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Preface

This book is intended for students and others working in the field of economics
who want a relatively non-technical introduction to applied time series econo-
metrics and forecasting involving non-stationary data. The emphasis is on the
why and how, and as much as possible we confine technical material to boxes
or point to the relevant sources that provide more details. It is based on an
earlier book by one of the present authors entitled Using Cointegration Analysis
in Econometric Modelling (see Harris, 1995), but as well as updating the
material covered in the earlier book, there are two major additions involving
panel tests for unit roots and cointegration, and the modelling and forecasting
of financial time series.

We have tried to incorporate into this book as many of the latest tech-
niques in the area as possible and to provide as many examples as necessary to
illustrate them. To help the reader, one of the major data sets used is supplied
in the Statistical Appendix, which also includes many of the key tables of
critical values used for various tests involving unit roots and cointegration.
There is also a website for the book (http://www.wiley.co.uk/harris) from
which can be retrieved various other data sets we have used, as well as econo-
metric code for implementing some of the more recent procedures covered in
the book.

We have no doubt made some mistakes in interpreting the literature, and
we would like to thank in advance those readers who might wish to point them
out to us. We would also like to acknowledge the help we have received from
those who have supplied us with their econometric programming code, data,
and guidance on the procedures they have published in articles and books.
Particular thanks are due to Peter Pedroni (for his generous offer of time in
amending and providing software programmes for Chapter 7), and Robert
Shiller for allowing us to use his Standard & Poor's (S&P) Composite data
in Chapter 8. We would also like to thank Jean-Phillipe Peters for help with the
G@RCH 2.3 programme, also used in Chapter 8. Others who generously
provided software include Jorg Breitung, David Harvey, Robert Kunst and



Johan Lyhagen. Of course, nobody but ourselves take responsibility for the
contents of this book.

We also thank Steve Hardman at Wiley, for his willingness to support this
project and his patience with seeing it to fruition. Finally, permission from the
various authors and copyright holders to reproduce the Statistical Tables is
gratefully acknowledged.



1
Introduction and Overview

Since the mid-1980's applied economists attempting to estimate time series
econometric models have been aware of certain difficulties that arise when
unit roots are present in the data. To ignore this fact and to proceed to estimate
a regression model containing non-stationary variables at best ignores impor-
tant information about the underlying (statistical and economic) processes
generating the data, and at worst leads to nonsensical (or spurious) results.
For this reason, it is incumbent on the applied researcher to test for the pres-
ence of unit roots and if they are present (and the evidence suggests that they
generally are) to use appropriate modelling procedures. De-trending is not
appropriate (Chapter 2) and simply differencing the data1 to remove the
non-stationary (stochastic) trend is only part of the answer. While the use of
differenced variables will avoid the spurious regression problem, it will also
remove any long-run information. In modelling time series data we need to
retain this long-run information, but to ensure that it reflects the co-movement
of variables due to the underlying equilibrating tendencies of economic forces,
rather than those due to common, but unrelated, time trends in the data.

Modelling the long run when the variables are non-stationary is an ex-
panding area of econometrics (both theoretical and applied). It is still fairly
new in that while it is possible to find antecedents in the literature dating back
to, for example, the seminal work of Sargan (1964) on early forms of the error-
correction model, it was really only in 1986 (following the March special issue
of the Oxford Bulletin of Economics and Statistics) that cointegration became a
familiar term in the literature.2 It is also a continually expanding area, as
witnessed by the number of articles that have been published since the mid-
1980s. There have been and continue to be major new developments.

1 That is, converting xt to Axt, where &xt = xt — xt –1, will remove the non-stationary
trend from the variable (and if it does not, because the trend is increasing over time, then
xt will need to be differenced twice, etc.).
2 Work on testing for unit roots developed a little earlier (e.g., the PhD work of Dickey,
1976 and Fuller, 1976).
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The purpose of this book is to present to the reader those techniques that
have generally gained most acceptance (including the latest developments sur-
rounding such techniques) and to present them in as non-technical a way as
possible while still retaining an understanding of what they are designed to do.
Those who want a more rigorous treatment to supplement the current text are
referred to Banerjee, Dolado, Galbraith and Hendry (1993) and Johansen
(1995a) in the first instance and then of course to the appropriate journals.
It is useful to begin by covering some introductory concepts, leaving a full
treatment of the standard econometric techniques relating to time series data
to other texts (see, for example, Hendry, 1995). This is followed by an overview
of the remainder of the book, providing a route map through the topics
covered starting with a simple discussion of long-run and short-run models
(Chapter 2) and then proceeding through to estimating these models using
multivariate techniques (Chapters 5 and 6). We then cover panel data tests
for unit roots and cointegration (Chapter 7) before concluding with an in-
depth look at modelling and forecasting financial time series (Chapter 8).

SOME INITIAL CONCEPTS

This section will review some of the most important concepts and ideas in time
series modelling, providing a reference point for later on in the book. A fuller
treatment is available in a standard text such as Harvey (1990). We begin with
the idea of a data-generating process (hereafter d.g.p.), in terms of autoregres-
sive and moving-average representations of dynamic processes. This will also
necessitate some discussion of the properties of the error term in a regression
model and statistical inferences based on the assumption that such residuals are
'white noise'.

Data-generating Processes

As economists, we only have limited knowledge about the economic processes
that determine the observed data. Thus, while models involving such data are
formulated by economic theory and then tested using econometric techniques,
it has to be recognized that theory in itself is not enough. For instance, theory
may provide little evidence about the processes of adjustment, which variables
are exogenous and indeed which are irrelevant or constant for the particular
model under investigation (Hendry, Pagan and Sargan, 1984). A contrasting
approach is based on statistical theory, which involves trying to characterize
the statistical processes whereby the data were generated.

We begin with a very simple stationary univariate model observed over the
sequence of time t = 1, ..., T:

yt = p v t – 1 + ut \p\ < 1
or (1 — pL)y t = ut
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where L is the lag operator such that Lyt — yt–1. This statistical model states
that the variable yt is generated by its own past together with a disturbance (or
residual) term ut. The latter represents the influence of all other variables
excluded from the model, which are presumed to be random (or unpredictable)
such that ut has the following statistical properties: its expected value (or mean)
is zero [E(ut] = 0] fluctuations around this mean value are not growing or
declining over time (i.e., it has constant variance denoted E(u2) = a2); and it
is uncorrelated with its own past [E(u tu t_ i) = 0]. Having ut in (1.1) allows y, to
also be treated as a random (stochastic) variable.3

This model can be described as a d.g.p., if the observed realization of yt

over time is simply one of an infinite number of possible outcomes, each
dependent on drawing a sequence of random numbers ut from an appropriate
(e.g., standard normal) distribution.4 Despite the fact that in practice only a
single sequence of yt is observed, in theory any number of realizations is poss-
ible over the same time period. Statistical inferences with respect to this model
are now possible based on its underlying probability distribution.

The model given by equation (1.1) is described as a first-order autoregres-
sive (AR) model or more simply an AR(1) model. It is straightforward to
derive the statistical properties of a series generated by this model. First,
note that (1.1) can be rearranged as:

yt = [l/(1 – pL)]ut (1 .2)

It can be shown that 1/(1 — pL) = (1 + pL + p2L2 + p3L3 . . .), and therefore
the AR(1) model (1.1) can be converted to an infinite order moving average of
the lagged disturbance terms:5

yt = ut + put–1 + p2 ut–2 + ... (1 -3 )

Taking expectations gives E(yt) = 0 (since E(ut) = 0 for all t), thus the mean of
yt, when the d.g.p. is (1.1), is zero. The formula for the variance of y, is
var(y t) = E[{yt — E(yt)}]2. Since in this case the mean of yt is zero, the
formula for the variance simplifies to E (y t ) . Using this gives:

E(y2) = E(py t – 1 + u t)
2

1) + E(u2) + 2pE(y t–1 ut)

1) + a2 (1.4)

3 In contrast, yt would be a deterministic (or fixed) process if it were characterized as
yt = p y t – 1 , which, given an initial starting value of y0, results in yt being known with
complete certainty each time period. Note also that deterministic variables (such as an
intercept of time trend) can also be introduced into (1.1).
4 The standard normal distribution is of course appropriate in the sense that it has a
zero mean and constant variance and each observation in uncorrelated with any other.
5 This property is known as invertibility.
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Repeatedly substituting for E(y2
t–1) on the right-hand side of (1.4) leads to a

geometric series that converges to E(y2) = a2 /(1 – p2).
The autocovariance of a time series is a measure of dependence between

observations. It is straightforward to derive the autocovariance for an AR(1)
process. Generally, the autocovariance is 7* = E[(yt – p)(y t–k – A*)] for k = 0,
where // represents the mean of yt. When yt is generated by (1.1), since
E(yt) = 0, the autocovariance formula simplifies to E(y ty t_k). Using this
formula, it can be shown that the kth autocovariance is given by:

7k = P*70 * = 1 , 2 . . . (1.5)

The autocorrelation coefficient for a time series is a standardized measure of
the autocovariance restricted to lie between — 1 and 1. The kth autocorrelation
is given by:

E[(y t – n)(y t –k – u)] = ik n ,x
E [ ( y t – t f ] TO ( j

Thus the kth autocorrelation when yt is generated by (1.1) is given by pk . Note
that the autocovariances and autocorrelation coefficients discussed above are
population parameters. In practice, the sample equivalents of these amounts
are employed. In particular they are used when specifying time series models
for a particular data set and evaluating how appropriate those models are, as in
the Box–Jenkins procedure for time series analysis (Box and Jenkins, 1970).
These authors were the first to develop a structured approach to time series
modelling and forecasting. The Box-Jenkins approach recognizes the impor-
tance of using information on the autocovariances and autocorrelations of the
series to help identify the correct time series model to estimate, and when
evaluating the fitted disturbances from this model.

Another simple model that is popular in time series econometrics is the
AR(1) model with a constant:

yt = 6 + pyt–1 + ut \p\ < 1 (1.7)

Adding a constant to (1.1) allows yt to have a non-zero mean. Specifically, the
mean of yt when (1.7) is the d.g.p. is given by E(yt) = 6/(1 – p). To see this
note that (1.7) can be written as:

6 + u, (1.8)

so that

yt = [1/(1 – PL)](8 + ut)

= (1 + p + p2 + • • -)6 + (ut + put–1 + p2ut–2 + • • •) (1.9)



Since we are assuming that E(ut) = 0, the expected value of (1.9) simplifies to:

E(yt) = (1+ p + p2 + - - - ) 6 (1.10)

which is a geometric series that converges to E(yt) = 6 /(1 – p). To calculate
the variance of yt when the d.g.p. is (1.7), it is easiest to work with the de-
meaned series xt = yt – u. We can then rewrite (1.7) as:

xt = pxt–1 + ut (1.11)

It follows that var(yt) = E(x2), and that E(x2) = a2 /(1 – p2). Therefore yt

generated by the AR(1) model with a constant has a mean of
E(yt) = 6/(1 – p) and a variance of var(yt) = <72/(l — p2).

The simple time series model (1.1) can be extended to let yt depend on past
values up to a lag length of p:

ppyt-p + ut

or A(L)j/ = ut }

where A(L) is the polynomial lag operator 1 — p\L — p2L
2 — • • • — ppL

p. The
d.g.p. in (1.12) is described as pth-order AR model.6 The mean, variance and
covariance of AR(p) processes when p > 1 can also be computed algebraically.
For example, for the AR(2) model with a constant:

yt = 6 + p1yt–1 + p2y t – 2 + ut (1.13)
assuming p1 + p2 < 1 and that ut is defined as before, the mean of yt is
E(y t) = 8/(l — p\ — P2) and the variance of yt is:7

(U4)

An alternative to the AR model is to specify the dependence of yt on its own
past as a moving average (MA) process, such as the following first-order MA
model:

yt = ut + 0ut-i \9\<l (1.15)

or a model with past values up to a lag length of q:

Vt = Ut + 0\Ut-\ H ----- i- OgUt-g ]

V (1.16)
or yt — B(L)ut J

where B(L) is the polynomial lag operator 1 +0\L + B2L
2 H ----- 1- 9qL

q. In
practice, lower order MA models have been found to be more useful in econo-
metrics than higher order MA models, and it is straightforward to derive the
statistical properties of such models. For example, for the first-order MA
model (the MA(1) model) given by (1.15), the mean of yt is simply
E(yt) = 0, while the variance of yt is var(y t) = (1 + #2)cr2. It turns out that,

6 Hence, (1.1) was a first-order AR process.
7 The importance of the assumption p\ + p2 < 1 will become clear in the next chapter.
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for the MA(1) model, the first autocovariance is 71 = Oo2, but that higher
autocovariances are all equal to zero. Similarly, the first autocorrelation coeffi-
cient is p1 = 0/(1 + 62), but higher autocorrelation coefficients are all equal to
zero.

Finally, it is possible to specify a mixed autoregressive moving average
(ARMA) model:

A(L)yt, = B(L)ut, (1 .17)

which is the most flexible d.g.p. for a univariate series. Consider, for example,
the ARMA(1, 1) model:

yt = piv ,_ i +u, + 6»,M,_, |p, |< 1, |0,|< 1 (1.18)

As with the AR(1) model, note that the ARMA(1, 1) model can be rewritten as
an infinite order MA process:

(1.19)
j=0

Since we are assuming that E(ut) = 0, it follows that E( v,) = 0. The variance
of y, is given by:

E(y2,} = £ [ ( p , v / _ i + M / + ^1w,_1)2]

= £(p2v2_, +2P l0Lv,_ l W ,_, +MJ + 02M2_ i ) (1 20)

Using the autocovariance notation, the variance of v, can be written:

7o = P?7o + 2Pl6»,a2 + a2 + 9}a2 (1.21 )

which can be rearranged as:

Pi
The higher autocovariances can be obtained in a similar way, and it can be
shown that:

7i = Pi7o + d\(7^

(1.23)

72 = Pi 7i (1-24)

and 7A. = Pi7/t-i for k>2. The autocorrelation coefficients are given by:

= =
P} 7o

and pk = pipk-i for k > 2.
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So far the d.g.p. underlying the univariate time series yt contains no
economic information. That is, while it is valid to model yt as a statistical
process (cf. the Box-Jenkins approach), this is of little use if we are looking
to establish (causal) linkages between variables. Thus, (1.1) can be generalized
to include other variables (both stochastic, such as xt, and deterministic, such
as an intercept), for example:

y, = fto + 7o*f -f a\y,-.\ + u, (1.26)

Since x, is stochastic, let its underlying d.g.p. be given by:

JC, = £C,-L+£, | £ |<1 and e, ~IN(0,^) (1.27)8

If u, and et are not correlated, we can state that E(u,£s) — 0 for all t and s, and
then it is possible to treat xt as if it were fixed for the purposes of estimating
(1.26). That is, xt is independent of ut (denoted E(xtut) = 0) and we can treat it
as (strongly) exogenous in terms of (1.26) with xt being said to Granger-cause
yt. Equation (1.26) is called a conditional model in that yt is conditional on xt

(with x, determined by the marginal model given in (1.27)). Therefore, for
strong exogeneity to exist x, must not be Granger-caused by yt, and this
leads on to the concept of weak exogeneity.

Note, if (1.27) is reformulated as:

.x, = &*,_! +&>•/- 1 +£, (1.28)

then E(xtut] = 0 is retained, but since past values of y, now determine x, the
latter can only be considered weakly exogenous in the conditional model
(1.26).9

Lastly, weak exogeneity is a necessary condition for super-exogeneity, but
the latter also requires that the conditional model is structurally invariant; that
is, changes in the distribution of the marginal model for xt (equation (1.27) or
(1.28)) do not affect the parameters in (1.26). In particular, if there are regime
shifts in xt then these must be invariant to (a,-, 70) in (1.26).

All three concepts of exogeneity will be tested later, but it is useful at this
point to provide a brief example of testing for super-exogeneity in order to
make the concept clearer.10 Assuming that known institutional (e.g., policy)

8 Note that e, ~ IN(0, c^) states that the residual term is independently and normally
distributed with zero mean and constant variance cr2

F. The fact that cr2. is multiplied by a
(not shown) value of 1 means that e, is not autocorrelated with its own past.
9 That is, xt still causes yt, but not in the Granger sense, because of the lagged values of
yt determining xt. For a review of these concepts of weak and strong exogeneity,
together with their full properties, see Engle, Hendry and Richard (1983).
10 This example is based on Hendry (1995, p. 537). Further discussion of super-
exogeneity can be found in Engle and Hendry (1993), Hendry (1995, p. 172) and
Favero (2001, p. 146).
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and historical shifts (shocks) can be identified that affected xt, it should be
possible to construct a dummy variable (e.g., POLt) that augments (1.28):

xt = £i*,_,+&P/-i+6POL, + e, (1.28*)

Assuming that the estimate of £3 is (highly) significant in determining xt, then
super-exogeneity can be tested by including POL, in the conditional model
(1.26), and if this dummy is significant then super-exogeneity is rejected.11

The importance of these three concepts of exogeneity are discussed in
Favero (2001, p. 146): (i) if we are primarily interested in inference on the
(a,, 70) parameters in (1.26), then if jc, is weakly exogenous we only need to
estimate (1.26) and not also (1.28); (ii) if we wish to dynamically simulate yt

and jc, is strongly exogenous, again we only need to estimate (1.26) and not also
(1.28); and (iii) if the objective of modelling y, is for econometric policy evalu-
ation, we only need to estimate the conditional model (1.26) if xt has the
property of being super-exogenous. The latter is a necessary condition to
avoid the Lucas Critique (see Lucas, 1976). For example, suppose yt is a
policy variable of government (e.g., the money supply) and xt is the instrument
used to set its outcome (e.g., the interest rate), then xt must be super-exogenous
to avoid the Lucas Critique. Otherwise, setting xt would change the policy
model (the parameters of 1.26), and the policy outcome would not be what
the model (1.26) had predicted.12

As with the univariate case, the d.g.p. denoted by (1.26) can be generalized
to obtain what is known as an autoregressive distributed lag (ADL) model:

A(L)y t = B(L)x t + ut (1.29)

where the polynomial lag operators A(L) and B(L) have already been
defined.13 Extending to the multivariate case is straightforward, replacing v,
and xt by vectors of variables, yt and xt.

The great strength of using an equation like (1.29) as the basis for econo-
metric modelling is that it provides a good first approximation to the
(unknown) d.g.p. Recall the above arguments that theory usually has little

11That is, its exclusion from (1.26) would alter the estimates of (ai, 70). Note also that
the residuals e, from (1.28*) should not be a significant determinant of v, in equation
(1.26).
12 For example, suppose the government uses the immediate history of yt to determine
what it wishes current yt to be; hence, it alters x, to achieve this policy outcome.
However, economic agents also 'know' the model (the policy rule) underlying (1.26) and
(1.28*). Thus when POL, changes, agents alter their behaviour (the parameters of 1.26
change) since they have anticipated the intended impact of government policy.
Econometric models that fail to separate out the expectations formulation by economic
agents from the behavioural relationships in the model itself will be subject to Lucas's
critique.
13 While we could further extend this to allow for an MA error process, it can be shown
that a relatively simple form of the MA error process can be approximated by
sufficiently large values of p and q in (1.29).
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to say about the form of the (dynamic) adjustment process (which (1.29) is
flexible enough to capture), nor about which variables are exogenous (this
model can also be used as a basis for testing for exogeneity). In fact, Hendry
et al. (1984) argue that the process of econometric modelling is an attempt to
match the unknown d.g.p. with a validly specified econometric model, and thus
'. . . economic theory restrictions on the analysis are essential; and while the
data are the result of economic behaviour, the actual statistical properties of
the observables corresponding to y and z are also obviously relevant to cor-
rectly analysing their empirical relationship. In a nutshell, measurement
without theory is as valueless as the converse is non-operational.' In practical
terms, and according to the Hendry-type approach, the test of model adequacy
is whether the model is congruent with the data evidence, which in a single
equation model is defined in terms of the statistical properties of the model
(e.g., a 'white noise' error term and parameters that are constant over time) and
whether the model is consistent with the theory from which it is derived and
with the data it admits. Finally, congruency requires the model to encompass
rival models.14

Role of the Error Term ut and Statistical Inference

As stated above, the error term ut represents the influence of all other variables
excluded from the model that are presumed to be random (or unpredictable)
such that ut has the following statistical properties: its mean is zero [E(ut) = 0];
it has constant variance [E(u2

t] = a2]; and it is uncorrelated with its own past
[E(u tu t_i) = 0]. To this we can add that the determining variable(s) in the
model, assuming they are stochastic, must be independent of the error term
[E(x,ut) = 0].15 If these assumptions hold, then it is shown in standard texts
like Johnston (1984) that estimators like the ordinary least squares (OLS)
estimator will lead to unbiased estimates of the parameter coefficients of the
model (indeed, OLS is the best linear unbiased estimator). If it is further
assumed that ut is drawn from the (multivariate) normal distribution, then
this sufficies to establish inference procedures for testing hypotheses involving
the parameters of the model, based on x2, t- and F-tests and their associated
probability distributions.

Thus, testing to ensure that ut ~ IN(0, a2) (i.e., an independently distrib-
uted random 'white noise' process drawn from the normal distribution) is an
essential part of the modelling process. Its failure leads to invalid inference

14 A good discussion of congruency and modelling procedures is given in Doornik and
Hendry (2001).
15 Although not considered above, clearly this condition is not met in (l.l) and similar
dynamic models, where yt–1 is a predetermined explanatory variable, since E(y tu t– i) ^ 0
for i > 1. However, it is possible to show by applying the Mann–Wald theorem
(Johnston, 1984, p. 362) that with a sufficiently large sample size this will not lead to
bias when estimating the parameter coefficients of the regression model.
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procedures unless alternative estimators (e.g., generalized least squares—
GLS—or systems estimators) and/or alternative probability distributions
(such as the Dickey-Fuller distribution) are invoked.

FORECASTING

In applied economics, particularly applied macroeconomics and financial
econometrics, often the main reason for estimating an econometric model is
so that the estimated model can be used to compute forecasts of the series.
While any type of econometric model can be used to compute forecasts (e.g..
multivariate regression model, ADL model), it is univariate time series models
such as the AR and ARMA models that have proved to be the most popular.
The forecasting theory for univariate time series models has long been estab-
lished (see in particular the work of Box and Jenkins, 1970) and univariate
Box-Jenkins methods have continued to be popular with econometricians.
Granger and Newbold (1986) set out a number of reasons why univariate
forecasting methods in particular deserve consideration. Perhaps the most
pertinent of these is the first reason they give:

They are quick and inexpensive to apply, and may well produce forecasts
of sufficient quality for the purposes at hand. The cost of making particu-
lar forecasting errors should always be balanced against the cost of
producing forecasts, for it is hardly worth expanding large resources to
obtain a relatively small increase in forecast accuracy if the payoff, in
terms of improved decision making is likely to be only marginally bene-
ficial (p. 151).

This is an important point, not just for forecasting but for econometrics as a
whole. There are usually a number of alternative models or techniques in
econometrics that could be employed to undertake any one task, ranging
from the simple to the very complex—and the complex techniques are typically
more costly to use than the simple. Granger and Newbold (1986) sensibly argue
that only when the benefits of the complex techniques outweigh the additional
costs of using them should they be the preferred choice. It is often the case that
forecasts made from simple linear univariate models such as AR models are
more accurate, or are only marginally less accurate than forecasts from more
complex alternatives.

In this section we will briefly review how to compute optimal forecasts
from some of the models discussed so far, beginning with the most simple
univariate time series model—the AR(1) model. Let the h-steps ahead forecast
of a time series yT+h be represented by yT+h, where T is the sample size (thus we
assume forecasts of the series are from the end of the sample onward). The
forecast error eT+h = VT+h – yT+h plays a vital role in the literature on fore-
casting. Note in particular that the optimal forecast of yT_h is the forecast that
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minimizes the expected value of the squared forecast error E[e2
T+h]. It can be

proved that the h-steps ahead forecast that minimizes the expected value of the
squared forecast error is simply the conditional expectation of yT+h:

16

yT+t, = E(yT+h yT,yr- 1 , • • - , Vi ) (1-30)

which can be written more concisely as:

(1.31)

where QT represents the information set at time T. The forecast function will
include unknown population parameters, and in practice these parameters are
replaced with their estimated values.

If we assume that the d.g.p. is the AR(1) model given by equation (1.1), the
optimal h-steps ahead forecast is given by:

yT+h = E(pyT+h-\

= pyT+h–1 (1.32)

where OT is the relevant information set at time T. So in the case of a 1-step
ahead forecast (h = 1), the optimal forecast is simply pyT . Forecasts greater
than 1-step ahead are computed recursively. So, for example, in the case of 2-
steps ahead forecasts, the optimal forecast is:

yT+2 = E(pyT + 1 + uT+2 | OT)

= E(ppyT + UT+2 fir)

= P2yr (1-33)

and for 3-steps ahead forecasts yT+$ = p3 yT. It follows that the forecasting
function for the optimal h-steps ahead forecast (1.32) can be rewritten:

yT+h = PhyT (1-34)

Clearly, assuming |p| < 1, as h — > oo the forecast of yT+h converges to zero. In
fact, for this d.g.p., as h — > oo the h-steps ahead forecast of yT+h converges to
the mean of yt, which in this case is zero. If the d.g.p. is the AR(1) model with a
constant:

y, = 6 + pyt–1 + ut (1.35)

where |p| < 1 and ut ~ IID(0, 1), then yt has a non-zero mean equal to
d / ( 1 – p). The 1-step ahead forecast is given by:

= E(6 + pyT + uT+1

1.36)

16 The conditional expectation of yT+h is the expected value of yT+h conditioning on all
information known about y at time T.
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and the /z-step ahead forecast is given by:

(ph-{ + ph~2 + ... + p+\)6 + p
hyT (1.37)

Again, for this d.g.p., as h — > oo the forecast converges to the mean of yt. This
can be seen more clearly by noting that (1.37) is a geometric series, and as
h — >• oo it converges to:

(138)

Both the forecast functions and properties of the forecasts depend on the exact
d.g.p. assumed for yt. For example, if the d.g.p. is the first-order MA model
given by equation (1.15) the 1-step ahead forecast is given by:

yr+\ = E(uT+\ + OuT

= OuT (1.39)

The optimal forecast of the first-order MA process when the forecast horizon is
greater than 1-step ahead is just the mean of the series, which in this case is
zero:

yT+h = E(uT+h + OuT+h-\ I Qr) h > 1

= 0 (1.40)

For the ARMA(1, 1) model (1.18) the 1-step ahead forecast is given by:

yT+\ = E(p\yT + UT+I + #i"r I &T)

(1-41)

As with the AR model, when the forecast horizon is greater than 1-step ahead,
forecasts from an ARMA model are computed recursively. For example, the
2-steps ahead forecast from an ARMA(1, 1) model is given by:

yT+2 = E(p\yT+\ + UT+I + Q\UT+I \ fir)

= E[pi (p\yT + 0\uT) + uT+2 + 0\uT+\ \ Qr]

(1.42)

(note that E(uT+2 \ QT-) = 0 and E(9{uT+\ \ QT) = 0), and the //-steps ahead
forecast is given by:

yT+h=PhiyT + Phi~lO\UT (1-43)

Assuming \p\\ < 1, as h — * oo again the forecast converges to the mean of the
series — zero.
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The forecasts referred to above are point forecasts; however, since the
forecast itself (and forecast error) is a random variable, it is often helpful to
compute interval forecasts. For the AR(1) model given by equation (1.1) the h-
steps ahead forecast error is:

eT+h =

= pyr+h-i + uT+h - phyT ( 1 -44)

which after repeated substitution can be rewritten as:

eT+h = Phyr + uT+h + pur+h-i -\ ----- K ph~luT+\ - phyT (1.45)

Since it has a mean of zero, the variance of the /z-steps ahead forecast error is:

E(e2
T+h) = (l+p2 + p4 + --- + p2h-2)a2 (1.46)

and thus, for a 1-step ahead forecast from the first-order AR model, the
variance of the forecast error is simply equal to the variance of the disturbance
term ut. Assuming that the forecast errors are normally distributed we can
obtain a 95% confidence interval for the 1-step ahead forecast by computing
yT+1 ± 1.96(7, where a is the estimated value of <r obtained when estimating the
parameters of the fitted model. For the h-steps ahead forecast the 95% con-
fidence interval is:

yT+1 ± 1.96<7y/(l + p2 + p4 + • • • + 02A-2) (1.47)

If y, is generated by the ARM A model (1.17) then computing forecast con-
fidence intervals is more involved. The relevant theory is given in Box 1.1.

As already mentioned, we can compute forecasts from any type of
econometric model. Consider a multivariate regression model:

yt = x'$ + et (1.48)

where x', — (xit,x2t, • • • ,xkt) are explanatory variables and P is a vector of
parameters of dimension (k x 1). Subject to the standard assumptions of the
classical linear regression model, it can be shown the optimal forecast of yT+h is
given by the conditional expectation of yT+h:

17

x'T+hV (1.49)

In practice p is replaced by the OLS estimator p = (X'X)~1X'y where
y — (7b J;2) • • • ».Xr)'» X' = (x'i , x2, . . . , XT)- Obviously, to compute this forecast
requires knowledge of the values of the explanatory variables at time T + h.
Assuming these values are known, then (1.49) is the appropriate forecasting
function. However, if these values are not known, then the appropriate fore-
casting function is:

yT+h = x'T+AP (1.50)

17 See Granger and Newbold (1986, ch. 6, sect. 6.2).
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where x'T+h are h-step ahead forecasts of the explanatory variables, which
could be obtained via univariate methods.

OUTLINE OF THE BOOK

The next chapter deals with short- and long-run models. Inherent in the dis-
tinction is the notion of equilibrium; that is, the long run is a state of
equilibrium where there is no inherent tendency to change since economic
forces are in balance, while the short run depicts the disequilibrium state.
Long-run models are often termed 'static models', but there is no necessity
to actually achieve equilibrium at any point in time, even as t —> oo. All that is
required is that economic forces move the system toward the equilibrium
defined by the long-run relationship posited. Put another way, the static equi-
librium needs to be reinterpreted empirically since most economic variables
grow over time. Thus, what matters is the idea of a steady-state relationship
between variables that are evolving over time. This is the way the term 'equi-
librium' is used in this book.

When considering long-run relationships, it becomes necessary to consider
the underlying properties of the processes that generate time series variables.
That is, we must distinguish between stationary and non-stationary variables,
since failure to do so can lead to a problem of spurious regression whereby the
results suggest that there are statistically significant long-run relationships
between the variables in the regression model—when in fact all that is being
obtained is evidence of contemporaneous correlations rather than meaningful
causal relations. Simple examples of stationary and non-stationary processes
are provided, and it is shown that whether a variable is stationary depends on
whether it has a unit root. Comparing stationary and non-stationary variables
is also related to the different types of time trends that can be found in
variables. Non-stationary variables are shown to contain stochastic (i.e.,
random) trends, while stationary variables contain deterministic (i.e., fixed)
trends. Since random trends in the data can lead to spurious correlations, an
example of a spurious regression is given together with some explanations of
why this occurs.

This leads naturally to the question of when it is possible to infer a causal
long-run relationship(s) between non-stationary time series. The simple answer
is: when the variables are cointegrated. The Engle and Granger (1987) definition
of cointegration is explained, alongside the economic interpretation of cointe-
gration that states that if two (or more) series are linked to form an equilibrium
relationship spanning the long run, then even though the series themselves may
contain stochastic trends (i.e., be non-stationary), they will nevertheless move
closely together over time and the difference between them is constant (i.e.,
stationary). Thus the concept of cointegration mimics the existence of a long-
run equilibrium to which an economic system converges over time. The absence
of cointegration leads back to the problem of spurious regression.
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Finally, Chapter 2 discusses short-run (dynamic) models. Simple examples
of dynamic models are presented and linked to their long-run steady-state
(equilibrium) solutions. It is pointed out that estimating a dynamic equation
in the levels of the variables is problematic and differencing the variables is not
a solution, since this then removes any information about the long run. The
more suitable approach is to convert the dynamic model into an error correc-
tion (sometimes called an equilibrium correction) model (ECM), and it is
shown that this contains information on both the short-run and long-run
properties of the model, with disequilibrium as a process of adjustment to
the long-run model. The relationship between ECMs and the concept of
cointegration is also explored, to show that if two variables yt and xt are
cointegrated, then there must exist an ECM (and, conversely, that an ECM
generates cointegrated series).

Having discussed the importance of unit roots, the next task (Chapter 3) is
to test for their presence in time series data. This begins with a discussion of the
Dickey-Fuller (DF) test for a unit root, showing that a t-test of the null
hypothesis of non-stationarity is not based on the standard t-distribution,
but the non-standard DF distribution. Assumptions about what is the most
appropriate d.g.p. for the variable being tested are found to be important when
performing the test; that is, should an intercept and trend (i.e., deterministic
components) be included in the test equation? Not only does inclusion and
exclusion lead to different critical values for the DF test, but they are also
important to ensure that the test for a unit root nests both the null hypothesis
and the alternative hypothesis. To do this it is necessary to have as many
deterministic regressors in the equation used for testing as there are determi-
nistic components in the assumed underlying d.g.p. In order to test what will
probably be in practice the most common form of the null hypothesis (that the
d.g.p. contains a stochastic trend against the alternative of being trend-
stationary), it is necessary to allow both an intercept and a time trend t to
enter the regression model used to test for a unit root.

To overcome the problems associated with which (if any) deterministic
components should enter the DF test (including problems associated with
test power), the sequential testing procedure put forward by Perron (1988) is
discussed. Then the DF test is extended to allow for situations when more
complicated time series processes underlie the d.g.p. This results in the aug-
mented Dickey-Fuller (ADF) test, which entails adding lagged terms of the
dependent variable to the test equation. A question that often arises in applied
work is how many extra lagged terms should be added, and there is some
discussion of this problem. This in turn leads to a consideration of the
power and size properties of the ADF test (i.e., the tendency to under-reject
the null when it is false and over-reject the null when it is true, respectively). In
finite samples it can be shown that any trend-stationary process can be
approximated arbitrarily well by a unit root process and, similarly, any unit
root process can be approximated by a trend-stationary process, especially for
smaller sample sizes. That is, some unit root processes display finite sample
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behaviour closer to (stationary) 'white noise' than to a (non-stationary)
random walk (while some trend-stationary processes behave more like
random walks in finite samples). This implies that a unit root test '... with
high power against any stationary alternative necessarily will have correspond-
ingly high probability of false rejection of the unit root null when applied to
near stationary processes' (Blough, 1992, p. 298). This follows from the close-
ness of the finite sample distribution of any statistic under a particular trend-
stationary process and the finite sample distribution of the statistic under a
difference-stationary process that approximates the trend-stationary process.
Thus, Blough (1992, p. 299) states that there is a trade-off between size and
power in that unit root tests must have either high probability of falsely
rejecting the null of non-stationarity when the true d.g.p. is a nearly stationary
process (poor size properties) or low power against any stationary alternative.
This problem of the size and power properties of unit root tests means that any
results obtained must be treated with some caution, although we consider some
recent improvements that in principle have good size and power properties (cf.
Ng and Perron, 2002). We also cover recent developments such as asymmetric
tests for unit roots (panel tests are covered in Chapter 7).

There are further 'problems' associated with testing for non-stationarity. A
structural break in a series will have serious consequences for the power of the
test, if it is ignored. Taking into account the possibility that the intercept and/
or slope of the underlying d.g.p. has changed (at an unknown date or dates)
can be handled using the testing methods outlined in Perron (1994). Examples
are provided and discussed. Finally Chapter 3 discusses testing for seasonal
unit roots (including when there are structural breaks) and periodic integra-
tion. First of all, it is suggested that where possible seasonally un adjusted data
should be used when testing for unit roots, since the filters used to adjust for
seasonal patterns often distort the underlying properties of the data. In par-
ticular, there is a tendency of the DF test to be biased toward rejecting the null
hypothesis of non-stationarity substantially less often than it should when
seasonally adjusted series are tested. However, using unadjusted data that
exhibit strong seasonal patterns opens up the possibility that these series
may contain seasonal unit roots (i.e., the seasonal processes themselves are
non-stationary). Tests for seasonal unit roots are discussed based on the Hylle-
berg, Engle, Granger and Yoo (1990) approach, and an example is presented
using UK data on consumption, income and wealth. Structural breaks and
their impact on seasonal unit root-testing is covered next, and the chapter
concludes with a discussion of the situation where observations on a variable
yt can be described by a different model for each quarter, with the result being a
periodic autoregressive model.

After testing for unit roots in the data and assuming they are present, the
next task is to estimate the long-run relationship(s). Chapter 4 deals with
cointegration in single equations, while Chapter 5 considers the possibility of
more than one cointegration relationship. The most common single equation
approach to testing for cointegration is the Engle–Granger (EG) approach.
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This amounts to estimating the static OLS regression model in order to obtain
an estimate of the cointegration vector (i.e., the estimate of 0 that establishes a
long-run stationary relationship between the non-stationary variables in the
model). Such a simple and popular approach, which of course ignores any
short-run dynamic effects and the issue of endogeneity, is justified on the
grounds of the 'superconsistency' of the OLS estimator. The latter states
that the OLS estimator of P with non-stationary I(1) variables converges to
its true value at a much faster rate than the usual OLS estimator with station-
ary I(0) variables, assuming cointegration (Stock, 1987). The most common
form of testing for cointegration is based on an ADF unit root test of the
residuals from the OLS regression. The need to use the correct critical values
for testing the null hypothesis of no cointegration is discussed along with its
dependence on the presence or otherwise of 7(2) variables in the regression. A
first potential problem with the test procedure is also discussed (namely, the
common factor restriction imposed on the long-run model by the ADF test for
cointegration). We also consider testing for cointegration using the EG ap-
proach with a structural break, using the procedure developed in Gregory
and Hansen (1996).

Despite the popularity of the EG approach, there are other serious prob-
lems such as small sample bias and the inability to test statistical hypotheses;
hence, the advent of alternative testing procedures. Testing whether the speed-
of-adjustment coefficient is significant in an error correction model is one
alternative, and this is comparable to estimating a dynamic ADL model and
testing whether the model converges to a steady-state solution. The major
advantage of the ADL approach is that it generally provides unbiased esti-
mates of the long-run model and valid t-statistics (even, on the basis of Monte
Carlo evidence, when some of the regressors in the model are endogenous). The
fully modified estimator is also discussed, but yields few advantages over the
standard OLS estimator.

However, there still remain several disadvantages with a single equation
approach. The major problem is that when there are more than two variables
in the model, there can be more than one cointegration relationship among
these variables. If there is, then adopting a single equation approach is ineffi-
cient in the sense that we can only obtain a linear combination of these vectors.
However, the drawbacks of the single equation model extend beyond its
inability to validly estimate all the long-run relationships between the variables;
even if there is only one cointegration relationship, estimating a single equation
is potentially inefficient (i.e., it does not lead to the smallest variance against
alternative approaches). It is shown that this results from the fact that, unless
all the right-hand-side variables in the cointegration vector are weakly
exogenous, information is lost by not estimating a system that allows each
endogenous variable to appear on the left-hand side of the estimated equations
in the multivariate model. Thus, it is only really applicable to use the single
equation approach when there is a single unique cointegration vector and when
all the right-hand-side variables are weakly exogenous. Before proceeding to
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the multivariate approach, Chapter 4 considers the short-run (EG) model
based on a single equation and in particular gives an example of Hendry's
general-to-specific modelling approach using the PcGive software package.
The chapter then considers testing for seasonal cointegration and periodic
cointegration, using single equation techniques and concludes with asymmetric
testing for cointegration.

Chapter 5 is given over entirely to the Johansen procedure. Starting with a
vector error correction model (VECM), it is shown that this contains informa-
tion on both the short- and long-run adjustment to changes in the variables in
the model. In particular, the problem faced is to decompose the long-run
relationships into those that are stationary (and thus comprise the cointegra-
tion vectors) and those that are non-stationary (and thus comprise the
'common trends'). To do this, Johansen specifies a method based on reduced
rank regressions, which is discussed in Box 5.1 used throughout the book to
present the more difficult material. Before using Johansen's approach, it is
important to consider whether the multivariate model contains 7(0) and I(1)
variables alone, in which case the modelling procedure is much simpler, or
whether I(2) variables are also present (i.e., variables that need to be differ-
enced twice to achieve stationarity). If the latter, then the situation becomes far
more complicated and Johansen has developed a procedure to handle the I(2)
model, although (at the time of writing) this is not fully available in PcGive.
Instead, current practice is to test for the presence of 7(2) variables, and if they
are present to seek to replace them through some form of differencing (e.g., if
money supply and prices are 7(2), we could reformulate the model to consider
real money mt – pt).

Since the Johansen approach requires a correctly specified VECM, it is
necessary to ensure that the residuals in the model have the appropriate,
standard Gaussian properties of being independently drawn from a normal
distribution. This, inter alia, involves setting the appropriate lag length in the
model and including (usually dummy) variables that only affect the short-run
behaviour of the model. It is pointed out that residual mis-specification can
arise as a consequence of omitting these important conditioning variables, and
increasing the lag-length is often not the solution (as it usually is, for example,
when autocorrelation is present). The procedures for testing the properties of
the residuals are discussed and illustrated through examples. We then consider
the method of testing for 'reduced rank' (i.e., testing how many cointegration
vectors are present in the model). This involves a discussion of Johansen's trace
and maximal eigenvalue tests and consideration of the small sample reliability
of these statistics (at the same time an example of a likely 7(2) system is
considered and the testing procedure for 7(2) variables is discussed). At this
stage a major issue is confronted that presents considerable difficulty in applied
work (namely, that the reduced rank regression procedure provides informa-
tion on how many unique cointegration vectors span the cointegration space,
while any linear combination of the stationary vectors is itself also a stationary
vector and thus the estimates produced for any particular vector in p are not
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necessarily unique). To overcome this 'problem' will involve testing the validity
of linear restrictions on p. Before this, it is necessary to turn to the question of
whether an intercept and trend should enter the short- and/or long-run model.
Various models are presented and discussed along with the testing procedure
for deciding which should be used in empirical work. An example of the use of
the so-called Pantula principle is provided.

Weak exogeneity is considered next. This amounts to testing whether rows
of the speed-of-adjustment matrix a are zero, and if such hypotheses are
accepted the VECM can be respecified by conditioning on the weakly exogen-
ous variables. The reasons for doing this, as well as a discussion of conditional
and marginal models, are presented, while the concept of 'weak exogeneity' and
how it is defined in various contexts is also discussed. The actual procedures
that are used to perform tests of the null hypothesis that elements of a are zero
are discussed together with examples that use PcGive. This then leads on to
testing hypotheses about the cointegration relations involving p, which involves
imposing restrictions motivated by economic arguments (e.g., that some of the
Bij are zero or that homogeneity restrictions are needed such as Bij = — dij) and
then testing whether the columns of P are identified. The form of the linear
restrictions is discussed in some detail, along with various examples.

Lastly, the discussion moves on to testing for unique cointegration vectors
(and hence structural long-run relationships). This involves testing that the
restrictions placed on each of the cointegration vectors (the columns of p) in
fact lead to an identified system (i.e., a model where any one cointegration
vector cannot be represented by a linear combination of the other vectors).
Johansen's method for identification is carefully discussed and illustrated by
several examples. The importance of this approach is stressed, since the un-
restricted estimates of P are often hard to interpret in terms of their economic
information.

One point that is worth emphasizing on testing for cointegration, and
which should be fairly obvious from the above overview of the book thus
far, is that an applied economist should really begin his or her analysis by
using a multivariate framework and not by using a single equation approach.
The exception will obviously be when only two variables are involved. The
main reason for taking a systems approach from the outset is that to do
otherwise restricts the practitioner to considering only one cointegration rela-
tionship when there may in fact be more, and even if he or she is only interested
in one vector, it is probable that he or she will not get consistent and efficient
estimates without allowing for the possibility of other cointegration vectors. Of
course, where tests for weak exogeneity permit, moving down to the single
equation approach can be justified after using the Johansen procedure.

Chapter 6 considers modelling the short-run multivariate system and
concludes with a short discussion on structural macroeconomic modelling.
First of all, it is stressed that obtaining long-run estimates of the cointegration
relationships is only a first step to estimating the complete model. The short-
run structure of the model is also important in terms of the information it
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conveys on the short-run adjustment behaviour of economic variables, and this
is likely to be at least as interesting from a policy viewpoint as estimates of the
long run. Another important aspect of modelling both the short- and long-run
structures of the system is that we can attempt to model the contemporaneous
interactions between variables (i.e., we can estimate a simultaneous system, and
this then provides an additional layer of valuable information). Based on the
example of a small monetary model for the UK developed in Hendry and
Mizon (1993) and Hendry and Doornik (1994), the following steps are illus-
trated: (i) use the Johansen approach to obtain the long-run cointegration
relationships between the variables in the system; (ii) estimate the short-run
vector autoregression (VAR) in error correction form (hence VECM) with the
cointegration relationships explicitly included and obtain a parsimonious
representation of the system; (iii) condition on any (weakly) exogenous vari-
ables thus obtaining a conditional parsimonious VAR (PVAR) model; and (iv)
model any simultaneous effects between the variables in the (conditional)
model, and test to ensure that the resulting restricted model parsimoniously
encompasses the PVAR.

Chapter 7 considers testing for unit roots and cointegration with panel
data (i.e., cross sectional time series data with i = 1, ..., N 'individuals' in
each time period and with t = 1, . . . , T observations for each individual over
time). This offers the potential to increase the power of tests for integration and
cointegration, since adding the cross section dimension to the time series
dimension means that non-stationarity from the time series can be dealt with
and combined with the increased data and power that the cross section brings.
The latter acts as repeated draws from the same distribution, and thus while it
is known that the standard DF-type tests lack power in distinguishing the unit
root null from stationary alternatives, using the cross sectional dimension of
panel data increases the power of unit root (and cointegration) tests that are
based on a single draw from the population under consideration. The chapter
considers in detail the various panel unit root tests that have been developed
by, inter alia, Levin and Lin (1992, 1993); Im, Pesaran and Shin (1995, 1997);
Harris and Tzavalis (1999); Maddala and Wu (1999); and Breitung (2000). All
of these take non-stationarity as the null hypothesis and involve differing
alternatives (depending on differing assumptions about the homogeneity of
the cross sections in the panel) that all involve stationarity. The size and
power of these tests is discussed and examples are given from estimating a
well-known data set. Similarly, we consider the tests for cointegration and
methods for estimation of the cointegration vector that have been developed
in the literature. Cointegration tests using a single equation approach
developed by Pedroni (1995, 1999) and Kao (1999) are discussed, where the
null hypothesis is that there is no cointegration, while we also consider the
approach taken by McKoskey and Kao (1998), who developed a residual-
based test for the null of cointegration rather than the null of no cointegration
in panels. The Larsson, Lyhagen and Lothgren (2001) use of a multi-equation
framework to construct a panel test for cointegration rank in heterogeneous
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panels is considered, which is based on the average of the individual rank trace
statistics developed by Johansen (1995a).

In terms of estimating cointegration vectors using panel data sets, we look
at the various estimators available which include within- and between-group
fully modified (FMOLS) and dynamic (DOLS) estimators. In particular the
estimators devised by Kao and Chiang (2000) and Pedroni (2000, 2001) are
presented. In addition, some progress has recently been made toward develop-
ing a multivariate approach to panel cointegration estimation, with Breitung
(2002) having developed a two-step procedure that is based on estimating a
VECM. All of these estimators are compared using appropriate empirical ex-
amples.

Chapter 8 focuses on conditional heteroscedasticity models and forecast-
ing. It can be viewed as a stand-alone chapter of particular relevance to those
studying on courses in financial econometrics, although the reader will benefit
from having read previous chapters, as when we mention unit roots and Co-
integration in Chapter 8 we do so assuming a good knowledge of the concepts.
Conditional heteroscedasticity models such as the autoregressive conditional
heteroscedastic (ARCH) model introduced by Engle (1982) and the generalized
version of this model (GARCH), introduced by Bollerslev (1986), have become
extremely popular in financial econometrics. For economists studying at
final year undergraduate or postgraduate level, hoping to pursue careers in
financial economics, an understanding of ARCH and GARCH models is
important given their widespread use. We begin the chapter assuming no
previous knowledge of conditional heteroscedasticity models and spend some
time introducing concepts. We work through the standard ARCH and
GARCH models and go on to discuss multivariate versions of these models.
The estimation of ARCH and GARCH models is then considered before
moving on to demonstrate the models with an empirical application to US
stock market data. Beginning with conventional ARCH and GARCH
models we then continue with the same data set to illustrate the main exten-
sions of these models, including the ARCH-M model in which the conditional
variance appears as a regressor in the conditional mean. A common feature of
financial time series is that negative shocks tend to increase volatility by more
than positive shocks of the same absolute magnitude—this characteristic has
been labelled the 'asymmetry effect' or 'leverage effect'.18 A number of
GARCH specifications have been proposed to capture this effect, and we
consider the most popular. After briefly introducing integrated and fractionally
integrated GARCH models, we move on to discuss the impact of conditional
heteroscedasticity on conventional unit root and cointegration tests. In empiri-
cal analyses it is common practice to apply conventional unit root and
cointegration tests ignoring the presence of conditional heteroscedasticity.

18 The title 'leverage effect' is used because it is thought that the operating leverage of
companies is responsible for the asymmetric behaviour of their share prices in response
to 'good' and 'bad' news. See Nelson (1991). fn. 3.
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since conventional unit root tests have been shown to be asymptotically robust
to its presence. However, research has indicated that the finite sample proper-
ties of unit root tests can be adversely affected if ARCH or GARCH is present
and is ignored. Furthermore, recently it has been shown that if the model used
to compute a unit root test takes account of the ARCH effect and the param-
eters of this model are estimated simultaneously by maximum likelihood, the
unit root test statistic does not have its conventional distribution. While re-
search on these issues is still at a relatively early stage, we feel that they are
important issues and are likely to be the subject of considerably more research
in the future, hence we introduce the literature here.

The final part of this chapter considers some forecasting issues. We begin
by discussing forecasting from ARCH or GARCH models and illustrate with a
simple empirical application using the US stock market data previously em-
ployed. Forecasts are computed from ARCH and GARCH models and are
evaluated using conventional measures of forecast accuracy such as mean
squared error and graphical techniques. There have been a number of impor-
tant developments in forecast evaluation, primarily published in the specialist
econometrics and forecasting literature. In particular the development of tests
of equal forecasting accuracy by Diebold and Mariano (1995), Harvey,
Leybourne and Newbold (1997) and tests of forecast-encompassing of
Chong and Hendry (1986), Harvey, Leybourne and Newbold (1998) and
Clark and McCracken (2000, 2001). These tests allow the practitioner to test
whether apparent differences in forecast accuracy are statistically significant
and whether forecasts from one model contain information that is not present
in the forecasts from a competing model. We illustrate the application of some
of these tests using US stock market data (although they are applicable to
forecasts from any kind of econometric model).
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Short- and Long-run Models

LONG-RUN MODELS

One particular example that will be used throughout the book is the UK
demand-for-money function, especially since this model features extensively
in the literature on cointegration. The static (or long-run) demand for money
can either be derived from Keynesian theoretical models relating to the trans-
actions demand theory (e.g., Baumol, 1952; Tobin, 1956; Laidler, 1984), or
from the portfolio balance approach (e.g., Tobin, 1958), or from monetarist
models based on the quantity theory of money (e.g., Friedman and Schwartz,
1982). Apart from deciding whether income or wealth (or both) should enter, a
common empirical specification typically has demand for money positively
determined by the price level P and income (and/or wealth) 7, and negatively
related to its opportunity cost, the interest rate(s) R:

md^fo + j3lP + p2y~-foR (2.1)

where (here and elsewhere) variables in lower case are in logarithms. This
model depicts an equilibrium relationship such that for given values of right-
hand-side variables and their long-run impact on money demand (i.e., the Bi),
there is no reason for money demand to be at any other value than md.

Although (2.1) is frequently used, it is often found in empirical work that
B1 = l, and therefore price homogeneity is imposed so that the model becomes
the demand for real money balances (i.e., p is subtracted from both sides of the
equation). In addition, when interest rates are subject to regulation by policy-
makers (i.e., they are a policy instrument), then they are no longer a good
proxy for the actual costs of holding money, but rather tend to indicate the
restrictiveness of monetary policy. In such instances, it is usual practice to
supplement (or even replace) R in the model by including the inflation rate
Ap as a proxy for the opportunity cost of (md – p). Thus, an alternative
empirical specification is:

md – p = 70 – 71 Ap + 72v – 73R (2.2)
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It is worth noting at this early stage that we have not made any assump-
tions about whether changes in any of the right-hand-side variables in (2.1)
cause changes in the demand-for-money balances. In fact, this is a crucial issue
in econometric modelling (including the issue of cointegration), and one that
distinguishes whether we can estimate a model using a single equation
approach (Chapter 4) or whether a system of equations needs to be estimated
(Chapter 5). Since (2.1) depicts an equilibrium, then by definition the demand
for money equates in the long run to its supply (with variables, such as interest
rates, adjusting to bring about market-clearing).1 If we were to assume that the
money stock is under the control of policy-makers, then with md = ms it is
possible to rearrange (2.1) to obtain a new equation with, inter alia, the money
supply determining prices (or interest rates, or income). Thus, if one or more of
the right-hand-side variables in (2.1) are contemporaneously influenced by
changes in money supply, we need to consider whether a system of equations
should be estimated in order to determine all the endogenous variables in the
model. That is, the variables in (2.1) may feature as part of several equilibrium
relationships governing the joint evolution of the variables. More generally, if
there are n variables in the equation, then there can exist up to n — 1 linearly
independent combinations, each corresponding to a unique equilibrium
relationship.

STATIONARY AND NON-STATIONARY TIME SERIES

In addition to the question of whether the model should be estimated using a
single equation approach (e.g., ordinary least squares—OLS) or a systems
estimator, it is necessary to consider the underlying properties of the processes
that generate time series variables. That is, we can show that models containing
non-stationary variables will often lead to a problem of spurious regression,
whereby the results obtained suggest that there are statistically significant
relationships between the variables in the regression model when in fact all
that is obtained is evidence of contemporaneous correlations rather than
meaningful causal relations.

Starting with a very simple data-generating process (d.g.p.), suppose that a
variable v, is generated by the following (first-order autoregressive (AR))
process:

v, = pv,-1 +u, (2.3)

1 There is no necessity to actually achieve equilibrium at any point in time, even as
t —»• oc. All that is required is that economic forces are prevalent to move the system
toward the equilibrium defined by the long-run relationship posited. Put another way.
the static equilibrium presented in (2.1) needs to be reinterpreted empirically since most
economic variables grow over time. Thus, of more importance is the idea of a steady
state relationship between variables that are evolving over time. This is the way the term
'equilibrium' is used here. For a more detailed discussion of the definition of equilibrium
used see Banerjee et al. (1993, ch. 1).
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Thus, current values of the variable yt depend on the last period's value yt-1,
plus a disturbance term ut, the latter encapsulating all other random (i.e.,
stochastic) influences. It is assumed that this disturbance term comprises T
random numbers drawn from a normal distribution with mean equal to 0
and variance a . (Note, in later examples of stationary and non-stationary
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2 Note that the roots of the characteristic equation can be complex (i.e., contain a real
and imaginary part, h ± vi, where h and v are two real numbers and i is an imaginary
number) and the modulus is the absolute value of the complex root and is calculated as
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variables, a2 will be set equal to 1.) The variable yt will be stationary if |pj < 1.
If p — 1 then yt will be non-stationary.3 A stationary series tends to return to
its mean value and fluctuate around it within a more or less constant range (i.e.,
it has a finite variance), while a non-stationary series has a different mean at
different points in time (and thus the concept of the mean is not really applic-
able) and its variance increases with the sample size (for more technical details
see Box 2.1).

Figure 2.1 plots a non-stationary series based on a starting value of y0 = 0.
As can be seen, the variance of yt is increasing with time and there is no
tendency for the series to revert to any mean value. This contrasts both with
^yt(= yt – yt–1), the stationary first difference of yt that is also plotted in
Figure 2.1, and with the stationary version of yt appearing in Figure 2.2.4

Stationary variables can be seen to fluctuate around their mean (equal to 0
here) and to have a finite variance. It is also apparent from Figure 2.1 that a
non-stationary variable becomes stationary after it is differenced (although not
necessarily just by first-dirferencing—it will be shown that the number of times
a variable needs to be differenced in order to induce stationarity depends on the
number of unit roots it contains).

The question of whether a variable is stationary depends on whether it has
a unit root. To see this, rewrite (2.3) as:

(l– pL)yt = ut (2.4)

where L is the lag operator (i.e., Lyt = yt–1, while L2yt=yt_2, etc.). By
forming a characteristic equation (i.e., (1 — pL) = 0), we see that if the roots

3 If p\ > 1, then yt will be non-stationary and explosive (i.e., it will tend to either ±00).
4 Note that ut was the same for all the series in Figures 2.1–2.3.
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Figure 2.1. Non-stationary series v, = v,-i + HI-

_2

-3

-4-

Figure 2.2. Stationary series y, = 0.9v,-i + «,, u, ~ IN(0, 1).

of this equation are all greater than unity in absolute value then v, is stationary.
In our example, thercis only one root (L = 1 /p), thus stationarity requires that
\p\ < 1 (for more complicated examples, including more than one unit root, see
Box 2.2).

Another way to consider stationarity is to look at the different types of
time trends that can be found in variables. If we allow (2.3) to have a non-zero
intercept:

y, = 0 + py t-1 + u, (2.5)
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Figure 2.3. Non-stationary series with drift yt and trend-stationary series xt, where
y, = j,_, + 0.1 + ut, xt = O.lt + u, and u, ~ IN(0,1).

and if p — 1, then by rearranging and accumulating y, for different periods,
starting with an initial value of y0, the non-stationary series y, can be rewritten
as: ,

yt = y0 + pt + ̂ Uj (2.6)
y=i

(see also Box 2.1 and equation 2.1.1) where it can be seen that yt does not
return to a fixed deterministic trend (y0 + fit) because of the accumulation of
the random error terms.5 In fact, when p— 1 ,y t will follow a stochastic trend
(i.e., it will drift upward or downward depending on the sign of J3, as shown in
Figure 2.3). This can be seen by taking the first difference of yt, giving
AJ, = (3 + ut, with the expected (i.e., mean) value of Ay, being equal to /?,
the growth rate of yt (assuming the variable is in logs). Since the first difference
of yt is stationary (Aj, fluctuates around its mean of (3 and has a finite
variance), then yt itself is referred to as difference-stationary since it is station-
ary after differencing.

In contrast, consider the following d.g.p.:

x, = a + (3t 4- ut (2.7)

where a + 0t is a deterministic trend and the disturbance ut is the non-trend
(stochastic) component. Since ut is stationary [e.g., u, ~ IN(0, 1)], xt is said to
be trend-stationary (i.e., it may trend, but deviations from the deterministic
trend are stationary, see Figure 2.3). Note, that equations (2.6) and (2.7) have
5 Note that the linear trend (3t in (2.6) reflects the accumulation of the successive 0
intercepts when rearranging (2.5) for different periods.
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the same form (they both exhibit a linear trend), except that the disturbance
term in (2.6) is non-stationary.

Thus, considering the two types of trend, it has been possible to contrast
difference-stationary and trend-stationary variables and, in passing, to note
that the presence of a stochastic trend (which is non-stationary) as opposed
to a deterministic trend (which is stationary) can make testing for unit roots
complicated.

SPURIOUS REGRESSIONS

Trends in the data can lead to spurious correlations that imply relationships
between the variables in a regression equation, when all that is present are
correlated time trends. The time trend in a trend-stationary variable can
either be removed by regressing the variable on time (with the residuals from
such a regression forming a new variable which is trend-free and stationary) or
nullified by including a deterministic time trend as one of the regressors in the
model. In such circumstances, the standard regression model is operating with
stationary series that have constant means and finite variances, and thus statis-
tical inferences (based on t- and F-tests) are valid.

Regressing a non-stationary variable on a deterministic trend generally
does not yield a stationary variable (instead the series needs to be differenced
prior to processing). Thus, using standard regression techniques with non-
stationary data can lead to the problem of spurious regressions involving
invalid inferences based on t- and F-tests. For instance, consider the following
d.g.p.:

) (2.8)

) (2.9)

That is, both x and y are uncorrelated non-stationary variables such that when
the following regression model is estimated:

yt = (30 + p}xt+E, (2.10)

it should generally be possible to accept the null H0: (3} = 0 (while the coeffi-
cient of determination R2 should also tend toward zero). However, because of
the non-stationary nature of the data, implying that e, is also non-stationary,
any tendency for both time series to be growing (e.g., see y, in Figure 2.1) leads
to correlation, which is picked up by the regression model, even though each is
growing for very different reasons and at rates that are uncorrelated (i.e., 6}

converges in probability to zero in the regression (Ay, — 60 +6,A.v, + 77,)).
Thus, correlation between non-stationary series does not imply the kind of
causal relationship that might be inferred from stationary series.6

6 In fact, this correlation occurs because x and y share a 'common trend'. Hence,
relationships between non-stationary variables that seem to be significant, but are in fact
spurious, are termed 'common trends' in the integration and cointegration literature.
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trends, although until formally tested (see Chapter 3) both could be stationary
variables around a deterministic trend, rather than difference-stationary (the
latter implying that they contain one or more unit roots). Assuming for now
that mt and pt are non-stationary (and possibly I(1)), it can be seen that both
series generally appear to move together over time, suggesting that there exists
an equilibrium relationship (cf. the demand-for-money relationship discussed
earlier). The outcome of regressing mt on pt (plus a constant) is to obtain the
residual series et, which on visual inspection might be I(0) stationary. This
suggests that there possibly exists a cointegration vector (for the data used
here (3 = 1.1085, with a t-value of 41.92) that defines a constant (equilibrium)
relationship between money and prices.

Thus, following directly from the identification of cointegration with equi-
librium, it is possible to make sense of regressions involving non-stationary
variables. If these are cointegrated, then regression analysis imparts meaningful
information about long-run relationships, whereas if cointegration is not
established we return to the problem of spurious correlation.
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the sample size. In a Monte Carlo experiment reported in Banerjee, Dolado,
Galbraith and Hendry (1993, pp. 73–75), equation (2.10) was estimated 10,000
times, with x and y as defined in (2.8 and 2.9), resulting in an estimated mean
value for (3\ of —0.012 and an associated standard error of 0.006 (given a
sample size of T — 100), thus rejecting the null that E[j3\] = 0. Based on the
10,000 replications, the probability of rejecting the null of no association at the
conventional significance level of 0.05 was found to be 0.753 (i.e., in 75.3 per
cent of the regressions values of |/| > 1.96 were obtained7). This was due to the
fact that the mean /-statistic obtained from the experiment was —0.12 instead
of zero, with an associated standard deviation of 7.3. The non-standard dis-
tribution of the /-statistic accounts for the very high rejection rate of the null.
(See also Box 2.3.)

In summary, there is often a problem of falsely concluding that a relation-
ship exists between two unrelated non-stationary series. This problem generally
increases with the sample size and cannot be solved by attempting to de-trend
the underlying series, as would be possible with trend-stationary data. This
leads to the question of when it is possible to infer a causal long-run relation-
ship^) between non-stationary time series, based on estimating a standard
regression such as (2.10).

COINTEGRATION

If a series must be differenced d times before it becomes stationary, then it
contains d unit roots (see Box 2.2) and is said to be integrated of order d,
denoted I(d). Consider two time series y, and x, that are both I(d). In general
any linear combination of the two series will also be I (d) (e.g., the residuals
obtained from regressing y, on x, are I(d)}. If, however, there exists a vector 3
such that the disturbance term from the regression (u, — v, - 3xj) is of a lower
order of integration I(d — b), where b > 0, then Engle and Granger (1987)
define y, and x, as cointegrated of order (d, b). Thus, if v, and x, were both
7(1) and u, ~ 7(0), then the two series would be cointegrated of order C7(l. 1)
(Box 2.4).

The economic interpretation of cointegration is that if two (or more) series
are linked to form an equilibrium relationship spanning the long run, then even
though the series themselves may contain stochastic trends (i.e., be non-station-
ary) they will nevertheless move closely together over time and the difference
between them is constant (i.e., stationary). Thus the concept of cointegration
mimics the existence of a long-run equilibrium to which an economic system
converges over time, and u, defined above can be interpreted as the disequi-
librium error (i.e., the distance that the system is away from equilibrium at
time /).

Figure 2.5 shows the UK money supply (based on the narrow measure M1
and aggregate price level for the period 1963ql-1989q2). Both series exhibit

7 For stationary series, the probability of |r| > 1.96 is 5%.
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trends, although until formally tested (see Chapter 3) both could be stationary
variables around a deterministic trend, rather than difference-stationary (the
latter implying that they contain one or more unit roots). Assuming for now
that mt and pt are non-stationary (and possibly I(I)), it can be seen that both
series generally appear to move together over time, suggesting that there exists
an equilibrium relationship (cf. the demand-for-money relationship discussed
earlier). The outcome of regressing mt on pt (plus a constant) is to obtain the
residual series et, which on visual inspection might be I(0) stationary. This
suggests that there possibly exists a cointegration vector (for the data used
here (3 = 1.1085, with a t-value of 41.92) that defines a constant (equilibrium)
relationship between money and prices.

Thus, following directly from the identification of cointegration with equi-
librium, it is possible to make sense of regressions involving non-stationary
variables. If these are cointegrated, then regression analysis imparts meaningful
information about long-run relationships, whereas if cointegration is not
established we return to the problem of spurious correlation.
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Figure 2.5. UK money supply m, and price level />,,
1.1085/>, - 11.166.

