number theorem, 430
Principle of superposition, 89
Prior probability density function, 235
Probability density function, 723

conditional, 725
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for a moving-average model, 681
for an autoregressive model, 672
for an autoregressive moving-average

model, 688
marginal, 724

Probability distribution function
(cumulative), 16, 723

Projection theorem, 577, 594
Projector

orthogonal, 202, 264
Pukkila, T., 648, 659, 660
Pulse, rectangular, 386, 421
Pythagoras’ theorem, 203

Q–R decomposition, 181, 197, 216, 219,
222, 265, 270

Quadratic approximation, 339, 340
Quadratic convergence, x, 344, 345
Quadratic equation, 37
Quadratic interpolation, x, 110, 328,

330
Quadratic time trend, 261
Quasi-Newton condition, 353–355
Quasi-Newton methods

inheritance condition, 355, 356
method of Broyden, Fletcher,

Goldfarb and Shanno (BFGS),
355, 357, 358

Rabinowitz, P., 103
Radio receiver, 144
Radius of convergence, 63, 78
Rainfall, in the Ohio valley, 697
Ralston, E.J., 103
Random vector, 723

degenerate , 729
Random walk, second-order, 313, 592
Rao, C.R., 157, 723, 740, 743, 746, 752
Rational functions

expansion of, 45, 55, 63, 65
partial fractions of, 59, 69
poles of, 63, 81, 154, 469, 470
zeros of, 63, 154, 469, 470

Rectangular pulse, 386, 421
Rectangular window, 421, 487, 716
Rectangular window sequence, 391
Recurrence relationship, vii, 64

Recurrence, three-term, 269, 270, 275,
502

Recursive calculation
of sample mean, 214
of sample variance, 215

Recursive least-squares regression, 227
Recursive residuals, 231
Reeves, C.M., 349
Reflection coefficient, 539, 599, 600
Regression

ordinary least-squares, 181, 202
polynomial, 261
recursive least-squares, 227
rolling, 238
trigonometrical, 400

Regression analysis, 201
Regression equation, ix, 201
Regression model, ix, 30, 201

classical linear, 201, 204, 219
partitioned, ix, 206

Reinsch smoothing spline, 319, 592, 613
Reinsch, C., 293
Remainder theorem, 91, 99
Residual sum of squares, 223, 230

restricted, 223
unrestricted, 223

Residuals
recursive, 231

Residue theorem, 83
Resistance, electrical, 142, 459
Resonance, 142
Resonant (natural) frequency, 139, 142
Reverse-time filtering, 591
Riccati equation, 243
Ripple amplitude, in Cheyshev filter,

502
Robbins, H., 656
Robinson, G., 6, 407
Rolling regression, 238
Roots of unity, 42, 50, 427
Rosenblatt, M., 550
Rounding errors, 212
Routh criterion, 89, 122, 148, 150
Routh, E.J., 89, 122, 148, 150
Routh–Hurwitz condition, 122, 151
Russian school, of time series analysis,

550
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Sample autocorrelations, 626
asymptotic moments of, 627

Sample autocovariances, 622
asymptotic moments of, 625
statistical consistency of, 623, 624

Sample mean, 619
statistical consistency of, 620
variance of, 619

Sample spectrum, 699, 700, 702
sampling properties of, 702, 703

Sampling
in the frequency domain, 422

Sampling distributions, 218
Sampling frequency, 420
Sampling theorem, 148, 366, 392, 394,

401, 418
Samuelson conditions, 122, 152
Samuelson, P.A., 122, 152
Sande, G., 432
Schafer, R.W., 467
Schoenberg, I.J., 293
Schrödinger’s wave function, 387
Schur, I., 122, 157
Schur–Cohn conditions, 122, 157, 539,

671
Schuster, A., 4, 6
Science Museum, London, 16
Search procedure (line search), 333,

335, 344, 349
Second law of motion, Newton’s, 138
Second-order AR(2) autoregressive

model, 8, 543, 569, 671
Second-order difference equation, 7
Second-order MA(2) moving average

model, 567
Seismology, 3
Sell-by date, 236
Sequence

finite, 23
harmonic, 367
indefinite, 23
infinite, 23
ordinary extension of, 23, 422, 700
periodic extension of, 24, 28, 422, 701

Series
Fourier, 10, 365–367, 370, 410
Laurent, 55, 69, 80

Taylor’s, 55, 78, 90
trigonometrical, 367, 369, 370

Series expansion
convergence of, 62, 63

Shanno, D.F., 355
Shannon, C.E., 148, 394
Shipbuilding, 301
Shub, M., 89
Sifting property, 388
Signal diagram (block diagram), 165,

