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Preface

Reiterated measurements of an experimentally accessible quantity of a dynami-
cal system result in a time series, and one may wonder, what this information can
tell about the system on which the measurements are done. Time series analysis
is, thus, a very obvious way of an attempt to understand nature—already Ke-
pler did it when studying the observations of Tycho Brahe. He came up with
a very simple synopsis formulated in his famous laws and Newton could as-
cribe these to a single law by postulating a fundamental gravitational force.
This marks the beginning of modern science and then, in exploring the nature,
fundamental laws or equations motivated by first principles played a dominant
role.
Turning to more and more complex systems guidance by first principles be-

came less fruitful for finding a mathematical model. Thus, observations cannot
serve any more as indication or pointer to some fundamental underlay but have
to be regarded only as a fingerprint of the system. First tasks in analyzing these
fingerprints then are e.g. characterization or establishing a relation or correlation
to other observations. Time series analysis in this sense, thus, has already a long
history in fields where the systems to be studied are very complex such as mete-
orology or medical science. Sophisticated mathematical methods appeared first
in late 19th century and during the last decades these methods have been utilized
also by many scientists working in applied fields. This has led to many successes
in understanding complex systems.

This handbook comprises a wide range of current topics in the field of time series
analysis. The editors are well-known for both their theoretical work on time series
analysis techniques and their applications. Therefore, the editors attached great
importance to both theoretical work and applications. Especially, the interplay of
theory and practice is included in this Handbook of Time Series Analysis. The
editors brought together contributions of worldwide accepted experts of differ-
ent branches, e.g. from Physics, Mathematics, Biology, Medicine, Neuroscience,
and Engineering. With respect to the theory this Handbook covers a broad vari-
ety of presently used methodologies in different disciplines, ranging from linear
stochastic systems to Nonlinear Dynamics, from univariate to multivariate time
series analysis.
The Handbook of Time Series Analysis will provide guidance for all those

working on time series analysis, from students to experienced investigators. I

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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hope that it develops into a standard textbook and that the editors find time to
keep it up-to-date in future.

Josef Honerkamp July 26, 2006

Chair for “Stochastic Dynamical Systems” at the Physics Department of the Uni-
versity of Freiburg, and founder of the “Freiburg Center for Data Analysis and
Modeling”
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1 Handbook of Time Series Analysis:
Introduction and Overview

Björn Schelter, M. Winterhalder, and J. Timmer

Mathematics, Physics, and Engineering are very successful in understanding phe-
nomena of the natural world and building technology upon this based on the
first principle modeling. However, for complex systems like those appearing in
the fields of biology and medicine, this approach is not feasible and an under-
standing of the behavior can only be based upon the analysis of the measured
data of the dynamics, the so-called time series.
Time series analysis has different roots in Mathematics, Physics, and Engi-

neering. The approaches differ by their basic assumptions. While in Mathematics
linear stochastic systems were one of the centers of interest, in Physics nonlin-
ear deterministic systems were investigated. While the different strains of the
methodological developments and concepts evolved independently in different
disciplines for many years, during the past decade, enhanced cross-fertilization
between the different disciplines took place, for instance, by the development of
methods for nonlinear stochastic systems.
This handbook written by leading experts in their fields provides an up-to-

date survey of current research topics and applications of time series analysis. It
covers univariate as well as bivariate and multivariate time series analysis tech-
niques. The latter came into the focus of research when recording devices enabled
more-dimensional simultaneous recordings. Even though bivariate analysis is ba-
sically multivariate analysis, there are some phenomena which can occur only in
three or more dimensions, for instance, indirect interdependences between two
processes.
The aim of this handbook is to present both theoretical concepts of vari-

ous analysis techniques and the application of these techniques to real-world
data. The applications cover a large variety of research areas ranging from elec-
tronic circuits to human electroencephalography. The interplay between chal-
lenges posed by empirical data and the possibilities offered by new analysis
methods has been proven to be successful and stimulating.
In the first chapter, Henry D. I. Abarbanel and Ulrich Parlitz present different

approaches to nonlinear systems. By means of a real-world example of a record-
ing from a single neuron, they discuss how to analyze these data. Concepts such
as the Lyapunov exponent, i.e., a measure for chaos, prediction, and modeling in
Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9



2 1 Handbook of Time Series Analysis: Introduction and Overview

nonlinear systems, are introduced with a critical focus on their limitations. Ready
to apply procedures are given allowing an immediate application to one’s own
data.
Local modeling is being dealt with by David Engster and Ulrich Parlitz. Local

models are amongst the most precise methods for time series prediction. This
chapter describes the basic parameters of local modeling. To show the efficiency
of this procedure, several artificial and real-world data, for instance experimental
friction data sets, are predicted using local models. As an alternative to strict
local modeling, cluster weighted modeling is also discussed using an expectation-
maximization (EM) algorithm as a parameter optimization procedure.
Holger Kantz and Eckehard Olbrich present concepts, methods, and algo-

rithms for predicting time series from the knowledge of the past. Thereby, they
especially concentrate on nonlinear stochastic processes which have to be dealt
with by probabilistic predictions. They calculate a certain prediction range in
which future values are going to fall. They complete their chapter by discussing
verification techniques for their forecasted values, which is very important when
dealing with real-world data.
Noise and randomness in biological systems have often been treated as an

unwelcome byproduct. Patrick Celka and co-workers identify different noise
sources and their impact on dynamical systems. This contribution discusses the
concept of randomness and how to best access the information one wants to
retrieve. Different time series analysis techniques are presented. The applica-
tions govern speech enhancement, evoked potentials, cardiovascular system, and
brain–machine interface.
The chapter of Ursula Gather and co-workers is dedicated to robust filter-

ing procedures for signal extraction from noisy time series. The authors present
various filter techniques with their specific properties and extensions in order to
process noisy data or data contaminated with outliers. They point to the vari-
ety of different approaches and compare the advantages and disadvantages. By
means of simulated data they demonstrate the different conceptual properties.
Dealing with bivariate time series analysis techniques, the chapter of Michael

Rosenblum and co-workers is dedicated to the phenomenon of phase synchro-
nization and the detection of coupling in nonlinear dynamical systems. The au-
thors discuss the usage of model-based and nonmodel-based techniques and in-
troduce novel ideas to detect weak interactions between two processes, together
with the corresponding strength and direction of interactions. They illustrate
their analysis techniques by application to data characterizing the cardiorespi-
ratory interaction.
An approach to detect directional coupling between oscillatory systems from

short time series based on empirical modeling of their phase dynamics is intro-
duced by Dmitry Smirnov and Boris Petrovich Bezruchko. This time series analy-
sis technique is utilized to analyze electroencephalography recordings with the
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purpose of epileptic focus localization and climatic data representing the dynam-
ics of the North Atlantic Oscillation and El Niño/Southern Oscillation processes.
Phase synchronization analysis of brain signals, for instance intracranial elec-

troencephalography data recorded from epilepsy patients, has come into the fo-
cus of neuroscience research. Mario Chavez and co-workers suggest a data-driven
time series analysis technique to select the important contents in a signal with
multiple frequencies, the empirical mode decomposition. They summarize this
concept and demonstrate its applicability to model systems and apply it to the
analysis of human epilepsy data.
For cases where the definition of the phase used by common approaches is

impossible, Mamen Romano and co-workers present a way to detect and quan-
tify phase synchronization using the concept of recurrences. Furthermore, to test
for phase synchronization, an algorithm to generate surrogate time series based
on recurrences is discussed. An application to fixational eye movement data com-
plements the results for model systems.
Theoden I. Netoff and co-workers dedicated their work to infer coupling and

interaction in weakly coupled systems, especially in the presence of noise and
nonlinearity. To this end, they applied several analysis techniques to model data
and to data obtained from an electronic circuit. They explored advantages and
disadvantages of the methods in specific cases. The conclusion of their chapter is
that nonlinear methods are more sensitive to detect coupling under ideal condi-
tions. However, in the presence of noise, linear techniques are more robust.
Dealing with multivariate systems, the chapter of Manfred Deistler is ded-

icated to state space and autoregressive moving average models. He summa-
rizes the basic ideas about state space models and autoregressive moving av-
erage models including external influence. He focuses on the mathematics and
discusses approaches to parameter estimation. Lower dimensional parameteriza-
tions of these state space models are described to cope with high-dimensional
time series.
David S. Stoffer and Myron J. Katzoff introduce an extension to spatio-tempo-

ral state space models. They concentrate on the concept of spatially constrained
state-space models presenting ideas and mathematical aspects. Their application
is dedicated to real-time disease surveillance by analyzing weekly influenza and
pneumonia mortality collected in the northeastern United States that is essential
in helping to detect the presence of a disease outbreak and in supporting the
characterization of that outbreak by public health officials.
Graphical models are introduced in the chapter by Michael Eichler. He in-

troduces the mathematical basis for a graphical representation of the interaction
schemes obtained by multivariate analysis techniques. Moreover, the inference in
these graphs is discussed and illustrated by means of model systems. Novel mul-
tivariate analysis techniques that allow distinction not only of direct and indirect
interactions but also of the direction of interactions leading to such graphs are
summarized and applied to neurophysiological and fMRI data.
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The directed transfer function allows detection of directed influences in mul-
tivariate systems. Katarzyna J. Blinowska and Maciej Kamiñski introduce the
directed transfer function, extend the concept to nonstationary data, and discuss
approaches to decide its statistical significance. In their application, they analyze
human electroencephalography data using the directed transfer function. They
complement this work by comparisons of different multivariate analysis tech-
niques.
Luiz A. Baccalá and co-workers are working on a multivariate analysis tech-

nique called partial directed coherence. Besides several applications of this tech-
nique, one of the challenges when applying this technique to real-world data is
that a significance level is mandatory. Several approaches to evaluate statistical
significance in practice are presented and discussed in their chapter. Moreover,
they compare their technique to other techniques suggested for a similar purpose.
The techniques are applied to electroencephalography data during and immedi-
ately before an epileptic seizure.
Another multivariate analysis technique to detect the directions of interac-

tions between processes is discussed by Mingzhou Ding and co-workers. Bivari-
ate Granger causality and conditional Granger causality are presented with par-
ticular emphasis on their spectral representations. Following a discussion of the
theoretical properties and characteristics, the time series analysis technique is ap-
plied to model systems and to multichannel local field potentials recorded from
monkeys performing a visuomotor task.
Pedro A. Valdés-Sosa and co-workers focus in their chapter on multivariate

autoregressive models (MAR) based on a Bayesian formulation that combines
several components of different types of penalizations as well as spatial a priori
covariance matrices. This approach is shown to be practical by simulations and an
application to concurrent EEG and fMRI time series gathered in order to analyze
the origin of resting brain rhythms.
Ranging from univariate to multivariate analysis techniques, ranging from

applications of physics to life sciences, covering an exceptionally broad spectrum
of topics, beginners, experts as well as practitioners in linear and nonlinear time
series analysis who seek to understand the actual developments will take advan-
tage of this handbook.



2 Nonlinear Analysis of Time Series Data

Henry D. I. Abarbanel and Ulrich Parlitz

Nonlinear dynamical systems pose challenges in the analysis of observed time se-
ries. The required time-domain methods require more care than linear frequency-
domain techniques, yet they are mature enough to answer important questions
about the system producing the time series data. We review a set of standard
methods for this analysis with an eye toward how they may be used in a practi-
cal sense and with a critical focus on their limitations. The key question in any
such analysis is what aspect of the physical or biological system is of importance.

2.1 Introduction

Nonlinear dynamics plays an essential role in the behavior of physical and bio-
logical systems actually observed in experiments. Chaotic oscillations of moons
orbiting heavy planets as well as action potential generation by neurons arise
from nonlinear processes in those settings. This means one must step beyond
the classical set of time series tools, such as Fourier analysis, utilized widely in
the extraction of information from observed time series. Indeed, Fourier analy-
sis is precisely suited for the simplification of linear time invariant dynamics.
This method transforms and simplifies such dynamics from differential equa-
tions to algebraic problems since the transform kernel eiωt is the eigenfunction
of the time translation operator. However, even the presence of a quadratic term
in the dynamical variable leads to a convolution of the Fourier transform of that
variable with itself, thus significantly complicating the analysis rather than sim-
plifying it.
The methods for analyzing time series from nonlinear systems have thus been

developed in time domain. We review here some methods in the analysis of such
time series concentrating on those which have proven valuable over time and
accepting that this chapter will thus miss recent developments which may prove
valuable as they are critically used.
Our discussion will start with the embedding methods utilized to reconstruct

a “proxy” phase space (or state space) for the observed system based on the geo-
metric theorem of Whitney and brought to nonlinear dynamics by Takens [1] and
the Santa Cruz “dynamics collective” [2] around 1980. Within that framework we
Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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will address how to determine the key quantities within the embedding process:
time delays and dimensions [3–5]. This in itself gives substantial clues to the dy-
namical system leading to the measurements. To classify that system we require
some invariants of the dynamics, and we discuss dimensions and Lyapunov ex-
ponents. The latter also give us insight into the predictability of the system. From
there, we discuss the job of predicting within the reconstructed phase space. At
that stage we turn to estimating the parameters in models of the system produc-
ing the time series measurements.
Through this chapter we use an example from the Laboratory of Al Selverston

at University of California, San Diego (UCSD) [6]. These are measurements of the
cross membrane voltage in an isolated neuron of a small circuit, the pyloric cen-
tral pattern generator of crustaceans. This neuron, called LP, when in the intact
circuit produces quite regular voltage bursts which are coordinated with bursts
of two other circuit neurons leading to an important three-phase functional out-
come for the crustacean digestive system. While model equations of motion of
the Hodgkin–Huxley form are known for this neuron [7], tests for the quality of
those models relied in the past on visual, subjective aspects of the time series of
voltage. The analysis here is both illustrative of how one uses the tools of nonlin-
ear time series analysis and has important implications for the understanding of
the entire neural circuit.

2.2 Unfolding the Data: Embedding Theorem in Practice

We will primarily focus on the usual and simplest case of time series measure-
ments of a single signal s(t). If more than a single measurement is available,
there are additional questions one may ask and answer. The signal is observed
with some accuracy, usually specified by an estimate of the “noise” level associ-
ated with interference of the measurement by other processes. The signal is also
measured in discrete time, starting at an initial time t0 and then typically at a
uniform time interval τs we call the sampling time. s(t) is thus the set of N mea-
surements s(t0 + nτs), n = 1, 2, . . . , N.
The dynamical system from which the signal comes is usually unknown

in detail. In the case of the LP neuron s(t) is the membrane voltage ranging
from about −70mV to +50mV, and while one has conductance-based Hodgkin–
Huxley models for the dynamics [8], one does not know how many dynamical
variables are needed nor does one know with any specificity the many parame-
ters which enter such models. We are certain, however, that there is more than
one dynamical variable and the system state space is not one dimensional even
though the measurement is. To describe the state of the system we need more
than amplitude and phase which is where linear analyses dwell.
The first task is to ask how many variables we will need to describe the sys-

tem. If the dynamical system has a state space trajectory lying on an attractor
of dimension dA, then our observation is the projection of the multidimensional
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Fig. 2.1: Membrane voltage across the cell membrane of an isolated LP neuron
from the crustacean pyloric central pattern generator. The amplitude on the y-axis
is in scaled, arbitrary units. The time series is shown as a solid line, but the voltages
were measured at 2 kHz or τs = 0.5ms. Altogether 200 000 data points or 100 s of
data were recorded.

orbit in a space of integer dimension larger than dA onto the measurement axis
where we observe s(t). If the dynamical system producing s(t) is autonomous,
then the orbit does not intersect itself in a high enough dimensional space captur-
ing all the dynamical variables. In a space of integer dimension D a set of points
with dimension dA intersects itself in a set of points of dimension dA + dA − D.
If D is large enough, this is negative, indicating no intersections at all. This tells
us that if D > 2dA, we are guaranteed that the space we use to describe the
dynamics will have unfolded the projection made by the measurement. This is
a sufficient condition. It could be that a dimension smaller than this unfolds the
measurement projection, but we need another tool to determine that [3, 9–16].
It was probably David Ruelle’s idea in the late 1970s that coordinates for the

space of dimension D could be made out of the observations and their time de-
lays. Takens proved a theorem [1] implying that the observed variable and any
independent set of D − 1 other variables made from s(t) would be acceptable co-
ordinates for this space. The simplest set of variables, though not always the very
best, is taken from the measurements themselves. One seeks a D-dimensional
vector made from s(t) and its time delays by forming
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y(t = t0 + nτs)

= [s(t0 + nτs), s(t0 + (n − T)τs), . . . , s(t0 + (n − (D − 1)T)τs)] . (2.1)

This D-dimensional vector is composed of the observation s(t0 + nτs) and the
j = 1, 2, . . . , D− 1 earlier observations at t0 +(n− jT)τs. If T = 1, the components
are selected at each sampling time.
To use this vector as a “proxy” for the degrees of freedom actually specifying

the state of the system (unknown to us, of course) we need to determine values
for D and T . To simplify the notation we will drop the initial time t0 and the
sampling time τs and write s(n) = s(t0 + nτs) as well as

y(n) = [s(n), s(n − T), . . . , s(n − (D − 1)T)] . (2.2)

How do we know that the sampling time τs is small enough to capture significant
variations of the dynamical signal s(t)? If we know nothing about the source of
the observations s(t), we cannot answer this question with any certainty. We will
indicate how one can test this, but that comes in a moment. If we know that
the source of the signal is an oscillating neuron, then we might know that the
typical time scale of neural activity is in milliseconds, so if τs is 1 s, we probably
have undersampled data. If τs is 1 µs, the data are probably oversampled. One
always prefers the latter situation as selecting a subset of the data to describe that
the system can be reliable. For now, let us assume that the system is properly
sampled or possibly slightly oversampled.

2.2.1 Choosing T : Average Mutual Information

The goal of replacing the original signal s(n) with a vector y(n) is to provide
independent coordinates in a D-dimensional space to replace the unknown co-
ordinates of the observed system. The components of the vector y(n) should
thus be independent looks at the system itself, so all of the needed dynamical
variations in the system are captured. If the time delay between the components
s(n − jT) and s(n − (j − 1)T) is too small for some T , then the components are
not really independent and we require a larger T . If T is too large, then the two
measurements s(n−jT) and s(n−(j−1)T) are so far apart in time that the typical
instabilities of nonlinear systems will render them essentially uncorrelated. We
need some criterion which retains the connection between these measurements
yet does not make them essentially identical.
While it is easy to evaluate the linear autocorrelation between measurements

as a function of T , the usual criterion of seeking a zero in that quantity only
leads to a value of T where the measurements are linearly independent. The dy-
namical interest of this is rather small. A much more motivated criterion, though
harder to evaluate, was suggested by Fraser and Swinney in 1986: evaluate the
average mutual information between measurements at time n and time n − T ;
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look for the first minimum in this quantity. This tells us when the two mea-
surements are nonlinearly relatively independent, and this may provide a useful
choice for T [17–21].
To evaluate the average mutual information, we need the distribution of the

measurements s(n) over the time series. This means we need to bin the ampli-
tudes s(n), n = 1, 2, . . . , N, into a normalized histogram using the whole data
set. This gives the frequency of occurrence P(s(n)). We also need to do the same
for the time-delayed data s(n − T), and we need the normalized histogram of the
joint occurrence of s(n) and s(n−T) to find P(s(n), s(n−T)). The average mutual
information

I(T) =
∑

s(n),s(n−T)

P(s(n), s(n − T)) log2

[
P(s(n), s(n − T))

P(s(n))P(s(n − T))

]
(2.3)

tells us in bits how much, on average over the whole time series or the attractor,
we know about the measurement at time n from the measurement at time n − T .
I(T) � 0, and it acts as a nonlinear correlation function. The sums are over the
binned values of the observations. Now the theorem of Takens indicates that (al-
most)1 any value of T is acceptable, if the data are of infinite precision. Well, that
is not likely, so how we choose T is bound to be somewhat arbitrary. In practice,
as the goal of this handbook, we recommend that one find the value of T for
which I(T) has its first minimum and then evaluate all subsequent quantities we
discuss for T , T ± 1, T ± 2, and perhaps T ± 3. If the conclusions from that set
of five calculations with different T are the same, then in a practical sense the
selection of T is acceptable. Choosing different T is equivalent to selecting dif-
ferent coordinate systems, connected by an unknown nonlinear transformation,
in which to view the unfolding of the observations. If the quantities of interest
are expected to be independent of the coordinate system, which is usually an
important criterion, then this is a simple practical test of that.
Let us look at our LP neuron data now. In Fig. 2.1 we present a selection of

the data of scaled membrane voltage from an LP neuron isolated from all other
electrophysiological or neurochemical input. The sampling time was τs = 0.5ms.
Figure 2.2 shows the average mutual information evaluated using all 200 000 data
points. There is a very shallow minimum near T = 10, corresponding to 5ms in
time. Note that the data are a collection of spikes riding on top of a slow, large
amplitude variation of the membrane potential with a period about 1 s. The
T selected by the first minimum of I(T) reflects the variation of the spikes at
about 30Hz.
In the literature there are often suggestions that one should use the first zero

of the autocorrelation function of the measured time series as a good choice
for the time Tτs to use in constructing the data vector y(n). In the case of the

1 Some values of the delay time T may lead to a nonfaithful representation of the dynamics that is
not equivalent to the original system. For example, a closed orbit is mapped to a point if T equals
exactly the period of the oscillation.
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Fig. 2.2: The average mutual information I(T) for the LP neuron membrane voltage
time series shown in Fig. 2.1. I(T) has a minimum in the neighborhood of T = 10;
Tτs ≈ 5ms. It is a shallow minimum.

isolated LP neuron the Fourier power spectrum of the time series is shown in
Fig. 2.3. Its Fourier transform is the autocorrelation function which shows a first
zero crossing at 245ms. This large number reflects the large amplitude oscilla-
tions near 1Hz and washes out the dynamical structure of the spiking activity at
each burst. That structure is reflected in the average mutual information choice
of Tτs ≈ 5ms.

Procedure 2.1 (Average mutual information procedure). From the amplitude range
of the observations s(n) form B bins. Record the frequency with which each bin is occu-
pied by the values of s(n). Normalize the frequency of occurrence by the total number of
data. This normalized histogram is P(s(n)). Vary B to assure yourself that the ampli-
tudes are properly sampled.
Do precisely the same with the observations s(n − T ). The corresponding distribution

P(s(n − T )) should be the same as P(s(n)) if your data are stationary-independent of
the origin of time-indicating autonomous oscillations of the signal source.
From the amplitude range of the observations s(n) and s(n − T ) form B2 bins.

Record the frequency with which each bin is jointly occupied by the values of s(n) and
s(n − T ). Normalize the frequency of occurrence by the total number of data. This nor-
malized histogram is P(s(n), s(n − T )). Vary B to assure yourself that the amplitudes
are properly sampled.
By summing over the bins evaluate

I(T ) =
∑

s(n),s(n−T)

P(s(n), s(n − T )) log2

[
P(s(n), s(n − T ))

P(s(n))P(s(n − T ))

]
. (2.4)
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Fig. 2.3: The Fourier power spectrum for the LP neuron membrane voltage time
series shown in Fig. 2.1. The frequency is given in units of 1/(0.5ms) = 2000Hz.
The peak in the power spectrum is at about 1Hz corresponding to the nearly pe-
riodic low frequency oscillations of the isolated LP neuron. The higher frequency
oscillations are irregular and show no sharp peaks. The Fourier transform of the
power spectrum is the autocorrelation function which has its first zero crossing
at approximately 245ms. This is much longer than the first minimum of the av-
erage mutual information near 5ms and reflects the large amplitude oscillations
near 1Hz in the original time series. A time delay this large will average out the
important higher frequency spiking structure in the data. This should be a warn-
ing about the use of linear autocorrelation in nonlinear analysis.

The astute reader will note that we did not apply, as suggested in papers by
Fraser [17, 18], the full machinery of information theory to the importance of
having D components in the data vector y(n). Instead, we evaluated the impor-
tance of pairs of components on average over the data. The data requirements
are daunting for the former, while our recommendation addresses the question
of independence of pairs of elements of y(n) over the data set.
Figure 2.4 shows a two-dimensional delay embedding using a delay of T = 9.

The high frequency spikes within the bursts are properly revealed whereas the
chosen delay time is too small to unfold the slow dynamics between the bursts
resulting in a reconstruction stretching along the diagonal. To obtain an optimal
reconstruction of the slow dynamics we have to increase T but then the fast dy-
namics will be overfolded in a very complex manner. There are two characteristic
time scales involved and in a two-dimensional delay embedding we have to make
a decision whether we want to resolve the slow or the fast dynamics, because only
a single delay time can be adjusted. This is different in higher dimensional delay
embedding where we may use different delay times (mixed delays) for different
components of the delay vector (e.g., y(n) = [s(n), s(n − T1), s(n − T2)]) [22].
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Fig. 2.4: The orbit of the LP neuron dynamics seen in two dimensions: D = 2. It
is clear that the orbit is not yet fully unfolded; however, much of the state space
structure is revealed even in this low dimension. These data will represent chaotic
oscillations of the LP neuron—more on that as we go along—and this display even
in two dimensions suggests strongly that it is phase space structures associated
with the spiking on top of the slow oscillations of the membrane potential which
lead to this.

An alternative for a two-dimensional representation that unfolds both time
scales simultaneously is provided by the Hilbert transform H(s) of the time se-
ries. The Hilbert transform of a signal can be computed by shifting the phase of
each Fourier component of the original signal by π

2 . To understand why this is ad-
vantageous for an embedding we shall have a brief look at harmonic oscillations.
A sinusoidal signal s(t) = sin(ωt) is optimally embedded in the form of a circle
if a delay of T = 1

4
2π
ω is used resulting in s(t− T) = sin(ωt− π

2 ) = − cos(ωt), i.e.,
a phase shift of π

2 . With the Hilbert transform we apply this optimal delay to each
Fourier component separately and obtain an unfolding on all time scales when
plotting H(s) versus s as shown in Fig. 2.5. When viewed in the complex plane
this representation is also known as analytic signal and unfortunately there is no
higher dimensional extension which would be necessary to reconstruct chaotic
dynamics without intersections of trajectories.
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Fig. 2.5: Two-dimensional representation of the LP neuron dynamics in a plane
spanned by the membrane potential signal s and its Hilbert transformH(s). Shown
are only the first 20 000 samples of the time series.

2.2.2 Choosing D: False Nearest Neighbors

Global Embedding Dimension

The next question about the data vector

y(n) = [s(n), s(n − T), . . . , s(n − (D − 1)T)] (2.5)

we need to address is the value of the integer “embedding dimension” D. Here
is where Whitney’s and Takens’ results come into play. The key idea is that as
we enlarge the dimension D of the vector y(n) we eliminate step by step the
intersections of orbits on the system attractor arising from our projection during
the measurement process. If this is the case, then there might well be a global
dimension allowing us to unfold a particular data set with particular coordinates
as entries in y(n) at a dimension less than the sufficient dimension of the Whit-
ney/Takens geometric result.
To examine this we need the notion of crossing of trajectories, and this we re-

alize in the close analogy of neighbors in the state space which are a result of the
dynamics—true neighbors—and neighbors in the state space which are a result of
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Fig. 2.6: False nearest neighbors as a function of the integer embedding dimension
D = 1, 2, . . . for the observations of the membrane voltage of the isolated LP neu-
ron. We evaluate this quantity for both T = 9 and T = 11 to determine whether
our conclusion that D = 4 or D = 5 is adequate to unfold the attractor. Looking
ahead we will show that the fractal dimension of the attractor here is about 3.15, so
that a sufficient unfolding dimension, according to the Whitney/Takens geometric
results, would be 7.

the projection during measurement—false neighbors [23]. If we select an embed-
ding dimension D, then it is a matter of an order N log(N) search among all the
points y(n) in that space to determine the nearest neighbor to a point y(k). If this
nearest neighbor is not a close neighbor in dimension D + 1, then its “neighbor-
liness” to y(k) is the result of a projection from a higher dimensional space. This
is a false nearest neighbor, and we wish to eliminate all of them. We accomplish
this elimination of the false nearest neighbors by systematically examining the
nearest neighbors in dimension D and their “neighborliness” in dimension D+ 1

for D = 1, 2, . . . until there are no false nearest neighbors remaining. We call this
integer dimension dE.
Applying this idea to the LP neuron data, we evaluate the percentage of false

nearest neighbors in dimensions D = 1, 2, . . . for T = 9 and T = 11. This is an
example of a result, namely the smallest dimension where false nearest neighbors
are absent, which we expect to be independent of the choice of T . Figure 2.6
shows this result. From this calculation we see that the conclusion that dE = 4 or
dE = 5 would be a good embedding dimension is not dependent on the value
of T in this small range, and, thus we can have confidence in this.

Procedure 2.2. Global False Nearest Neighbor Procedure
For dimension D = 1, 2, . . ., form data vectors in the integer dimension D:
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y(n) = [s(n), s(n − T ), . . . , s(n − (D − 1)T )] . (2.6)

Using a search routine based on forming a “kd-tree” in dimension D, find the nearest
neighbor of each point, y(k), k = 1, 2, . . . , N − T , in dimension D. By adding the
component s(n − DT ) to the D-dimensional vector, determine if the nearest neighbors
in dimension D remain near neighbors in dimension D + 1. “Near” implies a notion of
distance, and, while any would do, we use the standard Euclidian distance.
As a function of D determine the number of false nearest neighbors—those which do

not remain neighbors when seen in dimension D + 1. This number will decrease as D

increases, absent “noise.” When the percentage of false nearest neighbors falls below some
threshold, say 1%, the embedding dimension dE has been found. Further increasing the
integer dimension of the embedding space does not further eliminate trajectory crossings.

The threshold of 1% for selecting an embedding dimension is clearly a useful,
but not mathematically rigorous, choice. It is little more than a recognition that
the accuracy of the measured data at the few percent level is what one often
faces in “clean” observations. “Noise” seen as contamination of measurements
by inaccuracies in the sensing devices or signals input from unwanted sources is
formally of infinite dimension and 100% false nearest neighbors would appear if
noise alone were the signal.

2.2.2.1 Local or Dynamical Dimension

The embedding dimension we just selected is a global and average indicator of
the number of coordinates needed to unfold the actual data s(t) [24].
The global integer embedding dimension estimate tells us a minimum di-

mension dE in which we can place (embed) the signal from our source. This
dimension can be larger than the number of degrees of freedom in the dynamics
underlying the signal s(t). Suppose that locally the dynamics happened to be a
two-dimensional map (xn, yn) → (xn+1, yn+1) but the global structure of the
dynamics placed this on the surface of an ordinary torus. To embed the points of
the whole data set now lying on a torus, we would have to select dE = 3; however,
if we wish to determine equations of motion (or a map) to describe the dynamics,
we really need only the local dimension of 2. This local dimension dL � dE, and
is important when we wish to evaluate the Lyapunov exponent, as we do below,
to characterize the dynamical system producing s(t).
To determine dL we need to move beyond the geometry in the embedding

theorem and ask a local question about the data in dimension dE where we know
there are no unwanted intersections of the orbit associated with s(t) and itself.
The notion is that data vectors of dimension d � dE,

yd(n) = [s(n), s(n − T), . . . , s(n − (d − 1)T)] , (2.7)

will map without ambiguity locally into other vectors of dimension d � dE. We
can test for this by forming a d-dimensional local map

yd(n + 1) = M
(
yd(n)

)
, (2.8)
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and asking whether this map accounts for the behavior of the actual data in
d � dE. For d too small, it will not. For d = dE, it will. If for some intermediate d,
the map is accurate, this is an indication of a lower dimensional dynamics than
dE needed to globally unfold the data.
To answer this question select a data vector y(k) in dE. Select NB nearest

neighbors in phase space to y(k): y(r)(k); r = 0, 1, 2, . . . , NB, y(0)(k) = y(k). In
dE these are all true neighbors, but their actual time labels may or may not be
near the time k. Choose in various ways a d-dimensional subspace of vectors
y

(r)
d (k). There are

(
dE
d

)
ways to do this and all are worth examining. This set of

points maps in time into another set of points yd(k + 1; r) near y(k + 1), and we
expect that the mapM(y) local to y(k) will act as

yd(k + 1; r) = M
(
y

(r)
d (k)

)
. (2.9)

For other locations on the attractor the map will be different.
The map M(y) is unknown to us, but by choosing a parametric form for it,

we can use the data to determine the parameters and ask, as a function of d, how
well this map performs in describing the data. One easy way to parameterize the
map is to make a Taylor expansion of it in d-dimensional space, and then we
could determine the Taylor coefficients using a least-squares method. Write

yd(k + 1; r) = M(k;y(r)
d (k))

= A(k) + B(k) · y(r)
d (k) + C(k) · y(r)

d (k)y
(r)
d (k) + · · · ,

(2.10)

and determine the local parameters, namely the vectorA(k) and the tensors B(k),
C(k), . . . , by minimizing

NB∑
r=0

|yd(k + 1; r)− A(k) − B(k) ·y(r)
d (k) − C(k) ·y(r)

d (k)y
(r)
d (k) + · · ·|2 . (2.11)

The quality of this fit to the data will vary with the dimension d � dE. The residu-
als after the least-squares fit will be large for small d and decrease as d increases.
For the local dimension dL, it will become independent of d. This is a suggested
choice for the dimension of the dynamics.
To use this method of “local false nearest neighbors” with confidence, one

should select dE equal to and then larger than that indicated with global false
nearest neighbors, and one should explore different choices for the vectors yd(k)

in dimension d. If dL is the local dynamical dimension, then its value will be
independent of these variations.
The application of this procedure to our isolated LP data is shown in Fig. 2.7.

Procedure 2.3. Local Dimension Determination Procedure
For dimension dE = 1, 2, . . ., form data vectors in the integer dimension dE:

y(n) = [s(n), s(n − T ), . . . , s(n − (dE − 1)T )] . (2.12)
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Fig. 2.7: The percentage of bad predictions (large residual in a least-squares fit)
as a function of d arising from a local d-dimensional map for the data from the
isolated LP neuron. We also vary the number of nearest neighbors NB forming a
neighborhood in d-dimensional space. These neighborhoods are mapped into one
another in time by a local parametric map with parameters determined from the
observed data. We use NB = 40, 60, 80, and 100. It is clear that at dL = 4, the
quality of the predictions made by a local map becomes independent of d and
of NB. dE = 10 was chosen.

Choose a subspace of dimension d = 1, 2, . . . ,dE. There are
(
dE

d

)
such subspaces. One

plausible choice would be to form the sample covariance matrix in dimension dE for data
local to any time point k and select the d = 1, 2, . . . ,dE largest principal components.
In dimension d make a local map from a neighborhood of nearest neighbor points

around y(k) into the points around y(k + K) to which they go in K time steps. As a
function of d evaluate the residual of a least-squares fit locally to the parameters in the
map from time k to time k + K. When this residual representing the quality of the local
fit in dimension d to the data is larger than some threshold, we have a bad prediction.
Average the number of bad predictions for a fixed K over the data set. When this average
number of “bad” predictions becomes independent of d, this indicates a good local dimen-
sion dL � dE has been found.
Repeat the procedure varying the number of nearest neighbors used in the neigh-
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Fig. 2.8: Interspike intervals of the LP neuron dynamics shown in Fig. 2.1

borhood-to-neighborhood local map. We use NB = 40, 60, 80, and 100, but this is not
dictated by any rigorous prescription.
There are a number of parameters here including those in the local map and the

horizon K to which one uses the local map to predict ahead for comparison with the data.
One must explore combinations of these parameters to arrive at consistency for the local
dimension.

2.2.3 Interspike Intervals

For spiking signals such as the neuron dynamics considered here another ap-
proach for state space reconstruction exists which is based on the time intervals
∆tk = tk+1−tk between consecutive spikes occurring at times tk and tk+1. These
interspike intervals (ISI) contain all relevant dynamical information and can also
be used for delay embedding [25]. Figure 2.8 shows a two-dimensional ISI delay
embedding of the neuron dynamics. Small interspike intervals (also shown en-
larged) correspond to spikes within a burst and show a very regular pattern that
can approximately be described by a one-dimensional function ∆tk+1 ≈ g(∆tk)

as will be done in Section 2.6.1.

2.3 Where are We?

In the spirit of a handbook we should pause now and examine what the readers
will have accomplished with their hard won data s(t). So far we have indicated
algorithms that do not analyze any data. We have only presented a series of steps
to identify the space in which the data should be analyzed. We have taken obser-
vations of a single variable s(t) from a multidimensional system and identified a
multidimensional vector for that data

y(t = t0+nτs) = y(n) = [s(n), s(n−T), s(n−2T), . . . , s(n−(dE−1)T)] , (2.13)
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where the integers T and dE are a time delay that exposes the data on the sys-
tem attractor and dE is the smallest global dimension which eliminates trajectory
overlaps associated with the projection of the multidimensional system to the
single s(t = t0 + nτs) axis. We have also identified a local dimension dL � dE for
the actual dynamics of the source producing the observations.
We want to move on to the extraction of other information from the original

data, now properly formatted. To do this we must select a few of the myriad of
questions about a dynamical system we might wish to ask. One question which
we do not know how to answer is the reconstruction of the dynamical equations
underlying the data. There are many attempts to do this, and they all eventually
make a guess about the functional form of the equations and then determine
the numerical parameters contained in that conjecture. If one knows a great deal
about the equations, this may be successful, and we will discuss that in our last
section.
Another question of interest is whether we can use the observed data, now

properly formatted in a multidimensional state space with data vectors y(n),
to predict the future behavior of the observed variable s(t). The answer to this
is “yes” and one can also use the data to determine a prediction horizon for
this. With nonlinear sources, prediction may be limited if chaotic oscillations are
present. We discuss these ideas in our next two sections.
Of course, this does not address many interesting issues, and for that we apol-

ogize. Of particular interest is the idea of learning the characteristics of a commu-
nication channel with nonlinear elements in it and then using this information to
correct the distortion of a signal propagating through that channel [26]. This is
called “channel equalization” and has some significant practical applications to
extending the range or enlarging the effective bandwidth of many channels.

2.4 Lyapunov Exponents: Prediction, Classification,
and Chaos

The attractor of the dynamical systems producing s(t) is contained in dimen-
sion dE which assures that there is no residual overlap of trajectories from the
projection to one dimension: s(t). To characterize the attractor we can call on
many different notions of dimension of the set of points y(n). Each is an in-
variant of the dynamical system in the sense that a smooth coordinate change
from those used in y(n), including that involved in changing T , leaves these
characteristic numbers unchanged. The invariance comes from the fact that each
dimension estimate is a local property of the point set comprising the attractor,
and smooth changes of coordinates do not alter this local property while they
might change the global appearance of the attractor. These various dimensions
are covered in many books, and each is interesting.
We here focus on a dynamical invariant of the attractor that also allows an

estimate of dimension. The central issue is the stability of an orbit such as y(n)
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under perturbations to points on the trajectory. This is a familiar question as-
sociated with the stability of fixed points or limit cycles as studied in classical
fields such as fluid dynamics. If one has a fixed point x0 of a dynamical system
in d dimension x(t) = [x1(t), x2(t), . . . , xd(t)] with x(t) satisfying

dx(t)

dt
= G

(
x(t)

)
, (2.14)

so G(x0) = 0, then it is important to ask if state space points x0 +∆x(t) are stable
in the sense they remain near or return to x0. Unstable points, where ∆x(t) grows
large, are not realized in observations of a dynamical system.
In the case of a fixed point, a Taylor series expansion assuming ∆x(t) remains

“small” leads to the analysis of the linearized dynamics

d∆x(t)

dt
= DG(x0)∆x(t) , (2.15)

with

DG(x)ab =
∂Ga(x)

∂xb
, a, b = 1, 2, . . . , d . (2.16)

The fixed point is linearly stable (nonlinear stability is more subtle) if the d eigen-
values of the matrixDGab(x0) have zero or negative real part. If the dynamics is
Hamiltonian, quite unlikely in the real world, then eigenvalues reflect the sym-
plectic symmetry of the system and lie on the imaginary axis in complex conju-
gate pairs when the system is stable.
To determine the stability properties of the time-dependent orbit y(n) we

need to go beyond the classical eigenvalue analysis of a matrix with fixed ele-
ments DG(x0). The needed analysis was made by Oseledec in 1968 [27]. To use
his result we note that the continuous time dynamics dx(t)

dt = G
(
x(t)

)
is sampled

by our observations every τs and we can replace it by a discrete time-one map in
dimension dL � dE: y(n + 1) = F

(
y(n)

)
. We do not have an explicit form of F(x)

in most cases. As above one should examine the
(
dE
dL

)
choices of dL-dimensional

subspaces one has.
The discrete time map can be linearized about a solution y(n) by replacing

y(n) by a nearby orbit y(n) + ∆y(n) leading to

∆y(n + 1) = DF
(
y(n)

)
∆y(n) , (2.17)

and iterating this L times leads to

∆y(n + L) = DFL
(
y(n)

)
∆y(n) ,

DFL(y(n)) = DF
(
y(n + L − 1)

)
DF(y(n + L − 2)) · · ·DF

(
y(n)

)
.

(2.18)

Oseledec forms the orthogonal matrix composed of DFL(y(n)) and its transpose
[DFL

(
y(n)

)
]T ,

OSL
(
y(n)

)
= {[DFL(x)]TDFL(x)}

1
2L , (2.19)
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and proves that the limit as L → ∞ exists and is independent of the dE-dimen-
sional x lying in the basin of attraction of the attractor defined by the orbit y(n).
The logarithm of the eigenvalues of this limiting matrix are the Lyapunov expo-
nents, and we write them as ordered λ1 � λ2 � · · · � λd. They are also shown to
be independent of the coordinate systems used to define the state space if these
coordinates are connected by smooth transformations. The λa a = 1, 2, . . . , d, are
thus invariant characteristics of the dynamical system producing s(t). If the dy-
namics is that of a flow with continuous time, for which our time-one map is
a discrete approximation, then one of λa is zero. In any case,

∑d
a=0 λa < 0 for

systems with dissipation, and the sum is zero for Hamiltonian systems.
If any of λa is positive, then the trajectory y(n) + ∆y(n) diverges from the

original orbit, but since the attractors we encounter in real time series are com-
pact, the new orbit does not diverge to spatial infinity. Instead it also visits points
on the attractor though in an order quite different from that of the original or-
bit y(n). When one (or more) of λa are positive, the orbit is very sensitive to
perturbations; in particular, it is sensitive to changes in the initial condition, and
the resulting sensitive orbit we call chaotic.

λ1 tells us how line segments in the state space (also the “proxy” state space of
vectors y(n)) increase (λ1 > 0) or decrease (λ1 < 0) or remain fixed (λ1 = 0). λ1 +

λ2 determines the same for areas in the state space, and
∑d

a=0 λa, the same for d-
dimensional volumes. If some λa > 0, some subspaces have growing volumes
while the whole space has a shrinking volume,

∑d
a=0 λa < 0. Somewhere in

between dimension 1 and dimension d is a volume in a dimension which need
not be integer, which neither grows nor shrinks. This is called the Lyapunov
dimension DL and turns out to be one of the many commonly defined fractional
dimensions associated with an attractor. It is given by

DL = K +

∑K
a=1 λa

|λK+1|
, (2.20)

where
∑K

a=1 λa > 0 and
∑K+1

a=1 λa < 0.
To actually evaluate λa and DL, we need to estimate the d × d Jacobian

DF
(
y(n)

)
along the proxy orbit y(n). We need information on the state space

which probes the d dimensions so that we can fill the d2 elements of DF(•). One
can evaluate these matrix elements by making localmaps from NB points y(r)(n),
r = 0, 1, . . . , NB, in the neighborhood of y(n) = y(0)(n). The points y(r)(n) go, in
one time step, into the points y(n + 1; r) and the local map takes the form

y(n + 1; r) =

M∑
m=1

c(m, n)φm

(
y(r)(n)

)
, (2.21)

with φm(x) some basis set in the state space whose choice is up to us. Polyno-
mials associated with a Taylor series often work well. The coefficients c(m, n) are
determined by minimizing the least-squares difference
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NB∑
r=0

|y(n + 1; r) −

M∑
m=1

c(m, n)φm

(
y(r)(n)

)
|2. (2.22)

Once the coefficients are known, the estimate of the matrix elements DF(y(n))ab

is given as

DF(y(n))ab =

M∑
m=1

c(m, n)
∂φma(x)

∂xb
|x=y(n) . (2.23)

To determine DF
(
y(n)

)
accurately one cannot always just use a local linear es-

timate of the neighborhood-to-neighborhood map as the curvature in the orbits
on the attractor may lead to errors. Usually, if one is using polynomials locally,
retaining quadratic and cubic terms in the Taylor expansion will be enough to
accurately estimate the linear coefficient DF(y(n)).
With knowledge of the Jacobian matrices DF

(
y(n)

)
one can form and diag-

onalize the Oseledec matrix OSL(y(n)). It is important to use care in this as
DF

(
y(n)

)
is very ill conditioned, because it contains both exponentially increas-

ing and decreasing elements. A standard method to avoid large roundoff errors
(or even over- and underflow) consists in a factorization of DF

(
y(n)

)
by means

of repeated QR-decompositions [3, 28].
Lyapunov exponents have been the subject of many investigations and various

techniques have been developed. We invite the reader to examine the various
methods [28–49].
For our isolated LP neuron data set we evaluated the Lyapunov exponents

in an embedding dimension dE = 5 and a local dimension dL = 4. The local
dimension is quite important here because for dL = 5, we would find five Lya-
punov exponents, one of which would be false. Another way to determine if any
Lyapunov exponents are false would be to evaluate the exponents both forward
and backward along the time series and eliminate those which did not change
sign [42]. This is always a very useful exercise giving further confidence in the
choice of local dimension.
In Fig. 2.9 we show the Lyapunov exponents for the isolated LP neuron as a

function of L the number of time steps along the attractor from a starting point
y(n). These are the four (dL = 4) eigenvalues of OSL(y(n)) as a function of L.
The sum of the exponents is negative, as it must be. One of the exponents (λ2)
is consistent with zero, indicating that the dynamics of the isolated LP neuron
is described by four differential equations. The Lyapunov dimension determined
by these λa values is DL = 3.15. λa are invariant characteristics of the isolated
LP neuron dynamics, and any model of the LP neuron must reproduce these
values. In checking it, be sure to sample the output of the model dynamics at
τs = 0.5ms, as λa have a dimension of inverse time.
The Lyapunov exponents tell us one more important piece of information. If

the perturbation of the orbit y(n) has initial length ∆0, then since line segments
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Fig. 2.9: Lyapunov exponents for the isolated LP time series in Fig. 2.1. These
are evaluated as a function of the number of time steps L in the Oseledec ma-
trix OSL(y(n)). The matrix is estimated in embedding dimension dE = 5 where
no trajectory crossings occur as indicated by the false nearest neighbor calcula-
tion. dL = 4 exponents are determined as indicated by the evaluation of the local
dynamical dimension for this data set. We see one positive exponent, one expo-
nent consistent with zero, and two negative exponents. Their sum is negative, and
the Lyapunov dimension of the attractor, seen in a two-dimensional projection
in Fig. 2.4, is about 3.15. The presence of a zero exponent indicates that the un-
derlying dynamics of this isolated neuron is described by differential equations:
actually, dL = 4 differential equations.

on the attractor grow as exp (λ1nτs), this initial perturbation will grow to the size
of the attractor RA in a time

nτs =
1

λ1
log

[
RA

∆0

]
. (2.24)

RA can be estimated by the range of the data s(t) and ∆0 is up to you. When a
perturbation has grown to the size of the attractor itself, one has lost the ability
to predict (more on that in a moment) and one commonly refers to 1

λ1
as the time

horizon for predictability, in units of steps in τs.

Procedure 2.4. Lyapunov Exponents Determination Procedure
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Starting with vectors in the global unfolding space of dimension dE select among the(
dE
dL

)
dL-dimensional subspaces and construct local maps from NB neighbors of y(n) to

NB neighbors of y(n + 1). The linear term in this map as evaluated on the orbit y(n)

yields the local Jacobian matrixDFab(x).
Form the Oseledec matrix OSL(y(n)) = {[DFL(x)]T DFL(x)}

1
2L and evaluate its

eigenvalues as a function of the number of time steps L along the orbit. These eigenvalues
should converge for large L to constants λa, a = 1, 2, . . . , dL. Use a careful method,
such as the recursive QR decomposition, for dealing with the very ill-conditioned matrix
OSL(y(n)).
Check this calculation by estimating λa arising from perturbations at many places

along the orbit. For L large enough the values of λa should be the same. The variation
should decrease as a fractional power of 1

L .∑dL
a=1 < 0. λ1 indicates the prediction horizon for the dynamics. The presence of

one zero exponent indicates that the underlying dynamics is governed by differential
equations: dL of them. λa are characteristic of the dynamics. An estimate of the fractal
dimension of the attractor is the Lyapunov dimension DL.

2.5 Predicting

One goal of time series analysis is learning enough about the underlying dynam-
ics from observations to be able to make predictions about the behavior in the
future [3, 50]. Using information about the trajectories in dE-dimensional state
space, one can do this for nonlinear dynamical systems as well.
Before describing how to do this, certain caveats are in order.

• If only s(n) was observed and nothing else is known about the underlying
dynamical system, one will only be able to predict future values of s(n) given
a new value s(n ′) at t ′ = t0 + n ′τs.

• If one also knows the relation of the variable s(n) to another dynamical vari-
able of the underlying system, say, v(n) = g

(
s(n)

)
, then one can predict v(n)

as well.

• If one has observed several variables si(n), then one can use these in a mixed
mode, if desired, to establish data vectors y(n), or one may use the simul-
taneously observed values of si(n) and sj(n), say, to establish a relationship
sj(n) = fj(yi(t) = [si(n), si(n − T), . . . , si(n − (dE − 1)T)]). In other words,
the state space need be reconstructed or unfolded only once for all dynamical
variables [51].

• If one changes the underlying parameters, temperature, voltage, current, . . . ,
under which the data s(t) were observed, the whole procedure of unfold-
ing, . . . must be repeated, unless one has a physical or biophysical knowledge
of the changes in the orbit as a function of these parameters. This is especially
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important to remember when bifurcations, topological changes in the nature
of the attractor, occur when these external parameters are varied.

With these items in mind, one can use the vectors in dE-dimensional space to
predict the orbit, approximately up to time 1

λ1
. The idea is that one takes a set of

observed data and within the dE-dimensional unfolding dimension, constructs a
dL-dimensional map

y(n + 1; r) = F
(
y(r)(n)

)
, (2.25)

for the r = 0, 1, . . . , NB neighbors of each orbit point y(n) = y(0)(n) which
goes into the orbit point y(n + 1; 0) = y(n). This map may be realized in local
polynomials or in other basis functions

y(n + 1; r) =

M∑
m=1

c(m, n)φm

(
y(r)(n)

)
, (2.26)

as above. Once the basis functions are chosen, determine the coefficients c(m, n)

by the least-squares minimization. One can use other distance metrics, of course.
Now suppose a new data point s(m) is measured. We would like to know

what points will follow it in time: s(m + 1), s(m + 2), . . . . From the new data
point, form a data vector in dimension dE,

ynew(m) = [s(m), s(m − T), . . . , s
(
m − (dE − 1)T

)
] , (2.27)

and in dimension dE look for its nearest neighbor among the members of the
original data set. Suppose it is y(q). Associated with y(q) is a local map in
dimension dL which carries y(q) → y(q + 1) = Fq

(
y(q)

)
. It also carries the NB

nearest neighbors of y(q) one step forward in time.
Now we use the map Fq(x) (in dimension dL) to map forward ynew(m). There

are many ways to do this each utilizing information about the nearest neighbors
in different roles. The simplest prediction would be

ynew(m + 1) = Fq

(
ynew(m)

)
, (2.28)

and another might be

ynew(m + 1) =

NB∑
r=0

wrFq

(
y

(r)
new(m)

)
,

NB∑
r=0

wr = 1 , (2.29)

which weights the mapping of all its nearest neighbors as well [26].
Now we are ready to map this point one step further into the future: find the

nearest neighbor of ynew(m + 1) in dimension dE among all the members of the
original data set. Suppose it is y(k); then the simplest map projecting this one
step into the future would be

ynew(m + 2) = Fk

(
ynew(m + 1)

)
= Fk

(
Fq

(
ynew(m)

))
. (2.30)
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From this the procedure should be clear, and a temporal sequence ynew(m),
ynew(m + 1), . . . is created by this.
The first component of the data vectors ynew(•) is precisely the predictions

for the observations s(m + 1), s(m + 2), . . . following the new observation s(m).
Attending to the caveats noted at the outset to this section, we can predict

forward to s(m + K) with Kτs ≈ 1
λ1
.

Using our standard example of data from the isolated LP neuron, we have
used 41 000 data points to learn local maps, and then made predictions five steps
ahead and then 75 steps ahead for data points at time 53 000 to 55 000. In these
predictions we used dL = 4, dE = 5, and T = 9. A quadratic polynomial was used
for the local maps. In Fig. 2.10 we show the observed data and the predictions K =

5 steps ahead and in Fig. 2.11, the same for K = 75 steps ahead. The prediction
horizon for these data is 1/λ1 ≈ 4 steps, and we see that at K = 5 the predictions
are rather good, while at K = 75 they become quite inaccurate for the rapidly
varying spikes in the data. However, even at K = 75 the slowly varying part of
the data, outside the spiking region, is well predicted (not shown in the figures).
Returning to the selection of the time delay in our embedding vectors y(n)

indicates that the choice T = 9 or 10 suggested by average mutual information
considerations is required to properly sample and then predict the rapid varia-
tions in the data. Had we accepted the value of T = 425 from linear correlation
considerations, we would have completely lost the ability to say anything about
these rapid variations which are a distinct and important feature of the dynam-
ics.

