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Preface

The general purpose of this textbook is to provide analysts in statistical institutes with

a uni�ed view of applied analysis of time series as can be conducted in the framework

of linear stochastic models of the Arima-type. The issues discussed are modelling

and forecasting, �ltering, signal extraction and Unobserved Components analysis, and

regression in time series models. The main concern is to help the readers in under-

standing some important tools that progress in statistical theory has made available.

Emphasis is thus put on practical aspects, and the readers will �nd implementations

of the techniques described in softwares like Seats-Tramo (see Gomez and Maravall,

1996) and X12-Arima (see Findley and al., 1996).
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Chapter 1

Modelling Time Series

1.1 Introduction

A time series is a set of observations on a variable, say y, recorded for consecutive time

intervals. If t = 1; � � � ; T denotes time, then yt represents the realisation of variable y

at time t. The set of observations from 1 to T is written [y
1
; � � � ; yT ] or fytg

T

t=1
, and T

represents the sample length.

An example of time series is given on �gure 1.1. The series plotted is the French total

industry production (excluding construction, production index in constant prices). The

observations are monthly, starting in January 1976 and ending in December 1993, that

is 216 observations. We can see that it is characterized by a trend, that is a long-term

movement, and by some large seasonal 
uctuations. Figure 1.2 displays the series of

Portugal employment in manufacture of bricks, tiles and construction products from

january 1985 to february 1994, that is a sample of 110 observations. It shows a shaped

downward long-term behavior upon which some irregularities and short-term cyclical


uctuations seem superposed. Time series analysis is concerned with two aims: the

description of the salient features of the series and the prediction of the future values

of the series. Typical features of economic time series are:

� The trend, or long-term movements of the series;

� The seasonal 
uctuations;

� The cyclical 
uctuations;
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Figure 1.1: French Total Industry (1976-1 1993-12)
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� The irregular component, which represents the non-systematic movements of the

series.

For the simple reason that they are never directly observed, the variables catching

these four movement-types are also termed unobserved components. The four unob-

served components listed above have been explicitly stated in Persons (1919,1923). To

characterize them, there are mainly two ways of proceeding. The �rst directly yields

an estimator of these components without considering a statistical model for the series

under analysis. It is thus model-free, and a popular example of a model-free proce-

dure is given by X-11. However, in general, any model-free procedure admits a close

approximation which is optimal for a particular statistical model. This model may

thus be seen as implicit. A more informative approach makes instead the underlying

assumptions explicit through the speci�cation of a model. This is the concern of a

second set of procedures called model-based procedures. Emphasis will be put on this

approach, and in this �rst part, we discuss the set up of statistical models for time

series.

The advantage of considering a model is not only that the assumptions are clearly

14



Figure 1.2: Portugal Employment in Manufacture of Bricks (1985-1 1994 2)
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formulated, but also that a 
exible model-type is likely to represent adequately the

movements of a large number of time series with very di�erent patterns. Furthermore,

it is reasonable to expect that a model which does not provide a good description of

the series will not yield satisfactory forecasts. However, it has to be underlined that

a time series model is not an economic model and that it does not aim to represent

the underlying data generation process. Its aim is to describe the behavior of the

series analysed, and for that it is expected to be as 
exible as possible. This is to be

considered at the modelling stage, and the alternative we consider �rst is deterministic

versus stochastic linear models.

1.2 Deterministic vs. Stochastic Linear Processes

Stochasticity will usually be introduced through a white noise variable. It is the process

most used to represent an irregular component. A white noise is de�ned as a sequence of

zero-mean random variables with constant variance and null autocorrelations. White

noise variables may also be assumed to be normally distributed, in which case the

absence of autocorrelations implies that the white noise variables are independent.
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Figure 1.3: Examples of White Noises
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Independent white noises are not predictable, and are sometimes called innovations.

Figure 1.3 display two white noise processes, one with variance .1, the other with

variance 2. It clearly appears that the more erratic process is associated with the

largest variance. On the other hand, letting the variance going to zero will make the

white noise closer to the zero-line.

Modelling time series relies heavily on this type of variable. The largest the inno-

vations variance, the more erratic the process will be. Conversely, small innovations

variance will in general be associated with stable processes.

1.2.1 Modelling a trend

Suppose we are interested in modelling a series yt whose prominent feature is a trend.

The most obvious idea would be to consider a polynomial in time f(t):

yt = f (t) = a+ bt; (1:1)

where a and b are real. The plot of the function f (t) is presented on �gure 1.4. Such

16



Figure 1.4: Trends
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models are called deterministic. It is the kind of model used in the regression approach,

which was may be the �rst model-based approach for trend analysis. Here, it is seen

that the series is described as moving in one single direction. Upturn and downturn

points may be generated by increasing the order of the time-polynomial, but in any

cases the movements of the series are very systematic.

As seen on �gure 1.4, such models are very constraining. They are highly unrealistic:

no actual series behaves in that way. This conclusion was already drawn by Macaulay

in 1931 (p. 38, quoted in Bell and Hillmer (1984)), who noted that trends are evolving

over time and "not necessarily representable through their length by any simple math-

ematical equation". In a �rst step, it may seem more reasonable to consider that the

series zt can be described by the sum of the deterministic function f(t) plus a white

noise disturbance et with mean zero and constant variance V (et):

yt = a+ bt+ et: (1:2)

This model is quite close to the previous one: if �2 = 0, then et = 0 and the models

are identical. On the other hand, as et is not correlated, it is not forecastable, so the

17



forecasts of yt in (1.2) resume to the deterministic function f(t) and are thus identical

to the ones yielded by (1.1).

Suppose we take the �rst di�erence of (1.2); we would get:

�yt = b+ et � �et�1: (1:3)

with � = 1. We may here introduce some 
exibility by allowing the parameter � to

take a value in [�1; 1]. Equation (1.3) gives an example of a stochastic linear process:

yt evolves over time according to a probability law. When � = 1, this process reduces

to (1.2), which in turn becomes closer to the deterministic path displayed in (1.1) as

V (et) goes to zero.

The deterministic process (1.1) is thus a particular case of a stochastic process. As

displayed in (1.3), yt is said to follow an Integrated-Moving Average of order (1,1). If

we set � to 0, then we get a random walk plus drift, the drift being b. Setting b to 0

yields the random walk model �zt = et: it is an evolutionary process in the sense that

the current level shifts each time there is a shock on the system.

1.2.2 Modelling cycles

We are now interested in modelling a cyclical behavior. Simple tools are given by

trigonometric functions of the type y = cos x, where x is an angle measured in radians.

Since there are 2� radians in a circle, y takes all possible values when x moves from 0

to 2�. The pattern is then repeated when xmoves to the successive interval [2k�; 2(k+

1)�]. To introduce the time index t in the determination of yt, we may substitute x

by wt, where w is measured in radians and is refered to as the frequency. We have

now: yt = coswt. This pattern is now repeated every � periods, � being given by:

coswt = cosw(t+ � ), which implies that � = 2�=w. A pattern which is repeated every

ten periods will then have a frequency of 2�=10.

Notice that the movements of y are bounded within [�1; 1]. We may modify this

interval by multiplying the trigonometric function by a scalar � known as amplitude,

so as to obtain variation of yt within [��; �]. Next, yt is set here in such a way that

it reaches its maximum for w = 0. We may shift this peak by introducing a phase

parameter � according to:

18



yt = � cos(wt+ �) (1:4)

Developing (1.4) using standard trigonometric formulas, it is readily obtained that yt

may also be written as:

yt = � coswt+ � sinwt; (1:5)

with �2 + �2 = �2 and tan(�=�) = �.

The trigonometric formulation (1.4) may be put into a di�erence equation form.

Saying for convenience � = 0, yt may be written as: yt = :5�(eiwt+e�iwt) = :5�((eiw)t+

(e�iw)t). This expression has the form of the solution of a di�erence equation, eiw and

e�iw being the roots of the characteristic equation:

r2 � 2 coswr + 1 = 0:

which is associated with the second order di�erence equation: yt�2 cosw yt�1 +yt�2 =

0. The parameters � and � in (1.4) are given by the initial conditions y1 and y2.

A deterministic cycle generated by (1.4) with � = 1:5, � = 0, and w = 2 � �=50 is

displayed on �gure 1.5. This speci�cation for a cyclical pattern shares the problem

of the deterministic modelling: unless the phenomenon obeys these exact laws, it is

quite unlikely to provide a satisfactory representation. The exactness nature of the

function does not able the movement to evolve over time. The forecasts are the exact

replication of the past. Some 
exibility may be introduced by considering some random

disturbances along the waving path, while some generality may be obtained by letting

the process being governed by two coe�cients �1 and �2. We have then: yt + �1yt�1+

�2yt�2 = et.

This process is another example of a linear stochastic process. It is termed AutoRe-

gressive of order 2, AR(2) in short. Again, setting V (et) to zero and �1 = �2 cosw,

�2 = 1 makes the deterministic function (1.4) recovered. For V (et) as small as .0001,

we can see on �gure 1.5 that, though 
uctuating, the stochastic cycle is close enough

to the deterministic one.
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Figure 1.5: Cycles
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1.2.3 Modelling seasonality

Suppose now the series is observed s times a year. Patterns related to the s seasons

may be modelled in a naive way using dummy variables:

yt = D1t
1 +D2t
2 + � � �+Dst
s (1:6)

where Djt takes the value 1 if t = j; j + s; j + 2s; :::, zero otherwise, and the 
-

variables represent the size of the seasonal 
uctuations. This modelling implies that

yt = yt+s: the seasonality is constant over the years. This in turn implies that the sum

of the seasonal 
uctuations over s consecutive time periods is constant:
P

s�1

i=0 yt�i =
P

s�1

i=0
yt�s�i = c. An important requirement is that this sum is null: c = 0. If it would

not, then the constant c would be discarded from the seasonal process and incorporated

into the level of the series. We have now a purely seasonal series represented as:

s�1X

i=0

yt�i = 0 (1:7)
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which is another way of expressing (1.6). Yet another way would be to use trigonometric

forms to characterize the seasonal patterns. Suppose the series is observed 3 times a

year: then, we have yt + yt�1 + yt�2 = 0, with the associated characteristic equation:

r2 + r + 1 = 0. Solving, we get the pair of complex roots r1 = ei2�=3 and r2 = e�i2�=3.

Thus the solution of the di�erential equation yielded by the requirement that the

seasonality sums to zero over a year is in that case yt = rt1 + rt2, which can be also

written:

yt = cos(2�t=3): (1:8)

This example illustrates some equivalence between the dummy variable modelling, the

di�erential form, and the use of trigonometric functions. All capture the periodic

nature of the seasonality, but the 
uctuations are excessively restricted. The pattern is

clearly enforced to repeat itself every year, and this limitation due to the deterministic

character of the representation is very strong: in the 20's, that is more than 70 years

ago, there was a general agreement of the idea that the seasonal components of time

series change in time (for a review of the historical developments see Bell and Hillmer

(1984)).

Small deviations from this strict model speci�cation may be allowed by making the

relationship subject to a random shock in each period:

s�1X

i=0

yt�i = et

This stochastic process reduces to the deterministic speci�cation (1.7) when V (et) = 0.

Figure (1.6) displays a seasonal process generated by (1.8) and its stochastic extension.

Although the noise variance has been set very low (.000625), we can see that the

seasonal movements are much less systematic, evolving instead in time.

More generally, we can allow the deviation from zero to be correlated and consider :

s�1X

i=0

yt�i = et + �1et�1 + � � �+ �qet�q: (1:9)

The right hand side of (1.9) is called Moving Average process of order q and denoted
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Figure 1.6: Seasonal Fluctuations
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Representations involving stochastic models may thus be seen as nesting the de-

terministic formulations. There are much more 
exible, since the processes are not

constrained to strictly follow a speci�c path but are allowed to evolve over time ac-

cording to some random disturbances. Deterministic models are thus a particular case

of stochastic modelling.

1.3 Tools and Concepts for Time Series Modelling

1.3.1 Time series operators

A very used tool in time series analysis is given by the backward operator B. It is

de�ned according to:

Byt = yt�1:

Applied to yt�1, the backward operator yields yt�2, so that in general we will have:

B�yt = yt�� . This de�nition is completed by de�ning B0 such that B0yt = yt. Negative
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powers imply forward shifts, so that we associate to B the forward operator F de�ned

as F = B�1 and Fyt = yt+1.

A polynomial in the backward operator takes the form: �(B) = 1+�1B+ � � �+�pB
p.

This polynomial is said to be of order p, and solving �(z) = 0, p roots are obtained.

For example, the root of �(z) = 1 + �z = 0 is z = �1=�. A distinction will be made

between the roots which are outside the unit circle, that is the roots of modulus greater

then 1, and the roots on the unit which have a modulus of 1. Here, the root of 1 + �z

lies outside the unit circle when j � j< 1.

A special kind of polynomial is given by the di�erencing operator �, de�ned by:

� = 1�B. We have thus: �yt = yt� yt�1. Powers may also be taken: �d = (1�B)d,

and we will have for example: �2yt = �(yt�yt�1) = yt�2yt�1+yt�2 = (1�2B+B2)yt =

(1 � B)2yt. A subindex may be used to indicate the di�erencing order: �d = 1 � Bd

and �dyd = yt � yt�d.

1.3.2 Stationarity

Time series modelling is thus concerned with characterizing in a satisfactory way the

behavior of the series under analysis. We have seen that it is convenient to take the

observations as the output of a probabilistic function: yt � ft(yt). However, there

would be no way to approximate the function ft(:) if each observation were related to

a single function ft(). We thus have to introduce the concept of stationarity:

A process is said to be strictly stationary if the joint probability distribution of a set

of r observations y1; � � � ; yr is equal to the joint distribution of a set yk+1; :::; yk+r for

all k.

Then, the marginal distribution of the yt will be such that: f (yt) = f (yt+k), and

for any couple (yt; yt+k), the joint distribution will be independent of t: f(yt; yt+k) =

f(yt+l; yt+l+k). In practice, it is enough to consider the less restrictive concept of weak

stationarity which only requires the following conditions to be satis�ed:

E(yt) = �

E[(yt � �)2] = V ar(yt) = 
(0)
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E[(yt � �)(yt+k � �)] = 
(k)

for k = 1; 2; :::. Stationary processes thus present constant mean � and variance 
0,

while the autocovariances 
k are independent of the time index t; they are only related

to the time-distance k. Given that normal distributions are fully characterized by the

�rst two moments, a weakly stationary process which is normally distributed will also

be a strictly stationary process.

1.3.3 The Wold decomposition

The Wold decomposition theorem states that any second-order stationary process yt

may be expressed as the sum of a deterministic function plus an in�nite sequence of

uncorrelated random variables:

yt = c(t) + et +  1et�1 +  2et�2 + � � �

= c(t) +
1X

i=0

 iet�i

= c(t) +  (B)et

with  0 = 1 and
P
1

j=0  
2

i < 1. Hence, any second-order stationary process may

be expressed as the sum of a deterministic component plus a linear stochastic process.

The deterministic part usually corresponds to the mean of the series, and the stochastic

part is an in�nite moving average process.
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Chapter 2

Linear Time Series Models

2.1 AutoRegressive Integrated Moving Average Models

Given the straightforward availability of the mean of any stationary process, modelling

the series yt may be seen as the problem of �nding an adequate representation of

the process  (B)et. As the polynomial  (B) is in�nite, it would not be possible to

estimate all the coe�cients  i. An approximation must be built in order to limit the

number of parameters to estimate. The class of Arma models provides a useful tool

for approximating the stochastic part in the Wold decomposition with relatively few

parameters. Without loss of generality, in the remainder of the discussion we will

assume that the mean of the observed series has been removed.

2.1.1 Autoregressive models

Suppose the  -coe�cients are such that:  i =  i and j  j< 1. Then, yt is given by:

yt = (1 +  B +  2B2 + � � �+  nBn)et =

=
1 �  n+1Bn+1

1�  B
et =

=
1

1 �  B
et;
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since limn!1  
n = 0. Rearranging, we get the Ar(1) process:

(1 �  B)yt = et:

or

yt =  yt�1 + et (2:1)

The variance of the Ar(1) process is given by:

E[y2t ] = E[(et +  et�1 + � � �)2] =

= E[(e2t +  2e2t�1 + � � �)] =

= �2
1

1�  2
=

= 
(0);

where use has been made of the fact that the et's are uncorrelated. For the covariances


(k) between yt and yt�k, k = 1; 2; :::, multiplying both sides of (2.1) by yt�k, we have:

E[ytyt�k] =  E[yt�1yt�k] + E[etyt�k];

so that we obtain: 
(k) =  
(k � 1) and eventually 
(k) =  k
(0).

The Ar(1) model is thus able to describe a process whose innovation representation

has coe�cients which decay exponentially. This model may be extended to describe

more general patterns: for example, discussing possible models describing a cyclical

behavior, we have introduced the Ar(2) model. More generally, an autoregressive

process of order p is written as:

yt + �1yt�1 + � � �+ �pyt�p = et (2:2)

and is denoted Ar(p).
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2.1.2 Moving Average models

Assume now that in (2.2) the �i-coe�cients are such that �i = �i with j � j< 1. Then,

a similar reasoning than in the previous subsection yields:

et = (1 + �B + �2B2 + � � �)yt

=
1

1 � �B
yt;

since limn!1 �
n = 0. Rewriting, we obtain the Ma(1) process:

yt = (1 � �B)et:

The Ma(1) is thus able to provide a short representation of an in�nite but conver-

gent Ar process. However, that requires j � j< 1, otherwise the Ma(1) cannot have

a convergent Ar equivalence. The condition j � j< 1 is known as the invertibility

condition.

The variance of the Ma(1) process is obtained as:

E[y2t ] = E[(et � �et�1)
2] =

= (1 + �2)�2 =

= 
(0):

For the autocovariances, we have:

E[ytyt�k] = 
(k) = E[(et � �et�1)(et�k � �et�k�1];

so that 
(1) = ���2 and 
(k) = 0 for k > 1.

Generalizing the Ma(1) process, a moving average of order q is written as:

yt = et + �1et�1 + � � �+ �qet�q;

and is denoted Ma(q).

27



2.1.3 Mixed processes

Both Ar(1) and Ma(1) models are able to represent in a parsimonious way some

particular processes. It is possible to extend their �eld of application by combining

them, so as to obtain an Arma(1,1) model de�ned as:

(1 + �
1
B)yt = (1 + �

1
B)et: (2:3)

The Arma(1,1) model may be further generalized to the Arma(p,q) model by com-

bining an Ar(p) with a Ma(q) process:

yt + �
1
yt�1 + � � �+ �pyt�p = et + �

1
et�1 + � � �+ �qet�q: (2:4)

De�ning the polynomials �(B) = 1+�
1
B+ � � �+�pB

p and �(B) = 1+�
1
B+ � � �+�pB

p,

then (2.4) can be written in the compact form:

�(B)yt = �(B)et: (2:5)

Notice that an Ar(p) process could also be written as an Arma(p,0), in the same way

that Ma(q) process could be denoted Arma(0,q).

2.1.4 Non Stationarity and Integrated Processes

Condition for nonstationarity

TheWold decomposition which provides the ground for theArmamodelling requires

that the observed series is stationary. In practice, very few economic time series are

stationary. Nonstationarity may be due to a nonconstant mean as for example in the

deterministic trend plus noise model:

E[yt] = E[a+ bt+ et] = a+ bt; (2:6)

or to a divergent variance, as in the random walk speci�cation: writing
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yt = yt�1 + et =

= yt�2 + et�1 + et =

= y
0
+ et + et�1 + � � �+ e

1
(2.7)

the variance of the random walk process is obtained as:

V [yt] = t�2:

In an Armamodel, nonstationarity is equivalent to having the roots of the Ar polyno-

mial lying on the unit circle. Consider for example the Ar(1) process (1��B)yt = et.

The Ar polynomial is �(B) = 1� �B, and the root of �(z) = 0 is readily obtained as

z = 1=�. So the process will be nonstationary when j � j= 1. That case corresponds to

the one yielding an in�nite variance in (2.7), while j � j< 1 corresponds to the Ar(1)

process (2.1) whose variance is given by �2=(1� �2).

In general, an Ar(p) process will be stationary when the p roots of �(B) = 0 are of

modulus greater than one, while roots of modulus one imply nonstationarity.

Nonstationarity is not in
uenced by the Ma part of the processes. Ma processes

are only concerned by the invertibility condition which insures that they are equivalent

to an in�nite but convergent Ar representation. The invertibility condition is stated

similarly to the stationarity condition, that is a process is invertible if the q roots of

the Ma polynomial �(B) satisfying �(B) = 0 are of modulus greater than one.

Stationarity inducing transformations

Consider for example the random walk process: it is seen in (2.7) that it is a non-

stationary process. However, de�ning zt = yt � yt�1 = �yt, it is readily obtained that

zt is a white noise process which is stationary. First order di�erencing has thus made

stationary the random walk yt. Processes made stationary by �rst order di�erencing

are said to be integrated of order 1, and denoted I(1). The term integrated may be

understood by observing that in (2.1) the random walk variable yt is made up of a

starting condition plus a cumulative sequence of random variables.

Processes characterized by a time-trend have been seen in (2.6) to be also nonsta-

tionary. However, taking the �rst di�erence of yt = a+ bt yields a constant: �yt = b:
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hence the di�erence operator is able to achieve stationarity for deterministic functions.

Also, the process yt may need to be di�erenced d-times before yielding a stationary

process. In this case yt will be said to be integrated of order d and denoted yt � I(d).

It is readily seen that di�erencing d times would reduce to a constant a polynomial in

t of order d+ 1.

Di�erencing may also be needed at lags higher that one. Consider for example the

deterministic process that has been discussed in (1.8) as a representation of the seasonal

behavior of a series observed 3 times a year:

yt = cos 2�t=3: (2:8)

This series is clearly not stationary: E(yt) depends on t. Taking zt = yt� yt�3 = �
3
yt,

we get:

�
3
yt = cos 2�t=3� cos [2�(t� 3)=3] =

= cos 2�t=3� cos [2�t=3� 2�] = 0:

Di�erencing may also be considered after the series has been log-transformed. In that

case, instead of zt = �yt, one would consider zt = �log yt. This last expression gives a

close approximation to the growth rates of the series: � log yt ' dyt=yt. Thus, the use

of logs together with di�erencing means that while the magnitude of the changes in the

series depend on time, the series growth rate is stable. This is particularly adequate for

series measured in current prices, which are sensitive to in
ation in a geometrical way.

