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Preface

This book is intended for students and others working in the field of economics
who want a relatively non-technical introduction to applied time series econo-
metrics and forecasting involving non-stationary data. The emphasis is on the
why and how, and as much as possible we confine technical material to boxes
or point to the relevant sources that provide more details. It is based on an
earlier book by one of the present authors entitled Using Cointegration Analysis
in Econometric Modelling (see Harris, 1995), but as well as updating the
material covered in the earlier book, there are two major additions involving
panel tests for unit roots and cointegration, and the modelling and forecasting
of financial time series.

We have tried to incorporate into this book as many of the latest tech-
niques in the area as possible and to provide as many examples as necessary to
illustrate them. To help the reader, one of the major data sets used is supplied
in the Statistical Appendix, which also includes many of the key tables of
critical values used for various tests involving unit roots and cointegration.
There is also a website for the book (http://www.wiley.co.uk/harris) from
which can be retrieved various other data sets we have used, as well as econo-
metric code for implementing some of the more recent procedures covered in
the book.

We have no doubt made some mistakes in interpreting the literature, and
we would like to thank in advance those readers who might wish to point them
out to us. We would also like to acknowledge the help we have received from
those who have supplied us with their econometric programming code, data,
and guidance on the procedures they have published in articles and books.
Particular thanks are due to Peter Pedroni (for his generous offer of time in
amending and providing software programmes for Chapter 7), and Robert
Shiller for allowing us to use his Standard & Poor’s (S&P) Composite data
in Chapter 8. We would also like to thank Jean-Phillipe Peters for help with the
G@wRCH 2.3 programme, also used in Chapter 8. Others who generously
provided software include Jorg Breitung, David Harvey, Robert Kunst and
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Johan Lyhagen. Of course, nobody but ourselves take responsibility for the
contents of this book.

We also thank Steve Hardman at Wiley, for his willingness to support this
project and his patience with seeing it to fruition. Finally, permission from the
various authors and copyright holders to reproduce the Statistical Tables is
gratefully acknowledged.



1
______ Introduction and Overview |

Since the mid-1980’s applied economists attempting to estimate time series
econometric models have been aware of certain difficulties that arise when
unit roots are present in the data. To ignore this fact and to proceed to estimate
a regression model containing non-stationary variables at best ignores impor-
tant information about the underlying (statistical and economic) processes
generating the data, and at worst leads to nonsensical (or spurious) results.
For this reason, it is incumbent on the applied researcher to test for the pres-
ence of unit roots and if they are present (and the evidence suggests that they
generally are) to use appropriate modelling procedures. De-trending is not
appropriate (Chapter 2) and simply differencing the data' to remove the
non-stationary (stochastic) trend is only part of the answer. While the use of
differenced variables will avoid the spurious regression problem, it will also
remove any long-run information. In modelling time series data we need to
retain this long-run information, but to ensure that it reflects the co-movement
of variables due to the underlying equilibrating tendencies of economic forces,
rather than those due to common, but unrelated, time trends in the data.

Modelling the long run when the variables are non-stationary is an ex-
panding area of econometrics (both theoretical and applied). It is still fairly
new in that while it is possible to find antecedents in the literature dating back
to, for example, the seminal work of Sargan (1964) on early forms of the error-
correction model, it was really only in 1986 (following the March special issue
of the Oxford Bulletin of Economics and Statistics) that cointegration became a
familiar term in the literature.” It is also a continually expanding area, as
witnessed by the number of articles that have been published since the mid-
1980s. There have been and continue to be major new developments.

"'That is, converting x, to Ax,, where Ax, = x; — x,_;, will remove the non-stationary
trend from the variable (and if it does not, because the trend is increasing over time, then
x, will need to be differenced twice, etc.).

2 Work on testing for unit roots developed a little earlier (e.g., the PhD work of Dickey,
1976 and Fuller, 1976).
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The purpose of this book is to present to the reader those techniques that
have generally gained most acceptance (including the latest developments sur-
rounding such techniques) and to present them in as non-technical a way as
possible while still retaining an understanding of what they are designed to do.
Those who want a more rigorous treatment to supplement the current text are
referred to Banerjee, Dolado, Galbraith and Hendry (1993) and Johansen
(1995a) in the first instance and then of course to the appropriate journals.
It is useful to begin by covering some introductory concepts, leaving a full
treatment of the standard econometric techniques relating to time series data
to other texts (see, for example, Hendry, 1995). This is followed by an overview
of the remainder of the book, providing a route map through the topics
covered starting with a simple discussion of long-run and short-run models
(Chapter 2) and then proceeding through to estimating these models using
multivariate techniques (Chapters 5 and 6). We then cover panel data tests
for unit roots and cointegration (Chapter 7) before concluding with an in-
depth look at modelling and forecasting financial time series (Chapter 8).

SOME INITIAL CONCEPTS

This section will review some of the most important concepts and ideas in time
series modelling, providing a reference point for later on in the book. A fuller
treatment is available in a standard text such as Harvey (1990). We begin with
the idea of a data-generating process (hereafter d.g.p.), in terms of autoregres-
sive and moving-average representations of dynamic processes. This will also
necessitate some discussion of the properties of the error term in a regression
model and statistical inferences based on the assumption that such residuals are
‘white noise’.

Data-generating Processes

As economists, we only have limited knowledge about the economic processes
that determine the observed data. Thus, while models involving such data are
formulated by economic theory and then tested using econometric techniques,
it has to be recognized that theory in itself is not enough. For instance, theory
may provide little evidence about the processes of adjustment, which variables
are exogenous and indeed which are irrelevant or constant for the particular
model under investigation (Hendry, Pagan and Sargan, 1984). A contrasting
approach is based on statistical theory, which involves trying to characterize
the statistical processes whereby the data were generated.

We begin with a very simple stationary univariate model observed over the
sequence of time t = 1..... T:

Vi = pyi—1 + u,; |pl <1 } (ll)

or (1 = pL)y, =y,
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where L is the lag operator such that Ly, = y,_;. This statistical model states
that the variable y, is generated by its own past together with a disturbance (or
residual) term wu,. The latter represents the influence of all other variables
excluded from the model, which are presumed to be random (or unpredictable)
such that u, has the following statistical properties: its expected value (or mean)
is zero [E(u,) = 0] fluctuations around this mean value are not growing or
declining over time (i.c., it has constant variance denoted E(u?) = ¢°); and it
is uncorrelated with its own past [E(u,u,_;) = 0]. Having u, in (1.1) allows », to
also be treated as a random (stochastic) variable.’

This model can be described as a d.g.p., if the observed realization of ¥,
over time is simply one of an infinite number of possible outcomes, each
dependent on drawing a sequence of random numbers u, from an appropriate
(e.g., standard normal) distribution.* Despite the fact that in practice only a
single sequence of y, is observed, in theory any number of realizations is poss-
ible over the same time period. Statistical inferences with respect to this model
are now possible based on its underlying probability distribution.

The model given by equation (1.1) is described as a first-order autoregres-
sive (AR) model or more simply an AR(1) model. It is straightforward to
derive the statistical properties of a series generated by this model. First,
note that (1.1) can be rearranged as:

ye=[1/(1 = pL)Ju (1.2)

It can be shown that 1/(1 — pL) = (1 4+ pL + p*L* 4+ p*L*...), and therefore
the AR(1) model (1.1) can be converted to an infinite order moving average of
the lagged disturbance terms:’

Vo=t + ity + pPup g+ - (1.3}

Taking expectations gives E(y,) = 0 (since E(u,) = 0 for all ¢), thus the mean of
v,, when the d.g.p. is (1.1), is zero. The formula for the variance of y, is
var(y,) = E[{y, — E(y,)}]>. Since in this case the mean of y, is zero, the
formula for the variance simplifies to £(y?). Using this gives:

E(y]) = E(pyi-1 +u,)°
= E(p*y])) + E(u}) + 2pE(y, 1)
=p?E(y? |) +0? (1.4)

3 In contrast, y, would be a deterministic (or fixed) process if it were characterized as
i = pyi—1, wWhich, given an initial starting value of y,, results in y, being known with
complete certainty each time period. Note also that deterministic variables (such as an
intercept of time trend) can also be introduced into (1.1).

4 The standard normal distribution is of course appropriate in the sense that it has a
zero mean and constant variance and each observation in uncorrelated with any other.
3 This property is known as invertibility.
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Repeatedly substituting for E(y2_,) on the right-hand side of (1.4) leads to a
geometric series that converges to E(y?) = /(1 — p?).

The autocovariance of a time series is a measure of dependence between
observations. It is straightforward to derive the autocovariance for an AR(1)
process. Generally, the autocovariance is v, = E[(y, — u)(y,_x — )] for k # 0,
where p represents the mean of y,. When y, is generated by (1.1), since
E(y,) =0, the autocovariance formula simplifies to E(y,y,_;). Using this
formula, it can be shown that the kth autocovariance is given by:

w=pv% k=12 (1.5)

The autocorrelation coefficient for a time series is a standardized measure of
the autocovariance restricted to lie between —1 and 1. The kth autocorrelation
is given by:

El(yvv-w¥

E[(y: — i) (yi—x — p)] Yk (1.6)

Thus the kth autocorrelation when y, is generated by (1.1) is given by p*. Note
that the autocovariances and autocorrelation coefficients discussed above are
population parameters. In practice, the sample equivalents of these amounts
are employed. In particular they are used when specifying time series models
for a particular data set and evaluating how appropriate those models are, as in
the Box—Jenkins procedure for time series analysis (Box and Jenkins, 1970).
These authors were the first to develop a structured approach to time series
modelling and forecasting. The Box-Jenkins approach recognizes the impor-
tance of using information on the autocovariances and autocorrelations of the
series to help identify the correct time series model to estimate. and when
evaluating the fitted disturbances from this model.

Another simple model that is popular in time series econometrics is the
AR(1) model with a constant:

y,=6+p};1_|+u1 lp'< 1 (].7)

Adding a constant to (1.1) allows y, to have a non-zero mean. Specifically, the
mean of y, when (1.7) is the d.g.p. is given by E(y,) = /(1 — p). To see this
note that (1.7) can be written as:

(1-pL)y;=6+u, (1.8)
so that
yie=[1/(1 = pL)](6 + u,)
=(L+p+p*+--)6+ (u +pu_y + p*u 2+ ---) (1.9)
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Since we are assuming that E(u,) = 0, the expected value of (1.9) simplifies to:
E(y)=(0+p+p*+--)6 (1.10)

which is a geometric series that converges to E(y,) = 6/(1 — p). To calculate
the variance of y, when the d.g.p. is (1.7), it is easiest to work with the de-
meaned series x, = y, — . We can then rewrite (1.7) as:

X, = pXypoy + Uy (1.11)

It follows that var(y,) = E(x?), and that E(x?) = 0?/(1 — p?). Therefore y,
generated by the AR(1) model with a constant has a mean of
E(y,) = 6/(1 — p) and a variance of var(y,) = o2/(1 — p?).

The simple time series model (1.1) can be extended to let y, depend on past
values up to a lag length of p:

Vi =PVt + paYi2t ot PpYi-p Uy } (1.12)

or ALy, =u,
where A(L) is the polynomial lag operator 1 — p,L — p,L* — - — ppL”. The
d.g.p. in (1.12) is described as a pth-order AR model.® The mean, variance and

covariance of AR(p) processes when p > 1 can also be computed algebraically.
For example, for the AR(2) model with a constant:

Ye=06+4p1yi—1 + poye2 + (1.13)
assuming p; + pp < 1 and that u, is defined as before, the mean of y, is
E(y,) = 6/(1 — p; — p,) and the variance of y, is:’

(1= p)o?
1+ p2)(1 = p1 = p2)(1 + p1 — p2)

An alternative to the AR model is to specify the dependence of y, on its own
past as a moving average (MA) process, such as the following first-order MA
model:

var(y,) :( (1.14)

_}"1:“1"}‘0“]_] !9'< 1 (115)
or a model with past values up to a lag length of ¢:
vi=u+ 6w+ -+ 0, }

(1.16)
or ye = B(L)u,

where B(L) is the polynomial lag operator 1+ 6,L + 6,L° + 4 6,L9. In
practice, lower order MA models have been found to be more useful in econo-
metrics than higher order MA models, and it is straightforward to derive the
statistical properties of such models. For example, for the first-order MA
model (the MA(l) model) given by (1.15), the mean of y, is simply
E(y,) =0, while the variance of y, is var(y,) = (1 + 6)o°. It turns out that,

 Hence, (1.1) was a first-order AR process.
7 The importance of the assumption p; + py < 1 will become clear in the next chapter.
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for the MA(1) model, the first autocovariance is v; = 652, but that higher
autocovariances are all equal to zero. Similarly, the first autocorrelation coeffi-
cient is p; = 6/(1 + 6), but higher autocorrelation coefficients are all equal to
zero.
Finally, it is possible to specify a mixed autoregressive moving average
(ARMA) model:
A(L)y, = B(L)u, (1.17)

which is the most flexible d.g.p. for a univariate series. Consider, for example.
the ARMAC(1, 1) model:

Y= p1YVe-1 + u, + Oyu,_y 'pll <1, |0|' < 1 (1.18)

As with the AR(1) model, note that the ARMAC(I, 1) model can be rewritten as
an infinite order MA process:

¥ =(1+6,L)1 —p]L)flu,

= wu (1.19)
Jj=0

Since we are assuming that E(u,) = 0, it follows that E(y,) = 0. The variance
of y, is given by:

E(32) = E[(pryiy + w + 0yu,_1)?)

= E(p}y2, + 20101y rupy + u + 05ul) (1.20)
Using the autocovariance notation, the variance of y, can be written:
Yo = piy + 2p1610° + 0 + 630 (1.21)
which can be rearranged as:
70 = (~———1+0¥+%”‘0‘)03 (122)
I —pi

The higher autocovariances can be obtained in a similar way. and it can be
shown that:
2
Y1 =p1yo +bio”

(I =p7)
Y2 =P (1.24)
and ~y, = p;v_; for k > 2. The autocorrelation coefficients are given by:
_1_(1‘*'919!)(01""0!) (1.25)

P e T T+ 63+ 20101
and p; = p1px-; for k > 2.
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So far the d.g.p. underlying the univariate time series y, contains no
economic information. That is, while it is valid to model y, as a statistical
process (cf. the Box—Jenkins approach), this is of little use if we are looking
to establish (causal) linkages between variables. Thus, (1.1) can be generalized
to include other variables (both stochastic, such as x,, and deterministic, such
as an intercept), for example:

Ve =0+ X+ arye-1 U (1.26)
Since x, is stochastic, let its underlying d.g.p. be given by:
X, =&x;- + & €] <1 and e, ~IN(O, o?) (1.27)%

If u, and ¢, are not correlated, we can state that E(u,e,) = 0 for all ¢ and s, and
then it is possible to treat x, as if it were fixed for the purposes of estimating
(1.26). That is, x, is independent of u, (denoted E(x,u,) = 0) and we can treat it
as (strongly) exogenous in terms of (1.26) with x, being said to Granger-cause
¥,. Equation (1.26) is called a conditional model in that y, is conditional on x,
(with x, determined by the marginal model given in (1.27)). Therefore, for
strong exogeneity to exist x, must not be Granger-caused by y,, and this
leads on to the concept of weak exogeneity.
Note, if (1.27) is reformulated as:

X = &1X-1 + &yt + g (1.28)

then E(x,u,) = 0 is retained, but since past values of y, now determine x, the
latter can only be considered weakly exogenous in the conditional model
(1.26).°

Lastly, weak exogeneity is a necessary condition for super-exogeneity, but
the latter also requires that the conditional model is structurally invariant; that
is, changes in the distribution of the marginal model for x, (equation (1.27) or
(1.28)) do not affect the parameters in (1.26). In particular, if there are regime
shifts in x, then these must be invariant to (a;,yy) in (1.26).

All three concepts of exogeneity will be tested later, but it is useful at this
point to provide a brief example of testing for super-exogeneity in order to
make the concept clearer.'® Assuming that known institutional (e.g.., policy)

8 Note that ¢, ~ IN(0, 02) states that the residual term is independently and normally
distributed with zero mean and constant variance 2. The fact that o2 is multiplied by a
(not shown) value of 1 means that ¢, is not autocorrelated with its own past.

? That is, x, still causes y,, but not in the Granger sense, because of the lagged values of
v, determining x,. For a review of these concepts of weak and strong exogeneity,
together with their full properties, sece Engle, Hendry and Richard (1983).

9This example is based on Hendry (1995, p. 537). Further discussion of super-
exogeneity can be found in Engle and Hendry (1993), Hendry (1995, p. 172) and
Favero (2001, p. 146).
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and historical shifts (shocks) can be identified that affected x,, it should be
possible to construct a dummy variable (e.g., POL,) that augments (1.28):

X =&Xx-1 + &m0 + SPOL, + ¢, (1.28%)

Assuming that the estimate of £; is (highly) significant in determining x,, then
super-exogeneity can be tested by including POL, in the conditional model
(1.26), and if this dummy is significant then super-exogeneity is rejected.'’

The importance of these three concepts of exogeneity are discussed in
Favero (2001, p. 146): (i) if we are primarily interested in inference on the
(o, ) parameters in (1.26), then if x, is weakly exogenous we only need to
estimate (1.26) and not also (1.28); (i1) if we wish to dynamically simulate y,
and x, is strongly exogenous, again we only need to estimate (1.26) and not also
(1.28); and (iii) if the objective of modelling y, is for econometric policy evalu-
ation, we only need to estimate the conditional model (1.26) if x, has the
property of being super-exogenous. The latter is a necessary condition to
avoid the Lucas Critique (see Lucas, 1976). For example, suppose y, is a
policy variable of government (e.g., the money supply) and x, is the instrument
used to set its outcome (e.g., the interest rate), then x, must be super-exogenous
to avoid the Lucas Critique. Otherwise, setting x, would change the policy
model (the parameters of 1.26), and the policy outcome would not be what
the model (1.26) had predicted.'?

As with the univariate case, the d.g.p. denoted by (1.26) can be generalized
to obtain what is known as an autoregressive distributed lag (ADL) model:

A(L)y: = B(L)x; + u, (1.29)

where the polynomial lag operators A(L) and B(L) have already been
defined."® Extending to the multivariate case is straightforward, replacing 1,
and x, by vectors of variables, y, and x,.

The great strength of using an equation like (1.29) as the basis for econo-
metric modelling is that it provides a good first approximation to the
(unknown) d.g.p. Recall the above arguments that theory usually has little

'That is, its exclusion from (1.26) would alter the estimates of (a;, ). Note also that
the residuals &, from (1.28*) should not be a significant determinant of y, in equation
(1.26).

12 For example, suppose the government uses the immediate history of y, to determine
what it wishes current y, to be; hence, it alters x, to achieve this policy outcome.
However, economic agents also ‘know’ the model (the policy rule) underlying (1.26) and
(1.28*). Thus when POL, changes, agents alter their behaviour (the parameters of 1.26
change) since they have anticipated the intended impact of government policy.
Econometric models that fail to separate out the expectations formulation by economic
agents from the behavioural relationships in the model itself will be subject to Lucas’s
critique.

13 While we could further extend this to allow for an MA error process, it can be shown
that a relatively simple form of the MA error process can be approximated by
sufficiently large values of p and ¢ in (1.29).
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to say about the form of the (dynamic) adjustment process (which (1.29) is
flexible enough to capture), nor about which variables are exogenous (this
model can also be used as a basis for testing for exogeneity). In fact, Hendry
et al. (1984) argue that the process of econometric modelling is an attempt to
match the unknown d.g.p. with a validly specified econometric model, and thus
‘... economic theory restrictions on the analysis are essential; and while the
data are the result of economic behaviour, the actual statistical properties of
the observables corresponding to y and z are also obviously relevant to cor-
rectly analysing their empirical relationship. In a nutshell, measurement
without theory is as valueless as the converse is non-operational.” In practical
terms, and according to the Hendry-type approach, the test of model adequacy
is whether the model is congruent with the data evidence, which in a single
equation model is defined in terms of the statistical properties of the model
(e.g., a ‘white noise’ error term and parameters that are constant over time) and
whether the model is consistent with the theory from which it is derived and
with the data it admits. Finally, congruency requires the model to encompass
rival models."

Role of the Error Term u, and Statistical Inference

As stated above, the error term u, represents the influence of all other variables
excluded from the model that are presumed to be random (or unpredictable)
such that », has the following statistical properties: its mean is zero [E(u,) = 0];
it has constant variance [E(u?) = ¢%]; and it is uncorrelated with its own past
[E(uu,_;) =0]. To this we can add that the determining variable(s) in the
model, assuming they are stochastic, must be independent of the error term
[E(x,u,) = 0]."° If these assumptions hold, then it is shown in standard texts
like Johnston (1984) that estimators like the ordinary least squares (OLS)
estimator will lead to unbiased estimates of the parameter coefficients of the
model (indeed, OLS is the best linear unbiased estimator). If it is further
assumed that u, is drawn from the (multivariate) normal distribution, then
this sufficies to establish inference procedures for testing hypotheses involving
the parameters of the model, based on xz, - and F-tests and their associated
probability distributions.

Thus, testing to ensure that u, ~ IN(0,2) (i.e., an independently distrib-
uted random ‘white noise’ process drawn from the normal distribution) is an
essential part of the modelling process. Its failure leads to invalid inference

4 A good discussion of congruency and modelling procedures is given in Doornik and
Hendry (2001).

13 Although not considered above, clearly this condition is not met in (1.1) and similar
dynamic models, where y,_; is a predetermined explanatory variable, since E(y,u,;) # 0
for i > 1. However, it is possible to show by applying the Mann-Wald theorem
(Johnston, 1984, p. 362) that with a sufficiently large sample size this will not lead to
bias when estimating the parameter coefficients of the regression model.
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procedures unless alternative estimators (e.g., generalized least squares—
GLS—or systems estimators) and/or alternative probability distributions
(such as the Dickey—Fuller distribution) are invoked.

FORECASTING

In applied economics, particularly applied macroeconomics and financial
econometrics, often the main reason for estimating an econometric model is
so that the estimated model can be used to compute forecasts of the series.
While any type of econometric model can be used to compute forecasts (e.g..
multivariate regression model, ADL model), it is univariate time series models
such as the AR and ARMA models that have proved to be the most popular.
The forecasting theory for univariate time series models has long been estab-
lished (see in particular the work of Box and Jenkins, 1970) and univariate
Box—Jenkins methods have continued to be popular with econometricians.
Granger and Newbold (1986) set out a number of reasons why univanate
forecasting methods in particular deserve consideration. Perhaps the most
pertinent of these is the first reason they give:

They are quick and inexpensive to apply, and may well produce forecasts
of sufficient quality for the purposes at hand. The cost of making particu-
lar forecasting errors should always be balanced against the cost of
producing forecasts, for it is hardly worth expanding large resources to
obtain a relatively small increase in forecast accuracy if the payoff, in
terms of improved decision making is likely to be only marginally bene-
ficial (p. 151).

This is an important point, not just for forecasting but for econometrics as a
whole. There are usually a number of alternative models or techniques in
econometrics that could be employed to undertake any one task, ranging
from the simple to the very complex—and the complex techniques are typically
more costly to use than the simple. Granger and Newbold (1986) sensibly argue
that only when the benefits of the complex techniques outweigh the additional
costs of using them should they be the preferred choice. It is often the case that
forecasts made from simple linear univariate models such as AR models are
more accurate, or are only marginally less accurate than forecasts from more
complex alternatives.

In this section we will briefly review how to compute optimal forecasts
from some of the models discussed so far, beginning with the most simple
univariate time series model—the AR(1) model. Let the A-steps ahead forecast
of a time series y ., be represented by yr,,, where T is the sample size (thus we
assume forecasts of the series are from the end of the sample onward). The
forecast error er., = ¥r,4 — V744 Plays a vital role in the literature on fore-
casting. Note in particular that the optimal forecast of 1., is the forecast that
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minimizes the expected value of the squared forecast error £ [ezﬂh]. It can be
proved that the h-steps ahead forecast that minimizes the expected value of the
squared forecast error is simply the conditional expectation of yz.,:'®

Iren = EQVren | Y7, 0115+ 21) (1.30)
which can be written more concisely as:
Yron = E(yrin | Qr) (1.31)

where Qp represents the information set at time 7. The forecast function will
include unknown population parameters, and in practice these parameters are
replaced with their estimated values.

If we assume that the d.g.p. is the AR(1) model given by equation (1.1), the
optimal A-steps ahead forecast is given by:

Pran = E(pyran—t +urin | Qr)
= PYTih1 (1.32)

where Q7 is the relevant information set at time 7. So in the case of a 1-step
ahead forecast (A = 1), the optimal forecast is simply pyy. Forecasts greater
than 1-step ahead are computed recursively. So, for example, in the case of 2-
steps ahead forecasts, the optimal forecast is:

12 = E(pyr1 +ur21Qr)
= E(ppyr + uri2 |Qr)
=pyr (1.33)

and for 3-steps ahead forecasts yr,; = p>yr. It follows that the forecasting
function for the optimal h-steps ahead forecast (1.32) can be rewritten:

Fren = p"yr (1.34)

Clearly, assuming |p| < 1, as A — oo the forecast of yr., converges to zero. In
fact, for this d.g.p., as A — oo the A-steps ahead forecast of y;,, converges to
the mean of y,, which in this case is zero. If the d.g.p. is the AR(1) model with a
constant:

V=04 pyvi_1 +uy (1.35)

where |p| <1 and wu, ~IID(0,1), then y, has a non-zero mean equal to
6/(1 — p). The 1-step ahead forecast is given by:

Y11= E(6+ pyr + turs1 |Qr)
=6+ pyr (1.36)

16 The conditional expectation of yr., is the expected value of yr., conditioning on all
information known about y at time 7.



12 APPLIED TIME SERIES MODELLING AND FORECASTING

and the A-step ahead forecast is given by:
Pron=(p""+p" 4+ p+ )6+ plyr (1.37)

Again, for this d.g.p., as # — oo the forecast converges to the mean of y,. This
can be seen more clearly by noting that (1.37) is a geometric series, and as
h — oo it converges to:

. 6
YT+h = m (1.38)

Both the forecast functions and properties of the forecasts depend on the exact
d.g.p. assumed for y,. For example, if the d.g.p. is the first-order MA model
given by equation (1.15) the 1-step ahead forecast is given by:
11 = E(ury1 + Our | Qr)
= BQur (1.39)
The optimal forecast of the first-order MA process when the forecast horizon is

greater than 1-step ahead is just the mean of the series, which in this case is
zero:

Vreh = E(urin + Ourin_ | Qr) h>1
~0 (1.40)

For the ARMAC(1, 1) model (1.18) the 1-step ahead forecast is given by:

yre1 = E(piyr + urs + 0ur | Qr)
= p1yr + Orur (1.41)
As with the AR model, when the forecast horizon is greater than 1-step ahead,
forecasts from an ARMA model are computed recursively. For example, the
2-steps ahead forecast from an ARMA(L, 1) model is given by:
b2 = E(pryr1 +uria + 0ury | Qr)
= E(pi(pryr + O1ur) + urya + 61uryy | Qr]
= piyr + p1biur (1.42)
(note that E(uy,,| Qr) =0 and E(B,ur,,|Qr) =0), and the h-steps ahead
forecast is given by:
Pren = plyr + i Orur (1.43)

Assuming |p;| < 1, as h — oo again the forecast converges to the mean of the
series—zero.
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The forecasts referred to above are point forecasts; however, since the
forecast itself (and forecast error) is a random variable, it is often helpful to
compute interval forecasts. For the AR(1) model given by equation (1.1) the A-
steps ahead forecast error is:

er+h = YT+h — VT+h
= PYToh-1 + Uren — p'yr (1.44)

which after repeated substitution can be rewritten as:

ersn = P'yr 4+ urin + purinot + -+ p"ury — pyr (1.45)

Since it has a mean of zero, the variance of the A-steps ahead forecast error is:

E(eh) = (14 +p* -+ p" )0 (1.46)

and thus, for a l-step ahead forecast from the first-order AR model, the

variance of the forecast error is simply equal to the variance of the disturbance

term u,. Assuming that the forecast errors are normally distributed we can

obtain a 95% confidence interval for the 1-step ahead forecast by computing

Yre1 £ 1.966, where & is the estimated value of o obtained when estimating the

parameters of the fitted model. For the A-steps ahead forecast the 95% con-
fidence interval is:

P11 £ 1966/ (14 9> 4+ p* + - 4 p2-2) (1.47)

If y, is generated by the ARMA model (1.17) then computing forecast con-
fidence intervals is more involved. The relevant theory is given in Box 1.1.