Procedure 2.5. State Space Prediction Procedure
Start with the data vectors y(n) in dimension dE and the local maps in dimension

dL, y(n + 1) = Fn(y(n)) . (2.31)

Observe a new data point s(m) and form a new data vector in dE,

ynew(m) = [s(m), s(m − T ), . . . , s(m − (dE − 1)T )] . (2.32)

Locate its nearest neighbor in dimension dE among the members of the original data set.
Suppose it is y(k). Use the local map in dimension dL to move the new vector forward
in time by one step

ynew(m + 1) = Fk(ynew(m)) . (2.33)

Continue until you have moved ahead approximately 1
τsλ1

steps which is the approximate
prediction horizon.

More details about the local modeling approach outlined above can be found
in the chapter on local modeling in this handbook [26].
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Fig. 2.10: Predictions using proxy state space methods on the data from an isolated
LP neuron. Data are in Fig. 2.1. We used 41 000 data points in dE = 5 to make local
maps in dL = 4 and selected T = 9. Predictions were made five time steps ahead for
all points between 53 000 and 55 000. The prediction horizon 1/λ1 is approximately
four steps for these data, and the predictions at five steps are still quite accurate.
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Fig. 2.11: Predictions using proxy state space methods on the data from an isolated
LP neuron. Data are in Fig. 2.1. We used 41 000 data points in dE = 5 to make local
maps in dL = 4 and selected T = 9. Predictions were made 75 time steps ahead for
all points between 53 000 and 55 000. The prediction horizon 1/λ1 is approximately
four steps for these data, and the predictions at 75 steps are no longer accurate for
the rapidly varying spikes in the data, yet remain accurate for the slowly varying
part of the trajectory in state space.
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2.6 Modeling

Having analyzed the data in the previous sections we now want to derive models
describing the underlying dynamical process. Depending on our pre-knowledge
and potential applications we may distinguish basically two cases.

(A) We possess a model that was derived from first principles and the only re-
maining task is to find proper parameter values so that the model dynamics
and the given time series fit together.

(B) (Almost) Nothing is known about the underlying dynamics except for the
observed data.

Unfortunately, case (B) is (much) more common than case (A). If nothing is
known but the available data, the only choice we have is so-called black-box
modeling. There, a model is built from some pool of mathematical functions and
then its parameters are estimated by comparing the model output with the data.
The crucial step is to select a “good model” from the plethora of possible al-
ternatives and this delicate topic is treated in depth in disciplines like machine
learning or statistical learning theory [52, 53]. We shall discuss a few aspects of
model selection in the following but this is certainly only the tip of the iceberg of
this important field of applied mathematics and computer science. If a successful
black-box model is found which reproduces the time series and its typical fea-
tures, this may be (very) useful for forecasting or control of a process. However, in
general it does not reveal any insight into the physics (or biology, . . . ) of the data
source.2 If, on the other hand, dynamical equations for the process are known
which generated the observed time series, we usually still have to determine (in
some cases very many) free parameters in that model. Furthermore, our obser-
vation may have (slightly) distorted the observable and this has in some cases to
be taken into account in terms of some (unknown!) measurement function.

2.6.1 Modeling Interspike Intervals

To start with a simple example for black-box modeling we consider the inter-
spike intervals of the given neuron time series shown in Fig. 2.8. As already
mentioned in Section 2.2.3 this diagram suggests an approximate description in
terms of some function ∆tk+1 = g(∆tk). The goal of (black-box) modeling is to
find a function g that fulfills this task in some optimal sense (to be specified). In
particular, the function should have good generalization properties: not only the
given time series has to be mapped correctly but also new data from the same
source (not yet seen when learning the model). To achieve this (ambitious) goal
overfitting has to be avoided, i.e., the model must not incorporate features of the
particular realization of the given (finite!) time series. The performance of a good

2 Historically, cases are known where data-driven modeling resulted in fundamental equations of
physics like Kepler’s laws, but this is certainly exceptional.
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model does not depend on statistical features like random choice of initial con-
ditions on a (chaotic) attractor or purely stochastic components (noise) that will
not be the same for different measurements from a fixed (stationary) source or
process. So the model has to be flexible enough to describe the data but should
not be too complex, because then it will start to model also realization-dependent
features. To determine some suitable level of complexity one may employ com-
plexity measures and balance them with the prediction error. Another practically
useful method is cross validation. The given data set is split into two parts: a
learning or training set and an independent test set. The training set is used to
specify the model (including parameters), and this model is then applied to the
test set to evaluated its generalization properties and potential overfitting. To il-
lustrate this point we shall fit a polynomial to the interspike intervals within a
burst shown in Fig. 2.8 (enlargement on the right-hand side). These data points
are randomly split into two halves, training and test set. A polynomial of de-
gree m is fit to the training set and then used to map the test data points. For
both sets of points mean squared errors are computed, called Etrain and Etest. In
Fig. 2.12 both errors are plotted versus m. Increasing the degree m renders our
model more complex and results in a monotonically decreasing error Etrain of
the training set (dashed line in Fig. 2.12). For small m the error Etest of the test
set also decreases but at m = 3 it starts to increase again, because for too com-
plex polynomials overfitting sets in and the performance of the model on the test
set deteriorates. To obtain a representative and robust evaluation of the model
performance the time series has been split randomly several times in different
training and test sets and the given errors are mean values of the corresponding
training and test errors.

2.6.2 Modeling the Observed Membrane Voltage Time Series

We shall now consider the more ambitious task of modeling the temporal evo-
lution of the amplitude of the observed membrane voltage time series shown
in Fig. 2.1 without any additional knowledge about the underlying dynamics.
As a first step we need a high-dimensional reconstruction of the state space dy-
namics unfolding both time scales. Mixed delays combining short and long time
lags in a multidimensional state vector are a possible solution but not the best.
It turned out that much better results can be achieved if the modeling prob-
lem is split into two parts in terms of two coupled models for the slow and the
fast dynamics, respectively. To train these models we first separate both time
scales by decomposing the given time series s(t) into the sum ss(t) + sf(t) of
a slow and a fast signal using a linear low-pass filter. The task of the model
describing the slow dynamics is to predict ss(t + ∆t) (∆t = 0.5ms) from a re-
constructed state [ss(t), ss(t − Ts), sf(t)] with Ts = 200∆t. Numerical simulations
showed that such a three-dimensional reconstruction is sufficient for the slow
dynamics. In contrast, the fast dynamics requires higher dimensional embed-
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Fig. 2.12: Polynomial approximations of the interspike interval dynamics within
bursts shown in Fig. 2.8. Computed are the mean squared errors of training data
(dashed line) and test data (solid line) in dependence on the polynomial degreem.
The training error decreases monotonically whereas the test error starts to increase
once overfitting occurs.

dings. Good results have been obtained with a six-dimensional reconstruction
[sf(t), sf(t − Tf), . . . , sf(t − 4Tf), ss(t)] (Tf = 10∆t) used as input for a second
model which predicts the fast component sf(t + ∆t). Note that both models are
bi-directionally coupled due to the common elements ss(t) and sf(t) in both re-
constructed states.
Having chosen suitable input spaces we can now proceed to solve the result-

ing function approximation tasks. Here we need a pool of possible functions in
which we shall then search for good candidates to be included in our model.
Motivated by Taylor expansions one might use multidimensional polynomial ap-
proximations but they typically suffer from a strong tendency to oscillate and
diverge between and outside the given data points (and the resulting models
possess rather poor generalization properties). An alternative avoiding these dif-
ficulties is linear superpositions of radial basis functions gm,

s(t) =

M∑
m=1

cmgm(t) + e(t, ) (2.34)

where cm denote model coefficients (parameters) and e(t) (t = 1, . . . , N) are
modeling errors due to noise and model imperfections. To determine the model
coefficients cm the cost function
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G =

N∑
t=1

e2(t) + µ

M∑
m=1

c2
m (2.35)

is minimized (least-squares fit) which also includes a regularization term to con-
trol model complexity. Increasing the regularization parameter µ decreases com-
plexity (as an additional countermeasure against overfitting and to cope with
ill-posed least-squares problems).
Our pool consists of Gaussian basis functions gm(y) = exp(−‖y − z‖2/σ2

m)

centered at the reconstructed (input) states with different sizes σm.
When extending the model, the cost function (2.35) is computed for all can-

didates from the pool and the function providing the largest cost reduction is
chosen. Of course, when repeating this procedure again and again the model
will grow and eventually become too complex. To avoid such overfitting a stop-
ping criterion is needed. Like for the polynomial fit of the interspike intervals
presented in the previous section we could split our data into training and test
set and stop model extensions as soon as the test error starts to grow (compare
Fig. 2.12). With this approach, however, only part of the data are used for deter-
mining the model. We might have obtained a better model if we would have used
all data for training but then no data are left for detecting overfitting. A solution
for this problem is leave-one-out cross validation (also called delete-1 cross vali-
dation). Only a single data point is used for testing and the remainingN−1 points
are available for training the model. Of course, to obtain a statistically significant
evaluation this procedure has to be repeated with many test points. To avoid ex-
treme computational costs elegant numerical algorithms have been devised that
basically exploit methods from linear algebra which are applicable because the
model is linear in its parameters (for details see [54]). Similar to the test error in
Fig. 2.12 the mean leave-one-out cross validation error3 decreases first and begins
to increase as soon as overfitting sets in. This increase is used as an indicator to
stop the modeling process.
Figure 2.13 shows a result obtained with such a black-box modeling approach.

The model describing the slow dynamics consists of 426 radial basis functions
and the fast oscillations (spikes) are approximated using 972 Gaussians. Both
models are coupled in terms of their input (delay) vectors and are iterated for
15 000 steps.
So far we trained and tested the model for a single time step. If the further

future evolution is of interest, one has to apply the model iteratively using its out-
put for generating the input delay vector of the next step. Unfortunately, models
with very good single-step performance may provide poor results (or even di-
verge) when used iteratively. The best way to cope with this problem of error
propagation is to use the multistep prediction error as cost function [52, 55]. This
can significantly improve the performance of iterated predictions. The major dif-

3 Applying the leave-one-out test in this way is also called PRESS statistics (Predicted REsidual Sums
of Squares).
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Fig. 2.13: Black-box modeling of the membrane voltage shown in Fig. 2.1 using
two coupled radial basis models. Shown are 15 000 steps of the free running (iter-
ated) model (top) and a similar section of the measured data (bottom) (courtesy of
J. Dittmar).

ficulty with this approach is the fact that due to the iteration the cost function is
no longer quadratic in the parameters and nonlinear minimization methods have
to be employed to determine the optimal parameter set with high computational
costs and the danger of getting stuck in local minima. And also the model struc-
ture derived with respect to the one-step error may turn out suboptimal when
evaluated by means of the multistep prediction error.

Procedure 2.6. Modeling Procedure
Choose a suitable multidimensional representation of the dynamics. This is usually

a delay embedding with proper delay times but additional processing (like separation
of time scales) may be necessary. Note that this first step is crucial for all subsequent
computations. Any dynamical information in the data which is not properly “translated”
into input (state) vectors is lost!
Once the input state is specified select a model architecture and a pool of functions to

be built into the model. Model architectures can be any kind of networks or just linear
superpositions of basis functions. The latter model structure has the advantage to be linear
in the parameters, which simplifies subsequent computations.
The next step is to decide which functions of the pool should enter the model. Using

forward selection one includes in each step the function from the pool which reduces the
error (cost) function most. This greedy strategy may result in suboptimal models. More
effective but also more expensive is backward selection starting from a model containing
all functions from the pool and deleting in each step the term which is most irrelevant.
Of course, both selection methods can be combined.
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For all term selection strategies a stopping criterion is required to avoid too complex
models and overfitting. This can be implemented by monitoring the performance of the
model applied to an independent test data set from the same data source (cross validation).
Choose a model size (complexity) which minimizes the test error.
Try to improve the model by minimizing multistep prediction errors where the model

is applied iteratively.

2.6.3 ODE Modeling

The modeling approaches considered so far were discrete in time. Sometimes, an
ODE model is required or of advantage, because there it is easier to incorporate
pre-knowledge in terms of (fundamental) laws of physics, for example. In the
case of neuron dynamics many models have been suggested that are written as
polynomial vector fields (ODEs) [56] and are basically extensions or simplified
versions of the famous Hodgkin–Huxley model. Periodic spiking can, for exam-
ple, be generated by a two-dimensional ODE of the following form:

v̇ = p1 + p2v + p3v2 + p4v3 − x

ẋ = −p5x + p6v + p7v2 .
(2.36)

To determine the parameters pi we use a shooting method, i.e., initial condi-
tions

(
v(0), x(0)

)
and parameters are varied until the resulting time series v(t)

of the model matches best the observed signal, for example in terms of a mean
squared error. Figure 2.14 shows such a shooting fit for a spike sequence oc-
curring in a burst of the experimental data. The parameter values obtained are
[0.1603,−0.3262,−0.2773, 0.8268, 3.5471, 2.9028, 0.5211].
To fit longer segments of the given time series more sophisticated models are

required and the approximation task has to be split into several parts which are
solved simultaneously using so-called multiple shooting techniques [57, 58]. Like
other methods for fitting ODEs to data (e.g., minimization of synchronization
errors [59]) this approach fails if no suitable ODE is chosen and therefore no pa-
rameter solution exists. Therefore, it remains an interesting problem to devise a
combination of (multiple) shooting with some term selection method for gener-
ating appropriate ODE model structures.

2.7 Conclusion

This chapter has concentrated on methods which work for time series from both
linear and nonlinear sources. It consists in finding the correct space in which to
work, and then using properties of the points in that space to answer interesting
questions about the source of the time series. If the signal is from a source which
obeys linear dynamics globally, then the Fourier-based methods developed over
many decades are likely to serve better for prediction, parameter estimation, . . .
If, however, the dynamics of the source is nonlinear globally over the state space



34 2 Nonlinear Analysis of Time Series Data

0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

Time (0.5 ms)

M
em

br
an

e 
V

ol
ta

ge

Fig. 2.14: Shooting fit of ODE (2.36) to a spike sequence of the experimental time
series (dashed line).

of the system, then the time domain methods outlined in this chapter will be
appropriate to use.
There are several ways to tell if the source is described by globally linear dy-

namics. One is to examine the Fourier power spectrum. If it is composed only
of sharp lines which represent incommensurate frequencies, then the source is
likely to be globally linear. Depending on the choice of coordinate system, there
could be beat frequencies among the incommensurate fundamental frequencies.
A globally linear source can only have periodic oscillations, and fixed points—DC
signals. Another approach is to use the methods of this chapter and evaluate the
Lyapunov exponents. If the system is stable, and it must be if one is observing it
and signals are not moving to very large values where nonlinear saturation must
apply, then the Lyapunov exponents must be zero, associated with stable oscil-
lations, or negative, associated with fixed points. If there is a positive Lyapunov
exponent, it cannot be a globally linear source that is being observed.
Once the state space in which to work has been established, then there are

numerous questions one may ask of the system, and we have touched on only a
few of them like forecasting and modeling the data. The reader is now equipped
to answer those relating to his own interest.
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3 Local and Cluster Weighted Modeling
for Time Series Prediction

David Engster and Ulrich Parlitz

Local models are amongst the most precise methods for time series prediction.
This chapter describes the basic parameters of local modeling and how these
affect the model output. The choice of these parameters is crucial for the accuracy
and stability of the model and an optimization procedure is described which
often leads to good parameter values. To show the efficiency of this procedure,
several artificial and real data sets are predicted using local models in conjunction
with the optimization procedure. As an alternative to strict local modeling we
discuss cluster weighted modeling, a modeling procedure first introduced by
Gershenfeld et al., which combines a density estimation of the input data with a
functional relationship to the output data. This leads to a number of local clusters,
each containing its own model for describing the observed data. The parameters
are optimized using an expectation-maximization (EM) algorithm, leading to a
local optimum in parameter space.

3.1 Introduction

Given a data set of N pairs of points

Ω = {(x1, y1), (x2, y2), . . . , (xN, yN)}, (3.1)

with vector inputs xi ∈ Rd and corresponding scalar outputs yi ∈ R of an
unknown system, the nonlinear modeling problem is to find an estimate ŷ of the
system output for a new vector input q /∈ Ω, which is often simply called the
query.
A different and perhaps more familiar approach arises from the statistical

viewpoint where one tries to find a good approximation for the regression E[Y | X].
Here the pairs (xi, yi) are seen as realizations of the random variables X and Y,
where Y and X are drawn from an unknown joint probability P. The regression
E[Y | X] is the random variable which gives the conditional expectation m(x) ≡
E[Y | X = x]. It is the best approximation for the output values yi in a least-
squares sense [1].

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3.1.1 Time Series Prediction

We now want to specialize the described modeling problem to the case of time
series prediction, where given a series s1, . . . , sN, si ∈ R, the model should be
able to predict the next p time steps sN+1, . . . , sN+p. We assume that the time
series was generated by a nonlinear dynamical system with a deterministic time
evolution. In the case of chaotic systems, even the exact knowledge of the under-
lying system does not allow the prediction of an arbitrary number of time steps
due to the sensitivity on the initial conditions, i.e., the prediction horizon is lim-
ited. Additionally, if the time series is measured in an experiment it will always
be corrupted by some measurement noise.
The input vectors xi ∈ Rd for the modeling algorithm can be obtained by

reconstructing the attractor of the underlying dynamical system. Takens theo-
rem [2] says that this can be accomplished by using a delay embedding of the
time series with proper dimension d and delay τ, leading to the input vectors

xt = (st, st−τ, . . . , st−(d−1)τ), (3.2)

with t = (d−1)τ+1, . . . , N. It is also possible to choose a nonuniform embedding,
which instead of the fixed delay τ allows varying delays τi, i = 1, . . . , d − 1,
between the components of the input vector [3].
To predict one step ahead, the corresponding output is given by yt = st+1.

For a further prediction of the next p steps, one can add the model output ŝN+1

to the given time series and repeat the modeling procedure until ŝN+p is ob-
tained, leading to an iterated prediction. However, if one is only interested in the
model output ŝN+p, it is possible to do a direct prediction by using yt = st+p for
the corresponding outputs. With iterated prediction, the errors of the model out-
put accumulate, whereas for direct prediction the system output becomes more
complex and is therefore more difficult to model correctly, especially for chaotic
systems. There has been much discussion regarding whether iterated or direct
prediction is the better choice [4]. This question cannot be answered in general,
as it depends on the complexity of the system and the step size p. However, for
chaotic systems iterated prediction has often shown to be superior in practice [5].

3.1.2 Cross Prediction

A more general case is the cross prediction of a time series, where one or more
input time series s

(1)
1...N, . . . , s

(n)
1...N are given and one output time series u1...N

has to be predicted. The previous case of time series prediction can be seen as
a special case of cross prediction, where the output time series is simply the
input time series shifted p steps into the future. In the more general form with
several different input time series, the construction of the input vector becomes
more complicated. For every given input time series, a delay embedding must be
performed. The delay vectors can then be concatenated to form the input vectors

xt =
(
s
(1)
t , s

(1)
t−τ1

, . . . , s
(1)
t−(d1−1)τ1

, s
(2)
t , s

(2)
t−τ2

, . . . , s
(n)
t−(dn−1)τn

)
(3.3)
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for the modeling algorithm.
However, even if the output of the dynamical system is completely deter-

mined by the input time series, in some cases the modeling problem becomes
much easier if past values of the output time series are included in the input
vector, effectively introducing a feedback into the modeling procedure. This can
lead to an improvement of the prediction, but may lead to stability problems if
the model is iterated over several time steps since the errors in the prediction ac-
cumulate. A practical example of such a cross prediction with feedback is shown
in Section 3.4.3 with the modeling of friction phenomena.

3.1.3 Bias, Variance, Overfitting

For finding the mapping yi = f(xi) between dependent and independent vari-
ables, one has to consider that the model should not only be able to describe the
given realization, but ideally also every other realization which is drawn from the
joint probability P(y, x). Even if one finds a perfect approximation for the regres-
sion E[y | x] for one particular realization, this does not in general lead to a model
which will perform well on new data sets. In other words, the model should have
the ability to generalize with respect to new data.
Given a realizationΩ = {(x1, y1), . . . , (xn, yn)} of the data-generating process,

the model based on this particular realization is written as f(x;Ω). The expecta-
tion value of the squared error, given this realization, can be split into two parts

E[(y− f
(
x;Ω

)
)2 | x, Ω] = E[(y − E[y |x])2 | x, Ω]︸ ︷︷ ︸

variancey

+ (f(x;Ω) − E[y |x])2︸ ︷︷ ︸
model error

, (3.4)

where the expectation is taken with respect to the joint probability P. The first
term E[(y−E[y |x])2 | x, Ω] is the variance of y for a given x and is independent of
the realizationΩ and the model f(x). Therefore, the variance is a lower bound on
the expectation value of the squared error, although it is of course through inter-
polation always possible to get a zero squared error for one particular realization.
However, a model which simply interpolates the data will on other realizations
lead to a larger squared error than the regression E[y |x], as it also tries to model
realization-dependent features. This effect is called overfitting and can be avoided
by introducing a bias which limits the variance of the model.
To see the connection between bias and variance, one has to examine the sec-

ond term
(
f(x;Ω) − E[y | x]

)2, which describes the actual model error. It may
be that for the particular realizationΩ our model perfectly approximates the re-
gression E[y |x]. However, the model might vary strongly depending on the given
realization, or it might on average over all possible realizations be a bad approx-
imator for the regression, making the model f(x;Ω) an unreliable predictor of y.
Since we want to have a model which has the ability to generalize, we must look
at the expectation value of

(
f(x;Ω) − E[y | x]

)2 over all possible realizations, in
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the following denoted by EΩ[·]. This term can again be split into two parts [1],
the squared bias and the variance

EΩ[(f(x;Ω) − E[y |x])2] = (EΩ[f(x;Ω)] − E[y |x])
2︸ ︷︷ ︸

bias2

+ EΩ[(f(x;Ω) − EΩ[f(x;Ω)])2]︸ ︷︷ ︸
variancef

. (3.5)

The bias is the expectation value for the deviation between model output and the
regression over all possible realizations. Therefore, a model with high bias will
give similar results for different realizations, whereas a model with low bias and
high variance can lead to very different model outputs and has a greater chance
of overfitting. If the bias is zero we obtain EΩ[f(x;Ω)] = E[y | x], i.e., our model
is on average equal to the regression. However, from this we cannot conclude
that for one particular realization the model f(x;Ω) is a good approximation for
the regression E[y | x]. A low bias typically comes with a large variance, making
the model unreliable and leading to overfitting and therefore to an increase of
the model error. This fact is known as the bias variance dilemma [1], which states
that it is often not possible to have a low bias and a low variance at the same
time. Instead, one has to find a good trade-off between these two.

3.2 Local Modeling

Given the modeling problem defined in the introduction, the most common pro-
cedure for getting an estimate for a new input vector q is to first fit a parametric
function f(x, θ) on the data setΩ, where θ is a set of parameters which has to be
optimized, e.g., with a maximum likelihood approach. After fitting the function
f(x, θ), an estimate for q /∈ Ω can be obtained by evaluating f(q, θ). This pro-
cedure is also known as global parametric modeling, since a parametric function is
fitted to the whole data set before the model can be queried.
In contrast to these global models, pure local models delay any computation

until queried with the new vector input q. A small neighborhood of q is located
in the training set and a simple model using only the points lying in this neigh-
borhood is constructed [6]. In statistical learning theory, local models are also
referred to as lazy learners [7].
As the model is constructed in a neighborhood of the query q, local model-

ing falls in the category of nonparametric regression, where no kind of functional
form is preconditioned for the whole model. The data set is an unseparable part
of the model construction and the quality of the resulting model highly depends
on it. In contrast, in parametric regression the model f(x, θ) has a fixed functional
form and the data points are only used to calculate or train the model parame-
ters. After training, the resulting model can be separated from the data set and
written down in closed form. Therefore, the model has a fixed functional form,
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which is particularly useful if this functional form is assumed or even known be-
forehand, e.g., by a physical theory where the parameters may also have a mean-
ingful interpretation. In this case, parametric models are also more efficient than
nonparametric ones, since they need less data for obtaining an accurate model
that describes the data. However, if there does not exist any a priori knowledge,
the functional form used may be unable to describe the data-generating process
and the model will fail completely.
The neighborhood of the query in which the local model is constructed can

be chosen in two different ways. The most common choice is to locate the k

nearest neighbors xnn1 , . . . , xnnk of x, i.e., the k points in the data set which
have the smallest distance to the query point according to some arbitrary metric
‖·‖ (usually Euclidean). This type of neighborhood is also known as fixed mass,
because the number of nearest neighbors remains constant. Alternatively, one can
search for all points lying in some fixed neighborhood of the query point ( fixed
size) so that the actual number of neighbors varies. The fixed-mass neighborhood
is easier to handle, since it varies its size according to the density of points and
empty neighborhoods cannot occur.
The problem of finding nearest neighbors is very well studied and there are

numerous algorithms for this task [8–10]. We use an algorithm called ATRIA,
which relies on a binary search tree built in a preprocessing stage [11]. This
algorithm is particularly effective when the points are close to a low-dimensional
manifold, even when the actual dimension of the input space is large. Therefore,
it is very well suited for the case where most of the data lie on a low-dimensional
attractor.

3.2.1 Validation

As already described in Section 3.1.3, it is usually not possible to generate a
model which offers low bias and low variance at the same time. The most com-
mon procedure for finding a good trade-off between bias and variance lies in the
training of the model by using cross validation. Here the data set is split into two
parts, the

• training set, used for training, and the

• test set, used for validating the model.

The usual iterative procedure is to switch between training and validation using
the training and test data, respectively. With further training, the model error
on the training set will usually monotonically decrease as the model is able to
describe more and more features of the training data. At some point however,
the model begins to overfit on the training data and the error on the test data
will then begin to increase. Therefore, the minimum of the test error yields the
optimal set of parameters and leads to a model which has still the ability to
generalize. For comparing the performance between different models, another
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test data set is necessary which is only used to calculate one final error measure
after the model training is completely finished. In this case, the test set for the
cross validation is sometimes referred to as the validation set to distinguish it from
the test data set for the model comparison.
The drawback of cross validation is the reduced number of points available

for training. Therefore, the possibility remains that a better model could have
been obtained without cross validation [12]. To minimize this possibility, the size
of the test set should be chosen as small as possible. This leads to an “extreme”
form of the cross validation, the leave-one-out cross validation (LOOCV), where
the test set is reduced to one single test point. Of course, one has to repeat this
validation procedure with enough different test points to get a good estimation
of the actual model error. Local models are very well suited for LOOCV, as they
are lazy learners which wait with the actual model calculations until they are
queried. To implement LOOCV, they simply have to exclude the test point from
their set of possible nearest neighbors.

Error Measures

The most common choice for calculating the model error is the mean squared
error (MSE)

MSE1 =
1

|Tref|

∑
t∈Tref

(
yt − ft(xt)

)2
, (3.6)

where |Tref| is the number of test points and ft(x) is the model which was con-
structed without the point xt.
For time series prediction, the MSE1 gives the model error for predicting

one step ahead in the future, but it is often desirable to have a model which
predicts several steps p. This can be done by using iterated prediction, where the
model is used p times successively. One has to consider, however, that the model
error accumulates during the prediction. Otherwise, when the model is solely
validated using the above MSE1, one will mostly obtain models which are good
for one-step but inferior for iterated prediction. Therefore, the MSE should be
extended to average the error over p successive steps

MSEp =
1

p|Tref|

∑
t∈Tref

[(
st+1 − ft(xt)

)2
+

p−1∑
i=1

(
st+i+1 − ft+i(x̂t+i)

)2
]
. (3.7)

The first point xt is taken from the data set, whereas all further predictions de-
pend on previous model outputs x̂t+i.
If the time series is densely sampled, one has to take into account that the

nearest neighbors of a test point xt will mostly be points which are also close
in time, i.e., points which are directly before or after this point on the same
trajectory in phase space. Therefore, it is necessary to exclude not only the test
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point xt, but a whole segment of points lying in a certain interval [t − c, t + c].
For the new parameter c the average return time of the system can be used.
The model excluding these indices is denoted by ft±c(xt). Furthermore, it is

good practice to normalize the model error with the variance of the time series.
The normalized mean squared error (NMSE) over p steps is then given by

NMSEp,c =
N

p|Tref|
∑N

t=1(st − s̄)2

∑
t∈Tref

[(
st+1 − ft±c(xt)

)2

+

p−1∑
i=1

(
st+i+1 − f(t+i)±c(x̂t+i)

)2]
. (3.8)

3.2.2 Local Polynomial Models

Local models use only a neighborhood of the query q to calculate the model
output. Since the neighborhood is usually small, the actual model used should
not be too complex. A good choice is to implement a polynomial model with
low degree m, where the coefficients are calculated using the well-known least-
squares method. In the following, we choose a fixed-mass neighborhood with k

nearest neighbors.
One drawback of these simple local models is that they do not produce contin-

uous output, because shifting the query point results in points suddenly entering
or leaving the neighborhood. To smooth the model output, one can apply some
kind of weights on the nearest neighbors, so that farther neighbors have a lesser
effect on the output than the ones lying nearer to the query point.
To apply a weighted least-squares method, we define

X =




1 M(xnn1
)m
1

...
...

1 M(xnnk
)m
1


 , (3.9)

where M(x)m
1 denotes all monomials of x ∈ Rd with degree 1 � i � m. The

output vector is given by y = [ynn1
, . . . , ynnk

]T and the coefficient vector by
ν = [ν1, . . . , νl]

T with l = |M(x)m
1 | + 1. Additionally, we introduce the weight

matrixW = diag{w1, . . . , wk}. The weighted sum of squared errors, which is to
be minimized is now given by

P(ν) = (y − Xν)T WT W(y − Xν) . (3.10)

Setting the gradient of this function to zero leads to the solution for the coefficient
vector. With XW = W · X and yW = W · y, we get

ν = (XT
WXW)−1XT

WyW = (XW)†yW , (3.11)

where (XW)† denotes the pseudo inverse of XW , which can be calculated by
using singular value decomposition [13] (see also Section 3.2.6).
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3.2.3 Local Averaging Models

Setting the degree of the polynomial model to zero gives the local averaging
model, where all input vectors are eliminated from the matrix X. The coefficient
vector can now be written as

ν = (1T
kw21k)−11T

kw2y (3.12)

=

∑k
i=1 w2

i ynn(i)∑k
i=1 w2

i

(3.13)

= ŷ ,

i.e., a weighted average of the output values of the k nearest neighbors. Although
this seems to be an overly simplistic approach, this model can produce quite
remarkable results [14]. It has several advantages over more complex models.
Most important of all, local averaging models are always stable, as the model
output is bounded by the output values of the nearest neighbors.
Furthermore, these models are very fast as they require almost no compu-

tation besides nearest-neighbor searching. Another advantage, especially when
dealing with small data sets, is the ability of local averaging models to work with
very small neighborhoods, as even one nearest neighbor is enough to produce a
stable model output.

3.2.4 Locally Linear Models

Choosing a degree of m = 1 gives the locally linear model, where a weighted
linear regression is performed on the output values of the nearest neighbors. The
model output is now given by

ŷ = 〈[1qT ], ν〉 . (3.14)

In many cases, especially when many data points are available, the locally linear
model gives far better results. However, to guarantee a stable model one usu-
ally has to perform some kind of regularization, which will be discussed in Sec-
tion 3.2.6. Locally linear models are also computationally more expensive since
they require a least-squares optimization of the coefficients.

3.2.5 Parameters of Local Modeling

Number of Nearest Neighbors

The number of nearest neighbors k is the most crucial parameter, as it directly
affects the bias and variance of the resulting local model. A small number of
nearest neighbors lead to a model with high variance and low bias. In the extreme
case, a local averaging model with one nearest neighbor simply interpolates the
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outputs of the nearest neighbors of the data points. Conversely, a large number
of neighbors lead to a model with high bias and low variance and in the extreme
case to a very simple global model.

Weight Function

A good choice for weighting the nearest neighbors is functions of the form

wn(r) = (1 − rn)n, r =
di

dmax
, (3.15)

where dmax = |xk − q| is the distance to the furthest nearest neighbor and di =

|xi − q| is the distance to the nearest neighbor with index i < k. Depending on
the exponent n, different kinds of weight functions can be obtained: with n =

0 no kind of weighting is applied, whereas n = 1 leads to linear weighting.
Choosing n = 2 leads to biquadratic, n = 3 to tricubic weight functions. It is
obvious that the type of weight function and the number of nearest neighbors are
connected: choosing a high exponent n effectively reduces the number of nearest
neighbors which affect the model output. However, the main motivation for using
a weight function is to smooth the model output. Its effect on the accuracy of
the model is mostly not very high, as long as any kind of weighting is done.
Therefore, it is usually sufficient to choose n between 0 and 3.

Distance Metric

The kind of distance metric used has a strong influence on the neighborhood of
the query point. Although the Euclidean metric will mostly be a good choice,
other metrics can sometimes significantly improve model accuracy. By using the
diagonally weighted euclidian distance

ddwe(x, q)2 =

d∑
i=1

λ2
i (xi − qi)

2 = (x − q)T Λ2(x − q), (3.16)

where Λ = diag(λ), λ ∈ Rd, one can specify which components of the input vec-
tors should be more relevant when searching for nearest neighbors and which
components should be more or less dropped. Unfortunately, one does not usu-
ally know beforehand which components are vital for modeling the data set and
which are irrelevant or corrupted by noise. However, one can use an algorithm
which uses the leave-one-out cross-validation error for optimizing the metric pa-
rameters (see also Section 3.2.7).
In the case of time series prediction, the input vectors are delay vectors in the

form

xt = (st, st−τ, . . . , st−(d−1)τ) . (3.17)
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It is questionable why certain components of the input vectors should be favored,
as a certain value si exists in different delay vectors at different positions. Never-
theless, in some cases the prediction can be improved by applying a special case
of the diagonally weighted distance, the exponentially weighted distance

dexp(x, q) =

(
d∑

i=1

λi−1(xi − qi)
2

) 1
2

. (3.18)

In the case of delay vectors, this method favors those components of x which
are closer in time to the prediction. Furthermore, only one parameter has to be
optimized and the standard euclidian metric can still be obtained by setting λ = 1.
Therefore, an optimization procedure which optimizes λ can only improve the
prediction accuracy compared to the Euclidean metric.

3.2.6 Regularization

Given enough data points, locally linear models are usually more precise than lo-
cally averaging models. One problem though lies in the calculation of the inverse
of the matrix product XT

WXW , which leads to unstable models if the resulting
matrix is ill-conditioned. Therefore, some kind of regularization method must
be applied. The two most common choices are the principal component regression
(PCR) and the Ridge regression (RR), which will be described in the following sec-
tion.

Principal Component and Ridge Regression

The basic principle of this method relies on the singular value decomposition
of XW , which is given by

XW = USVT , (3.19)

where U ∈ Rk×k and V ∈ Rl×l are orthonormal, and S = diag(σ1, . . . , σp)

is a diagonal matrix with the singular values σ1 � σ2 � · · · � σp � 0 with
p = min{k, l}. The pseudoinverse of XW can now be written as

X
†
W = VS+UT , (3.20)

where S+ = diag(1/σ1, . . . , 1/σr, 0, . . . , 0) and r = rank(XW) [15], i.e., we set
1/σi to zero if σi = 0. In practice, however, these singular values are usually not
exactly zero. The matrix XW is not singular but ill-conditioned. The PCR works
by first setting these small singular values to zero and then calculating S+ as
just noted. For this procedure it is crucial that the nearest neighbors are centered
around the origin by subtracting the mean. This also simplifies the calculation of
the locally linear model since the constant is now given by the weighted average
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ȳw =
∑k

i=1 w2
i ynn(i)/

∑k
i=1 w2

i of the images of the nearest neighbors. The col-
umn of 1’s in the design matrix (3.9) can therefore be omitted [5].
However, there exist different possibilities in how to decide whether a singu-

lar value is so small that it should be dropped. The easiest way is the truncated
PCR (TPCR), where a fixed number of the smallest singular values is automati-
cally set to zero, without looking at their actual values. Alternatively, in principal
component threshold regression (PCTR) every singular value below some previously
defined threshold σmin is dropped. This procedure can be further generalized by
applying weights to the inverse singular values, which leads to a PCTR with soft
thresholding. The model output for the locally linear model can then be written as

ŷ = ȳw +

p∑
i=1

〈(q − x̄)T , vi〉
(

f(σi)

σi

)
〈uT

i , yW〉 , (3.21)

where in general any kind of weight function f(σ) can be used. McNames [5] has
suggested to use a modified biquadratic weight function

f(σ) =




0 smin > σ ,(
1 −

(
smax − σ

smax − smin

)2
)2

smin � σ < smax ,

1 smax � σ ,

(3.22)

where smin and smax are given by

smin ≡ sc(1 − sw) (3.23)

smax ≡ sc(1 + sw) . (3.24)

The parameters sc and sw define the center and width of the threshold in which
the singular values are weighted down to zero. Singular values above smax remain
unchanged, whereas those smaller than smin are set to zero. With sw = 0 we get
smin = smax = sc and therefore a hard threshold at sc.
Another good choice for the weight function is given by

f(σ) =
σ2

µ2 + σ2
, (3.25)

so that for σ � µ we get f(σ) ≈ 1, and for σ → 0 the weight function becomes
zero. The parameter µ � 0 therefore defines the degree of regularization. This
particular weight function leads to a special case of a regularization procedure
known as Ridge regression or Tikhonov regularization [15, 16]. Here, the cost func-
tion (3.10) is modified by adding a penalty term which penalizes large values in
the coefficient vector, leading to

P(ν)RR = (y − Xν)T WTW(y − Xν) + νT RTRν . (3.26)
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Fig. 3.1: Example for regularization with Ridge regression and TPCR with soft
threshold. The dashed line shows the inverse 1/σ, which goes to infinity for
σ → 0. The circles show the regularized singular value with Ridge regression and
µ = 0.75, while the crosses show TPCR with soft threshold and sc = 1, sw = 0.5.

The diagonal Ridge matrix R ≡ diag(r1, . . . , rl) weights the different components
of the coefficient vector. The solution for ν can now be written as

ν = (XT
WXW + RT R)−1XT

WyW . (3.27)

Therefore, the modified cost function (3.26) is equivalent to adding the val-
ues r2

1, . . . , r2
l to the diagonal of XT

WXW . A simple (and popular) choice for the
Ridge matrix is R = µ2I, i.e., all components of ν are weighted with the same
factor µ2. The solution (Eq. 3.27) can now be easily obtained by using the singu-
lar value decomposition XW = USVT and this leads to

ν =

k∑
i=1

σi

σ2
i + µ2

〈uT
i , yW〉vi (3.28)

and therefore to the above-mentioned weight function (3.25).
An illustration of both regularization techniques can be seen in Fig. 3.1. While

TPCR has the advantage that it can locally adapt to the dimensionality of the
data, Ridge Regression in its general form (3.26) can put different regularization
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parameters on each component through the regularization matrix R. Both meth-
ods can produce good results; however, it has been shown that in the case of
time series prediction of chaotic systems, principal component regression with
thresholding is superior to Ridge regression [5].

Local Projection

Another possibility for regularization is to reduce the dimensionality of the points
found in the neighborhood of the query before performing the least-squares opti-
mization. This can be done by performing a principal component analysis (PCA)
on the nearest neighbors and then projecting them onto the subspace which cov-
ers most of the variance of the data [17, 18]. Given the following matrix

A =


xT

nn1
− x̄T

nn

. . . . . . . . . . .

xT
nnk

− x̄T
nn


 (3.29)

containing the centered nearest neighbors of the query, the eigenvalues and
eigenvectors of the empirical covariance matrix C = AT · A are calculated. The
eigenvalues correspond to the variance in the direction given by the correspond-
ing eigenvalue. Keeping only the first r eigenvectors with eigenvalues above some
given threshold σ, we can define through these remaining eigenvectors a lower
dimensional subspace which covers most of the variance of the data. The nearest
neighbors projected into this subspace are given by Ã = A · Pr, with the projec-
tion matrix given by

Pr = (v1 · · · vr) , (3.30)

consisting of the eigenvectors corresponding to the first r largest variances. This
also effectively removes noise present in the data, given that the noise is small so
that it only contributes a small amount to the variance. The coefficients for the
local model can then be calculated in this lower dimensional subspace.
This procedure is very closely related to TPCR. In fact, for locally linear mod-

els it is equivalent, given that the nearest neighbors are centered around their
mean, since the design matrix X from Equation (3.9) is then equal to A. It follows
that Ã = A ·Pr = Ur ·Sr, whereUr and Sr denote the matricesU and S from the
SVD in Equation (3.20), but reduced to the r largest singular values. The pseudo
inverse of Ã is then given by

Ã† = (ÃT Ã)−1ÃT = S−1
r UT

r . (3.31)

Given the query q, we obtain for the model output

ŷ = q · Pr · Ã†y = q · Pr · S−1
r UT

r y, (3.32)

which is equivalent to TPCR since Pr = (v1 · · · vr) = Vr.
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For locally quadratic models or local models with other model types like ra-
dial basis function networks, the local projection and TPCR are no longer equiv-
alent. TPCR with soft thresholding introduced in the previous section is more
flexible and can often lead to better results than TPCR without soft thresholding
or local projection.

3.2.7 Optimization of Local Models

Several different parameters have to be set for local modeling. Most of these pa-
rameters deal with the neighborhood of the query point: the kind of metric used
for calculating the distances between the query point and its neighbors, the num-
ber of nearest neighbors k and the weight function applied. The other parameters
deal with the model used in the neighborhood: one has to choose between locally
averaging or locally linear models, and for the latter, one has to choose a regu-
larization method. The regularization itself has additional parameters associated,
which have a large influence on the stability and accuracy of the model, espe-
cially in the case where the model is iterated over several steps.
Although all these parameters have a more or less intuitive appeal, it is dif-

ficult to find good values based on simple “trial and error.” Furthermore, these
parameters are not independent of each other: the distance metric and weight
function directly affect the form and size of the neighborhood which is primarily
controlled by the number of nearest neighbors. On the other hand, changing the
type of model or the regularization parameters often demands other forms of
neighborhoods.
Good parameter values can be found by applying an optimization algorithm

using the leave-one-out cross-validation error. Although local models allow an
efficient calculation of this error, it is still a time-consuming task, especially for
large data sets combined with multiple-step prediction. Moreover, gradient-based
optimization algorithms are mostly not applicable, as only the regularization and
metric parameters allow the calculation of a gradient.
One popular approach for such an optimization problem is to use genetic

algorithms [19], as they do not need a gradient and are able to deal with in-
teger and floating point parameters at the same time. They are well suited for
optimizing embedding parameters, especially when a nonuniform embedding is
used [20].
Genetic algorithms start with a randomly chosen population of parameter

vectors which can contain the delays of the embedding as well as the number of
nearest neighbors or any other parameter for local modeling. This population is
then “evolved” by using different types of inheritance, mutation, and selection
operators. The algorithm stops after a certain number of iterations.
However, it is not advisable to optimize all parameters at once with a genetic

algorithm, as the initial population and the number of iterations have to be very
large for the algorithm to converge. This may be due to the fact that the parame-
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ters are not of equal importance. Therefore, we first use a genetic algorithm to
optimize only the delays for a nonuniform embedding and the number of nearest
neighbors, since these are the most crucial parameters for a good model perfor-
mance. During this optimizations step, the other parameters are held constant;
we used biquadratic weights with an Euclidean distance, and for locally linear
models the regularization procedure given by Eq. (3.22) with sc = 1 × 10−4 and
sw = 0.6.
After this primary optimization step, the other parameters are optimized us-

ing a simple type of cyclic optimization, where all parameters are successively
optimized with an exhaustive search in the case of integer parameters and with a
semiglobal line search for floating point parameters [5]. Although one has a good
value for the number of nearest neighbors, it should be included in this second
optimization step since it is the most crucial parameter.
Because of local minima, this optimization procedure will usually not lead to

the global minimum in parameter space, but nevertheless it will usually improve
the prediction accuracy compared to manually chosen parameters.

3.3 Cluster Weighted Modeling

Cluster Weighted Modeling (in the following denoted as CWM), an algorithm
first introduced by Gershenfeld et al. [21], lies between the local and the global
modeling approach. It is global in the sense that the model has to be trained be-
forehand with the whole data set, i.e., it lacks the flexibility of lazy learning. But
it is also local in the sense that usually only the points lying in a neighborhood
of the query point are crucial for the model output.
CWM essentially tries to estimate the joint density p(x, y), since this density

allows us to compute derived quantities such as the conditional forecast 〈y | x〉
for new query points. To estimate the density, a Gaussian mixture model is used,
which factors the density over distinct clusters cm, m = 1, . . . , M. But where
conventional Gaussian mixture models only estimate the quantity p(x), CWM
includes an additional output term to capture the functional dependence of the
output values yi on the input vectors xi as part of the density estimation.
Therefore, the density estimator is written as

p(y, x) =

M∑
m=1

p(y, x, cm)

=

M∑
m=1

p(y, x | cm)p(cm)

=

M∑
m=1

p(y | x, cm)p(x | cm)p(cm) ,

(3.33)

where the three terms are
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• weights p(cm), m = 1, . . . , M,

• input domains p(x|cm),

• output terms p(y|x, cm).

The weights p(cm) are real values which describe the fraction of the data the
cluster cm explains. The input domains are given by multivariate Gaussians

p(x | cm) =
|C−1

m |
1
2

(2π)
d
2

exp
(
−(x − µm)T · C−1

m · (x − µm)/2
)

, (3.34)

with µm the means and Cm the covariance matrices of the Gaussians. The input
domains are used to capture the density of the input vectors x in phase space.
When dealing with high-dimensional spaces, it is advisable to reduce these input
domains to separable Gaussians with single variances in each dimension σ2

m,i

instead of using the full covariance matrix, so that the input term becomes

p(x | cm) =

d∏
i=1

1√
2πσ2

m,i

exp(−(xi − µm,i)
2/2σ2

m,i) . (3.35)

The output terms are also given by Gaussians

p(y | x, cm) =
1√

2πσ2
m,y

exp(−[y − f(x, βm)]2/2σ2
m,y) , (3.36)

but the means of these Gaussians are now given by parametric functions f(x, βm),
where βm denotes the parameters for the cluster cm. These functions, which are
often called local models but which will be in the following denoted as cluster
functions to avoid confusion with the local models in the previous section, are
usually chosen to be fairly simple. For an easy optimization of the cluster function
parameters, it is necessary to use a linear parameterized model

f(x, βm) =

I∑
i=1

βm,ifi(x) , (3.37)

where fi(x) are some suitable basis functions (usually monomials). Next to the
number of clusters M, the number I and type fi of the basis functions directly
determine the complexity of the resulting CWM and hence control bias and vari-
ance.
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The reason for choosing the output term in the above way becomes clear when
we look at the model output, i.e., the conditional forecast which we can obtain
by integrating the output values with respect to the conditional density p(y | x),

〈y | x〉 =

∫
yp(y | x)dy =

∫
y

p(y, x)

p(x)
dy

=

∑M
m=1

∫
yp(y | x, cm)dyp(x | cm)p(cm)∑M

m=1 p(x | cm)p(cm)

=

∑M
m=1 f(x, βm)p(x | cm)p(cm)∑M

m=1 p(x | cm)p(cm)
.

(3.38)

The model output of the CWM is therefore given by a weighted average of the
cluster functions f(x, βm). The Gaussians, which are given by the input domains
p(x | cm), control the interpolation of the cluster functions and therefore do not
serve as approximators like in conventional radial basis function networks.
One is now confronted with the problem of finding good values for

• the weights p(cm),

• the means µm and variances σ2
m,x of the input domains,

• the variances of the output terms σ2
m,y, and

• the parameters of the cluster functions βm.

The task of parameter optimization is done using an expectation-maximization
(EM) algorithm.

3.3.1 The EM Algorithm

The EM algorithm is an iterative maximum-likelihood estimator and was first
introduced by Dempster et al. [22]. Since it has proved to be a successful opti-
mization strategy for conventional Gaussian mixture models (GMM) [23], it is
reasonable to use it also for the related cluster weighted models. The EM al-
gorithm is typically used when one is confronted with incomplete data or when
the likelihood function involves latent variables. However, the distinction of these
two cases is more a matter of interpretation, since we can always think of latent
variables as data which we could not observe, therefore leading to incomplete
data. In our case, the observation consists of the input and output data points
{xi, yi}

N
i=1, but we do not know which clusters in our model ansatz are “respon-

sible” for which points.
The basic strategy of EM is to start with an initial guess for the unknown

data and calculate the expectation of the likelihood for the complete data, where
the expectation is taken with respect to the computed conditional distribution of
the unobserved data; this is called the expectation step (E-step). Afterwards, we
compute a new estimation of the unobserved data by maximizing the likelihood
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of the complete data; this is called themaximization step (M-step). More intuitively,
one assumes in the E-step that the current estimate for the cluster parameters is
correct, whereas in the M-step the cluster parameters are reestimated based on
the distribution of the data. The EM algorithm alternates between these two steps
until some stopping criterion is met, which may be a convergence criterion or the
detection of overfitting through means like cross validation.
The algorithm is guaranteed to converge, but since it is basically a hill-climb-

ing approach it may only reach a local maximum of the likelihood. For the case of
CWM, this is usually not a problem since the large number of parameters which
have to be estimated allow many realizations which will show approximately the
same performance. However, the maximum likelihood estimate for a large num-
ber of parameters will usually lead to an overfitting of the resulting CWM, which
forces us to keep the number of parameters reasonably low either by limiting the
number of clusters or by using a stopping criterion like cross validation for the
number of EM iterations.

Expectation Step

The EM optimization starts by first initializing the parameters. One would usu-
ally start with uniform weights p(cm) = 1/M and all variances and function
parameters equal to 1. The center positions can be chosen randomly, e.g., by
pickingM random points out of the input training data xi, i = 1, . . . , N.
In the E-step it is assumed that the given parameters are correct and on this

assumption the posterior distribution for each cluster is calculated, which is given
by

p(cm | y, x) =
p(y, x, cm)

p(y, x)
=

p(y | x, cm)p(x | cm)p(cm)∑M
l=1 p(y, x, cl)

=
p(y | x, cm)p(x | cm)p(cm)∑M
l=1 p(y | x, cl)p(x | cl)p(cl)

.

(3.39)

This distribution relates each cluster to each data point. Looking at the resulting
fraction, one can see that the posterior is the ratio between one and all clusters
predicting one specific point.

Maximization Step

In the M-step, one assumes that the distribution of the data is correct and now
calculates the weights

p(cm)new =

∫
p(y, x, cm)dydx =

∫
p(cm | y, x)p(y, x)dydx

≈ 1

N

N∑
n=1

p(cm | yn, xn) .

(3.40)
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Given these new weights, we can now update the cluster positions and variances.
In principle, the new cluster means are given by calculating the expectation of x
with respect to the conditional density p(x | cm). However, we also want to
position the clusters with respect to how well they predict the target values y;
therefore, we also have to integrate over y, leading to

µnewm =

∫
x p(x | cm)dx =

∫
x p(y, x | cm)dydx

=

∫
x

p(cm | y, x)

p(cm)
p(y, x)dydx

≈ 1

Np(cm)

N∑
n=1

xnp(cm | yn, xn) =

∑N
n=1 xn p(cm | yn, xn)∑N

n=1 p(cm | yn, xn)
.

(3.41)

This can be written in a more condensed form by defining the cluster weighted
expectation of a function φ(x) as

〈φ(x)〉m ≡
∑N

n=1 φ(xn)p(cm | yn, xn)∑N
n=1 p(cm | yn, xn)

, (3.42)

so that the new cluster means are given by 〈x〉m. In the same way, the new
variances can be written as

σ2,new
m,i = 〈(xi − µm,i)

2〉m . (3.43)

Cluster Function Parameters

For updating the parameters βm of the cluster functions (3.37), we maximize for
each cluster cm the log-likelihood with respect to βm, i.e., we must solve

δ

δβm
log

N∏
n=1

p(yn, xn) = 0 . (3.44)

Using the cluster weighted density (3.33) and the chosen output term (3.36) we
get

0 =

N∑
n=1

1

p(yn, xn)
p(yn, xn, cm)

yn − f(x, βm)

σ2
m,y

· δf(xn, βm)

δβm

=
1

N p(cm)

N∑
n=1

p(cm | yn, xn)[yn − f(xn, βm)] · δf(xn, βm)

δβm

=

〈
[y − f(x, βm)] · δf(x, βm)

δβm

〉
m

,

(3.45)
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where we again use the definition (3.42) for the cluster weighted expectation.
Since we use linear parameterized cluster models (3.37), we obtain

0 = 〈[y − f(x, βm)] fj(x)〉m

= 〈y fj(x)〉m −

I∑
i=1

βm,i 〈fj(x) fi(x)〉m .
(3.46)

For each cluster cm, we define the matrix Bji,m = 〈fj(x)fi(x)〉m and the vec-
tor aj,m = 〈yfj(x)〉m, leading to the following simple update for the new cluster
model parameters

βnewm = B−1
m · am . (3.47)

As in the case of the linear local models, a regularization procedure should be
used to deal with singular or ill-conditioned matrices Bm. In our examples, we
used a singular value decomposition with truncated principal components (see
Section 3.2.6).
The updated output variances are now given by

σ2,new
m,y = 〈[y − f(x, βm)]2〉m . (3.48)

3.4 Examples

3.4.1 Noise Reduction

A possible application for the cross prediction introduced in Section 3.1.2 is the
reduction of measurement noise from a deterministic dynamical system [24]. For
this purpose, a noiseless time series from this dynamical system is necessary and
a second time series is generated by corrupting the noiseless data with additive
white noise. Afterward, a model is trained to predict from this noisy time series
the noiseless one. This model can then be used as a tool for noise reduction
on before unseen noisy data from the same dynamical system, given that the
statistical properties of the noise are similar.
In our example, we want to reduce noise from the Rössler system [25]. For

training, we generate a time series with 30 000 points and add white noise with
an SNR of 10dB. The embedding parameters obtained while training the local
model are also used for the the cluster weighted model.
Through the prediction the SNR could be raised to 18dB. An example for the

prediction of the local model is shown in Fig. 3.2. The attractors reconstructed
by an 3D embedding of the original and the predicted test data can be seen in
Fig. 3.3.