600
Signal extraction, 575, 589, 607
Signal-to-noise ratio, 316, 592
Similarity transformation, 162, 173
Sinc function, 386, 421
Sinh (hyperbolic sine), 504
Slutsky’s theorem, 742
Slutsky, E., 7, 9, 15
Smale, S., 89
Smoothing

exponential, 238, 585
fixed-interval, 247, 251
fixed-lag, 247, 253
fixed-point, 247, 251
intermittent, 247, 253
of state estimates, 247

Smoothing filter, 576
Smoothing function for spectral

estimation, 710, 711
Smoothing kernel, 715
Smoothing parameter, 308, 313, 592
Smoothing spline, 261, 293, 307, 312,

313
Smoothing the periodogram, 12, 14,

697, 710–712
Sound

digitally recorded, 383, 392, 589
ringing, 383

Space
vector, 46

Spectral analysis, 3
Spectral carpentry, 14
Spectral density function, 12, 365, 549,

558, 697, 698
Spectral distribution function, 11, 555
Spectral estimation, nonparametric, 12,

697

779



D.S.G. POLLOCK: TIME-SERIES ANALYSIS

Spectral representation, of a stationary
stochastic process, 549, 553, 559

Spectrum
absorption, 555
discrete, 365
emission, 555
of a white-noise process, 561
of an AR(2) process, 570
of an ARMA process, 567, 640
of an MA(1) process, 563
of an MA(2) process, 569, 570
sample, 699, 700

Spline
B-spline, 281
clamped, 295, 298, 300
cubic, 279
draughtsman’s, 294, 305
interpolating, 293, 294, 307, 308
natural, 295
smoothing, 261, 293, 307, 312, 313

Square root, filter, 233
Square wave, periodic, 370, 386
Stability conditions

for difference equations, 122
for differential equations, 122, 148
for autoregressive models, 671
for difference equations, viii, 151
for second-order difference equations,

152, 671
Jury–Blanchard, 155

Stability, BIBO, 32, 62, 382, 470
Standard normal distribution, 218, 734
Starting value problem, 607, 667
Starting values

for recursive least squares estimation,
235

State space methods, 161
State transition equation, 161, 239

augmented, 250
State vector, 161
Stationarity

of the Yule-Walker estimates, 641
strict, 514, 550
weak (second-order), 514, 550

Stationarity conditions, for an
autoregressive process, 528, 637

Stationary stochastic process, 513, 514,
553, 619

moving average representation, 570,
572

Spectral representation, 549, 553, 559
Statistical independence, 725
Statistical inference, 749
Steepest descent, the method of, 340,

343
Stellar luminosity, 4, 407, 697
Step response, 31
Step-adjustment scalar, 324, 338
Steyn, I.J., 317
Stochastic convergence

in distribution, 742
in mean square, 741
strong (almost sure), 741
weak, 741

Stochastic process
cyclical, 553–555
stationary, 513, 514, 549, 553, 619

Stoer, J., 102
Stopband, of a filter, 483
Strict stationarity, 514, 550
Strong convergence

in probability, 741
Structural change, 238
Strum, J.C.F., 102
Sturm sequences, 103
Sturm’s theorem, 102
Sullivan, D., 89
Sum–product formulae, of

trigonometry, 396
Summability, absolute, 25, 28, 32
Summation operator, 33
Sunspot index, 4, 6, 8
Superposition, principle of, 89
Support, of a B-spline, 282
Support, of a random vector, 729
Symmetry conditions, for Fourier

transforms, 378, 379
Synthetic division, 55, 61, 91, 96

Tapering, 659, 660
Taylor’s Approximation, 339
Taylor’s series, 55, 78, 90
Taylor’s series expansion, 55, 78, 90
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t distribution, 219, 734
Theorem

argument, 87, 154, 471
bandwidth, 386
binomial, 34
Cauchy’s integral, 75
Cauchy–Goursat, 76
central limit, 723
Cochran’s, 738
Cramér–Wold, 513, 549, 564
fundamental of algebra, 99
Gauss–Markov, 204
Green’s, 75
Helly–Bray, 743
of DeMoivre, 40
of Helly, 562
of Herglotz, 561, 563
of Khintchine, 745
of Sturm, 102
prime number, 430
projection, 577, 594
Pythagoras, 203
remainder, 91, 99
residue, 83
sampling, 148, 366, 392, 394, 401, 418
Slutsky’s, 742
Weierstrass approximation, 301, 302,