As already mentioned, we can compute forecasts from any type of
econometric model. Consider a multivariate regression model:

yi=xB+e (1.48)

where x; = (x;, Xa,...,Xy,) are explanatory variables and B is a vector of
parameters of dimension (k x 1). Subject to the standard assumptions of the
classical linear regression model, it can be shown the optimal forecast of y7,, is
given by the conditional expectation of y7.,:""

Vren = X7 B (1.49)
In practice B is replaced by the OLS estimator P = (X'X) !Xy where
y=r--0r), X = (x],X3,...,x7). Obviously, to compute this forecast

requires knowledge of the values of the explanatory variables at time 7 + A.
Assuming these values are known, then (1.49) is the appropriate forecasting
function. However, if these values are not known, then the appropriate fore-
casting function is:

Prn = X8 (1.50)

7See Granger and Newbold (1986, ch. 6, sect. 6.2).



APPLIED TIME SERIES MODELLING AND FORECASTING




W

INTRODUCTION AND OVERVIEW - |

where X7, are h-step ahead forecasts of the explanatory variables, which
could be obtained via univariate methods.

OUTLINE OF THE BOOK

The next chapter deals with short- and long-run models. Inherent in the dis-
tinction is the notion of equilibrium; that is, the long run is a state of
equilibrium where there is no inherent tendency to change since economic
forces are in balance, while the short run depicts the disequilibrium state.
Long-run models are often termed ‘static models’, but there is no necessity
to actually achieve equilibrium at any point in time, even as t — oo. All that is
required is that economic forces move the system toward the equilibrium
defined by the long-run relationship posited. Put another way, the static equi-
librium needs to be reinterpreted empirically since most economic variables
grow over time. Thus, what matters is the idea of a steady-state relationship
between variables that are evolving over time. This is the way the term ‘equi-
librium’ is used in this book.

When considering long-run relationships, it becomes necessary to consider
the underlying properties of the processes that generate time series variables.
That is, we must distinguish between stationary and non-stationary variables,
since failure to do so can lead to a problem of spurious regression whereby the
results suggest that there are statistically significant long-run relationships
between the variables in the regression model—when in fact all that is being
obtained is evidence of contemporaneous correlations rather than meaningful
causal relations. Simple examples of stationary and non-stationary processes
are provided, and it is shown that whether a variable is stationary depends on
whether it has a unit root. Comparing stationary and non-stationary variables
is also related to the different types of time trends that can be found in
variables. Non-stationary variables are shown to contain stochastic (i.e.,
random) trends, while stationary variables contain deterministic (i.e., fixed)
trends. Since random trends in the data can lead to spurious correlations, an
example of a spurious regression is given together with some explanations of
why this occurs.

This leads naturally to the question of when it is possible to infer a causal
long-run relationship(s) between non-stationary time series. The simple answer
is: when the variables are cointegrated. The Engle and Granger (1987) definition
of cointegration is explained, alongside the economic interpretation of cointe-
gration that states that if two (or more) series are linked to form an equilibrium
relationship spanning the long run, then even though the series themselves may
contain stochastic trends (i.e., be non-stationary), they will nevertheless move
closely together over time and the difference between them is constant (i.e.,
stationary). Thus the concept of cointegration mimics the existence of a long-
run equilibrium to which an economic system converges over time. The absence
of cointegration leads back to the problem of spurious regression.



16 APPLIED TIME SERIES MODELLING AND FORECASTING

Finally, Chapter 2 discusses short-run (dynamic) models. Simple examples
of dynamic models are presented and linked to their long-run steady-state
(equilibrium) solutions. It is pointed out that estimating a dynamic equation
in the levels of the variables is problematic and differencing the variables is not
a solution, since this then removes any information about the long run. The
more suitable approach is to convert the dynamic model into an error correc-
tion (sometimes called an equilibrium correction) model (ECM), and it is
shown that this contains information on both the short-run and long-run
properties of the model, with disequilibrium as a process of adjustment to
the long-run model. The relationship between ECMs and the concept of
cointegration is also explored, to show that if two variables y, and x, are
cointegrated, then there must exist an ECM (and, conversely, that an ECM
generates cointegrated series).

Having discussed the importance of unit roots, the next task (Chapter 3) is
to test for their presence in time series data. This begins with a discussion of the
Dickey—Fuller (DF) test for a unit root, showing that a r-test of the null
hypothesis of non-stationarity is not based on the standard t-distribution,
but the non-standard DF distribution. Assumptions about what is the most
appropriate d.g.p. for the variable being tested are found to be important when
performing the test; that is, should an intercept and trend (i.e., deterministic
components) be included in the test equation? Not only does inclusion and
exclusion lead to different critical values for the DF test, but they are also
important to ensure that the test for a unit root nests both the null hypothesis
and the alternative hypothesis. To do this it is necessary to have as many
deterministic regressors in the equation used for testing as there are determi-
nistic components in the assumed underlying d.g.p. In order to test what will
probably be in practice the most common form of the null hypothesis (that the
d.g.p. contains a stochastic trend against the alternative of being trend-
stationary), it is necessary to allow both an intercept and a time trend 7 to
enter the regression model used to test for a unit root.

To overcome the problems associated with which (if any) deterministic
components should enter the DF test (including problems associated with
test power), the sequential testing procedure put forward by Perron (1988) is
discussed. Then the DF test is extended to allow for situations when more
complicated time series processes underlie the d.g.p. This results in the aug-
mented Dickey—Fuller (ADF) test, which entails adding lagged terms of the
dependent variable to the test equation. A question that often arises in applied
work is how many extra lagged terms should be added, and there is some
discussion of this problem. This in turn leads to a consideration of the
power and size properties of the ADF test (i.e., the tendency to under-reject
the null when it is false and over-reject the null when it is true, respectively). In
finite samples it can be shown that any trend-stationary process can be
approximated arbitrarily well by a unit root process and, similarly, any unit
root process can be approximated by a trend-stationary process, especially for
smaller sample sizes. That is, some unit root processes display finite sample
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behaviour closer to (stationary) ‘white noise’ than to a (non-stationary)
random walk (while some trend-stationary processes behave more like
random walks in finite samples). This implies that a unit root test ‘... with
high power against any stationary alternative necessarily will have correspond-
ingly high probability of false rejection of the unit root null when applied to
near stationary processes’ (Blough, 1992, p. 298). This follows from the close-
ness of the finite sample distribution of any statistic under a particular trend-
stationary process and the finite sample distribution of the statistic under a
difference-stationary process that approximates the trend-stationary process.
Thus, Blough (1992, p. 299) states that there is a trade-off between size and
power in that unit root tests must have either high probability of falsely
rejecting the null of non-stationarity when the true d.g.p. is a nearly stationary
process (poor size properties) or low power against any stationary alternative.
This problem of the size and power properties of unit root tests means that any
results obtained must be treated with some caution, although we consider some
recent improvements that in principle have good size and power properties (cf.
Ng and Perron, 2002). We also cover recent developments such as asymmetric
tests for unit roots (panel tests are covered in Chapter 7).

There are further ‘problems’ associated with testing for non-stationarity. A
structural break in a series will have serious consequences for the power of the
test, if it is ignored. Taking into account the possibility that the intercept and/
or slope of the underlying d.g.p. has changed (at an unknown date or dates)
can be handled using the testing methods outlined in Perron (1994). Examples
are provided and discussed. Finally Chapter 3 discusses testing for seasonal
unit roots (including when there are structural breaks) and periodic integra-
tion. First of all, it is suggested that where possible seasonally unadjusted data
should be used when testing for unit roots, since the filters used to adjust for
seasonal patterns often distort the underlying properties of the data. In par-
ticular, there is a tendency of the DF test to be biased toward rejecting the null
hypothesis of non-stationarity substantially less often than it should when
seasonally adjusted series are tested. However, using unadjusted data that
exhibit strong seasonal patterns opens up the possibility that these series
may contain seasonal unit roots (i.e., the seasonal processes themselves are
non-stationary). Tests for seasonal unit roots are discussed based on the Hylle-
berg, Engle, Granger and Yoo (1990) approach, and an example is presented
using UK data on consumption, income and wealth. Structural breaks and
their impact on seasonal unit root-testing is covered next, and the chapter
concludes with a discussion of the situation where observations on a variable
v, can be described by a different model for each quarter, with the result being a
periodic autoregressive model.

After testing for unit roots in the data and assuming they are present, the
next task is to estimate the long-run relationship(s). Chapter 4 deals with
cointegration in single equations, while Chapter 5 considers the possibility of
more than one cointegration relationship. The most common single equation
approach to testing for cointegration is the Engle-Granger (EG) approach.



18 APPLIED TIME SERIES MODELLING AND FORECASTING

This amounts to estimating the static OLS regression model in order to obtain
an estimate of the cointegration vector (i.e., the estimate of g that establishes a
long-run stationary relationship between the non-stationary variables in the
model). Such a simple and popular approach, which of course ignores any
short-run dynamic effects and the issue of endogeneity, is justified on the
grounds of the ‘superconsistency’ of the OLS estimator. The latter states
that the OLS estimator of B with non-stationary /(1) variables converges to
its true value at a much faster rate than the usual OLS estimator with station-
ary /(0) variables, assuming cointegration (Stock, 1987). The most common
form of testing for cointegration is based on an ADF unit root test of the
residuals from the OLS regression. The need to use the correct critical values
for testing the null hypothesis of no cointegration is discussed along with its
dependence on the presence or otherwise of /(2) variables in the regression. A
first potential problem with the test procedure is also discussed (namely, the
common factor restriction imposed on the long-run model by the ADF test for
cointegration). We also consider testing for cointegration using the EG ap-
proach with a structural break, using the procedure developed in Gregory
and Hansen (1996).

Despite the popularity of the EG approach, there are other serious prob-
lems such as small sample bias and the inability to test statistical hypotheses:
hence, the advent of alternative testing procedures. Testing whether the speed-
of-adjustment coefficient is significant in an error correction model is one
alternative, and this is comparable to estimating a dynamic ADL model and
testing whether the model converges to a steady-state solution. The major
advantage of the ADL approach is that it generally provides unbiased esti-
mates of the long-run model and valid ¢-statistics (even, on the basis of Monte
Carlo evidence, when some of the regressors in the model are endogenous). The
fully modified estimator is also discussed, but yields few advantages over the
standard OLS estimator.

However, there still remain several disadvantages with a single equation
approach. The major problem is that when there are more than two variables
in the model, there can be more than one cointegration relationship among
these variables. If there is, then adopting a single equation approach is ineffi-
cient in the sense that we can only obtain a linear combination of these vectors.
However, the drawbacks of the single equation model extend beyond its
inability to validly estimate all the long-run relationships between the variables:
even if there is only one cointegration relationship, estimating a single equation
is potentially inefficient (i.e., it does not lead to the smallest variance against
alternative approaches). It is shown that this results from the fact that. unless
all the right-hand-side variables in the cointegration vector are weakly
exogenous, information is lost by not estimating a system that allows each
endogenous variable to appear on the left-hand side of the estimated equations
in the multivariate model. Thus, it is only really applicable to use the single
equation approach when there is a single unique cointegration vector and when
all the right-hand-side variables are weakly exogenous. Before proceeding to
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the multivariate approach, Chapter 4 considers the short-run (EG) model
based on a single equation and in particular gives an example of Hendry’s
general-to-specific modelling approach using the PcGive software package.
The chapter then considers testing for seasonal cointegration and periodic
cointegration, using single equation techniques and concludes with asymmetric
testing for cointegration.

Chapter 5 is given over entirely to the Johansen procedure. Starting with a
vector error correction model (VECM), it is shown that this contains informa-
tion on both the short- and long-run adjustment to changes in the variables in
the model. In particular, the problem faced is to decompose the long-run
relationships into those that are stationary (and thus comprise the cointegra-
tion vectors) and those that are non-stationary (and thus comprise the
‘common trends’). To do this, Johansen specifies a method based on reduced
rank regressions, which is discussed in Box 5.1 used throughout the book to
present the more difficult material. Before using Johansen’s approach, it is
important to consider whether the multivariate model contains /(0) and /(1)
variables alone, in which case the modelling procedure is much simpler, or
whether 7(2) variables are also present (i.e., variables that need to be differ-
enced twice to achieve stationarity). If the latter, then the situation becomes far
more complicated and Johansen has developed a procedure to handle the 7(2)
model, although (at the time of writing) this is not fully available in PcGive.
Instead, current practice is to test for the presence of /(2) variables, and if they
are present to seek to replace them through some form of differencing (e.g., if
money supply and prices are /1(2), we could reformulate the model to consider
real money m, — p,).

Since the Johansen approach requires a correctly specified VECM, it is
necessary to ensure that the residuals in the model have the appropriate,
standard Gaussian properties of being independently drawn from a normal
distribution. This, inter alia, involves setting the appropriate lag length in the
model and including (usually dummy) variables that only affect the short-run
behaviour of the model. It is pointed out that residual mis-specification can
arise as a consequence of omitting these important conditioning variables, and
increasing the lag-length is often not the solution (as it usually is, for example,
when autocorrellation is present). The procedures for testing the properties of
the residuals are discussed and illustrated through examples. We then consider
the method of testing for ‘reduced rank’ (i.e., testing how many cointegration
vectors are present in the model). This involves a discussion of Johansen’s trace
and maximal eigenvalue tests and consideration of the small sample reliability
of these statistics (at the same time an example of a likely 7(2) system is
considered and the testing procedure for 7(2) variables is discussed). At this
stage a major issue is confronted that presents considerable difficulty in applied
work (namely, that the reduced rank regression procedure provides informa-
tion on how many unique cointegration vectors span the cointegration space,
while any linear combination of the stationary vectors is itself also a stationary
vector and thus the estimates produced for any particular vector in B are not
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necessarily unique). To overcome this ‘problem’ will involve testing the validity
of linear restrictions on B. Before this, it is necessary to turn to the question of
whether an intercept and trend should enter the short- and/or long-run model.
Various models are presented and discussed along with the testing procedure
for deciding which should be used in empirical work. An example of the use of
the so-called Pantula principle is provided.

Weak exogeneity is considered next. This amounts to testing whether rows
of the speed-of-adjustment matrix a are zero, and if such hypotheses are
accepted the VECM can be respecified by conditioning on the weakly exogen-
ous variables. The reasons for doing this, as well as a discussion of conditional
and marginal models, are presented, while the concept of ‘weak exogeneity’ and
how it is defined in various contexts is also discussed. The actual procedures
that are used to perform tests of the null hypothesis that elements of «a are zero
are discussed together with examples that use PcGive. This then leads on to
testing hypotheses about the cointegration relations involving B, which involves
imposing restrictions motivated by economic arguments (e.g., that some of the
B;; are zero or that homogeneity restrictions are needed such as 3;; = —3,;) and
then testing whether the columns of § are identified. The form of the linear
restrictions is discussed in some detail, along with various examples.

Lastly, the discussion moves on to testing for unique cointegration vectors
(and hence structural long-run relationships). This involves testing that the
restrictions placed on each of the cointegration vectors (the columns of B) in
fact lead to an identified system (i.e., a model where any one cointegration
vector cannot be represented by a linear combination of the other vectors).
Johansen’s method for identification is carefully discussed and illustrated by
several examples. The importance of this approach is stressed, since the un-
restricted estimates of f are often hard to interpret in terms of their economic
information.

One point that is worth emphasizing on testing for cointegration, and
which should be fairly obvious from the above overview of the book thus
far, is that an applied economist should really begin his or her analysis by
using a multivariate framework and not by using a single equation approach.
The exception will obviously be when only two variables are involved. The
main reason for taking a systems approach from the outset is that to do
otherwise restricts the practitioner to considering only one cointegration rela-
tionship when there may in fact be more, and even if he or she is only interested
in one vector, it is probable that he or she will not get consistent and efficient
estimates without allowing for the possibility of other cointegration vectors. Of
course, where tests for weak exogeneity permit, moving down to the single
equation approach can be justified after using the Johansen procedure.

Chapter 6 considers modelling the short-run multivariate system and
concludes with a short discussion on structural macroeconomic modelling.
First of all, it is stressed that obtaining long-run estimates of the cointegration
relationships is only a first step to estimating the complete model. The short-
run structure of the model is also important in terms of the information it
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conveys on the short-run adjustment behaviour of economic variables, and this
is likely to be at least as interesting from a policy viewpoint as estimates of the
long run. Another important aspect of modelling both the short- and long-run
structures of the system is that we can attempt to model the contemporaneous
interactions between variables (i.e., we can estimate a simultaneous system, and
this then provides an additional layer of valuable information). Based on the
example of a small monetary model for the UK developed in Hendry and
Mizon (1993) and Hendry and Doornik (1994), the following steps are illus-
trated: (i) use the Johansen approach to obtain the long-run cointegration
relationships between the variables in the system; (ii) estimate the short-run
vector autoregression (VAR) in error correction form (hence VECM) with the
cointegration relationships explicitly included and obtain a parsimonious
representation of the system; (iii) condition on any (weakly) exogenous vari-
ables thus obtaining a conditional parsimonious VAR (PVAR) model; and (iv)
model any simultaneous effects between the variables in the (conditional)
model, and test to ensure that the resulting restricted model parsimoniously
encompasses the PVAR.

Chapter 7 considers testing for unit roots and cointegration with panel
data (i.e., cross sectional time series data with /= 1,..., N ‘individuals’ in
each time period and with ¢t = 1,..., T observations for each individual over
time). This offers the potential to increase the power of tests for integration and
cointegration, since adding the cross section dimension to the time series
dimension means that non-stationarity from the time series can be dealt with
and combined with the increased data and power that the cross section brings.
The latter acts as repeated draws from the same distribution, and thus while it
is known that the standard DF-type tests lack power in distinguishing the unit
root null from stationary alternatives, using the cross sectional dimension of
panel data increases the power of unit root (and cointegration) tests that are
based on a single draw from the population under consideration. The chapter
considers in detail the various panel unit root tests that have been developed
by, inter alia, Levin and Lin (1992, 1993); Im, Pesaran and Shin (1995, 1997);
Harris and Tzavalis (1999); Maddala and Wu (1999); and Breitung (2000). All
of these take non-stationarity as the null hypothesis and involve differing
alternatives (depending on differing assumptions about the homogeneity of
the cross sections in the panel) that all involve stationarity. The size and
power of these tests is discussed and examples are given from estimating a
well-known data set. Similarly, we consider the tests for cointegration and
methods for estimation of the cointegration vector that have been developed
in the literature. Cointegration tests using a single equation approach
developed by Pedroni (1995, 1999) and Kao (1999) are discussed, where the
null hypothesis is that there is no cointegration, while we also consider the
approach taken by McKoskey and Kao (1998), who developed a residual-
based test for the null of cointegration rather than the null of no cointegration
in panels. The Larsson, Lyhagen and Lothgren (2001) use of a multi-equation
framework to construct a panel test for cointegration rank in heterogeneous
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panels is considered, which is based on the average of the individual rank trace
statistics developed by Johansen (1995a).

In terms of estimating cointegration vectors using panel data sets, we look
at the various estimators available which include within- and between-group
fully modified (FMOLS) and dynamic (DOLS) estimators. In particular the
estimators devised by Kao and Chiang (2000) and Pedroni (2000, 2001) are
presented. In addition, some progress has recently been made toward develop-
ing a multivariate approach to panel cointegration estimation, with Breitung
(2002) having developed a two-step procedure that is based on estimating a
VECM. All of these estimators are compared using appropriate empirical ex-
amples.

Chapter 8 focuses on conditional heteroscedasticity models and forecast-
ing. It can be viewed as a stand-alone chapter of particular relevance to those
studying on courses in financial econometrics, although the reader will benefit
from having read previous chapters, as when we mention unit roots and co-
integration in Chapter 8 we do so assuming a good knowledge of the concepts.
Conditional heteroscedasticity models such as the autoregressive conditional
heteroscedastic (ARCH) model introduced by Engle (1982) and the generalized
version of this model (GARCH), introduced by Bollerslev (1986), have become
extremely popular in financial econometrics. For economists studying at
final year undergraduate or postgraduate level, hoping to pursue careers in
financial economics, an understanding of ARCH and GARCH models is
important given their widespread use. We begin the chapter assuming no
previous knowledge of conditional heteroscedasticity models and spend some
time introducing concepts. We work through the standard ARCH and
GARCH models and go on to discuss multivariate versions of these models.
The estimation of ARCH and GARCH models is then considered before
moving on to demonstrate the models with an empirical application to US
stock market data. Beginning with conventional ARCH and GARCH
models we then continue with the same data set to illustrate the main exten-
sions of these models, including the ARCH-M model in which the conditional
variance appears as a regressor in the conditional mean. A common feature of
financial time series is that negative shocks tend to increase volatility by more
than positive shocks of the same absolute magnitude—this characteristic has
been labelled the ‘asymmetry effect’ or ‘leverage effect’.'® A number of
GARCH specifications have been proposed to capture this effect, and we
consider the most popular. After briefly introducing integrated and fractionally
integrated GARCH models, we move on to discuss the impact of conditional
heteroscedasticity on conventional unit root and cointegration tests. In empiri-
cal analyses it is common practice to apply conventional unit root and
cointegration tests ignoring the presence of conditional heteroscedasticity.

18 The title ‘leverage effect’ is used because it is thought that the operating leverage of
companies is responsible for the asymmetric behaviour of their share prices in response
to ‘good’ and ‘bad’ news. See Nelson (1991), fn. 3.
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since conventional unit root tests have been shown to be asymptotically robust
to its presence. However, research has indicated that the finite sample proper-
ties of unit root tests can be adversely affected if ARCH or GARCH is present
and is ignored. Furthermore, recently it has been shown that if the model used
to compute a unit root test takes account of the ARCH effect and the param-
eters of this model are estimated simultaneously by maximum likelihood, the
unit root test statistic does not have its conventional distribution. While re-
search on these issues is still at a relatively early stage, we feel that they are
important issues and are likely to be the subject of considerably more research
in the future, hence we introduce the literature here.

The final part of this chapter considers some forecasting issues. We begin
by discussing forecasting from ARCH or GARCH models and illustrate with a
simple empirical application using the US stock market data previously em-
ployed. Forecasts are computed from ARCH and GARCH models and are
evaluated using conventional measures of forecast accuracy such as mean
squared error and graphical techniques. There have been a number of impor-
tant developments in forecast evaluation, primarily published in the specialist
econometrics and forecasting literature. In particular the development of tests
of equal forecasting accuracy by Diebold and Mariano (1995), Harvey,
Leybourne and Newbold (1997) and tests of forecast-encompassing of
Chong and Hendry (1986), Harvey, Leybourne and Newbold (1998) and
Clark and McCracken (2000, 2001). These tests allow the practitioner to test
whether apparent differences in forecast accuracy are statistically significant
and whether forecasts from one model contain information that is not present
in the forecasts from a competing model. We illustrate the application of some
of these tests using US stock market data (although they are applicable to
forecasts from any kind of econometric model).

Important Terms and Concepts

Differencing and levels d.g.p. Congruency
ADL models Strong, weak and super-exogeneity ‘White noise’ error term
Random (stochastic) variables AR processes MA processes

Polynomial lag operator Forecasting
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2
______ Short- and Long-run Models

LONG-RUN MODELS

One particular example that will be used throughout the book is the UK
demand-for-money function, especially since this model features extensively
in the literature on cointegration. The static (or long-run) demand for money
can either be derived from Keynesian theoretical models relating to the trans-
actions demand theory (e.g., Baumol, 1952; Tobin, 1956; Laidler, 1984), or
from the portfolio balance approach (e.g., Tobin, 1958), or from monetarist
models based on the quantity theory of money (e.g., Friedman and Schwartz,
1982). Apart from deciding whether income or wealth (or both) should enter, a
common empirical specification typically has demand for money positively
determined by the price level P and income (and/or wealth) Y, and negatively
related to its opportunity cost, the interest rate(s) R:

m? = By + ip + Poy — B3R (2.1)

where (here and elsewhere) variables in lower case are in logarithms. This
model depicts an equilibrium relationship such that for given values of right-
hand-side variables and their long-run impact on money demand (i.e., the 3,),
there is no reason for money demand to be at any other value than m¢.

Although (2.1) is frequently used, it is often found in empirical work that
B, = 1, and therefore price homogeneity is imposed so that the model becomes
the demand for rea/ money balances (i.e., p is subtracted from both sides of the
equation). In addition, when interest rates are subject to regulation by policy-
makers (i.e., they are a policy instrument), then they are no longer a good
proxy for the actual costs of holding money, but rather tend to indicate the
restrictiveness of monetary policy. In such instances, it is usual practice to
supplement (or even replace) R in the model by including the inflation rate
Ap as a proxy for the opportunity cost of (m? — p). Thus, an alternative
empirical specification is:

m’ —p =0 —nAp+my-nR (2.2)
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It is worth noting at this early stage that we have not made any assump-
tions about whether changes in any of the right-hand-side variables in (2.1)
cause changes in the demand-for-money balances. In fact, this is a crucial issue
in econometric modelling (including the issue of cointegration), and one that
distinguishes whether we can estimate a model using a single equation
approach (Chapter 4) or whether a system of equations needs to be estimated
(Chapter 5). Since (2.1) depicts an equilibrium, then by definition the demand
for money equates in the long run to its supply (with variables. such as interest
rates, adjusting to bring about market-clearing).! If we were to assume that the
money stock is under the control of policy-makers, then with mi=m'itis
possible to rearrange (2.1) to obtain a new equation with, inter alia, the money
supply determining prices (or interest rates, or income). Thus, if one or more of
the right-hand-side variables in (2.1) are contemporaneously influenced by
changes in money supply, we need to consider whether a system of equations
should be estimated in order to determine all the endogenous variables in the
model. That is, the variables in (2.1) may feature as part of several equilibrium
relationships governing the joint evolution of the variables. More generally, if
there are n variables in the equation, then there can exist up to n — 1 linearly
independent combinations, each corresponding to a unique equilibrium
relationship.

STATIONARY AND NON-STATIONARY TIME SERIES

In addition to the question of whether the model should be estimated using a
single equation approach (e.g., ordinary least squares—OLS) or a systems
estimator, it is necessary to consider the underlying properties of the processes
that generate time series variables. That is, we can show that models containing
non-stationary variables will often lead to a problem of spurious regression.
whereby the results obtained suggest that there are statistically significant
relationships between the variables in the regression model when in fact all
that is obtained is evidence of contemporaneous correlations rather than
meaningful causal relations.

Starting with a very simple data-generating process (d.g.p.), suppose that a
variable y, is generated by the following (first-order autoregressive (AR))

process:
Y= pyi (2.3)

! There is no necessity to actually achieve equilibrium at any point in time, even as
t — oc. All that is required is that economic forces are prevalent to move the system
toward the equilibrium defined by the long-run relationship posited. Put another way.
the static equilibrium presented in (2.1) needs to be reinterpreted empirically since most
economic variables grow over time. Thus, of more importance is the idea of a steady
state relationship between variables that are evolving over time. This is the way the term
‘equilibrium’ is used here. For a more detailed discussion of the definition of equilibrium
used see Banerjee et al. (1993, ch. 1).
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Box 2.1 Stationary and non-stationary variables

In (2.3), if p=1, then y, will be non-stationary and it is possible to re-
arrange and accumulate y, for different periods, starting with an initial

value of y, ,, to obtain:
n-1

Ve =Yen+ D thy (2.1.1)
=0

N\

That is, the current value of y, depends on its initial value and all disturb-
ances accruing between t — n + 1 and ¢, while the variance of y, is to” and
this increases to become infinitely large as t — co. In fact y, does not
converge to a mean value in any normal sense since if at some point
y, = c¢ then the expected time until y, again returns to ¢ is infinite (see
Figure 2.1).