3.4.2 Signal Through Chaotic Channel

Closely related to the previous example, where we subtracted measurement noise
from a dynamical system, we now want to reconstruct a signal which is sent
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Fig. 3.2: Noisy input (top), original signal (middle), and local model prediction
(bottom). The CWM prediction looks almost identical.

Fig. 3.3: Original noisy attractor (left) and local model test data prediction (right).

through a chaotic dynamical system, where the signal can be seen as a special
case of dynamical noise. In our numerical example, a music wave file is taken as
the signal and the Lorenz system as the chaotic system. The signal is added to
the first ODE of the Lorenz system, while the variable y is taken as the output
(see Fig. 3.4).
We now want to construct a model which is able to predict the original signal

given the output, without providing any a priori knowledge of the underlying
dynamical system. Like the previous example, this is the case of a cross prediction
without feedback. In the following example, the model is trained using 30 000
point pairs, consisting of the original signal and the output of the chaotic system.
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Fig. 3.4: Illustration of a chaotic channel.

First, we train a locally linear model which also yields good embedding pa-
rameters, which are also used for training a cluster weighted model with locally
quadratic functions. Both models are tested on 10 000 test data points. The locally
linear model has a NMSE of 11.5%, while the cluster weighted model (200 clus-
ters) performed slightly better with a NMSE of 9.8%. The latter result can be seen
in Fig. 3.5. Although the NMSE is quite large, which can also be seen in the plot
of the residuals, the model still shows a good reconstruction of the basic signal
properties.

3.4.3 Friction Modeling

Friction is a very complex and nonlinear phenomenon, comprising various re-
gimes and behavioral facets. While there exist numerous analytical approaches
for describing different aspects of friction phenomena, a model which could ex-
plain all aspects of friction is still missing. In practical control applications where
a high accuracy is demanded, the highly nonlinear dependence of the friction
force on displacement is one of the main problems. Black-box models, which do
not depend on any a priori physical knowledge, can help us deal with this prob-
lem.
Experimental friction data, obtained from an experimental setup done by

Al-Bender, Lampaert, and Tjahjowidodo at the University of Leuven [26], are
used to train local models as well as cluster weighted models. The data consist
of the (desired) displacement P(t) for the model input and the friction force F(t)

(to be applied) for the model output. Therefore, we again have a cross prediction
from P(t) to F(t), but in this case the accuracy of the modeling can be greatly
improved by adding past values F(t − δ) of the friction force to the input vector,
introducing a feedback into the modeling procedure. The training data set con-
sisted of 90 000 data points and the models were tested on 20 000 points. Here, the
models are freely iterated over the complete test data set, i.e., while the position
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Fig. 3.5: Prediction of test data for a music signal using a cluster weighted model.
The first two plots show the output signal from the Lorenz system and the original
input signal. The lower two plots show the CWM prediction and the residuals. The
result from the local model looks almost the same.

values in the input vector are always exact, the friction force is always estimated
(except for the starting value, which is also exact).
Like in the previous examples, we first trained the locally linear model to

obtain good embedding parameters. In this case, we obtained the 5D embedding
vector

x(t) =
(
P(t), P(t − 16), P(t − 66), P(t − 67), F(t − 19)

)
, (3.49)

therefore consisting of four position values and one past force value. It is impor-
tant to note that the optimal delay for the past force value (in this case δ = 19)
can only be obtained through an optimization which depends on the multistep
prediction error. Since the time series is very densely sampled, the optimization
on the one-step prediction error would yield an “optimal” value for the delay
of δ = 1, with the model simply repeating the last force value. Of course, such a
model will lead to bad prediction results when freely iterated over the test data
set.



62 3 Local and Cluster Weighted Modeling for Time Series Prediction

−2

−1.5

−1

−0.5

Lo
ca

l M
od

el

6000 7000 8000 9000 10000 11000 12000
−2

−1.5

−1

−0.5

time [samples]

C
W

MF
ric

tio
n 

F
or

ce
 F

(t
)

Fig. 3.6: Local model (top) and CWM prediction (bottom) for a section of friction
test data; predictions are given by the dashed lines.
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Fig. 3.7: Residuals of local model (top) and CWM prediction (bottom) for the com-
plete friction test data.

Another important effect of the multistep prediction error is the better sta-
bility of the final model during iteration over several steps. In fact, as our tests
show, the last position value P(t−67) is crucial for the stability of the local model,
though it may first seem redundant since it is almost equal to the previous one
as they are only separated by a delay of 1. However, even with this additional
position value, the cluster weighted model could not produce stable results when
iterated over the test data, since it tends to oscillate with a period given by the de-
lay of the past force value. Although one can enforce stability by simply clipping
the model output with the minimum and maximum value of the given output
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data from the training set, the model error gets quite large. Although it is possible
to dampen the oscillations through filtering, the filter introduces new parameters
(order, cutoff frequency) which somehow have to be optimized.
Our approach for solving this problem is to use not one, but three different

CWMs, each having a slightly different delay for the past force value (in this case
we used 17, 19, and 21). This is called a model ensemble, and it is well known that
such ensembles can often lead to better predictions than each single model in
this ensemble could provide [27], although in our case we are more interested
in stability features. The additional position value P(t − 67) was now omitted,
as it was no longer necessary for stability and led in this case to slightly worse
prediction results. Since every model has a different delay for the force value,
each model will tend to oscillate with different periods. When predicting the test
data, we first calculate the three model outputs for each point and simply take
the median, i.e., in this case the output of the model lying between the other two.
The median is fed back to all three models, practically dampening beginning
oscillations. Of course, this procedure can be extended to an arbitrary amount of
models.
The local model (260 neighbors, linear weight function, Euclidean distance,

TPCR with soft threshold and sc = 3 × 10−3 and sw = 0.67) yields a NMSE
of 1.01% over the 20 000 test data points. The CWM ensemble, where each CWM
used quadratic functions and 600 clusters, has almost the same performance with
a NMSE of 1.05% (see Fig. 3.6). This ensemble error is lower than each of the
single model outputs (though only slightly). The residuals for both models can
be seen in Fig. 3.7.

3.5 Conclusion

As our examples show, cluster weighted modeling (CWM) can yield similar per-
formance as local modeling. For pure cross prediction without feedback, CWM
is very easy to use since besides the choice of the cluster functions there is only
one parameter to choose, namely the number of clusters. If one seeks primarily a
compact model, a low number of clusters with linear or even constant models is
the obvious choice. However, from our experience, if the data-generating process
is reasonably complex, a CWM with a low number of clusters can usually not
compete with local models in terms of accuracy. Therefore, if high accuracy is
important, the number of clusters must be chosen high enough (in our examples
several hundred) and quadratic cluster functions are preferable since they often
perform better than linear ones. However, since the number of parameters for
such a CWM becomes very large, especially in high-dimensional spaces, a large
number of data points for training must be available. Additionally, cross valida-
tion or some other means for preventing overfitting is crucial for training such
CWMs. In practice, CWMs with a large number of clusters will often begin to
overfit after only a few iterations of the EM algorithm.
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For prediction with feedback like in the friction modeling example, CWM
has the same problem as almost all other modeling techniques which rely on the
minimization of the one-step prediction error: they often perform badly if iterated
over several steps. In the case of friction modeling we were not able to generate
a CWM which could compete with local models in terms of accuracy, and at
the same time be stable when applied iteratively for predicting the complete test
data set. The usage of an ensemble of CWMs proved to be a good solution for this
problem, but at the cost of a more complicated modeling procedure and higher
computational investment.
Local models have the advantage that they can be explicitly trained on the

multistep prediction error, making them particularly suitable for prediction with
feedback. They are very flexible and can be immediately used without the need
for a training procedure. However, to get very accurate results, one has to opti-
mize the different model parameters like the number of nearest neighbors, met-
ric, weighting, and regularization. One advantage of CWMs is that they provide
a density estimation for the joint probability, from which the model uncertainty
can be estimated. Since clusters are only put in regions of the phase space which
contain data points, CWMs also work well in high-dimensional spaces, and the
clusters can also be used to obtain global properties like dimension estimates [28].
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4 Deterministic and Probabilistic Forecasting
in Reconstructed State Spaces

Holger Kantz and Eckehard Olbrich

A typical time series analysis task is to extract knowledge from the past in order
to make predictions about the future. Such an endeavor relies on the presence of
correlations in time. We present concepts, methods, and algorithms for this task.
Special emphasis is laid on nonlinear stochastic processes, probabilistic predic-
tions, and their verification. Whereas in processes with a rather strong determin-
istic component one is used to predict the most probable future value together
with some uncertainty (error bar), in strongly random processes it is more use-
ful to forecast the probability that the future observation will fall inside a certain
range of values. Such a range of values in applications often relates to an “event,”
so that we also recall the statistical theory of classification and classification er-
rors.

4.1 Introduction

Prediction of the future is a ubiquitous desire of mankind. Whereas ancient cul-
tures might have used rather obscure techniques (e.g., oracles), we try nowadays
to make our forecasts on the basis of objective facts. Evidently, we are in a very
comfortable situation if the phenomenon which we like to forecast follows some
deterministic time evolution, and if moreover we have a full understanding of
the process, and finally are able to determine with sufficient accuracy the cur-
rent state of the system. In weather forecasting, one is close to this situation: the
dynamics of the atmosphere is deterministic and its physics is well understood.
Hence, numerical weather prediction schemes are rather accurate models of what
happens in nature, and feeding them with current measurements of the relevant
inputs yields rather reliable forecasts. The remaining uncertainty is mainly due
to the lack of input data, in particular over the oceans, and partly due to in-
sufficient knowledge of some parameterized processes, such as the microphysics
inside clouds where extremely complicated processes at the phase transition of
water droplets and water vapor occur. If the knowledge about the dynamics of
a process is insufficient or if it is impossible to measure those observables which
are needed to define the actual state of the system, then time series approaches

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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might be a way out. Nonetheless, time series approaches are similar in spirit as
predictions using models: The time series data have to be used for two purposes.
We need to extract rules for the time evolution, i.e., an equivalent to the equa-
tions of motion of a system in its state space, and we need to identify the current
state of the system on which the dynamics acts. Since in this reduced setting
many phenomena which in principle are deterministic might appear stochastic,
a weaker form of prediction will naturally arise: probabilistic predictions, where
we cannot reliably give a precise value for a quantity at some time in the future,
but only a probability that the value will be inside some interval. Such probabilis-
tic prediction schemes are still very useful, but they require more sophisticated
concepts for their verification than deterministic predictions: Probabilistic predic-
tions do not allow us to compute a prediction error.
In this chapter we start with the concept of state space reconstruction which

was introduced about 25 years ago for the analysis of time series data for low-
dimensional deterministic systems. Prediction schemes on different technical lev-
els are then rather straightforwardly derived from the concept of determinism.
As a step beyond standard results, we will discuss already here a state-dependent
uncertainty of predictions. In other words, we will interpret additional structure
in data in a way to “predict the error” of a specific prediction. The need to do
so is evident: As an example, we are all aware of weather conditions where a
forecast about rain on the next days is highly likely to be true, and that there are
other weather conditions where such a forecast is very uncertain. In fact, based
on the technique of ensemble forecasts, weather forecasts are nowadays often
annotated by labels such as “certain” or “less certain,” and here we will outline
how to achieve similar information from time series data.
We will then argue in more detail why deterministic phenomena are rare

when we deal with time series data. The much more appropriate model class
which should be represented by our prediction consists of nonlinear stochastic
processes. As a detour, we will first recall a method to reconstruct Fokker–Planck
equations from data. This is a conceptually very interesting approach, which suf-
fers, however, from two shortcomings: First of all, the process must be Markovian,
and secondly one must be able to record all state variables of the system. In cases
where one or both requirements are violated, a continuous state Markov chain,
i.e., a model in discrete time, may be a useful approximation.
In the following we will ignore the everyday experience and assume that the

process underlying our time series data is stationary. We hence use the hypothesis
that process parameters in the future will be identical to those in the past, and
that, more precisely, (a) all conditional probabilities do not explicitly depend on
time, and (b) that the process is recurrent. We can then assume that (a) what we
extract from the past is a good characterization of the future and that (b) there
exist similarities in the past which allow us to extrapolate from the presence into
the future.
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4.2 Determinism and Embedding

Let us assume that the time evolution of the system which we observe can be
described by deterministic equations of motion. As examples where this is cer-
tainly true we can list many physical laboratory experiments, such as (nonlinear)
electric resonance circuits and mechanical devices, but also the almost nondissi-
pative motion in our planetary system. Formally, such dynamics are described
by a set of first-order differential equations,

ẋ = f(x), x ∈ Γ ⊂ RD, f : RD → RD Lipschitz continuous, (4.1)

which together with an initial condition x(0) = x0 uniquely determine the trajec-
tor x(t) for all times t � 0.
A time series {sn} , n = 1, . . . , N, is obtained by applying a measurement func-

tion s = h(x) : Γ → R to the trajectory x(t) at equidistant times tn = n∆. ∆ is
called the sampling interval and 1/∆ is the sampling frequency, giving rise to a
finite number of measurementsN. The sampling interval has to be adopted to the
time scales involved in the dynamics, i.e., it must not be too large. On the other
hand, too small ∆ (called oversampling) is a waste of resources and leads to time
series which can be compressed by down-sampling. Experience shows that for
irregular (chaotic) fluctuations one should use about 20 to 50 sample points per
typical oscillation period. Of course, if more than a single measurement device
is used, one might record simultaneously the values of different measurement
functions, which is advantageous. In the following we will follow the folklore
and assume the worst case of a single observable, but the extension to multivari-
ate data (multichannel measurements) will be outlined as well.
Having introduced the notion of sampling, we are dealing with a dynam-

ical system in discrete time. The situation of Eq. 4.1 can be formally cast into
discrete time: denoting by F(x) the time-∆ map of the flow, it gives rise to the
iteration of the map x((n + 1)∆] = F[x(n∆)). Predictions in this situation would
mean to propose a value x̂ which is as close as possible to the yet unknown
state x((n + 1)∆). Knowing F and x(n∆) we can evidently make the perfect pre-
diction x̂ = F(x(n∆)). Having only the observations sn, sn−1, . . . available mod-
ifies the situation in several respects: First, the goal of the prediction can only
be a proposed value for sn+1, not for x((n + 1)∆), since x((n + 1)∆) will re-
main unknown even after the future measurements and hence a prediction for
x((n+1)∆) could not be verified.1 We know that sn+1 = h

(
x((n+1)∆)

)
; hence we

can hope to be able to infer the current state x(n∆) from our measurements and
to find from the past data a rule how to propagate this state one time step into
the future. The above-introduced structure is in principle sufficient to provide the

1 Note, however, the conceptually very interesting approach outlined in [1] which in principle enables
one to reconstruct model equations in the unobserved phase space from time series measurements
(assuming knowledge of h(x)), at the cost of solving a highly demanding nonlinear minimization
problem.
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mathematical tools for this; however, it is very useful to introduce an additional
concept, namely the concept of the attractor.
In most dynamical systems describing physically relevant situations, a single

initial condition does not create a trajectory which explores the full phase space.
Instead, “typical” (i.e., apart from a set of Lebesgue-measure zero) initial condi-
tions lead to trajectories x(t) which asymptotically settle down on an invariant
set A ⊂ Γ , whose dimensionality D0 can be (much) smaller than D. A drastic
physical example is the Rayleigh–Bénard experiment, where some liquid is con-
fined by two plates and heated from below but cooled from above: For moderate
temperature differences, convection rolls can be observed, which are a kind of
low-dimensional collective behavior of the more than 1023 degrees of freedom in
the system (i.e., D ≈ 1023, D0 = O(10)).
The important result is stated by the Takens theorem [2] and its more recent

formulation [3]: Given a dynamical system ẋ = f(x) in a phase space Γ ⊂ RD,
a measurement function h : RD → R, and a sampling interval ∆. Let the tra-
jectory x(t) be confined to an f-invariant set A ⊂ Γ , with the box-counting di-
mension D0. Denote the scalar measurements obtained through the sampling
by sn := h(x(t = n∆)). Consider the delay embedding space spanned by delay
vectors sn = (sn, sn−τ, sn−2τ, . . . , sn−(m−1)τ) for some positive integersm and τ.
If m > 2D0, then there exists a unique smooth map from A into the delay em-
bedding space, which is invertible and has nonzero derivative on the image of A
in Rm. A is then said to be immersed in Rm. This holds for prevalent h, generic f,
almost all ∆, and every τ ∈ N.
Hence, the m-dimensional delay embedding space is equivalent to the orig-

inal unobserved phase space of the dynamical system, since in particular the
dynamics of s is deterministic: Denote the projection by the measurement and
the subsequent embedding by i; then the following commutative diagram exists:

sn
G�−−−−→ sn+1�i

�i

x(t = n∆)
F�−−−−→ x(t = (n + 1)∆)

(4.2)

where F denotes the time-∆ map of the flow f. For a deeper discussion of this
theorem and also of the choice of the time lag τ see, e.g., [4, 5]. If we do not
know D0 or not even D, we have to infer the smallest number m which gives rise
to an embedding empirically, and again there are several concepts available [4,
5]. Since this review is concerned with predictions, we will forget about these
considerations and treat m and τ just as parameters in the prediction schemes
which have to be tuned for optimal predictions.
The scheme (4.2) now gives the guideline for predictions: Find a “good” inte-

germ so that sn is equivalent to the unobserved state vector x(n∆) and apply the
dynamics G to it. Since the embedding vector sn+1 one time step ahead can be
found by copying all but the very first component, sn+1, from sn, the unknown
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part of G is a scalar function g(sn) = sn+1. This function has to be “learned”
from the data.
Indeed, the time series {s1, . . . , sn} contains many training pairs (sk, sk+1)

from which we can extract g. If we assume that g is differentiable, then we can
write

sn+1 = sk+1 + ∇g(sn)(sn − sk) + O(|sn − sk|2) . (4.3)

Following Farmer and Sidorowich [6], we can use this relation to construct a
locally constant (or zeroth-order) predictor in the following way:

ŝn+1 =

∑
k : |sk−sn|<ε sk+1∑

k : |sk−sn|<ε 1
, (4.4)

where ε � 1 is another parameter. Differentiability of g is only required for a
formal control of the remainders, whereas the expression itself yields reasonable
predictions if g is continuous, and can even be applied if g is noncontinuous on
a set of measure zero.
A better approximation of the local dynamics can be achieved if linear cor-

rections with ∇g are taken into account. For that purpose one again considers
all past states sk in the ε-neighborhood Un of sn and introduces the averages
s̄n−l := 〈sk−l〉Un

(the average s̄n+1 then simply being the predictor (4.4)). The
set of relations sk+1 = s̄n+1 +

∑m
i=1 ai(n)(sk−i+1 − s̄n−i+1) + σk for k : |sk −

sn| < ε gives rise to a minimization problem for
∑

k σ2
k, which yields the coeffi-

cients ai(n) of ∇g(s̄n). Hence the locally linear (or first-order) predictor reads

ŝn+1 = s̄n+1 +

m∑
i=1

ai(n)(sn−i+1 − s̄n−1+1) . (4.5)

Let us emphasize that the construction of the coefficients ai is repeated for
every prediction, so that these are explicitly n-dependent. This is reflected by the
name locally linear predictor. Both prediction schemes have been widely used in
the literature. Moreover, there are many interesting issues related to predictions
and modeling, see, e.g., [1, 7, 8]. The function g(s) is a scalar field on Rm. If it
is sufficiently smooth, one can of course also approximate it by a single global
function ĝ which can be fitted to the data. Then one has to minimize the mean-
squared prediction error

ē2 :=

N−1∑
n=m

(
sn+1 − ĝ(sn)

)2
, (4.6)

where the minimization is done with respect to the parameters contained in ĝ. If
parameters enter linearly in ĝ, i.e., if ĝ is a linear combination of parameter free
terms, then this minimization is straightforward. In fact, the locally constant and
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Fig. 4.1: The predicted values ŝn+1 obtained by the locally constant pre-
dictor (4.4) for a time series of the second iterate of the logistic equa-
tion, sn+1 = f(sn), f(sn) = −1 + 8s2

n − 8s4
n, together with the graph of f(s). The

systematic deviation between predictions and graph is a result of the smoothing
due to the finite ε in the predictor (for didactic purposes, we used the rather big
value ε = 0.15).

the local linear models result from this minimization if one assumes ĝ to be con-
stant or linear in sn, respectively, and restricts the sum over the training pairs, n,
to a neighborhood of the actual delay vector. Examples of global nonlinear func-
tions are multivariate polynomials [9] on s or so-called radial basis functions [10].
In feed-forward neural networks, which also establish a nonlinear input–output
relation [11], parameters enter in a nonlinear way in ĝ, so that sophisticated min-
imization schemes (e.g., error back-propagation) are needed, such that training
neural networks is an art of its own.
The minimization of the mean-squared prediction error leads to an unbiased

estimate of the dynamics only if the training pairs are uncorrelated, which for
time series data is evidently violated but which usually (for sufficiently large
data sets) is not a practical problem. If errors are assumed to be Gaussian, then
together with the independence this minimization leads to the optimal predictor
in the framework of the maximum likelihood principle.
We want to finish the section on deterministic data by a discussion of the ori-

gin of prediction errors and of their size distribution. Evident systematic errors
might be introduced if the data do not fulfill the assumptions made by the predic-
tor about the dynamics. This concerns in an evident way a too small embedding
dimension m, but also smoothness or continuity. Moreover, an important issue
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is overfitting or generalization: The predictor contains the information of those
situations on which the predictor has been optimized. For a check of whether
the predictor really describes the dynamics or whether it just describes the past
data one has to apply it to a test set, i.e., to a set of pairs (sk+1, sk) which have
not been used to fit the coefficients in the predictor. If the data set is small, this
is usually done by (complete) cross-validation or leave one out statistics: When per-
forming a prediction for sn+1, one excludes the training pair (sn+1, sn) from the
database (and usually also all those training pairs in the future which are cor-
related with sn+1). A prediction error 〈(ŝn+1 − sn+1)2〉 computed this way is
called out-of-sample error and is the only quantity which faithfully tells how well
the predictor will perform on future data (stationarity provided).
Even with great care and in favorable situations there will remain two sources

of errors: systematic errors which are introduced by a lack of flexibility of the
model of g which is (implicitly or explicitly) established by the predictor, and
statistical errors because of all kinds of noises. As an example of the systematic
errors, think of the seemingly parameter-free model (4.4): In the language of
statistics, this is a kernel estimator with a bandwidth ε, i.e., the true structures
in g are smoothed out by a length scale ε. Hence, if ε is large compared to the
structure in g, such a predictor will generate systematic errors. In addition, for
points at the boundary of the attractor, neighboring points are systematically
located on the inside, so that the prediction is systematically biased. In Fig. 4.1
we illustrate this for data generated by the logistic equation. Unfortunately, the
size of ε is limited from below by the time series length N and the embedding
dimension m: Inside the m-dimensional ε-neighborhood of sn we must find at
least one neighboring point in order to have an estimate of ŝn+1, so that the mean
nearest-neighbor distance is a lower bound for ε.
Statistical errors are usually introduced through measurement noises on the

recorded data. On the one hand, this uncertainty causes some uncertainty about
the current state (which is represented by the noisy delay vector), on the other
hand also the future observation will be noisy, the noise part not being pre-
dictable. Hence, in the best case the root-mean-squared prediction error is the
standard deviation of this noise. For linear processes, the average prediction er-
ror should be independent of the state sn. For nonlinear processes, however,
deficiencies of the predictor as well as the amplification of noise on the delay
vector might depend on the state and hence cause prediction errors whose mag-
nitude depends on the state. Chaotic systems contain directions in state space
which are expanding, i.e., trajectories originating from nearby points diverge ex-
ponentially fast with probability one. This stretching or instability of solutions
causes an amplification of every uncertainty about the current state of a system.
However, the stretching rates can depend significantly on the state vector. Irre-
spective of whether this is really the origin of prediction errors, the magnitude of
the expected error can be easily predicted. The more accurate but also more com-
putation intense way is to first compute the prediction errors on a large training
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set (possibly by complete cross-validation) and storing them. Then performing
the actual predictions, one can search for neighbors in the training set and pos-
tulate that the actual error will be bound by the maximum of the errors made for
predictions on the neighboring points. This is what we call predicted error ampli-
tude in Fig. 4.2. As we see, it is indeed a fair estimate of the upper bound of the
individual prediction errors on the test set. A simpler, slightly less accurate ap-
proach (because it cannot incorporate systematic errors and hence reflects only
errors due to noise) can be easily derived within the framework of the locally
constant predictor: In the locally constant predictor, the prediction is the mean of
the images of neighboring state vectors. The expected error is naturally restricted
by the width of the distribution of these images, i.e., the true future value should
be inside the range of these images, which hence could be given as an error inter-
val. If the input data are noisy, so that this amplifies the uncertainty, the standard
deviation

σ̂n =

√
〈(sk+1 − ŝn+1)2〉Un

(4.7)

should be characteristic of the distribution of state-dependent prediction errors.
That the actual prediction errors are actually much smaller, when determinism
is strong, is related to the fact that the deterministic part of the misprediction
is related to the difference between the mean value of the neighbors and the
actual value from which the prediction starts, amplified by the local stretching
rate. Since this distance often is tiny, prediction errors for numerically generated
deterministic data without additive noise are usually much smaller. In Fig. 4.2
the prediction of the error amplitude is illustrated for experimental data from
an NMR laser which are representing low-dimensional dynamics contaminated
by a few percent of noise. As this example shows, the magnitude of the predic-
tion error can be correctly predicted in this way, i.e., one can easily equip every
prediction with an error bar. In the example shown the error amplitudes can ev-
idently vary by almost two orders of magnitude, so that the advance knowledge
of this magnitude is a valuable additional information.
Often, one wants to predict more than one time step ahead. This could be

done by iterating predictions, i.e., by using the prediction ŝn+1, either to construct
a new delay vector ŝn+1, which is the input for the prediction ŝn+2, and so on,
or to use a predictor which in a single step makes a prediction for the time n + r.
The latter is easily done by replacing the training pairs (sk, sk+1) by training
pairs (sk, sk+r). In both cases, the prediction error will grow exponentially in r

(if the data represent a deterministic chaotic process), but whereas in the latter
case it will saturate at the standard deviation of the data, for iterated predictions
it should saturate at about

√
2 times the standard deviation. The reason is that

the images sk+r for big r will cover the whole range of s, so that the single jump
predictor for large r will just produce the mean value of s as output (leading to a
root-mean-squared prediction error identical to the standard deviation), whereas
the iterated one-step predictions will smoothly pass over to modeling (if the
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Fig. 4.2: Left panel: a set of 1000 prediction errors versus the individually predicted
error amplitude. Right panel: plotting the predicted error amplitudes versus the
standard deviations σ̂n shows that the latter offer a slightly less accurate but much
simpler prediction of the error amplitudes. Data: experimental data from an NMR
laser discussed in detail in [5].

predictor is good), i.e., the predicted trajectory will continue to fluctuate as the
true process, but for large r these fluctuations will lose their correlation with the
true time series. However, if one wants to use global nonlinear functions g(s) for
predictions (e.g., multivariate polynomials or neural networks), one should use
iterated one-step predictions: The map sn �→ sn+1 is much less nonlinear than
the map sn �→ sn+r, r > 1, so that a faithful global fitting of the latter requires a
much more flexible function g and hence many more coefficients to be fitted.
If more than one observable is recorded, i.e., if we work with multi-chan-

nel recordings, then the only modification needed lies in the definition of the
state vectors sn: One then uses multivariate delay vectors, i.e., one combines all
recorded observables taken at successive time steps to delay vectors. The total
number of elements in these vectors should then replace the integer m in the
Takens theorem and hence should be larger than twice the dimension of the in-
variant set. A numerical toolbox for the analysis of data in terms of determinism,
including the two nonparametric predictors (4.4) and (4.5), is freely available as
the TISEAN package [12].

4.3 Stochastic Processes

Although a deterministic relationship between the current state and the future
is most desirable, in many situations it does not exist. Even in cases where it
exists it is often not explorable. As an example, it is intuitively clear that a lo-
cal wind speed measurement is such a poor representation of the wind field in
the three-dimensional space that the determinism of the Navier–Stokes equations
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cannot be exploited for forecasting the local wind speed. More formally, even if
the dynamics in its state space lives on a finite-dimensional attractor, the attractor
dimension is often much too large for a reconstruction of the state vectors by de-
lay vectors. This has two reasons: Even without chaos, the embedding of dynam-
ics on a high-dimensional set poses practical problems, since neighboring vectors
have a large average distance. More precisely, if one distributes N vectors in
a D-dimensional hypercube of unit length, then the average inter-point-distance
is about N−1/D. An even more severe problem is introduced by chaos: The in-
stability and irregularity of chaos has the consequence that the invariant set in
the time delay embedding space has a much more complicated structure than
the same set in the original state space. This is related to the lack of correlations
between time series elements which are far apart in time. Both effects together
lead to the observation that high-dimensional chaotic dynamics can hardly be
identified as being deterministic by time series tools applied to time series of
tractable length and with realistic noise levels [13].
Hence, it is often plausible that the dynamics underlying a given time series

is generated by a stochastic process. If we assume some dominant deterministic
feedback loops acting on some relevant variables and represent all other variables
by white noise and damping, then the mathematical formulation of the equations
of motion is a vector-valued stochastic differential equation

dxi = fi(x)dt +
∑

Gij(x)dWj , i = 1, . . . , D (4.8)

(Ito stochastic calculus assumed) where Gij(x) is a D × D tensor which deter-
mines the amplitudes and correlations of the noise inputs represented by dWi,
the differentials of the Wiener process [14]. Such an equation can be converted
into a Fokker–Planck equation which describes the time evolution of the phase
space density,

ρ̇(x) = −∂i(D
(1)
i (x) + D

(2)
ij (x)∂j)ρ(x) . (4.9)

The drift terms are simply D
(1)
i (x) = fi(x); the diffusion terms read D

(2)
ij (x) =

Gik(x)Gkj(x) (summing over multiply occurring indices).
In data analysis, the task is now to reconstruct the drift field D

(1)
i (x) and the

diffusion tensor D
(2)
ij (x) from time series data. This can only be done if either the

state space variables x are directly recorded or they can be obtained from the ob-
served quantities by a simple transformation. In other words, the structure of the
Fokker–Planck equation cannot be converted into any kind of delay embedding
space.
We will therefore assume that the recorded time series contain the simulta-

neous measurement of a multicomponent state vector of a system. Then the first
test of whether this hypothesis is reasonable is a test for the Markov property: If
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indeed a measured vector represents the state of a Markov process, then a prop-
erty called the Chapman–Kolmogorov equation is fulfilled,

P
(
x(t2) | x(t1)

)
=

∫
P
(
x(t2) | x(t ′)

)
P
(
x(t ′) | x(t1)

)
dx(t ′) ∀ t1 < t ′ < t2 ,

(4.10)

where P
(
x(t2) | x(t1)

)
denotes the conditional probability to observe x(t2) at

time t2 provided to have measured x(t1) at time t1. If the Markov property is
thus established, the drift and diffusion terms can be estimated by the following
conditional averages (provided ∆ is sufficiently small):

D
(1)
i (x) ≈ 1

∆
〈xi (t + ∆) − xi (t)〉|x(t)=x (4.11)

D
(2)
ij (x) ≈ 1

2∆

(〈(
xi(t + ∆) − xi(t)

)(
xj(t + ∆) − xj(t)

)〉
x(t)=x

− ∆2D
(1)
i D

(1)
j

)
.

(4.12)

In a sequence of pioneering publications Friedrich and Peinke [15, 16] have ap-
plied this modeling technique to several data sets. Among them is highway traf-
fic, where the independent observables are the flux of cars and their speed, which
could nicely be described by a Fokker–Planck equation [17]. Another concerns
an erratic metal cutting process [18]. The limitation of this conceptually very
nice method is not only given by the requirement to deal with multivariate data
which represent the state vectors of the system, but also by the attempt to adopt
a model in continuous time to data with discrete sampling. If the sampling rate
is too coarse, a proper estimation of the drift and diffusion terms suffers from
systematic errors of the order of the square of the sampling interval.
In order to generate a forecast from this model, one would integrate the

Fokker–Planck equation forward in time, starting with an initial density which
is a δ-peak located at the most recent measurement. The prediction which mini-
mizes the root-mean-square (rms) prediction errors is the (time-dependent) mean
of the evolving probability density. An alternative to integrating the Fokker–
Planck equation (which is a partial differential equation) would be to represent
the temporally evolving density by a finite sample of trajectories which them-
selves are solutions of the corresponding Langevin equation. For this purpose,
one has to select a suitable integration scheme for stochastic differential equa-
tions. A very simple one is the Euler integrator, where the noise amplitude has
to be rescaled with the square root of the step width

x(t + ∆) ≈ x(t) + ∆
(
f
(
x(t)

)
+

1√
∆

G(x)ξ
)

. (4.13)

In many time series applications, a Fokker–Planck model is out of reach, most
often, because the time series is univariate. In such cases, and also, if the sam-
pling interval is large compared to the internal time scales of the process, a time
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discrete modeling which allows for a more than one-step memory is more use-
ful. If the number of possible states is finite (i.e., if the time series is a symbol
sequence with a finite number of different possible symbols), then such a model
is known as Markov chain. The relation between all possible states (inputs) and
all possible states (output) is fully specified by a Markov matrix (aij) with the
following properties:

0 � aij � 1 ∀i, j (4.14)∑
j

aij = 1 ∀i . (4.15)

The entry aij of this matrix then denotes the transition probability from state i to
state j. If the order of the Markov chain is m > 1, i.e., if the current state is
encoded by a sequence ofm symbols rather than by a single symbol, then the set
of all possible sequences of m symbols has to be enumerated, and the transition
probabilities in between all states j → k which do not fulfill the condition that
state k can be gained from j by chopping the first symbol and by appending a last
symbol has to be zero. Evidently, a sufficiently long symbol sequence can easily
be converted into a correspondingly large set of input–output states, which can
be used to determine the matrix coefficients aij by simple counting with proper
normalization.
For real-valued time series, this concept can be easily generalized [19, 20]: If

the state of the stochastic process is fully defined by the sequence of the m past
measurements, then the probability for finding a given value s ′ in the following
measurement is most sharply defined, i.e., then no better knowledge of the fu-
ture state is possible than given by the conditional probability p(s ′ | sn, sn−1, . . . ,

sn−m+1). Hence the full process is characterized by all possible conditional prob-
abilities of this kind. This is a continuous state Markov chain of order m.
The conditional probability densities (cpdf) p(s ′ | sn, sn−1, . . . , sn−m+1) can

be estimated from time series data under the assumption that they are continuous
under the condition sn = (sn, sn−1, . . . , sn−m+1), i.e., that the probability p(s ′ |

sn) remains almost unchanged if one changes sn slightly. Then one proceeds
as in deterministic cases: For given sn one determines the set Un = {sk : |sk −

sn| � ε} with k < n (for causality). Following the above assumption, the known
“futures” sk+1 are distributed according to the unknown p(s ′ | sn) which can
hence be estimated from this finite sample of {sk+1} (e.g., as a histogram). The
value ŝn+1 which minimizes the error with respect to the true future sn+1 in
the root-mean-squared sense is again the mean of this distribution, which can be
estimated directly (i.e., without estimating the cpdf) from the set of {sk+1} as

ŝn+1 =
1

|Un|

∑
k : sk∈Un

sk+1 . (4.16)

As a consequence, when we use the locally constant predictor, then we need not
think about whether the process is deterministic or stochastic, the algorithm is
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equally well justified. Also in the stochastic case one will optimize the rms pre-
diction error with respect to m, i.e., one will vary the embedding dimension. We
should add that even if the observed process in its true state space is Markovian,
it is usually not Markovian when reconstructed through some observable. There-
fore, in theory in most situations no finite perfectm exists, but in practice (finite
data set, measurement noise) some not too big m is optimal. For very large m,
a fixed diameter neighborhood U will be typically empty, so that no conditional
pdf can be estimated, and a nonempty neighborhood must have such a big di-
ameter that the continuity assumption of the cpdf can no longer justify that the
set of {sk+1} should be distributed according to p(s ′ | sn, sn−1, . . . , sn−m+1), i.e.,
we end up with a systematic misestimation of this cpdf. However, such problems
will inevitably worsen the out-of-sample prediction error, so thatm can be safely
optimized by simple variation and calculation of this error.
The Langevin dynamics (4.8) has, through the state-dependent tensor g(x), a

state-dependent noise amplitude. Translated into the Markov chain model, this
means that the variances of the cpdf can well depend on the state sn. In fact, as
in the deterministic case, the standard deviation of the cpdf is an estimate of the
prediction error to be expected. This is illustrated in Fig. 4.3 for the prediction of
wind speed measurements by Markov chains. We see a good correlation between
the actual differences |ŝn − sn| and the standard deviation of the corresponding
cpdf. As an alternative, one could easily determine the value δsn+1, so that the
true future observation is inside an interval ŝn+1 ± δsn+1 with, e.g., 90% proba-
bility.
Having determined a probability distribution rather than a single value allows

us to perform various other predictions. As an evident example, one can deter-
mine the probability that the next measurement will be above or below a certain
threshold or that it will be outside some interval. One could also determine the
median instead of the mean, or the most probable value, which minimizes other
measures of error.
At the end of this section we want to mention a special case of time discrete

stochastic models, the linear Gaussian models. They are most generally defined
as a linear stochastic process in a vector-valued state space,

xn+1 = A xn + νn (4.17)

sn+1 = Cxn+1 + ηn+1 (4.18)

with νn and ηn denoting dynamical and measurement noise, respectively, and xn

a hidden state. In its state space the process is Markovian. However, as a step
closer to realistic situations, one assumes that a time series represents, as before,
an observable which is a linear function of the state variables, including some
measurement noise. Also in this purely linear setting, the recorded time series
does generally no longer represent a Markov process. Two alternative approaches
for the analysis and modeling of such data are fully worked out: Either one tries
to infer the model in its state space. This is outlined in the literature under the
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Fig. 4.3: The individual forecast errors obtained from 4000 predictions of surface
wind speeds by Markov chains of order 20, and their mean values obtained on
vertical stripes, versus the standard deviations of the corresponding cpdfs. As one
sees, these standard deviations yield a faithful estimate of the magnitude of the
errors to be expected.

keyword state space models [21], where the essential tool is the Kalman filter, and
which is also related to hidden Markov models.
The alternative is modeling the dynamics of the observable s directly. Then the

class of models is known as moving average MA(m) and as autoregressive AR(n)
models, which generally are more efficient in their combination to ARMA(n, m)
models. The MA part is non-Markovian and takes the loss of information about
the current state by projection from the state space to the reals into account. For
simplicity, we will restrict our discussion here to AR models. An AR(n) model
generates the future observation sn+1 as a linear combination of the last n time
series elements (assuming zero mean of the data set), plus some Gaussian dis-
tributed random number

sn+1 =

n∑
k=1

aksn−k+1 + ξn , (4.19)

where ξn are independent Gaussian random numbers with zero mean and unit
variance. Stability of the output (sn should remain finite for n → ∞) imposes
some constraints on the coefficients ak [22], which are not necessarily fulfilled
if the coefficients are obtained from a fit to data [23]. However, for predictions
stability is not an issue, since the model is iterated only once or a few time steps.
So for a given time series one finds ak by writing down the mean-squared error
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obtained by the predictor ŝn+1 =
∑n

k=1 aksn−k+1 and minimizes the latter with
respect to the parameters ak. This leads to a set of coupled equations which are
linear in ak and hence can be solved by matrix inversion. So, ŝn+1, the determin-
istic part of the model, is the prediction, and due to the model structure, the true
observation (provided the fitted coefficients are a fair estimate of the coefficients
used to generate the data) follows a Gaussian distribution with unit variance
around this predicted value. So the prediction error is independent of the state
of the process. If this is not the case (a cross-correlation analysis between the
residuals ξ̂n = ŝn+1 − sn+1 and sn+1 is recommended), then either the order of
the model is not matched or the real process is more complex than linear. From
Eq. (4.19) it becomes evident that an AR(m) model is a special case of a contin-
uous state Markov chain of order m, the cpdfs being Gaussians of unit variance
centered around the deterministic sn+1 =

∑m
i=1 aisn−i+1.

What we wrote about multichannel measurements and about more-than-one-
step-ahead predictions in the deterministic case applies here as well.

4.4 Events and Classification Error

Another typical prediction task is the prediction of events. In this case, the pre-
diction itself is a classification: either the precise value of the observable is such
that we say that the event happens, or it is different and no event is happening.
As an illustration, one could record a river level and speak about a flood if the
river level exceeds the height of the levees, or we can record a human EEG and
speak about an epileptic seizure if the EEG shows a certain signature. So even if
as inputs we use some real-valued variables, the prediction is a yes/no classifi-
cation. This has several implications and difficulties.
The standard approach to optimize predictions is to minimize the prediction

error, as we did before. Here, an obvious definition of a prediction error does not
exist, and instead one speaks about the classification error. Predicting an event
to happen, there could be no event taking place, which is a false alarm. On the
other hand, events can take place if they have not been predicted. If events are
as rare as they are in fact in many applications (think of earthquakes), a kind of
prediction error will be reasonably low if our prediction scheme just promises no
event to happen at all. This is evidently a worthless prediction scheme. Instead,
our predictions are good if we have a high hit rate (number of hits divided by the
total number of events) at a low false alarm rate (number of false alarms divided
by the number of nonevents). As a benchmark, an algorithm which generates
predictions randomly without any knowledge about the reality with a given rate
of predicted events will cause the hit rate to be the same as the false alarm rate.
This problem is also sometimes discussed as the issue of sensitivity versus speci-
ficity [24]: The predictor should sense that something is coming up (sensitivity),
but its prediction should be specific, i.e., it should only predict if the real thing
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is coming. The statistical tool for the analysis of these properties is the ROC (re-
ceiver operating characteristic) statistics [25] and will be outlined below.
If the events to be predicted are rare, also the ROC statistics does not report

the success of predictions fairly. As an example, think again of an earthquake: If
one were able to predict a major earthquake for a given day, but it takes place
a day earlier or later, we would call this a quite precise prediction. In terms of
hit rate and false alarms, this one day shift would cause one false alarm and
one missed hit, the same as if the prediction had been off by a month. However,
if we think that this prediction was targeting a city to be evacuated, a few-day
misprediction might already cause a disaster, which illustrates that the tolerance
in time which determines whether the prediction is a good or a bad hit is not
just governed by the phenomenon to be predicted (dramatic earthquakes in large
cities have a return period of centuries, so that even a year of misprediction would
not be bad), but also by how we (can) make use of the prediction. And exactly
this is the reason why currently no better error measure than the classification
error is used.
In the following we will assume that the time series reports the value of some

continuous observable sn, and that an event takes place when its value is inside
some specific interval. As an example, think of the water level of a river, where a
flood occurs when it exceeds a certain threshold, sn > c.
If a phenomenon has a low-dimensional deterministic time evolution, the best

strategy for the prediction of an event would be to predict the real-valued observ-
able ŝn+1 and to convert this value into whether the event takes place or not. If
the rms prediction error of this prediction is low, then also the events should be
fairly well predicted. Nonetheless, the latter prediction will be characterized by
the hit rate and the false alarms rate.
In many more situations, the phenomenon will appear stochastic. In this case

one should not use the predicted value ŝn+1, since for principal reasons the true
value sn+1 will deviate from the prediction, and this deviation might be large.
Therefore, one should study the predicted distribution for the future values and
estimate how probable it is that the future value will fulfill the criterion for the
event to take place. If the stochastic time series model is an AR model, then the
distribution of the future is a Gaussian with known (state-independent) width
around the predicted value ŝn+1 (compare Eq. (4.19)). If the stochastic time series
model is a continuous state Markov chain, then the distribution of the future
value depends on the current state in all its details, but it can be estimated from
the data in generalization of Eq. (4.16),

p(C) :=

∫
C

p(s | sn)ds ≈ 1

|Uε(sn)|

∑
k : sk∈Uε(sn)

ΞC(sk+1) , (4.20)

where ΞC(x) is the index function of the set C, i.e., ΞC(x) = 1 if x ∈ C and 0

else, and Uε(sn) is the set of ε-neighbors of the conditioning vector sn, i.e., sk ∈
U(sn) : |sk−sn| < ε and |Uε(sn)| denotes the number of elements in this set. If we
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choose for C the bins of a histogram, we can thus obtain an estimate of p(s | sn).
Under the aspect of events, one would split the range of the observable s into a
set C and its complement, defining an event e to take place at time n if sn ∈ C.
Then Eq. (4.20) applies again and we have

p̂n+1 = prob(event at time n + 1) = p(e | sn)

=
number of images sk+1in C

|Uε(sn)|
.

(4.21)

In summary, probabilistic prediction of events supplies an estimated time de-
pendent probability 0 � p̂n+1 � 1 for the event to take place at time n + 1.
Before we ask for the performance of this prediction scheme, we have to think
about its validation: How can we verify that the predicted probabilities are mean-
ingful if the future observation to be made will give a yes/no answer? The
self-consistency check which is employed in weather predictions is called reli-
ability test. It consists in the construction of suitable subsamples. The first one
performs a large number of predictions. Then for all possible values 0 � r � 1 of
the predicted probability one constructs a sample Sr = {k : p̂k+1 ∈ [r, r + δr]}. For
each of these samples one can compute the number of events, i.e., the number nr

of situations where sk+1 ∈ C. If we denote by Nr the total size of the sam-
ple Sr, then fr = nr/Nr is a number between 0 and 1. Now consistency requires
that fr ≈ r within the statistical errors. A systematic deviation of fr ≈ r indicates
a systematic misestimation of the predicted probabilities and hence some bias
in the algorithm and is therefore a starting point for improvements. However,
even if this test is successful, it does not say anything about the performance as a
predictor. As an extreme but evident example consider a predictor which gives a
time-independent probability for the event to come. Then there is only one non-
empty subsample Sr which contains all time series elements. The value for fr in
this case is just the average rate of events. So if the constant prediction is exactly
this value, then the predictor passes the test, otherwise not. If in Germany the
maximum daily temperature remains below 0 ◦C on 30 days per year on average,
then the prediction that tomorrow the maximum temperature will be below zero
with a probability of 30

365 is correct and consistent, but this is evidently not the
optimal prediction since it ignores the existence of the seasons. Hence, passing
the reliability test is a necessary property of a probabilistic predictor, but it does
not tell anything about its optimality.
As we mentioned before, predicting events is a kind of classification task. In

fact, in classical statistics classification is a well-defined problem: One assumes
that the system has some well-defined state, and tries to figure out in which state
the system is based on observations. When doing predictions we want to predict
the state in the future, which requires more sophisticated data analysis (or might
even be impossible), but in terms of assessing the performance it is the same
statistical problem. And this problem is the issue of the Bayesian equality: From
the history we can collect all events, and we can therefore study the conditional
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probability that a particular state vector s has been observed given the following
event. However, for predictions we need the opposite, the conditional probability
of an event to follow given a certain state vector. These two conditional probabil-
ities are related by the Bayesian theorem which follows straightforwardly from
multiplying each of the two conditional probabilities by a marginal probability
in order to arrive at the same joint probability

P(e | s) = P(s | e)
p(e)

p(s)
. (4.22)

The hit rate of our predictor is related to the knowledge of P(s | e), whereas
the false alarm rate is related to (1 − P(e | s))p(s)/(1 − p(e)). What Eq. (4.22)
shows is simply that there is no easy relation between hit rate and false alarm
rate, but that instead these are two independent quantities characterizing the
combination of predictor and process. Finding the optimal predictor means to
find the optimal representation of the state s such that the conditioning explores
all available information about p(e).
So the statistics to study is the false alarm rate versus the hit rate. The prob-

abilistic predictions of an event do not yet generate an alarm at all—above we
just outlined how to predict the state-dependent probability of the event to hap-
pen. So the predicted probability has to be converted into an alarm. This can be
done by introducing a threshold pc for the predicted probability: If p̂n+1 > pc

we predict the event to follow; otherwise the absence of the event is predicted.
Depending on the numerical value of pc, we thus generate more or less warn-
ings. Clearly, a natural threshold value pc might be such that the total number of
warnings is identical to the total number of events, but in the end pc is really an
adjustable parameter which can be used to adapt the prediction scheme to one’s
needs. Evidently, a low value of pc leads not only to a good hit rate, but also to a
large false alarms rate, whereas for high pc both rates are low. So depending on
whether one wants to avoid false alarms or whether one cannot accept missed
hits one can adjust the sensitivity of the predictor through pc. If the predictor
were insensitive to the current state of the system and hence alarms were given
without correlation to the true future, the hit rate would be identical to the false
alarms rate, which is the benchmark for a null predictor. Only if the hit rate is
larger than the false alarms rate the predictor is useful.
The wind speed of surface wind can fluctuate tremendously, as it is quantified

by a quantity called turbulence intensity [26]. Strong wind gusts, i.e., the increase
of the wind speed within a short time interval, can cause considerable damage,
since humans and machinery have no time to adjust themselves against it. Gusts
are quantified by the increase of the wind speed in m/s inside a time interval
of some s, which is a kind of acceleration (turbulent wind speed is not differen-
tiable), with no commonly used definition. Depending on their magnitude g and
the turbulence intensity of the current weather condition, we are discussing here
events which occur about 10–500 times a day, in a data set of about 700 000 mea-
surements per day (8Hz sampling rate). The prediction of such gusts by Markov
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chains is studied in [27], including the consistency check by reliability tests and
the analysis of the performance by the ROC statistics. Statistical analysis of wind
data shows that as a simplified model, an AR(1) model with multiplicative noise
is not too bad. Apart from the evident nonstationarity, it describes the decay of
the autocorrelations and the magnitude of the fluctuations properly, if we choose
the following coefficients:

vn+1 = 0.95vn + 0.1 · (|vn| + 0.5) · ξn , sn = |vn| (4.23)

(in fact, the observed quantity sn in our time series is the modulus of the hori-
zontal wind speed v). However, this model cannot correctly generate the higher
order statistics, and, more importantly, it cannot reproduce the observed non-
stationarities. In the Markov chain approach, the nonstationarity is assumed to
be caused by the variation of hidden parameters (such as weather conditions or
the main wind direction), which correspond to different parts of a higher di-
mensional extended state space of the model. The method does not require to
investigate these hidden parameters in more detail; one just optimizes the or-
der m of the chain such that there is no detectable memory ignored. The latter
can be studied by entropy analysis and is a topic of ongoing work. For our data,
a Markov chain of order m ≈ 20 is the best compromise between memory and
statistical accessibility of the conditional pdfs which one has to extract from the
past data.
In Fig. 4.4 we show a ROC plot for the prediction of turbulent wind gusts. In

this case, we use bivariate input data, namely the wind speeds recorded at 20m
and at 30m above the ground, in order to predict the gusts at a 20m altitude.
The alarm of such a gust is given on first computing the state (=time)-dependent
probability of a gust to come and then to issue the alarm if this probability ex-
ceeds pc. The parameter pc is altered from 1 to 0 along the curves from the
lower-left to the upper-right corner and hence tunes the rate of total alarms given.
In this example, the algorithm performs much better than expected. As a specific
feature, the better the predictability the stronger the gust to be predicted (the
larger g). The ongoing work [28] shows that this is a typical feature in situations
where the event is defined by a jump in the signal (which is also the case with
stock market crashes or freak waves in the ocean), and part of its origin lies in the
fact that the event is not independent of the last observation, since it is defined
by the difference of some future values and the current observation.

4.5 Conclusions

In this contribution we tried to present a comprehensive view of data-driven
predictions. Let us recall here that the main obstacle in practice is given by non-
stationarities in the phenomenon to be predicted, or in insufficient historic data.
Both applies in particular when we try to predict rare events. In cases where
data-driven methods alone are insufficient, one might wish to incorporate addi-
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Fig. 4.4: The ROC statistics for forecast of turbulent wind gusts. The differ-
ent curves show results for different classes of events, namely gusts with different
amplitude g. The prediction scheme is explained in the text.

tional knowledge about the studied phenomenon into the time series methods,
such as symmetries, principal bounds to the observable, or long-range correla-
tions. It remains a challenge to combine time series methods with such additional
constraints, where one possibility is offered by Bayesian statistics and its prior
probabilities. Also, one should stress that working successfully with data is not
just an issue of methods but also of experience.
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5 Dealing with Randomness in Biosignals

Patrick Celka, Rolf Vetter, Elly Gysels, and Trevor J. Hine

"If we know the laws of change, we can precalculate in regard to it,
and freedom of action thereupon becomes possible. Changes are in the
imperceptible tendencies to divergence that, when they have reached a
certain point, become visible and bring about transformations."

I Ching, Ta Chuan/The Great Treatise.

Biosignals originate from complex biological tissues’ own dynamics and exchange
energy with their environment. From an inside biological tissue viewpoint, biosig-
nals intrinsically contain high- dimensional deterministic dynamics superim-
posed to random fluctuations from their environment. From the outside-tissue
view, this may be the other way round. The term random conveys the idea of high
uncertainty and results from the separation of the two worlds, outside and inside
tissue, which is purely arbitrary. Thus randomness is a question of viewpoint.
This chapter makes clear the concept of randomness and how to best access the
information we want to retrieve. Different signal processing methodologies for
performing this task are presented: from linear to nonlinear techniques. Appli-
cations to real-life signals are provided such as processing electrocardiograms,
electroencephalograms, and speech signals.