Typically, these series present an increasing level over time, with 
uctuations which

are increasing as the level increases. An example is given by the series of the monthly

US turnover index (in values; 1960-1 1995-3, 435 observations) displayed on �gure 2.1.

What is happening in these cases can be easily understood with the following example

taken from Bell (1995) where yt is such that yt = (1+ i)ty
0
. Then, it is readily checked

that:

yt � yt�1 = (1 + i)t�1iy
0

log yt � log yt�1 = log(1 + i) ' i
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Figure 2.1: US Turnover Index (1960-1 1995-3)
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If the changes in yt are characterized by an exponential increase, those in log yt are

instead constant over time. Figure 2.1 displays also the log of the series: it is seen

that the 
uctuations of the series around its local level are more regular. Looking to

changes in the series and to the series growth rates in �gures 2.2 clearly indicates that

the �rst is a�ected by an exponential increases in time while the second is much more

stable.

2.1.5 ARIMA models

It is now possible to set the general class of AutoRegressive Integrated Moving Average

models, which consists of a mixed Arma process for the series made stationary by

di�erencing. For nonseasonal time series, these models are speci�ed as:

�(B)�dyt = �(B)et,

where �(B) and �(B) are polynomials satisfying the stationary and invertibility con-

ditions respectively, � = 1 � B is the di�erence operator, d denotes the minimum
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Figure 2.2: US Turnover Index (1960-1 1995-3)
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number of di�erences required to render the series stationary and et is a white noise

variable. If the polynomials �(B) and �(B) are respectively of order p and q, then yt

is said to follow an Arima(p,d,q) model.

Box and Jenkins (1970) extended the Arima models to cover seasonal time series.

They started from the point that if a time series is observed with a frequency of s

observations per year, then observations which are s periods apart should be similar.

For example, if yt represents a monthly time series, then it is expected that observations

for the same month in successive years are related. An Arima model relating the

observation yt to the previous yt�s, yt�2s, � � �, can simply be written as:

�(Bs)�D
s yt = �(Bs)�t,

where �(Bs) and �(Bs) are �nite polynomials in Bs, of order respectively P and

Q, which satisfy the stationarity and invertibility condition, and �s = 1 � Bs is the

seasonal di�erencing operator. This nonstationary operator has its roots ei2k�=s, k =

0; 1; � � � ; s � 1, evenly spaced on the unit circle. The parameter D represents the

minimum number of di�erences required to make the series stationary. It is usually
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assumed that the relationship between the same month in successive years is common

to all months, so the parameters of the polynomials �(Bs) and �(Bs) are constant.

Beside this relationship, for a monthly time series for example, a relationship is

expected to occur between successive months in the same year. For this reason, the

variable �t will not be uncorrelated. Box and Jenkins account for the relationship

between successive observations in a natural way, assuming that �t itself follows the

nonseasonal model:

�(B)�d�t = �(B)at.

It then comes out that the series yt follow a multiplicative model speci�ed as:

�(B)�(Bs)�d�D
s yt = �(B)�(Bs)at.

where at is a normally distributed white noise. This Arima model is said to be of

order (p; d; q)(P;D;Q)s. In practice, this representation has the advantage of involving

relatively few parameters and has proved to adequately approximate many seasonal

time series. Multiplicative seasonal Arima models have been extensively used in the

statistical literature, for applied research and for theoretical investigations.

2.2 Properties of ARIMA models

2.2.1 Time domain analysis

Given that the series is modelled as a linear combination of a normal variable, the

stochastic properties of the series are fully described by the �rst two moments. The

�rst moment is given by the mean of the process, while the second moments may be

easily obtained from the AutoCovariance Generating Function (Acgf). This function

will be denoted 
(B):


(B) =
1X

i=�1


iB
i;

where 

0
corresponds to the variance of the process while the 
i, i 6= 0, gives the lag-

i autocovariances. Dividing them by 

0
yields the lag-i autocorrelations �i = 
i=
0.
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Notice that the Acgf is symmetric, so it can be written as:


(B) = 
0 +
1X

i=1


i(B
i + F i)

For a stationary Arma process, the Acgf is obtained as:


(B) = V
a

�(B)�(F )

�(B)�(F )
: (2:9)

Example: Arma(1,1)

Consider the following model:

(1� �B)yt = (1 � �B)at (2:10)

which reduces to the Ar(1) if � is set to zero, to a Ma(1) if � = 0. The ACGF of

model (2.10) can be derived according to:


(B) = Va
(1� �B)(1 � �F )

(1� �B)(1 � �F )
=

= V
a
[1 + �2 � �(B + F )](1 + �B + �2B2 + � � �):

:(1 + �F + �2F 2 + � � �) =

= Va(1 + �2 � �(B + F ))
1

1� �2
[1 + �(B + F ) +

+�2(B2 + F 2) + � � �] =

= V
a

1

1� �2
[1 + �2 � 2�� + f(1 + �2)�� �(1 + �2)g:

:f(B + F ) + �(B2 + F 2) + � � �+ �n�1(Bn + Fn)g]

Setting � = 0 in this last equation directly yields the Acgf of the Ar(1) as found in

subsection 2.1.1: 
(k) = V
a
�k=(1 � �2). The autocorrelations are then obtained as:
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Figure 2.3: ACGF of an AR(1) process, � = :5

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

�(k) = 
(k)=
(0) = �k. Figure 2.3 shows the �rst 8 autocorrelations for an Ar(1)

process with � = :5. A fast convergence to zero as the time-lag increases is clearly

appearent.

Similarly, setting � = 0 in the Acgf of the Arma(1,1) leads to the covariance

structure of an Ma(1) found in 2.1.2. For the autocorelations, it is readily seen that

�(1) = ��=(1��2) while �(k) = 0 for k > 1. The �rst 8 autocorrelations for theMa(1)

with � = �:5 are displayed on �gure 2.4.

2.2.2 Frequency domain analysis

The study of the autocorrelations of a process gives information about the dynamic

of a time series: it resumes the relationship between yt to its past. However, we

have previously seen that another feature of interest of time series is the regularity

in the movements displayed by the series. For example, the process y
t
= cos 2�t=5

repeats itself every 5 periods; that is, it evolves with a frequency of 2�=5. Because

we are dealing with stochastic processes, interpretation will not be so straightforward.

A convenient tool for analysing time series in the frequency domain is given by the

spectrum. For a stationary stochastic process, the power spectrum is de�ned as:
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Figure 2.4: Acgf of an Ma(1) process, � = �:5
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f(w) =
1

2�

1X

�=�1


�e
�i�w; (2:11)

where w 2 [��; �] is a frequency expressed in radians, i is the complex verifyingp
i = �1, and 
� is the lag-� autocorrelation. Given that 
� = 


�� in our framework,

another writing of (2.11) may be:

f (w) =
1

2�
[
0 + 2

1X

�=1


� cos�w]: (2:12)

Hence, for the applications we are concerned with, f(w) will be symmetric around

zero, and so it will be enough to consider the frequencies within [0; �]. Sometimes the

power spectrum is divided by 
0, de�ning the spectral density in a similar way than

the correlations are obtained from the covariances.

All the di�erent movements in the series are described over [��; �]. The spectrum

f(w) of a time series describes the contribution of the movements with frequency w to

the variance of the series. Summing these contributions, we obtain thus:
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Z
�

��

f(w)dw = 
0: (2:13)

Consider the white noise process: not being correlated, its power spectrum is given by

�2=2�. Result (2.13) is then immediately checked in that case. The lag-k covariances

may also be recovered from the spectrum f (w), and in particular:

Z
�

��

eikwf (w)dw = 
k: (2:14)

The spectral generating function (sgf in short) will prove to be more useful for our

analysis. It is obtained by replacing the covariances 
(�) by the ones yielded by the

Acgf 
(B). Hence the sgf is simply de�ned by 
(e�iw), the lag operator B being

replaced by e�iw, and from (2.9) we have for a stationary Arma model:

g(w) = 
(e�iw) = V
a

�(e�iw)�(eiw)

�(e�iw)�(eiw)
: (2:15)

The power spectrum and the sgf are related through: 2�f(w) = g(w). Hence, once

the autocovariance function of a given model has been derived, the computation of the

power spectrum or of the sgf is trivial. It is the Fourier transform which relates the

power spectrum to the autocovariance function (see 2.11), while the inverse Fourier

transform of the power spectrum gives the autocovariances (see 2.14).

Example: Consider the Arma(1,1) model:

yt + �yt�1 = at + �at�1: (2:16)

The sgf is obtained as:

g(w) = V
a

1 + �2 + 2� cosw

1 + �2 + 2� cosw
: (2:17)

This sgf is displayed for w 2 [0; �] on �gure 1.11 for (�; �) = (�:6;�:5), (�:6;�:1)
and (�:6; :6). In the �rst case, due to the near cancellation of the factors in the Ar
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Figure 2.5: Spectra of an Arma(1,1) for di�. values of (�; �)
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and Ma part, model (2.16) is close to a white noise process, and so the spectrum is


at. In the second and third cases, we observe a peak at the low-frequencies, which

correspond to some long-term movement. This peak is clearly larger for the parameters

(-.6,.6) than for the parameters (-.6,-.1). This re
ects some more variability at the

low-frequencies, and thus may be interpreted a sign of unstability in the long-term

movements generated by an Arma(1,1) with (�; �) = (�:6; :6); conversely, the long-

term movements generated by the Arma(1,1) with parameter value (-.6,-.1) are more

stable. In general, the width of the spectrum peaks is an indication of unstability.

Next, let us suppose that the process 2.16 is noninvertible, that is � = 1. The

spectrum of st would thus be given by:

g(w) = V
a

2 + 2 cosw

1 + �2 + 2� cosw
;

and it is easily seen that g(w) displays a zero at the �-frequency. In general, nonin-

vertible processes yield spectra with zero values in the range [0; �].
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Chapter 3

Building Linear Stochastic Models

3.1 Introduction

We now examine how the Arima models may be used to describe the behavior of time

series. A general methodology for selecting a model has been developed by Box and

Jenkins (1970), still refered to as the Box-Jenkins methodology. It is made up of three

successive steps. First, the order of di�erencing necessary to render the series stationary

is chosen, together with the order of the autoregressive part and of the moving average

part. This is known as the identi�cation stage, and it yields a tentative model. This

tentative model is estimated in the second phase. To be satisfying, no underlying

structure in the data must be left. This suppose that the residuals do not contain

any systematic part, that is that they are random. Test of residuals randomness are

performed in the third stage. If the diagnostic checks indicates a failure of the tentative

model to capture the main features of the series under analysis, then the initial model

speci�cation is modi�ed, a new model is estimated and evaluated. This procedure is

repeated until a satisfying model is found. We now detail each step in this model

selection procedure.

3.2 Identi�cation

The main tools for identifying a model are provided by the AutoCorrelation Function

(Acf) and the Partial Autocorrelation Function (Pacf). Using the quantities
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̂(k) = T�1
TX

t=k+1

(yt � y)(yt�k � y) (3:1)

where k=0,1,2,..., and y is the sample mean evaluated as y = T�1
P

T

t=1 yt. This yields

the sample variance 
̂(0) and the sample autocovariances 
̂(k), k=1,2... . The sample

autocorrelations are then obtained as: r(k) = 
̂(k)=
̂(0).

The Pacf is given by the set of the k coe�cients �11, �22, ..., �kk in the k autoregres-

sions of order 1,2,...,k. For example �11 is the �rst lag coe�cient of the Ar(1) model

�tted to yt, �22 the second lag coe�cient of the Ar(2) model �tted to yt, and so on.

These coe�cients may be obtained by �tting successively Ar(j) models, j = 1; :::; k

and picking up every time the last coe�cient. Another procedure consists in using the

Yule-Walker equations which are derived as follows.

Fitting an Ar(1) model to yt, we have: yt = �11yt�1 + et; multiplying by yt�1 and

taking expectation, we get:


1 = �11
0

By the same way, �tting theAr(2) process to yt: yt = �21yt�1+�22yt�2+et, multiplying

by yt�1, by yt�2, and taking expectation in the two cases, we get:


1 = �21
0 + �22
1


2 = �21
1 + �22
0:

Solving these two equations yields �21 and the variable of interest �22. Repeating this

operation k-times, we obtain the set of the Yule-Walker equation:


1 = �k1
0 + �k2
1 + � � �+ �kk
k�1


2 = �k1
1 + �k2
0 + � � �+ �kk
k�2
...


k = �k1
k�1 + �k2
k�2 + � � �+ �kk
0
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Dividing every equation by 
0, the Yule-Walker equations may also be expressed in

terms of the autocorrelations �k. In pratice, the computations are done using the

estimated autocorrelations r(k) to produce the partial autocorrelations estimators �̂kk.

The �rst step in determining the order of a possible Arima(p; d; q) model is to

identify d, the number of times the process must be di�erenced to become stationary.

Although some tests have been constructed for that (see Dickey and Fuller (1979),

Phillips (1987)), the Acf may also be used. Consider the random walk for which we

had yt = y0 + et + et�1 + � � � + e1. It is readily seen that cov(yt; yt�k) = (t � k)V (et).

Thus the theoretical autocorrelations will be 
(k) = (t�k)=t: the autocorrelations fall

o� slowly as k increases. In practice, the sample autocorrelations tend to follow the

behavior of the theoretical autocorrelations, and so failure of the autocorrelations to die

out quickly is a strong indication of nonstationarity. When this pattern is observed, the

series is di�erenced until the resulting autocorrelations do converge rapidly. In pratice,

the number of di�erences required to render a series stationary is either d = 0;1, or 2.

Having identi�ed d, it is possible to look for the orders p and q on the di�erenced

series. The idea is to select a theoretical model whose autocorrelation pattern match

the one estimated on the series. The main result in use for that can be stated as follow:

� The Acf of a Ma(q) process shows a cut-o� after lag q;

� The Pacf of an Ar(p) process exibits a cut-o� after lag p.

and in a symmetric way:

� The Pacf of a Ma(q) process gradually tails o� to zero;

� The Acf of a Ar(p) process gradually goes to zero.

In practice, p and q take the value either 0,1,2, or 3. The identi�cation procedure

may become complicated if a mixed process is dealt with. Proceeding according to the

scheme below may simplify the selection of a model speci�cation:

Identi�cation procedure

� Picking d: Plot the Acf of yt. If it dies out rapidly d = 0. If not, plot the Acf of

�yt. If it converges rapidly, d = 1. If not, check the Acf of �2yt. If it converges
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rapidly, then take d = 2. Otherwise, check the series to see eventual problems

before considering d = 3 which is very rarely met in practice.

� Picking p and q: Compute and plot the Acf and Pacf of �dyt. If the Acf

truncates after some small q lags (q � 3), select anMa(q). If the Pacf truncates

after some small p lags (p � 3), choose an Ar(p). If neither the Acf nor the

Pacf truncates after a small number of lags, a mixed model is to be considered.

In that case it is better to keep looking for simple models, that is for model with

low-order polynomials.

Because the sample autocorrelations and partial autocorrelations are estimated, they

may show some departures from what they should theoretically be. For that reason,

it is useful to consider con�dence interval for these estimators. According to a result

derived by Bartlett (1946), these estimators are asymptotically normally distributed

with a variance which can be approximated by (1=T ). Thus, to test whether the

sample autocorrelation of a process are zero for lags greater than q so as to identify

an Ma(q) process, it is enough the check whether the rk, k = q+1; :::, fall outside the

con�dence interval [�2=
p
T ;2=

p
T ]. Similar reasoning is valid to test on the partial

autocorrelations �kk, k = p + 1; :::, whether a process can be identi�ed as an Ar(p).

Notice however that these bounds are obtained for a size of 5%, which means that for

a white noise process, one over twenty autocorrelations may lie outside the con�dence

interval.

Identi�cation of nonseasonal models

Example 1: Series Poem2640

The series Poem2640 of the employment in the portugal manufacture of bricks, tiles

and construction products has been plotted on �gure 1.2. Figure 3.1 shows the sample

Acf and Pacf computed on the raw observations (say zt). The slow decay of the

sample autocorrelations is very apparent. The series needs thus di�erencing to become

stationary. In the same time, the Pacf shows a very large �rst-lag partial autocorre-

lation, suggesting one single di�erence should be enough to obtain stationarity.

Figure 3.2 shows now the sample Acf and Pacf of �zt, together with their con�dence

interval. Di�erencing zt has completely modi�ed the aspect of the sample Acf, which

is now much more stable. However, the �rst lag of the Acf lies quite away of the
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Figure 3.1: Poem2640: Acf and Pacf of zt
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con�dence interval. Depending on the pattern displayed the successive autocorrela-

tions, this is an indication of either an Ar process or of a MA process. To isolate one

sensible speci�cation, the Pacf is of much help. Two signi�cant �rst-lags partial au-

tocorrelations suggest an Ar(2) process for �zt. The model (2,1,0) is thus a candidate

model.

Identi�cation of seasonal models

The procedure described above can be straightforwardly applied to identify seasonal

time series models presented in section 2.1.5. The attention is naturally reported to

the autocorrelations at the seasonal lags: for example for a monthly time series, the

lag-12 autocorrelation is of interest. Also, because the autocorrelation lag-distance for

seasonal models is relatively large with respect to the number of observations avail-

able in standard applications, seasonal models are speci�ed as simply as possible: the

parameters P , D, Q characterizing the Ar, the di�erence operator and the Ma part

of the seasonal model should be less or equal to one. Models for the seasonal part of

time series most often belong to the class of the (1; 1; 1)s, (0; 1; 1)s, (1; 0; 1)s or (1; 1; 0)s

models. One class of model which has proved to successfully represent a large number
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Figure 3.2: POEM2640: Acf and Pacf of �zt
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of series is the so-called airline model:

��syt = (1 + �1B)(1 + �sB
s)at (3:2)

Assuming that yt is a monthly series so that s = 12, then the Acgf of the stationary

transformation of yt is given by:


(B) = Va(1 + �1B)(1 + �12B)(1 + �1F )(1 + �12F )

= Va(1 + �1B + �12B
12 + �1�12B

13)(1 + �1F + �12F
12 + �1�12F

13)

which gives:


0 = Va(1 + �2
1
+ �2

12
+ �2

1
�2
12
)


1 = Va(�1 + �1�
2

12
)

44




i = 0 i = 2; � � � ; 10


11 = Va�1�12


12 = Va(�12 + �2
1
�12)


13 = Va�1�12

The autocovariances are zero at lags greater than 13. Notice that the multiplicative

seasonal model (3.2) implies non zero autocorrelations at lags 11 and 13, that is around

the seasonal lag of 12. Furthermore the �rst lag autocorrelation does not depend on

the seasonal part of the model.

In practice, the identi�cation of seasonal time series models can be performed ac-

cording to the following scheme:

Identi�cation of models for seasonal time series

� Picking D and d: Plot the Acf of yt. If large and persistent autocorrelations at

lags 12, 24, 36 can be seen, di�erenciate yt: wt = �12yt. Otherwise D = 0. Next

look for d, the number of regular di�erenciation, as for nonseasonal models: that is

theAcf of wt is plotted, and if failure to cancel rapidly is detected, a �rt di�erence

is taken. Next, if the Acf of wt = ��12yt still shows a slow convergence of the

autocorrelations, then d = 2. The transformed series wt = �d�D

12
yt is obtained.

� Picking p, P, q, Q: the Acf and Pacf may be used in the same way than for the

nonseasonal time series. For example, if the Acf of wt shows a large autocorre-

lation at lag 12 and no signi�cant correlations a the successive seasonal lags 24

and 36, take Q=1. If it is the Pacf which shows a large autocorrelation at lag 12

and no signi�cant correlations at lags 24 and 36, take P=1. For the regular part

of the model (p and q), the identi�cation is performed as described earlier.

Example 2: Series Frpdb101

The monthly series Frpdb101 of the french total industry production (excluding

construction) has been plotted in �gure 1.1. The Acf and Pacf of yt are displayed on

�gure 3.3.
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Figure 3.3: Frpdb101: Acf and Pacf of yt
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Figure 3.4: Frpdb101: Acf and Pacf of �12yt
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Figure 3.5: Frpdb101: Acf and Pacf of ��12yt

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35

........................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35

........................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................

The Acf shows a large lag-12 autocorrelation which is still present at lags 24 and

36. This is an evidence of D = 1, which is further con�rmed by the Pacf which shows

a close-to-one peak at lag 12. Taking thus D=1 and computing the resulting Acf and

Pacf, we can see on �gure 3.4 that the Acf of �12yt shows a slow convergence, while

the Pacf display a large �rst partial autocorrelation. This suggests to consider d = 1.

Figure 3.4 shows theAcf and Pacf of ��12yt: no need for further di�erencing appear.

TheAcf shows signi�cant correlations at lags 1 and 12. The partial correlations at lags

1 and 12 are also signi�cant, but they are followed by signi�cant autocorrelations at

lags 2 and 13, 14. This information leads to consider the airline model (0; 1; 1)(0; 1; 1)12

as a possible candidate for describing the autocorrelation structure of this series.

Example 3: Series Itpdb428

The series Itpdb428 represents the monthly italian production of soft drinks. It

extends from january 1985 to november 1993, that is along a sample of 107 observations.

It is plotted on �gure 3.6. Figure 3.7 shows the sample Acf and Pacf of the series.

A seasonal �rst di�erence is clearly adequate. The Acf and Pacf of the resulting

transformed series can be seen on �gure 3.8. Although the �rst autocorrelation is

not very high, the failure of the Acf to converge rapidly suggest to consider also a
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Figure 3.6: Series Itpdb428
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non seasonal �rst-di�erence. Figure 3.9 displays the Acf and Pacf of ��12yt: the

sample Acf shows a long sequence of signi�cant autocorrelations, while the partial

autocorrelations are signi�cant at lags 1, 2 and around the seasonal lag 12. This

suggest to consider p=2, but to evaluate the relevance of this transformation, the two

autoregressive parameters need now to be estimated. The results will allow us to pursue

the search of an adequate model.

3.3 Estimation

Once a tentative model has been selected, estimation may be computed either by

maximum likelihood or by least-squares methods. There is a very abondant literature

on Arma models estimation; see for example Box and Jenkins, 1970, Brockwell and

Davis, 1987, Harvey, 1989, among others. We present an outline of standard methods

in use, but as the computational details are far beyond our scope, interested readers

are refered to the literature above.