However, if |p| < 1, then y, will be stationary and it is possible to
rearrange and accumulate y, for different periods, starting with an initial

value of y,_,, to obtain:
n—1

V=0Vt Y Puy (2.1.2)
=0

Since |p| < 1, as n — oo (2.1.2) reduces to y, being determined solely by a
finite moving average (MA) process of order n with most weight being
placed on the first elements of the disturbance term (i.e.,
u, + pr,_ +p2uhg---). Thus, when y, is stationary, it has a constant
mean and variance (and indeed covariance) that are independent of time.
In this simple example, where y, is determined by (2.3), y, has a mean of 0
and a variance of (02/1 — p*). Thus, it is possible to conclude that a
stochastic process is (weakly) stationary if:

1 E[y] = constant for all ¢
2 Var[y,] = constant for all #; and
3 Covar|y,, .., = constant for all 7.

Lastly, Figure 2.1 plots the non-stationary y, together with a second vari-
able Ay, (= y; — y,_1), which is stationary since Ay, = u, and u, is stationary
(given (1-3) above). In fact, the series y, does not return to ¢ because it is the
sum of the past disturbance terms (i.e., it is the cumulative sum of the y,
series given in (2.1.1)).

Thus, current values of the variable y, depend on the last period’s value y,_;.
plus a disturbance term u,, the latter encapsulating all other random (i.e.,
stochastic) influences. It is assumed that this disturbance term comprises T
random numbers drawn from a normal distribution with mean equal to 0
and variance o°. (Note, in later examples of stationary and non-stationary
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Box 2.2 Unit roots and stationarity

Consider the general nth order AR process (of which (2.3) is a special case):
Yo=YVt FW2Via+ ot wp}’r—p + u, (2.2.1)

To simplify the notation, all the y,_; can be collected on the left-hand side in
a single term:

WLy, =u, (222)
where W(L) is the polynominal lag operator 1 — ¢, L — 9o L* — -« — Y, LP.
By forming the characteristic (1 — L — L% — -+ — Y, L7 = 0) we see

that if the roots of this equation are all greater than unity in absolute
value (noting that some roots might be complex and thus their moduli
must be greater than |1|),2 then y, is stationary. For the simple AR(1)
case, if the root of (1 — v, L = 0) is greater than unity in absolute value,
then y, will be stationary. Thus, the AR(1) model is stationary provided
|4y | < 1, since the root is simply L = 1/4).

In the case of an AR(3) process:

(1 - L—L? L)y, = u, (22.3)
and if a unit root exists, then it must be possible to factorize (2.2.3) into:
(14 aL+BLY)(1 — L)y, = u, (2.2.4)

where « and /4 depend on the ¢’s. If there is only one unit root, then the
roots of (1 + L + BL* = 0) must both be greater than unity in absolute
value. If this is so, then (1 — L)y, = Ay, must be a stationary process
although, because of the unit root, y, is non-stationary. If there are two
unit roots we can further factorize (2.2.4) into:

(1 —L)(1 - L)(1 — L)y, = 4, (2.2.5)

where v depends on « and /3. If |y| > 1, then the second difference of y, (i.e.,
(1-L)(1-L)y, = A*y,) will be stationary. Thus, when two unit roots are
present, twice-differencing a variable ensures that a stationary series is
obtained. This principle applies when there are any number of unit roots.

Lastly, since a particular data series may be approximated by an

2 Note that the roots of the characteristic equation can be complex (i.e., contain a real
and imaginary part, & + vi, where # and v are two real numbers and / is an imaginary
number) and the modulus is the absolute value of the complex root and is calculated as

V(h? +0?).
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unknown AR(p) process. involving up to p unit roots, it is useful to re-
formulate (2.2.1) as:

A,‘L‘, = 3##’*,1/}71 ot ‘lfﬂA,V,,l = ’l,f’p_A_‘V;,z e 28 G ’IIJP,IA_VF,, =+ U, (2.2.6)

where ¢" = +¢» +---+ 4, — 1. In the AR(3) case, where there is at
least one unit root, we can rewrite the left-hand side of (2.2.4) as
(1 + aL + BL*)Ayp, and rearrange to get:

Ay, = —alAy, | — BAy,2 + 1, (2.2.7)

Comparing an AR(3) version of (2.2.6) with (2.2.7) indicates that ¢»" = 0 if
there is a unit root (and consequently ) + o + 143 = 1). If 1" < 0, then
) +1Yn + 13 < 1 and y, must be stationary. In fact this result can be gen-
eralized to cover any AR(p) process, such that in any test for stationarity we
need only consider the hypothesis that " = 0 against ¥»* < 0 based on
(2.2.6).

variables, o2 will be set equal to 1.) The variable y, will be stationary if |p| < 1.
If p =1 then y, will be non-stationary.® A stationary series tends to return to
its mean value and fluctuate around it within a more or less constant range (i.e.,
it has a finite variance), while a non-stationary series has a different mean at
different points in time (and thus the concept of the mean is not really applic-
able) and its variance increases with the sample size (for more technical details
see Box 2.1).

Figure 2.1 plots a non-stationary series based on a starting value of y, = 0.
As can be seen, the variance of y, is increasing with time and there is no
tendency for the series to revert to any mean value. This contrasts both with
Ay,(=y, — y;,_1), the stationary first difference of y, that is also plotted in
Figure 2.1, and with the stationary version of y, appearing in Figure 2.2.%
Stationary variables can be seen to fluctuate around their mean (equal to 0
here) and to have a finite variance. It is also apparent from Figure 2.1 that a
non-stationary variable becomes stationary after it is differenced (although not
necessarily just by first-differencing—it will be shown that the number of times
a variable needs to be differenced in order to induce stationarity depends on the
number of unit roots it contains).

The question of whether a variable is stationary depends on whether it has
a unit root. To see this, rewrite (2.3) as:

(1=pL)y: = u (2.4)
where L is the lag operator (i.e., Ly, =y, ;, while L%y, =y, 5, etc.). By

forming a characteristic equation (i.e., (1 — pL) = 0), we see that if the roots

31f |p| > 1, then y, will be non-stationary and explosive (i.e., it will tend to either o).
4 Note that i, was the same for all the series in Figures 2.1-2.3.
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Figure 2.2. Stationary series y; = 0.9y, + u,, u, ~ IN(0, 1).

of this equation are all greater than unity in absolute value then y, is stationary.
In our example, there is only one root (L = 1/p), thus stationarity requires that
|o| < 1 (for more complicated examples, including more than one unit root, see
Box 2.2).

Another way to consider stationarity is to look at the different types of
time trends that can be found in variables. If we allow (2.3) to have a non-zero

intercept:
P =08+ pyig+u (2.5)
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Figure 2.3. Non-stationary series with drift y, and trend-stationary series x;, where
Y=Y + 0.1 +u, x, = 0.1t + u, and u, ~ IN(0, 1).

and if p = 1, then by rearranging and accumulating y, for different periods,
starting with an initial value of y,, the non-stationary series y, can be rewritten
as: ,
=Yoo+ B+ u (2.6)
=1
(see also Box 2.1 and equation 2.1.1) where it can be seen that y, does not
return to a fixed deterministic trend (yy + () because of the accumulation of
the random error terms.> In fact, when p =1, y, will follow a stochastic trend
(i.e., it will drift upward or downward depending on the sign of 3, as shown in
Figure 2.3). This can be seen by taking the first difference of y,, giving
Ay, = 3+ u,, with the expected (i.e., mean) value of Ay, being equal to 3,
the growth rate of y, (assuming the variable is in logs). Since the first difference
of y, is stationary (Ay, fluctuates around its mean of § and has a finite
variance), then y, itself is referred to as difference-stationary since it is station-
ary after differencing.
In contrast, consider the following d.g.p.:

X, =a+Pt+u (2.7)
where o + Gt is a deterministic trend and the disturbance u, is the non-trend
(stochastic) component. Since w, is stationary [e.g., u, ~ IN(0, 1)], x, is said to

be trend-stationary (i.e., it may trend, but deviations from the deterministic
trend are stationary, see Figure 2.3). Note, that equations (2.6) and (2.7) have

3 Note that the linear trend Gt in (2.6) reflects the accumulation of the successive 3
intercepts when rearranging (2.5) for different periods.
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the same form (they both exhibit a linear trend), except that the disturbance
term in (2.6) is non-stationary.

Thus, considering the two types of trend, it has been possible to contrast
difference-stationary and trend-stationary variables and, in passing, to note
that the presence of a stochastic trend (which is non-stationary) as opposed
to a deterministic trend (which is stationary) can make testing for unit roots
complicated.

SPURIOUS REGRESSIONS

Trends in the data can lead to spurious correlations that imply relationships
between the variables in a regression equation, when all that is present are
correlated time trends. The time trend in a trend-stationary variable can
either be removed by regressing the variable on time (with the residuals from
such a regression forming a new variable which is trend-free and stationary) or
nullified by including a deterministic time trend as one of the regressors in the
model. In such circumstances, the standard regression model is operating with
stationary series that have constant means and finite variances, and thus statis-
tical inferences (based on #- and F-tests) are valid.

Regressing a non-stationary variable on a deterministic trend generally
does not yield a stationary variable (instead the series needs to be differenced
prior to processing). Thus, using standard regression techniques with non-
stationary data can lead to the problem of spurious regressions involving
invalid inferences based on ¢- and F-tests. For instance, consider the following
d.g.p-:

V=Y +uy u, ~ IN(0, 1) (2.8)

x; == x’_.] + v’ U{ ~ ]N(O, l) (2.9)

That is, both x and y are uncorrelated non-stationary variables such that when
the following regression model is estimated:

Yie =P+ Bix + & (2.10)

it should generally be possible to accept the null Hy: 3; = 0 (while the coeffi-
cient of determination R? should also tend toward zero). However, because of
the non-stationary nature of the data, implying that ¢, is also non-stationary,
any tendency for both time series to be growing (e.g., see y, in Figure 2.1) leads
to correlation, which is picked up by the regression model, even though each is
growing for very different reasons and at rates that are uncorrelated (i.e.. é,
converges in probability to zero in the regression (Ay, = 6 + 6,Ax, + 1,)).
Thus, correlation between non-stationary series does not imply the kind of
causal relationship that might be inferred from stationary series.®

$In fact, this correlation occurs because x and y share a ‘common trend’. Hence.
relationships between non-stationary variables that seem to be significant, but are in fact
spurious, are termed ‘common trends’ in the integration and cointegration literature.
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Box 2.3 An example of a spurious regression

Figure 2.4 plots the UK money supply m, for the period 1963q1-1989q2
together with a non-stationary random series with drift x,, the latter defined

das:
X, =01+x_+& &~IN(O,1) (2.3.1)

with X0 = 0.

Although no formal testing has been undertaken yet, it is likely that m,
is non-stationary (although the possibility still exists that it is stationary
around a deterministic trend). In any event, both series contain trends
leading to the following spurious regression result:

m, = 6.633 + 0.879x, + ut (2:3.2)

(303)  (154)

where the #-value decidedly rejects the null of no association between the
two series. The R® obtained was 0.70 and the Durbin-Watson statistic
equalled 0.01. The residuals from the regression are also plotted, with u,
also seeming to be non-stationary (which should be the case if both m, and
X, are non-stationary and there is no meaningful relationship between the
two series).

i m

Figure 2.4. UK money supply m,, 1963-1989, and non-stationary series with drift x;,,
where x, = x,_1 + 0.1 + &, and &, ~ IN(0, 1). Note that all variables are in logs and
u, = m, — 0.879x, — 6.633.

The problem of spurious correlation, resulting in a non-zero estimate of 3,
is compounded by the fact that ¢- and F-statistics do not have standard dis-
tributions generated by stationary series; with non-stationary series, there is a
tendency to reject the null in both cases, and this tendency in fact increases with
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the sample size. In a Monte Carlo experiment reported in Banerjee, Dolado,
Galbraith and Hendry (1993, pp. 73-75), equation (2.10) was estimated 10,000
times, with x and y as defined in (2.8 and 2.9), resulting in an estimated mean
value for 3, of —0.012 and an associated standard error of 0.006 (given a
sample size of T = 100), thus rejecting the null that E[3;] = 0. Based on the
10,000 replications, the probability of rejecting the null of no association at the
conventional significance level of 0.05 was found to be 0.753 (i.e., in 75.3 per
cent of the regressions values of |¢| > 1.96 were obtained’). This was due to the
fact that the mean #-statistic obtained from the experiment was —0.12 instead
of zero, with an associated standard deviation of 7.3. The non-standard dis-
tribution of the z-statistic accounts for the very high rejection rate of the null.
(See also Box 2.3.)

In summary, there is often a problem of falsely concluding that a relation-
ship exists between two unrelated non-stationary series. This problem generally
increases with the sample size and cannot be solved by attempting to de-trend
the underlying series, as would be possible with trend-stationary data. This
leads to the question of when it is possible to infer a causal long-run relation-
ship(s) between non-stationary time series, based on estimating a standard
regression such as (2.10).

COINTEGRATION

If a series must be differenced d times before it becomes stationary, then it
contains 4 unit roots (see Box 2.2) and is said to be integrated of order d.
denoted I(d). Consider two time series y, and x, that are both /(d). In general
any linear combination of the two series will also be I(d) (e.g., the residuals
obtained from regressing y, on x, are I(d)). If, however, there exists a vector 3
such that the disturbance term from the regression (i, = v, — 3x,) is of a lower
order of integration I(d — b), where b > 0, then Engle and Granger (1987)
define y, and x, as cointegrated of order (d, b). Thus, if y, and x, were both
I(1) and u, ~ I(0), then the two series would be cointegrated of order CI(1. 1)
(Box 2.4).

The economic interpretation of cointegration is that if two (or more) series
are linked to form an equilibrium relationship spanning the long run, then even
though the series themselves may contain stochastic trends (i.e., be non-station-
ary) they will nevertheless move closely together over time and the difference
between them is constant (i.e., stationary). Thus the concept of cointegration
mimics the existence of a long-run equilibrium to which an economic system
converges over time, and u, defined above can be interpreted as the disequi-
librium error (i.e., the distance that the system is away from equilibrium at
time 7).

Figure 2.5 shows the UK money supply (based on the narrow measure M1
and aggregate price level for the period 1963q1-1989q2). Both series exhibit

7 For stationary series, the probability of |f| > 1.96 is 5%.
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Box 2.4 Orders of integration and cointegration

For series to be cointegrated, they must have comparable long-run proper-
ties. That is, supppose a series must be differenced 4 times before it becomes
stationary; it is said to be integrated of order d, denoted /(d). If a linear
combination of any two time series y, and x, is formed and each is inte-
grated of a different order, then the resulting series will be integrated at the
highest of the two orders of integration. Thus if y, ~ (1) and x, ~ I(0),
then these two series cannot possibly be cointegrated as the /(0) series has a
constant mean while the I(1) series tends to drift over time, and conse-
quently the error [u, = (y, — ax,) ~ I(1)] between them would not be a
constant over time. Cointegration requires that if y, and x, are both /(d),
and if there exists a vector 3 such that the disturbance term from the
regression (u, =y, — fAx,) is of a lower order of integration I(d — b),
where b > 0, then y, and x, are cointegrated of order (d, b).

However, it is possible to have a mixture of different order series when
there are three or more series in the model. As Wickens and Pagan (1989)
point out, in this instance a subset of the higher order series must cointe-
grate to the order of the lower order series. So, if y, ~ I(1), x, ~ I(2) and
z, ~ I(2), then as long as we can find a cointegration relationship between x;,
and z, such that ¢,(= x, — Az,) ~ I(1), then v, can potentially cointegrate
with y, to obtain w,(= v, — &v,) ~ I(0).

Lastly, and again if there are n > 2 variables in the model, there can be
more than one cointegration vector. It is possible for up to » — 1 linearly
independent cointegration vectors to exist, and this has implications for
testing and estimating cointegration relationships (Chapter 4). Only when
n = 2 is it possible to show that the cointegration vector is unique.

trends, although until formally tested (see Chapter 3) both could be stationary
variables around a deterministic trend, rather than difference-stationary (the
latter implying that they contain one or more unit roots). Assuming for now
that m, and p, are non-stationary (and possibly I(1)), it can be seen that both
series generally appear to move together over time, suggesting that there exists
an equilibrium relationship (cf. the demand-for-money relationship discussed
earlier). The outcome of regressing m, on p, (plus a constant) is to obtain the
residual series ¢,, which on visual inspection might be 7(0) stationary. This
suggests that there possibly exists a cointegration vector (for the data used
here 3 = 1.1085, with a t-value of 41.92) that defines a constant (equilibrium)
relationship between money and prices.

Thus, following directly from the identification of cointegration with equi-
librium, it is possible to make sense of regressions involving non-stationary
variables. If these are cointegrated, then regression analysis imparts meaningful
information about long-run relationships, whereas if cointegration is not
established we return to the problem of spurious correlation.
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m;

p:
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-1
Figure 2.5. UK money supply m, and price level p,, 1963-1989, where ¢, = m,—
1.1085p, — 11.166.

SHORT-RUN MODELS

Equation (2.1) sets out the equilibrium relationship governing the demand for
money. However, even assuming that it is possible to directly estimate this
long-run model (an issue discussed in some detail in Chapter 4), it is also of
interest to consider the short-run evolution of the variables under considera-
tion, especially since equilibrium (i.e., the steady state) may rarely be observed.
This is important from a forecasting perspective, as is the economic informa-
tion that can be obtained from considering the dynamics of adjustment.

The major reason that relationships are not always in equilibrium centres
on the inability of economic agents to instantaneously adjust to new in-
formation.® There are often substantial costs of adjustment (both pecuniary
and non-pecuniary) that result in the current value of the dependent variable Y
being determined not only by the current value of some explanatory variable X
but also by past values of X. In addition, as Y evolves through time in reaction
to current and previous values of X, past (i.e., lagged) values of itself will also
enter the short-run (dynamic) model. This inclusion of lagged values of the
dependent variable as regressors is a means of simplifying the form of the
dynamic model (which would otherwise tend to have a large number of
highly correlated lagged values of X); by placing restrictions on how current

8 Even if expectations were fully efficient and agents could anticipate and therefore
react contemporaneously to changes in determinants, there are likely to be (non-
linear) adjustment costs that make it uneconomic to move instantaneously to a new
equilibrium.
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Y, adjusts to the lagged values of X,_; (i =0,...,¢), it is possible to reduce the
number of such terms entering the estimated equation at the cost of some extra
lagged terms involving Y,_; (i = 1,...,p).” A very simple dynamic model (with
lags p = g = 1) of short-run adjustment is:

Ve =og + X, + VX1 + 1y + Uy (2.11)

where the white noise residual is u, ~ IN(0, 0?). Clearly the parameter coeffi-
cient v, denotes the short-run reaction of y, to a change in x,, and not the long-
run effect that would occur if the model were in equilibrium. The latter is
defined as:

yi=PBo+ bix; (2.12)

So, in the long run the elasticity between Y and X is ) = (v + 71 /1 — o),
assuming that «; < 1 (which is necessary if the short-run model is to converge
to a long-run solution).

The dynamic model represented by (2.11) is easily generalized to allow for
more complicated, and often more realistic, adjustment processes (by increas-
ing the lag lengths p and ¢q). However, there are several potential problems with
this form of the dynamic model. The first has already been mentioned and
concerns the likely high level of correlation between current and lagged values
of a variable, which will therefore result in problems of multicollinearity (high
R?, but imprecise parameter estimates and low r-values, even though the
model may be correctly specified). Using the Hendry-type ‘general-to-specific’
approach, which would involve eliminating insignificant variables from the
estimated model, might therefore result in mis-specification (especially if X is
in fact a vector of variables). Also, some (if not all) of the variables in a
dynamic model of this kind are likely to be non-stationary, since they enter
in levels. As explained earlier, this leads to the potential problem of common
trends and thus spurious regression, while - and F-statistics do not have
standard distributions and the usual statistical inference is invalid.'® A solution
might be to respecify the dynamic model in (first) differences. However,
this then removes any information about the long-run from the model and
consequently is unlikely to be useful for forecasting purposes.

A more suitable approach is to adopt the error correction model—
sometimes called an equilibrium correction model—(ECM) formulation of
the dynamic model. Rearranging and reparameterizing (2.11) gives:

Ayt =2A8x, — (1 — a)[yi1 — Bo — Bixi1] + (2.13)

°For instance, if the effects of the X,_; are restricted to decline in a geometric
progression (1 + ¢ + @ + ¢3 - - -) so that more distant lags have little impact on current
Y, then we end up with the Koyck lag model: y, = ag(1 — @) + vox; + @y1—1 + ¢;, which
is equivalent to y, = ap + Yo(x; + @Xi—1 + p°x,2 - ) + s, where e, = u, — pu,_,.

®However, as will be discussed in Chapter 4, if the right-hand-side variables in the
model are weakly exogenous, invalid inference and potential bias will not be a problem.
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where [y = ap/(1 — a,). Equations (2.11) and (2.13) are equivalent, but the
ECM has several distinct advantages. First, and assuming that X and Y are
cointegrated, the ECM incorporates both short-run and long-run effects. This
can be seen by the fact that the long-run equilibrium (2.12) is incorporated
into the model. Thus, if at any time the equilibrium holds then
[i-1 = Bo — Bix,_1] = 0. During periods of disequilibrium, this term is non-
zero and measures the distance the system is away from equilibrium during
time . Thus, an estimate of (1 — ;) will provide information on the speed of
adjustment (i.e., how the variable y, changes in response to disequilibrium).''
For instance, suppose that y, starts to increase less rapidly than is consistent
with (2.12), perhaps because of a series of large negative random shocks
(captured by u,). The net result is that [y,_; — 3y — 3,x,_;] <0, since »,_,
has moved below the steady-state growth path, but since —(1 — ) is negative,
the overall effect is to boost Ay, thereby forcing y, back toward its long-run
growth path as determined by x, (in equation (2.12)).

A second feature of the ECM is that all the terms in the model are station-
ary so standard regression techniques are valid, assuming cointegration and
that we have estimates of 3; and 3,. There is clearly a problem if they need to
be estimated at the same time in the ECM. Often 3, is set equal to one (and 3,
is set equal to zero) and justified on the basis that the theory imposes such a
long-run elasticity. This can be tested by including x,_; as an additional re-
gressor, since it should have an estimated coefficient value of zero, if in fact
[5o: 31]" = [0, 1])". However, including the potentially non-stationary variable
x,_; is itself problematic, since the r-statistic of the coefficient of x,_, does
not have a standard normal distribution, thereby invalidating the usual
testing procedure. The issues of testing for cointegration and estimating the
ECM are considered in Chapter 4.

Third, as should be obvious from equations (2.12) and (2.13), the ECM is
closely bound up with the concept of cointegration. In fact, Engle and Granger
(1987) show that if y, and x, are cointegrated C/(1, 1), then there must exist an
ECM (and, conversely, that an ECM generates cointegrated series). The prac-
tical implication of Granger’s representation theorem for dynamic modelling is
that it provides the ECM with immunity from the spurious regression problem.
providing that the terms in levels cointegrate.

The simple ECM depicted in (2.13) can be generalized to capture more
complicated dynamic processes. Increasing the lag length p and/or g in (2.11)
results in additional lagged first differences entering (2.13). In general, we can
reformulate the ECM as:

A(L)Ay, = B(L)Ax, — (1 = 7)[yi—p — Bo — Bixi—p| + u; (2.14)

' arge values (tending to —1) of —(1 — ;) indicate that economic agents remove a
large percentage (since the model is in logs) of the resulting disequilibrium each period.
Small values (tending toward 0) suggest that adjustment to the long-run steady state is
slow, perhaps because of large costs of adjustment (pecuniary and non-pecuniary).
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where A(L) is the polynomial lag operator 1 — L — a2L2 — = a7
B(L) is the polynomial lag operator vy +yL+ynL?+ -+ v,L¢ and
7= (0 +ay+---+a,). Lastly, it is also possible to specify the ECM in
multivariate form, explicitly allowing for a set of cointegration vectors. This
will be explored more fully in Chapter 5.

CONCLUSION

This chapter has considered short- and long-run models. Inherent in the
distinction is the notion of equilibrium; that is, the long run is a state of
equilibrium where economic forces are in balance and there is no tendency
to change, while the short run depicts the disequilibrium state where adjust-
ment to the equilibrium is occurring. When dealing with non-stationary data,
equilibrium is synonymous with the concept of cointegration. Failure to
establish cointegration often leads to spurious regressions that do not reflect
long-run economic relationships, but rather reflect the ‘common trends’ con-
tained in most non-stationary time series. Cointegration is also linked very
closely to the use of short-run ECMs, thus providing a useful and meaningful
link between the long- and short-run approach to econometric modelling.
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3
. Testing for Unit Roots |

When discussing stationary and non-stationary time series, the need to test for
the presence of unit roots in order to avoid the problem of spurious regression
was stressed. If a variable contains a unit root, then it is non-stationary, and
unless it combines with other non-stationary series to form a stationary co-
integration relationship, then regressions involving the series can falsely imply
the existence of a meaningful economic relationship.

In principle it is important to test the order of integration of each variable
in a model, to establish whether it is non-stationary and how many times the
variable needs to be differenced to result in a stationary series. Also, as will be
seen, testing for stationarity for a single variable is very similar to testing
whether a linear combination of variables cointegrate to form a stationary
equilibrium relationship. Testing for the presence of unit roots is not straight-
forward. Some of the issues that arise are as follows:

e [t is necessary to take account of the possibility that the underlying (but, of
course, unknown) data-generating process (d.g.p.) may, inter alia, include
a time trend (stochastic or deterministic).

e The d.g.p. may be more complicated than a simple autoregressive AR(1)
process (e.g., (2.3)), and indeed may involve moving average (MA) terms.

e It is known that when dealing with finite samples (and especially small
numbers of observations) the standard tests for unit roots are biased
toward accepting the null hypothesis of non-stationarity when the true
d.g.p. is in fact stationary, but close to having a unit root (i.e., there is a
problem with the power of the test).

e There is concern that an undetected structural break in the series may lead
to under-rejecting of the null.

e Quarterly data might also be tested for seasonal unit roots in addition to
the usual test for unit roots at the zero frequency level. Observations on a
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variable y, can also be described by a different model for each quarter, with
the result being a periodic AR model.'

THE DICKEY-FULLER TEST

There are several ways of testing for the presence of a unit root. The emphasis
here will be on using the Dickey—Fuller (DF) approach (cf. Dickey and Fuller,
1979) to testing the null hypothesis that a series does contain a unit root (i.e., it
1s non-stationary) against the alternative of stationarity. There are other tests
of this null (e.g., the Sargan—Bhargava (1983) cointegration regression Durbin—
Watson (CRDW) test, based on the usual Durbin—Watson statistic, and the
non-parametric tests developed by Phillips and Perron, based on the Phillips
(1987) Z test, which involve transforming the test statistic to eliminate any
autocorrelation in the model), but DF tests tend to be more popular either
because of their simplicity or their more general nature. There are also more
recent tests that take as the null the hypothesis that a series is stationary,
against the alternative of non-stationarity (see, for example, Kahn and
Ogaki, 1992 and Kwiatkowski, Phillips, Schmidt and Shin, 1992). These
have not achieved widespread usage, and since the consequences of non-
stationarity are so important, it is probably better to take a conservative
approach with non-stationarity as the maintained hypothesis.’
The simplest form of the DF test amounts to estimating:

Y1 = Payi-1 T U (3.1a)
or  (1=L)y,=Ay; = (pa— Dyio1 +u,  u, ~1D(0.6%)  (3.1b)}

Either variant of the test is applicable, with the null being Hj: p, = 1 against
the alternative H;: p, < 1. The advantage of (3.1b) is that this is equivalent to
testing (p, — 1) = p, = 0 against p, < 0; more importantly, though, it also
simplifies matters to use this second form of the test when a more complicated
AR(p) process is considered (cf. Box 2.2).* The standard approach to testing

I Note that fractional integration and unit roots are discussed in Chapter 8 (when
discussing integrated generalized autoregressive conditional heteroscedastic (GARCH)
models), since long memory processes are more applicable to financial data that are
observed more often than say each quarter.

It is sometimes useful to test using both alternatives of the null, to ensure that each
corroborates the other, although the underlying distributions of, say, the DF test (of the
null of non-stationarity) and the KPSS test (of the null of stationarity—see Kwiat-
kowski et al., 1992) have different d.g.p.s and are therefore strictly not comparable.
Nonetheless, recently Carrion-i-Silvestre, Sanso-i-Rossello and Ortuno (2001) have
computed joint statistics (called the joint confirmation hypothesis) of the probability
of rejecting the null of a unit root using both tests.