5.1 Introduction

This chapter aims to introduce the concepts of noise and randomness in systems
and signals together with their potentially still controversial origins and use by
biological systems. In this regard, we show the first results of the use of random-
ness by the human visual system. The chapter goes into the details of some signal
and system techniques for reducing the effect of undesirable interference with the
signals of interest. We also present results and comparison of these techniques
on some specific biosignals. The conclusions we can draw from the application of
these techniques is that more understanding of the sources and nature of these
perturbations, random or not, is required in future scientific and engineering dis-
ciplines.

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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5.1.1 Determinism: Does It Exist?

Since the 18th century with Isaac Newton, Gottfried Wilhelm Leibniz, David
Hume, and Immanuel Kant to some extent, determinism got a royal position
both in the emerging modern sciences and philosophy. Objects of all kinds, small
or big, have a position and velocity at a given time, which entirely determines the
future of these two quantities by the law of classical dynamical mechanics. De-
terminism was then synonymous with causality. Some disturbing problems with
unexpected peculiar planet orbits were attributed to the hand of God. The 19th
century, with the discovery by the mathematician Henry Poincaré and the mete-
orologist Edward Lorenz of nonperiodical still bounded trajectories as solutions
of low-dimensional nonlinear differential equations, completely changed the de-
terministic picture. These solutions were referred to resulting from deterministic
chaos. Further in the 20th century, determinism fell apart with the quantum me-
chanics description of the world, initiated by Albert Einstein, and Max Planck,
and further finalized by Werner Heisenberg, Niels Bohr, Erwin Schrödinger, and
Wolfgang Pauli. In quantum mechanics, probability theory plays a major role
in describing the subatomic level of matter. Still, the probability field associated
with a quanta is deterministically computed either from the Heisenberg matrix
or Schrödinger wave formalism. Heisenberg’s uncertainty principle puts a defin-
itive end to a fully deterministic view of our universe, both at the micro- and
macrolevels, as we shall discuss further in this section. The concept of determin-
ism is nowadays quite unclear and comes with attributes such as weak, strong,
or effective.

5.1.2 Randomness: An Illusion?

Classical statistical mechanics describes phenomena en masse from which indi-
vidual component shows erratic behavior. Mathematicians have developed a tool
to deal with erratic and unpredictable phenomena known as statistics. Statistics
is based on probability theory developed in the 17th century by Blaise Pascal and
in the 18th century by Pierre–Simon Laplace, and fully established in its modern
form by Andrey Nikolaevich Kolmogorov by mid of the 20th century. There is
not just one theory of probability which already shed light on its controversial
application to physics and other fields of science [1]. From this perspective, sta-
tistics is a way to model the macroscopic evolution of high-dimensional systems
where a complete picture of the initial conditions of the system under study can-
not be obtained. On a smaller scale, quantum systems already have their inherent
indeterminacy by the introduction of the probability wavefunction ψ. One of the
dramatic consequences of the introduction of this probability function and quan-
tum operators has been established by Heisenberg: the discovery of the principle
that bears his name and known as the uncertainty principle. Combining quantum
mechanics of low-dimensional systems and high-dimensional statistics gives us
quantum statistics which aims at describing large scale quantum objects. From



5.1 Introduction 91

this, we can deduce that the randomness which appears as a fundamental prop-
erty of small scale objects and also impacts larger scale objects may lead to the
discovery of large scale quantum objects manifesting macroscopic randomness.
We can also infer that chaos in low-dimensional quantum mechanical sys-

tems [2] can produce macroscopic effects from small scale quantum fluctua-
tions due to either a nonlinear dynamic properties of the overall system, the
so-called Poincaré resonance occurring in Poincaré systems as studied by the
Brussels–Austin group [3, 4], or to the Heisenberg uncertainties which prevent
us grasping the initial conditions of a system in the state space. Similar macro-
scopic collective behavior can be obtained from time-varying linear systems at
the edge of instability where small microscopic effects could have large macro-
scopic consequences by a back and forth crossing of the stability region during a
small amount of time. Last but not least, at the microscopic level the fourth uncer-
tainty relation in a nonrelativistic view, i.e., δtδE � h, prevents us understanding
what is happening actually at the instant we perform a measurement, i.e., the
collapse of the wavefunction. During a small instant δt, the system under study
can be in any state and can even violate the laws of conservation of energy and
momentum. Indeed, recent results have shown that the classical interpretation of
quantum mechanics is at fault when interpreting negative probabilities [5].
Probabilities thus appear from three different sides: (1) as a fundamental

property of small or large scale quantum objects, (2) as our lack of means for
initial-condition grasping of the macroscopic objects, and (3) as a result of nonlin-
ear dynamics under specific ranges of the system’s parameters. From a pragmatic
point of view, Edwin Jaynes says:What we consider to be fully half of probability the-
ory as it is needed in current applications—the principle of assigning probabilities by
logical analysis of incomplete information—is not at all present in the Kolmogorov sys-
tem [6]. When agreeing with Jaynes, probability theory is a practical way to cope
with our ignorance, and not as a necessity due to inherent randomness in nature.
This perspective leads to inference theory of en masse phenomena which is of
practical use for scientists and engineers. However, the intrinsic indeterminism
of quantum objects, including our consciousness, leads to a singular view of our
world where each single event, leading to conscious or unconscious perception,
has to be taken into account. Unfortunately, still no available mathematical the-
ory can handle this view and it thus has to be left aside for the technical part of
this chapter.
A natural source of randomness is the α particle emission from the spon-

taneous disintegration of an unstable radioactive element. We can model how
a large number of these elements will behave, but are completely unable to
predict when one element will actually produce an α particle. Another exam-
ple is how brain neurons behave under visual stimuli. We can model the global
spatio-temporal behavior to some extent, but are totally unable to predict when
and which individual neuron will fire.
For these reasons, probability theory plays a major role in modeling macro-
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scopic phenomena or large ensembles of microscopic ones, but remains silent
about predicting individual events. The roots of randomness have to be searched
for in the deep structure of matter and its connection with the process of measure-
ment and the fourth uncertainty relation δtδE � h.

5.1.3 Randomness and Noise

We would like to clearly differentiate between the concepts of noise and random-
ness by starting with the following assertions.

1. Noise is relative to your knowledge: i.e., people speaking other languages can
be considered as noise in our language.

2. Noise is relative to the type of system and sensors which belong to that system:
i.e., anything that the system cannot interpret is considered as noise.

3. Noise is relative to the inside–outside picture of the system: i.e., where you are
in the system. This is directly linked with the concept of semiopen1 and closed
system. In an open system, the input energy can be turned into a useful signal
if the inside system can interpret the messages or can adapt and learn to do
it. By contrast, in a closed system the outside energy will always be foreign
to the inside and in that sense not knowledgeable: i.e., noise. To give a practical
example: the 50Hz power line electromagnetic field is considered as noise for
an electrocardiogram electrode, but is not from the viewpoint of the power
line.

What we have shown here is that the concept of noise is essentially relative
to where you are measuring, with what sensors and to your knowledge. We thus
see that noise as we have introduced has little to do with randomness. Noise can
then be defined as the signal that your system’s sensors cannot interpret. From a
system’s point of view, noise is a signal that interferes with its natural behavior
in terms of dynamic invariant.
Noise can be a nuisance or potentially a rich source of material from which

the system can benefit in terms of efficiency (see point 3). In particular, this latter
effect will be described in Section 5.2.2. Noise as a nuisance is the particular focus
of the rest of the chapter, and is introduced in Section 5.3. We will describe some
techniques which can reduce the nuisance for the further analysis of the system’s
natural properties. In a natural environment such as those of biological systems,
the nuisance is more often nonstationary. We will thus focus in Section 5.4 on
some techniques which can cope with the nonstationary nature of the signals.
The chapter is organized as follows. Section 5.2 browses the concepts of ran-

domness in biological systems, Section 5.3 presents strategies developed by scien-
tists and engineers to cope with randomness in signals and systems, Section 5.4

1 A semiopen system is one that allows energy and/or information to come inside or outside with a
given transfer ratio, like a semitransparent mirror.
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elaborates on different techniques for reducing the effect of randomness, and Sec-
tion 5.5 presents different applications of these techniques to biosignals. From the
experience we obtain from the real-life applications, Section 5.6 tends to raise is-
sues linked with the use of probabilities in analyzing signals from living systems
and concludes the chapter.

5.2 How Do Biological Systems Cope with or Use
Randomness?

5.2.1 Uncertainty Principle in Biology

As pointed out in the introduction, the uncertainty principles as discovered by
Heisenberg and further developed by Bohr and de Broglie [7], have puzzled sci-
entists for years, and their interpretations are still controversial and a matter of
renewed research [8]. Basically, the uncertainties can be understood as either orig-
inating from the measurement process that disturbs the system under study and
prevents measurements of conjugated variables, or as originating in the statistical
interpretation of the wavefunction ψ of conjugated variables, namely the spread
of ψ. Note that the second interpretation is valid before and after the measure-
ment, and do not need the measurement to exist.
Biologists and geneticists, while studying small scale systems such as DNA

molecules, and their role in the creation and maintenance of life, have been look-
ing at chance phenomena in further details [9, 10]. Actually, it is thought that
the chance phenomena in biology as manifested, for instance, by the random but
still useful appearance of the four acid basis—T-G-C-A—in DNA, are somehow
linked with quantum mechanical effects and the uncertainty principle [9, 11, 12].
At the larger scale of the neuron, single photon experiments in the visual system
of vertebrate and invertebrates paved the way to quantum effects in the visual
pathways [13]. In this situation, the uncertainty principle in biology is viewed as
the engine for a creative process. Thus in this case the quantum probability wave
has the potential for increasing the negentropy. By contrast randomness by itself
generates entropy. Thus, the interplay of chance phenomena and the quantum wave
probability function has the potentia, à la Descartes, for creation in the sense of
increase of negentropy.
The physicist H. Stapp claims that the act of measurement as perceived by the

person’s consciousness is what he refers to a Heisenberg event [14]. An Heisenberg
event is nothing less than the actualization of a large scale quantum structure.
When this happens in the brain neuronal network this leads to a discrete con-
scious event. The suite of these discrete conscious events carries the process of
knowledgeability. Randomness appears completely alien in this picture, because
a Heisenberg event brings instantaneous knowledge which immediately collides
with the unknownness of randomness. Note that the instantaneous nature of the
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Heisenberg event contradicts the fourth uncertainty principle because this would
require an infinite amount of energy.
Thus we conclude that quantum theory applied to biology has the potentia

to bring innovative ideas about life processes, and that moreover quantum con-
strained randomness plays the crucial role of an engine for knowledge.

5.2.2 Stochastic Resonance in Biology

In the previous section, we have discovered that randomness at a nanoscopic
scale can in fact be useful for biological systems. At a macroscopic scale, a phe-
nomena called stochastic resonance (SR) has been shown to have very useful
effect on the performance and robustness of biological systems such as the elec-
trodetection in the paddlefish [15]. SR was discovered in the 1980s and modeled
in the context of nonlinear systems, either static or dynamic. SR has also been
recently discovered in quantum mechanical systems and seems to be quite com-
mon in both classical and quantum systems in the presence of bistability [16].
Biological applications of SR are now vast and a review can be found in [17].
SR is a global effect that improves the signal detection sensitivity of nonlinear
systems by using random internal or external excitation signals, see Section 5.4.1
for a definition of dynamic noise or what is called here internal noise: the reso-
nance parameter is the noise level of the input signal. SR has also been shown
to play an important role in phase synchronization between nonlinear dynamic
systems [18]. In biological neurons, the neurotransmitters release quanta of infor-
mation by nerve terminals in order to activate the opening and closing of ion
channel gates. This process appears to be random, and provides the postsynap-
tic potential with additional variability which is further used to improve signal
communication in neuronal assemblies. The randomness provides some addi-
tional richness to the pure deterministic or randomless neuron. The nature of
this randomness is still nevertheless an open question and may rely on quantum
effects [19] as proposed earlier in this section.
While the previously described SR effect appears at a low level such as a single

neuron, SR effects have also been reported in macroscopic systems such as neu-
ronal assemblies and the retinal cells [20]. At the highest level of psychophysic
perception experiments, SR has also been shown to have some impact [17]. In
fact, recent evidence has come to light implicating a random process in increasing
sensitivity to relative motion perception. There exists an illusion—the jitter after-
effect (JAE)—where adaptation takes place to a visual dynamic random noise
pattern like the “snow” on an untuned television [21–23]. After such adaptation,
the visual system becomes hypersensitive to motion. The result of this is the JAE:
movement of the image on the retina due to the ever present small fixational eye
movements is revealed and the unadapted parts’ image seems to move relative
to the background. Movement of the retinal image due to these fixational eye
movements is normally never seen. This adaptation process is not related to the
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Fig. 5.1: JAE as a function of random movement displacement during adaptation,
measured in pixels. The randomly textured background pattern is displaced 32
times a second. Dmax is the point at which no motion signal exists and the viewer
sees random noise. Error bars are ±1 SEM for eight observers (Hine and Dunn,
private communication).

presence of a motion signal in the adaptation noise pattern, but conversely, is
determined by the presence of random, uncorrelated noise. Hine and Dunn (sub-
mitted) have recently completed psychophysical experiments demonstrating this
and results are given in Fig. 5.1. Here, the postadaptation sensitivity as measured
by the duration of the JAE increases as a function of the level of perceived inco-
herence in the adapting signal. This perceived incoherence is related to the D,
the amplitude of the displacement of the randomly textured background from
frame-to-frame. For D < Dmax (equivalent to about 0.8 deg of visual angle, dot-
ted line on Fig. 5.1), as D is increased the background looks as though it is mov-
ing randomly around like a “jitterbug" with increasing energy and incoherence.
At D > Dmax, no motion is seen at all, only incoherent noise, and at this point
the JAE both peaks and plateaus.
SR thus seems to be a well-spread phenomenon across disciplines boundaries

and at every scales of time and space. The noise-induced order of SR is quite
counter-intuitive but certainly makes a great use of randomness in nonlinear
systems. This phenomenon is undoubtedly one promising landmark for future
search for the use of randomness in nature, and eventually the understanding of
micro- to macro properties of matter and life.
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5.3 How Do Scientists and Engineers Cope with Randomness
and Noise?

According to our definition of noise from Section 5.1, when designing instru-
ments, engineers and scientists have to decide on what is knowledgeable and
what is not, and on the type of information they want to access. Note that the in-
strument we are talking about here can be a physical probe or measuring device,
but it can also be an algorithm. In doing so, we define the inside–outside parts
of our instruments, and also define what we can call the signal or information
space Eo and the noise space Ee, such that the observed signal x is in the space
E = Eo ∩ Ee and is composed of the signal component s and the noise compo-
nent e. The signal space Eo contains the information swe want to access, retrieve,
compress, crypt, or transmit, and the noise space Ee contains the unknown part
of the signal x. We still have to define what is the kind of space we are talking
about. The space is, generally speaking, an abstract parameter domain where the
signal or noise information is embedded. Indeed, if we know what we do not
know, i.e., the noise, we know the complementary part which is the information.
The most well-known spaces are: time, frequency, position, and momentum. But
there are many other possible spaces such as the state space of a dynamical sys-
tem, the color space of an image, the auto-regressive moving-average space of a
time series model, the spin or energy space of a particle, the principal compo-
nent space, the wavelet space, etc. Figure 5.2 shows a schematic view of the two
different spaces Eo and Ee. An observed signal x belongs to the space Eo ∩ Ee.
Its position inside that space determines the amount of information and noise:
i.e., the so-called signal-to-noise ratio (SNR). The SNR can be computed by the
ratio of the shortest path length between x and e, and the shortest path length
between x and s. The task of extracting the information is thus to move x along
a given path P such that it eventually reaches the boundary ∂(Eo ∩ Ee)e. If s be-
longs to ∂(Eo ∩ Ee)e, then we have completely reduced the noise. Sometimes, the
signal of interest lies in Eo \ Ee and we will never be able to reduce the noise to
zero. Different noise reduction techniques will be represented by different paths
leading to different locations more or less close to ∂(Eo ∩ Ee)e and thus different
performances in terms of noise reduction.
.
It is a fundamental aspect of the design of the instrument to define the

most appropriate space E for performing the information extraction. For in-
stance, in speech processing, the most common space is the log-transformed
auto-regressive space known as linear predictive coefficients while others exist
(see Section 5.5.3). In heart rate variability studies, the frequency space is well
known to be useful in characterizing the so-called sympathovagal balance while
others also exist (see Section 5.5.1). When designing our instrument, we are some-
times limited to the type of space we can access, and thus we may use space trans-
formations T to map our signals into the appropriate space Ẽ. More advanced
techniques use a subspace decomposition operation Hk, with k = 1, . . . , M, of
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Fig. 5.2: Schematic view of the two spaces Eo and Ee

the original space E = ∪M
k=1Ek before applying specific transformations Tk into

the space Ẽk. Typical examples of such a subspace decomposition is a filter bank
when E is the frequency space. We will address different subspace decomposi-
tions in Section 5.4.1 and 5.4.2. Once the signal x is decomposed by Hk and trans-
formed by Tk, we obtain x̃k, we actually perform the noise reduction method of
our choice by applying a linear or nonlinear projector P̃k onto the subspace Ẽck

which is supposed to move the signal xk closer to the boundary ∂
(
(Eo)k∩(Ee)k

)
e;

more precisely move the signal x̃k closer to the boundary ∂
(
(Ẽ0)k ∩ (Ẽe)k

)
e. Fi-

nally, we perform the inverse transform T−1
k and inverse subspace decomposi-

tion Gk, which reconstruct an estimate of the information signal ŝ ≈ s. The full
scheme is illustrated in Fig. 5.3 and summarized by the following set of equa-
tions:

x̃k = (Tk ◦ Hk)[x] (5.1)

x̃ck
= P̃k[x̃k] (5.2)

ŝk = (Gk ◦ T−1
k )[x̃ck

] (5.3)

with the perfect reconstruction property Hk ◦ Gk = 1 (◦ denotes the operator
composition rule). In Fig. 5.3, the space Ẽck

or Eck
is a copy of the space Ẽk or

Ek which is meant for the “cleaned” space, which is in fact a subspace of Ẽk or
Ek respectively. We usually assume that the noise is additive to the information
signal, such that we have the following model:

x = s + e, (5.4)

where e can be a noise source originating from inside the system, the so-called
internal noise or dynamical noise, or a noise source originating from outside the
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Fig. 5.3: The generic scheme of noise reduction techniques using subspace projec-
tion.

system under inspection, the so-called measurement noise (see Section 5.4.1). In
this situation the reconstructed signal is computed as

ŝ =

M∑
k=1

ŝk . (5.5)

Finally, we would like to point out that the transformation T and T−1 have to have
some smoothness properties to guarantee the preservation of topological proper-
ties of the space E when mapped into Ẽ, such as the intrinsic dynamical invariants
of the system (see Section 5.4.2 for more details).
In the following sections, we will deal only with time series signals and thus

the primary parameter space is the time either continuous t ∈ R or discrete tk =

k/Fs where Fs is the sampling frequency, and use the notation x(k) = x(k/Fs).
While numerous subspace mapping Hk and transformations T do exist, we will
concentrate in the chapter on principal component analysis for which we have
T = I andHk are the band pass filters associated with each principal components’
eigenvectors (see Section 5.4.1).
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5.4 A Selection of Coping Approaches

5.4.1 Global State-Space Principal Component Analysis

Principal component analysis (PCA) has been widely used by scientists and engi-
neers to analyze and extract features from NT multidimensional random signals
x(k) ∈ Rns [24] where k = 1, . . . , NT . PCA has been developed independently
in early 20th century by the mathematicians Karl Pearson and Harold Hotelling.
PCA enables us to linearly expand the ns-dimensional space spanned by some
eigenvectorsΦk by the sole use of the set of linearly correlated multidimensional
signals. These eigenvectors can be further sorted by their decreasing length. Most
of the time it is assumed that the largest eigenvectors contain most of the infor-
mation, but this is a mistaken view as we will see below in this chapter. More-
over, this is done without any a priori knowledge on the data statistics, while it is
known to be optimal for Gaussian distributed signals. The eigenvectors span the
space Rns in the following way:

x(k) = PEp(k) (5.6)

with

PE = [Φ1 · · ·Φns
], (5.7)

where the rows of the matrix PE contain the eigenvectors Φk. The vectors p(k)

are called the principal components, which can be gathered into a matrix PC =

[p(1) · · ·p(NT )] (see Eq. (5.23)). When the vectorsΦk form an orthonormal basis
in Rns , the vectors p(k) are orthogonal to each other, which in a statistical sense
means uncorrelated. The principal components are expressed as a linear trans-
formation of the data

p(k) = PT
Ex(k), (5.8)

where T is the transpose operation. PCA offers the great advantage to be model
independent, i.e., data driven, as compared to Fourier- or Wavelet-based ap-
proaches which are both linear expansions of some predetermined eigenvectors.
Indeed, in PCA, the eigenvectors Φk are computed only from the knowledge
of the data, while the Fourier or wavelet approaches impose a model for these
eigenvectors: i.e., complex exponentials for Fourier and the so-called wavelets
for Wavelet. We will show next how these transformations can be useful when
one wants to separate the information from the noninformation bearing spaces
spanned by the eigenvectors. Here one has to keep in mind that the determination
of the information space is purely application dependent. Adding to that picture
the information space is sometimes not known a priori and thus each eigenvector
has the same a priori probability to be chosen for building the information space.
PCA can in turn be used for signals which are supposedly obtained by some

measurement on a dynamical system S. In this situation the vectors x(k) ∈ Rns

represent the measurements on S. A signal as measured on S is a perturbed
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so-called observable. An observable is a smooth map from the manifold M of
dimension m, where the system’s trajectories lie, to the set of real numbers R. In
order to recover the underlying dynamic law from the measurements, we have to
perform somehow an inverse mapping that brings us back toM or a Rm which is
diffeomorphically equivalent. This inverse mapping is called an embedding and
we recall hereafter some basic elements for its construction.
PCA can be seen as a uniform filter bank designed from the data: the eigen-

vectors Φi being the coefficients of finite impulse response filter i in the ith
subband. This can easily be seen from Eq. (5.23), where the trajectory matrix Z

is multiplied by the projector matrix PE which acts as a filter-bank convolution
matrix. Principal component filter bank has been shown to be optimal at mini-
mizing the mean square reconstruction error [25] and is thus of great interest for
coding and noise reduction.

Embedding

In this section, we recall some basic assumptions about dynamical systems and
state the main theorems concerning the embedding theory. Let M be a compact
manifold of dimension m. A dynamical system onM is defined by a vector field
generated by f in the continuous time case (usually, we call f the vector field).
The dynamical system is then represented by

R → M : t → s(t) = ft(s0), (5.9)

where s0 = s(t0) is the initial condition. The trajectory is noted {(t, s(t))}Tt=t0

and the orbit ft(s0). The flow on M is defined as ft, and the dynamics is often
described by a set of differential equations ds(t)/dt = f

(
s(t)

)
and an initial

condition.
As the dynamical system evolves on M, trajectories are trapped in a subset

A of M which is often of smaller noninteger dimension d � m (fractal set).
Any point s on M that belongs to a trajectory of the dynamical system is called
a state. The set A is called an attracting set for the dynamical system, or simply an
attractor, under some conditions [26]. From a typical trajectory on M we define
an observable as a smooth function v : M → Rl : s → v(s). The function v can be
nonlinear.
An observable maps any point of the manifold M onto real values that may

be acquired during experimental measurements. Observe the difference between
an observable and measurements related to this observable. Essentially, the dif-
ference comes from the measurement process and all the perturbations linked
with it. Usually l � m, and l denotes the number of available signals. In most of
the situations l = 1, and forthcoming embedding theorems hold in that case. Let
us assume l = 1. We have the following problem:

Problem 5.1. For some dynamical system with a flow ft, given an observable v, a flow
sampling time τ, and a corresponding time ordered set of points inR, i.e., {v(s), v

(
fτ(s)

)
,
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v
(
f2τ(s)

)
, . . . }, how could we have information about the original dynamical system from

this observable.

The time τ may be considered as a sampling time interval at which the data
from the flow are observed. This flow sampling time is not specified at that time.
We are now ready to define an embedding:

Definition 5.1. An embedding is a smooth map Φ : M → U such that Φ(M) ⊂ U

and Φ is a diffeomorphism betweenM and Φ(M).

The dimension ns of the embedding space U is obviously greater than m.
Due to the diffeomorphic property of the map Φ, the flow in the space U will
be equivalent to the flow in M and all the properties of the flow f on M will be
conserved in the reconstructed state space. The problem is finally to determine
the map Φ and the dimension ns. In the problem statement, problem 5.1, the
time τ was not specified and can be arbitrarily chosen. This time interval was
called the flow sampling time for obvious reasons. As we do not have access to
this parameter, we cannot set a correspondence between the time series sampling
time dt and τ. Moreover, as we will see in the next section, the existence of
measurement noise forces us to introduce this delay. Recall that we have already
a part of the map Φ: the observable v. It remains to build a map h from R to U.

Definition 5.2. From a time ordered set of points V =
(
x(0), x(1), . . .

)
where

x(k) ∈ R, we define the function

h : V → Rns : x(k) → x(k) =
(
x(k), x(k−J), x(k−2J), . . . , x

(
k−(ns −1)J

))T

.

The time lag Jdt is known as the embedding delay. From the observable v

and the corresponding time series x introduced above, the embedding theorem
is [27]:

Theorem 5.1. Let M be a smooth compact manifold of dimension m, f a vector field
on M, v an observable v : M → R, and h the map h : R → Rns as defined in 5.2. The
map Φ = h ◦ v is an embedding ofM into Rns if ns � 2m + 1.

The embedding theorem provides us with the matrix of reconstructed state-
space vectors

Z = [x(1) · · · x(NT )] (5.10)

which is called a state-space trajectory matrix. If the time series is long enough,
i.e., N � J, it is preferable to cut the embedded vector time series to the first
NT = N − (ns − 1)J samples. Practically, the observable v should be measured.
Distortions and noise due to measurement are thus introduced. Both of these
perturbations are included in a measurement noise signal em(t). The noise signal
em(t) is considered as a random perturbation whose samples are independent
of the samples in x : E {x(t)em(t ′)} = 0 ∀t, t ′. Note that an additional random
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perturbation ed coming from the dynamical system itself may exist. It is called
the dynamical noise. When we take into account all these effects we obtain from
an observable v, and two random variable (ed,em), the measurement map

u : M ×R → R : (s, em) → u(s, em) = v(s) + em, (5.11)

where
ds(t)
dt

= f
(
s(t)

)
+ ed(t) . (5.12)

This measurement map naturally induces a perturbed time series x. It turns out
finally that the theoretical Problem 1, has been transformed into the following

Problem 5.2. Given a time series x and a sampling time dt, how could we extract
information about the original dynamical system from x?
A good review of how to find the embedding delay J can be found in [28].

State-Space Principal Component Analysis

For discrete time signals, global PCA (GPCA) transforms can be expressed from
Eq. (5.8) as a linear weighted sum of linearly independent vectorsΦk. We assume
J = 1 throughout this section for the sake of simplicity but the case J > 1 can be
handled with few careful mathematical steps. The core of PCA is based on a
close inspection of the eigenvectors and associated eigenvalues computed from
the ns×ns covariance matrix Czz of the trajectory matrix Z. The trajectory matrix
may be viewed as a cloud of points in Rns which may be approximated by an
no-dimensional ellipsoid. The no principal axis of this ellipsoid is given by the
eigenvectors of the matrix Czz corresponding to the no largest eigenvalues where

Czz =
1

NT
ZZT (5.13)

from which the eigenvalues and vectors are given by

Czz Φi = λiΦi i = 1, . . . , ns . (5.14)

The eigenvalues are rank ordered λ1 � · · ·λns
, and Dλ = diag(λ1, . . . , λns

) is
a diagonal matrix. These eigenvalues and eigenvectors play a key role in this
singular spectrum analysis (SSA) as we will discover later on. The matrix Czz

of dimension ns × ns is the covariance matrix of x(k), averaged over the entire
trajectory. Eigenvectors of Czz formed a basis in the space Rns . The space Rns

is split into two orthogonal spaces: Rns = Rno × Rne=ns−no . The ne-dimensional
space Ee is considered as the noise space while the no-dimensional space Eo is
denoted as the signal space2, i.e.,

Eo = Span{Φ1, . . . ,Φno }

Ee = Span{Φno+1, . . . ,Φns
} .

(5.15)

2 This decomposition can be used for noise cleaning.
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The trajectory matrix can be projected on Eo and Ee. Resulting vectors are called
principal components (PC) and noise components (NC) respectively. This decom-
position method is close to the principal component analysis (PCA) [29]. Indeed, if
we note the projection operators on Eo respectively Ee by PEo and PEe , with

PEo = [Φ1, . . . ,Φno ] (5.16)

PEe = [Φno+1, . . . ,Φns
] (5.17)

Eq. (5.14) can be rewritten as

Czz[PEoPEe ] = CzzPE = PEDλ. (5.18)

Multiplying the lhs of Eq. (5.18) by PT
E, using the orthogonality property PEPT

E = I

of the eigenvectorsΦi, and the definition of Czz we obtain

(ZT PEo)
T (ZT PEo) = Dλo (5.19)

(ZT PEe)
T (ZT PEe) = Dλe (5.20)

(ZT PEo)
T (ZT PEe) = 0 (5.21)

(ZT PEe)
T (ZT PEo) = 0, (5.22)

where Dλ = Dλo + Dλe is the natural decomposition of the eigenvalue matrix
with respect to Eo and Ee. Equations (5.19) and (5.20) express the fact that the
components of the projected trajectories, i.e., the principal components PC sup-
posedly representing the signal space

PC = PT
EoZ = [p(1) · · ·p(NT )] (5.23)

and the principal components NC supposedly representing the noise space

NC = PT
EeZ (5.24)

are orthogonal. Equations (5.21) and (5.22) express the fact that the noise and
feature spaces are mutually orthogonal. Equations (5.19)–(5.22) also show that λi

is the mean square value of the projected trajectory on the eigenvectorΦi. There-
fore, the matrix Dλ effectively provides major information about the trajectory in
the state space. Projecting the trajectory matrix onto the Eo space allows us to ex-
tract the deterministic part of the process. PCA decomposes the trajectory matrix
in the state-space domain. Indeed,Φi are main directions in the state space where
the dynamical system trajectories spreads.
A time domain counterpart of this method can be applied. Instead of comput-

ing Czz, we can directly perform a singular value decomposition of the trajectory
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matrix to obtain an equivalent space decomposition.3 Let us introduce the ma-
trix Bzz

Bzz =
1

NT
ZTZ =

1

NT




x(1)x(1)T x(1)x(2)T . . . x(1)x(NT )T

x(2)x(1)T x(2)x(2)T . . . x(2)x(NT )T

...
...

...
...

x(NT )x(1)T . . . . . . x(NT )x(NT )T


 . (5.25)

The matrix Bzz is of dimensionNT×NT and is named the structure matrix. Bzz has
eigenvectors Ψi ∈ RNT and corresponding eigenvalues σi

Bzz Ψi = σiΨi i = 1, . . . , NT . (5.26)

The matrix Bzz is highly degenerated because rank(Bzz) � NT . Two orthogonal
spaces can be constructed

So = Span{Ψ1, . . . ,Ψno }

Se = Span{Ψno+1, . . . ,Ψns
} .

(5.27)

There is a relationship between the vectorsΦi and Ψi given by

ZT Φi = σiΨi for i = 1, . . . , ns (5.28)

yielding the singular value decomposition (SVD) of the trajectory matrix Z

ZT = PSDσPT
E, (5.29)

where Dσ = diag(σ1, . . . , σns
). The elements of Dσ are called the singular values

of Z. The projection operators are given by

PSo = [Ψ1, . . . ,Ψno ] (5.30)

PSe = [Ψno+1, . . . ,Ψns
] (5.31)

PS = [PSoPSo ] . (5.32)

Using Eqs. (5.28) and (5.29) together with the projection operators PSo and PSe ,
we get similar relation as in the spatial analysis

(ZPSo)
T (ZPSo) = Dσo (5.33)

(ZPSe)
T (ZPSe) = Dσe (5.34)

(ZPSo)
T (ZPSe) = 0 (5.35)

(ZPSe)
T (ZPSo) = 0 . (5.36)

It is easily seen from Eqs. (5.18) and (5.29) that

D2
σ = Dλ . (5.37)

3 One can also use the Karhunen–Loève Transformation (KLT).
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Equation (5.37) shows that the singular values of Z are simply the square roots of
eigenvalues of Czz. Starting with Eq. (5.29), and using the decomposition of the
projection operators in the signal and noise spaces we obtain

Z = X̂ + Xn, (5.38)

where

X̂ = PSoDσPT
Eo (5.39)

Xn = PSeDσPT
Ee . (5.40)

Moreover, using Eqs. (5.23), (5.24), (5.29), (5.33), and (5.34), we observe that the
principal and noise components are also given by

PC = PSoDσ (5.41)

NC = PSeDσ . (5.42)

From Eqs. (5.29), (5.41), and (5.42), we observe that adding PC to NC allows us
to reconstruct Z and thus the entire noisy signal x. The decomposition Eq. (5.38)
allows us, in principle, to distinguish between the deterministic X̂ and random
Xn parts of the measurement x. Using this observation, we can expect that the
first column of X̂, noted x̂ will approach the time series x corresponding to the
observable v. Equation (5.39) can be seen as a denoising procedure of the time
series x. This is partially true because the noise signal modifies all the singular
values of Z, and thus, the matrix X̂ is also contaminated by the noise. Several
methods are available to estimate the noise contribution to the feature space [30],
but we will not investigate this further.
If we are interested in the noise reduction ability of SSA, we must have a closer

look at Eq. (5.39). In fact, as explained in the previous paragraph, the first column
of the matrix X̂ gives an approximation of x. But the same is true for all the other
columns apart from an inherent delay and a noise part. The noise contributions
are expected to be independent of all the columns. Thus taking the mean value
of all the delayed columns will result in a more accurate reconstruction of x.
From a signal processing point of view, we can also interpret Eq. (5.23) as a

linear finite impulse response filtering of the data contained in Z. The coefficients
of the filters being the vectors Φi. The beauty of this approach relies on the
fact that the filter coefficients are determined from the data set and not a priori
prescribed by the user. From this point of view they are optimally determined.
The next section will provide support for these considerations.

Choosing the Best Basis: Minimum Description Length

Constructing a model for the prediction of time series, system identification or
noise reduction involves both the selection of a model class and the selection of a
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model within the selected model class. Successful selection of a model class ap-
pears to be a very difficult task without prior information about the time series.
The selection of a model inside a class appears to be a more manageable prob-
lem. A parametric model, with a parameter vector Ξ = [ξ1, ξ2, . . . , ξM]T , may be
constructed under the assumption that there is a class of conditional probability
functions P(y | Ξ), each assigning a probability to any possible observed time
series or sequence y = [y(1), y(2), . . . , y(N)]T of N sample points. The parameter
vector Ξ is to be estimated to optimize the model. This can be done by maximiz-
ing P(y|Ξ) or its logarithm with respect to Ξ only if we ignore prior information
about P(Ξ), which is known as the maximum likelihood (ML) approach

Ξ̂ = max
Ξ

{ln[P(y | Ξ)]} . (5.43)

It can be shown that the maximum likelihood estimation criterion can also be
expressed in coding theoretic terms [31]. For any parameter vector Ξ̂, one can as-
sign a binary code sequence to y that is uniquely decodable. The corresponding
mean code length of this sequence, which is equal to L(y | Ξ) = − ln[P(y | Ξ)], is
called its entropy. The minimal value of the entropy is attained for Ξ = Ξ̂. Hence
determining the ML estimate or finding the most efficient encoding of y in a bi-
nary code sequence are equivalent tasks. Up to now, the number of parameters k

has been supposed to be known. Things are getting more complicated if it is not
so, which is by far the most frequent situation. When applying the ML estimator
consecutively for all increasing k values, one may end up with as many parame-
ters as sample points, and a very short code sequence for y. But if a binary code
sequence for y is constructed for some Ξ, this parameter vector has to be known
at the decoder side for successful decoding. A more realistic encoding demands
the parameters to be encoded themselves and added to the code sequence. In this
case, the total code string length is

L(y, Ξ) = L(y | Ξ) + L(Ξ) . (5.44)

The crucial point in this representation of the total code length is the balance be-
tween the code length for the data L(y | Ξ) and the code length for the parameter
vector L(Ξ). For a rough description of the data with a parsimonious number of
parameters, these latter are encoded with a moderate code length, whereas the
data need a relatively long code length. However, describing data with a high
number of parameters may request a short code length for the data but the price
must be paid with a longer code for the parameters. From that point of view, it
is reasonable to look for the parameters that minimize the total code length. This
gives rise to the minimum description length (MDL) of data [32]. When minimizing
Eq. (5.44), the general derivation of the MDL leads to

Ξ̂ = min
Ξ

{− ln[P(y | Ξ)] − ln[P(Ξ)] −

M∑
j=1

ln[δj]}, (5.45)
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where4 P(Ξ) is the probability distribution of the parameters, and δj is the pre-
cision on the jth parameter. The first term comes from L(y | Ξ) (the data), while
the other two terms come from L(Ξ) (the parameters). The last term in Eq. (5.45)
decreases if a coarser precision is used (larger δj) while the first term generally
increases. An estimation of the precision coefficients δj can be found by solv-
ing [33]

(
∂2Q

∂Ξ2
· δ

)
j

= 1/δj with Q = L(y | Ξ̂), (5.46)

where δT = [δ1, . . . , δM]. Equation (5.46) comes from the minimization of the
log-likelihood function L(y, Ξ) using a second-order approximation of L(y | Ξ),
i.e.,

L(y | Ξ) � L(y | Ξ̂) + δTQδ/2 . (5.47)

One has to now decide which are the no principal eigenvalues. Or in other words,
how could we separate the noise space from the feature space? We intend to use
here Rissanen’s MDL criteria to separate the feature from the noise space in an
objective and unsupervised manner. Clearly, the unknown parameter vector is
Ξ = {λ1, . . . , λns

, Φi, . . . ,Φns
, σ2
e }, where σ2

e is the noise power. Assuming that
we have the trajectory matrix Z, the likelihood function is

P(Z | Ξ) = P(x(1), . . . ,x(NT ) | Ξ) (5.48)

=

NT∏
i=1

e−x(i)T Σ−1
zz x(i)

(2π)ns/2 det(Σzz)1/2
(5.49)

with Σzz being the covariance matrix of the vectors x(i), and Czz defined as
Eq. (5.13) being the estimated covariance matrix of the embedded data: E[Czz] =

Σzz. The trace term may disappear in the minimization of the MDL if we use the
following Czz estimator (ns − 1)/nsCzz. We have assumed that the vectors x(i)

are zero meaned. From Eq. (5.48), the log-likelihood function is given by

L(Z|Ξ) = − ln[P(Z | Ξ)] (5.50)

≈ −
NT

2

(
ln[det(Σzz)] + tr(Σ−1

zz Czz)
)

. (5.51)

It can be shown that maximizing the log-likelihood function provides a vector Ξ̂,
and following Eq. (5.45) we obtain the MDL criteria for our problem [33, 34]

4 The requirement that the code length should be an integer is ignored.
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MDL(l) = −NT (ns − l) ln




∏ns

i=l+1 λ
1/(ns−l)
i

1
ns−l

ns∑
i=l+1

λi




+
(

1
2 + ln[γ]

)
(l + 1) −

l∑
j=1

ln[δj], (5.52)

where l is the number of eigenvectors Φi taken into account in the expansion.
The code length is taken to be γ = 32 which corresponds to a floating point
representation. The δj are computed with Eq. (5.46) where Q is the covariance
matrix Czz. Note that using Q = Czz we implicitly take into account the precision
of only the singular values. One can also use a simplified version of Eq. (5.52) for
large data sets

MDLS(l) = −
(
NT (ns − l)

)
ln




∏ns

i=l+1 λ
1/(ns−l)
i

1
ns−l

ns∑
i=l+1

λi


 + nf(l) ln[NT ] . (5.53)

The number of free adjustable parameters is nf(l). As soon as we have obtained
the decomposition Eq. (5.29), we can proceed to the analysis of Dλ. Adding
eigenvectors by eigenvectors, we rebuild Z progressively. After l steps, we com-
pute MDL(l). The result is finally a representation of various processes in z: de-
terministic + stochastic. The number of free parameters is computed by counting
the number of parameters in Ξ and subtracting the number of constraints linked
with the orthonormal conditions on the eigenvectorsΦi. This leads to [35]

nf(l) = (2nsl + l + 1) − 2l − l(l − 1) = l(2ns − l) + 1 . (5.54)

Finally the model order no should satisfy

no = min
l
MDL(l) . (5.55)

The model order no is also related to the statistical dimension introduced by
Vautard [35, 36], and it has been shown that there is no simple relation between
no and the dimension of the dynamical system. Note that we refer to L2 norm
MDL criteria, Eqs. (5.52) and (5.53) and to the L1 norm MDL if instead of Dλ we
use Dσ.
We conclude this section with some remarks. We have developed a model or-

der selection procedure based on Rissanen’s criteria applied to PCA decomposi-
tion of measurements. This theory assumes the existence of a feature and a noise
space: i.e., the dimension of the noise space is different from zero. Thus, applying
this theory on noiseless data sets would lead to some order overdetermination or
even to indeterminacies. To overcome this drawback, we can introduce artificially
some noise as explained later. Singular spectrum analysis works preferably for
quasiperiodic motions displaying strong frequency components.
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5.4.2 Local State-Space Principal Component Analysis

Local principal component analysis (LPCA) has been often applied by the engi-
neering community to perform noise reduction or bring further insights on the
behavior of observed dynamical systems [37–39]. Herein, we focus on LPCA and
its application to noise reduction. The basic idea of these approaches is to observe
the data locally in a large ns-dimensional space of delayed coordinates. Since
noise is assumed to be random, it extends approximately in a uniform manner
to all the directions of this space. In contrast, the dynamics of the deterministic
system underlying the signal confines its trajectories to a lower dimensional sub-
space of dimension n0 < ns. Consequently, the eigenspace of the noisy signal is
partitioned into a noise and a signal-plus-noise subspace and noise reduction is
performed by projecting the noisy data onto the signal-plus-noise subspace. The
main problem of these algorithms with respect to real-world applications is the
optimal choice of the different parameters. Indeed, the number of parameter to
be estimated is large and the parameter values depend generally on noise level,
data length and the natures of signal and noise.
LPCA is based on the exploitation of the predictability of an observed process

[28], that is, the estimation of the signal from its past history or samples. To
infer the foundations of LPCA and its relation to noise reduction consider the
following dynamical system:

s(k) = g{s(k − 1), . . . , s(k − m), ed(k), Θ}, (5.56)

where g is an unknown, nonlinear function assumed to be smooth, m is the
dimension of the dynamical manifold, Θ is a vector containing the model para-
meters, and ed(k) is called the dynamical noise which is assumed to be white.
It is important at this point to shed light on the distinction between dynamical
noise ed(k) and measurement noise em(k). While measurement noise represents a
harmful alteration of the useful signal, dynamical noise is an inherent part of it.
However, they may not be often distinguishable a posteriori by the analysis of the
observed time series and thereby we will treat them often as one simple noise
contribution denoted by e(k). To introduce the proposed approach let us rewrite
the dynamics of the signal given by Eq. (5.56) such that they are neither forward
nor backward in time, i.e., in an implicit way

g̃{s(k), ed(k), Θ̃} = 0, (5.57)

where s(k) = [s(k), . . . , s(k−1), . . . s(k−m)]T is the vector of delayed coordinates
as in definition 5.2 and Θ̃ is the parameter vector of this implicit representation.
Assume that g̃ is a smooth function of the coordinates, i.e., it is at least piecewise
differentiable. If we are faced with a system with no dynamical noise, the local
linearization of g̃ in the vicinity of a given point s̄k leads to [28]

{s(k) − s̄(l)}TΘ̃(l) = 0 + O{‖s(k) − s̄(l)‖2} l = 1, . . . , L, (5.58)
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where Θ̃(l) is the parameter vector of the implicit linear model in the neighbor-
hood Nl and

s̄(l) =
1

|Nl|

∑
s(k)∈Nl

s(k) (5.59)

is the center of mass of neighborhood Nl and |Nl| denotes the cardinality, namely
the number of points of the neighborhood Nl. The partitioning of the space of
delayed coordinates in local neighborhoods Nl for l = 1, . . . , L is application
and signal dependent. A methodology for speech enhancement is described in
Section 5.5.3. Assume that this is done in such a way that the second right-hand
side term of Eq. (5.58) can be neglected. Thus, Eq. (5.58) would be zero in the
noiseless case. In contrast, for noisy time series a supplementary noise-related
term is added and Eq. (5.58) becomes

{x(k) − x̄(l)}TΘ(l) = n(k) x(k) ∈ Nl (5.60)

and
(
x(k), x̄(l)

)
replaces

(
s(k), s̄(l)

)
in Eq. (5.59). The crucial idea of local projec-

tive algorithms is to use a delay coordinate vector of large dimension ns whereas
the dynamics of the underlying deterministic system confine the trajectories to
a lower dimensional manifold of dimension n0 < ns. Consequently, there exists
ns−n0 mutually independent vectorsΦ

(l)
j , j = 1, . . . , ns−n0, fulfilling Eqs. (5.58)

and (5.60) for the noiseless and noisy case respectively. The noise-free attractor
does not extend to the space spanned by these ns −n0 vectors, which constitutes
the null space of the problem. In contrast, for noisy sequences this null space
is not empty but contains contributions of the noise and, consequently, will be
called the noise subspace.
For the sake of clarity we suppress subsequently the notation (l) and substi-

tute x(k) for x(k) − x̄(l). This implies that we are dealing locally with zero mean
variables. However, the reader should keep in mind that the presented linear ap-
proach is only valid locally and that the direction Φ(l) depends on the position
in the space of the delayed coordinates.
The core of the presented noise reduction algorithm is to identify the noise

subspace and to remove the corresponding components from the noisy sequences.
This can be achieved by seeking ns − n0 vectorsΦj, j = 1, . . . , ns − n0 such that
the projection of the noisy data onto these vectors is minimum. For normalized
vectorsΦj, the projection of the data onto the noise subspace is

ns−n0∑
j=1

Φj{Φ
T
j x(k)} (5.61)

which is required to have minimum norm. Taking into account that the sought
vectors are orthonormal leads the following Lagrangian to be minimized [28]

L =
∑

s(k)∈Nl


ns−n0∑

j=1

ΦjΦ
T
j x(k)




2

−

ns−n0∑
j=1

λj

{
ΦT

j Φj − 1
}

, (5.62)
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where λj, j = 1, . . . , ns − n0 are the Lagrange multipliers. The minimization with
respect to Φj and λj can be done separately for each j yielding the following
eigenvalue problem:

CΦj = λjΦj j = 1, . . . , ns, (5.63)

where C is the ns × ns sample covariance matrix of x(k) within the neighbor-
hood Nl

C =
1

|Nl|

∑
x(k)∈Nl

x(k)x(k)T . (5.64)

Therefore, we end up with a classical eigenvalue problem of the local covariance
matrix. The global minimum is given by the ns − n0 eigenvectors associated
with the smallest eigenvalues. According to section, the 5.4.1 noise reduction is
provided by replacing the noisy sequences by

ŝ(k) =

n
(l)
0∑

j=1

Φj{Φ
T
j x(k)}, (5.65)

where Φj, j = 1, . . . , n
(l)
0 are the eigenvectors associated with the largest eigen-

values of C. Following the results of Section 5.4.1 one can implement this algo-
rithm in an elegant manner by principal component analysis (PCA) of the local
zero mean data vector x(k) = x(k) − x̄(l), ∀x(k) ∈ Nl. The residuals of this ap-
proximation are given by

ê(k) =

ns∑
j=n

(l)
0 +1

pj(k)Φj p � ns . (5.66)

Equations (5.65) and (5.66) show clearly that the eigenspace of the noisy data
is partitioned into a noise subspace determined by Φj for j = n

(l)
0 + 1, . . . , ns

and into a signal-plus-noise subspace determined by Φj for j = 1, . . . , n
(l)
0 . Op-

timal noise reduction performance, i.e., minimal signal distortion and maximal
noise reduction, can be attained only if n(l)

0 and ns are chosen optimally. Among
the possible selection criteria, the MDL criterion, described in its general form
by Eqs. (5.52) and (5.53), has been shown in multiple domains to be a consis-
tent model order estimator especially for short time series [40]. MDL selects the
model that produces the minimum code length for the given data. If we apply
the general MDL selection criterion given by Eq. (5.52) to PCA and take into ac-
count eccentricity considerations of the local confidence ellipsoids, we obtain in
the case of additive white Gaussian noise after some simplifications [41]
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MDL(n(l)
0 ) = − ln




∏ns

j=n
(l)
0 +1

λ̂

1

ns−n
(l)
0

j

1

ns−n
(l)
0

∑ns

j=n
(l)
0 +1

λ̂j




(ns−n
(l)
0 )N

+ M ·
(

1

2
+ ln[γ]

)
−

M

n
(l)
0

n
(l)
0∑

j=1

ln[λ̂j

√
2/N ], (5.67)

where M = n
(l)
0 ns − n

(l)2
0 /2 + n

(l)
0 /2 + 1 is the number of free parameters. The

parameter γ determines the selectivity of MDL. Accordingly, n0
(l) is given by the

minimum of MDL(n
(l)
0 ). For γ = 64 one obtains a very parsimonious approach

while γ = 1 provide a less restrictive selection.
A further important point in the design of a noise reduction algorithm lies in

the adequate choice of the embedding dimension ns and the neighborhood size
|Nl| for k = 1, . . . , L, or, equivalently, the number of local regions L. In classical
methods this is often done in an empirical manner. However, in a robust noise re-
duction algorithm ns and L should also be selected through an objective criterion.
Therefore, we apply the MDL criterion to this parameter estimation problem. The
application of the MDL principle to estimate ns and L requires the description
of a family of competing models and density functions that we are considering.
Since these are global parameters of the noise reduction algorithm we consider
the residual error of an approximation of the data set with parameter values ns

and L

e(ns,L)(k) = x(k) − ŝ(ns,L)(k)

{
ns = nsmin, . . . , nsmax

L = Lmin, . . . , Lmax.

The parameters ns and L have to be chosen such that these residuals are most
likely to the added noise, and more precisely to Gaussian white noise. We pro-
pose to base the likelihood on the singular values of the covariance matrix

Cee =
1

NT

NT −1∑
t=0

e(k)e(k)T , (5.68)

where e(k) = [e(ns,L)(k), . . . , e(ns,L)(k − 1), . . . e(ns,L)(k − le)]T is the delayed
embedding of the residual noise and le+1 is the embedding dimension. The value
of le is not critical and an appropriate value is given by le = nsmax. The choice of
this model is mainly motivated by the fact that the singular value spectrum is a
very efficient and salient data representation and as such constitutes a promising
route for a maximum likelihood approach. More specifically one can directly
apply Eq. (5.67) for the selection of ns and L, that is, the optimal values of the
embedding dimension ns and the number of local regions L are given by the
minimum of the MDL of Eq. (5.67) but using the eigenvalues of Cee.
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5.5 Applications

5.5.1 Cardiovascular Signals: Observer of the Autonomic Cardiac
Modulation

This section describes a typical biomedical application where PCA-based noise
reduction is used on cardiovascular signals in order to allow a subsequent consis-
tent extraction of the autonomic cardiac modulation. The development of nonin-
vasive indicators of the beat-to-beat modulation of the autonomic cardiac outflow
has been motivated by the growing evidence that autonomic reflex alterations
play an important role in many pathophysiological situations. Classically, the
spectral analysis of heart beat intervals or blood pressure is used to yield such
an indicator [42]. However, while high frequency (HF) fluctuations (HF range:
0.15Hz to 0.4Hz) are generally recognized to reflect parasympathetic modu-
lation, interpretation of the low frequency (LF) fluctuations (LF range: 0.04Hz
to 0.15Hz) is more controversial [42]. In order to solve this controversy a method
based on blind source separation (BSS) which separates LF fluctuations in heart
rate (RR) and arterial blood pressure (ABP) into two independent signals can be
applied [43]. However, this method requires simultaneous recordings of ECG and
ABP, which may be cumbersome in clinical applications. An alternative method
is based on blind source separation of short-term fluctuations of RR and QT (time
interval between the bottom of the R wave and the end of the T wave in an ECG
complex) time series, which requires only the recording of a surface ECG [44].
Due to the presence of stochastic influences on RR and QT such as measurement
and quantification noise, BSS cannot be applied directly to RR and QT time se-
ries. Prior noise reduction is required to allow BSS to operate correctly.
Two antagonistic parts of the autonomic nervous system (ANS), i.e., the car-

diac sympathetic (CSNA) and the parasympathetic (CPNA) activities, control the
heart beat rhythm. Changes in the level of CSNA and CPNA influence functional
heart properties through alterations of the respective electrophysiological subsys-
tem [44, 45]. These alterations are then reflected on global ECG parameters such
as RR and QT intervals.
Respiration (RE) acts also on ECG parameters through the autonomic nervous

system (solid line) and through mechanical influences (dashed line). However,
the latter cause only about 10% of the overall interaction between heart and res-
piration [46] and are neglected in this approach. ECG parameters can be seen as
noisy mixtures of CSNA and CPNA. The noise consists of unknown stochastic
influences on RR and QT, measurement and quantification noise. The latter rep-
resents important contributions in QT time series.
The task of an observer of the autonomic cardiac outflow consists in recon-

structing hidden signals (CSNA, CPNA) using only accessible noisy mixtures of
these signals (RR, QT). This is a problem of BSS which is solved by a two-step
algorithm. First, a noise reduction is performed on the noisy mixtures. Then, the
hidden source signals are reconstructed from the enhanced mixtures by a BSS
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method for temporally correlated sources. For the application of BSS, one has to
assume the independence of the sources. Although it has been established that
the sympathetic and parasympathetic activities are not globally independent [47],
previous works using BSS [43], have shown that it is possible to reconstruct two
independent components that are sensitive to CSNA and CPNA respectively.