The maximum likelihood method consists in �nding out the parameters  = f�1; � � � ; �p,
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Figure 3.7: Itpdb428: Acf and Pacf of yt
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Figure 3.8: Itpdb428: Acf and Pacf of �12yt
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Figure 3.9: Itpdb428: Acf and Pacf of ��12yt
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�1; � � � ; �qg maximizing the joint probability function of the stationary transformation

of the data. The joint probability function is built assuming that the innovations at

are independent and normally distributed with variance �2. In the case of a stochastic

process, say yt, whose stationary transformation wt = �(B)yt can be modelled as a

process of the Arma(p,q)-type, we have:

wt = �1wt�1 + � � �+ �pwt�p + at + �1at�1 + � � �+ �qat�q; (3:3)

The polynomials �(B) = 1 + �1B + � � �+ �pB
p and �(B) = 1 + �1B + � � �+ �qB

q have

distinct roots, all outside the unit circle. Further, the polynomial �(B) is assumed to

be of order d, so that if n + d realisations of zt are observed, equation (3.3) holds for

t = 1; � � � ; n. Equation (3.3) involves the starting values w�=fw0, � � �, w1�p, a0, � � �,

a1�qg. Assuming �rst the initial values known, and given that  denotes the set of

parameters involved in (3.3), then the log-likelihood function of the Arma(p,q) model

conditional on w� is given by

logL( ;�2) = �n log �2 �
S( )

2�2
; (3:4)
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where a constant has been omitted and S( ) represents the sum of square function

S( ) =
nX

i=1

â2
i
( ):

The residuals âi( ) are obtained from (3.3) as

ât( ) = wt � �1wt�1 � � � � � �pwt�p � �1ât�1 � � � � � �qât�q: (3:5)

The parameter �2 may be concentrated out of the likelihood function using �̂2 =

n�1S( ), so that the function to maximize becomes:

logL( ;�2) = �n log
S( )

n
�
n

2
: (3:6)

Maximizing the conditional likelihood function or minimizing the sum of squares is

then equivalent. In practice however, the initial conditions w� are not known, and

computing the function S( ) requires to set the values w0, w�1,..., w1�p and a0; :::; a1�q

in order to have available the �rst âi's. A simple solution to this problem would consist

in considering the unconditional expectations of the innovations and of the wt's. Given

that both are stationary processes with zero mean, these expectations are zero. This

estimation procedure is known to perform poorly if the Ar polynomial has roots close

to the nonstationarity region. The distortion e�ects due to non vanishing transient

may be avoided by considering instead the truncated function:

S( ) =
nX

i=p+1

â2
i
( ); (3:7)

with ap = ap�1 = � � � = ap�q+1 = 0. Minimizing (3.7) with the starting conditions

set in that way yields the so-called constrained least squares estimators. Setting the

innovations at zero has a vanishing e�ect only if theMa polynomial �(B) is invertible.

Otherwise, the presence of unit root(s) in �(B) makes persistent the e�ect of the starting

conditions, and the estimators which results will be severely distorted. Invertibility of

the Ma polynomial is thus the requirement for constrained least squares estimators to

be satisfying.
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Alternatively, the starting conditions can be estimated from the data. A possibility

developed by Box and Jenkins consists in reverting the model (3.3) by replacing B by

B�1 in order to back forecast the values w0;w�1; � � � ; w1�p. These values are then used

in the recursion (3.3) for obtaining the residuals ai, i = 1� q; � � � ; 0; 1; � � �. This yields

unconditional least square estimates.

Finally, completing the conditional likelihood (3.4) with the joint distribution of the

starting values yields the exact maximum likelihood function. The di�erence with the

unconditional sum of squares function is that the determinant of the initial values

covariance matrix is considered. When an estimation procedure has been selected,

maximisation can be computed using convergence algorithm like for example Newton-

Raphson, Gauss-Newton, among others (see Brokwell and Davis, 1987). These al-

gorithms maximize the objective function by trying parameters values whose choice

is based the �rst two derivatives of the objective function evaluated at the previous

parameter value.

Example 1: Series Poem2640

The identi�cation stage pointed a (2,1,0) model as a possible model: (1 + �1B +

�2B
2)�yt = at. Estimating the autoregressive polynomial by maximum likelihood, we

get the following result:

�1 = :494(.025)

�2 = :291(.018)q
Va = :019

where the standard errors of the parameters estimates are given in parenthesis. The

mean of the di�erenced series has been obtained at �̂ = �:005, with a standard de-

viation of .001, hence largely signi�cant. The model (2,1,0) �tted to the series yields

residuals Acf and Pacf displayed on �gure 3.10. No autocorrelations are left in the

residuals: the model selected pass this �rst examination stage.

Example 2: Series Frpdb101

The identi�cation stage indicated that the airline model (0; 1; 1)(0; 1; 1)12 could be a

possible model. Estimating the Ma parameters in ��12yt = (1 + �1B)(1 + �12B)at.

we get the following result:
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Figure 3.10: Poem: Acf and Pacf of residuals of a (2,1,0) model
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�1 = �:561(.058)

�12 = �:487(.061)q
Va = :017

The residualsAcf and Pacf displayed on �gure 3.11 does not show any autocorrelation

left.

Example 3: Series Itpdb429

For this third example, the examination of the Acf and Pacf of di�erent transfor-

mation of the series yielded a (2;1; 0)(0; 1;0)12 as a candidate model. Estimating the

autoregressive polynomial by maximum likelihood, we get the following result:

�1 = :401(.133)

�2 = :502(.083)q
Va = :088

The Acf and Pacf of the residuals of this model are displayed on �gure 3.12. A large
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Figure 3.11: Frpdb101: Acf and Pacf of airline model residuals
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Figure 3.12: Itpdb428: Acf and Pacf of residuals from (2;1; 0)(0; 1;0)
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Figure 3.13: Itpdb428: ACF and PACF of residuals from (2;1;0)(0;1; 0)
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autocorrelation is seen at lag 12, pointing the need of considering Q=1. On the other

hand, there are several large partial autocorrelations at the �rst lags which suggests to

set q to 1. Fitting now the model (2; 1; 1)(0;1; 1)12, we obtain the following result:

�1 = �:085(.126)

�2 = :286(.109)

�1 = :� :750(.102)

�12 = �:640(.090)

Va = :067

The Acf and Pacf of the residuals of this model are displayed on �gure 3.13: no left

autocorrelations may be seen.

3.4 Hypothesis Testing and Con�dence Interval

Test of signi�cance of the parameters estimated may be carried out as t-tests. The

variance-covariance matrix 
 of the parameters estimates may be obtained from the
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second derivative of the likelihood function according to:


 ' [
�dL( )

d d 0

j
 = ̂

]�1 (3:8)

In practice, the matrix of variance-covariance is directly given by the algorithm used to

maximized the likelihood function. The square root of the i-th element of the matrix 


gives the standard error of the i-th parameter estimator. Con�dence interval may then

be computed given that, under certains conditions, the estimators are asymptotically

distributed as N ( 0;
), where  0 is the vector of true parameters.

Notice however that signi�cance tests may only help in distinguishing between nested

models. For example, they are useful in evaluating the relevance of an Ar(1) against

an Arma(1,1). Distinguishing between non-nested models cannot be drawn in that

way: this procedure cannot be applied to test for an Ar(1) against a Ma(1). The

Bayesian Information Criterion (Bic), proposed by Akaike and discussed for example

in Hannan (1980) (see also Sneek, 1984) is more useful in this respect. Denoting k

the number of estimated parameter (for an Arima(p; d; q); k = p + q + 1), the Bic is

obtained as:

BIC = �2 log L( ; �2jw) + k + k log n (3:9)

The Bic can be used to compare di�erent models �tted to a time series. The preferred

model is the one which minimizes the Bic accross the range of the di�erent models.

3.5 Diagnostic Checking

At this stage, an evaluation of the temptative model based on the estimated residual

properties is to be performed. For the model to provide a good description of the

series, no underlying structure might be left in the residuals. So �rst of all it could be

useful to examine the residual plot. For example, changes in the variance over time

would suggest to modify the initial transformation of the data. But structures like

remaining residual autocorrelation may be di�cult to discern, and for that a more

formal test could be useful. The Bartlett's result about the estimated autocorrelation
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(see section 3.2) which states that the autocorrelations estimates are asymptotically

normally distributed with variance 1=T suggests to consider the following portmanteau

test statistics:

Qm = T
mX

i=1

r2(i): (3:10)

This statistics tests the signi�cance of the �rst m-autocorrelations. The choice of

m is abitrary; for example for monthly time series, one may consider m = 24. Since

the r(:) are normally and independently distributed, the Qm statistics will have a �2m

distribution for white noise data. When the data are obtained as residuals of a �tted

Arima model, two corrections must be made. First, Ljung and Box (1978) showed

that in small samples the expression (T � i)=T (T + 2) approximates the variance of

r(i) more accurately than 1=T . Hence, the corrected form of the Q-statistics is:

Qm = T (T + 2)
mX

i=1

r2(i)=(T � i): (3:11)

Second, when the r(:)'s are computed from Arma residuals, a better approximation

of the limiting distribution is given by �2 with (m� p � q) degrees of freedom.

The Q-statistics may also be modi�ed so as to consider speci�cally seasonal lags.

For example, for a monthly time series, the signi�cance of the autocorrelations of the

residuals at lags 12 and 24 may be tested using the statistics:

Qs = T (T + 2)[r2(12)=(T � 12) + r2(24)=(T � 24)]: (3:12)

Pierce (1978) showed that Qs can be roughly approximated by a �2
2
distribution.

Residuals which do not present signi�cant autocorrelations can be seen as embodying

no linear structure. However, it is possible that the residuals series at are related in

some way to the a3t 's. In other words, the residuals could be white noises but not

independent because of some nonlinear underlying structure. The linearity assumption

can be checked also with the Q-statistics. Maravall (1983) showed that if a series zt

is linear, then the lag-k autocorrelation is such that: �k(z
2

t ) = [�k(zt)
2]. Further,
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McLeod and Li (1983) proved that Qm(at) and Qm(a
2

t ) have the same distribution. So,

computing the Q-statistics for both the residuals and the squared residuals, an increase

in the Q-value for squared residuals is an indication of nonlinearity. Similarly, a test

for nonlinearity at seasonal lags may be performed by comparing Qs(at) and Qs(a
2

t ).

Locating the nonlinearities present in the series at some particular lags may be useful

to improve the modelling of the series under analysis (see for example Fiorentini and

Maravall (1996)).

Yet another hypothesis to test is the residual normality. The linear models that we

have presented are able to describe the autocorrelations behavior of time series, that

is the second-order moment properties of the series. Through the Wold decomposi-

tion, these models can be seen simply as linear combination of a white-noise variable.

Whether the white-noise variable is normally distributed or not determines the ability

of the representation to catch the higher order moment of the series. In particular, for

a normal white noise variable, the moment of order �:

m� = T�1
TX

i=1

e�t � = 2; 3; 4; (3:13)

is such that:

p
Tm� � N(��; �!�

2�) � = 2; 3;4; (3:14)

For example, it is possible to check whether the distribution of the estimated residuals

is symmetric as the normal distribution is. This is done through the skewness test,

which is computed on the on the third moment:

S =
p
T
m3

�̂3
� N(0; 6) (3:15)

Also, a test on the fourth-moment can point out too large tails of the residual distri-

bution: the kurtosis test, computed as:

K =
p
T
m4 � 3

�̂4
� N (0; 24) (3:16)

becomes signi�cant when too many residuals take large absolute values. It can thus be
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Figure 3.14: Poem2640: Residuals from (2; 1; 0)(0;0;0)
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used to check the presence of outliers in the residuals. Finally, the statistics S and K

can be combined to form a test for normality N, obtained as: N = S2+K2, and, given

the independency of the S and K estimates, the statistics N is distributed as a �22.

Examples

The residuals of the �nal models �tted to the three series are plotted on �gures 3.14,

3.15 and 3.16, together with their respective con�dence interval.

For the Poem2640 residuals, a reduction in the variance may be seen in the second

half of the sample. For the two other series, no particular pattern can be seen: the

residuals seem to be white noises. A deeper evaluation of the randomness hypothesis

requires to compute the statistics previously described. The table 3.1 sums up the

results:
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Figure 3.15: Frpdb101: Residuals from (0; 1;1)(0;1;1)12
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Figure 3.16: Itpdb428: Residuals from (2;1;1)(0; 1; 1)12
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Table 3.1

Diagnosis: Q-Statistics

Series Poem2640 Frpdb101 Itpdb428

Q(at) Q24 = 23:99 Q24 = 24:60 Q24 = 24:13

Qs(at) Q2 = 2:44 Q2 = 1:84 Q2 = 1:83

Q(a2t ) Q24 = 26:06 Q24 = 15:91 Q24 = 20:99

Qs(a
2

t ) Q2 = 3:72 Q2 = 2:22 Q2 = :65

There are thus no remaining correlations in the residuals. Furthermore, the linearity

hypothesis is checked by the data. Looking at the tests of the normality hypothesis

on table 3.2 con�rms this result, and shows that in the three cases, the residuals come

out normally distributed.

Table 3.2

Diagnosis: Normality Statistics

Series Model N S K

Poem2640 (2; 1; 0)(0; 0; 0) 1.79 .16 (.24) 3.55 (.47)

Frpdb101 (0; 1; 1)(0; 1; 1)12 .12 -.03 (.17) 3.10 (.33)

Itpdb428 (2; 1; 1)(0; 1; 1)12 1.44 -.16 (.24) 2.52 (.48)

3.6 Predictions in ARIMA models

3.6.1 Minimum Mean Square Error Forecasts

Once a model describing the sample behavior of the data in a satisfactory way has

been identi�ed and estimated, it can be used as a basis for forecasting. In this section,

the forecasting procedure in stochastic linear models is presented. In a �rst step, the

parameters of the models are assumed to be known.

Suppose the sample available is y1; � � � ; yT , and that we are interested in a forecast

of yT+l. We would like the forecast value, say y�T+l=T , to be as accurate as possible.

Forecast accuracy is usually measured with a Mean Squared Error (Mse) criterion,

which is de�ned as:
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MSE(y�T+l=T ) = E[(yT+l � y�T+l=T )
2]:

It can be checked that the forecast with minimum Mse is given by the expectation of

yT+l conditional on the information set y1; � � � ; yT available at time t:

ŷT+l=T = E(yT+ljy1; � � � ; yT ):

We shall also denote ET (yT+l) this expectation. Under the normality hypothesis, then

the solution of the conditional expectation above will be a linear combination of the

observed y1; � � � ; yT . This linear combination can be easily derived from theArma(p,q)

process at time T + l:

yT+l = �1yT+l�1 + � � �+ �pyT+l�p +

+ �1aT+l�1 + � � �+ �qaT+l�q:

The expectation of yT+l conditional on the information available at time T is given by:

ŷT+l=T = ET (�1yT+l�1) + � � �+ ET (�pyT+l�p) +

+ ET (�1aT+l�1) + � � �+ ET (�qaT+l�q):

Given that the at's are assumed to be independent white noises, they do not depend

on the past: the conditional expectation of the future innovations is then equal to

their expected value, that is ET (at) = 0 if t > T . On the other hand, given that

past innovations are available by linear combination of the observed data, we have:

ET (at) = at if t � T . Next, the expected value of yT+l is simply obtained from the

recursion

ŷT+l=T = �1ŷT+l�1=T + � � �+ �pŷT+l�p=T +

+ ET (�1aT+l�1) + � � �+ ET (�qaT+l�q):
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with ŷT+j=T = yT+j if j � 0. For example, consider the Ar(1) process yt = �yt�1+ at:

the forecast of yT+1 at time T is given by

ŷT+1=T = �yT + ET (aT+1) = �yT :

The two-step ahead forecast is instead:

ŷT+2=T = �ŷT+1=T + ET (aT+2) = �2yT ;

and in general it is easily obtained that for an Ar(1) process,

ŷT+l=T = �lyT :

The forecast function of an Ar(1)is thus a exponential function, decaying towards 0

since j�j < 1. Consider now anAr(p) process: it is readily seen that the one step-ahead

forecast is given by

ŷT+1=T = �1yT + � � �+ �pyT�p+1 + ET (aT+1) =

= �1yT + � � �+ �pyT�p+1:

For the next forecast,

ŷT+2=T = �1ŷT+1=T + � � �+ �pyT�p+1 + ET (aT+2) =

= �1ŷT+1=T + � � �+ �pyT�p+1;

and forecasts beyond p-step ahead will verify the homogenous p-order linear di�erence

equation:

ŷT+p+i=T = �1ŷT+p+i�1=T + � � �+ �pŷT+i=T ;
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for i � 0 and starting value ŷT=T = yT .

Forecasting a pure moving average process can be conducted in the following way. Let

us consider a Ma(1) process, yt = at+ �at�1. Then, taking the conditional expectation

of yT+1 given y1; :::; yT , we get:

ŷT+1=T = ET (aT+1) + �ET (aT ) = �aT :

For the next step, it is readily obtained that ŷT+2=T = 0, and so will be the successive

forecasts. In general, for a Ma(q) process, the forecasting function is given by:

ŷT+l=T = �laT + � � �+ �qaT+l�q for l � q

ŷT+l=T = 0 otherwise:

The forecasts of an Arima(p; d; q) process is then derived according to the same princi-

ples. Suppose �(B) is the polynomial containing the roots which are on the unit circle,

so that the Arima model can be written �(B)�(B)yt = �(B)at, where the polynomials

may include seasonal lags or not. De�ning �(B) the polynomial obtained as from the

multiplication �(B)�(B), then the Arima model may be rewritten �(B)yt = �(B)at

and the results on forecasting an Arma apply. In particular,

ŷT+1=T = �1yT + � � �+ �p+dyT�p�d+1 +

+ �1aT + � � �+ �qaT+1�q

ŷT+2=T = �1ŷT+1=T + � � �+ �p+dyT�p�d+2 +

+ �2aT + � � �+ �qaT+2�q

...

ŷT+q=T = �1ŷT+q�1=T + � � �+ �p+dŷT+q�p�d=T + �qaT

ŷT+l=T = �1ŷT+l�1=T + � � �+ �p+dŷT+l�p�d=T l > q (3.17)

The forecast function of an Arima model turns out to have the same form than that

of an Ar process after a certain number of periods. However, it has to be noticed that
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Figure 3.17: Series Poem264: Forecasts
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while the forecasts of a pure Ar process tend to zero, those of an Arima process do not

present the same convergence pattern. This is due to the presence of unit roots. For

example, the forecasts of the random walk yt = yt�1+at are simply ŷT+l=T = yT , 8l > 0.

Suppose then that a mean has been �tted. The model is thus yt = yt�1+�+at, and the

forecasts are easily seen to be ŷT+l=T = yT + l�, that is a �rst-order time polynomial.

That pattern is illustrated on �gure 3.17 where the forecast function given by the

(2; 1; 0) model chosen to describe the behavior of the series Poem2640 is plotted.

Next, consider also the airline model ��12yt = (1 + �B)(1 + �12B
12)at. Beyond 12

periods, the forecast function reduces to:

ŷT+l=T = ŷT+l�1=T + ŷT+l�12=T � ŷT+l�13=T ;

l > 12, whose solution follows a �xed seasonal pattern of period 12 which is superposed

on a linear trend. That pattern may be clearly observed on �gures 3.18 and 3.19.

Finally, the forecast function of an Arima(0,1,1) presents a particular interest. Let

us write that process as �yt = (1 � �B)at, j � j< 1. The one-step ahead forecast is
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Figure 3.18: Series Fpdb101: Forecasts
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Figure 3.19: Series Itpdb428: Forecasts
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readily seen to be such that:

ŷT+1=T = yT � �aT :

The innovation aT may be also written as a linear combination of present and past

values of yt by inverting the Ma polynomial (1� �B):

aT = (1� �B)�1(1�B)yT =

= (1 + �B + � � �+ �nBn)(1�B)yT =

= yT � (1 � �)[yT�1 + �yT�2 + � � �+ �n�1yT�n]

Replacing aT by this linear combination of the observed process in the one-step ahead

forecast equation directly yields:

ŷT+1=T = (1 � �)[yT + �yT�1 + �2yT�2 + � � �+ �nyT�n]

The weights of this linear combination are given by (1 � �)�i. Thus, they decline

exponentially, and they present also the property of summing at 1. In fact, such

linear combinations are termed exponential weighted moving averages. Notice that

since ŷT=T�1 = (1 � �)
PT�1

i=0 �
iyT�1�i, then we can also write:

ŷT+1=T = (1 � �)yT + �ŷT=T�1:

The parameter � weigths the importance given to the recent realizations: if � = 0,

then no information on the past of the series is used in forecasting, only the current

realization is considered, while � = 1 implies that past observations are heavily involved

in the forecasting procedure. Quite often, values of the �-parameter have been a priori

assigned and the Ima(1,1) implicit speci�cation a priori assumed. The absence of

identi�cation, estimation and formal diagnostic checks may have been justi�ed because

of the computational limitations, but the current availability of computional power has

made obsolete the exponential weighted moving average techniques.
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3.6.2 Con�dence Interval for Forecasts

The building of con�dence interval around the forecasts is useful for inference drawing.

This requires knowledge of the Mse on the forecasts. In a �rst stage, we will consider

the simple case where the model parameters are known. The e�ect of dealing with

estimated parameters will be analysed next on the basis of an example.

Consider for example a Ma(1) process: the one-step ahead forecast error is easily

obtained as:

yT+1 � ŷT+1=T = aT+1;

and thus the Mse is: Mse(ŷT+1=T ) = E(a2T+1) = Va. The next forecasts of the Ma(1)

process are simply null, so the forecasting error is such that

yT+l � ŷT+l=T = aT+l + �aT+l�1;

for l > 1. It follows that for the Ma(1) process, Mse(ŷT+l=T ) = (1 + �2)Va. It is not

di�cult to check that for a Ma(q) process, then for l > q, Mse(ŷT+l=T ) = Va

Pq
i=0 �

2
i ,

where �0 = 1, while the sum truncates at l if l � q.