3Note that we are not assuming that the residuals u, are drawn from a normal
distribution; rather they are drawn from the DF distribution.

4 Note that if we reject p* = 0 in favour of p* < 0. then we can safely reject p* > 0.
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Table 3.1 Critical values for the DF test (source: Fuller, 1976).

Sample size Critical values for 7  Critical values for 7,  Critical values for 7,
level of significance  level of significance  level of significance

0.01 0.05 0.10 0.01  0.05 0.10 001 0.05 0.10

DF distribution

25 -2.66 —1.95 —1.60 375 -3.00 —-2.63 —-4.38 -3.60 -3.24

50 —-2.62 —195 —-1.61 -358 -293 -260 —4.15 -3.50 -3.18

1060 —-2.60 —-195 —1.61 -351 -289 -2.58 —-404 -345 -3.15
t-distribution

20 —-2.33 —-1.65 —-1.28 -233 -1.65 —128 -233 -—1.65 —-1.28

such a hypothesis is to construct a ¢-test; however, under non-stationarity, the
statistic computed does not follow a standard ¢-distribution, but rather a DF
distribution. The latter has been computed using Monte Carlo techniques,
which involves taking (3.1) as the underlying d.g.p., imposing the null hypoth-
esis by fixing p, = 1 and randomly drawing samples of the u, from the normal
distribution; this then generates thousands of samples of y,, all of which are
consistent with the d.g.p: y, = y,_; + u,. Then for each of the y, a regression
based on (3.1) is undertaken, with p, now free to vary, in order to compute (on
the basis of thousands of replications) the percentage of times the model would
reject the null hypothesis of a unit root when the null is true. These are the
critical values for rejecting the null of a unit root at various significance levels
(e.g., 10%, 5% and 1%) based on the DF distribution of [(p, ~ 1)/SE(p,)].”

It is informative to compare the critical values for the DF and standard ¢-
distributions. Assume that model (3.1b) has been estimated for some series y,,
resulting in a ¢-ratio of —1.82 attached to the coefficient of y,_;. Looking at the
first set of critical values in Table 3.1, it is clear that for different sample sizes it
would be necessary to accept the null of non-stationarity at the 5% significance
level using the values of the DF 7-distribution. However, using the comparable
critical values for the standard ¢-distribution (the final row), the null could be
rejected at this significance level. Thus, failure to use the DF r-distribution
would lead on average to over-rejection of the null.

5 Note that the d.g.p. underlying the DF distribution is that given in (3.1), containing no
constant or trend. Critical values are then obtained for three models used to test the null
of a unit root: (i) a no constant/no trend regression (i.e., (3.1) in the text and the first
block of values in Table 3.1); (ii) only a constant in the model ((3.2) and block 2 in Table
3.1); and (iii) both a constant and a trend ((3.3) and block 3 in Table 3.1). If the d.g.p. is
altered to include a non-zero constant, the critical values obtained from (iii) are not
affected; the DF distribution is invariant to the value of the constant in the d.g.p., and
thus it is sufficient to use (3.1) as the underlying d.g.p. for calculating critical values
(Fuller, 1976). This property of the DF distribution is known as similarity and leads to
similar tests (i.e., tests for which the distribution of the test statistic under the null
hypothesis is independent of nuisance parameters in the d.g.p.).
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Testing for a unit root using (3.1) involves making the prior assumption
that the underlying d.g.p. for y, is a simple first-order AR process with a zero
mean and no trend component (i.e., no deterministic variables). However, it
also assumes that in the d.g.p. at time ¢t = 0, y, also equals zero, since in a
model with no deterministic variables the mean of the series is determined by
the initial observation under the hypothesis of a unit root. So using regression
equation (3.1) is only valid when the overall mean of the series is zero. Alter-
natively, if the ‘true’ mean of the d.g.p. were known, it could be subtracted
from each observation, and (3.1) could then be used to test for a unit root; but
this is unlikely to happen in practice.® Thus, when the underlying d.g.p. is given
by (3.1), but it is not known whether y, in the d.g.p. equals zero, then it is
better to allow a constant y, to enter the regression model when testing for a
unit root:

Ay, =pp+ (o — Dyio1 +uy u, ~ 1ID(0, 6%) (3.2)

The appropriate critical values to be used in this case are given by the DF
distribution relating to 7, since the latter was generated assuming that the
underlying d.g.p. is given by (3.1), but the model used for testing is (3.2).”
Note that p, and 7, are both invariant with respect to y, (i.e., whatever the
unknown starting value of the series, the distribution of the test statistic 7, is
not affected). This is an important property, since in its absence critical values
would depend on some unknown value of y,, and we would therefore need to
know both the value of y, and its associated DF distribution before we could
undertake any test for a unit root.

However, (3.2) cannot validly be used to test for a unit root when the
underlying d.g.p. is also given by (3.2). In this instance, if the null hypothesis
is true p, = 1, and y, will follow a stochastic trend (i.e., it will drift upward or
downward depending on the sign of ;) (see the discussion of equations (2.5)
and (2.6) in the last chapter). Under the alternative hypothesis that p, < 1, then
y, is stationary around a constant mean of u,/(1 — p), but it has no trend.
Thus, using (3.2) to test for a unit root does not nest both the null hypothesis
and the alternative hypothesis. Put another way, suppose the true d.g.p. is a
stationary process around a deterministic trend (e.g., y, = a + 8t + u,) and
(3.2) is used to test whether this series has a unit root. Since the d.g.p. contains
a trend component (albeit deterministic), the only way to fit this trend is for the
regression equation to set p, = 1, in which case u, becomes the coefficient 3 on
the trend (cf. equations (2.6) and (2.7)). This would be equivalent to accepting
the null that there is a stochastic (i.e., non-stationary) trend, when in fact the
true d.g.p. has a deterministic (i.e., stationary) trend. What this example illus-
trates is that in order to test what will probably be in practice the most

6 Nankervis and Savin (1985) have shown that using (3.1) with yp # 0 can lead to
problems over rejection of the null when it is true (i.e., there are problems with the size
of the test).

7 See also footnote 5 for more details.
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common form of the null hypothesis (that the d.g.p. contains a stochastic trend
against the alternative of being trend-stationary), it is necessary to have as
many deterministic regressors as there are deterministic components in the
d.g.p., and thus we must allow a time trend ¢ to enter the regression model
used to test for a unit root:

Ay = pe + et + (pe = Dyie1 +uy Uy~ IID(()»UZ) (33)

The appropriate critical values are given by the DF distribution relating to 7,
(see Table 3.1); it is interesting to note that 7. < 7, <7 and then to make
comparisons with the standard z-values. Clearly, the inappropriate use of the
latter would lead to under-rejection of the null hypothesis, and this problem
becomes larger as more deterministic components are added to the regression
model used for testing. Note also that p. and 7, are both invariant with respect
to yy and p,, so neither the starting value of the series nor the value of the drift
term have any affect on the test statistic 7.

It is possible that the underlying d.g.p. is given by (3.3), which would mean
that y, has both a stochastic and a deterministic trend. In this event, one would
need a regression model that includes an additional term (such as %) in order to
be able to test for a unit root, necessitating an additional block of critical
values in Table 3.1. In practice, this is unlikely to be a problem since the
hypothesis of a unit root with a deterministic trend is usually precluded a
priori, because it implies an implausible, ever-increasing (or decreasing) rate
of change (if y, is in logarithmic form).®

Before discussing the testing procedure that should be adopted when using
the DF test, it is worth noting that tests of the joint hypothesis that v. = 0 and
p. = 1 can also be undertaken, using the non-standard F-statistic ®; reported
in Dickey and Fuller (1981).° In (3.3), if the DF r-test of the null hypothesis Hy:
p. = 1 is not rejected, but the joint hypothesis Hy: (p. — 1) =, = 0 is, then
this implies that the trend is significant under the null of a unit root and
asymptotic normality of the s-statistic [(p, — 1)/SE(p.)] follows. Thus,
instead of using the critical values from the DF-type distribution, the standard
t-statistic (for n = co) should be used to test Hy: (p. — 1) = 0. This result
follows from West (1988) and occurs when a stochastic trend is present in
the regression, but it is dominated by a deterministic trend component. This
form of dominance is also present when testing the joint hypothesis that y, =
and p, = 1, using (3.2) and the F-statistic ®; (given in Dickey and Fuller,
1981).° If one fails to reject Hy: p, = 1, but can reject the joint hypothesis

8 Thus, if the null hypothesis Hy: (p. — 1) = 0 is true, we should expect the trend not to
be significant in (3.3), otherwise we would need the extra block of DF critical values.
Note that if the deterministic trend is significant under a joint test and dominates the
stochastic trend, then asymptotic normality of the t-statistic follows, as we now go onto
discuss.

° Note that ®; is invariant with respect to y; and ..

10 Note that @, is invariant with respect to yg.
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Hy: (pp — 1) = pp = 0, then the constant is significant under the null of a unit
root and asymptotic normality of the z-statistic [(p. — 1)/SE(p,.)] follows. Note
that rejection of either of the above joint hypotheses, using the appropriate F-
test, results in both the d.g.p. and the regression model used to test for a unit
root having the same form (unlike the tests outlined above involving the DF
distribution). This is known as an exact test, while the tests based on the DF
distribution are called similar tests.'' However, there are two reasons to be
cautious about conducting unit root tests using exact tests: first, asymptotic
normality of the t-statistic only occurs when the non-zero constant (and trend)
in the d.g.p. is (are) matched by a constant (and trend) in the model used for
testing. So, for example, including a trend in the model when the d.g.p. does
not have a trend means that we have to use the DF distribution to obtain valid
critical values. Since it is unlikely that we will be sufficiently confident about the
correct specification of the d.g.p., it is probably safer to use the DF distribu-
tion. Second, it has been suggested (Banerjee, Dolado, Galbraith and Hendry,
1993) that in finite samples, the DF distributions may be a better approxima-
tion than the normal distribution, even though asymptotically (i.e., » — ) the
latter is to be preferred.’?

One last item of information that will help in deciding a possible testing
strategy is that the inclusion of additional deterministic components in the
regression model used for testing, beyond those included in the (unknown)
d.g.p., results in an increased probability that the null hypothesis of non-
stationarity will be accepted when in fact the true d.g.p. is stationary (i.e..
the power of the test of the unit root hypothesis decreases against stationary
alternatives).'® This problem was mentioned when comparing the values in
Table 3.1, since critical values for rejecting the null are ordered as follows:
7, < 7, < 7. That is, adding a constant and then a trend to the model increases
(in absolute value) the critical values, making it harder to reject the null
hypothesis, even when it should be rejected.'*

To summarize the issues so far discussed, ¢-tests of the null hypothesis of a
unit root must use critical values from the DF distribution and not the stan-

" That is, a similar test having a DF distribution requires that the regression model used
for testing contains more parameters than the d.g.p. (see Kiviet and Phillips, 1992).

12 Recently, Ohtani (2002) has computed the appropriate exact critical values for DF
tests where the constant or trend term are significantly different from zero and exact
tests apply. He argues these should be used instead of assuming asymptotic normality.
13 Note that this will also be a problem when we consider adding lagged values of the
Ay,_; as additional regressors when using the ADF test (see below).

14 This needs, however, to be counterbalanced by the fact that (in finite samples) as we
add deterministic regressors to the regression model, there is a downward bias away
from zero in the estimate of p, and this bias increases as the number of deterministic
regressors increases. However, even though this suggests that the asymptotic low power
of the test and finite bias may help to cancel each other out, Monte Carlo simulation
does tend to confirm that there still remains a problem in finite samples (e.g.. Schwert.
1989).
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Table 3.2 Perron’s (1988) testing procedure using the DF test (unknown d.g.p.).

Step and model Null hypothesis Test statistic  Critical values*
M Avi=pe+yt+(pe~ Dy +u (pe—1)=0 T Fuller
(table 8.5.2, block 3)
() Ayi=pe+vt+(pe— Dy +u, (pe=1)=r=0 a&; Dickey and Fuller
(table VI)
2a) Ay, =pe +7:t+(pe = Dy +u, (pe—1)=0 t Standard normal
(3) Ay =+ (pp — D)yeoy + 14y (pp—1)=0 Ty Fuller
(table 8.5.2, block 2)
@ Ay, =p+(pp — Dyt +uy (pp=1)=pp=0 @& Dickey and Fuller
(table 1V)
(4a) Ay, = pp + (po — Dyt + 1 (pp—1)=0 1 Standard normal
5y Ay, = (ps— Dy +us (pa—1)=0 T Fuller

(table 8.5.2, block 1)

* Fuller (1976) and Dickey and Fuller (1981).

dard t-distribution. Similarly, F-tests of the joint hypothesis concerning the
unit root and the significance of constant or trend terms must also use the
critical values of the appropriate DF distribution (obtained from Dickey and
Fuller, 1981). It is necessary to ensure that the regression model used for testing
has more deterministic components than the hypothesized d.g.p., otherwise the
test will not nest the null and alternative hypotheses. In general, since the
underlying d.g.p. is unknown, this suggests using (3.3) for testing the unit
root hypothesis. However, having unnecessary nuisance parameters (constant
and trend terms) will lower the power of the test against stationary alternatives.
Thus, Perron (1988) has put forward the sequential testing procedure outlined
in Table 3.2, which starts with the use of (3.3) and then eliminates unnecessary
nuisance parameters. If we fail to reject the null using the most general speci-
fication (perhaps because of the low power of the test), testing continues on
down to more restricted specifications. The testing stops as soon as we are able
to reject the null hypothesis of a unit root. Note, steps (2a) and (4a) are only
undertaken if we are able to reject the joint hypotheses in (2) and (4), respec-
tively. Even in these situations, tests based on the DF distributions may be
preferable, in which case the results obtained from steps (2a) and (4a) should be
treated with some caution.

There are several econometric packages available that will allow the user to
go through this testing strategy fairly easily, and they usually provide the
appropriate critical values.'> However, all the tests can be carried out

5 In most packages (such as PcGive) the critical values used are those obtained by
MacKinnon (1991), who calculated response surfaces to allow appropriate critical
values to be obtained for various sample sizes (and not just those listed in the DF
tables).
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running ordinary least squares (OLS) regressions and by referring to the DF
tables referenced in Table 3.2 (also reproduced in the Statistical Appendix at
the end of the book).

AUGMENTED DICKEY-FULLER TEST

If a simple AR(1) DF model is used when in fact y, follows an AR(p) process,
then the error term will be autocorrelated to compensate for the mis-
specification of the dynamic structure of y,. Autocorrelated errors will
invalidate the use of the DF distributions, which are based on the assumption
that u, is ‘white noise’. Thus, assuming y, follows an pth order AR process:

Vi=vy oyt + YpYi—p + Uy
or Ay, = 'y + 1Ay + DAy + - (3.4)
+Yp 1AV pi1 + 4y u, ~ 1ID(0,0%)

where ¥" = (¥ + 1, + --- +4,) — 1. If " = 0, against the alternative ¢* < 0,
then y, contains a unit root. To test the null hypothesis, we again calculate the
DF r-statistic [¢* /SE(¢*)], which can be compared against the critical values in
Table 3.1 (for 7). Note that this is only strictly valid in large samples, since in
small samples percentage points of the augmented Dickey—Fuller (ADF) dis-
tribution are generally not the same as those applicable under the strong
assumptions of the simple DF model (Banerjee et al., 1993, p. 106).

As with the simple DF test, the above model needs to be extended to allow
for the possibility that the d.g.p. contains deterministic components (constant
and trend). As the model is extended, the appropriate large sample critical
values are those given in Table 3.1. The model needed to test for the null
hypothesis of a stochastic trend (non-stationary) against the alternative of a
deterministic trend (stationary) is as follows:

p—1
Ay ="y 1+ Y by i+p+yi+u  u ~1D(0,0%) (3.5)

=1
The augmented model can be extended even further to allow-for MA parts in
the u,.1% It is generally believed that MA terms are present in many macro-
economic time series after first-differencing (e.g., time average data, an index of
stock prices with infrequent trading for a subset of the index, the presence of
errors in the data, etc.).!” Said and Dickey (1984) developed an approach in

16 For example, u, = €, — 0¢,_;, where ¢, ~ IID(0, 0?).

17 When the MA terms have values close to —1, it is well known (Schwert, 1989) that this
affects the size of the ADF test, with the model incorrectly over-rejecting the null of
non-stationarity when it is true (i.e., more often than expected with respect to a type 1
error). Hence, as shown below, it is argued that the lag length in the ADF test needs to
be sufficiently large to capture any MA processes.
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which the orders of the AR and MA components in the error term are
unknown, but can be approximated by an AR(k) process, where & is large
enough to allow a good approximation to the unknown autoregressive
moving average—ARMA(p, g)—process, so ensuring that u, is approximately
‘white noise’. In terms of the augmented model the Said—Dickey approach can
be approximated by replacing the lag length of (p — 1) with k&, with the tech-
nical condition that k increases at a suitable rate as the sample size increases.'®

Thus, the ADF test is comparable with the simple DF test, but it involves
adding an unknown number of lagged first differences of the dependent vari-
able to capture autocorrelated omitted variables that would otherwise, by
default, enter the error term u, (an alternative approach to adding lagged
first differences of the dependent variable is to apply a non-parametric correc-
tion to take account of any possible autocorrelation; this is the Phillips and
Perron approach and is discussed in Box 3.1). In this way, we can validly apply
unit root tests when the underlying d.g.p. is quite general. However, it is also
very important to select the appropriate lag length; too few lags may result in
over-rejecting the null when it is true (i.e., adversely affecting the size of the
test), while too many lags may reduce the power of the test (since unnecessary
nuisance parameters reduce the effective number of observations available).
Banerjee et al. (1993) favour a generous parameterization, since °... if too
many lags are present ... the regression is free to set them to zero at the cost
of some loss in efficiency, whereas too few lags implies some remaining auto-
correlation ... and hence the inapplicability of even the asymptotic
distributions in ...” (see Table 3.1 on p. 43).

Suggested solutions to the choice of p in (3.5) involve using a model
selection procedure that tests to see if an additional lag is significant (e.g., if
it increases the value of R?, which in a linear model is equivalent to using the
Akaike information criterion—see, for example, Greene, 2000 p. 306).
However, it was shown in Harris (1992a) that maximizing R? to choose the
value of p in the ADF test proved to be unsatisfactory, Monte Carlo experi-
ments undertaken using various d.g.p.s (ARMA, AR and MA) suggested that
there were problems with the size of this form of the ADF test. Rather,
choosing a fairly generous value of p (using a formula suggested by Schwert,
1989 that allows the order of autoregression to grow with the sample size 7°)
resulted in a test with size close to its nominal value (i.e., the model incorrectly
rejected the null when it is true close to the 10%, 5% and 1% times expected on
the basis of making a type 1 error). This is consistent with Banerjee et al.
(1993), and thus Harris suggested that the lag length should normally be
chosen on the basis of the formula reported in Schwert (1989, p. 151): that is
h, = int{12(T/100)"/4}.

'8 This is an approximation to the Said-Dickey approach, since the latter does not
include a model incorporating a deterministic trend, while the model with drift (p # 0)
should necessitate that the first regressor in (3.5) becomes (y,., — y), where y is the mean
of y over the sample.
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Box 3.1 Phillips—Perron-type tests for unit roots.

The ADF-type test includes additional higher order lagged terms to account
for the fact that the underlying d.g.p. is more complicated than a simple
AR(1) process. The extra terms, involving lags of the dependent variable.
‘whiten’ the error term in the regression equation used for testing, since
autocorrelated errors (due to the mis-specification of the dynamic structure
of y,) will invalidate the used of the DF distributions.

An alternative approach is that suggested by Phillips (1987) and ex-
tended by Perron (1988) and Phillips and Perron (1988). Rather than
taking account of the extra terms in the d.g.p. by adding them to the
regression model, a non-parametric correction to the 7-test statistic is under-
taken to account for the autocorrelation that will be present (when the
underlying d.g.p. is not AR(1)). Thus, DF-type equations (cf. (3.1)(3.3))
are estimated in line with Perron’s (1988) testing strategy and then the /-test
statistic (of the null hypothesis of non-stationarity) is amended to take
account of any bias due to autocorrelation in the error term of the DF-
type regression model. This bias results when the variance of the ‘true’
population:

o’ = lim E(T~'S%)

T—oc

differs from the variance of the residuals in the regression equation:
T
. ~—. 2
ol = lim 77! E E(u;)
T—ot
=l
. . 2
Consistent estimators of o2 and o are:

T )y ! i1
Si=T'> (u) Su=T"'Y )+2T7"'Y > wu (.11)
=1 =1

=1 t=j+1

where [ is the lag truncation parameter used to ensure that the autocorrela-
tion of the residuals is fully captured. In practice, the estimate for S% is not
guaranteed to be non-negative in finite samples, and therefore the formula is
modified in practice to include a term that ensures non-negativity. 1t can
be seen from (3.1.1) that when there is no autocorrelation the last term in
the formula defining 3 is zero and o2 = 2.

Based on (3.1.1), an asymptotically valid test that p, = 1 in (3.2), when
the underlying d.g.p. 1s not necessarily an AR(1) process, is given by the
Phillips Z-test:

2]
Z(r,l)—(S,,/snm—%(S%—Sﬁ){ST,[TZZ(.v,_I.u)z] } (3.1.2)

19 Specifically, an additional term 1 —j(/ + 1)~! follows the second summation sign in
the formula for S%,.
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where 7, is the t-statistic associated with testing the null hypothesis p, = | in
(3.2). The critical values for this test statistic are the same as those for 7,
(cf. Table 3.1), and Z(7,) reduces to the DF test statistic 7, when auto-
correlation is not present (since S, = Sy;). Other Z-tests corresponding to
tests involving trend and no constant or trend terms (and joint tests of
hypotheses) are provided in table 1 of Perron (1988).

Monte Carlo work (most notably Schwert, 1989) suggests that the
Phillips-type test has poor size properties (i.e., the tendency to over-reject
the null when it is true) when the underlying d.g.p. has large negative MA
components and MA terms are present in many macroeconomic time series.
Banerjee et al. (1993) also state: *. .. one might suspect as well that the power
of the Said-Dickey procedure would be higher for processes involving AR
errors, because the test regression captures AR terms precisely” (p. 113).
Note, however, that Perron and Ng (1996) improve the (size) performance
of the Phillips-type test when there are negative MA terms through the
addition of appropriate modification factors to the original test statistics.
They refer to the new tests as modified Z-tests.

More recently, Ng and Perron (1995) argue in favour of a general-
to-specific sequential s-test for the significance of the last lag that has the
ability to yield higher values of p (when there are negative MA errors) rather
than standard lag length selection criteria. Hence this reduces size distortions,
but (as noted in Ng and Perron, 2002) this approach also tends to over-
parameterize when MA errors are not important. Weber (2001) argues in
favour of a specific-to-general approach whereby p is initially set at a low
value, and then F-tests are conducted for eliminating longer lags from the
model (i.e., the lag length in the ADF regression is set at the smallest p such
that all longer lags up to p™**—where the latter might be obtained using the
Schwert formula—are jointly insignificant).” The problem for all these
methods of setting p is linked to the type of information-based rule used
when devising and implementing the lag selection criteria. Thus Ng and
Perron (2002) have analysed these various information criterion (e.g., the
Akaike criteria typically used) and have suggested a new modified criterion
that has as a central feature the imposition of the null hypothesis of a unit root
when selecting the lag length. They present evidence that their new procedure
leads to substantial improvements in the size of the unit root test. We will
implement this later (cf. Box 3.3) when discussing the size and power problems
of unit root tests more generally.

2 Weber shows that his specific-to-general approach works well when the true d.g.p. has
few lags, although the Akaike information Criterion (AIC) works better when the lag
length in the true model is longer. Note that he does not deal with the problem of MA
terms with values close to —1, so does not directly consider the problem discussed by
Schwert (1989), Banerjee et al. (1993) and Ng and Perron (2002).
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Table 3.3 Augmented Dickey—Fuller and Phillips—Perron Z-tests of unit roots: UK
money demand data (1963q1-1989q2), seasonally unadjusted.

Variable Test statistic (see Table 3.2 and Box 3.1)
(and lag length*)

T Z(1;) Ty Z(14) T Z(7)
log Real MI -0.21 1.48*%* —0.48 2.24 0.88 0.05
(lag length) (6) (6) ©) ©) W) 7
log TDE -1.35 —45.94%** 0.29 -0.31 3.02 0.06
(lag length) an an (1) (1) (1 (an
Alog P -2.13 —16.77 -2.16 —16.86*** —0.84 -3.87
(lag length) 3) 3 3) (3) 3 (3)
R -2.05 —8.60 -2.14 -9.11 -0.73 -1.26
(lag length) ©)] 3) 3) 3) (3) 3)
Alog Real MI -2.67 —~117.91*** 237 —115.63%**  —222***  _113.76***
(lag length) Y N (6) (6) (6) (6)
Alog TDE -2.78 —105.56%** -2.77** —106.12*** -1.56 ~136.77%**
(lag depth) (1) an (1) (11) ) )
Allog P —T7.26%** —147.45%%*  _7.26*%* —147.96%** _7.20%**  _148.30%**
(lag length) 2 2 (2) 2) ) (2)
AR ~6.08*** —84.89*** _6.03*** _B84.69*** —6.06*** —85.19%**
(lag length) @ (¥3)] 2 (2) ) (2)

* The lag length was set by AIC + 2 on every occasion (see text for details).
** Rejects the null hypothesis at the 5% level.
*** Rejects the null hypothesis at the 10% level.

The results from using the ADF and Phillips—Perron (PP) Z-tests when
applied to UK money demand data are reported in Table 3.3 (plots of the
actual series are provided in Figure 3.1). Tests applied to the actual series and
each variable in first differences are reported, with the 7SP (4.5) econometric
software package providing the required test statistics.”! Note, the 7-statistic
based on (3.1) is not really applicable unless the overall mean of the series is
zero (cf. Figure 3.1), although it is included in Table 3.3 for completeness. On
the basis of the ADF test applied to each series in levels, the UK money
demand data appears to comprise a set of /(1) variables, since we fail to
reject the null of non-stationarity. The PP tests generally confirm this. although
the variable representing real output (log TDE) is found to be a trend-
stationary series, while, inflation is apparently stationary when only a constant

21 The COINT procedure in the TSP software package provides the various forms of the
test statistics as used here; it also calculates for the user the value p that minimizes
the AIC (which in a linear model is equivalent to maximizing R?). Note, however, that
the actual information criterion used is AIC + 2, in order to avoid the problem of poor
size properties of the test statistic when there are (large) negative MA terms in the d.g.p.
Other packages typically report the ADF r-statistic for various user specified lag lengths
(e.g.. PcGive).
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(b) log real money supply and log prices; (c) interest rate.
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is included in the test regression model.”> When taking the first difference of
each series (Ay, = y, — y,_1), the results would tend to confirm the hypothesis
that each series is (1), as differencing removes the unit root, although there is
some evidence that the real money supply and real output may not be station-
ary after differencing (with reference to the ADF test), suggesting they may
contain two unit roots (i.e., they are /(2)). As to whether each series is 7(1) or
1(2), this requires testing for more than one unit root (see Box 3.2).

POWER AND LEVEL OF UNIT ROOT TESTS

Choosing the correct form of the ADF model is problematic, and using
different lag lengths often results in different outcomes with respect to rejecting
the null hypothesis of non-stationarity.?® These problems are compounded by
the fact that there are several issues related to the size and power of unit root
tests, especially concerning the small sample properties of these tests.

Blough (1992) was among the first to discuss the trade-off that exists
between the size and power properties of unit root tests.** The usual require-
ments for a hypothesis test, based on standard statistical inferences, is that the
size of the test should be close to its nominal value (see above) and should have
high power (through consistently rejecting the null when it is false) against at
least some alternatives. However, in finite samples it can be shown that ‘... any
trend-stationary process can be approximated arbitrarily well by a unit root
process (in the sense that the autocovariance structures will be arbitrarily
close)’ (Campbell and Perron, 1991, p. 157). Similarly, any unit root process
can be approximated by a trend-stationary process, especially when the sample
size is small. That is, some unit root processes display finite sample behaviour
closer to (stationary) ‘white noise’ than to a (non-stationary) random walk
(while some trend-stationary processes behave more like random walks in
finite samples). This implies that a unit root test ... with high power against
any stationary alternative necessarily will have correspondingly high probabil-
ity of false rejection of the unit root null when applied to near stationary
processes’ (Blough, 1992, p. 298). This follows from the closeness of the
finite sample distribution of any statistic under a particular trend-stationary
process and the finite sample distribution of the statistic under a difference-
stationary process that approximates the trend-stationary process. Thus,
Blough (1992, p. 299) states that there is a trade-off between size and power

22 This may result from the presence of negative MA terms in the d.g.p.. which has been
shown to affect the size of the PP test.