1963-1989, where e, = mt-

SHORT-RUN MODELS

Equation (2.1) sets out the equilibrium relationship governing the demand for
money. However, even assuming that it is possible to directly estimate this
long-run model (an issue discussed in some detail in Chapter 4), it is also of
interest to consider the short-run evolution of the variables under considera-
tion, especially since equilibrium (i.e., the steady state) may rarely be observed.
This is important from a forecasting perspective, as is the economic informa-
tion that can be obtained from considering the dynamics of adjustment.

The major reason that relationships are not always in equilibrium centres
on the inability of economic agents to instantaneously adjust to new in-
formation.8 There are often substantial costs of adjustment (both pecuniary
and non-pecuniary) that result in the current value of the dependent variable Y
being determined not only by the current value of some explanatory variable X
but also by past values of X. In addition, as Y evolves through time in reaction
to current and previous values of X, past (i.e., lagged) values of itself will also
enter the short-run (dynamic) model. This inclusion of lagged values of the
dependent variable as regressors is a means of simplifying the form of the
dynamic model (which would otherwise tend to have a large number of
highly correlated lagged values of X); by placing restrictions on how current

8 Even if expectations were fully efficient and agents could anticipate and therefore
react contemporaneously to changes in determinants, there are likely to be (non-
linear) adjustment costs that make it uneconomic to move instantaneously to a new
equilibrium.



SHORT- AND LONG-RUN MODELS

Yt adjusts to the lagged values of Xt_t (i = 0, . . . , q), it is possible to reduce the
number of such terms entering the estimated equation at the cost of some extra
lagged terms involving Yt_f (i — 1, ... ,/?).9 A very simple dynamic model (with
lags p = q = 1) of short-run adjustment is:

yt = ao + 70*, + 7i*,_i + a\yt-i + u, (2.11)

where the white noise residual is ut ~ IN(0,cr2). Clearly the parameter coeffi-
cient 70 denotes the short-run reaction of yt to a change in xt, and not the long-
run effect that would occur if the model were in equilibrium. The latter is
defined as:

(2.12)

So, in the long run the elasticity between Y and X is J3\ = (70 + 7i/l — <*\),
assuming that a{ < 1 (which is necessary if the short-run model is to converge
to a long-run solution).

The dynamic model represented by (2.1 1) is easily generalized to allow for
more complicated, and often more realistic, adjustment processes (by increas-
ing the lag lengths/? and q). However, there are several potential problems with
this form of the dynamic model. The first has already been mentioned and
concerns the likely high level of correlation between current and lagged values
of a variable, which will therefore result in problems of multicollinearity (high
R2, but imprecise parameter estimates and low t- values, even though the
model may be correctly specified). Using the Hendry-type 'general-to-specific'
approach, which would involve eliminating insignificant variables from the
estimated model, might therefore result in mis-specification (especially if X is
in fact a vector of variables). Also, some (if not all) of the variables in a
dynamic model of this kind are likely to be non-stationary, since they enter
in levels. As explained earlier, this leads to the potential problem of common
trends and thus spurious regression, while t- and F-statistics do not have
standard distributions and the usual statistical inference is invalid. 10 A solution
might be to respecify the dynamic model in (first) differences. However,
this then removes any information about the long-run from the model and
consequently is unlikely to be useful for forecasting purposes.

A more suitable approach is to adopt the error correction model —
sometimes called an equilibrium correction model — (ECM) formulation of
the dynamic model. Rearranging and reparameterizing (2.11) gives:

Ay, = 7oAx, - (1 - ai)[>' ,~~i - $o - /?i*,-i] + ut (2.13)

9 For instance, if the effects of the Xt-i are restricted to decline in a geometric
progression (1 + <f> + (p2 + <^3 • • •) so that more distant lags have little impact on current
Y, then we end up with the Koyck lag model: yt = ct0(l - < £ > ) + JQX, + <pyt-i + et, which
is equivalent to yt — ao + jo(xt + (f>xt-\ + <p2x,-2 • • •) + M/> where et = ut — <put-} .
10 However, as will be discussed in Chapter 4, if the right-hand-side variables in the
model are weakly exogenous, invalid inference and potential bias will not be a problem.
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where fa = <WO ~ai)- Equations (2.11) and (2.13) are equivalent, but the
ECM has several distinct advantages. First, and assuming that X and Y are
cointegrated, the ECM incorporates both short-run and long-run effects. This
can be seen by the fact that the long-run equilibrium (2.12) is incorporated
into the model. Thus, if at any time the equilibrium holds then
[>',_! — fa — 0\xt_\] = 0. During periods of disequilibrium, this term is non-
zero and measures the distance the system is away from equilibrium during
time /. Thus, an estimate of (1 — a{] will provide information on the speed of
adjustment (i.e., how the variable y, changes in response to disequilibrium).11

For instance, suppose that y, starts to increase less rapidly than is consistent
with (2.12), perhaps because of a series of large negative random shocks
(captured by «,). The net result is that [>',_i —fa — @\x,-\] < 0, since v,_i
has moved below the steady-state growth path, but since -(1 - a{) is negative,
the overall effect is to boost Av, thereby forcing v, back toward its long-run
growth path as determined by x, (in equation (2.12)).

A second feature of the ECM is that all the terms in the model are station-
ary so standard regression techniques are valid, assuming cointegration and
that we have estimates of fa and /3t. There is clearly a problem if they need to
be estimated at the same time in the ECM. Often fi\ is set equal to one (and fa
is set equal to zero) and justified on the basis that the theory imposes such a
long-run elasticity. This can be tested by including .x,_] as an additional re-
gressor, since it should have an estimated coefficient value of zero, if in fact
[fa,0\}' = [0,1]'. However, including the potentially non-stationary variable
.Y,_I is itself problematic, since the /-statistic of the coefficient of x,_\ does
not have a standard normal distribution, thereby invalidating the usual
testing procedure. The issues of testing for cointegration and estimating the
ECM are considered in Chapter 4.

Third, as should be obvious from equations (2.12) and (2.13), the ECM is
closely bound up with the concept of cointegration. In fact, Engle and Granger
(1987) show that if y, and xt are cointegrated CI(l, 1), then there must exist an
ECM (and, conversely, that an ECM generates cointegrated series). The prac-
tical implication of Granger's representation theorem for dynamic modelling is
that it provides the ECM with immunity from the spurious regression problem,
providing that the terms in levels cointegrate.

The simple ECM depicted in (2.13) can be generalized to capture more
complicated dynamic processes. Increasing the lag length p and/or q in (2.11)
results in additional lagged first differences entering (2.13). In general, we can
reformulate the ECM as:

A(L)&y t = B(L)bx t – (1 - TT)[V,-P - fa - 0x,-p] + u, (2.14)

11 Large values (tending to —1) of –(1 - a) indicate that economic agents remove a
large percentage (since the model is in logs) of the resulting disequilibrium each period.
Small values (tending toward 0) suggest that adjustment to the long-run steady state is
slow, perhaps because of large costs of adjustment (pecuniary and non-pecuniary).
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where A(L) is the polynomial lag operator 1 — a 1 L — a2L
2 - - - - - apL

p,
B(L) is the polynomial lag operator 70 + 71L + 72L

2 + + 1qLq and
TT = (a1 + a2 + + - a p ) . Lastly, it is also possible to specify the ECM in
multivariate form, explicitly allowing for a set of cointegration vectors. This
will be explored more fully in Chapter 5.

CONCLUSION

This chapter has considered short- and long-run models. Inherent in the
distinction is the notion of equilibrium; that is, the long run is a state of
equilibrium where economic forces are in balance and there is no tendency
to change, while the short run depicts the disequilibrium state where adjust-
ment to the equilibrium is occurring. When dealing with non-stationary data,
equilibrium is synonymous with the concept of cointegration. Failure to
establish cointegration often leads to spurious regressions that do not reflect
long-run economic relationships, but rather reflect the 'common trends' con-
tained in most non-stationary time series. Cointegration is also linked very
closely to the use of short-run ECMs, thus providing a useful and meaningful
link between the long- and short-run approach to econometric modelling.
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Testing for Unit Roots

When discussing stationary and non-stationary time series, the need to test for
the presence of unit roots in order to avoid the problem of spurious regression
was stressed. If a variable contains a unit root, then it is non-stationary, and
unless it combines with other non-stationary series to form a stationary co-
integration relationship, then regressions involving the series can falsely imply
the existence of a meaningful economic relationship.

In principle it is important to test the order of integration of each variable
in a model, to establish whether it is non-stationary and how many times the
variable needs to be differenced to result in a stationary series. Also, as will be
seen, testing for stationarity for a single variable is very similar to testing
whether a linear combination of variables cointegrate to form a stationary
equilibrium relationship. Testing for the presence of unit roots is not straight-
forward. Some of the issues that arise are as follows:

It is necessary to take account of the possibility that the underlying (but, of
course, unknown) data-generating process (d.g.p.) may, inter alia, include
a time trend (stochastic or deterministic).
The d.g.p. may be more complicated than a simple autoregressive AR(1)
process (e.g., (2.3)), and indeed may involve moving average (MA) terms.
It is known that when dealing with finite samples (and especially small
numbers of observations) the standard tests for unit roots are biased
toward accepting the null hypothesis of non-stationarity when the true
d.g.p. is in fact stationary, but close to having a unit root (i.e., there is a
problem with the power of the test).
There is concern that an undetected structural break in the series may lead
to under-rejecting of the null.
Quarterly data might also be tested for seasonal unit roots in addition to
the usual test for unit roots at the zero frequency level. Observations on a
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variable yt can also be described by a different model for each quarter, with
the result being a periodic AR model.1

THE DICKEY-FULLER TEST

There are several ways of testing for the presence of a unit root. The emphasis
here will be on using the Dickey-Fuller (DF) approach (cf. Dickey and Fuller,
1979) to testing the null hypothesis that a series does contain a unit root (i.e., it
is non-stationary) against the alternative of stationarity. There are other tests
of this null (e.g., the Sargan-Bhargava (1983) cointegration regression Durbin-
Watson (CRDW) test, based on the usual Durbin-Watson statistic, and the
non-parametric tests developed by Phillips and Perron, based on the Phillips
(1987) Z test, which involve transforming the test statistic to eliminate any
autocorrelation in the model), but DF tests tend to be more popular either
because of their simplicity or their more general nature. There are also more
recent tests that take as the null the hypothesis that a series is stationary,
against the alternative of non-stationarity (see, for example, Kahn and
Ogaki, 1992 and Kwiatkowski, Phillips, Schmidt and Shin, 1992). These
have not achieved widespread usage, and since the consequences of non-
stationarity are so important, it is probably better to take a conservative
approach with non-stationarity as the maintained hypothesis.2

The simplest form of the DF test amounts to estimating:

yt = payt-1 +ut (3. la)
or (1 - L)y, = Ay, = (pa - !)>•,_, + „, u, ~ IID(0.a2) (3.1b)3

Either variant of the test is applicable, with the null being H0: pa = 1 against
the alternative H1'. pa < 1. The advantage of (3.1 b) is that this is equivalent to
testing (pa — 1) = p*a = 0 against p*a < 0; more importantly, though, it also
simplifies matters to use this second form of the test when a more complicated
AR(p) process is considered (cf. Box 2.2).4 The standard approach to testing

1 Note that fractional integration and unit roots are discussed in Chapter 8 (when
discussing integrated generalized autoregressive conditional heteroscedastic (GARCH)
models), since long memory processes are more applicable to financial data that are
observed more often than say each quarter.
2 It is sometimes useful to test using both alternatives of the null, to ensure that each
corroborates the other, although the underlying distributions of, say, the DF test (of the
null of non-stationarity) and the KPSS test (of the null of stationarity—see Kwiat-
kowski et al., 1992) have different d.g.p.s and are therefore strictly not comparable.
Nonetheless, recently Carrion-i-Silvestre, Sanso-i-Rossello and Ortuno (2001) have
computed joint statistics (called the joint confirmation hypothesis) of the probability
of rejecting the null of a unit root using both tests.
3 Note that we are not assuming that the residuals u, are drawn from a normal
distribution; rather they are drawn from the DF distribution.
4 Note that if we reject p* = 0 in favour of p* < 0. then we can safely reject p* > 0.
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Table 3.1 Critical values for the DF test (source: Fuller, 1976).

Sample size Critical values for r Critical values for TM Critical values for TT

level of significance level of significance level of significance

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

DF distribution
25
50

100
/-distribution

00

_2
-2.
-2.

—2

.66

.62

.60

.33

-1.95
-1.95
-1.95

-1.65

-1.60
-1.61
-1.61

-1.28

-3.75
-3.58
-3.51

-2.33

-3.00
-2.93
-2.89

-1.65

-2.
-2.
_2

-1

.63

.60

.58

.28

-4.38
-4.15
-4.04

7 1"?Z*. _!„>

-3.60
-3.50
-3.45

-1.65

-3.24
-3.18
-3.15

-1.28

such a hypothesis is to construct a r-test; however, under non-stationarity, the
statistic computed does not follow a standard ^-distribution, but rather a DF
distribution. The latter has been computed using Monte Carlo techniques,
which involves taking (3.1) as the underlying d.g.p., imposing the null hypoth-
esis by fixing pa = 1 and randomly drawing samples of the ut from the normal
distribution; this then generates thousands of samples of yt, all of which are
consistent with the d.g.p: yt = y t_1 + ut. Then for each of the yt a regression
based on (3.1) is undertaken, with pa now free to vary, in order to compute (on
the basis of thousands of replications) the percentage of times the model would
reject the null hypothesis of a unit root when the null is true. These are the
critical values for rejecting the null of a unit root at various significance levels
(e.g., 10%, 5% and 1%) based on the DF distribution of [(pa - l)/SE(pJ].5

It is informative to compare the critical values for the DF and standard /-
distributions. Assume that model (3.1b) has been estimated for some series yt,
resulting in a t-ratio of -1.82 attached to the coefficient of y t_1. Looking at the
first set of critical values in Table 3.1, it is clear that for different sample sizes it
would be necessary to accept the null of non-stationarity at the 5% significance
level using the values of the DF r-distribution. However, using the comparable
critical values for the standard /-distribution (the final row), the null could be
rejected at this significance level. Thus, failure to use the DF r-distribution
would lead on average to over-rejection of the null.

5 Note that the d.g.p. underlying the DF distribution is that given in (3.1), containing no
constant or trend. Critical values are then obtained for three models used to test the null
of a unit root: (i) a no constant/no trend regression (i.e., (3.1) in the text and the first
block of values in Table 3.1); (ii) only a constant in the model ((3.2) and block 2 in Table
3.1); and (iii) both a constant and a trend ((3.3) and block 3 in Table 3.1). If the d.g.p. is
altered to include a non-zero constant, the critical values obtained from (iii) are not
affected; the DF distribution is invariant to the value of the constant in the d.g.p., and
thus it is sufficient to use (3.1) as the underlying d.g.p. for calculating critical values
(Fuller, 1976). This property of the DF distribution is known as similarity and leads to
similar tests (i.e., tests for which the distribution of the test statistic under the null
hypothesis is independent of nuisance parameters in the d.g.p.).
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Testing for a unit root using (3.1) involves making the prior assumption
that the underlying d.g.p. for y, is a simple first-order AR process with a zero
mean and no trend component (i.e., no deterministic variables). However, it
also assumes that in the d.g.p. at time t = 0, y, also equals zero, since in a
model with no deterministic variables the mean of the series is determined by
the initial observation under the hypothesis of a unit root. So using regression
equation (3.1) is only valid when the overall mean of the series is zero. Alter-
natively, if the 'true' mean of the d.g.p. were known, it could be subtracted
from each observation, and (3.1) could then be used to test for a unit root; but
this is unlikely to happen in practice.6 Thus, when the underlying d.g.p. is given
by (3.1), but it is not known whether y0 in the d.g.p. equals zero, then it is
better to allow a constant ^h to enter the regression model when testing for a
unit root:

Ay, =Vb + (pb - 1)y,-\ +ut u,~ IID(0,a2} (3.2)

The appropriate critical values to be used in this case are given by the DF
distribution relating to T^, since the latter was generated assuming that the
underlying d.g.p. is given by (3.1), but the model used for testing is (3.2).7

Note that pb and r^ are both invariant with respect to yQ (i.e., whatever the
unknown starting value of the series, the distribution of the test statistic rp is
not affected). This is an important property, since in its absence critical values
would depend on some unknown value of y0, and we would therefore need to
know both the value of y0 and its associated DF distribution before we could
undertake any test for a unit root.

However, (3.2) cannot validly be used to test for a unit root when the
underlying d.g.p. is also given by (3.2). In this instance, if the null hypothesis
is true pb = 1, and y, will follow a stochastic trend (i.e., it will drift upward or
downward depending on the sign of p.b) (see the discussion of equations (2.5)
and (2.6) in the last chapter). Under the alternative hypothesis that pb < 1, then
yt is stationary around a constant mean of p,b/(l — pb), but it has no trend.
Thus, using (3.2) to test for a unit root does not nest both the null hypothesis
and the alternative hypothesis. Put another way, suppose the true d.g.p. is a
stationary process around a deterministic trend (e.g., y, = a + 0t + u,) and
(3.2) is used to test whether this series has a unit root. Since the d.g.p. contains
a trend component (albeit deterministic), the only way to fit this trend is for the
regression equation to set pb = 1, in which case p,b becomes the coefficient /3 on
the trend (cf. equations (2.6) and (2.7)). This would be equivalent to accepting
the null that there is a stochastic (i.e., non-stationary) trend, when in fact the
true d.g.p. has a deterministic (i.e., stationary) trend. What this example illus-
trates is that in order to test what will probably be in practice the most

6Nankervis and Savin (1985) have shown that using (3.1) with y0 ^0 can lead to
problems over rejection of the null when it is true (i.e., there are problems with the size
of the test).
7 See also footnote 5 for more details.



TESTING FOR UNIT ROOTS 45

common form of the null hypothesis (that the d.g.p. contains a stochastic trend
against the alternative of being trend-stationary), it is necessary to have as
many deterministic regressors as there are deterministic components in the
d.g.p., and thus we must allow a time trend t to enter the regression model
used to test for a unit root:

Ajf = He + let + (pc - 1)^_! +u, ut ~ HD(0, a2) (3.3)

The appropriate critical values are given by the DF distribution relating to rT

(see Table 3.1); it is interesting to note that TT < r^ < r and then to make
comparisons with the standard /-values. Clearly, the inappropriate use of the
latter would lead to under-rejection of the null hypothesis, and this problem
becomes larger as more deterministic components are added to the regression
model used for testing. Note also that pc and rr are both invariant with respect
to jo and fa, so neither the starting value of the series nor the value of the drift
term have any affect on the test statistic rr.

It is possible that the underlying d.g.p. is given by (3.3), which would mean
that y{ has both a stochastic and a deterministic trend. In this event, one would
need a regression model that includes an additional term (such as t2) in order to
be able to test for a unit root, necessitating an additional block of critical
values in Table 3.1. In practice, this is unlikely to be a problem since the
hypothesis of a unit root with a deterministic trend is usually precluded a
priori, because it implies an implausible, ever-increasing (or decreasing) rate
of change (if j, is in logarithmic form).8

Before discussing the testing procedure that should be adopted when using
the DF test, it is worth noting that tests of the joint hypothesis that 7C — 0 and
pc = I can also be undertaken, using the non-standard F-statistic <D3 reported
in Dickey and Fuller (1981).9 In (3.3), if the DF Mest of the null hypothesis H0:
pc — 1 is not rejected, but the joint hypothesis H0: (pc — 1) = 7C = 0 is, then
this implies that the trend is significant under the null of a unit root and
asymptotic normality of the /-statistic \(pc — l)/SE(pc)] follows. Thus,
instead of using the critical values from the DF-type distribution, the standard
r-statistic (for n — oo) should be used to test HG: (pc — 1) = 0. This result
follows from West (1988) and occurs when a stochastic trend is present in
the regression, but it is dominated by a deterministic trend component. This
form of dominance is also present when testing the joint hypothesis that fih = 0
and pb = 1, using (3.2) and the F-statistic <E>j (given in Dickey and Fuller,
1981).10 If one fails to reject H0: pb — 1, but can reject the joint hypothesis

8 Thus, if the null hypothesis HQ: (pc — 1) = 0 is true, we should expect the trend not to
be significant in (3.3), otherwise we would need the extra block of DF critical values.
Note that if the deterministic trend is significant under a joint test and dominates the
stochastic trend, then asymptotic normality of the f-statistic follows, as we now go onto
discuss.
9 Note that $3 is invariant with respect to VQ and /j,c.
10 Note that d), is invariant with respect to y0-
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HO
: (Pb ~ 1) = P-b — 0,tnen the constant is significant under the null of a unit

root and asymptotic normality of the /-statistic [(pc - l)/SE(pc)] follows. Note
that rejection of either of the above joint hypotheses, using the appropriate F-
test, results in both the d.g.p. and the regression model used to test for a unit
root having the same form (unlike the tests outlined above involving the DF
distribution). This is known as an exact test, while the tests based on the DF
distribution are called similar tests.11 However, there are two reasons to be
cautious about conducting unit root tests using exact tests: first, asymptotic
normality of the /-statistic only occurs when the non-zero constant (and trend)
in the d.g.p. is (are) matched by a constant (and trend) in the model used for
testing. So, for example, including a trend in the model when the d.g.p. does
not have a trend means that we have to use the DF distribution to obtain valid
critical values. Since it is unlikely that we will be sufficiently confident about the
correct specification of the d.g.p., it is probably safer to use the DF distribu-
tion. Second, it has been suggested (Banerjee, Dolado, Galbraith and Hendry,
1993) that infinite samples, the DF distributions may be a better approxima-
tion than the normal distribution, even though asymptotically (i.e., n —*• DC) the
latter is to be preferred.12

One last item of information that will help in deciding a possible testing
strategy is that the inclusion of additional deterministic components in the
regression model used for testing, beyond those included in the (unknown)
d.g.p., results in an increased probability that the null hypothesis of non-
stationarity will be accepted when in fact the true d.g.p. is stationary (i.e..
the power of the test of the unit root hypothesis decreases against stationary
alternatives).13 This problem was mentioned when comparing the values in
Table 3.1, since critical values for rejecting the null are ordered as follows:
Tr < rp < r- That is, adding a constant and then a trend to the model increases
(in absolute value) the critical values, making it harder to reject the null
hypothesis, even when it should be rejected.14

To summarize the issues so far discussed, /-tests of the null hypothesis of a
unit root must use critical values from the DF distribution and not the stan-

11 That is, a similar test having a DF distribution requires that the regression model used
for testing contains more parameters than the d.g.p. (see Kiviet and Phillips, 1992).
12 Recently, Ohtani (2002) has computed the appropriate exact critical values for DF
tests where the constant or trend term are significantly different from zero and exact
tests apply. He argues these should be used instead of assuming asymptotic normality.
13 Note that this will also be a problem when we consider adding lagged values of the
AV/-/ as additional regressors when using the ADF test (see below).
14 This needs, however, to be counterbalanced by the fact that (in finite samples) as we
add deterministic regressors to the regression model, there is a downward bias away
from zero in the estimate of p, and this bias increases as the number of deterministic
regressors increases. However, even though this suggests that the asymptotic low power
of the test and finite bias may help to cancel each other out, Monte Carlo simulation
does tend to confirm that there still remains a problem in finite samples (e.g.. Schwert.
1989).
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Table 3.2 Perron's (1988) testing procedure using the DF test (unknown d.g.p.).

Step and model Null hypothesis Test statistic Critical values*

TT Fuller
(table 8.5.2, block 3)

*3 Dickey and Fuller
(table VI)

(2a) A>>, = /xc + 7f/ + (PC - O^'-i + "' (Pc — 1) = 0 t Standard normal

(3) Av, = fj'b + (Pb - l)>V-i +u, (ph - 1) = 0 r/t Fuller
(table 8.5.2, block 2)

(4) Av, - /.tft + (p/, - l)y,-i + «, (ph - 1) = nb = 0 $1 Dickey and Fuller
(table IV)

(4a) Ay, = ^ + (ph — l)>V-i + M, (#, — 1) = 0 t Standard normal

(5) Av, - (pa - !)>-,_, + u, (pa - 1) = 0 T Fuller
(table 8.5.2, block 1)

* Fuller (1976) and Dickey and Fuller (1981).

dard ^-distribution. Similarly, F-tests of the joint hypothesis concerning the
unit root and the significance of constant or trend terms must also use the
critical values of the appropriate DF distribution (obtained from Dickey and
Fuller, 1981). It is necessary to ensure that the regression model used for testing
has more deterministic components than the hypothesized d.g.p., otherwise the
test will not nest the null and alternative hypotheses. In general, since the
underlying d.g.p. is unknown, this suggests using (3.3) for testing the unit
root hypothesis. However, having unnecessary nuisance parameters (constant
and trend terms) will lower the power of the test against stationary alternatives.
Thus, Perron (1988) has put forward the sequential testing procedure outlined
in Table 3.2, which starts with the use of (3.3) and then eliminates unnecessary
nuisance parameters. If we fail to reject the null using the most general speci-
fication (perhaps because of the low power of the test), testing continues on
down to more restricted specifications. The testing stops as soon as we are able
to reject the null hypothesis of a unit root. Note, steps (2a) and (4a) are only
undertaken if we are able to reject the joint hypotheses in (2) and (4), respec-
tively. Even in these situations, tests based on the DF distributions may be
preferable, in which case the results obtained from steps (2a) and (4a) should be
treated with some caution.

There are several econometric packages available that will allow the user to
go through this testing strategy fairly easily, and they usually provide the
appropriate critical values.15 However, all the tests can be carried out

15 In most packages (such as PcGive) the critical values used are those obtained by
MacKinnon (1991), who calculated response surfaces to allow appropriate critical
values to be obtained for various sample sizes (and not just those listed in the DF
tables).
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running ordinary least squares (OLS) regressions and by referring to the DF
tables referenced in Table 3.2 (also reproduced in the Statistical Appendix at
the end of the book).

AUGMENTED DICKEY-FULLER TEST

If a simple AR(1) DF model is used when in fact y, follows an AR(/;) process,
then the error term will be autocorrelated to compensate for the mis-
specification of the dynamic structure of yt. Autocorrelated errors will
invalidate the use of the DF distributions, which are based on the assumption
that u, is 'white noise'. Thus, assuming y, follows an pth order AR process:

or &yt = r/>*y,-i + Vi Ay,_, 4- </>2Ay,-2 + • • • > (3.4)

+ Vp-iAtt-p+i + u, u, ~ IID(0,<r2

where ip* = (i/)\ + fa + • • • + V^) — I. If t/>* = 0, against the alternative V* < 0.
then y, contains a unit root. To test the null hypothesis, we again calculate the
DF f-statistic [ijj* /SEty*)}, which can be compared against the critical values in
Table 3.1 (for T). Note that this is only strictly valid in large samples, since in
small samples percentage points of the augmented Dickey-Fuller (ADF) dis-
tribution are generally not the same as those applicable under the strong
assumptions of the simple DF model (Banerjee et al., 1993, p. 106).

As with the simple DF test, the above model needs to Jbe extended to allow
for the possibility that the d.g.p. contains deterministic components (constant
and trend). As the model is extended, the appropriate large sample critical
values are those given in Table 3.1. The model needed to test for the null
hypothesis of a stochastic trend (non-stationary) against the alternative of a
deterministic trend (stationary) is as follows:

P-\
+ n + ~ft + u, u, ~ IID(0, a2) (3.5)

The augmented model can be extended even further to allow for MA parts in
the M,.16 It is generally believed that MA terms are present in many macro-
economic time series after first-differencing (e.g., time average data, an index of
stock prices with infrequent trading for a subset of the index, the presence of
errors in the data, etc.).17 Said and Dickey (1984) developed an approach in

16 For example, u, — e, — 0e,_i, where e, ~ IID(0, a2}.
17 When the MA terms have values close to — 1 , it is well known (Schwert, 1989) that this
affects the size of the ADF test, with the model incorrectly over-rejecting the null of
non-stationarity when it is true (i.e., more often than expected with respect to a type 1
error). Hence, as shown below, it is argued that the lag length in the ADF test needs to
be sufficiently large to capture any MA processes.



TESTING FOR UNIT ROOTS 49

which the orders of the AR and MA components in the error term are
unknown, but can be approximated by an AR(fc) process, where k is large
enough to allow a good approximation to the unknown autoregressive
moving average—ARMA(/?, q)—process, so ensuring that «, is approximately
'white noise'. In terms of the augmented model the Said-Dickey approach can
be approximated by replacing the lag length of (p — 1) with k, with the tech-
nical condition that k increases at a suitable rate as the sample size increases.18

Thus, the ADF test is comparable with the simple DF test, but it involves
adding an unknown number of lagged first differences of the dependent vari-
able to capture autocorrelated omitted variables that would otherwise, by
default, enter the error term ut (an alternative approach to adding lagged
first differences of the dependent variable is to apply a non-parametric correc-
tion to take account of any possible autocorrelation; this is the Phillips and
Perron approach and is discussed in Box 3.1). In this way, we can validly apply
unit root tests when the underlying d.g.p. is quite general. However, it is also
very important to select the appropriate lag length; too few lags may result in
over-rejecting the null when it is true (i.e., adversely affecting the size of the
test), while too many lags may reduce the power of the test (since unnecessary
nuisance parameters reduce the effective number of observations available).
Banerjee et al. (1993) favour a generous parameterization, since '... if too
many lags are present ... the regression is free to set them to zero at the cost
of some loss in efficiency, whereas too few lags implies some remaining auto-
correlation ... and hence the inapplicability of even the asymptotic
distributions in ...' (see Table 3.1 on p. 43).

Suggested solutions to the choice of p in (3.5) involve using a model
selection procedure that tests to see if an additional lag is significant (e.g., if
it increases the value of R2, which in a linear model is equivalent to using the
Akaike information criterion—see, for example, Greene, 2000, p. 306).
However, it was shown in Harris (1992a) that maximizing R2 to choose the
value of p in the ADF test proved to be unsatisfactory; Monte Carlo experi-
ments undertaken using various d.g.p.s (ARMA, AR and MA) suggested that
there were problems with the size of this form of the ADF test. Rather,
choosing a fairly generous value of p (using a formula suggested by Schwert,
1989 that allows the order of autoregression to grow with the sample size T)
resulted in a test with size close to its nominal value (i.e., the model incorrectly
rejected the null when it is true close to the 10%, 5% and 1% times expected on
the basis of making a type 1 error). This is consistent with Banerjee et al.
(1993), and thus Harris suggested that the lag length should normally be
chosen on the basis of the formula reported in Schwert (1989, p. 151): that is
/12 = mt{12(T / 100)1/4}.

18 This is an approximation to the Said-Dickey approach, since the latter does not
include a model incorporating a deterministic trend, while the model with drift (/i 7^ 0)
should necessitate that the first regressor in (3.5) becomes (yt-\ — y], where y is the mean
of y over the sample.
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19Specifically, an additional term 1 -j(l + 1)–1 follows the second summation sign in
the formula for S2

TI.
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More recently, Ng and Perron (1995) argue in favour of a general-
to-specific sequential t-test for the significance of the last lag that has the
ability to yield higher values of p (when there are negative MA errors) rather
than standard lag length selection criteria. Hence this reduces size distortions,
but (as noted in Ng and Perron, 2002) this approach also tends to over-
parameterize when MA errors are not important. Weber (2001) argues in
favour of a speeific-to-general approach whereby p is initially set at a low
value, and then F-tests are conducted for eliminating longer lags from the
model (i.e., the lag length in the ADF regression is set at the smallest p such
that all longer lags up to pmax—where the latter might be obtained using the
Schwert formula—are jointly insignificant).20 The problem for all these
methods of setting p is linked to the type of information-based rule used
when devising and implementing the lag selection criteria. Thus Ng and
Perron (2002) have analysed these various information criterion (e.g., the
Akaike criteria typically used) and have suggested a new modified criterion
that has as a central feature the imposition of the null hypothesis of a unit root
when selecting the lag length. They present evidence that their new procedure
leads to substantial improvements in the size of the unit root test. We will
implement this later (cf. Box 3.3) when discussing the size and power problems
of unit root tests more generally.

20 Weber shows that his specific-to-general approach works well when the true d.g.p. has
few lags, although the Akaike information Criterion (AIC) works better when the lag
length in the true model is longer. Note that he does not deal with the problem of MA
terms with values close to –1, so does not directly consider the problem discussed by
Schwert (1989), Banerjee et al. (1993) and Ng and Perron (2002).
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Table 3.3 Augmented Dickey-Fuller and Phillips-Perron Z-tests of unit roots: UK
money demand data (1963ql–1989q2), seasonally unadjusted.

Variable
(and lag length*)

log Real MI
(lag length)

log TDE
(lag length)

A log/*
(lag length)

R
(lag length)

A log Real MI
(lag length)

A log TDE
(lag depth)

A2 log/>
(lag length)

A/?
(lag length)

Test statistic (see Table 3.2 and

TT

-0.21
(6)

-1.35
(H)

-2.13
(3)

-2.05
(3)

-2.67
(7)

-2.78
( I D

-7.26***
(2)

-6.08***
(2)

Z(TT)

1.48**
(6)

-45.94***
(11)

-16.77
(3)

-8.60
(3)

-117.91***
(7)

-105.56***
(11)

-147.45***
(2)

-84.89***
(2)

rn

-0.48
(6)

0.29
(11)

-2.16
(3)

-2.14
(3)

-2.37
(6)

-2.77**
(11)

-7.26***
(2)

-6.03***
(2)

Zfa)

2.24
(6)

-0.31
(11)

-16.86***
(3)

-9.11
(3)

-115.63***
(6)

-106.12***
(11)

-147.96***
(2)

-84.69***
(2)

Box 3.1)

T

0.88
(7)

3.02
(11)

-0.84
(3)

-0.73
(3)

-2.22***
(6)

-1.56
(9)

-7.29***
(2)

-6.06***
(2)

Z(r)

0.05
(7)
0.06
(11)

-3.87
(3)

-1.26
(3)

-113.76***
(6)

-136.77***
(9)

-148.39***
(2)

-85.19***
(2)

* The lag length was set by AIC + 2 on every occasion (see text for details).
** Rejects the null hypothesis at the 5% level.

*** Rejects the null hypothesis at the 10% level.

The results from using the ADF and Phillips-Perron (PP) Z-tests when
applied to UK money demand data are reported in Table 3.3 (plots of the
actual series are provided in Figure 3.1). Tests applied to the actual series and
each variable in first differences are reported, with the TSP (4.5) econometric
software package providing the required test statistics.21 Note, the r-statistic
based on (3.1) is not really applicable unless the overall mean of the series is
zero (cf. Figure 3.1), although it is included in Table 3.3 for completeness. On
the basis of the ADF test applied to each series in levels, the UK money
demand data appears to comprise a set of 7(1) variables, since we fail to
reject the null of non-stationarity. The PP tests generally confirm this, although
the variable representing real output (log TDE) is found to be a trend-
stationary series, while, inflation is apparently stationary when only a constant

21 The COINT procedure in the TSP software package provides the various forms of the
test statistics as used here; it also calculates for the user the value p that minimizes
the AIC (which in a linear model is equivalent to maximizing ^2). Note, however, that
the actual information criterion used is AIC + 2, in order to avoid the problem of poor
size properties of the test statistic when there are (large) negative MA terms in the d.g.p.
Other packages typically report the ADF r-statistic for various user specified lag lengths
(e.g., PcGive).
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Figure 3.1. (a) log money supply and log real total domestic expenditure (1990 prices);
(b) log real money supply and log prices; (c) interest rate.
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is included in the test regression model.22 When talcing the first difference of
each series (Ay, = y, — j,_i), the results would tend to confirm the hypothesis
that each series is 7(1), as differencing removes the unit root, although there is
some evidence that the real money supply and real output may not be station-
ary after differencing (with reference to the ADF test), suggesting they may
contain two unit roots (i.e., they are 1(2)). As to whether each series is 7(1) or
7(2), this requires testing for more than one unit root (see Box 3.2).

POWER AND LEVEL OF UNIT ROOT TESTS

Choosing the correct form of the ADF model is problematic, and using
different lag lengths often results in different outcomes with respect to rejecting
the null hypothesis of non-stationarity.23 These problems are compounded by
the fact that there are several issues related to the size and power of unit root
tests, especially concerning the small sample properties of these tests.

Blough (1992) was among the first to discuss the trade-off that exists
between the size and power properties of unit root tests.24 The usual require-
ments for a hypothesis test, based on standard statistical inferences, is that the
size of the test should be close to its nominal value (see above) and should have
high power (through consistently rejecting the null when it is false) against at
least some alternatives. However, in finite samples it can be shown that ' . . . any
trend-stationary process can be approximated arbitrarily well by a unit root
process (in the sense that the autocovariance structures will be arbitrarily
close)' (Campbell and Perron, 1991, p. 157). Similarly, any unit root process
can be approximated by a trend-stationary process, especially when the sample
size is small. That is, some unit root processes display finite sample behaviour
closer to (stationary) 'white noise' than to a (non-stationary) random walk
(while some trend-stationary processes behave more like random walks in
finite samples). This implies that a unit root test '... with high power against
any stationary alternative necessarily will have correspondingly high probabil-
ity of false rejection of the unit root null when applied to near stationary
processes' (Blough, 1992, p. 298). This follows from the closeness of the
finite sample distribution of any statistic under a particular trend-stationary
process and the finite sample distribution of the statistic under a difference-
stationary process that approximates the trend-stationary process. Thus,
Blough (1992, p. 299) states that there is a trade-off between size and power

22 This may result from the presence of negative MA terms in the d.g.p.. which has been
shown to affect the size of the PP test.
23 As already noted, if there are large negative MA terms in the d.g.p., then setting too
small a lag length tends to adversely affect the size of the ADF test. Conversely, the
inclusion of unnecessary (nuisance) parameters when the lag length is set too high will
reduce the power of the test.
24 See also the results in DeJong, Nankervis and Savin (1992).



TESTING FOR UNIT ROOTS 55



56 APPLIED TIME SERIES MODELLING AND FORECASTING

in that unit root tests must have either high probability of falsely rejecting the
null of non-stationarity when the true d.g.p. is a nearly stationary process
(poor size properties) or low power against any stationary alternative. 26

The above problem concerning unit root tests, when there is near equiva-
lence of non-stationary and stationary processes infinite samples, is in part due
to using critical values based on the DF asymptotic distribution. The use of
asymptotic critical values based on the strong assumptions of the simple DF
model was also seen to be a limitation when considering the distribution of the
ADF test statistic. Thus, in Harris (1992b) it was suggested that bootstrap
methods may be more applicable when using the ADF test of the unit root.
Essentially, this amounts to replicating the underlying d.g.p. of the variable
itself by sampling from the residuals of the ADF model and obtaining a
sampling distribution (and critical values) for the ADF statistic that is applic-

25 Note that we started testing with d = 3 and the null of non-stationarity was rejected
in every case. The results presented therefore refer to the test of I(2) against I(1). We
also calculated the ADF r-statistic since differenced series often have a mean of zero and
no deterministic trend.
26 Put more technically, the unit root test must have power equal to its size against a
near-stationary process.
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able to the underlying d.g.p. (instead of assuming that the underlying d.g.p. can
be approximated asymptotically by equation (3.1)).

More recently though, there have been significant theoretical improve-
ments in devising unit root tests that in principle have good size and power
properties. The Ng and Perron (2002) approach to using an information
criterion that leads to good size when setting the lag length was discussed
earlier. For improvements in power, Elliott, Rothenberg and Stock (1996)
have shown that the power of the ADF test can be optimized using a form
of de-trending known as generalized least squares (GLS) de-trending (see Box
3.3). Taken together, Ng and Perron (2002) have produced a testing procedure
that incorporates both the new information criterion for setting the lag length
and GLS de-trending. Applying their approach to the data on UK money
demand produces the results presented in Box Table 3.3.1, confirming that
each series is 7(1).

Another development in unit root-testing that is likely to result in an
increasingly powerful test is to use panel unit root procedures (see Chapter
7). This is because the power of the test increases with an increase in the
number of panel groups (i.e., cross sections) as compared with the well-
known low power of the standard DF and ADF unit root tests against near-
unit root alternatives for small samples. Lastly, testing for unit roots is likely to
have low power in the presence of asymmetric adjustment; thus asymmetric
unit root tests have been developed that take account of this possibility (Enders
and Granger, 1998, see Box 3.4).27

STRUCTURAL BREAKS AND UNIT ROOT TESTS

Perron (1989) shows that, if a series is stationary around a deterministic time
trend that has undergone a permanent shift sometime during the period under
consideration, failure to take account of this change in the slope will be mis-
taken by the usual ADF unit root test as a persistent innovation to a stochastic
(non-stationary) trend. That is, a unit root test that does not take account of
the break in the series will have (very) low power. There is a similar loss of
power if there has been a shift in the intercept (possibly in conjunction with a
shift in the slope of the deterministic trend).

If the break(s) in the series are known, then it is relatively simple to adjust
the ADF test by including (composite) dummy variables28 to ensure there are
as many deterministic regressors as there are deterministic components in the
d.g.p. The relevant critical values for unit root tests involving shifts in the trend

27 The power of unit root tests is also likely to be lower if the d.g.p. of a series being
considered exhibits (G)ARCH effects. This is considered in Chapter 8, where we discuss
the results of Seo (1999) in particular.
28 That is, dummy variables that take on a value of (0, 1) to allow for shifts in the
intercept and dummies multiplied by a time trend to take into account any change in the
slope of the deterministic trend.
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29 Note that if we replace Ayt–1 in (3.4.2) with yt–1, the model is known as the TAR
(threshold autoregressive) model; the version used here is known as the momentum
TAR (or MTAR) and is favoured as having more power as a test over the TAR model.
30Enders and Granger (1998) actually specified a less general model (allowing for non-
zero means in the series):

Ay, = I t (p 1 – 1 )(yt–1 - a0) + (1 - I t ) ( p 2 - l)(y t–1 – a0) + ut (3.4.1a)

where a0 is the long-run mean of the series, and:

' i fA"-'-° (3.4.2b)
0 if Ayt–1 <0

That is, they specified that the threshold value should be the mean of yt, while more
recently it has been argued that this is suboptimal and instead the threshold r should be
estimated as set out in Box 3.4.
31 That is, the null is yt = yt –1 + ut ut ~ IID(0.1).
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and/or intercept are found in Perron (1989, 1990). However, it is unlikely that
the date of the break will be known a priori, as was assumed by Perron (1989).
In such situations it is necessary to test for the possibility of a break using
various methods that have been developed in the literature. For example,
Perron (1994) considers breaks in the intercept and/or the trend using additive-
and innovative outlier (AO/IO) approaches (see below), while Zivot and
Andrews (1992) and Banerjee, Lumsdaine and Stock (1992) consider IO
models and develop a recursive, rolling or sequential approach. As Perron
(1994) pointed out, Zivot-Andrews and Banerjee et al. test the joint hypothesis
of a null of a unit root and no break in the series, while his approach is a test of
the unit root hypotheses per se where the change in slope is allowed under both
the null and alternative hypotheses. Thus, we concentrate on the Perron
approach here.32

One version of the AO model allows for an instantaneous change in the
intercept of the deterministic trend of a variable yt and is referred to as the
"crash model'. That is:

yt = m1 + (3t + (M2 – V\]DU t, + vt (3.6)

32 Harris (1995) considered in detail the Banerjee et al. (1992) approach.
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where DU, = 1, if / > Tb and 0 otherwise, and Tb (1 < Tb < T) is a single
break that occurs at an unknown time. Note that y, can be any general
ARMA process, and under the null it will be assumed that it is non-stationary
(i.e., contains a unit root). Another version of the AO model allows both a
change in the intercept and the slope of the trend function to take place simul-
taneously (a sudden change in level followed by a different growth path, such
as a productivity slowdown):

y, = m + Pit + fa - V\}DU, + (02 - 0i)DT* + v, (3.7)

where DT* = t - Tb, if t > Tb and 0 otherwise.
The IO model is similar, but allows for changes to the trend function to be

gradual rather than instantaneous. Thus under the alternative hypothesis that
y, is a stationary variable, the above two AO models would be amended in the
IO case such that the terms [(p,2 - p.\)DUt + v,] and [(//2 — H\)DUt +
(fa — 0\)DT* + vt] in equations (3.6) and (3.7) would be prefixed by the MA
polynomial lag operator B(L) = 90 + &iL + 92L

2 H ----- \- 9qL
q '. This form of

the model therefore permits shifts in the trend function to have a gradual
effect on y,.33

Testing whether there has been a structural break in the IO model is more
straightforward than for the AO model. For the change in intercept (crash)
model, the following regression model is used to test the null that v, is non-
stationary:

P-\
Ay, = ?/;*>',- 1 +

e, ~I ID(0,<7) (3.8)

where D(Tb}t = 1, if / = Tb + 1 (0 otherwise). For the change in intercept and
the slope of the trend (productivity slowdown) model, the following is used:

P-\
Av, = V* y,-\ + T il>i&y,-i + n + 0t + 9DUt + -yDT* + 6D(Th),+ E,

e, ~IID(0,cr2) (3.9)

In the case of the AO models, there is a two-step procedure whereby equations
(3.6) and/or (3.7) are estimated and the error term (v,) is then used in a second-
stage regression:

P-\ P-\
AD, - ^*y,_, + Atv/ + djD(Tb)t_ + e, (3.10)

The test of the models set out in equations (3.6H3.10) of the null that v, is non-
stationary are based on H0: ifr* — 0 against H\: t/?* < 0, and the /-statistics for

33 For more details see Perron (1994).
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these tests depend on the break date Th and the lag length p. To select Tb

endogenously, two basic approaches can be used. The first is to select Tb as the
value, over all possible break dates, that minimizes the /-statistic for testing
ip* — 0. This test then is most favourable to the alternative hypothesis. An
alternative procedure that has become more widely used in the literature on
testing for structural breaks is to select Tb as the value, over all possible break
dates, that maximizes (or minimizes) the value of the /-statistic for testing 7 = 0
in the regression equations (3.6)-(3.10), noting that 7 replaces (/^2 — Mi) m

equation (3.6) and replaces (/32 — fi\} in equation (3.7). In the 'crash' model,
Perron (1994) chooses Tb so as to minimize the value of the /-statistic for
testing 7 = 0 (since he argues we are only interested in sudden crashes); for
the 'slowdown' model he chooses Tb so as to maximize the absolute value of
the /-statistic (i.e., based on the strongest evidence for a structural change). For
the IO model, Harvey, Ley bourne and Newbold (2001) have found that a test
statistic with more power is achieved by choosing the break date as Th + 1,
rather than Tb; we adopt the Harvey et al. (2001) procedure here.34

As an example of the approach, the various test statistics that have just
been discussed were computed using the money demand data considered
earlier. The statistical algorithms for conducting the tests are available as
RATS programs from Pierre Perron (details are available on this book's
website). The choice of lag lengths (p) were based on using the AIC (which
is equivalent here to maximizing R2 in each regression). Results are reported in
Table 3.4, and these show that generally there is little evidence for rejecting the
unit root null even after allowing for the possibility of a break in the series.
Only the inflation series shows that a break may have affected the power of the
ADF test, and by examining the value for 7 and the break dates it appears that
at least one break occurred in 1973 (see Figure 3.1b), although other breaks in
1966 and 1981 are also apparent, suggesting that testing for more than one
structural break may be important for this series. Such tests are being devel-
oped in the literature, which should result in additional power for unit root-
testing (cf. Clemente, Montanes and Reyes, 1998; Ben-David, Lumsdaine and
Papell, 2001).

SEASONAL UNIT ROOTS35

Time series data often come in a seasonally unadjusted form, and it has been
argued that where possible such data are to be preferred to their seasonally
adjusted counterparts, since the filters used to adjust for seasonal patterns
often distort the underlying properties of the data (see sect. 19.6 in Davidson
and MacKinnon, 1993 for some evidence). In particular, there is a tendency for

34 That is, the RATS programmes available from Pierre Perron for conducting the
various IO tests have been amended to choose the break date as Tb + 1.
35 For a thorough treatment of this topic, see Ghysels and Osborn (2001). A more
succinct (and general treatment) is presented in Frances and McAleer (1999).
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Table 3.4 AO and IO ADF tests of unit roots: UK money demand date (1963ql-
1989q2), seasonally unadjusted.

Variable

log Real Ml
log Real Ml
log Real Ml
log Real Ml
logTDE
logTDE
logTDE
logTDE
A log/*
Alog/>
Alog/>
AlogP
R
R
R
R
A log Real Ml
A log Real Ml
A log Real Ml
A log Real Ml
A logTDE
A logTDE
A logTDE
A logTDE
A2 logP
A2 logP
A2log/>
A2 log P
AR
A/?
AR
AR

Model

AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
I0/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown
AO/Crash
AO/Slowdown
lO/Crash
lO/Slowdown

Break I
date 1

(

1973q4
1979q3
1973q2
1979q4
1982q2
1985ql
1974ql
1972q2
1981q2
1973ql
1966q3
1973q2
1985q2
1977ql
1985ql
1985ql
1973q3
1972q4
1973ql
1967q3
1981q3 4
1980q2 A
1973q4 A
1980q3 4
1975q2 1
1975ql 1
1975q2
1975q2
1980q2
1972q3
1977q2
1972ql

-ag v*
ength
P)

1 -0.00
-0.15
-0.01
-0.14
-0.25
-0.21
-0.12
-0.23
-0.38
-0.60
-0.24
-0.56
-0.15
-0.14
-0.18
-0.17
-0.96
-1.02
-0.98
-0.94

1 - .27
\ - .53
\ - .59
\ - .59

- .51
- .49
- .51
- .51
-0.85
-0.85
-0.89
-0.85

/i-

-0.03
-3.98
-0.56
-3.44
-3.81
-3.57
-1.97
-3.59
-4.97**
-7.09**
-3.69
-5.97**
-2.71
-3.12
-3.33
-3.10
-9.71**

-10.49**
-9.75**
-9.41**
-4.34**
-5.02*
-5.17**
-4.69**

-17.72**
-18.11**
-17.47**
-17.38**
-8.61**
-8.69**
-8.82**
-8.45**

">

-0.44
-2.06
-0.04

0.01
-0.04
-0.03
-0.01

0.00
-0.03

0.06
0.01

-0.01
-0.10

0.22
-0.02

0.00
-0.04
-0.05
-0.04

0.00
0.01

-0.04
-0.03

0.01
-0.01
-0.00
-0.01
-0.00
-0.01

0.01
0.00
0.00

/-,

-7.94**
-22.37**
-3.11**

4.17**
-5.49**
-0.27
-1.50

0.38
-8.84**
11.89**

1.51
-3.72**

-12.33**
9.03**

-2.81**
1.65

-3.79**
-3.28**
-3.14**

0.79
1.21

-0.87
-3.30**

2.03**
-1.68
-0.49
-2.74**
-0.44
-2.14**

0.70
0.42
0.39

Critical values are obtained from Perron (1994) for tv- and the Student's /-distribution for /-,.
* Rejects the null at <10% significance level.

** Rejects the null at <5% significance level.

the OLS estimate of pb in the DF test (3.2) to be biased toward 1 when v, is a
seasonally adjusted series, thus rejecting the null hypothesis of non-stationarity
substantially less often than it should according to the critical values in
Table 3.1.

Certain variables (e.g., consumption, spending) exhibit strong seasonal
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patterns that account for a major part of the total variation in the data and
that are therefore important when model-building. Figure 3.2 presents the
evidence for UK real non-durable consumer expenditure over the period
1971q2 to 1993ql. Panel (a) indicates a large seasonal variation across the
year, which explains a considerable amount of the variation in the series,
while panels (b) and (c) show that whereas quarter 4 spending (October to
December) is always higher than spending in the other quarters, there has been
a tendency for the July to September quarter to 'catch up' with quarter 4 from
the mid-1980s. Thus, while such patterns may result from stationary seasonal
processes, which are conventionally modelled using seasonal dummies that
allow some variation, but no persistent change in the seasonal pattern over
time, the drifting of the quarters over time may indicate that deterministic
seasonal modelling is inadequate. That is, the seasonal processes may be
non-stationary if there is a varying and changing seasonal pattern over time.
Such processes cannot be captured using deterministic seasonal dummies since
the seasonal component drifts substantially over time; instead such a series
needs to be seasonal-differenced to achieve stationarity. This is more
complicated than considering the possibility of a unit root (non-stationarity)
at the zero frequency since there are four different unit roots possible in a
seasonal process. To see this, consider seasonal-differencing quarterly data
using the seasonal difference operator A4yt = (1 — L4)y/ = yt — y,_4. Note
that (1 — L4) can be factorized as:

(1 - L4) = (1 - DO + L + L2 + L3) = (1 - L)( l + DO + £2)

L)(\ -iL)(l + iL) (3.11)

with each unit root corresponding to a different cycle in the time domain. The
first (1 — L) is the standard unit root considered so far, at the zero frequency.
The remaining unit roots are obtained from the MA seasonal filter
5(L) — (1 + L + L2 + L3), and these correspond to the two-quarter (half-
yearly) frequency (1 + L) and a pair of complex conjugate roots at the
four-quarter (annual) frequency (1 ± iL). To simplify the interpretation of
the seasonal unit roots, Banerjee et al. (1993, p. 122) show that a simple
deterministic process (1 + L)yt = 0 can be rewritten as yt+2 — >'/ (the process
returns to its original value on a cycle with a period of 2), while (1 — iL)yt = 0
can be rewritten as yt+4 = y, (the process returns to its original value on a cycle
with a period of 4).

Before considering testing for seasonal unit roots, it is useful to note that
Osborn (1990) found only five out of thirty UK macroeconomic series required
seasonal-differencing to induce stationarity, implying that seasonal unit roots
are not encountered very often and macroeconomic time series can typically be
described as 7(1) with a deterministic seasonal pattern superimposed (Osborn,
1990, p. 300). However, others have found more evidence in favour of seasonal
unit roots (e.g., Franses and Vogelsang, 1998 find that seasonal unit roots
were generally present in the real gross domestic product (GDP) series they
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Figure 3.2. Quarterly UK consumer expenditure, seasonally unadjusted, 1971-1993:
(a) actual values; (b) four quarters separately; (c) quarters 2-3 minus quarter 1.
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considered, even after taking into account the possibility of structural breaks).
Second, if all three seasonal unit roots discussed above are actually present,
then no two quarters are cointegrated and '. . . the four quarter series for x go
their separate ways in the long run . . . the presence of seasonal unit roots begs
the question of what sort of economic mechanism would give rise to this failure
of cointegration' (Osborn, 1990, p. 300). A third point to note before proceed-
ing concerns the question of whether the usual ADF tests of the null hypothesis
of a unit root at the zero frequency are valid, even when other unit roots at
other seasonal frequencies are present. Put another way, does the presence of
additional roots at other cycles invalidate the non-seasonal unit root test.
Ghysels, Lee and Noh (1994) show that the usual ADF test is still valid, as
long as a sufficient number of lagged terms are included in the test equation to
take account of the seasonal terms in the data. However, they also show (on the
basis of Monte Carlo experiments) that the test involves serious size distortions
(worse than in the standard ADF case, as discussed earlier).36

To incorporate seasonal integration into the definition of integration at the
zero frequency (see Box 2.4), it is useful to note as above that seasonal-
differencing involves using (1 — L) to difference at the zero frequency d, in
order to remove the zero frequency unit roots, and using the seasonal filter
S(L) to difference at the seasonal frequency D, in order to remove the seasonal
unit roots. Thus, it is said that the stochastic process yt is integrated of orders d
and D (denoted I(d, D)) if the series is stationary after first period-differencing
d times and seasonal-differencing D times. To test the number of seasonal unit
roots in a univariate time series, the common approach is to use the procedure
described in Hylleberg, Engle, Granger and Yoo (1990) — HEGY. The follow-
ing regression is estimated using OLS with tests of the TT, • (/ — 1 , . . . , 4)
amounting to tests for the various unit roots that may be present in the series:37

P-I
+ 7r4Z3>»,_i + Y^ ^i^yt-i + $t + ut ut~ IID(0, a2} (3.12)

i=1

where Dqt is the zero/one dummy corresponding to quarter q and where:

Zi =(l+L + L2 + L3)

Z2 = -(1 -L + L 2 -L 3 )

Z3--(1-L2)

36 This leads Ghysels et al. (1994) to point out: '. . . this faces the practical researcher
with a difficult choice. Namely, either using unadjusted data resulting in tests with the
wrong size, or using adjusted data, with adjustment procedures having adverse effects
on power.'
37 To maximize the power for the non-seasonal unit root, the trend term should be
omitted in those cases where its presence is not economically justified (e.g., when
variables in rates are being considered such as unemployment rates).
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If TTj = 0, then the ( 1 — L) filter is required to remove the unit root at the zero
frequency; if 7r2 = 0, then the ( 1 4- L) filter is needed since the series contains a
seasonal unit root at the two-quarter (half-yearly) frequency; and when
7T3 = 7T4 = 0, then the (1 + L2) filter is needed to remove the seasonal unit
roots at the four-quarter (annual) frequency that correspond to (1± /L) .
Thus, separately testing TT, =0, / = 2, 3, 4, will determine if there are any
seasonal unit roots and at what frequency, while a joint test that
7r2 = 7T3 = 7T4 = 0 will test the null that all seasonal roots are present. Lastly.
a joint test that all the TT, = 0, / = 1, 2, 3, 4, can be used to test the null that all
non-seasonal and seasonal unit roots are present.

Note that the HEGY approach (equation (3.12)), like the standard DF-
type approach when only the zero frequency is considered, allows for only one
unit root at the zero frequency. That is, we test against a null that at most series
is 1(1). If y, is 1(2), then (3.12) will not encompass this higher number of unit
roots at the zero frequency, and as in the standard DF test it is argued that we
need a testing procedure that tests down from the higher to lower orders of
integration (cf. Box 3.2 and the Dickey and Pantula, 1987 approach). Franses
and Taylor (2000) provide such a testing procedure for determining the order
of differencing in seasonal time series processes, while Osborn (1990) provided
a HEGY-type test that allows for y, ~ 1(2):

A4A>v = a\D\t + a2D2, + 0:37)3,
P-I

+ TTiZi&y,-2 + 7r4Z3A>>,_1 + y^ ifrjAtAyt-j + u, u, ~ IID(0. a2)
1=1

(3.13)

As can be seen, the essential difference between equations (3.12) and (3.13) is
that A}?, rather than y, enters the test equation, so allowing for more than one
unit root at the zero frequency since, if TT, = 0, then y, ~ 7(2). However, da
Silva Lopes (2001) provides an example where starting from the 7(2) situation
and using either the Osborn (1990) or more general Franses and Taylor (2000)
approach leads to a serious loss of power when testing, because over-
differencing to encompass the 7(2) situation often produces long autoregres-
sions (i.e., nuisance parameters) in the test equation in order to avoid residual
autocorrelation problems. The result of this serious power loss is often spur-
ious evidence for (non-seasonal and seasonal) unit roots. Therefore, as a
practical (if not strictly theoretically correct) solution da Silva Lopes (2001)
suggests starting with the standard Dickey and Pantula (1987) approach (see
Box 3.2) that allows y, ~ 7(2), ignoring the possibility of seasonal unit roots to
begin with, and, if this is not rejected, then proceeding with the approaches
advocated by Osborn and Frances and Taylor. Otherwise, if y, ~ 7(2) is
rejected, then da Silva Lopes suggests using the standard HEGY-type test
(equation (3.12)) that allows for unit roots at the seasonal and non-seasonal
frequencies. He produces some Monte Carlo simulations as evidence that this
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approach often has higher power as a testing strategy than the more general
approaches.

Previous work using UK data has considered whether the consumption
function comprises variables with seasonal unit roots (cf. Osborn, Chui, Smith
and Birchenall, 1988).38 The variables considered are real non-durable con-
sumers' expenditure (real C), real personal disposable income (real Y), the
inflation rate (TT) and end-of-period real liquid assets (real W). These series
are plotted in Figure 3.339 and exhibit a clear seasonal pattern, especially
real consumption (see also Figure 3.2) and real liquid assets. Estimating
(3.12) gave the results set out in Table 3.5. Lag lengths were set using the
procedures outlined in Ng and Perron (1995) starting from a maximum
length of 11. We test both including and excluding the trend term. Based on
the results that include a deterministic trend, real consumers' spending appears
to have a zero frequency unit root (we cannot reject TTJ = 0) and a seasonal unit
root at the two-quarter frequency (we cannot reject 7T2 = 0), but seasonal unit
roots at the four-quarter frequency are absent (since we can reject
7r3 — 7r4 = 0). The last two columns in Table 3.5 for the first row of results
confirm that not all seasonal unit roots are present and that not all unit roots
(non-seasonal and seasonal) are present. If the deterministic trend is omitted,
then the results for real consumer-spending suggest that there may be seasonal
roots at the four-quarter frequency, although the last two columns, which
report the joint tests, indicate that not all (seasonal) unit roots are present.
Given that a trend term should probably be included to allow for growth, it is
likely that the first set of results are more reliable.

The results for real personal disposable income suggest that this variable is
7(1) and contains no seasonal unit roots. In contrast, real liquid assets has both
seasonal and non-seasonal unit roots, although it is unclear from the results
which seasonal roots are present since the individual tests for the two-quarter
and four-quarter frequencies do not reject the null, while the overall joint tests
suggest that not all (seasonal) roots are present. Finally, inflation (based on the
results excluding a deterministic trend) has both a non-seasonal unit root and a
root at the half-yearly frequency (the results based on including the trend term
allow for the rejection of the zero frequency unit root at the 5% level).

38 The data is available from the UK Office for National Statistics (ONS) databank and
is described in the appendix to the Osborn et al. (1988) paper. Note that total non-
durable consumption is used here without excluding any components.
39 All the variables are converted into natural logarithms. This transformation is
standard, and there are important reasons for preferring a model comprising logged
variables (Frances and McAleer, 1999, note that exponential growth in levels becomes
linear growth, the variance of each series can be stabilized, outliers are less influential
and a constant elasticity form of the model is obtained. However, the unit root
properties of the data are affected by the log transformation, and we can get different
outcomes depending on whether y, or logy, is used. See Frances and McAleer (1998) for
more details and a testing procedure.
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(a)
real Y

realC

10.6

(b)

- 8.0

90 93

-6.5

Figure 3.3. Quarterly UK consumption function data, seasonally unadjusted, 1971-
1993: (a) log of real income and non-durable consumption; (b) log of real wealth and
annual retail inflation rate [TT = log(/>, — pt-^)\-

It is reasonable to conclude that all the variables considered are /(1,1),
except for real personal disposable income which is 7(1,0). As a check, stan-
dard ADF tests were undertaken based on (3.5) and (3.3.1 in Box 3.3). These
confirm that each series contains a unit root at the zero frequency, providing
support for the results obtained using (3.12). Osborn et al. (1988) (using similar
unadjusted quarterly data for 1955-1985) report that real W, n and real Y are
7(1,0), while real C was tentatively classified as 7(1.1).

STRUCTURAL BREAKS AND SEASONAL UNIT ROOT TESTS

As in the case with unit root-testing at the zero frequency, if structural breaks
are present but are not incorporated into the test regressions, HEGY-type
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Table 3.5 Seasonal unit roots tests: UK consumption function data (1971q2-1993ql)
based on equation (3.12)).

Variable

Trend included
real C
real Y
real W
VT

No trend
real C
real Y
real W
vr

Trend included
5% critical value
1% critical value

No trend
5% critical value
1% critical value

Lag
length

3
7
7

10

8
7
7
3

TTl

-2.93
-2.27
-3.00
-3.49**

-0.11
0.37

-2.75
-1.36

-3.37
-3.97

-2.81
-3.43

7T2

-2.51
-3.64
-2.08
-2.10

-1.60
-3.79*
-2.13
-2.51

-2.81
-3.41

-2.80
-3.40

7T3 H 7T4

28.48**
8.30*
5.08
7.21**

6.28
7.46**
4.82

12.26*

6.57
8.86

6.62
8.94

7T2 fl 7T3 n 7T4

41.61*
16.78
10.09
10.92*

9.02*
15.89*
9.87*

20.19*

6.03
7.86

6.04
7.93

7T( n 7T2 fl 7T3 fl 7T4

44.06*
17.91*
17.64*
12.34*

9.01*
15.83*
15.69*
20.52*

6.47
8.26

5.70
7.42

Note all critical values are taken from Frames and Hobijn (1997)—see Table A.5 in the Statistical
Appendix.

* Reject null at 5% significance level, but not 1%.
** Reject null at 1 % significance level.

seasonal root tests are biased toward finding too many unit roots (i.e., they
suffer from low power). Recent analysis by Smith and Otero (1997), Franses
and Vogelsang (1998) and Harvey, Ley bourne and Newbold (2002) have ex-
tended seasonal unit root-testing to allow for one or more of the seasonal
dummy variable coefficients (the Dqt) to exhibit structural change (i.e., a shift
in the mean).40 Assuming that there is a single break that occurs at an
unknown time TB (where 1 < TB < T), Franses and Vogelsang (1998)
assume the following model under the null hypothesis:41

u, ut ~ IID(0, a2)

(3.14)

40 Smith and Taylor (2001) have also extended the recursive and rolling regression-based
tests for breaks based on Banerjee et al. (1992) to cover seasonal unit roots.
41 Note that this version of the model under the null hypothesis refers to the AO model,
where any shift in the seasonal means is immediate in the effect on yt. An alternative
specification is the IO model, where the right-hand side of equation (3.14) would
be enclosed in brackets and prefixed by the MA polynomial lag operator
B(L) = (90 + 0iL + 62L

2 -\ ---- + eqLi. This form of the model therefore permits shifts
in the seasonal means to have a gradual effect on yt.
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where
f

= {
1

1 (t> TB)v ' q=\ ..... 4
0 (t<TB)

The model therefore comprises a non-seasonal and three seasonal unit roots
(since A4yt = (1 — L4)y, = y, — y,_4 and equation (3.1 1) shows how this can be
factorized into four distinct unit roots), while also allowing for a structural
break in each season at time TB through the DUqt dummies.