The case of Ar or mix Arma models is less obvious. However, a simpli�cation is

reached by inverting the Ar polynomial so as to write the model in the Ma form:

yt =
1X
i=0

 iB
iat (3:18)

where the polynomial  (B) =  0 +  1B + � � � +  nB
n is obtained from  (B) =

��1(B)�(B). An easy way to derive  (B) consists in equating the coe�cients of Bi in

(1 + �1B + � � � + �p+dB
p+d)(1 +  1B + � � �) = 1 + �1B + � � � + �qB

q. Notice that this

always yields  0 = 1. Taking conditional expectation in (3.18) directly yields:

ŷT+l=T =
1X
i=0

 i+laT�i; (3:19)

the predictions obtained with (3.19) and with (3.17) are identical. Then,
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yT+l � ŷT+l=T =
l�1X
i=0

 iaT+l�i;

It is of interest to notice that whatever is the model considered, the one-step-ahead

forecast error is always aT+1: it is for that reason that the at's have been called in-

novations, since they represent the part in the new observation yT+1 which is not

predictable. Since the innovations are independent with mean zero and variance Va,

the Mse on the l-step ahead forecast is given by

V (l) =MSE(ŷT+l=T ) = Va

l�1X
i=0

 2i : (3:20)

Hence, MSE(ŷT+l=T ) increases as the forecast horizon increases. Next, normality of

the innovations imply that a 95% con�dence interval around ŷT+l=T can be built as

[ŷT+l=T �1:96
q
V (l); ŷT+l=T +1:96

q
V (l)]. These con�dence intervals are also displayed

on �gures 3.17-3.19.

Let us consider an Ar(1) process (1 � �B)yt = at. It is readily seen that  (B) =

1 + �B + � � �+ �nBn, so  i = �i. Predicting yT+l using (3.19) yields

ŷT+l=T =
1X
i=0

�l+iaT�i = �l
1X
i=0

�iaT�i = �lyT ;

so that expression for the l-step-ahead forecasts in an Ar(1) is recovered. The forecast

error is given by:

yT+l � ŷT+l=T =
1X
i=0

�iaT+l�i � �l
1X
i=0

�iaT�i =
l�1X
i=0

�iaT+l�i;

with associated variance V (l) = Va
Pl�1

i=0 �
2i. This expression however supposes the

parameter � to be known, while in practice only its estimator is available. Taking

into account the error in the parameter estimates and denoting ŷ�T+l=T and ŷT+l=T the

forecasts derived with an estimated parameter and a known parameter, respectively,

then the previous expression can be reformulated as:

69



yT+l � ŷ�T+l=T = (yT+l � ŷT+l=T ) + (ŷT+l=T � ŷ�T+l=T ):

In the case of an Ar(1), this expression simpli�es to:

yT+l � ŷ�T+l=T = (yT+l � ŷT+l=T ) + yT (�
l
� �̂l);

with associated MSE:

MSE(ŷ�T+l=T ) =MSE(ŷT+l=T ) + y2TE[(�
l
� �̂l)2]:

Therefore the forecast error variance can be seen as made up of an error when � is

known plus an error due to the estimation approximation. To evalute the magnitude

of this last term, let us consider the simple case l = 1. The least-squares estimate of �

is given by

�̂ =
TX
t=2

ytyt�1=
TX

t=2

y2t�1;

and it can be checked that

E[(�̂� �)2] = Va=
TX

t=2

y2t�1:

Hence, a con�dence interval taking into account the error in the estimator must embody

the additive term Vay
2
T=
PT

t=2 y
2
t�1. In large samples however, the denominator is large

enough and veri�es:
PT

t=2 y
2
t�1 ' TVa=(1��

2), so the correcting term is negligeable for

large enough sample sizes. In practice, in most applications, this term is neglected and

the con�dence interval given are underestimated. The bias, however, should not be

important unless in small samples (see also Harvey, 1981, 1989; Box and Jenkins,1970;

and Fuller (1976)).

Finally, the following concluding remarks about general properties of forecasts in

Arima(p; d; q) models are of interest.
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� Whether a time series is stationary or not determines the general pattern that the

forecast function and the con�dence interval display when the forecast horizon

becomes large. In particular, for stationary time series (d = 0), as the forecast

horizon tends to in�nity, the prediction tends to the mean of the series while the

forecast error variance tends to the variance of the series: as l ! 1, ŷT+l=T !

E(yt), and V (l)! V (yt).

For nonstationary time series (d > 0), as l !1, the prediction follows a pattern

given by a polynomial of order d with d-th coe�cient given by the mean of the

stationary transformation of the series. For example, forecasts of an I(1) variable

is simply a constant if the series �rst di�erence has a zero-mean, a straight line

otherwise; see �gure 3.17. Also, forecasts of an I(2) variable follows a straight

line if the mean of the di�erenced process is zero, a second-order time polynomial

otherwise. On the other hand, the variance of the forecast error becomes in�nite

as l increases, so the forecasts lose their relevance as the forecast horizon increases;

see �gures 3.17-3.19.

� When the series under analysis has been log-transformed (yt = log Yt), it may

be of interest to obtain forecasts and MSE in the original scale. Since the con-

ditional distribution of YT+l given Y1; � � � ; YT is lognormal, the conditional mean

is given by E(YT+ljY1; � � � ; YT ) = exp(ŷT+l=T + :5V (l)). In practice however, the

approximation ŶT+l=T = exp(ŷT+l=T ) is used, the loss in accuracy being rather

small. The con�dence interval can be obtained as exp(ŷT+l=T + =� 1:96
q
V (l)) '

ŶT+l=T (1 + = � 1:96V (l)).
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Part II

Decomposing Time Series into

Unobserved Components
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Chapter 4

ARIMA-Model-Based

Decomposition of Time Series

4.1 Introduction

We have seen in the �rst part of this book how time series can be represented by

stochastic linear models of the Arima-type. The standard methodology for selecting a

particular model, estimating it, and checking its capabilities for describing the behavior

of the data has been discussed. The forecasting procedure has also been presented.

We now turn to the problem of decomposing an observed process into unobserved

components, where every component catches a particular underlying pattern of the

series. We shall see how the decomposition can be closely linked to the description of

the series as operated in part I, so that modelling and decomposing time series will

come out as an integrated procedure.

4.2 The General Framework

4.2.1 Model Speci�cation and Assumptions

The Arima-model-based approach to decompose time series assumes that an observed

process xt is made up of Unobserved Components (UC), typically a seasonal component

st, a trend pt, a cycle ct and an irregular component ut. The UC and the observed

series are assumed to be related according to:
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xt = st + pt + ct + ut,

where the additivity may be obtained after some suitable transformation of the ob-

served series. For example, a prior log-transformation of the series implies that the

initial relationship is multiplicative. Some component may be discarded if it is not

needed. In the remaining of the discussion, we shall consider the more general two-

components decomposition into a signal st and a nonsignal nt, such that

xt = nt + st, (4:1)

the signal representing the component of interest, the nonsignal resuming the rest

of the series. For example, in seasonal adjustment problems, nt would represent the

nonseasonal part of the series such that nt = pt + ct + ut.

The Arima-model-based procedure, as originally developed by Box, Hillmer and

Tiao (1978), Burman (1980), and Hillmer and Tiao (1982), considers the three following

assumptions on the Unobserved Components.

Assumption 1: The Unobserved Components are uncorrelated.

This assumption may appear to be somewhat restrictive; we shall see that it is not

required in order to obtain estimates of the UC. Some decompositions used in the liter-

ature consider correlated components (see for example Watson (1986)). Probably the

most popular example of correlated components is given by the Beveridge-Nelson (1981)

decomposition of I(1) series into a temporary and a permanent component. In this pro-

cedure both components turn out to be de�ned as linear combinations of the observed

series xt (see Maravall (1993b)). Since xt is stochastic, the Beveridge-Nelson decom-

position implicitly assumes that the components share the same innovation, which is

a strong assumption.

Assuming instead independent components is a simpli�cation which has some intu-

itive appeal. It is justi�ed by the idea that the evolution of the di�erent components is

driven by separate forces. A typical illustration of the applicabibility of this represen-
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tation is provided by the monetary control problem. This arises because central banks

often rely on seasonally adjusted money demand estimators to take decision about

money supply in the next period. In this case, the orthogonality hypothesis amounts

to considering the seasonal and long-term evolution of the monetary aggregates as be-

ing driven by di�erent causes: the long-term path would be related to the economic

fundamentals, while the seasonal variations would be related to events such as holidays

timing or the Christmas period. This seems reasonable and thus supports the use of

seasonally adjusted series for policy making. In general, the orthogonality hypothesis

is standard in practical applications such as the short-term monitoring of the economy.

The next assumptions concern the stochastic properties of the components.

Assumption 2:

The correlation structure of the Unobserved Components is supposed to be well de-

scribed by Arima models of the type:

�n(B)nt = �n(B)ant,

�s(B)st = �s(B)ast, (4.2)

where the variables ant and ast are normally distributed white noise with variances Vn

and Vs. The models are not reducible; that is each pair of polynomials f�n(B), �n(B)g,

f�s(B), �s(B)g, are prime. Furthermore, the polynomials �n(B), �s(B), �n(B), and

�s(B), of order respectively pn, ps, qn, and qs, may have their roots on or outside the

unit circle, but �n(B)nt and �s(B)st are required to be stationary. In the cases where

an irregular component is considered separately, then the irregular ut will be a white

noise with variance Vu.

Notice that, as implied by assumption 1, the innovations ant and ast are independent.

The speci�cation of Arima models for Unobserved Components can be found in Cleve-

land and Tiao (1976), Box, Hillmer and Tiao (1981), Pierce (1978), Burman (1980)

and Hillmer and Tiao (1982) for the early references. A restriction must however be

considered:
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Assumption 3: The AR polynomials �n(B) and �s(B) do not share any common

roots.

Assumption 3 implies that the spectra of the UC do not have peaks at the same

frequencies. Since the movements displayed by di�erent components are related to

di�erent spectral peaks, this is a reasonable feature of the decomposition. From as-

sumptions 1, 2, and 3, we obtain:

�n(B)�s(B)xt = �s(B)�n(B)nt + �n(B)�s(B)st =

= �s(B)�n(B)ant + �n(B)�s(B)ast.

so the observed series xt follows a Arima model of the type:

�x(B)xt = �x(B)at,

where the polynomials �x(B) and �x(B) are respectively of order px and qx. The

polynomial �x(B) is such that: �x(B) = �n(B)�s(B), no common root between the

polynomials �n(B) and �s(B) being allowed. Thus px = pn + ps. The repartition of

the di�erent roots of �x(B) between the polynomials �n(B) and �s(B) depends on

the behavior that the components are expected to display. For example, a unit root

B = +1 implies an in�nite peak in the spectrum of xt at the zero frequency. Given

that the low frequencies movements are associated with the long-term evolution of the

observed series, this unit root would be assigned to the trend component. The Ma

process �x(B)at veri�es:

�x(B)at = �s(B)�n(B)ant + �n(B)�s(B)ast, (4:3)

where at is a normally distributed white noise with variance Va. We set Va = 1 so that

all other variances will be expressed as a fraction of Va. Further, we shall also assume

without loss of generality that the Ma process �x(B)at is invertible. Equation (4.3)

also implies that the order of the Ma polynomial is constrained by:
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qx � max(pn + qs; ps + qn). (4:4)

Equations (4.1), (4.2) and assumptions 1, 2, and 3 constitute a model which will be

refered to as model (A). It is the general model, valid for linear processes with normal

innovations, that will be discussed in this second part. Since our discussion will focus

on the characterization and estimation of the components, and since the model for

observed series can be consistently estimated, we shall retain the following assumption:

Assumption 4: The model for the observed series is known.

In other words, the polynomials �x(B), �x(B), and the innovation variance Va are

known. As discussed in the previous chapters, the knowledge of the model followed by

the observed series is reached after estimation using Box-Jenkins techniques.

We need some notations about the Auto-Covariance Generating Function (Acgf)

and about the spectra of the observed series and of the components. Throughout the

remaining of the discussion, we will denote by Ai, i = x; n; s the Acgf of respectively

xt, nt, st. These are de�ned under the hypothesis of stationarity as:

Ai = Vi
�i(B)�i(F )

�i(B)�i(F )
. (4:5)

Using the Fourier transform B = e�iw in (4.5), w denoting frequency in radians such

that w 2 [��; �], the equation above also de�nes the spectra gi(w). When one or both

components are nonstationary, neither the spectra nor the Acgf of the nonstationary

components and of the observed series are strictly de�ned: the presence of a unit

root in a Ar polynomial �i(B) implies an in�nite peak in gi(w) and thus an in�nite

variance. However, the de�nitions of gi(w) and Ai provided in (4.5) may be extended

to cover nonstationary cases, as in Hillmer and Tiao (1982), Bell and Hillmer (1984),

and Harvey (1989), who refer to them as pseudo-spectrum and pseudo-Acgf. Since we

do not make any assumptions about order of integration of the observed series, we shall

refer to the functions gi(w) and Ai, i = x; n; s; simply as the spectrum and the Acgf,

whether the components are stationary or not in order to simplify the presentation.
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4.2.2 Characterization of the Components: some examples

Model (A) is quite general. It embodies many possible applications, the most important

of which are possibly detrending of time series, seasonal adjustment, cycle analysis and

noise extraction. These applications involve the components discussed by Persons

(1919,1923), namely the trend, the seasonal, the cycle and the irregular component,

and introduced in chapter 1. We brie
y present the models most commonly used to

characterize these components.

Trend Component

The general form for a stochastic linear trend can be written as:

�dst =  s(B)ast,

where 0 � d � 3, and  s(B)ast is a low order Arma processes. In the Arima-

model-based approach, trends are often speci�ed as Ima(2,2) models. Other model

speci�cations used for example by Harrisson and Steven (1976), by Harvey and Todd

(1983), and by Ng and Young (1990), and which are commonly encountered in the

Structural Time Series approach, consider "second order" random walks processes such

that:

�st = �t + ast,

where the drift is itself a random walk:

��t = a�t,

where a�t is a white-noise variable with variance V�. Taking the second di�erence of

st, it is readily seen that this model can be expressed as an Ima(2,1). Thus the second

order random walks that Sts models typically consider are a particular case of the

Ima(2,2) models for the trend encountered in Arima-model-based approach. Notice

that if a�t is a null constant, then the second order random walk model reduces to a

simple random walk plus drift, which is commonly used in applied econometrics.

The above formulation may be easily interpreted as a stochastic extension of linear

deterministic trends. Setting V� and Vs to zero, so that ��t is constant, the corre-
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sponding deterministic trend function is trivially obtained as a quadratic polynomial

of time if a�t has a non-zero mean, as a linear function of time otherwise. With the

Ima(2,2) modelling, this is equivalent to having roots of 1 in the Ma polynomial.

Allowing for stochasticity instead of deterministic expressions enables the trend com-

ponent to evolve over time, which is an expected feature of the speci�cation. Models

for stochastic linear trends have been exhaustively discussed in Maravall (1993a).

Seasonal Component

As introduced in the �rst chapter, models for seasonal components could also be

interpretated as stochastic extensions of deterministic models. The aim is still to allow

the component to display a slowly changing behavior. Starting with a deterministic

seasonality for which st = st�m, m representing the number of observations per year,

then the sum of m consecutive seasonal components will be zero, or:

U(B)st = 0,

where U(B) = 1 +B + � � �+Bm�1. The periodic nature of the seasonal component is

captured here, but the seasonal 
uctations are excessively restricted. Small deviations

from this strict model speci�cation may be allowed by making the relationship subject

to a random shock in each period:

U (B)st = ast.

This type of stochastic seasonal model is considered for example in the Gersch and

Kitagawa (1983) and Harvey and Todd (1983) approaches. More generally, we can

allow the deviation from zero of U (B)st to be correlated and consider:

U(B)st = �s(B)ast,

which is mostly used in the Arima-model-based approach with the Ma polynomial

�s(B) of order m�1. The spectrum of the corresponding component will present peaks

centered on the seasonal frequencies 2k�=m, k = 1; 2; � � � ;m� 1.
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Departures from this type of model speci�cation may be found in the statistical

literature. For example, Pierce (1978) considered both stochastic and deterministic

seasonality. Probably the most common departure found in earlier model-based ap-

proaches was to model the seasonal component with �m in its Ar part. This should

be avoided because this polynomial contains the root (1 � B) which is related with

low frequencies movements and should thus be assigned to the trend. This point is

also treated in Maravall (1989) where the seasonal component model speci�cation is

thoroughly discussed.

Cyclical Component

The cyclical component can be handled in two di�erent ways. The �rst approach

designates the "cycle" to be the residual of the detrending of a nonseasonal series. This

approach is quite common in macroeconomics, in particular in business cycle analysis

where the "cycle" usually describes the nonseasonal deviations from the long term

evolution of time series. With this representation, the cycle corresponds thus to the

stationary variations of the series. In general, it is well described by an Arma process.

The second approach explicitly models the cyclical component. It involves models

which are able to generate periodicities longer than a year. For example, consider the

model:

st + �s1st�1 + �s2st�2 = 0,

with �2
s1
< 4�s2. It is easily checked that a signal st so-de�ned will display a determin-

istic periodic behavior with frequency w = arccos(��s1=2
p
�
s2
). When this frequency

is lower than the fundamental frequency 2�=m, then the behavior of st will show a

period longer than a year. As for the previous cases, small deviations from a strictly

deterministic behavior are allowed by considering:

st + �s1st�1 + �s2st�2 = �s(B)ast,

where �s(B)ast is a low order moving average. Jenkins (1979) and Harvey (1985),

among others, have used such "periodic cycles" models.

Irregular Component
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The irregular component corresponds to the noisy part of the series. It is typically

modelled as a stationary low-order ARMA process and most often, in the model-based

approach, it is a pure white noise process. This component is of interest for example

when the observations are known to be contaminated by some noise, and the user desires

to recover the original signal. Such situations occur for instance in communications

engineering.

It is worth noticing that in these four examples, the di�erences between the models

for the di�erent components come basically from the Ar polynomial. However, it is

also important to look at the Ma polynomials and at the components innovations

variances. We now return to the general model (A) to examine this point.

4.2.3 Admissible Decompositions.

Since theAr polynomials are identi�ed directly from the factorization of �x(B), the un-

knowns of the model consist of the coe�cients of the polynomials �s(B), �n(B), and of

the innovation variances Vs and Vn. In model (A), information on the stochastic struc-

ture of the components is brought by the observed series and by the overall relationship

(4.3). This relationship implies a system of max(ps+qn; pn+qs)+1 covariance equations

while the number of unknowns is qn+qs+2. So when max(ps+qn; pn+qn) < qn+qs+1,

and in the absence of an additional assumption, there exists an in�nite number of ways

to decompose the series xt. Any decomposition consistent with the overall model for

the observed series and insuring non negative components spectra will be called an 'ad-

missible decomposition'. All admissible decompositions are of course observationally

equivalent.

The underidenti�cation of UC models is illustrated with the following example:

Example: Trend plus Cycle decomposition.

Consider the following decomposition:

xt = nt + st with,

�st = ast,

(1 � �B)nt = (1 + �nB)ant, (4.6)
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where we shall set � = �:7. The assumptions 1-3 are supposed to hold. Equations

(4.6) represents a simple model designed to decompose a time series into a trend (st)

and a cycle component (nt). The trend is modelled as a random walk and the cycle

as a stationary Arma(1,1), with period 2. It is a particular case of the model used

in Stock and Watson (1993) to analyze the business cycle and to forecast recessions.

This speci�cation implies that the observed series xt follows an Arima(1,1,2) model

speci�ed as:

(1� �B)�xt = (1 � �1B � �2B
2)at,

with at � sc Niid(0,1) and the Ma polynomial is invertible given that gs(w) is always

positive. Since the components must sum to the observed series, we have:

(1� �1B � �2B
2)at = (1� �B)ast + (1 �B)(1 + �nB)ant,

from where we obtain the following system of covariance equations:

1 + �2
1
+ �2

2
= (1 + �2)Vs + (1 + (�1 + �n)

2 + �2
n
)Vn

��1(1� �2) = ��Vs � (1� �n)
2Vn

��2 = ��nVn.

Taking �n = :3, Vn = :129, and Vs = 5Vn = :645, the model for the observed series is

then obtained as:

(1 + :7B)�xt = (1 + :404B � :039B2)at.

The series is simulated on �gure 4.1 and the components st and nt on �gure 4.2. On

subsequent �gures, this model will be refered to as "model 1".
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Figure 4.1: Observed Series in Trend plus Cycle example
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Figure 4.2: Components in Trend plus Cycle example
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Now we change the speci�cation of the components' models and consider an Ima(1,1)

for the trend:

�st = (1 + �sB)ast

(1 � �B)nt = (1 + �nB)ant.

The new system of covariance equations that this model speci�cation implies is given

by:

1 + �2
1
+ �2

2
= [1 + (�s � �)2 + �2�2

s
]Vs + [1 + (�1 + �n)

2 + �2
n
]Vn

��1(1 � �2) = (�s � �)(1� ��s)Vs � (1� �n)
2Vn

��2 = ���sVs � �nVn.

It can easily be checked that for �n = :434, Vn = :220, and Vs = :470, and �s = :172,

the Ma parameters �1 and �2 remain unchanged. This last decomposition, referred to

as "model 2", is thus consistent with the overall model that (4.6) had generated. Two

model speci�cations have generated the same observed series. They correspond thus

to two admissible decompositions which are observationally equivalent.

What is the di�erence between the two decompositions ? It is more convenient to

answer the question in the frequency domain. The spectra of the components for the

two decompositions are plotted on �gure 4.3 and 4.4. It can be seen that for each

component, the spectra obtained from the two model speci�cations di�er only by a

constant. This constant can be interpreted as the size of an orthogonal white noise

which has been interchanged between the two components. To isolate it, let us look at

the spectra minima. For the �rst model, the trend spectrum has a minimum at the �

frequency equals to: gs(�) = Vs=4 = :161. In the second case, this minimum becomes:

Vs=8 = :081. Therefore, a white noise variable of variance Vs=8 has been removed from

the trend component spectrum in model 2. Since the components must aggregate to

the observed series, this noise has been assigned to the cycle which embodies more
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Figure 4.3: Spectra for the cycle component
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Figure 4.4: Spectra for the trend component
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stochasticity. At the extreme, we could remove all the noise from the trend component

and assign it to the cycle. The decomposition that we would obtain is found to be:

�st = (1 +B)ast Vs = :161

(1 + :7B)nt = (1 + :496B)ant Vn = :306, (4.7)

and the trend is now noninvertible, the zero in the spectrum at the �-frequency meaning

that it does not embody any orthogonal noise. The spectrum for these components are

also seen on �gures 4.3 and 4.4. If we look on �gure 4.5 at the plot of the components

so-obtained and compare it with the components of the �rst decomposition, it can

be clearly seen that the trend is smoother and the 'cycle' noisier. Decompositions

where one component is noninvertible while the other concentrates all the noise of the

model are called 'canonical' (see Hillmer and Tiao (1982)). Alternatively, one may be

interested by the cycle analysis. In this case, it is possible to assign all the noise of the

model to the trend component, and to remove it from the spectrum of the cycle. We

thus obtain a second canonical decomposition, denoted "model 4" on �gures 4.3 and

4.4, where the canonical component is now the cycle.