23 As already noted, if there are large negative MA terms in the d.g.p., then setting too
small a lag length tends to adversely affect the size of the ADF test. Conversely. the
inclusion of unnecessary (nuisance) parameters when the lag length is set too high will
reduce the power of the test.

24 See also the results in DeJong, Nankervis and Savin (1992).
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Box 3.2 Multiple unit root tests.

In Box 2.4 it was stated that if a series must be differenced d times before it
becomes stationary, it is said to be integrated of order d, denoted /(d). That
1s, the series contains ¢ unit roots. Suppose y, is found to be non-stationary,
based on the ADF test using the test procedure outlined in Table 3.2. It has
been suggested that rather than assume that the first difference (Ay,) is
stationary, implying that y, ~ I(1), it is necessary to apply the ADF test
to the new variable Ay,. Failure to reject the null that this new variable is
non-stationary would imply that in fact y, is at least 7(2). This procedure of
testing from lower to higher orders of integration should continue until the
hypothesis of non-stationarity is rejected.

However, Dickey and Pantula (1987) argue that this is an invalid testing
procedure, since if y, ~ I(2), applying the ADF test using (3.5) takes as the
alternative hypothesis that y, is stationary. What needs to be tested first in
this instance is whether the variable Ay, is non-stationary against the alter-
native that Ay, is stationary. That is, they suggest that the correct sequential
testing procedure is to take the largest number of unit roots likely as the
maintained hypothesis (for practical purposes this would usually involve
starting with y, ~ I(2)) and then to reduce the order of differencing each
time the null hypothesis is rejected until the first time the null is not rejected.

Thus, when d = 2 it is necessary to reformulate (3.5) as:

p=2
Ay =9 Ay + ) byt ptu u ~1DO,6%) (32.1)
=1
To test the null hypothesis, we begin by calculating the ADF r-statistic
(1" /SE(1)")), which can be compared against the critical values in Table
3.1 (for 7,,). If 4" = 0, against the alternative )" < 0, is accepted, then Ay, is
non-stationary and y, contains two unit roots. If the null hypothesis is
rejected, then proceed to test the null of one unit root versus the stationary
alternative using (3.5).

In practice. it seems intuitive to assume that there would be little
difference whichever testing procedure is used, since if y, ~ I(2), applying
the ADF test using (3.5) should see an acceptance of the null 95% of the
time (using the 5% critical values from the DF distribution) as long as there
is at least one unit root. However, Dickey and Pantula (1987) found that, on
the basis of a Monte Carlo study, this was not the case; the ability to reject
the null of non-stationarity when there was more than one unit root present
(i.e., the series needs ¢ > 1 differencing to induce stationarity) decreased
when applying an equation such as (3.5) compared with (3.2.2), but not
by very much. Moreover, the empirical example they considered resulted
in a rejection of non-stationarity whichever approach was applied (i.e.,
testing from lower (higher) to higher (lower) orders of integration), even
though the series was judged to be /(2).
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Box Table 3.2.1 ADF tests of unit roots: UK money demand data (1963q1-1989q2),
seasonally unadjusted.

Variable Test statistic (see Table 3.2 and Box 3.1)
(and lag length*)

Tr Z(1y) T Z(71) T Z(T)
A?log Real MI —5.43** —135.55%*%  _546** —135.89** —549%% _[136.25**
(lag length) (4) (4) 4) 4) (4) (4)
A log TDE ~5.01**  —126.63** —5.02** —126.98** —5.04** —]27.31%*
(lag length) (11) (11) (11) (11) (11) (11)
Alog P —6.58%*%  _155.54** —6.61** —I5581** —6.65%* —156.04**
(lag length) (6) (6) (6) (6) (6) (6)
AR —5.35%* —10542** —5.35%* —105.90** —5.38** —106.33**

(lag length) (1) (11) (11) (11) (11) (11)

“The lag length was set by AIC + 2 on every occasion (see text for details).
* Rejects the null hypothesis at least at the 10% level.
** Rejects the null hypothesis at least at the 5% level.

Applying (3.2.1), both with and without a constant and/or time trend. to the
UK money demand data analysed in Table 3.3, the results shown in Box
Table 3.2.1 were obtained.” Based on both the ADF and PP results, these
suggest that all variables are /(1) and not I(2), since we are able to reject the
null of two unit roots when each series is differenced twice.

in that unit root tests must have either high probability of falsely rejecting the
null of non-stationarity when the true d.g.p. is a nearly stationary process
(poor size properties) or low power against any stationary alternative. 2

The above problem concerning unit root tests, when there is near equiva-
lence of non-stationary and stationary processes in finite samples, is in part due
to using critical values based on the DF asymprotic distribution. The use of
asymptotic critical values based on the strong assumptions of the simple DF
model was also seen to be a limitation when considering the distribution of the
ADF test statistic. Thus, in Harris (1992b) it was suggested that bootstrap
methods may be more applicable when using the ADF test of the unit root.
Essentially, this amounts to replicating the underlying d.g.p. of the variable
itself by sampling from the residuals of the ADF model and obtaining a
sampling distribution (and critical values) for the ADF statistic that is applic-

25 Note that we started testing with d = 3 and the null of non-stationarity was rejected
in every case. The results presented therefore refer to the test of I(2) against I(1). We
also calculated the ADF r-statistic since differenced series often have a mean of zero and
no deterministic trend.

26 Put more technically, the unit root test must have power equal to its size against a
near-stationary process.
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able to the underlying d.g.p. (instead of assuming that the underlying d.g.p. can
be approximated asymptotically by equation (3.1)).

More recently though, there have been significant theoretical improve-
ments in devising unit root tests that in principle have good size and power
properties. The Ng and Perron (2002) approach to using an information
criterion that leads to good size when setting the lag length was discussed
earlier. For improvements in power, Elliott, Rothenberg and Stock (1996)
have shown that the power of the ADF test can be optimized using a form
of de-trending known as generalized least squares (GLS) de-trending (see Box
3.3). Taken together, Ng and Perron (2002) have produced a testing procedure
that incorporates both the new information criterion for setting the lag length
and GLS de-trending. Applying their approach to the data on UK money
demand produces the results presented in Box Table 3.3.1, confirming that
each series is I(1).

Another development in unit root-testing that is likely to result in an
increasingly powerful test is to use panel unit root procedures (see Chapter
7). This is because the power of the test increases with an increase in the
number of panel groups (i.e., cross sections) as compared with the well-
known low power of the standard DF and ADF unit root tests against near-
unit root alternatives for small samples. Lastly, testing for unit roots is likely to
have low power in the presence of asymmetric adjustment; thus asymmetric
unit root tests have been developed that take account of this possibility (Enders
and Granger, 1998, see Box 3.4).27

STRUCTURAL BREAKS AND UNIT ROOT TESTS

Perron (1989) shows that, if a series is stationary around a deterministic time
trend that has undergone a permanent shift sometime during the period under
consideration, failure to take account of this change in the slope will be mis-
taken by the usual ADF unit root test as a persistent innovation to a stochastic
(non-stationary) trend. That is, a unit root test that does not take account of
the break in the series will have (very) low power. There is a similar loss of
power if there has been a shift in the intercept (possibly in conjunction with a
shift in the slope of the deterministic trend).

If the break(s) in the series are known, then it is relatively simple to adjust
the ADF test by including (composite) dummy variables®® to ensure there are
as many deterministic regressors as there are deterministic components in the
d.g.p. The relevant critical values for unit root tests involving shifts in the trend

27 The power of unit root tests is also likely to be lower if the d.g.p. of a series being
considered exhibits (G)ARCH effects. This is considered in Chapter 8, where we discuss
the results of Seo (1999) in particular.

28 That is, dummy variables that take on a value of (0, 1) to allow for shifts in the
intercept and dummies multiplied by a time trend to take into account any change in the
slope of the deterministic trend.



58 APPLIED TIME SERIES MODELLING AND FORECASTING

Box 3.3 Dickey—Fuller GLS de-trended test.

Elliott et al. (1996) optimize the power of the ADF unit root test by de-
trending. If y, is the series under investigation, the DF GLS test is based on
testing Hy: ¢»* = 0 in the regression:

Ayl =9y +PIAYL + AV (3.3.1)

where ¢ is the de-trended series. De-trending depends on whether a con-
stant or a constant and trend are included in the model. Taking the more
general case:

v =y=bo—but (3.32)
where (4, ) are obtained by regressing y on a constant and time trend (the
latter deterministic variable denoted as z), where:

'_’ = [."!]v(l = aL)yL veey (I = | &L))JT] } (333)
z=lz,(1 - aL)z,...,(1 —al)zr] '

and _
=LA E=lis (3.3.4)

T

where T represents the number of observations for y, and ¢ be fixed at —7 in
the model with only a constant (i.e., with drift) and at —13.7 when both a
constant and trend term enter the ADF regression.

Elliott et al. (1996) show that de-trending in this way produces a test
that has good power properties. Critical values are provided in their paper
(see also Maddala and Kim, 1998, p. 114). Box Table 3.3.1 presents the
results from using the de-trending procedure and selecting the lag length
based on the Ng and Perron (2002) new information criterion (NIC), when
applied to UK money demand data. First, the lag lengths set using the NIC
are usually lower than those reported in Table 3.3 and Box Table 3.2.1,
which used the AIC + 2 method available in TSP 4.5. With respect to the
variables in levels, the ADF-type test (with GLS de-trending) fails to
reject the null of non-stationarity (and therefore confirms the results in
Table 3.3). The PP tests provide some evidence that the real money
supply and prices are stationary only when a constant enters the regression
model. When each series is differenced once, the null of non-stationarity is
rejected whichever de-trended test is used, except for inflation (however,
there is some suggestion that the regression model for this variable is
over-parameterized, which may adversely affect the power of the test).
When each variable is differenced twice, only the PP Z-test consistently
rejects the null (although the interest rate is clearly stationary), while we
were able to reject the null more often using the usual ADF test (cf. Box
Table 3.2.1). Thus, over-differencing and de-trending may result in too
many AR terms in the test equation, lowering the power of this testing
procedure.
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Box Table 3.3.1 Tests of unit roots based on de-trending and the Ng-Perron NIC:
UK money demand data (1963q1-1989q2), seasonally unadjusted.

Variable Lag length * DF GLS PR Z 7] Modified
PP Z(7)

Constant and trend in regression
log Real M 1 6 0.982 —1.24 —10.62 —10.57
log TDE 4 0.893 -2.07 —15.55 —10.81
Alog P 1 0.871 —2.25 —10.52 —8.26
R 0 0.944 —1.66 -5.79 —5.55
Alog Real M1 3 0.707 —2.28 —41.03** —5.13
Alog TDE 0 —0.339 —14.44*+* —137.90** —45.57%*
A’log P i 0.771 —1.78 —49.14%* —1.12
AR 0 0.179 —8.45%* —84.54*+ —49.84**
A?log Real M1 8 0.192 -2.18 —116.27** —0.39.
A’log TDE 7 0.572 —1.86 —117.46%* 0.13
Allog P 5 0.831 —1.90 —57.27** —0.10
A*R 0 —0.398 —15.35%*%  —142.55%* —42.93%*

Constant only in regression

log Real M1 6 0.986 —0.83 —10.97* —10.92*
log TDE 8 1.015 1.58 1.58 1.72
Alog P 1 0.872 —2.05 —10.32* —8.12%
R 0 0.958 —1.49 —4.32 -4.18
Alog Real M1 3 0.750 —2.11* —35.84%% ~4.54
Alog TDE 0 —~0.336 —14.40%*  —137.64**  —45.67**
Alog P 7 0.967 —~0.45 —15.00%* 0.31
AR 0 0.175 —8.40%* —84.97 —49.92%*
A?log Real M1 8 0.839 —0.79 —99.79 —0.21
A’ log TDE 8 0.965 -0.33 —94.94%* 0.002
A’log P 7 0.990 —0.25 —13.01** 0.19
AR 0 —0.383 —15.09*%  —141.03**  —43.53%*

DF GLS refers to the ADF test with GLS de-trending; PP Z is the Phillips—Perron with GLS
de-trending; and modified PP Z is the modified PP statistic with de-trending.
Calculated using Gauss code available irom Pierre Perron. Note, the econometrics package
Eviews 4.1 has automated the Ng—Perron procedure.

* Rejects the null hypothesis at least at the 5% level.
** Rejects the null hypothesis at least at the 1% level.

In general, though, the Ng-Perron approach confirms that each vari-
able considered here is indeed 1(1).
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Box 3.4 Asymmetric tests for unit roots.

Enders and Granger (1998) have modified the ADF test to allow the alter-
native hypothesis of stationarity with asymmetric adjustment. Equation
(3.1b) can be generalized for y,(= »,,...,»y7) as:

Ay, =L(p = D)y = 1)+ (1 = 1L)(o2 — D)(¥=1 = 7) + 4 (3.4.1)

where /, is a 0/1 dummy variable that divides the observations on y, into two
29
subsets:

i } >
L { L il Ay 27 (3.4.2)

0 if Ay, <7

where 7 is some threshold value such that estimating equation (3.4.1) max-
imizes the probability that p; # p, (i.e., there is asymmetric adjustment in
the series »,)."" To test the unit root hypothesis, the null Hy:
(pr = 1) =(p, — 1) =0 is examined using an F-test of the joint hypothesis
and specially calculated critical values, and if this is rejected it is possible to
test whether p; = p, using a conventional F-statistic. Alternatively, a -max
test (based on the most negative r-value associated with either (p, — 1) or
(pa — 1)) can be used to test for a unit root. Clearly, if the z-value on either
(py — 1) and/or (p, — 1) is positive, we would not reject the null and the F-
test loses its validity in this situation (as it is a two-sided test).

To find the unknown 7, equation (3.4.1) is estimated (including appro-
priate lags Ay, ; as additional regressors to ensure u, is [ID) up to 7" times
with values of 7 that cover the range of values included in Ay,; the value of 7
that results in an estimated (3.4.1) with the minimum residual sum of
squares is chosen as the threshold. Critical values can be calculated by
using the above procedures for obtaining the p;., 7 (and thus /,) with
typically 10,000 Monte Carlo simulations of a random walk under the
null hypothesis.”

29 Note that if we replace Ay,_; in (3.4.2) with y,_;, the model is known as the TAR
(threshold autoregressive) model; the version used here is known as the momentum
TAR (or MTAR) and is favoured as having more power as a test over the TAR model.
30 Enders and Granger (1998) actually specified a less general model (allowing for non-
zero means in the series):

Ay, =ILi(p1 — 1) (311 — a0) + (1 = I)(p2 — 1)(¥1-1 — @0) + u, (34.1a)

where qq is the long-run mean of the series, and:
= {l if Ay,.; >0
"Tlo if Ay <0
That is, they specified that the threshold value should be the mean of y,, while more
recently it has been argued that this is suboptimal and instead the threshold 7 should be

estimated as set out in Box 3.4.
3 That is, the null is  y, = v,_; + u, u, ~ 11D(0. 1).

(3.4.2b)
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Box Table 3.4.1 Tests of unit roots based on asymmetric MTAR: UK money
demand data (1963q1-1989q2), seasonally unadjusted.

Variable Lag T (p1 —1) t-value (p>~1) t-value F-value
length* (o = 1) (=1 (p-1)=
(I,Jg == 1) == 0
log Real M1 5 0.018 —0.001 —1.65 0.000 1.98 2.56
log TDE 4 0.014 0.001 0.23 0.001 375 7.14
Alog P 3 —0.003 0.087 219 —-0.219 -—3.72*%* 748
R 0 —0.004 0.010 0.58 —0.038 -1.79 1.76

*Set using the Akaike information criteria (see, for example, Greene, 2000, p. 306).
** Rejects the null at the 1% level (critical value is —3.47 based on our own calculation—see
text).

As an example, we have applied the asymmetric test as set out In
equations (3.4.1) and (3.4.2) to the UK money demand data used earlier.
The AIC was used to set the lag length with the results set out in Box Table
3.4.1. The overall test of the unit root hypothesis is the null Hj:
(g —1) = (pp— 1) =0, using the F-statistic reported, but where either
(p; — 1) and/or (p, — 1) is positive, the -max test is preferred. The null of
a unit root was not rejected except for the inflation variable.

and/or intercept are found in Perron (1989, 1990). However, it is unlikely that
the date of the break will be known a priori, as was assumed by Perron (1989).
In such situations it is necessary to test for the possibility of a break using
various methods that have been developed in the literature. For example,
Perron (1994) considers breaks in the intercept and/or the trend using additive-
and innovative outlier (AO/IO) approaches (see below), while Zivot and
Andrews (1992) and Banerjee, Lumsdaine and Stock (1992) consider IO
models and develop a recursive, rolling or sequential approach. As Perron
(1994) pointed out, Zivot-Andrews and Banerjee et al. test the joint hypothesis
of a null of a unit root and no break in the series, while his approach is a test of
the unit root hypotheses per se where the change in slope is allowed under both
the null and alternative hypotheses. Thus, we concentrate on the Perron
approach here.*

One version of the AO model allows for an instantaneous change in the
intercept of the deterministic trend of a variable y, and is referred to as the
‘crash model’. That is:

yi=pu + B+ (p2 — ) DU, + v, (3.6)

32 Harris (1995) considered in detail the Banerjee et al. (1992) approach.
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where DU, =1, if t > T, and 0 otherwise, and T, (1 < T, < T) is a single
break that occurs at an unknown time. Note that y, can be any general
ARMA process, and under the null it will be assumed that it is non-stationary
(i.e., contains a unit root). Another version of the AO model aliows both a
change in the intercept and the slope of the trend function to take place simul-
taneously (a sudden change in level followed by a different growth path, such
as a productivity slowdown):

ye=m + Bt + (p2 — p1)DU; + (B2 — B1)DT; + v, (3.7)

where DT; =t — Ty, if t > T,, and 0 otherwise.

The 10 model is similar, but allows for changes to the trend function to be
gradual rather than instantaneous. Thus under the alternative hypothesis that
¥, is a stationary variable, the above two AO models would be amended in the
IO case such that the terms [(u; — p)DU,+v,] and [(py — py)DU, +
(8, — B1)DT; + v,] in equations (3.6) and (3.7) would be prefixed by the MA
polynomial lag operator B(L) =6y + 6,L + 0,L% + - + 6,L?. This form of
the model therefore permits shifts in the trend function to have a gradual
effect on y,.>’

Testing whether there has been a structural break in the IO model is more
straightforward than for the AO model. For the change in intercept (crash)
model, the following regression model is used to test the null that y, is non-
stationary:

p—1
Ay; = U)*}’xml + Z ViAy,_i + p+ Bt + ¥DU, + 6D(Th), + &

i=1
g, ~ IID(0, 0%) (3.8)

where D(T}), = 1, if t = T, + 1 (0 otherwise). For the change in intercept and
the slope of the trend (productivity slowdown) model, the following is used:

p—1
Ay, =0"yio1+ Y Wiy, i+ p+ Bt +0DU, + ¥DT; + 6D(Ty), + ¢,

i=1
g, ~ 1ID(0.0?) (3.9)

In the case of the AO models, there is a two-step procedure whereby equations
(3.6) and/or (3.7) are estimated and the error term (7,) is then used in a second-
stage regression:
p-1 p—1
Aby = "0y + ) Vikbi + ) diD(Ty),; + e (3.10)

i=1 =0

The test of the models set out in equations (3.6)+3.10) of the null that y, is non-
stationary are based on Hy: ¥* = 0 against H,: ¥* < 0, and the 7-statistics for

3 For more details see Perron (1994).
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these tests depend on the break date 7}, and the lag length p. To select T,
endogenously, two basic approaches can be used. The first is to select T, as the
value, over all possible break dates, that minimizes the z-statistic for testing
1" = 0. This test then is most favourable to the alternative hypothesis. An
alternative procedure that has become more widely used in the literature on
testing for structural breaks is to select T}, as the value, over all possible break
dates, that maximizes (or minimizes) the value of the #-statistic for testing v = 0
in the regression equations (3.6)-(3.10), noting that v replaces (u; — ) in
equation (3.6) and replaces (5, — ;) in equation (3.7). In the ‘crash’ model,
Perron (1994) chooses T, so as to minimize the value of the -statistic for
testing v = 0 (since he argues we are only interested in sudden crashes); for
the ‘slowdown’ model he chooses T}, so as to maximize the absolute value of
the r-statistic (i.e., based on the strongest evidence for a structural change). For
the 10 model, Harvey, Leybourne and Newbold (2001) have found that a test
statistic with more power is achieved by choosing the break date as T}, + 1,
rather than Tj; we adopt the Harvey et al. (2001) procedure here.**

As an example of the approach, the various test statistics that have just
been discussed were computed using the money demand data considered
carlier. The statistical algorithms for conducting the tests are available as
RATS programs from Pierre Perron (details are available on this book’s
website). The choice of lag lengths (p) were based on using the AIC (which
is equivalent here to maximizing R” in each regression). Results are reported in
Table 3.4, and these show that generally there is little evidence for rejecting the
unit root null even after allowing for the possibility of a break in the series.
Only the inflation series shows that a break may have affected the power of the
ADF test, and by examining the value for v and the break dates it appears that
at least one break occurred in 1973 (see Figure 3.1b), although other breaks in
1966 and 1981 are also apparent, suggesting that testing for more than one
structural break may be important for this series. Such tests are being devel-
oped in the literature, which should result in additional power for unit root-
testing (cf. Clemente, Montanes and Reyes, 1998; Ben-David, Lumsdaine and
Papell, 2001).

SEASONAL UNIT ROOTS%*

Time series data often come in a seasonally unadjusted form, and it has been
argued that where possible such data are to be preferred to their seasonally
adjusted counterparts, since the filters used to adjust for seasonal patterns
often distort the underlying properties of the data (see sect. 19.6 in Davidson
and MacKinnon, 1993 for some evidence). In particular, there is a tendency for

3 That is, the RATS programmes available from Pierre Perron for conducting the
various IO tests have been amended to choose the break date as T}, + 1.

3 For a thorough treatment of this topic, see Ghysels and Osborn (2001). A more
succinct (and general treatment) is presented in Frances and McAleer (1999).
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Table 3.4 AO and IO ADF tests of unit roots: UK money demand date (1963q1-

1989q2), seasonally unadjusted.

Variable Model Break Lag P I ~ !
date length
)

logReal M1  AO/Crash 19734 1 -0.00 -0.03 —0.44 —7.94**
logRealM1  AO/Slowdown 1979q3 1 -0.15 -3.98 —2.06 —22.37**
logRealM1  10/Crash 1973q2 1 -0.01 -0.56 —0.04 -3.11**
logRealM1 IO/Slowdown 1979q4 1 -0.14 -344 0.01 4.17**
log TDE AO/Crash 1982q2 1 -0.25 -3.81 —0.04 —549*+
log TDE AO/Slowdown 1985q1 1 -0.21  -3.57 -0.03 -0.27
log TDE 10/Crash 1974q1 5 -0.12  -1.97 -0.01 -1.50
log TDE 10/Slowdown 1972q2 1 -0.23 -3.59 0.00 0.38
Alog P AO/Crash 1981q2 1 —0.38 —497** —-0.03 -8.84**
AlogP AO/Slowdown 1973ql 1 —-0.60 —-7.09** 0.06 11.89**
Alog P 10/Crash 196693 1 —-024 -3.69 0.01 1.51
Alog P 10/Slowdown  1973q2 | —-0.56 —-597** —-0.01 -3.72**
R AO/Crash 1985q2 1 -0.15 =271 —0.10 —12.33*+
R AO/Slowdown 1977q1 1 -0.14 -3.12 0.22 9.03**
R 10/Crash 1985q1 1 -0.18 -3.33 -0.02 -—2.81**
R 10/Slowdown 1985q1 1 -0.17 -3.10 0.00 1.65
AlogRealM1 AO/Crash 1973q3 1 -096 -9.71** -0.04 —3.79**
AlogRealM1 AO/Slowdown 1972q4 | —1.02 -10.49** —0.05 —3.28**
AlogReal M1 I0/Crash 1973q1 1 —-098 —9.75** —0.04 —3.14**
AlogRealM1 10/Slowdown 1967q3 1 —-0.94 -9.41** 0.00 0.79
Alog TDE AO/Crash 198193 4 —1.27 —4.34%* 0.0t 1.21
Alog TDE AO/Slowdown 1980q2 4 -1.53  -5.02* -0.04 -0.87
Alog TDE 10/Crash 1973g4 4 -1.59 —-5.17** —-0.03 -3.30**
Alog TDE I0/Slowdown  1980q3 4 —-1.59 —4.69** 0.01 2.03**
A’log P AO/Crash 1975q2 1 -1.51 —-17.72** —-0.01 -1.68
A’log P AO/Slowdown 1975q1 1 —-149 -18.11** —-0.00 -0.49
Allog P 10/Crash 1975q2 1 —1.51 —17.47** —0.01 —2.74**
Alog P 10/Slowdown  1975q2 1 -1.51 —=17.38** —-0.00 -0.44
AR AO/Crash 1980q2 1 —-0.85 -861** —0.01 -2.14**
AR AO/Slowdown 1972q3 1 -0.85 —8.69%* 0.01 0.70
AR 10/Crash 1977q2 1 ~0.89 —8.82** 0.00 0.42
AR 10/Slowdown  1972q1 1 —0.85 —8.45** 0.00 0.39

Critical values are obtained from Perron (1994) for 1.
* Rejects the null at <10% significance level.
** Rejects the null at <5% significance level.

and the Student’s t-distribution for ¢..

the OLS estimate of p, in the DF test (3.2) to be biased toward 1 when j, is a
seasonally adjusted series, thus rejecting the null hypothesis of non-stationarity
substantially less often than it should according to the critical values in

Table 3.1.

Certain variables (e.g., consumption, spending) exhibit strong seasonal
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patterns that account for a major part of the total variation in the data and
that are therefore important when model-building. Figure 3.2 presents the
evidence for UK real non-durable consumer expenditure over the period
197192 to 1993ql. Panel (a) indicates a large seasonal variation across the
year, which explains a considerable amount of the variation in the series,
while panels (b) and (c) show that whereas quarter 4 spending (October to
December) is always higher than spending in the other quarters, there has been
a tendency for the July to September quarter to ‘catch up’ with quarter 4 from
the mid-1980s. Thus, while such patterns may result from stationary seasonal
processes, which are conventionally modelled using seasonal dummies that
allow some variation, but no persistent change in the seasonal pattern over
time, the drifting of the quarters over time may indicate that deterministic
seasonal modelling is inadequate. That is, the seasonal processes may be
non-stationary if there is a varying and changing seasonal pattern over time.
Such processes cannot be captured using deterministic seasonal dummies since
the seasonal component drifts substantially over time; instead such a series
needs to be seasonal-differenced to achieve stationarity. This is more
complicated than considering the possibility of a unit root (non-stationarity)
at the zero frequency since there are four different unit roots possible in a
seasonal process. To see this, consider seasonal-differencing quarterly data
using the seasonal difference operator Ay, = (1 — LYy, =y, — y,_4. Note
that (1 — L*) can be factorized as:

(1-LYHY=(1-L)(+L+L*+LY=(1-L)(1+L)(1+LY
(1 —L)(1 + LY(1 —iL)(1 +iL) (3.11)

i

with each unit root corresponding to a different cycle in the time domain. The
first (1 — L) is the standard unit root considered so far, at the zero frequency.
The remaining unit roots are obtained from the MA seasonal filter
S(L)y=(1+ L+ L*+ L%, and these correspond to the two-quarter (half-
yearly) frequency (1 + L) and a pair of complex conjugate roots at the
four-quarter (annual) frequency (1 £iL). To simplify the interpretation of
the seasonal unit roots, Banerjee et al. (1993, p. 122) show that a simple
deterministic process (1 + L)y, = 0 can be rewritten as y,.» = y, (the process
returns to its original value on a cycle with a period of 2), while (1 — iL)y, = 0
can be rewritten as y,, 4 = ), (the process returns to its original value on a cycle
with a period of 4).