In order to test this null hypothesis of an AO break in the seasonal means,
Franses and Vogelsang (1998) use a two-step procedure comprising, first.
estimation of:

y, = a\D\, + a2D2, + a3Z)3, 4- a4D4l + 8\DU\, + 62DU2l

+ 84DU4t + e,
4 4

= Y^<*qDq, + ^26qDUqt + e< (3.15)
q=\ q=\

and then estimating a HEGY-type equation using the residuals from (3.15):

P-\
A4e, = ic\Z\et-\ +

4

,- + e, (3.16)
q=\

As explained by Franses and Vogelsang (1998), the dummy variables &4DUqt

and A4Z>t/4,_, are included for essentially technical reasons concerning the
limiting distributions in the AO model. The tests of TI^ = 0 (the unit root at
the zero frequency), 7r2 = 0 (a seasonal unit root at the two-quarter (half-
yearly) frequency), and ?r3 — yr4 = 0 (the seasonal unit roots at the four-
quarter (annual) frequency) can be used in the usual way to test the null that
non-seasonal and seasonal unit roots are present. The associated test statistics
can be denoted /] and t2 for the f-statistics for TT{ and 7T2, and F34 for the F-test
that 7T3 — 7T4 = 0.

To test the null hypothesis of an IO break in the seasonal means, Frances
and Vogelsang (1998) estimate the following:

P-\

+ Vt (3' l 7)
q=\ q=\ q=\

and again the test statistics of interest are denoted t\ and /2 for the ^-statistics
for TTi and yr2, and F34 for the F-test that ?r3 = 7r4 = 0. The break date TB is
estimated endogenously, and there are essentially two options available: (i)
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base TB on the value of ft, t2 and F34, which is least favourable to the null that
TT, = 0,7T2 = 0 or 7T3 = 7r4 = 0; or (ii) choose the break date that maximizes the
significance of the seasonal mean shift dummy variable coefficients in equations
(3.16) or (3.17). The second approach is argued to have the better size and
power properties and is denoted:

:ffl = argmaxf}j(7a) (3.18)

Harvey et al. (2002) undertook various Monte Carlo simulations using (3.18)
for the AO and IO models and find that, when the IO model is used with
quarterly data, equation (3.18) needs to be modified by adding 4 to the
right-hand side (i.e., choose the break date four observations later than
(3.18) would suggest).

The UK consumption function data discussed in the last section were used
to estimate equations (3.11)-(3.13).42 Lag lengths were set using the procedures
outlined in Ng and Perron (1995) starting from a maximum length of 11. We
test both including and excluding the trend term. Note that critical values
(based on Monte Carlo simulations of the null that A4y, = et, where
•et ~ IID(0,1)) are only available in Harvey et al. (2002) for the model with
no trend and the lag length set to zero. Thus, we calculated our own critical
values based on 10,000 replications of the null, with T = 88 and allowing the
lag length to be determined endogenously using the Ng and Perron (1995)
approach.43 The results are reported in Table 3.6. There is clearly some varia-
tion with the test outcomes, based on whether the AO or IO model is used, with
or without a deterministic trend included. For real consumer-spending, there is
evidence of a break around the end of 1985 (see Figure 3.2a), although the
results are generally in line with those reported in the last section, when the
HEGY model was estimated without allowing for structural change: the vari-
able appears to have a zero frequency unit root (we cannot reject -K\ = 0) and a
seasonal unit root at the two-quarter frequency (we cannot reject 7T2 = 0), but
seasonal unit roots at the four-quarter frequency are absent (since we can reject
7T3 = 7T4 = 0). The results for real personal disposable income confirm that this
variable is 1(1}—although the AO model with trend rejects the null of a unit
root at the zero frequency—and the IO model suggests there are no seasonal
unit roots at the two-quarter frequency (but there are at the four-quarter
frequency, which is in contrast to the results reported in Table 3.5). Broadly,
the results for real liquid assets confirm the earlier tests for unit roots without a
break, with this variable having both seasonal and non-seasonal unit roots.
Lastly, the IO model without a trend confirms that inflation has both a

42 David Harvey kindly supplied us with his Gauss code in order to estimate the AO and
IO models. We have included this on the book's website (along with an amended version
that produces new sets of critical values).
43 Only the critical values obtained with the lag length set by the Ng and Perron
approach are reported, although these are not very different when the lag length is set to
zero.



74 APPLIED TIME SERIES MODELLING AND FORECASTING

Table 3.6 Seasonal unit roots tests with a break in the mean: UK consumption func-
tion data (1971q2-1993ql) (based on equations (3.9H3.H)).

Variable Model Lag length Break date

RealC
RealC
Real C
RealC

Real Y
Real Y
Real Y
Real Y

Real W
Real W
Real W
RealW

7T

7T

7T

7T

Critical values
5%
1%
5%
1%
5%
1%
5%
1%

AO/T
AO/NT
IO/T
IO/NT

AO/T
AO/NT
IO/T
IO/NT

AO/T
AO/NT
IO/T
IO/NT

AO/T
AO/NT
IO/T
IO/NT

AO/T
AO/T
IO/T
IO/T
AO/NT
AO/NT
IO/NT
IO/NT

3
0
3
8

6
2
7
7

0
7
7
7

4
4

10
3

1986ql
1985q3
1985q3
1985q3

1987q3
1985ql
1988q3
1977q4

1978q2
1988ql
1988q4
1988q4

1982ql
1982ql
1979ql
1976q3

-3.45
-0.75
-4.00
-1.38

-4.54*
-1.18
-1.98

0.17

-2.28
-3.25
-2.85
-2.26

-3.30
-3.53**
-4.83*
-1.74

-3.89
-4.54
-4.08
-4.65
-3.46
-4.06
-3.56
-4.18

-2.47
-3.95**
-2.61
-1.48

-3.32
-3.43
-3.82**
-4.37*

-3.97**
-1.92
-1.57
-1.56

-3.15
-3.24
-4.60*
-2.93

-3.53
-4.11
-3.59
-4.22
-3.49
-4.07
-3.59
-4.23

17.33*
56.47*
19.95*
6.42

9.72
13.53*
6.35
8.08

13.73*
9.12
6.04
5.66

7.11
7.19

12.90**
29.72*

10.40
13.44
10.28
13.26
10.17
13.10
10.33
13.56

Note all critical values are based on 10,000 replications with T = 88, lag lengths are set by the Ng
and Perron (1995) method and f^y, = £,, where e, ~ HD(0,1).
AO = Additive outlier model; IO = Innovative outlier model; T = Trend included: NT = No
trend.

* Reject null at 5% significance level, but not 1%.
** Reject null at 1% significance level.

non-seasonal unit root and a root at the half-yearly frequency, although in
general those estimating models that allow for a shift in the seasonal means
produce mixed results.

PERIODIC INTEGRATION AND UNIT ROOT-TESTING

The HEGY model for testing (seasonal and non-seasonal) unit roots assumes
time-invariant parameters with respect to the seasons covered. If it is assumed
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that the observations on a variable yt can be described by a different model for
each quarter, the result is a periodic autoregressive model (PAR), comprising
an equation for each season:

or more concisely as:

yt = Ht + 4>i,qyt-\ H ----- h <j>P,qyt-p + £t (3.1 9)

Note that the //, comprises the deterministic variables in the model (seasonal
dummies and separate seasonal time trends).44 The PAR(/?) model for a quar-
terly time series has four times the number of autoregressive parameters than
are included in a non-periodic AR(p) model, and therefore there is a practical
limit when setting the order of p in equation (3.19). Frances and McAleer
(1999) point out that PAR(2) or PAR(3) models often suffice where an
AR(8) or AR(12) model would be required for the same time series.

To test for a single unit root within a periodic setting, Boswijk and Franses
(1996) show that (3.19) can be rewritten as the following regression, whereby
the a,q parameters are embedded non-linearly in the model:

4 p-l 4

y, = ^aqDqtyt,{ + J^^/VM^'-i - aqyt-i-\)
q=\ i=l <?=!

If aia2 0:304 = 1 (i.e., Y[4
q=l aq = 1), there is a single unit root. The test for this

hypothesis is based on a likelihood ratio test LR = T log(RSSr/RSSM), where
RSS is the residual sum of squares in the restricted (r) and unrestricted (w)
versions of equation (3.20). This test is distributed under the Johansen (1988)
distribution,45 which will be considered in Chapter 5. If this restriction holds
(i.e., I70=i aq — 1)> then it is possible to test H0: a} = a2 = a3 = 1, and if this is
not rejected, then yt has a zero frequency unit root. Similarly, if HQ\
a} — a2 — c*3 = — 1 cannot be rejected, yt has a seasonal unit root — 1. Both
these tests follow a %2(3) distribution. If both of these null hypotheses are

44 That is, /., - £j=1 nqDgt + Ej=, rqDqtt.
45 As will be seen in Chapter 5, the Johansen A-max test for cointegration is based on
testing that the rank of the cointegration space is r versus r + 1 . In this instance, the test
statistic amounts to a test of rank 3 versus rank 4 (appropriate critical values that
depend on the deterministic elements included in the model are provided in Tables A 10-
A12 in the Statistical Appendix at the end of the book).
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Table 3.7 Periodic unit roots tests: UK consumption function data (1971q2–1993q1)
(based on equation (3.16)).

Variable LR-statistic H0: a1 = m — <*3 = 1 H0: a1 = 0 2 = a? = -1

real C
real Y
real W
7T

0.07
1.63
6.14
1.01

0.93
2.67
2.88
0.01

381. 14a

2886.20a

26.06a

27.07a

Note the critical values for the LR test are based on Table A.11 in the Statistical Appendix at the
end of the book, while the other tests have a standard x2(3) distribution.
a Reject null at 1% significance level.

rejected (i.e., not all the aq are equal to 1), then y, is periodically integrated of
order 1.46

Using UK consumption function data, equation (3.20) was estimated using
the non-linear least squares regression algorithm available in TSP 4.5; the
results are reported in Table 3.7. In all instances, a PAR(3) was used
(which on the basis of diagnostic tests seems to be adequate) and the seasonal
trends were omitted as they proved insignificant (as well as producing
implausible results). The results show that both H0: 0^=1 ag — 1 and H0

:

c*1 = OLI = <*3 = 1 cannot be rejected, while H0: ai = a2 = a3 = -1 is clearly
rejected, suggesting that each of these variables has only a zero frequency unit
root.

CONCLUSION ON UNIT ROOT TESTS

This chapter has shown that, while in principle it is necessary to test for the
presence of unit roots in order to avoid the problem of spurious regression, this
is by no means a simple exercise. An appropriate testing strategy is based on
de-trending the ADF test with the lag structure set by Ng and Perron's (2002)
new information criterion. This procedure needs to be amended if there is any
evidence of structural breaks in the series under examination, and a testing
procedure along the lines outlined in Perron (1994) should then be followed.
Similarly, when using seasonally unadjusted data exhibiting strong seasonal
patterns that may be changing over time, it is necessary to amend the ADF-
type test to allow for possible seasonal unit roots. However, Osborn (1990)

46 Note that Ghysels, Hall and Lee (1996) develop tests for the hypothesis (that all the
aq are equal to 1) that do not require the restriction ]T^=i a, = 1. Moreover, Boswijk et
al. (1997) allow for more than one unit root and develop a more testing framework that
allows for 7(2) processes as well as more general testing of non-seasonal and seasonal
unit roots. Franses (1994) has developed a multivariate approach (based on the
Johansen methodology discussed in Chapter 5) that allows separate tests of hypotheses
for zero, seasonal and periodic processes. The latter approach will be considered after
the Johansen model has been introduced.
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suggested that seasonal unit roots are not encountered very often and macro-
economic times series can typically be described as I(1) with a deterministic
seasonal pattern superimposed.

Clearly, the most important problem faced when applying unit root tests is
their probable poor size and power properties (i.e., the tendency to over-reject
the null when it is true and under-reject the null when it is false, respectively).
This problem occurs because of the near equivalence of non-stationary and
stationary processes in finite samples, which makes it difficult to distinguish
between trend-stationary and difference-stationary processes. It is not really
possible to make definitive statements like 'real GNP is non-stationary'; rather,
unit root tests are more useful for indicating whether the finite sample data
used exhibit stationary or non-stationary attributes.47

47 Note also that, if anything, the problems of the size and power of the test are even
worse in seasonal unit root models (Ghysels et al., 1994).
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Cointegration in Single Equations

THE ENGLE—GRANGER (EG) APPROACH

In discussing cointegration in Chapter 2, it was shown that if two time series yt

and xt are both I(d), then in general any linear combination of the two series
will also be I(d); that is, the residuals obtained from regressing yt on xt are
I(d). If, however, there exists a vector /5, such that the disturbance term from
the regression (et = yt — /3xt) is of a lower order of integration, I(d — b), where
b > 0, then Engle and Granger (1987) define yt and xt as cointegrated of order
(d, b). Thus, if yt and xt were both I(1), and et ~ I(0), the two series would be
cointegrated of order CI(l, 1). This implies that if we wish to estimate the long-
run relationship between yt and x, it is only necessary to estimate the static
model:1

yt = pxt + e, (4.1)

Estimating (4.1) using ordinary least squares (OLS) achieves a consistent2

estimate of the long-run steady state relationship between the variables in
the model and all dynamics and endogeneity issues can be ignored asymptotic-
ally. This arises because of what is termed the 'superconsistency' property of
the OLS estimator when the series are cointegrated. Before discussing this,
recall the following simple dynamic model of short-run adjustment (cf. (2.11)):

y, = 7o.xr + 71 x/-] + oy,_i + ut (4,2)

This can be rewritten as:

yt = fix, + AiAx, + \2&y, + v, (4.3)

1 The issue of whether the model should include an intercept or an intercept and time
trend will be discussed in this section when considering the testing strategy for
determining whether et
2 That is, as T — >• oo, the estimate of /3 converges to the true f3 (denoted plim J3 •= /3).
Any bias (and its variance) in finite samples should tend to zero as the sample size T
tends to infinity.
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where /? = (79 + 7i/l - a), A! = -(71 /I - a), A2 = -(a/l-a) and
v, = (ut/\ — a). Thus, estimating the static model (4.1) to obtain an estimate
of the long-run parameter (3 is equivalent to estimating the dynamic model (4.3)
without the short-run terms AJC,, Ay,. According to the 'superconsistency'
property, if y, and x, are both non-stationary I(1) variables and E, ~ I(0),
then as sample size T gets larger the OLS estimator of 3 converges to its
true value at a much faster rate than the usual OLS estimator with stationary
7(0) variables (Stock, 1987). That is, the I(1) variables asymptotically dominate
the 7(0) variables A.x,, A>', and E,. Of course, the omitted dynamic terms (and
any bias due to endogeneity) are captured in the residual E,, which will
consequently be serially correlated.3 But this is not a problem due to
'superconsistency'.

Nevertheless, in finite samples, it has been shown that bias is a problem,
and this will be discussed in this section. Moreover, Phillips and Durlauf (1986)
have derived the asymptotic distribution of the OLS estimator of 3 and its
associated t-statistic, showing them to be highly complicated and non-normal
and thus invalidating standard tests of hypothesis. Thus, so far we have noted
that there are problems of finite sample bias and an inability to draw inferences
about the significance of the parameters of the static long-run model. A sep-
arate issue is whether tests of cointegration based directly on the residuals from
(4.1) have good power properties (i.e., they do not under-reject the null when it
is false).

To test the null hypothesis that yt and xt are not cointegrated amounts, in
the Engle—Granger (EG) framework, to directly testing whether E, ~ I(1)
against the alternative that E, ~ I(0). There are several tests that can be
used, including the Dickey-Fuller (DF) and augmented Dickey-Fuller
(ADF) tests discussed at length in the last chapter (comparable Z-tests by
Phillips, and Phillips and Perron (PP), are also commonly used, but Monte
Carlo work suggests they have poorer size properties and thus they will not be
explored here—see Box 3.1). Essentially, Engle and Granger (1987) advocated
ADF tests of the following kind:

P-\
2} (4.4)

where the E, are obtained from estimating (4.1). The question of the inclusion
of trend and/or constant terms in the test regression equation depends on
whether a constant or trend term appears in (4.1). That is, deterministic com-
ponents can be added to either (4.1) or (4.4), but not to both. As with the testing
procedure for unit roots generally (cf. Chapter 3), it is important to include a
constant if the alternative hypothesis of cointegration allows a non-zero mean
for E,(= y, — 0xt), while in theory a trend should be included if the alternative
hypothesis allows a non-zero deterministic trend for E,. However, Hansen

3 If there is a simultaneity problem, then E(xt, ut) ^ 0 is also true.
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(1992) has shown on the basis of Monte Carlo experimentation that, irrespec-
tive of whether et contains a deterministic trend or not, including a time trend
in (4.4) results in a loss of power (i.e., leads to under-rejecting the null of
no cointegration when it is false).4 Since, it is generally unlikely that the s,
obtained from estimating (4.1) will have a zero mean and given Hansen's
results, this form of testing for cointegration should be based on (4.1) and
(4.4) with 6 set equal to zero.

As with univariate unit root tests, the null hypothesis of a unit root and
thus no cointegration (H0: -0* = 0) is based on a t-test with a non-normal
distribution. However, unless (3 is already known (and not estimated using
(4.1)), it is not possible to use the standard DF tables of critical values.
There are two major reasons for this: first, because of the way it is constructed
the OLS estimator 'chooses' the residuals in (4.1) to have the smallest sample
variance,5 even if the variables are not cointegrated, making the et appear as
stationary as possible. Thus, the standard DF distribution (cf. Table 3.1) would
tend to over-reject the null. Second, the distribution of the test statistic under
the null is affected by the number of regressors (n) included in (4.1). Thus,
different critical values are needed as n changes. Since the critical values also
change depending on whether a constant and/or trend are included in (4.4) and
with the sample size, there is a large number of permutations, each requiring a
different set of critical values with which to test the null hypothesis.

Fortunately, MacKinnon (1991) has linked the critical values for particu-
lar tests to a set of parameters of an equation of the response surfaces. That is,
with this table of response surfaces (see Table 4.1 for an extract), and the
following relation:

oo + ^r- '+fcr2 (4.5)

where C(p) is the p per cent critical value, it is possible to obtain the appro-
priate critical value for any test involving the residuals from an OLS equation
where the number of regressors (excluding the constant and trend) lies between
1 < n < 6. For instance, the estimated 5% critical value for 105 observations
when n — 3 in (4.1) and with a constant but no trend included in (4.4) is given
by ( - 3.7429 - 8.352/105 - 13.41/1052) « -3.82. Thus, reject the null of no
cointegration at the 5% significance level if the t-value associated with 0* is
more negative than —3.82. Note also that the critical values calculated with
n — \ will be the same as those given in Table 3.1 for the univariate DF test.

The residual-based ADF test for cointegration that has just been discussed
assumes that the variables in the OLS equation are all I(1), such that the test
for cointegration is whether et ~ I(1) against the alternative that e, ~ I(0). If
some of the variables are in fact 7(2), then cointegration is still possible if the

4 Including or excluding the time trend in the model appears to have little effect on the
size of the test (i.e., over-rejecting the null when it is true).
5 The OLS estimator minimizes the (sum of the squared) deviations of the it from the
OLS regression line obtained from y, = (3xt (i.e., OLS obtains /3 that will minimize a2).
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Table 4.1 Response surfaces for critical values of cointegration tests.

n Model % point

1

1

1

3

No constant, no trend 1
5

10

Constant, no trend 1
5

10

Constant + Trend 1
5

10

Constant, no trend 1
5

10

-2.5658
-1.9393
-1.6156

-3.4336
-2.8621
-2.5671

-3.9638
-3.4126
-3.1279

-4.2981
-3.7429
-3.4518

-1.960
-0.398
-0.181

-5.999
-2.738
-1.438

-8.353
-4.039
-2.418

-13.790
-8.352
-6.241

-10.04
0.0
0.0

-29.25
-8.36
-4.48

-47.44
-17.83
-7.58

-46.37
-13.41
-2.79

Source: MacKinnon (1991).

I(2) series cointegrates down to an 7(1) variable in order to potentially co-
integrate with the other I(1) variables (see Box 2.4). However, Haldrup (1994)
shows that the critical values for the ADF test will now depend (particularly in
small samples) on the number of 7(1) and 7(2) regressors in the equation.
Consequently, at the time of testing for cointegration when there is a mix of
7(1) and 7(2) variables, the critical values provided in Haldrup (1994, table 1)
must be used.6

A potential problem with using the ADF test can now be considered
(although for simplicity of exposition the DF test that involves no lagged
values of the dependent variable is presented). Kremers, Ericsson and
Dolado (1992) examine the common factor 'problem' of the DF statistic (a
problem that applies to any single equation unit root-type cointegration test,
such as the Phillips Z-test). Suppose the underlying data-generating process
is given by (4.2), with the residuals from (4.1) used to test the null of no
cointegration. The DF test comprises:

A£, = iblt-i + ^i (4.6)

6 For instance, he gives the example (which is also used later on—see equation (4.11)) of
testing for cointegration in the UK money demand function, where mt and pt are
potentially 7(2). In a test in which homogeneity is not imposed (i.e., m, and p, are not
combined into (mt — pt)) so that the OLS regression comprises m = 3$ + 3\p + 3iy -
/?3/? + e, there is one 7(2) regressor and therefore Haldrup's table 1 must be used with
m\ = 2 and m2 = 1.
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which can be rewritten to obtain the equivalent error correction model (ECM)
(evaluated at 0 = /3):

A( y, -

or

But this is not the unrestricted ECM underlying (4.2); this can be shown to be
given by (cf. equation 2.13):

(1 - a)[y,_i - /3x,_i] + w, (4.8)

For (4.8) to be the same as (4.7), it is necessary to impose (7] = —700), since
then (4.2) can be rewritten as:

(1 - aL)yt = (70 + 7iL)xt + u, }
? (4.9)

or (1 - aL)yt = 70 (1 - aL)xt + u, J

and both sides of this equation contain the common factor (1 — aL). What the
DF test imposes through the common factor restriction in (4.9) is that the
short-run reaction of yt to a change in xt (i.e., 70) now becomes the same as
the long-run effect (i.e., J3) that would occur if the model were in equilibrium.7

Kremers et al. (1992) point out that if invalid (as is often likely), this restriction
imposes a loss of information (and so a loss of power) relative to a test, say,
based on the unrestricted ECM.8

So why is the EG procedure so popular, given that: (i) this test for co-
integration is likely to have lower power against alternative tests; (ii) that its
finite sample estimates of long-run relationships are potentially biased; and (iii)
inferences cannot be drawn using standard t-statistics about the significance of
the parameters of the static long-run model? First, it is of course easy to
estimate the static model by OLS and then perform unit root tests on the
residuals from this equation. Second, estimating (4.1) is only the first stage
of the EG procedure, with stage 2 comprising estimating the short-run ECM
itself using the estimates of disequilibrium (et-\) to obtain information on the
speed of adjustment to equilibrium. That is, having obtained (et-\ — >Vi —
4x,_i) from (4.1), it is possible to estimate:

A>v = 70 Ax, - (1 - a)et-\ + u, }

or A(L)Ayt = B(L)Ax, - (1 - 7r)e,_i + u )

7 Note that in (4.9) the long-run elasticity between Y and X is (3 — [70(1 -aL)/
(1 - oiL}\ — 70, assuming that a < I (which is necessary for the short-run model to
converge to a long-run solution).
8 They also point out that when using the ADF version of the test, it may be necessary
to have a lag length longer than that required in the ECM in order to generate white
noise errors, which may lead to poorer size properties (i.e., the likelihood of over-
rejecting the null when it is true) for the ADF test than a test (outlined in Box 4.2) based
on the unrestricted ECM.
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where the second form allows for a general dynamic structure to be determined
by the data (see the discussion of (2.14)). Note also that if yt and xt are I(1) and
cointegration between them exists (thus e, ~ I(0)), then all the terms in (4.10)
are 7(0) and statistical inferences using standard t- and F-tests are applicable.

To illustrate the approach, estimating static demand for money equations
using seasonally unadjusted data for 1963ql to 1989q2 produced the following
results:9

m = 0.774/7 -f 1. 2 \2y - 3. 4487?- 2.976 + e\ R2 = 0.99.7)^ = 0.33

(4.1 la)

m-p = 0.769 A/? + 0.409^ - 3.9817? + 6.682 -f £2 R2 = 0.69. DW = 0.24

Using (4.4), with n — 6 = 0 imposed, the residuals e\ and £2 were tested for a
unit root under the null hypothesis of no cointegration. The value of p was set
by both the Akaike information criterion (AIC) (i.e., equivalent to the max-
imizing R2 approach) and by the formula suggested in Schwert (1989): both
produced a similarly long lag length for the ADF test and consequently similar
results. The r- value associated with testing the null hypothesis (that HQ:ij)* =0
based on the e\) is —1.56, while the corresponding test statistic for £2 is —2.62.
The critical value for rejecting the null is obtained from Table A.6 and in both
instances is —3.09 (at the 10% significance level).10 These results indicate that
there is no long-run stable relationship for money demand. As will be seen, this
is in contradiction to some of the results from other tests of cointegration.

TESTING FOR COINTEGRATION WITH A
STRUCTURAL BREAK

As with the case of testing for unit roots when there has been a structural
break(s), the EG approach will tend to under-reject the null of no cointegration
if there is a cointegration relationship that has changed at some (unknown)
time during the sample period. That is, a test for cointegration that does not
take account of the break in the long-run relationship will have low power.

Gregory and Hansen (1996)—hereafter GH—have extended the EG model
to allow for a single break in the cointegration relationship. Rewriting equation

9 The data are the same as that used previously (e.g., see Figure 3.1) and are based on
Hendry and Ericsson (1991). The statistical sources used are discussed by Hendry and
Ericsson, although they concentrate on using seasonally adjusted data. The data are
reproduced in the Statistical Appendix at the end of the book.
10 The critical value from Haldrup (1994, table 1), for the case where homogeneity is not
imposed (4.1 la) and m, and pt are both potentially I(2), is -3.93 (at the 10% level).
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(4.1) with the /3-vector separated into the intercept and slope parameters (a, 6),
GH generalize (4.1) to:

[31x t + fextftk + et (4. 12)
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where structural change is included through the dummy variable:

O ift<ki i f , ;* (4.l3)

where k is the unknown date of the (potential) structural break. Equation
(4.12) allows for three alternatives if yt and xt cointegrate: (i) a change in the
intercept (a) but no change in the slope (J3)—thus in equation (4.12)
A = 02 = 0; (ii) a change in the intercept allowing for a time trend—thus
/32 — 0 in (4.12); and (iii) a change in the slope vector as well as a change in
the intercept—with A = 0 in equation (4.12).

Since k is unknown, the ADF test involving e, (the latter obtained from
estimating equation (4.12)) is computed for each date within the sample (i.e.,
k e T), with the largest negative value of the ADF r-value across all possible
break points taken as the relevant statistic for testing the null hypothesis.
Critical values are available in table 1 of Gregory and Hansen (1996) and
are reproduced in the Statistical Appendix (Table A.7 at the end of the
book).11 Based on estimating the static, real demand-for-money equation
using seasonally unadjusted data for 1963ql–1989q2 and allowing the lag
length p to be set using the AIC, the results of estimating the GH model are
as follows:

m-p = 1.971 Ap + 0.831v - 3.343/? + 1.823

-0.215(1972q3)+£ ADF(e) = -3.41;/> = 5 (4.14a)

m-p = -1.366A/J + 1.880,v - 2.408/? - 0.011/

- 10.003 + 0.164(1983q3) + <? ADF(e) = -4.02;;? = 9 (4.14b)

m - p = -1.242A/7 + 7.152A/>( 1973q3) + 0.174v

+ 1.591X1973q3)- I.Q71R

- 1.295/?(1973q3) +9.241

- 18.864(1973q3) + e ADF(e) = -6.88;/> = 1 (4.14c)

Only in the last model, which allows for both a shift in the intercept and slope,
is the null of no cointegration rejected at the 5% level of significance; in the
other models the null is accepted. The break point in this last model was the
third quarter of 1973, and the results suggest that there was a fundamental
change in the parameters of the cointegration relationship after this oil price
shock.

11 Note that Gregory and Hansen (1996) also compute critical values for the Phillips Z-
test.
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ALTERNATIVE APPROACHES

There are a number of alternative tests for cointegration. The simplest is the
cointegration regression Durbin-Watson test (CRDW) proposed by Sargan
and Bhargava (1983). This is based on the standard Durbin—Watson (DW)
statistic obtained from a regression involving (4.1), known to be the uniformly
most powerful invariant test12 of the null hypothesis: that it is a simple non-
stationary random walk (i.e., e, = lt_\ + zt, where zt ~ IN(0, cr)) against the
alternative that et is a stationary first-order autoregressive (AR) process (i.e.,
£t — p£t_} + z(, where \p\ < 1 and zt ~ IN(0, a2)). In terms of the money
demand model, the critical value for rejecting the null of no cointegration is
0.48 (see Sargan and Bhargava, 1983), which is not exceeded in (4.11).
However, this critical value is only relevant when et follows a first-order
process (i.e., there is no higher-order residual autocorrelation, which is
usually present, as in this example). Thus, the CRDW test is generally not a
suitable test statistic.13

An alternative that has been suggested by Kremers, Ericsson and Dolado
(1992) is to directly test the null hypothesis that a = 1 in (4.10), which is the
error-correction formulation of the model.14 If this null holds, then there is no
cointegration. Under the null hypothesis, such a t-type test has a non-normal
distribution, and Kremers et al. (1992) suggest using the MacKinnon critical
values associated with the comparable ADF test of the null. Banerjee, Dolado,
Galbraith and Hendry (1993), however, show that the distribution of the t-
statistic associated with testing a = 1 is closer to the normal distribution than it
is to the ADF distribution (also, under the alternative hypothesis of cointegra-
tion, the t-value is known to be asymptotically normally distributed). However,
despite this problem of what set of critical values to use, both Kremers et al.
(1992) and Banerjee et al. (1993) show that this approach produces a more
powerful test than the ADF test (presumably because no common factor
restrictions are imposed). To make the test operational, it is necessary to
assume that xt is weakly exogenous (see p. 94 for a discussion of this
property), and an estimate of et^\ is needed. The latter can either be obtained,
for example, from imposing /3 = 1 (on theoretical grounds) and thus
£,_, = jr_, - x^i, or an estimate of the long-run relationship must be obtained
in advance (i.e., we require an unbiased estimate of (3). Another approach
equivalent to that suggested by Kremers et al. (1992), is to estimate the unrest-
ricted dynamic model in distributed lag form rather than as an ECM and then

12 The use of the term 'invariant' means that the test is not affected by a trend entering
(4.1).
13 Note that the CRDW test also suffers from the 'problem' that it imposes a common
factor restriction—see the earlier discussion (equations 4.7–4.9) relating to the ADF test
on this matter.
14 In the more general formulation of the ECM, the test amounts to whether the
parameter coefficient on the error correction term et-\ equals zero.
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to solve for the long-run model (i.e., to directly estimate equation (4.2) or a
more general form and then to solve for equation (4.1)). This procedure is
standard in certain econometric packages, in particular PcGive, and the
output from applying this approach to the money demand model is given in
Box 4.2 (see the next section for a discussion of the approach). In line with the
results from using the ECM formulation, the test of the null hypothesis of no
cointegration is more powerful than using the ADF test. Inder (1993) shows
that there are other desirable properties, namely that the unrestricted dynamic
model gives '. . . precise estimates (of long-run parameters) and valid t-statis-
tics, even in the presence of endogenous explanatory variables' (Inder, 1993, p.
68).

Dynamic Models

When the simple dynamic model, as represented by (4.2), is a sufficient repre-
sentation of the underlying economic relationship, the EG approach of
estimating the (static) (4.1) is equivalent to omitting the short-run elements
of the dynamic model. As more complicated dynamic models become necessary
to capture the relationship between x and y, then estimating the static model to
obtain an estimate of the long-run parameter J3 will push more complicated
dynamic terms into the residual £„ with the result that the latter can exhibit
severe autocorrelation. As has been stated, 'superconsistency' ensures that it is
asymptotically valid to omit the stationary I(0) terms in equations like (4.3),
but in finite samples the estimates of the long-run relationship will be biased
(and, as shown by Phillips, 1986, this is linked to the degree of serial correla-
tion).15 The Monte Carlo work of Banerjee et al. (1993) and Inder (1993) shows
that this bias is often substantial. Thus, it seems reasonable to consider estimat-
ing the full model, which includes the dynamics (i.e., (4.2) or its equivalent),
since this leads to greater precision in estimating /3 in finite samples.

One of the results to emerge from the Monte Carlo work is that it is
preferable to over-parameterize the dynamic model (i.e., a generous lag
length should be chosen) since this reduces any bias when compared with an
under-parameterized model, even when the 'true' model involves a simple
d.g.p. with few dynamic terms. Thus, the following model should be estimated:

A(L)y, = B(L)x, + u, (4.15)

where A(L) is the polynomial lag operator 1 — a\L — a2L2 - - - - - apL
p'. B(L)

is the polynomial lag operator 70 + ^\L + 72L2 + • • • + ^qL
q and Lr.\, = \,_ 16

15 Banerjee, Hendry and Smith (1986) show that bias is inversely related to the value R2

in the static OLS regression model, but they point out that it does not necessarily follow
that high values of R2 imply low biases, since R2 can always be increased by the addition
of more (ad hoc) regressors.
16 For instance, choosing p = q = 4 results in the following dynamic model: v, = 7o-v, -+-
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The long-run parameter(s)17 can be obtained by solving the estimated version
of (4.15) for /?, which in the simple model (equation (4.2)) amounts to
0 = (7o + 7i/l ~~ ai).18 Standard errors of /3 can be obtained using a (non-
linear) algorithm (the procedure used in PcGive involves numerical differentia-
tion)), and thus not only are long-run estimates obtained but t-tests concerning
the statistical significance of /3 can also be undertaken. Inder (1993) shows that
t-tests of this kind, using critical values from the standard normal distribution,
have good size and power properties (even when xt is endogenous) and there-
fore valid inferences can be made concerning /3.19

In addition to providing generally unbiased estimates of the long-run
model and valid t-statistics, it is possible to carry out a unit root test of the
null hypothesis of no cointegration since the sum of the ai(i = 1 , . . . , p) in
(4.15) must be less than one for the dynamic model to converge to a long-
run solution. Thus, dividing (1 - ^ «,) by the sum of their associated standard
errors provides a t-type test statistic that can be compared against the critical
values given in Banerjee, Dolado and Mestre (1998), in order to test the null
hypothesis.20

As an example of the approach, recall that when applying unit root tests to
the residuals from the static demand-for-money equation, there is no evidence
to reject the null hypothesis of no cointegration. Setting p = q = 5 and then

17 If xt is a single variable, then there is a single long-run parameter d (which may
include the long-run estimate of the constant as well as slope—see equation (2.12)—and
therefore 0 = [/30,/31]'); however, if x, is a vector of variables, then a vector of long-run
parameters is obtained.
18 In more complicated models, the long-run parameters are the sum of the parameters
associated with the variable being considered (i.e., £] 7i (i = 0, . . . , q) in (4.15)), divided
by one minus the sum of the parameters associated with the dependent variable (i.e..
1-E « , ( /= ! , . . . , />))-
19 He states that the test statistics based on the simple OLS static model are
hopelessly unreliable' (p. 67).
20 Note that dividing the sum of the parameter estimates associated with x (i.e., £^ 7i) by
the sum of their associated standard errors provides a t-type test of the null hypothesis
that there is no significant long-run effect of x on y. This test is not equivalent to a test
involving the t-values obtained from the solution to the long-run equation, and in small
samples it is possible that there will be conflicting outcomes from these alternative
approaches.
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testing to ensure that this parameterization of (4.15) is general enough to pass
various diagnostic tests21 relating to the properties of the residuals ut, the
following (cf. Box 4.2) long-run relationship is found (with t-values in
parentheses):

m -p = -7.332A/? + 1.052>' - 6.871* - 0.393 + 0.238SEAS + e (4.16)
(4.33) (8.64) (11.98) (0.29) (1.27)

A Wald test decisively rejects the null that all the long-run coefficients (except
the constant term) are zero. The unit root test of the null hypothesis of no
cointegration results in a test statistic of —4.46, which rejects the null at the 5%
significance level.22 Thus, this approach suggests that, contrary to the results
obtained from the static (4.4), there is a long-run stable relationship for money
demand. Furthermore, tests of common factors (COMFAC) in the lag poly-
nomials reject the hypothesis of four common factors, which helps to explain
the results from applying the different tests for cointegration. Lastly, it can be
seen that the estimates of long-run parameters are also different (cf. equations
(4.l1b) and (4.16)), with the estimate for A/7 wrongly signed and the estimate
for real income unexpectedly small in the static model.23

Fully Modified Estimators

Using a dynamic modelling procedure results in a more powerful test for
cointegration, as well as giving generally unbiased estimates of the long-run
relationship and standard t-statistics for conducting statistical hypothesis-
testing. In large part the better performance of the dynamic model is the
result of not pushing the short-run dynamics into the residual term of
the estimated OLS regression. As with the tests for unit roots discussed in
the last chapter (Box 3.1), the alternative to modelling the dynamic processes

21 These diagnostic tests (reported in Box 4.2), and how to interpret them, will be
discussed in the section on estimating the short-run model (see p. 96). For now it is
sufficient to note that the significance levels for rejecting the null of no serial correlation
(AR test, ARCH test, etc.) are given [ ] brackets after each test statistic and are such as
to suggest we should have little confidence in rejecting the various null hypotheses.
22 Note that (1 - £ a,-) = -0.138, with a standard error of 0.0311.
23 Applying the dynamic modelling approach to the nominal money balances model
gives the following Ion-run equation:

m = 0.967p + 11.153v - 6.5737? - 1.627 + 0.221SEAS
(11.22) (3.82) (7.76) (0.45) (1.23)

while the unit root test for cointegration yields a test statistic of —4.526 (significant at
the 5% level). Note that since results discussed in Box 3.2 suggest that m and p are
probably I(2), it is assumed that an I(1) cointegration relation between these variables
exists that in turn cointegrates with the other I(1) variables in the model (see Box 2.4) to
result in an I(0) error term. In (4.16) if (m — p) ~ I(1), as suggested in Box Table 3.2.1,
then it is easier to justify the existence of a cointegration relationship for real money
demand, given that the other variables are also I(1), including Ap, since p ~ I(2).
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is to apply a non-parametric correction to take account of the impact on the
residual term of autocorrelation (and possible endogeneity if the right-hand-
side variables in the cointegration equation are not weakly exogenous). Such
an approach is often termed 'the modified OLS' (see especially Phillips and
Hansen, 1990) and amounts to applying adjustments to the OLS estimates of
both the long-run parameter(s) (3 and its associated t-value(s) to take account
of any bias, due to autocorrelation and/or endogeneity problems, that shows
up in the OLS residuals.24 Thus, tests involving the modified OLS t-statistics
are asymptotically normal.

Inder (1993) found that the modified OLS estimates of the long-run re-
lationship yielded little or no improvement on the precision of the standard
OLS estimator. Thus, bias remained a problem in many of his Monte Carlo
experiments, leading him to conclude that '. . . it seems that the semiparametric
correction is insufficient to remove the autocorrelation in the error when the
data-generating process includes a lagged dependent variable' (p. 61). Further-
more '. . . Modified OLS gives t-statistics whose sizes are generally no better
than the OLS results . . . The poor performance of (such) t-statistics suggests
that in this case a very large sample is required for the asymptotics to take
effect' (p. 66). This is perhaps fortunate since implementation of the Phillips-
type non-parametric corrections is somewhat complicated, and Inder's results
suggest that there is little to be gained over the static EG approach.

PROBLEMS WITH THE SINGLE EQUATION APPROACH

It was stated in Box 2.4 that if there are n > 2 variables in the model, there can
be more than one cointegration vector. That is, the variables in a model (e.g.,
(2.1), which depicts the money demand function) may feature as part of several
equilibrium relationships governing the joint evolution of the variables. It is
possible for up to n — I linearly independent cointegration vectors to exist, and
only when n = 2 is it possible to show that the cointegration vector is unique.

Assuming that there is only one cointegration vector, when in fact there are
more, leads to inefficiency in the sense that we can only obtain a linear combi-
nation of these vectors when estimating a single equation model. However, the
drawbacks of this approach extend beyond its inability to validly estimate the
long-run relationships between variables. Even if there is only one cointegra-
tion relationship, estimating a single equation is potentially inefficient (i.e.. it
does not lead to the smallest variance against alternative approaches). As will
be seen, information is lost unless each endogenous variable appears on the
left-hand side of the estimated equations in the multivariate model, except in

24 The non-parametric correction for bias due to autocorrelation is akin to the PP
correction (Box 3.1); a second correction uses a non-parametric estimate of the long-run
covariance between x and y to deal with any endogeneity. It is also possible to correct
the unrestricted dynamic model (equation (4.15)) for possible endogeneity using a
similar non-parametric correction to that proposed for modified OLS (see Inder. 1993).
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the case where all the right-hand-side variables in the cointegration vector are
weakly exogenous.

It is useful to extend the single equation ECM to a multivariate framework
by defining a vector z, = [ y l t , y2f>xt}' an^ allowing all three variables in z, to be
potentially endogenous, viz.:

z, = AIZ,_I + • • • + AjfcZ,_* + u, u, ~IN(0,Z) (4.17)

This is comparable with the single equation dynamic model (4.15) and in a
similar way can be reformulated into a vector error correction form:

AZ, = FI AZ/_I H ----- 1- + (4.18)

where r,- = -(l-A, A,-) (/" - 1 , . . . ,k - 1) and 11 =-(I -A,
—Ajt). The (3 x 3) IT matrix contains information on long-run relationships;
in fact, n = aji', where a represents the speed of adjustment to disequilibrium25

and p is a matrix of long-run coefficients. Thus, the term jJ'zr_i embedded in
(4.18) is equivalent to the error correction term (yt-\ — flxt_\) in (4.8), except
that P'z,-i contains up to (n — 1) vectors in a multivariate model.26

Setting the lag length in (4.18) to k = 2 and writing out the model in full
gives:

Ay i
T^ Al 021 /?31

fl\2 022 032
X,-\

(4.19)

It is now possible to illustrate more fully the problems incurred when estimat-
ing only a single equation model. Using (4.19) and writing out just the error
correction part of, say, the first equation (i.e., the equation with A_y l f on the
left-hand side) gives:27,28

25 See the discussion surrounding (1 — a1) in (2.13) for an analogous interpretation in
the single equation model.
26 In fact, the matrix p'z,_i contains n column vectors in a multivariate model, but only
(n — 1 ) of them can possibly represent long-run relationships and often the number of
steady-state vectors is less than (n— 1). The whole issue of testing for stationary
cointegration vectors in (J is considered in the next chapter when we test for the reduced
rank of p.
27 Note that since there are two cointegration relationships, both enter each of the
equations in the system. Also, neither of the two equations have been normalized in
(4.19), and so all the ,% are included. Normalization, say to obtain a coefficient of 1 on
Vh- i , would entail multiplying each long-run relationship by its respective estimate of
"!//%(/ = = 1 , 2 ) .
28 Equation (4.20) can also be written as:

which shows clearly the two cointegration vectors with associated speed-of-adjustment
terms in the equation for A>'i,.
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" v i , _ i

(4.20)

where 111 is the first row of EL That is, if only a single equation with ky\t as the
left-hand-side variable is estimated, then it is not possible to obtain an estimate
of either of the cointegration vectors since all that can be obtained is an
estimate of ITj, which is a linear combination of the two long-run relationships
(and this applies equally to the static or dynamic form of the single equation
model (cf. equations (4.1) and (4.15)). This result applies whichever element of
zt is used as the left-hand side in the single equation model, since only estimates
of II, can be obtained (i = 1, 2, 3).

Alternatively, when there is only one cointegration relationship (fl\\y\,-\ +
0i\yit-\ + foixt-\) rather than two, entering into all three ECMs with differing
speeds of adjustment [a11, a21,

 Q
31]'> then using a single equation approach will

obtain an estimate of the cointegration vector, since writing out just the error
correction part of, say, the first equation gives:

<*\\(0\\y\,-i +&iv2 ,-i +,03i*,-i) (4-21)

However, there is information to be gained from estimating the other equations
in the system, since a21 and c*31 are not zero. That is, more efficient estimates of
P can be obtained by using all the information the model has to offer. Indeed,
Johansen (1992a) shows that in situations where zt is endogenous and there is
one cointegration vector, then the variance of the estimator of Ppart > Pfull,
where 'part' refers to a partial estimator (e.g., a single equation OLS estimator)
and 'full' refers to a modelling approach that estimates the full system
(equation (4.19)).

Only when, say, a21 = &3l = 0 will a single equation estimator of the
unique cointegration vector be efficient. Then the cointegration relationship
does not enter the other two equations (i.e., A>'2, and A.v, do not depend on
the disequilibrium changes represented by (0\\y\t-\ + 02\y2,-.\ + #n-Y/-i))- As
will be shown in the next chapter, this means that when estimating the param-
eters of the model (i.e., Fj, II, a, P) there is no loss of information from not
modelling the determinants of A>'2, and A*,; so, these variables can enter on the
right-hand side of a single equation ECM.29 For now, it is sufficient to state
that a21 = c*31 =0 amounts to y2t and xt being weakly exogenous. When all the
right-hand-side variables in a single equation model are weakly exogenous, this
approach is sufficient to obtain an efficient estimator of P such that (4.15)

29 More technically, this is referred to as conditioning on these variables.
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should provide the same results as a multivariate (or system) estimator (e.g.,
the Johansen approach, as set out in the next chapter).30

As has just been explained, it is only really applicable to use the single
equation approach when there is a single unique cointegration vector and when
all the right-hand-side variables are weakly exogenous. Inder (1993), on the
basis of his Monte Carlo experiments, has suggested that the problem of
endogeneity may be relatively unimportant in many situations, but there is
still a question as to whether it is possible to perform tests of weak exogeneity
in a single equation framework. Urbain (1992) suggests that the usual ap-
proach based on a Wu-Hausman-type orthogonality test is unlikely to
provide clear results. This approach amounts to regressing the right-hand-
side variable of interest (e.g., Ay2t) on all the lagged first-differenced variables
in the model (e.g., ^f"1 Az,_,)31 and then testing whether the residuals from
this equation are significant in the short-run ECM (cf. equation (4.10)). That is,
if Aj2/ is weakly exogenous, then the residuals from the equation determining it
will be orthogonal to (i.e., non-correlated with) the short-run ECM determin-
ing A>'1;. However, Urbain (1992) points out that orthogonality will be present
anyway (on the basis of the multivariate normal distribution) and suggests that
it would be more appropriate to test whether the error correction term em-
bedded in the short-run ECM (i.e., £,_] = PiZ,_i) is significant in the equation
determining Ay2t. As mentioned previously, if Ay2t is weakly exogenous, then it
does not depend on the disequilibrium changes represented by the £,_[.
However, even though it is possible in principle to test for weak exogeneity,
there is still the more important issue of how many possible (n — 1) cointegra-
tion relations exist in a model that includes n variables. Since this must be
established, it is better to undertake testing for weak exogeneity as part of a
multivariate procedure. As will be seen, this can be done easily using the
Johansen approach.

As an example of the single equation approach when there is more than
one cointegration relationship, consider the UK purchasing power parity
(PPP) and uncovered interest rate parity (UIP) model estimated by Johansen
and Juselius (1992). This model is examined in detail in the next chapter,
where multivariate testing suggests that there are at least two cointegration
relationships between the five variables p\ (the UK wholesale price index), p2

(trade-weighted foreign wholesale price index), e (UK effective exchange rate),
/i (3-month UK treasury bill rate) and i2 (3-month Eurodollar interest rate).
Theory suggests that if PPP holds in the goods market (i.e., internationally
produced goods are perfect substitutes for domestic goods), we should expect

30 Note that estimating the long-run relationship using a static model (equation (4.1))
will not produce the same result because of small sample bias (i.e., both (4.15) and (4.18)
incorporate short-run adjustments). In fact, with weak exogeneity assumed, (4.15) and
(4.18) are equivalent.
31 Other variables known to determine Aj2r, but not already included in the model since
they are assumed exogenous to it, may also enter.
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to find in the long run that price differentials between two countries are equal to
differences in the nominal exchange rate (p1, - p2 = e), while UIP in the capital
market relates the interest rates of the two countries to expected changes in
exchange rates (i1 — i2 = ee — e). If markets are efficient, expected changes in
exchange rates will be increasingly influenced by deviations from long-run
PPP (especially as the forecast horizon grows—see Juselius, 1995) and thus
ee = (P1 — P2), providing a link between the capital and the goods market. If
parity holds in the long run we should expect (i1 — i2) = (p1 — p2 — e) and
estimated parameter values of (±)1 for all the variables in the model.

Estimating the static model using seasonally unadjusted data for 1972ql to
1987q2 produced the following result:

P1 = 1.442/72 + 0.468e - 0.937i1 + 1.114i2 + e R2 = 0.99. DW = 0.19
(4.22)

and using (4.4), with 6 = 0 imposed, the residuals e were tested for a unit root
under the null hypothesis of no cointegration. The r-value associated with
testing the null hypothesis (that H0: ^* = 0 based on the e) was -2.40, while
the critical value for rejecting the null is -4.64 (at the 5% significance level
obtained from Table A.6 with n = 5 and T = 62). Thus, these results indicate
that there is no long-run stable relationship.32

Setting p = q = 5 and then testing to ensure that this parameterization of
(4.15) is general enough to pass various diagnostic tests relating to the proper-
ties of the residuals H,, the following long-run relationship is found using the
dynamic modelling approach (with t-values in parentheses):

p1 = 1.331/72 + 0.402e + 3.765i1 - 0.606i2 + £ (4.23)
(29.92) (8.51) (3.48) (0.88)

A Wald test decisively rejects the null that all of the long-run coefficients are
zero. However, the unit root test of the null hypothesis of no cointegration
results in a test statistic of —2.97, which does reject the null at the 10%
significance level (based on a critical value of -3.65 obtained from table 2 in
Banerjee, Lumsdaine and Stock, 1998). Thus, using the single equation ap-
proach, cointegration is not established and the estimates of long-run
parameters seem remote from their expected values.

ESTIMATING THE SHORT-RUN DYNAMIC MODEL

Having obtained an estimate of the long-run relationship, the second stage
of the EG procedure comprises estimating the short-run ECM itself (e.g.,
equation (4.10)) using the estimates of disequilibrium (e,_i) to obtain informa-
tion on the speed of adjustment to equilibrium. The et_\ associated with the
cointegration relations obtained from the static and dynamic models (equa-

32 Note that the CRDW test also fails to reject the null.
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Figure 4.1. Cointegration relations for UK money supply based on equations (4.11b)
and (4.16).

tions (4.11b) and (4.16)) are plotted in Figure 4.1. These show that real Ml was
considerably off its equilibrium value (which occurs when e,_j = 0), especially
(according to the dynamic approach) after 1982. Thus, it will be interesting to
see whether the money supply adjusts quickly or slowly to such disequilibrium.

The initial model (denoted Model 1) is the AR distributed lag model
with p = q — 5 used to obtain et_} = (m — p)t_l + 7.332A/>,_i - 1.052.y,_1 +
6.871^_! +0.393 -0.238SEAS (see Box 4.2). Model 2 is the equivalent
short-run ECM obtained by setting p = q = 4 in (4.10). Next the Hendry-
type 'general-to-specific' procedure is used to reduce this short-run ECM to
its parsimonious form (see Ericsson, Hendry and Tran, 1992 for full details
relating to this data set). This resulted in Models 3-6 and involved dropping
insignificant variables and reparameterizing the estimated equation as follows:

Model 3: since AR,^\ — A/?/_2 = A^r-3 — A/?,_4 = 0, these variables are
dropped.
Model 4: since Apt = — &pt-i, these variables are dropped and A2pf is
introduced instead; since A/7,_2 — APf-3 = &Pt-4 = 0 these variables are
also dropped.
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Table 4.2 F-statistics for the sequential reduction from the fifth-order AR model in
Box 4.2.

Model reduction

Model 1 -» 2:
Model 1 -> 3:
Model 2^3:
Model 1 -> 4:
Model 2 -+ 4:
Model 3^4:
Model 1 -» 5:
Model 2-^5:
Model 3^5:
Model 4 -+ 5:
Model 1 -» 6:
Model 2^6:
Model 3^6:
Model 4-^6:
Model 5^6:

Degrees of freedom

F(3, 73)
F(7, 73)
F(4, 76)
F(ll, 73)
F(8, 76)
F(4, 80)
F(15, 73)
F(12, 76)
F(8, 80)
F(4, 84)
F(17, 73)
F(14, 76)
F(10, 80)
F(6, 84)
F(2, 88)

Test statistic [significance level]

0.01906 [0.9964]
0.46212 [0.8587]
0.82641 [0.5124]
0.64029 [0.7885]
0.90842 [0.5142]
0.99911 [0.4131]
0.72135 [0.7553]
0.93305 [0.5192]
0.99501 [0.4465]
0.99096 [0.4171]
0.75495 [0.7364]
0.94940 [0.5 118]
1.00730 [0.4447]
1.01290 [0.4226]
1.05720 [0.3518]

• Model 5: since A>',_2 = —Aj,_3, these variables are dropped and A"v,_i is
introduced instead; also as Aj, = Aj,_i = Aj,_4 = 0 these variables are
dropped.

• Model 6: since A(m -p},_\ = A(m —p),_2 — ̂ (m ~P],-^ these variables
are replaced by [(w — p)t — (m — /?),_3]/3 instead.

The F-statistics (and associated probabilities of rejecting the null in square
brackets) for testing each model in the sequential reduction process are given
in Table 4.2. The complete reduction from Model 1 to Model 6 is not rejected
with F17,73 = 0.75 [0.74] and none of the reductions between model pairs reject
at the 5% significance level. The final model obtained was:

\(m-p), = 0.005 - 0.880A2/?, + 0.149A2>',-2 - 0.646A3(w - />)./3
' (1.360) (4.717) (3.203) (5.025)

+ 0.188A(m-/>),_4-0.387AJR, - 0.116£,_, -0.012SEASi,
(3.395) (3.517) (10.802) (2.312)

- 0.022SEAS2, + 0.012SEAS3, (4.24)
(4.476) (1.710)

Diagnostics

R2 = 0.833; F(9,90) = 50.044 [0.0000]; a = 0.0135641; DW - 2.15; AR
1-5 F(5,85) = 1.0355 [0.4021]; ARCH 4 F(4,82) = 0.70884 [0.5882]; X2

F(15,74) =0.786 57 [0.6881]; X,:* Xj F(48,41 ) = 0.70269 [0.8804]; RESET
F(1.89) =0.26072 [0.6109]; normality *2(2) = 3.4735 [0.1761].
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None of the diagnostic tests reported are significant at the 95% critical value
(except the F-test in which all the slope coefficients are zero), and therefore
there is nothing to suggest that the model is mis-specified. These tests cover,
respectively, the goodness of fit of the model (i.e., what percentage of the total
variation in the dependent variable is explained by the independent variables);
an F-test in which all the right-hand-side explanatory variables except the
constant have zero parameter coefficients; the standard deviation of the regres-
sion; the DW test for first-order autocorrelation (which is strictly not valid in a
model with lagged dependent variables); a Breusch—Godfrey Lagrange multi-
plier (LM) test for serial autocorrelation up to the fifth lag, obtained by
regressing the residuals from the original model on all the regressors of that
model and the lagged residuals; an autoregressive conditional heteroscedastic
(ARCH) test, obtained by regressing the squared residuals from the model on
their lags (here up to the fourth lag) and a constant; White's test for hetero-
scedasticity, involving the auxiliary regression of the squared residuals on the
original regressors and all their squares; White's heteroscedasticity/functional
for the mis-specification test, based on the auxiliary regression of the squared
residuals on all squares and cross products of the original regressors; Ramsey's
RESET general test of mis-specification, obtained by adding powers of the
fitted values from the model (e.g., yf, y3

t, etc.) to the original regression equa-
tion; and the Jarque-Bera test for normality. Significance levels for rejecting
the null hypothesis are given in [ ] brackets. Full references for each test are
available in most standard econometric texts, such as Johnston and Dinardo
(1997). Econometric software packages, which usually contain similar batteries
of tests, also provide good references and explanations.

Another important aspect of diagnostic checking is testing for structural
breaks in the model, which would be evidence that the parameter estimates are
non-constant. Sequential 1-step-ahead Chow tests33 and 1-step-ahead residuals
(u, = yt - X;|Jr) can be obtained from applying recursive least squares to the
model over successive time periods by increasing the sample period by one
additional observation for each estimation. Plots of these Chow tests and
residuals are given in Figure 4.2 for the estimated short-run ECM. The
graph of 1-step-ahead residuals are shown bordered by two standard devia-
tions from the mean of zero (i.e., 0 ± 2at), and points outside this region are
either outliers or are associated with coefficient changes. There is some evidence
to suggest that there is a problem around the 1983q3 observation. The Chow
tests also suggest that parameter instability is evident around the 1973q2 and
1983q3 time periods.

Returning to (4.24), the speed-of-adjustment coefficient indicates that the
UK money supply adjusted relatively slowly to changes to the underlying
equilibrium relationship since the parameter estimate on et_l shows that

33 These are calculated as the change in the sum of the squared residuals (]T] u]) from the
model as it is estimated over successive time periods (adjusted for degrees of freedom)
and an F-test that /? changes is obtained.
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Figure 4.2. Diagnostic testing of the short-run ECM: 1-step-ahead residuals and chow
tests.

economic agents removed only 11.6% of the resulting disequilibrium each
period. This helps to explain the considerable deviations from equilibrium
depicted in Figure 4.1.

SEASONAL COINTEGRATION34

If series exhibit strong seasonal patterns they may contain seasonal unit roots;
consequently, any potential cointegration may occur at seasonal cycles as well
as (or instead of) at the zero frequency domain. In cases where there are
seasonal unit roots in the series and the cointegration relation is thought to
be a long-run (zero frequency) relation between the series, the cointegration
regression of, say, ct on yt using (4.1) gives inconsistent estimates. Thus, in such
a situation it is necessary to test for the long-run relationship using data that
has been adjusted using the seasonal filter S(L) = (1 + L + L2 + L3) in order
to remove the seasonal unit roots and leave the zero frequency unit root corre-
sponding to (1 — L). That is, when series have unit roots at both the zero and

34 The reader is advised to review the discussion of seasonal unit roots in Chapter 3
(p. 63) before tackling this section.
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seasonal frequencies (i.e., are all I(1, 1)), the static model test for cointegration
between, for example, ct and y, becomes:

(Z1c t)=/?,(Z, ;P,)+er (4-25)

where Zj = (1 + L + L2 + L3), p\ is the long-run relationship at the zero
frequency and the standard test of the null hypothesis of no cointegration is
to directly test whether et ~ I(1) against the alternative that et ~ I(0). Thus,
the equivalent of (4.4) can be estimated using the it obtained from estimating
(4.25):

P-\
JP ipiMt^j + fj. + 6t + (jjt ut ~ HD(0, a2} (4.26)

with the issue of whether to include a trend and/or constant terms in the test
regression remaining the same. The test statistic is a t-type test of 770: n\ — 0
against 77^ TTJ < 0, with critical values given by MacKinnon (cf. Table 4.1).

To test for seasonal cointegration at the two-quarter (half-yearly)
frequency (1 + L), requires leaving in the seasonal root at this cycle using Z2

and estimating:
(Z2ct) = 02(Z2yl) + vt (4.27)

where Z2 = -(1 - L + L2 - L3) and /?2 is the long-run relationship at the two-
quarter frequency. Testing the null hypothesis of no cointegration uses the
residuals vt from (4.27) and the following version of the ADF test:

P-I
(V, + V,-i) = 7T2(-Vt-l) + ^i(v,-i + Vt-t-l)

2) (4.28)

where Dqt is the zero/one dummy corresponding to quarter q. The test statistic
is a t-type test of 770: ^2 = 0 against 77j: 7r2 < 0, with critical values given by
MacKinnon (cf. Table A. 6).

Finally, testing for seasonal cointegration at the four-quarter (annual)
frequency (1 ± iL) requires leaving in the seasonal roots at this cycle using
Z3 and estimating:

(Z3ct) - /%(Z3j>,) + ̂ 4(Z3^-i) + 0 (4.29)

where Z3 = —(1 — L2} and /33 and /34 are the long-run relationships at the four-
quarter frequency. Testing the null hypothesis of no cointegration uses the
residuals (t from (4.29) and the following version of the ADF test:

3
2+ 2^ SiDit + u)t u, ~ IID(0,cr2) (4.30)

1=1
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Table 4.3 Test for cointegration at frequencies 0, 5, |, |: UK consumption function
data (1971q2-1993ql) (based on equations (4.26), (428) and (4.30)).

Variables Deterministic
components included" /*, t^-, t^ /^ /y,^

c/, y,
£*/, Vj

C,, H-,

C,, If,

C,, JM H

Cf, VM H

I + TR/SD
I

I + TR/SD
I

, ,TT, , I + TR/SD
M 7TM I

-2.36
-2.33

-1.20
1.69

-2.01
-1.95

-2.43
-1.63

-3.50
-2.76

-3.12
-2.77

-3.46
-1.91

-3.58
-1.58

-3.58
-2.56

-2.48''
-1.37

-3.12*
-0.91

-2.20
-1.06

10.24*
2.86

13.16f

1.70

9.79
3.93

" TR = trend, I = intercept, SD = seasonal dummies.
b Rejects null at 5% significance level.
c Rejects null at 2.5% significance level.
d Rejects null at 1% significance level.

where the test of the null hypothesis requires a joint F-test 770: x$ = ?r4 = 0.
Critical values for this test and individual t-tests of 770: 7r3, H0: 7r4 = 0, when
there are two variables in the cointegration equation, are given in Engle.
Granger, Hylleberg and Lee (1993, table A.1).

Assuming that cointegration occurs at all frequencies (i.e., [et, v,. C,] ~ I(0))
in (4.25), (4.27) and (4.29), the following short-run ECM for c, and v, (see
Engle et al., 1993) can be estimated:

<? P
(1 — L )cr = A4c, = N f l / A 4 V 7 - / + / ^ bj&.4C,-j + 7i£/-i + 72t'/-i

j=0 i= 1

+ (73 +74^)0-1+«, (4.31)

where the 7, are speed-of-adjustment parameters and it is assumed that v, is
weakly exogenous.35

In the last chapter, tests for seasonal integration using UK data suggested
that both real consumer-spending, real liquid assets and inflation are I(1, 1).
The results for real personal disposable income suggest that it does not have
any seasonal unit roots (i.e., it is I(1, 0)). Tests for seasonal cointegration are
reported in Table 4.3; these suggest that cointegration between <?,, v,, vv,, and TT,
(and subgroups) can be rejected at the zero (or long-run) frequency and at the
two-quarter frequency.36 However, there is evidence to suggest that variables
are cointegrated at the four-quarter (or annual) frequency, given the values of

35 Otherwise, the term A4>', on the right-hand side of the ECM would not be allowed
and we could write a second ECM with A4 v/ as the dependent variable. The latter would
have the same cointegration relations, but the speed-of-adjustment parameters 7, would
potentially be of a different magnitude.
36 Note lag lengths set to maximize R2, and in accordance with the arguments in Schwert
(1989), are used. Results reported in Table 4.3 are based on max-/?2.
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the F-statistics obtained.37 Similar results were obtained using Japanese data
for ct and yt by Engle et al. (1993), and they argued: '. . . if a slightly impatient
borrowing-constrained consumer has the habit of using his bonus payments to
replace worn out clothes, furniture, etc., when the payment occurs, one may
expect cointegration at the annual frequency' (p. 292). Given that such bonus
payments are not typical in the British labour market, some other (although
similar) rationale has to be sought. Lastly, these results confirm those in
Hylleberg, Engle, Granger and Yoo (1990), who also found some evidence
of seasonal cointegration between ct and yt at the half-yearly frequency
using UK data.

If the individual time series display periodic integration (e.g., the observations
on a variable yt can be described by a different model for each quarter—see
Chapter 3), then there may exist stationary relationships between the variables
at different frequencies that require the estimation of a periodic cointegration
model. A single equation approach has been developed by Boswijk and Franses
(1995), viz:

4 4 4

Dqtt (4-32)

where xt is a vector of explanatory variables and Dql is the zero/one dummy
corresponding to quarter q. The last two terms in (4.32) comprise the determi-
nistic part of the model (seasonal intercepts and seasonal time trends), which
may be omitted. Equation (4.32) is also typically augmented with lagged values
of A4 yt and current and lagged values of A4x,, to capture the dynamics of the
model. The aq and $q parameters determine the speed of adjustment and long-
run relationship between y, and xt as in the usual ECM (although here there
are four different models, one for each season, and $q ^ 1 will result in periodic
cointegration).