As shown on �gures 4.3 and 4.4, the identi�cation problem can be thus seen as

the problem of determining the spectrum of the component within the range delimited

below by the spectrum of the component free of noise and above by the spectrum of the

component concentrating all the noise of the model. The admissible decompositions

are thus characterized by a particular noise allocation. The problem is to select a

decomposition among the admissible ones.

4.3 Identi�cation of Unobserved Components Models.

We have just seen that in the "Trend plus Cycle" example, the decomposition was

not unique. We had a system of 3 equations for 4 unknowns which thus could not

be uniquely solved. Each set of parameters consistent with this system and insuring

non negative components spectra de�ned an admissible decomposition. The di�erence

between admissible decompositions could also be interpreted in terms of di�erent noise

repartitions. In this section, we discuss the identi�cation problem for the general
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Figure 4.5: Trend plus Cycle example: canonical trend and noisy cycle
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model (A) under the two possible perspectives: as a parametric problem and as a

noise repartition problem. Two identi�cation criteria used in the statistical literature

which correspond to these two perspectives are presented. We �rst need some essential

concepts about identi�ability.

4.3.1 The Concept of Identi�ability

The de�nition of identi�ability involves the distinction between a structure and amodel.

According to Rothenberg (1971) and Hotta (1989), a structure and a model may be

de�ned in the following way:

De�nition 4.1 A structure S is a set of hypothesis which implies a unique distribution

function of the observable Y , say P [Y=S]. The set denoted S of all a priori possible

structures is called a model.

A structure thus speci�es a set of parameters for a given distribution. That distribution

is in turn characterized by the model. Considering model (A), each structure is formed

by a particular set of parameters SA=f�n1, � � �, �nqn , �s1, � � �, �sqs, Vn, Vsg lying within

89



the admissible parameter space. Two structures will then be observationally equivalent

if they imply the same distribution function, or, formally:

De�nition 4.2 Two structures S1 and S2 2 S are said to be observationally equivalent

if P [Y=S1] = P [Y=S2] almost everywhere.

Identi�ability may then be de�ned in the following way:

De�nition 4.3 A structure S 2 S is said to be identi�able if there is no other structure

in S which is observationally equivalent. A model S is identi�ed if all the structures

are identi�ed.

This is the standard econometric/statistical de�nition of identi�cation. No confusion

should be made with the concept of identi�cation used in Box and Jenkins (1976) which

is related to speci�cation.

Model (A) would thus be identi�ed if the distribution of the observable xt would

be generated by a unique set of parameters SA. This is not the case, and in general

unobserved component models are not identi�ed. It is tempting to relate the underi-

denti�cation of the components with the lack of a precise de�nition of the components.

For example, suppose we are interested in removing the seasonal variations of a time

series. The seasonality is related to movements which repeat themselves with a period-

icity corresponding to year. Consequently a seasonal component can be de�ned by the

spectral peaks located at the seasonal frequencies, as in Granger (1978). However, such

a de�nition is not precise enough to imply a unique model for the seasonal component.

Spectral peaks are generated by large roots in Ar polynomial; nothing is said about

what should be the Ma polynomial and the component innovation variance. In the

same way, since it represents the long-term movements, a trend component may be

de�ned by an in�nite spectral peak at the low frequencies. But from this de�nition

several models for a trend component may be derived. In the trend plus cycle example,

we had several possible trend components, all perfectly admissible.

In other words, unobserved components cannot be precisely de�ned, and as a conse-

quence they are not identi�ed. Identi�cation problems are also encountered in simulta-

neous econometric models. But, if in these cases economic theory enables the analysts

to overcome the underidenti�cation of the model by setting at zero some parameters, in

90



statistics, as noticed in Maravall (1988b), no such a priori information is available. Any

model-based approach must thus consider an arbitrary assumption on the components.

This gives rise to two important problems in UC models. Firstly, as recognized by

statisticians (see Bell and Hillmer (1984)), it makes di�cult to evaluate a unobserved

component estimation procedure: it is not possible to compare methods estimating

di�erent signals. This point is particularly relevant in the seasonal adjustment context

where several di�erent methods are still in use. Secondly, given that one is interested

in a signal, which model form should be chosen ? One of the most attractive feature of

a model-based approach is that the arbitrary assumptions on the components models

are made explicit, while they are somewhat hidden in empirical methods. We turn now

to see the main assumptions adopted in model-based decompositions of time series.

4.3.2 Identi�cation by zero-coe�cients restrictions and the Structural form

approach

Necessary and su�cient condition for identi�ability

For a Gaussian model such as model (A), a structure reduces to a set of parameters

consistent with the �rst and second moments of the stationary transformation of the

observed series. When the �rst moment of the stationarised series is null, as in model

(A), it is enough to use the autocovariance generating function or the spectrum of the

stationarised series to check the identi�ability of the underlying structures.

For the general model (A), the relationship (4.3) provides the following identity:

�x(B)�x(F ) = �s(B)�s(F )�n(B)�n(F )Vn + �n(B)�n(F )�s(B)�s(F )Vs

(4.8)

which implies a set of covariances equations by equating the coe�cient the coe�cient

of Bj. The right hand side of (4.8) contains qn + qs + 2 unknowns, which are �n1,

� � �, �nqn, Vn, �s1, � � �, �sqs, and Vs, while the left hand side yields qx + 1 covariances

equations. So when qn + qs + 1 > qx, the system is underidenti�ed and instead of a

unique decomposition, a set of observationally equivalent decompositions is obtained.

Using qx = max(pn + qs; ps + qn), we can easily deduce that the necessary condition
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for identi�cation of model (A) is:

qs < ps and/or qn < pn. (4:9)

Hotta (1989) has shown that (4.9) is also a su�cient condition. It thus possible to

restrict the order of the componentsMa polynomial in order to identify the underlying

structure of the model. This has been mostly used in 'structural models':

4.4 Example of identi�cation by zero-parameters restriction:

Structural Time Series models

The Structural Time Series (Sts) models have been developed by Engle (1978) and

Harvey and Todd (1983), and are applied mostly to the modelling of economic time

series. They are usually designed for the purposes of extracting the trend or seasonally

adjusting time series. The approach followed consists �rstly of specifying a priori the

models for the components, and then in estimating the parameters. Identi�cation is

obtained by reducing the order of one of the componentsMa polynomial, typically the

trend or the seasonal component. Consider for example the Basic Structural Model

which decomposes an economic time series into a trend and a 'nontrend' component.

The trend component is typically modelled as a random walk with a drift, the drift

itself being a random walk:

�st = �t + ut,

��t = vt,

where ut and vt are orthogonal white-noises. Maravall (1985) noted that this model

is equivalent to specifying an Ima(2,1) model for the trend component, which makes

explicit the identi�cation restrictions in structural models. For the seasonal and the

cycle components, they are usually speci�ed as subject to an uncorrelated random

shock in each period, so that no Ma term is considered.
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4.5 The Canonical Decomposition

Setting the order of the Ma polynomials in order to identify the UC is however an a

priori identi�cation procedure that may not be justi�ed by any extra consideration.

In general, from any invertible component speci�ed in this manner, there exists a

particular amount of noise that can be removed, yielding a component balanced in the

polynomials orders. Consider for example a trend speci�ed as a random walk:

�st = ast.

The spectrum of st is given by: gs(w) = Vs=(2 � 2 cosw). It is immediately seen that

the spectrum of the random walk has a minimum at the frequency �, of magnitude:

gs(�) = Vs=4. Removing a proportion � 2]0; 1] of this noise from gs(w) yields

gs(w)� �Vs=4 =
Vs

4

4� 2� + 2� cosw

2 � 2 cosw
(4:10)

which is the spectrum of an Ima(1,1) model.

Balanced components are more general in the sense that they allow di�erent noise

repartitions. The order of the Ma polynomial for the remaining component will how-

ever be constrained by the overall model for the observed series. Clearly, with balanced

components the necessary and su�cient condition (4.9) for identi�cation of model (A)

is no longer satis�ed: an additional condition must be imposed. The canonical decom-

position is an identi�cation procedure which uses some extra considerations in order

to obtain identi�cation. It handles the identi�cation problem explicitly as a noise

repartition problem.

The hypothesis of independence of the components yields the following relationship:

gx(w) = gs(w) + gn(w).

As in Burman (1980), we write : "s = minw gs(w) and "n = minw gn(w). The quan-

tity "s + "n can be seen as the variance of a pure noise component embodied in the

spectrum of the observed series which can be attributed arbitrarily. It is clear that the
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identi�cation problem arises because we do not know which amount of noise must be

assigned to the components : a fraction of "s and of "n could be removed from every

component spectrum, and assigned to the other component. If we remove as much

noise as possible from st and attribute it to nt, then we obtain : g0
s
(w) = gs(w) � "s

and g
0

n
(w) = gn(w) + "s the spectra of a noninvertible signal and of a nonsignal which

concentrates all the noise of the model. This decomposition is known as canonical. In

the random walk example, taking � = 1 in (4.10) yields:

g
0

s
(w) = gs(w)� Vs=4 =

Vs

4

2 + 2 cosw

2 � 2 cosw
;

which corresponds to the noninvertible model:

�st = (1 +B)a�
st
,

with V ar(a�
st
) = Vs=4.

The canonical decomposition was �rst proposed by Box, Hillmer and Tiao (1978)

and Pierce (1978). As illustrated above, the approach consists in specifying a compo-

nent as clean of noise as possible, and a canonical signal has a zero in its spectrum

which corresponds to a unit root in the Ma polynomial. That is, a canonical signal is

noninvertible. An interesting property of canonical decompositions is that the admis-

sible models for a signal can always be written as the sum of the canonical one plus

an orthogonal white noise. Furthermore, Hillmer and Tiao (1982) showed that the

canonical decomposition minimizes the variance of the signal innovation. Next, where

an irregular component is to be isolated, then its variance is maximized when the

other components are set canonical. The canonical decomposition is widely used in the

Arima-model-based approach. Additional properties of the canonical decomposition

will be given in chapter 5.
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Chapter 5

Estimation of the Components by

Ad Hoc Filtering

5.1 Introduction

The previous chapter has shown how models for the components may be set up. Since

the components are never observed, the estimation of the components is then a nec-

essary step. This chapter presents some general principles of estimation by linear

�ltering. It will be seen how these principles are involved in standard decomposition

procedures like the ones developed in the softwares like X12-Arima (see Findley and

al., 1996). Some drawbacks of this type of approach will be underlined.

5.2 Linear Filters

A linear time invariant �lter can be expressed as:

a(B) =
rX

k=�m

akB
k; (5:1)

where the weights ai are real, do not depend on time, and satisfy
P
a2i <1. We shall

focus on �lters which, like a(B), are time invariant. When the ai's weights sum to unity,

a(B) is also called a moving average �lter. Care must be taken to not make confusion

with a moving average process. Filtering a series xt with a(B) yields a process yt such

that
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yt = a(B)xt =
rX

k=�m

akxt�k:

Assuming that xt is a stochastic stationary process, the stochastic properties of the

series xt are transmitted to the series yt by means of the �lter a(B). It is convenient to

draw the interpretation of this �ltering operation in the frequency domain. Taking the

Fourier transform B = e�iw in (5.1), then the transfer function �(w) associated with

the �lter a(B) can be de�ned according to:

�(w) = a(e�iw) =
rX

k=�m

ake
�ikw: (5:2)

The transfer function enables us to understand the e�ect of a linear �lter on an input

time series: it shows that a selection of the movements in the input series xt which

are passed to yt is performed on the basis of the frequency of the di�erent movements.

For example, suppose that a(B) is such that its transfer function veri�es �(w) = 0 for

w 2 [2�=5; 2�=10]. If the xt's were annual data, the movements of periods from 5 to 10

years in the xt's would be suppressed by the �lter a(B), so that yt would not display

any 
uctuations in that band.

Notice that, in general, the transfer function �(w) takes complex values. If the real

and imaginary parts are expressed as �(w) = �R+ i�I , another writing of �(w) is then

�(w) = 
(w)e�iPh(w);

where 
(w) and Ph(w) are respectively the modulus and the argument of the transfer

function. Standard algebra yields


(w) =j �(w) j=
q
�2R + �2

I

and

Ph(w) = Arg(�(w)) = tan�1(��I=�R):
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The quantities 
(w) and Ph(w) are of particular relevance for the analysis of the �lter

a(B), and are usually refered to as gain and phase, respectively. Gain and phase

characterize the �lter a(B) in di�erent ways. The gain is related to the amplitude of

the movements, and if we look at the relationship between the spectra of the input and

output, respectively denoted fx(w) and fy(w), we have:

fy(w) = a(e�iw)a(eiw)fx(w) = 
(w)2fx(w):

The squared gain controls the extent in which a movement of particular amplitude

at a frequency w is delivered to the output series. For example, a gain of zero in

[w1; w2] corresponding to a transfer function vanishing in this band will make the

output series free of movements in this range of frequencies. Consider for example the

transformation:

yt = xt � xt�5:

The �lter a(B) is thus such that: a(B) = 1�B5, with response function given by:

a(e�iw) = 1 � e�i5w = 1� cos 5w + i sin 5w;

while the squared gain is


2(w) =j a(e�iw) j2= (1 � e�i5w)(1 � ei5w) = 2� 2 cos 5w:

The squared gain of the �lter is null at the frequency 2�=5: if xt is observed with a yearly

periodicity, then every movement with 5-years periodicity in xt would be cancelled by

the application of the �lter �5, and the resulting series yt will not display any 5-years

periodicity 
uctuations. In general, the �d operator cancels the movements associated

with the k2�=d frequencies, k = 1; 2; � � �. On the opposite, a gain higher than one would

lead to an increase in variability in yt with respect to xt at the associated frequencies:

trivially, if yt is such that yt = a0xt, a0 > 1, then yt will display a larger variability

than xt all along the frequency range [0; �].
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Now let us consider the simple �lter a(B) = B5, for which an input series xt yields

yt = xt�5. Applying (5.2), the transfer function of this �lter is given by

�(w) = e�5iw = cos 5w � i sin 5w;

whose argument is readily seen to be Ph(w) = 5w. The lateral shift of �ve periods

in time corresponds to a shift of 5w in the frequency domain. It is this shift in the

frequency domain which is represented by the phase. In general, for periodic movements

associated with the frequency w, y lags x by Ph(w)=w.

Equation (5.2) implies that the phase will be null when ai = a
�i. This is a reason

why symmetric �lters are often preferred: they imply no-phase shift in the �ltered

series. This requirement is of importance, as it would be particularly inconvenient for

data analysis to have the series and the �lter output showing swings with ups and

downs at di�erent timings. A simple example of symmetric �lter is given by

yt = xt�1 + xt + xt+1

so that a(B) = B+1+F . The transfer function associated with this �lter is obtained

as

�(w) = e�iw + 1 + eiw = 1 + 2 cosw;

and the squared gain is


(w)2 = (e�iw + 1 + eiw)(eiw + 1 + e�iw) = 3 + 4 cosw + 2 cos 2w:

It is readily seen that the gain is null at the frequencies w = 2�=3 and w = 4�=3. Thus

movements in xt occuring with a periodicity 3 are cancelled by the �lter. Supposing xt

is observed three times a year, then w = 2�=3 corresponds to the seasonal fundamental

frequency, and the output will not display this seasonal behavior.

It is thus possible to build linear �lters in order to annihilate some movements of

particular periodicities in time series. This is the approach which has been adopted in

seasonal adjustment by empirical �ltering as performed by X11.
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5.3 Ad hoc �lters: X11 Seasonal Adjustment �lters

During the sixties, the Bureau of the Census has developed a method for seasonally

adjusting time series and for estimating trends (see Shiskin and al., 1967), which is

known as X11. This method and the sofware implementing it have been widely spreadt,

and most national statistical o�ces and central banks are still using it. Several updates

of the programs has been delivered, the last of them being called X12-RegArima (see

Findley and al., 1996). Given the consideration that these programs have received in

applied works, the �lters that they implement are now discussed.

We have concentrated the discussion on additive or log-additive decompositions, as

set since the beginning of section 4 by equation 4.1. However, in X11 (and its variants)

the decomposition may also be multiplicative. While the �lters used in additive and

log-additive decompositions are linear and identical, since they apply either to the raw

series or to the log-transform on it, the �lters involved in multiplicative decompositions

di�er in some way. Young (1968) however showed that the linear �lters can be seen as

approximation of the multiplicative approach. Only some nonlinearities are missed by

the linear approximation, which according to Young are in general not important.

The linear �lters in X11 can be seen as convolutions of moving averages. Details of

the procedure can be found in Wallis (1974, 1982). Bell and Monsell (1992) make very

easy the reconstruction of the additive X11 �lters: they give some explicit expressions

for the �lters involved in the convolutions. According to the �lter chosen at each step,

a di�erent outcome is obtained. We illustrate the main lines of the procedure with the

following example: consider a quarterly series whose behavior is described by an I4(1)

model:

�4xt = (1 + �B)at: (5:3)

The corresponding spectrum is displayed on �gure 5.1 for di�erent values of �: namely,

� = �:5; 0; :5. Clearly, more stable seasonal patterns are obtained when � goes to

�1. This spectrum is characterized by in�nite peaks at the frequencies 0, �=2 and �,

corresponding to movements occuring with an in�nite period, with a period of 4 times

a year, and twice a year which is the harmonic. The seasonal adjustment of this series

consists in removing the movements associated with the intra-year periods 2 and 4.
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Figure 5.1: Spectrum of an I4(1) process
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The �rst seasonal moving average �lter that would be applied in X11's default is a

so-called 3x3 moving average �lter:

�1(B) = (1=9)(F 4 + 1 +B4)(F 4 + 1 +B4);

where the terming 3x3 re
ects the construction of the �lter as a product of two �lters

of length 3. Developing �1(B), we get:

�1(B) = (1=9)(F 8 + 2F 4 + 3 + 2B4 +B8);

and using B = e�iw, the transfer function �1(w) is obtained as:

�1(w) = (1=9)(3 + 4 cos 4w + 2 cos 8w):

This function is of course real: the �lter being symmetric, no phase shift appears. It

is also symmetric around �=2. The squared gain is given by j �1(w) j
2, and is plotted
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Figure 5.2: Squared Gain of �1(B)
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on �gure 5.2. It is seen that the �lter has a gain of one at the 0-frequency, so that

long-term movements are una�ected by the �lter. The squared gain then decreases

until it reaches a zero at the frequency �=6 and then at w = 2�=6: no movements

at these frequencies are transmitted to the output series. Still moving toward the �-

frequency, the gain reaches one for the seasonal frequency �=2. The same patterns are

then repeated in [�=2; �], so another peak at w = � is observed.

The seasonality in xt is related to the frequencies w = �=2 and w = �. Given that

the �lter �1(w) preserves the frequencies w = 0; �=2; �, the long term behavior of the

xt must still be separated. This is done through the application of a 2x4 trend moving

average �lter of the type:

�(B) = (1=8)(F 2 + F )(1 +B +B2 +B3) =

= (1=8)(F 2 + 2F + 2 + 2B +B2);

with transfer function

�(w) = (1=8)(2 + 4 cosw + 2 cos 2w):
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Figure 5.3: Squared Gain of �(B))
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Figure 5.3 shows the corresponding squared gain: this �lter operates a cut in the high-

frequencies, preserving the lower ones. So the series xt � �(B)xt = (1 � �(B)xt will

not display any trend behavior, and thus may be considered as input to �1(B). This

amounts to consider the �lter (1 � �(B))�1(w) whose corresponding gain is readily

obtained since j (1��(w))�1(w) j=j (1��(w)) jj �1(w) j. Figure 5.4 plots it, and it is

seen that the gain of the resulting �lter has unit values concentrated on the seasonal

frequencies �=2 and �, so that the output of the �ltering operation will display mainly

seasonal movements.

The process of convoluting �lters is repeated several times in X11. It is illustrated

here with a simple convolution of two �lters, but in X11, four �lters are involved in this

process. These are the polynomials �(B) and �1(B), as described above for quarterly

series, another seasonal moving average �lter (say �2(B)) and a more re�ned trend �lter

known as the Henderson �lter (say H(B)) that we shall discuss in the next section.

The default for �2(B) is a 3x5 moving average speci�ed as:

�2(B) = (1=15)(F 4 + 1 +B4)(F 8 + F 4 + 1 +B4 +B8)
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Figure 5.4: Squared Gain of (1� �(B))�1(B))
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still for the quarterly case. The squared gain of the �nal seasonal �lter and of the

corresponding adjustment �lter can be seen on �gure 5.5. The band pass structure

appears clearly: there is a dip in the adjustment �lter around �=2 and �. The width of

the dip is related to the stability of the seasonality which is supposed to be removed. If

the input series is like (5.3) with � = �:5, then the default �lter may be adequate. But

for a series like (5.3) with � = :5, then �gure 5.1 shows that the seasonality emobodied

by this series would be too much unstable for that �lter. The default adjustment �lter

of X11 will not succeed in removing all the seasonal 
uctuations that the series will

display. A remaining seasonality will be found in the output of the adjustment �lter.

In general, di�erent time series will display movements with very di�erent character-

istics. It is thus convenient to have available more than a single �lter to catch possibly

di�erent features. X11 o�ers the choice between the default seasonal, the 3x3, the 3x5,

and the 3x9 seasonal �lters. The default involves a 3x3 for �1(B) and a 3x5 for �2(B),

as illustrated above in the quarterly case. For the other options saying the seasonal

�lter is 3xl amounts to consider that both �1(B) and �2(B) are equal to

�(B) = (3l)�1(Fm + 1 +Bm)(Fmk + � � �+ Fm + 1 +Bm + � � �+Bmk)
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Figure 5.5: Squared Gain of X11 Default Adjustment Filters, Quarterly
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where m is the data periodicity and k is such that l = 2 � k + 1. Graphics of the X11

�lters weights and squared gains can be found in numerous articles; the most complete

may be Bell and Monsell (1992). For convenience, we reproduce the squared gains of

the seasonal adjustment �lters, when the �lters are obtained with a 5-term and 13-term

Henderson �lter for the quarterly and monthly cases, respectively. Namely, the default,

3x3, 3x5 and 3x9 �lters are presented for quarterly and monthly series.