Before considering testing for seasonal unit roots, it is useful to note that
Osborn (1990) found only five out of thirty UK macroeconomic series required
seasonal-differencing to induce stationarity, implying that seasonal unit roots
are not encountered very often and macroeconomic time series can typically be
described as I(1) with a deterministic seasonal pattern superimposed (Osborn,
1990, p. 300). However, others have found more evidence in favour of seasonal
unit roots (e.g., Franses and Vogelsang, 1998 find that seasonal unit roots
were generally present in the real gross domestic product (GDP) series they
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Figure 3.2. Quarterly UK consumer expenditure, seasonally unadjusted, 1971-1993:
(a) actual values; (b) four quarters separately; (c) quarters 2-3 minus quarter 1.
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considered, even after taking into account the possibility of structural breaks).
Second, if all three seasonal unit roots discussed above are actually present,
then no two quarters are cointegrated and ... the four quarter series for x go
their separate ways in the long run ... the presence of seasonal unit roots begs
the question of what sort of economic mechanism would give rise to this failure
of cointegration’ (Osborn, 1990, p. 300). A third point to note before proceed-
ing concerns the question of whether the usual ADF tests of the null hypothesis
of a unit root at the zero frequency are valid, even when other unit roots at
other seasonal frequencies are present. Put another way, does the presence of
additional roots at other cycles invalidate the non-seasonal unit root test.
Ghysels, Lee and Noh (1994) show that the usual ADF test is still valid, as
long as a sufficient number of lagged terms are included in the test equation to
take account of the seasonal terms in the data. However, they also show (on the
basis of Monte Carlo experiments) that the test involves serious size distortions
(worse than in the standard ADF case, as discussed earlier).*®

To incorporate seasonal integration into the definition of integration at the
zero frequency (see Box 2.4), it is useful to note as above that seasonal-
differencing involves using (1 — L) to difference at the zero frequency d, in
order to remove the zero frequency unit roots, and using the seasonal filter
S(L) to difference at the seasonal frequency D, in order to remove the seasonal
unit roots. Thus, it is said that the stochastic process y, is integrated of orders d
and D (denoted I(d, D)) if the series is stationary after first period-differencing
d times and seasonal-differencing D times. To test the number of seasonal unit
roots in a univariate time series, the common approach is to use the procedure
described in Hylleberg, Engle, Granger and Yoo (1990)—HEGY. The foliow-
ing regression is estimated using OLS with tests of the m(i=1,...,4)
amounting to tests for the various unit roots that may be present in the series:”’

Ay = a Dy + 0Dy + 03 D3y + caDay + M1 21y + mlny,1 + M3Z3y-2

p—1
+ 43y + Z Willgy,—; + b6t + u, u, ~ 11D(0, 02) (3.12)

i=1

where D, is the zero/one dummy corresponding to quarter ¢ and where:
Zi=(+L+L*+L%

Zy=—(1—L+L*-L%

—(1-17%)

I

3 This leads Ghysels et al. (1994) to point out: ... this faces the practical researcher
with a difficult choice. Namely, either using unadjusted data resulting in tests with the
wrong size, or using adjusted data, with adjustment procedures having adverse effects
on power.’

3To maximize the power for the non-seasonal unit root, the trend term should be
omitted in those cases where its presence is not economically justified (e.g., when
variables in rates are being considered such as unemployment rates).
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If m; = 0, then the (1 — L) filter is required to remove the unit root at the zero
frequency; if m, = 0, then the (1 + L) filter is needed since the series contains a
seasonal unit root at the two-quarter (half-yearly) frequency; and when
my = ms =0, then the (1 + L?) filter is needed to remove the seasonal unit
roots at the four-quarter (annual) frequency that correspond to (1 £iL).
Thus, separately testing 7; =0, i = 2, 3, 4, will determine if there are any
seasonal unit roots and at what frequency, while a joint test that
my = w3 = my = 0 will test the null that all seasonal roots are present. Lastly.
a joint test that all the m; = 0, i = 1, 2, 3, 4, can be used to test the null that all
non-seasonal and seasonal unit roots are present.

Note that the HEGY approach (equation (3.12)), like the standard DF-
type approach when only the zero frequency is considered, allows for only one
unit root at the zero frequency. That is, we test against a null that at most series
is I(1). If y, 1s 1(2), then (3.12) will not encompass this higher number of unit
roots at the zero frequency, and as in the standard DF test it is argued that we
need a testing procedure that tests down from the higher to lower orders of
integration (cf. Box 3.2 and the Dickey and Pantula, 1987 approach). Franses
and Taylor (2000) provide such a testing procedure for determining the order
of differencing in seasonal time series processes, while Osborn (1990) provided
a HEGY-type test that allows for y, ~ I(2):

AsAy, = a1 Dy + ao Dy + 3Dy + asDay + mZ 1Ay, + mZrAy,
p—1
+mZ3Ayi2 + maZsAyei + ) WidaAyii+u u ~1ID(0.0%)
oy

(3.13)

As can be seen, the essential difference between equations (3.12) and (3.13) is
that Ay, rather than y, enters the test equation, so allowing for more than one
unit root at the zero frequency since, if m; = 0, then y, ~ I(2). However, da
Silva Lopes (2001) provides an example where starting from the 7(2) situation
and using either the Osborn (1990) or more general Franses and Taylor (2000)
approach leads to a serious loss of power when testing, because over-
differencing to encompass the /(2) situation often produces long autoregres-
sions (i.e., nuisance parameters) in the test equation in order to avoid residual
autocorrelation problems. The result of this serious power loss is often spur-
ious evidence for (non-seasonal and seasonal) unit roots. Therefore, as a
practical (if not strictly theoretically correct) solution da Silva Lopes (2001)
suggests starting with the standard Dickey and Pantula (1987) approach (see
Box 3.2) that allows y, ~ I(2), ignoring the possibility of seasonal unit roots to
begin with, and, if this is not rejected, then proceeding with the approaches
advocated by Osborn and Frances and Taylor. Otherwise, if y, ~ I(2) is
rejected, then da Silva Lopes suggests using the standard HEGY-type test
(equation (3.12)) that allows for unit roots at the seasonal and non-seasonal
frequencies. He produces some Monte Carlo simulations as evidence that this
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approach often has higher power as a testing strategy than the more general
approaches.

Previous work using UK data has considered whether the consumption
function comprises variables with seasonal unit roots (cf. Osborn, Chui, Smith
and Birchenall, 1988).>® The variables considered are real non-durable con-
sumers’ expenditure (real C), real personal disposable income (real Y), the
inflation rate (7) and end-of-period real liquid assets (real W). These series
are plotted in Figure 3.3%° and exhibit a clear seasonal pattern, especially
real consumption (see also Figure 3.2) and real liquid assets. Estimating
(3.12) gave the results set out in Table 3.5. Lag lengths were set using the
procedures outlined in Ng and Perron (1995) starting from a maximum
length of 11. We test both including and excluding the trend term. Based on
the results that include a deterministic trend, real consumers’ spending appears
to have a zero frequency unit root (we cannot reject 7; = 0) and a seasonal unit
root at the two-quarter frequency (we cannot reject m, = 0), but seasonal unit
roots at the four-quarter frequency are absent (since we can reject
my = 74 = 0). The last two columns in Table 3.5 for the first row of results
confirm that not all seasonal unit roots are present and that not all unit roots
(non-seasonal and seasonal) are present. If the deterministic trend is omitted,
then the results for real consumer-spending suggest that there may be seasonal
roots at the four-quarter frequency, although the last two columns, which
report the joint tests, indicate that not all (seasonal) unit roots are present.
Given that a trend term should probably be included to allow for growth, it is
likely that the first set of results are more reliable.

The results for real personal disposable income suggest that this variable is
I(1) and contains no seasonal unit roots. In contrast, real liquid assets has both
seasonal and non-seasonal unit roots, although it is unclear from the results
which seasonal roots are present since the individual tests for the two-quarter
and four-quarter frequencies do not reject the null, while the overall joint tests
suggest that not all (seasonal) roots are present. Finally, inflation (based on the
results excluding a deterministic trend) has both a non-seasonal unit root and a
root at the half-yearly frequency (the results based on including the trend term
allow for the rejection of the zero frequency unit root at the 5% level).

3 The data is available from the UK Office for National Statistics (ONS) databank and
is described in the appendix to the Osborn et al. (1988) paper. Note that total non-
durable consumption is used here without excluding any components.

¥ All the variables are converted into natural logarithms. This transformation is
standard, and there are important reasons for preferring a model comprising logged
variables (Frances and McAleer, 1999, note that exponential growth in levels becomes
linear growth, the variance of each series can be stabilized, outliers are less influential
and a constant elasticity form of the model is obtained. However, the unit root
properties of the data are affected by the log transformation, and we can get different
outcomes depending on whether y, or log y, is used. See Frances and McAleer (1998) for
more details and a testing procedure.
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Figure 3.3. Quarterly UK consumption function data, seasonally unadjusted, 1971-
1993: (a) log of real income and non-durable consumption; (b) log of real wealth and
annual retail inflation rate [r = log(p, — p;—4)]-

It is reasonable to conclude that all the variables considered are I(1,1),
except for real personal disposable income which is /(1,0). As a check, stan-
dard ADF tests were undertaken based on (3.5) and (3.3.1 in Box 3.3). These
confirm that each series contains a unit root at the zero frequency, providing
support for the results obtained using (3.12). Osborn et al. (1988) (using similar
unadjusted quarterly data for 1955-1985) report that real W, 7 and real Y are
I(1,0), while real C was tentatively classified as (1, 1).

STRUCTURAL BREAKS AND SEASONAL UNIT ROOT TESTS

As in the case with unit root-testing at the zero frequency, if structural breaks
are present but are not incorporated into the test regressions, HEGY-type
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Table 3.5 Seasonal unit roots tests: UK consumption function data (19712-1993q1)
based on equation (3.12)).

Variable Lag i bie) myNmy mNmyNawg  a NmyNrsy g
length
Trend included
real C 3 -2.93 -2.51  28.48** 41.61* 44.06*
real Y 7 -2.27 -3.64 8.30* 16.78 17.91%*
real W 7 -3.00 —2.08 5.08 10.09 17.64%
T 10 ~3.49**  -210 7.21%* 10.92* 12.34*
No trend
real C 8 —0.11 —1.60 6.28 9.02* 9.01*
real Y 7 0.37 —3.79*  7.46** 15.89* 15.83*
real W 7 -2.75 -2.13 4.82 9.87* 15.69*
™ 3 —1.36 —2.51 12.26* 20.19* 20.52*
Trend included
5% critical value -3.37 ~2.81 6.57 6.03 6.47
1% critical value -3.97 -3.41 8.86 7.86 8.26
No trend
5% critical value —2.81 -2.80 6.62 6.04 5.70
1% critical value ~3.43 -3.40 8.94 7.93 7.42

Note all critical values are taken from Franses and Hobijn (1997)—see Table A.5 in the Statistical
Appendix.

* Reject null at 5% significance level, but not 1%.
** Reject null at 1% significance level.

seasonal root tests are biased toward finding too many unit roots (i.e., they
suffer from low power). Recent analysis by Smith and Otero (1997), Franses
and Vogelsang (1998) and Harvey, Leybourne and Newbold (2002) have ex-
tended seasonal unit root-testing to allow for one or more of the seasonal
dummy variable coefficients (the D,,) to exhibit structural change (i.e., a shift
in the mean).* Assuming that there is a single break that occurs at an
unknown time 7T (where 1 < Ty < T), Franses and Vogelsang (1998)
assume the following model under the null hypothesis:*!

Asy; = k1804DU\, + Kk2A4DUy, + K384 DU3; + K4A4DUs + 1, u, ~ 1ID(0, 02)
(3.14)

40 Smith and Taylor (2001) have also extended the recursive and rolling regression-based
tests for breaks based on Banerjee et al. (1992) to cover seasonal unit roots.

4! Note that this version of the model under the null hypothesis refers to the AO model,
where any shift in the seasonal means is immediate in the effect on y,. An alternative
specification is the IO model, where the right-hand side of equation (3.14) would
be enclosed in brackets and prefixed by the MA polynomial lag operator
B(L) =6y + 6, L + 6,L* + - - + 6,L9. This form of the model therefore permits shifts
in the seasonal means to have a gradual effect on y,.
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where
1 ([ > TB)

DU, = =1..... 4
« {o (<15 7

The model therefore comprises a non-seasonal and three seasonal unit roots
(since Azy, = (1 — L4)y, =y, — ¥,_4 and equation (3.11) shows how this can be
factorized into four distinct unit roots), while also allowing for a structural
break in each season at time 7 through the DU,, dummies.

In order to test this null hypothesis of an AO break in the seasonal means,
Franses and Vogelsang (1998) use a two-step procedure comprising, first.
estimation of:

yi = aiDy + ayDy + a3D3y + agDay + 6, DUy, + 6, DUy, + 63D U3,
+04DUs + ¢

4 4
:Zanq,+26qDUq,+eI (315)
q=1 g=1

and then estimating a HEGY-type equation using the residuals from (3.15):
p—1
Asé, = mZre,_) + 28y + T3Z36,_2 + T4Z36,-y + Z Vilsé,_;

i=1

4 4
+) 0,AdDU,, + Y miAsDUs i+ (3.16)
g=1 i=1
As explained by Franses and Vogelsang (1998), the dummy variables A,DU,,
and A, DU,,_; are included for essentially technical reasons concerning the
limiting distributions in the AO model. The tests of 7, = 0 (the unit root at
the zero frequency), m, = 0 (a seasonal unit root at the two-quarter (half-
yearly) frequency), and w3 = w4 = 0 (the seasonal unit roots at the four-
quarter (annual) frequency) can be used in the usual way to test the null that
non-seasonal and seasonal unit roots are present. The associated test statistics
can be denoted ¢, and ¢, for the t-statistics for 7, and ,, and F3, for the F-test
that My = Mg = 0.

To test the null hypothesis of an 10 break in the seasonal means, Frances
and Vogelsang (1998) estimate the following:

-1
Asye = mZyyioy + T Zoyiy + M3Z3yi2 + TaZ3yi + Z‘Li’iA4}':—i

i=1

4 4 4
+3 0,ADUy + > gDy + Y ngDUy + v, (3.17)
gq=1 g=1 q=1

and again the test statistics of interest are denoted ¢, and ¢, for the ¢-statistics
for m; and m,, and F34 for the F-test that m; = w4 = 0. The break date T is
estimated endogenously, and there are essentially two options available: (1)
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base Tz on the value of |, t, and F3,4, which is least favourable to the null that
7, = 0, my = 0 or my = m4 = 0; or (ii) choose the break date that maximizes the
significance of the seasonal mean shift dummy variable coefficients in equations
(3.16) or (3.17). The second approach is argued to have the better size and
power properties and is denoted:

T = argmax Fs(T) (3.18)

Harvey et al. (2002) undertook various Monte Carlo simulations using (3.18)
for the AO and IO models and find that, when the IO model is used with
quarterly data, equation (3.18) needs to be modified by adding 4 to the
right-hand side (i.e., choose the break date four observations later than
(3.18) would suggest).

The UK consumption function data discussed in the last section were used
to estimate equations (3.11)—(3.1 3).42 Lag lengths were set using the procedures
outlined in Ng and Perron (1995) starting from a maximum length of 11. We
test both including and excluding the trend term. Note that critical values
(based on Monte Carlo simulations of the null that Ay, =¢, where
g, ~ [ID(0, 1)) are only available in Harvey et al. (2002) for the model with
no trend and the lag length set to zero. Thus, we calculated our own critical
values based on 10,000 replications of the null, with 7 = 88 and allowing the
lag length to be determined endogenously using the Ng and Perron (1995)
approach.®® The results are reported in Table 3.6. There is clearly some varia-
tion with the test outcomes, based on whether the AO or 10 model is used, with
or without a deterministic trend included. For real consumer-spending, there is
evidence of a break around the end of 1985 (see Figure 3.2a), although the
results are generally in line with those reported in the last section, when the
HEGY model was estimated without allowing for structural change: the vari-
able appears to have a zero frequency unit root (we cannot reject m; = 0) and a
seasonal unit root at the two-quarter frequency (we cannot reject m, = 0), but
seasonal unit roots at the four-quarter frequency are absent (since we can reject
my = w4 = 0). The results for real personal disposable income confirm that this
variable is /(1)—although the AO model with trend rejects the null of a unit
root at the zero frequency—and the 10 model suggests there are no seasonal
unit roots at the two-quarter frequency (but there are at the four-quarter
frequency, which is in contrast to the results reported in Table 3.5). Broadly,
the results for real liquid assets confirm the earlier tests for unit roots without a
break, with this variable having both seasonal and non-seasonal unit roots.
Lastly, the 10 model without a trend confirms that inflation has both a

*2 David Harvey kindly supplied us with his Gauss code in order to estimate the AO and
1O models. We have included this on the book’s website (along with an amended version
that produces new sets of critical values).

$Only the critical values obtained with the lag length set by the Ng and Perron
approach are reported, although these are not very different when the lag length is set to
Z€ero.
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Table 3.6 Seasonal unit roots tests with a break in the mean: UK consumption func-
tion data (1971q2-1993q1) (based on equations (3.9)«3.11)).

Variable Model Lag length Break date n 1 Fi
Real C AO/T 3 1986q1 —3.45 -2.47 17.33*
Real C AO/NT 0 1985q3 -0.75 —3.95%* 56.47*
Real C 10/T 3 1985q3 —4.00 -2.61 19.95*
Real C IO/NT 8 1985q3 -1.38 ~1.48 6.42
Real Y AO/T 6 1987q3 —4.54* -3.32 9.72
Real Y AO/NT 2 1985q1 -1.18 -3.43 13.53*
Real Y 10/T 7 1988q3 -1.98 —3.82%+ 6.35
Real Y IO/NT 7 1977q4 0.17 —4.37* 8.08
Real W AO/T 0 1978q2 -2.28 —3.97%* 13.73*
Real W AO/NT 7 1988q1 -3.25 ~1.92 9.12
Real W 10/T 7 1988q4 -2.85 -1.57 6.04
Real W IO/NT 7 1988q4 -2.26 —1.56 5.66
b AO/T 4 1982q1 -3.30 -3.15 7.11
™ AO/NT 4 1982q1 —3.53** 324 7.19
™ 10/T 10 1979q1 —4.83* —4.60* 12.90**
7 IO/NT 3 1976q3 -1.74 -2.93 29.72*
Critical values
5% AO/T —3.89 -3.53 10.40
1% AO/T —4.54 —4.11 13.44
5% 10/T -4.08 -3.59 10.28
1% 10/T ~4.65 -4.22 13.26
5% AO/NT —3.46 -3.49 10.17
1% AO/NT —4.06 —4.07 13.10
5% IO/NT —3.56 -3.59 10.33
1% IO/NT -4.18 —4.23 13.56

Note all critical values are based on 10,000 replications with T = 88. lag lengths are set by the Ng
and Perron (1995) method and Asy, = €, where g, ~ I11D(0, 1).
AOQO = Additive outlier model; 10 = Innovative outlier model: T = Trend included: NT = No
trend.

* Reject null at 5% significance level, but not 1%.
** Reject null at 1% significance level.

non-seasonal unit root and a root at the half-yearly frequency, although in
general those estimating models that allow for a shift in the seasonal means
produce mixed results.

PERIODIC INTEGRATION AND UNIT ROOT-TESTING

The HEGY model for testing (seasonal and non-seasonal) unit roots assumes
time-invariant parameters with respect to the seasons covered. If it is assumed
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that the observations on a variable y; can be described by a different model for
each quarter, the result is a periodic autoregressive model (PAR), comprising
an equation for each season:

v = + 1y "“pry —p T +e,
Vi =hp Ao oy, e
Y?:ﬂt ‘751"1 p o ¢;Vt p” ‘13
yi=pt v olyt  + ~~-+<J5,,y,,, £

or more concisely as:
Vo=l + Prgyi1+ -+ Gpgyipt e (3.19)

Note that the p, comprises the deterministic variables in the model (seasonal
dummies and separate seasonal time trends).** The PAR(p) model for a quar-
terly time series has four times the number of autoregressive parameters than
are included in a non-periodic AR(p) model, and therefore there is a practical
limit when setting the order of p in equation (3.19). Frances and McAleer
(1999) point out that PAR(2) or PAR(3) models often suffice where an
AR(8) or AR(12) model would be required for the same time series.

To test for a single unit root within a periodic setting, Boswijk and Franses
(1996) show that (3.19) can be rewritten as the following regression, whereby
the o, parameters are embedded non-linearly in the model:

4 p—1 4
Yo = Z gDyt + Z Z BigDgi(yi-1 — agyi—i-1)
g=1 i=1 g=1
4 4
+ > gDy + Y 74Dyt (3.20)
g=1 g=1

If oy =1 (e, H3=1 o, = 1), there is a single unit root. The test for this
hypothesis is based on a likelihood ratio test LR = T log(RSS,/RSS,), where
RSS is the residual sum of squares in the restricted (r) and unrestricted ()
versions of equation (3.20). This test is distributed under the Johansen (1988)
distribution,* which will be considered in Chapter 5. If this restriction holds
(e, H;:] a, = 1), then it is possible to test Hy: a; = ap = a3 = 1, and if this is
not rejected, then y, has a zero frequency unit root. Similarly, if Hy:
o) = ap = a3 = —1 cannot be rejected, y, has a seasonal unit root —1. Both
these tests follow a x2(3) distribution. If both of these null hypotheses are

* That is, y, = Zq_l pqDgr + Zq-—l 14Dyt

45 As will be seen in Chapter 5, the Johansen A-max test for cointegration is based on
testing that the rank of the cointegration space is r versus r + 1. In this instance, the test
statistic amounts to a test of rank 3 versus rank 4 (appropriate critical values that
depend on the deterministic elements included in the model are provided in Tables A10-
A12 in the Statistical Appendix at the end of the book).
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Table 3.7 Periodic unit roots tests: UK consumption function data (1971q2-1993ql)
(based on equation (3.16)).

Variable LR-statistic Hy. o= =a3=1 Hy: oy =ar=ay= -1
real C 0.07 0.93 381.142
real Y 1.63 2.67 2886.20°
real W 6.14 2.88 26.062
g 1.01 0.01 27.072

Note the critical values for the LR test are based on Table A.11 in the Statistical Appendix at the
end of the book, while the other tests have a standard x?(3) distribution.
2 Reject null at 1% significance level.

rejected (i.e., not all the o, are equal to 1), then y, is periodically integrated of
order 1.4

Using UK consumption function data, equation (3.20) was estimated using
the non-linear least squares regression algorithm available in TSP 4.5; the
results are reported in Table 3.7. In all instances, a PAR(3) was used
(which on the basis of diagnostic tests seems to be adequate) and the seasonal
trends were omitted as they proved insignificant (as well as producing
implausible results). The results show that both Hy: ]"[3:l a, =1 and Hy:
a) = a; = a3 = 1 cannot be rejected, while Hy: a; = a; = a3 = —1 is clearly
rejected, suggesting that each of these variables has only a zero frequency unit
root.

CONCLUSION ON UNIT ROOT TESTS

This chapter has shown that, while in principle it is necessary to test for the
presence of unit roots in order to avoid the problem of spurious regression, this
is by no means a simple exercise. An appropriate testing strategy is based on
de-trending the ADF test with the lag structure set by Ng and Perron’s (2002)
new information criterion. This procedure needs to be amended if there is any
evidence of structural breaks in the series under examination, and a testing
procedure along the lines outlined in Perron (1994) should then be followed.
Similarly, when using seasonally unadjusted data exhibiting strong seasonal
patterns that may be changing over time, it is necessary to amend the ADF-
type test to allow for possible seasonal unit roots. However, Osborn (1990)

46 Note that Ghysels, Hall and Lee (1996) develop tests for the hypothesis (that all the
oy are equal to 1) that do not require the restriction ]'[;=1 oy = 1. Moreover, Boswijk et
al. (1997) allow for more than one unit root and develop a more testing framework that
allows for I(2) processes as well as more general testing of non-seasonal and seasonal
unit roots. Franses (1994) has developed a multivariate approach (based on the
Johansen methodology discussed in Chapter S) that allows separate tests of hypotheses
for zero, seasonal and periodic processes. The latter approach will be considered after
the Johansen model has been introduced.
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suggested that seasonal unit roots are not encountered very often and macro-
economic times series can typically be described as I(1) with a deterministic
seasonal pattern superimposed.

Clearly, the most important problem faced when applying unit root tests is
their probable poor size and power properties (i.e., the tendency to over-reject
the null when it is true and under-reject the null when it is false, respectively).
This problem occurs because of the near equivalence of non-stationary and
stationary processes in finite samples, which makes it difficult to distinguish
between trend-stationary and difference-stationary processes. It is not really
possible to make definitive statements like ‘real GNP is non-stationary’; rather,
unit root tests are more useful for indicating whether the finite sample data
used exhibit stationary or non-stationary attributes.*’

Important Terms and Concepts

DF test ADF test Phillips and Perron test
Size and power properties of tests  Structural breaks and unit root tests  Seasonal unit roots
Seasonal-differencing Multiple unit roots Asymmetric unit roots

47 Note also that, if anything, the problems of the size and power of the test are even
worse in seasonal unit root models (Ghysels et al., 1994).
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4 |
___ Cointegration in Single Equations

THE ENGLE-GRANGER (EG) APPROACH

In discussing cointegration in Chapter 2, it was shown that if two time series y,
and x, are both I(d), then in general any linear combination of the two series
will also be I(d); that is, the residuals obtained from regressing y, on x, are
I{d). If, however, there exists a vector f, such that the disturbance term from
the regression (g, = y, — Bx,) is of a lower order of integration, I(d — b), where
b > 0, then Engle and Granger (1987) define y, and x, as cointegrated of order
(d,b). Thus, if y, and x, were both I(1), and €, ~ 1(0), the two series would be
cointegrated of order CI{1, 1). This implies that if we wish to estimate the long-
run relationship between y, and x, it is only necessary to estimate the static
model:'

Ve = Bx; + £ (4.1)

Estimating (4.1) using ordinary least squares (OLS) achieves a consistent”
estimate of the long-run steady state relationship between the variables in
the model and all dynamics and endogeneity issues can be ignored asymptotic-
ally. This arises because of what is termed the ‘superconsistency’ property of
the OLS estimator when the series are cointegrated. Before discussing this,
recall the following simple dynamic model of short-run adjustment (cf. (2.11)):

Ve = YoXe + Y1 X1 + ey + Uy (4.2)
This can be rewritten as:
Y= Bx; + MAx + XAy, + v, (4.3)

"' The issue of whether the model should include an intercept or an intercept and time
trend will be discussed in this section when considering the testing strategy for
determining whether ¢, ~ 1(0).

2 That is, as T — oo, the estimate of 3 converges to the true 3 (denoted plim [j =1).
Any bias (and its variance) in finite samples should tend to zero as the sample size T
tends to infinity.
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where B=(w+m/l-a), A\=-(n/l-a), A=-(a/l-a) and
v, = (u,/1 — ). Thus, estimating the static model (4.1) to obtain an estimate
of the long-run parameter 3 is equivalent to estimating the dynamic model (4.3)
without the short-run terms Ax,, Ay,. According to the ‘superconsistency’
property, if y, and x, are both non-stationary /(1) variables and ¢, ~ 1(0),
then as sample size T gets larger the OLS estimator of 3 converges to its
true value at a much faster rate than the usual OLS estimator with stationary
1(0) variables (Stock, 1987). That is, the /(1) variables asymptotically dominate
the 71(0) variables Ax,, Ay, and ¢,. Of course, the omitted dynamic terms (and
any bias due to endogeneity) are captured in the residual ¢,, which will
consequently be serially correlated.> But this is not a problem due to
‘superconsistency’.