Equation (4.32) can be estimated using non-linear least squares and full or
partial periodic cointegration can be tested using Wald-type tests. The test for
partial periodic cointegration for quarter q involves the null H0q: (aq,0q) ~ 0
against the alternative H\q: (aq,0q)^Q, while the full test comprises H0:
TLotq — L3q = 0, against the alternative H^. (Laq,*L(3q} ^ 0. The test statistics
are:

Wald(/ = (T - £)(RSS0(/ - RSSi)/RSS, )
} (433)

and Wald = (T - &)(RSS0 - RSS, )/RSS, J

37 Note that because critical values for cointegration equations involving more than two
variables are not available at the four-quarter frequency, it is not possible to draw any
definite conclusions surrounding the tests of the full consumption function model.
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Table 4.4 Wald tests for periodic cointegration: UK consumption function data
(1971q2–1993ql) (based on equation (4.32)).

Variables Wald1 Wald2 Wald3 Wald4 Wald5

Ct, M'f

yt, wt
8.53
3.21

8.92
12.89*

4.34
3.76

2.83
10.80

22.50
28.13

* Rejects null at 10% significant level. Critical values at the 10% level for Wald, and Wald are
12.38 and 38.97, respectively (Boswijk and Franses, 1995, tables Al and A2).

where T is the sample size, k the number of estimated parameters in (4.32) and
where RSS0q, RSS0 and RSS1 denote the residual sum of squares under H0q,
H0 and H1, respectively. Critical values are provided in Boswijk and Franses
(1995, tables Al and A2).

Using the UK consumption function data for 1971q2 to 1993ql, equation
(4.32) was estimated with yt equal to the log of real consumer-spending (ex-
cluding non-durables) and x, comprising the log of real income, real wealth
and annual retail inflation. We were not able to reject the null of no periodic
cointegration for any quarter (or the full model comprising all quarters),
whether the deterministic components in (4.32) were included or excluded.
The most significant results obtained from pairing variables are reported in
Table 4.4, with models including seasonal intercepts and time trends. Only with
real income as the dependent variable and real wealth as its determinant is
there any evidence of periodic cointegration in quarter 2 (although rejection is
only at the 10 per cent significance level). Perhaps these results are not surpris-
ing, given that in Table 3.7 there was no evidence of periodic integration.

ASYMMETRIC TESTS FOR COINTEGRATION

To recap the standard EG approach to testing for cointegration, it is assumed
that there is at most a single long-run relationship between y and .v; that is:

yt = 0o + 0ixt + £, (4.34)

Assuming yt and xt are both I(1), then Engle and Granger (1987) show that
cointegration exists if et ~ I(0). The long-run model in equation (4.34) is
associated with a short-run ECM based on symmetric adjustment, with the
second-step EG test for cointegration based on the OLS estimate of p in
equation (4.35):38

Ae, = pe,-\ + v, v, ~ IID(0, a2} (4.35)

38 Note that for simplicity here we have adopted the DF version of the test, rather than
the ADF (see equation (4.4)). Lagged values of Ae,_, would need to enter the right-hand
side of (4.35) to ensure that v, has the desired properties stated in the equation.
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If the null hypothesis of no cointegration H0: p = 0 can be rejected in favour of
HI: p < 0, then equations (4.34) and (4.35) jointly imply the following ECMs:

i - (1 - ai)ec/-i + u, ujt ~ IID(0,<72) (4.36a)

i - (1 - a2)ec,-i + u>* u* ~ IID(0,<r2) (4.36b)

where

and A(L) and B(L) are polynomial lag operators.
Equation (4.36) implies that any short-run changes in yt and xt due to

disequilibrium (1 — a,-) are strictly proportional to the absolute value of the
error correction term. If, however, adjustment to disequilibrium is asymmetric,
then Enders and Granger (1998) and Enders and Siklos (2001) show that an
alternative specification for equation (4.35) (called the momentum threshold
autoregressive model) can be written as:

i +v* v* ~ IID(0,a2) (4.37)

where It is the Heaviside indicator function based on threshold value r:39

\ if Ae,_] > r
(4.38)

0 if Ae,_, <r V ;

The asymmetric version of the ECM, then, replaces the single error correction
term in equation (4.36) (ect_\) with two error correction terms multiplied by I,
and (1 — It), respectively.

To test the null hypothesis of no cointegration against the alternative of
cointegration with asymmetry, the null H0: (p1 — 1) = (p2 — 1) = 0 is examined
using an F-test of the joint hypothesis and specially calculated critical values,
and if this is rejected it is possible to test whether p1 = p2 using a conventional
F-statistic. Alternatively, a t-max test (based on the most negative t-value
associated with either (p{ — 1) or (p2 — 1)) can be used to test for a unit
root. Clearly, if the t-value on either (p1 — 1) and/or (p2 — 1) is positive, we
would not reject the null and the F-test loses its validity in this situation (as it is
a two-sided test).

To find the unknown T, equation (4.37) is estimated (including appropriate
lags Ae,__, as additional regressors to ensure v* is IID) up to T times with values
of r that cover the range of values included in Ae,; the value of r that results in

39 Enders and Siklos (2001) also specified the TAR model, whereby the Heaviside
indicator function becomes:

1 if et-i > 0
., (4.38a)

0 if e,_i <0 '
See also Box 3.4.
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Table 4.5 Tests of cointegrationa based on asymmetric MTAR: US interest rate data
(1960ql–1999q3).

Variable

£,
e,
e,

Lag
length

1
2
6h

T

-0.330
-0.330
-0.330

( 0 i - l )

-0.102
-0.083
-0.136

t-value
(P. -1)

-2.45
-1.93
-2.88

( p 2
– 1 )

-0.359
-0.340
-0.405

t-value
(P2-1)

-4.11
-3.87
-4.21

F-value
(P1 -1)
( 0 2 - 0

11.07
8.86

10.67

=
= 0

a t-max 5% critical value is —3.42; F-test 5% critical value is 6.40 based on own
calculation (see text).
b Set using the AIC (see, for example Greene, 2000, p. 306). Other lag lengths included
for compatibility with Enders and Siklos (2001).

an estimated (4.37) with the minimum residual sum of squares is chosen as the
threshold.40

As an example, we have applied the asymmetrical test as set out in equa-
tions (4.37) and (4.38) to the data set used by Enders and Siklos (2001) to test
for asymmetric adjustment in the US term structure of interest rates (i.e., v,
comprises the 3-month US Treasury bill rate and xt comprises the yield on 10-
year Government bonds, from 1960ql to 1999q3). The AIC was used to set the
lag length at the time of estimating equation (4.37) when lagged values of the
dependent variable are allowed to enter as additional regressors. The results are
set out in Table 4.5. The overall test of the unit root hypothesis is the null H0:
(p1 — 1) = (p2 — 1) = 0 using the F-statistic reported, but where either
(p1 — 1) and/or (p2 — 1) is positive, the t-max test is preferred. The null of
no cointegration was rejected at each lag length selected, using both the t-
max and F-test, and thus a standard F-test that H0: p1 = p2 was conducted.
Given the parameter estimates obtained for (p1 — 1) and (p2 — 1), not surpris-
ingly the F-statistic exceeds the 1 % critical value in every instance, indicating
that the term structure of interest rates adjusts asymmetrically to disequi-
librium depending on whether the long-run relationship is above or below
the threshold in any given time period. Figure 4.3 plots the cointegration
residuals (i.e., £,) and r, and this shows different patterns for the disequilibrium
term above and below the threshold.

Finally, we estimated the ECM (equation (4.36)), with et_\ obtained from
estimating equation (4.34)41 and It set using equation (4.38) with r = -0.33,

40 Critical values can be obtained by using the above procedures for obtaining the p\, T
(and thus /,) with typically 10,000 Monte Carlo simulations of a random walk under the
null hypothesis (i.e., y, = y,-\ + u, where u, ~ IID(0.1)).
41 Note that the estimated equation was v, = -0.816 + 0.928.xt, where v, is the US
short-run interest rate and xt is the long-run interest rate.
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Figure 4.3. Cointegration residuals from MTAR model.

obtaining the following results:

Ay, = 0.004 + 0.387A>',_1 - 0.302 A^_2 + 0.368A^_3
(0.007) (4.64) (-3.89) (4.37)

+ 0.471A^_5 - 0.470 Ax/.s - 0.1247^! - 0.124(1
(4.55) (-3.05) (-1.85) (-2.67)

(4.39a)

Diagnostics

R2 = 0.252; DW = 1.84; AR 1-5 LM = 6.53 [0.258]; ARCH = 0.069 [0.794];
Chow test =1.163 [0.326]; RESET2 = 3.554 [0.061]; Jarque-Bera test =
195.269 [0.000].

Ax, = 0.014 + 0.184Ay,_5 - 0.440Ajt^5 + 0.100/,e,_i + 0.092(1
(0.369) (2.61) (-4.08) (2.58) (1.15)

Diagnostics
(4.39b)

R2 - 0.121; DW - 1.68; AR 1-5 LM = 7.91 [0.161]; ARCH = 3.886 [0.049];
Chow test =1.090 [0.369]; RESET2 = 1.105 [0.295]; Jarque-Bera test =
36.031 [0.000].

Concentrating on the speed-of-adjustment coefficients (allowing for asym-
metric adjustment) for the short-term interest rate equation (4.39a), when
disequilibrium is above the threshold (i.e., et_\ =yt-\ +0.816 — 0.928,x,_j >
—0.33 and short-term rates are too high with regard to the long run),
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adjustment in short-term interest rates to restore the long-run equilibrium is
relatively slow (economic agents removed only 12.4% of the disequilibrium
each period); when disequilibrium is below the threshold then adjustment is
faster (with over 32% catch-up each period). The results for the long-term
interest rate suggest that adjustment is significantly different from zero only
when disequilibrium is above the threshold. In this instance the short-run
increase in long-term rates is such that some 10% catch-up is achieved each
period to eradicate the long-run imbalance between short- and long-term
interest rates.

CONCLUSIONS

Testing for cointegration using a single equation is problematic. If there are
n > 2 variables in the model and if n — 1 of them are not weakly exogenous, the
single equation approach can be misleading, particularly if there is more than
one cointegration relationship present. If single equation methods are to be
used, it would seem that the unrestricted dynamic modelling approach is most
likely to produce unbiased estimates of the long-run relationship, with appro-
priate t- and F-statistics. The test of cointegration associated with this
approach is also more powerful against alternatives, such as the usual EG
static model. However, given that the number of cointegration vectors is
unknown and given the need to allow all variables to be potentially endogen-
ous (and then testing for exogeneity), there seems little advantage to starting
from the single equation model. Rather, the multivariate vector autoregression
(VAR) approach developed by Johansen (1988) is the more obvious place to
begin testing for cointegration.



Cointegration in Multivariate Systems

The Johansen technique is an essential tool for applied economists who wish to
estimate time series models. The implication that non-stationary variables can
lead to spurious regressions unless at least one cointegration vector is present
means that some form of testing for cointegration is almost mandatory. Earlier
use of the Engle—Granger (EG) procedure (Chapter 4) has generally given way
to the determination of cointegration rank, given the consequences for the EG
approach if more than one cointegration relationship exists. In this chapter we
implement Johansen's (1988, 1995a) technique using PcGive 10.1.1

The problems facing the user who wishes to implement the technique
include, inter alia:

• testing the order of integration of each variable that enters the multivariate
model;

• setting the appropriate lag length of the vector autoregression (VAR)
model (in order to ensure Gaussian error terms in the vector error correc-
tion model—VECM) and determining whether the system should be
conditioned on any predetermined I(0) variables (including dummies to
take account of possible policy interventions);

• testing for reduced rank, including the issue of testing whether the system
should be treated as an I(2) rather than an I(1) system;

• identifying whether there are trends in the data and therefore whether
deterministic variables (a constant and trend) should enter the cointegra-
tion space or not;

• testing for weak exogeneity (which leads to the modelling of a partial
system with exogenous 7(1) variables);

• testing for unique cointegration vectors and joint tests involving restric-
tions on a and 0.

1 PcGive 10.1, Modelling Dynamic Systems Using PcGive, developed by Jurgen A.
Doornik and David F. Hendry, distributed as part of Oxmetrics by Timberlake
Consultants Ltd (info@timberlake.co.uk).
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Each of these will be considered in turn and examples provided (in particular
based on the purchasing power parity—PPP—and uncovered interest rate
parity—UIP—model estimated by Johansen and Juselius (1992) as discussed
in the last chapter, and the UK money demand model). However, it is neces-
sary first to briefly outline the Johansen model and the method of reduced rank
regression used to estimate it.

THE JOHANSEN APPROACH

The multivariate autoregressive (AR) model was discussed briefly in the last
chapter when considering the deficiencies of the single equation cointegration
approach. Defining a vector zt of n potentially endogenous variables, it is
possible to specify the following data-generating process (d.g.p.) and model
zt as an unrestricted vector autoregression (VAR) involving up to k lags of z,:

z, =A 1 z / _i + • • • + A*z,_* + u, u, ~IN(0,Z) (5.1)

where z, is (n x 1) and each of the Ai is an (n x n) matrix of parameters. This
type of VAR model has been advocated most notably by Sims (1980) as a way
to estimate dynamic relationships among jointly endogenous variables without
imposing strong a priori restrictions (such as particular structural relationships
and/or the exogeneity of some of the variables). The system is in a reduced
form with each variable in zt regressed on only lagged values of both itself and
all the other variables in the system. Thus, ordinary least-squares (OLS) is an
efficient way to estimate each equation comprising (5.1) since the right-hand
side of each equation in the system comprises a common set of (lagged and thus
predetermined) regressors.

Equation (5.1) can be reformulated into a VECM form:

Az, = PI Az,_i H h IVi Az,_*+i + riz,_A 4- u, (5.2)

where F,- = -(I - A, A,-) (i = 1, . . . ,£- 1) and II = -(I - A,
Ak). This way of specifying the system contains information on both the short-
and long-run adjustment to changes in zt, via the estimates of f, and fl,
respectively. As will be seen, FI = «p', where a represents the speed of adjust-
ment to disequilibrium and 0 is a matrix of long-run coefficients such that the
term P'z,_^ embedded in (5.2) represents up to (n - 1) cointegration relation-
ships in the multivariate model, which ensures that the zt converge with their
long-run steady state solutions. Assuming zt is a vector of non-stationary I(1)
variables, then all the terms in (5.2) that involve Az,_, are I(0) while Hz,_k must
also be stationary for u, ~ I(0) to be 'white noise'. There are three instances
when the requirement that FIz,^ ~ I(0) is met; first, when all the variables in z,
are in fact stationary, which is an uninteresting case in the present context since
it implies that there is no problem of spurious regression and the appropriate
modelling strategy is to estimate the standard Sims-type VAR in levels (i.e.,
equation (5.1)). The second instance is when there is no cointegration at all,
implying that there are no linear combinations of the z, that are 7(0). and
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consequently II is an (n x n) matrix of zeros. In this case, the appropriate
model is a VAR in first-differences involving no long-run elements. The third
way for FIz,_£ to be I(0) is when there exists up to (n — 1) cointegration
relationships: p'z,-& ~ I(0). In this instance r < (n - 1) cointegration vectors
exist in p (i.e., r columns of P form r linearly independent combinations of the
variables in z,, each of which is stationary), together with (n — r) non-
stationary vectors (i.e., n — r columns of p form 7(1) common trends). Only
the cointegration vectors in p enter (5.2), otherwise FIzr_£ would not be 7(0),
which implies that the last (n — r) columns of a are insignificantly small (i.e.,
effectively zero).2 Thus the typical problem faced (determining how many
r < (n — 1) cointegration vectors exist in P) amounts to equivalently testing
which columns of a are zero. Consequently, testing for cointegration
amounts to a consideration of the rank of FI (i.e., finding the number of r
linearly independent columns in FI).

To recap, if n has full rank (i.e., there are r = n linearly independent
columns), then the variables in zt are 7(0), while if the rank of FI is zero,
then there are no cointegration relationships. Neither of these two cases is
particularly interesting. More usually, n has reduced rank (i.e. there are
r <(n — 1} cointegration vectors present). On p. 122 we shall consider actual
tests for the (reduced) rank of FI, which, as noted earlier, are equivalent to
testing which columns of a are zero. However, this presupposes that it is
possible to factorize FI into IF = ap', where a and p can both be reduced in
dimension to (n x r).3 It is generally not possible to apply ordinary regression
techniques to the individual equations comprising the system in (5.2), since
what is obtained is an (n x n) estimate of FI.4,5 Rather, Johansen (1988)

2 Each of the r cointegration vectors in P is associated with a particular column in a that
must contain at least one non-zero element. See (4.19) for a simple example.
3 Note that once we know how many r linearly independent columns there are in n (i.e.,
once we know its rank), we then know that the last (n — r) columns of a are (effectively)
zero and thus that the last (n — r) columns of p are non-stationary and do not enter (5.2).
Thus, it is in this sense that we can then reduce the dimensions of a and p to (n x r).
4 That is, even if say the last (n — r) columns of a are insignificantly small, such that
there are only r columns in a that are significantly different from zero, estimates of
n(= «p') obtained using standard regression techniques are likely to be of full rank
(n x n) in any practical situation (given that the last (n — r) columns in P representing the
common trends will be non-zero and these will combine with the last (n — r) columns of
a, which are insignificantly small, but nevertheless likely to be non-zero). Thus, an
inability to factorize n would mean that we could not carry out tests of the rank of Ft
based on testing directly the number of non-zero columns in a. Factorization is achieved
by a procedure based on reduced rank regression involving canonical correlations (see
Box 5.1).
5Kleibergen and van Dijk (1994) have developed an approach based on directly
estimating II using OLS and then decomposing it. However, it is unclear whether this
approach has any particular advantages over Johansen's, given that the procedure is not
straightforward.
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obtains estimates of a and fi using the procedure known as reduced rank
regression. Since this is quite complicated, the details are confined to Box 5.1.

TESTING THE ORDER OF INTEGRATION OF
THE VARIABLES

When using times series data, it is often assumed that the data are non-
stationary and thus that a stationary cointegration relationship(s) needs to
be found in order to avoid the problem of spurious regression. However, it
is clear from the discussion in Chapter 3 that unit root tests often suffer from
poor size and power properties (i.e., the tendency to over-reject the null
hypothesis of non-stationarity when it is true and under-reject the null when
it is false, respectively). This has meant that in practical applications, it is quite
common for there to be tests for cointegration even when the preceding unit
root analysis suggests that the properties of the variables in the equation(s) are
unbalanced (i.e., they cannot cointegrate down to a common lower order of
integration—see Box 2.4).6 This might be justified on the grounds that the unit
root tests are not reliable, and consequently the variables may indeed all be.
say, I(1). However, it is not necessary for all the variables in the model to have
the same order of integration (unless n = 2), but it is important to understand
and take account of the implications when all the variables are not I(1).

Indeed, it is possible that cointegration is present when there is a mix of
I(0), I(1) and 7(2) variables in the model. Stationary 7(0) variables might play a
key role in establishing a sensible long-run relationship between non-stationary
variables, especially if theory a priori suggests that such variables should be
included.7 However, in the multivariate model, for every stationary variable
included, the number of cointegration equations will increase correspondingly.
To see this, recall from the above discussion of the Johansen procedure that
testing for cointegration amounts to a consideration of the rank of 11 (i.e.,
finding the number of r linearly independent columns in IT). Since each 7(0)
variable is stationary by itself, it forms a 'cointegration relation' by itself and
consequently forms a linearly independent column in FI. To take the argument
one step further, suppose we have two 7(0) variables in the model such that we

6 In Box 2.4 it was stated that, for cointegration to exist, a subset of the higher order
series must cointegrate to the order of the lower order series. So, if y, ~ I ( I ) , .v/ ~ I ( 2 )
and z, ~ I(2), then as long as we can find a cointegration relationship between xt and :,
such that vt(= x, — Az,) ~ 7(1), then v, can potentially cointegrate with v, to obtain
u>,(= y, - £v,) ~ I(0). Note that this presupposes that there are in fact two cointegra-
tion relationships suggesting that unbalanced equations should always be estimated in a
multivariate framework.
7 For example, if wages and labour market variables are I(1), it might be necessary to
include the relationship between wage inflation and the unemployment rate—the
Phillips Curve—to obtain cointegration relations.
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Note that V is normalized such that
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can find a linear combination (i.e., a single 0,) that cointegrates. This does not
imply that these two I(0) variables form only one cointegration relationship,
since we could linearly combine the two columns of 0, each containing just the
one I(0) variable, to obtain the cointegration relationship being sought.9 Thus
the practical implication of including I(0) variables is that cointegration rank
will increase and a number of the cointegration vectors in 0 should contain
only one variable. Knowledge of this (or at least the expectation) may help in
interpreting the initial (unrestricted) results obtained from using the Johansen
approach.

If the model contains I(2) variables, the situation becomes far more com-
plicated. Some (or all) of the I(2) variables may cointegrate down to I(1) space
and then further cointegrate with other I(1) variables to obtain a cointegration
vector(s). Thus, the presence of variables that require to be differenced twice to
induce stationarity does not preclude the possibility of stationary relationships
in the model.10 However, applying the standard Johansen approach, which is
designed to handle 7(1) and 7(0) variables, will not provide the necessary
stationary vectors. When there are 7(2) variables in the model, we must
either replace them with an 7(1) alternative through some form of differencing
(e.g., if money supply and prices are 7(2), we could reformulate the model to
consider real money mt — pt), or it will be necessary to use the approach
developed by Johansen (1995b) for 7(2) models. Again, knowing that there
are 7(2) variables in the model can help in formulating the right approach to
estimating cointegration relationships in such situations.

FORMULATION OF THE DYNAMIC MODEL

So far, the VECM to be estimated (equation (5.2)) contains no deterministic
components (such as an intercept and trend, or seasonal dummies). There is

9 Recall that in the extreme if II has full rank (i.e., there are r = n linearly independent
columns), then all the variables in zt are I(0). Note that this points to a problem
regarding what is meant by cointegration between I(0) variables, since there are
potentially an infinite number of ways we can combine these variables, and each time
(by definition) the relationship formed is I(0). This is not a problem when the variables
are I(1), since Engle and Granger (1987) have shown that linear combinations of non-
stationary variables are in general also non-stationary unless we can find some 0, that
results in a cointegration relationship.
10 Johansen (1995b) shows that if the number of cointegration relations exceeds the
number of 7(2) common trends in 0, then combinations of the variables in z, can be
stationary by themselves. If this condition is not met, then it should still be possible to
combine some of the I(1) vectors in 0 with suitable combinations of the I(2) variables to
form stationary vectors. This is the situation known as polynomial cointegration—or
multicointegration—and we discuss this briefly in Box 5.3. Even if such combinations
exist, there will of course still remain I(1) and/or I(2) vectors that are non-stationary
'common trends'.
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also the issue of setting the appropriate lag length of the Az^^+i to ensure that
the residuals are Gaussian (i.e., they do not suffer from autocorrelation, non-
normality, etc.). Setting the value of k is also bound up with the issue of
whether there are variables that only affect the short-run behaviour of the
model and that, if they are omitted, will become part of the error term u?.
Residual mis-specification can arise as a consequence of omitting these impor-
tant conditioning variables, and increasing the lag length k is often not the
solution (as it usually is when, for example, autocorrelation is present).11,12 The
question of whether there are trends in the data and therefore whether deter-
ministic variables (a constant and trend) should enter the cointegration space
or not will be taken up after considering how to test for the number of
cointegration vectors in the model, since testing for the inclusion of these
deterministic components is undertaken jointly with testing for cointegration
rank. In this section, we consider the other issues surrounding the appropriate
value for k.

For notational simplicity, assume that k = 2 and that there exist other
variables that are both weakly exogenous and insignificant in the long-run
cointegration space such that we can condition on the set of such I(0) variables
Dt.. The latter will only affect the short-run model, and it is possible to rewrite
(5.2) as:

Az, = Pi Az,_i + nz,_2 + TD, + u, (5.3)

The variables in Dt are often included to take account of short-run 'shocks' to
the system, such as policy interventions and the impact of the two oil price
shocks in the 1970s that had an important effect on macroeconomic conditions.
Such variables often enter as dummy variables, including seasonal dummies
when the data are observed more frequently than annually.13 Seasonal

11 Indeed, if residual autocorrelation is due to omitted conditioning variables increasing
the value of k results in potentially harmful over-parameterization which affects the
estimates of cointegration rank (including the p), making it difficult to interpret
economically the cointegration relations present, as well as significantly reducing the
power of the test (if the lag length is too large, then too few cointegration relations are
found).
12 Note, however, that in the general case of setting the value of k, Monte Carlo evidence
suggests that tests of cointegration rank (see p. 122) are relatively robust to over-
parameterization, while setting too small a value of k severely distorts the size of the
tests (Cheung and Lai, 1993). More recent Monte Carlo evidence is presented in
Lutkepohl and Saikkonen (1999), confirming that there are often severe size distortions
when k is too small and power losses if k is too large. Their recommendation was
to choose the lag length using information criteria selection procedures (e.g., the AIC)
'. . . which tend to find a balance between a good approximation of the DGP and an
efficient use of the sample information' (Lutkepohl and Saikkonen, 1999, p. 184).
13 Since seasonal adjustment methods have an effect on the trend behaviour of individual
series, it is argued that unadjusted data are preferable. For example, Lee and Siklos
(1997) show that seasonal adjustment can lead to less cointegration, while Ermini and
Chang (1996) show that seasonal adjustment can induce spurious cointegration.
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dummies are centred to ensure that they sum to zero over time,14 and thus they
do not affect the underlying asymptotic distributions upon which tests (includ-
ing tests for cointegration rank) depend. However, it is worth noting at the
outset that including any other dummy or dummy-type variable will affect the
underlying distribution of test statistics, such that the critical values for these
tests are different depending on the number of dummies included. This will
mean that the published critical values provided by Johansen and others (e.g.,
Osterwald-Lenum, 1992; Pesaran, Shin and Smith, 2000) are only indicative in
such situations.15

As an example, consider the PPP and UIP model estimated using UK data
by Johansen and Juselius (1992). This was set out briefly in the last chapter and
comprises the five variables p1 (the UK wholesale price index), p2 (trade-
weighted foreign wholesale price index), e (UK effective exchange rate), i1 (3-
month UK Treasury bill rate) and i2 (3-month Eurodollar interest rate). Using
OLS to estimate the system denoted by (5.3) and restricting Dt to include only
seasonal dummies and an intercept produces the output in Table 5.1 (PcGive
10.1 was used,16 leaving the cointegration rank unrestricted as r = n). The
diagnostic tests17 involve F-tests for the hypotheses: that the i-period lag
(Fk=i) is zero; that there is no serial correlation (Far, against fourth-order
autoregression); that there is no autoregressive conditional heteroscedasticity
(ARCH) (FARCH, against fourth order); that there is no heteroscedasticity
(Fhet); and lastly a x2-test for normality (Xnd : see Doornik and Hansen, 1993).
Analogous system (vector) tests are also reported (see the PcGive manual), with
the last test Fur representing the test against the significance of the regressors
in Dt.

The results based on k = 2 indicate that the second period lag is significant
in at least one of the equations in the model (and cointegration analysis
requires the model to have a common lag length). Non-normal residuals are
a problem in the equations determining p2 and i2. The impact of the outlier
observations is seen more clearly in Figure 5.1. Increasing the lag length to
k = 3 (or higher) has little impact and the additional lags are generally not
significant (although the choice of k based on the Akaike information criterion

14 For example, the usual quarterly (0, 1) dummies for each period (S1 t , S2t, S3t and S4t)
are entered as (Sit — S1t), i = 1, . . ., 4.
15 Johansen and Nielsen (1993) derive the asymptotic distributions for some models with
dummy variables that can be simulated via a program called DisCo (written in Pascal).
16 Note that PcGive actually estimates the VAR model in levels (see equation (5.1))
rather than the equivalent VECM in first differences with the lagged zt–k (see equation
(5.2)). This needs to be borne in mind when conducting any hypothesis tests with respect
to the regressors in the model, since the usual t- and F-tests are not normally distributed
in a system containing non-stationary I(I) variables in levels (see Chapter 2).
17 Most of these were considered in the last chapter. Note that hypothesis tests with
respect to the residuals of the model are valid, since these are stationary I(0) on the
presumption that there are cointegration relationships in the data set. The F-tests (that
the i-period lag (Fk = i) is zero) are only indicative (see the previous footnote).
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Table 5.1 Model evaluation diagnostics: PPP and UIP model using UK data (only an
intercept and seasonal dummies in D,).

Statistic p1 p2 c i\ ii

Lag length = 2
F*=l(5, 42)
Fk=2(5, 42)
(T

Far(4, 42)
Farch(4, 38)
Fhe,(20, 25)
v2 (2)

20.49**
2.03
0.85%
1.10
2.53
1.09
7.71*

11.91**
1.59
1.23%
0.34
0.03
2.07*

68.87**

14.11**
1.04
3.32%
1.76
0.59
0.33
1.63

20.94**
3.89**
1.23%
0.85
0.41
0.92
2.59

6.51**
0.88
1.45%
2.36
1.59
1.57

23.56**

Multivariate tests: Far(100, 111) =1.28; Fhet(300, 176) = 0.86; xj|d(10) = 97.68**;
Fur(50, 194) = 120.12**; AIC = -42.2045; HQ = -41.2487

Lag length = 3
Fk=l (5, 36) 22.47** 12.11** 12.59** 13.98** 6.72**
Fk=2(5, 36) 3.23* 0.70 1.75 2.99* 3.15*
Fk=3(5, 36) 1.37 1.86 1.64 2.09 3.42*
a 0.78% 1.20% 3.35% 1.23% 1.30%
Far(4, 36) 1.52 1.56 1.50 0.99 1.18
Farch(4, 32) 1.90 0.02 0.31 1.51 2.07
Fhet(30, 9) 0.41 0.78 0.24 0.53 0.92
xld(2) 4.15 72.30** 8.32* 2.58 19.43**

Multivariate tests: Far(100, 82) = 1.02; x£et(450) = 494.53; XndO°) = 96.44**; Fur(75,
176) = 74.38**; AIC = -42.4480; HQ = -41.1422

* Rejects null hypothesis at 5% significance level.
** Rejects null hypothesis at 1% significance level.

(AIC) would in fact result in k — 4, whereas in contrast the Hannan—Quinn
(HQ) criterion suggests that k = 1 is to be preferred).18

Johansen and Juselius (1992) argued that by looking at residual plots the
above problems of excess kurtosis were found to coincide with significant
changes in the oil price, and thus they conditioned their model on A/?o? and
A/?o,_i, where po measures the world price of crude oil. These I(0) variables
were presumed to be exogenous and to have only a short-run effect, and thus
they are presumed to enter Dt only. The residual diagnostics that now result are

18 When information criteria suggest different values of k, Johansen et al. (2000) note
that it is common practice to prefer the HQ criterion. However, like others, we have set
k = 2 in our subsequent analysis mainly because setting k at different values results in
implausible estimates of the cointegration vectors. Clearly, this present example of
cointegration analysis lacks sufficient observations with too many variables to estimate
and is a prime candidate for conditioning on exogenous variables—something we
discuss on pp. 135ff.
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Figure 5.1. Residual densities for p2 and i2: excluding A/w,, A/>o,_i and Dusa in the
model.

shown in the top half of Table 5.2, and Figure 5.2. There is a significant
reduction in the kurtosis associated with the foreign wholesale price index,19

but little change in the residuals of the Eurodollar interest rate equation.
Johansen and Juselius (1992) stopped at this point in terms of the specification
of Dt, arguing that if these two variables prove to be weakly exogenous (as was
the case for P2), then non-normality is less of a problem since we can condition
on the weakly exogenous variables (although they remain in the long-run
model) and therefore improve the stochastic properties of the model. In prac-
tice, as will be seen on pp. 135ff when we consider testing for weak exogeneity.
this means that the exogenous variables only enter the right-hand side of (5.2)
and do not therefore have to be modelled themselves, which is an advantage
especially '. . . if there have been many interventions during the period and the
weakly exogenous variable exhibits all the "problematic" data features'
(Hansen and Juselius, 1994).

The residual plot for i2 indicates that the outlier problem is associated with
the first quarter of 1979 and especially the second quarter of 1980. Thus, a
second dummy was included taking on the value of 1 for both these periods
and labelled Dusa (since it coincided in the later period with depository institu-
tions deregulation and the Monetary Control Act in the USA, which had a

19The variable A/?o, is highly significant in the equation determining p2.
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Table 5.2 Model evaluation diagnostics: PPP and UIP model using UK data (1972q i
1987q2) (lag length k = 2).

Statistic pi p2 c i\ 12

Intercept, seasonal dummies and A/wr, A/?of_i
F*=i(5, 40) 16.65** 13.07**
/^=2(5, 40) 1.42 1.14
a 0.80% 0.83%
Far(4, 40) 1.16 1.59
Farch(4, 36) 1 .48 0.49

Fhet(20, 23) 0.60 1.34
*Sd(2) 5.75 12.19**

inD,
11.95**
0.72
3.35%
1.53
0.46
0.30
1.17

19.53**
3.59**
1.24%
0.56
0.37
0.79
3.74

6.15**
0.68
1 .47%
2.94
1.70
1.34

23.29**

Multivariate tests: Far(100, 102) =1.13; Fhet(300, 152) = 0.64; x^,(10) = 46,23**;
Fur(50, 185) = 130.90**; AIC = -42.2045; HQ = -41.7876

Intercept, seasonal dummies, A/JO,, Apo,^\ and Dusa in Dt

Fjt=i(5, 39) 16.62** 12.77** 11.32** 17.88** 9.35**
/W(5, 39) 1.48 1.21 0.74 2.96* 0.83
a 0.81% 0.83% 3.34% 1.25% 1.33%
Far(4, 39) 1.16 1.54 1.94 0.51 2.03
Farch(4, 35) 1.39 0.47 0.22 0.32 0.82
Fhet(20, 22) 0.59 1.27 0.28 0.68 0.68
xfld(2) 5.30 12.31** 2.03 4.37 4.24

Multivariate tests: Far(100, 97) =1.24; Fhet(300, 140) = 0.54; x*d(10) = 26.24**;
Fur(50, 181) = 132.74**; AIC = -43.0151; HQ = -41.8550

* Rejects null hypothesis at 5% significance level.
** Rejects null hypothesis at 1% significance level.

strong impact on interest rate determination outside the USA). The new set of
residual diagnostics are reported in the lower half of Table 5.2 and Figure 5.3,
showing yet a further improvement in the stochastic properties of the model.

A different example of the problems associated with specifying the value of
k and the elements in Dt involves OLS estimation of the demand-for-money
model. Setting k = 2 and restricting Dt to include only seasonal dummies and
an intercept, the results as set out in Table 5.3 are obtained. The null hypoth-
esis of no serial correlation is rejected in the univariate case for the real money
supply and real output (cf. the Far statistics against fifth-order autoregression)
and for the system as a whole. There is also some evidence that the residuals
from the real output and inflation equations are non-normally distributed.
Increasing the lag length to k = 4 produces the results in the second half of
Table 5.3 (as well as minimizing the AIC); the extra lags on (m — p)t and y, are
significant20 and serial correlation is no longer a problem, although the test for

20 Note again the comments in previous footnotes about hypothesis-testing with respect
to non-stationary variables.
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Figure 5.3. Residual densities for p2 and i2: including A/w,, Apo,-\ and Dusa in the
model.
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Table 5.3 Model evaluation diagnostics: UK demand for money (1963ql–1989q2)
(only an intercept and seasonal dummies in Dt).

Statistic m — p y A/> R

Lag length = 2
Fk=1(4, 88)
Fk=2(4, 88)
a
Far(5, 86)
Farch(4, 83)
Fhet(16, 74)
v2 (2)

12.22**
5.10**
2.00%
4.19**
0.78
0.94
3.39

10.36**
6.00**
1.71%
2.77*
0.87
1.00
7.88*

5.80**
5.33**
0.77%
0.51
1.14
0.78
6.26*

12 22**
5.10**
1.31%
0.34
2.42
1.79*
3.04

Multivariate tests: Far(80, 270) = 2.02**; Fhet(160, 574) =1.09; xiU8) = 19-54*;
Fur(32, 326) = 248.47**; AIC = -34.5196

Lag length = 4
Fk = 1(4, 78) 9.25** 9.79** 5.95** 23.60**
ft.=2(4, 78) 2.56* 1.41 3.33* 1.39
Fft=3(4, 78) 1.59 4.52** 0.37 0.18
F*=4(4, 78) 4.79** 5.18** 1.71 0.72
a 1.62% 1.58% 0.73% 1.36%
Far(5, 76) 1.92 1.66 0.93 1.04
Farch(4, 73) 1.02 1.09 0.64 3.31*
Fhet(32, 48) 0.52 0.73 0.76 0.89
xjd(2) 2.50 5.28 5.44 2.82

Multivariate tests: Far(80, 231) = 0.96; Fhet(320, 400) = 0.59; Xnd(8) = 18.76*; Fur(64,
307) - 124.42**; AIC = -34.8381

* Rejects null hypothesis at 5% significance level.
** Rejects null hypothesis at 1% significance level.

ARCH is significant for the interest rate equation. Checking the plot of the
residuals for the latter indicates outliers associated with the first two quarters
of 1977, and adding a dummy to cover this period removes the ARCH
process.21 Alternatively, on the assumption that the interest rate is weakly
exogenous, it may be appropriate to condition on R instead of adding the
extra dummy variable, especially if no economic rationale is available to
justify its inclusion.22

21 It is fairly common for conditional heteroscedasticity to lead to heavy tailed
distributions.
22Hendry and Doornik (1994) estimated a similar model to the present one, using
seasonally adjusted data, and introduced two extra dummies into Dt, one to account for
the two oil price shocks in the 1970s and the other to account for the Barber boom in
1973 and the tight monetary policy introduced in 1979 (see Hendry and Doornik, 1994,
fn. 1). These dummies are significant in the model estimated here, but their inclusion has
little impact on the short-run model other than to introduce mild autocorrelation into
the real output equation. This points to a potential trade-off that often occurs in terms
of setting the value of k and introducing I(0) variables into Dt.
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TESTING FOR REDUCED RANK

It was stated earlier that if a model contains z,, a vector of non-stationary I(1)
variables, then Tlz,__k in (5.2) contains the stationary long-run error correction
relations and must be stationary for u, ~ I(0) to be 'white noise'. The occurs
when Il(= «0') has reduced rank; that is, there are r < (n - 1) cointegration
vectors present in P so that testing for cointegration amounts to finding the
number of r linearly independent columns in n, which is equivalent to testing
that the last (n — r) columns of a are insignificantly small (i.e., effectively
zero). In Box 5.1, it is shown that Johansen's maximum likelihood approach
to solving this problem amounts to a reduced rank regression, which
provides n eigenvalues A] > A2 > • • • > \n and their corresponding eigenvectors
V = (Vj , • • • , v,,). Those r elements in V that determine the linear combinations
of stationary relationships can be denoted p = (V] vr); that is, the distinct
v/z, (i = 1, . . . .,r) combinations of the I(1) levels of zt that produce high correla-
tions with the stationary Az, ~ I(0) elements in (5.2) are the cointegration
vectors by virtue of the fact that they must themselves be 7(0) to achieve a
high correlation. Since each eigenvector v, has a corresponding eigenvalue, then
the magnitude of A, is a measure of how strongly the cointegration relations
v'z, (which we can now denote as P/z,) are correlated with the stationary part of
the model. The last (n — r) combinations obtained from the Johansen approach
(i.e., v/z, (i = r + 1, . . . ,«)) , indicate the non-stationary combinations and theo-
retically are uncorrelated with the stationary elements in (5.2). Consequently,
for the eigenvectors corresponding to the non-stationary part of the model.
A, = 0 for /' = r+ 1 , . . . , « .

Thus to test the null hypothesis that there are at most r cointegration
vectors (and thus (n — r) unit roots) amounts to:

770: A, = 0 i = r+\ n

where only the first r eigenvalues are non-zero. This restriction can be imposed
for different values of r, and then the log of the maximized likelihood function
for the restricted model is compared with the log of the maximized likelihood
function of the unrestricted model and a standard likelihood ratio test com-
puted (although with a non-standard distribution). That is, it is possible to test
the null hypothesis using what has become known as the trace statistic:

n

Atrace = -21og(0) = -r ^ log(l -A / ) r = 0.1.2 n-2.n- 1
i=r+1

(5.4)

where Q = (Restricted maximized likelihood 4- Unrestricted maximized like-
lihood). Asymptotic critical values are provided in Osterwald-Lenum (1992).
Pesaran et al. (2000) and Doornik (1999) although if dummy variables enter the
deterministic part of the multivariate model (i.e., D, above), then these critical
values are only indicative. Similarly, if the practitioner only has a small sample
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Table 5.4 Tests of the cointegration rank for the PPP and UIP model using UK data
(1972ql-1987q2).fl

HQ; r n-f A/ Amax test Amax (0.95) Trace test Atrace (0.95)

0
1
2
3
4

5
4
3
7

1

0.407
0.307
0.249
0.122
0.078

31.37
22.02
17.20
7.82
4.85

33.6
27.4
21.1
14.9
8.1

83.26*
51.89*
29.87
12.68
4.85

70.5
48.9
31.5
17.9
8.1

" See Johansen and Juselius (1992, table 2).
* Denotes rejection at the 5% significance level (based on critical values in Pesaran et al. 2000, table
6c—see also the Statistical Appendix at the end of this book).

of observations on zt, then there are likely to be problems with the power and
size properties of the above test when using asymptotic critical values. The
implications of this, and other similar problems with the trace statistic, are
considered on p. 124 and in footnote 23.

Another test of the significance of the largest Xr is the so-called maximal
eigenvalue or A-max statistic:

Amax = -71og(l -A r + 1) r = 0 , l , 2 , . . . , n - 2 , w - 1 (5.5)

This tests that there are r cointegration vectors against the alternative that r + 1
exist. Since the sequence of trace tests (A0, Al5 ... , A M _ _ j ) leads to a consistent
test procedure and consistency is not available for the A-max test, it is usually
current practice to only use the trace statistic when testing for cointegration
rank (although initially we present both tests for completeness).23 An example
of testing for the reduced rank of II is now presented to make clear the use of
the tests outlined above.

The results obtained from applying the Johansen reduced rank regression
approach (see Box 5.1) to the PPP and UIP model discussed above (with
intercept, seasonal dummies and &pot, A/?o,_i, Z)usa in Df and k = 2) are
given in Table 5.4. The various hypotheses to be tested, from no cointegration
(i.e., r = 0 or alternatively n — r = 5) to increasing numbers of cointegration
vectors are presented in columns 1 and 2. The eigenvalues associated with the
combinations of the I(1) levels of z, are in column 3, ordered from highest to
lowest. Next come the Amax statistics that test whether r = 0 against r = 1 or
r = 1 against r = 2, etc. That is, a test of the significance of the largest \ is

23 Note that Lutkepohl et al. (2001) have looked at the small-sample properties of the
trace and A-max tests, concluding that the former sometimes has poorer size properties
while the A-max test often suffers from loss of power. In general, they conclude: '. . . our
overall recommendation is to use the trace tests if one wants to apply just one test
version. Of course there is nothing wrong with the common practice of using both
versions simultaneously' (p. 304).
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performed, and the present results suggest that the hypothesis of no cointegra-
tion (r = 0) cannot be rejected at the 5% level (with the 5% critical values given
in column 5). The Atrace statistics test the null that r = q (q = 0.1,2, . . . . n - 1)
against the unrestricted alternative that r = n. On the basis of this test it is
possible to accept that there are two cointegration vectors, since the trace
statistic associated with the null hypothesis that r = 1 is rejected, but the null
hypothesis that r = 2 is not rejected. This apparent contradiction in the tests
for cointegration rank is not uncommon. As has already been stated, the
inclusion of dummy or dummy-type variables in Dt affects the underlying
distribution of the test statistics, such that the critical values for these tests
are different depending on the number of dummies included. The problem of
small samples has also been mentioned, and Reimers (1992) suggests that in
such a situation the Johansen procedure over-rejects when the null is true. Thus
he suggests taking account of the number of parameters to be estimated in the
model and making an adjustment for degrees of freedom by replacing T in
(5.4) and (5.5) by T — nk, where T is the sample size, n is the number of
variables in the model and k is the lag length set when estimating (5.2).24

Using both Reimers adjusted trace and Amax statistics, we could not reject
the null of no cointegration given that we would now be using a value of
T — nk = 50 rather than T = 60 in calculating the test statistics. However, as
pointed out by Doornik and Hendry (1994), it is unclear whether this is the
preferred correction, although Cheung and Lai (1993) report that their results
'. . . support that the finite-sample bias of Johansen's tests is a positive function
of T/(T — nk) . . . furthermore, the finite-sample bias toward over-rejection of
the no cointegration hypothesis magnifies with increasing values of n and k.'
More recently, Johansen (2002a, 2002b) has considered the issue of correcting
the rank test statistics in small samples, finding that a Bartlett-type correction
that depends on the parameters of the VECM (F, a, 0, L—see equation 5.2). as
well as the degrees of freedom, is a theoretical improvement for calculating
appropriate critical values. However, simulations (based on Monte Carlo
experiments) provided some mixed results. An alternative to using such a
correction factor would be to simulate the exact distribution based on the
d.g.p. underlying the model being considered, using bootstrap methods, but
again this is not without problems (see Harris and Judge, 1998, for a
discussion).25

The Monte Carlo experiments reported in Cheung and Lai (1993) also

24Cheung and Lai (1993) note that '. . . an equivalent way to make finite-sample
corrections is to adjust the critical values and not the test statistics.' The scaling
factor used to adjust the critical values is T/(T — nk).
25 The bootstrap approach in effect amounts to undertaking the same type of Monte
Carlo work that generated the tables of critical values for the trace (and A-max) test, but
for the purposes of calculating critical values relevant to a particular data set (based on
unknown d.g.p.s). However, the results in Harris and Judge (1998) suggest that the
bootstrap test statistic has poor size properties.
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suggest that '. . . between Johansen's two LR [likelihood ratio] tests for coin-
tegration, the trace test shows more robustness to both skewness and excess
kurtosis in (the residuals) than the maximal eigenvalue (Amax) test.'26 Since the
PPP and UIP model suffers from excess kurtosis, it may be preferable to
place greater weight on the trace test. However, it is also important to use
any additional information that can support the choice of r. Juselius (1995)
suggests looking at the dynamics of the VAR model (equation (5.1)) and in
particular whether it converges in the long run. Thus the eigenvalues (i.e.,
roots) of what is termed the companion matrix (A) are considered since
these provide additional confirmation of how many (n — r) roots are on the
unit circle and thus the number of r cointegration relations. The matrix A is
defined by:

"A] A2 • • • A*_i AA
l n 0 • • - 0 0

0 !„ ••• 0 0
.0 0 - - - Ifl 0

where A, is defined by (5.1) and In is the n-dimensional identity matrix. There
are 10 roots of the companion matrix in the present example, since n x k = 10.
The moduli27 of the three largest roots are 0.979, 0.918 and 0.918, respectively,
indicating that all roots are inside the unit circle with the three largest close to
unity. This suggests that (n — r) = 3 and thus there are two cointegration
relations. The fact that all roots are inside the unit circle is consistent with zt

comprising I(1) processes, although it is certainly possible that the largest root
is not significantly different from 1. If any of the roots are on or outside the
unit circle, this would tend to indicate an I(2) model, requiring second-order
differencing to achieve stationarity.28

The estimates of a and JJ obtained from applying the Johansen technique
(using the PcGive 10.1 program) are presented in Box 5.2.29 Note that the
p-matrix is presented in normalized form, with the latter having one element
of each row of (J' set equal to — 1 (along the diagonal in this instance). This is
26 'Fat tails' due to generalized ARCH (GARCH) processes are also likely to affect the
small-sample properties of the trace and maximal eigenvalue tests. This is discussed in
Chapter 8, when we look at modelling financial models using cointegration techniques,
27 Recall that the roots of the characteristic equation used to solve for the eigenvalues
(or characteristic roots) can be complex (i.e., contain a real and imaginary part h ± vi,
where h and v are two real numbers and i is an imaginary number) and the modulus is
the absolute value of the complex root and is calculated as \/(h2 + v2).
2« Formal testing of the I(2) model is considered in Box 5.3.
29 Note, for simplicity and in line with common practice, that the full rank (5 x 5)
matrices are labelled a and J3 in Box 5.2, although it might be more appropriate to label
them as V = (v\,..., vn) and W = (w\,..., wn), where the u,- are the eigenvectors
obtained from with Johansen procedure with associated weights w-,. Only the first r
elements in W and V that are associated with stationary relationships should be labelled
d and /?, with the latter having reduced rank.
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achieved by simply dividing each row by the chosen element. Normalizing the
p-matrix leads to a normalized a-matrix, and different normalizations applied
to p lead to different values in the a matrix. Figure 5.4 plots the first four
relations associated with the first four rows in p' to see if any of the (J'z, are
stationary. The first two vectors correspond to the most stationary relations in
the model, but there is some evidence that both relationships are upward
trending. The other two vectors are clearly non-stationary. The plots in
Figure 5.5 present a different version of the same relations as in Figure 5.4
since, instead of multiplying the p' by zt, where zt captures all the short-run
dynamics (including seasonals) in the model, the P, are multiplied by a vector
Rkt that is equivalent to zt, but with all the short-run dynamic effects removed
(i.e., Rkt = zt–k — (f iAz t–1 + • • • + f^_iAz t–k+1)—see equations (5.2) and
(5.1.3)). The first two graphs in Figure 5.5 now suggest that the first two
vectors are stationary, confirming that r = 2. Note, however, the advice
given by Hansen and Juselius (1994) that when '... p'zt and P'Rkt, look
widely different, in particular if the former looks I(1) whereas the latter
looks stationary, it is a good idea to check whether your data vector zt is
second order instead of first order nonstationary.
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Figure 5.4. Plots of the relations v^z, (those that cointegrate can be denoted as P'-z/).
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Figure 5.6. Recursive estimates of the eigenvalues associated with the relations vjz,.

As another check of the adequacy of the model, Figure 5.6 plots recursive
estimates of the first four non-zero eigenvalues. This type of graph corresponds
to a standard plot of parameter estimates in the usual regression model since
non-constancy of a or 0 should be reflected in non-constancy of the A,. If there
were breaks in the cointegration vectors, then generally this would result in too
low a rank order being established for ft, as the break would likely be
'mistaken' for non-stationarity. Generally, for the PPP and UIP model there
is no evidence of parameter instability due to, for example, the failure to
account for structural breaks. More formal tests for structural breaks are
being developed—for example, Inoue (1999) allows for a break in the determi-
nistic components in the VECM (see equation (5.6) and the next section), but
not in a or (J. Johansen, Mosconi and Nielson (2000) discuss the implication of
such deterministic breaks on the test statistics for cointegration rank. In con-
trast, Quintos (1997) tests whether there has been a change in the rank of ft
over the sample period (i.e., the number of cointegration vectors changes over
time). Lutkepohl, Saikkonen and Trenkler (2001) compare two types of tests
for the cointegration rank of a VAR process with a deterministic shift in the
level at some known point in time. Lastly, Gabriel, Psaradakis and Sola (2002)
advocate the use of Markov switching techniques that allow multiple regime
shifts as a way for testing for (multiple) breaks in a and/or p.

As an example of a likely I(2) system, consider the UK demand-for-money
model again, but in terms of nominal money balances. Applying the Johansen
approach to seasonally unadjusted data for the 1963ql to 1989q230 period

30 Including centred seasonal dummies and a constant in Dt.
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results in one cointegration vector being accepted after testing for reduced
rank, with the largest eigenvalue of the companion matrix having a modulus
of 1.007. Estimating the real money demand model with the potentially 1(2)
variables mt and pt replaced by (m — p)t also produces support for a single
cointegration relationship, but this time with the largest eigenvalue of the
companion matrix having a modulus of 0.991. Johansen (1995b) has developed
a more exact test for whether the model contains any 7(2) variables (see Box
5.3), but the procedure is not yet fully available in PcGive 10.1 (Box 5.3
indicates what currently can be modelled in terms of an 7(2) system). If there
are 7(2) variables and the rank test procedure outlined above for the I(1) model
indicates that there are cointegration relationships, then they are valid, but not
necessarily stationary, which has implications for the next stage of econometric
modelling (e.g., estimating dynamic error correction models that include these
cointegration relationships). In such a situation, as noted above, it is necessary
to replace the 7(2) variables with 7(1) alternatives through some form of
differencing or to use the approach for 7(2) variables developed by, for
example, Johansen (1995a, chap. 9) and Paruolo (1996).

Lastly, having determined how many cointegration vectors there are, it is
now necessary to consider whether they are unique and consequently whether
they tell us anything about the structural economic relationships underlying the
long-run model. The PPP and UIP model (see Box 5.2) appears to have two
cointegration vectors (i.e., the first two rows of p', since these correspond to the
largest eigenvalues and thus have the highest correlation with the stationary
part of the model). As Johansen and Juselius (1992) point out, the first vector
seems to contain the assumed PPP relation in the first three variables and the
second to contain the interest rate differential in the last two variables.
However, when interpreting the cointegration vectors obtained from the
Johansen approach it needs to be stressed that what the reduced rank regres-
sion procedure provides is information on how many unique cointegration
vectors span the cointegration space, while any linear combination of the
stationary vectors is itself a stationary vector and thus the estimates produced
for any particular column in 8 are not necessarily unique. This can easily be
seen by noting that ap' = aJ; %P' = a*p'*, where ^ is any r x r non-singular
matrix. Thus, if we can find a ^-matrix that transforms P into p*, we still have
the same unique number of cointegration vectors, but the vectors themselves
are not unique. This is very important, and it would be a major limitation if we
could not determine unique structural relationships for each cointegration
vector (assuming such uniqueness exists). Fortunately, it is possible to test
for unique vectors (see p. 152) as well as to test more generally to see if
particular relationships span the cointegration space (e.g., does the (1, — 1,
— 1, *, *)' vector exist anywhere within the space spanned by the two vectors
comprising the PPP model).31

Note that * denotes an unrestricted value.
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DETERMINISTIC COMPONENTS IN THE
MULTIVARIATE MODEL

In discussing the formulation of the dynamic model, the question of whether an
intercept and trend should enter the short- and/or long-run model was raised.

32 Note that the standard trace test of the I(1) model confirms that r — 1, since the test
statistic of 27.14 < 31.54 (the critical value obtained from Pesaran et al. (2000, table
6c)).
33 Note that PcGive 10.1 only is currently programmed to undertake testing for the I(2)
system; it does not undertake step 2 of Johansen's procedure and allow testing of the
eigenvectors (however, this procedure is available as an additional download to the Cats
in Rats econometric program, distributed by Estima—see the Appendix at the end of the
book).
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For notational simplicity assuming that k — 2 and omitting the other determi-
nistic variables in Dr, we can expand the VECM (equation (5.2)) to include the
various options that need to be considered:

( p
Azf = FiAz?_i -f a (5.6)

where z',_k = (z',_£, I , /) . Although it is possible to specify a model (denoted
here as Model 1) where 6{ = 62 — n\ = fa = 0 0-e-> there are no deterministic
components in the data or in the cointegration relations), this is unlikely to
occur in practice, especially as the intercept is generally needed to account for
the units of measurement of the variables in z,.34 There are three models that
can realistically be considered:

• If there are no linear trends in the levels of the data, such that the first-
differenced series have a zero mean, then 61 = 62 = fa = 0- Thus, the
intercept is restricted to the long-run model (i.e., the cointegration space)
to account for the units of measurement of the variables in z,. The critical
values for this model are available in Osterwald-Lenum (1992), although
Pesaran et al. (2000, table 6b35) have extended these to allow for (weakly)
exogenous I(1) variables to enter the model such that the endogenous
model set out in equation (5.6) is a special case where the number of
exogenous variables (k) equals 0. Doornik (1999) has also produced critical
values using the Gamma distribution, and these are the default option in
the econometrics package PcGive 10.1. For consistency, we shall label this
Model 2.36

• If there are linear trends in the levels of the data, then we specify a model
that allows the non-stationary relationships in the model to drift, so
#i =^2 = 0. However, it is assumed that the intercept in the cointegration
vectors is cancelled by the intercept in the short-run model, leaving only an
intercept in the short-run model (i.e., in estimating (5.6), ^ combines with
fa to provide an overall intercept contained in the short-run model). The
critical values for this Model 3 are in Table 6c in Pesaran et al. (2000).

• If there are no quadratic trends in the levels of the data, then there will be
no time trend in the short-run model, but if there is some long-run linear
growth that the model cannot account for, given the chosen data set, then
we allow for a linear trend in the cointegration vectors. Thus, the only
restriction imposed is 62 = 0 and the cointegration space includes time as a

34 Note that critical values for this Model 1 are available in Pesaran et al. (2000, table
6(a)). For the model specified here with no exogenous I(1) variables—see next section—
the appropriate values are those when k = 0.
35 Reproduced in the Statistic Appendix at the end of this book as Table A. 10.
36 As stated in the text, Model 1 coincides with 6'i = 62 = m = pi — 0.
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trend-stationary variable, to take account of unknown exogenous growth
(e.g., technical progress).37'38 For Model
in table 6d in Pesaran et al. (2000).
(e.g., technical progress).37'38 For Model 4, the critical values are available

Another model (Model 5) that could be considered is to extend Model 4 to
allow for linear trends in the short-run model, determining Az, and thus quad-
ratic trends in z,. Thus 62 is also unrestricted, although this is economically
hard to justify (especially since if the variables are entered in logs, this would
imply an implausible ever-increasing or decreasing rate of change).

The question of which model (2–4) should be used is not easily answered a
priori;39 the vector z, could be plotted in levels (and first differences) and
examined for trends so that variables like interest rates, which show no indica-
tion to drift upward or downward over time, might require the intercept to be
restricted to lie in the cointegration space. However, plots of the data would
provide little information on whether Model 4 should be used, since this choice
arises when the available data cannot account for other unmeasured factors
that induce autonomous growth in (some or all of the variables) in zt. Thus.
Johansen (1992b) suggests the need to test the joint hypothesis of both the rank
order and the deterministic components, based on the so-called Pantula prin-
ciple. That is, all three models are estimated and the results are presented from
the most restrictive alternative (i.e., r — 0 and Model 2) through to the least
restrictive alternative (i.e., r = n — 1 and Model 4). The test procedure is then
to move through from the least restrictive model and at each stage to compare
the trace test statistic to its critical value and only stop the first time the null
hypothesis is not rejected.40

As an example, consider the UK real money demand model, with season-
ally unadjusted data (k = 4 and seasonal dummies are included in Dt). The
results from estimating Models 2–4 and then applying the Pantula principle are
given in Table 5.5. Starting with the most restrictive model, the rank test

37 Note that one of the other variables in zt may also be trend-stationary and form a
cointegration relationship with time, so adding the trend to the cointegration space is
necessary.
38 Note, in this form of the deterministic model, that the constant in the cointegration
space again cancels out with the intercept in the short-run model.
39 The question of which model to use when testing for the rank of FT is important in
practice. Gonzalo and Lee (1998) show that when variables are trending (but this is not
taken into account in the deterministic component of the model), this will often lead to
spurious rejection of no cointegration (or low cointegration rank) using the Johansen
procedure. Similarly, variables that are I(0), but are wrongly included as I(1). can also
lead to poor size of the trace test. Thus, the authors advocate using the EG single
equation test as a check, since it does not seem to suffer from poor size in such instances.
40 An alternative approach (used commonly) is to estimate Model 4 and then test down
to see if the null hypothesis (that the trend should be excluded) is valid. It is not clear
which approach is to be preferred, although the Pantula Principle is a joint test of
deterministic components and the rank order.



COINTEGRATION IN MULTIVARIATE SYSTEMS 135

Table 5.5 Determining cointegration rank and the model for the deterministic com-
ponents using the trace test: UK real demand-for-money data (1963ql-1989q2).

H0: r n — r Model 2 Model 3 Model 4

0
1
2
3

4
3
2
1

123.77 v
48.77
10.77
3.49

90.99
16.26*
6.34
0.42

111.31
35.83
13.27

-> 3.36

statistic of 123.77 exceeds its 95% critical value of 53.48. Then proceed to the
next most restrictive model (keeping to the same value of r), as shown by the
arrow in the table, which again exceeds its critical value in Pesaran et al (2000,
table 6c). Moving through the table row by row from left to right, the first time
the null is not rejected is indicated by the *. Thus, we would accept that there is
one cointegration vector and there are deterministic trends in the levels of the
data (Model 3). Looking at Figure 3.1, this choice of Model 3 may not be
obvious, given that real money supply, real total domestic expenditure and the
inflation and interest rates are not strongly trending for most of the period
covered.

Having now considered the full set of I(0) variables to enter Dt (i.e.,
dummies as well as constant and trend components), we can proceed to
testing restrictions on the a and p. First, we test for weak exogeneity and
then for linear hypotheses on the cointegration relations. This leads to tests
for unique cointegration vectors and finally joint tests involving restrictions on
a and p.

TESTING FOR WEAK EXOGENEITY AND VECM WITH
EXOGENOUS I(1) VARIABLES

In the VECM (5.2), it has been shown that the H matrix contains information
on long-run relationships, where IT = ap', a represents the speed of adjustment
to disequilibrium and P is a matrix of long-run coefficients. Furthermore, it
was explained that if there are r < (n - 1) cointegration vectors in P, then this
implies that the last (n — r) columns of a are zero.41 Thus the typical problem
faced, of determining how many r < ( n — 1 ) cointegration vectors exist in P,
amounts to equivalently testing which columns of a are zero.

Turning to the role of the non-zero columns of a, suppose that r — 1 and
zt = [ y 1 t y 2 t i

x t ] ' ' - tnen & = [^ii^b^si]'-42 The first term in a represents the

41 Recall that each of the r cointegration vectors in P is associated with a particular
column in a that must contain at least one non-zero element. See (4.19) for a simple
example.
42 As shown in the last chapter, when discussing the problems of using a single equation
approach to cointegration.
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speed at which Aj;,,, the dependent variable in the first equation of the VECM.
adjusts toward the single long-run cointegration relationship (/?nj],_i +
02\y2t-i +/?3ixt-1-)> 21 represents the speed at which Ay2t adjusts and c*31

shows how fast AxtC, responds to the disequilibrium changes represented by
the cointegration vector.43 More generally, each of the r non-zero columns
of a contains information on which cointegration vector enters which short-
run equation and on the speed of the short-run response to disequilibrium.

Taking things a step further, the presence of all zeros in row i of a,-,-,
j = 1, ... , r, indicates that the cointegration vectors in p do not enter the
equation determining Az/,. As is shown in Box 5.4, this means that when
estimating the parameters of the model (i.e., the F,, FT, a, P) there is no loss
of information from not modelling the determinants of Az,,; thus, this variable
is weakly exogenous to the system and can enter on the right-hand side of the
VECM. For example, suppose z, = [yit,y2t,Xt]' and r = 2 (and for ease of
exposition let k = 2); then repeating (4.19) by writing out the VECM in full
gives:

A.X,
= r,

an
011 02\ 031

(3\2 022 032

.Vlr-l

X,-\

(5.7)

If 0:3, = 0,7 = 1, 2, then the equation for AJC, contains no information about
the long-run p, since the cointegration relationships do not enter into this
equation. It is therefore valid to condition on the weakly exogenous variable
jt, and proceed with the following partial (conditional model) version of the
VECM:

Ay, = FoA.x, + fj Az,_i + «ip'z,_2 + (5.8)

where y, = [ji,,^/]' and «i is equal to a with a31 = a32 = 0. Note that the
weakly exogenous variable xt, remains in the long-run model (i.e., the cointe-
gration vectors), although its short-run behaviour is not modelled because of
its exclusion from the vector on the left-hand side of the equation.44

43 See the discussion in Chapter 2 on short-run models for more information on the role
of the speed-of-adjustment parameter.
44 Note that if x, is both weakly exogenous and insignificant in the long-run
cointegration space (the latter can be tested when imposing restrictions on the p).
then we can condition on .x, by confining it to lie within the short-run model. Then (5.8)
can be reformulated as:

Ay, = F0A.x, + r, Az,_i + <xp'y,-2 + u,

where .xt-2 has been removed from the vector determining the long-run relations.
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There are at least two potential advantages from estimating the multi-
variate model having conditioned on the weakly exogenous variables. In
particular, if the weakly exogenous variables exhibit all the 'problematic'
data features (see the earlier section on determining the elements in Dt), then
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conditioning on these variables will usually ensure that the rest of the system
determining Ay, has better stochastic properties (in terms of the residuals
of the short-run equations being free of problems). This is linked to the
second advantage, which becomes apparent when the short-run model is also
of interest, since the number of short-run variables in the VECM will be
reduced. However, it is not usually prudent to start with the modelling of a
conditional system unless weak exogeneity is assured (e.g., by economic
theory), although when estimating even small econometric models the
number of variables involved (and the typical short time series available)
may mean that estimating the conditional model is a more viable option (cf.
Greenslade, Hall and Henry, 2002; Pesaran et al., 2000). The estimates of a and
P are the same as when estimating the full model with weak exogeneity restric-
tions on a, but the asymptotic distributions of the rank test statistics are
different; thus Pesaran et al. (2000) have computed appropriate rank test
statistics allowing for exogenous I(1) regressors in the long-run model. More
importantly, though, we will usually want to test for weak exogeneity in the full
model rather than to assume it. Thus, conditional models are usually estimated
after determining the restrictions to be placed on a (and |J), and then the
appropriate critical values for testing for cointegration are those available in
Pesaran et al. (2000, table 6), reproduced as Tables A.10-A.12 in the Statistical
Appendix at the end of this book.