These graphics give another illustration of how �ltering works in the frequency do-

main. The seasonal component is designed to capture the movements in the series

which occurs with a seasonal frequency. Thus the seasonal adjustment �lters should

annihilate the variability associated with the seasonal frequencies, and let the other

unchanged. In agreement with that, the gain of the X11 adjustment �lters presented

on �gures 5.6-5.7 displays this bandpass structure: they show a gain of 0 around the

seasonal frequencies and a gain close to one in the other regions.

The width of the region where the gain is null is related to the stability of the

seasonal movements which are supposed to be removed: the 3x9 �lter corresponds to

a stable seasonality while the 3x3 seasonal would be adequate for a relatively unstable
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Figure 5.6: Squared Gain of X11 Adjustment Filters, Quarterly
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Figure 5.7: Squared Gain of X11 Adjustment Filters, Monthly
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seasonality. For series displaying seasonal movements whose characteristics will be

outside these two extreme patterns considered with the X11 �lters, then either too

much or not enough seasonality could be removed by simple application of these �lters

(see for example Fiorentini and Planas 1996a). In general, the choice of a particular

�lter must be conducted on the ground of information about the stochasticity of the

movements that the �lter should catch. At the limit, whether the series presents a

seasonal behavior or not has to be checked in a prior stage.

It can be seen also on �gure 5.6-5.7 that the gain of the central X11 adjustment �lters

is greater than 1 at frequencies between the fundamental seasonal frequency and the

Nyquist frequency. The 3x3 adjustment �lter is the only one which does not present

this feature. These frequencies are related to short-term movements in the series. A

gain greater than one implies that the seasonally adjusted series will present a larger

short-term variability than the series itself (see Fiorentini and Planas, 1996b).

5.4 Henderson Trend Filter

X11 also embodies a �lter designed to smooth time series so as to yield estimate of

the trend. This �lter, denoted H(B), is known as the Henderson trend �lter, and it is

involved in the convolutions yielding the adjustment and the seasonal �lters. Saying

its length is n and denoting l = (n� 1)=2, then H(B) can be written as

H(B) =
lX

i=�l

hiB
i:

The weights hi can be obtained by setting m = (n+ 3)=2 from the formula:

hi = 315
[(m� 1)2 � i2][m2

� i2][(m+ 1)2 � j2][(3m2

� 16)� 11j2]

8m(m2
� 1)(4m2

� 9)(4m2
� 25)

:

This expression is given is Macaulay (1931), also reproduced in Dagum (1985) and

Bell and Monsell (1992). Standard lengths of the �lter are 9, 13, 17 or 23 terms for

monthly time series, of 5 and 7 terms for quarterly series. In practice, the Henderson

�lter is not directly applied to the series under analysis but to the seasonally adjusted

transformations. This prior procedure is needed because the Henderson �lter does not
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Figure 5.8: Squared Gain of X11 Trend Filters, Quarterly
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necessary display a zero-gain at the seasonal frequencies. In order to avoid the trend

estimates to present seasonal 
uctuations, the �lter H(B) is applied together with a

seasonal adjustment �lter of the form described in the previous section.

Figures 5.8 and 5.9 represent the squared gains associated to every standard �lter,

the seasonal adjustment �lter being set as the default. It is seen that trend �lters

operate as low pass �lters, the width of frequency range that are transmitted to the

output depending on the �lter length. Clearly, the longer the �lter, the more narrow

the frequency band for which movements in the input series are passed to the output,

and the more stable will be the trend estimate.

5.5 Limits of Ad Hoc Filtering

The �lters presented in this chapter are ad hoc in the sense that they do not depend on

the stochastic properties of the series under analysis: they are available in the software

X12-Arima, and it is up to the analysts to select the most adequate one given a

107



Figure 5.9: Squared Gain of X11 Trend Filters, Monthly
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particular series. We have mentioned the problems may arise with series displaying

extreme characteristics. Blinded use may also be dangerous, as illustrated in Maravall

(1996) with a very explicit example: simple application of an empirical seasonal �lter

to a white noise variable yields a seasonal component ! It is true however that theX12-

Arima software embodies many controls which inform the user that something may

have gone wrong. But because of the empirical nature of ad hoc �ltering procedures,

these controls are mainly qualitative and no rigorous checks may be performed. Further,

an exact measure of precision is not available. The building of con�dence interval

around the estimates is thus not possible. Also, Fiorentini and Planas (1996a) have

pointed out the impossibility of such pre-de�ned �lters to handle correctly time series

characterised by very unstable patterns, like a fastly evolving seasonal component. On

the other hand, they also underlined the overestimation of the short-term movements

that the X11 �lters may imply (see Fiorentini and Planas 1996b). We now turn to

present a more re�ned decomposition procedure.
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Chapter 6

Minimum Mean Squared Error

Estimation of the Components

6.1 Introduction

This chapter presents an estimation procedure overcoming the limits of ad hoc �lters.

The procedure exploits the information given by the modelling of the series to build

the �lters estimating the components. The properties of the components estimators

so obtained are discussed, and the estimation errors are analysed in relationship with

an interpretation in the frequency domain of the procedure. Finally, some features

of estimators of components identi�ed through the canonical requirement are pointed

out.

Writing XT = [x
1
; � � � ; xT ], the optimal estimator of the signal will be given by the

expectation of st conditional on XT :

ŝt=T = E(st=XT ). (6:1)

If t = T , the conditional expectation (6.1) yields the concurrent estimator of the signal.

If t < T , (6.1) provides the preliminary estimator of a past realization of the signal,

while for t > T , (6.1) corresponds to the t � T period-ahead forecast of the signal.

In the model-based approach framework, two methods of calculating this expectation

can be used, each one having speci�c advantages. The Kalman Filter method (see,
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for example, Anderson and Moore (1979)) proceeds �rstly by writing the model in

a state space format, then by setting some initial conditions, and �nally by deriving

the optimal estimator through recursive computations. Because of its computational

tractability, it has been used in many applied works (for a general presentation, see for

example Harvey (1989)), and in particular in the Sts models. The Wiener-Kolmogorov

(WK) �lter has the bene�t of being well suited for analytical discussion, and provides

as an output a clear and precise information about the structure of the estimators. Its

computational tractability has been improved in a decisive way by the T. Wilson algo-

rithm presented in Burman (1980). It is most often involved in theArima-model-based

decomposition of time series, and the emphasis put on this approach throughout the

discussion motivates the choice of focusing on the WK �lter. The properties presented

will also apply to estimators obtained with the Kalman Filter.

6.2 The Wiener-Kolmogorov �lter

For completness, this section presents the construction of the WK �lter. For stationary

time series, this �lter is derived as follow (from Whittle (1963)). First, the assump-

tion that an in�nite set of observations on the process xt is available is needed. The

estimator obtained for an in�nite sample will be denoted ŝt, so that ŝt = ŝt=1. This

assumption will be relaxed later.

The WK �lter is a linear �lter of the past and future realizations of the observed

series, so the estimator ŝt of the signal st may be expressed as:

ŝt =
1X

k=�1

�kxt�k,

= �(B)xt,

where �(B) =
P
1

k=�1 �kB
k. As the optimal estimator is de�ned as a conditional expec-

tation, the WK �lter is optimal in the sense that it minimizes the Mean Squared Errors

on the estimator. So, by orthogonal projection of st on the xt�j , j = �1, � � � ,0, � � � ,+

1, the estimator ŝt must verify:

cov[st � ŝt; xt�j ] = 0.
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Thus, for each j, j = �1, � � � ,0, � � � , +1, we have:

cov[st; xt�j]�
1X

k=�1

�kcov[xt�k; xt�j] = 0.

Denoting w the frequency in radians and gxs(w) the cross-spectrum density function,

this last expression can be translated in the frequency domain as:

0 =
Z

�

��

eiwjgxs(w)dw �
Z

�

��

eiwj[
1X

k=�1

�ke
�iwk]gx(w)dw,

=
Z

�

��

eiwj [gxs(w)� �(e�iw)gx(w)]dw,

where the Fourier transform B = e�iw is used to write: �(e�iw) = �(B). This integral

is �nite since the observed series is supposed to have a �nite variance (stationary case).

Then, for all j = �1; � � � ; 0; � � � ;+1, we have:

gxs(w)� �(e�iw)gx(w) = 0,

which leads to: �(e�iw) = gxs(w)=gx(w). When the components are assumed indepen-

dent as in model (A), the �lter �(e�iw) may be written simply as:

�(e�iw) = gs(w)=gx(w). (6:2)

The WK �lter was initially designed to deal with stationary time series. Under certain

assumptions, Cleveland and Tiao (1976), Pierce (1979), Bell (1984), and Maravall

(1988a) have shown that the �lter yields a �nite Mean Squared Error even if the

processes are nonstationary, so the WK �lter is still valid for nonstationary time series.

Given that most of the series encountered in practice are nonstationary, this extension

was of a great importance for the applicability of the WK �lter. A similar extension

has been developed for the Kalman Filter (see, for example, Kohn and Ansley (1987)).
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6.3 Optimal estimators

6.3.1 MMSE Estimators

The WK �lter was expressed in (6.2) as the ratio of the spectrum of the signal to

the spectrum of the observed series. An appealing feature of Arima models is that

they provide a convenient way to parametrize the spectrum of time series. Applying

the expression (6.2) to model (A), and under the hypothesis of independence of the

components, the estimators can be obtained as (see, for example, Hillmer and Tiao

(1982)):

ŝt = �s(B)xt;

�s(B) =
As

Ax

= Vs

�s(B)�s(F )�n(B)�n(F )

�x(B)�x(F )
,

and for the nonsignal estimator :

n̂t = �n(B)xt;

�n(B) =
An

Ax

= Vn
�n(B)�n(F )�s(B)�s(F )

�x(B)�x(F )
. (6.3)

The hypothesis of invertibility of the polynomial �x(B) insures the convergence of the

�lter. It is a symmetric �lter, which depends on the polynomials of the models for

the observed series and those for the components. This dependence allows the WK

�lter to adapt itself to the series under analysis, in contrast to the empirical �lters

which assume that a particular �lter holds for set of time series. Since the WK �lter

is symmetric, it can be seen as the Acgf of a particular model, which is given in the

following lemma:

Lemma 6.1 The WK �lter �s(B) corresponds to the Acgf of the model

�x(B)zt = �n(B)�s(B)bt

where bt is a white noise with variance Vs.
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Hence, the derivation of the weights of the �lter amounts to the computation of a

simple autocovariance function.

Lemma 6.1 makes clear that the Mmse estimators are available only when all the

polynomials of model (A) have been determined. Estimating the components requires

the practitioners to �rst select an admissible decomposition. Di�erent assumptions

made on the models for the component will imply di�erent properties of the estimators

through the squared polynomial �i(B)�i(F ) and the innovation variance Vi, where

i = n; s. However, there is not a strict correspondence between the stochastic properties

of the components and those of the estimators. Indeed, some discrepancies do exist.

This point has been often discussed in the statistical literature (see for example Bell

and Hillmer (1984)). It can be easily understood from a study of the distribution

followed by the estimators.

6.3.2 The distribution of the estimators

The distribution of the estimators will be studied both in the time domain and in the

frequency domain. Starting in the time domain, if we replace xt by ��1(B)�(B)at in

(6.3), then the estimator ŝt can be written:

ŝt = Vs

�s(B)�s(F )�n(F )

�s(B)�x(F )
at. (6:4)

Comparing the model for the estimator (6.4) and the model (4.2) for the theoretical

signal, it is easily seen that they share the same Ar and Ma polynomials in B (see,

for example, Maravall (1993b)). So, if a component is nonstationary, the component

and its estimator will share the same stationarity inducing transformation.

However, the models for the theoretical components and the models for the estimators

are structurally di�erent. The di�erence is due to the presence of a polynomial in F :

for example, the model for the signal estimator ŝt contains �x(F ) as Ar polynomial and

�s(F )�n(F ) as Ma polynomial. Notice that the model for theMmse estimator will be

noninvertible when the model for the theoretical component is noninvertible or when

the other component follows a nonstationary process. This latter case expresses the

dependence of the estimator ŝt on the model for the other component, the nonsignal

nt, through the Ar polynomial �n(F ). Yet another way to express (6.3) is:
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ŝt =
�s(B)

�s(B)
âst,

where âst is such that:

âst = Vs
�s(F )�n(F )

�x(F )
at. (6:5)

It can be checked that âst is the Mmse estimator of the pseudo-innovation in the

signal ast (see for example Harvey and Koopman, 1992). The di�erences between the

structure of theoretical component and that of the estimator may thus be seen as due

to the pseudo-innovations estimator: while the pseudo-innovations are assumed to be

white noises, their Mmse estimators are correlated, following some Arma models.

For example, the irregular component is supposed to be white noise, but its estimator

present anArma correlation structure. The pseudo-innovations estimators are however

not forecastable, model (6.5) being time reversed so the current estimators depend on

the future innovations on the series. The Acgf of the estimator (6.5), denoted A(âst),

is given by:

A(âst) = V 2
s

�s(B)�s(F )�n(B)�n(F )

�x(B)�x(F )
,

and thus it veri�es A(âst) = Vs�s(B): up to a scale factor, the covariances of the

pseudo-innovations estimator are equivalent to the weigths of the WK �lter designed

for estimating the associated component.

A look at the way the �lter works on the series, in the frequency domain, helps in

understanding the di�erences between the �nal estimator and the component. Denoting

gŝ(w) the spectrum of the estimator ŝt, then from (6.3)

gŝ(w) = �s(e
�iw)�s(e

iw)gx(w) =

=

"
gs(w)

gx(w)

#2
gx(w):
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The gain of the �lter is given by j �s(e
�iw) j= gs(w)=gx(w): since spectra are always non

negative, gain and frequency response function of the WK �lter (6.2) are equivalent.

The WK �lter is built in such a way that the frequency response function relates the

spectrum of the estimator to the spectrum of the signal. This property is speci�c to

the WK �lter, and it can easily be understood from:

gŝ(w) =

"
gs(w)

gx(w)

#2
gx(w) =

=

"
gs(w)

gx(w)

#
gs(w);

and the frequency response function may also be written as:

gs(w)

gx(w)
=

1

1 + gn(w)

gs(w)

: (6:6)

This property allows us to draw the following interpretation of the WK �lter mecha-

nism. When the relative contribution of the signal is high at a particular frequency

w�, then gn(w
�)=gs(w

�) ' 0. The frequency response function is thus close to 1, and

gŝ(w
�) ' gs(w

�) holds. The component and the estimator will display movements of

similar variability around the frequency w�. Also, the gain of the �lter at this frequency

is close to 1, so we get: gŝ(w
�) ' gx(w

�): most of the observed series spectrum is used

for the signal estimation.

Conversely, when the relative contribution is low at a particular frequency, the WK

�lter just ignores it for the signal estimation. For example, suppose that either the

signal's spectrum has a zero at the frequency w� or the nonsignal's spectrum admits

an in�nite peak at the frequency w�, so that we have: gn(w
�)=gs(w

�)!1. Then the

spectrum of the signal estimator will display a zero: gŝ(w
�) ' 0, and the estimator

will follow a noninvertible model. This conclusion was already obtained from a direct

observation of the model for the estimator. Furthermore, it is easily deduced from

(6.6) that gŝ(w) � gs(w) for every frequency, so the signal is always underestimated

(see for example Burman (1980)). A straightforward consequence is that the estimator

will always be more stable than the component.
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6.4 Covariance between estimators.

Another important discrepancy between the properties of the components and those

of the estimators is that, if the components are assumed independent, the Mmse

estimators will always be covariated. This is a consequence of the estimation procedure

which orthogonally projects both components on a space of dimension one de�ned by

the observed series. The existence of covariances between the estimators even if the

theoretical components were assumed independent has been subject of attention in

the literature (see for example Nerlove (1964), Granger (1978), Garcia-Ferrer and Del

Hoyo (1992)). A similar result has been discussed by Harvey and Koopman (1992)

concerning the estimators of the 'pseudo-residuals' ant and ast. Maravall and Planas

(1996) also discussed the covariances between the UC estimators; most of the results

presented in this section is taken from their article.

The covariances between the estimators are easily obtained from the following lemma:

Lemma 6.2 If C(n̂; ŝ) denotes the cross-covariance generating function between n̂t

and ŝt, then C(n̂; ŝ) is equal to the ACGF of the model:

�x(B)zt = �s(B)�n(B)bt, (6:7)

where bt is a white noise with variance VnVs.

Proof: From (6.3), we have:

C(n̂; ŝ) = AnAs=Ax. (6:8)

Developing and simplifying, we get:

C(n̂; ŝ) = VnVs
�n(B)�n(F )�s(B)�s(F )

�x(B)�x(F )
, (6:9)

which is the Acgf of the model (6.7).
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So C(n̂; ŝ) can be seen as the Acgf of an Arma process with AR polynomial �x(B),

Ma polynomial �n(B)�s(B), and with innovation variance VnVs. Notice the dependence

of the covariances between the estimators to the admissible decompositions through

the Ma polynomial and the innovation variance of model (6.7). Using lemma 6.2, the

following properties of the Mmse estimators can be derived.

Property 6.1 The lag-0 covariance between the estimators is always positive.

This is immediate since, from lemma 6.2, the lag-0 covariance between the estimators

is equal to the variance of the process zt: cov[n̂t; ŝt] = var[zt] > 0. Since the estimators

must sum to the observed series, the existence of a positive cross-covariance between

the estimators re
ects the loss in the component spectrum which is implied by the

estimation procedure. As emphasized in the previous section, the estimator has a

spectrum always below the one of the corresponding component, and this di�erence is

then found in the estimators cross-spectrum which is always positive.

Property 6.2 The covariances between the components estimators are symmetric, �-

nite and converge to zero.

Proof: The process zt, with Acgf C(n̂; ŝ), has �x(B) as Ar polynomial. The model

for the observed series being assumed invertible, zt is stationary. So the covariances

between the signal and the nonsignal estimators are �nite and converge to zero, even

if the estimators are nonstationary.

For nonstationary time series, the UC estimators may diverge in time, but according

to property 6.2, they will diverge together. This result holds independently of the

components' order of integration. An interesting consequence is:

Property 6.3 When the observed series xt is nonstationary, the estimators ŝt and n̂t

are uncorrelated whatever the selected admissible decomposition is.

Proof: The correlations between the estimators are given by the ratio of the covariances

to the product of the estimators standard deviations. As shown in property 6.2, the

covariances are �nite, while the sample standard deviation of at least estimator will

not converge. So the ratio of the covariances to the standard deviations will tend to

zero.

117



So, when the observed series is nonstationary, the estimation procedure preserves the

property of the theoretical components in terms of zero cross-correlations. Given that

most of the economic time series encountered in practice are nonstationary, this result

limits the relevance of the discussions about the non zero estimators cross-correlations.

We now focus on the errors in the estimators.

6.5 Estimation errors

The estimation errors can be decomposed into two types of errors: the �nal estimation

error and the revision error. The �rst one corresponds to st�ŝt or nt�n̂t and is obtained

under the hypothesis of a complete realization of the observed series. Given that the

WK �lter is convergent, in practice, for large enough sample, the �nal estimation error

concerns the estimators computed around the center of the series. The revision error

is related to the impossibility to actually deal with in�nite samples, and concerns in

practice the estimators computed near the ends of the sample. The independence

of both types of errors, as demonstrated in Pierce (1980), allows us to analyse them

separately.

6.5.1 Final Estimation Error

The following lemma is due to Pierce (1980):

Lemma 6.3 The Acgf of the �nal estimation error et = st� ŝt = n̂t�nt is equivalent

to that of the Arma process

�x(B)et = �s(B)�n(B)bt,

where bt is a normally distributed independent white noise with variance VnVs.

Proof: The error in the signal estimator can be written as:

et = st � ŝt =

= st � [As=Ax]xt =
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= [1�As=Ax]st � [As=Ax]nt =

= [An=Ax]st � [As=Ax]nt.

Developing the Acgf's and writing, in order to simplify the expressions, � for any

polynomial �(B) and � for �(F ), we have

et =
[Vn�n�n�s�sst � Vs�s�s�n�nnt]

�x�x
.

Using the models (4.2) for the components:

et =
[Vn�n�n�s�sast � Vs�s�s�n�nant]

�x�x
.

which can also be written as

et = �n�s[Vn�n�sast � Vs�s�nant]=�x�x.

The Acgf of the estimation error is then given by

A(et) = �n�s�n�s
V 2

n Vs�n�n�s�s + V 2

s Vn�s�s�n�n

�x�x�x�x
,

The relationship (4.3) between the MA polynomials provides:

�x�x = Vn�n�n�s�s + Vs�s�s�n�n. (6:10)

Inserting (6.10) into the expression for A(et), we get:

A(et) = VnVs
�n�n�s�s

�x�x
. (6:11)

which is the expected result. Working on nt instead of st would lead to zt = n̂t � nt

which has the same Acgf than st � ŝt.
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The Ma polynomial of the process for the �nal estimation error corresponds to the

product of the Ma polynomials of the models for the two components, while the Ar

polynomial is given by the Ma polynomial of the model for the observed series. The

observed series' process being invertible, the �nal estimation error follows a stationary

model whose variance gives the Mse of the estimation. An immediate consequence of

lemmas 6.2 and 6.3 is that (see Maravall and Planas, 1996):

Lemma 6.4 For all admissible decompositions, the theoretical estimators cross-covariance

generating function is equivalent to the Acgf of the �nal estimation error :

C(n̂; ŝ) = ACGF (n̂t � nt) = ACGF (st � ŝt).

It is interesting to notice that both will depend on the identifying assumptions adopted.

This dependence will be explored in the next section. For decompositions into more

two components, then lemmas 6.2 and 6.3 still holds with st being the component of

interest and nt aggregating the other components.