376
Wiener–Khintchine, 13, 409, 415,

550, 560
Three-term recurrence, 269, 270, 275,

502
Time

continuous, 121
discrete, 121

Time trend
linear, 261
polynomial, 261, 278
quadratic, 261

Time-domain methods, 3
Time-limited signal, 418, 421
Tintner, G., 276
Titchmarsh. E.C., 384
Tjøstheim, D., 658
Todhunter, I., 103
Toeplitz matrices, 46, 158, 639, 644

Transfer function, of discrete-time
system, 31, 381

Transition equation, 161, 239
Transition matrix, 161, 240
Trend

linear, 261
polynomial, 261, 278
quadratic, 261

Trend estimation filter, 612
Trend in a time series, 261, 293, 313,

464
Trigonometrical functions, evaluation

of, 447
Trigonometrical identities

compound angle formulae, 396
sum–product formulae, 396

Trigonometrical polynomial, 375
Trigonometrical regression, 400
Trigonometrical series, 367, 369, 370
Truncation

in the time domain, 421
of autocovariance sequence in

spectral estimation, 713
Tukey, J.W., 14, 427, 496, 719
Tunnicliffe–Wilson, G., 525
Turner, T.R., 648
Twiddle factor, 433

Ulrych, T.J., 659
Uncertainty principle of Heisenberg,

366, 386
Unit impulse, 24, 31, 381, 382
Unit roots, in ARMA models, 583
Unit step, 24, 31
Univariate minimisation, 326, 328, 336
Univariate optimisation, 326, 328, 336
Univariate search, x, 326
Unscrambling, 434, 444, 445, 450
Updating algorithm, for recursive least

squares, 231, 233
Updating formula, of function

optimisation, 324, 349
Ursa Major, 6, 407
Uspensky, J.V., 103, 115

Vacroux, A.G., 251
Van Loan, C.F., 191
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Van Valkenburg, M.E., 508
Vandermonde, matrix, 115
Variance, 25, 727
Variance–covariance matrix (see also

dispersion matrix), 201, 728
Vector spaces

algebra of, 46
of finite dimension, 593
of infinite dimension, 593

Vibrations, mechanical, 469, 488, 697
Viscosity, 588
Viscous damping, 138
Vision, 488

Wahba, G., 317, 319
Wald statistic, 749, 761
Walker, A.M., 635, 655
Warping, frequency (pre-warping), 506
Wave function, Schrödinger’s, 387
Wave, De Broglie, 387
Weak (second-order) stationarity, 514,

550
Weak convergence in probability, 741
Weak law of large numbers, 745
Weak minimum of a function, 324
Wecker, W.P., 317
Weierstrass approximation theorem,

301, 302, 376
Weierstrass, K., 301, 376
Weighting sequence, for spectral

estimation, 713
Weighting the autocovariance function,

14, 713
Wheat prices, in Western Europe, 6,

15, 408, 697
White noise, 517, 550, 561

spectrum, 561
Whittaker, E.T., 6, 407
Whittaker, J.M., 394
Whittle’s notation, 579
Whittle, P., 257, 579, 655
Wiener process, integrated, 313, 315,

319, 592
Wiener, N., 13, 15, 369, 557, 575
Wiener–Khintchine theorem, 13, 409,

415, 560
Wiener–Kolmogorov filter, 319, 607

Wiener–Kolmogorov prediction theory,
319, 575, 607

Willman, W.W., 251
Window

Bartlett, 491, 716
Blackman, 496
cosine, 492, 496
Hamming, 716
Hanning, 492, 716
Parzen, 716, 719
rectangular, 391, 421, 487, 716

Window functions, for spectral
estimation, 716

Wise, J., 152
Wold, H., 550, 564
Wolfer sunspot index, 4, 6, 8
Wronskian matrix, 130

Yaglom, A.M., 550
Young’s modulus, 138
Young, P., 227
Yule, G.U., 5, 7–9, 15, 587
Yule–Walker equations, 532, 595
Yule–Walker estimates, 641

small-sample properties, 657
stationarity of, 641

Yule–Walker factorisation, 530

Zero padding, 36, 429, 631
Zeros of a rational function, 63, 154,

469, 470
z-transform, 23, 35, 130, 414, 552
z-transform method, of solving

difference equations, 130
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