So far, weak exogeneity has been discussed in terms of x, being weakly
exogenous in every cointegration vector. This is the usual way in which exo-
geneity and endogeneity are established, with variables classified on the basis of
their role in all the equations in the system. However, it is possible to consider
whether x, is weakly exogenous with respect to the parameters of a particular
cointegration vector. Thus, for instance, there may be two cointegration
vectors and tests for weak exogeneity may involve hypotheses that some
vector Xj, is weakly exogenous with respect to the parameters of the first
cointegration vector, while a second vector x2t (which may or may not be
the same as x1 t) is weakly exogenous with respect to the parameters of the
second cointegration vector. Indeed, it is possible to test each aij (i = 1, — n;
j = 1 , . . . , r) separately and to talk about the corresponding variable xit being
weakly exogenous with respect to cointegration vector j. This is valid, as long
as weak exogeneity is clearly defined with respect to a single cointegration
vector (and not to the full model, which may comprise more than one
long-run relationship among the variables in the model), since accepting the
hypothesis that some aij — 0 really amounts to finding that the particular
cointegration vector j does not enter into the short-run equation determining
the associated variable A.xit.

45

It is also important to stress that testing for weak exogeneity in a particular
cointegration vector presumes that this vector represents a structural long-run

45 The next chapter will illustrate the role of testing individual aij and show up the
potential confusion that arises from labelling these as tests of 'weak exogeneity'.
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relationship between the variables in the model and not a linear combination,46

in which case a will also be a linear combination of the speed-of-adjustment
coefficients, and testing for weak exogeneity in this context is not particularly
meaningful. This suggests that in practice testing for restrictions involving a
should almost always be done alongside testing for restrictions that identify (J.
We shall return to this on p. 155.

It is usually not valid to condition the VECM on xit unless this variable is
weakly exogenous in the full system, although there are exceptions to this rule.
For instance, suppose n = 4 and that one of the cointegration vectors, say the
first one, has associated with it the following: <x'j — [*, 0, 0, 0], where the *
denotes an unrestricted parameter. Then all the variables in the cointegration
vector (except the first, ylt) are weakly exogenous with respect to JJj, and if we
are only interested in this first cointegration relationship, then it is valid to
abandon the multivariate model and move to a single equation approach and
condition on the weakly exogenous variables (i.e., they move to the right-hand
side of the equation and are contemporaneous with the dependent variable).47

If the other cointegration vectors do not enter the short-run model determining
Ayit (which will be true when OL\j = [0, *,*,*] for/ ^1), then y1tt can be said to
be weakly exogenous in these other cointegration vectors, and it is appropriate
to concentrate on the first vector of interest only. However, if other cointegra-
tion vectors do enter the model determining Ay1t,, we might not want to move
to the single equation approach if modelling the system might be appropriate
(see the discussion of structural VAR-modelling in the next chapter).

To test for weak exogeneity in the system as a whole requires a test of the
hypothesis that H: afj = 0 for j = 1, ... , r (i.e., row i contains zeros). This test
is conducted in PcGive 10.1 by placing row restrictions on a to give a new
restricted model and then using a likelihood ratio test involving the restricted
and unrestricted models to ascertain whether the restrictions are valid (see the
discussion on p. 122 of testing for reduced rank for details). The form of the
restrictions is straightforward using the 'general restrictors' editor48 that allows
the relevant rows of a to be set to zero (see the Appendix to the book for details
on how this is done in PcGive 10.1). Imposing row restrictions results in (n — 1)

46 Recall that the reduced rank regression procedure provides information on how many
unique cointegration vectors span the cointegration space, while any linear combination
of the stationary vectors is itself a stationary vector and thus the estimates produced for
any particular column in ft are not necessarily unique.
47 See the discussion in the last chapter about the appropriateness of the single equation
model.
48 This imposition of 'general restrictions' requires the use of a testing procedure such as
//: {a = /(«")} where a is expressed as a function of the unrestricted elements in a. This
function may even be non-linear. The software package PcGive 10.1 makes use of a
switching algorithm that can solve this kind of problem using a numerical optimization
procedure (see Doornik and Hendry, 2001, for further details).
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new eigenvalues A* for the restricted model, which are used in the LR test. . 40
statistic comprising:

-2 log(C) = T log (5.9)
;=1 ^ U "~ A/) J

This test statistic is compared with the x2 distribution with (r x (n — m)}
degrees of freedom50 in order to obtain the significance level for rejecting the
null hypothesis. As with the testing procedure for reduced rank, it has been
suggested that the above LR statistic should be corrected for degrees of
freedom, which involves replacing T, the sample size, by T — (I /n) , where /
is the number of parameters estimated in the reduced rank regression model.51

Psaradakis (1994) found, on the basis of Monte Carlo testing, that such a
modification improved the small-sample behaviour of LR statistics.

The first example of testing for weak exogeneity to be considered is the UK
money demand model, with seasonally unadjusted data (k — 4 and seasonal
dummies are included in Dt). It has already been established (Table 5.5) that it
is possible to accept that there is one cointegration vector (and deterministic
trends in the levels of the data). The estimates of a and p obtained from
applying the Johansen technique are presented in Box 5.5; note that only the
normalized 0 (and consequently a) corresponding to r = 1 is presented.52 We
test the null hypothesis that yt, Apt and R, are weakly exogenous, and thus
there are three row restrictions imposed on a:53

«' = [* 0 0 0] (5.10)

49 An alternative approach is to set the restrictions by specifying an (n x m) matrix A of
linear restrictions, where (n — m) equals the number of row restrictions imposed on at,
such that the null hypothesis amounts to testing whether a = Aa-o- Inposing the
restrictions reduces a to an (m x n) matrix oto- It is also useful to note that these same
restrictions in A could be imposed by specifying an (n x (n — m)) matrix B such that
B'ot = 0. Clearly, B must be orthogonal to A (i.e., B'A = A'±A = 0). Both the matrices A
and B are used in the mechanics of restricting the Johansen reduced rank regression
model, thereby obtaining (n — 1) new eigenvalues A* for the restricted model, which are
used in the LR test statistic comprising equation (5.9) below. Although both are used to
solve the reduced rank regression, the user will only have to specify either A or B (e.g..
PcGive 10.1 has an option to use A, while other programmes use B). As already stated,
in PcGive it is much easier to impose restrictions on the at directly using the 'general
restrictors' editor, rather than specifying A (although the latter is still available as an
option).
50 Note that (n — m) equals the number of row restrictions imposed on a.
51 That is, I = ((k x n) + Number of deterministic components) x n.
52 Since r = 1 and normalizing on the variable m — p, standard errors (and hence t-
statistics) are available for p'.
53 For readers wishing to specify the alternative procedure involving the setting of the
matrices A and B, see Harris (1995, eqn (5.10)).
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The largest new eigenvalue A? for the restricted model along with A\ from the
unrestricted model are used to compute:

2 log (8) = 101 log = 3.76 (5.11)

which does not exceed %2(3) = 7.81. If the LR statistic is corrected for degrees
of freedom, which involves replacing T by T — (l/n) in (5.9), then LR = 3.02,
which again does not reject the null.

Separate tests on each of the adjustment parameters could also be con-
ducted; for instance, testing H: «41 = 0 requires:

a' = [0 * * *] (5.12)

since there is only one restriction imposed on a. However, it is not necessary to
conduct these individual tests, which are distributed under the x2 distribution
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with 1 degree of freedom, since t-values associated with each ocij are auto-
matically reported (see Box 5.5). Initially, before testing any restrictions on
a, the t-values would have suggested that weak exogeneity for >', Ap and R was
likely to hold. Since it does, this confirms that it is valid to condition on these
variables and use a single equation estimator of the cointegration vector.
Comparison of the Johansen multivariate estimator of Pfull = [—1.0,1.073.
–7.325, –6.808] with the estimate in (4.16) of 0part = [-1.0, 1.052, —7.332.
—6.871] shows that the two approaches are equivalent.

As a second example of testing for weak exogeneity, consider the PPP and
UIP model of Johansen and Juselius (1992), where n = 5 and r = 2. Looking at
the results in Box 5.2, the t-values on the aij- when r = 2 (i.e., the first two
columns of a) suggest that either or both of the following hypotheses might be
valid: H: a2j for j = 1 , 2 and H: a3j = 0 for j — 1, 2. The first test involves:

r* o * * *1
«'= (5'13)

The largest new eigenvalues for the restricted model along with A, from the
unrestricted model are used to compute the LR test, which equals 1.336, which
does not exceed x2(2).54 If the LR statistic is corrected for degrees of freedom,
which involves replacing T by T — (l/n), then LR = 1.305, which again does
not reject the null. The second test is very similar and simply requires swapping
around columns 2 and 3 in (5.13). The joint test that H: a2j = a^ = 0 for j = 1.
2 imposes two row restrictions on a:

, r* o o * *i
a'= (5-14)

[* 0 0 * *J V ;

and results in the two new eigenvalues for this version of the restricted model
along with A, from the unrestricted model giving a value for the LR statistic of
4.683, which does not exceed x2(4). Thus, on the basis of these tests, both p2

(trade-weighted foreign wholesale price index) and e (the UK effective ex-
change rate) are weakly exogenous.

Finally, if we wish to test restrictions on each afj (i' = 1, ...,n; j = 1, . . . , r)
separately, when r > 1 or when only a subset of a do not involve the restriction
that row i contains all zeros, then the 'general restrictions' approach in PcGive
is very flexible and simple to implement.

TESTING FOR LINEAR HYPOTHESES ON
COINTEGRATION RELATIONS

Earlier it was stated that having determined how many cointegration vectors
there are, it is necessary to consider whether they are unique and consequently
whether they tell us anything about the structural economic relationships

54 Note that the degrees of freedom were calculated using (r x (n - m)) = 2.



COINTEGRATION IN MULTIVARIATE SYSTEMS 143

underlying the long-run model. Since the Johansen reduced rank regression
procedure only determines how many unique cointegration vectors span the
cointegration space and since any linear combination of the stationary vectors
is also a stationary vector, the estimates produced for any particular column in
P are not necessarily unique. Therefore, it will be necessary to impose restric-
tions motivated by economic arguments (e.g., that some of the /3(/ are zero or
that homogeneity restrictions are needed such as fiy = —/?2j) and then test
whether the columns of P are identified. Testing for identification will be
followed up in the next section.

Hypotheses about P can be formulated directly in PcGive 10.1 using the
'general restrictions' editor. An example from Johansen and Juselius (1994)
associated with the following version of P, of dimension (6 x 3), involves
various homogeneity and zero restrictions:

a 0 0
* * *

1 0
-1 1
* *

(5.15)

The restrictions placed on the vectors in the first example are as follows: the
two restrictions on pj comprise a homogeneity constraint (fin = -/331) and
constrain /351 = 0. The cointegration vector is normalized by setting /341 = 1,
which is a restriction, but not a constraint. There are also two constraints each
placed on P2 and P3 (plus one normalization), and since all three cointegration
vectors have exactly two constraints plus one normalization (thus three restric-
tions) this results in a just-identified model, as explained in Box 5.6. The major
consequence of this is that since there is no change in the log-likelihood
function of a just-identified system, no LR test of the restrictions is possible.

All the restrictions on P will be tested jointly55 (i.e., all the restricted
cointegration vectors are estimated together comprising one joint test of
their validity). The outcome, assuming identification, will be unique cointegra-
tion vectors. However, testing joint restrictions involving all of the separate P,
spanning the entire cointegration space is sometimes not the best way to start
when testing restrictions, unless economic theory is particularly informative on
the hypotheses that should be tested. Instead, Johansen and Juselius (1992)
suggested more general tests of hypotheses:

1 The same restrictions are placed on all the cointegration vectors spanning
P. Thus, this general hypothesis can be used to test whether a particular
structure holds in all the cointegration relations.

Except, as just stated, in the just-identified model.
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56 Recall that R i(n x ki) and Hi(n x si), where ki,• represents the number of restricted
parameters and .Si, the number of unrestricted parameters, such that (ki + si = n).
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57 Most statistical software programs can handle these types of calculations with ease.
An example using SHAZAM, based on the second example in Box Table 5.6.3, can be
found in the appendix to this chapter.
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58 This test is not computed in the same way as the more general tests, since the solution
of the reduced rank regression now involves numerical optimization based on a
switching algorithm that concentrates the likelihood function on <x and P, respectively.
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2 If r1 cointegration vectors are assumed to be known, the remaining r2

vectors can be left unrestricted. If there is more than one 'known' Co-
integration vector (so that r1 > 1 in the first group), then the test can be
expanded to cover each 'known' vector plus the remaining 'unknown'
vectors. In the limit, when all cointegration vectors are 'known' this test
would be equivalent to the hypotheses tested using, for example, equation
(5.15).

These general tests of hypotheses are now illustrated using the PPP and UIP
model estimated by Johansen and Juselius (1992). The results already presented
in Table 5.4 indicate that it is plausible to set r = 2, with the first cointegration
vector seeming to contain the PPP relation among the first three variables and
the second to contain the interest rate differential among the last two variables.
So, the first general hypothesis is that the PPP relationship [a1j, — a2j, — a3j, *• *]•
for j = 1, . . . , r, holds in both vectors. This requires testing:

* * (5.16)
V '

* *

A second test is for only the UIP relationship [*, *, *, a4j, —a5 j] to enter all
cointegration vectors, thus imposing one restriction (i.e., a4j = –a5j) on each
cointegration vector; that is:

r* * * 1 –1
P = (5.17)r I * * * 1 1 I ^ '

The results for the above two hypotheses, together with the restricted |J, are

59 Note that normalizing each vector such that the first element equals 1 is not a
constraint.
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Table 5.6 Testing some general restrictions on cointegration vectors in the PPP and
UIP model.a

Test

H1 B1

B2

H2 B1

B2

H3 B1

B2

H4 B1

B2

Restricted B

P1

1.000
1.000

1.000
0.666

1.000
-0.307

1.000
0.000

P2

-1.000
-1.000

-1.422
-0.951

-1.000
0.287

-0.934
0.000

e

-1.000
-1.000

0.966
0.514

-1.000
0.275

-0.896
0.000

i1

-3.604
1.000

1.000
1.000

0.000
1.000

-5.596
1.000

LR statistic P
a1

l2

-1.359 x2(4) = 3.92
-4.594

-1.000 x2(2) = 13.77
-1.000

0.000 x2(3) = 17.11
0.613

0.559 X
2 (3)=4.32

-1.000

robability of
ccepting null

0.42

0.00

0.00

0.23

a The first vector is always normalized on p\ and the other vector is normalized on i1.

given in Table 5.6. The PPP relationship appears to hold in both cointegration
relationships, but the hypothesis that only the interest rate differential enters
both vectors is strongly rejected.

On the basis of these results, Johansen and Juselius (1992) went on to test if
the PPP and UIP relationships were stationary by themselves (i.e., whether one
cointegration vector can be specified as H3 = [1, –1, —1,0,0]' and the other as
H4 = [0, 0, 0, 1,—I]').60 Testing for a 'known' cointegration vector, with the
other vector unrestricted, involves:

1 1 0 0 0 0 0 1
(5.18)

The resulting test is based on the x2 distribution with (r1 x (n — r)) degrees of
freedom. The results for the tests are also given in Table 5.6, and the hypothesis
that one of the cointegration vectors represents only the PPP relationship is
rejected, while there is support for the idea that one of the vectors contains a
stationary relationship between just the interest rate variables.

The results obtained so far suggest that the PPP relationship exists in both
cointegration, vectors, but not on its own, while the opposite is true for the
UIP relationship. This might at first seem contradictory, since hypothesis H4

would suggest that the PPP relationship does not exist in the cointegration
vector containing the UIP relationship, and yet H1 was not rejected. A recon-
ciliation of the apparent contradiction requires the PPP relationship to be
insignificant in the UIP cointegration relationship, and this seems to be sup-
ported by the estimate of B2 in H1. These results are informative from the point

60 It would obviously be feasible (even desirable) to test for these jointly by specifying
restrictions on both cointegration vectors (see equation 5.20).
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of view of formulating hypotheses about whether there are unique vectors in
the cointegration space, and we take this up again in the next two sections.

TESTING FOR UNIQUE COINTEGRATION VECTORS

It has already been pointed out that since the Johansen approach as outlined
comprises estimating a reduced-form unrestricted VECM, it only provides
information on the uniqueness of the cointegration space. Thus it is necessary
to impose restrictions motivated by economic arguments to obtain unique
vectors lying within that space, and then test whether the columns of B are
identified in terms of the long-run structural relations between the economic
variables in the model.61 Identification is formally defined and discussed in
Box 5.6. Here we illustrate testing for unique cointegration vectors and
report the outcome of whether identification is achieved.

Before doing so, it is important to note that there are different strategies
that can be used to achieve uniqueness/identification, involving a balance
between the (strict) imposition of known economic relationships and an ad
hoc testing strategy that involves, for example, dropping elements of 0,
testing to insure that such restrictions are accepted using LR tests and proceed-
ing until uniqueness happens to be achieved. For example, Garratt, Lee,
Pesaran and Shin (1999) argue that developing the structural long-run relation-
ships between the variables in the model needs to be based ex ante on economic
theory, before estimation takes place, rather than '... the more usual approach
where the starting point is an unrestricted VAR model, with some vague priors
about the nature of the long-run relations' (p. 15). They give an example of
deriving testable hypotheses from developing such a model from theory (see
also Garratt, Lee, Pesaran and Shin, 2001) and then testing to ensure the
structure is accepted using the type of tests considered later on.

However, in certain circumstances, there may be insufficient theory on
which to proceed or the ex ante relationships suggested by theory are rejected.
Or, alternatively, one or more elements of a cointegration vector may be statis-
tically insignificant (and therefore can be potentially removed), since to leave
the insignificant variable in the relation (assuming that the theory from which it
is derived is correct) will lead to under-identification.62 Thus, it is important to
note that it is not strictly necessary to always derive the structural relations
(i.e., the unique cointegration vectors) beforehand, as Davidson (1998) shows.

61 Of course, when r = 1, then the space is uniquely defined by a single vector. Note also
that it may not be possible to identify unique vectors, and this does not invalidate the
long-run stationary relationships between the variables in the cointegration space.
62 As Davidson (1998) points out, if theory is incorrect (or at least uninformative), a
cointegration vector containing an insignificant variable(s) '... can be of no interest to
us', based on his Theorem 3.
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He introduces the concept of an irreducibly cointegrated (1C) relationship
comprising a set of I(1) variables that are cointegrated; but, dropping any of
the variables leaves a set that is not cointegrated. He shows that if a structural
cointegrating relation is identified (by the rank condition—see Box 5.6), then it
must also be irreducible, indicating that at least some 1C vectors are structural.
Not all IC relations are structural, but those that are not are called "solved
relations' and involve linear combinations of structural vectors. In certain
circumstances IC relations will always be structural (e.g., if an IC relation
contains a variable that appears in no other 1C relation, or if an 1C relation
contains strictly fewer variables than all those others having variables in
common with it); thus '... it is possible ... to discover structural economic
relationships directly from data analysis, without the use of any theory'
(Davidson, 1998, pp. 93-94). Thus, the concept of 1C relationships suggests
that a strategy for identification could involve dropping (one by one) the
variables from reduced form (i.e., unrestricted) cointegration vectors to
obtain the sets of relationships that are 1C and then testing to see which of
these is identified. In most situations, combining as much prior economic
theory as possible with a testing strategy that seeks to ensure that relationships
are unique should suffice. Finally, it is worth noting that, as a general rule, if
restrictions are imposed that involve each cointegration vector having at least
one variable unique to it, then the relationships will always be identified. Thus,
to just-identify the model, there must be r2 restrictions imposed comprising
r2 — r constraints on parameters in the model plus a further r normalizations
that are not constraints. For example, when r — 3, each cointegration vector
must include two constraints—-typically placed to ensure that each vector
has at least one variable unique to it—plus a further normalization of one
of the variables in the vector. When the model is just-identified, each vector
has the same number of restrictions and there is no overall additional con-
straint on the log-likelihood function for the new model, thus a test of the
restrictions is not possible. Often further restrictions are imposed on the Co-
integration vectors to obtain an over-identified model that does constrain the
log-likelihood function and thus leads to an LR test of the overall constraints
imposed.

Following Johansen (1992c) and Johansen and Juselius (1994), identifica-
tion is achieved if when applying the restrictions of the first cointegration
vector to the other r — 1 vectors the result is a matrix of rank r — \ (i.e., a
matrix with r - 1 independent columns). Put another way,'. . . it is not possible
by taking linear combinations of for instance B 2 , . . . , Br to construct a vector
and hence an equation which is restricted in the same way as B1 and in
this sense could be confused with the equation defined by B1. Hence, p, can
be (uniquely) recognised among all linear combinations of B1' (Johansen,
1992c).

As an example, consider the PPP and UIP model and the tests of restric-
tions undertaken in the last section. The general hypotheses tested suggest that
the PPP relationship is significant in one vector while the UIP relationship
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exists on its own in the other vector. Thus, it would appear valid to specify the
following:

[ 1 —1 —1 * *1
o o o , -,] (5'19>

Using the 'general restrictions' editor in PcGive 10.1 gives an LR test statistic
of 6.45, which is not very significant under the x2(5).63 However, identification
is not achieved—and this relates to the fact that the first vector is not identified
(Box 5.6 provides the outcome from formally testing for identification). This
occurs because it is possible to take a linear combination of the two cointegra-
tion vectors in P, which would remove either B41 or B51, and yet jointly the
restricted vectors are a valid representation of the two cointegration vectors in
P. In effect, the space spanned by the second vector is contained in the space
spanned by the first such that we can only estimate uniquely the impact of a
linear combination of B41 or B51 in the first relation. To see this clearly,
consider the following linear combination of the first two vectors:

1.000

1.000

1.000

1.893

1.893

+ 1.893 x

0.000"

0.000

0.000

1.000

-1.000

__

" 1.000"

-1.000

-1.000

3.786

0.000

To overcome under-identification, we can reformulate the problem as:

1 – 1 – 1 0 0
0 0 0 1 –1

(5.20)

where because each vector has at least one variable unique to it means that the
model is clearly identified, but the test of these restrictions results in an LR test
statistic of 26.99, which is highly significant under the X2(6) distribution. The
compromise position is to specify:

1 -1

0 0

-1 * 0

0 1 -1
(5.21

which is identified with an LR test statistic of 6.45, which is not very significant
under the x2(5) distribution, lending support to the general hypotheses. Thus,
imposing a structure on the PPP and UIP model suggests that the PPP relation-
ship exists in one vector along with the UK interest rate (but not as covered
interest parity), while the UIP relationship uniquely forms the second cointe-
gration vector.

When the cointegration space is uniquely identified, PcGive 10.1 will cal-
culate the 'standard errors' associated with each freely estimated Bij. In the last

63 Note that the degrees of freedom are, as in Box 5.6. calculated as U = (5 — 2 + I — 2)
+ (5 - 2 + 1 - 1) = 5, since s1 = 2 and not 3.
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model estimated there is only one such parameter and it has a coefficient value
of —4.646 and standard error of 0.556. The standard errors can be used to
calculate Wald (or i) tests of hypotheses about the Bij that are asymptotically
distributed as X2(1). Thus, if it was meaningful to test that the interest rate
variable in the PPP cointegration vector is —5, then we can use the following
Wald test:

–4.646– (–5) V
0.556 )

which does not reject this hypothesis since X0.95(1) = 3.84.

JOINT TESTS OF RESTRICTIONS ON a AND B

It is now possible to jointly test restrictions on both the cointegration vectors
and the speed-of-adjustment parameters. However, care is needed when doing
this, since some forms of constraint on a can induce a failure of identification
of B, and vice versa.64 Having obtained results in the PPP and UIP model that
accept the various hypotheses that H0: a2j = a3j = 0 for j =1, 2 and that the
two vectors in P comprise [1, — 1, —1, *, 0] and [0, 0, 0, 1, —1], these various
restrictions can be pooled. It is also possible (but not reported here) to add one
further restriction, that the 3-month Treasury bill rate (i1) is weakly exogenous,
and in total accept the joint null hypothesis: H0: a2j = a3j = a4j = 0 for

i 9 65
J = 1,2

Pooling the various restrictions gives the results reported in the first part of
Box 5.7. The overall LR test does not significantly reject the null and therefore
these joint restrictions are satisfied.66 On the basis of these results, the last step
is to condition on the weakly exogenous variables and then check that impos-
ing the various restrictions has not altered the model's underlying properties.
The conditional estimates, when P2, e and i1 are weakly exogenous, are also
reported in Box 5.7 and indicate that there is significant overall change in the
model after applying the conditioning, with substantial improvement in the
(not reported) diagnostic tests of the residuals (primarily because we can
now validly condition on the non-normal foreign wholesale price index and
exchange rate, p2 and e).67 Plots of the restricted cointegration relations and

64 Restrictions on a can also have implications for the dynamic stability of the short-run
model, as Fischer (1993) shows.
65 This additional constraint would not have been obvious from the results in Box 5.2.
66 Note that deriving the degrees of freedom in this test is not straightforward, although
in this instance adding together the degrees of freedom from the separate tests provides
the appropriate value. When the model is not identified, then v is only approximate.
67 Note also that we can only reject the null of r = 1 at the 10% significance level using
the appropriate critical values in Pesaran et al. (2000) when there are exogenous I(1)
regressors in the model, although the 5% critical value is 16.90 (and we get a test
statistic of 16.03).
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recursive eigenvalues (again not shown) suggest that the model performs
much better than in its unrestricted form, and indeed the first cointegration
vector (and recursive eigenvalues associated with this vector) now looks more
stationary.

However, the conditional model suggests that the Treasury bill rate is now
redundant in the PPP vector (with a t-statistic of —1.28). Thus, excluding this
variable from the first vector in B produces the last set of results in Box 5.7. The
test of restrictions is accepted and the end result is one PPP relationship in the
first cointegration vector and the UIP relationship only in the second vector
(recall in the unrestricted model—equation (5.20)—-this was rejected).

SEASONAL UNIT ROOTS

Franses (1994) developed a multivariate approach to testing for seasonal unit
roots in a univariate series. Since this involves an adaptation of the Johansen
approach it can now be considered. The approach amounts to taking a single
times series xt, and rewriting it as s annual series each based on a separate
season s. When dealing with quarterly data, we obtain the vector XT = [X 1 T ,
X 2

T , X2T,T, X 4 T] ' , where XiT contains all the observations from quarter i for
t = 1, ... , T. Writing this as a VECM (cf. (5.2)) gives:

AXT = r1AXT_! + • • • + rk–1 AX7-_jt+1 + HXT-k + *Dt + ut (5.22)

where Dt contains an intercept for each short-run equation and in practice it is
likely that k=1 . This model can be estimated in the usual way, based on the
Johansen reduced rank regression approach, and reduced rank tests (equations
(5.4) and (5.5)) applied to determine the number of cointegration vectors
contained in the model. If r = 4, then II has full rank and there are no units
roots (seasonal or otherwise) in xt and hence the series (being stationary) does
not require any differencing. If r = 0, then all the unit roots (1, — 1, —i, —i) are
contained in xt (see the discussion of equation (3.11)), and this series needs to
be differenced by (1 — L4). If 0 < r < 4, then roots at different frequencies are
present and various tests of hypotheses can be conducted involving the coin-
tegration vectors, which will determine the type of unit roots present. These are
summarized in Table 5.7 (table 1 in Franses, 1994). Note that if the various
tests of the rank of II are accepted, but the hypotheses concerning the form of
the restrictions on the cointegration vectors in Table 5.7 are rejected, then this
is evidence of the periodically integrated model with time-varying seasonal
parameters. Franses (1994) provides the critical values of the tests for
reduced rank when the sample is T = 25, 50 and the constant term is restricted
or unrestricted to lie in the cointegration space, since these are not the same as
in the standard Johansen approach.68 He also applies his approach to the

68 These are reproduced as Tables A. 13 to A. 16 in the Statistical Appendix at the end of
the book.
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Table 5.7 Testing for (non) seasonal unit roots using the Johansen approach (source: Franses.
1994).

Rank of II Restricted B' matrix Cointegration Differencing (Non)
vectors filter seasonal

unit roots

B1 =

. B2

t ft'2 B1 -

1 B22 P2 =

i B1,=

i R'1 B2 =

•-1 0 01

1 -1 0
V V 1 1 T \ 1X3T — X2T ( 1— L) 1

0 1 -1

0 0 1

1 0 0
X2T+ X1T

1 1 0
v _ L _ y ( 1 + L ) 1
X3T + X2T (1+L)

0 1 1

.0 0 1J

–1 0

0 — 1 X3T — X1T
(1 -L 2 ) l . – l

1 0 X 4 T —X'2T

0 1.

1 0
0 1 V i V1 X3T +X1T

( l + L 2 ) l.—i
1 0 X4T + X2T

.0 1.

1
-1

1.
T

1

1

.1.

-L4
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Table 5.8 Multivariate tests for (non-) seasonal unit roots using UK consumption
function data (1971q2–1993ql).

Variable Rank of Ila LR test of restrictions on B1 LR test of restrictions on $'

log real C 2
log real Y 2
log real W 3
7T 3

X2(4) = 10.15*
X2(4) = 21.47**
X2(3) = 3.28
X2(3) = 17.69**

X2(4) =28.12**
X2(4) = 39.50**

X
2(3)=9.95*

X2(3) = 25.76**

a Based on trace test and critical values given in Table A. 13 in the Statistical Appendix at the end of
this book.

* Denotes rejection at the 5% significance level.
** Denotes rejection at the 10% significance level.

Japanese consumption function data used in Engle, Granger, Hylleberg and
Lee (1993), finding no evidence of seasonal unit roots in the data.

Table 5.8 presents the result when this approach is applied to the con-
sumption function data analysed in Chapter 3. With respect to consumer-
spending and real output, there are two unit roots, but, since the restrictions
on the elements of p are rejected, this would imply periodic integration. The
wealth variable would appear to have one unit root at the zero frequency, while
retail price inflation also has one unit root, although this would seem to involve
periodic integration. The results obtained based on a single equation test of
periodic integration (Table 3.7) found that each of these variables has only a
zero frequency unit root; this is clearly at odds (except for real wealth) with the
multivariate results presented here.

SEASONAL COINTEGRATION

Engle et al.'s (1993) single equation approach to modelling seasonal cointegra-
tion was covered in the last chapter. Using the Johansen multivariate
approach, it is possible to test for a long-run relationship between the variables
in a model at the zero, two-quarter (bi-annual) frequency and four-quarter
(annual) frequencies, since Lee (1992) and Lee and Siklos (1995) extended
the basic VECM form to a multivariate form of the Hylleberg, Engle.
Granger and Yoo approach:

A4Zt = PI A4Zt_1 + ----- +Tk_4A4Z,_k+4 + II1Z1t–1 + II2Z2,t_1

+ II4z3 t_1 + y1D1t, + r2D2t + Y3D3t + r4D4t + ut (5.23)
where Dqt is the zero/one vector of dummies corresponding to quarter q and
where:

Z1t = (1 + L + L2 + L3)zt (zero frequency)

Z2t = (1 — L + L2 — L3)zt (bi-annual frequency, 7r/2)

Z3t = (1 — L2)zt (annual frequency, TT)
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Table 5.9 Seasonal cointegration tests for four-dimensional UK consumption function
data (1971q2-1993ql): trace test statistics. Critical values were taken from Franses and
Kunst (1999, table 3), where the sources are discussed.

No dummiesa Unrestricted dummiesa Restricted dummiesb

H0:

r = 0
5%
10%

r — 1
5%
10%

r = 2
5%
10%

r = 3
5%
10%

0

45.57*
47.2
43.8

24.10
29.4
26.7

10.48
15.3
13.3

1.20
3.8
2.7

7T

42.14
NA
NA

20.48
26.2
23.4

4.49
13.0
11.1

0.06
4.3
3.1

7T/2

55.17
NA
NA

23.97*
24.0
21.2

3.52
12.3
10.3

1.00
4.4
3.1

0

42.99
47.2
43.8

24.95
29.4
26.7

10.33
15.3
13.3

1.21
3.8
2.7

7T

52.60
NA
NA

32.07*
34.4
31.3

16.88
19.3
17.0

3.89
8.6
6.9

7T/2

95.31
NA
NA

60.82**
40.6
37.1

29.23**
24.3
21.6

4.46
11.9
9.9

0

42.99
50.2
46.5

24.95
30.4
27.7

10.33
15.5
13.6

1.21
3.8
2.8

7T

51.79*
54.4
51.0

31.25
34.9
32.0

16.48
20.1
17.8

3.91
8.8
7.3

7T/2

93.17*
64.9
61.0

60.00**
43.2
40.2

28.88**
26.4
23.9

4.73
12.6
10.8

Note 0, TT and ?r/2 refer to the zero, annual and bi-annual frequencies, respectively.
* Rejects null at 10% level.

** Rejects null at 5% level.
a Refers to the model by Lee (1992) and extended by Lee and Siklos (1995).
* Refers to the model by Franses and Kunst (1999).

and the ranks of the n x n matrices IIi = aiBi determine how many cointegra-
tion relations there are and at which frequency. Note that equation (5.23)
allows either for no deterministic seasonal dummies to enter the model
( Yi — 0) or there are no restrictions on these dummies. Franses and Kunst
(1998) impose specific restrictions on the seasonal dummies and force them
to enter the cointegration space (see their equation (3)), arguing that this is a
more theoretically justifiable way to deal with seasonal intercepts.

Estimating equation (5.23) with different treatments of the seasonal
dummy intercepts and using the UK consumption function data discussed in
Chapter 3, we obtain the trace statistics reported in Table 5.9.69 In all three
forms of the model, there is no (or only weak) evidence of cointegration at the
zero frequency. In the model with seasonal dummies, there is evidence that
there are possibly one (the restricted model) or two (unrestricted model) Co-
integration vectors at the annual frequency, although the results are not
statistically strong. For all models there is evidence that we can reject the
null that there are at most 1 or 2 cointegration vectors at the bi-annual

69 Robert Kunst was kind enough to provide the Gauss code in order to undertake these
estimations.
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Table 5.10 Cointegration vectors for UK consumption function data (1971q2~
1993ql).

Seasonal dummies

log real C log real Y log real W TT cost(wt) COS(TT(t — l)/2)

Zero frequency
-1.00 -1.04 1.02 -1.56

Annual frequency
-1.00 0.37 –1.00 0.40 -0.75

Bi-annual frequency
-1.00 -0.32

0.60
0.14

-1.00
0.23

-1.11
-0.43
-1.00

-0.96
-0.64
-0.82

–c0.11
-1.03
-0.03

–0.11
-1.03

0.60

frequency (the results are particularly strong when seasonal dummies enter the
model in either a restricted or unrestricted form, since we find r = 3). These
results are different from those we obtained when using the single equation
EG-type approach; the latter could find no evidence to suggest the variables
cointegrate at the two-quarter (bi-annual) frequency, although we now find
strong evidence for this using the multivariate approach.

Finally, Table 5.10 reports the most stationary cointegration vectors ob-
tained from estimating the restricted dummies version of the model. As is usual
in these cases, it is difficult to interpret these relationships: which is one of the
major criticisms of the multivariate seasonal cointegration approach.

CONCLUSIONS

The Johansen approach to testing for cointegration is widely accessible to
applied economists. However, in undertaking this type of analysis it is impor-
tant to spend some time in formulating the dynamic model in terms of which
deterministic components (intercept, trend and dummy variables) should enter,
setting the correct lag length of the VAR and using all the information avail-
able when testing for the reduced rank and thus the number of cointegration
vectors in the system. There is also the issue of modelling the 1(2) system, when
there are 1(2) variables in the model.

Testing for weak exogeneity is now fairly standard, and the more general
tests of linear hypotheses on cointegration vectors are also relatively straight-
forward. The most important issue is the ability to formulate unique
cointegration vectors, which involves testing for identification. This is
crucial, since the unrestricted estimates of p are often hard to interpret in
terms of their economic information. In fact, what is increasingly obvious is
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the need to ensure that prior information motivated by economic arguments
forms the basis for imposing restrictions, and not the other way around. To
give just a single example of this, Clements and Mizon (1991) estimated a
model of the UK labour market involving real average earnings per person-
hour (w), the inflation rate (Ap), productivity (y), average hours (a) and the
unemployment rate (u). The unrestricted model that they obtained from the
Johansen approach was:

W'

1

8.801

-2.031

0.756

0.344

AP

–0.740
1

1.298

2.128

-0.093

y
-0.643

-0.495
1

-0.383

-0.101

a

6.017

-7.289
-5.897

1

0.259

u

-9.822"

14.553
7.828

12.837

1

On the basis of testing for reduced rank, they found that there were probably
three stationary relationships in the model. In terms of their unrestricted
results, it is difficult to make immediate sense of all but perhaps the first
vector, which seems to be a fairly standard wage equation. Although they do
not test for unique cointegration vectors or formally test for identification, they
do (on the basis of prior economic information) transform the unrestricted
space into the following:

W

1
0.037

0.100

0.000

0.000

y
-1.000

0.037

-0.100

a

5.983
1

-0.050

u

0.112

0.001
-0.009

These restrictions70 define a system quite different from the original, with the
average hours and inflation vectors essentially containing nothing but these
variables, while the wage equation remains (minus the inflation variable). This
seems more reasonable than the unrestricted estimates and probably would not
have been apparent from a more general ad hoc approach to imposing restric-
tions on p.

But this is a difficult area since the practitioner justifiably wants to limit the
number of variables that can enter the model in order to simplify the coin-
tegration relationships, but economic theory may suggest a plethora of relevant
variables. Economic models are also subject to debate and part of the role of
applied work is to test competing hypotheses. These problems are not new, but

70 It is hard to be conclusive, because of a lack of information on the restrictions
actually imposed (they were arrived at by choosing ^ such that ap' = a^^'^p' = a*P'*.
where ^ is any r x r non-singular matrix). However, it appears from applying the test
given in (5.6.3) that the third vector is not identified due to the fact that the space
spanned by the second vector is contained in the space spanned by this third vector.
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the relative newness and difficulty of implementing the Johansen approach
gives them a renewed emphasis.
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APPENDIX 1 PROGRAMMING IN SHAZAM: TESTING
IDENTIFICATION RESTRICTIONS IN p

* See Table 6, Johansen and Juselius (1994)
read h1 / rows=6 cols=3 list

10 0
0 1 0

–1 0 0
0 0 0
0 0 0
0 0 1

read h2 / rows=6 cols=l list
0
0
0
1

-1
0

read h3 / rows=6 cols=3 list
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

* First equation *

*defining equation 14 in Johansen 1992
matrix ml_22=(h2'h2)-(h2'hl*inv(hl'hl)*hl'h2)
matrix ml_33=(h3'h3)-(h3'hl*inv(hl'hl)*hl'h3)
matrix ml_23=(h2'h3)-(h2'hl*inv(hl'hl)*hl'h3)
matrix ml_32=(h3'h2)-(h3'hl*inv(hl'hl)*hl'h2)
matrix sl=ml_22|ml_23
matrix s2=l_m32|ml_33
matrix ml=(s1')s2')'

matrix rml_22=rank(ml_22)'
matrix rml_33=rank(ml_33)'
matrix rml_23=rank(ml)'
print rml_22 rml_33 rml_23

* Second equation *

matrix m2_ll=(hl'hl)-(hl'h2*inv(h2rh2)*h2'hi)
matrix m2_33=(h3'h3)-(h3'h2*inv(h2'h2)*h2'h3)
matrix m2_13=(hl'h3)-(hl'h2*inv(h2'h2)*hl'h3)
matrix m2_31=(h3'hi)-(h3'h2*inv(h2'h2)*h2'hi)
matrix sl=m2_ll|m2_13
matrix s2=m2_31|m2_33
matrix ml=(sl'|s2')'
matrix rm2_ll=rank(m2_ll)'
matrix rm2_33=rank(m2_33)'
matrix rm2_13=rank(ml) '
print rm2_ll rm2_33 rm2_13

* Third equation *

matrix m3_ll=(hl'hl)-(hl'h3*inv(h3'h3)*h3'hi)
matrix m3_22=(h2'h2)-(h2'h3*inv(h3'h3)*h3 'h2)
matrix m3_12=(hl'h2)-(hi'h3*inv(h3'h3)*h3'h2)
matrix m3_21=(h2'hi)-(h2'h3*inv(h3'h3)*h3'hi)
matrix sl=m3_ll|m3_12
matrix s2=m3_21|m23_2
matrix ml=(sl'|s2')'
matrix rm3_ll=rank(m3_ll)'
matrix rm3_22=rank(m3_22)'
matrix rm3_12=rank(ml)'
print rm3_ll rm3_22 rm3_12
stop



Modelling the Short-run
__ Multivariate System __

INTRODUCTION

Obtaining long-run estimates of the cointegration relationships is only a first
step to estimating the complete model. The short-run structure of the model is
also important in terms of the information it conveys on the short-run adjust-
ment behaviour of economic variables, and this is likely to be at least as
interesting from a policy viewpoint as estimates of the long run. Another
important aspect of modelling both the short- and long-run structures of the
system is that we can attempt to model the contemporaneous interactions
between variables (i.e., we can estimate a simultaneous system), and this
then provides an additional layer of valuable information (see Hendry and
Doornik, 1994, for a full discussion of this and related issues). The approach
adopted here amounts to the following steps and is greatly influenced by the
Hendry approach of general-to-specific modelling:

• use the Johansen approach to obtain the long-run cointegration relation-
ships between the variables in the system;

• estimate the short-run vector autoregression (VAR) in error correction
form (hence vector error correction model—VECM) with the cointegra-
tion relationships explicitly included and obtain a parsimonious
representation of the system. This is by custom denoted the parsimonious
VAR (PVAR), but seems more aptly designated a parsimonious VECM
(PVECM);

• condition on any (weakly) exogenous variables thus obtaining a condi-
tional PVECM model; and

• model any simultaneous effects between the variables in the (conditional)
model and test to ensure that the resulting restricted model parsimoniously
encompasses the PVECM.
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To illustrate these steps the small, UK monetary model presented in Hendry
and Doornik (1994) is used (with seasonally unadjusted data). Although the
final version estimated is different the purpose here is to illustrate the method-
ology involved, rather than to argue with their model of the money demand
function.1 It will also become apparent that no attempt is made to discuss in
depth the full implications and procedures of dynamic modelling. That is
beyond the scope of this book, so what follows is in the way of an introduction
to (and illustration of) the topic.

Finally, we conclude the chapter with some general comments on struc-
tural VAR-modelling, particularly as it relates to the estimation of
macroeconomic models.

ESTIMATING THE LONG-RUN
COINTEGRATION RELATIONSHIPS

The Johansen approach for obtaining estimates of the long-run relationships
between the variables (zt) in the multivariate model was discussed extensively
in the last chapter. Here we present a slightly different version of the UK
money demand model that was used to illustrate the approach, as a first step
toward estimating the short-run dynamic model.

In the last chapter, it was possible to identify a single cointegration vector
describing the stationary relationship between the following I(1) variables:
m — p,y, AP and R. Hendry and Mizon (1993) allow for a time trend in the
cointegration vectors to take account of long-run exogenous growth not
already included in the model.2 Taking a similar approach with the seasonally
unadjusted data set produced the results in Table 6.1 (PcGive 10.1 was used
and all the test statistics reported were defined in the last chapter—thus, for
brevity, explanations are not repeated here); both the trace and Amax tests for
reduced rank indicate that it is possible to reject the null hypothesis that r = 1
at only the 10% level of significance (although both test statistics only just fall
short of the 5% critical values). As before the lag length for the VAR is set at
k = 4, and it was found necessary to condition on a set of I(0) variables D,.
1 Of course, economic justification of the final model is usually necessary, but less
attention is paid to this aspect of modelling in the example to be presented.
2 Recall that, on the basis of applying the Pantula principle to testing which version of
the deterministic component should be used, it was possible to accept that there is only
one cointegration vector and there are deterministic trends in the levels of the data
(denoted Model 3). A test for exclusion of the trend term results (using Microfit 4.0) in
an LR test statistic of 19.35, which is highly significant; in PcGive 10.1 a model
reduction test produces F(4,74) = 5.59, which is again able to reject the exclusion of
the trend at better than the 5% significance level. Thus the trend is certainly accepted by
the model. Finally, note that the Hendry and Mizon model includes two cointegration
vectors and a linear trend in the cointegration space.
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Table 6.1 Tests of the cointegration ranka for the UK money demand data
(1963ql-1989q2).

H0 : r n — r Ai Amaxtest Amax(0.95) Trace test Atrace(0.95)

0
1
2
3

4
3
2
1

0.586
0.221
0.105
0.051

89.01**
25.24*
11.20

5.32

31.8
25.4
19.2
12.4

130.80**
41.76*
16.52

5.32

63.0
42.3
25.8
12.4

a See the discussion of Table 5.4
* Denotes rejection at the 10% significance level.
* Denotes rejection at the 5% significance level.

which included centred seasonal dummy variables and three (impulse)
dummies that take account of outliers in the data. Hendry and Mizon
include dummies labelled DOIL and DOUT to account for the 'Barber
Boom' and the two oil price shocks in the 1970s. Here it was found necessary
to include three separate dummies that took on a value of one in 1973q3,
1974q2 and 1977ql. The first two (denoted D1 and D2) were necessary to
'induce' normal residuals in the equation determining AP, while the third
dummy (denoted D3) was sufficient to account for an outlier in the interest
rate equation.3 The model evaluation diagnostic tests are provided in Table 6.2
and show that, generally, the residuals can be considered Gaussian (the only
remaining system problem is the rejection of normality at the 5% level). Actual
and fitted values for each equation are given in Figure 6.1, while Figures 6.2
and 6.3 present various plots associated with diagnostic testing of the residuals,
confirming that, generally, the performance of the VECM is satisfactory.

The two normalized cointegration vectors obtained were p1 =
[1,0.029,4.440,8.063, –0.007] and p'2 = [–0.113,1, -2.893,0.208, -0.006],
where the ordering of the elements is m— p, y, AP, R and a time trend.
Clearly, the inclusion of the time trend has an adverse (multicollinear) effect
on the estimate for y in the money demand function (cf. P]). Plots of the
cointegration vectors (including actual and fitted values) and recursive esti-
mates of the eigenvalues are presented in Figures 6.4 and 6.5. These indicate
that the first two vectors look stationary (although the money demand vector is
less so), while the common trends vectors are non-stationary. Estimates of
these vectors are relatively stable over time (as shown by the recursively

3 Note that there is little effect here from ignoring these outliers, but at other times
"factoring out' outliers can be important in terms of the estimates of the cointegration
relations. When this occurs, and assuming that there is little prior knowledge available
to justify the dummy variables, it becomes a moot point whether conditioning in this
fashion is valid. If there are genuine outliers, then it would seem justifiable to 'drop'
such observations in terms of their influence on the model. The alternative would be to
include other variables that can explain the outliers.
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Table 6.2 Model evaluation diagnostics:a the UK money demand data (1963ql–
1989q2) (an intercept, seasonal dummies and three impulse dummies in Dt; a time
trend in the cointegration space).

Statistic

Lag length = 4
Fk=1(4, 74)
Fk=2(4,74)
Fk=3(4,74)
Fk=4(4,74)
a
Far(5,72)

Farch (4, 69)

Fhet(34,42)
X2nd(2)

m — p

8.74**
2.02
1.56
6.21**
1.54%
1.29
0.76
0.35
3.52

>'

8.99**
1.00
2.87*
3.28*
1.61%
1.97
1.12
0.65
5.02

AP

2.12
2.82*
0.54
0.89
0.61%
1.05
0.73
0.88
4.62

R

27.09**
2.10
0.05
0.66
1.26%
0.98
1.68
0.94
1.10

Multivariate tests: Far(80, 215) =0.93; Fhet (340,345) = 0.53; Xnd(8) = 16.42*;
Fur(68,292) = 127.58**; AIC= –35.2067.

a See the discussion of Tables 5.1 and 5.3 on p. 116.
* Denotes rejection at the 5% significance level.

** Denotes rejection at the 1% significance level.

obtained eigenvalues, which were generally constant). Thus, the following tests
of hypotheses were conducted with respected to 0:

These satisfy the conditions for identification,4 as can be determined from the
fact that each vector has at least one variable unique to it. The tests of the
restrictions on the cointegration vectors were conducted jointly with a test of
the hypothesis that y and R are weakly exogenous (i.e., H : a2j = a4J — 0 for
j = 1,2). The results, obtained using PcGive 10.1, are given in Box 6.1, indicat-
ing that the restrictions are acceptable. It is also possible to test whether Ap is
'weakly exogenous' in the money demand equation (i.e., H : a31 = 0) and
separately whether m — p is 'weakly exogenous' in the other equation (i.e.,
H : a12 = 0). The overall likelihood ratio (LR) test statistic obtained when
these additional restrictions are imposed is a test statistic of 6.82, which is
not very significant under the x2(7) distribution.5 This indicates that only the
money demand long-run relationship enters the short-run error correction
4 In terms of Box 5.6, rank(R',H2) = 2 and rank(R'2H1) = 1 (i.e., both have a rank at
least equal to 1).
5 This use of the term 'weakly exogeneous' when testing the significance of a single
element in ex will be clarified when estimating the structural short-run model below,
where we find evidence to suggest that in a system of simultaneous equations there is
support for the notion that changes in prices 'cause' changes in the money supply.



MODELLING THE SHORT-RUN MULTIVARIATE SYSTEM 169

J -2.7

J -2.7

1970 1980 1990 1970 1980

Figure 6.1. Actual and fitted values and scaled residuals.
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Figure 6.2. Diagnostic graphs of the residuals: correlogram and distribution.



MODELLING THE SHORT-RUN MULTIVARIATE SYSTEM 171

± a»s.E.=

1975 1980 1985

€ x>rstar=
i 2»S.E. = .,

1975 1980 1985

1975 1980 1985 1975 1980 1985

Figure 6.3. Diagnostic graphs of the residuals: one-step residuals.

model (ECM) determining A(m — p ) , while only the second cointegration re-
lationship enters a short-run ECM determining A2p.

Thus, the outcome of the cointegration analysis is the following two long-
run relationships:

plz = m—p—y + 6.14Ap + 6.717?

jj'2z = y— 0.007t – 2.54Ap + 1.22R
(6.1)

which define the error correction terms to be included when estimating the
VECM. Note that zt = [(m — p} t , y t ,&p t ,R t , t } ' , while zt has no time trend in
the vector.

To reiterate, the first relationship is the standard money demand relation-
ship, while the second vector is deemed to represent 'excess demand' with the
deviation of output from trend having a significant positive relationship to
inflation and a negative one to the interest rate. Note that Figure 6.4 shows
that disequilibrium is large in the money demand equation (as can be seen
by comparing the actual and fitted values), but less so in the 'excess demand'
relation, although since all the speed-of-adjustment parameters are small
in value (cf. the estimates of ex in Box 6.1), both the money supply and
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Figure 6.4. Plots of the relations v'Z, (those that cointegrate can be denoted as P'z,).
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Figure 6.5. Recursive estimates of the eigenvalues associated with the relations v iZ t.

inflation adjust relatively slowly to changes to the underlying equilibrium
relationship.

PARSIMONIOUS VECM

Having obtained the long-run cointegration relations using the Johansen ap-
proach, it is now possible to reformulate the above model and estimate the
VECM with the error correction terms explicitly included:

Az, = Fi Az, (6.2)

It makes no difference whether z, enters the error correction term with a lag
of t — 1 or t — k, since these two forms of (6.2) can be shown to be equiva-
lent. At this stage no separate restrictions are placed on each ay (even though
the above testing of weak exogeneity in the long-run model indicates that
only one cointegration relationship is present in each equation and therefore
that it is appropriate to place restrictions on a). Thus ordinary least squares
(OLS) is still an efficient way to estimate each equation comprising (6.2),
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given that each has a common set of (lagged) regressors. Since all the
variables in the model are now I(0), statistical inference using standard t-
and F-tests is valid.

Estimating the multivariate system denoted by (6.2) confirms the above
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Table 6.3 Certain model evaluation diagnostics relating to equation (6.2) (an intercept,
seasonal dummies and three impulse dummies in Dt).

Statistic

Lag length = 3

Fi=2(4,77)
F i==3(4,77)

t-tests of significance

P'2zt–1

A(m — p)

4.64**
7.61**
6.34**

–7.63**
-1.62

Ay'

1.98
0.71
3.22*

-0.35
-0.13

A2p

5.24**
2.02
0.98

0.70
4.99**

AR

3.17*
0.30
0.59

-0.35
1.42

* Denotes rejection at the 5% significance level.
** Denotes rejection at the 1% significance level.

tests of weak exogeneity6 and tests whether all the (common) lagged Azt_i are
significant in every equation (see Table 6.3). Thus, parsimony can be achieved
by removing the insignificant regressors and testing whether this reduction in
the model is supported by an F-test.7 In fact dropping all non-significant
lagged terms in Table 6.3 gave a test statistic of F(24,269) = 1.21, which
results in an acceptance of the null hypothesis that the omitted regressors
have zero coefficients. Finally, the resultant model was checked in terms of
diagnostic tests on the residuals (cf. Table 6.2)8 together with checks that
parameter constancy holds (involving graphs of the recursive properties of
the model, such as one-step residuals and Chow F-tests for break points in
the individual equations and in the system as a whole). Although these tests are
not reported here, the parsimonious reduced-form system is (generally) con-
gruent as defined by the Hendry general-to-specific approach to modelling.

6 By considering the statistical significance of the Azt_i in each equation, it is also
possible to test whether each variable in the model Granger-causes any other variable.
Lagged values of AR are not significant in the equation determining Ay (hence interest
rates do not Granger-cause output), while output does not Granger-cause inflation.
Lastly, lagged values of A(m—p), Ay and A2p are not significant in the equation
determining AR. Thus, since y and R are weakly exogenous in the system, we can
surmise that interest rates are strongly exogenous with respect to output and output is
strongly exogenous with respect to inflation.
7 Note that we retain a common set of (lagged) regressors—deletions are with respect to
all equations, thus OLS is still applicable.
8 These were 'acceptable', except that the test for autoregressive conditional hetero-
seedasticity (ARCH) in the interest rate equation rejects the null at less than the 1%
significance level, while there are some problems of non-normal residuals in the output
equation. Thus, a model conditioning on these variables would be useful.
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CONDITIONAL PVECM

From tests involving the long-run model as well as tests of the significance of
the error correction terms in the PVECM, it is possible to accept that y and R
are weakly exogenous in the system under investigation. Therefore, we can
condition on these two variables, assuming that we are more concerned with
modelling money demand and inflation. Hendry and Doornik (1994) retain the
full system and thus continue to model the weakly exogenous variables.9 Thus,
our system is now defined as (see also equation (5.8)):

Ay, = r0 Ax, + TI Az,_i + r2Az,_2 + T3Az,_3

+ a, (P',z,_, + P2z,_,) + #D, + u, (6.3)

where y, = [(m —p)t, A/?,]' and \, = [Yt,R,}' and «] is equal to a with
a2j — a4j = 0 for j = 1,2. It is possible to test for a parsimonious version of
(6.3), where non-significant (common) lagged Az,_, are removed and the re-
sulting reduction in the model is supported by an F-test.

The results from estimating the parsimonious version of the conditional
model are given in Table 6.4. The various diagnostic tests of the residuals indicate
that the model has the desired properties for OLS estimation, other than an
indication that the rate of inflation equation has non-normal errors. However,
multivariate tests are satisfactory.10 The correlation of actual and fitted values is
0.90 and 0.81, respectively, for the A(w — p), and A2pt equations. Earlier tests
indicated that the money demand error correction term (cointegration relation-
ship) is only significant in the first equation, while the 'excess demand' ECM is
only significant in the second equation; however, both long-run cointegration
relations appear to be significant in the money demand equation in Table 6.4.
The coefficients attached to these terms (i.e., the speed of adjustment to disequili-
brium) are not dissimilar to those obtained using the Johansen approach (see Box
6.1), except for the second relation in the model for the real money demand.

STRUCTURAL MODELLING

A major feature of the last model is the rather large correlation of —0.21
between the residuals of the two equations. This suggests that the money
demand and rate of inflation equations are not independent of each other,
but rather that there are simultaneous effects between A(w-p)t and A2p,
that could be modelled by imposing some structure on the conditional
PVECM.11 That is, it might seem reasonable to presume that A(m —p), con-
9 In fact, their estimated equations for Ay, and ARt amount to marginal equations
where each dependent variable is regressed on lags of itself, the DOIL dummy and the
'excess demand' cointegration vector.
10 Plots and graphs including recursive statistics are also satisfactory, although not
shown here.
11 Alternatively, as Doornik and Hendry (2001) state, the observed correlation between
the residuals may result from other influences, such as cross-correlated random shocks
or common omitted variables.
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Table 6.4 OLS estimates of the conditional model.

177

Variable

Coefficient ^-values Coefficient f-values

A/?,

&2pt i
A(w —/?) ,_[
A(m — p)t_->
A(m — p)t_^

fez,-i

D2

Constant
SEAS"
SEAS,_i
SEAS,_2

Diagnostics
a
Far(5.82)*

Fto(16,70)
2 /-T\

Xnd(2)

Multivariate

-0.537
0.521
0.604

-0.370
-0.420
-0.374
-0.174
-0.133
-0.010

0.059
1.549

-0.021
-0.009
-0.008

1.46%
1.17
0.48
0.80
1.34

tests: ,Far (20,
24.01**

-4.56
3.26
2.86

-4.27
-4.72
-5.20

-10.40
-2.25
-0.62

3.64
2.31

-4.05
-1.64
-1.39

152)- 1.29;

0.152
-0.151
-0.355

0.074
0.143
0.051
0.006
0.154
0.015

-0.025
-1.751
-0.004

0.007
0.003

0.55%
1.19
0.76
0.84
6.83*

Fhet(48,203)=0.76;

3.43

-4.49
2.27
4.28
1.91
0.95
6.94
2.54

-4.09
-6.96
-2.03

3.40
1.54

*L,(4)=6.97:

" SEAS = Seasonal dummies.
* See the discussion of Tables 5.1 and 5.3.
* Denotes rejection at the 5% significance level.

** Denotes rejection at the 1% significance level.

temporaneously depends on A2/?,. To ignore this information, if it is correct,
means that OLS estimation of the PVECM will be inconsistent.

Estimation of a structural model requires the inclusion of those endogen-
ous variables that determine other endogenous variables, as additional right-
hand-side regressors in the relevant equation (see Box 6.2 for a discussion of
structural models and their identification). The model also requires to be
identified, which among other requirements means that no more than
l = (n x (k — 1)) + r regressors can enter any equation and no more than
n x { unknowns can enter the model (excluding intercepts and other determi-
nistic components in D,).12 Identification also requires that no equation can be

12 Recall that n is the number of variables in z,, k is the lag length of the VAR and r is
the number of cointegration relationships that enter the short-run ECM.
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a linear combination of other equations, and thus the actual location of the
restrictions placed on an unrestricted structural VECM (which has n x (n + /)
potential regressors) is an important element in identifying unique short-run
equations. As a very general guide, each equation in the model requires at least
one unique predetermined variable (entering with a non-zero coefficient) to
identify it, and in the example used here we know from earlier testing that
the money demand error correction term enters only the equation determining
A ( r a — p ) t , while the 'excess demand' term only enters the A2pt equation.13

Estimating the structural model and then dropping insignificant regressors
gave the estimates reported in Table 6.5. The x2 test of the null hypothesis that
these regressors are zero resulted in a test statistic of 4.54 (with 2 degrees of
freedom), and the null is consequently accepted. More importantly, since the
structural model has 25 parameters against 28 in the conditional PVECM
(Table 6.4) the LR test of over-identifying restrictions is given by
X2(3) = 5.57, which does not reject. So the structural model can be said to
parsimoniously encompass the conditional PVECM. Other tests of whether the
model is congruent with the data evidence are provided in Table 6.5 and in
Figures 6.6-6.9. The model has generally constant coefficients (Figure 6.7
shows one-step residuals and Figure 6.8 shows Chow tests for breaks in the
series) and approximately 'white noise', normally distributed errors (cf. the test
statistics in Table 6.5). The model appears to 'fit' the data quite well
(Figure 6.6), and the parameter estimates are generally sensible (and not very
different to those in Hendry and Doornik, 1994). In economic terms the model
supports the contention that causality is from output, interest rates and prices
to money.14,15 Moreover, the correlation between the structural residuals

13 Given the results of the parsimonious conditional model, the 'excess demand' term is a
candidate for inclusion in the equation determining A(m — p)t, although when we allow
for its inclusion it is once again insignificant. Note that we could achieve identification by
omitting other variables that proved insignificant in the parsimonious model.
14 Note that this highlights the care that needs to be taken when speaking of weak
exogeneity with respect to variables in a single equation. Earlier tests involving the long-
run model found that y and R are weakly exogenous to the system, Ap is weakly
exogenous in the money demand equation and m — pis weakly exogenous in the price
equation. However, what the latter tests actually established was that the money
demand cointegration relationship does not enter the short-run model determining
Ap and the 'excess demand' long-run relationship does not enter the short-run equation
determining m—p. Clearly, the FIML results suggest that changes in prices cause
changes in the money supply.
15 Changing the simultaneous model around so that A(w — p)t enters as a regressor in
the equation determining A2pt is unsuccessful. First, the test of over-identifying
restrictions is x2(6) — 14.67, which rejects at the 5% level. Thus, this form of the
structural model cannot be said to parsimoniously encompass the conditional PVECM.
Moreover, the coefficient on A(m — p)t is not significantly different from zero in the
A2pt equation, and the correlation between the structural residuals obtained from
the FIML model is now —0.29, indicating a failure to model the structure underlying the
data evidence that is available.
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Table 6.5 Full information maximum likelihood (FIML) estimates of the conditional
model.

Variable

Constant
SEAS0

SEAS,_!
SEAS,_2

Diagnostics

A(m-p),

Coefficient /-values

0.007
0.036
0.037

-0.023
-0.001
-0.003

1.45%

0.41
2.16

10.30
-4.76
-0.20
-0.56

Coefficient

0.151
0.013

-0.026
-1.720
-0.002

0.009
0.005

0.55%

Multivariate tests:6 Far(20,156) - 1.22; Fhe,(48,208) = 0.79; xj;d(4) = 7-44-

" SEAS = Seasonal.
h See the discussion of Tables 5.1 and 5.3.

r-values

A2/>,
A/?,
A/?,_i
A2/7,_l

A(w — p),_i
A(m -/>),_2

A(m-p),_3

P'l Z/- 1

-1.152
-0.331

0.400
—

-0.298
-0.249
-0.333
-0.164

-4.09
-2.65

2.65

-3.23
-3.17
-4.82

-10.80

0.160
-0.102
-0.347

0.065
0.127

—
—

3.60

-4.61
2.52
4.73

—
—

7.22
2.24

-4.25
-7.23
-1.30
4.93
2.80

obtained from the FIML model is 0.01, indicating some success in modelling
the structure underlying the data evidence that is available. Figure 6.9 shows
dynamic (ex-post) forecasts for the last two years of the data (together with a
small sample of the pre-forecast data); none of the forecasts lie outside their
individual confidence bars, and therefore constancy of the model is readily
accepted. The root mean square error (and mean absolute error) values (see
Chapter 8 for a discussion of forecast evaluation tests) for A(r — m), and A2pt

are 0.018 (0.147) and 0.005 (0.072), respectively. When sets of variables are
cointegrated, their out-of-sample forecasts are tied together as well, and thus
forecasts tend to be better than when no cointegration restrictions are imposed
(Lin and Tsay, 1996). However, Hendry and Clements (2002) point out that if
the cointegration vectors are unstable (non-constant over time), then mean
shifts can have a particularly detrimental effect on forecasting. There is little
evidence (cf. Figure 6.5) of any instability in the long-run part of the model
considered here.

While the forecasts produced in Figure 6.9 are included more as a diag-
nostic tool for the adequacy of the model, out-of-sample forecasts require that
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Figure 6.6. Actual and fitted values: short-run model.
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Figure 6.7. Diagnostic one-step residuals: short-run model.

1990

the cointegration vectors are stable and that the variables 'driving' the model
are not only weakly exogenous but also strongly exogenous, otherwise the
forecasts are not meaningful. That is, past values of the endogenous variables
in the model should not determine the interest rate (AR t) in the structural
model estimated in Table 6.5. To check for strong exogeneity, we test
whether lagged values of A2pt_i, and A(m — p ) t _ i , are significant in a model
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Figure 6.8. Diagnostic Chow tests of parameter stability: short-run model.
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Figure 6.9. One-step model-based forecasts: short-run model.

determining A/?, (when the lags A/?,_, are also included as determinants). If we
can accept H0 : A(/w — /?),_, = 0, then the money supply is said not to Granger-
cause interest rates and R, is strongly exogenous with respect to (m — p}t (given
that it has already been established that interest rates are weakly exogenous—
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see Chapter 1 for a discussion of exogeneity). Undertaking such a test (with i
set equal to 3) produced an F(8,84) statistic of 1.67, which is not significant at
the 10% level. Similarly, the test statistic for whether inflation Granger-causes
interest rates was F(4,84) = 1.11. Therefore we can conclude that interest rates
are strongly exogenous in this model.