Returning to the analysis of the �nal estimator in the frequency domain, it was

noted in section 6.3.2 that the largest discrepancies between the spectrum of the signal

and that of the estimator are observed at the frequencies where the ratio gn(w)=gs(w)

is large. Hence, the error is mainly related to the frequencies where the stochastic

variability of the signal is relatively low. In general, unstable signals are more accurately

estimated than stable signals.

6.5.2 Revision error

The hypothesis of having an in�nite realization of the series xt was needed because the

WK �lter in (6.3) goes to �1 to 1. Since the �lter is convergent, it can be safely

truncated at some point. However, at the beginning or at the end of a sample, the

computation of the estimator requires unknown past or future realizations of xt. We

shall focus on the distortion induced by the lack of future observations. Near the end of

a �nite sample, optimal preliminary estimates can be computed by replacing unknown

future realizations by their forecasts (Cleveland and Tiao (1976)). The forecast er-

rors imply that the preliminary estimates will be contaminated by an additional error,
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termed 'revision error'. As new observations become available, forecasts are updated

and eventually replaced by the observed values, and the preliminary estimator is re-

vised. The total revision error in the concurrent estimate of st, that is the estimate of

st computed at time t, is given by: ŝt � E(ŝt=Xt). To simplify the presentation, we

shall denote by Etŝt the expectation of the estimate of st conditional on the informa-

tion available at time t, so that: Etŝt = E(ŝt=Xt). Writing  (B) = �(B)=�(B), then

the optimal estimator may be expressed in function of the innovations on the observed

series as:

ŝt = �s(B)xt =

= �s(B) (B)at =

= �s(B)at,

with �s(B) = � � � + �s�1B + �s0 + �s1F + � � �. Taking the expectation of ŝt conditional

on the information available at time t, the concurrent estimator of st is then readily

obtained as:

Etŝt =
0X

i=�1

�siat+i.

Hence, the total revision error in the concurrent estimator is given by:

ŝt � Etŝt =
1X

i=1

�siat+i,

and, for the revisions in any preliminary estimate of st computed at time t+ k, k 6= 0:

ŝt �Et+kŝt =
1X

i=k+1

�siat+i.

The revision errors are thus an in�nite moving average process. As shown in Pierce

(1980), the Ma processes followed by the revision errors are stationary. Thus the

variance of the revision error can be computed as:
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V [ŝt � Et+k ŝt] =
1X

i=k+1

�
2

si. (6:12)

The stationarity of the revisions can be easily understood by noticing that the poly-

nomial �s(B) is convergent in F. A consequence is that limk!1V [ŝt � Et+kŝt] = 0: in

practice, the revisions become negligible after some number of periods. The polyno-

mial �s(B) is obtained by polynomials convolution, which does not raise any particular

problem. A convenient algorithm for computing the �-weights can be found in Maravall

and Mathis (1994). Adding �nal estimation error and total revision error, we obtain

the total estimation error in the concurrent estimates as st �Etŝt. As �nal estimation

error and revision error are independent, the variance of the total estimation error is

simply obtained as V (st � Etŝt) = V (st � ŝt) + V (ŝt � Etŝt).

6.6 Properties of the canonical decomposition

All along the previous section, we have seen that the choice of a particular decom-

position a�ects both the �nal estimation error and the revision errors through the

Ma polynomials �s(B), �n(B), and the innovation variances Vs and Vn. Maravall and

Planas (1996) fully explored that dependency, and some of their results are reported

here. Interested readers are refered to Maravall and Planas (1996) for the proofs of

the results discussed in this section. Let us suppose that st and nt are component

speci�ed in their canonical form, so that the decomposition actually considered is:

xt = st + nt + ut, where ut is a white noise with variance maximized. The coe�cients

�s0 and �n0 thus denote the central coe�cients of the WK �lter designed to estimate

the canonical signal and the canonical nonsignal. Then,

Lemma 6.5 A canonical decomposition always minimizes the �nal estimation error.

Which component must be speci�ed canonical is determined by the following rule:

� set st canonical if �s0 � �n0;

� set nt canonical otherwise.
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Further, from lemma 6.3 the canonical decomposition minimizing the �nal estimation

error of the components also minimizes the covariances between the estimators. Lemma

6.5 provides a simple procedure to design the components models in order to get this

property: the canonical requirement must be applied to the component which has the

smallest central coe�cient in the WK �lter designed to estimate its canonical form. On

the other hand, all the noise of the model must be assigned to the component which

is relatively more important. This relative importance is evaluated by comparing the

central weight of the WK �lters designed to estimate the components in their canonical

forms. A very simple way to compute the central weight of the WK �lter as the variance

of a simple Arma model has been described in section 6.1.

Given the model for the observed series, this canonical decomposition will yield the

highest coherence between the spectrum of the signal and the spectrum of the estimator.

Nerlove (1964) saw such a coherence as a desirable feature when he discussed in the

seasonal adjustment context several spectral criteria that adjustment procedures should

satisfy. Specifying the unobserved components models as suggested in lemma 6.2 will

thus reduce the discrepancies between the model of the signal and the model of its

estimator.

For preliminary estimator however, the canonical criterion has an unpleasant prop-

erty: for a given model for the observed series it always maximizes the revision error

among the set of admissible decompositions. This result has been source of confusion

for many practitioners, and it seems thus worth to explain its correct meaning. First,

it only concerns the set of admissible decompositions of a given time series model. It

does not mean that another method of decomposition will perform better in terms of

revision. Secondly, in the two-component decomposition, the other canonical speci�-

cation may perfectly minimize the revisions and provide the most precise preliminary

approximation of the �nal estimates. Thirdly, this feature is of secondary importance

since if we consider the total estimation error in any preliminary estimate, lemma 6.5

can be generalised. Writing �
t=t+k

s0 � �
t=t+k

n0 the coe�cients of B0 in the WK �lter

designed to estimate the canonical signal st and the canonical nonsignal nt estimated

at time t+ k,

Lemma 6.6 The variance of the Total Estimation Error on the concurrent signal esti-

mator is always maximized at a canonical decomposition. The component to be speci�ed

canonical is
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� st if �
t=t+k

s0 � �
t=t+k

n0 ;

� nt otherwise.

Lemma 6.5 thus holds for any preliminary estimator.

The aggregation of the historical estimation error and of the revision error preserves

the property of the canonical decompositions that they yield the most precise estima-

tor. Whatever is the set of observations available on xt and the period for which we

are interested in the signal, it is always true that the minimum variance of the total

estimation error is obtained by assigning all the noise of the model to the canonical

component st or nt whose estimator gives the most weight to the particular realization

xt, the other one being let canonical.

However, it is possible that while one canonical decomposition minimizes the error in

the historical estimator, the other one minimizes the error in the concurrent estimator.

In that case, the aggregation of the two types of errors makes the noise repartition

minimizing the error switch to one bound of [0; 1] to the opposite bound: for example

when �s0 > �n0 and �
t=t

s0 < �
t=t

n0 . Because the revision error variance is always maxi-

mized at one bound of [0; 1], the switching of solutions means that the decomposition

minimizing the �nal error variance is also the one which maximizes the revision error

in the concurrent estimator. Notice that in the concurrent estimation case, the equal-

ity �s(B)(�(B)=�(B)) = �s(B) implies �s0 = �s0. The same holds of course for nt,

and in the concurrent case, the condition for having a canonical signal minimizing the

estimation error simpli�es to �s0 < �n0.

The case of forecasts of the components is trivial. Since every admissible decomposi-

tion di�er by some noise repartition, and that this noise is unforecastable, the variance

of the forecast error on the signal is always minimized with the canonical speci�cation.

Adding an unpredictable white noise to a variable just increases the forecast error vari-

ance without changing the variable forecast. In general, noninvertible components are

always best forecasted.
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Chapter 7

Examples

7.1 Introduction

We now apply the previous results to the decomposition of time series. Both theoretical

models and actual time series are treated. In this last case, the computations have

been performed by the program Seats developed by A. Maravall and V. Gomez (see

Maravall and Gomez, 1996), so all the results commented may also be found in the

Seats output. This software also contains a facility to deal with theoretical models.

7.2 Regular ARIMA model

Suppose the observed series follows an Ima(2,1) process given by :

(1 �B2)xt = (1 + �B)at with at � NID(0; 1).

j � j< 1

This simple model, adequate for bi-annual data, has been the subject of a pedagogical

discussion in Maravall and Pierce (1987), with the simpli�cation � = 0.

Suppose we wish to decompose the observed series as: xt = nt + st, where nt and st

represent respectively the trend and the seasonal components of the observed series xt.

TheAr polynomial (1�B2) has a root the zero-frequency, which is thus assigned to the

trend component, and a root at the �-frequency, with period two, which characterises

125



the seasonal 
uctuations of the series. Possible models for the components are then of

the type:

(1 +B)st = (1� �
s
B)a

st
,

(1 �B)n
t

= (1� �
n
B)a

nt
.

For these models, we have the overall relationship:

(1� �B)at = (1�B)(1 � �sB)ast + (1 +B)(1 � �nB)ant,

which provides a system of 3 covariances equations with the four unknowns �
s
, V

s
,

�n, Vn. The system is thus not identi�ed. We overcome this problem by imposing

zero-coe�cients restrictions on both components. The system of variance-covariances

equations is then

1 + �2 = 2V
s
+ 2V

n

�� = �V
s
+ V

n
.

where it is easily obtained that Vs = (1+�)2=4 and Vn = (1� �)2=4. Alternatively, this

solution may be derived in the frequency domain by partial fraction decomposition

of the observed series spectrum. It is the approach favored in most computational

implementations. Using cos 2w = 2 cos2w � 1, the spectrum of x
t
may be written as:

g
x
(w) =

1 + �2 � 2�cosw

2� 2cos2w
=

1 + �2 � 2�cosw

4� 4cos2w
:

Taking then z = cosw, this last expression can be factorised as:

1 + �2 � 2�z

4� 4z2
= V

s

1

2 + 2z
+ V

n

1

2 � 2z
,

with V
s
= (1 + �)2=4 and V

n
= (1 � �)2=4, in agreement with the solution derived in

the time domain. The amount of noise embodied in the spectra gs(w) and gn(w) is

given by:
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�
s

= min
w

g
s
(w) = g

s
(0) = (1 + �)2=16,

�
n

= min
w

g
n
(w) = g

n
(�) = (1 � �)2=16,

so the 'pure' noise part of the observed series is:

V
u
= �

s
+ �

n
= (1 + �2)=8.

Removing �s from the spectrum of st, the spectrum of a canonical seasonal component

is obtained as:

g
s
(w) = V

s

1

2 + 2 cosw
� V

s
=4 =

= (Vs=4)
4 � (2 + 2 cosw)

2 + 2 cosw
=

= (V
s
=4)

2 � 2 cosw

2 + 2 cosw
: (7.1)

It is easily seen that gs(w) characterizes the canonical seasonal speci�ed as:

(1 +B)st = (1 �B)ast;

with V
s
= (1 + �)2=16. The nonseasonal component concentrates all the noise of the

model, and its spectrum is given by:

gn(w) = Vn

1

2 � 2 cosw
+ V

s
=4 =

= (1=4)
4Vn + 2Vs � 2Vs cosw

2� 2 cosw
=

= (1=16)
4(1 � �)2 + 2(1 + �)2 � 2(1 � �)2 cosw

2 � 2 cosw
: (7.2)
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In order to get the model for the nonseasonal component, the spectrum numerator

must be factorised. The standard procedure consists in writing cosw = (1=2)(z+ z�1)

and in solving in z which yields roots r and r�1. Picking up the roots less than one

in modulus gives then the factors composing the Ma polynomial. The variance is

simply obtained as a rescaling factor. In the case studied, the analytic expression of

the corresponding model is a bit tedious. In the simple case where � = 0, it simpli�es

to:

�n
t
= (1 + (3 � 2

p
2)B)a

nt
;

with Vn = (3+2
p
2)=16. In practice, the models for the components are not needed to

derive the optimal �lter. For example, the WK �lter designed to estimate the canonical

seasonal component is given by:

�s(B) = Vs
(1�B)2(1 � F )2

(1 � �B)(1 � �F )
=

= Vs
h
(6 � 4(B + F ) + (B2 + F 2)

i

�
h
1 + �B + �B2 + � � �

i h
1 + �F + �F 2 + � � �

i

=
V
s

1� �2

h
(6 � 4(B + F ) + (B2 + F 2)

i

�
h
1 + �(B + F ) + �2(B2 + F 2) + � � �

i

It is then easily seen that

�s0 =
V
s

1 � �2
(6 � 8� + 2�2)

�
s1 =

Vs

1 � �2
[6� � 4(1 + �2) + � + �3]

...

�
si

=
Vs

1 � �2
�i�2[6�2 � 4(� + �3) + 1 + �4]
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Using the time domain equivalent of (7.1), (7.2) and lemma 6.3, the Acgf of the �nal

estimation error et is given by the product

A(e
t
) =

Vs

16

[2 � (B + F )][4(1� �)2 + 2(1 + �)2 � (1 � �)2(B + F )]

(1� �B)(1� �F )

and looking at the central term:

V (et) =
V
s

16(1� �2)
[1 + �(B + F ) + � � �] �

� [10(1 � �)2 + 4(1 + �)2 � [2(1 + �)2 + 6(1 � �)2](B + F )

+ (1� �2)(B2 + F 2)]

Simplifying, we get:

V (e
t
) =

V
s

16(1� �2)
[10(1 � �)2 + 4(1 + �)2 �

� 2�[2(1 + �)2 + 6(1 � �)2] +

+ 2�2(1 � �)2]

In the simple case where � = 0, we get: V (et) = 7=128.

Finally, the total revision error in concurrent estimates of the signal can be derived

by writing the estimator ŝ
t
in function of the innovations a

t
(see section 6.5):

ŝt = �s(B)xt =

= �s(B)(1� �B)=(1�B2)at =

= �s(B)at;
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so that we obtain :

�s(B) = Vs

(1 �B)2(1� F )2

(1� �B)(1� �F )

(1 � �B)

(1�B2)
=

= V
s

1�B

1 +B

(1� F )2

1� �F
=

= Vs[1� 2B + 2B2 + � � �+ 2(�1)nBn] �

� [1 + (�2 + �)F + (� � 1)2F 2 + � � �+ (� � 1)2�n�2Fn]

Denoting �s1; :::; �si the coe�cient of F ,...,F i, then according to 6.12, the variance of

the total revision is given by
P
1

i=1
�2
si
. The coe�cients �

s1; :::; �si are easily obtained as

�s1 = Vs(�2 + �) + Vs(� � 1)2
�2
1 + �

�
s2 = V

s
(� � 1)2

�1 + �

1 + �
...

�si = Vs(� � 1)2�i�2
�1 + �

1 + �

Summing the squared coe�cients yields the variance of the total revisions in the con-

current estimates:

V (r
t
) =

1X

i=1

�2
si
=

= V 2

s
(�2 + �)2 + 4V 2

s

(� � 1)4

(1 + �)2
� 4V 2

s

(�2 + �)(� � 1)2

(1 + �)2
+

+ V 2

s
(� � 1)4

(1 � �)2

(1 + �)2
1

(1 � �2)
:

The variance of the total revisions in the concurrent estimates takes the value 17/256

if � = 0. Denoting n̂0
t
the concurrent estimator of the seasonally adjusted series,
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then the �nal estimator of n
t
lies with a probability of 95% in an interval given by

n̂0
t
+ = � 2

p
17=16. In order to build a con�dence interval for the unobserved nt, the

�nal error variance must be taken in consideration; this yields n̂0
t
+=�2(

p
17+

p
14)=16

still for the case � = 0.

7.3 Trend plus Cycle example

We analyze the model discussed in section 4.1.3. To ease the readers understanding,

we recall that the model for the observed series was:

(1 + :7B)�xt = (1 + :404B � :039B2)at.

This series was the sum of a trend s
t
and a cycle n

t
component, and making the former

canonical, we obtained :

�st = (1 +B)ast Vs = :161

(1 + :7B)nt = (1 + :496B)ant Vn = :306.

The estimators of the trend and nontrend components are immediately derived as:

ŝt = Vs

(1 +B)(1 + F )(1 + :7B)(1 + :7F )

(1 + :404B � :039B2)(1 + :404F � :039F 2)
xt

n̂t = Vn

(1 + :496B)(1 + :496F )(1 �B)(1� F )

(1 + :404B � :039B2)(1 + :404F � :039F 2)
xt

The WK �lter then corresponds to the Acgf of the model,

�(B)zt = (1 +B)(1 + :496B)bt;

with V
b
= V

s
V
n
= :049. It is interesting to compare the estimators obtained in this

canonical decomposition with the ones of the decomposition refered to as "model 1"

in section 4.1.3:
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�st = ast Vs = :645

(1 + :7B)nt = ant Vn = :129,

where the identi�cation criterion is the one used in Sts models. The corresponding

estimators are plotted on �gure 7.1 for the canonical decomposition, on �gure 7.2 for

this last model. It is clearly seen that the estimator of the trend is smoother when the

trend is speci�ed canonical than when it speci�ed according to the Sts criterion. But

given that the cycle catches all the noise of the model in this canonical decomposition,

the cycle so-obtained is in turn more unstable than the Sts cycle.

Figure 7.1: Trend and Cycle Estimators in Canonical Decomposition
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Figure 7.2: Trend and Cycle Estimators in Sts Decomposition
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7.4 Portugal Employment in Manufactured Bricks Production

This series has been showed on �gure 1.1, and it has been analysed in section 3.5.

A satisfying model for describing the stochastic behavior of the series was the (2,1,0)

model with parameters

(1 + :494B + :291B2)�xt = at;

where the standard deviation of the residual was
p
Va = :019. According to the dis-

cussion held in section 3.5, these residuals seem to be randomly distributed. The

autoregressive parameters of the models are signi�cant, and the roots of the Ar poly-

nomial are complex conjugates roots of modulus .539 and argument 117 degrees. Thus,

a pattern in the data of period close to three-times a year is caught by this model. If

we assign this polynomial to a seasonal component, then this series Poem2640 can be

decomposed as the sum of a trend, of a seasonal plus an irregular component according

to:

�pt = (1 +B)apt Vp = :078;

(1 + :494B + :291B2)st = (1 � :473B � :567B2)ast Vs = :098;

Vu = :255

Notice that the seasonal component so-obtained is unusual: it is stationary, and repre-

sent movements which repeat themselves 3 time a year. The corresponding estimators

are plotted on �gures 7.3 and �gures 7.4. The former plots the series together wih

the estimated trend, while the second plots the two short-term movements. It is in-

teresting to look at the spectra of the components and of the associated estimators

on �gure 7.5, 7.6 and 7.7. It is seen on the three pictures that the spectrum of the

estimator is always below the one of the component. The larger di�erence occurs at

the frequency where the contribution of the component is relatively low. Also, �gure

7.7 illustrates the general result that the estimator of the irregular component is not a

white noise. The di�erences between the components and their estimators are related

to the estimation error.
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Figure 7.3: Series Poem2640 (- -) and Trend (|)
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The variance of the estimation errors in the �nal estimators of the canonical trend and

the seasonal both speci�ed canonical are obtained as :099Va and :106Va, respectively.

The �nal canonical trend is better estimated than the �nal canonical seasonal. This

is in agreement with the values of the central coe�cient of the WK �lter designed to

estimate these components, �p0 = :308 < �s0 = :338 (see lemma 6.5). This shows that

the the �nal trend is more stable than the �nal seasonal, and for that reason all the

noise of the series must be removed from the trend and assigned to the seasonal for

having the decomposition the most accuratly estimated. For concurrent estimation,

the opposite works since it is found that the variance of the total estimation error on

the trend is at :192Va against :136Va for the seasonal. A look can the coe�cient of B0

in the �-weights con�rms this gain in accuracy since we had: �p0 = :478 > �s0 = :265.
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Figure 7.4: Seasonal and Irregular estimators in Poem2640
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Figure 7.5: Trend Spectrum
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Figure 7.6: Seasonal Spectrum
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Figure 7.7: Irregular Spectrum
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7.5 French Total Industry Production

We now focus on the series Frpd101 already plotted in �gure 1.1 This series, with

another sample size, has been subject of discussion in Fiorentini and Planas (1996b).

The behavior of this series is well described by an airline model such that

��12xt = (1 � :561B)(1� :488B12)at;

The Ma parameters are signi�cant, while the residual standard deviation is
p
Va =

:017. These residuals have been found randomly distributed in section 3.6. Decompos-

ing the series into a nonseasonal plus a seasonal component speci�ed as

U(B)st = (1 + 1:150B + 1:031B2 + :830B3 + :570B4 + :311B5 + :073B6

� 0:130B7 � 0:278B8 � 0:398B9 � :462B10 � :645B11)ast

�nt = (1 � 1:517B + :542B2)ant

where the pseudo-innovations variances are Vs = :0263 and Vn = :576. The spectra of

these two components, together with the spectrum of the observed series, are plotted in

�gure 7.8. It is seen that the series is characterised by very stable seasonal 
uctuations.

This can seen also in the magnitude of the pseudo innovations variances which is

relatively low. The series seasonally adjusted by means of the WK �lter can be seen

in �gure 7.9. In order to draw a comparison, the adjustment by X12 �ltering is also

reported on �gure 7.9. The default adjustment �lter of X12 with a 13-term Henderson

�lter has been found adequate for this seasonality. In fact the gain of the WK �lter and

of the X12 default adjustment �lter are very close for this series. The output of both

procedures are pretty similar, yet some more short term variability in the X12's output

may be seen if one focus on the noise which is embodied in the SA series. Indeed, the

variance of the stationary transformation of the seasonally adjusted series with X12 is

1.13 times larger that the one obtained with WK estimation. An explanation of this

phenomemon can be found in Fiorentini and Planas (1996b); in particular, they show

how the X12 adjustement �lters may overestimate the short term movements in time

series.
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Figure 7.8: Frpdb101: Spectra of Series and Components
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Figure 7.9: Frpdb101: Seasonally Adjusted Estimates
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7.6 Italian Production of Soft Drinks

The Italian production of soft drinks has been presented in �gure 3.6, section 3.5. It

is characterized by a (2; 1;1)(0; 1; 1)12 model speci�ed as:

(1� :085B + :286B2)��12xt = (1 � :750B)(1� :640B12)at;

with residuals standard error
p
Va = :067. Every coe�cient is signi�cantly di�erent

from zero, and the residuals satis�ed the diagnostic checks performed in section 3.6.