Nevertheless, in finite samples, it has been shown that bias is a problem,
and this will be discussed in this section. Moreover, Phillips and Durlauf (1986)
have derived the asymptotic distribution of the OLS estimator of 3 and its
associated t-statistic, showing them to be highly complicated and non-normal
and thus invalidating standard tests of hypothesis. Thus, so far we have noted
that there are problems of finite sample bias and an inability to draw inferences
about the significance of the parameters of the static long-run model. A sep-
arate issue is whether tests of cointegration based directly on the residuals from
(4.1) have good power properties (i.e., they do not under-reject the null when it
is false).

To test the null hypothesis that y, and x, are not cointegrated amounts, in
the Engle-Granger (EG) framework, to directly testing whether =, ~ I(1)
against the alternative that ¢, ~ I(0). There are several tests that can be
used, including the Dickey-Fuller (DF) and augmented Dickey-Fuller
(ADF) tests discussed at length in the last chapter (comparable Z-tests by
Phillips, and Phillips and Perron (PP), are also commonly used, but Monte
Carlo work suggests they have poorer size properties and thus they will not be
explored here—see Box 3.1). Essentially, Engle and Granger (1987) advocated
ADF tests of the following kind:

p—1
Ay =061+ Y Uhé i+ p+bl+w,  w ~1ID(0.5%) (4.4)

i=1

where the £, are obtained from estimating (4.1). The question of the inclusion
of trend and/or constant terms in the test regression equation depends on
whether a constant or trend term appears in (4.1). That is, deterministic com-
ponents can be added to either (4.1) or (4.4), but not to both. As with the testing
procedure for unit roots generally (cf. Chapter 3), it is important to include a
constant if the alternative hypothesis of cointegration allows a non-zero mean
for £,(= y, — Bx,), while in theory a trend should be included if the alternative
hypothesis allows a non-zero deterministic trend for £,. However, Hansen

3If there is a simultaneity problem, then E(x,.u,) # 0 is also true.
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(1992) has shown on the basis of Monte Carlo experimentation that, irrespec-
tive of whether &, contains a deterministic trend or not, including a time trend
in (4.4) results in a loss of power (i.e., leads to under-rejecting the null of
no cointegration when it is false).* Since, it is generally unlikely that the £,
obtained from estimating (4.1) will have a zero mean and given Hansen’s
results, this form of testing for cointegration should be based on (4.1) and
(4.4) with 6 set equal to zero.

As with univariate unit root tests, the null hypothesis of a unit root and
thus no cointegration (Hy: ¥" = 0) is based on a r-test with a non-normal
distribution. However, unless 3 is already known (and not estimated using
(4.1)), it is not possible to use the standard DF tables of critical values.
There are two major reasons for this: first, because of the way it is constructed
the OLS estimator ‘chooses’ the residuals in (4.1) to have the smallest sample
variance,’ even if the variables are not cointegrated, making the &, appear as
stationary as possible. Thus, the standard DF distribution (cf. Table 3.1) would
tend to over-reject the null. Second, the distribution of the test statistic under
the null is affected by the number of regressors (n) included in (4.1). Thus,
different critical values are needed as n changes. Since the critical values also
change depending on whether a constant and/or trend are included in (4.4) and
with the sample size, there is a large number of permutations, each requiring a
different set of critical values with which to test the null hypothesis.

Fortunately, MacKinnon (1991) has linked the critical values for particu-
lar tests to a set of parameters of an equation of the response surfaces. That is,
with this table of response surfaces (see Table 4.1 for an extract), and the
following relation:

C(p) = + 01T + 2T (4.5)

where C(p) is the p per cent critical value, it is possible to obtain the appro-
priate critical value for any test involving the residuals from an OLS equation
where the number of regressors (excluding the constant and trend) lies between
1 < n < 6. For instance, the estimated 5% critical value for 105 observations
when n = 3 in (4.1) and with a constant but no trend included in (4.4) is given
by ( — 3.7429 — 8.352/105 — 13.41/105%) ~ —3.82. Thus, reject the null of no
cointegration at the 5% significance level if the t-value associated with " is
more negative than —3.82. Note also that the critical values calculated with
n =1 will be the same as those given in Table 3.1 for the univariate DF test.

The residual-based ADF test for cointegration that has just been discussed
assumes that the variables in the OLS equation are all /(1), such that the test
for cointegration is whether ¢, ~ I(1) against the alternative that &, ~ 7(0). If
some of the variables are in fact 1(2), then cointegration is still possible if the

*Including or excluding the time trend in the model appears to have little effect on the
size of the test (i.e., over-rejecting the null when it is true).

3 The OLS estimator minimizes the (sum of the squared) deviations of the ¢, from the
OLS regression line obtained from y, = Bx, (i.e., OLS obtains 3 that will minimize ).
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Table 4.1 Response surfaces for critical values of cointegration tests.

n Model % point D o]} fo )
1 No constant, no trend 1 —2.5658 —-1.960 —-10.04
5 -1.9393 -0.398 0.0
10 —1.6156 —0.181 0.0
1 Constant, no trend 1 —3.4336 —-5.999 —-29.25
5 —2.8621 -2.738 —8.36
10 —2.5671 —1.438 —4.48
1 Constant + Trend 1 —3.9638 —8.353 —-47.44
5 -3.4126 —4.039 -17.83
10 -3.1279 2418 —7.58
3 Constant, no trend 1 ~4.2981 —13.790 —46.37
5 -3.7429 -8.352 —~13.41
10 ~3.4518 —6.241 -2.79

Source: MacKinnon (1991).

I(2) series cointegrates down to an /(1) variable in order to potentially co-
integrate with the other I(1) variables (see Box 2.4). However, Haldrup (1994)
shows that the critical values for the ADF test will now depend (particularly in
small samples) on the number of I(1) and I(2) regressors in the equation.
Consequently, at the time of testing for cointegration when there is a mix of
I(1) and I(2) variables, the critical values provided in Haldrup (1994. table 1)
must be used.®

A potential problem with using the ADF test can now be considered
(although for simplicity of exposition the DF test that involves no lagged
values of the dependent variable is presented). Kremers, Ericsson and
Dolado (1992) examine the common factor ‘problem’ of the DF statistic (a
problem that applies to any single equation unit root-type cointegration test.
such as the Phillips Z-test). Suppose the underlying data-generating process
is given by (4.2), with the residuals from (4.1) used to test the null of no
cointegration. The DF test comprises:

Aé; = Yé 1 +w, (4~6)

6 For instance, he gives the example (which is also used later on—see equation (4.11)) of
testing for cointegration in the UK money demand function, where m, and p, are
potentially 7(2). In a test in which homogeneity is not imposed (i.e., m, and p, are not
combined into (m, — p,)) so that the OLS regression comprises m = Gy + 31p + 32y —
B3R + €, there is one I(2) regressor and therefore Haldrup’s table 1 must be used with
my =2 and m, = 1.
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which can be rewritten to obtain the equivalent error correction model (ECM)
(evaluated at 3 = 0):

A(,Vt - ﬁxr) = ¢(J"rfl - ﬁxl~l) + w; }

4.7)
or AJ’r = [Ax; + 1/)(,Vr—l - ﬁ-’ﬁ«l) + wy

But this is #ot the unrestricted ECM underlying (4.2); this can be shown to be
given by (cf. equation 2.13):

Ay, = ylAx, — (1 - a)[,Vz~I - ,[i’cr—i] + U (4.8)

For (4.8) to be the same as (4.7), it is necessary to impose (7, = —y«), since
then (4.2) can be rewritten as:

(1= aL)y, = (Yo + mL)x, + 1, }

(4.9)
or (I —al)y, =v(l — al)x; +u,

and both sides of this equation contain the common factor (1 — «L). What the
DF test imposes through the common factor restriction in (4.9) is that the
short-run reaction of y, to a change in x, (i.e., ) now becomes the same as
the long-run effect (i.e., 5) that would occur if the model were in equilibrium.’
Kremers et al. (1992) point out that if invalid (as is often likely), this restriction
imposes a loss of information (and so a loss of power) relative to a test, say,
based on the unrestricted ECM.®

So why is the EG procedure so popular, given that: (i) this test for co-
integration is likely to have lower power against alternative tests; (ii) that its
finite sample estimates of long-run relationships are potentially biased; and (iii)
inferences cannot be drawn using standard ¢-statistics about the significance of
the parameters of the static long-run model? First, it is of course easy to
estimate the static model by OLS and then perform unit root tests on the
residuals from this equation. Second, estimating (4.1) is only the first stage
of the EG procedure, with stage 2 comprising estimating the short-run ECM
itself using the estimates of disequilibrium (£,_,) to obtain information on the
speed of adjustment to equilibrium. That is, having obtained (¢,_; = y,_{ —
Bx,_;) from (4.1), it is possible to estimate:

Ay, = yoAx; — (1 — @)é,my +u, }

(4.10)
or A(L)Ay, = B(L)Ax, — (1 — )&, +u

"Note that in (4.9) the long-run elasticity between Y and X is 8= [y(l —aL)/
(1 — aL)] =+, assuming that « < 1 (which is necessary for the short-run model to
converge to a long-run solution).

8 They also point out that when using the ADF version of the test, it may be necessary
to have a lag length longer than that required in the ECM in order to generate white
noise errors, which may lead to poorer size properties (i.e., the likelihood of over-
rejecting the null when it is true) for the ADF test than a test (outlined in Box 4.2) based
on the unrestricted ECM.
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where the second form allows for a general dynamic structure to be determined
by the data (see the discussion of (2.14)). Note also that if y, and x, are /(1) and
cointegration between them exists (thus &, ~ 1(0)), then all the terms in (4.10)
are 1(0) and statistical inferences using standard - and F-tests are applicable.

To illustrate the approach, estimating static demand for money equations
using sgasonally unadjusted data for 1963q1 to 1989q2 produced the following
results:

m=0.774p + 1.212y — 3.448R — 2.976 + ¢, R>=099.DW =033
(4.11a)

m—p=0.769Ap + 0.409y — 3.981R + 6.682 +c;  R>=0.69. DW =0.24
(4.11b)

Using (4.4), with y = § = 0 imposed, the residuals £, and £, were tested for a
unit root under the null hypothesis of no cointegration. The value of p was set
by both the Akaike information criterion (AIC) (i.e., equivalent to the max-
imizing R? approach) and by the formula suggested in Schwert (1989): both
produced a similarly long lag length for the ADF test and consequently similar
results. The 7-value associated with testing the null hypothesis (that Hy: " = 0
based on the ¢;) is —1.56, while the corresponding test statistic for &, is —2.62.
The critical value for rejecting the null is obtained from Table A.6 and in both
instances is —3.09 (at the 10% significance level).'® These results indicate that
there is no long-run stable relationship for money demand. As will be seen, this
is in contradiction to some of the results from other tests of cointegration.

TESTING FOR COINTEGRATION WITH A
STRUCTURAL BREAK

As with the case of testing for unit roots when there has been a structural
break(s), the EG approach will tend to under-reject the null of no cointegration
if there is a cointegration relationship that has changed at some (unknown)
time during the sample period. That is, a test for cointegration that does not
take account of the break in the long-run relationship will have low power.

Gregory and Hansen (1996)—hereafter GH—have extended the EG model
to allow for a single break in the cointegration relationship. Rewriting equation

% The data are the same as that used previously (e.g., see Figure 3.1) and are based on
Hendry and Ericsson (1991). The statistical sources used are discussed by Hendry and
Ericsson, although they concentrate on using seasonally adjusted data. The data are
reproduced in the Statistical Appendix at the end of the book.

10 The critical value from Haldrup (1994, table 1), for the case where homogeneity is not
imposed (4.11a) and m, and p, are both potentially 7(2), is —3.93 (at the 10% level).
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Box 4.1 Engle-Granger—Yoo 3-step approach.

Engle and Yoo (1991) propose a ‘third step’ to the standard EG procedure,
which seeks to overcome some of the problems inherent in using the static
first-step model (4.1) to obtain an estimate of the long-run parameter /3. In
particular, the latter is generally biased in finite samples and its distribution
is generally non-normal, which means that standard r-statistics cannot be
used to test hypotheses concerning 4. Assuming that there is both a unique
conintegration vector and weak exogeneity of the right-hand-side variables
in the short-run ECM, then the third step provides a correction to the first-
stage estimate of [ and ensures that it has a normal distribution.

After estimating the static model (cf. (4.1)), a first-stage estimate is
obtained of 3, which we can label ,(3 ' The residuals from the static model
provide estimates of the disequilibrium (¢, ; = y,_, — 8x,_,) that then enter
the second-stage short-run ECM (cf. (4.10)). The latter itself provides an
estimate of the speed-of-adjustment parameter —(1 — &) and a set of resid-
uals #,, which are then used in a third-stage regression:

i, = 8[(1 — &)x,_] + v, (4.1.1)

The estimate of 6 obtained (together with its standard deviation, which
provides the correct standard deviation for 3* below) is used to correct
the first-stage estimates:

pl=p'1é (4.1.2)

As an indication of the type of results obtained, the residuals from the first-
stage static demand for real money (4.11b) are entered (lagged one period)
into a short-run ECM with A(m — p), as the dependent variable and an
estimate of the speed of adjustment is obtained of —0.05. Thus, each of
the (lagged) right-hand-side variables in (4.11b) are multiplied by 0.05 and
the new variables form regressors in the third-stage model, with the resid-
uals from the short-run ECM as the dependent variable (cf. (4.1.1)). Using
the resultant parameter estimates of 6 (and associated standard errors that
are used to calculate f-ratios), the corrected long-run relationship come out

as:
m—p=5082Ap +0.813y — 5.563R +2.011 +¢ (4.1.3)
(1.90) (5.28) (3.38) (1.11)
Comparing these results with (4.16), it can be seen that the EG three-stage
approach improves the estimates of y, R and the constant, but the estimate
for Ap is still wrongly signed.

{(4.1) with the B-vector separated into the intercept and slope parameters (o, 5),
GH generalize (4.1) to:

Vi =)+ e + M+ Bix, + Baxipn + e (4.12)
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where structural change is included through the dummy variable:

[0 ifr<k wn
PREVT it >k 13)

where k is the unknown date of the (potential) structural break. Equation
(4.12) allows for three alternatives if y, and x, cointegrate: (i) a change in the
intercept (o) but no change in the slope (8)—thus in equation (4.12)
A =B, =0; (ii)) a change in the intercept allowing for a time trend—thus
B, =0 in (4.12); and (iii) a change in the slope vector as well as a change in
the intercept—with A = 0 in equation (4.12).

Since k is unknown, the ADF test involving é, (the latter obtained from
estimating equation (4.12)) is computed for each date within the sample (i.e.,
k € T), with the largest negative value of the ADF r-value across all possible
break points taken as the relevant statistic for testing the null hypothesis.
Critical values are available in table 1 of Gregory and Hansen (1996) and
are reproduced in the Statistical Appendix (Table A.7 at the end of the
book).!' Based on estimating the static, real demand-for-money equation
using seasonally unadjusted data for 1963q1-1989q2 and allowing the lag
length p to be set using the AIC, the results of estimating the GH model are
as follows:

m—p=1971Ap + 0.831y — 3.343R + 1.823

—0.215(1972q3) + é ADF(é) = ~341;p=S5 (4.14a)
m—p=—1.366Ap+ 1.880y — 2.408R — 0.011¢

—10.003 +0.164(1983q3) + ¢  ADF(é) = —4.02:p =9 (4.14b)
m—p=—1242Ap + 7.152Ap(1973q3) + 0.174y

+1.591y(1973q3) — 1.077R

— 1.295R(1973g3) + 9.241

— 18.864(1973q3) +é  ADF(é) = —6.88:p = | (4.14c)

Only in the last model, which allows for both a shift in the intercept and slope,
is the null of no cointegration rejected at the 5% level of significance; in the
other models the null is accepted. The break point in this last model was the
third quarter of 1973, and the results suggest that there was a fundamental
change in the parameters of the cointegration relationship after this oil price
shock.

' Note that Gregory and Hansen (1996) also compute critical values for the Phillips Z-
test.
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ALTERNATIVE APPROACHES

There are a number of alternative tests for cointegration. The simplest is the
cointegration regression Durbin—-Watson test (CRDW) proposed by Sargan
and Bhargava (1983). This is based on the standard Durbin-Watson (DW)
statistic obtained from a regression involving (4.1), known to be the uniformly
most powerful invariant test'? of the null hypothesis: that £, is a simple non-
stationary random walk (i.e., & = ,_, + z,, where z, ~ IN(0,0?)) against the
alternative that £, is a stationary first-order autoregressive (AR) process (i.e.,
&, = pé, 1 + 2z, where |p|] <1 and z, ~ IN(0,5%). In terms of the money
demand model, the critical value for rejecting the null of no cointegration is
0.48 (see Sargan and Bhargava, 1983), which is not exceeded in (4.11).
However, this critical value is only relevant when &, follows a first-order
process (i.e., there is no higher-order residual autocorrelation, which is
usually present, as in this example). Thus, the CRDW test is generally not a
suitable test statistic.'?

An alternative that has been suggested by Kremers, Ericsson and Dolado
(1992) is to directly test the null hypothesis that o = 1| in (4.10), which is the
error-correction formulation of the model.'® If this null holds, then there is no
cointegration. Under the null hypothesis, such a r-type test has a non-normal
distribution, and Kremers et al. (1992) suggest using the MacKinnon critical
values associated with the comparable ADF test of the null. Banerjee, Dolado,
Galbraith and Hendry (1993), however, show that the distribution of the s
statistic associated with testing o = 1 is closer to the normal distribution than it
is to the ADF distribution (also, under the alternative hypothesis of cointegra-
tion, the z-value is known to be asymptotically normally distributed). However,
despite this problem of what set of critical values to use, both Kremers et al.
(1992) and Banerjee et al. (1993) show that this approach produces a more
powerful test than the ADF test (presumably because no common factor
restrictions are imposed). To make the test operational, it is necessary to
assume that x, is weakly exogenous (see p. 94 for a discussion of this
property), and an estimate of £,_; is needed. The latter can either be obtained,
for example, from imposing (=1 (on theoretical grounds) and thus
£,.1 = ¥,.| — X;_1, or an estimate of the long-run relationship must be obtained
in advance (i.e., we require an unbiased estimate of ). Another approach
equivalent to that suggested by Kremers et al. (1992), is to estimate the unrest-
ricted dynamic model in distributed lag form rather than as an ECM and then

12 The use of the term ‘invariant’ means that the test is not affected by a trend entering
(4.1).

3 Note that the CRDW test also suffers from the "problem’ that it imposes a common
factor restriction—see the earlier discussion (equations 4.7-4.9) relating to the ADF test
on this matter.

“In the more general formulation of the ECM, the test amounts to whether the
parameter coefficient on the error correction term &, equals zero.
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to solve for the long-run model (i.e., to directly estimate equation (4.2) or a
more general form and then to solve for equation (4.1)). This procedure is
standard in certain econometric packages, in particular PcGive, and the
output from applying this approach to the money demand model is given in
Box 4.2 (see the next section for a discussion of the approach). In line with the
results from using the ECM formulation, the test of the null hypothesis of no
cointegration is more powerful than using the ADF test. Inder (1993) shows
that there are other desirable properties, namely that the unrestricted dynamic
model gives ‘... precise estimates (of long-run parameters) and valid 7-statis-
tics, even in the presence of endogenous explanatory variables’ (Inder, 1993, p.
68).

Dynamic Models

When the simple dynamic model, as represented by (4.2), is a sufficient repre-
sentation of the underlying economic relationship, the EG approach of
estimating the (static) (4.1) is equivalent to omitting the short-run elements
of the dynamic model. As more complicated dynamic models become necessary
to capture the relationship between x and y, then estimating the static model to
obtain an estimate of the long-run parameter 3 will push more complicated
dynamic terms into the residual ¢,, with the result that the latter can exhibit
severe autocorrelation. As has been stated, ‘superconsistency’ ensures that it is
asymptotically valid to omit the stationary 7(0) terms in equations like (4.3),
but in finite samples the estimates of the long-run relationship will be biased
(and, as shown by Phillips, 1986, this is linked to the degree of serial correla-
tion).!®> The Monte Carlo work of Banerjee et al. (1993) and Inder (1993) shows
that this bias is often substantial. Thus, it seems reasonable to consider estimat-
ing the full model, which includes the dynamics (i.e., (4.2) or its equivalent).
since this leads to greater precision in estimating 3 in finite samples.

One of the results to emerge from the Monte Carlo work is that it is
preferable to over-parameterize the dynamic model (i.e., a generous lag
length should be chosen) since this reduces any bias when compared with an
under-parameterized model, even when the ‘true’ model involves a simple
d.g.p. with few dynamic terms. Thus, the following model should be estimated:

A(L)y, = B(L)x; + u, (4.15)

where A(L) is the polynomial lag operator 1 — oy L — aL? — -+ — a,L”. B(L)
is the polynomial lag operator yo + v, L + v L 4+ v,L?and L'x, = X, 00

15 Banerjee, Hendry and Smith (1986) show that bias is inversely related to the value R’
in the static OLS regression model, but they point out that it does not necessarily follow
that high values of R? imply low biases, since R? can always be increased by the addition
of more (ad hoc) regressors.

1 For instance, choosing p = ¢ = 4 results in the following dynamic model: v, = ~ox, +
Y1Xr—1 + Y2X-2 + V3N -3+ YaX—4 + o Y- ooy o3y agyes + U
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COMFAC WALD test statistic table

Order  x2df Value p-value Incr. x?df Value p-value
3 0.55972 [0.92056] 0.55972 [0.9056]
6 0.80294 [0.9920] 0.24322 [0.9703]
9 2.414 [0.9831]) 1.6111 [0.6569]
13.293 [0.3481] 10.879 [0.0124] *
34.894 [0.0025] ** 21.601 [0.0001] **

N Wb Ln
W W W

=

2
5

The long-run parameter(s)'’ can be obtained by solving the estimated version
of (4.15) for 3, which in the simple model (equation (4.2)) amounts to
B = (1 +7/1 —a;)." Standard errors of 3 can be obtained using a (non-
linear) algorithm (the procedure used in PcGive involves numerical differentia-
tion)), and thus not only are long-run estimates obtained but -tests concerning
the statistical significance of 3 can also be undertaken. Inder (1993) shows that
t-tests of this kind, using critical values from the standard normal distribution,
have good size and power properties (even when x, is endogenous) and there-
fore valid inferences can be made concerning 3."°

In addition to providing generally unbiased estimates of the long-run
model and valid z-statistics, it is possible to carry out a unit root test of the
null hypothesis of no cointegration since the sum of the a;(i=1,...,p) in
(4.15) must be less than one for the dynamic model to converge to a long-
run solution. Thus, dividing (1 — }_ «;) by the sum of their associated standard
errors provides a t-type test statistic that can be compared against the critical
values given in Banerjee, Dolado and Mestre (1998), in order to test the null
hypothesis.?°

As an example of the approach, recall that when applying unit root tests to
the residuals from the static demand-for-money equation, there is no evidence
to reject the null hypothesis of no cointegration. Setting p = ¢ = 5 and then

'TIf x, is a single variable, then there is a single long-run parameter 3 (which may
include the long-run estimate of the constant as well as slope—see equation (2.12)—and
therefore 3 = [Bo, 51]'); however, if x, is a vector of variables. then a vector of long-run
parameters is obtained.

'8 In more complicated models, the long-run parameters are the sum of the parameters
associated with the variable being considered (i.e., > v (i=0...., q) in (4.15)), divided

by one minus the sum of the parameters associated with the dependent variable (i.e..
1-S ai(i=1,....p).

1He states that the test statistics based on the simple OLS static model are *
hopelessly unreliable’ (p. 67).

20 Note that dividing the sum of the parameter estimates associated with x (i.e., Y_ +) by
the sum of their associated standard errors provides a r-type test of the null hypothesis
that there is no significant long-run effect of x on y. This test is not equivalent to a test
involving the ¢-values obtained from the solution to the long-run equation, and in small
samples it is possible that there will be conflicting outcomes from these alternative
approaches.
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testing to ensure that this parameterization of (4.15) is general enough to pass
various diagnostic tests®' relating to the properties of the residuals u,, the
following (cf. Box 4.2) long-run relationship is found (with z-values in
parentheses):

m—p = —7 332Ap +1.052y — 6.871R —0.393 + 0.238SEAS + = (4.16)
(8.64) (11.98) (029) (127

A Wald test decisively rejects the null that all the long-run coefficients (except
the constant term) are zero. The unit root test of the null hypothesis of no
cointegration results in a test statistic of —4.46, which rejects the null at the 5%
significance level.”” Thus, this approach suggests that, contrary to the results
obtained from the static (4.4), there is a long-run stable relationship for money
demand. Furthermore, tests of common factors (COMFAC) in the lag poly-
nomials reject the hypothesis of four common factors, which helps to explain
the results from applying the different tests for cointegration. Lastly, it can be
seen that the estimates of long-run parameters are also different (cf. equations
(4.11b) and (4.16)), with the estimate for Ap wrongly signed and the estimate

for real income unexpectedly small in the static model.?*

Fully Modified Estimators

Using a dynamic modelling procedure results in a more powerful test for
cointegration, as well as giving generally unbiased estimates of the long-run
relationship and standard r-statistics for conducting statistical hypothesis-
testing. In large part the better performance of the dynamic model is the
result of not pushing the short-run dynamics into the residual term of
the estimated OLS regression. As with the tests for unit roots discussed in
the last chapter (Box 3.1), the alternative to modelling the dynamic processes

2l These diagnostic tests (reported in Box 4.2), and how to interpret them, will be
discussed in the section on estimating the short-run model (see p. 96). For now it is
sufficient to note that the significance levels for rejecting the null of no serial correlation
(AR test, ARCH test, etc.) are given [ ] brackets after each test statistic and are such as
to suggest we should have little confidence in rejecting the various null hypotheses.

22 Note that (1 — 3 a;) = —0.138, with a standard error of 0.0311.

23 Applying the dynamic modelling approach to the nominal money balances model
gives the following lon-run equation:

O 967p+ 11 153y 6.573R — 1.627 + 0.221SEAS
(7.76) (0.45) (1.23)

while the unit root test for cointegration yields a test statistic of —4.526 (significant at
the 5% level). Note that since results discussed in Box 3.2 suggest that m and p are
probably 7(2), it is assumed that an /(1) cointegration relation between these variables
exists that in turn cointegrates with the other /(1) variables in the model (see Box 2.4) to
result in an 7(0) error term. In (4.16) if (m — p) ~ I(1), as suggested in Box Table 3.2.1,
then it is easier to justify the existence of a cointegration relationship for real money
demand, given that the other variables are also /(1), including Ap, since p ~ I(2).



92 APPLIED TIME SERIES MODELLING AND FORECASTING

is to apply a non-parametric correction to take account of the impact on the
residual term of autocorrelation (and possible endogeneity if the right-hand-
side variables in the cointegration equation are not weakly exogenous). Such
an approach is often termed ‘the modified OLS’ (see especially Phillips and
Hansen, 1990) and amounts to applying adjustments to the OLS estimates of
both the long-run parameter(s) 3 and its associated r-value(s) to take account
of any bias, due to autocorrelation and/or endogeneity problems, that shows
up in the OLS residuals.?* Thus, tests involving the modified OLS r-statistics
are asymptotically normal.

Inder (1993) found that the modified OLS estimates of the long-run re-
lationship yielded little or no improvement on the precision of the standard
OLS estimator. Thus, bias remained a problem in many of his Monte Carlo
experiments, leading him to conclude that ‘. .. it seems that the semiparametric
correction is insufficient to remove the autocorrelation in the error when the
data-generating process includes a lagged dependent variable’ (p. 61). Further-
more ‘... Modified OLS gives t-statistics whose sizes are generally no better
than the OLS results ... The poor performance of (such) -statistics suggests
that in this case a very large sample is required for the asymptotics to take
effect” (p. 66). This is perhaps fortunate since implementation of the Phillips-
type non-parametric corrections is somewhat complicated, and Inder’s results
suggest that there is little to be gained over the static EG approach.

PROBLEMS WITH THE SINGLE EQUATION APPROACH

It was stated in Box 2.4 that if there are n > 2 variables in the model. there can
be more than one cointegration vector. That is, the variables in a model (e.g..
(2.1), which depicts the money demand function) may feature as part of several
equilibrium relationships governing the joint evolution of the variables. It is
possible for up to n — 1 linearly independent cointegration vectors to exist. and
only when n = 2 is it possible to show that the cointegration vector is unique.