One further test of exogeneity is whether interest rates are super-
exogenous, as this is important for policy purposes in order to avoid the
Lucas Critique (see Chapter 1). Hendry (1995, p. 536) constructed a policy
dummy (Polt) to take account of regime shifts in interest rates (taking on a
value of unity in 1973q3, 1976q4 and 1985ql; -1 in 1977ql and 1985q2; and
0.5 in 1979q3 and 1979q4), and when we use this to estimate the marginal
model AR, we obtain the following outcome (which is almost identical to
Hendry's results):

A/?, = -0.001 + 0.291 A*,, i + 0.035/W, (6.4)
(-0.59) (3.55) (7.28)

Diagnostics

R2 == 0.371; F(2,98) = 28.84 [0.000]; a -0.011; DW = 2.16; AR 1-5 f (5,93)
= 1.93 [0.097]; ARCH 4 F(4,90) - 2.025 [0.097]; X} F(4,93) = 0.338 [0.851];
RESET F(l,97) =0.760 [0.386]; normality x2(2) = 0.222 [0.895]; instability
tests 0.431 (variance), 0.760 (joint).

The variable Polt and the residuals from equation (6.4) were then added to the
structural model determining A2/pt, and A(m -p)t', we find that Polt is sig-
nificant in the equation determining A2pt and the residuals from the interest
rate equation are significant in both structural equations. Thus ARt is not
strongly exogenous in this model, in contrast to the findings presented in
Hendry (1995).

Finally, estimates of the coefficients attached to error correction terms
again confirm that the speed of adjustment to long-run changes in the variables
is slow but significant. As to short-run adjustments to shocks (i.e., a standard
error increase in the structural residuals of the equations determining
A(m — p)t and A2pt in Table 6.5), Figure 6.10 plots the impulse responses of
the model with the top half of the diagram showing the impact of a shock in the
money supply and the lower half a shock in inflation. Changes in the money
supply take longer to work through the system than do changes in inflation,
whichever equation is shocked. It clearly takes up to 3 years to return the
system to short-run equilibrium. Figure 6.11 produces the impact of the
shocks as accumulated responses (rather than period-by-period responses),
showing that in all situations the positive shocks persist in terms of increasing
the money supply and inflation in the long run, but that the long-run properties
of the model (encapsulated in the cointegration vectors) act immediately to
bring the model back near to its pre-shock position. If we were to use an
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Figure 6.10. Impulse response shocks.
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Figure 6.11. Accumulated responses to an impulse shock.

unrestricted VAR model that omitted the cointegration vectors, the accumu-
lated impact is as depicted in Figure 6.12—there is no constraining influence
on the model through the inclusion of the long-run equilibrium relationships
embodied in the cointegration vectors.
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Figure 6.12, Accumulated responses to an impulse shock (unrestricted VAR model).

STRUCTURAL MACROECONOMIC MODELLING

The applied researcher typically wants to model the economic relationships
between variables in order to (i) test economic theories (i.e., understand the
nature of these relationships) and (ii) to predict what would happen to the
model in the event of a change in (one or more of) its variables. The latter
might be induced by structural shocks that are fully exogenous to the system
(such as an 'output shock' due to oil price rises) or changes in variables may be
due to government policy. With respect to policy impacts, the model needs to
be robust to the Lucas Critique (see Chapter 1), and it has been argued that this
can only be achieved when policy effects are unanticipated (i.e., exogenous),
much in the same way as structural shocks are orthogonal to the model.

In order to proceed with structural macroeconomic modelling, it is im-
portant to note that while in principle there exists a set of structural
relationships describing the model (equation (6.5)), typically we do not have
enough information on these 'deep parameters' (i.e., the structural parameters),
but rather the modeller has to start from a reduced-form model. Consider the
following structural macroeconomic model:16

Az, = C(L)z,_i +BE, (6.5)

where z is a vector of macroeconomic variables, some of which are endogenous
(such as output, prices and (un)employment), with the remainder comprising
(policy) variables controlled by government (such as the money supply and
interest rates) or determined outside the system (e.g., world demand and
16 This example is based on Favero (2001, chap. 6).
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inflation). The matrices of parameters comprise: A (the contemporaneous rela-
tions among the variables in the model), the lag polynomial C(L) that allows
dynamic adjustment and B (the contemporaneous relationships among the
structural disturbances £, such that when B = !„, the identity matrix, then
shocks to one variable do not directly impact on other variables in the model).

Since the structural model is not directly observable, a reduced form of the
underlying structural model can be estimated instead:

where

z, = A 1C(L)z,-)

Au, = Be,

(6.6)

(6.7)

Equation (6.7) shows that the disturbances in the reduced-form model u, are a
complicated mixture of the underlying structural shocks and are not easy to
interpret unless a direct link can be made to the structural shocks (in the same
way, the rest of the reduced-form parameters in the model are also difficult to
relate to a specific economic structure).

There are different solutions to the problem of relating (6.6) back to (6.5).
The VAR-modelling approach of Sims (1980) was intended primarily to
analyse the impact of (structural) shocks in the model, so he suggested the
following approach to just-identifying the model:

A =

I

021

0

0

1
ann-\

B =

~b\\

0

. 0

0

*"

0

0

0

0

0 '

0

bnn.

(6.8)

The restriction on A is called the Choleski factorization and ensures that there
is a strict causal ordering in the contemporaneous relationships between the
endogenous variables, with the most endogenous variable (i.e., the one affected
most by the others) ordered last in the model. The formulation of B ensures
that the shocks are independent of each other. Of course, there may be little or
no justification for these imposed restrictions in economic terms, and indeed
the only way to know if they are justified is by recourse to economic theory.
Different orderings of the variables in z, will produce different orthogonalized
impulse responses. Thus, it is difficult to interpret these responses in economic
terms.

Another problem with the Sims' approach is that it often ignores the long-
run structural relationships in the model by not converting the VAR to a
VECM. If I(1) variables are cointegrated, then omitting such information
leads to a mis-specified model and in any case limits our ability to say very
much about economic theories (i.e., understand the nature of the equilibrium
relationships between the variables in the model).

The structural VAR approach extends the Sims' approach in that it
attempts to use economic theory to identify the restrictions needed in A
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and B. However, Levtchenkova, Pagan and Robertson (1999) argue that
' . . . although the interpretation offered in support of restrictions ... ostensibly
arises from some prior economic theory, in practice most ... come from past
empirical work or introspection.' Moreover, such restrictions do not help in
identifying the long-run relationships among the n variables in the model, and
in anything other than a small rnacroeconomic model the number of restric-
tions needed is large [n(n — l)/2], and it is unlikely that enough information
would be available for identification based on theory.

An alternative approach to this problem of identification in macro-
economic models is to use a structural cointegrating VAR approach, whereby
the first step is to identify the cointegration vectors spanning the long run. As
discussed in the last chapter, Garratt, Lee, Pesaran and Shin (1999, 2001) argue
that developing the structural long-run relationships between the variables in
the model needs to be based ex ante on economic theory, before estimation
takes place, rather than '... the more usual approach where the starting point
is an unrestricted VAR model, with some vague priors about the nature of the
long-run relations' (p. 15). They give an example of deriving testable hypotheses
from developing such a model from theory and then testing to ensure the
structure is accepted using the type of tests considered in Chapter 5. These
structural cointegrating relationships are then embedded in the unrestricted
VAR of the rnacroeconomic model. While, in principle, the short-run restric-
tions (in A and B) can be imposed (thus obtaining a short-run structural model),
the problem still remains of what information is available on which to base such
restrictions. Thus Garratt et al. (1999) attempt to get around the problem by
suggesting the use of a more general method of analysing impulse responses that
does not rely on the use of identifying restrictions (and that is not dependent on
the ordering of the variables in the model). Thus, they favour the use of the
generalized impulse response analysis (Pesaran and Shin, 1998). As long as there
is a constant mapping between et in equation (6.7) and ut, then '... the analysis
of the shocks to the estimated equations provides insights into the response of
the rnacroeconomic model to the underlying structural shocks, taking into
account the contemporaneous effects that such shocks might have on the
different variables in the model. While this analysis cannot provide an under-
standing of the response of the Macroeconomy to specified structural shocks ...
it does provide a meaningful characterisation of the dynamic responses of the
macroeconomy to "realistic" shocks' (Garratt et al., 1999, p. 13). For a discus-
sion of the relationship and differences between orthogonalized and generalized
impulse responses, see Pesaran and Shin (1998).
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Panel Data Models and Cointegration

INTRODUCTION

Until now, our concern has been with time series data and the use of appro-
priate procedures to estimate models using such data, especially when the data
may be non-stationary (i.e., contain a unit root(s)). However, panel data (i.e.,
cross-sectional time series data with i — 1 , . . . , N 'individuals' in each time
period and with t = 1 , . . . , T observations for each individual over time) are
increasingly being used in both macro- as well as the more traditional micro-
level studies of economic problems. At the macro-level there is increasing use of
cross-country data to study such topics as purchasing power parity (cf.
Pedroni, 2001) and growth convergence (cf. McCoskey, 2002), as well as
familiar issues such as whether real gross domestic product data contain unit
roots (cf. Rapach, 2002). Micro-based panel data (such as those generated by
national household surveys or surveys of firms) are also widely used where
typically the data comprise large TV and small T.

Baltagi (2001) considers some of the major advantages (as well as limita-
tions) of using panel data, such as how they allow for heterogeneity in
individuals, firms, regions and countries, which is absent when using aggre-
gated time series data. They also give more variability, which often leads to less
collinearity among variables, while cross sections of time series provide more
degrees of freedom and more efficiency (more reliable parameter results) when
estimating models. The dynamics of adjustment are better handled using panels
especially in micro-based studies involving individuals, and more complicated
models can be considered involving fewer restrictions. The limitations of panel
data are usually related to the design and collection of such information: not
just missing data (e.g., from non-response) but also measurement errors, attri-
tion in the panel over time and selectivity problems (including issues such as the
weighting of data that is sampled on the basis of a particular stratification of
the population). Model estimation using unbalanced panels (where there are
not T observations on all i individuals in the data set) is more complicated, but
often necessary given the impacts of the problems just outlined.
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This chapter begins with a brief overview of econometric techniques for
use with panel data (see Baltagi, 2001 for an extensive review of the area; and
Baltagi, Fomby and Hill, 2000 for issues related specifically to the use of non-
stationary panel data). It then considers the various approaches that have
become popular for testing for unit roots in panel data, before considering
panel cointegration tests and estimating panel cointegration models.

PANEL DATA AND MODELLING TECHNIQUES

A simple two-variable model that uses panel data can be written as:

yit = x'ifi + z'itf + en (7.1)

with /(= 1,. ..,Ar)denoting individuals, households, firms, countries, etc.;
t(— 1 , . . . , T) denoting time; y and x are the model variables with dimensions
(T x 1) and (T x TV), respectively; zit is the deterministic component in the
model and can take on several forms (see below); and eit are assumed to be
residuals with the standard properties IID(0, ).

As can be seen from equation (7.1), when N = 1 and T is large the model
reverts to the use of time series data, and when T = 1 and N is large the model
uses only cross-sectional data. Some of the advantages of pooling cross-
sectional and time series data have been noted above; within the context of
non-stationary data and cointegration analysis there is another major advan-
tage that can be derived from panel data. That is, adding the cross-sectional
dimension to the time series dimension means that non-stationarity from the
time series can be dealt with and combined with the increased data and power
that the cross section brings. The latter acts as repeated draws from the same
distribution, and thus while it is known that the standard Dickey-Fuller-type
(DF) tests lack power in distinguishing the unit root null from stationary
alternatives, using the cross-sectional dimension of panel data increases the
power of unit root tests that are based on a single draw from the population
under consideration. In empirical applications, where single-country aug-
mented DF (ADF) tests for real exchange rates, nominal interest rates.
inflation rates, and unemployment rates typically cannot reject the unit root
hypothesis, panel tests usually do (e.g., Culver and Papell, 1997).1 Moreover,
and in direct contrast to standard DF-type tests, as N and T get large, panel
test statistics and estimators converge to normally distributed random vari-
ables. This makes testing and inference simpler and results from the fact that
panel estimators average across individuals, which leads to a stronger overall
signal than that available from a pure time series estimator.

The standard textbook treatment of zit in equation (7.1) is to limit it to a

1 Levin and Lin (1992) found that the panel approach substantially increases power
relative to single equation ADF tests in finite samples, based on Monte Carlo
simulations. Rapach (2002) confirms this using his own Monte Carlo simulations.
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simple individual effect, say ai, that allows each household, individual,
country, etc. to have a separate intercept in the regression model, thus allowing
each individual to be heterogeneous (but note that the intercept is not allowed
to change over time— the a, therefore capture fixed effects). It treats observa-
tions for the same individual as having something specific in common such that
they are more 'like' each other than observations from two or more different
individuals. However, zit can take on several forms, including zero, one, a
simple time trend, the fixed effect at (as discussed) and a mixture of fixed
effects and heterogeneous time trends. For example, we could replace zit by
any of the following alternatives:

(a) zit = ̂ o
(b) zn — <5o + S(i

(c) zit = a/

(d) zit = i/,
(e) 2,-, = a,- + »7,-i

(7.2)

The first two examples in (7.2) equate to a standard pooling of cross-sectional,
time-series data (with a common intercept, or an intercept and time trend, in
the model) such that there are observations on NT different individuals. In
contrast (7.2c-7.2e) explicitly take into account the panel aspects of the data
and allow for T observations on JV individuals where it is assumed each indi-
vidual is different in some (unobserved but nonetheless specific) way. That is,
the last three alternatives in equation (7.2) allow for heterogeneity across indi-
viduals in terms of effects that do not vary with time (e.g., a, — see Box 7.1 for
more details on the standard treatment of this model), or shocks over time that
affect all individuals equally (vt),

2 or lastly both fixed effects and individual
effects that vary with time (a, + nit}.

PANEL UNIT ROOT TESTS

Testing for unit roots in panel data is becoming more common, given both the
development of testing procedures and their incorporation into econometric
software packages. In this section the tests suggested by Levin and Lin (1992,
1993)—hereafter LL—and Im, Pesaran and Shin (1995, 1997)—hereafter
IPS—are considered, together with more recent adjustments and extensions
by Harris and Tzavalis (1999), Maddala and Wu (1999) and Breitung (2000).
All these tests take non-stationarity (i.e., the presence of a unit root) as the null
hypothesis and test against alternatives involving stationarity. The last test
considered in the section is that proposed by Hadri (2000) for the null of
stationarity against the alternative of unit roots in the panel data.

2 Note that it is possible to consider a variant of equation (7.2c) and (7.2d) whereby
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The basic approach to unit root-testing is to consider a modified version of
equation (7.1) involving only a single variable:

yit = Piyi,t –1 + z'it 7 + eit (7.3)

The LL (1992) tests assume that (i) eit are IID(0, a],}—thus individual processes
for each i are cross-sectionally independent and there is no serial correlation—
and (ii) pi = p for all i.3 The latter assumption imposes homogeneity by assum-
ing that each individual-specific process is the same across all cross-sectional
units of the panel. The first assumption ensures that there is no cointegration
between pairs or groups of individuals in the cross sections.4 This is a major
assumption since in many instances (e.g., involving financial variables for
different countries or exchange rates, as well as prices and output) it might
be assumed (and indeed empirical evidence often shows) that markets are
economically linked in terms of long-run equilibrium relationships. The con-
sequence of assuming no cross-equation cointegration relationships has been

3 Of course, if p, ^ p for all i, then incorrectly imposing this constraint will ensure that
the first assumption is not correct as cov(ei, ej) ^ 0.
4 Later we shall consider the IPS test that relaxes the assumption that pi = p. but still
imposes no cointegration since eit are assumed to be IID(0, er~).
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explored by Banerjee, Cockerill and Russell (2001); they found that the group
of panel unit root tests considered here often over-reject the null of non-
stationarity (i.e., these tests have poor size properties).5,6

There are various forms of the LL (1992) tests: the first (and simplest) sets
zit = 0, while tests 2–6 as presented by LL cover the alternatives set out in
equation (7.2a-e). In all cases, the null is H0: p = 0 against the alternative H1

p < 1. Thus under the null all i series in the panel contain a unit root, while the
alternative is that all individual series are stationary. Clearly, the alternative
hypothesis is fairly restrictive. For the LL (1992) tests, where zit = 0 or as set
out in equation (7.2), Levin and Lin have shown that as N —> oo and T —> oo
the underlying distribution of the r-statistic for testing the null is standard
normally distributed N(0,1), which makes statistical inferences about the
value and significance of p straightforward (see Baltagi, 2001, eqn (12.4)).

There are various issues with the LL (1992) tests that have resulted in
extensions or alternatives being suggested. LL (1993) developed testing proce-
dures that take care of the problems of autocorrelation and heteroscedasticity
that are apparent in the LL (1992) tests. Their maintained model comprised:

7

where equation (7.3) is now transformed into a first-difference equivalent
version (recall that &yit ~ yit — yi,t–1) such that the null is now H0:
p* = (p — l) = 0; thus the major change to the earlier LL (1992) test is that
different lags are allowed across the i cross sections in the model. To implement
this model, LL (1993) carry out separate ADF regressions for each individual
in the panel, normalize for heteroscedasticity and compute pooled ^-statistics
for testing the null against the same alternative as in LL (1992) (viz., H1;
p* < 0—all individual series are non-stationary). The test t-values are again
asymptotically distributed under the standard normal distribution.

5 In considering the LL, IPS and Maddala and Wu (1999) tests when cointegration is
present, Banerjee et al. (2001) found that the LL tests did relatively better than the
others in terms of its size properties. However, this was probably to do with the
imposition of homogeneity (pi = p) in the Monte Carlo experiments they undertook,
which obviously favours the LL tests.
6 The LL tests assume that eit are IID(0, a*), hence cov(eit, e}t) — 0 for all i j, so that as
well as long-run cross-equational correlations being omitted (the case of cointegration
between the i cross sections), short-run correlations are also omitted. O'Connell (1998)
proposed using the seemingly unrelated regression (SUR) technique proposed by
Zellner (1962) to account for short-run cov(eit,ejt) 0 in the LL test where (pi = p),
while Taylor and Sarno (1998) suggest a similar SUR estimator when the pi are free to
vary across i. Both are argued to reduce the over-sizing of the usual LL and IPS tests,
but they still do not account for over-sizing if cointegration is present in the data.
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Table 7.1 Levin and Lin (1992, 1993) panel unit root tests.

Test name Model

LL_1 Ay,> = AW./-1 + ?it

LL_2 Ay// = P.W./-I + <^o + £//

LL_3 A>v, = W.,-i +*> + «!/ + */,

LL_4 Ay,-, = py'j.t- 1 + a,- + 6,-,

LL_5 Ay,, = AW./- 1 4- i'i + e,,

LL_6 Ay,, — pv'j.t-i + a, + 77,7 + e,,

Hypothesis

//0: p = 0; //i : p < 0

//0: p<0 : HI: p<0

//0: p = 6 = 0; //i : p < 0; £ e R

//„: p = Q, = 0; //, : p < 0; a, € R
for all /

//0:p = 0 : / / , : p < 0

HO'- p = /?, = 0; //i : p < 0: r/,- e /?
for all /

LL_7 Ay,, — p>-,./-i + e,, with serial H0: p = 0: H\: p < 0
correlation

LL_8 Av» = pvj.t-] + 2_. Qii.Ayj.i-L + w// HQ\ p = 0; //i: p < 0

/><
LL_9 Ay,, = P.V/./-I + y^0/tAy,-.,_£ + a/ + M,-, //Q: p = o, = 0: //i: p < 0: n, €

z.= i for all /

LL_10 Ay,, = P.W./-I + 5^ OiLAyi.,-L + a, + rjjt + «,, H0: p - TJ,• = 0: H\: p < 0: j], e /
L=I for all /

Three versions of the LL (1993) tests are considered here: first where zit = 0
(denoted model 8 here, to be consistent with Chiang and Kao, 20027), where
zit = af (model 9) and where zit = a, + ni

t (model 10). Table 7.1 summarizes
the LL tests considered—all of which are available as a subroutine from
Chiang and Kao, 2002, for estimation using the Gauss econometric package.

Harris and Tzavalis (1999)—hereafter HT—conducted Monte Carlo
experiments to look at the properties of the LL tests when T (the time series
component of the data set) is small. In particular, they looked at the power of
the test to reject the null when it is false, finding that the assumption built into
the LL tests that T —»• oo yields a test with poorer power properties (especially
when T is less than 50). Consequently, they suggested testing for panel unit
roots based on the assumption that T is fixed, finding this had better power
properties in small T samples. This is a particularly important issue when
considering testing for unit roots using macro- or micro-panel data sets. In
the latter, N tends to be large, but the time dimension T is often relatively
short, suggesting that in such cases the HT tests are more appropriate. These
are available for three models based on equation (7.3) with homogeneity
imposed (p, = p) and zit = {0}, zit = {a/} or zit = {(a/, 0'}- Labelling these
as HT_1 to HT_3, the HT tests are equivalent to LL models LL_1, LL_4
and LL_6.

7 Model 7 in Chiang and Kao (2002) is equivalent to equation (7.3) with p, = p and
zn — 0, but allowing for serial correlation.
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Another issue with the LL tests is concerned with the methods used to
estimate panel models with fixed effects (i.e., where a, > 0). Generally, if
heterogeneity is allowed (a, and/or , feature in the model), then the usual
panel estimators based on the 'within-group' estimator (such as the least
squares dummy variable model8) have been shown to suffer from a severe
loss of power (Breitung, 2000). Thus Breitung suggests a test involving only
a constant in the model (i.e., no fixed effects) and finds his UB test to be
substantially more powerful than the LL tests (and fairly robust with respect
to the presence of lags in the data-generating process — d.g.p. — underlying the
true model).9,10 The UB test will be included in the battery of panel unit root
tests considered on p. 199 in Table 7.3.

As stated earlier, a major assumption of the LL tests is the imposition of
homogeneity by setting pi = pin equation (7.3). The alternative hypothesis that
is tested is therefore H1: p < 1, which is that all i cross sections are stationary.
Thus, IPS (1997) relax the homogeneity constraint by estimating equation (7.3)
with pi free to vary across the i individual series in the panel. They also allow
for different lags for the i cross sections in the model (as do LL, 1993), using the
following model:

n
Av« = P*yu- 1 + 5Z OiL&yi,t-L + 47 + "// (7-5)

L=\

The null hypothesis (HG: pi* — 0) is that each series in the panel contains a unit
root for all i, and the alternative hypothesis ( H 1 ; p ] < 0 for at least one i) is
that at least one of the individual series in the panel is stationary. Essentially,
the IPS test averages the ADF individual unit root test statistics that are
obtained from estimating (7.5) for each i (allowing each series to have different
lag lengths L, if necessary); that is:

As T — *• oo (for a fixed value of N) followed by N — >• oo sequentially, IPS show
that their test statistic (denoted IPS_97) for testing the null is standard nor-
mally distributed.11 They also proposed an LM bar test (denoted IPS__LM)

8 See Greene (2000, pp. 560–564) for a clear overview of this approach.
9 The UB test does not include lagged dependent variables.
10 The UB test is also found to be more powerful than the IPS tests (to be discussed
next), since these are also based on the within-group estimator to account for fixed
effects.
11 Note that different distributions will be obtained depending on the mean and variance
of the tp' series underlying the t statistic. Thus, IPS standardize their test statistic based
on simulations of this mean and variance (with different values obtained depending on
the lag length used in the ADF tests and the value of N). These simulated values are
given in table 3 of the 2002 version of their paper, and they are used along with equation
(7.6) to obtain the z-statistic as set out in equation (3.13) of IPS (2002) or similarly eqn
(4.10) in their paper.
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based on a lagrange multiplier test rather than t-statistics,12 but essentially the
issues are the same for both forms of the test. Note that, in principle, un-
balanced panel data (with different values of T for different individual series
i) can be handled by the test, and each individual series i can have different lags
L, However, in practice, the critical values of the tests would need to be
recomputed if either T or L differ across the i cross sections in the panel
(IPS only calculate critical values for balanced data and homogeneous L).

The IPS test is a generalization of the LL tests in that it relaxes the form of
the alternative hypothesis H1. However, it suffers from many of the same
problems discussed above with regard to the LL (1992, 1993) tests. Particularly
important is the assumption that each i is cross-sectionally independent, im-
plying no short- or long-run cross-equation correlations exist and thus no
cointegration between pairs or groups of individuals in these cross sections.
There is also the loss of power that results from the use of a 'within-group'
estimator of the fixed effects—the LL and IPS tests both make correction for
the bias that arises from using such estimators and Breitung (2000) shows that
this can lead to significant under-rejection of the null when it is false. Lastly,
the IPS test is in practice hard to implement for unbalanced data, which can
limit its application (especially when using micro-based panel data sets where
unbalanced panels are more prevalent).

The power of the LL and IPS tests have been analysed and compared in
Karlsson and Lothgren (2000). When making comparisons an important factor
was to recognize that an essential difference between the tests is that under the
alternative hypothesis the IPS test needs only some of the series to be station-
ary, not all, while the LL test requires all to be stationary. The extent to which
some of the / cross sections truly are stationary and some not impacts on the
size and power of these tests when considering H0 and H1. Their main findings
were: ' ... the power increases monotonically with: (1) an increased number N
of the series in the panel; (2) an increased time-series dimension T in each
individual series; and (3) an increased proportion ... of stationary series in
the panel.' They also note that '... for large-T panels, there is a potential risk
that the whole panel may erroneously be modelled as stationary ... due to the
high power of the panel tests for small proportions of stationary series in the
panel. For small- T panels, on the other hand, there is a potential risk that
the whole panel may be erroneously modelled as non-stationary, due to the
relatively low power of tests even for large proportions of stationary series in
the panel.' In essence they warn the applied researcher from drawing inferences
too quickly for different values of N and T.

The last test considered here based on the null of non-stationarity has been
proposed by Maddala and Wu (1999). They advocate the use of a Fisher-type
test that combines the significance levels for rejecting the null (the p-values)

12 IPS advised the reader in their 1997 paper that the t-bar test is preferable to the LM
test (the latter actually is omitted from the final version of the 1997 paper, which is
forthcoming in the Journal of Econometrics).
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obtained when estimating a unit root test (e.g., the ADF test) for each cross

(7.7)

section i separately. That is:13

has a x2-distribution with 2N degrees of freedom. Thus, this procedure is
similar to the IPS test that averages the ADF individual unit root test statistics
obtained for each i, except that equation (7.7) combines the significance levels
for rejecting the null of a unit root rather than the t-test values. The advantage
of using (7.7) is that it is simple to calculate, does not require a balanced panel
or impose the same lag lengths on each cross section i and it can be carried out
for any unit root test statistic (not just the DF-type test). Maddala and Wu
(1999) also found that this Fisher-type P-test is superior to the IPS test, which
in turn is more powerful than the LL test.

All the previous tests are based on a null hypothesis that the individual series
in the panel are jointly non-stationary, against alternatives where some or all of
these series are stationary. Hadri (1999) has proposed a test of the null that the
time series for each i are stationary around a deterministic trend, against the
alternative hypothesis of a unit root in the panel data. His model assumes:

yit = z'it~f + rit + Eit (7,8)

where rit — r i t __ 1 + uit and uit ~ IID(0, cr^). Thus rit is a simple random walk
and eit is a stationary process. By repeated backward substitution it is possible
to rewrite equation (7.8) as:

yit = z;,7 + eit (7.9)

where eit = X)j=i uij + £n ls tne accumulated sum for each cross section / of the
past residuals uit. Under the null hypothesis of stationarity the variance of eit

equals zero (the yit do not drift, but rather are stationary around the determi-
nistic component in equation (7.9)). An LM test can be computed that tests this
null, which is distributed exactly14 under the standard normal distribution as
T — > oo followed by N — » oe sequentially.

To conclude the present discussion of panel unit root tests, annual data
on (the log of) total factor productivity for 22 countries (N — 22), for the
1971-1990 period (T = 20), are used to perform the various tests outlined
above. These data are taken from Chiang and Kao (2002), who use this
series to illustrate their NPTL3 software package (written for Gauss).15

Figure 7.1 plots each of the 22 cross-sectional series, while Table 7.2 reports
the individual ADF tests for each country. In all cases a single lag was used
when computing the various ADF tests (lag lengths were set based on their

13 When N is large, Choi (1999) proposed a modified P-test: Pm = [ l / (2/JV)] x

14 That is, no standardization is needed (as with the IPS_97 test) to obtain a statistic that
is distributed asymptotically under the standard normal distribution.
15 The data originate from Coe and Helpman (1995).
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Figure 7.1. Total factor productivity (TFP) for 22 OECD countries. 1971-1990 (source:
Chiang and Kao, 2002).

Table 7.2 ADF tests for non-stationarity for individual log TFP series (lag length = 1).

Country /-statistic with constant and trend (TT)

5% critical values for TT — -3.692 and for r^ — -3.040.
* Rejects at 5% significance level.

/-statistic with constant (rtl)

USA
Japan
Germany
France
Italy
UK
Canada
Australia
Austria
Belgium
Denmark
Finland
Greece
Ireland
Israel
Holland
New Zealand
Norway
Portugal
Spain
Sweden
Switzerland

-2.527
-1.237
-2.709
-2.566
-2.968
-2.971
-2.658
-3.108
-1.831
-3.658
-3.681
-3.687
-2.133
-1.505

1.437
-3.482
-2.006
-3.604
-3.823*
-1.597
-2.308
-1.755

-0.992
1.408

-0.915
0.270

-1.257
-0.711
-2.066
-1.133
-0.383
-1.189
-0.545

0.045
-1.828
-0.036

0.689
-1.652
-1.630
-1.138
-1.660

0.196
-1.259
-0.532
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Table 7.3 Panel unit root tests for logTFP (where applicable lag length is set at 1).

Test name

LL 1
LL 2
LL 3
LL 4
LL 5
LL 6
LL 7
LL 8
LL 9
LL 10
HT 1
HT 2
HT 3
UB test
IPS 97 (a)
IPS_97 (b)
IPS LM (a)
IPSJLM (b)
Fisher P-test (a)
Fisher P-test (b)
Hadri test (a)
Hadri test (b)

Deterministic
component (zit)

So
So + Sit
Cti

v,
(\j + r)jt

a,-
at + r\it

a,
a, + r}jt
So
a,
a/ + r/,7
a,
a,- + rjjt
So + Sit
So
Oti

Oil + 7]jt

Test statistic*

-10.452
-5.997
-3.975

1.010
-6.178
-2.414

-10.662
0.849
7.401

28.372
-8.397

2.337
-15.963
-3.271

3.903
-2.302
-2.387
-5.317
66.264
17.040
6.883

6,975.451

Significance level for
rejection

0.000
0.000
0.000
0.156
0.000
0.008
0.000
0.198
0.000
0.000
0.000
0.010
0.000
0.000
0.000
0.011
0.008
0.011
0.000
0.999
0.017
0.000

* All tests are (asymptotically or exactly) distributed under the standard normal distribution, except
the Fisher P-test, which is x2-distributed with 2N degrees of freedom.

significance in the ADF regression equation), and tests were undertaken both
with and without a deterministic time trend included. Only once is the null of
non-stationarity rejected for these individual country-based tests. In contrast,
Table 7.3 presents the array of panel unit root tests discussed in this section. All
tests were computed using NPT 1.3, except the Fisher-type P-test, which was
computed manually using TSP 4.5.16

The results from the panel unit roots tests are ambiguous. Although most
tests do reject the null of non-stationarity, the inclusion of fixed effects vis-d-vis
fixed effects and heterogenous time effects clearly impacts on the ability to

16 TSP provides the actual significance level for rejecting the null of non-stationarity
(whereas PcGive does not provide this information automatically), and this is needed to
compute the Fisher-type test. The data and program code used are available on the
book's website. Note also that the IPS_97 test has also been coded for use with TSP and
STATA. The code using the former is also available on the book's website. Using the
TSP code provided somewhat different results than those reported in Table 7.3 for the
IPS_97 test. Interested readers with access to TSP can run the program available on the
book's website and note that, in the case of the constant and trend model, the TSP code
does not reject the null, while NPT 1.3 code produces results where the null is rejected at
better than the 5% significance level.
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reject the null (see, for example, the outcomes from the HT_2 and HT_3 tests).
In particular, the Fisher P-test, which sums the significance levels for rejecting
the null in each i cross section in the panel, rejects the null at better than the
0.1% significance level when a time trend is included in the test, but fails to
reject when only a constant (i.e., drift) term is included in the underlying ADF
model (cf. the results in Table 7.2). Moreover, the Hadri test based on the null
of stationarity is clearly rejected, especially when individual time effects are
included in the model. Thus, in the example used (where N and T are relatively
small and where the series typically trend upward over time), panel unit root
tests do not necessarily provide clear-cut results, although the evidence (except-
ing the Hadri test) is generally toward overall rejecting unit roots in the series,
when individual tests generally fail to reject the null of non-stationarity.17

TESTING FOR COINTEGRATION IN PANELS

Testing for cointegration in panel data should have the same beneficial effects
in terms of power that are present when testing for unit roots using panel data.
That is, the low power of conventional tests (when N = 1, such as the Engle-
Granger (EG) two-step approach), when applied to series of only moderate
length, can be improved upon by pooling information across the i members of
a panel.

In terms of extending testing beyond whether there are unit roots in panel
data, the literature has two strands to it. Tests of (generally) the null of no
cointegration between the variables in the panel, against the alternative of at
least one cointegration relationship, have been developed in one strand; the
other strand provides estimates of the cointegration vector itself. In this section
we look at the tests for whether cointegration is present; while in the next
section we consider the approaches that have been developed to provide esti-
mates of the cointegration vector and thus inferences about the parameter
estimates obtained. Typically, the literature in both directions has been
limited to a single equation framework (in much the same way as the EG
procedure pre-dates the multivariate framework developed by Johansen).
although efforts are under way to extend testing and estimation using multi-
variate approaches.

Cointegration tests using a single equation approach include those devel-
oped by Kao (1999) and Pedroni (1995, 1999), where the null hypothesis is that
there is no cointegration, and McKoskey and Kao (1998), who developed a
residual-based test for the null of cointegration rather than the null of no
cointegration in panels. Larsson, Lyhagen and Lothgren (2001) used a multi-
equation framework to construct a panel test for cointegration rank in hetero-

17Note that, as in the case of unit root-testing in time series data where N = 1. the
presence of a break in the panel series has serious consequences for the power of the test
for unit roots. See Murray and Papell (2000) for a discussion and evidence.
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geneous panels based on the average of the individual rank trace statistics
developed by Johansen (1995a).

The tests proposed by Kao (1999) are DF- and ADF-type tests similar to
the standard approach adopted in the EG two-step procedure (see Chapter 4).
We start with the panel regression model as set out in equation (7.1):18

ti + eti (7.10)

where y and x are presumed to be non-stationary and:

e~it = pei,t-i + vn (7.11)

and where eit( = yit — x'itJ3 — z/,7) are the residuals from estimating equation
(7,10). To test the null of no cointegration amounts to testing H0: p = 1 in
equation (7.11) against the alternative that y and x are cointegrated (i.e., HI:
p < 1). Kao developed four DF-type tests, with zit in equation (7.10) limited to
the fixed effects case (i.e., zit = a,-). Two of these tests assume strong exogeneity
of the regressors and errors in (7.10) and are denoted DFp and DFt, while the
other tests make (non-parametric) corrections for any endogenous relation-
ships and are denoted DF*p and DF*. All four tests include non-parametric
corrections for any serial correlation, since equation (7.11) involves a single
ordinary least squares (OLS) regression of eit on only a single lagged value of
eit. Alternatively, Kao also proposed a test that extends (7.11) to include lagged
changes in the residuals, thus obtaining an ADF version of his test, and thus a
version that parametrically tests for serial correlation as part of the estimation
procedure. All the tests are asymptotically distributed under the standard
normal distribution and are one-sided negatively tailed tests (i.e., reject the
null if the test statistic is a large enough negative number). Note that all five
versions of Kao's tests impose homogeneity in that the slope coefficient ß is not
allowed to vary across the i individual members of the panel.

This assumption of homogeneity has been relaxed by Pedroni (1995, 1999),
who used the following model:

t + 6tt + P\iX\i,t + foiX2i,t -f ----- h 0KiXRi,t + eit (7,12)

with tests for the null of no cointegration being based on the residuals ejt using:

en = Pi€ij~\ + VH (7.13)

Since the a, and the various ßi are allowed to vary across the i members of
the panel, this approach allows for considerable short- and long-run
heterogeneity— in effect the dynamics and fixed effects can differ across the
individuals in the panel and the cointegration vector can also differ across
members under the alternative hypothesis (although with regard to the latter
point, see the discussion on the following page on alternative hypotheses and
the form of the estimator used).

18 Note that xit can be expanded to K regressors, not just one.
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The way the dynamics are taken into account to correct for serial correla- 
tion depends in Pedroni on the model that is used. First of all he constructs 
three non-parametric tests that ‘correct’ for serial correlation: (i) a non- 
parametric variance ratio statistic; (ii) a test analogous to the Phillips and 
Perron (PP) (1988) rho-statistic; and (iii) a test analogous to the PP t-statistic. 
He also constructs a fourth parametric test similar to the ADF-type test that 
allows the number of lags in the model to be estimated directly.” 

In addition to different ways to correct for serial correlation, Pedroni 
considers different ways to estimate equation (7.12): estimators that are 
based on pooling along the within-dimension or estimators that pool along 
the between-dimension (see Greene, 2000, pp. 562-564 for a discussion). 
Pooling along the within-dimension amounts to effectively pooling pI (in equa- 
tion (7.13)) across the different i individuals in the panel such that pI = p; the 
between-groups estimator (also referred to as the group-means estimator) is 
based on averaging the individual estimated values of bi for each member i. 
Thus, using the within-groups approach, the test of the null of no cointegration 
Ho: pi = 1 for all i is set against an alternative H I :  p, = p < 1 for all i; whereas 
the group-means estimator is less restrictive in that it allows for potential 
heterogeneity across individual members of the panel since the alternative 
hypothesis is H I :  pi < 1 for all i (it does not presume a common value for 
pi = p under the alternative hypothesis). 

As well as being less restrictive (in terms of the alternative hypothesis being 
tested), Pedroni has found that the group-means estimators typically have 
lower small-sample size distortions than within-groups estimators (i.e., it 
tends to incorrectly reject the null hypothesis when it is true less often). 
Thus, in addition to the five tests outlined above, which are based on within- 
groups estimators, Pedroni (1995, 1999) has developed three panel cointegra- 
tion statistics that are based on the group-means approach. The first is 
analogous to the PP rho-statistic, the second to the PP t-statistic and the last 
is analogous to the ADF-type t-statistic.” 

In all seven tests, the null hypothesis is of no cointegration, with different 
alternative hypotheses (see Pedroni, 1999, table 1 for specific details and 
formulae). Endogeneity of the regressors is allowed as is considerable hetero- 
geneity in the dynamics, fixed effects and the cointegration vectors for the i 

19The issue about the best way to correct for serial correlation was discussed earlier 
when considering the PP-type tests (Chapter 4). Essentially, the PP tests are likely to be 
more robust to the problem of ‘fat tails’ in the data (i.e., severe outlier problems), 
although imposing parametric restrictions will add to the power of the test when these 
are valid. As to the size of the test, when T is relatively short compared with N, then 
parametric tests are often sensitive to the choice of lag used, whereas the non-parametric 
tests have problems with the size of the test if there are large negative MA components 
in the dynamics of the model (as is often the case with macro time series data). 
2o Note that Pedroni (1999) points out that his tests 4 and 7 are most closely analogous 
to the LL (1993) and the IPS (1997) unit root tests, respectively. 
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individuals in the panel, which contrasts with Kao's (1999) approach where
homogeneity is imposed on the cointegration vectors and exogeneity of the
regressors is needed for two of his tests. Pedroni (1995, 1999) also shows
that his tests are distributed under the standard normal distribution as:

) (7.14)
V"

where XN, T is the standardized form for each of the seven statistics developed
by Pedroni (see Pedroni, 1999, table 1), while p, and v are the mean and
variance of the underlying individual series used to compute the aggregate
test statistics, and these are needed to adjust the seven test statistics to
render them standard normal. The values of y, and v depend on the number
of regressors in the model and whether a constant and/or trend terms have
been included in the regression model (7.12). These values (obtained by Monte
Carlo simulation) are provided in Pedroni (1999, table 2). Note that under the
alternative hypothesis the panel variance statistic (test 1) diverges to positive
infinity and thus the right tail of the standard normal distribution needs to be
used to reject the null hypothesis of no cointegration (large positive values
imply rejection). For the other six tests these diverge to negative infinity, and
large negative values imply that the null of no cointegration is rejected. Thus,
the Pedroni (1995, 1999) statistics are one-sided tests under the standard
normal distribution, and care must be taken to ensure that rejection of the
null is not incorrectly applied using the wrong tail of the standard normal
distribution.

To actually implement the Pedroni tests, there is a need to obtain the
residuals from estimating equation (7.12)—see equation (7.13)—and then
basically adjust for serial correlation and endogeneity, followed by applying
the appropriate mean and variance adjustment terms (p, and v) discussed
above. Pedroni (1999) sets out the formulae for the test statistics in his table
1 and provides a step-by-step guide on pp. 659-662. Fortunately, these tests
have been automated for more general use by the authors of the various tests.
For example, NPT 1.3 (Chiang and Kao, 2002) includes Pedroni's seven tests
(for use with Gauss),21 while Pedroni himself has written the relevant computer
code for his tests for use with RATS.22

The issue of which test is most appropriate—or more particularly, whether
to use a parametric or non-parametric or a within-groups or between-groups
approach to testing the null of no cointegration—is not easy to decide. The
between-groups estimator is less restrictive; non-parametric tests have particu-
lar strengths when the data have significant outliers. However, the latter tests
have poor size properties (i.e., tend to over-reject the null when it is true) when
the residual term (equation (7.13)) has large negative moving average (MA)

21 At the time of writing, the NPT 1.3 procedure wrongly computed the Pedroni (1995,
1999) tests. We discuss this on p. 205 when using this program.
22 Pedroni's code can handle unbalanced data, unlike NPT 1.3.
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components (a fairly common occurrence in macro time series data). Also, a
parametric test (such as the ADF-type test) has greater power when modelling
processes with AR errors, because the regression model captures the AR terms
precisely. Thus, using various testing procedures is helpful when the underlying
d.g.p.s are unknown.

The approach taken by McCoskey and Kao (1998) is to test the null of
cointegration against the alternative of no cointegration. It is similar to the
Hadri (1999) LM test discussed on p. 197 when considering panel unit roots.
The model (allowing for heterogeneous intercepts) is:

yit = a,- + x'it/3i + eit (7.15)
where

xit =.*,•,,_ \+£it (7.16)

*i/ = 7i/ + "i7 (7-17)
and

7// = 7/./-i+0M,v (7-18)

where the uit are IID(0, al).23 Under the null of cointegration between v
and :c, 0 = 0 (the error term eit in (7.15) has a constant variance). Hence,
the null hypothesis is based on setting up such a test (H0: 9 = 0).
McCoskey and Kao (1999) proposed an LM test statistic that is asympto-
tically normally distributed, although dependent on complex mean and
variance terms that are provided via Monte Carlo simulations and that
depend on the number of regressors in the model and/or whether a, is
allowed to vary or set equal to zero. The McCoskey and Kao (1999) test
has been incorporated into NPT 1.3 for use with the Gauss econometric
software package.

All the above panel cointegration tests are based on essentially univariate
extensions of panel unit root tests, where the residuals from a first-step
cointegration regression are then tested in the spirit of the two-step approach
developed by Engle and Granger (1987). In contrast, Larsson et al. (2001) use
a multivariate framework by developing a likelihood ratio panel test based on
the average of the individual rank trace statistics developed by Johansen
(1988, 1995a). Their LR bar test statistic is therefore very similar to the
IPS (1997) t-bar statistic used to test for panel unit roots. Essentially, the
trace statistics for each cross section i in the panel are computed, and the
average is standardized using the mean and variance of the underlying trace
statistics defining the model. These mean and variance terms are obtained via
Monte Carlo simulations and depend on which test of the rank of the long-
run matrix in the vector error correction model (VECM) is being considered

23 Equation (7.15) needs to be estimated using an efficient procedure that allows for
residual autocorrelation in a model involving cointegration. Non-parametric methods
include the FMOLS estimator of Phillips and Hansen (1991); a parametric approach is
to use a dynamic OLS estimator (e.g.. Stock and Watson, 1993).
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(table 1 in Larsson et al., 2001, provides the values of the means and var-
iances to be used).

To illustrate the use of tests for cointegration in panels, we continue to
use the data available in the NPT 1.3 programme (Chiang and Kao, 2002),
comprising a panel of 22 countries over 20 years with estimates of TFP,
R&D spending and international R&D spending (see Coe and Helpman,
1995, for details). Table 7.4 presents the results relating to the various
tests attributable to Kao (1999), Pedroni (1995, 1999) and McCoskey
and Kao (1998). The latter test the null of cointegration, and this is
firmly rejected, whereas the former tests have no cointegration as the
null hypothesis. Of these tests, the Kao tests allowing for endogeneity
generally reject the null in favour of cointegration (involving a homoge-
neous ß for all i-countries in the cross section), while the Pedroni tests
provide mixed results with only 5 of the 18 test statistics rejecting the null
at the 5% level or better.24 If it is believed that group-means parametric
estimators should be preferred, then the null is rejected, although it should
be noted that it is not uncommon for different tests to give mixed results
when (as is likely) some of the series are cointegrated and some are not
(see Table 7.5 for some evidence on this).

Finally, Table 7.5 reports the results from using the Larsson et al. (2001)
procedure that computes the individual trace statistics for each cross section i
in the panel and obtains the mean value (the panel trace statistic).25 The
procedure also simulates (based on 10,000 runs) the asymptotic critical value
for each test and applies a small-sample correction to produce the Bartlett
corrected critical value. Because there are only 20 time series observations
for each cross section, it is not possible to include more than 6 countries
maximum in each estimation (with 22 countries and two variables in the
model, we would actually need 46 years of data to estimate the model with
all countries included).26 We also found that if all three variables (log TFP,
log R&D and log foreign R&D) were included there were problems with sin-
gularity,27 indicating that there is insufficient variability in the data set to
estimate the full model. Hence, we dropped foreign R&D. The results in
Table 7.5 indicate that the trace statistic exceeds the small-sample corrected

24 We also tried using NPT 1.3 for the Pedroni tests. However, at the time of writing it
would appear that there are some limitations with the specification of the underlying
OLS model used to generate the residuals that comprise step 1 of the Pedroni procedure.
In effect it seems that the FE model is always used; thus we also estimated the panel
OLS model incorporating a time trend. The overall results were very different from
those reported in the text, with only the parametric panel t-test able to reject the null.
25 We are indebted to Johan Lyhagen for providing us with a copy of his Gauss
programme with which to undertake the estimations reported in the text.
26 The requirement for T is T > Np + 2, where p is the number of regressors in the
model.
27 That is, let z = {log TFP, log R&D, log foreign R&D}; then (z'z) could not be
inverted due to singularity of the z matrix.
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Table 7.4 Panel cointegration tests for log TFP, log R&D (research and development) 
and log foreign R&D ( N  = 22; T = 20). 

Test name Deterministic Test statistic* Significance level for 
component (zit) rejection 

Kao (1999) tests' 
OF., Qi 

DFt Q i  

DF; Q i  

DF; Q i  

ADF test Q i  

Pedroni (1995, 1999) testsb 
Panel v 
Panel p 
Panel t (non-parametric) 
Panel t (parametric) 
Group p 
Group t (non-parametric) 
Group t (parametric) 
Panel u 
Panel p 
Panel t (non-parametric) 
Panel t (parametric) 
Group p 
Group t (non-parametric) 
Group t (parametric) 

McCoskey and Kao (1998) test' 
LM Q i  

-0.1 17 
-0.420 
- 5.450 
-2.249 
-2.366 

-0.886 
1.243 

- 1.686 
-3.167 

2.992 
-0.708 
-2.853 
-0.450 

1.133 
-1.519 
-2.577 

2.685 
-0.532 
- 1.720 

3181.931 

0.453 
0.337 
0.000 
0.012 
0.009 

0.812 
0.893 
0.046 
0.008 
0.999 
0.239 
0.002 
0.674 
0.871 
0.064 
0.005 
0.996 
0.297 
0.043 

0.000 

* All tests are (asymptotically) distributed under the standard normal distribution. The Kao tests 
are one-sided using the negative tail, as are all the Pedroni tests except the v-tests, which are one- 
sided using the positive tail. 
a Obtained using NPT 1.3 (Chiang and Kao, 2002). 

Obtained using RATS code supplied by Peter Pedroni. 

critical value when the USA, Japan, Germany and France are included in the 
model, but not when we replace France with the UK. Thus, cointegration is 
established for the former, but not the latter grouping of countries. 

ESTIMATING PANEL COINTEGRATION MODELS 

The last section outlined procedures for testing whether the variables in a panel 
data set are cointegrated. This section discusses the various (usually single 
equation) approaches for estimating a cointegration vector using panel data. 

The various estimators available include within- and between-group fully 
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Table 7.5 Larsson et al. (2001) panel cointegration tests for log TFP and log R&D 
( N  = 4; T = 20). 

Countries included Panel trace statistic Asymptotic critical Bartlett corrected 
value critical value 

US, Japan, Germany, 139.393 54.609 

US, Japan, Germany, 73.400 54.609 
France 

UK 

115.523 

115.523 

modified OLS (FMOLS) and dynamic OLS (DOLS) estimators. FMOLS is a 
non-parametric approach to dealing with corrections for serial correlation, 
while DOLS is a parametric approach where lagged first-differenced terms 
are explicitly estimated (see Box 7.2). The advantages of parametric versus 
non-parametric approaches have already been discussed in the last section 
and depend on a number of judgements largely associated with the data 
(e.g., length of the time series, expectations of ‘fat tails’ and/or negative MA 
processes in the d.g.p.s). 

Pedroni argues that the between-group estimators are preferable to the 
within-group estimators for a number of reasons. First, Pedroni (2000) 
found that the group-means FMOLS estimator (in contrast to other 
FMOLS estimators) has relatively minor size distortions in small samples. 
Second, within-dimension estimators test the null hypothesis Ho: pi = Po for 
all i against the alternative H I :  pi = PA # Po where PA is the same for all i. 
Group-means estimators have as an alternative hypothesis H I  : pi = Po, so that 
heterogeneity is allowed and all the i cross sections do not have imposed on 
them a common PA value. Third, a related issue to the last one is that the point 
estimates of the cointegration vector have a more meaningful interpretation if 
the true cointegration vectors are heterogeneous across the i members of the 
panel. These point estimates are the mean value for the underlying i cointegra- 
tion vectors, while the within-dimension estimator provides the sample mean of 
the underlying cointegration vectors. 

As to whether FMOLS or DOLS is preferred, the evidence is conflicting: 
Kao and Chiang (2000) found that FMOLS may be more biased than DOLS 
(note that Kao and Chiang, 2000, only consider within-group estimators); in 
addition, Pedroni has undertaken unreported Monte Carlo simulations that 
find the group-means DOLS estimator has relatively small size distortions, but 
these were typically slightly higher than size distortions experienced using the 
group-means FMOLS estimator. The Pedroni experiments were based on a 
specification that included heterogeneous dynamics, and this may account for 
the slightly poorer performance of his group-means DOLS estimator. 

Lastly, before considering an empirical example, some progress has re- 
cently been made toward developing a multivariate approach to panel 
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cointegration estimation. Breitung (2002) has developed a two-step procedure
that is based on estimating a VECM. In step 1, the short-run parameters of the
model are allowed to vary across the i members of the cross section, while in
step 2 the homogeneous long-run parameters29(the cointegration vectors30) are
estimated from a pooled regression. He finds his approach results in lower
small-sample bias than the FMOLS estimator suggested by Pedroni (2000)
or the DOLS estimator suggested by Kao and Chiang (2000). The advantages
of the multivariate approach also extend to allowing for the number of
cointegration vectors that can be separately estimated to exceed 1.31

To illustrate the estimation of panel cointegration models, we again use the
data from Chiang and Kao (2002), which was taken from Coe and Helpman
(1995), comprising international TFP and R&D data. The group-means OLS,
FMOLS and DOLS estimators developed by Pedroni (2000, 2001) are used to
obtain the first block of results in Table 7.6.32 Note that the current version of
Pedroni's Rats program allows for fixed effects (ai ^ 0) and the imposition of
common time dummies (the latter are different to common time trends, but
these still impose homogeneity in this aspect across the i members of the panel,
whereas heterogeneous time trends—not currently available—allow for a more
general structure). When common time dummies are omitted, the results for all

29 That is, the assumption that the p are the same across the members of the panel is
imposed in the Breitung approach.
30 Note that if the number of variables in the model k exceeds 2, then potentially more
than one cointegration vector may exist and that, at the time of writing, Breitung has yet
to extend his Gauss program to produce estimates of more than one cointegration vector
when k > 2, although in principle this is possible and is planned in a future extension by
Breitung.
31 But see the last footnote for the current limitations on this approach.
32 The Rats code for this is available from Pedroni (and on the book's website).
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Table 7.6 Panel OLS, FMOLS, DOLS and VECM estimates of cointegration vectors
involving log TFP, log R&D and log foreign R&D.

t-value t-value

(i) Between-dimension estimator
Fixed effects and common time dummies

OLS 0.05
FMOLS 0.05
DOLS 0.02

Fixed effects and no common time dummies
OLS 0.31
FMOLS 0.31
DOLS 0.24

(ii) Within-dimension estimator
Fixed effects and homogeneous covariance

FMOLS 0.08
DOLS 0.10

Fixed effects and heterogeneous covariance
DOLS 0.15

(iii) VECM estimator
Fixed effects
Heterogeneous time trends

0.03
0.31

0.40
1.74
5.89

3.86
16.73
42.97

4.37
4.14

5.74

3.74
5.25

0.04
0.03
0.05

0.07
0.06
0.22

0.10
0.05

0.01

0.01
0.03

-0.11
-0.42

0.39

-0.79
-3.18

2.09

3.18
1.32

9.71

1.24
0.30

three group-means estimators suggest a much larger impact for domestic R&D
on TFP (the elasticity ranges from 0.24 to 0.31). The spillover impact of foreign
R&D is negative for the OLS and FMOLS estimators, but significantly positive
for the DOLS estimator (and substantial when common time dummies are
omitted). These results suggest that for this data set heterogeneity is important
and omitting common time effects is probably the correct specification.

The within-groups estimators are those developed by Kao and Chiang
(2000) and available in NPT 1.3 (see Chiang and Kao, 2002). When homo-
geneous lagged dependent variables are imposed, the results suggest that the
elasticity of domestic R&D on TFP is around 0.08–0.10, while spillover effects
are positive although insignificant in the case of the DOLS result. If hetero-
geneity is allowed in the short-run dynamics of the model, then a larger
domestic R&D effects is obtained together with a smaller (but highly signifi-
cant) spillover effect.

Finally, the VECM estimator devised by Breitung (2002) produces results
that are different, but still within the same range as the results obtained from
the single equation approaches. If the VECM approach has lower small-sample
bias, then the heterogeneous trends specification suggests that the elasticity of
domestic R&D is similar to that obtained by the group-means estimators with
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no common time dummies, while spillover effects from foreign R&D are
negligible. Further this suggests that the group-means estimator with hetero-
geneous time trends may be a useful future addition to the Pedroni approach.

One of the major conclusions drawn in Chapter 3, when considering unit root-
testing for time series data with dimension N = 1, was the poor size and power
properties of such tests (i.e., the tendency to over-reject the null when it is true
and under-reject the null when it is false, respectively). Basically, the problem
stems from insufficient information in finite samples with which to distinguish
between non-stationary and nearly non-stationary series. The major advantage
of adding the cross-sectional dimension to the time series dimension means that
non-stationarity from the time series can be dealt with and combined with the
increased data and power that the cross section brings. The latter acts as
repeated draws from the same distribution, and thus, while it is known that
the standard DF-type tests lack power in distinguishing the unit root null from
stationary alternatives, using the cross-sectional dimension of panel data in-
creases the power of unit root tests that are based on a single draw from the
population under consideration. Moreover, and in direct contrast to standard
DF-type tests, as N and T get large, panel tests statistics and estimators
converge to normally distributed random variables. This makes testing and
inference simpler and results from the fact that panel estimators average
across individuals leading to a stronger overall signal than that available
from a pure time series estimator.

However, while there are increases in the power of testing for unit roots
using panel data, there is still a need to be cautious when drawing any conclu-
sions based on panel unit root tests. Since the panel comprising i cross sections
may contain a mix of non-stationary and stationary series and given that
several tests specify different forms of the alternative hypotheses (to the null
of non-stationarity) in terms of whether all i cross sections are stationary or
only some are stationary, inevitably there is the potential for a range of out-
comes. Recall that Karlsson and Lothgren (2000) found that: ' . . . for large-T
panels, there is a potential risk that the whole panel may erroneously be
modelled as stationary ... due to the high power of the panel tests for small
proportions of stationary series in the panel. For small- T panels, on the other
hand, there is a potential risk that the whole panel may be erroneously mod-
elled as non-stationary, due to the relatively low power of tests even for large
proportions of stationary series in the panel.' Certainly, the empirical examples
provided in this chapter show that panel unit root-testing does not necessarily
give clear outcomes.

Testing for cointegration in panel data should also have the same beneficial
effects in terms of power that are present when testing for unit roots using
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panel data. That is, the low power of conventional tests (when N = 1, such as
the EG two-step approach) when applied to series of only moderate length can
be improved upon by pooling information across the i members of a panel.
However, panel cointegration tests are still at a fairly early stage of develop-
ment, mostly being based on a single equation approach. Moreover, tests for
whether cointegration occurs are typically undertaken separately from estimat-
ing the cointegration vector, and there are issues over which estimator is to be
preferred (the non-parametric versus parametric and/or estimators based on
the within- or between-dimension approach). So while there are a number of
tests and different estimators of the cointegration vector that are available, it is
unlikely that unambiguous results will be obtained with panel data comprising
moderate values of N and T. The empirical example used throughout this
chapter (based on N = 22 and T = 20) showed this to be the case. Still,
there are likely to be significant advances in panel data techniques in the
near future, hopefully providing the applied economist with greater certainty
as to whether (panel) data are non-stationary and/or contain cointegrated
long-run relationships.
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Modelling and Forecasting Financial

___ Time Series

INTRODUCTION

The methods and techniques discussed in previous chapters of this book are as
applicable to financial time series as they are to macroeconomic time series;
however, the analysis of financial time series raises a number of additional
issues that we have not yet covered in detail. For example, financial time
series are often available at a higher frequency than macroeconomic time
series and many high-frequency financial time series have been shown to
exhibit the property of 'long-memory' (the presence of statistically significant
correlations between observations that are a large distance apart). Another
distinguishing feature of many financial time series is the time-varying volatility
or 'heteroscedasticity' of the data. It is typically the case that time series data on
the returns from investing in a financial asset contain periods of high volatility
followed by periods of lower volatility (visually, there are clusters of extreme
values in the returns series followed by periods in which such extreme values are
not present). When discussing the volatility of time series, econometricians refer
to the 'conditional variance' of the data, and the time-varying volatility typical
of asset returns is otherwise known as 'conditional heteroscedasticity'. The
concept of conditional heteroscedasticity was introduced to economists by
Engle (1982), who proposed a model in which the conditional variance of a
time series is a function of past shocks; the autoregressive conditional hetero-
scedastic (ARCH) model. The model provided a rigorous way of empirically
investigating issues involving the volatility of economic variables. An example is
Friedman's hypothesis that higher inflation is more volatile (cf. Friedman,
1977). Using data for the UK, Engle (1982) found that the ARCH model
supported Friedman's hypothesis.1

1 Engle (1983) applied the ARCH model to US inflation and the converse results
emerged, although Cosimano and Jansen (1988) criticize this paper as they believe that
Engle estimates a mis-specified model. The relationship between the level and variance
of inflation has continued to interest applied econometricians (see, for example, Grier
and Perry, 2000).
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Although initial applications of the ARCH model involved time series on
the rate of inflation, the model has since become particularly popular in
financial econometrics. Referring to Engle's (1982) paper, Franses and
McAleer (2002) write The ARCH paper had an enormous influence on both
theoretical and applied econometrics, and was influential in the establishment
of the discipline of Financial Econometrics' (p. 419). When applied to time
series on the returns from investing in a financial asset, the concept of a
conditional variance has a natural interpretation as the time-varying risk asso-
ciated with that asset, and not only does the ARCH model allow for an
estimate of the conditional variance of a time series to be obtained but it
also enables forecasts of future values of the conditional variance to be com-
puted. Obtaining an estimate of the risk associated with a share or a stock
market index and being able to forecast that risk into the future is, for financial
econometricians, an extremely attractive feature of a time series model.

Most of this chapter will be devoted to the topic of conditional hetero-
scedasticity. We also consider some forecasting issues. In time series analysis,
finding the superior forecasting model is often an objective of the applied
econometrician. While the evaluation of forecasts from competing models is
traditionally done by directly comparing the mean squared error (MSE) of the
forecasts, more recently tests to evaluate the statistical significance of differ-
ences in MSE and for comparing the informational content of forecasts have
become popular. Some of these tests will be considered in this chapter.
Throughout this chapter we use monthly data on Standard & Poor's (S&P)
Composite index to illustrate the models and techniques discussed. All estima-
tion is done using either PcGive or the G&RCH program of Laurent and
Peters (2002a, b).2

2 The current version of the G@RCH program is 2.3. Note that the conditional
heteroscedasticity models referred to in this chapter could also be estimated using the
volatility models package in PcGive. If this package is used instead of the G(a RCH
program, then the results will be similar, but not identical. The models are estimated by
maximum likelihood involving numerical maximization of the likelihood function, and
the exact algorithm used, in addition to details such as step length and convergence
criteria, can lead to small differences in the final results. Note also that throughout this
chapter, so that the results can be easily reproduced, when estimating ARCH and
GARCH models we use the default starting values provided by the G(a RCH program.
It is possible in the G@RCH program and in PcGive to specify particular starting values
when estimating by maximum likelihood and thus fine-tune the estimation of each
model. It is also the case that throughout this chapter we present the estimated
parameters, t-statistics and information criteria for the estimated models, but do not
present detailed diagnostic tests. Both the G(a RCH program and PcGive allow for
numerous diagnostic tests and for detailed graphical analysis of the estimated models.
We encourage readers to investigate these tests and model evaluation tools. Since many
of them are similar to those already referred to in this text, for brevity they are omitted
in our presentation of the results in this chapter.
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ARCH AND GARCH

Up until now, when discussing the mean, variance and covariance (i.e., the
moments) of a time series (as in Chapter 1), we have been referring to the
long-run moments of the series. That is, the mean, variance and covariance
as t —> oo. In addition to the long-run unconditional moments of a time
series we can also calculate the conditional moments (the mean, variance and
covariance at time t conditional on the actual values taken by the series in
previous periods). The ARCH model developed by Engle (1982) is a model
that allows the conditional variance to be time-varying, while the unconditional
variance is constant (a model with conditional heteroscedasticity, but uncondi-
tional homoscedasticity). Recall from Box 2.1 that if the mean, variance or
covariance of a time series are time-varying, then the series is non-stationary.
One might assume therefore that a series with conditional heteroscedasticity is
non-stationary. Note, though, that when defining 'non-stationarity' we are
actually referring to the long-run or unconditional moments of the series. A
time series with conditional heteroscedasticity can still be stationary, as long as
its unconditional moments are constant.

Distinguishing between the conditional and unconditional properties of a
time series extends to its probability distribution. Typically, when using
maximum likelihood to estimate econometric models, it is assumed that the
series has a conditional normal distribution. However, a time series also has an
unconditional probability distribution, and the unconditional distribution may
not take the same form as the conditional distribution. In the case of an ARCH
model, when a conditional normal distribution is assumed, it turns out that the
unconditional distribution of the series will be non-normal, more specifically it
will be leptokurtic (or have 'fat-tails').

Since the concept of autoregression is now familiar, the first-order auto-
regressive model (AR(1) model) will be used in an initial exposition of ARCH.
Consider, first, the following conventional AR(1) model:

yt = pyt-\+ut (8.1)

where t= 1 ,2 , . . . , T, ut ~ IID(0,cr2) and assume that \p\ < 1. Thus, y, is a
stationary AR(1) process. If y, is generated by (8.1), then as discussed in
Chapter 1 the mean and variance (and covariance) of yt are constant. Specific-
ally, as shown in Chapter 1, the equations for the mean and variance of y, are
£(>'?) = 0 and var(>'?) — °"2/(l - P2)» respectively. These are the unconditional
mean and the unconditional variance of yt. The conditional mean of yt refers to
the mean of yt, conditional on information available at time t — 1. For brevity,
define Q^ to be the information set representing the information available at
t - 1. Assuming yt is generated by (8.1), the conditional mean of y, is given by:

£(y, |*Vi) = 0y/-i (8.2)
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and the conditional variance of y, is given by:

vai(yt |Q,-i) = £(w? |n / - i )

= a1 (8.3)

In this case, clearly the conditional mean of y, is time- varying, but the uncon-
ditional mean is not.