5.5.1.1 Noise Reduction by Spatio-Temporal PCA

Since we assume that the model underlying the data is linear we focus here
on GPCA. To simultaneously take advantage of the correlations existing between
the observed noisy mixtures and temporal time correlations of the source signals
we apply spatio-temporal GPCA. Thus, we consider the following ns-dimensional
vector, obtained by an embedding in the space of the delayed coordinates (see
Section 5.4.1)

y(k) = [y1(k), . . . , y1

(
k−(n1s−1)J

)
, . . . , yr(k), . . . yr

(
k−(nrs−1)J

)
]T , (5.69)

where ns = n1s + · · · + nrs is the embedding dimension, and r is the number of
spatial dimension. All the yj(k) constitute spatially distributed signals. Usually,
we take n1s = · · · = nrs. GPCA with associated MDL-based parameter selection
is then applied on this multidimensional observation to perform noise reduction.

5.5.1.2 Blind Source Separation of Noisy Mixtures

Blind source separation (BSS) is now a well-known technique in the signal process-
ing community [48, 49] (see further references therein). Its goal is to recover hid-
den source signals of which only observed mixtures are available. In this chapter
we focus on instantaneous BSS which is based on the following model underly-
ing the observed data:

y(k) = x(k) + e(k) (5.70)

x(k) = As(k) k = 1, . . . , NT , (5.71)

where y(k) = [y1(k) · · · yr(k)]T are r observed noisy linear mixtures of the r hid-
den source signals s(k) = [s1(k) · · · sr(k)]T , A is the unknown mixing matrix,
e(k) = [e1(k) · · · er(k)]T is an additive noise vector, and NT is the number of
samples. The aim of BSS is the estimation of a de-mixing matrix B̂ such that
ŝ(k) = B̂y(k) constitutes a perfect reconstruction of the hidden source signals
(up to a scaling factor and a permutation). Generally, this task can be achieved
satisfyingly by BSS for vanishing noise levels. In contrast, increasing noise level
may significantly degrade the blind reconstruction performance [49]. Thus, we
see that high performance in noisy environments can only be obtained if the BSS
algorithm is preceded by an efficient noise reduction system.
We further take advantage of the fact that the source signals in our given ap-

plication are temporally correlated [43] and apply a method proposed in [48, 49].
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This method requires that not only the instantaneous correlations but also the
delayed correlations between the output signals vanish. This leads to a general-
ized eigenvalue problem [48].
The application of the BSS algorithm for noisy mixtures to the observed

ECG parameters (RR, QT) provides two independent signals (u1, u2) which sup-
posedly represent fluctuations of CSNA and CPNA. After rising the amplitude
and permutation ambiguities inherent to BSS by using prior knowledge about
cardiovascular signals [44], a quantitative marker of the sympathovagal balance
can be based on the ratio

R̂ =
σ̂2
CSNA

σ̂2
CPNA

, (5.72)

where σ̂2
CSNA and σ̂2

CPNA are the variance of the reconstructed sympathetic and
parasympathetic activities.

5.5.1.3 Results

A tough task in the development of algorithms based on BSS for biomedical ap-
plications is their validation. Indeed, BSS techniques reconstruct generally hid-
den variables such as CSNA and CPNA, which are not accessible in humans.
However, a validation procedure requires information about these hidden vari-
ables. An elegant way to circumvent this limitation consists in its application to
subjects under experimental conditions known to elicit or inhibit sympathetic
or parasympathetic response. This shows then clearly if the observer is able to
highlight changes in the levels of CPNA and CSNA. Appropriate experimental
protocols have been conducted on six free breathing subjects

1. Protocol Pe: Phenylephrine© (0 µg · kg−1 ·min−1 to 1.5µg · kg−1 ·min−1) was
infused for 15min in order to increase the mean arterial pressure by 10mmHg.

2. Protocol Ni: Nipride© (0 µg · kg−1 ·min−1 to 1.5µg · kg−1 ·min−1) was infused
for 15min to decrease the mean arterial pressure by 10mm Hg.

Ni is known to induce a sympathetic stimulation and parasympathetic inhibition
whereas Pe mainly has the opposite effect. After providing informed consent, we
obtained from subjects 6min recordings of surface ECG on a 486 Intel PC with
an A/D board (Labmaster) at a sampling frequency of 500Hz. This signal has
then been oversampled at 1000Hz and corresponding RR and QT interval time
series have been extracted. The main goal of the oversampling was to enhance
the accuracy of the QT detection algorithm. Finally, since this study takes into
account only LF and HF components of the various signals, all of them have
been re-sampled at 1Hz and bandpass filtered (0.04Hz to 0.4Hz).
Results computed by the proposed observer without prior denoising (R̂) and

with prior denoising (R̂d) are given in Table 5.1. To compare our method with
a traditional approach we have also evaluated the FFT-based indicator of the
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sympathovagal balance R̂FFT which consists in the ratio of LF to HF components
of RR intervals [42].

Tab. 5.1: Indicators of sympathovagal balance for six subjects without (R̂) and with
(R̂d) prior denoising or with an FFT-based indicator (R̂FFT).

R̂ R̂d R̂FFT

Subject Ni Pe Ni Pe Ni Pe

1 0.01 0.38 1.22 0.92 3.64 0.59

2 19.0 49.0 1.23 0.60 0.79 1.03

3 5.67 2.33 1.53 0.73 2.99 0.65

4 99.0 0.01 1.39 0.74 8.46 0.89

5 0.01 0.02 1.33 0.64 1.36 0.32

6 0.02 0.01 1.48 0.79 4.78 0.75

We can remark that prior denoising is necessary, for the indicator without
prior denoising R̂ provides inconsistent results. In contrast, we note that R̂d al-
lows the classification of subjects under different experimental conditions. In-
deed, R̂d(Ni) is always larger than 1 while R̂d(Pe) is smaller than 1. The sta-
tistical reliability of the proposed observer is confirmed by analysis of variance
tests (ANOVA) which provides p = 5× 10−6. Therefore, since Ni is known to in-
duce a sympathetic stimulation and parasympathetic inhibition whereas Pe has
the opposite effect, results show that the proposed observer is able to shed light
on changes in the level of the sympathovagal balance. The analysis of results
for the traditional FFT-based indicator R̂FFT shows that the discrimination of Ni

and Pe is significant from the statistical point of view (p = 0.025). Nevertheless,
this indicator does not provide a classification of subjects under different exper-
imental conditions. Indeed, one cannot find a number κ satisfying R̂FFT(Ni) > κ

and R̂FFT(Pe) < κ for all subjects.

5.5.2 Electroencephalogram: Spontaneous EEG and Evoked
Potentials

Among the research fields where noise has a primary role is brain research, be
it for clinical, physiological, or psychological purposes. In this section, we inves-
tigate the use of noise reduction techniques to spontaneous and evoked brain
electrical responses. The first application is the potential use of brain electrical
signals as captured by the surface electroencephalogram (EEG) for controlling a
device. This paradigm is called brain machine interface. The second is the analy-
sis of single trial visual evoked response potentials in cognitive/psychological
and clinical neuroscience context.
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Brain Machine Interface

Brain-machine interfaces (BMI) allow for communication and control of systems
that do not depend on the brain’s normal output channels of peripheral nerves
and muscles [50]. A BMI enables a person to control an instrument, being soft-
ware or hardware, by generating specific states of the brain, which leave their
signature in the EEG. These states should be as independent as possible to fa-
cilitate the decision of the machine. Many BMIs use motor imagery paradigms.
The mental tasks chosen in this study were imagination of repetitive self-paced
left-hand movement (‘L’) and imagination of repetitive self-paced right-hand
movement (‘R’). The imagined hand movement was a flexion at the wrist causing
the hand moving up and down. The third task was that activating the language
center. This task, ‘W,’ consisted of generating words that begin with the same
letter, freely chosen by the subject. The words were not spoken. All tasks were
executed with opened eyes.
A BMI system is usually composed of three subsystems: (1) a preprocessor,

(2) a feature extraction and selection, and finally (3) a classification stage which
takes the final decision.
EEG signals were recorded with the 32-channel Biosemi ActiveTwo system©.

The electrodes were placed on the scalp according to an extension of the 10–20 in-
ternational electrode placement system. The ground electrode is replaced by two
separate electrodes, located between C3 and Cz, and Cz and C4 respectively.
The EEG signals were digitized at a sampling rate Fs = 2048Hz, subsampled to
Fs = 512Hz and stored for the offline analysis. Together with the EEG signals,
we recorded the "task signal," indicating which task the subject is doing at every
moment. Five naive (without training) subjects participated in the experiment.
The features computed from the EEG signals were frequency band power

densities and spatially grouped and averaged synchronization measures between
different EEG signals. The results show the three classes’ discrimination obtained
using a combination of three support vector machine (SVM) classifier with a lin-
ear kernel. The overall performance of the BMI is measured with the correct
classification rate ([CR] = %) and the rate of unknown response ([UR] = %), re-
ferring to the case where the classifier cannot determine the class. The remaining
percentage is the error rate ([ER] = %). We refer the reader to [51, 52] for a de-
tailed description of the methodology.
We applied GPCA and LPCA noise reduction to test whether they are able to

remove irrelevant information from the EEG signals while keeping the relevant
information the classifier is using to distinguish the different mental tasks. It is
difficult to a priori define which part of the EEG signals actually corresponds
to noise and which part contains the relevant information. Therefore, the noise
reduction algorithms were evaluated by their improvement or deterioration of
the CR. Table 5.2 reports the parameters used for the noise reduction methods.
Table 5.3 presents results with features computed after global PCA noise re-

duction. None of the denoising methods achieved a better average CR than the
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Tab. 5.2: Parameters for GPCA and LPCA noise reduction and values used in our
experiments.

Parameter/flag Description Value

mode_lag J = 1 if ‘n’; computed from correlation if ‘y’ ‘y’–‘n’
ns Embedding space dimension 20–10
mode_MDL use of MDL for determining no if ‘y’ ‘y’–‘n’
no The projection space dimension if mode_MDL=‘n’ 4-5–10
mode_eig use L2 norm if ‘y’; use L1 norm if ‘n’ ‘y’–‘n’
ν = |Nl| Default neighborhood size 50
L Number of neighborhood 0.1*NT

CR obtained without application of noise reduction. For subjects 2 and 4, how-
ever, sometimes an improvement of CR was detected. Originally, 51.11% classi-
fication accuracy was obtained, the best denoising method yielded and average
CR of 51.06%. For subjects 3 and 5 no results better than those without noise
reduction could be obtained.

Tab. 5.3: Results for GPCA noise reduction with the parameter set: (ns, no, mode_-
lag, mode_eig, mode_MDL).

Global PCA Subj 1 2 3 4 5 Average

None CR 61.56 40.27 63.50 39.49 50.71 51.11
UR 6.19 4.06 7.20 8.02 6.95 6.49

20-4-n-n-y CR 60.59 40.76 62.81 39.85 50.38 50.88

UR 6.42 4.67 6.87 8.28 6.92 6.63

20-4-n-n-n CR 60.20 39.78 62.82 40.33 50.53 50.73

UR 6.54 5.17 6.47 8.34 7.14 6.73

20-4-y-n-n CR 53.74 38.72 43.72 40.13 43.43 43.95

UR 4.75 4.22 6.10 5.46 5.28 5.16

20-4-n-y-n CR 60.20 39.78 62.82 40.33 50.53 50.73

UR 6.51 5.17 6.47 8.34 7.14 6.72

20-4-y-y-y CR 58.46 39.05 59.97 40.67 48.08 49.25

UR 6.72 5.76 7.50 7.40 7.48 6.97

20-10-n-n-n CR 60.62 41.16 63.00 40.19 50.35 51.06

UR 6.39 4.67 6.78 8.34 6.89 6.61

Table 5.4 presents the average CR obtained with LPCA denoising which never
outperforms that obtained without denoising. The best averagewas CR = 50.96%
as compared to 51.11% originally. For subjects 2, 4 and 5, LPCA denoising could
yield improved results. As compared to GPCA denoising, the best average CRs
was slightly better: 51.06% and 50.96% for global and LPCA denoising respec-
tively. The different settings of parameters considered did not affect the CR signif-
icantly. Using MDL to determine the dimension of the subspace yielded slightly
better results than those obtained with a manually chosen no, i.e., without MDL.
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Tab. 5.4: Results for LPCA denoising (ν, ns, no, mode_MDL).

Local PCA Subj 1 2 3 4 5 Average

None CR 61.56 40.27 63.50 39.49 50.71 51.11
UR 6.19 4.06 7.20 8.02 6.95 6.49

50-10-5-n CR 60.34 41.66 62.53 39.94 49.45 50.79

UR 6.70 5.30 7.40 8.06 8.29 7.15

50-10-5-y CR 59.83 41.59 62.69 39.93 50.57 50.92

UR 7.16 4.27 7.88 8.82 7.26 7.08

50-10-5-n, CR 60.86 40.60 62.75 39.86 50.38 50.89

J = 1 UR 6.52 4.30 7.15 8.87 7.29 6.83

50-10-5-y, CR 60.28 41.25 62.97 39.54 50.79 50.96

J = 1 UR 6.60 4.18 6.99 8.65 6.70 6.63

50-20-4-n CR 60.11 41.71 59.37 40.09 50.29 50.31

UR 6.45 5.29 7.86 7.93 7.36 6.98

50-20-4-y CR 60.46 40.67 62.87 40.04 50.35 50.88

UR 6.51 4.12 7.23 7.90 7.26 6.61

In these experiments, discriminating EEG during different mental tasks us-
ing power spectral densities and PLV, using noise reduction methods provided
negligible increase or even decrease in classification performances. The reasons
for this can be: (1) the “removed noise" contains actually some information in
its power spectrum density, (2) the noise reduction techniques have “linearized"
the signals (which is more unlikely with LPCA, and thus better performances)
which could contain relevant phase information. In both cases, a need for a bet-
ter understanding of the noise components in recorded electrical brain activity is
necessary.

Visual Evoked Potentials

In this section, we present results of denoising on visual brain evoked potential
(VEP) which is a subclass of evoked potentials (EP). A visual stimulus was pre-
sented to a subject from which the EEG was recorded. The EEG was recorded
using the standard 10–20 electrode placement system and we have used 47 chan-
nels. The careful visual inspection of the signals was performed to discard any
recording with a bad skin contact which produces heavily artifactual data. The
signals were sampled at 500Hz. The duration of a trial was 800ms with 100ms of
prestimulus. NbTrial = 400 trials were recorded and further averaged to provide
the averaged signal sA(n).
Neuro-scientists and -clinicians usually perform a large collection of visual

stimulus triggered VEP response signals, and then perform a statistical averag-
ing of the stimulus-locked VEP. In recent years, however, it has been pointed out
that the statistical averaging can in fact deteriorate the single trial informational
signal. Moreover, due to the natural nonstationarity of the signals and the experi-
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mental procedure, the statistical average should be applied. For this reason, meth-
ods for using single-trial EP have been developed. Due to the low signal-to-noise
ratio of the single trials, noise reduction methods have been developed with more
or less success [53–55]. These methods make use of a thresholding on wavelet co-
efficients to perform the actual denoising, and sometimes the manually selected
set of good wavelet coefficients.
We have applied global and local PCA, together with a hard-threshold wave-

let noise reduction method [56]. For the sake of completeness, we have also
performed a Wiener filtering method in each subband as constructed from the
wavelet filter bank used in the previous technique. The wavelet and Wiener
noise removal approaches can be explained in the same framework as in Sec-
tion 5.3(see also [57]). We have used the biorthonormal B-spline wavelet of order
(Nh = 4,Ng = 20) where Nh is the order of the analysis FIR filter and Ng the
order of the synthesis FIR filter. The performance measure assumes that sA(n) is
the noise-free signal and is defined as follows:

NMSE = 100
E[

(
sA(n) − ŝ(n)

)2
]

E[s2
A(n)] + E[ŝ2(n)]

(5.73)

where ŝ(n) is the noise reduced signal. NMSE tends to zero when E[
(
sA(n) −

ŝ(n)
)2

] and thus the estimated signal ŝ(n) is close to sA(n). We further make use
of the many trials to improve the noise reduction by averaging the noise reduced
single trials. So for instance, at the trial K, we apply the noise reduction methods
on the K trials and then we average them to produce an average noise reduced
VEP ŝ(K)(n). We can then use the following K-averaged measure:

NMSE(K) = 100
E[

(
sA(n) − ŝ(K)(n)

)2
]

E[s2
A(n)] + E[(ŝ(K))2(n)]

. (5.74)

The parameters used in each method are reported in Table 5.5 (see Sections 5.4.1
and 5.4.2 for details).

Tab. 5.5: Parameters used in our experiments for LPCA and GPCA.

Parameter/flag Description Value

J Embedding lag 1
ns GPCA embedding space dimension 30
ns LPCA embedding space dimension ns 30
ν = |Nl| Default neighborhood size 50
L Number of neighborhood 0.1*NT

Figure 5.4 shows the statistics of the four different methods. The upper panel
shows the NMSE(K) in function of the number of trials. As K increases, the
NMSE(K) decreases to reach zero when K = NbTrial. A significant improvement
is seen already after three trials. The wavelet denoising should be preferred for a
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Fig. 5.4: Upper panel: the normalized NMSE(K) in function of the number of trials
K for the four different techniques. Lower panel: a Boxcar display of the statistical
results of the four different methods. The box has lines at the lower quartile, me-
dian, and upper quartile values with whiskers showing the rest of the data. The
(+) indicates outliers data beyond the whiskers.

small number of trials, while GPCA performs better after three trials. Almost all
methods perform well after six trials due to the averaging effect. The lower panel
shows the quartiles of the nonaveraged NbTrial values of NMSE(K) for the four
different methods.
Figure 5.5 shows the result on one particular channel (channel 21) for K = 3.

The P100 (positive deflection at about 100ms after stimuli) and N200 (negative
deflection at about 200ms after stimuli) waves are clearly extracted from the
various techniques. The sharpness of the waves with noise removed is much
more pronounced than with the total averaged waves where it is smeared out
by the averaging process. The quality of the noise reduction method should be
assessed with a clinical specialist within the framework of a specific application,
e.g., inverse solution problem, time delay estimation, amplitude estimation, time-
frequency content, or instantaneous phase extraction. We can also observe some
severe deflections at about 400ms, 500ms, and 600ms in the cleaned signals that
do not show up in the total averaged signal. These deflections can be due to
artifacts and should be dealt with according to artifact detection and removal
methods [58].
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Fig. 5.5: Example of noise reduction using the four different techniques. Top left:
single trial EVP. Top right: total 400 trial average with three trial average. Bottom
left: Wavelet and subband Wiener techniques. Bottom right: GPCA and LPCA tech-
niques.

5.5.3 Speech Enhancement

The performance of automatic speech processing systems degrades drastically in
noisy environments. Therefore, several single channel enhancement algorithms
using the discrete Fourier transform (DFT), such as subtractive-type approaches
[59, 60] or Wiener filtering, have been developed. The major problem with most
of these methods is that they suffer from a distortion called “musical noise.” To
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reduce this distortion, the DFT can be replaced by the discrete cosine transform
(DCT) [61] or the KLT [62]. The enhancement is obtained by nulling the noise
subspace as explained in Section 5.4.1, with an additional optimal weighting of
the signal-plus-noise subspace.
In this section we present a subspace approach for single channel speech

enhancement and recognition in highly noisy environments based on the KLT,
and implemented via PCA. This choice is motivated by the fact that the KLT
provides an optimum compression of information, while the DFT and the DCT
are suboptimal. The main problem in subspace approaches is the optimal choice
of the different parameters. We present therefore an approach for the optimal
subspace partition using MDL.

5.5.3.1 Proposed Subspace Approach

Consider a speech signal s(k) corrupted by an additive stationary background
noise e(k) as in Eq. (5.4). Our noise reduction algorithm operates on a frame-by-
frame basis and the general enhancement scheme is represented in Fig. 5.6. A
very efficient and robust implementation of the subspace approach is provided
by the GPCA of the ns-dimensional vector x(k), obtained by an embedding in
the space of the delayed coordinates. We have used J = 1 in this section. In
speech GPCA-based noise reduction processing the n0 components are generally
weighted, as proposed by Ephraim et al. in [62]. From Eq. (5.23) and using the
weighting matrix Go we get

ŝ(k)Eph95 = GoPEoPC (5.75)

with Go = diag(exp {−κσ2
n/λj}) for j = 1, . . . , n0 and κ = 5. The parameters ns

and n0 are generally chosen in such a way that the noise is essentially relegated
to the residuals of the signal approximation given by Eq. (5.75).

5.5.3.2 Subspace Partitioning

The optimal design of a PCA-based noise reduction algorithm for speech en-
hancement is a difficult task. The parameters ns and n0 should be chosen in an
optimal manner through appropriate selection rules. Furthermore, the use of a
weighting matrix Gw in Eq. (5.75) introduces a considerable amount of speech
distortion. Therefore, in order to simultaneously maximize noise reduction and
minimize signal distortion, we present in this section an approach consisting in
a partition of the eigenspace of the noisy data into three different subspaces (see
Fig. 5.6).

1. A noise subspace which contains mainly noise contributions. These compo-
nents are nulled during reconstruction.

2. A signal subspace which contains principal components pj(k) with a high
signal-to-noise ratio SNRj � 1. Components of this subspace are not weighted
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Fig. 5.6: The proposed enhancement algorithm.

since they contain mainly components from the original signal. This allows a
minimization of the signal distortion.

3. A signal-plus-noise subspace which includes the components pj(k), SNRj ≈ 1.
The estimation of its dimension can only be done with a high error probability.
Consequently, principal components with SNRj < 1 may belong to it and a
weighting is applied during reconstruction.

Using this new partition, the reconstructed signal is given by

ŝ(k) = PE1
o
PC + G2

oPE2
o
PC, (5.76)

where PE1
o
is the projection matrix corresponding to the n01 first eigenvectors and

PE2
o
is the projection matrix corresponding to the n02−n01+1 following eigenvec-

tors, and G2
o = diag(exp {−κσ2

n/λj}) for j = n01 + 1, . . . , n02 and κ = 5. We note
that the proposed approach requires the determination of the parameters n01

and n02. The parameter n01 should provide a very parsimonious representation
of the signal whereas n02 should also select components with SNRj ≈ 1. The pa-
rameter γ determines the selectivity of MDL. Accordingly, n01 and n02 are given
by the minimum of MDL(n0i) with γ = 64 and γ = 1, respectively.
A crucial point is the adequate choice of the embedding dimension ns of

the PCA. In this chapter we use a rule for the determination of ns that has been
proposed in the context of the singular spectrum analysis [63]. It is applicable if
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the useful signal is constituted of quasiperiodic contributions of a bandwidth ∆fx

and is given by

ns < min{1/∆fx (NT /3 + 1)}. (5.77)

For speech signals, we found that an appropriate value for ns is in the range
from 40 to 80.

5.5.3.3 Results

For the performance evaluation, we have compared the following single channel
enhancement algorithms: nonlinear spectral subtraction using the DFT (NSS) [60],
subspace approach by Ephraim et al. using the KLT (Eph95) [62], proposed sub-
space approach (PCA–MDL). The testing database has been created by adding
different types of background noises from the Noisex database to the clean speech
signals, at SNRs ranging from −6dB to +∞dB. The sampling frequency is 8kHz.
The frame size isNT = 400 and we apply Hanning windowing with 50% overlap.
We have based our performance evaluation on the segmental SNR ([SNR] = dB),
the Itakura–Saito distortion measure (IS), the observation of the spectrograms
as well as informal listening tests. We have observed that generally subspace
approaches based on the PCA (Eph95 and PCA–MDL) outperform linear and
nonlinear subtractive-type methods using DFT. In particular, the use of a sub-
space approach significantly reduces the “musical noise.”

Tab. 5.6: Segmental SNR and Itakura–Saito measure in the case of white Gaussian
noise.

Noisy Eph95 PCA–MDL

SNR IS SNR IS SNR IS

0 6.2 6.5 4.1 8.8 3.2

6 5.1 10.5 3.2 12.6 3.1

18 2.2 21.9 1.1 22 0.9

If we compare the subspace approaches, we can see in Table 5.6 that our
method provides similar performance with respect to Eph95 for high input SNRs.
However, it leads to a higher noise reduction and a lower signal distortion (smaller
value of IS) for low SNRs. These results highlight the efficiency and consistency of
the MDL-based subspace algorithm. Furthermore, this approach does not require
parameter tuning based on empirical considerations. One important additional
feature of our method is that it is highly efficient in detecting speech pauses,
even under very noisy conditions. In order to be able to apply the MDL selection
approach to colored noises, we have to modify the covariance matrix C of the
noisy data by taking into account the covariance matrix of noise computed dur-
ing speech pauses. This leads to the results presented in Table 5.7 for helicopter
cockpit noise. We can see, that even in this case, our method provides good per-
formance over subtractive-type algorithms.
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Tab. 5.7: Segmental SNR and Itakura–Saito measure in the case of helicopter cock-
pit noise.

Noisy NSS PCA–MDL

SNR IS SNR IS SNR IS

0 3.1 5.2 3 6.7 2.4

6 2.1 10.1 1.9 10.9 1.1

18 0.5 20.2 0.4 20.5 0.3

We have applied our enhancement algorithm as a preprocessing stage to
speech recognition in noise. We have used a speech recognizer which has been de-
signed and trained on clean speech for the isolated digit recognition. The recog-
nizer has been built up by the HTK HMM toolkit version 2.1. The features for
speech recognition are the 12 MFCC and the energy, together with the first- and
second-order derivatives of these 13 parameters. The training database is consti-
tuted of 400 recordings of seven digits. The general model for the isolated digit
recognition consists of a model for silence between the digits (three emitting
states). The testing database contains 50 sequences of seven digits with additive
white Gaussian noise.

Tab. 5.8: Correctness of recognition in the case of white Gaussian noise.

Input SNR Noisy NSS Eph95 PCA–MDL
% % %

−6 16 20 27 37

0 20 31 39 44

6 35 50 60 68

Table 5.8 gives the recognition results in terms of correctness for the compared
algorithms. These results underline that our method allows an extraction of the
relevant features of speech even under highly noisy conditions.

5.6 Conclusions

This chapter has presented the multifaceted world of randomness and noise, both
from biological systems’ and scientists’ viewpoints. We have tried to emphasize
the fact that these two viewpoints are still quite different, and make the two
worlds quite separate. Future development in science and engineering should
take this fact into account in order to move toward more efficient and sustainable
system design. This step forward will be made possible by new understanding
of the relationship we have with nature. Grasping the essence of randomness will
be a key factor in this direction.
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The time series analysis is the landscape for exercising statistical signal process-
ing: modeling, system identification, prediction, and noise reduction. We have
also seen that the statistical approach can be very efficient when a sufficient
amount of data are available, some good a priori knowledge about the problem is
available, and we aim at describing or analyzing en masse phenomena. However,
when no or few a priori knowledge is at one’s disposal, and the system is very
complex, these methods tend to provide poor results. These two extreme cases
have been exemplified by speech enhancement, visual evoked potential noise re-
duction and cardiovascular system analysis on one hand, and noise reduction in
brain-machine interfaces on the other. Obviously, the last application is far more
complex than the other ones and requires much further understanding of the
brain function than what is actually available.
We have described a generic technique based on subspace decomposition and

projection which allows for great flexibility, allowing us to deal with the most
complex signals which are nonstationary and nonlinear.
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6 Robust Detail-Preserving Signal Extraction

Ursula Gather, Roland Fried, and Vivian Lanius

We discuss robust filtering procedures for signal extraction from noisy time se-
ries. Particular attention is paid to the preservation of relevant signal details like
abrupt shifts. Moving averages and running medians are widely used but have
shortcomings when large spikes (outliers) or trends occur. Modifications such as
modified trimmed means and linear median hybrid filters combine advantages
of both approaches, but they do not completely overcome the difficulties. Better
solutions can be based on robust regression techniques, which even work in real
time because of increased computational power and faster algorithms. Reviewing
the previous work we present filters for robust signal extraction and discuss their
merits for preserving trends, abrupt shifts and local extremes as well as for the
removal of outliers.

6.1 Introduction

Linear filters have long been the primary device for the extraction of a time-
varying level (a ”signal”) from time series because of the profound theory of
linear systems, computational ease, simple design, and optimal attenuation of
additive Gaussian noise. However, they are neither suitable if there are sudden
changes from one signal level to another nor in the case of impulsive noise gen-
erating strongly deviant outliers ("spikes") caused by measurement problems for
instance. Change points are often the most important information and should
be preserved, while at the same time a substantial amount of outliers should
be resisted, since previous data cleaning is not possible in automatic applica-
tion. Tukey [1] suggests standard median filters ("running medians") for these
purposes, but these still have some shortcomings as we will point out in the fol-
lowing.
To fix notation, we assume a simple data-generating model. Let (yt) be a time

series, observed at discrete time points t ∈ Z. Of course there will be only a
finite number of measurements y1, . . . , yN available, but the main difference is
that additional rules are needed for handling the endpoints. Extrapolation of the
results from the first and last windows or adding the first and the last observed
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values a sufficient number of times are possible ways of dealing with finite sets
of data. We assume that the data are generated as

yt = µt + ut + vt, t ∈ Z , (6.1)

where the sequence (µt) is the signal, while ut is the "ordinary" observational
noise with constant median zero and variance σ2

t . Sporadic measurement prob-
lems are represented by the impulsive (spiky) noise vt from an outlier generating
mechanism. It is zero most of the time, but can take very large absolute values
occasionally.
The construction of filtering procedures is usually guided by some demands.

One aim is to preserve certain signal characteristics, e.g., like linear or more gen-
erally monotonic trends and abrupt, long-term level shifts. Good noise attenua-
tion is not enough to yield acceptable signal quality. Filters with optimal noise
reduction could be derived under restrictions guaranteeing detailed preservation
if we were willing to specify a distribution for the noise, or at least a suitably
small family of distributions. However, knowledge about the noise distribution
is often scarce, in particular when we are faced with measurement problems re-
sulting in large, irrelevant spikes. Moreover, we are often confronted with other
phenomena such as heteroscedasticity due to time-varying "environmental" con-
ditions. Therefore we propagate robust filters, which perform reasonably well
under a broad range of conditions and do not strongly rely on a completely
specified model which is most likely misspecified.
To illustrate the previous arguments we give a simple example: If we just im-

pose that a time invariant constant signal value µt = µ is to be approximated
and assume the observational noise to be independently Gaussian distributed,
the most efficient method in terms of the error variance is the sample mean, i.e.,
the arithmetic average of all available observations. However, it is well known
that the sample mean is not at all robust against deviations from normality.
A simple measure of robustness is the finite-sample breakdown point of an es-
timator, which gives us the minimal fraction of deviant observations possibly
making the estimate completely meaningless [2]. It is well known that a single
outlier has an unbounded effect on the sample mean, resulting in a finite-sample
breakdown point of 1/N. A possible solution are M-estimators, which achieve
some robustness and large efficiency within the so-called contamination neigh-
borhoods of the Gaussian distribution Φ [3]. These neighborhoods contain all
mixtures (1 − ε)Φ + εF with a constant ε ∈ (0, 1) and an arbitrary distribution F.
However, there is a trade-off between efficiency and robustness: Designing the
estimator for a larger neighborhood increases robustness, but reduces the effi-
ciency at the Gaussian. The median finally is the Huber M-estimator with max-
imal asymptotic breakdown point 50%, guaranteeing optimal protection among
all reasonable location estimators: About half of the sample needs to be contam-
inated for the effects to become arbitrarily large. We will focus on methods with
high breakdown points.
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Instead of optimizing a single criterion, statistical procedures intended to deal
with real-world data should behave well in many different aspects [4]. Common
criteria in routine application are the existence of a unique solution, low compu-
tation time, the preservation of important signal details, high robustness against
outliers, and satisfactory finite-sample efficiency under Gaussian or other proto-
type distributions. We restrict ourselves to filters fulfilling the first two demands,
and compare candidate methods wrt the latter three properties.
In the general situation of a time-varying signal there are different approaches

to filter construction: Recursive filters update the estimate for the previous time
point including the information from the incoming observation. Exponentially
weighted moving averages (EWMA) are perhaps the most common example.
These filters are designed for sequential (“online”) application, where one ap-
proximates the signal value at the most recent time point without delay. The
resulting estimates are optimal wrt a weighted least-squares loss and very vul-
nerable to outliers. Robustifications based, e.g., on weighted least absolute de-
viations are possible, but computationally expensive and their statistical proper-
ties are difficult to analyze [5]. Recursive filters such as EWMA tend to follow
changes like abrupt level shifts or monotonic trends with some delay since they
only include past observations. A further major difficulty is to construct filters
which preserve fine signal details like temporary shifts, while removing short
sequences of irrelevant outliers.
Moving window techniques slide a time window through the series for local

approximation of the signal from the data in the window. Moving averages and
running medians are prominent representatives of such filters. However, moving
averages and linear filters in general are not suitable for removing outliers and
they always blur level shifts (also called “step changes” or “jumps”), see Fig. 6.1.
Moving window techniques can be designed for retrospective (fixed sample)

or online (sequential) application. In retrospective application, a time delay does
not cause a problem. Here one approximates the signal value in the center of
the window, including both past and future observations in the calculations. In
the online analysis one approximates the signal at the most recent time point,
i.e., at the end of the window. To unify notation, we denote the time window
used for the approximation of the signal value µt at time t by yt−m, . . . , yt+m̃,
where m̃ = m in the symmetric retrospective and m̃ = 0 in the online situation.
For determination of the window width n = m + m̃ + 1 we need to choose a
suitable value of m.
We discuss moving window techniques which allow us to preserve relevant

signal details like level shifts and provide considerable robustness against devi-
ations from the modeling assumptions, particularly against outlying spikes. For
distinguishing between relevant temporary level shifts and irrelevant sequences
of spikes we assume the latter to have shorter durations. The filter can be de-
signed accordingly by choosing appropriate substructures and window widths.
For more extensive reviews of (robust) nonlinear filters, see [6–10].
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This chapter is organized as follows: Section 6.2 illustrates robust detail-pre-
serving signal extraction using location-based filters like running medians. Sec-
tion 6.3 proposes regression-based procedures which achieve large improvements
in trend periods. Section 6.4 presents ideas for the modification and combination
of the filters studied before. Section 6.5 draws some conclusions.

6.2 Filters Based on Local Constant Fits

Location-based filters apply a location estimator for the approximation of the
signal value µt from yt−m, . . . , yt+m̃. Such methods implicitly assume the signal
to be almost constant within each time window, i.e., µt−m ≈ · · · ≈ µt ≈ · · · ≈
µt+m̃ for all t. This assumption can be justified when choosing m small since the
signal is assumed to vary slowly, but the cost is reduced smoothing. Generally,
the window width needs to be chosen by a compromise between several aims:
On the one hand, the assumption of a constant level within each window is less
reasonable for large m. This causes problems particularly in the online situation
as we then rely on a simple extrapolation. On the other hand, a large width stands
for smaller variability, produces smoother estimates and increases robustness.

6.2.1 Standard Median Filters

Standard median filters, also called running medians, have been introduced by
Tukey [1] and are perhaps the most prominent robust location-based filters. They
approximate µt by the median of yt−m, . . . , yt+m̃,

StM(yt) = µ̃t = med(yt−m, . . . , yt+m̃) , t ∈ Z .

Like all filters based on “reasonable” location estimators, standard median filters
are location and scale equivariant, meaning that adding a constant or multiplying
by a constant changes the filter output in the same way. The quality of filters with
these properties hence does not depend on the underlying measurement scale.
The asymptotic variance of the median is 1/[4nf2(0)] if the noise has a den-

sity f with median zero. Accordingly, its asymptotic efficiency relatively to the
mean is 63.7% for the Gaussian, but 200% for the Laplace distribution.
The finite-sample breakdown point of the median applied to n observations

is �(n + 1)/2�/n, where �c� represents the largest integer not larger than c. This
means that at least half of the data needs to be shifted to completely change
the estimate. This property can be used for designing running medians: To re-
move sequences of up to � outliers and preserve level shifts with a duration
of at least � + 1 observations, we can apply a running median with window
width n = 2� + 1.
The exact fit point provides information on the preservation of relevant sig-

nal details and the removal of spikes under idealized conditions with no ob-
servational noise, i.e., σ2

t ≡ 0. Applied to a regression functional T : Rn → Rp,
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the exact fit point corresponds to the smallest possible fraction of contamina-
tion which can cause T to deviate from a fit γ̃ ∈ Rp. Consider a sample yn =

{(x1, y1), . . . , (xn, yn)} of n observations of a response y and a p-variate regres-
sor x such that yi = γ̃ ′xi for all i = 1, . . . , n, and let yk,n be a sample where k out
of the n observations in yn are replaced by arbitrary values. The exact fit point
of T then becomes

δ∗n(T, yn) = min
k

{ k

n

∣∣∣ there exists a sample yk,n such that T(yk,n) �= γ̃
}

.

The median, like all location estimators, regresses on a constant only, i.e., p = 1

and xi = 1, i = 1, . . . , n. Its exact fit point is equal to its finite-sample breakdown
point. While the latter corresponds to the minimal number of spikes which can
render the extracted value meaningless, the former yields the number of spikes
a filter can remove completely in the absence of observational noise. A running
median with width n = 2� + 1 can hence remove up to � subsequent spikes
completely if σ2

t ≡ 0. In retrospective application, it can preserve a level shift
from one constant signal value to another exactly if it lasts at least for � + 1

observations, while in online application the shift is delayed by � observations.
Another notable property of the running median in retrospective application is
that it recovers monotonic trends exactly under noise-free conditions.
The exact preservation of signal characteristics as described above applies

only under idealized conditions. Nevertheless, the deviations can be expected
to be small in the presence of little (as compared, e.g., to the height of shifts)
observational noise since the median is Lipschitz continuous with constant 1: The
median deviates at most by δ from µt if for all i |ut+i| < δ and if not more than
one of the following occurs in the window: at most � spikes, a single level shift,
or a monotonic trend. Lipschitz-continuous functionals are to be recommended
in general since this property restricts the influence of minor changes in the data
due to small observational noise or rounding [4].
Nevertheless, the performance of running medians becomes worse at mono-

tonic changes (edges): It suppresses noise less efficiently there, and it shows a
bias which is related to the noise power and the height of the edge. Further prob-
lems arise when more than one data pattern occurs in a single window: Running
medians suffer from edge jitter, i.e., they move shifts toward preceding close-by
spikes into the same direction. A shift during a monotonic trend can be preserved
only if the shift and the trend point to the same direction. The shift gets blurred
otherwise, and a single spike within a trend causes smearing [11–15]. Median
filters with an adaptive window width have been suggested to reduce edge and
plateau jitter caused by spikes close to edges [16–18]. The window width can be
chosen using criteria such as the current signal slope [18], the length of detected
outlier sequences [17, 19], or a variance decomposition assuming the noise vari-
ance to be stationary [20, 21].
When designing a filter we often want certain signals to pass the filter un-

perturbed. For a linear filter, such eigenfunctions can be characterized in the
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frequency domain by its passband and stopband. Signals which pass a nonlinear
filter unchanged are called its roots and can be analyzed in the time domain.
The roots of a running median with width n = 2� + 1 contain only edges of
monotonic increase or decrease, separated by at least � + 1 constant values [22].
Thus, the roots of a running median are also roots of all running medians with
smaller width. A running median reduces any time series within a finite number
of repetitions to one of its roots.
Recursive medians are a simple variation of running medians, replacing the

observations before time t by the already filtered values when calculating the
output at t. A recursive median possesses the same set of roots as a running me-
dian with the same window width, but a time series may be filtered to different
roots by the two filters. Recursive medians reduce every series to become a root
in a single step; they provide better smoothing and they are more robust than
running medians, but they distort edges more strongly [23, 24].

6.2.2 Modified Order Statistic Filters

Instead of the median, other order statistics (OS) can be applied for filtering as
well. Switching to a higher or lower order statistic can improve the preservation
of shifts [25]. More generally, OS-Filters, or L-filters, are based on linear combina-
tions of order statistics [26]. Using a set of weights w1, . . . , wn summing up to 1,
the filter output is calculated as

OS(yt) =

n∑
i=1

wiyt(i), (6.2)

where yt(1), . . . , yt(n) are the ordered observations within the window. A suitable
choice of the weights allows us to dampen noise with different tail behavior
efficiently [26, 27]. Order statistic filters are location and scale equivariant. They
preserve linear trends exactly in retrospective application and under noise-free
conditions if the weights are chosen symmetric, wi = wn−i+1, i = 1, . . . , n. As
special cases we obtain the mean (wi = 1/n for i = 1, . . . , n), the median (w�+1 =

1 and wi = 0 otherwise for odd n = 2� + 1), the midpoint (w1 = wn = 1/2 and
all other wi = 0), and the α-trimmed means (wi = 1/(n − 2�αn�) for i = �αn� +

1, . . . , n− �αn� and wi = 0 otherwise). Order statistic filters with nearly minimal
mean squared error (MSE) for a given error distribution can be designed using
analytical approximations even in real-time application [28].

α-trimmed means (α-TM) have received considerable attention since they con-
stitute a compromise between the mean (α = 0) and the median (α = 0.5). Of-
ten α ∈ [ 0.2, 0.275] is suggested to yield good efficiency for a broad family of dis-
tributions including the Gaussian [29, 30], i.e., we trim between 20% and 27.5%
of the smallest and the largest observations. The price to be paid for increased
efficiency close to the Gaussian as compared to the median is a smaller resis-
tance to outliers: The breakdown point of an α-TM is asymptotically 2α × 100%.
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Accordingly, an α-TM filter with α < 0.5 smoothes a level shift to a ramp edge
with (1−α)n observations [31–34]. More generally, running medians are the only
order statistic filters which can preserve shifts exactly [29].
Order statistic filters with data-adaptive choice of the weights have been sug-

gested to overcome this deficiency. They achieve considerable robustness against
outliers and at the same time high efficiency under a broad range of conditions
including time-varying, heterogeneous noise. Modified trimmed mean (MTM)
filters are defined in analogy to trimmed means, but they choose the fraction of
trimming α depending on the data in the current window. Observations which
are further away than a distance qt from the local median are trimmed and the
average of the remaining observations is taken as filter output:

MTM(yt) =
1

|It|

∑
i∈It

yt+i ,

It = {i = −m, . . . , m̃ : |yt+i − µ̃t| � qt}

µ̃t = med(yt−m, . . . , yt+m̃), t ∈ Z .

(6.3)

Hence, MTM filters are a data-adaptive compromise between the running median
(qt = 0) and the moving average (qt = ∞), compare also Fig. 6.1. An a priori
choice of qt can be based on the expected height of the shifts. A data-adaptive
alternative can be formulated using a robust scale estimate like the local median
absolute deviation about the median (MAD),

σ̃M
t = cn ·med(|yt−m − µ̃t|, . . . , |yt+m̃ − µ̃t|).

Here, cn is a correction factor depending on the window width n, usually chosen
to achieve unbiasedness in the case of Gaussian noise. For n not very small we
set cn = 1.483. A reasonable range of choices is qt ∈ [2σ̃M

t , 3σ̃M
t ], see [32, 35].

Double window modified trimmed mean (DWMTM)-filters are a variant of
MTM-filters. They apply two windows with different widths. The median and
the MAD are calculated from a short signal window with width k < n to retain
signal details. Then all observations deviating more than qt from this median
are trimmed from the larger window with width n, before the remaining values
are averaged for better attenuation of observational noise. MTM filters can be
seen as DWMTM filters with k = n. DWMTM-filters with adaptive choice of that
factor, by which the local MAD is multiplied, have been suggested for removing
signal-dependent noise [36].
Analyzing the breakdown and exact fit points shows that a DWMTM can

remove up to �k/2� subsequent spikes from a constant signal under noise-free
conditions. The smaller window width k should hence be chosen depending on
the minimal duration of relevant signal details. Using a short inner window im-
proves the preservation of shifts, see Fig. 6.1, but reduces the attenuation of noise.
A DWMTM-filter can be tuned to be considerably more efficient for Gaussian
noise and preserve large shifts better than a running median with the same n

choosing k and qt large enough [10, 35].
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Fig. 6.1: Observed time series with outliers ◦, level shift and trend together with
approximations of the signal by means of location-based filters: moving average,
median and DWMTM-filter with m = m̃ = 10, i.e., n = 21, and k = 9. In this
example the median performs very well; however, it approximates the linear trend
by a step function.

DWMTM-filters calculate the mean of a subsample which is chosen according
to the distances from an initial estimate. This means a kind of hard thresholding
and implies discontinuity. Soft thresholding with a smooth transition between
acceptance and rejection can be obtained in the form of weighted averages with
weights chosen according to the initial distances [16]. This idea will be explained
in more detail at the end of the next section.
Further location estimators have been proposed for filtering. The Hodges–

Lehman–Bickel (HLB) estimate of location is the median of averages of symmet-
rically placed order statistics,

HLBn(yt−m, . . . , yt+m̃) = medi=1,...,�(n+1)/2�
yt(i) + yt(n−i+1)

2
. (6.4)

It is location and scale equivariant, preserves trends in the absence of noise, and
has a breakdown point of 25%. Nevertheless, the application of suitably trimmed
means seems preferable [30].

6.2.3 Weighted Median Filters

The standard median and (modified) order statistic filters defined in the previ-
ous sections do not take into account the temporal distances between the target
point t at which we estimate the signal and the observation times of the measure-
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ments included in the calculation. This causes problems if the implicit assump-
tion of a locally constant signal within each window is not fulfilled. A remedy
is to weight the observations according to their temporal distances [37], giving
smaller weight to observations more distant from the target point.
We focus on weighted median (WM) filters: while the median minimizes the

L1-distance (the sum of the absolute deviations) to the data points, the weighted
median of yt−m, . . . , yt+m̃ for arbitrary positive real weights w−m, . . . , wm̃ min-
imizes the weighted L1-distance

WM(yt) = arg min
µ

m̃∑
i=−m

wi · |yt+i − µ|. (6.5)

Running medians correspond to uniform weights wi = 1, i = −m, . . . , m̃. WM
filters have become popular because of their high flexibility: A running median
necessarily applies a window of width n = 2� + 1 to preserve signal details of
length �+ 1 and to remove up to � outlying spikes. Weighting of the observations
allows us to use longer windows and thus yields a stronger noise reduction [23,
37].
Denoting the ordered observations in the window by yt(1) � · · · � yt(n)

and the corresponding positive weights by w(1), . . . , w(n), the weighted median
corresponds to the kth-order statistic µ̂ = yt(k), where

k = max

{
h :

n∑
i=h

w(i) � 1

2

n∑
i=1

wi

}
. (6.6)

For example, the WM of 1, 2, 3, 9 with weights 0.1, 1.6, 1.4, and 0.5 is y(3) = 3,
since 0.5 + 1.4 � 3.6/2. Generally, Eqs. (6.6) and (6.5) yield the same results.
However, the whole interval [y(k−1), y(k)] solves Eq. (6.5) whenever

∑n
i=k w(i) =

1
2

∑n
i=1 wi. The solution y(k−1) would be obtained in Eq. (6.6) by summing from

the bottom instead of from the top and taking the minimum instead of the maxi-
mum. This ambiguity can be solved as usual by choosing the center of the interval
(the only choice which gives affine equivariance). For nonnegative integer valued
weights w1, . . . , wn, a simple equivalent representation of the weighted median
of yt−m, . . . , yt+m̃ is

WM(yt) = med(w−m 	 yt−m, . . . , wm̃ 	 yt+m̃) , (6.7)

where w 	 y denotes the replication of y to obtain w identical copies.
Even though there is an infinite number of real weights, there is only a fi-

nite number of WM filters for a given window width. In particular, for every
WM with arbitrary positive real weights there is an equivalent WM with in-
teger weights [38]. Two weighted medians with respective weights w1, . . . , wn

and w̃1, . . . , w̃n are called equivalent iff they give the same result for every sam-
ple. This is the case iff for every subset I ⊂ {1, . . . , n} of indices we have∑

i∈I

wi � 0.5

n∑
i=1

wi ⇐⇒
∑
i∈I

w̃i � 0.5

n∑
i=1

w̃i .
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In particular, to get equivalence to the standard median it is crucial that the
weights are balanced, such that no subset of less than �(n + 1)/2� weights sums
up to at least half the total mass. For an overview on the equivalence of WMs,
see [39].
WM filters are unbiased for the mean in the case of symmetric noise. Formula

for output central moments and the variance of WM filters can be found in [40],
as well as an algorithm to obtain WM filters which minimize symmetrically dis-
tributed noise under the constraint that certain signal details are to be preserved
under noise-free conditions. The optimal WM filter does not depend on the un-
derlying error distribution, and it is optimal both under the MSE and under the
mean absolute error (MAE) criterion. In the absence of structural constraints, the
WM filter with minimal MAE and MSE for a given window width is the running
median.
Root signal properties of general WM filters are much more difficult to de-

rive than those of running medians [23]. Weighted median filters are basically
low-pass filters, like the other filter classes treated here. The frequency response
of selection type nonlinear filters like WMs can be analyzed by comparison with
a linear filter having the sample selection probabilities as coefficients [41, 42].
Weighted median filters can be used for high-pass and band-pass filtering by al-
lowing for negative weights [43] or by the linear combination of several weighted
medians [44]. Ideas for robust periodograms and robust short-time Fourier trans-
forms based on M-estimators in general and medians in particular can be found
in [45]. For similarities between WM filters and linear filters with finite impulse
response (FIR), see [23].
Weighting according to the temporal distances can of course also be applied

to location estimators different from the median. DWMTM filters with additional
weighting according to the temporal order of the observations can retain desired
signal frequencies in addition to edge preservation and impulse suppression [46].
Again we can also apply the soft thresholding described at the end of subsec-
tion 6.2.2 [47]. Let w−m, . . . , wm̃ be weights according to the temporal distances
in the design space as before. Further, additional weights for the distances in the
observation space are derived using an unimodal affinity function A, which is
controlled by initial robust estimates of location µ and spread γ, e.g., the median
and the MAD. Then the resulting weighted order statistic (WOS) affine FIR filter
reads

WAF(yt) =

m̃∑
i=−m

wiA
µ,γ
i yt+i/

m̃∑
i=−m

wiA
µ,γ
i . (6.8)

Filters defined like this are data adaptive and location equivariant, and they can
preserve trends and shifts exactly under noise-free conditions. For the preserva-
tion of shifts and the suppression of spikes the affinity function needs to decay
sufficiently fast to zero.
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Very general filter classes have been derived by linear combination of all order
statistics with weighting according to both the temporal and the rank order [46,
48], but these are difficult to design except for multiplicative weights. Similarly,
generalized Wilcoxon filters can be constructed combining linear rank statistics
and temporal weighting, but they seem to be inferior to DWMTM filters both
wrt edge preservation and noise attenuation [49].

6.3 Filters Based on Local Linear Fits

Location-based filters like those discussed before have difficulties in trend pe-
riods since the assumption of a local constant level is only appropriate when
using very short time windows. These filters lose both efficiency and robustness
in trend periods. Neither can they preserve arbitrary shifts during trends, nor
can they remove spikes completely, not even under idealized conditions. Only
DWMTMs can keep their good properties during trends if the inner window is
sufficiently short [15, 50, 51].
It suggests itself that local linear fits are preferable to local constant fits [52],

as they improve the approximation. In the context of time series filtering this
means that we assume the data in a moving time window to be locally well ap-
proximated by a linear trend, µt+i = µt + iβt, i = −m, . . . , m̃. For estimation
of the level µt and the slope βt at time t we can apply robust linear regres-
sion to fit this local model, see also Fig. 6.2. In addition to the location and
scale equivariance of location-based filters, a filter thus obtained offers invari-
ance to (linear) trends [15] when using a regression-equivariant functional. This
property guarantees that the quality of signal extraction does not depend on an
underlying local linear trend. When varying the trend in the window, i.e., replac-
ing yt−m, . . . , yt+m̃ by yt−m − mc, . . . , yt−1 − c, yt, yt+1 + c, . . . , yt+m̃ + m̃c, the
level estimate at time t remains the same, while the slope estimate increases by c.

6.3.1 Filters Based on Robust Regression

Contrary to the median for robust estimation of location, no generally accepted
unique standard exists for robust linear regression. Comparisons of common ro-
bust regression techniques in the retrospective and in the online situation, respec-
tively, can be found in [50, 53].
Like the median, standard L1-regression minimizes the least absolute devia-

tions (LAD)

(µ̂L1
t , β̂L1

t ) = argmin{(µ, β) :

m̃∑
i=−m

|yt+i − µ − β(t + i)|} . (6.9)
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The hierarchical repeated median (RM) [54] at the target point t is

β̂RMt = medj=−m,...,m̃(medi�=j
yt+i − yt+j

i − j
) ,

µ̂RMt = med(yt−m + mβ̂RMt , . . . , yt+m̃ − m̃β̂RMt ) .