Assuming that there is only one cointegration vector, when in fact there are
more, leads to inefficiency in the sense that we can only obtain a linear combi-
nation of these vectors when estimating a single equation model. However. the
drawbacks of this approach extend beyond its inability to validly estimate the
long-run relationships between variables. Even if there is only one cointegra-
tion relationship, estimating a single equation is potentially inefficient (i.e.. it
does not lead to the smallest variance against alternative approaches). As will
be seen, information is lost unless each endogenous variable appears on the
left-hand side of the estimated equations in the multivariate model. except in

2 The non-parametric correction for bias due to autocorrelation is akin to the PP
correction (Box 3.1); a second correction uses a non-parametric estimate of the long-run
covariance between x and y to deal with any endogeneity. It is also possible to correct
the unrestricted dynamic model (equation (4.15)) for possible endogeneity using a
similar non-parametric correction to that proposed for modified OLS (see Inder. 1993).
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the case where all the right-hand-side variables in the cointegration vector are
weakly exogenous.

It is useful to extend the single equation ECM to a multivariate framework
by defining a vector z, = [y}, »,, x,] and allowing all three variables in z, to be
potentially endogenous, viz.:

Z, = AyZi_ + -+ ApZi—p + Wy u, ~ IN(0,Z) (4.17)

This is comparable with the single equation dynamic model (4.15) and in a
similar way can be reformulated into a vector error correction form:

Az, =T1Az,  + -+ T3 Az gy + Tz +uy (4.18)

where I'i=—-(I—-A;—---—A) (i=1,...,k—=1) and I=—-(1-A, —---
—A;). The (3 x 3) II matrix contains information on long-run relationships;
in fact, I1 = af’, where o represents the speed of adjustment to disequilibrium®
and P is a matrix of long-run coefficients. Thus, the term $'z,_, embedded in
(4.18) is equivalent to the error correction term (y,_; — 8x,_;) in (4.8), except
that B'z,_, contains up to (n — 1) vectors in a multivariate model.*®

Setting the lag length in (4.18) to k = 2 and writing out the model in full
gives:

Ay, Ay o o | , ) V-1
Bu Ba B

Ayl =T | Ay | + | a2 am h Var-1 (4.19)
B2 B B

Ax, Ax; a3 a3 X

It is now possible to illustrate more fully the problems incurred when estimat-
ing only a single equation model. Using (4.19) and writing out just the error
correction part of, say, the first equation (i.e., the equation with Ay,, on the
left-hand side) gives:>"?®

2 See the discussion surrounding (1 — o) in (2.13) for an analogous interpretation in
the single equation model.

26 In fact, the matrix p'z,.; contains » column vectors in a multivariate model, but only
(n — 1) of them can possibly represent long-run relationships and often the number of
steady-state vectors is less than (n— 1). The whole issue of testing for stationary
cointegration vectors in f§ is considered in the next chapter when we test for the reduced
rank of fi.

27 Note that since there are two cointegration relationships, both enter each of the
equations in the system. Also, neither of the two equations have been normalized in
(4.19), and so all the 3;; are included. Normalization, say to obtain a coefficient of 1 on
Y11, would entail multiplying each long-run relationship by its respective estimate of
/8 (j=1,2).

28 Equation (4.20) can also be written as:

o (Buyi—1 + Barya-1 + Baxe-1) + an(Buyi— + Boyu-1 + Bnxi-1)

which shows clearly the two cointegration vectors with associated speed-of-adjustment
terms in the equation for Ayy,.
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V-1
Iz, = [(cn B + afiz) (anBa + aiafn)  (an B + @1283)] | va-
Xi-1

(4.20)

where IT, is the first row of I1. That is, if only a single equation with Ay,, as the
left-hand-side variable is estimated, then it is not possible to obtain an estimate
of either of the cointegration vectors since all that can be obtained is an
estimate of I1;, which is a linear combination of the two long-run relationships
(and this applies equally to the static or dynamic form of the single equation
model (cf. equations (4.1) and (4.15)). This result applies whichever element of
zZ, is used as the left-hand side in the single equation model, since only estimates
of I1; can be obtained (i = 1,2, 3).

Alternatively, when there is only one cointegration relationship (3;y,-; +
B21¥2-1 + B31x,-1) rather than two, entering into all three ECMs with differing
speeds of adjustment [a,;, ay;, a3;]’, then using a single equation approach will
obtain an estimate of the cointegration vector, since writing out just the error
correction part of, say, the first equation gives:

an(Biyi-1 + Baya-1 + 831x-1) (4.21)

However, there is information to be gained from estimating the other equations
in the system, since a,; and a3, are not zero. That is, more efficient estimates of
B can be obtained by using all the information the model has to offer. Indeed,
Johansen (1992a) shows that in situations where z, is endogenous and there is
one cointegration vector, then the variance of the estimator of B, > Brun.
where ‘part’ refers to a partial estimator (e.g., a single equation OLS estimator)
and ‘full’ refers to a modelling approach that estimates the full system
(equation (4.19)).

Only when, say, a, = a3, =0 will a single equation estimator of the
unique cointegration vector be efficient. Then the cointegration relationship
does not enter the other two equations (i.e., Ay,, and Ax, do not depend on
the disequilibrium changes represented by (3;,y),_; + B2132-1 + 331X,-1)). As
will be shown in the next chapter, this means that when estimating the param-
eters of the model (i.e., I'y, I, a, PB) there is no loss of information from nor
modelling the determinants of Ay,, and Ax,; so, these variables can enter on the
right-hand side of a single equation ECM.? For now, it is sufficient to state
that @,; = a3; = 0 amounts to y,, and x, being weakly exogenous. When all the
right-hand-side variables in a single equation model are weakly exogenous, this
approach is sufficient to obtain an efficient estimator of B such that (4.15)

29 More technically, this is referred to as conditioning on these variables.
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should provide the same results as a multivariate (or system) estimator (e.g.,
the Johansen approach, as set out in the next chapter).*°

As has just been explained, it is only really applicable to use the single
equation approach when there is a single unique cointegration vector and when
all the right-hand-side variables are weakly exogenous. Inder (1993), on the
basis of his Monte Carlo experiments, has suggested that the problem of
endogeneity may be relatively unimportant in many situations, but there is
still a question as to whether it is possible to perform tests of weak exogeneity
in a single equation framework. Urbain (1992) suggests that the usual ap-
proach based on a Wu-Hausman-type orthogonality test is unlikely to
provide clear results. This approach amounts to regressing the right-hand-
side variable of interest (e.g., Ay,,) on all the lagged first-differenced variables
in the model (e.g., Ef‘l Az,_;)’" and then testing whether the residuals from
this equation are significant in the short-run ECM (cf. equation (4.10)). That is,
if Ay,, is weakly exogenous, then the residuals from the equation determining it
will be orthogonal to (i.e., non-correlated with) the short-run ECM determin-
ing Ay,,. However, Urbain (1992) points out that orthogonality will be present
anyway (on the basis of the multivariate normal distribution) and suggests that
it would be more appropriate to test whether the error correction term em-
bedded in the short-run ECM (i.e., &,_, = B}z,_,) is significant in the equation
determining Ay,,. As mentioned previously, if Ay,, is weakly exogenous, then it
does not depend on the disequilibrium changes represented by the g,_,.
However, even though it is possible in principle to test for weak exogeneity,
there is still the more important issue of how many possible (n — 1) cointegra-
tion relations exist in a model that includes n variables. Since this must be
established, it is better to undertake testing for weak exogeneity as part of a
multivariate procedure. As will be seen, this can be done easily using the
Johansen approach.

As an example of the single equation approach when there is more than
one cointegration relationship, consider the UK purchasing power parity
(PPP) and uncovered interest rate parity (UIP) model estimated by Johansen
and Juselius (1992). This model is examined in detail in the next chapter,
where multivariate testing suggests that there are at least two cointegration
relationships between the five variables p; (the UK wholesale price index), p,
(trade-weighted foreign wholesale price index), ¢ (UK effective exchange rate),
ii (3-month UK treasury bill rate) and i, (3-month Eurodollar interest rate).
Theory suggests that if PPP holds in the goods market (i.e., internationally
produced goods are perfect substitutes for domestic goods), we should expect

" Note that estimating the long-run relationship using a static model (equation (4.1))
will not produce the same result because of small sample bias (i.e., both (4.15) and (4.18)
incorporate short-run adjustments). In fact, with weak exogeneity assumed, (4.15) and
(4.18) are equivalent.

3 Other variables known to determine Ay, but not already included in the model since
they are assumed exogenous to it, may also enter.
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to find in the long run that price differentials between two countries are equal to
differences in the nominal exchange rate (p, — p, = e), while UIP in the capital
market relates the interest rates of the two countries to expected changes in
exchange rates (i — i, = ¢ — e). If markets are efficient, expected changes in
exchange rates will be increasingly influenced by deviations from long-run
PPP (especially as the forecast horizon grows—see Juselius, 1995) and thus
e’ = (p; — py), providing a link between the capital and the goods market. If
parity holds in the long run we should expect (i; — i) = (p; — p» — ¢) and
estimated parameter values of (£)1 for all the variables in the model.

Estimating the static model using seasonally unadjusted data for 1972q1 to
1987q2 produced the following result:

p1 = 1.442p, + 0.468¢ — 0.937i; + 1.114i + ¢  R?> =0.99. DW = 0.19
(4.22)

and using (4.4), with 6 = 0 imposed, the residuals £ were tested for a unit root
under the null hypothesis of no cointegration. The 7-value associated with
testing the null hypothesis (that Hj: " = 0 based on the &) was —2.40, while
the critical value for rejecting the null is —4.64 (at the 5% significance level
obtained from Table A.6 with » = 5 and T = 62). Thus, these results indicate
that there is no long-run stable relationship.*’

Setting p = g = 5 and then testing to ensure that this parameterization of
(4.15) is general enough to pass various diagnostic tests relating to the proper-
ties of the residuals 7,, the following long-run relationship is found using the
dynamic modelling approach (with r-values in parentheses):

p1 = 1.331py + 0.402¢ + 3.765i; — 0.606i; + & (4.23)

(29.92) (8.51) (3.48) (0.88)

A Wald test decisively rejects the null that all of the long-run coefficients are
zero. However, the unit root test of the null hypothesis of no cointegration
results in a test statistic of —2.97, which does reject the null at the 10%
significance level (based on a critical value of —3.65 obtained from table 2 in
Banerjee, Lumsdaine and Stock, 1998). Thus, using the single equation ap-
proach, cointegration is not established and the estimates of long-run
parameters seem remote from their expected values.

ESTIMATING THE SHORT-RUN DYNAMIC MODEL

Having obtained an estimate of the long-run relationship, the second stage
of the EG procedure comprises estimating the short-run ECM itself (e.g.,
equation (4.10)) using the estimates of disequilibrium (£,_,) to obtain informa-
tion on the speed of adjustment to equilibrium. The ¢,_; associated with the
cointegration relations obtained from the static and dynamic models (equa-

32 Note that the CRDW test also fails to reject the null.
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Figure 4.1. Cointegration relations for UK money supply based on equations (4.11b)
and (4.16).

tions (4.11b) and (4.16)) are plotted in Figure 4.1. These show that real M1 was
considerably off its equilibrium value (which occurs when &,_; = 0), especially
(according to the dynamic approach) after 1982. Thus, it will be interesting to
see whether the money supply adjusts quickly or slowly to such disequilibrium.

The initial model (denoted Model 1) is the AR distributed lag model
with p=¢ =15 used to obtain &,_, = (m—p),_, +7.332Ap, , — 1.052y,_; +
6.871R,_; +0.393 — 0.238SEAS (see Box 4.2). Model 2 is the equivalent
short-run ECM obtained by setting p = ¢ =4 in (4.10). Next the Hendry-
type ‘general-to-specific’ procedure is used to reduce this short-run ECM to
its parsimonious form (see Ericsson, Hendry and Tran, 1992 for full details
relating to this data set). This resulted in Models 3-6 and involved dropping
insignificant variables and reparameterizing the estimated equation as follows:

e Model 3: since AR,_; = AR,_, = AR,_; = AR,_; = 0, these variables are
dropped.

e Model 4: since Ap, = —Ap,_,, these variables are dropped and Azpf is
introduced instead; since Ap,_, = Ap,_3 = Ap,_4 = 0 these variables are
also dropped.



98 APPLIED TIME SERIES MODELLING AND FORECASTING

Table 4.2 F-statistics for the sequential reduction from the fifth-order AR model in
Box 4.2.

Model reduction Degrees of freedom Test statistic [significance level]
Model 1 — 2: F(3, 73) 0.01906 [0.9964]
Model 1 — 3: F(7, 73) 0.46212 [0.8587]
Model 2 — 3: F(4, 76) 0.82641 [0.5124]
Model | — 4: F(11, 73) 0.64029 [0.7885}
Model 2 — 4: F(8, 76) 0.90842 [0.5142]
Model 3 — 4: F(4, 80) 0.99911 [0.4131]
Model 1 — 5: F(15, 73) 0.72135 [0.7553]
Model 2 — 5: F(12, 76) 0.93305 [0.5192]
Model 3 — 5: F(8, 80) 0.99501 [0.4465]
Model 4 — §: F(4, 84) 0.99096 [0.4171]
Model 1 — 6: F(17, 73) 0.75495 [0.7364]
Model 2 — 6: F(14, 76) 0.94940 [0.5118]
Model 3 — 6: F(10, 80) 1.00730 [0.4447]
Model 4 — 6: F(6, 84) 1.01290 [0.4226)
Model 5 — 6: F(2, 88) 1.05720 [0.3518)

e Model 5: since Ay,_, = —Ay,_3, these variables are dropped and Ay, s is
introduced instead; also as Ay, = Ay,_; = Ay,_4 = 0 these variables are
dropped.

e Model 6: since A(m —p), , = A(m — p),_, = A(m — p),_,, these variables
are replaced by [(m — p), — (m — p),_;]/3 instead.

The F-statistics (and associated probabilities of rejecting the null in square
brackets) for testing each model in the sequential reduction process are given
in Table 4.2. The complete reduction from Model 1 to Model 6 is not rejected
with Fy; 73 = 0.75 [0.74] and none of the reductions between model pairs reject
at the 5% significance level. The final model obtained was:

A(m — p), = 0.005 — 0.880A%p, + 0 149A2y, 20, 646A1(m p),/3

(1.360)  (4.717)
+0.188A(m — p),_y —~ 038TAR, — 0.116¢,- — 0.012SEAS,,
(3.395) 0.802) (2.312)
— 0,022SEAS;, +0.012SEASs, (4.24)
(4.476)

Diagnostics

R2 =0.833; F(9,90) = 50.044 [0.0000]; o =0.0135641; DW =2.15; AR

1-5 F(5,85) = 1.0355 [0.4021]; ARCH 4 F(4,82) = 0.70884 [0.5882]; X}

F(15,74) = 0.786 57 [0.6881]; X, X; F(48,41) =0.70269 [0.8804]: RESET
F(1.89) = 0.260 72 [0.6109]; normality x2(2) = 3.4735(0.1761).
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None of the diagnostic tests reported are significant at the 95% critical value
(except the F-test in which all the slope coefficients are zero), and therefore
there is nothing to suggest that the model is mis-specified. These tests cover,
respectively, the goodness of fit of the model (i.e., what percentage of the total
variation in the dependent variable is explained by the independent variables);
an F-test in which all the right-hand-side explanatory variables except the
constant have zero parameter coefficients; the standard deviation of the regres-
sion; the DW test for first-order autocorrelation (which is strictly not valid in a
model with lagged dependent variables); a Breusch-Godfrey Lagrange multi-
plier (LM) test for serial autocorrelation up to the fifth lag, obtained by
regressing the residuals from the original model on all the regressors of that
model and the lagged residuals; an autoregressive conditional heteroscedastic
(ARCH) test, obtained by regressing the squared residuals from the model on
their lags (here up to the fourth lag) and a constant; White’s test for hetero-
scedasticity, involving the auxiliary regression of the squared residuals on the
original regressors and all their squares; White’s heteroscedasticity/functional
for the mis-specification test, based on the auxiliary regression of the squared
residuals on all squares and cross products of the original regressors; Ramsey’s
RESET general test of mis-specification, obtained by adding powers of the
fitted values from the model (e.g., 7, 73, etc.) to the original regression equa-
tion; and the Jarque-Bera test for normality. Significance levels for rejecting
the null hypothesis are given in [ ] brackets. Full references for each test are
available in most standard econometric texts, such as Johnston and Dinardo
(1997). Econometric software packages, which usually contain similar batteries
of tests, also provide good references and explanations.

Another important aspect of diagnostic checking is testing for structural
breaks in the model, which would be evidence that the parameter estimates are
non-constant. Sequential 1-step-ahead Chow tests®* and 1-step-ahead residuals
(4, = y, — x,B,) can be obtained from applying recursive least squares to the
model over successive time periods by increasing the sample period by one
additional observation for each estimation. Plots of these Chow tests and
residuals are given in Figure 4.2 for the estimated short-run ECM. The
graph of 1-step-ahead residuals are shown bordered by two standard devia-
tions from the mean of zero (i.e., 0 £ 20,), and points outside this region are
either outliers or are associated with coefficient changes. There is some evidence
to suggest that there is a problem around the 1983q3 observation. The Chow
tests also suggest that parameter instability is evident around the 19732 and
1983q3 time periods.

Returning to (4.24), the speed-of-adjustment coefficient indicates that the
UK money supply adjusted relatively slowly to changes to the underlying
equilibrium relationship since the parameter estimate on &, ; shows that

33 These are calculated as the change in the sum of the squared residuals (3 ?) from the
model as it is estimated over successive time periods (adjusted for degrees of freedom)
and an F-test that 3 changes is obtained.
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Figure 4.2. Diagnostic testing of the short-run ECM: 1-step-ahead residuals and chow
tests.

economic agents removed only 11.6% of the resulting disequilibrium each
period. This helps to explain the considerable deviations from equilibrium
depicted in Figure 4.1.

SEASONAL COINTEGRATION*

If series exhibit strong seasonal patterns they may contain seasonal unit roots;
consequently, any potential cointegration may occur at seasonal cycles as well
as (or instead of) at the zero frequency domain. In cases where there are
seasonal unit roots in the series and the cointegration relation is thought to
be a long-run (zero frequency) relation between the series, the cointegration
regression of, say, ¢, on y, using (4.1) gives inconsistent estimates. Thus, in such
a situation it is necessary to test for the long-run relationship using data that
has been adjusted using the seasonal filter S(L) = (1 + L + L> + L*) in order
to remove the seasonal unit roots and leave the zero frequency unit root corre-
sponding to (1 — L). That is, when series have unit roots at both the zero and

34 The reader is advised to review the discussion of seasonal unit roots in Chapter 3
(p. 63) before tackling this section.
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seasonal frequencies (i.e., are all 7(1, 1)), the static model test for cointegration
between, for example, ¢, and y, becomes:

(Zie)) = Bi(Zy:) + & (4.25)

where Z, = (1+ L+ L*+ L%, f, is the long-run relationship at the zero
frequency and the standard test of the null hypothesis of no cointegration is
to directly test whether ¢, ~ I(1) against the alternative that ¢, ~ 1(0). Thus,
the equivalent of (4.4) can be estimated using the £, obtained from estimating
(4.25):
p—1
Aé =mé Y Wil i+ p+bi+w  w ~1ID(0,0%) (4.26)

i=1

with the issue of whether to include a trend and/or constant terms in the test
regression remaining the same. The test statistic is a ¢-type test of Hy: w; =0
against H,: m; < 0, with critical values given by MacKinnon (cf. Table 4.1).
To test for seasonal cointegration at the two-quarter (half-yearly)
frequency (1 + L), requires leaving in the seasonal root at this cycle using Z,

and estimating:
(Zac) = Bal(Zay:) + 14 (4.27)

where Zy = —(1 - L + L*—r} ) and 3, is the long-run relationship at the two-
quarter frequency. Testing the null hypothesis of no cointegration uses the
residuals ©, from (4.27) and the following version of the ADF test:

p-1

(O + Dym1) = m2(—0,21) + Z%(ﬁm + Orjer)

i==]

6Dy +w,  w, ~1ID(0,0%) (4.28)

3
+ p+

i=1

where Dy, is the zero/one dummy corresponding to quarter g. The test statistic
is a t-type test of Hy: m, = 0 against H;: m, < 0, with critical values given by
MacKinnon (cf. Table A.6).

Finally, testing for seasonal cointegration at the four-quarter (annual)
frequency (1 & iL) requires leaving in the seasonal roots at this cycle using
Z5 and estimating:

(Z3¢1) = B3(Zays) + Ba(Zaye-1) + G (4.29)

where Z3 = —(1 — L2) and f3; and (4 are the long-run relationships at the four-
quarter frequency. Testing the null hypothesis of no cointegration uses the
residuals ¢, from (4.29) and the following version of the ADF test:

~ A~ ~ ~ p“] ~ ~
G+ Ga) = ma(=Ga) + ma(=Ca) + D WilGoi + i)
i=1

3
+u+ Y &Di+w,  w ~T1ID(0,0%) (4.30)

i=]
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Table 4.3 Test for cointegration at frequencies 0, % %, %: UK consumption function
data (1971q2-1993q1) (based on equations (4.26), (4.28) and (4.30)).

Variables Deterministic

components included? tr, I, I Iz, Frion,
¢ W I+ TR/SD —236 243 346 —2.48" 10.24°
cn Vs I -233 -163 —191 -137 286
Wy I1+TR/SD —120 —350 -3.58 —3.129 13.16¢
Cra Wy I 169 -276 —1.58 —091 1.70
¢, ¥, Wi T, 1+ TR/SD —-201 =312 -358 =220 9.79
Coo Yoy Wiy 1y, -195 =277 -25 -1.06  3.93

4TR = trend, I = intercept, SD = seasonal dummies.
b Rejects null at 5% significance level.

¢ Rejects null at 2.5% significance level.

4 Rejects null at 1% significance level.

where the test of the null hypothesis requires a joint F-test Hy: 73 = 1y = 0.
Critical values for this test and individual t-tests of Hy: 73, Hy: my = 0, when
there are two variables in the cointegration equation, are given in Engle,
Granger, Hylleberg and Lee (1993, table A.1).

Assuming that cointegration occurs at all frequencies (i.e., {£;, I, f,] ~ 1(0))
in (4.25), (4.27) and (4.29), the following short-run ECM for ¢, and v, (see
Engle et al., 1993) can be estimated:

q 4
(r-— L4)C1 = Ay, = ZaiA4,1't—_j + ZbiA‘lCtvi + NEr + b
=0 izl

+ (13 + 74L)C:1—1 + u, (4.31)

where the ~; are speed-of-adjustment parameters and it is assumed that y, is
weakly exogenous.

In the last chapter, tests for seasonal integration using UK data suggested
that both real consumer-spending, real liquid assets and inflation are /(1. 1).
The results for real personal disposable income suggest that it does not have
any seasonal unit roots (i.e., it is I(1, 0)). Tests for seasonal cointegration are
reported in Table 4.3; these suggest that cointegration between c,, v,, w,, and 7,
(and subgroups) can be rejected at the zero (or long-run) frequency and at the
two-quarter frequency.’® However, there is evidence to suggest that variables
are cointegrated at the four-quarter (or annual) frequency, given the values of

35 Otherwise, the term A4y, on the right-hand side of the ECM would not be allowed
and we could write a second ECM with A4y, as the dependent variable. The latter would
have the same cointegration relations, but the speed-of-adjustment parameters ~; would
potentially be of a different magnitude.

36 Note lag lengths set to maximize R>, and in accordance with the arguments in Schwert
(1989), are used. Results reported in Table 4.3 are based on max-R".
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the F-statistics obtained.*’ Similar results were obtained using Japanese data
for ¢, and y, by Engle et al. (1993), and they argued: *... if a slightly impatient
borrowing-constrained consumer has the habit of using his bonus payments to
replace worn out clothes, furniture, etc., when the payment occurs, one may
expect cointegration at the annual frequency’ (p. 292). Given that such bonus
payments are not typical in the British labour market, some other (although
similar) rationale has to be sought. Lastly, these results confirm those in
Hylleberg, Engle, Granger and Yoo (1990), who also found some evidence
of seasonal cointegration between ¢, and y, at the half-yearly frequency
using UK data.

PERIODIC COINTEGRATION

If the individual time series display periodic integration (e.g., the observations
on a variable y, can be described by a different model for each quarter—see
Chapter 3), then there may exist stationary relationships between the variables
at different frequencies that require the estimation of a periodic cointegration
model. A single equation approach has been developed by Boswijk and Franses
(1995), viz:

4 4 4
Ay =Y 0yDy(yi-a = BXi-a) + 2 f1gDyr + 2 7, Dyt (4.32)
4= 4=

g=1

where X, is a vector of explanatory variables and D,, is the zero/one dummy
corresponding to quarter g. The last two terms in (4.32) comprise the determi-
nistic part of the model (seasonal intercepts and seasonal time trends), which
may be omitted. Equation (4.32) is also typically augmented with lagged values
of A4y, and current and lagged values of A4x,, to capture the dynamics of the
model. The a, and B, parameters determine the speed of adjustment and long-
run relationship between y, and x, as in the usual ECM (although here there
are four different models, one for each season, and B, # 1 will result in periodic
cointegration).

Equation (4.32) can be estimated using non-linear least squares and full or
partial periodic cointegration can be tested using Wald-type tests. The test for
partial periodic cointegration for quarter ¢ involves the null Hy,: (cy, 8,) =0
against the alternative H,: (ag, 3,) # 0, while the full test comprises Hy:
Zay, = 2, = 0, against the alternative H;: (Zay, Z3,) # 0. The test statistics
are:

Wald, = (T — k)(RSSo, — RSS;)/RSS
= ( )(RSSq, 1)/ 1} (4.33)

and Wald = (T — k)(RSSy — RSS,;)/RSS;
37 Note that because critical values for cointegration equations involving more than two

variables are not available at the four-quarter frequency, it is not possible to draw any
definite conclusions surrounding the tests of the full consumption function model.
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Table 4.4 Wald tests for periodic cointegration: UK consumption function data
(1971q2-1993q1) (based on equation (4.32)).

Variables Wald, Wald, Walds Wald, Walds
Cry Wy 8.53 8.92 434 2.83 22.50
Vs Wy 3.21 12.89* 3.76 10.80 28.13

* Rejects null at 10% significant level. Critical values at the 10% level for Wald, and Wald are
12.38 and 38.97, respectively (Boswijk and Franses, 1995, tables A1 and A2).

where T is the sample size, k the number of estimated parameters in (4.32) and
where RSSy,, RSS, and RSS, denote the residual sum of squares under H,.
H, and H,, respectively. Critical values are provided in Boswijk and Franses
(1995, tables Al and A2).

Using the UK consumption function data for 1971q2 to 1993ql, equation
(4.32) was estimated with y, equal to the log of real consumer-spending (ex-
cluding non-durables) and x, comprising the log of real income, real wealth
and annual retail inflation. We were not able to reject the null of no periodic
cointegration for any quarter (or the full model comprising all quarters).
whether the deterministic components in (4.32) were included or excluded.
The most significant results obtained from pairing variables are reported in
Table 4.4, with models including seasonal intercepts and time trends. Only with
real income as the dependent variable and real wealth as its determinant is
there any evidence of periodic cointegration in quarter 2 (although rejection is
only at the 10 per cent significance level). Perhaps these results are not surpris-
ing, given that in Table 3.7 there was no evidence of periodic integration.

ASYMMETRIC TESTS FOR COINTEGRATION

To recap the standard EG approach to testing for cointegration, it is assumed
that there is at most a single long-run relationship between y and x; that is:

Ye=0o+ Bixi +¢ (4.34)

Assuming y, and x, are both I(1), then Engle and Granger (1987) show that
cointegration exists if e, ~ [(0). The long-run model in equation (4.34) is
associated with a short-run ECM based on symmetric adjustment, with the
second-step EG test for cointegration based on the OLS estimate of p in
equation (4.35):%®

Aé =pé 40 v ~1D(0.0%) (4.35)
38 Note that for simplicity here we have adopted the DF version of the test, rather than

the ADF (see equation (4.4)). Lagged values of Aé,_; would need to enter the right-hand
side of (4.35) to ensure that v, has the desired properties stated in the equation.
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