When defining ARCH, Engle (1982) proposed the following model for the
error term ut:

w,=e,(ao + ai«2_,)1 / 2 (8.4)

where et ~ IID(0, 1) and we assume that a0 > 0 and 0 < a, < 1. The uncondi-
tional mean and variance of u, are:

E(ut) = 0 (8.5)

var(M') = (T^T) (8'6)

The conditional mean and variance of u, are:

£(i/,|a-i) = 0 (8.7)

var(w, |Q,_i ) = £ (H 2 |Q ,_ , )

, (8.8)

where Q,_j represents the relevant information set (more detail is given in
Box 8.1). Hereafter we will refer to the conditional variance of u, as h,. In
contrast to the unconditional variance of u, given by (8.6), //, given by (8.8) is
not constant over time; it is a first-order autoregressive process (hence u, is
ARCH(l)). In the ARCH(l) model, the value of the conditional variance of
this period is a function of the squared error term from the last period u~,_\.
Note that it is necessary to place restrictions on a0 and ot\: in particular, they
must both be positive. If either of these parameters were negative, a negative
conditional variance could be predicted from this model (which is not theoret-
ically possible). If >', is generated by (8.1), with u, generated by (8.4), the
conditional mean of y, is given by:

£(>•, |Q,_ , )=p>- , - , (8.9)

The conditional variance of y, is given by:

var(><, | Q / _ 1 ) = a 0 + aiw2-, (8-10)

Thus, the conditional variance of yt is also a function of the squared error term
from the last period u2

t-1. In terms of specification, ARCH directly affects the
error terms u,; however, the dependent variable >',, generated from a linear
model with an ARCH error term, is itself an ARCH process.
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In Figure 8.1(a), 100 simulated observations of an IID series
(et ~ IID(0.1)) and an ARCH(l) series (ut = £ t (a 0 + c^M^)1/2, where
OI0 = 1, ai = 0.6 and et ~ IID(0,1)) are plotted. It can be seen that the
ARCH(l) series ut has clusters of extreme values that are not in the IID
series (see observations 30–35, for example). This is a direct consequence of
the AR structure of the conditional variance. When the realized value of ut_1 is
far from zero, ht (the conditional variance of ut) will tend to be large. Therefore
extreme values of ut are followed by other extreme values. In Figure 8.1(b), 100
simulated observations of an AR(1) series (yt = py t–1 + ut, where p = 0.9 and
ut ~ IID(0,1)) and an AR(1)-ARCH(1) series (yt = py t–1 + ut, where p = 0.9
and ut = £ t(a 0 + a}u

2_i)1/2 with a0 = 1, a1 = 0.6 and e t~IID(0,1)) are
plotted. In this case, due to the AR(1) parameter p being close to unity, it
can be seen that both series in Figure 8.1(b) are smoother than those in Figure
8.1 (a). However the AR(1)-ARCH(1) series is noticeably more volatile than
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Figure 8.1(a). Simulated IID and ARCH(l) series.

the conditionally homoscedastic AR(1) series.3 The clustering of extreme
values and movement from calm to volatile periods of behaviour in these
graphs is a particular feature of financial time series, hence the relevance of
ARCH to financial econometricians.

The concept of ARCH can be extended to higher order ARCH processes
and to other univariate times series models, bivariate and multivariate regres-
sion models and to systems of equations as well. For example, the ARCH(q)-
ARCH(g) model can be written:

u, = £,
1/2

The ARCH(^r) multiple regression model can be written:

ut = e, a0 + > ~ «D(0. 1 )

(8.11)

(8.12)

(8.13)

(8.14)

The programs used to simulate these series are available in the GiveWin manual (p. 86).
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Figure 8.1(b). Simulated AR(1) and AR(1)-ARCH(1) series.

where the xit are exogenous explanatory variables and/or lagged values of the
dependent variable yt. In financial time series analysis, if the series being mod-
elled is an asset price one might also want to include dummy variables in the
model for the conditional mean to capture particular features of the market
such as 'day-of-the-week' effects. Assuming daily data this would involve re-
placing (8.13) with:

where l = 1 (Monday), 2 (Tuesday), 3 (Wednesday), 4 (Thursday), 5 (Friday)
and DK is a 0/1 dummy variable. Note also that it is possible to include ex-
planatory variables (and dummy variables) in the conditional variance. For
example, we could replace (8.14) with:

i/2

However, it is more common to restrict the inclusion of additional regressors to
the conditional mean. Again, in practice it is necessary to place restrictions on
the parameters of these ARCH models in order to ensure that the conditional
variance is positive. Engle (1982) proves that if a0 > 0 and a{, a2, ... ,aq> 0,
#th-order ARCH models (excluding additional regressors in the conditional
variance) satisfy certain regularity conditions, one of which is the non-
negativity constraint. Generalizing the concept of ARCH models to systems
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of equations (referred to as multivariate ARCH models in the literature) seems
like a natural extension of the original specification. This and other extensions
of the ARCH model will be considered in more detail in subsequent sections of
this chapter.

One of the difficulties when using the ARCH model is that often a large
number of lagged squared error terms in the equation for the conditional
variance are found to be significant on the basis of pre-testing. Furthermore
we have already noted that to avoid problems associated with a negative
conditional variance it is necessary to impose restrictions on the parameters
in the model. Consequently in practice the estimation of ARCH models is not
always straightforward. Bollerslev (1986) focuses on extending the ARCH
model to allow for a more flexible lag structure. He introduces a conditional
heteroscedasticity model that includes lags of the conditional variance
(h,_i,ht_2,...,h,_p) as regressors in the model for the conditional variance
(in addition to lags of the squared error term u2_l, u

2_2,..., u
2_q): the general-

ized ARCH (GARCH) model. Assume that y, can be modelled as (8.13). In a
GARCH(p, q) model, u, is defined as:

/ Q P \ i / 2
ut=et(ao + Y* <*/"?-/ + V /3jh,-j (8.17)

where e, ~ NID(0, 1); p > 0, q > 0; a0 > 0, a, ;> 0, / = 1, ... , q and #, > 0.
7=1,2, . . . , /> .

It follows from manipulation of (8.17) that h, (the conditional variance of
u,) is a function of lagged values of u2, and lagged values of h,:

q P
h, = a0 + aiU

2,_t + 0jh,-j (8.18)

Note that (8.17) nests both the ARCH(^) model (p = 0) and a white-noise
process (p — q = 0).

Using the lag operator L (Lu, = M,_I), the conditional variance of the
GARCH(p, q) process u, can be written as:

h, = aQ + a(L)u2 + 3(L}h, (8.19)

where a(L) = <*,L + a2L
2 + ••• + aqL

q and 3(L) = 0}L + 32L
2 + ••• + 3pL

p .
Note that (8.19) can be rewritten as:4

h, = oo[l - 3(L}}~1 + a(L)[\ -

4 This algebraic operation requires that all the roots of the polynomial 1 - 3(L) = 0 lie
outside the unit circle.
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where
n

Ui=ai + &iUi-i i=\,..., 8.21

and n = min {/?,/- 1}. Therefore a GARCH(p,q) process has an infinite-
dimensional ARCH representation. It follows logically that any stationary
high-order ARCH model can be approximated as a GARCH model, and in
practice it is usually the case that a GARCH(p,q) model with low values of p
and q will provide a better fit to the data than an ARCH(g) model with a high
value of q. The simplest GARCH model is the GARCH(1, 1) model for which
the conditional variance is:

h, = a0 + «!«?_! + /3}ht-} (8.22)

Bollerslev (1986) investigates the GARCH(1, 1) model in great detail and sets
out the conditions required for the stationarity of ht and the existence of higher
moments. He also proves that the GARCH(p, q) process u, is weakly stationary
if and only if a(l) +13(1} < 1.

MULTIVARIATE GARCH

If econometricians were interested in quantifying the relationship between the
volatility of Standard & Poor's (S&P) Composite index returns and the FTSE
100 index returns, they might be tempted to include an estimate of the condi-
tional variance of the FTSE returns as an explanatory variable in the equation
for the conditional variance of the S&P Composite returns, or vice versa.
Estimating a single equation ARCH or GARCH model would, however, be
ignoring the possibility that there may be causality between the conditional
variances in both directions and would not be truly exploiting the covariance
between the series, A more effective way of capturing interactions between the
volatility of N different time series is to estimate a multivariate GARCH model
for the time series y, = (y\t,y2t-> • • • > JM)'- Here, the label 'multivariate
GARCH' refers to a model for a multivariate time series y, in which the
conditional variances of the individual series and the conditional covariances
between the series are estimated simultaneously (by maximum likelihood). The
seminal paper on multivariate ARCH is by Engle, Granger and Kraft (1984),
which introduced the bivariate ARCH model. A rigorous analysis of the theo-
retical properties of multivariate GARCH models, however, did not appear
until Engle and Kroner (1995), which was based on the earlier working paper
by Baba, Engle, Kraft and Kroner (1990).

In multivariate GARCH models, since y, is a vector of dimension (N x 1),
the conditional mean of y, is an (N x 1) vector fi, and the conditional variance
of yt is an (N x N) matrix H,. The diagonal elements of H, are the variance
terms, and the off-diagonal elements of Hr are the covariance terms. There are
numerous different representations of the multivariate GARCH model. The
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main representations are the VECH, diagonal, BEKK (after Baba, Engle,
Kraft and Kroner) and constant correlation representations. These are dis-
cussed in more detail in Box 8.2. What Box 8.2 clearly reveals is that even
for simple multivariate GARCH models such as the two-variable (N — 2}
multivariate GARCH(1,1) model, the number of parameters can be extremely
large (21 parameters in the case of the VECH representation!). Estimating a
large number of parameters is not in theory a problem as long as there is a
large enough sample size. However, efficient estimation of the parameters in
GARCH models is by maximum likelihood involving the numerical maxi-
mization of the likelihood function. Obtaining convergence of the typical
optimization algorithms employed can in practice be very difficult when a
large number of parameters are involved. Furthermore, as with the other
GARCH models discussed so far, it is necessary to impose restrictions on
the parameters of this model to ensure the non-negativity of the conditional
variances of the individual series (this amounts to ensuring that Ht is positive-
definite); in practice, this can be difficult to do. The diagonal representation
improves on the VECH representation in the sense that there are fewer param-
eters to be estimated. The diagonal representation is based on the assumption
that the individual conditional variances and conditional covariances are
functions of only lagged values of themselves and lagged squared residuals.
While in the case of N = 2 and p = q = 1, this representation reduces the
number of parameters to be estimated from 21 to 9, it does so at the
expense of losing information on certain interrelationships, such as the rela-
tionship between the individual conditional variances and the conditional
covariances. Note also that it is still necessary to impose restrictions to
ensure the positive-definiteness of H,.

The work of Engle and Kroner (1995) referred to above was a development
of an earlier working paper by Baba et al. (1990). The BEKK representation of
multivariate GARCH improves on both the VECH and diagonal representa-
tions, since H, is almost guaranteed to be positive-definite. In the case of two
variables (N = 2) and p = q — 1, the BEKK representation requires only 11
parameters to be estimated. It is more general than the diagonal representation
as it allows for interaction effects that the diagonal representation does not.
For example, as can be seen in Box 8.2, in the BEKK representation the
individual conditional variances h11. t_1 and h22,,-\ affect the evolution of the
covariance term h12.t. Bollerslev (1990) employs the conditional correlation
matrix R to derive a representation of the multivariate GARCH model that
has become particularly popular in empirical work. In his R matrix, Bollerslev
(1990) restricts the conditional correlations to be equal to the correlation
coefficients between the variables, which are simply constants. Thus R is con-
stant over time; hence the label 'constant correlation' representation. This
representation has the advantage that H, will be positive-definite if a plausible
set of restrictions are met (given in Box 8.2).

The multivariate GARCH specification has been extended to the case of
multivariate GARCH-M (see, for example, Grier and Perry. 2000, who use a
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multivariate GARCH-M model to investigate Friedman's hypothesis regarding
inflation volatility referred to in the introduction of this chapter). Other
extensions of the original GARCH model (such as asymmetric GARCH
models—p. 233) could also be applied to the multivariate case, although
more recently there has been a greater focus on deriving simplified multivariate
GARCH models that are easier to estimate and therefore of more use in
practice. An example is the work of van der Weide (2002), who derives a
simplified form that is nested in the BEKK representation and proposes an
estimation method designed to avoid the usual convergence difficulties when
estimating multivariate GARCH models. However, the complexity of multi-
variate GARCH models means they are still outside of the scope of most
undergraduate econometrics courses, and the main econometrics software
packages do not yet include automated or even semi-automated procedures
for their estimation. In the rest of this chapter, therefore, we will focus only on
single equation GARCH models.

When estimating the parameters of ARCH or GARCH models, even though
ordinary least squares (OLS) estimation is consistent, maximum likelihood
estimation is more efficient in the sense that the estimated parameters converge
to their population counterparts at a faster rate.5 For a simple ARCH(l) model,
Engle (1982) actually calculates an expression for the gain in efficiency from
using maximum likelihood compared with OLS. He shows that as the parameter
on the lagged squared residual a1 approaches unity, 'the gain in efficiency from
using a maximum likelihood estimator may be very large' (p. 999).

5 While we discuss the basics of maximum likelihood estimation of ARCH models in
Box 8.3, for a more detailed discussion of maximum likelihood see Greene (2000, chs 4
and 9).

ESTIMATION AND TESTING
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In Box 8.3 we outline the estimation procedure for the ARCH regression
model:

yt = x,p + w, ut = £,(z,a)1/2

e, ~NID(0,1)

(8.23)

where p and a are (p x 1) and ((q + 1) x 1) vectors of parameters.
Since the conditional distribution of ut, is normal, it follows that the con-

ditional distribution of yt will be normal with a conditional mean of x,p and a
conditional variance of ht = zta. As with conventional time series models, the
likelihood function for yt can be obtained by multiplying the conditional
probability density functions for each yt together (the log-likelihood function
is just the sum of the log-likelihood functions for each v,). For the ARCH
model, however, the first-order conditions for the maximum likelihood estima-
tion of a and P are non-linear, and closed-form solutions for these first-order
conditions do not exist. An iterative OLS procedure (outlined in Box 8.3)
or numerical optimization can be used to obtain the maximum likelihood
estimators.

The form of the log-likelihood function for ARCH and GARCH models
is of course dependent on the assumed distribution for e, and therefore the
assumed conditional distribution of u, and yt. If conditional normality is
assumed when estimating the model in Box 8.3, but in fact the correct
distribution is non-normal, then the maximum likelihood estimates of a
and p will be inefficient and that inefficiency increases with the extent of
the non-normality.6 As we have already mentioned in this chapter, for the
ARCH model with conditionally normal errors, the unconditional distribu-
tion is leptokurtic. Therefore the assumption of conditional normality is not
as restrictive as it might first appear in that it allows for fat tails in the
unconditional distribution. It is, however, possible to explicitly allow for
non-normality in the conditional distribution as well as the unconditional
distribution when estimating ARCH and GARCH models. For example, a
Student-/ distribution could be assumed when constructing the likelihood
function—allowing for kurtosis.

In addition to kurtosis, a noticeable feature of financial time series is
skewness. In the case of stock market prices, typically the distribution of
returns is negatively skewed; large negative movements in stock markets are
not usually matched by equally large positive movements. A distribution that

6 See Engle and Gonzalez-Rivera (1991). When normality is assumed, but the true
conditional distribution is non-normal, the maximum likelihood estimators are known
as the quasi-maximum likelihood estimators. These estimators are shown to be consistent
by Weiss (1986) and Bollerslev and Wooldridge (1992). but are inefficient.
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allows for both kurtosis and skewness of the data is the skewed Student-t
distribution proposed by Fernandez and Steel (1998).7

If ARCH is suspected in a series then it is sensible to pre-test the data.
Engle (1982) proposes a Lagrange Multiplier (LM) test for ARCH. The first
step is to estimate the conventional regression model for yt by OLS:

y, = x,p + «, (8.24)

and obtain the fitted residuals u,. Then regress u] on a constant and lags of u]:

u] = a0 + a\u2,^ + a2u
2_2 H h agu

2_q + v, (8.25)

If ARCH is not present, the estimated parameters ai,a2,.-.,aq should be
statistically insignificant from zero. Engle (1982) recommends testing the null
hypothesis H0: a1 = a2 = • • • = aq = 0 using the LM principle. In practice, an
asymptotically equivalent test to the true LM statistic is usually employed. This
test statistic is simply the sample size T multiplied by the R2 for the regression
involving the fitted OLS residuals and, under the null hypothesis, has a X2

distribution with q degrees of freedom. Bollerslev (1986) proposes the same
kind of test for GARCH.

AN EMPIRICAL APPLICATION OF ARCH AND
GARCH MODELS

In order to illustrate some of the concepts discussed so far, we continue with an
application to monthly data on the S&P Composite index returns over the
period 1954:1–2001:9. Lags of the consumer price index (CPI) inflation rate
and the change in the three-month Treasury bill (T-bill) rate are used as re-
gressors, in addition to lags of the returns.8 We begin by modelling the returns
series as a function of a constant, one lag of returns (Ret_l), one lag of the
inflation rate (Inf_l) and one lag of the first-difference of the three-month T-bill
rate (DT-bill_l). The results from a conventional regression model estimated by
OLS using PcGive are given in Table 8.1. Both the inflation rate and the change
in the T-bill rate are significant at the 5% level and the estimated parameters are
negative; this is what we might expect.9 The null hypothesis of normally dis-

7 See Laurent and Peters (2002a, 2002b) for more information on the use of non-normal
distributions when estimating GARCH models.
8 The S&P Composite data are currently available on Robert Shiller's web page and
comprise monthly data obtained via linear extrapolation from S&P's quarterly
data. The returns series includes dividends and is calculated using the formula
Rt — (pt + Dt — Pt_1)//*,_!• The inflation series is calculated as the first-difference of
the natural logarithm of the consumer price index taken from the Federal Reserve Bank
of St Louis's database, and the T-bill series is the three-month T-bill rate also taken
from the Federal Reserve Bank of St Louis's database. All data are converted into %
amounts.
9 Fama (1981) is the seminal article on the relationship between stock returns and
macroeconomic variables.
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Table 8.1 Conditional homoscedastic model for S&P Composite returns.

Coefficient Standard error /-Value

*Rejects null hypothesis at 5% level.
**Rejects null hypothesis at 1% level.

Table 8.2 ARCH(6) model for S&P Composite returns.

/-Probability

Constant
Ret 1
Inf—1
DT-bill_l

ARCH(l) test:
ARCH(6) test:

Normality test:

1.177 0.210
0.208 0.041

-1.179 0.448
-1.250 0.291

F = (1,565) = 6.947 [0.009]**
F(6, 555) = 2.718 [0.013]*

x2
2 = 34. 330 [0.000]**

5.60
5.07

-2.63
-4.29

0.000
0.000
0.019
0.000

Coefficient Standard error /-Value t-Probability

Constant(M) 1.524
RetJ—1(M) 0.222
Inf_l(M) -1.012
DT-bill_l(M) -0.969
Constant (V) 5.224
Alpha 1(V) 0.115
Alpha2(V) 0.019
Alpha3(V) 0.135
Alpha4(V) -0.002
Alpha5(V) 0.140
Alpha6(V) 0.159

Information criteria:
Akaike 5.176 Shibata

0.220
0.047
0.559
0.330
1.035
0.058
0.044
0.072
0.034
0.083
0.067

5.176

6.911
4.743

-1.810
-2.934

5.048
1.985
0.429
1.876

-0.053
1.682
2.368

0.000
0.000
0.071
0.004
0.000
0.048
0.668
0.061
0.958
0.093
0.018

Schwarz 5.260 Hannan-Quinn 5.209

tributed errors is strongly rejected by portmanteau tests, and in conventional
regression models this would lead to a rejection of the estimated specification.
However, non-normality is an inherent feature of the errors from regression
models for financial data, and here, as in all cases henceforth, robust standard
errors are calculated. The F version of the LM test for ARCH indicates the
presence of conditional heteroscedasticity—both the tests for ARCH(l) and
ARCH(6) yield rejections at the 5% significance level. Consequently we esti-
mated the same model for the conditional mean, but this time allowing for
ARCH(6) (thus we estimated the model given by (8.23) assuming q = 6), The
results obtained using the G@RCH program are presented in Table 8.2, where
an M denotes the conditional mean equation and a V denotes the conditional
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Figure 8.2(a). S&P Composite returns.

150 200 250 300 350 400 450

Figure 8.2(b). Estimated conditional variance of S&P Composite returns from
ARCH(6) model.

variance. As expected, given the results of the tests for ARCH(l) and ARCH(6),
the parameters on the first and sixth lag in the equation for the conditional
variance are significant. Note however that the estimated value of a4

(Alpha4(V)) is negative. This is because we did not impose the non-negativity
constraint when estimating this model. Imposing this constraint gives virtually
identical results, with the only difference being that Alpha4(V) = 0. Graphs of
the raw data and the estimated conditional variance obtained from the
ARCH(6) model are given in Figures 8.2(a) and 8.2(b), respectively. The con-
ditional heteroscedasticity of the S&P Composite returns is clearly visible in
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Table 8.3 GARCH(1,1) model for S&P Composite returns.

Coefficient Standard error t- Value t-Probability

Constant(M)
Ret—1(M)
Inf_1(M)
DT-bill_ 1(M) -
Constant(V)
Betal(V)
Alpha 1(V)

Information criteria
Akaike 5.183
Schwarz 5.236

1.567
0.183
1.492
1.231
1.206
0.780
0.114

Shibata
Hannan-

0.223
0.046
0.496
0.323
0.553
0.069
0.041

5.182
Quinn 5.203

7.070
3.958

-3.008
-3.815

2.181
11.23
2.798

0.000
0.000
0.003
0.000
0.030
0.000
0.005

both graphs. Note that the spike in the conditional variance around observation
400 corresponds to the crash of October 1987.

Continuing with our S&P Composite data set, we estimated a
GARCH(1,1) model using the G@RCH program (the equation for the con-
ditional mean is (8.13) and includes the same variables as in the ARCH(6)
model, with the equation for the error term being (8.17) with p = q = 1).
The results are given in Table 8.3. The parameters on inf_l and DT-bill_l
maintain their negative signs, and the estimated parameters in the equation
for the conditional variance are highly significant. Furthermore the sum of the
alpha and beta parameters is quite close to unity, indicating that the persistence
of the conditional variance of the S&P Composite returns is high. The informa-
tion criteria computed (Akaike, Shibata, Schwarz and Hannan—Quinn) allow
the fit of competing models to be compared while penalizing for additional
variables (the aim is to minimize the criteria). On the basis of the Schwarz
criteria, which is often the preferred method of comparing fitted models in
applied time series analysis, the GARCH(1,1) specification would be preferred
to the ARCH(6) specification (although, overall, two of the criteria support the
ARCH(6) model and two support the GARCH(1,1) model).

The G@RCH program allows for a non-normal conditional distribution to
be specified when estimating ARCH and GARCH models by maximum like-
lihood. The alternatives available include the Student-?, the generalized error
distribution and skewed Student-t distributions. We re-estimated the
GARCH(1,1) model for our S&P Composite data for each of these alternative
distributions. Measuring the fit of the models using the Schwarz criteria, the
statistically preferred GARCH model is the skewed Student-? version. The
results for this estimated model are given in Table 8.4. The asymmetry and
tail parameters of the conditional distribution are estimated along with the
other parameters in the model by the maximum likelihood procedure. On
the basis of their t-statistics, these estimated parameters are both statistically
significant and have their expected signs, indicating that this model is picking
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Table 8.4 Skewed Student-f distribution GARCH(1,1) model for S&P Composite
returns.

Coefficient Standard error t-Value f-Probability

Constant(M)
Ret 1(M)
Inf_l(M)
DT-billJ(M)
Constant(V)
Betal(V)
Alpha 1(V)
Asymmetry
Tail

1.351
0.181

-1.015
-1.125

1.065
0.825
0.079

-0.135
6.776

0.225
0.042
0.499
0.302
0.567
0.067
0.036
0.064
1.896

6.011
4.301

-2.036
-3.724

1.879
12.23
2.206

-2.123
3.574

0.000
0.000
0.042
0.000
0.061
0.000
0.028
0.034
0.000

Information criteria:
Akaike 5.147 Shibata 5.147
Schwarz 5.216 Hannan-Quinn 5.174

up the fat-tailed and negatively skewed features of the data. The information
criteria reported in Table 8.4 are all below those reported in Tables 8.2 and 8.3,
indicating that on the basis of the information criteria calculated this specifica-
tion is preferred.

ARCH-M

When modelling the returns from investing in a risky asset one might expect
that the variance of those returns would add significantly to the explanation of
the behaviour of the conditional mean, since risk-averse investors require higher
returns to invest in riskier assets. Engle, Lilien and Robins (1987) consider the
following time series model for the excess return on a long-term bond relative to
a one period T-bill rate:

y, = H, + E, (8.26)

A, = <*o+ £>/*?_,- (8-27)
/=!

^=/3 + 6h1/2 (8.28)

where yt is the excess return from holding the long-term bond, /i, is the risk
premium for investing in a long-term bond, e, is the difference between the ex
ante and ex post rate of return and h, is the conditional variance of E,. Thus the
expected return (the conditional mean) is a linear function of the conditional
standard deviation (in Engle et al., 1987, the conditional standard deviation is
used in the model for the conditional mean, but the conditional variance could
also be used). Over periods in which the bond return is volatile, risk-averse
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Table 8.5 GARCH-M(1,1) model for S&P Composite returns.

Coefficient Standard error t-Value t-Probability

Constant(M)
RetJ(M)
lnf_l(M)
DT-bill_1(M)
h_t(M)
Constant(V)
Beta_l(V)
Alpha_l(V)

0.935
0.183

–1.368
-1.149

0.041
1.103
0.786
0.118

0.440
0.045
0.582
0.379
0.039
0.505
0.068
0.054

2.13
4.05

-2.35
-3.03

1.05
2.19

11.6
2.19

0.034
0.000
0.019
0.003
0.296
0.029
0.000
0.029

agents will switch to less risky assets driving the risk premium upward. There-
fore a positive relationship between h, and yt would be expected, and indeed this
is what Engle et al. (1987) find, with an estimated value for S of 0.687. This
model is called the ARCH in mean, or ARCH-M model, reflecting the presence
of conditional variance in the conditional mean. Similarly, one can estimate a
GARCH-M model. Using the volatility models package in PcGive to estimate a
GARCH-M(1,1) model for the S&P Composite returns yields the results in
Table 8.5 (the conditional variance term in the conditional mean equation is
represented by h_t in the table).10 In this case, the conditional variance is not
statistically significant in the equation for the conditional mean.

ASYMMETRIC GARCH MODELS

A feature of many financial time series that is not captured by ARCH and
GARCH models is the 'asymmetry effect', also known as the 'leverage
effect'.11 In the context of financial time series analysis the asymmetry effect
refers to the characteristic of time series on asset prices that an unexpected drop
tends to increase volatility more than an unexpected increase of the same
magnitude (or, that 'bad news' tends to increase volatility more than 'good
news'). The notion of an asymmetry effect has its origins in the work of
Black (1976), French, Schwert and Stambaugh (1987), Nelson (1991) and
Schwert (1990). ARCH and GARCH models do not capture this effect since
the lagged error terms are squared in the equations for the conditional variance,
and therefore a positive error has the same impact on the conditional variance
as a negative error.

10 Note that the G@RCH program does not currently allow for the estimation of
GARCH-M models.
11 The title 'leverage effect' is used because it is thought that the operating leverage of
companies is responsible for the asymmetric behaviour of their share prices in response
to 'good' and 'bad' news (see Nelson, 1991, fn. 3 for further details).
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A model specifically designed to capture the asymmetry effect is the
exponential GARCH (EGARCH) model proposed by Nelson (1991). In an
EGARCH model the natural logarithm of the condition variance is allowed to
vary over time as a function of the lagged error terms (rather than lagged
squared errors). The EGARCH(p,q) model for the conditional variance can
be written:

la(hl)=u+[\-0(L)]-l[\+a(L)]f(ul-i/h
l
l!

2
l) (8.29)

where

f(ut-i/h}!_]) = to,-i +7(K-i/^il -£|«,-i/A,-il) (8.30)

and a(L) and @(L) are q- and /Border lag polynomials, respectively;
a(L) = aiL + a2L

2 + -'- + aqL'1, P(L) = 3}L + 02L
2 + ••• + 0pL

p. Rearran-
ging (8.29) makes it easier to see the link with the conventional GARCH
model. For example, setting p and q equal to 1 and rearranging (8.29), we
can write the EGARCH(1,1) model as:

ln(/0 = 6+ (1 +aiL)f(ut-i/h}!_}) + 0, lnA,_, (8.31)

which looks similar to the GARCH(1,1) model (see equation (8.22)). However.
by making the natural log of the conditional variance the dependent variable, in
an EGARCH model the conditional variance is always positive even if the
parameter values are negative, thus eliminating the need for parameter restric-
tions to impose non-negativity (recall that a problem with ARCH and GARCH
models is that parameter restrictions are required to ensure a positive condi-
tional variance).

The func t ion / (u^ i /h 1 / ^ ) in the EGARCH model allows for the asym-
metry effect. In particular the term multiplied by the parameter 9 allows the
sign of the errors to affect the conditional variance, while the term multiplied
by 7 allows for a separate size effect.12 If the asymmetry effect is present, then
0 < 0, while if 9 = 0 there is no asymmetry effect. Testing is based on the t-
statistic for testing 0 = 0. Convergence difficulties are not uncommon when
estimating EGARCH models, and this is indeed the case when we attempt
to estimate an EGARCH(1,1) model for our S&P Composite returns using
the G@RCH program. An EGARCH( 1,0) model with one lag of returns in the
conditional mean equation is easier to estimate for this data set, and the results
from estimating this model assuming a skewed Student-t distribution when
specifying the likelihood function are given in Table 8.6 (note that if we use
(8.29) as our model for the conditional variance, in the EGARCH(1,0) model,
while there are no alpha parameters since q — 0, the model still allows for an
asymmetry effect as the function f(u,-\/h,L~\) is still present). As expected, for
this data set the estimated value of 9 is negative and significant, indicating the

12 Determining the degree of persistence of shocks to GARCH processes can be quite
difficult, and this is commented on by Nelson (1991). The notion of persistence and
conditions for stationarity are easier to formalize within the EGARCH model (see
Nelson. 1991. theorem 2.1).



MODELLING AND FORECASTING FINANCIAL TIME SERIES 235

Table 8.6 EGARCH(1,0) model for S&P Composite returns.

Coefficient Standard error t-Value t-Probability

Constant(M)
Ret_l(M)
Constant(V )
Betal(V)
Theta(V)
Gamma(V)
Asymmetry
Tail

1.032
0.251
2.217
0.764

-0.200
0.167

-0.115
8.379

0.068
0.023
0.123
0.076
0.068
0.072
0.060
2.866

15.19
10.75
18.05
10.10

-2.939
2.324

-1.921
2.923

0.000
0.000
0.000
0.000
0.003
0.021
0.075
0.004

Information criteria:
Akaike 5.150 Shibata 5.150
Schwarz 5.211 Hannan-Quinn 5.174

presence of the asymmetry effect. Engle and Ng (1993) introduced a graphical
representation of the asymmetry effect known as the 'news impact curve'.
The news impact curve is a graph of ut_1 against ht holding constant the
information at t — 2 and earlier. In practice fitted values are used to graph
the curve. If there is asymmetry in the series, then either the slope of the two
sides of the news impact curve will differ and/or the centre of the curve will be
located at a point where ut–1 > 0 (the GARCH(1,1) model has a news impact
curve that is centred on ut–1 =0 and the slopes of each side of the curve are
equal).13

An ex post analysis of parameter significance could be used to assess
whether asymmetry is a significant feature of the data being examined;
however, it is also possible to pre-test for asymmetry having estimated a
symmetric GARCH model. Engle and Ng (1993) propose three tests: the
sign bias test (SET), the negative sign bias test (NSBT) and the positive sign
bias test (PSBT). The logic of the tests is to see whether having estimated a
particular GARCH model, an asymmetry dummy variable is significant in
predicting the squared residuals. The tests are of the null hypothesis that the
null model is correctly specified (i.e., there is no remaining asymmetry). They
assume that the model under the alternative hypothesis is:

ln(A,) - ln(M*iz*)) + 8LZ* (8.32)

where /z0f(SoZot) is the volatility model under the null and 8a is the vector of
parameters corresponding to the additional explanatory variables zat that

13 See Engle and Ng (1993) for further details on the functional forms of the news
impact curve for different ARCH and GARCH specifications.
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Table 8.7 SBTs based on the news impact curve (GARCH
versus EGARCH).

Test Probability

Sign bias /-test
Negative size bias t-test
Positive size bias t-test
Joint test for the three effects

0.984
1.188
0.499
9.988

0.325
0.235
0.618
0.019

capture asymmetric effects. The three tests can be individually computed from
the following regressions:

v2 =a + bS-_l+pz*Qt + et (8.33)

v2 = a + W,-_,«,_i + P'z^ + e, (8.34)

v2 ^a + bS+^u^+V'z^ + e, (8.35)

where u, is the error term under the null, S^i\ is a dummy variable that takes the
value of one when u,_{ < 0 and zero otherwise (vice versa for 5^1,).
v2 = u2,/hlQt

2 where h0l is the conditional variance under the null and zj, =
h^dhjd^. The SET is the /-statistic for testing H0: b = 0 in (8.33), the
NSBT is the t-statistic for testing H0: b = 0 in (8.34) and the PSBT is the t-
statistic for testing H0 : b = 0 in (8.35). These tests can also be carried out jointly
using the following specification:

v^a + biS'^ +b2S-_lul.l +&3S ;
+_,i/,_i + P'zJ, + *, (8.36)

The LM test of the joint null hypothesis H0: b1 = b2 = b3 = 0 has a x2
3

distribution. The results from applying the SBT, NSBT, PSBT and the joint
test to the residuals from the GARCH(1,1) model for the S&P Composite
returns reported in Table 8.4, computed using the G@RCH program, are
given in Table 8.7 and illustrate that for this data set there is evidence against
the null of symmetry from the joint test for the three effects, but not from the
individual size bias tests. These contradictions are somewhat surprising,
although, as Engle and Ng (1993) note, the joint test is more powerful than
the individual tests.

While the EGARCH model allows the sign of the errors to affect the
conditional variance, it does so using a fundamentally different specification
from the original GARCH framework: one in which the dependent variable is
the natural logarithm of the conditional variance. The asymmetry effect can
also be captured simply by modifying the original GARCH specification using
a dummy variable. Glosten, Jagannathan and Runkle (1993) (hereafter GJR)
introduced the following model for h,:

i + 7iM?-jA-i +P}h-i (8-37)
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Table 8.8 GJR-GARCH(1,1) model for S&P Composite returns.

Coefficient Standard error t-Value t-Probability

Constant(M)
Ret_l(M)
Inf_1(M)
DT-bill_1(M)
Constant(V)
Betal(V)
Alphal (V)
Gamma 1(V)
Asymmetry
Tail

Information criteria
Akaike 5.131
Schwarz 5.208

1.307
0.220

-0.892
-1.073

2.512
0.708

-0.089
0.281

-0.115
8.558

Shibata

0.211
0.040
0.405
0.308
0.885
0.082
0.049
0.094
0.063
3.032

5.131

6.178
5.546

-2.203
-3.482

2.839
8.568

-1.822
2.998

-1.822
2.822

0.000
0.000
0.028
0.001
0.005
0.000
0.069
0.003
0.069
0.005

Hannan-Quinn 5.161

where It-1 = 1 if ut_1 > 0 and I t_1 = 0 otherwise. In (8.37) the ARCH param-
eter in the conditional variance switches between 0:1+71 and a\ depending on
whether the previous period's error term is positive or negative. The results from
estimating a GJR-GARCH(1,1) model for the S&P Composite data are given
in Table 8.8 (the skewed Student-t distribution is assumed when estimating this
model). When using the G@RCH program to estimate a GJR model, 7,_i by
default is defined the opposite way around to the definition given above. That is,
It–1 = l if ut_1 < 0 and It_1 =0 otherwise, and therefore for evidence of an
asymmetry effect we are looking for the estimated values of 7t to be greater
than zero. The estimated gamma parameter given in Table 8.8 is indeed positive
and is highly significant, indicating that negative shocks increase the volatility of
the S&P Composite returns by more than positive shocks of the same magni-
tude. On the basis of all the information criteria computed, the GJR-
GARCH(1,1) model provides a better fit to the data than the conventional
ARCH and GARCH specifications estimated, and the information criteria
indicate that the GJR-GARCH(1,1) model is preferred to the EGARCH(0.1)
model reported in Table 8.6.

Choosing between the various asymmetric specifications could be done on
the basis of conventional measures of model fit and/or by assessing parameter
significance. Alternatively, a useful development of the GARCH specification
would be one that nests the various asymmetric specifications and therefore
allows the data to determine the true form of asymmetry. Such a general model
was proposed by Ding, Granger and Engle (1993) and is known as the asym-
metric power ARCH model, or APARCH model. In this model, the equation
for the conditional variance has the following form:
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where 6 > 0 and -1 < 7, < 1. Clearly, if 6 = 2, 7, = 0 and /?,• = 0, then we have
the conventional ARCH model; while if 8 = 2, 7, = 0, then we have a conven-
tional GARCH model. However, allowing either 6 and/or 7, to vary permits a
number of different specifications including a threshold GARCH model for the
conditional standard deviation (6 = 1) (which is another asymmetric specifica-
tion proposed by Zakonian, 1994), a version of the GJR model (6 = 2), and a
non-linear ARCH model (7, = 0, #, = 0) (cf. Higgins and Bera, 1992). Finally,
note that all the asymmetric and non-linear specifications mentioned can be
estimated including the conditional variance in the conditional mean.

INTEGRATED AND FRACTIONALLY INTEGRATED
GARCH MODELS

So far we have assumed that the error term u, and its conditional variance h1 are
stationary processes (recall, in the GARCH(p, q) model u, is weakly stationary
if and only if c*(l) + /3(\) < 1). The stationarity of the conditional variance h,
also depends on the values of the a and /3 parameters. For example, in the
GARCH(p,q) model (see the representation given by (8.17)), if ]T^=1

a,- + Y^j=i 0j< 1» th611 a shock to h, decays over time. When ]C?=ia/+
X!j=i 0j = 1, then h, behaves like a unit root process in that shocks to h, do
not decay.14 For this reason the GARCH(p, q) model subject to the restriction
Y?i=i <*ir + IL,J=\ Pj;= 1 is known as an integrated GARCH(p, q) model (i.e.
IGARCH(p, q)). If we estimate an IGARCH(1,1) model for the S&P Compo-
site returns (assuming a skewed Student-t distribution), we might expect the
estimated parameters in the model to be similar in value to those in Table 8.4.
given that in the unrestricted GARCH(1,1) model the sum of the alpha and
beta parameters is quite close to unity. Estimating an IGARCH(1,1) model for
the S&P Composite returns using the G@RCH program yields the results given
in Table 8.9. This confirms that the values of the estimated parameters are
indeed similar to those in Table 8.4.

Throughout this book we have focused on modelling time series primarily
in levels or in first-differences. With financial time series, however, sometimes a
fractional difference of the series is necessary. The concept of fractional inte-
gration was proposed by Granger and Joyeux (1980) and Hosking (1981). In
the first-order case, the time series yt is said to be fractionally integrated if the
fractional difference of yt is a stationary process:

(\-L)dy, = E, £,-110(0,1) (8.39)

If d — 0, then yt is a white-noise stationary process and so its autocorrelations
are all equal to zero, whereas if d = 1, v, contains a unit root at the zero
frequency as defined in Chapter 3 and its autocorrelations remain at unity.

14 The terminology IGARCH was introduced by Engle and Bollerslev (1986).
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Table 8.9 IGARCH(1,1) model for S&P Composite returns.15

Coefficient Standard error t-Value t-Probability

Constant(M)
Ret_l(M)
InfJ(M)
DT-bill_1(M)
Constant(V)
Betal(V)
Alpha 1(V)
Asymmetry
Tail

Information criteria
Akaike 5.157
Schwarz 5.218

1.317
0.177

-1.062
-1.138

0.341
0.869
0.131

-0.147
5.597

Shibata

0.223
0.043
0.510
0.328
0.204
NA

0.045
0.066
1.528

5.156

5.896
4.150

-2.084
-3.466

1.668
NA

2.926
-2.242

3.663

0.000
0.000
0.038
0.001
0.096
NA

0.004
0.025
0.000

Hannan—Quinn 5.181

However, for non-integer values of d(0 < d < 1), the autocorrelations of yt will
decline very slowly to zero (more specifically the decay has a hyperbolic
pattern). The main feature of a fractionally integrated process that distinguishes
it from other time series processes is the very slow decay of its autocorrelations.
For this reason, a fractional integrated series is often referred to as having 'long-
memory'. The autocorrelations can be calculated as pk = Tk2 d – 1 , where F is the
ratio of two gamma functions and the actual speed of decay depends on the
value of d. Note that yt is weakly stationary for d < 0.5, but non-stationary for
d > 0.5. Using the ARIMA terminology, a natural extension of the
ARIMA(p, d, q) model is a fractionally integrated version — the
ARFIMA(p,d, q) model:

(8.40)

where cj>(L) and Q(L) are p- and g-order lag polynomials, respectively (cf.
equation (1.17)). In a study of the S&P Composite index using daily data,
Ding et al. (1993) found that the squared index is a fractionally integrated
process.

While these initial studies of fractional integration focused on modelling
the conditional mean of a time series, Bailey, Bollerslev and Mikkelsen
(1996) applied the concept of fractional integration to the conditional variance
of a time series, proposing the fractionally integrated GARCH model
(FIGARCH). The concept of fractional integration has also been applied to
the EGARCH model (the FIEARCH model of Bollerslev and Mikkelsen,
1996) and APARCH model (the FIAPARCH model of Tse, 1998). The
G@.RCH program allows for these variants to be estimated. In practice, the

15 In the IGARCH model the beta parameter is restricted (a\ + J3\ — 1), and therefore
standard errors are not estimated.
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concept of long memory has been shown to be most relevant when analysing
high-frequency financial data (such as daily data). Since our data on the S&P
Composite index returns are monthly, when we estimate a FIGARCH(1,1)
model it is not surprising that, on the basis of its t-statistic, the estimated value
of the fractional differencing parameter for the conditional variance is insig-
nificant from zero, indicating that the conditional variance of the monthly S&P
Composite index returns does not possess the property of long memory.

CONDITIONAL HETEROSCEDASTICITY,
UNIT ROOTS AND COINTEGRATION

Much of this book has focused on issues relating to non-stationary time series
and cointegration analysis. An assumption of many of the time series models
and tests discussed in previous chapters is that the error terms are zero mean,
homoscedastic, independently and identically distributed random variables. For
example, the tabulated critical values for the Dickey-Fuller (DF) tests (see
Table 3.1) are computed under this assumption. Since conditional heteroscedas-
ticity is a common feature of many financial time series and since there are many
instances in which econometricians may want to test for a unit root in financial
time series or test for cointegrating relationships involving financial time series,
the performance of unit root and cointegration tests in the presence of
conditional heteroscedasticity is an important issue. It has been shown
that, asymptotically, DF tests are robust to the presence of conditional hetero-
scedasticity, such as ARCH and GARCH. This has been proved by a number of
authors including Pantula (1986, 1988) and Phillips and Perron (1988)
(although Kim and Schmidt, 1993, note a number of gaps in the theoretical
support for this argument). Consequently, in applied studies it is rarely the case
that conditional heteroscedasticity is considered to be a problem when testing
for unit roots or cointegration.16 However, a number of studies of the effects of
conditional heteroscedasticity on the finite sample performance of unit root and
cointegration tests have shown that for sample sizes up to 1,000 observations in
length, ignoring the presence of conditional heteroscedasticity can have a sig-

16 For example, Huang, Yang and Hu (2000) apply unit root and cointegration analysis
in their study of the comovement of Japanese and Chinese stock markets with the US
stock market. They investigate the presence of a unit root in stock market indices using
the ADF and other conventional unit root tests, and then go on to test for cointegration
between various indices using the conventional EG approach. Nasseh and Strauss
(2000) investigate cointegration between stock market indices and macroeconomic
variables using conventional methods. They employ the Johansen methodology to
test for cointegrating rank in a vector error correction model, including stock market
indices and macroeconomic variables, such as industrial production and short-term and
long-term interest rates. Neither of these studies consider the impact of conditional
heteroscedasticity on their results.
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nificant impact on both the size and power of the tests. Since in applied econo-
metrics small sample sizes are often used, particularly when only quarterly or
annual data are available, it is important for practitioners to be aware of the
impact that conditional heteroscedasticity can have on the results of unit root
and cointegration tests.

An early analysis of the effects of conditional heteroscedasticity on unit
root tests is the work of Kim and Schmidt (1993), who investigate the finite
sample performance of DF tests in the presence of GARCH and find that
serious size distortions can occur if the data display certain GARCH charac-
teristics. Kim and Schmidt (1993) focus on the performance of the DF test
when the error terms are a GARCH(1,1) process. They restrict their analysis to
the stationary, but degenerate the GARCH(1,1) process ('degenerate' means
the constant in the GARCH model is equal to zero) and the IGARCH(1,1)
process. They find that for the kinds of sample sizes typical in applied econo-
metrics, the DF test is over-sized (it rejects too frequently in their simulation
analysis). From these results we can conclude that despite the asymptotic
robustness of DF-type tests, in practice, if one is using such tests to investigate
the order of integration of financial time series, in which the series are possibly
ARCH or GARCH processes, it is important to recognize the increased prob-
ability of spurious rejections.

Despite the evidence of Kim and Schmidt (1993), in applied work on
testing for unit roots and cointegration in financial time series it is still ex-
tremely rare that potential difficulties caused by the presence of conditional
heteroscedasticity are considered. More recently, however, there has been a
renewed interest in the properties of unit root tests in the presence of ARCH
and GARCH (see, for example, Ling and Li, 1997, 1998; Seo, 1999; Boswijk,
2001). In particular, these authors focus on conventional models for non-
stationary time series, such as the augmented DF (ADF) specification, but
they assume the error terms are ARCH or GARCH processes and that estima-
tion of all the parameters in the models is by maximum likelihood. For
example, Seo (1999) considers the following model:

k-\
Ay, = /3yt-\ + 2_7)AVr-/ + ut (8.41)

/— i

where E(ut\£lt_i) = 0, E(u2
t\Qt_\) — h, (Q,__] represents the relevant information

set) and:
4>(L)ht = u + C(£)"?_i (8-42)

where <f>(L) = 1 - faL <pqL
q and £(L) = Ci + Cz^ + h (,PLP~1. Seo

(1999) proposes estimating the AR and GARCH parameters of (8.41) and
(8.42) jointly by maximum likelihood and then using the t-statistic in the
jointly estimated model for testing an AR root of unity. That is, the null
hypothesis of non-stationarity is H0: /? = 0 and the alternative is H1: 0 < 0;
Seo (1999) finds that the asymptotic distribution of this unit root test is not
the same as the conventional DF distribution, but is actually a mixture of the
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conventional DF distribution and the standard normal distribution, with the
weighting of this mixture depending on the size of the GARCH effect in the
data.17 As the GARCH effect increases, the power of the t-statistic for testing
the null hypothesis of a unit root calculated when the AR and GARCH param-
eters are estimated jointly, and using the critical values tabulated in Seo (1999),
increases relative to the conventional ADF test. Seo (1999) conducts Monte
Carlo simulation experiments, comparing the power of the tests, and finds
that in some quite realistic instances the power of the conventional ADF test
is less than half that of the test derived from the jointly estimated model.
Applying this test to monthly time series on the NYSE monthly stock price
index, Seo (1999) finds that the null hypothesis of a unit root cannot be rejected
and the GARCH parameters are statistically significant.

Another recent analysis of conditional heteroscedasticity and unit root
tests is the work of Boswijk (2001). Recall that Kim and Schmidt (1993)
investigate the finite sample performance of unit root tests in the presence of
GARCH, but they rely on Monte Carlo evidence in their analysis and do not
derive the asymptotic distributions of the test statistics considered. Boswijk
(2001) compares the finite sample and asymptotic properties of the likelihood
ratio statistic with those of the DF statistic when the error terms are a
GARCH process. He considers the following GARCH(l.l) version of the
DF specification:

Ay, = 7(.y,_i -») + £, (8.43)

£, = h],/2rj, (8.44)

h, = u + ae*_ i+0ht-, (8.45)

77, ~NID(0,1) (8.46)

Under the null hypothesis H0: 7 = 0, y, is a unit root process with GARCH
errors, and under the alternative hypothesis H1: 7 < 0, y, is a stationary process
with GARCH errors. The GARCH parameters a;, a and /? are all assumed to be
greater than zero, as is conventional in GARCH models. Boswijk (2001) focuses
on two particular cases: (i) a + (3 < 1 and (ii) a + 8 — 1 + A/ T, where
a = (>|^/2f, £ is a scalar, A is a scalar such that A < £2/2 and T is the
sample size. In the first case the conditional variance is stationary, but in the
second case the conditional variance is 'near-integrated' (because A/ T will be a
small value, a + 0 will be close to 1). Boswijk (2001) compares the power of the
likelihood ratio statistic for testing H0: 7 = 0 against H1,: 7<0 (which
involves estimating all the parameters of the model) with the conventional
DF F-statistic (involving OLS estimation and therefore ignoring the presence
of conditional heteroscedasticity), and finds that for certain parameter values

17 Recall from discussion of Table 3.1 that the DF distribution sits to the left of the usual
Student-f distribution, making it 'harder' to reject the null of non-stationarity.
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there are notable power gains to be had by using the likelihood ratio statistic
rather than the DF test (thus, Boswijk's results support those of Seo, 1999).18

The work of Seo (1999) and Boswijk (2001) is important, because for a
long time the literature on unit root-testing has tended to somewhat ignore the
issue of conditional heteroscedasticity; however, perhaps of more interest to
financial econometricians is the performance of tests for cointegration in the
presence of conditional heteroscedasticity. For many financial time series there
is often very strong theoretical support for the unit root hypothesis (viz., the
efficient market hypothesis—EMH) or, conversely, the hypothesis of stationar-
ity (EMH implies returns should be stationary).19 However, many results on
cointegration involving financial time series are finely balanced. For example, it
is rarely the case that cointegration of financial time series with macroeconomic
time series is strongly supported. Often in empirical work investigating such
relationships, rejections of the null hypothesis of no cointegration using the
Engle—Granger (EG) approach or Johansen approach are at borderline sig-
nificance levels. Furthermore, the empirical support for cointegration between
financial time series is often mixed, with some authors finding a cointegrating
relationship and other authors using almost identical methods finding no
evidence of cointegration. It seems possible that borderline and mixed empiri-
cal support for cointegrating relationships involving financial time series could
be a consequence of the effects of conditional heteroscedasticity on the finite
sample performance of the test statistics being used. Certainly, the empirical
application of Boswijk (2001) on the term structure of interest rates would
suggest that practitioners investigating cointegrating relationships involving
financial time series should seriously consider the impact that conditional
heteroscedasticity may be having on their results. The seminal empirical
work on the term structure of interest rates employing the cointegration
methodology is the work of Campbell and Shiller (1987). These authors
show that if short-term and long-term nominal interest rates are both

18 A particularly interesting feature of the work by Boswijk (2001) is the procedure he
employs to obtain p-values for the test. The limiting distribution of the likelihood ratio
statistic for testing H0. 7 = 0 in (8.43) depends on a nuisance parameter in a
complicated fashion. The exact dependence is unknown, but can be approximated.
However, these difficulties mean that obtaining critical values, or p-values for the test
statistic, is not straightforward. Monte Carlo simulation is one method that could be
used to obtain p-values, but Boswijk (2001) employs an approximation procedure
proposed by Boswijk and Doornik (1999). The latter show that the asymptotic
distributions of certain tests based on non-Gaussian log-likelihood functions can be
approximated by a gamma distribution. While use of this approximation procedure is
not yet widely established in empirical studies, we believe it is likely to become so in the
future.
19 In an 'efficient' market natural log of the asset price at time t(pt) reacts instanta-
neously to new information (e,), thus pt follows a random walk (pt = pt–1 + et) (i.e., p1,
contains a unit root). Defining returns as the first-difference of pt, if pt, follows a random
walk and assuming that e, is stationary, it follows that returns are stationary.
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integrated of order one I(1), these series should be cointegrated with a coin-
tegrating vector of unity, yielding a stationary term spread. Alternatively, the
term structure, defined as the long-term rate minus the short-term rate, should
be a stationary process. Boswijk (2001) investigates the presence of a unit root
in the term structure of interest rates in the Netherlands. He finds from a
conventional ADF test that the null hypothesis of no cointegration cannot
be rejected. However, applying a likelihood ratio test that takes account of
GARCH, Boswijk (2001) finds that the null hypothesis of no cointegration can
be rejected.

Since this work is still in its infancy, there are few theoretical results on the
implications of conditional heteroscedasticity for cointegration analysis. Some
work has been done on the performance of the Johansen trace test for co-
integrating rank in VAR models. See, for example, Rahbek, Hansen and
Dennis (2002), who consider the following conventional VAR specification
for testing cointegrating rank:

k—l

AY, - FIY,_, + r,AY,_, + E, (8.47)

Typically, it would be assumed that E, ~ IID(0, 11). However, Rahbek et al.
(2002) consider testing for cointegrating rank when the errors E, follow a
BEKK-ARCH process. The details of the theoretical work in Rahbek et al.
(2002) are beyond the scope of this book; however, on the basis of this work
it appears that cointegration rank-testing in VAR models, based on the usual
procedures, seems to be asymptotically valid in the presence of multivariate
conditional heteroscedasticity. Of course the question remains: Are the finite
sample properties of multivariate cointegration procedures affected in the same
way as finite sample properties of unit roots tests? The complexity of multi-
variate GARCH models means that investigating such an issue using Monte
Carlo methods would be extremely computer-intensive. Certainly, it would not
be surprising if the finite sample properties of tests for cointegration are affected
by the presence of conditional heteroscedasticity in a similar way to unit root
tests.

FORECASTING WITH GARCH MODELS

While much of the published work on GARCH appears to be concerned
with extending the original specifications in order to capture particular
features of financial data such as asymmetry, there are many practical applica-
tions of GARCH models and many of these are concerned with forecasting.
Even with the growth in popularity of non-linear forecasting models, such as
nearest-neighbour non-parametric forecasting and locally weighted regression-
forecasting, GARCH models remain a popular forecasting model when dealing
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with financial time series.20 Meade (2002) compares forecasts of high-frequency
exchange rate data made from a linear AR-GARCH model with forecasts made
using non-linear techniques and finds that the AR-GARCH forecasts are not
improved upon by the non-linear methods he considers. Of course, the results in
Meade's (2002) paper are specific to a particular data set, and moreover his
'good' forecasting results are for conditional mean forecasts (the forecasts of the
series itself are referred to as 'conditional mean forecasts' or 'forecasts of the
conditional mean'). As we have already mentioned in this chapter, GARCH
models allow forecasts of the conditional variance of a time series in addition to
forecasts of the conditional mean to be computed. While computing forecasts of
the conditional variance of a time series is straightforward to do using GARCH
models (more detail is given on p. 247), there is still debate on how best to
evaluate forecasts of the conditional variance. When evaluating the accuracy of
a particular model for computing conditional mean forecasts, it is traditional to
estimate the model using a subsample of the full sample of data and then
compare the forecasts with the observed future values of the series using a
standard measure of forecast accuracy, such as forecast MSB. However,
when forecasting the conditional variance of a time series, such as stock
returns, the observed values of the conditional variance of the series are not
available for comparison, even if sample observations are held back when
estimating the GARCH model. Consequently, it is traditional to use the
squared values of the data as a proxy for the observed values of the conditional
variance of the series. The forecasts of the conditional variance can then be
compared with this proxy and the forecasts can be evaluated in the same way as
forecasts of the series itself. The problem with this approach (discussed in detail
by Anderson and Bollerslev, 1998) is that the squared values of the series are
sometimes a very poor proxy of the conditional variance. As a result, many
applied studies have reported that the GARCH model produces poor forecasts
of the conditional variance (see, for example, Cumby, Figlewski and Has-
brouck, 1993; Jorion, 1995; Figlewski, 1997). Anderson and Bollerslev (1998)
focus on evaluating the forecasts of the conditional variance of a returns series
using alternative measures to the squared returns as a proxy for observed values
of the conditional variance. Their analysis shows that in fact the GARCH
model is capable of producing very accurate forecasts of the conditional var-
iance of a time series. We consider forecasting both the conditional mean and
conditional variance of our returns series; however, since we are merely illus-
trating the application of the GARCH model, we take the traditional route of
employing the squared values of the S&P Composite returns series as a proxy
for the observed conditional variance of the series. This should be borne in mind

20 See Fernandez-Rodriguez, Sosvilla-Rivero and Andrada-Felix (1999) for an empirical
application of the nearest neighbour approach to forecasting exchange rates. See
Diebold and Nason (1990), Meese and Rose (1990) and LeBaron (1992) for empirical
applications of the locally weighted regression approach in forecasting exchange rates.
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when interpreting our evaluation measures for the conditional variance
forecasts.

We discussed in Chapter 1 that to calculate the optimal h-steps ahead
forecast of yt, the forecast function obtained by taking the conditional expecta-
tion of yT+h (where T is the sample size) is used. So, for example, in the case of
the AR(1) model:

yt = S + py,_l+£t (8.48)

where e ~ IID(0, cr2), the optimal h-step ahead forecast is:

^ (8.49)

where Qr is the relevant information set. Therefore the optimal one-step ahead
forecast of y, is simply 6 + pyT. While the forecasting functions for the condi-
tional variances of ARCH and GARCH models are less well documented than
the forecast functions for conventional ARIMA models (see Granger and
Newbold, 1986, ch. 5, for detailed information on the latter), the methodology
used to obtain the optimal forecast of the conditional variance of a time series
from a GARCH model is the same as that used to obtain the optimal forecast of
the conditional mean. For further details on the forecast function for the
conditional variance of a GARCH(p, q) process see Box 8.4.

The G@RCH program enables forecasts of the conditional variance
of a time series to be computed in addition to forecasts of the conditional
mean. To illustrate, we utilize this program to forecast our S&P Composite
returns series and its conditional variance using three different GARCH
models: a GARCH(0, 1) model assuming a conditional normal distribution,
a GARCH(1, 1) model and an IGARCH(1, 1) model, both assuming a con-
ditional skewed Student-t distribution. In each case the same variables are used
in the conditional mean: one lag of the returns (Ret_l), one lag of inflation
(Inf_l) and one lag of the change in the three-month T-bill rate (DT-bill_l).
Each model is estimated using the data for the period 1954:1-2000:9 and
forecasts of the conditional mean and the conditional variance of the returns
are computed from these estimated models for the period 2000:10–2001:9. The
fitted models obtained are given in Table 8.10.

The G@RCH program also produces graphs of the forecasts of the con-
ditional mean (with approximate 95% confidence bands) and conditional
variance of the series (plotted in Figures 8.3(a)–8.3(c)) and some standard
measures of forecast accuracy derived from the forecast errors; specifically,
the MSE, median squared error (MedSE), mean error (ME), mean absolute
error (MAE) and root mean squared error (RMSE). These are given in Table
8.11. Before looking at these, it is clear from Figures 8.3(a)–8.3(c) that the
conditional mean forecasts obtained from these models are very similar. This
is not surprising since the same variables are used in each model to describe the
behaviour of the conditional mean. The graphs of the conditional variance
forecasts vary considerably: the forecast of the conditional variance from the
GARCH(0.1) model approaches a constant value within a few steps, the
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forecast of the conditional variance from the IGARCH(1,1) model is a posi-
tively sloped straight line. On the basis of the measures of forecast accuracy
given in Table 8.11, the IGARCH model produces the most accurate forecasts
of the conditional mean and the conditional variance. 22

21 See Laurent and Peters (2002a, 2002b) for further details.
22 A popular measure for evaluating forecasts of the conditional variance of a time series
is the Mincer-Zarnowitz regression, proposed by Mincer and Zarnowitz (1969). This
involves regressing the proxy for the observed future volatility on the forecast volatility
and conducting hypothesis tests on the parameters of this model. In addition, the R2 for
this model can be used as a general test of predictability. We do not discuss this
particular measure in detail, but similar regression-based methods for evaluating
forecasts are considered in the next section.
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Table 8.10 Fitted models for S&P Composite returns.23

y, = Ret, yt–1 = Rett–1,= x1t–1 = Inf_l, x2t–1 = DT-bill_1.
(t-statistics are in parentheses)

AR(1)-GARCH(0, 1):

v, = 1.724 + 0.152yt–1 1.692,x,,
(7.842) (3.112) (-3.539)

h, -8.619 + 0.148M2 .
(12.69) (2.430)

1.429x2,_i + u,
(-4.845)

AR(1)-GARCH(1,1).

v, = 1.433
(6.470)

- 1.064.x,,_
(3.979)" " " (-2.156)

:.-,2

(-3.830)

h, = 1.181 +0.075uf_, + 0.81 lA,
(1.836) (2.048) (10.320)

AR(1)-IGARCH(1,1):

v, =
6.231) (3.791)

2

1.095*1,.
(-2.154)

1.163;
(-3.523)

i,_i +M,

h, = 0.348 + 0.136M , + 0.864ht–1
(1.638) (2.910) (NA)

550 555

Var.Forecasts

10.0

9.8

9.6-

561 562 563 564 565 566 567 568 569 570 571 572 573 574

Figure 8.3(a). Forecasts of S&P Composite returns from GARCH(0.1) model.

23 Standard errors are not calculated for the estimated beta parameter in the IGARCH
model.
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10.00
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Figure 8.3(b). Forecasts of S&P Composite returns from GARCH(1,1) model.

561 562 563 564 565 566 567 568 569 570 571 572 573 574

Figure 8.3(c). Forecasts of S&P Composite returns from IGARCH(1,1) model.



250 APPLIED TIME SERIES MODELLING AND FORECASTING

Table 8.11 Forecast evaluation measures for forecasts from GARCH(p. q) models for
S&P Composite returns.

AR(1)-GARCH(0,1) AR(1)-GARCH(1.1) AR(1)-IGARCH(1.1)

Conditional
MSE
MedSE
ME
MAE
RNSE

Conditional
MSE
MedSE
ME
MAE
RMSE

mean forecasts
36.647
17.663

-4.223
5.031
6.054

variance forecasts
2,541.129

89.489
23.061
27.474
50.410

34.959
15.069

-4.010
4.862
5.913

2,555.720
83.504
23.555
27.587
50.554

34.448
14.604

-3.945
4.808
5.869

2.403.565
94.956
20.738
27.035
49.026

Note that the scale of the forecast errors is affected by the way the data has been scaled (in this case
% amounts are used). When comparing the forecast errors from different studies it is of crucial
importance that in each study the data has been scaled in the same way.

FURTHER METHODS FOR FORECAST EVALUATION

If one forecasting model has a lower MSE than a competing model for the same
times series, it does not necessarily mean that it is a superior forecasting speci-
fication, since the difference between the MSEs may be statistically insignificant
from zero. Rather than just compare the MSE of forecasts from different
forecasting models, it is also important to test for whether any reductions in
MSE are statistically significant. Diebold and Mariano (1995) developed a test
of equal forecast accuracy. Having generated n, h-steps-ahead forecasts from
two different forecasting models, the forecaster has two sets of forecast errors e1t

and e2l, where t = 1 , 2 , . . . , n. Using MSE as a measure of forecast quality, the
hypothesis of equal forecast accuracy can be represented as E[d1] — 0, where
dt = e2

1T — e2
2tt and E is the expectations operator. The mean of the difference

between the MSEs d — n–1 Y^"=\ dt has an approximate asymptotic variance of:

h-\ '
7o + 2^7A- (8.50)

*=!

where 7^ is the fcth autocovariance of d,, which can be estimated as:

7*=/I'1 Y^(d,-d}(dt^k-d} (8.51)
t=k+\

The Diebold and Mariano (1995) statistic for testing the null hypothesis of
equal forecast accuracy is Si = [V(d)]– l / 2d and under the null hypothesis Sl
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has an asymptotic standard normal distribution. Diebold and Mariano (1995) 
show, through Monte Carlo simulation experiments, that the performance of 
this test statistic is good, even for small samples and when forecast errors are 
autocorrelated and have non-normal distributions. However, they do find that 
their test is over-sized for small numbers of forecast observations and forecasts 
of two-steps ahead or greater. 

Testing the equality of forecast errors is a topic also investigated by 
Harvey, Leybourne and Newbold (1997). In particular they consider modifying 
Diebold and Mariano’s (1995) test in order to improve its finite sample per- 
formance. Their main modification involves using an approximately unbiased 
estimator of the variance of d.24 Incorporating this into the Diebold and 
Mariano (1995) test statistic gives a modified statistic: 

(8.52) 
n + 1 - 2h + n-’h(h - l ) ]  1’2Sl 

n 
s; = 

where S1 is the original Diebold and Mariano statistic. Harvey et al. (1997) 
propose comparing their modified statistic with Student’s t critical values rather 
than with those of the standard normal distribution. They compare the finite 
sample performance of Si with S1 using Monte Carlo simulation methods and 
confirm that the original Diebold and Mariano statistic S1 is over-sized in a 
number of instances and that this problem gets worse as the forecast horizon 
increases. The modified statistic ST is found to perform much better at all 
forecast horizons and if the forecast errors are autocorrelated or have non- 
normal distributions. 

Comparing MSE or testing for significant differences in MSE is not the 
only means of forecast comparison and evaluation. Harvey, Leybourne and 
Newbold (HLN) (1998) argue: 

. . . the discovery that an analyst’s preferred forecasts are better, or even 
‘significantly better’, than those from some possibly naive competitor 
ought not to induce complacency. A more stringent requirement would 
be that the competing forecasts embody no useful information absent in 
the preferred forecasts. (p. 254) 

The notion of ‘forecast encompassing’ refers to whether or not the forecasts 
from a competing model, say model 2, contain information missing from the 
forecasts from the original model-model 1. If they do not, then the forecasts 
from model 2 are said to be ‘encompassed’ by the forecasts from model 1. 
Research on testing whether forecasts from one model encompass those of 
another applies to one-step ahead forecasts and can be traced back to 
Granger and Newbold (1973), who applied the concept of ‘conditional effi- 
ciency’ to forecasts. A forecast is ‘conditionally efficient’ if the variance of the 
forecast error from a combination of that forecast and a competing forecast is 

24The estimator used by Diebold and Mariano (1995) is consistent but biased. 
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equal to or greater than the variance of the original forecast error. Therefore a
forecast that is conditionally efficient 'encompasses' the competing forecast.