(6.10)

The RM firstly calculates a slope estimate β̂RMt by taking repeated medians of
all pairwise slopes in the window, and then a level estimate µ̂RMt as the me-
dian of the trend-corrected observations. It has turned out to outperform stan-
dard L1-regression in most respects.
The Hampel–Rousseeuw least median of squares (LMS) [55, 56] minimizes

the median of the squared distances,

(µ̂LMSt , β̂LMSt ) = argmin{(µ, β) : medi=−m,...,m̃[yt+i − µ − β(t + i)]2}. (6.11)

A generalization is the least quantile of squares (LQS), replacing the median by
another quantile.
Both the RM and the LMS possess the maximal breakdown point �n/2�/n

for regression-equivariant estimators calculated from a sample of size n. This
implies the same asymptotic 50% breakdown point as for the standard median.
The breakdown point of L1-regression is smaller than this and asymptotically
not larger than 25% in the case of an equidistant design like in time series filter-
ing [57].
For regression- and scale-equivariant functionals, the exact fit point is never

smaller than the finite-sample breakdown point [58]. In the case of linear re-
gression, an exact fit point of k/n means that whenever yt+i = µ̃ + β̃i fits at
least n − k of the n observations exactly, then the estimate becomes (µ̃, β̃) what-
ever the other k observations are. The exact fit point of the LMS is n/2�/n,
see [58], while for the RM it is �n/2�/n, i.e., one less observation is needed to
pull the fit away if the sample size is odd.
The RM and the LMS have the same breakdown point, but the LMS better

resists many large outliers as even almost 50% outliers of any size do not cause it
to be strongly biased. Accordingly, it is able to preserve a level shift almost exactly
in retrospective application. The strong negative bias of the corresponding scale
estimate can be used to determine an LQS adaptively by comparison with the
residual standard deviation [59]. To its disadvantages belongs its computational
complexity of order n2 [60], yielding computation times rapidly increasing with
the window width. Besides, the LMS filter output is very wiggly since it is not
continuous and its Gaussian efficiency is less than 25% in small samples, and
even decreasing in n.
In spite of the benefits of the LMS, the repeated median can be recommended

both for retrospective and online applications [50, 53]. It offers almost the same
Gaussian efficiency of about 65% as the standard median, but independently
of the underlying slope, Lipschitz continuity implying stability in the case of
small changes in the data, and reasonable robustness as it resists well up to
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about 30% outliers in a single window. It is computationally faster than the LMS,
particularly so since a fast update algorithm is available which allows calculating
the next filter value in linear time when moving the window forward [61]. Its
main disadvantage consists probably in increased smoothing in the case of a
level shift, see Fig. 6.2. A common phenomenon of local linear fits in online
application is an overshoot of the new signal value after a shift [62]. The RM
performs considerably better than the LMS in this respect. Further improvements
retaining the robustness can be achieved by an adaptive choice of the window
width based on residual sign tests [63].
Least trimmed squares (LTS) regression [64] can be seen as a modification

of the LMS and has also been suggested for filtering purposes [65]. The LTS
has better asymptotic properties than the LMS, especially a nonzero Gaussian
efficiency, but it is computationally even more expensive and performs similar
to the LMS in finite samples [53]. In the same way, no significant advantages of
deepest regression [66] have been found as compared to the RM.

6.3.2 Modified Repeated Median Filters

In analogy to the modified trimmed mean filters defined in Section 6.2.2, we can
fit a least-squares regression line, trimming or more generally down-weighting
observations with large residuals in a preliminary robust regression step. This al-
lows us to retain the breakdown point of the initial estimate when giving observa-
tions with huge residuals zero weight. Reweighted least squares (RLS) based on
an initial LMS fit is popular for robust regression since it increases the Gaussian
efficiency of the LMS considerably, but RLS can be unstable like the LMS because
of its inherent lack of continuity.
Trimmed repeated median (TRM)-filters suggested in [51] use the RM in the

initial step and apply least squares to the trimmed observations in a second step.
A suitable trimming constant qt can be obtained by estimating the variability
about the RM regression line, e.g., by the MAD of the regression residuals [67].
Since TRM filters apply regression-equivariant functionals in both steps, they

are not only location and scale equivariant, but like RM filters also trend in-
variant. Instabilities have not been observed, although RM filters are not Lip-
schitz-continuous because of the hard thresholding [51]. A TRM filter can be
substantially more efficient than the RM with the same width n, depending on
the amount of trimming. Choosing qt as three (two) times the MAD yields, e.g.,
the Gaussian efficiency of 92% (76%). TRM filtering is computationally feasible
since an update algorithm can be applied for the initial RM [61].
Double window filters with a shorter inner window width k < n in the initial

step improve the preservation of signal details, especially of abrupt shifts, see
Fig. 6.2. The choice of k should depend on the length of outlier patches the filter
should cope with: Up to �k/2� − 1 outliers in the inner window can be resisted
before the output can be completely wrong, according to the breakdown point
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of the initial RM. In practice, k should even be chosen about three times the
length of outlier patches to be removed since one-third outliers can have a big,
though limited influence on the RM. The benefits obtained in the case of a level
shift increase with the difference n − k between the outer and the inner window
widths.

6.3.3 Weighted Repeated Median Filters

Application of a regression instead of a location estimator to the data in a moving
window (implicitly) replaces the assumption of a locally constant level by that
of a locally constant slope. Using ideas similar to those underlying weighted
medians, we can weight the observations according to their temporal distances.
Doing so we aim at increasing the window width of standard robust regression
filters, without increasing the bias when the signal slope is time varying.
Weighted repeated median (WRM) filters and weighted L1-filters for detail-

preserving robust filtering are investigated in [68]. Weighting reduces the break-
down point of the repeated median, while it can increase that of L1-regres-
sion when down-weighting observations far away from the target point t. The
breakdown point can be further increased when confining to an approximative
weighted L1-solution: Starting from a high breakdown fit like the standard RM,
we can iterate a finite number of steps between maximization wrt µ given β and
vice versa. In the case of standard L1-regression, this increases the breakdown
point asymptotically to 1 − 1/

√
2 ≈ 0.293.

The WRM in combination with the so-called Epanechnikov weights w
(1)
i =

1 − [|i|/(m + 1)]2, i = −m, . . . , 0, is well adapted for online application, while
L1-regression with weights w

(2)
i = (1 + |i − t|)−1/2, i = −m, . . . , m performs even

better in the retrospective case. Similar to weighted medians, the weighting in
combination with the possible longer window widths increases considerably the
Gaussian efficiency of these filters in the respective situation.
A simple WRM designed for preserving level shifts in retrospective appli-

cation uses a shorter window for the initial slope estimation, applying uniform
weights [51]

DWRM(yt) = med(yt−m + mβ̂t, . . . , yt+m − mβ̂t)

β̂t = medi=−h,...,h

(
medj=−h,...,h,j�=i

yt+i − yt+j

i − j

)
.

(6.12)

The DWRM slope is little affected until the shift intrudes into the inner window,
resisting a shift almost as good as a standard median in the case of a constant
signal if h � m. It is almost as efficient as the median with the same width 2m+1

in the case of a constant signal, but it is trend invariant like all WRMs. Different
from the double window filters presented in Section 6.3.2, the DWRM is Lipschitz
continuous with constant 2h + 1.
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Fig. 6.2: Observed time series with outliers ◦, level shift and trend together with
approximations of the signal by means of filters based on local linear fits: simple
repeated median filter and DWTRM filter withm = m̃ = 10, i.e., n = 21, and k = 9.

6.4 Modifications for Better Preservation of Shifts

A major disadvantage of the previous filters based on the repeated median is the
smearing of level shifts, which is stronger than for median-based filters in the
case of a constant signal. Double window filters reduce this effect, but they do
not solve the problem completely. In the following we present some possibilities
for further improvement.

6.4.1 Linear Median Hybrid Filters

Linear median hybrid (LMH) filters take the median value of linear subfilters
Φ1, . . . , ΦM as the filter output [69–71]. When all subfilters give nonzero weight
to only a finite number of observations, the resulting procedure is called linear
median hybrid filter with finite impulse response, briefly FMH filter

FMH(yt) = med [Φ1(yt), Φ2(yt), . . . , ΦM(yt)] , t ∈ Z . (6.13)

The linear subfilters used for preprocessing reduce the computational costs as
compared to a running median with the same width, and they provide increased
flexibility due to the many choices possible. They can be designed to track well
polynomial trends of different degrees p.
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Simple FMH filters are adapted to a constant signal (p = 1), using M = 3

subfilters, namely two one-sided moving averages and the current observation yt

Φ1(yt) =
1

m

m∑
i=1

yt−i, Φ2(yt) = yt, Φ3(yt) =
1

m

m∑
i=1

yt+i . (6.14)

Including the central observation as central subfilter allows us to preserve level
shifts even better than running medians [71]. FMH filters are suitable only in ret-
rospective application when using backward forecasting filters. We thus set m̃ =

m in general.
Predictive FMH filters apply subfilters for one-sided extrapolation of linear

trends (p = 1)

PFMH(yt) = med [ΦF(yt), yt, ΦB(yt)] , (6.15)

where ΦF(yt) =
∑m

i=1 hiyt−i and ΦB(yt) =
∑m

i=1 hiyt+i. The minimal MSE
predictions for a linear trend in the case of Gaussian noise under the restriction
that the exact signal value is obtained in the deterministic situation without noise
use the weights hi = 4m−6i+2

m(m−1) , i = 1, . . . , m, see [70].
Combined FMH filters use predictions of different degrees,

CFMH(yt) = med [ΦF(yt), Φ1(yt), yt, Φ3(yt), ΦB(yt)] , (6.16)

where Φ1(yt), Φ3(yt), ΦF(yt), and ΦB(yt) are the subfilters for forward and
backward extrapolation of a constant signal or a linear trend given above.
FMH filters have a smaller bias error at level shifts than running medians at

the expense of a larger variance around the shift [71]. They do not suffer from
edge jitter, but a spike—distant at most m time points from a shift—causes some
smearing as the height of a shift and a constant signal value close to the shift
change [69]. FMH filters recover linear trends in the absence of noise exactly, but
only the PFMHs are trend invariant and thus can preserve shifts within trends
as good as in constant periods.
However, PFMHs are neither very efficient for Gaussian noise nor very ro-

bust. All FMH filters dampen isolated outliers better than running medians [70],
but already two outliers can affect them strongly [15]. The CFMH filters improve
the Gaussian efficiency of PFMHs considerably when the signal is constant, be-
coming about as efficient as a simple FMH or a median with the same width [69].
However, this advantage gets lost with increasing signal slope. Every FMH fil-
ter is Lipschitz continuous with constant max |h

j
i|, the maximal absolute weight

given by one of the subfilters.
Different from running medians, FMH-filters create new values and can

smooth oscillations between two measurements. Besides signals consisting only
of local constant neighborhoods and edges, among the roots of FMH filters we
find, e.g., triangular waves, which are not roots of running medians [69, 70]. Re-
peated filtering with increasing window widths helps us to overcome the typical
triangular wave form of FMH-filtered time series.



6.4 Modifications for Better Preservation of Shifts 147

Variations of FMH filters have been proposed. Recursive FMH filters apply
the previously filtered values in the forward predictions. They provide better
noise reduction than their nonrecursive counterparts and running medians, but
they distort edges because of larger bias errors [71]. In-place growing FMH filters
use a cascade of FMH filters of different widths [72],

z
(0)
t = yt (6.17)

z
(j)
t = med

[
Φlj(yt), z

(j−1)
t , Φrj(yt)

]
(6.18)

with subfilters Φlj and Φrj of width increasing in j. These filters preserve shifts
better than median and (recursive) FMH filters. Similar variants have been sug-
gested for improved trend elaboration [73]. Finally, weights can be given to the
linear subfilters. An optimal FIR–WOS hybrid filter under the MAE criterion can
be found by an adaptive algorithm [23].
A general framework for adaptive order statistic, i.e., location-based filtering

is developed in [74]. Similar to the hybrid filters discussed before, the idea is
to use test statistics for selecting one of the location estimates obtained from
different subwindows, or more generally, to obtain a weighted linear combination
of all of them. A triple window median filter turned out to perform particularly
well for the retrospective elimination of impulsive noise and edge preservation.

6.4.2 Repeated Median Hybrid Filters

To overcome the lack of robustness of FMH filters, we can construct hybrid filters
with robust instead of linear subfilters [15]. We replace the half-window averages
in the simple and the combined FMH by half-window medians, and use half-
window repeated medians RMF and RMB for a linear trend

RMF(yt) = med(yt−m + mβ̂F
t , . . . , yt−1 + β̂F

t ) , (6.19)

β̂F
t = medi=−m,...,−1

(
medj=−m,...,−1,j�=i

yt+i − yt+j

i − j

)
, (6.20)

RMB(yt) = med(yt+1 − β̂B
t , . . . , yt+m − mβ̂B

t ) , (6.21)

β̂B
t = medi=1,...,m

(
medj=1,...,m,j�=i

yt+i − yt+j

i − j

)
. (6.22)

The resulting repeated median hybrid (RMH) filters are Lipschitz continuous
with the same constant 2m + 1 as the RM. Fast update algorithms are available
for the computation [15]. RMH filters are location and scale equivariant, but as
for FMH filters only the predictive version is trend invariant. Replacing the cen-
tral observation by the median of the whole window increases robustness and
the Gaussian efficiency while also preserving shifts, but destroys the trend in-
variance, see Fig. 6.3.
RMH filters have the same nice properties wrt shift preservation as FMH fil-

ters, while improving upon them wrt the removal of spikes. RMH filters preserve
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Fig. 6.3: Observed time series with outliers ◦, level shift and trend together with
approximations of the signal by means of median hybrid filters: RMH filter and
robustified RMH filter (median replacing the central observation) with m = m̃ =

10.

shifts better than the median even if the signal is constant. Only the predictive
RMH preserves shifts irrespective of a trend because of its invariance, while the
combined RMH has problems with shifts into the opposite direction of a trend,
but less than the median.
The predictive RMH and the combined RMH have breakdown points (�m/2�+

1)/n and (�m/2� + 2)/n, respectively, so that they guarantee some protection
against up to five and six outliers, respectively, within n = 21 observations, while
FMH filters do so only for a single outlier. The situation with a single long outlier
patch starting right in the center of the window turns out to be a worst case sit-
uation for most of these hybrid methods, while several short patches have much
smaller effects. In simulations, two outliers are found to damage the FMHs con-
siderably, while the RMHs resist them substantially better. The combined RMH
even resists about 25% outliers when the signal is constant. However, the RMHs
can be more affected by a patch of successive outliers than the standard RM.
With respect to the Gaussian efficiency, RMH filters are only slightly worse

than the respective FMH filters. Again, the combined versions are more efficient
than the predictive ones if the signal is constant, but this gain gets lost with
increasing slope.
Summarizing, RMH filters are preferable to FMH filters since they provide

the same benefits and are considerably more robust for the price of only a small
loss in efficiency under the Gaussian. As compared to the standard RM, they
attenuate Gaussian noise and long sequences of spikes less efficiently and are
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more variable, but they can preserve shifts and local extremes even better than the
median when the signal is constant. The combined RMH improves the efficiency
and the robustness of the predictive RMH in the case of a constant signal, but the
latter preserves shifts irrespective of a trend.

6.4.3 Level Shift Detection

Instead of designing filters for improved shift preservation, we can incorporate
rules for shift detection so that appropriate actions can be taken. Accordingly,
an abundance of edge detection rules has been suggested. Some kind of low-
pass filtering followed by differentiation is a common approach. FMH detectors
combining several edge detection rules are outlined in [75]. However, detection
rules based on differences which are optimized, e.g., for the Gaussian distribution
can be adversely affected by deviations from this assumption, and in particular
such nonrobust rules often confuse spikes with shifts.
Robust shift detection can be based on a comparison of two robust level es-

timates. Considerable robustness with only a small loss under the Gaussian can
already be achieved when using an F-test comparing trimmed means and us-
ing a winsorized variance for standardization [76, 77]. A retrospective multilevel
filter for edge detection and efficient suppression of different types of noise is
suggested in [78]. If two half-sided median subfilters deviate largely, an edge
is detected and the filter output is calculated as the median of these half-sided
medians and the current observation. Alternatively, it is decided if the shift has
happened at this or the previous time point depending on whether or not a
shift had been detected before, and the filter output is chosen accordingly as one
of the half-sided medians. If no shift is detected, the filter output is the average of
the half-sided medians. Optionally, a preliminary impulse detection step can be
added and the half-sided medians can be replaced by half-sided averages or mid-
points to suppress noise with normal or light tails more efficiently. The deviation
between the half-sided medians from which a shift is detected can be determined
in a Bayesian framework by specifying the a priori probability of a shift. These fil-
ters assume a piecewise constant signal, but in simulations they perform better
than running medians also during trends. Gradient estimates formed from differ-
ences of medians, or more generally trimmed means, have also been suggested
as robust alternatives to ordinary means [79].
Edges can also be identified via detecting an increase of the local variability.

Quasi-ranges yt(n−i+1) − yt(i) are simple scale estimates, and the interquartile
range is a usual robust standard. Double-window Hodges–Lehman–Bickel (HLB)
and HLB median hybrid filters for improved edge preservation and noise sup-
pression based on this principle are derived in [80]. The hybrid filters replace
the HLB estimate by the median when a shift is detected. The double window
filter trims all observations which are far from the median before calculating the
HLB estimate. The HLB double window filters are found to provide better noise
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suppression than running medians, but they are outperformed by HLB hybrid
filters. The interquartile range is also applied in [34]. The filter output is taken
to be either the median or a trimmed mean with an adaptive amount of trim-
ming, depending on whether a shift has been detected or not. A basic problem
is the choice of the threshold for shift detection. A comparison of the neigh-
bors of the median for edge detection is suggested in [81], i.e., yt(m+2) − yt(m),
where n = 2m + 1. If additionally the difference between the central observation
and the median is large, it is concluded that a spike has occurred in addition to
the shift, and a modified trimmed mean centered at a suitably chosen neighbor
of the median is calculated to reduce edge shifting [81].
The empirical variance s2

t within the time window can also be applied for
edge detection. Adaptive L filters (AL) can be constructed as a convex combi-
nation of the local mean and median for retrospective application, where m̃ =

m [82]. The weight of the median increases with s2
t since a shift is regarded as

more likely then,

AL(yt) = wtyt(m+1) + (1 − wt)ȳt , (6.23)

where wt = v2
t/(σ2

u + v2
t ), σ2

u is the noise variance, and v2
t = s2

t − σ2
u estimates

the local variation of the signal. The noise variance is assumed to be constant and
needs to be known or estimated from smooth signal regions. The lack of robust-
ness of the empirical variance does not cause a problem since the filter output
tends to the median as s2

t goes to infinity. The filter is unbiased in the case of
symmetric noise and inherits the good properties of the median, namely edge
preservation and removal of spikes, while offering larger efficiency under the
Gaussian distribution. A modified version replacing the median by a weighted
median for using larger windows is also suggested. The current observation yt

could be taken instead of the median for better edge preservation [83], but then
the filter loses its robustness completely. Improvements are possible, e.g., by re-
placing the mean by an adaptively chosen trimmed mean based on the tails of the
noise. For edge detection we can use (s2

t/σ2
u)(s2

t/σ2
u − 1). This quantity is close

to zero if s2
t ≈ σ2

u, and largely positive if s
2
t � σ2

u, but there could occur again a
confusion of spikes and shifts.
Further possibilities for edge detection are tests based on linear rank statistics,

particularly the Wilcoxon and the median test [84]. The former is almost as effec-
tive as tests based on averages in the case of Gaussian noise, but it is more robust
to deviations from the Gaussian assumption, while the latter performs well even
in the presence of a substantial amount of impulses. The main disadvantage of
these tests is probably that for short time windows a given significance level is
difficult to obtain, because of the discretization due to using ranks. A compara-
tive study shows that the rank-based tests and the tests comparing two robust
level estimates outperform tests based on the local variability [85]. The latter
seem interesting mainly for 2D-signal (image) processing since they do not need
specification of a direction for the shift.
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All the tests described above rely on shifts to arise from one constant signal
value to another. Robust regression techniques can be applied to adapt these
rules for being suitable during trends. We will just outline one such possibility,
which is described in more detail in [86].
Robust shift detection within trends is made possible by a simple majority

rule, applied to the repeated median residuals in the current window. A positive
level shift is detected if more than half of the most recent RM residuals, or another
appropriate large fraction of them, is larger than a multiple of a robust estimate of
the variability, e.g., the MAD about the regression line. An analogous rule is used
for negative shifts. Using twice the scale estimate for the threshold is a reasonable
standard choice since small shifts are often irrelevant and can be accommodated
otherwise. If we base the shift detection on the most recent �n/2� observations,
requiring that at least half of them deviate widely from the regression fit, one
quarter of outlying observations in the current window can have arbitrarily large
effects. This means an indispensable loss of robustness when adding such a rule,
but a shift can still be detected with a short delay if almost a quarter of the
observations after the shift are outliers.
When a shift is detected, suitable actions need to be taken and the proce-

dure be restarted. Shortening the window minimizes the blurring of edges [87].
For restarting we typically need to specify the time point at which the shift has
happened. A simple possibility is to use the first time point at which a signal
was triggered, or the first time point at which we found a large deviating resid-
ual when applying the above majority rule. Adaptive exponential smoothing for
improved filtering close to shifts is proposed in [88], constructing a convex com-
bination of the current observation and the previous level estimate with weights
depending on the last time point of a shift. However, such schemes are sensitive
to outliers. As pointed out by the author himself, a robustification would be de-
sirable.

6.4.4 Impulse Detection

Rules for the detection of spikes can be applied as well. Spikes, also called im-
pulses in the literature, are sometimes interesting for their own sake, or simply
because we can replace detected impulses by a cleaned value to increase the ro-
bustness of the basic procedure.
In the location context, a couple of approaches for impulse detection have

been suggested. Distribution-free rules can be based on the rank of the inspected
observation within the time window since outliers are expected to be among the
most extreme observations [27]. Difficulties are a high false-detection rate if not
only the smallest and the largest observations are regarded as outlying, as well as
a lack of detection power in the case of outlier sequences. Another possibility is to
use the distance to the median for measuring outlyingness, but such rules cannot
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distinguish between outliers and shifts. To overcome these problems, rank-based
and distance-based rules should be combined [89].
The robustness of the repeated median can be further increased by adding au-

tomatic rules for outlier detection and replacement based on robust scale estima-
tors like the MAD [86]. We can check whether the incoming observation yt+m̃+1

is outlying by comparing its residual rm̃+1 = yt+m̃+1 − µ̂t − β̂t(m̃ + 1) wrt the
current regression line to the estimate σ̂t of the standard deviation about the
regression line. A promising alternative to the classical MAD for robust scale es-
timation is [90]

σ̂
QN
t = dn · {|ri − rj| : − m � i < j � m̃}(h) , h =

(
m + 1

2

)
, (6.24)

where ri = yt+i − µ̃t − iβ̃t, i = −m, . . . , m̃. This estimate shows excellent per-
formance at the occurrence of level shifts and performs better then the MAD in
the presence of identical measurements (inliers) due to, e.g., rounding. Here, dn

is another finite-sample correction factor depending on the window width n =

m + m̃ + 1. Replacing detected outliers by their prediction µ̂t + β̂t(m̃ + 1) gives
almost the same robustness as LMS regression even in extreme situations, but
additional rules need to be added since, e.g., level shifts remain undetected oth-
erwise because all shifted observations are replaced. Such combined procedures
seem preferable to the LMS because of the much better performance in moderate
outlier situations and the smaller computational costs.
Many outlier detection rules like the previous one are based on a single dif-

ference between the inspected observation and a level estimate. For location-
based filters multiple comparison to several weighted medians has been pro-
posed in [91].

6.5 Conclusions

Starting with running medians, many filters have been suggested for detail-
preserving robust signal extraction from noisy time series. Many contributions in
the literature focus on the attenuation of different types of noise, just imposing
that desired signal details like trends are preserved under idealized conditions
like the complete absence of observational noise, or that certain signals are roots
of the filter. These restrictions are rather weak. Thus, a substantial loss of filtering
quality, namely both bias and increased variability, may occur. Requiring appro-
priate equivariances and invariances whenever possible allows us to construct
filters which keep their performance at the occurrence of the interesting signal
details.
In particular, locally linear trends can be dealt with using robust regression.

Such techniques additionally allow us to overcome the inherent delay which
hampers the online application of location-based filters to signals which are not
piecewise constant. The repeated median has been regarded a promising method
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for time series filtering in a couple of investigations. Fast update algorithms are
available allowing their application even online and to high frequency data. Sim-
ilar as for the standard median, modifications are possible for the better preser-
vation of shifts and local extremes. Repeated median hybrid filters offer excellent
performance in this respect, but they lose robustness and Gaussian efficiency.
A reasonable compromise can be achieved by double-window trimmed repeated
medians. Weighted repeated medians seem very promising for the online analy-
sis.
Many interesting aspects could not be addressed in this chapter. Like many

other studies we have restricted to the case of independent errors. Here it can
be said that the positive autocorrelations found in many applications further in-
crease the efficiencies of robust estimators under Gaussian assumptions as com-
pared to least-squares techniques [15, 30, 51, 92]. The filters discussed here are
designed to improve the preservation of certain signal details. Specially designed
adaptive order statistic filters even allow us to recover certain signal details,
which have been lost before, e.g., due to linear filtering [93]. Finally, repeated
medians can also be applied for the highly robust frequency domain analysis,
fitting robust sine and cosine coefficients [94].
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7 Coupled Oscillators Approach in Analysis
of Bivariate Data

Michael Rosenblum, Laura Cimponeriu, and Arkady Pikovsky

We discuss the usage of model-based and nonmodel-based techniques in the
analysis of bivariate data. In particular, we consider in detail the coupled oscilla-
tors approach for the identification of a weak interaction between two oscillators
from signals measured at their output. Our framework allows one to detect and
quantify the strength and directionality of weak interaction, as well as to estimate
the delay(s) in coupling. We present both theoretical description of the technique
and its algorithmic implementation. We illustrate the technique by its application
to the analysis of the cardiorespiratory interaction.

7.1 Bivariate Data Analysis: Model-Based Versus
Nonmodel-Based Approach

Multichannel measurements are ubiquitous in experimental studies in all branch-
es of natural sciences and, hence, processing of bivariate (or, generally, multivari-
ate) experimental records is a typical task of the data analysis. This task can
include a separate processing of two channels by all possible univariate tech-
niques, as well as an application of a true bivariate technique which performs a
joint analysis of two channels. The goals of the bivariate analysis can be different.
So, for example, there exist numerous techniques—linear and nonlinear—which
provide information on an interrelation between two signals. However, quite of-
ten the analysis goes beyond this task and aims at revealing some information
about the system (or systems), which generates the data. Certainly, by making such
a step one cannot consider the system as a black box, but requires a certain knowl-
edge or assumption about it. Typically, one assumes (explicitly or implicitly) that
the system can be described by a certain class of models, e.g., by an input–output
system, a delay line, a set of coupled active oscillators, etc. (We emphasize that
we mean exactly a model of the data source, but not a model of signals, such as
ARMA, etc.) The respective analysis technique that exploits such an assumption
can be denoted as model based. The interpretation of the results then crucially
depends on the correctness of the assumption concerning the model of the data
source.
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Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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For illustration let us consider a common and a power tool of the data analy-
sis, the cross-correlation analysis and its frequency domain counterpart—the
cross-spectral analysis. It is well known that this technique provides a complete
description of a linear input–output system, namely its transfer function; in this
case the interpretation of the results is unambiguous. The technique certainly
can (and often must) be used also for the analysis of nonlinear input–output
systems, or systems of coupled active oscillators, but the interpretation of the
results becomes more complicated and ambiguous. So, in latter complex cases
the cross-correlation (spectral) analysis still determines reliably whether certain
frequency components of given signals are interrelated (coherent) to a certain de-
gree. However, a computation of the transfer function becomes of a limited, or of
no use, and the conclusion about coherence cannot be extrapolated for the case
when, say, amplitudes of signals will change.
Another example is related to an estimation of the transmission delay τ. If

there is an a priori knowledge that two signals represent the input and the output
of a delay line, then the delay can be estimated from the position of the maximum
of the cross-correlation function. (Sometimes in the biomedical literature the de-
lay is obtained from the phase shift at the characteristic frequency, τ = ∆ϕ/ω,
which implicitly uses an additional assumption that the delay is smaller than the
oscillation period.) However, if we are uncertain about the structure of the sys-
tem under study, then this technique cannot be used, as it does not distinguish
between the delay and the phase shift.
Two above-considered examples shed light on the main difference between

nonmodel-based and model-based analyses. Note that the same algorithm, e.g.,
the computation of the cross-correlation function, can be used for both nonmodel-
based and model-based analyses. The model-based analyses provides additional
information about the systems which generate signals, but this is true if and only
if the assumptions about the data source are correct. Otherwise, the results may
be misleading. In contrast, the nonmodel-based analysis can always be employed,
but the price for this is the reduced information or ambiguity in the interpretation
of the results.
In this chapter we discuss several data analysis tools based on the assump-

tion that the bivariate data originate from two coupled self-sustained oscillators
(Fig. 7.1). Below we also discuss the extension of the approach to the multivariate
case. These tools are designed to provide the solutions for the following tasks:

• to detect and quantify an interaction between the systems,

• to reveal the direction of coupling,

• to estimate delay(s) in coupling,

provided the following assumptions are fulfilled:

• we deal with two self-sustained oscillators which can be weakly coupled,

• we know how to ascribe the signals to systems,
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Fig. 7.1: Coupled oscillators’ approach to the analysis of bivariate data explicitly
assumes that the data are generated by two weakly coupled self-sustained oscilla-
tors. The systems can be either periodic or chaotic and are assumed to be perturbed
by independent noise sources. The coupling can be uni- or bidirectional, and can
occur with delays T21 and T12.

• the signals are appropriate for phase estimation.

We emphasize that we prefer to speak about coupling between the systems
and interrelation between the signals. Coupling in this context means some phys-
ical connection between oscillators which may or may not result in an interrela-
tion between the signals measured at the output of these oscillators.
The chapter is organized as follows. In the rest of this section we briefly dis-

cuss the main facts of the coupled oscillators theory. Next, we discuss a partic-
ular example of the bivariate data analysis, namely cardiorespiratory interaction
in a healthy baby. In the following sections we describe techniques of phase es-
timation and phase dynamics reconstruction from data. Finally, we present the
analysis tools and illustrate them by an application to cardiorespiratory data.

7.1.1 Coupled Oscillators: Main Effects

Active systems, capable of producing long-term sustained rhythmical activity, are
known in physics as self-sustained oscillators. These are autonomous nonlinear
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dissipative systems, which compensate the loss of energy at the expense of an in-
ternal nonoscillatory energy source. Mathematically, such systems are described
by autonomous differential equations. The image of periodic self-sustained oscil-
lations in the phase space is a closed attracting trajectory, called limit cycle; the
image of chaotic self-sustained oscillations is a strange attractor. See, e.g., [1–3]
for a discussion. The motion of the phase point along the limit cycle or along the
flow of a chaotic system is parameterized by a variable, called phase. For limit cy-
cle oscillators it is defined as the monotonically growing variable which gain 2π

during one oscillation period

φ̇ = ω , (7.1)

where ω is the natural frequency. The notion of phase and amplitude(s) can be
extended, though not rigorously, to some chaotic oscillators [3, 4]. As will be
discussed below, the notion of phase is crucial for a description of interaction
between self-sustained systems.
Models of coupled self-sustained oscillators appear in various fields of science

and engineering, as well as in live nature. An important effect is synchronization,
when two (or many) weakly interacting systems adjust their phases φ1,2 and
average frequencies Ω1,2 = 〈φ̇1,2〉, where 〈〉 denotes averaging over time, so that
the following conditions of phase and frequency locking are fulfilled

|nφ1 − mφ2| < const , nΩ1 = mΩ2 . (7.2)

This nonlinear phenomenon [1–3, 5–7] is often observed in man-made and nat-
ural systems. In the latter case it is found on a level of single cells, physiological
subsystems, organisms, and even on the level of populations [3, 8, 9]. Some-
times, synchronization is essential for a normal functioning of a system, e.g., for
a coordinated motion of several limbs or for the performance of a pacemaker,
where many cells fire synchronously, and in this way produce a macroscopic
rhythm that governs respiration, heart contraction, etc. Sometimes, the onset of
synchrony leads to a severe pathology, e.g., in case of Parkinson’s disease, when
locking of many neurons results in the tremor activity. Quite often, the func-
tional role of synchrony is yet unknown, e.g., in the case of cardiorespiratory
coordination [10–14] or in the case of mutual entrainment of respiration and lo-
comotion; possibly its appearance is just a manifestation of a general property
of self-sustained oscillators—to adjust their rhythms due to a weak interaction.
However, an onset or a cessation of synchrony reflects variation in the state of
the complex system, and therefore may provide important physiological infor-
mation.
The concept of synchronization can be also applied for the description of in-

teraction of noisy self-sustained oscillators (and natural systems are inevitably
noisy). In this case the conditions, Eq. 7.2, are fulfilled only in a statistical sense
and the distinction between synchronous and asynchronous regimes is gener-
ally ambiguous (see discussion in [3] and references therein). Furthermore, the
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notions of phase and frequency locking can be extended for a class of chaotic
self-sustained systems; in the context of interacting chaotic systems this effect is
called phase synchronization [4]. From an experimentalist’s viewpoint, the dy-
namics of weakly coupled noisy and chaotic systems is quite similar, and there-
fore in the context of the data analysis they can be treated in a similar way.
Note that an interaction can result not only in the adjustment of frequencies

of coupled systems, i.e., in the tendency of the systems to become synchronized,
but can also lead to the variation of their frequencies (and amplitudes). It means
that their frequencies are not constant but oscillate with time. For example, in the
context of the cardiorespiratory interaction such a variation of the heart rate with
the frequency of respiration is called respiratory sinus arrhythmia. It is, therefore,
important to distinguish between two different kinds of interaction. The first is
illustrated in Fig. 7.1; in general, such an interaction can affect the frequencies of
systems as well as cause their variation. In the second case, which we denote as
modulation, the modulating source does not act directly on the system, but only
on the channel, where its output is being transmitted (see a discussion in [3]).
Obviously, this kind of interaction cannot shift the frequency of the driven sys-
tem but only cause its modulation. In other words, we denote by modulation the
action that is called the phase modulation in the engineering literature. However,
we do not have to separate what is called in engineering the frequency modu-
lation from a general case of interaction treated in the synchronization theory
and illustrated in Fig. 7.1. The distinction of two kinds of interaction from data
remains an open question and will be not treated here; below we always assume
that the coupling acts directly on the systems, in accordance with Fig. 7.1.

7.1.2 Weakly Coupled Oscillators: Phase Dynamics Description

An important theoretical idea, widely explored below, says that a weak interac-
tion of limit cycle oscillators affects only their phases, whereas the amplitudes
can be considered as unchanged [1]. This happens due to the fact that the am-
plitude is a variable, corresponding to the direction in the phase space which
is transversal to the limit cycle, and, therefore, corresponding to the negative
Lyapunov exponents of the dynamical system. Hence, the amplitude is a stable
variable and cannot be adjusted by weak forcing or interaction. For chaotic sys-
tems the amplitudes correspond to negative and positive Lyapunov exponents.
In contrast, the phase corresponds to the direction along the limit cycle (or to

the flow of a chaotic system); this direction is characterized by the zero Lyapunov
exponent. As a consequence, the phase is a marginally stable variable that can be
adjusted by a very weak interaction. The main conclusion is that the description
of weakly coupled oscillators can be reduced to the phase dynamics

φ̇1 = ω1 + f1(φ1, φ2) + ξ1(t) ,

φ̇2 = ω2 + f2(φ2, φ1) + ξ2(t) ,
(7.3)



164 7 Coupled Oscillators Approach in Analysis of Bivariate Data

where ω1,2 are frequencies of uncoupled systems and functions f1,2 describe the
coupling; obviously they are 2π-periodic with respect to their arguments. This
property will play a very important role in the reconstruction of phase Eqs. (7.3)
from data, to be described below, because it naturally restricts the class of test
functions for fitting. Noise terms in Eqs. (7.3) are considered as phase indepen-
dent. Note that Eqs. (7.3) also describe the dynamics of weakly coupled chaotic
systems; in this case the irregular terms ξ1,2 correspond to perturbations to the
phase dynamics due to the chaotic nature of amplitudes.
It is often convenient (in particular, it will be used below for estimations of

directionality and delay in coupling) to use instead of continuous time equa-
tions (7.3) a corresponding mapping for phase increments ∆φ1,2(t) = φ1,2(t +

∆t) − φ1,2(t)

∆φ1 = F1(φ1, φ2) + ζ1(t) ,

∆φ2 = F2(φ2, φ1) + ζ2(t) ,
(7.4)

where the functions F1,2 are also 2π-periodic with respect to their arguments.

7.1.3 Estimation of Phases from Data

Prior to the analysis of phase relations we have to estimate phases from data.
There exist three main approaches to the problem. One is based on the con-
struction of the complex analytic signal ζ(t) [15] from a scalar experimental time
series s(t) via the Hilbert transform (HT)

ζ(t) = s(t) + isH(t) = A(t)eiφ(t) , sH(t) = π−1P.V.
∫∞
−∞

s(τ)

t − τ
dτ , (7.5)

where sH(t) is the HT of s(t). Equation (7.5) unambiguously provides an instan-
taneous phase φ(t) and an amplitude A(t). We use the same notation φ for the
true phase satisfying Eq. (7.1) and its estimate obtained from a scalar time series.
Note that HT is parameter free. Practical hints for the computation and usage
of the HT, as well as further citations can be found in [3, 16]. Here we briefly
mention the crucial points:

• Mathematically, HT is defined for an arbitrary signal. However, φ(t) and A(t)

admit a clear physical interpretation only for narrow band signals. If the signal
has no well-expressed peak in its power spectrum, then the computation of the
phase and application of the synchronization approach is highly doubtful. We
recommend to always perform a simple test, namely to plot sH(t) versus s(t)

and to look whether the trajectory in this presentation always rotates around
the origin; only in this case one can meaningfully compute the instantaneous
phase. Note that often the origin should be shifted to a point different from
zero.
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• A complex, broadband, signal that can be considered as a mixture of several
narrow band processes should be first decomposed into oscillatory compo-
nents which can be then considered as signals with slowly varying amplitude
and frequency; as the next step, the phases of these components can be ob-
tained via HT. Note that sometimes it is difficult to decide whether a peak in
the spectrum represents another process or a harmonic. Decomposition can be
done by means of a band-pass filter or by more sophisticated techniques like
the independent component analysis.

• Determination of φ(t) is very sensitive to low-frequency trends, which makes
the preprocessing of the data a crucial step in the analysis.

The second approach exploits the wavelet analysis with a complex wavelet
function and provides a phase (and an amplitude) as functions of time for a
certain spectral frequency band [17, 18]

A(t; f)eiφ(t;f) =

∫∞
−∞ s(τ)Ψ∗(t, τ; f)dτ , (7.6)

where Ψ(t, τ; f) is the Morlet, or Gabor, wavelet

Ψ(t, τ; f) =
√

f exp(i · 2πf(τ − t)) exp
(

−
(τ − t)2

2σ2

)
.

This procedure is equivalent to a band-pass filtration and subsequent HT of the
signal s(t) [19]. The central frequency of the filter is f, and its width is determined
by the parameter σ.
Third, the phase can be very easily introduced for processes that can be

treated as a series of well-defined events taking place at times tk (point processes).
Examples include signals characterizing heart contraction or neuron firing. If the
interval between two events can be considered as a cycle, then it is natural to say
that the phase increment between the events is exactly 2π. Hence, we can assign
to the times tk the values of phase φ(tk) = 2πk, and for an arbitrary instant of
time tk < t < tk+1 take

φ(t) = 2πk + 2π
t − tk

tk+1 − tk
. (7.7)

We emphasize that the definition and the practical determination of a phase
of a complex signal in the context of the synchronization analysis remains an
open problem. One approach, called locking-based frequency measurement, was
suggested in [20]. The idea of this approach is to use the signal under study in
order to drive a set of uncoupled limit cycle oscillators with different natural
frequencies. A subset of these probe oscillators can be entrained by the common
forcing, and therefore synchronize in between; the frequency and the phase of
these locked oscillators can be taken as an estimate of the frequency and the
phase of the original signal.
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Note that in theoretical studies of coupled systems the phase can be rigorously
defined only for limit cycle oscillators, whereas a rigorous definition of the phase
of noisy/chaotic oscillators remains a theoretical challenge. For an autonomous
limit cycle oscillator the phase is defined as a uniformly growing function of time,
cf. Eq. (7.1) [1, 3]. However, phase estimates according to Eqs. (7.5–7.7) generally
do not meet this requirement. As a result the estimated phase obeys (if we neglect
numerical errors)

φ̇ = ω + f̃(φ), (7.8)

where the function f̃(φ) reflects the nonuniformity of the motion of the phase
along the limit cycle, and the equation for the coupled systems reads (cf. Eq. 7.3)

φ̇1 = ω1 + f̃1(φ1) + f̂1(φ1, φ2) + ξ1(t) ,

φ̇2 = ω2 + f̃2(φ2) + f̂2(φ2, φ1) + ξ2(t) ,
(7.9)

where the coupling is described by the functions f̂1,2. Similarly, if we want to
describe the coupled system by a discrete mapping, then the mapping obtained
from phase estimates differs from the mapping, Eq. (7.4), for true phases.
Finally, we note that, theoretically, phase is defined on the real line. In the fol-

lowing we call such a phase “unwrapped,” while the phase defined on the (0, 2π)

interval is called “wrapped.” The use of wrapped or unwrapped phase depends
on the application and is often a crucial point.

7.1.4 Example: Cardiorespiratory Interaction in a Healthy Baby

We choose the study of the cardiorespiratory interaction as a primary example for
the illustration of the applicability of our theoretical framework and techniques
for the experimental data analysis, for two reasons. The first is based on the
a priori physiological evidence that the two vital rhythms are self-sustained and
interact rather weakly. The second reason is that, despite extensive investigations
at both theoretical and experimental levels, the nature of cardiorespiratory inter-
action remains controversial. In particular, it remains an open question whether
the effects of interaction (e.g., the frequency and the phase entrainment between
the two rhythms) can be solely attributed to the well-known modulation of the
heart rate by the respiratory rhythm (the so-called respiratory sinus arrhythmia),
or a reciprocal form of coupling may coexist. To gain insight into this question,
appropriate modeling and experimental data analysis tools are needed.
In the following sections, our framework is presented using a case study

analysis of the interaction between human cardiac and respiratory systems. The
experimental data consist of a single segment of bivariate, artifact-free, cardiores-
piratory measurements (the cardiac and respiratory signals) recorded from a
6-month healthy infant during quiet sleep. The data set has been kindly pro-
vided by R. Mrowka and A. Patzak, Department of Physiology, Charité, Hum-
boldt University, Berlin. A detailed description of the experimental setup and
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data preprocessing can be found in [13, 21]. For the computation of the phase
of the cardiac signal we assume that the time occurrence of each R-wave in the
electrocardiogram (ECG) marks the onset of a new cardio-cycle and that during
each cardio-cycle the phase increases in a monotonic uniform way. This translates
into the computation of instantaneous phase φh of the cardiac signal by linear in-
terpolation between successive R-wave peaks (cf. Eq. 7.7). Whereas the cardiac
phase has thus a unique determination from R-wave timings, we face several al-
ternatives in the determination of the phase of the respiratory signal. It is known
that, in normal physiological conditions, measurements of respiration during the
quiet sleep provide a narrow-band signal, characterized by a certain degree of
breath-to-breath variability in both amplitude and timing of the onset of the in-
spiration/expiration. In order to get a signal well behaved with respect to Hilbert
transform, and therefore having well-defined instantaneous attributes, a smooth-
ing filter must be employed. The choice of the filter and its parameters results
in a compromise between signal distortion due to an excessive filtering (which
may provide an almost sinusoidal waveform) and smoothing (measurement noise
suppression). With a correct choice of filter parameters, the instantaneous phase
computed via HT preserves the information about cycle-to-cycle variability. Al-
ternatively, the instantaneous phase of the respiratory signal can be obtained in
a fashion similar to the way the phase of the cardiac signal has been determined.
For the respiratory oscillator, the onset time of inspiration/expiration may serve
as a physiologically relevant marker event. Figure 7.2 shows the instantaneous
phase of the cardiac signal and the phase of the respiration derived via both HT
and marker events for the data set considered for the analysis. Note that although
the estimates obtained in two different ways differ on the time scale of one cycle,
they provide same average frequencies.

7.2 Reconstruction of Phase Dynamics from Data

The first step in the reconstruction of the phase dynamics is a computation of
the bivariate series of phases φ1,2(j) = φ1,2(tj), where index j = 1 · · ·M denotes
a discrete set of time points tj = j · · · δt, with the help of one of the algorithms
described in Section 7.1.3. The next step depends on whether we want to re-
construct the continuous or discrete phase model (see Eqs. (7.3) and (7.4)). In
the first case we have to estimate the time derivatives φ̇1,2. For this goal we
first compute the phase increments ∆φ1,2 over the sampling interval. Because
the data are noisy, one has to use a smoothening/interpolation technique, based,
e.g., on a Savitzky–Golay filter, see the appendix in [3]. In the second case we
just compute ∆φ1,2 over a fixed time interval which can be much larger than the
sampling interval (e.g., it can be of the order of the oscillation period; certainly,
it is a multiple of the sampling interval).
The main and final step is to approximate the dependences ∆φ1(j) =

∆φ1(φ1(j), φ2(j)), ∆φ2(j) = ∆φ2(φ1(j), φ2(j)) with a model Eq. (7.3) or Eq. (7.4).
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Fig. 7.2: Top panel: respiratory signal. Middle panel: phase of the cardiac signal φh
linearly increases and grows by 2π between two heart beats. Bottom panel: phase
of respiration φr obtained via the Hilbert transform (dashed line) and via the linear
interpolation of the time between two onsets of expiration.

Because continuous functions f1,2 and F1,2 are 2π periodic in arguments, they
admit a natural Fourier series representation, and we can in both cases seek for
the dependences in the form

∆φ1(φ1, φ2) =

N∑
m=0,l=−N

am,l cos(mφ1 +lφ2)+bm,l sin(mφ1 +lφ2) , (7.10)

and similarly for ∆φ2(φ1, φ2).
Practically, we can use the standard linear least-square regression [22] to fit

the data with a truncated Fourier series model. A minimization of

M∑
j=1

(∆φ1(j) −

N∑
m=0,l=−N

am,l cos(mφ1(j) + lφ2(j))

+ bm,l sin(mφ1(j) + lφ2(j)))2

leads to a linear system

N∑
s=0,n=−N

as,nAsnml + bs,nBsnml = Dml ,

N∑
s=0,n−N

as,nBmlsn + bs,nCsnml = Eml ,
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where

Asnml =

M∑
j=1

cos(sφ1(j) + nφ2(j)) cos(mφ1(j) + lφ2(j)) ,

Csnml =

M∑
j=1

sin(sφ1(j) + nφ2(j)) sin(mφ1(j) + lφ2(j)) ,

Bsnml =

M∑
j=1

sin(sφ1(j) + nφ2(j)) cos(mφ1(j) + lφ2(j)) ,

Dml =

M∑
j=1

∆φ1(j) cos(mφ1(j) + lφ2(j)) ,

Eml =

M∑
j=1

∆φ1(j) sin(mφ1(j) + lφ2(j)) .

Generally, a solution of this problem is rather sensitive to a choice of parame-
ter N. Therefore, we apply a preliminary estimation of the Fourier coefficients
based on the assumption that the matrices A and C are diagonal and B vanishes.
This assumption is reasonable only when noise in the otherwise synchronous os-
cillators or quasiperiodic dynamics ensures a quite uniform scattering of phase
points over the [0, 2π)× [0, 2π) square. In this case am,l and bm,l are just the real
and imaginary parts of the Fourier transform

Q(m, l) =
1

M

M∑
j=1

∆φ1(j)ei(mφ1(j)+lφ2(j)) . (7.11)

In order to make use of the FFT algorithm, the irregularly sampled ∆φ1,2 should
be resampled onto a regular grid, by employing some form of interpolation or,
in the presence of noise, estimation. After the transform (Eq. (7.11)) has been
performed, one can select the dominant modes as the modes with the largest
values of |Q(m, l)|. Then one can restrict the summation in Eq. (7.10) to these
modes only, which significantly improves the reliability of found Fourier coeffi-
cients am,l and bm,l.
To exemplify this approach to phase dynamics model reconstruction, we take

for the analysis the bivariate cardiorespiratory data set mentioned in the previ-
ous section. A segment of ≈ 350 average cardiac cycles length is selected (see
Fig. 7.4), and the phases of cardiac φh and respiratory φr oscillations along with
their finite difference approximations ∆φh,r over time interval 0.05 s are com-
puted. In order to make use of the FFT algorithm for the 2D Fourier transform,
we perform a Delaunay-triangulation-based cubic interpolation of ∆φh,r on a
uniform grid on the square [0, 2π) × [0, 2π) with the grid step 2π/128. In this
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Fig. 7.3: Top panel: two-dimensional contour plots of the resampled ∆φh(φh, φr)

(left) and ∆φr(φr, φh) (right). Bottom panel: their corresponding two-dimensional
Fourier transforms; gray scales code the absolute value of the corresponding
Fourier coefficients.

way the Nyquist theorem provides the upper limit of the frequencies resolved
by these data asM = 64, which, under the assumption that the underlying cou-
pling functions are smooth, can be considered as sufficiently large to prevent
aliasing. The next step is the identification of the dominant spatial modes, which
will allow us to fit a more parsimonious Fourier series model. For this purpose
we employ the surrogate hypothesis testing. Namely, for testing the null hypoth-
esis of no coupling from the respiration to the heart, we compute the Fourier
coefficients |Q̃(kh, kr)| for 100 realizations of the randomly shuffled ∆φh and
take 〈max(|Q̃(kh, kr)|)〉 as the threshold value, where 〈〉 means averaging over
the realizations of surrogates. It means that for the model fitting we use only the
terms which satisfy |Q(k1, k2)| � max(|Q̃(kh, kr)|). In the same way, we identify
the dominant modes of interaction between cardiac and respiratory oscillators.
The results of this analysis are given in Fig. 7.3.
The reconstructed model for the specified segment of the cardiorespiratory

data reads (we use here the notations φ1 = φh and φ2 = φr)
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∆φh ≈ 0.078 + 0.039 sin(φr) + 0.481 cos(φr)

− 0.017 sin(φr − φh) + 0.133 cos(φr − φh)

− 0.248 sin(3φr − φh) + 0.031 cos(3φr − φh)

− 0.064 sin(5φr − 2φh) + 0.036 cos(5φr − 2φh) ,

∆φr ≈ 0.11 − 0.572 sin(φr) − 0.114 cos(φr)

+ 0.004 sin(φh − 2φr) + 0.172 cos(φh − 2φr)

+ 0.073 sin(φh − 3φr) + 0.339 cos(φh − 3φr) .

(7.12)

We recall that for the reconstruction we used the phase estimates, which, con-
trary to true phases, do not fulfill (for uncoupled systems) the condition φ̇ = ω.
The oscillation of the estimated phase around a uniform growth is especially pro-
nounced if the Hilbert transformation is used. This reflects in the appearance of
the terms ∼ sin(φr), ∼ cos(φr) in the equation for ∆φr, cf. Eq. (7.8). The appear-
ance of the same terms in the equation for ∆φh may, however, have an important
physical meaning. Indeed, these terms in addition to the terms ∼ sin(nφr±mφh),
∼ cos(φr±φh) possibly indicate the presence of two mechanisms of interaction—a
modulating one and a synchronizing one.

7.3 Characterization of Coupling from Data

Having estimated the phases of interacting objects from bivariate data we can
proceed with the characterization of the intensity and the directionality of inter-
action as well as of the delay in coupling. Generally speaking, there are two ways
to do it. On the one hand, we can directly analyze relations between the phases.
On the other hand, we can reconstruct phase Eqs. (7.3) and use their parame-
ters in order to quantify the coupling. The latter, truly model-based approach, is
more dependent on the correctness of the assumptions made, but can be more
informative, e.g., providing a more precise estimate of the delay, as shown below.

7.3.1 Interaction Strength

We have assumed that the interaction between the systems tends to synchronize
them, i.e., to lock their phases and frequencies (cf. Eq. (7.2)). The degree of n : m

locking and therefore (indirectly) the degree of interaction can be characterized
by a synchronization index. A convenient choice is to use the parameter-free index
computed as [16, 17]

ρ2
n,m = 〈cos(nφ1 − mφ2)〉2 + 〈sin(nφ1 − mφ2)〉2 , (7.13)

where 〈〉 denotes time average. The index varies from zero (independent phases)
to 1 (see Fig. 7.4). The latter case corresponds to a constant phase difference,
which is a more strict condition than that in Eq. (7.2). Generally, the phase differ-
ence in a synchronous state oscillates around a constant (especially if the phases
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Fig. 7.4: Top panel: synchronization indices ρ1,3 (solid line) and ρ2,5 (dotted line)
for the cardiorespiratory data of a baby. The indices are computed in a running
window and therefore are plotted as the functions of time (the window length is
equal to 100 average cardiocycles, windows overlap by 50%). Bottom panel: car-
diorespiratory synchrogram. In this representation the phase of the respiration
(wrapped to (0, 2π) interval) is shown at the instances of appearance of R-peaks in
the electrocardiogram, i.e., when the phase of the cardiac systems attains 2π. Note
three stripes in the time interval 130 s � t � 180 s: This is an indication of an inter-
action that tends to induce the 1 : 3 locking. Note also the increase of the ρ1,3 in-
dex in this time interval. Similar stroboscopic observation of the respiratory phase
wrapped to the interval (0, n · 2π) can help us reveal an n : m interaction. Vertical
lines mark the segment of data used for modeling and identification of coupling.

are estimated from data). Hence, the index is less than 1 even in the synchronous
state. Therefore, if the goal of the analysis is to detect a very weak interaction,
then it is advisable to use the stroboscopic approach. The stroboscopic approach is
an application of the well known in the nonlinear dynamics method of Poincaré
section to the data analysis. It implies that one fixes some value of the phase φ̃

and observes the phase of, say, the second system at the times when φ1 attains φ̃.
Next, for these stroboscopically observed values of φ2 one computes

λφ̃ = 〈cos(φ2)〉2 + 〈sin(φ2)〉2 . (7.14)

Averaging λφ̃ over φ̃ one obtains a stroboscopic synchronization index λ which
attains the unit value in the synchronous state even if the phase difference in this
state strongly oscillates. The discussion of the stroboscopic index of order n : m

and the related graphical tool called “synchrogram” (Fig. 7.4) can be found in [3,
12, 13, 16].
The synchronization index quantifies the end effect of interaction, but not

exactly the strength of coupling. The latter is directly related to the amplitudes
(norms) of functions f1,2 in Eq. (7.3), while the degree of phase locking is deter-
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mined by both these amplitudes and the frequency mismatch, i.e., the relation
between the frequencies of the system. A more detailed information about the
strength of interaction may be obtained from the analysis of the coefficients of the
reconstructed phase model. This approach is tightly related to the quantification
of directionality of coupling, described below. It is also important to emphasize
that a synchronization index can be high not only in the case of an interaction
that may lead to synchronization, but also in the case of a modulating interac-
tion. Hence, a computation of the index alone does not allow one to draw the
conclusion about the synchrony in the coupled system but rather demonstrates
the presence of an interaction. The distinction between two types of interactions
may be probably done from the analysis of the reconstructed model.