The Ar polynomial, denoted �(B), has complex conjugate roots with modulus .54 and

argument 85.42 degrees, that is close enough to the seasonal harmonic at 90 degrees

which is associated with four-times a year movement. This root is thus assigned with

the seasonal behavior of the series. The resulting model for the seasonal component is

found to be:

�(B)U(B)st = (1 + 1:341B + :846B2 + :810B3 + :737B4 + :660B5 +

+ :629B6 + :534B7 + :544B8 + :443B9 + :529B10 +

+ :4372B11 � :050B12 � :293B13)ast;

while for the nonseasonal part of the series:

�2nt = (1 � 1:690B + :700B2)ant:

The pseudo innovations variances are obtained as Vs = :283 and Vn = :394. TheMmse

estimator of the seasonally adjusted series is displayed on �gure 7.10. The �nal esti-

mation error in historical estimator of the seasonally adjusted series is found at :152Va,

while the variance of the total revisions in concurrent estimate is of :064Va. Hence,

adding +=� 2
p
:152

p
Va on the historical estimator gives the 95% con�dence interval

for the component, while 95% con�dence interval around concurrent estimator is ob-

tained by adding +=�2
p
:216

p
Va on the concurrent estimtes. Figure 7.11 displays the

forecast of the series and of the trend together with their forecast con�dence interval.
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Figure 7.10: Itpdb428: Original Series (- -) and SA Series (|)
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Figure 7.11: Itpdb428: Series and Forecast
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The typical result that unobserved components are better forecasted than the observed

series is clearly illustrated.
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Part III

Regression in Time Series Analysis
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Chapter 8

Linear Regression Models with

ARIMA Errors

8.1 Model Speci�cation

In the �rst chapter, we have seen that the Wold decomposition states that a covariance

stationary time series can always be written as the sum of a deterministic plus a

stochastic part. Up to now, we have focused on the modelling and on the extraction

of signals in stochastic processes. We now turn to the modelling of some deterministic

e�ects. First, suppose that an observed series Yt is stationary; we write

Yt = �t + Zt;

where �t represents the mean of the process such that :

�t = E(Yt) = X 0

t
�:

The variable Xt is a vector of r regression variables, X 0

t
= (X1t; � � � ;Xrt), weighted by

the vector of coe�cients �, �0 = (�1; � � � ; �r). The Zt's follow the general Arma pro-

cess, �(B)Zt = �(B)at, where �(B) and �(B) satisfy the stationarity and invertibility

conditions, respectively, while at is Nid(0; Va) distributed. The variance the process Yt

is then given by

147



V (Yt) = V (Zt)

which is the standard covariance matrix of an Arma process. In practice, stationarity

is a property which most often requires a prior data transformation. Denoting �(B)

the stationarity inducing transformation of the data and yt = �(B)Yt, zt = �(B)Zt, we

have:

yt = �(B)X 0

t
� + zt

where �(B)X 0

t
stands for �(B)X 0

t
= (�(B)X

1t; � � � ; �(B)Xrt). The polynomials �(B); �(B)

and �(B) may include or not seasonal lags. Another writing is

�(B)(�(B)Yt � �(B)X 0

t
�) = �(B)at:

For notational simplicity, we shall write xt = �Xt, so that:

�(B)(yt � x
0

t
�) = �(B)at:

This type of models are known as linear regression models with Arima errors, Re-

gArima in short. A good discussion ofRegArimamodels can be found in Bell (1995).

An appealing feature of RegArima models is that the �rst and second moments of

the variable, that is the mean function and the variance-covariance matrix, are handled

separatly.

8.2 Identi�cation and Estimation

The problem of identifying and estimating an Arima model is now to be considered

together with that of estimating the regression coe�cients. It is convenient to rewrite

the RegArima equation in matrix form:

y = x� + z
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where y = (y
1
; � � � ; yT )

0, x is a Txr matrix with column i given by (xi1; � � � ; xiT )
0 and

z = (z
1
; � � � ; zT )

0. In the simple case where the zt are white noises, then the best linear

unbiased estimate of � is the Ordinary Least Squares Ols estimator :

�̂OLS = (x0x)�1x0y:

The estimator �̂OLS is unbiased since E(�̂OLS) = � and it is consistent since its variance

is obtained as V (�̂OLS) = Va(x
0x)�1, which is minimum. Why is this variance a lower

bound is explained in details in many general textbooks; see for example Spanos (1986).

Further, since it is a linear combination of a normal variable, the estimator is normally

distributed: �̂OLS � N (�; Va(x
0x)�1).

The ordinary least squares estimators are straightforwardly extended to the cases

where the zt are correlated. When V (z) = � is known, the Generalized Least Squared

(Gls) estimator is obtained as:

�̂GLS = (x0��1x)�1x0��1y:

which is the minimum variance linear unbiased estimator in that case. It is unbiased

since it is readily checked that E(�̂GLS) = �, and it is e�cient since V (�̂GLS) = x0��1x,

which in that case is the lower bound for the variance of any linear estimator. Under

the assumption of white noise observations, � = VaI, the Gls estimator reduces to

the Ols one. On the other hand, computing an Ols estimation when the errors are

correlated would lead to an unbiased estimator with variance given by:

V (�̂OLS) = (x0x)�1x0��1x(x0x)�1:

It can be checked that for every �i-estimate, i = 1; � � � ; r, the inequality V (�̂iOLS) >

V (�̂iGLS) holds. Thus, the Ols estimator of � is not e�cient, and since the Gls

estimation yields more precise results, it is the favored estimation procedure. The

variance-covariance matrix needs however to be known. In chapter 3, we have seen

how the variance-covariance matrix of a variable described by an Arima model may

be derived simply as a function of the Ar and Ma parameters. Thus, conditional

on the choice of a particular model, the knowledge of the matrix � only depends on
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the estimators of the �'s, �'s and of the innovation variance. We make explicit that

dependence by writing:

� = VaC(�; �);

where � = f�
1
; � � � ; �pg and � = f�

1
; � � � ; �qg. Now assuming that the observations

are normally distributed, y � N (x�; VaC(�; �)), then the likelihood function for the

RegArima model speci�cation is given by:

L(�; �; theta; Va) = (
q
Va2�)

�njC(�; �)j�1=2 �

� exp (�1=2Va)(y� x�)0C(�; �)�1(y � x�):

The associated log-likelihood is obtained as

l(�;�; theta; Va) = (�n=2)logVa � (1=2)logjC(�; �)j �

� (1=2Va)(y� x�)0C(�; �)�1(y� x�):

Maximizing this last expression with respect to � and Va yields the Gls estimators:

�̂ = (x0C(�; �)�1x)�1x0C(�; �)�1y

V̂a = (1=n)(y� x�̂)0C(�; �)(y� x�̂)

Thus the maximisation of the log likelihood may be computed over the variables � and

�, the optimal values for � and Va resulting from the above formula. The maximisation

of the likelihood of RegArima models with respect to the Ma and Ar parameters

turns then out to be similar to that of an Arima model.

Furthermore, the estimators of the regression parameters have the property to be

asymptotically uncorrelated with the Arma parameters estimators. Inference may
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thus be drawn separatly, and considering the regression parameters, the Gls estimator

is still normally distributed: �̂GLS � N(�; (x0��1x)�1). Replacing � by its estimator in

function of �̂ and �̂, then the variance-covariance matrix of �̂, say 
̂, can be estimated.

Hypothesis tests are then easily derived, under t-statistics forms �̂i=
̂jj or as �
2-tests

for testing joint signi�cance of set of parameters using the appropriate partition of

the matrix 
̂. For example, a test of � = �
0
may simply be computed using: (�̂ �

�
0
)0
̂�1(�̂ � �

0
) � �

2

r
.

It is now possible to turn to examine the identi�cation procedure of RegArima

models. The choice of the regressors involved in x depends on the information available

on the series under analysis. For example, suppose one would deal with a monthly

series of energy consumption. Then, a series representing the monthly temperature

may bring some valuable information for understanding the behavior of the energy

consumption series, and thus may be seen as a candidate regressor. Given that the

choice of regressors is operated �rst on qualitative grounds, the problem then reduces

to identifying a stochastic structure when exogenous regressors are present. This is

similar to the identi�cation problem in Arima models (see chapter 3), although some

modi�cation should be considered to deal with the regression variables. In agreement

with Bell (1995), the following sheme can be adopted:

� The regressors (X
1t; � � � ;Xrt) are supposed known;

� Determine the minimum order of di�erencing needed to make the series stationary

by plotting the ACF of Yt, �Yt, �mYt, � � � (m stands for data periodicity); the

polynomial �(B) is then obtained, typically as �(B) = �d�D

m
, d = 0; 1; 2 and

D = 0; 1;

� Transform the series and regressors into yt = �(B)Yt and xt = �(B)Xt;

� Regress yt on xt and get the coe�cients �̂OLS and the residuals ẑt;

� Apply the standard identi�cation methodology forArimamodels to the residuals

ẑt: that is, examine the Acf and Pacf of ût;

� A model for Zt is �nally found using �(B)Zt = zt; this model may then be

estimated together with a Gls reestimation of the regression coe�cients �.
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Notice that, in the second step, the di�erencing polynomial appropriate for the variable

under analysis is derived without prior removing of the regression e�ects. This is

because in general deterministic regressors do not obscure the identi�cation of the

di�erencing polynomial. The only case where some problems may be met is the one

of a deterministic time polynomial taken as regressor, but it has been seen that such

a speci�cation should be better avoided. The third step involves Ols instead of Gls

estimation for two main reasons: �rst, the Arma strucutre is not known at that stage,

and second because the Ols estimators are still consistent. Given that the aim is to

identify a stochastic structure and that this involves computation of Acf and Pacf,

consistency of the sample estimates of Acf and Pacf is what matters at that stage.

The result that consistent estimates of the � imply consistency of the sample estimates

of Acf and Pacf can be found in Fuller (1976). Diagnostic checking of the Arima

part may then be computed using the techniques presented in chapter 3 together with

tests of the relevance of the regressors. We now turn to examine the regressors most

often used in practice.

8.3 Special Regressors: Calendar E�ects

8.3.1 Trading Days

If one would deal with daily series to measure business activity, an expected result

would be that the activity varies over the di�erent days of the week. Daily series are

however rarely available, and most of the statistical treatment in statistical agencies like

Eurostat involves monthly or quarterly series. Consider the case of monthly series:

as a month embodies a varying number of Mondays, Tuesdays, ..., and Sundays, the

business activity varies accordingly. A correction for this "trading day" e�ect may

thus be needed. A simple procedure would be to build 7 dummy variables (one by day)

X
1t; � � � ;X7t, such that X

1t is the number of mondays in month t, ..., Xit the number of

i-th day of the week, and to regress the observed series Yt on the Xit's so as to obtain:

Yt = �
1
X

1t + �
2
X

2t + � � �+ �
7
X

7t + Zt

Of course, the number of mondays in month t depends also on the year, but to ease

the presentation we omit here that dependence. In practice, the �'s coe�cients tend
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to be highly correlated, and a reparametrization is needed. This may be done mainly

in two di�erent ways. The �rst consists in a reparametrisation of the regression above.

Interpreting the �i's as the mean activity in day i, then � = (1=7)
P

7

i=1
�i represents

the average daily activity. Let us denote mt the length of month t, which veri�es

mt =
P

7

i=1
Xit. Writing,

7X
i=1

�iXit =
7X
i=1

(�i � �)Xit +
7X
i=1

�Xit =

=
7X
i=1

(�i � �)(Xit �X
7t) +X

7t

7X
i=1

(�i � �) +
7X
i=1

�Xit =

=
7X
i=1

bi(Xit �X
7t) + �mt

There are thus six dummy variables used plus a length of month adjustment variable.

Given that bi = �i � �, in this reparametrization the bi's represent the di�erence

between the mean activity in day i and the average daily activity. However, the lost of

one dummy may not be enough to decrease the correlations between the regressors, and

so another modelling may be to consider some \working days" adjustment which involve

a single regressor de�ned as Xt = #(Mondays,...,Fridays) - 5/2#(Saturdays,Sundays).

It is justi�ed by the idea that the pattern for working days and week-ends days are

di�erent. Again, a length of month adjustment may be introduced.

8.3.2 Easter E�ects

Activity also varies around some special dates in the year, like Christmas or Easter,

which are typically associated with sales increases. While the e�ect of Christmas on

activity is always caught by the month of December, the e�ect of Easter may concern

either March or April, according to the year. The date of Easter during the year thus

implies some instabilities in the seasonal patterns related to the months of March and

April. For that reason, the Easter e�ect requires a special attention.

To be incorporated to the set of regressors, the Easter e�ect must be translated

into something quantitative. Suppose that the increase in the purchases related to

Easter starts n-days (say n=10) before Easter and ends the Saturday before Easter.

To represent this e�ect when one is dealing with monthly time series, a simple way is
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to create a dummy variable, say H(:). This variable is monthly, so we write H(:; t) = 0

for every month t. Next, to model the special e�ect on march, april, the number of

days in march and april which are belonging to the interval of n-days is counted. For

example, in 1996, the Easter date was 07/04: for n = 10, we have thus 4 days in march

and 6 days in april. The regression variable H(n; t) takes then the value .4 in March

1996 and .6 in April 1996.

8.3.3 Example: Series Frpdb101

The French Total Production series (except construction) gives a nice example of the

importance of calendar e�ects in 
ow time series. The series plotted in �gure 1.1 was

in fact corrected for trading days and easter e�ect. The original series for the sample

dates 1985-1 1996-11 (that is 143 observations) is given in �gure 8.1: compared to

�gure 1.1, much less regularity is seen in the original series. Regressing the observed Yt

on six trading days plus a length of month e�ect, TD1t; � � � ; TD7t as described in the

previous section and incorporating an easter e�ect EEt, then the airline model given

in (8.1) is �tted for the remaining term, yielding the general model:

Yt =
7X

i=1

biTDit + �EEt + Zt

��12Zt = (1 + �B)(1 + �12B
12)at (8.1)

The parameters estimates are obtained as �̂1 = �:426(:008), �̂12 = �:449(:009), and

while the regressors estimates are given by:
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Table 8.1

Regressors in model (8.1)

Parameter Estimate Std. Dev. t-ratio

b̂1 0.858E-04 .002 0.04

b̂2 0.642E-02 .002 2.88

b̂3 0.338E-02 .002 1.53

b̂4 0.906E-02 .002 4.18

b̂5 0.311E-02 .002 1.43

b̂6 -.145E-01 .002 -6.70

b̂7 0.269E-01 .007 3.82

�̂ -.243E-01 .004 -5.44

According to subsection 8.3.1, the coe�cient bi, i = 1; � � � ;6, refers to the di�erence

between the mean activity in day i and the daily mean activity. Table 8.1 shows

�rst that the production on the Mondays is not signi�cantly di�erent from the mean

production over the 7 days of the week. Conversely, production is relatively low on the

Saturdays, and so b̂6 takes a negative value at �:0145, with a very high t-value. The

other days of the week show a relatively high activity. The coe�cient b7 refers to the

in
uence of the length of month; it takes a positive value at .027, also very signi�cant,

which re
ects the common sense expectation that the longer the month, the more

output is produced. Finally the easter e�ect is signi�cantly negative. This model has

yielded a Bic value of -8.055. Reducing the number of trading days regressors to 1,

and keeping the length of month adjustment, then �tting the corresponding model

yields a Bic value of -8.11. Hence, for this series, the correction by a single trading

day regressor seems preferable over a correction with 6 trading day regressors.

8.4 Outliers and Intervention Analysis

It is sometimes useful to remove data irregularities. The di�erent types of data irreg-

ularities most often considered are additive outlier (Ao), temporary change (Tc) and

level shift (Ls). They can be presented in the following way. Suppose a model is �tted

to the series yt, so that the residuals et are available. Denoting It0(t) a dummy variable
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Figure 8.1: Frpd101, Uncorrected Series
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Figure 8.2: Trading days and Easter e�ect in Frpdb101
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such that It0(t) = 1 if t = t0, 0 otherwise, then these three types of irregularities are

de�ned by:

� Ao: et = at + wAIt0(t);

� Tc: et = at + wT=(1� �B)It0(t);

� Ls: et = at + wL=(1 �B)It0(t):

An additive outlier is thus able to catch a single point in the data, a temporary change

a single point jump followed by a smooth return to the original path, and a level shift

a permanent change in the level of the series. In the outlier analysis, two cases must

be distinguished according to whether the irregularity in the data is known or not. For

example, suppose a series representing the monthly tra�c on a particular highway is

analysed. Then, closure of the highway during a month would produce a zero in the

data. This e�ect could be catched by the Ao, and it would be possible to impose

that pattern directly at the modelling stage. Other patterns like Tc may be relevant

when dealing with phenomena related for example to strikes, since return to a normal

activity after the end of the strikes may take several periods. Finally, the patterns

described by a Ls may correspond for example to changes in nomenclature, since they

typically make time series subject to a shift in the level. In all these cases, the event

a�ecting the series is known together with the time of occurence. Imposing then an

Ao, Tc or a Ls as a regressor enables the analyst to quantify the signi�cativity of

the e�ect. This type of analysis is known as intervention analysis (see Box and Tiao,

1975).

On the other hand, no information may be available about some possible event

a�ecting the series. The only way to �nd out such irregularities is thus to analyse

the data. In practice, the analysis concentrates on the residuals of the �tted model.

The removal of outliers is important because they may drastically distort the residuals

sample Acf and Pacf and, for example, an Ao not taken into consideration may

lead to overdi�erencing (see for example Perron, 1986). The methodology for outlier

detection, identi�cation and estimation has been discussed in Chang, Chen and Tiao

(1988), and further developed in Tsay (1984), Chen and Liu (1993) among others. It

can be summarized as follow:
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� A model is �tted to the series, and the residuals et are obtained;

� For every residual, estimators of wA, wT , wL are computed together with their

variance;

� Compute the t-values: when the t-value of one or some wi's at some time t0

exceeds a critical value C, then an outlier at time t0 has been detected;

� To identify which type of outlier is dealt with, a comparison between the di�erent

t-values obtained is performed: the chosen outlier pattern is the one related with

the greatest signi�cativity.

In practice, the critical size for outlier signi�cativity is set at C = 3:0; 3:5; 4:0 for high,

medium and low sensitivity, respectively, for series of length around 200. This critical

size tends to decrease as the sample size increase. At that stage, a set of potential

outliers has been obtained; it is then important to insure that the procedure did not

produce spurious outliers. One possibility consists in returning to the general model for

the observed series including the outliers previously found as regressors. Reestimating

the RegArima model, the t-ratios of the regressors may be recomputed, and if the

minimum t-ratio is less than C, then the corresponding outlier is deleted. The regression

is recomputed with the updated regressor set and updated parameter estimators. This

operation is repeated until no more outliers are found.

When an outlier have been detected, identi�ed and estimated, then an important

step of the analysis is to see if an interpretation can be given. The modelling and

estimation tools have pointed out an irregularity in the data, and the practitioner

should try to explain that irregularity. Consider for the example the Oil Price series

(in $ per barrel) which is displayed on �gure 8.3. This series is monthly, starting in

October 1975 and ending after 243 observations in October 1993. Many irregularities

are readily seen in this time series. Despite of that, suppose that an analyst �rst �ts a

linear (2,1,1) model plus mean without allowing for outliers:

(1 + �1B + �2B
2)�xt = �+ (1 + �1B)at; (8:2)

the parameters estimators are found to be �̂ = :003 (:005), �̂1 = �1:044 (:177),

�̂2 = :213 (:063), �̂1 = �:873 (:175), with residuals standard deviation
p
Va = :110. A

158



Figure 8.3: Oil Price ($ per barrel), 1975-10 1993-10.
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look at the residuals et, �gure 8.4, clearly shows that several residuals are lying out-

side the con�dence interval. Accordingly, the Kurtosis statistics is very large at 63.5.

Proceeding according to the scheme described above and using C=4.0, 6 outliers are

eventually found as:

Table 8.2

Outliers in model (8.2)

Date Type Value t-ratio

1 1974 (4) LS 1.216 24.51

7 1986 (154) AO -.300 -9.92

5 1986 (152) AO .173 5.73

5 1979 (68) LS .279 5.62

9 1990 (204) TC .340 7.33

8 1990 (203) LS .392 7.41

while the reestimation of model (8.2) �nally gives the estimates �̂ = �:004 (:005),

�̂1 = �:388 (:002), �̂2 = �:003 (:001), �̂1 = :005 (:006), with residuals standard

deviation
p
Va = :054. It is of interest to notice that removing the outliers have
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Figure 8.4: Oil Price Series: Residuals from (2,1,1) model
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decreased by 50% the residuals standard deviation. The kurtosis statistics has been

lowered to 4.43 (.31), which still shows some departures from normality but in much

more limited extent than without the outlier correction. No autocorrelations seem left

in the residuals since the Ljung-Box Q-statistics for the �rst 24 autocorrelations is

25.37, for 21 degress of freedom.

A plot of the outliers found can be seen on �gure 8.5. It is of interest to relate these

features to some events which have occured during the period. First, the level shift in

Oil Prices detected in January 1974 obviously corresponds to the �rst oil crisis, where

the price of a barrel jump from 4.6$ to 15.5 $ between December 1973 and January

1974. A second level shift is detected in May 1979, which is the date of the Shah fall

in Iran. No doubt that this political event is reponsible for the rising of the barrel

price from 23.7$ in April 1979 to 32.8$ in May 1979. Two additive outliers are then

found in May and July 1986, the last one with a negative sign points a relatively large

decrease in oil prices. These movements may be related to tensions within the Opec,

in particular between Iran-Iraq in one side and Saudi-Arabia in the other side. After a

disagreement between these actors, the Saudi-Arabians 
ooded the oil market and in

July 1986 the oil price were downsized from about 30$ to 9.4$. Finally, the level shift
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Figure 8.5: Outliers in Oil Price Series
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detected for August 1990 followed by a smooth return to a level close to the original

one as the temporary change for September 1990 indicates can be related to the Iraqian

invasion of Kuweit.

The Oil Price series has given an illustration of how outliers in time series may be

interpretated. In some cases however, this task may be di�cult, not only because of

the lack of relevant information, but also because the occurence of outliers may be due

to a nonlinear structure in the data not taken into account in the modelling. This

point has been discussed in Fiorentini and Maravall (1995) and Planas (1996).
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