Let y1t and y2t be one-step ahead forecasts from two different models.
Assume there are n of these forecasts and that e1t, and e2t are the two sets of
forecast errors. One of the first tests of forecast encompassing proposed is that
of Chong and Hendry (1986) (who were the first to use the term 'encompassing"
to describe conditionally efficient forecasts). They propose a test that involves
regressing the forecast error from the original model (model 1) on the forecast
from the competing model (model 2):

e1t = ay2t + £t (8.53)

If the forecasts from model 1 encompass those of model 2, then a = 0. There-
fore to test the null hypothesis that forecasts from model 1 encompass those of
model 2, the t-statistic for testing a = 0 can be used. Under the null hypothesis
this t-statistic has an asymptotic normal distribution. Ericsson (1992) suggests
testing the null hypothesis of forecast encompassing by regressing the forecast
error from model 1 on the difference in the forecast errors from model 1 and
model 2:

e\t=l(e\l-e2,) + £l (8.54)

If -y = 0, the forecasts from model 2 carry information that is not in the fore-
casts from model 1, and so the forecasts from model 1 do not encompass those
from model 2. If 7 = 0, the forecasts from model 2 contain no additional
information compared with the forecasts from model 1 and so are encompassed.
Therefore to test the null hypothesis of forecast encompassing the t-statistic for
testing the null hypothesis 7 = 0 can be used, which also has an asymptotic
standard normal distribution.

Harvey et al. (1998) have shown that conventional tests of forecast
encompassing can be over-sized in the presence of non-normal forecast
errors. They develop an alternative test of the null hypothesis of
forecast encompassing using the methodology of the tests for equal forecast
accuracy discussed in Diebold and Mariano (1995) and Harvey et al. (1997).
More specifically, their test is based on the fact that if the forecasts from model
1 encompass the forecasts from model 2, then the covariance between e1t and
e1t — e2t will be negative or zero. The alternative hypothesis is that the forecasts
from model 1 do not encompass those from model 2, in which case the covar-
iance between e1t and e1t — e2t will be positive. Exploiting this to test the null
hypothesis of forecast encompassing, Harvey et al. (1998) propose the follow-
ing test statistic:

-^== (8.55)

where c, = e1t,(e1t, - e2t) and c = n– l Y?t=\ c<- Under the null hypothesis of fore-
cast encompassing, the HLN statistic has an asymptotic standard normal
distribution.



Clark and McCracken (2000, 2001) consider the case that, under the null
hypothesis of forecast encompassing, model 2 nests model 1 . They show that
when the forecasts being evaluated are computed from linear models that are
nested and a recursive or rolling forecasting scheme is being used, the
asymptotic distributions of the conventional tests of forecast encompassing
have non-normal distributions. Clark and McCracken (2000, 2001) derive
the true asymptotic distributions of a number of encompassing tests for
various forecasting schemes when the forecasts are made from nested models
and provide asymptotic critical values. Note that for the fixed forecasting
scheme, the established tests of forecast encompassing are asymptotically stan-
dard normal, even when the forecasts are made from nested models. The
forecasting scheme used for the examples in this chapter is fixed: the param-
eters of the model are estimated using a fixed number of sample observations

- _

and the forecasts are computed from that model without updating.25

Clark and McCracken (CM) (2001) argue that the denominator used in the
HLN test statistic may adversely affect the small-sample properties of the test.
They propose a modified HLN statistic that, they argue, has improved finite
sample performance:

(8.56)

where MSE2 is the mean squared error for the forecasts from model 2. Like the
HLN test, this test uses information on the covariance between e1t and e1t — e2t,
but here MSE2 replaces the standard deviation of c as a scaling factor. For a
fixed forecasting scheme (and nested forecasting models), unlike the established
tests for encompassing, the CM test does not have an asymptotic standard
normal distribution. In particular, the critical values depend on the number
of additional variables in the competing model compared with the original
model and the ratio of the number of forecasts to the number of in-sample
observations. Detailed critical values for the CM test when a fixed forecasting
scheme is used are given in Clark and McCracken (2000, appendix table 5).

In order to illustrate these methods we apply a selection to forecasts of the
S&P Composite returns, computed from GARCH models (although the tests
are applicable to forecasts from any type of econometric model). Rather than
investigate exactly the same sample of data as in the previous examples in this
chapter, here we use a slightly shorter sample 1959:4–2001 :9. This enables us to
augment the model with some additional explanatory variables, as well as the
inflation and interest rate data used earlier. These additional variables were
only available from 1959:4 onward.

A number of studies have focused on predicting stock market returns using
macroeconomic variables (see, for example, Pesaran and Tirnmermann, 1995,

25 See Clark and McCracken (2001) for a specific definition of a recursive forecast
scheme and Clark and McCracken (2000) for a definition of a rolling forecasting
scheme.
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Table 8.12 AR(1)-GARCH(1,1) benchmark model.

Coefficient Standard error t-Value t-Probability

Constant(M)
Ret_l(M)
Constant(V)
Betal(V)
Alpha 1(V)
Asymmetry
Tail

Information criteria
Akaike 5.230
Schwarz 5.300

0.866
0.215
1.791
0.787
0.063

-0.130
5.452

Shibata

0.210
0.047
1.050
0.101
0.037
0.075
1.525

5.229

4.123
4.536
1.707
7.763
1.686

-1.739
3.574

0.000
0.000
0.089
0.000
0.093
0.083
0.000

Hannan—Quinn 5.257

2000, and Bossaerts and Million, 1999). The types of variables typically used
are the inflation rate, interest rate, output and money supply variables. We
employ lags of the following macroeconomic variables in GARCH models
to forecast the S&P Composite returns: the inflation rate (inf), the change in
the three-month T-bill rate (DT-bill), the growth rate of Ml (Mlgr), the
growth rate of industrial production (Indgr) and the growth rate of the rate
of return on long-term Government bonds (DIOyr). We use the data from
1959:4–1992:6 for the purposes of estimation, with the observations for the
period 1992:7-2001:9 held back for the purposes of forecast comparison.

First, we estimated a AR(1)-GARCH(1,1) model for the S&P Composite
returns as a benchmark specification, assuming a skewed Student-t distribution
when specifying the likelihood function. The estimated parameters are given in
Table 8.12. Next we estimated a GARCH(1,1) model, but this time including
two lags of the five macroeconomic variables in the conditional mean plus an
AR(1) term. The results are given in Table 8.13. Only the first lag of the T-bill
and money supply variables are significant at the 10% level and while, on the
basis of the Akaike information criteria, this model is an improvement on the
benchmark model, the Schwarz criteria indicates the opposite. Finally, we
estimated a GARCH(1,1) model including only the significant T-bill and
money supply variables in the conditional mean. The results are given in
Table 8.14. Compared with the results in Table 8.12, on the basis of the
information criteria computed, this model is preferred to the benchmark
model.

All three fitted models were used to compute one-step ahead forecasts of
the conditional mean and conditional variance of the series over the period
1992:7–2001:9 (thus in each case 110 one-step ahead forecasts were computed).
In Table 8.15, for the benchmark model and for the GARCH(l. l) model
including two lags of the five macroeconomic variables in the conditional
mean, we report MSE along with some of the tests of equal forecast
accuracy and forecast encompassing. The following labels are used in the table:
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Table 8.13 GARCH(1,1) model with two lags of five macro-variables in the condi-
tional mean.

Coefficient Standard error /-Value t-Probability

Constant(M)
Ret_l(M)
DT-billJ(M)
Inf_l(M)
Mlgr_l(M)
IndgrJ(M)
Dl0yr-bill_1(M)
DT-bill_2(M)
lnf_2(M)
Mlgr_2(M)
lndgr_2(M)
D10yr-bill_2(M)
Constant(V)
Betal(V)
Alpha 1(V)
Asymmetry
Tail

Information criteria:
Akaike 5.214
Schwarz 5.384

1.074
0.172

-0.837
-0.727
-0.697
-0.013
-1.163
-0.508

0.631
0.573

-0.213
0.569
1.647
0.797
0.054

-0.125
5.351

Shibata
Hannan—Quinn

0.392
0.052
0.420
0.620
0.395
0.190
0.731
0.389
0.573
0.392
0.189
0.729
1.025
0.108
0.038
0.073
1.580

5.210
5.281

2.740
3.327

-1.990
-1.172
-1.766
-0.069
-1.591
-1.303

1.100
1.464

-1.126
0.780
1.607
7.430
1.421

-1.708
3.386

0.006
0.001
0.047
0.242
0.078
0.945
0.112
0.193
0.272
0.144
0.261
0.436
0.109
0.000
0.156
0.089
0.001

Diebold and Mariano (1995) test: DM.
Modified Diebold and Mariano test proposed by Harvey et al. (1997):
MDM.
Ericsson (1992) encompassing test: ER.
Harvey et al. (1998) encompassing test: HLN.

For the conditional mean forecasts the model that contains macroeconomic
variables in the conditional mean has a higher MSE than the benchmark
specification, suggesting that the macroeconomic variables contain no useful
information for forecasting returns and that in fact their inclusion leads to
inferior forecasts. However, the null hypothesis of equal forecast accuracy is
not rejected by the DM or MDM tests—so neither model is deemed significantly
better than the other. On the basis of MSE, the model that includes macro-
economic variables in the conditional mean appears to be the superior
forecasting model for the conditional variance since its MSE is lowest. Again,
however, the null hypothesis of equal forecast accuracy and the null hypothesis
of forecast encompassing are not rejected by any of the tests, so this improve-
ment is not deemed statistically significant.
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Table 8.14 GARCH(1.1) model with significant lags of five macro-variables in the
conditional mean.

Coefficient Standard error t-Value t-Probability

Constant(M)
Ret_l(M)
DT-bill_(M)
Mlgr_l(M)
Constant(V)
Betal(V)
Alpha 1(V)
Assymmetry
Tail

Information criteris:
Akaike 5.201
Schwarz 5.291

1.179
0.202

-1.141
-0.613

1.612
0.813
0.045

-0.152
5.278

Shibata
Hannan—Quinn

0.267
0.048
0.311
0.365
1.044
0.102
0.034
0.071
1.470

5.200
5.237

4.400
4.245

-3.667
-1.678

1.544
7.956
1.345

-2.138
3.590

0.000
0.000
0.000
0.094
0.125
0.000
0.179
0.033
0.000

Table 8.15 Forecasting results for GARCH(1,1) no macro versus GARCH(1.1) with
two lags of five macro-variables in the conditional mean.

Conditional mean forecasts Conditional variance forecasts

MSE no macro
MSE macro
DM
MDM
ER
HLN

10.346
10.809

-1.173
-1.168
-0.974
-0.480

456.770
455.470

0.856
0.852
0.192
1.051

In Table 8.16 we report results that compare forecasts from the benchmark
model with forecasts from the GARCH(1,1) model including the two signifi-
cant macroeconomic variables in the conditional mean. In this case, on the
basis of MSE, the model that includes macroeconomic variables appears to be
the preferred forecasting specification for the conditional mean, since it has the
lowest MSE. Note, however, that despite the inclusion of two macroeconomic
variables leading to a lower MSE, the DM and MDM tests indicate that this
reduction is not statistically significant and the ER and HLN tests do not reject
the null of forecast encompassing. For this reason we should be cautious of
concluding that the inclusion of these macroeconomic variables leads to a
superior forecasting model. For forecasts of the conditional variance, the
model that includes macroeconomic variables leads to a higher MSE than
the benchmark specification and there are no rejections from any of the tests.
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Table 8.16 Conditional mean forcasting results for GARCH(1,1) no macro versus
GARCH(1,1) with significant lags of five macro-variables in the conditional mean.

Conditional mean forecasts Conditional variance forecasts

MSB no macro
MSB macro
DM
MDM
ER
HLN

10.346
10.260
0.332
0.331
1.269
0.911

456.77
457.29
-0.254
-0.253
-0.027
-0.109

CONCLUSIONS ON MODELLING AND FORECASTING
FINANCIAL TIME SERIES

The application of econometric techniques to financial time series raises a
number of additional issues not focused on elsewhere in this book. The most
important of these is the concept of ARCH. This chapter has outlined the
development of the original ARCH model through to more recent integrated
and asymmetric specifications. Not all developments of the original ARCH
model have proved to be as popular in the applied literature as the extension
to capture asymmetry. For example, many of the early multivariate GARCH
specifications proposed are not very useful in practice, as they require the
estimation of large numbers of parameters, even in the case of very small
systems of equations. Future developments in this area are likely to involve
simplifying the original multivariate forms proposed to enable easier estimation.
In this chapter we have also commented on research investigating the effects of
conditional heteroscedasticity on unit root and cointegration tests. Many
applied econometric analyses involving tests for unit roots in financial time
series or tests for cointegrating relationships between variables including finan-
cial time series have largely ignored the issue of conditional heteroscedasticity.
This is sometimes justified by referring to earlier theoretical work that proves
that the DF test is asymptotically robust to the presence of ARCH. However, a
small but growing body of literature is developing that is concerned with the
performance of unit root and cointegration tests in the presence of conditional
heteroscedastcity. Among other things, these studies reveal that ignoring the
presence of ARCH and GARCH can lead to serious distortions to the size and
power of conventional unit root tests. While there is still a lot to be done in
terms of the theoretical work in this area, we perceive this issue to be an
important one for future research. The final part of this chapter has focused
on forecasting and forecast evaluation. The forecasting literature is itself a huge
body of work and includes excellent higher level texts by Granger and Newbold
(1986), Clements and Hendry (1998) and Clements and Hendry (1999). In this
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chapter we have discussed forecasting the conditional mean and conditional
variance of a time series and the evaluation of forecasts using tests of equal
forecast accuracy and forecast encompassing.



— Appendix ————-—

Cointegration Analysis Using the
Johansen Technique: A Practitioner's

__ Guide to PcGive 10.1

This appendix provides a basic introduction on how to implement the Johan-
sen technique using the PcGive 10.1 econometric program (see Doornik and
Hendry, 2001 for full details). Using the same data set as underlies much of the
analysis in Chapters 5 and 6, we show the user how to work through Chapter 5
up to the point of undertaking joint tests involving restrictions on a and p.

This latest version of PcGive brings together the old PcGive (single equa-
tion) and PcFiml (multivariate) stand-alone routines into a single integrated
software program (that in fact is much more than the sum of the previous
versions, since it is built on the Ox programming language and allows
various bolt-on Ox programs to be added—such as dynamic panel data
analysis (DPD), time series models and generalized autoregressive conditional
heteroscedastic (GARCH) models—see Chapter 8). It is very flexible to
operate, providing drop-down menus and (for the present analysis) an
extensive range of modelling features for 7(1) and 7(0) systems (and limited
analysis of the 7(2) system).1 Cointegration facilities are embedded in an
overall modelling strategy leading through to structural vector autoregression
(VAR) modelling.

After the data have been read-in to GiveWin2 (the data management and
graphing platform that underpins PcGive and the other programs that can
operate in what has been termed the Oxmetrics suite of programs), it is first
necessary to (i) start the PcGive module, (ii) select 'Multiple-equation Dynamic
Modelling' and then (iii) 'Formulate' a model. This allows the user to define the
model in (log) levels, fix which deterministic variables should enter the co-
integration space, determine the lag length of the VAR and decide whether

1 PcGive also allows users to run batch jobs where previous jobs can be edited and rerun.
2 The program accepts data files based on spreadsheets and unformatted files.
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Figure A.I. Formulating a model in PcGive 10.1: Step (1) choosing the correct model
option.

7(0) variables, particularly dummies, need to be specified to enter the model in
the short-run dynamics but not in the cointegration spaces (see Figures A. 1 and
A.2).

When the 'Formulate' option is chosen, the right-hand area under 'Data-
base' shows the variables available for modelling. Introducing dummies and
transformations of existing variables can be undertaken using the 'Calculator'
or 'Algebra Editor' under Tools' in GiveWin, and these new variables when
created will also appear in the 'Database'. In this instance, we will model the
demand for real money (rm) as a function of real output (y), inflation (dp) and
the interest rate (rstar), with all the variables already transformed into log
levels. The lag length (k) is set equal to 4 (see lower right-hand option in
Figure A.2); if we want to use an information criterion (1C) to set the lag
length, then k can be set at different values, and when the model is estimated
it will produce the Akaike, Hannan—Quinn and Schwarz 1C for use in deter-
mining which model is appropriate.3 (However, it is also necessary to ensure
that the model passes diagnostic tests with regard to the properties of the
residuals of the equations in the model—see below—and therefore use of an
1C needs to be done carefully.)

Each variable to be included is highlighted in the 'Database' (either one at
a time, allowing the user to determine the order in which these variables enter,
or all variables can be simultaneously highlighted). This will bring up an
'<<Add' option, and, once this is clicked on, then the model selected appears
on the left-hand side under 'Model'. The 'Y' next to each variable indicates

3 Make sure you have this option turned on as it is not the default. To do this in PcGive.
choose 'Model', then 'Options', 'Additional output' and put a cross in the information
criterion box.
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Figure A.2. Formulating a model in PcGive 10.1: Step (2) choosing the 'Formulate'
option.

that it is endogenous and therefore will be modelled, a 'IT indicates the vari-
able (e.g., the Constant, which enters automatically) is unrestricted and will
only enter the short-run part of the vector error correction model (VECM),
and the variables with '_k' next to them denote the lags of the variable (e.g.,
rm t–1).

We also need to enter some dummies into the short-run model to take
account of'outliers' in the data (of course we identify these only after estimating
the model, checking its adequacy, and then creating deterministic dummies to
try to overcome problems; however, we shall assume we have already done this,4

4 In practice, if the model diagnostics—see Figure A.3—indicates, say, a problem of
non-normality in the equation determining a variable, plot the residuals using the
graphing procedures (select, in PcGive, 'Test' and 'Graphic analysis' and then choose
'Residuals' by putting a cross in the relevant box). Visually locate outliers in terms of
when they occur, then again under 'Test' choose 'Store residuals in database', click on
residuals and accept the default names (or choose others) and store these residuals in the
spreadsheet. Then go to the 'Window' drop-down option in Give Win and select the
database, locate the residuals just stored, locate the outlier residuals by scrolling down
the spreadsheet (using the information gleaned from the graphical analysis) and then
decide how you will 'dummy out' the outlier (probably just by creating a dummy
variable using the 'Calculator' option in Give Win, with the dummy being 0 before and
after the outlier date and 1 for the actual date of the outlier).
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or that ex ante we know such impacts have occurred and need to be included).
Hence, highlight these (dumrst, dumdp, dumdpl), set the lag length option at
the bottom right-hand side of the window to 0 and then click on '<Add'. Scroll
down the 'Model' window, and you will see that these dummies have 'Y' next to
them, which indicates they will be modelled as additional variables. Since we
only want them to enter unrestrictedly in the short-run model, select/highlight
the dummies and then in the 'Status' options on the left-hand side (the buttons
under 'Status' become available once a variable in the model is highlighted)
click on 'Unrestricted', so that each dummy now has a 'U' next to it in the
model.

Finally, on the right-hand side of the 'Data selection' window is a
box headed 'Special'. These are the deterministic components that can be
selected and added to the model. In this instance, we select 'CSeasonal
(centred seasonal dummies), as the data are seasonally unadjusted, and
add the seasonal dummies to the model. They automatically enter as unrest-
ricted. Note that if the time 'Trend' is added, it will not have a 'U' next to it
in the model, indicating it is restricted to enter the cointegration space
(Model 4 in Chapter 5—see equation (5.6)). If we wanted to select Model
2 then we would not enter the time trend (delete it from the model if it is
already included), but would instead click on 'Constant' in the 'Model'
box and click on 'Clear' under the 'Status' options. Removing the unrest-
ricted status of the constant will restrict it to enter the cointegration space.
Thus, we can select Models 2–4, one at a time, and then decide which
deterministic components should enter II, following the Pantula principle
(see Chapter 5).

Having entered the model required, click OK, bringing up the 'Model
settings' window, accept the default of 'Unrestricted system' (by clicking OK
again) and accept ordinary least squares (OLS) as the estimation method
(again by clicking OK). The results of estimating the model will be available
in Give Win (the 'Results' window—accessed by clicking on the Give Win
toolbar on your Windows status bar). Return to the PcGive window (click
on its toolbar), choose the 'Test' option to activate the drop-down options,
and click on 'Test summary'. This produces the output in GiveWin as shown in
Figure A.3. The model passes the various tests equation by equation and by
using system-wide tests.

Several iterations of the above steps are likely to be needed in practice to
obtain the lag length (k) for the VAR, which deterministic components should
enter the model (i.e., any dummies or other 7(0) variables that are needed in the
short-run part of the VECM to ensure the model passes the diagnostic tests
on the residuals) and which deterministic components should enter the
cointegration space (i.e., should the constant or trend be restricted to be
included in II). To carry out the last part presumes you have already tested
for the rank of II, so we turn to this next.

To undertake cointegration analysis of the I(1) system in PcGive, choose
Test', then 'Dynamic Analysis and Cointegration tests' and check the "7(1)
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Portmanteau(11):
Portmanteau(11) :
Portmanteau(11):
Portmanteau(11) :
AR 1-5 test:
AR 1-5 test:
AR 1-5 test:
AR 1-5 test:
Normality test:
Normality test:
Normality test:
Normality test:
ARCH 1-4 test:
ARCH 1-4 test:
ARCH 1-4 test:
ARCH 1-4 test:
hetero test:
hetero test:
hetero test:
hetero test:

11.2164
6.76376
3.66633
11.6639
F(5,
F(5,
F(5,
F(5,
Chi'
Chi-
Chi'
Chi'
F(4,
F(4,
F(4,
F(4,
F(35
F(35
F(35
F(35

73)
73)
73)
73)
2(2)
2(2)
2(2)
2(2)
70)
70)
70)
70)
,42)
,42)
,42)
,42)

1
1
1
1
2
5
4
o

— 1

= 1
-I

- 0.
= 0.
= 0.
= 0.
- 0.

.4131

.8569

.0269

.8359

.8297

.0521

.6973

.7019

.5882

.1669

.1133
68023
38980
72070
67314
88183

[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.

2297]
1125]
4083]
1164]
2430]
0800]
0955]
2590]
1871]
3329]
3573]
6080]
9974]
8385]
8838]
6463]

Vector Portmanteau(ll): 148.108
Vector AR 1-5 test: F(80,219)= 1.0155 [0.4555]
Vector Normality test: Chi'2(8) = 15.358 [0.0525]
Vector hetero test: F(350,346)= 0.47850 [1.0000]
Not enough observations for hetero-X test

Figure A.3. Estimating the unrestricted VAR in PcGive 10.1; model diagnostics.

cointegration analysis' box.5 The results are produced in Figure A.4,6 provid-
ing the eigenvalues of the system (and log-likelihoods for each cointegration
rank), standard reduced rank test statistics and those adjusted for degrees of
freedom (plus the significance levels for rejecting the various null hypotheses)
and full-rank estimates of a, p and IT (the P are automatically normalized along
the principal diagonal). Graphical analysis of the (J-vectors (unadjusted and
adjusted for short-run dynamics) are available to provide a visual test of which
vectors are stationary,7 and graphs of the recursive eigenvalues associated with
each eigenvector can be plotted to consider the stability of the cointegration
vectors.8

5 Note that the default output only produces the trace test. To obtain the A-max test as
well as the default (and tests adjusted for degrees of freedom), in PcGive choose 'Model',
then 'Options', 'Further options' and put a cross in the box for cointegration test with
Max test.
6 Note that these differ from Box 5.5 and Table 5.5, since the latter are based on a model
without the outlier dummies included in the unrestricted short-run model.
7 The companion matrix that helps to verify the number of unit roots at or close to
unity, corresponding to the 7(1) common trends, is available when choosing the
'Dynamic analysis' option in the 'Test' model menu in PcGive.
8 Note that, to obtain recursive options, the 'recursive estimation' option needs to be
selected when choosing OLS at the 'Estimation Model' window when formulating the
model for estimation.
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1(1) cointegration analysis, 1964 (2) to 1989 (2)

eigenvalue

0.57076
0.11102
0.063096
0.0020654

loglik for rank
1235.302 0
1278.012 1
1283.955 2
1287.246 3
1287.350 4

rank Trace test [ Prob] Max test [ Prob] Trace test [T-nm] Max test [T-nm]
0 104.10 [0.000]** 85.42 [0.000]** 87.61 [0.000]** 71.89 [0.000]'
1 18.68 [0.527] 11.89 [0.571] 15.72 [0.737] 10.00 [0.747]
2 6.79 [0.608] 6.58 [0.547] 5.72 [0.731] 5.54 [0.676]
3 0.21 [0.648] 0.21 [0.648] 0.18 [0.675] 0.18 [0.675]

Asymptotic p-values based on: Unrestricted constant
Unrestricted variables:
[0] = Constant
[1] = CSeasonal
[2] = CSeasonal_l
[3] = CSeasonal_2
[4] = dumrst
[5] = dumdp
[6] = dumdp1
Number of lags used in the analysis: 4

beta (scaled on diagonal; cointegrating vectors in columns)
rm
y
dp
rstar

1.0000
-1.0337
6.4188
6.7976

15.719
1.0000
-207.49
131.02

-0.046843
0.064882
1.0000

-0.039555

1.6502
-0.13051
8.6574
1.0000

alpha
rm -0.18373
y -0.0081691
dp 0.022631
rstar 0.0046324

0.00073499
-0.0010447
0.00023031
-0.0011461

0.0012372
-0.16551

-0.042258
-0.0022919

-0.0010530
-0.00080063
0.0010822
0.0018533

long-run matrix, rank 4
rm y

rm -0.17397 0.19088
y -0.018159 -0.0032342
dp 0.030017 -0.026047
rstar -0.010218 -0.0063252

dp
-1.3397

-0.0081182
0.064590
0.28129

rstar
-1.1537
-0.18666
0.18677
-0.11673

Figure A.4. 7(1) cointegration analysis in PcGive 10.1.

After deciding on the value of r < n, it is necessary to select a reduced rank
system. In PcGive, under 'Model', choose 'Model settings' (not 'Formulate'),
select the option 'Cointegrated VAR' and in the window that appears set the
cointegration rank (here we change '3' to '1', as the test statistics indicate that
r — 1). Leave the 'No additional restrictions' option unchanged as the default,
click OK in this window and the next, and the output (an estimate of the new
value of II together with the reduced-form cointegration vectors) will be
written to the results window in GiveWin.

Finally, we test for restrictions on a and p (recall that these should usually
be conducted together). To illustrate the issue, the model estimated in Chapter 6
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Figure A.5. Testing restrictions on a and B using 'General Restrictions' in PcGive 10.1.

is chosen (instead of the one above) with a time trend restricted into the
cointegration space and r — 2. Thus, we test the following restrictions:

, r-i i * * o
[ 0 — 1 * * *

,_ r* o * o
~~ L* o * o

using the option 'General restrictions'. To do this in PcGive, under 'Model',
choose 'Model settings', select the option 'Cointegrated VAR' and in the
window that appears set the cointegration rank (here we change '3' to '2',
since we have chosen r = 2). Click the 'General restrictions' option, type the
relevant restrictions into the window (note that in the 'Model' the parameters
are identified by '&' and a number—see Figure A.5), click OK in this window
(and the next) and the results will be written into Give Win (Figure A.6—see
also the top half of Box 6.1).

CONCLUSION

For the applied economist wishing to estimate cointegration relations and then
to test for linear restrictions, PcGive 10.1 is a flexible option. But there are
others. Harris (1995) compared three of the most popular options available in
the 1990s (Microfit 3.0, Cats (in Rats) and PcFiml—the latter the predecessor
to the current PcGive). The Cats program9 has seen little development since its
9 Cointegration Analysis of Times Series (Cats in Rats), version 1.0, by Henrik Hansen
and Katrina Juselius, distributed by Estima.
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Cointegrated VAR (4) in:
[0] - rm
tl] = y
[2] = dp
[3] = rstar
Unrestricted variables:
[0] = dumrst
[1] = dumdp
[2] = dumdp 1
[3] = Constant
[4] = CSeasonal
[5] = CSeasonal_l
[6] = CSeasonal_2
Restricted variables:
[0] = Trend
Number of lags used in the analysis: 4

General cointegration restrictions:
&8=-l;&9=l;&12=0;
&13=0;&14=-1;
&2=0;&3=0;&6=0;&7=0;

beta
rm
y
dp
rstar
Trend

-1.0000
1.0000
-6.5414
-6.6572
0.00000

0.00000
-1.0000
2.8091
-1.1360

0.0066731

Standard errors of beta
rm
y
dp
rstar
Trend

alpha
rm
y
dp
rstar

0.00000
0.00000
0.88785
0.33893
0.00000

0.17900
0.00000

-0.011637
0.00000

0.00000
0.00000
0.46671
0.19346

0.00020557

0.083003
0.00000
-0.15246
0.00000

Standard errors of alpha
rm 0.018588 0.074038
y 0.00000 0.00000
dp 0.0078017 0.031076
rstar 0.00000 0.00000

log—likelihood 1290.6274 -T/2log|Omega| 1863.87857
no. of observations 101
rank of long-run matrix 2
beta is identified
AIC -35.2253
HQ -34.3344

no. of parameters 85
no. long-run restrictions 5

SC
FPE

-33.0245
1.08703e-015

LR test of restrictions: Chi"2(5) = 3.6020 [0.6080]

Figure A6. Output from testing restrictions on a and 3 using 'General restrictions' in
PcGive 10.1.
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inception (although there is an 1(2) version available as a free download for
users of the standard 7(1) version of Cats). Microfit 4.010 offers a modelling
strategy based closely on the approach used in, for example, Garratt, Lee,
Pesaran and Shin (1999), whereby the user moves toward estimating the con-
ditional 7(1) model with exogenous variables. All three packages have their
strengths and limitations (in comparison with each other), and therefore it is
likely that different users will have different views on which they prefer.

10 Microfit 4.0, An Interactive Econometric Analysis, developed by Hashem Pesaran and
Bahram Pesaran and distributed by Oxford University Press.
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Table A.O Seasonally unadjusted data for UK money demand model, 1963ql–1989q2
(for sources see Hendry and Ericsson, 1991, and Ericsson, Hendry and Tran, 1992).
These data are available in various formats on the website for the book (together with
other data sets used).

mt Pt R

11.24249
11.30940
11.31434
11.35035
11.32181
11.36470
11.36434
11.39999
11.34351
11.38189
11.39172
11.41249
11.37748
11.40192
11.41333
11.42255
11.40622
11.43789
11.44467
11.46116
11.45502
11.46472
11.49327
11.52263
11.45767
11.49481

8.923458
8.950517
8.963 848
9.016422
8.992091
9.002809
9.023 770
9.048013
9.021 326
9.035228
9.046821
9.085 797
9.075036
9.070 388
9.080431
9.085287
9.076 195
9.092274
9.132717
9.158758
9.130891
9.148518
9.161006
9.198470
9.146482
9.128208

–2.199126
-2.181253
-2.182139
-2.164564
–2.168929
–2.148149
-2.143021
-2.129472
–2.119431
-2.107018
-2.099644
-2.087474
–2.081844
-2.066723
-2.059639
-2.046 394
-2.047943
-2.039452
-2.034851
-2.027229
-2.009915
–1.991431
-1.977607
–1.965399
-1.954749
–1.944911

0.043 125
0.043 542
0.042083
0.043 542
0.048958
0.050000
0.050 746
0.067 300
0.075 200
0.067900
0.065033
0.062933
0.062317
0.063 350
0.074800
0.073021
0.063 646
0.056458
0.055833
0.072708
0.080 104
0.082 500
0.076771
0.074375
0.084896
0.092 500

(continued)
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Table A.0 (cont.)

yt
11.50790
11.54101
11.46955
11.52554
11.53734
11.57953
11.50149
11.55421
11.57429
11.60788
11.54471
11.59017
11.58717
11.66326
11.65699
11.66942
11.68661
11.70770
11.63317
11.66911
11.69254
11.70673
11.63186
11.64189
11.65736
11.69141
11.65829
11.67424
11.70458
11.74065
11.67640
11.69182
11.71070
11.74762
11.71093
11.73370
11.75159
11.76909
11.72591
11.78356
11.78988
11.80906
11.76507
11.73993
11.75840

m,

9.143239
9.201 653
9.166428
9.206182
9.226312
9.290941
9.296736
9.311079
9.348906
9.397040
9.409320
9.453241
9.470233
9.529387
9.503455
9.569498
9.547008
9.579 166
9.538432
9.569498
9.594829
9.681674
9.681403
9.712169
9.765979
9.808451
9.824644
9.849699
9.900239
9.913141
9.917179
9.958089

10.03776
10.11013
10.13703
10.15654
10.20835
10.25991
10.26062
10.27470
10.31269
10.34401
10.31778
10.33932
10.33973

—
—
-
-
—
-
-.
-:
-:
-
-
-

STATIS

Pi

1.933784
1.918684
1.899122
1.877971
1.857899
1.840110
1.819542
1.795767
1.775492
1.761424
1.746404
1.733302
1.707602

-1.689022
-
-
-
—
-
—
-
—
-
—
-
—
-
-
—
—
-

1.665479
1.653912
.611941
.566857
.520512
.461 880
.413460
.366492
.300851
.243060
.196666
.162831
.125546
.090049
.058 142
.019154
.979 763

-0.947265
-0.926593
- .914542
-0.885761
-0.862276
- .839561
–0.813960
-0.787678
-0.752473
-0.701 381
-0.662424
-0.618782
-0.574298
-0.542832

TICAL APPENDIX

R

0.096042
0.089688
0.091042
0.080417
0.075 104
0.071 979
0.075 104
0.065208
0.058021
0.047917
0.049 583
0.056875
0.077500
0.080833
0.100833
0.089 167
0.127292
0.147500
0.155625
1.133125
0.127708
0.126042
0.113750
0.097 708
0.106042
0.114688
0.093021
0.109375
0.117187
0.151250
0.114167
0.078958
0.067 396
0.061458
0.065937
0.090937
0.096667
0.118229
0.129167
0.126875
0.141979
0.162396
0.182083
0.172500
0.158750
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y<
11.75420
11.71160
11.71380
11.76178
11.77259
11.74381
11.74304
11.76609
11.78841
11.77779
11.77229
11.81789
11.84090
11.82017
11.80500
11.83675
11.88724
1 1 .859 27
11.84622
11.87596
11.91071
11.88705
11.89537
11.92995
11.96828
11.92837
11.93445
12.00155
12.02424
11.99932
12.00975
12.048 89
12.08253
12.04665
12.04674

mt

10.38259
10.39513
10.43479
10.45085
10.49002
10.48637
10.51263
10.54057
10.59751
10.62838
10.65573
10.663 50
10.704 14
10.74447
10.78932
10.81689
10.85048
10.88675
10.93218
10.97692
11.01794
11.06963
11.13270
11.20243
11.221 17
11.279 37
11.35025
11.39263
11.42810
11.46998
11.52171
11.55202
11.56216
11.59819
11.64730

Pt

-0.517011
-0.500051
-0.469844
–1.448007
-0.429092
-0.415667
–0.392746
-0.379944
-0.368314
-0.349416
-0.340 520
-0.328087
–0.318278
-0.306661
-0.286 749
-0.274042
-0.257217
-0.236862
-0.227403
–0.228156
–0.222518
–0.220771
-0.219899
-0.216665
–0.195650
–0.185848
–0.171382
-0.165111
-0.155835
–0.150707
–0.130678
–0.114850
-0.101 147
-0.084796
-0.061 237

R

0.153540
0.131042
0.124687
0.148229
0.157188
0.140417
0.133854
0.111667
0.100417
0.112708
0.100208
0.098333
0.092917
0.092 083
0.093 750
0.110457
0.096065
0.114193
0.084310
0.053998
0.042187
0.037409
0.026 567
0.030419
0.038817
0.029188
0.027 763
0.036876
0.026459
0.029 792
0.029166
0.049266
0.050708
0.046 375
0.054 700
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Table A.I Empirical cumulative distribution of f for p =

Sample
size
T

T

25
50

100
250
500
oc

25
50

100
250
500
oc

TT

25
50

100
250
500
oc

Probability of a

0.01

-2.66
-2.62
-2.60
-2.58
-2.58
-2.58

-3.75
-3.58
-3.51
-3.46
-3.44
-3.43

-4.38
-4.15
-4.04
-3.99
-3.98
-3.96

0.025

-2.26
-2.25
-2.24
-2.23
-2.23
-2.23

-3.33
-3.22
-3.17
-3.14
-3.13
-3.12

-3.95
-3.80
-3.73
-3.69
-3.68
-3.66

0.05

-1.95
-1.95
-1.95
-1.95
-1.95
-1.95

-3.00
-2.93
-2.89
-2.88
-2.87
-2.86

-3.60
-3.50
-3.45
-3.43
-3.42
-3.41

0.10

- .60
- .61
- .61
- .62
- .62
- .62

-2.63
-2.60
-2.58
-2.57
-2.57
-2.57

-3.24
-3.18
-3.15
-3.13
-3.13
-3.12

1 (see Table 3.2).

smaller value

0.90

0.92
0.91
0.90
0.89
0.89
0.89

-0.37
-0.40
-0.42
-0.42
-0.43
-0.44

-1.14
-1.19
-1.22
-1.23
-1.24
-1.25

0.95

1.33
1.31
1.29
1.29
1.28
1.28

0.00
-0.03
-0.05
-0.06
-0.07
-0.07

-0.80
-0.87
-0.90
-0.92
-0.93
-0.94

0.975

.70

.66

.64

.63

.62

.62

0.34
0.29
0.26
0.24
0.24
0.23

-0.50
-0.58
-0.62
-0.64
-0.65
-0.66

0.99

2.16
2.08
2.03
2.01
2.00
2.00

0.72
0.66
0.63
0.62
0.61
0.60

-0.15
-0.24
-0.28
-0.31
-0.32
-0.33

Standard errors (SEs) of the estimates vary, but most are less than 0.02.
Source: Fuller (1976), reprinted by permission of John Wiley & Sons.

Table A.2 Empirical distribution of <D3 (see Table 3.2).

Sample
size
T

25
50

100
250
500
oc

SE

Probability of a smaller value

0.01

0.74
0.76
0.76
0.76
0.76
0.77

0.004

0.025

0.90
0.93
0.94
0.94
0.94
0.94

0.004

0.05 0.10

1.08 1.33
1.11
1.12
1.13
1.13
1.13

.37

.38

.39

.39

.39

0.003 0.004

0.90

5.91
5.61
5.47
5.39
5.36
5.34

0.015

0.95

7.24
6.73
6.49
6.34
6.30
6.25

0.020

0.975

8.65
7.81
7.44
7.25
7.20
7.16

0.032

0.99

10.61
9.31
8.73
8.43
8.34
8.27

0.058

Source: Dickey and Fuller (1981), reprinted by permission of the Econometric Society.
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Table A.3 Empirical distribution of Q>\ (see Table 3.2).

Sample
size
T

25
50

100
250
500

OG

SE

Probability of a smaller value

0.01

0.29
0.29
0.29
0.30
0.30
0.30

0.002

0.025

0.38
0.39
0.39
0.39
0.39
0.40

0.002

0.05

0.49
0.50
0.50
0.51
0.51
0.51

0.002

0.10

0.65
0.66
0.67
0.67
0.67
0.67

0.002

0.90

4.12
3.94
3.86
3.81
3.79
3.78

0.01

0.95

5.18
4.86
4.71
4.63
4.61
4.59

0.02

0.975

6.30
5.80
5.57
5.45
5.41
5.38

0.03

0.99

7.88
7.06
6.70
6.52
6.47
6.43

0.05

Source: Dickey and Fuller (1981), reprinted by permission of the Econometric Society.

Table A.4 Additive and innovative outlier tests for unit root: critical values
(see Table 3.4).

Model

Crash model
Slowdown model

Percentiles

0.01

-5.34
-5.57

0.025

-5.02
-5.30

0.05

-4.80
-5.08

0.10

-4.58
-4.82

Source: Tables 4.2–4.5 in Perron (1994), reprinted by permission of Macmillan.
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Table A.6 Response surfaces for critical values of cointegration tests (see Table 4.1).

n

1

1

1

2

2

3

3

4

4

5

5

6

6

Model

No constant, no trend

Constant, no trend

Constant + Trend

Constant, no trend

Constant + Trend

Constant, no trend

Constant + Trend

Constant, no trend

Constant + Trend

Constant, no trend

Constant + Trend

Constant, no trend

Constant + Trend

Point (%)

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

1
5

10

4>x>

-2.5658
-1.9393
-1.6156

-3.4336
-2.8621
-2.5671

-3.9638
-3.4126
-3.1279

-3.9001
-3.3377
-3.0462

-4.3266
-3.7809
-3.4959

-4.2981
–3.7429
-3.4518

-4.6676
–4.1193
-3.8344

-4.6493
-4.1000
-3.8110

-4.9695
-4.4294
-4.1474

-4.9587
-4.4185
-4.1327

-5.2497
-4.7154
-4.4345

-5.2400
-4.7048
-4.4242

-5.5127
-4.9767
-4.6999

SE

(0.0023)
(0.0008)
(0.0007)

(0.0024)
(0.0011)
(0.0009)

(0.0019)
(0.0012)
(0.0009)

(0.0022)
(0.0012)
(0.0009)

(0.0022)
(0.0013)
(0.0009)

(0.0023)
(0.0012)
(0.0010)

(0.0022)
(0.0011)
(0.0009)

(0.0023)
(0.0012)
(0.0009)

(0.0021)
(0.0012)
(0.0010)

(0.0026)
(0.0013)
(0.0009)

(0.0024)
(0.0013)
(0.0010)

(0.0029)
(0.0018)
(0.0010)

(0.0033)
(0.0017)
(0.0011)

4>i

-1.960
-0.398
-0.181

-5.999
-2.738
–1.438

-8.353
-4.039

-2.418

-10.534
-5.967
-4.069

-15.531
-9.421
-7.203

-13.790
-8.352
-6.241

-18.492
-12.024
-9.188

-17.188
-10.745
-8.317

-22.504
-14.501
-11.165

-22.140
-13.641
-10.638

-26.606
-17.432
-13.654

-26.278
-17.120
-13.347

-30.735
-20.883
–16.445

4>2

–10.04
0.0
0.0

-29.25
-8.36
-4.48

-47.44
-17.83
-7.58

-30.03
-8.98
-5.73

-34.03
-15.06
-4.01

-46.37
-13.41
-2.79

-49.35
-13.13
-4.85

-59.20
-21.57
-5.19

-50.22
-19.54
-9.88

-37.29
-21.16
-5.48

-49.56
-16.50
-5.77

-41.65
-11.17

0.0

-52.50
-9.05

0.0

Source: MacKinnon (1991), reprinted by permission of Oxford University Press.
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Table A.7 Approximate asymptotic critical values for cointegration model with a
break (see equation (4.12)).

No. of regressors Level

m=l ADF*,Z;
C
C/T
C/S

c
C/T
C/S

m = 2 ADF*,Zt;
C
C/T
C/S

°c
C/T
C/S

m = 3 ADF*,Zt;
C
C/T
C/S

c
C/T
C/S

m = 4 ADF*,Zt;
C
C/T
C/S

c
C/T
C/S

0.01

-5.13
-5.45
-5.47

-50.07
-57.28
-57.17

-5.44
-5.80
-5.97

-57.01
-64.77
-68.21

-5.77
-6.05
-6.51

-63.64
-70.27
-80.15

-6.05
-6.36
-6.92

-70.18
-76.95
-90.35

0.025

-4.83
-5.21
-5.19

-45.01
-52.09
-51.32

-5.16
-5.51
-5.73

-51.41
-58.57
-63.28

-5.50
-5.79
-6.23

-57.96
-64.26
-73.91

-5.80
-6.07
-6.64

-64.41
-70.56
-84.00

0.05

-4.61
-4.99
-4.95

-40.48
-47.96
-47.04

-4.92
-5.29
-5.50

-46.98
-53.92
-58.33

-5.28
-5.57
-6.00

-53.58
-59.76
-68.94

-5.56
-5.83
-6.41

-59.40
-65.44
-78.52

0.10

-4.34
-4.72
-4.68

-36.19
-43.22
-41.85

-4.69
-5.03
-5.23

-42.49
-48.94
-52.85

-5.02
-5.33
-5.75

-48.65
-54.94
-63.42

-5.31
-5.59
-6.17

-54.38
-60.12
-72.56

0.975

-2.25
-2.72
-2.55

-10.63
-15.90
-13.15

-2.61
-3.01
-3.12

-14.27
-19.19
-19.72

-2.96
-3.33
-3.65

-18.20
-22.72
-26.64

-3.26
-3.59
-4.12

-22.04
-26.46
-33.69

These critical values (c.v.s) are based on the response surface:

c.v. — T/>O 4- t/>|rt~' + Error

where c.v. is the critical value obtained from 10,000 replications at sample size n — 50, 100, 150,
200, 250, 300. The asymptotic c.v. is the ordinary least squares (OLS) estimate of ^. Z^, Z* and
ADF* refer to the Phillips Za, Zt, and the augmented Dickey-Fuller (ADF) test statistics. The
symbols C, C/T and C/S refer to models (i) underlying equation (4.12) — see text for details.
Source: Gregory and Hansen (1996, table 1), reprinted by permission of Elsevier Science SA.
Lausanne, Switzerland (publishers of the Journal of Econometrics).
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Table A.8 Critical values of the (t-ratio) ECM test (different number of regressors).

T

A (with constant)

( k = 1 ) 25
50

100
500

5,000

(2) 25
50

100
500

5,000

(3) 25
50

100
500

5,000

(4) 25
50

100
500

5,000

(5) 25
50

100
500

5,000

0.01

-4.12
-3.94
-3.92
-3.82
-3.78

-4.53
-4.29
-4.22
-4.11
-4.06

-4.92
-4.59
-4.49
-4.47
-4.46

-5.27
-4.85
-4.71
-4.62
-4.57

-5.53
-5.04
-4.92
-4.81
-4.70

0.05

-3.35
-3.28
-3.27
-3.23
-3.19

-3.64
-3.57
-3.56
-3.50
-3.48

-3.91
-3.82
-3.82
-3.77
-3.74

-4.18
-4.05
-4.03
-3.99
-3.97

-4.46
-4.43
-4.30
-4.39
-4.27

0.10

-2.95
-2.93
-2.94
-2.90
-2.89

-3.24
-3.20
-3.22
-3.19
-3.19

-3.46
-3.45
-3.47
-3.45
-3.42

-3.68
-3.64
-3.67
-3.67
-3.66

-3.82
-3.82
-3.85
-3.86
-3.82

0.25

-2.36
-2.38
-2.40
-2.40
-2.41

-2.60
-2.63
-2.67
-2.66
-2.65

-2.76
-2.84
-2.90
-2.90
-2.89

-2.90
-3.03
-3.10
-3.11
-3.10

-2.99
-3.18
-3.28
-3.32
-3.29

(continued)
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Table A.8 (cont.)

T

B (with constant and trend)

( k = 1 ) 25
50

100
500

5,000

(2) 25
50

100
500

5,000

(3) 25
50

100
500

5,000

(4) 25
50

100
500

5,000

(5) 25
50

100
500

5,000

0.01

-4.77
-4.48
-4.35
-4.30
-4.27

-5.12
-4.76
-4.60
-4.54
-4.51

-5.42
-5.04
-4.86
-4.76
-4.72

-5.79
-5.21
-5.07
-4.93
-4.89

-6.18
-5.37
-5.24
-5.15
-5.11

STATI

0.05

-3.89
-3.78
-3.75
-3.71
-3.69

-4.18
-4.04
-3.98
-3.94
-3.91

-4.39
-4.25
-4.19
-4.15
-4.12

-4.56
-4.43
-4.38
-4.34
-4.30

-4.76
-4.60
-4.55
-4.54
-4.52

STICAL APPENDIX

0.10

-3.48
-3.44
-3.43
-3.41
-3.39

-3.72
-3.66
-3.66
-3.64
-3.62

-3.89
-3.86
-3.86
-3.84
-3.82

-4.04
-4.03
-4.02
-4.02
-4.00

-4.16
-4.19
-4.19
-4.20
-4.18

0.25

-2.88
-2.92
-2.91
-2.91
-2.89

-3.04
-3.09
-3.11
-3.11
-3.10

-3.16
-3.25
-3.30
-3.31
-3.29

-3.26
-3.39
-3.46
-3.47
-3.45

-3.31
-3.53
-3.66
-3.69
-3.67

Source: Banerjee, Dolado and Mestre (1998, table 1), reprinted by permission of the Journal of
Time Series Forecasting.



Table A.9 Critical values for the t and F statistics on TTJ and 714 (see Table 4.3).

Cointegrated
regressors with
determinants

I

LSD

T

48
100
136
200

48
100
136
200

48
100
136
200

0.01

-4.04
-3.94
-3.90
-3.89

-3.96
-3.86
-3.84
-3.86

-4.87
-4.77
-4.77
-4.76

'*

0.025

-3.66
-3.59
-3.57
-3.56

-3.57
-3.54
-3.54
-3.52

-4.49
-4.40
-4.42
-4.40

0.05

-3.34
-3.30
-3.28
-3.29

-3.27
-3.27
-3.26
-3.26

-4.18
-4.12
-4.14
-4.12

0.01

-3.00
-3.00
-2.98
-2.98

-2.93
-2.95
-2.96
-2.96

-3.84
-3.81
-3.81
-3.81

0.01

-2.99
-3.01
-3.01
-3.04

-2.93
-2.95
-2.99
-2.95

-2.97
-3.02
-2.99
-2.96

0.025

-2.46
-2.54
-2.53
-2.56

-2.44
-2.49
-2.52
-2.53

-2.48
-2.56
-2.55
-2.52

'„

0.05

-2.05
-2.12
-2.15
-2.13

-2.03
-2.08
-2.10
-2.13

-2.07
-2.14
-2.14
-2.13

0.95

2.05
2.10
2.13
2.13

2.12
2.12
2.14
2.15

2.08
2.10
2.13
2.12

0.975

2.42
2.50
2.51
2.52

2.54
2.52
2.52
2.55

2.47
2.50
2.50
2.52

0.99

2.90
2.94
2.92
2.99

2.96
2.95
2.98
3.00

2.95
2.98
2.97
2.97

0.50

2.59
2.61
2.60
2.63

2.59
2.59
2.60
2.61

4.71
4.70
4.71
4.71

0.90

6.01
5.91
5.83
5.84

5.96
5.83
5.83
5.79

9.00
8.66
8.57
8.57

F

0.95

7.46
7.21
7.11
7.11

7.35
7.10
7.13
7.01

10.65
10.12
9.99
9.99

0.975

8.81
8.63
8.39
8.35

8.77
8.42
8.40
8.26

12.18
11.48
11.41
11.41

0.99

10.80
10.24
10.14
10.10

10.51
10.15
10.09
10.02

14.11
13.26
13,25
13.25

Source: Engle, Granger, Hylleberg and Lee (1993, table A.I), reprinted by permission of Elsevier Science SA, Lausanne. Switzerland (publishers of the Journal
of Econometrics).



Table A.10 Critical values of the cointegration rank test statistics: model 2 in text (see equation (5.1)).

n - r\k"

0.05
12
11
10
9
8
7
6
5
4
3
2
1

0.10
12
11
10
9
8
7
6
5
4
3
2
1

^trace

0

341.2
291.7
245.7
204.0
166.1
132.5
102.6
75.98
53.48
34.87
20.18

9.16

332.0
284.2
238.3
197.7
160.3
127.2
97.87
71.81
49.95
31.93
17.88
7.53

1

365.1
314.2
265.9
223.8
182.7
148.0
116.3
86.58
62.75
42.40
25.23
12.45

356.4
305.4
259.0
216.4
176.4
142.2
110.5
82.17
59.07
39.12
22.76
10.50

2

389.4
336.4
287.0
242.3
199.7
163.1
128.9
97.57
72.15
49.43
30.46
15.27

380.3
328.1
279.0
234.7
192.9
157.0
123.5
92.93
67.83
45.89
27.58
13.21

3

413.6
358.7
307.2
260.8
216.6
178.0
141.7
108.6
81.25
56.28
35.46
17.80

403.8
350.1
299.3
253.0
209.2
171.5
136.0
103.6
76.69
52.71
32.38
15.68

4

437.1
381.0
327.8
279.5
232.8
192.5
154.4
119.8
90.60
63.10
39.94
20.63

427.3
371.6
319.2
271.4
226.1
185.7
148.3
114.4
85.34
59.23
36.84
18.24

5

461.5
403.4
348.5
297.9
249.3
206.5
167.0
130.8
99.37
69.72
44.56
23.02

450.6
393.4
338.9
289.3
241.8
199.5
160.6
125.2
93.92
65.69
41.33
20.57

0

75.51
69.76
64.11
57.95
52.06
46.47
40.53
34.40
28.27
22.04
15.87
9.16

72.09
66.47
60.66
54.91
49.04
43.44
37.65
31.73
25.80
19.86
13.81
7.53

1

78.57
73.11
66.85
61.34
55.26
49.57
43.76
37.48
31.48
25.54
18.88
12.45

75.35
69.48
63.77
58.17
52.23
46.59
40.93
34.99
29.01
22.98
16.74
10.50

^max

2

81.74
76.02
70.17
64.47
58.21
52.87
46.90
40.57
34.69
28.49
21.92
15.27

78.55
72.75
66.78
61.21
55.38
49.67
44.05
37.81
32.00
26.08
19.67
13.21

3

84.82
79.23
73.47
67.77
61.59
55.81
49.97
43.62
37.83
31.56
24.97
17.80

81.40
75.71
69.98
64.27
58.31
52.67
47.09
40.86
35.08
28.83
22.54
15.68

4

87.90
82.36
76.20
70.86
64.40
58.85
52.88
46.77
40.19
34.15
27.82
20.63

84.36
78.68
72.86
67.35
61.28
55.61
49.85
43.80
38.03
31.73
25.27
18.24

5

91.11
85.20
79.28
73.65
67.45
61.74
55.65
49.80
43.58
37.19
30.50
23.02

87.24
81.72
75.88
70.32
64.24
58.57
52.67
46.87
40.84
34.56
27.87
20.57

" Number of exogenous I(1) variables in the model.
Source: Pcsaran et at. (2000, table 6b); reproduced by permission of Eilsevier Science SA. Lausanne, Swit/.crland (publishers of the Journal of Econometrics).



Table A.11 Critical values of the cointegration rank test statistics: model 3 in text (see equation (5.1)).

n - r\ka

0.05
12
11
10
9
8
7
6
5
4
3
2
1

0.10
12
11
10
9
8
7
6
5
4
3
2
1

-^ trace ^max

0

328.5
279.8
235.0
194.4
157.8
124.6
95.87
70.49
48.88
31.54
17.86
8.07

319.6
272.7
227.7
187.9
152.0
119.7
91.40
66.23
45.70
28.78
15.75
6.50

1

352.4
302.2
255.5
214.4
174.2
140.5
109.6
81.45
58.63
38.93
23.32
11.47

343.5
294.1
248.3
207.1
168.4
134.9
104.4
76.95
54.84
35.88
20.75

9.53

2

376.5
324.4
276.5
232.7
191.6
155.9
122.8
92.42
68.06
46.44
28.42
14.35

367.5
316.9
268.5
225.3
184.8
149.7
117.3
87.93
63.57
42.67
25.63
12.27

3

400.8
347.7
297.2
251.6
208.3
170.7
135.4
103.7
77.21
53.41
33.35
16.90

391.1
338.8
288.8
243.7
201.3
164.2
130.0
98.45
72.69
49.56
30.37
14.76

4

424.3
369.5
317.4
270.4
224.8
185.6
148.4
114.6
86.42
60.19
38.15
19.73

415.0
360.1
309.1
262.1
217.7
178.3
142.1
109.3
81.40
56.08
35.06
17.39

5

448.8
391.5
337.7
288.6
241.2
199.8
160.9
125.9
95.14
66.94
42.73
22.19

438.0
381.8
328.9
280.2
233.6
192.3
154.6
120.4
89.90
62.65
39.59
19.63

0

74.62
68.91
63.32
57.20
51.15
45.53
39.83
33.64
27.42
21.12
14.88
8.07

71.36
65.63
59.85
54.10
48.23
42.70
36.84
31.02
24.99
19.02
12.98
6.50

1

77.72
72.31
65.98
60.66
54.44
48.91
42.95
36.80
30.71
24.59
18.06
11.47

74.61
68.80
63.00
57.56
51.47
45.74
40.21
34.10
28.27
22.15
15.98
9.53

2

80.87
75.22
69.40
63.68
57.54
52.22
46.09
39.85
33.87
27.75
21.07
14.35

77.65
71.95
65.97
60.49
54.54
48.96
43.25
37.15
31.30
25.21
18.78
12.27

3

83.93
78.42
72.56
67.04
60.80
55.04
49.10
42.92
37.08
30.74
24.22
16.90

80.60
75.02
69.13
63.59
57.55
51.93
46.30
40.02
34.30
28.11
21.67
14.76

4

87.13
81.56
75.48
70.20
63.54
58.05
52.06
45.98
39.99
33.63
26.94
19.73

83.55
77.86
72.08
66.59
60.46
54.68
49.06
42.95
37.21
30.85
24.37
17.39

5

90.23
84.41
78.58
72.98
66.61
61.03
54.84
49.02
42.68
36.38
29.79
22.19

86.49
80.86
74.91
69.53
63.40
57.85
51.90
45.97
39.99
33.67
27.05
19.63

" Number of exogenous I(1) variables in the model.
Source: Pesaran et al. (2000, table 6b); reproduced by permission of Elsevier Science SA, Lausanne, Switzerland (publishers of the Journal of Econometrics).



Table A.12 Critical values of the cointegration rank test statistics: model 4 in text (see equation (5.1)).

n - r\ka

0.05
12
11
10
9
8
7
6
5
4
3
2
1

0.10
12
11
10
9
8
7
6
5
4
3
2
1

Atrace ^max

0

364.8
314.1
265.8
222.6
183.0
147.3
115.9
87.17
63.00
42.34
25.77
12.39

355.9
305.8
258.0
215.9
176.9
141.8
110.6
82.88
59.16
39.34
23.08
10.55

1

389.2
335.5
286.8
242.4
199.1
163.0
128.8
97.83
72.10
49.36
30.77
15.44

379.8
327.1
278.9
235.1
192.8
157.0
123.3
93.13
68.04
46.00
27.96
13.31

2

413.5
358.0
307.0
260.4
215.8
177.8
141.7
108.9
81.20
56.43
35.37
18.08

403.3
349.2
298.9
253.2
209.1
171.6
136.2
103.7
76.68
52.71
32.51
15.82

3

437.3
380.5
327.7
279.3
232.9
192.8
154.3
120.0
90.02
63.54
40.37
20.47

426.8
371.0
319.2
271.2
225.5
185.9
148.4
114.7
85.59
59.39
37.07
18.19

4

460.7
402.3
347.9
297.3
249.2
207.1
166.9
130.6
99.11
69.84
45.10
23.17

450.3
392.4
338.7
289.5
241.7
199.9
160.9
125.1
93.98
65.90
41.57
20.73

5

484.3
423.7
367.8
315.6
265.3
221 .4
179.6
141.2
107.6
76.82
49.52
25.70

473.6
414.1
358.9
306.9
257.5
214.0
173.0
135.8
102.5
72.33
46.10
23.11

0

78.42
72.50
67.05
61.27
55.14
49.32
43.61
37.86
31.79
25.42
19.22
12.39

75.02
69.45
63.60
58.09
52.08
46.54
40.76
35.04
29.13
27.10
17.18
10.55

1

81.85
75.77
70.20
64.53
58.08
52.62
46.97
40.89
34.70
28.72
22.16
15.44

78.09
72.72
66.78
61.42
55.25
49.70
44.01
37.92
32.12
26.10
19.79
13.31

2

84.73
78.97
73.82
67.67
61.22
55.83
50.10
43.72
37.85
31.68
24.88
18.08

81.31
75.59
69.90
64.28
58.18
52.69
47.08
40.94
35.04
29.00
22.53
15.82

3

87.82
81.99
76.15
70.71
64.42
59.01
53.08
46.84
40.98
34.65
27.80
20.47

84.34
78.45
72.94
67.43
61.19
55.51
49.78
43.92
38.04
31.89
25.28
18.19

4

90.74
85.08
78.87
73.62
67.45
62.00
55.83
49.76
43.75
37.44
30.55
23.17

87.34
81.52
75.64
70.30
63.99
58.58
52.73
46.74
41.01
34.66
27.86
20.73

5

93.75
87.98
81.89
76.51
70.48
64.61
58.78
52.63
46.66
40.12
33.26
25.70

90.08
84.23
78.53
73.07
67.02
61.37
55.62
49.59
43.66
37.28
30.54
23.11

a Number of exogenous I(1) variables in the model.
Source: Pcsarun et al. (2000, table 6b); reproduced by permission of Elscvier Science SA, Lausanne, Switzerland (publishers of the Journal of Econometrics).



STATISTICAL APPENDIX

Table A. 13 Sample size is 25; the data-generating process (d.g.p.) contains no trend
and the constant term \i is unrestricted.

Dim 50% 80% 90% 95% 97.5% 99% Mean Var

(a) Maximal eigenvalue
1 2.43
2 7.86
3 13.80
4 20.36

(b) Trace
1 2.43
2 9.78
3 21.79
4 39.32

4.93
11.38
18.16
25.56

4.93
13.99
27.69
47.10

6.70
13.70
20.90
28.56

6.70
16.56
31.22
51.59

8.29
15.75
23.26
31.66

8.29
18.90
34.37
55.92

9.91
17.88
25.66
34.47

9.91
21.26
37.44
59.60

12.09
20.51
28.57
37.61

12.09
23.70
40.98
64.33

3.06
8.54

14.46
21.07

3.06
10.45
22.54
40.09

7.36
14.76
22.80
32.97

7.36
20.64
42.57
77.08

Source: Frames (1994, table A.1); reproduced by permission of Elsevier Science SA, Lausanne.
Switzerland (publishers of the Journal of Econometrics).

Table A. 14 Sample size is 25; the d.g.p. contains no trend and the constant term
restricted by i = «P0.

Dim 50% 80% 90% 95% 97.5% 99% Mean Var

(a) Maximal eigenvalue
1 3.55
2 8.82
3 14.56
4 21.01

(b) Trace
1 3.55
2 11.95
3 25.01
4 43.40

6.01
12.15
18.89
26.15

6.01
16.09
31.01
51.38

7.72
14.40
21.56
29.26

7.72
18.63
34.44
55.78

9.35
16.51
23.90
32.18

9.35
20.96
37.85
59.98

10.97
18.36
26.21
34.74

10.97
22.78
40.56
63.51

12.09
20.56
29.44
38.12

12.90
25.71
44.60
67.74

4.14
9.36

15.24
21.69

4.14
12.55
25.74
44.20

7.08
14.33
22.84
32.79

7.08
20.81
44.16
78.19

Source: Franses (1994, table A.2); reproduced by permission of Ekevier Science SA, Lausanne,
Switzerland (publishers of the Journal of Econometrics).
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Table A. 15 Sample size is
unrestricted.

Dim 50% 80%

50, the d.g.p. contains no trend and the constant term ft is

90% 95% 97.5% 99% Mean Var

(a) Maximal eigenvalue
1 2.44
2 7.71
3 13.34
4 19.00

(b) Trace
1 2.44
2 9.51
3 21.07
4 36.86

4.89
11.09
17.44
23.78

4.89
13.57
26.78
44.10

6.40
13.15
19.94
26.63

6.40
16.06
30.07
48.25

8.09
15.18
22.29
29.15

8.09
18.25
32.94
51.98

9.54
16.98
24.31
31.93

9.54
20.13
35.59
55.88

11.39
19.18
26.98
35.20

11.39
22.81
39.10
59.94

3.02
8.30

13.92
19.64

3.02
10.18
21.75
37.59

6.73
13.42
20.61
28.05

6.73
19.02
38.87
65.89

Source: Franses (1994, table A.3); reproduced by permission of Elsevier Science SA, Lausanne.
Switzerland (publishers of the Journal of Econometrics).

Table A.16 Sample size is 50, the d.g.p. contains no trend and the constant term
restricted by |t = «Po.

Dim 50% 80% 90% 9.5% 97.5% 99% Mean Var

(a) Maximal eigenvalue
1 3.49
2 8.58
3 13.99
4 19.63

(b) Trace
1 3.49
2 11.74
3 24.16
4 40.88

5.91
12.05
18.01
24.44

5.91
15.79
29.91
48.44

7.59
14.05
20.57
27.23

7.59
18.25
33.08
52.71

9.22
15.99
23.01
29.79

9.22
20.61
36.33
56.62

10.93
17.92
25.24
32.47

10.93
22.85
39.28
60.00

13.06
20.60
27.95
35.33

13.06
25.49
45.58
64.29

4.10
9.19

14.59
20.32

4.10
12.32
24.79
41.73

7.05
13.94
20.88
27.78

7.05
20.40
40.81
69.24

Source: Franses (1994, table A.4); reproduced by permission of Elsevier Science SA, Lausanne.
Switzerland (publishers of the Journal of Econometrics).
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