7.3.2 Directionality of Coupling

An estimation of directionality and causality in coupling is an important issue
of data analysis. Many techniques used for this goal go back to the Granger’s
causality concept [23], which can be briefly formulated as follows: If, say, signal 1
depends on signal 2, i.e., there is a directional relation 2 → 1, then the future of 1
can be better predicted if the information on 2 is taken into account; if 2 does not
depend on 1, there will be no predictability improvement. Different algorithms,
related to this approach, can be found in [24–26]. An extension of this idea in
terms of entropy measures has been performed by T. Schreiber [27]; in particular,
he applied this approach to the analysis of cardiorespiratory from the bivariate
series of the breath rate and the instantaneous heart rate of a sleeping human
suffering from sleep apnea.
Another approach, arising from the studies of generalized synchronization,

exploited the idea of mutual predictability in the phase space: It quantified the
ability to predict the state of the first system from the knowledge of the second
one [28, 29]. While both approaches are rather complicated to implement and
interpret, neither requires any assumptions on the systems under investigation.
Before presenting the algorithms of the coupled oscillators approach, let us

make several notes on the concepts of directionality and causality. First, we
note that the assumption of weakly coupled oscillators implies that coupling, say
from 2 to 1, is not a cause of oscillation of 1, but a weak perturbation to this
oscillation. A second important issue is that the quantification of directionality is
generally ambiguous. While everything is clear in the case of unidirectional driving,
the definition of symmetric interaction in bidirectionally coupled systems

X = f1(X) + p1(Y) , Y = f2(Y) + p2(X) , (7.15)

cannot be unique. Indeed, is the coupling symmetric if p1 = p2 but f1(·) �= f2(·)?
Obviously, this question cannot be answered in a unique way, and, hence, differ-
ent measures of directionality can be proposed and used in different experimental
situations.
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Directionality from Phases: Mutual Predictability Approach

In the case of weakly coupled oscillators the concept of mutual predictability can
be very easily implemented, because we have to deal with two scalar signals only,
namely with the time series φ1,2. Let us take one series, say, φ1(tk), and use some
scheme to predict a future of its points. For the kth point we compute the uni-
variate prediction error E1(tk) = |φ′

1(tk) − φ1(tk + τ)|, where φ′
1(tk) is the τ-step

ahead prediction of the point φ1(tk); note that phases are unwrapped. Next,
we repeat the prediction for φ1(tk), but this time we use both signals φ1, φ2

for the construction of the predictor. In this way we obtain the bivariate predic-
tion error E12(tk). If system 2 influences the dynamics of system 1, then we ex-
pect E12(tk) < E1(tk), otherwise (for sufficient statistics) E12(tk) = E1(tk). The
root mean squared E1(tk) − E12(tk), computed over all possible k and denoted
by I12, quantifies the predictability improvement for the first signal. This measure
characterizes the degree of influence of the second system on the first one. Com-
puting in the same way I21, we end with the directionality index

p(1,2) =
I21 − I12

I12 + I21
. (7.16)

This approach has been suggested and applied to cardiorespiratory interaction
in [30]. The same algorithm formulated in terms of conditional mutual informa-
tion has been later used in [31].

Directionality from Phases: Model-Based Approach

In quantification of the directionality from the reconstructed equations of the
phase dynamics we follow our previously developed approach [30, 32]. We recall
that there is no unique way to quantify the directionality of coupling, even if
Eq. (7.3) are known. One way to quantify the directionality is as follows. We
quantify the influence of system 2 on system 1 by the coefficient

c2
1 = ‖∂φ̇1/∂φ2‖ , (7.17)

where the norm

‖(·)‖ =

∫∫2π

0

(·)2 dφ1 dφ2 . (7.18)

Note that c1,2 can be easily obtained from the model coefficients, e.g.,

c2
1 =

∑
n2(a2

m,n + b2
m,n) (7.19)

[33]. c1 is an integrative measure of how strongly oscillator 1 is driven and how
sensitive it is to the driving. Computing in the same way c2, we quantify asym-
metry in interaction by one number

d(1,2) =
c2 − c1

c1 + c2
, (7.20)
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that we call directionality index. It varies from 1 in the case of unidirectional
coupling (1 → 2) to −1 in the opposite case (2 → 1), while intermediate val-
ues correspond to a bidirectional coupling configuration. If two oscillators are
structurally identical and differ only by natural frequencies then f1(·) = f2(·)
and d(1,2) = (ε2 − ε1)/(ε1 + ε2). Alternative solutions of the directionality esti-
mates have been discussed and experimentally verified in [30, 34].
We emphasize that the presented algorithm fails if the oscillators are phase

locked, which mathematically corresponds to the appearance of a functional de-
pendence between the two phase variables. On the other hand, if the coupling
is too weak, so that the systems cannot be distinguished from uncoupled ones,
the directionality cannot be estimated as well. Note also that coefficients c1,2 are
always overestimated; indeed, if the coefficient is zero, its estimate

√
〈(∂φ̇1/∂φ2)2〉 (7.21)

is positive. A way to correct the estimate was suggested in [33].
We remark that in the quantification of the directionality we are not inter-

ested in the mostly exact reconstruction of the model equations, but only in the
recovery of interdependences in the phase dynamics. In this context it is more
appropriate to work with discrete mappings (cf. Eqs. (7.4)). Computation of a
phase increment over a relatively large time interval (it can be of the order of os-
cillation period) helps us to reduce the effect of noise, see discussions in [32, 35]
for more details.
Application of the directionality algorithms to cardiorespiratory data can be

found in [21, 30, 36]. Here we present the results for the sample data set. The
mutual prediction algorithm provides the directionality index

ph→r ≈ −0.84 .

The directionality index obtained from coefficients of the model Eq. (7.12) is

dh→r ≈ −0.42 .

This means that the coupling is bidirectional, though not symmetrical: The ac-
tion from respiration to the cardiac system dominates over the reverse action.
However, in the interpretation of the results it is important to have in mind that
in the case of n : m coupling with equal strength, the coefficients c1 and c2 are
generally different. For an illustration, let us consider a simple model φ̇1 = ω1 +

ε sin(3φ2 − φ1), φ̇2 = ω2 + ε sin(φ1 − 3φ2). It is easy to see that c1 = 3c2, which
gives d(1,2) = 0.5.

7.3.3 Delay in Coupling from Data

We now consider the last problem, namely an estimation of the delay in coupling.
There are two ways to treat this problem. First, one can compute from the time
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series of phases the synchronization index according to Eq. (7.13), and then shift
the first series with respect to the second one and compute the index for differ-
ent, positive and negative, shifts τ. It is natural to expect that this shift-dependent
synchronization index [37]

ρ2(τ) = 〈cos(φ1(t) − φ2(t − τ))〉2 + 〈sin(φ1(t) − φ2(t − τ))〉2 (7.22)

maximizes if the shift corresponds to the (unknown) delay in coupling.
The second model-based approach exploits a generalization of the Models,

Eq. (7.3) and Eq. (7.4)

φ̇1 = ω1 + εf1(φ1(t), φ2(t − T21)) + ξ1(t) ,

φ̇2 = ω2 + εf2(φ1(t − T12), φ2(t)) + ξ2(t) ,
(7.23)

and

∆φ1(t) = F1(φ1(t), φ2(t − T21)) + ζ1 ,

∆φ2(t) = F2(φ2(t), φ1(t − T12)) + ζ2 ,
(7.24)

where the coupling function in the first equation (map) contains a retarded value
of the phase of the second oscillator, and vice versa. The idea is to reconstruct
the model, as discussed in the previous sections, fit it to the bivariate data where
one series is shifted with respect to the other, and to quantify the fit quality by
the root mean square errors E1,2 for different shifts τ (errors E1,2 describe the
quality of modeling of φ̇1 and φ̇2, respectively). The dependences E1,2(τ) should
take a minimum at τ = T12, τ = T21. Note that for our goal it is not required to
reconstruct the phase dynamics very precisely, because we are not interested in
the absolute value of E1,2(τ) but only in its variation with τ.
Analytical and numerical treatment of these two approaches performed in [35]

shows that the position of the maximum of the dependence of the synchroniza-
tion index ρ on the time shift τ systematically overestimates the delay. Moreover,
in the case when the oscillators are far from synchrony, the synchronization in-
dex is small for all shifts τ and therefore does not yield the estimate of the delay.
Thus, the advantages of this approach, namely its simplicity and the absence of
parameters, are accompanied by several drawbacks which can be overcome by
the technique based on the model reconstruction. However, if the systems are
very close to synchrony, then the model reconstruction fails due to a functional
relation between the phases and only the method based on the synchronization
index can be used.
The results of the analysis for the cardiorespiratory data set are shown in

Fig. 7.5. The values of delay, estimated from the positions of the minima of the
dependence E1,2(τ), are T1 ≈ 0.4 s (delay in coupling from respiration to heart)
and T2 ≈ 1.4 s (delay in coupling from heart to respiration). As the system is far
from synchrony, the dependence of the synchronization on shift is not efficient
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Fig. 7.5: Estimation of the delays in bidirectional cardiorespiratory coupling. Top
panels show the (normalized) errors of fit versus time shift between the series. Min-
ima of the dependence indicate the values of delays. Bottom panels show the ρ1,3

synchronization index. Dependence of the synchronization on shift (bottom pan-
els) is not efficient in delay estimation.

in delay estimation. Our estimate of the time delay in coupling between the res-
piratory and cardiac oscillators falls well within the range of documented in [38]
latencies in the human cardiac baroreflex response.
We note that the most common tool that can be tested for the detection of

the delay is the cross-correlation function. If the fluctuations of the amplitudes
of signals are small, then the cross-correlation function C(τ) has a very simple
relation to the synchronization index, namely ρ(τ) is the envelope of C(τ) [35].
Hence, the analysis of C(τ) provides the biased estimate of the delay as well.

7.4 Conclusions and Discussion

In this chapter we have presented a model-based approach for the identification
and quantification of an interaction between two coupled systems from experi-
mental data. The approach relies on the assumption that we deal with weakly
interacting self-sustained oscillators, and that the measured signals represent the
dynamics of different oscillatory systems. We discussed in detail how to estimate
the phase data, the object of the analysis, and how to quantify the main charac-
teristics of the interaction, namely, the strength, the directionality, and the delays
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in coupling. The methods have been exemplified by examining the nature of the
interaction between the cardiac and respiratory oscillators of a healthy infant.
Several remarks on the applicability of the presented modeling framework

and potential pitfalls of the presented methods for the data analysis are in or-
der. First, one should verify whether the assumptions about the data generating
processes are valid. Then, an attention must be paid to the preprocessing of sig-
nals (e.g., filtering) required for the computation of the phases. In particular, a
careful search for optimal filter parameters must be undertaken, especially for
signals with nonsinusoidal shape and/or cycle-to-cycle variability (e.g., in the
case of the respiratory signal). Nonoptimal filtering can greatly affect the accu-
racy of the derivative approximation and of the model reconstruction process.
Finally, we recall that the model reconstruction and the subsequent application
of the algorithms for directionality and time delay estimation requires that the in-
teraction between two observed oscillator is not strong enough in order to bring
them to synchrony. At the other extreme, when the interaction is too weak (on
the level of noise) the estimation of the directionality and the delay becomes im-
possible, too.
Although in this chapter we focused on the study of interaction between

two oscillators, a natural question arises about the possibility of exploiting the
presented approach for the study of several interacting systems. A preliminary
analysis performed in [30, 36] demonstrates that a study of multivariate data can
be partially accomplished by a pairwise analysis of bivariate data and the main
effects of interaction can be identified. However, a clear distinction between di-
rect and indirect interactions cannot be made in a straightforward manner, and a
further work on the extension of our approach is required.
We conclude by expressing our belief that the presented theoretical and meth-

odological framework of interacting self-sustained oscillators provides a useful
basis for further development of techniques of the multivariate data analysis.
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8 Nonlinear Dynamical Models from Chaotic Time
Series: Methods and Applications

Dmitry A. Smirnov and Boris P. Bezruchko

The construction of mathematical models from experimental data is a topical
field in mathematical statistics and nonlinear dynamics. It has a long history and
still attracts increasing attention. We briefly discuss key problems in nonlinear
modeling for typical problem settings (“white,” “gray,” and “black boxes”) and
illustrate several contemporary approaches to their solution with simple exam-
ples. Finally, we describe a technique for the determination of weak directional
coupling between oscillatory systems from short time series based on empirical
modeling of their phase dynamics and present its applications to climatic and
neurophysiological data.

8.1 Introduction

Ubiquitous use of analog-to-digital converters and fast development of comput-
ing power have stimulated considerable interest in methods for modeling dis-
crete sequences of experimental data. The construction of mathematical models
from “the first principles” is not always possible. In practice, available informa-
tion about an object dynamics is often represented in the form of experimental
measurements of a scalar or vector quantity η, which is called “observable,” at
discrete time instants. Such a data set is called “a time series” and denoted by
{ηi}

N
i=1 ≡ {η1, η2, . . . , ηN} where ηi = η(ti), ti = i∆t, ∆t is a sampling interval, N

is a time series length. Modeling from experimental time series is known as “sys-
tem identification” in mathematical statistics and automatic control theory [1] or
“reconstruction of dynamical systems” in nonlinear dynamics [2].
Dynamical systems’ reconstruction has its roots in the problems of approx-

imation and statistical investigation of dependences. Initially, observed processes
were modeled as explicit functions of time which approximated experimental
dependences on the plane (t, η). The purpose of modeling was either predict-
ing the future evolution (via extrapolation) or smoothing the data. A significant
advance in empirical modeling of complex processes was achieved in the begin-
ning of the twentieth century when linear stochastic autoregressive models were
introduced [3]. It gave an origin to ARIMA models technology which became

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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a predominant approach for half a century (1920s–1970s) and found numerous
applications, especially in automatic control [1, 4]. Subsequently, birth of the con-
cept of “deterministic chaos” and fast progress of computational power led to
the appearance of a different framework. Currently, empirical modeling is of-
ten performed with the use of nonlinear difference and differential equations, see
pioneering works [5–10]. Such empirical models are demanded in many fields
of science and practice such as physics, meteorology, seismology, economy, bio-
medicine, etc. [11].
In this chapter a brief overview of the problems and techniques for the con-

struction of dynamical models from noisy chaotic time series is given. It supple-
ments existing surveys [12–18] due to the use of a special systematization of the
variety of problem settings and methods. Also, we try to provide a clear explana-
tion of the key points with simple examples and illustrate some specific problems
with our own results. For the most part, we examine finite-dimensional models
in the form of difference equations (maps)

xn+1 = f(xn, c) (8.1)

or ordinary differential equations (ODEs)

dx/dt = f(x, c) , (8.2)

where x is a D-dimensional state vector, f is a vector-valued function, c is a
P-dimensional parameter vector, n is the discrete time, and t is the continuous
time.
We expose the problems “from simple to complex,” as the amount of a priori

information about an object decreases. We start from a situation where only con-
crete values of model parameters are to be found (“transparent box” or “white
box,” Section 8.3). Then, we go via the case where a model structure is partly
known (“gray box,” Section 8.4) to the case of no a priori information (“black
box,” Section 8.5). Throughout the chapter, we refer to a unified scheme of the
empirical modeling process outlined in Section 8.2. Some applications of empiri-
cal modeling, in particular, to climatic and neurophysiological data are described
in Section 8.6.

8.2 Scheme of the Modeling Process

Despite an infinite number of specific situations, objects, and purposes of model-
ing, one can single out basic stages of the modeling process and present them us-
ing a scheme shown in Fig. 8.1 which generalizes similar schemes given in [1, 4].
It starts with the consideration of available a priori information about an object
under investigation, formulation of the goals of modeling, acquisition and pre-
liminary analysis of experimental data (stage 1). It ends with a desired applica-
tion of a constructed model. However, the modeling process typically involves
multiple reiterations and a step-by-step approach to a “good” model.
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1) Acquisition of time series
and its preliminary analysis

A priori
information

2) Model structure selection

type of
equations

function
form observables - variables

relationships

3) Model fitting
(parameter estimation)

4) Model validation

Application of the model

model is satisfactory unsatisfactory

Fig. 8.1: A general scheme of the process of modeling from time series.

At the second stage, a model structure is specified. One chooses the type
and number of model equations, the form of functions entering their right-hand
sides (components of the function f), and dynamical variables (components of the
vector x). As for the latter, one can use just the observable quantities as model
variables, but in general the relationship among the observables and dynamical
variables may be specified separately. Usually, it takes the form η = h(x), where
h is called “measurement function.” Moreover, the observable values may be
corrupted with noise. Stage 2 is often called “structural identification.”
At the third stage, the values of the model parameters c are to be determined.

One often speaks of parameter estimation or model fitting. In the theory of system
identification this is a stage of “parametric or nonparametric identification.” To
perform the estimation, one usually looks for a global extremum of an appro-
priate cost function. For example, the sum of squared deviations of a model time
realization from the observed data is often minimized.
Finally, the quality of a model is checked, as a rule, based on a specially

reserved test part of a time series. In respect of the final goal of modeling, one can
distinguish between two settings: “cognitive identification” (the goal is to obtain
an adequate model and to understand better the object behavior) and “practical
identification” (a practical goal is to be achieved with the aid of the model, e.g., a
forecast). Depending on the setting, one checks either model adequacy in respect
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of some properties (this step is also called model validation or verification) or
model efficiency in respect of the practical goal. If a model is found satisfactory
(adequate or efficient) then it may be exploited. Otherwise, one must return to
one of the previous stages of the scheme.
The background colors in (Fig. 8.1) change from black to white reflecting the

degree of a priori uncertainty. The worst situation is called “black box” problem:
information about an appropriate model structure is completely lacking and one
must start the modeling process from the very top of the scheme. The more infor-
mation about a possible model structure is available, the more probable is the suc-
cess of modeling: the “box” becomes “gray” and even “transparent” (“white”). In
any case, one cannot avoid the stage of parameter estimation. Therefore, we start
our consideration with the simplest situation when one knows everything about
an object, except for the concrete values of the model parameters. It corresponds
to white background color in Fig. 8.1.

8.3 “White Box” Problems

If a model structure is completely known, the problem reduces to the estimation
of model parameters c from the observed data. Such a setting is encountered
in different applications and, therefore, attracts considerable attention. There are
two basic tasks:

1. to obtain parameter estimates with a desired accuracy; this is especially impor-
tant if the parameters cannot be measured directly under the conditions of ex-
periment, i.e., the modeling procedure acts as “a measurement device” [19–24];

2. to obtain reasonable parameter estimates when time courses of some model
state variables xk can neither be measured directly nor calculated from the
available time series of the observable η, i.e., some model variables are “hid-
den” [25, 26].

Let us discuss both points in turn.

8.3.1 Parameter Estimates and Their Accuracy

As a basic test example, we consider parameter estimation in a nonlinear map
from its time series. The object is a quadratic map in a chaotic regime

xn+1 = f(xn, c) + ξn, ηn = xn + ζn , (8.3)

where f(xn, c) = 1 − cx2
n, the only parameter c is considered unknown, ξn, ζn

are random processes. The process ξn is called “dynamical noise” since it affects
the evolution of the system, while ζn is referred to as “measurement noise” since
it corrupts only the observations. In the absence of any noise, one has ηn =

xn so that all experimental data points on the plane (ηn, ηn+1) lie exactly on
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Fig. 8.2: Parameter estimation in the quadratic map (8.3); the true value is c = 1.85.
Open circles denote observed data. (a) Noise-free case, the dashed line is an orig-
inal parabola. (b) Uniformly distributed dynamical noise. The dashed line is a
model parabola obtained via minimization of the vertical distances. (c) Gaussian
measurement noise. The dashed line is a model parabola obtained via minimiza-
tion of the orthogonal distances. (d) Gaussian measurement noise. Rhombs indi-
cate a model time realization which is the closest one to the observed data in the
least-squares sense.

the quadratic parabola (Fig. 8.2(a)). The value of c can be determined from an
algebraic equation whose solution takes the form ĉ = (1−ηn+1)/η2

n (throughout
the paper, a “hat” denotes quantities calculated from a time series). It is sufficient
to use any pair of successive observed values with ηn �= 0. As a result, the model
is practically ideal.
In the presence of any noise, one must speak of statistical estimates instead

of precise calculation of the parameter value. There are various estimation tech-
niques [27]. Below, we describe several of them, which are most widespread.

Maximum Likelihood Approach

The maximum likelihood (ML) approach is the most efficient under
quite general conditions [27]. It is most often announced as a method of

choice. However, additional assumptions about the properties of an object and
noise are typically accepted in practice reducing the ML approach to a version of
the least-squares (LS) technique.
Let us start with the simplest situation when only dynamical noise is present

in the system, Eq. (8.3). Let ξn be a sequence of independent identically dis-
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tributed random values whose one-dimensional probability density function is
pξ(z). Then, an ML estimate is such a value of c which maximizes logarithmic
likelihood function

lnL(c) ≡ lnp(η1, . . . , ηN|c) ≈
N−1∑
n=1

lnpξ

(
ηn+1 − f(ηn, c)

)
, (8.4)

which is, roughly speaking, a logarithm of a conditional probability to observe
the available time series {η1, . . . , ηN} at a given c. To apply the ML method, one
needs to know the distribution law pξ(z) a priori. This is rarely the case, therefore,
Gaussian distribution is often assumed. It is not always the best idea but it is
reasonable both from theoretical (central limit theorem) and practical (successful
results) points of view.

Dynamical Noise: Ordinary Least-Squares Technique

For Gaussian noise, the ML estimation, Equation (8.4), reduces to the “ordinary”
LS (OLS) technique. The LS method is the most popular estimation technique due
to the relative simplicity of implementation, bulk of available theoretical knowl-
edge about the properties of the LS estimates, and many satisfactory practical
results. The OLS technique consists in the minimization of the sum of squared
deviations

S(c) =

N−1∑
n=1

(ηn+1 − f
(
ηn, c)

)2 → min . (8.5)

Geometrically, it means that a curve of a specified functional form is drawn on the
plane (ηn, ηn+1) in such a way that the sum of squared vertical distances from ex-
perimental data points to this curve is minimized (Fig. 8.2(b)). The OLS technique
often gives acceptable accuracy of the estimates even if noise is not Gaussian,
which is justified by the robust estimation theory, see e.g., [28]. Therefore, it is
valuable on its own, apart from being a particular case of the ML approach.
A technical problem in the application of the ML and the OLS estimation

arises if a “relief” of the cost function to be optimized exhibits multiple local
extrema. It may be the case for the problem, Eq. (8.5), if f is nonlinear in pa-
rameter c. Then, the optimization problem is solved with the aid of iterative
techniques which require a starting guess for the estimated parameter. Whether
a global extremum will be found depends typically on the closeness of the start-
ing guess to the true value of the parameter. The function f is linear in c for the
example, Eq. (8.3), therefore the cost function S is quadratic in c and has the only
minimum which is easily found via the solution of a linear algebraic equation.
Such a simplicity of the LS problem solution is a reason for the widespread use
of the models which are linear in parameters, the so-called pseudo-linear models,
see also Section 8.5.
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The error in the estimate ĉ decreases with the time series length. Namely,
for the dynamical noise case, both ML and OLS techniques give asymptotically
unbiased and consistent estimates, i.e., error in the estimate vanishes as N → ∞.
Moreover, it can be shown that the variance of the estimates decreases asN−1 [27,
28].

Measurement Noise: Monotonically the Total Least-Squares
Technique and Others

If only measurement noise is present, the estimation problem becomes more dif-
ficult. The OLS technique, Eq. (8.5), provides biased estimates for arbitrary long
time series, since it is developed under the assumption of the dynamical noise.
However, it is simple in implementation and still may be used sometimes to
get a crude approximation. Roughly speaking, if the measurement noise level is
not high, namely up to 1%, then the OLS estimates are reasonably good [20].
Throughout the chapter, we define the noise level as the ratio of the noise root-
mean-squared value to the signal root-mean-squared value.
At a higher noise level, to enhance the accuracy of the estimates is partly pos-

sible with the aid of the total LS (TLS) method [19] where the sum of squared
orthogonal distances is minimized, see Fig. 8.2(c). But this is only a partial solution
since the bias in the estimates is not completely eliminated. A more radical ap-
proach is to write the “honest” likelihood function taking into account the effect
of measurement noise. To accomplish it, one must include an initial condition of
a model map into the set of estimated quantities. Thus, for Gaussian measure-
ment noise the problem reduces to a version of the LS technique where a model
time realization is made as close to the observed time series as possible (Fig. 8.2(d))

S(c, x1) =

N−1∑
n=0

(
ηn+1 − f(n)(x1, c)

)2 → min , (8.6)

where f(n) stands for the nth iteration of the map xn+1 = f(xn, c), f(0)(x, c) ≡ x.
As an orbit of a chaotic system is highly sensitive to initial conditions and

parameters, the variance of such an estimate decreases very quickly with time
series lengthN, even exponentially for specific examples [22, 23]. But it holds true
only if a global minimum of the cost function, Eq. (8.6), is guaranteed to be found.
However, the graph of the cost function S becomes so “jagged” for a large N

that it appears practically impossible to find its global minimum (see Fig. 8.3(a))
because it would require unrealistically lucky starting guesses for c and x1. It
is also difficult to speak of the asymptotic properties of such estimates since
the cost function, Eq. (8.6), is no longer smooth in the limit N → ∞. Therefore,
modifications of the direct ML approach have been developed for this problem
setting [20, 21, 23, 24].
In particular, it was suggested to divide an original time series into segments

of moderate length L, minimize Eq. (8.6) for each segment separately, and aver-
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Fig. 8.3: Cost functions for the example of the quadratic map (8.3) at N = 20 and
true values c = 1.85, x1 = 0.3. (a) for the forward iteration approach, Eq. (8.6),
(b) for the backward iterations, Eq. (8.7). Trial values of x1 and xN are kept equal
to their true values for illustration purposes.

age the segment estimates (a piecewise approach). This is a practically reasonable
technique but the resulting estimate may remain asymptotically biased. Its vari-
ance decreases again only as N−1. Several tricks to enhance the accuracy of the
estimates are described below (Section 8.3.2). Here, we would like to note a spe-
cific version of the LS technique suggested in [24] for one-dimensional maps. It
relies upon the property that the only Lyapunov exponent of a one-dimensional
map becomes negative under the time reversal so that a “reverse-time” orbit is
no longer highly sensitive to parameters and an “initial” condition. Therefore,
one minimizes

S(c, xN) =

N−1∑
n=0

(
ηN−n − f(−n)(xN, c)

)2 → min , (8.7)

where f(−n) is the nth backward iteration of the map. The graph of this cost
function looks rather smooth and gradually changing (as in Fig. 8.3(b)) even for
arbitrary long time series so that its global minimum can be readily found. At low
and moderate noise levels (up to 5–15%), the error in the estimates obtained via
Eq. (8.7) turns out less than for the piecewise approach. Moreover, for sufficiently
low noise levels the backward iteration technique gives asymptotically unbiased
estimates whose variance decreases generically as N−2. The latter property is
determined by close returns of the map orbit to an arbitrary small vicinity of the
extrema of the function f [24].

8.3.2 Hidden Variables

If the measurement noise level is considerable, the state variable x can be treated
as “hidden” since its true values are not known. But even “more hidden” are
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those variables whose values can neither be measured directly nor calculated
from the observed time series. The latter case is encountered in practice very
often. To estimate model parameters is much more problematic in such a situa-
tion than for the settings considered in Section 8.3.1. However, if one succeeds,
there appears a possibility of getting time courses of the hidden variables as a
by-product of the estimation procedure. Hence, a modeling procedure acts as a
measurement device in respect of dynamical variables.
Let us briefly mention available techniques. To a significant extent, all of them

rely on the idea, Eq. (8.6), i.e., one looks for initial conditions and parameters of a
model which provide the least deviation of a model time realization from the ob-
served data. The naive solution of the problem, Eq. (8.6), directly is called “initial
value approach” [18]. As we already mentioned, such a method is inapplicable
already for moderately long chaotic time series, while simple division of the time
series into segments decreases the accuracy of the estimates and the backward
iterations are not appropriate for multidimensional dissipative systems.
To overcome the difficulties and exploit longer time series (than allowed

by the initial value approach) is partly possible with the aid of Bock’s algo-
rithm [18, 25]. It is often called “multiple shooting approach” since it replaces
the Cauchy problem with a set of boundary-value problems to get a model orbit.
Namely, the idea is to divide the time series into shorter segments of the length L

and consider “initial conditions” of the model on each of them as additional
quantities to be estimated. Optimization problems, Eq. (8.6), are solved for each
segment while keepingmodel parameter values c the same for all segments and im-
posing constraints of “sewing the segments together” to finally obtain a model
orbit which is continuous over the entire observation period. Thus, the number of
free parameters (“independent” estimated quantities) remain the same as in the
initial value approach but intermediate trial values for all estimated quantities
may pass through a domain which corresponds to a discontinuous model orbit
and is, therefore, forbidden for the initial value approach. The latter property
provides higher flexibility of Bock’s algorithm [25].
The multiple shooting approach softens the demands to the choice of starting

guesses for the estimated quantities. However, for a longer time series it can also
become inefficient since the requirement of closeness of a chaotic model orbit
to the observed time series over the entire observation interval can appear very
strict. One can overcome some difficulties if final discontinuity of a model orbit
at some fixed time instants within the observation period is allowed. It increases
the number of free parameters and, hence, leads to the growth of the variance of
their estimates, but simultaneously the probability of finding a global minimum
of the cost function increases. Such a modification allows the use of arbitrary long
chaotic time series. The undesirable “side effect” is that a model with inadequate
structure can sometimes be regarded “good” due to its ability to reproduce only
short segments of a time series. Therefore, one must avoid the use of too short
continuity segments [18].
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We note that there exist and are currently developed several methods for
parameters and hidden variables’ estimation which are suitable even for the case
of simultaneous presence of dynamical and measurement noise. They are based
on the Bayesian approach [29] and Kalman filtering [18, 30]. But that broad field
of research is beyond the scope of this chapter.
Model validation for the “white box” problems can be performed via one of

the two basic lines: (1) analysis of residual model errors, i.e., checking the agree-
ment among their statistical properties and expected theoretical properties of the
noise (typically, Gaussianity and temporal uncorrelatedness) [4]; (2) comparison
of dynamical, geometrical, and topological characteristics of a model attractor
with the corresponding properties of an object [2].

8.3.3 What Do We Get from Successful and Unsuccessful Modeling
Attempts?

Success of the methods described above provides both estimates of model pa-
rameters and time courses of hidden variables. It promises exciting applications
such as validation of the “physical” ideas underlying a specified model structure,
“indirect measurement” of quantities inaccessible for a device of an experimen-
talist, and restoration of the lost or distorted segments of an observed time real-
ization. However, unsuccessful modeling attempts also give useful information.
Let us elaborate.
In practice, one never encounters a purely “white box” problem. A researcher

may only have faith that a trial model structure is adequate to an object. There-
fore, the result of modeling may well appear negative, i.e., reveal an impossibility
to get an adequate model with the specified structure. In such a case, a researcher
has to claim falseness of his/her ideas about underlying mechanisms of the in-
vestigated process and return to the stage of structural identification.
If there are several alternative model structures, then the results of time se-

ries modeling may reveal the most adequate among them. In other words, a
modeling procedure provides opportunity to falsify or verify (or, possibly, make
more accurate) substantial notions about the dynamics of an object. An impres-
sive example of such a modeling process and substantial conclusions about the
mechanism underlying a biochemical signaling process in cells is given in [31].
In a similar way, Horbelt and co-authors validated concepts about a gas laser be-
havior and reconstructed interdependences among transition rates and pumping
current which are difficult to measure directly [32]. However, despite these and
some other successful practical attempts, an estimation problem can often appear
technically unsolvable: the more hidden variables and unknown parameters in-
volved, the weaker are the chances for the success and the lower is the accuracy
of the obtained estimates.
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8.4 “Gray Box” Problems

From our point of view, the most promising line of research in the field of dy-
namical systems’ reconstruction is related to the “gray box” problems when one
knows a lot about an appropriate model structure except for some components
of the function f in Eqs. (8.1) or (8.2). These components are, in general, nonlinear
functions which can often be meaningfully interpreted as equivalent characteristics
of certain elements of an object under investigation.
One has to choose some approximating functions for the characteristics. In

this section we focus on the approximation of univariate dependences. Such a
case is much simpler than multivariate approximation addressed in Section (8.5).
Despite models deduced from physical considerations most often take the form
of differential equations, let us consider a model map as the first illustration for
the sake of clarity.

8.4.1 Approximation and “Overlearning” Problem

Let the object be a one-dimensional map xn+1 = F(xn). We pretend that the form
of the function F is unknown. Let the observable coincide with the dynamical
variable x: ηn = xn. One has to build a one-dimensional model map xn+1 =

f(xn, c). The problem reduces to the selection of a model function f(x, c) and its
parameters c so that it could approximate F to the best possible accuracy. It is
the matter of agreement to attribute this problem setting to the “gray box” class.
We do so since the knowledge that one-dimensional model is appropriate can be
considered as an important a priori information.
Usually, the OLS technique, Eq. (8.5), is used to calculate parameter values.

However, the interpretation of the results differs. Now, one speaks of approxi-
mation and its mean-squared error rather than of the estimates and noise. Typi-
cally, an individual model parameter is not physically meaningful, only the entire
model function f(x, ĉ) can make sense as a nonlinear characteristic. A key ques-
tion is how to choose the form of the model function f.
One may choose it intuitively via looking at the experimental data points

on the plane (ηn, ηn+1). However, this way is not always possible. Thus, it is
practically excluded if an unknown univariate function is only a component of
a multidimensional model. A more general and widespread approach is to use
a functional basis for approximation. For example, the celebrated Weierstrass
theorems state that any continuous function over a finite interval can be uni-
formly approximated to arbitrary high accuracy with an algebraic polynomial (or
a trigonometric polynomial under an additional condition). An algebraic poly-
nomial f(x, c) = c1 + c2x + · · ·+ cK+1xK is one of the most efficient constructions
for approximation of smooth univariate dependences. Therefore, we use it below
for illustration.
Theoretically, any smooth function can be accurately approximated with a

polynomial of sufficiently high order K. What value of the order must be chosen



192 8 Nonlinear Dynamical Models from Chaotic Time Series

Fig. 8.4: Approximation based on the noisy quadratic map data. (a) Observed data
points are shown with circles. Graphs of model polynomials of different orders K

are presented. The dashed line for K = 2, the thin line for K = 1, and the thick
line corresponds to K = 15. (b) Different cost functions (Eq. (8.8)) versus model
size: Circles for the Akaike criterion and triangles for the Schwartz criterion. Both
cost functions indicate an optimal model size P = 3 corresponding to the true
polynomial order K = 2.

in practice given a time series of the finite length N, i.e., N − 1 data points on
the plane (ηn, ηn+1)? It is a bad idea to specify a very small polynomial order
since a model function could not reasonably reproduce an observed nonlinearity
(Fig. 8.4(a), the thin line). It is a bad idea to choose very big order as well: e.g., at
K = N − 2 the graph of the model polynomial on the plane (ηn, ηn+1) can pass
through all the experimental data points exactly, but typically it would extremely
badly predict additional (test) observations. In the latter case, the model is said to
be overlearned or overtrained [28]. It does not generalize, rather it just reproduces
the observed N − 1 data points (Fig. 8.4(a), the thick line).
In practice, one often tries different polynomial orders, starting from a very

small one and successively increasing it. One stops when a model gives more
or less satisfactory description of an object dynamics and/or the results of ap-
proximation saturate. This is a subjective criterion, but it is the only one which
is generally applicable, since any “automatic” approach to the order selection is
based on a specific well-formalized practical requirement and may not recognize
the most adequate model. Such automatic criteria were developed, e.g., in the
framework of the information theory. They are obtained from different consider-
ations, but formally reduce to the minimization of a cost function

Φ(P) = (model error) + (model size) → min . (8.8)

Here, the model error rises monotonically with the mean-squared approximation
error ε2 = S/(N − 1). The model size is an increasing function of the number of
model parameters P. Thus, the first term in the sum, Eq. (8.8), may be very large
for small polynomial orders, while the second term dominates for big orders.
One often observes a minimum of the cost function, Eq. (8.8), for an intermediate
K. The minimum corresponds to an optimal model size. The cost functionΦ(P) =

(N/2) ln ε2(ĉ) + P is called the Akaike criterion, Φ(P) = (N/2) ln ε2(ĉ) + P lnN/2
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is the Schwartz criterion, and Φ(P) = ln ε2(ĉ) + P is a model entropy [5]. More
“cumbersome” is a formula for a cost function named description length [33]. De-
scription length minimization is currently the most widely used approach to the
model size selection, e.g., [34]. It is based on the ideas of optimal information
compression, the Schwartz criterion is an asymptotic expression for the descrip-
tion length. In Fig. 8.4(b) we present an example of a polynomial order selection
for approximation of quadratic function from a short time series of the quadratic
map, Eq. (8.3), with dynamical noise.
If an approximating function is defined in a closed form for the entire range

of the argument (e.g., an algebraic polynomial) then the approximation and
the model are called global [9]. An alternative approach is a local (piecewise)
approximation where a model function is defined through a simple formula
whose parameters’ values differ for different small domains within the range
of the argument [7, 9]. The most popular examples of the latter approach are
piecewise-constant functions, piecewise-linear functions, and cubic splines. Local
models are superior for the description of “complicated” nonlinear dependences
(strongly fluctuating dependences, dependences with knees and discontinuities,
etc.), but they are less robust to noise influence and require larger amount of data
than global models of moderate size.

8.4.2 Model Structure Selection

As a rule, one needs to supplement a procedure for model size selection with
a technique to search for an optimal model of a specified size. Thus, according
to the technique described above the polynomial order is increased starting from
zero and the procedure is stopped at a certain value of K, i.e., the terms are added
to a model structure in a predefined order. Therefore, a final model inevitably
comprises all power of x up to K, inclusively. However, some of the low-order
terms might be “superfluous.” Hence, it would be much better to exclude them
from the model. Different approaches have been suggested to realize a more
flexible way of the model structure selection. They are based either on successive
selective complication of a model [34] or its selective simplification starting from
the biggest size [16, 35–37], see also [38]. Let us describe briefly a version of the
latter strategy [36].
One of the efficient principles to recognize “superfluous” model terms is to

look at the behavior of the corresponding coefficient estimates when reconstruc-
tion is performed from different segments of a time series, i.e., from the sets of
data points occupying different domains in the model state space. Typically, it
is realized in the most efficient way of a time series corresponding to a tran-
sient process is used. The idea is that the parameter values of an adequate global
model of a dynamically stationary system must not depend on the reconstruction
segment. However, the estimates of parameters corresponding to superfluous
terms may exhibit significant changes when a reconstruction segment is moved
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along a time series. A procedure for model structure selection can be based on
successive removal of the terms whose coefficients are the least stable being es-
timated from different segments. In [36] the degree of instability of a coefficient
is defined as the ratio of its standard deviation to its empirical mean. Removal
is stopped, e.g., when model ability to reproduce an object behavior in a wide
domain of state space starts to worsen.

8.4.3 Reconstruction of Regularly Driven Systems

In many cases uncertainty in a model structure can be reduced if a priori knowl-
edge about object properties is taken into account. We illustrate it with an exam-
ple of systems under regular (periodic or quasiperiodic) driving. Indication to
the presence of external driving can be often seen in the power spectrum which
typically exhibits pronounced discrete peaks for regularly driven systems, even
though it is neither a necessary nor a sufficient sign. Having the hypothesis about
the presence of external regular driving, one can incorporate functions explicitly
depending on time into the model structure to describe the assumed driving.
For the first time, it was done for nonlinear two-dimensional oscillators under
sinusoidal driving in [39]. In the same work, the successful reconstruction of
nonlinear dynamical characteristics of a capacitor with ferroelectric was demon-
strated.
In a more general setting, the reconstruction of regularly driven systems was

considered in [40, 41]. For harmonical additive driving, it is reasonable to con-
struct a model in the form

dD
x/dtD = f(x,dx/dt, . . . ,dD−1

x/dtD−1, c) + a cosωt + b sinωt , (8.9)

where f is an algebraic polynomial and the number of variables D is less than for
a corresponding standard model by 2 (see Section 8.5 about the standard struc-
ture).
In the case of arbitrary additive regular driving (either complex periodic or

quasiperiodic one), it is convenient to use the model form

dD
x/dtD = f(x,dx/dt, . . . ,dD−1

x/dtD−1, c) + g(t, c) , (8.10)

where the function g describes driving and also depends on unknown parame-
ters. It may take the form of a sum of trigonometric polynomials [41]

g(t, c) =

k∑
i=1

Ki∑
j=1

ci,j cos(jωit + ϕi,j) . (8.11)

We note that adequate models with trigonometric polynomials can be obtained
even for a very large number of involved harmonics (Ki of the order of hundreds),
while the use of a high-order algebraic polynomial K leads typically to model
orbits diverging to infinity.
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Fig. 8.5: The reconstruction of the driven Toda oscillator d2
x/dt2 = −0.45dx/dt+

(5+ 4 cos t)(e−x − 1)+ 7 sin t. (a) an attractor of the original system; (b) an attractor
of a model of the type, Eq. (8.9), with D = 2, K = 9, and sinusoidal dependence
of time introduced into all polynomial coefficients, (c) a diverging phase orbit of a
standard model, Eqs. (8.13) and (8.14) with D = 4, K = 6.

Besides, the explicit time dependence can be introduced into all the coeffi-
cients of the algebraic polynomial f to allow the description of not just additive
driving [40], Fig. 8.5. Efficiency of all these approaches was shown in numerical
experiments with the reconstruction of equations of exemplary oscillators from
their noise-corrupted chaotic time series for pulse periodic, periodic with sub-
harmonics, and quasiperiodic driving.

8.5 “Black Box” Problems

If nothing is known about an appropriate model structure, one must appeal to
universal constructions. They usually involve huge number of parameters that
do not allow the use of majority of the estimation techniques described in Sec-
tion 8.3. In particular, the hidden variables problem is unsolvable in such a case.
Therefore, time series of all dynamical variables must be either measured directly
or calculated from the observed data. The latter is called “reconstruction of state
vectors.” Then, one constructs a multidimensional model of the form, Eq. (8.1) or
Eq. (8.2), where the multivariate function f takes one of the universal forms com-
prising many parameters. In practice, to estimate these parameters is reasonable
with the aid of the OLS technique. To simplify the problem further, it is desirable
to choose functions f which are linear in parameters c (pseudo-linear models).
Considerable efforts of many researchers were devoted to the development of
such techniques.

8.5.1 Universal Structures of Model Equations

A theoretical background for different approaches to the reconstruction of model
state variables from a scalar observable time realization is the celebrated Takens
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theorem [42]. One of them states that for almost any deterministic dynamical
system of the form, Eq. (8.1) or (8.2), with a sufficiently smooth function on
the right-hand side, its dynamics on an m-dimensional smooth manifold can
be topologically equivalently described in terms of vectors constructed as D-
plets of successive values of almost any observable η = h(x) separated with
an almost arbitrary fixed time interval τ. The equivalent description is (almost)
guaranteed if dimensionality of these vectors is high enough, namely, D > 2m.
One says that the original manifold is embedded into the new state space which
is often called “embedding space.” Rigorous formulations, detailed discussions,
and generalizations of the theorems can be found in [43–45].
Thus, the vectors (ηn, ηn+τ, . . . , ηn+(D−1)τ), where τ is a time delay, can serve

as state vectors. This approach is very popular since it does not involve any trans-
formation of the observed time series. It is usually employed for the construction
of model maps in the form

ηn = f(ηn−τ, . . . , ηn−Dτ, c) . (8.12)

Theoretically, the value of τ may be almost arbitrary. However, in practice it is
undesirable to use both very small delays (to avoid strong correlations among
the state vector components) and very big ones (to avoid complication of the
structure of the reconstructed attractor). Therefore, an optimal choice of τ is pos-
sible. There are several recipes such as to take the first zero of the autocorrelation
function of the time series [46], the first minimum of the mutual information
function [47], etc. [48]. It was also suggested to use a nonuniform embedding
where time intervals separating successive components of a state vector are not
the same [49, 50]. Finally, a variable embedding is possible where the set of time
delays and even dimensionality of a state vector depends on the location in state
space [50].
Since the value of m is not known a priori, it is not clear what value of model

dimension to specify. There are several approaches which can give a hint: false
nearest neighbors technique [51], correlation dimension estimation [52], or prin-
cipal component analysis [53]. However, in practice one usually tries different
model dimensions, starting from a very small value and successively increasing
it until a satisfactory model is obtained or the results saturate. Therefore, the
choice of the model dimension and even of the time delays may become an inte-
gral part of a monolithic modeling process, rather than a separate first stage.
Different approaches have been suggested to choose the form of the function

f in Eq. (8.12). Algebraic polynomials perform extremely badly already for the
approximation of bivariate functions [16, 40], while for the “black box” problem
one must often exploit the value of D in the range 5–10. Therefore, algebraic
polynomials are rarely used in practice. They represent an example of weak ap-
proximation technique [34] since their number of parameters and errors rise very
quickly with model dimension D. Weak approximation techniques also involve
trigonometric polynomials and wavelets.
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Much attention has been paid to the search for strong approximation tech-
niques which behave almost equally well for small and rather big model di-
mensions. They involve, in particular, local methods [7, 9, 10, 54]. Strong global
approximation can be achieved using radial, cylindrical, and elliptic basis func-
tions [34, 50, 55], and artificial neural networks [8]. See also [56] for examples
of different approaches. We do not discuss them in details but note that these
constructions involve many parameters and the problem of model structure se-
lection (Section 8.4.2) is especially important here.
Another Takens theorem considers continuous-time dynamical systems, Equa-

tion (8.2), with much smoother functions on their right-hand side. It states that
one can perform embedding into the space of successive derivatives of the ob-
servable, i.e., state vectors can be constructed as η,dη/dt, . . . ,dD−1

η/dtD−1.
This approach does not involve a parameter τ which is an advantage. However,
it is more difficult to realize in practice since even weak measurement noise is
a serious obstacle in the calculation of high-order derivatives. Sometimes, this
problem can be solved with the aid of filtering, e.g., Savitsky–Golay filter, but for
a sufficiently strong noise it becomes unsolvable. In practice, it is realistic to use
the values of D = 2–3; rare successes are reported for D = 5 [16]. In combination
with these state vectors, one constructs usually a model ODE in the form

dD
η/dtD = f(η,dη/dt, . . . ,dD−1

η/dtD−1, c) . (8.13)

The situation with the choice of approximating function is the same as discussed
above for the model, Eq. (8.12). However, when using the successive derivatives,
there are more chances to observe a gradually varying experimental dependence,
Eq. (8.13). Therefore, additional reasons to use algebraic polynomials appear. So,
in Eq. (8.13) f often takes the form

f(x1, x2, . . . , xD, c) =

K∑
l1,l2,...,lD=0

cl1,l2,...,lD

D∏
j=1

x
lj

j ,

D∑
j=1

lj � K . (8.14)

The structure, Eq. (8.13), with algebraic polynomial, Eq. (8.14), or rational func-
tion on the right-hand side is even called standard [57] since, theoretically, any
smooth dynamical system can be transformed into such a form for a sufficiently
large D and K. The values of coefficients in both Eq. (8.12) and Eq. (8.13) are
estimated with the aid of the OLS technique. This is valid for a sufficiently low
measurement noise level.
Successful results of constructing a model in the form (8.12) can be found, e.g.,

in [50, 54, 56]. Examples of successful modeling with the aid of Eq. (8.13), we are
aware of, are even more rare [16]. As a rule, the structure, Eqs. (8.13) and (8.14),
leads to very cumbersome equations tending to exhibit orbits diverging to infin-
ity. It is especially inefficient in the case of multidimensional models. We stress
that all the approaches described in this section are rigorously justified only in
the case of absence of both measurement and dynamical noise. Their generaliza-
tions to the noisy cases are quite problematic [58].
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8.5.2 Choice of Dynamical Variables

Let us pay more attention to the important problem of the choice of dynami-
cal (state) variables, i.e., components of the state vectors x. There are very many
techniques to obtain time series of state variables from an observable η. Hav-
ing only a scalar observable, one can use either successive differentiation or time
delay embedding (Section 8.5.1). Besides, there are techniques of weighted sum-
mation [59] and integration [60] appropriate for strongly nonuniform signals.
Further, one can restore a phase of the signal as an additional variable using
the analytic signal approach implemented either via the Hilbert transform or the
complex wavelet transform [61]. It is also possible to use combinations of all the
techniques, e.g., to obtain several variables with the time-delay embedding, sev-
eral others with integration, and the rest with differentiation [59]. If one observes
more than one quantity characterizing a process under investigation, then it is
possible to obtain dynamical variables from a time realization of each observ-
able using any combination of the mentioned techniques so that the number of
variants rises extremely quickly, see also [62]. It may appear possible that some
of the observables should better be ignored in modeling. For example, it may
well happen that a better model can be constructed with successive derivatives
of the only observable if it turns out easy to find an appropriate approximating
function f in Eq. (8.13) for such a choice.
After the reconstruction of state vectors {x(ti)}, an experimental time series

of “left-hand sides” of model equations {y(ti)} is obtained from the time series
{x(ti)} via the numerical differentiation of {x(ti)} for model ODEs, Eq. (8.2), or
the time shift of {x(ti)} for model maps, Eq. (8.1). “Unlucky” choice of dynamical
variables can make the approximation of the model dependence y(x) with a
smooth function more difficult, or even impossible if the relationship among y

and x appears nonunique.
Taking into account the importance of the stage of the state variables selec-

tion [63, 64] and multiple alternatives available, an actual problem is to look
for the best (or, at least, for a reasonable) set of state variables. It is, of course,
possible just to try different variants and look for the best model in each case.
However, this procedure would be too time consuming. Moreover, it may remain
unclear why a good model is not achieved for a given set of dynamical variables:
Whether it is due to inappropriate model function or due to inappropriate state
variables.
A procedure suggested in [65] allows us to test different sets of dynamical

variables and select variants which are more promising for the global modeling
purposes. It is based on the ideas of [66, 67] and consists in a nonparametric test
of an approximated dependence y(x) for uniqueness and continuity. A domain V

comprising the set of vectors {x(ti)} is divided into “hypercubic” boxes of the size
δ (Fig. 8.6(a)). Then, all the boxes s1, s2, . . . , sM comprising at least two vectors
are selected. The difference between maximal and minimal values of the “left-
hand side” variable y within a box sk is called a local variation εk. Maximal local
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Fig. 8.6: (a) An illustration for the technique of testing a dependence y(x) for
uniqueness and continuity, D = 2. (b) The plots εmax(δ) for different sets of dy-
namical variables. The thick line corresponds to the best variant, the dashed line
to the worst one (nonuniqueness).

variation εmax = max{ε1, ε2, . . . , εM} and the plot εmax(δ) are used as the main
characteristics of the investigated dependence y(x). Suitability of the considered
quantities x and y for global modeling is estimated as follows. One must choose
the variables so that the plot εmax(δ) tend to the origin gradually, without “knees”
(Fig. 8.6(b), the lowest curve) for each of the approximated dependences y(x).

8.6 Applications of Empirical Models

Probably, the most famous application is a forecast of the future evolution based
on the available time series. This intriguing task is considered, e.g., in [4, 7, 9–
11, 54–56]. Weather and climate forecasts, prediction of earthquakes, currency
exchange rates and stock prices are often in the center of attention. Up to now,
empirical models of the type described here are rarely useful to predict such
complex processes due to “the curse of dimensionality” (difficulties in modeling
quickly grow with dimensionality of the investigated dynamics), deficit of
experimental data, and noise. But chances for a successful forecast are higher

in simpler situations.
An adequate empirical model may provide a deeper insight into mechanisms

underlying the process under investigation [5, 16]. A positive result of model
construction (high model quality) may validate physical ideas underlying the
model structure. Such a conclusion is of an all-sufficient basic value and may
inspire later practical applications.
Below, we consider other applications of empirical models. Namely, we focus

on the problem of determination of a directional coupling between oscillators
from short time series (Section 8.6.1) and present its applications to climatic sig-
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nals (Section 8.6.2) and electroencephalograms (Section 8.6.3). Finally, we men-
tion different practical applications and give references for further reading (Sec-
tion 8.6.4).

8.6.1 Method to Reveal Weak Directional Coupling
Between Oscillatory Systems from Short Time Series

One can extract different useful information from the estimates of model parame-
ters. Thus, a sensitive approach to the determination of directionality of coupling
between two oscillatory systems solely from their bivariate time series, a problem
which is important in many practical and scientific fields, was suggested recently
in [68]. It is based on the construction of model equations for the phase dynamics of
the systems. Its main idea is to estimate how strong future evolution of the first
system’s phase depends on the second system’s phase and vice versa. A detailed
discussion can be found in the chapter written by M. Rosenblum (Chap. 7 in this
volume). We describe only several points necessary to explain our modification
of the method for the case of short time series and its applications.
First, one restores time series of the oscillations phases {φ1(t1), φ1(t2), . . . ,

φ1(tN)} and {φ2(t1), φ2(t2), . . . , φ2(tN)} from the original signals {x1(t1), x1(t2),
. . . , x1(tN)} and {x2(t1), x2(t2), . . . , x2(tN)}. We do it below with the analytic
signal approach implemented via complex wavelet transform [61]. Given a signal
X(t), one defines signal W(t) as

W(t) =
1√
s

∫∞

−∞
X(t′)ψ∗((t − t′)/s

)
dt′ , (8.15)

where ψ(η) = π−1/4 exp(−jω0η) exp(−η2/2) is Morlet wavelet, s is a fixed time
scale. For ω0 = 6 used below, ReW(t) can be regarded as X(t) band-pass filtered
around the frequency f ≈ 1/s with the relative bandwidth of 1/8. The phase is
defined as φ(t) = argW(t). It is the angle of rotation of the radius vector on the
plane (ReW, ImW) which increases by 2π after each complete evolution. To avoid
edge effects while estimating Eq. (8.15) from a time series, we ignore segments of
the length 1.4 s at each edge after the phase calculation.
Second, one constructs a global model relating phase increments over a time

interval τ to the phases. Similarly to [37, 68], we use the form

φ1(t + τ) − φ1(t) = F1

(
φ1(t), φ2(t + ∆1)

)
+ ξ1(t) ,

φ2(t + τ) − φ2(t) = F2

(
φ2(t), φ1(t + ∆2)

)
+ ξ2(t) ,

(8.16)

where ξ1,2 are zero-mean random processes, ∆1,2 stand for possible time delays
in coupling, F1 is a trigonometric polynomial

F1 =
∑
m,n

[am,n cos(mφ1 + nφ2) + bm,n sin(mφ1 + nφ2)] , (8.17)
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F2 is defined analogously. The strength of the influence of system 2 on system 1
(2 → 1) is quantified as

c2
1 =

1

2π2

∫2π

0

∫2π

0

(∂F1/∂φ2)2 dφ1 dφ2

=
∑
m,n

n2
(
a2

m,n + b2
m,n

)
.

(8.18)

The influence 1 → 2 is quantified “symmetrically” (c2
2). We use the third-order

polynomials for F1,2 and set τ equal to a basic oscillation period.
Given a time series, one estimates the coefficients am,n, bm,n via the OLS

technique. Then, one can get the estimate of ĉ2
1 by replacing the true values of

am,n, bm,n in Eq. (8.18) with their estimates. A reliable detection of the weak
directional coupling can only be achieved in nonsynchronous regimes. The latter
can be diagnosed if the mean phase coherence

ρ(∆) =

√
〈cos(φ1(t) − φ2(t + ∆)

)〉2t + 〈sin(φ1(t) − φ2(t + ∆)
)〉2t (8.19)

[69] is much less than 1.
The estimators ĉ1 and ĉ2 are quite precise only for long signals (about 1000 ba-

sic periods for moderate noise levels). However, in practice one must often deal
with much shorter signals of about several dozens of basic periods. Thus, to an-
alyze a nonstationary time series (e.g., in physiology) one must divide it into
relatively short segments and estimate coupling characteristics from each seg-
ment separately. An attempt to apply the technique without modifications to such
short series leads to biased estimates. Unbiased estimators γ1 and γ2 have been
proposed in [70] instead of ĉ2

1 and ĉ2
2, respectively, and an index δ = γ2 − γ1 is

used to characterize coupling directionality. Expressions for their 95% confidence
bands have also been derived. The latter allows us to trace significance of the es-
timates obtained from each short segment. (We do not show the formulas here
since they are rather cumbersome.) For moderate coupling strength and phase
nonlinearity, γ1 and γ2 guarantee the probability of erroneous conclusions about
the presence of coupling less than 0.025 [71]. Additional tests with exemplary
oscillators show that γ1(∆1) and γ2(∆2) are applicable for a time series as short
as 20 basic periods if ρ(∆) < 0.4. The latter condition excludes synchronous-like
signals. Other available techniques for coupling direction identification and con-
ditions for superiority of the described technique are reported in [72].

8.6.2 Application to Climatic Data

Using the above technique, we investigated the dynamics of the North Atlantic
oscillation (NAO) and El Niño/Southern oscillation (ENSO) processes for the sec-
ond half of the twentieth century. ENSO and NAO represent the leading modes
of interannual climate variability for the globe and Northern Hemisphere (NH),
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Fig. 8.7: Individual characteristics of the NAO index and T(Niño-3,4). (a) NAO
index (the gray line) and ReW for s = 32 months (the dashed line). (b) Global
wavelet spectrum of the NAO index. (c) An orbit W(t) for the NAO index, s =

32 months. (d)–(f) The same as (a)–(c), but for T(Niño-3,4).

respectively [73, 74]. Different tools have been used for the analysis of their in-
teraction, in particular, cross-correlation function and Fourier and wavelet coher-
ence, e.g., [75]. However, all the climatic signals are rather short that has made
confident inference about the character of interaction between those processes
difficult.
Here, we present the results only for a specific pair of climatic indices. The

first one is NAO index http://www.ncep.noaa.gov defined as the leading de-
composition mode of the field of 500hPa geopotential height in NH based on the
“rotated principal component analysis” [76]. The second one is T(Niño-3,4) which
characterizes sea surface temperature in an equatorial region of the Pacific Ocean
(5°N–5°S, 170°W–120°W) [77]. These time series cover the period 1950–2004 (660
monthly values).
Figure 8.7 demonstrates individual characteristics of the NAO index (Fig-

ure 8.7(a)) and T(Niño-3,4) (Fig. 8.7(d)). Global wavelet spectra of the NAO index
and T(Niño-3,4) exhibit several peaks (Figs. 8.7(b)and (e)). One can assume that
the peaks correspond to some oscillatory processes for which the phase can be
adequately introduced. To extract phases of “different rhythms” in NAO and
ENSO, we tried several values of s in Eq. (8.15) corresponding to the different
spectral peaks. We estimated coupling between all the rhythms pairwise. The
only case when substantial conclusions about the presence of coupling are in-
ferred is the “rhythm” with s = 32 months for both signals, see the dashed lines
in Figs. 8.7(a) and 8.7(d). The phases of 32-month rhythms in both signals are
well defined since clear rotation of the orbits around the origin on the complex
plane takes place (Figs. 8.7(c) and 8.7(f)).
The results of the phase dynamics modeling are shown in Fig. 8.8 for s = 32
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and model, Eq. (8.16), with τ = 32. Figure 8.8(a) shows that the technique is
applicable only for ∆1 > −30 where ρ < 0.4. The influence ENSO → NAO is
pointwise significant for −30 � ∆1 � 0 and maximal for ∆1 = −24 months
(Fig. 8.8(b)). Apart from the pointwise p-level, one can infer the presence of the
influence ENSO → NAO as follows. Probability of a random erroneous con-
clusion about coupling presence based only on a pointwise significant γ1 for a
specific ∆1 is 0.025. Taking into account that the values of γ1(∆1) separated with
∆1 less than τ are strongly correlated, one can consider as “statistically indepen-
dent” the values of γ1 from the two groups: −30 � ∆1 � 0 and 0 < ∆1 � 32.
Then, the probability of erroneous conclusion based on pointwise significant γ1

at least in one of the two groups as observed in Fig. 8.8(b) is approximately twice
as large and, hence, equal to 0.05. Thus, we conclude with confidence probability
of 0.95 that the influence ENSO → NAO is present. Most probably, it is delayed
by 24 months. However, the latter conclusion is not so reliable. No signs of the
influence NAO→ ENSO are detected (Fig. 8.8(c)).
We note that large ρ for ∆ < −30 do not indicate strong coupling. For such

short time series and close basic frequencies of oscillators, the probability to get
ρ > 0.4 for uncoupled processes is greater than 0.5 as observed in numerical
experiments with exemplary oscillators. More details can be found in [78].
We stress that the conclusion about the presence of the influence ENSO →

NAO is quite reliable here. Confidence probability 0.95 was not accessible for
traditional techniques. It can be attributed to high sensitivity of the phases to
weak coupling.

8.6.3 Application to Electroencephalogram Data

Here, we present an application of the estimators to analyze a two-channel hu-
man intracranial epileptic electroencephalogram (EEG) recording with the pur-
pose of epileptic focus localization.
The data were recorded from intracranial depth electrodes implanted in a

patient with medically refractory temporal lobe epilepsy as part of routine clin-
ical investigations to determine candidacy for epilepsy surgery (provided by
Dr. Richard Wennberg, Toronto Western Hospital). The recordings included sev-
eral left temporal neocortical → hippocampal seizures that occurred over the
course of a long partial status epilepticus, see an example in Figs. 8.9(a) and
(b). Two channels were analyzed: the first channel situated in the left hippocam-
pus, and the second channel in the left temporal neocortex, where the “interictal”
activity between seizures at the time comprised pseudoperiodic epileptiform dis-
charges. The visual analysis of the interictal–ictal transitions (shown with vertical
dashed lines) determined that the seizures all started first in the neocortex, with
an independent seizure subsequently beginning at the ipsilateral hippocampus.
We analyzed four recordings, but here we present the results for only one of
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Fig. 8.8: Analysis of coupling from the NAO index and T(Niño-3,4). (a) Mean
phase coherence. (b, c) The estimators of the strength of the influence ENSO →
NAO (∆ means ∆1) and NAO→ ENSO (∆ means ∆2), respectively, with their 95%
confidence bands.

them for the sake of brevity, as an illustration of application of the method to a
nonstationary real-world system.
The time series of Figs. 8.9(a) and (b) contains 4.5min of depth electrode EEG

(referential recording to scalp vertex electrode) recorded at a sampling frequency
of 250Hz. There are more or less significant peaks in power spectra for both chan-
nels (not shown). For the hippocampal channel: at frequency 3.2Hz before the
seizure (starting approximately at the 100th second and finishing approximately
at the 220th second), 2.3Hz after the seizure, and 7.1Hz during the seizure. For
the neocortex channel: at frequency 1.4Hz before the seizure, 1.6Hz after the
seizure, and 7.1Hz during the seizure. We have computed coupling character-
istics in a running window. The length of running window was changed from
N = 103 data points to N = 104 data points. Time delays ∆1,2 were set equal
to zero. The phases were determined using Eq. (8.15) with ω0 = 2 and different
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Fig. 8.9: Intracranial EEG recordings: (a) from the hippocampus, (b) from the tem-
poral lobe of the neocortex. (c) Coupling directionality index δ with its 95% con-
fidence band (the gray train), t is the starting time instant of a running window
of the length of 8 s. Negative values of δ indicate influence of the neocortex on the
hippocampus. The vertical dashed lines indicate a seizure onset and offset. Index δ

is significantly less than zero during a period of 25–55 s before the seizure.

time scales s. In particular, we tried the time scales corresponding to the main
peak of the scalogram for each signal which is s = 0.14 s for the hippocampal
signal, and s = 0.19 s for the neocortex signal, see Fig. 8.9(c) (where τ = 33∆t).
We present only one set of results in Fig. 8.9(c) (gray tail denotes 95% con-

fidence bands) obtained for N = 6000. Coupling is regarded as significant if
the confidence band does not include zero, e.g., gray tail does not intersect the
abscissa axis. The preliminary results seem promising for the localization of the
epileptic focus, because a long interval (30 s length for the example shown) of sig-
nificant predominant coupling direction neocortex → hippocampus is observed
before the seizure. It can be considered as an indication that epileptic focus is
located near the neocortex channel that agrees with a priori clinical information.
Despite we presented only one example, we note that the results are sufficiently
robust and are observed for a significant range of values of the above-mentioned
window lengths and parameters.
Similar results are observed for the three of the four analyzed recordings and

not observed for one of them. Right now, we do not draw any definite conclusions
about the applicability of the method to localize epileptic focus. This is only
the first attempt and, of course, more EEG recordings should be processed to
quantify the method’s sensitivity and specificity. This is a subject of ongoing
research. Therefore, the results presented here should not be overestimated, being
rather an illustration of the way how to apply the method in practice and what
kind of information one can expect from it.

8.6.4 Other Applications

We should mention several other useful applications of the reconstruction meth-
ods. They include detection of quasistationary segments in nonstationary sig-
nals [79–82], prediction of bifurcations in weakly nonautonomous systems [83],
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multichannel confidential transmission of information [84, 85], signal classifica-
tion [86], testing for nonlinearity and determinism [87], and adaptive nonlinear
noise reduction [88–90]. Among the very interesting applications, we stress again
on the reconstruction of characteristics of nonlinear elements in electric circuits
and other systems with the aid of a modeling procedure in the “gray box” set-
ting when such characteristics may not be accessible to direct measurements.
This approach is successfully brought about during the investigation of dynami-
cal properties of a ferroelectric [39], semiconductor diodes [91], and optical fiber
ring [92].

8.7 Conclusions

Seemingly, mathematical modeling will always remain an art to a significant ex-
tent. However, there may be developed some general principles and particular
recipes increasing our chances to obtain a “good” model. Some results of this
type related to the time series modeling are discussed in this chapter. Besides, we
systematized many available techniques based on the scheme of Fig. 8.1 whose
different items were illustrated with different problem settings: from “white box”
via “gray box” to “black box” problems. We outlined different techniques which
were tested in numerical experiments with the reconstruction of exemplary equa-
tions from their noise-corrupted solutions. Many of the techniques were already
successfully applied to the investigation of laboratory and real-world systems
such as nonlinear electric circuits, climatic processes, functional systems of living
organisms, etc. In particular, we reported the results of the analysis of the inter-
action between complex processes in climatology and neurophysiology based on
their empirical modeling.
We have not discussed modeling of spatially distributed systems, even though

it attracts considerable attention [93–97]. As well, we have omitted discussion of
time-delay systems [92, 98, 99] and only briefly touched on stochastic nonlinear
models [29, 100]. Many methods for the construction of finite-dimensional de-
terministic models are also just mentioned. Instead, we have tried to give simple
illustrations of some key points and provide multiple references to the works
comprising more detailed discussion for the further reading. Therefore, this sur-
vey is only an “excursus into . . . ,” rather than an irrefragable treatment of the
empirical modeling problems.
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9 Data-Driven Analysis
of Nonstationary Brain Signals

Mario Chavez, Claude Adam, Stefano Boccaletti, and Jacques Martinerie

Many neurobiological processes generally result from the interaction of many os-
cillators with different time scales, and it often arises that the frequency content of
the observed oscillations changes rapidly across time. In such a case, traditional
methods of the spectral analysis may be insufficient to provide a meaningful char-
acterization of the dynamics. Empirical mode decomposition (EMD) has been re-
cently introduced as an adaptive and fully data-driven method for the analysis
of nonlinear and nonstationary time series. Instead of using an a priori choice of
filters or basis functions to separate a frequency component, the EMD technique
expands the time series into a set of functions defined by the signal itself. The
signal is represented as the sum of amplitude- and frequency-modulated com-
ponents called intrinsic oscillation modes. As the major feature of these modes
is their local time–frequency discrimination, they may detect embedded nonsta-
tionary oscillations and their possible interactions. When applied to the general
case of coupled oscillators with multiple time scales, we found that the motions
are captured in a finite number of phase-locked time scales. This feature may be
used to detect the time scales involved in the synchronization of complex oscil-
lators with several spectral components. This approach is illustrated on electric
intracranial signals recorded from an epileptic patient. Despite the time-varying
spectrum displayed by the recorded signals, epileptic dynamics was character-
ized by a finite number of modes. Further, seizure onset was characterized by
transient periods of synchronization at different time scales. Numerical and ex-
perimental results suggest that this data-driven approach can be a useful tech-
nique for the analysis of nonstationary and noisy time series.

9.1 Introduction

The Fourier transform is probably the most used technique for the spectral analy-
sis. By means of this linear technique, a reliable estimation of the spectral com-
ponents of a signal can be obtained, provided the observed process is station-
ary. Nevertheless, many neurobiological processes are nonstationary, and the fre-
quency content of the recorded signals changes often rapidly across time. Fol-

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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lowing this rationale, a decomposition based on local characteristic time scales of
the data is necessary to correctly characterize nonstationary oscillations and their
possible interactions.
The study of the synchronization mechanisms between neural populations is

one of the most active topics in neurosciences [1, 2]. Nonlinear dynamics theory
has provided a number of useful tools for the analysis of interdependences [3, 4].
Based on theoretical studies of coupled dynamical systems, the concept of phase
synchronization has offered a new framework for the analysis of interactions
between neurobiological signals [5–8]. An important question is whether these
synchronization mechanisms can be properly characterized from nonstationary
and noisy brain signals.
To characterize a phase locking, a continuous phase variable is currently es-

timated from a time series by means of its representation as an analytical sig-
nal [9]. However if the signal possesses a multicomponent or a nonstationary
spectrum, this representation may fail and a phase cannot be straightforwardly
defined [10, 11]. The usual approach consists in a band-pass filtering in order to
properly isolate a time-scale oscillation, to which the analytic signal representa-
tion can be applied to extract the phase variable. However, potential problems
associated with filtering bandwidth in the estimation of phase interactions be-
tween nonstationary time series have been pointed out [12, 13].
In this work, we address this problem by using the recently introduced em-

pirical mode decomposition [14]. The empirical mode decomposition (EMD) is
an adaptive and fully data-driven method for the analysis of nonlinear and non-
stationary time series. Instead of using an a priori choice of filters or basis func-
tions to separate a frequency component, the EMD technique expands the time
series into a set of functions defined by the signal itself. The signal is repre-
sented as the sum of amplitude- and frequency-modulated components. The local
time–frequency discrimination of these modes is a suitable property to estimate
an instantaneous phase and thus, to detect possible time-scale synchronization
of nonstationary signals.

9.1.1 EMD-Related Work

Within the framework of the time-series analysis, the EMD procedure has pro-
vided a powerful framework of the time-series analysis in different fields ranging
from engineering and physics to biology [15–45].
When applied to purely stochastic processes, the EMD has been found to

act like a dyadic filter bank [46]. In contrast, the EMD analysis of autonomous
deterministic oscillators has revealed that a chaotic flow is composed of a small
number of intrinsic oscillation modes for each of which the phase fluctuates as a
fractional Brownian motion around a uniform rotation [47–49]. Furthermore, the
chaotic regime was found to be characterized by well-localized distributions of
the instantaneous frequencies estimated from each rotation modes.
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In the case of forced or interacting oscillators, the EMD has also been used
to characterize time-scale correlations between nonlinear and nonstationary sys-
tems [22, 28, 41]. Indeed, we have recently shown that the synchronization of
multitime scales’ oscillators can be characterized by a phase-locking condition of
the oscillators’ intrinsic time scales [50].

9.2 Intrinsic Time-Scale Decomposition

The key procedure of the EMD algorithm is a sifting process that expands the
signal into a set of zero-mean amplitude- and frequency-modulated components
called intrinsic oscillation modes or functions (IMFs). The sifting process for ex-
tracting these modes from a given time series x(t) can be summarized as fol-
lows [14]:

1. identify all extrema of x(t);

2. interpolate between minima (resp. maxima) to get two envelopes xmin(t) (resp.
xmax(t));

3. compute the mean envelopem(t) =
(
xmax(t)+xmin(t)

)
/2 and extract the resid-

ual d(t) = x(t) − m(t);

4. iterate on d(t) until this latter can be considered as zero mean according to a
stopping criterion.

Once this process is achieved the resulting signal is considered as an IMF. The
obtained intrinsic mode C1 is extracted from x(t) and steps (1)–(4) are repeated
to obtain the second mode C2. This sifting process continues until the last mode
shows no apparent variation.1 At the end of the sifting process, the original signal
is decomposed in a finite number of modes as x(t) = r(t) +

∑
i Ci(t), where r(t)

stands for a residual trend, and the intrinsic modes Ci(t)s are nearly orthogonal
to each other [14].
An oscillation must verify two criteria to be considered as an IMF:

1. the mean envelope defined by the local maxima and the envelope of the local
minima is zero at any time; and

2. the number of extrema and thus the number of zero crossings are equal or
they differ at most by 1. This latter property is similar to a local (in time)
narrow band requirement [51]. By construction, the spectral supports are de-
creased when going from one mode to the next. Nevertheless their frequency
discrimination applies only locally (in time) and they cannot correspond to a
sub-band filtering [46].

1 Matlab codes for the EMD algorithm and some examples shown in this work are fully online
available in http://www.ens-lyon.fr/~flandrin/software.html and http://perso.wanadoo.
fr/e.delechelle/codes.html.
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Fig. 9.1. EMD of a composite nonstationary signal: (a) the analyzed signal x(t) formed by
frequency-modulated components. (b) Intrinsic oscillation modes Ci(t) and residual r(t)
obtained by the EMD algorithm. (c) Time–frequency structure of the signal x(t) and the
intrinsic oscillation modes Ci(t). For all the examples, time–frequency distributions were
obtained by means of the wavelet transform as in [6].

For illustration, let us consider a composite signal obtained by the superposi-
tion of two sinusoidal frequency-modulated (FM) signals and one FM tone mod-
ulated by a Gaussian [52]. As illustrated in Fig. 9.1, the components of the signal
x(t) overlap in the time–frequency plane which renders difficult their decompo-
sition by traditional spectral techniques as the Fourier transform. As the EMD is
based on the local characteristic time scales of the data, the modes obtained are
well localized in time and frequency which enables a successful separation of the
different nonstationary components.

9.2.1 EMD and Instantaneous Phase Estimation

A time series x(t) with a time-varying spectrum can be characterized by a com-
plex representation of the form z(t) = A(t) exp

(
iφ(t)

)
, where the pair of func-

tions {A(t), φ(t)} are related to the instantaneous amplitude and phase the sig-
nal [10]. In practice, this representation on the complex plane is usually obtained
by means of the analytical signal defined as [9]

ψx(t) = x(t) + iH
(
x(t)

)
= A(t) exp

(
iφ(t)

)
. (9.1)

The imaginary part of ψx(t) is the Hilbert transform of x(t) defined as

H
(
x(t)

)
=

1

π
p.v.

+∞∫
−∞

x(t)

t − τ
dτ (9.2)
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Fig. 9.2. Instantaneous phase of a multicomponent and nonstationary signal: (a) trajectory
of x(t) on the complex plane (see the multiple centers of rotation). (b) IMFs obtained by the
EMD algorithm. (c)–(d) Analytic signals of Ci(t) yield a unique rotation center necessary
for a properly definition of a phase.

where p.v. indicates that the integral is taken in the sense of Cauchy princi-
pal value. This complex representation yields a trajectory in the complex plane
{x(t), iH(x(t))} whose phase φ(t) can be defined through the representation
ψx(t) = A(t) exp

(
iφ(t)

)
. An associated instantaneous frequency can be thus ob-

tained at each time by f(t) = 1
2π
dφ(t)
dt .

Although the Hilbert transform can be applied to any arbitrary signal, in-
stantaneous phase has a clear physical meaning only for monocomponent signals
with a unique center of rotation on the complex plane. In fact, if the time series
possesses a time–frequency structure with multiple overlapping components this
representation may fail and a phase cannot be straightforwardly defined [10, 11].
In the EMD decomposition, the resulting intrinsic modes Ci(t) are zero mean
and the number of extrema and the number of zero crossings of each IMF are
equal. This ensures that trajectories in the complex plane of modes Ci(t) rotate
around a unique rotation center (not necessarily at a constant frequency) and a
phase can thus be defined [14, 46–48].
For illustration, we consider a simple case encountered in real biological sys-

tems: a nonstationary process under the influence of periodic forces with dif-
ferent time scales, and under the influence of noise. Let us firstly consider the
following Van der Pol oscillator with a randomly varying parameter w [53, 54]



218 9 Data-Driven Analysis of Nonstationary Brain Signals

ẋ = y ,

ẏ = ε(1 − x2)y − w2x + C sin(Ωt) ,

w = w0 + η(t) , (9.3)

with ε = 0.1, w0 = 1, C = 0.2 andΩ = 1/3. Random perturbation is given by η(t)

which is an exponentially correlated colored noise, 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 =
D
τ exp(−

|t−t′|
τ ), with D = 0.1. The eigenfrequency of the oscillator thus exhibits a

slow random variation given by η(t) with a correlation time τ = 200. Numerical
examples were simulated by Euler’s technique with the time step δt = 0.005. For
all simulations, a transient of 104 points was discarded.
The interaction of the nonstationary autonomous oscillator and the driving

force results in nonstationary oscillations at different time scales. This multicom-
ponent spectrum induces a major difficulty in the estimation of an instantaneous
phase: The trajectory of the analytic signal ψx(t) thus exhibits multiple centers of
rotation in the complex plane and a phase cannot be straightforwardly defined
(Fig. 9.2(a)). In contrast, the IMFs display a clear and unique rotation center in
the complex plane what allows a proper estimation of an instantaneous phase.
This is illustrated in Figs. 9.2(b), (c), (d).

9.2.2 Drawbacks of the EMD

Though a signal can be fully decomposed in a finite number of modes, a careful
interpretation of IMFs is necessary. Let us consider the composite signal whose
time–frequency structure is depicted in Fig. 9.3. In the EMD procedure, the sig-
nal is considered as a fast oscillation locally (in time) superimposed to slow os-
cillations. The time–frequency distributions show that, at each step of the sifting
process, the low-frequency content of the time series is basically what it remains
after the iterative extraction of the fast components. For this reason, the EMD
may provide, in some extreme cases, oscillations without a clear physical mean-
ing.
The choice of the interpolation technique also plays an important role in the

decomposition. Although the original algorithm uses a spline interpolation, this
technique often produces overshoots in order to achieve the second derivative,
and new extrema points, not present in the original signal, may therefore be
introduced. Nevertheless, other interpolation techniques tend to spread spurious
components over adjacent modes, increasing the number of sifting iterations.
Recently, the effects on the EMD of different interpolation methods have been
studied in detail and compared in [23, 55, 56].
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Fig. 9.3. Time–frequency structure of the composite signal x(t) and the intrinsic oscillation
modes Ci(t).

9.3 Intrinsic Time Scales of Forced Systems

The entrainment of a system may be detected by a phase-locking index between
the driving signal and an appropriate scalar observation of the forced oscilla-
tor [3, 4]. To quantify
the phase entrainment of nonlinear oscillators, a data-drivenmethod was pro-

posed in [53, 54] for the analysis of univariate data. In this work, an analytical
model was described to relate the zero crossings of the time series to the phase
of a single external periodic forcing. For the case of multiple driving forces, the
authors used a coarse and simplified version of the EMD procedure. However,
in the case of several driving forces with different time scales, this approach may
fail.
When applied to periodically forced systems, the oscillations captured by the

IMF were found to be phase locked with the driving forces [50]. This is illustrated
in Fig. 9.4(a). Modes Ci(t) were computed from the scalar variable x(t) of the
system, Eq. (9.3), for a noise level of D = 0.15. Despite the nonstationary behavior
of the signal, the EMD yields two oscillations at different time scales: The first
mode C1 corresponds to the eigenfrequency of the autonomous oscillator while
the second mode C2 is in phase locked with the driving force.
We consider now a case where different external driving forces interact with
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IMFs. The driving force(s) and the corresponding phase-locked modes are depicted at the
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the internal time scale of the autonomous oscillator. We apply the EMD to the
following forced and noisy Van der Pol system [53, 54]:

ẋ = y ,

ẏ = ε(1 − x2)y − w2
0x + C1 sin(Ω1t) + C2 sin(Ω2t) + ξ(t) , (9.4)

where ε = 0.1, w0 = 1, C1 = C2 = 0.1, Ω1 = 0.5 and Ω2 = 0.1. A Gaussian
noise is used here as random perturbation such that 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 =

2Dδ(t−t′)withD = 0.01. As depicted in Fig. 9.4(b) the time scales of the external
driving forces are perfectly captured by different modes (C2 and C3), while the
oscillation at the eigenfrequency of the oscillator is captured by other mode (C1

for this example).

9.4 Intrinsic Time Scales of Coupled Systems

Recent works have suggested that different synchronization phenomena (phase
synchronization, lag synchronization, and generalized synchronization [3, 4])
are particular cases of the so-called time-scale synchronization [57, 58]. Within
this framework, we have recently found that the IMFs obtained from two syn-
chronized multitime scales’ oscillators may display distinct phase-locking behav-
ior [50].
To illustrate these time-scale correlations, let us consider a coupled system

formed by two coupled chaotic oscillators with different time scales. Equations
of motion read [59]
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ẋ = y ,

ẏ = Axyy(1 − x2) − Bx3 + C sin(ωxyt) ,

u̇ = v ,

v̇ = Auvv(1 − u2) − Bu3 + C sin(ωuvt) + ε(x − u) , (9.5)

with Axy = 0.6, Auv = 0.2, B = 1, C = 2, ωxy = 0.6 and ωuv = 0.65. Sub-
scripts xy and uv refer to the oscillators described by the variables (x, y) and
(u, v), respectively. The system describes a pair of forced Van der Pol oscillators
unidirectionally coupled. Parameters were set such that both oscillators exhibit
a chaotic motion for the uncoupled case. The domain of coupling values where
different synchronization phenomena arise has been studied in [50, 59].
To evaluate the mutual entrainment, we have computed the phase-locking

index [3, 4]

Γ =
1

N

∣
∣
∣
∣
∣

N∑
t=1

ei∆ϕx,u(t)

∣
∣
∣
∣
∣

(9.6)

where ∆ϕx,u(t) = ϕx(t) − ϕu(t) stands for the difference between the instan-
taneous phase of modes Ck(t) obtained from signals (over a time window of
length N) x(t) and u(t). Weak synchronization yields a nearly uniform distribu-
tion of the phase differences on the unit circle and a small value of Γ . In contrast, a
phase-locked condition results in a distribution of ∆ϕx,u(t) concentrated around
a preferred value, so that Γ ∼ 1.
Figure 9.5 illustrates the behavior of the unwrapped variable ∆Ψ(t) at differ-

ent intrinsic time scales for different coupling strengths. In the absence of cou-
pling, the IMFs are not phase locked because of the mismatch of the external
frequencies. Thus, instantaneous variable ∆Ψ(t) diffuses at all the intrinsic time
scales, which yields the phase-locking values (mean± s.d. computed over 20 real-
izations) of Γ = 0.021±0.001, Γ = 0.03±0.002, and Γ = 0.0016±0.002, respectively.
At a coupling value ε = 3, the fastest IMF are unsynchronized (Γ = 0.2061±0.02),
whereas the phase locking of slower IMFs increases to Γ = 0.6472 ± 0.03 and
Γ = 0.5433 ± 0.03, respectively. When coupling is further increased, the synchro-
nization is established. For a coupling strength ε = 5, the phase-locking value
between slow oscillation modes is also increased, as reflected by the indices of
Γ = 0.915± 0.02 and Γ = 0.580± 0.03, respectively. One must note that the fastest
time scales display only intermittent short periods of synchronization. During
rather small intervals of time, the phase difference changes by 2π which yields
phase slips and a Γ = 0.6703 ± 0.03.
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Fig. 9.5. Time-scale synchronization of the coupled system given by Eq.(9.5) as revealed
by the EMD: (a) example of the intrinsic time scales obtained from the variable u(t) for a
coupling value ε = 5; (b)–(d) phase differences ∆Ψ(t) of the IMFs for the coupling values
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9.5 Intrinsic Time Scales of Epileptic Signals

9.5.1 Intracerebral Activities

To illustrate the method on experimental data, we have applied the EMD to
electromagnetic signals recorded from epileptic patients candidate for a surgi-
cal treatment. Intracerebral electrical activities (or SEEG) were recorded directly
from brain areas suspected to be involved in seizure generation. The number and
the position of the depth electrodes were determined by electrophysiologists and
were not chosen for the purpose of this study. SEEG signals were recorded by
means of depth electrodes using an external reference, sampled at 400Hz and
bandpass filtered between 0.1Hz and 90Hz.
The multicomponent spectrum observed in the epileptic SEEG signals is de-

picted in Fig. 9.6(a). One can note that the frequency content of some oscillations
may change rapidly across time over a wide range of frequencies. In this case the
analytic signal approach yields a trajectory in the complex plane with multiple
centers of rotation and a phase cannot be properly defined (Fig. 9.6(b)).
Examples of the intrinsic time scales obtained from SEEG signals are illus-

trated in Fig. 9.7(a). Despite the nonstationary behavior of data, the epileptic dy-
namics was characterized by a small number of intrinsic oscillations. The differ-
ent IMFs capture the different oscillations (often with a time-varying spectrum)
embedded in the original signal (Fig. 9.7(b)). The mode C1(t), for instance, corre-
sponds to the low-voltage fast discharges observed at the seizure onset, whereas
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Fig. 9.6. Time scales embedded in the epileptic SEEG signals: (a) time–frequency content of
a recorded SEEG signal (the fast oscillation component within the dotted box is zoomed).
(b) Trajectory of the original signal on the complex plane (see the multiple ripples of the
rotation).

the spike and wave discharge is mainly captured by the mode C4(t). One can
note that the local time–frequency localization of the IMFs ensures that trajecto-
ries in the complex plane of analytic signals obtained from IMFs rotate around a
unique rotation center and thus a phase can be properly defined.2

9.5.2 Magnetoencephalographic Data

Magnetoencephalography (MEG) data were recorded from an epileptic patient
suffering from absence epileptic seizures. MEG signals were sampled at 1250Hz
and bandpass filtered between 2Hz and 80Hz. This modality of acquisition has
the major feature that collective neural behavior, as synchronization of large
and sparsely distributed cortical assemblies, are reflected as interactions between
MEG signals [60].
The dynamics of absence seizures is characterized by two possible states: a

steady state of ongoing activity, apparently random, and another one charac-
terized by a sudden discharge of paroxysmal spike-wave components occurring
over the entire cortex [61]. When applied to the MEG data, the EMD yields a
finite number of proper rotation modes Ci(t) and a trend r(t) as those illus-
trated in Fig. 9.8(a). All the modes display an oscillatory type-like burst activ-
ity mainly during the seizure, whereas a few modes show some activity before
the onset. The instantaneous frequency content of IMFs was found to be simi-
lar over all channels and for the three seizures analyzed here. The transition to

2 Phases obtained from real data may look ill-defined without a clear “hole” in the center of the
trajectory. This problem of visualization is due to the low amplitudes of some oscillations present
in the modes. However, the number of extrema and the number of zero crossings of these small
oscillations verify IMF’s criteria.
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Fig. 9.7. Time-scale analysis of a SEEG signal: (a) IMFs obtained by the EMD algorithm;
(b) example of time–frequency localizations of intrinsic oscillation modes Ci(t), and their
corresponding representations as analytic signals.

seizures was found to be mainly characterized by changes in the average instan-
taneous frequencies of some of the intrinsic modes. The distributions plotted in
Fig. 9.8(b) suggest that the emergence of seizures has a greater influence on rota-
tions corresponding to modes C4(t) and C1(t) (indicated by the dashed circles).
Changes in those modes were statistically significant (p < 0.001; two-tailed t-test;
t = 16.5 and t = 5.8 for C4(t) and C1(t) respectively).
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Fig. 9.8. (a) Example of an MEG signal x(t) and the corresponding intrinsic rotation
modes Ci(t). (b) Distributions, over all the MEG sensors, of the average instantaneous
frequencies calculated from different modes before and during the seizure. Distributions
of three different seizures are depicted by the solid, dotted, and slashed curves respec-
tively.

9.6 Time-Scale Synchronization of SEEG Data

In Fig. 9.9 we illustrate the synchronization of the time scales detected by the
EMD in the SEEG signals. Time-scale interactions, quantified by the Γ index, were
computed during three periods of the original epileptic dynamics (Fig. 9.9(b)): a
seizure-free period (I), during the low-voltage fast discharges observed at the
seizure onset (II), and the sustained spikes and waves (III).
The example in Fig. 9.9(a) shows that fast activities were mainly localized at

the seizure onset (at t > 15 s). The matrices of Γ values suggest that the synchro-
nization of fast oscillations (modes C1(t)) at the seizure onset (period II) mainly
involves brain areas corresponding to signals A–E. These fast time scales were
not synchronized during the beginning of the recording, or during and after the
spike and wave discharge. The time windows used for these modes (5 s) approx-
imately correspond to the fast discharge at seizure onset.
The behavior of slow time scales is reported in Fig. 9.9(c): Slow modes C4(t)

are clearly localized during the spike and wave discharges observed at 25 < t <

36 s. The strong synchronization at period III is widely extended and it involves
all the signals, whereas the rest of the recording is characterized by a weak syn-
chronized state. Time intervals used (10 s) basically correspond to the spikes and
waves discharge.
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Fig. 9.9. (a) Matrices of Γ values computed between the fast modes C1(t) at each of the in-
tervals indicated by the top gray boxes in (b). (b) Schematic example of the brain structures
explored by intracerebral electrodes and the corresponding original SEEG recordings. (c)
Values of the Γ index between the slow modes C4(t) computed inside each of the intervals
indicated by the bottom gray boxes in (b).

9.7 Conclusions

In this work, we have presented the empirical mode decomposition as a method
for the analysis of neurobiological signals. The EMD is an adaptive and fully
data-driven method for the analysis of nonlinear and nonstationary time se-
ries. Instead of using an a priori choice of filters or basis functions to separate
a frequency component from the broadband activity, the EMD extracts the basis
functions directly from the data. As the major feature of the intrinsic modes is
their local time–frequency localization, an instantaneous phase can be properly
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estimated from each of the intrinsic modes, even if they exhibit a time-varying
spectrum.
When applied to the general case of coupled oscillators with multiple time

scales, we found that the motions are captured in a finite number of phase-locked
modes. Despite the nonstationary behavior of the data, the epileptic dynamics
was characterized by a small number of IMFs with a well time–frequency local-
ization. This feature allowed us to detect transient periods of synchronization at
different time scales which may display a time-varying spectrum. The analysis of
the mode oscillations agrees with the hypothesis of multitime-scale interactions
underlying the seizure dynamics: The spike discharges were found to be accom-
panied by a widespread strong synchronization at slow time scales, whereas the
entrainment of fast time scales onset was found to involve a reduced number of
electrodes at the seizure onset.
To summarize, the EMD method should be widely applicable in different sit-

uations of biological interest. A nonstationary decomposition as the EMD, based
on the local characteristic time scales of the data, may be a useful tool for the
analysis of nonstationary interactions as those resulting from a frequency modu-
lation. Though the main drawback of the EMD is the lack of a theoretical frame-
work and that it is limited to numerical simulations [46, 62–65], some theoretical
aspects begin to be explored [66–68]. This formalism remains therefore an excit-
ing challenge for the signal processing community.
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10 Synchronization Analysis and Recurrence
in Complex Systems

Maria Carmen Romano, Marco Thiel, Jürgen Kurths, Martin Rolfs, Ralf Engbert, and
Reinhold Kliegl

We discuss an approach to detect and quantify phase synchronization in the
case of coupled non-phase-coherent oscillators, which is based on the recurrence
properties of the underlying system. First, we present an index which detects
phase synchronization without computing the phase directly. We show that this
index is also appropriate for non-phase-coherent systems, i.e., systems with a
rather broad power spectrum. Furthermore, we illustrate the applicability of this
index for time series strongly contaminated by noise.
Second, we present an algorithm, which is also based on recurrence to gen-

erate surrogates to test for phase synchronization. The generated surrogates cor-
respond to independent copies of the underlying system. Hence, computing a
phase synchronization index between one observed oscillator and the surrogate
of the second oscillator, we can test for phase synchronization.
Finally, we apply the recurrence-based index, as well as the recurrence-based

surrogates to fixational eye movements and find strong indications that both the
left and right fixational eye movements are synchronized.

10.1 Introduction

The study of synchronization goes back to the seventeenth century and begins
with the analysis of synchronization of nonlinear periodic systems. The synchro-
nization phenomenon was probably discovered first by Huygens in 1673, who
noticed that two pendulum clocks that hang on the same beam can synchronize.
This discovery can be considered as the beginning of Nonlinear Science. The syn-
chronization of the flashing of fireflies, the peculiarities of adjacent organ pipes
which can almost annihilate each other or speak in unison, or the synchroniza-
tion of diodes are other well known examples.
However, the research of synchronization in complex systems did not be-

gin until the end of the eighties. It has been studied extensively during the last
years [1–4], as this phenomenon has found numerous applications in natural
(cardiorespiration, Parkinson patients, ecology, El Niño-Monsoon, etc.) [5–10]

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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and engineering (lasers, plasma, tubes, etc.) systems [11–13]. Two systems are
said to be phase synchronized when their respective frequencies and phases are
locked. Note that synchronization is a process (of adapting rhythms) and not a
state. Till now phase synchronization (PS) of chaotic systems has been mainly
observed for attractors with rather coherent phase dynamics. These attractors
have a relatively simple topology of oscillations and a well-pronounced peak in
the power spectrum, which allows to introduce the phase and the characteristic
frequency of motions, Eq. (10.2). However, some difficulties appear when dealing
with non-coherent attractors characterized by a rather broad band power spec-
tra. Then it might not be straightforward to define a phase of the oscillations,
and in general no single characteristic time scale exists. In contrast to phase co-
herent attractors, it is quite unclear whether some phase synchronized state can
be achieved (Fig. 10.1).
To treat this problem, we propose a method based on another basic property

of complex chaotic systems: recurrences in phase space. The concept of recur-
rence in dynamical systems goes back to Poincaré [14], when he proved that after
a sufficiently long time interval, the trajectory of an isolated mechanical system
will return arbitrarily close to each former point of its route. We will show that
the concept of recurrence allows to detect indirectly synchronization and works
even in the case of noisy non-phase-coherent oscillators. Instead of defining di-
rectly the phase, we consider the coincidence of certain recurrence structures of
both coupled subsystems. By means of this comparison we are able to detect syn-
chronization in complex systems.
Another important problem in the synchronization analysis is that even

though the synchronization measures may be normalized, experimental time se-
ries often yield values which are not at the borders of the interval and hence
are difficult to interpret. This problem can be overcome if the coupling strength
between the two systems can be varied systematically and a rather large change
in the measure can be observed, i.e., we have a so called active experiment [1–4].
However, there are other kind of experiments (passive ones), in which it is not
possible to change the coupling strength systematically, e.g., the synchronization
of the heart beats of a mother with her fetus [15]. In some cases, this problem has
been tackled by interchanging the pairs of oscillators [15], for example the EEGs
of other pregnant women were used as “natural surrogates.” These surrogates
are independent and hence not in PS with the original system. Hence, if the syn-
chronization index obtained with the original data is not significantly higher than
the index obtained with the natural surrogates, there is no sufficient evidence to
claim synchronization. But even this rather innovative approach has some draw-
backs. The natural variability and also the frequency of the heart beats of the
surrogate mothers are usually lightly different from the ones of the real mother.
Furthermore, the data acquisition can be expensive and at least in some cases
problematic or even impossible (e.g., geophysical time series). In these cases it
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would be convenient to perform a hypothesis test based on surrogates generated
by a mathematical algorithm.
Therefore, we present a technique for the generation of surrogates, which is

based on the recurrences of a system. These surrogates mimic the dynamical
behavior of the system. Then, computing the synchronization index between one
subsystem of the original system and the other subsystem of the surrogate, and
comparing it with the synchronization index obtained for the original system, we
can test for PS.
In Section 10.2, we introduce the concept of recurrence, as well as the synchro-

nization index based on the recurrence properties of the system. In Section 10.3
we show how to detect another kind of synchronization, namely generalized
synchronization (GS) by means of recurrences and in Section 10.4 we show that
the recurrence-based indices indicate the transition to PS and GS in accordance
with other known theoretical methods. In Section 10.5 we present the twin sur-
rogates technique and apply it to test for synchronization in the paradigmatic
two coupled Rössler systems. In Section 10.6 we show an application of the
recurrence-based index and surrogates to measured physiological data, namely
fixational eye movements.

10.2 Phase Synchronization by Means of Recurrences

First, we exemplify the problem of defining the phase in systems with rather
broad power spectrum by the paradigmatic system of two coupled nonidentical
Rössler oscillators

ẋ1,2 = −ω1,2y1,2 − z1,2 ,

ẏ1,2 = ω1,2x1,2 + ay1,2 + µ(y2,1 − y1,2) ,

ż1,2 = 0.1 + z1,2(x1,2 − 8.5) ,

(10.1)

where µ is the coupling strength and ω1,2 determine the mean intrinsic fre-
quency of the (uncoupled) oscillators in the case of phase coherent attractors. In
our simulations we take ω1 = 0.98 and ω2 = 1.02. The parameter a ∈ [0.15 : 0.3]

governs the topology of the chaotic attractor. When a is below a critical value ac
(ac ≈ 0.186 for ω1 = 0.98 and ac ≈ 0.195 for ω2 = 1.02), the chaotic trajectories
always cycle around the unstable fixed point (x0, y0) ≈ (0, 0) in the (x, y) sub-
space, i.e., max(y) > y0 (Fig. 10.1(a)). In this case, simply the rotation angle

φ = arctan
y

x
(10.2)

can be defined as the phase, which increases almost uniformly. The oscillator has
a coherent phase dynamics, i.e., the diffusion of the phase dynamics is very low
(10−5 to 10−4). In this case, other phase definitions, e.g., based on the Hilbert
transform or on the Poincaré section, yield equivalent results [1–4]. However,
beyond the critical value ac, the trajectories no longer always completely cycle
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Fig. 10.1: (a,c) Segment of the x1-component of the trajectory of the Rössler sys-
tems, Eq. (10.1). (b,d) periodogram of the x-component of the trajectory. (e,g) pro-
jection of the attractor onto the (x, y) plane. (g,h) projection onto the (ẋ, ẏ) plane.
(a,b,e,f) computed for a = 0.16 and (c,d,g,h) computed for a = 0.2925.

around (x0, y0), and some max(y) < y0 occur, which are associated with faster
returns of the orbits; the attractor becomes a funnel one. Such earlier returns in
the funnel attractor happen more frequently with increasing a (Fig. 10.1(b)). It is
clear that for the funnel attractors, usual (and rather simple) definitions of phase,
such as Eq. (10.2), are no longer applicable [1–4].
Rosenblum et al. have proposed in [16] to use an ensemble of phase coherent

oscillators which is driven by the non-phase-coherent oscillator in order to esti-
mate the frequency of the last, and hence detect PS in such kind of systems. How-
ever, depending on the component one uses to couple the non-phase-coherent
oscillator to the coherent ones, the result of the obtained frequency can be differ-
ent.
Furthermore, Osipov et al. [17] have proposed another approach which is

based on the general idea of the curvature of an arbitrary curve [18]. For any two-
dimensional curve r1 = (u, v) the angle velocity at each point is ν =

ds
dt/R, where

ds/dt =
√

u̇2 + v̇2 is the velocity along the curve and R = (u̇2 + v̇2)3/2/[v̇ü −

v̈u̇] is the curvature. If R > 0 at each point, then ν = dφ
dt = v̇ü−v̈u̇

u̇2+v̇2 is always
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positive and therefore the variable φ defined as φ =
∫

νdt = arctan v̇
u̇ , is a

monotonically growing angle function of time and can be considered as a phase
of the oscillations. Geometrically it means that the projection r2 = (u̇, v̇) is a
curve cycling monotonically around a certain point.
These definitions of φ and ν hold in general for any dynamical system if

the projection of the phase trajectory onto some plane is a curve with a positive
curvature. This approach is applicable to a large variety of chaotic oscillators,
such as the Lorenz system [19], the Chua circuit [20] or the model of an ideal
four-level laser with periodic pump modulation [21].
This is clear for phase-coherent as well as funnel attractors in the Rössler

oscillator. Here projections of chaotic trajectories on the plane (ẋ, ẏ) always rotate
around the origin (Fig. 10.1(c) and (d)) and the phase can be defined as

φ = arctan
ẏ

ẋ
. (10.3)

We have to note that for funnel-like chaotic attractors the coupling may change
their topology. As a consequence the strong cyclic structure of orbits projection
in the (ẋ, ẏ)-plane may be destroyed and the phase measurement by Eq. (10.3)
fails occasionally for intermediate values of coupling. But for small coupling and
for coupling near the transition to PS, the phase is well-defined by Eq. (10.3) [22].
We consider two criteria to detect the existence of PS: Locking of the mean

frequencies Ω1 = 〈ν1〉 = Ω2 = 〈ν2〉, and locking of the phase |φ2(t) − φ1(t)| �
const (we restrict here to 1 : 1 synchronization). Applying the new definition of
the phase Eq. (10.3) to the system defined by Eq. (10.1) for a = 0.2925 (strongly
noncoherent) and µ = 0.179, one obtains the phase difference represented in
Fig. 10.2.
We find two large plateaus in the evolution of the difference of the phases

with time, i.e., we detect PS, but we also find a phase slip associated to a dif-
ferent number of oscillations in the two oscillators in the represented period of
time. This means, we observe the rare occurrence of phase slip. It is interesting to
note that in this system PS occurs after one of the positive Lyapunov exponents
passes to negative values, i.e., it is also a transition to generalized chaotic syn-
chronization (GS).
Although this approach works well in non-phase-coherent model systems, we

have to consider that one is often confronted with the computation of the phase
in experimental time series, which are usually corrupted by noise. In this case,
some difficulties may appear when computing the phase by Eq. (10.3), because
derivatives are involved in its definition.
Hence, we propose a different approach based on recurrences in phase space

to detect PS indirectly. We define a recurrence of the trajectory of a dynamical
system {x(i)}Ni=1 in the following way: We say that the trajectory has returned at
time t = jδt to the former point in phase space visited at t = iδt if

R
(ε)
i,j = Θ(ε − ‖x(i) − x(j)‖) = 1 , (10.4)
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Fig. 10.2: (a) Time evolution of phase difference of the system of Eq. (10.1). (b)
Variables ẏ1,2 in system (10.1) for a = 0.2925 and µ = 0.179. Solid and dotted
lines correspond to the first and the second oscillator, respectively. In the time
interval between dashed lines the first oscillator produces four rotations in the
(ẋ1, ẏ1)-plane around the origin, but the second one generates only three rotations,
which leads to a phase slip in (a).

where ε is a pre-defined threshold, Θ(.) is the Heaviside function and δt is the
sampling rate. A “1” in the matrix at i, j means that x(i) and x(i) are neighbor-
ing, a “0” that they are not. The black and white representation of this binary
matrix is called recurrence plot (RP). This method has been intensively studied
in the last years: Different measures of complexity have been proposed based on
the structures obtained in the RP and have found numerous applications in, e.g.,
physiology and earth science [23–27]. Furthermore, it has been even shown that
some dynamical invariants can be estimated by means of the recurrence struc-
tures [28].
Based on this definition of recurrence, we want to tackle the problem of per-

forming a synchronization analysis in the case of non-phase-coherent systems.
We avoid the direct definition of the phase and instead use the recurrence prop-
erties of the systems in the following way: The probability P(ε)(τ) that the system
returns to the neighborhood of a former point x(i) of the trajectory1 after τ time
steps can be estimated as follows:

P̂(ε)(τ) =
1

N − τ

N−τ∑
i=1

Θ(ε − ‖x(i) − x(i + τ)‖) =
1

N − τ

N−τ∑
i=1

R
(ε)
i,i+τ . (10.5)

1 The neighborhood is defined as a box of size ε centered at x(i), as we use the maximum norm.
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This function can be regarded as a generalized autocorrelation function, as it
also describes higher order correlations between the points of the trajectory in
dependence on the time delay τ. A further advantage with respect to the linear
autocorrelation function is that P̂(ε)(τ) is defined for a trajectory in phase space
and not only for a single observable of the system’s trajectory. Further, we have
recently shown that it is possible to reconstruct the attractor by only considering
the recurrences of single components of the system [29] and it is also possible to
estimate dynamical invariants of the system (e.g., entropies and dimensions) by
means of recurrences in phase space [28]. Hence, the recurrences of the system
in phase space contain information about higher order dependencies within the
components of the system.
For a periodic system with period length T in a two-dimensional phase space,

it can be easily shown that

P(τ) = lim
ε→0

P̂(ε)(τ) =

{
1 τ = T

0 otherwise .

For coherent chaotic oscillators, such as Eq. (10.1) for a = 0.16, P̂(ε)(τ) has well-
expressed local maxima at multiples of the mean period, but the probability of
recurrence after one or more rotations around the fixed point is less than one
(Fig. 10.5).
Analyzing the probability of recurrence, it is possible to detect PS for non-

phase-coherent oscillators, too. This approach is based on the following idea:
Originally, a phase φ is assigned to a periodic trajectory x in phase space, by
projecting the trajectory onto a plane and choosing an origin, around which the
trajectory oscillates all the time. Then an increment of 2π is assigned to φ, when
the point of the trajectory has returned to its starting position, i.e., when ‖x(t +

T) − x(t)‖ = 0. Analogously to the case of a periodic system, we can refer an
increment of 2π to φ to a complex nonperiodic trajectory x(t), when ‖x(t + T) −

x(t)‖ ∼ 0, or equivalently when ‖x(t + T) − x(t)‖ < ε, where ε is a predefined
threshold. That means, a recurrence R

(ε)
t,t+τ = 1 can be interpreted as an increment

of 2π of the phase in the time interval τ2.
P̂(ε)(τ) can be viewed as a statistical measure on how often φ in the original

phase space has increased by 2π or multiples of 2π within the time interval τ. If
two systems are in PS, in the mean, the phases of both systems increase by k · 2π,
with k a natural number, within the same time interval τ. Hence, looking at the
coincidence of the positions of the maxima of P̂(ε)(τ) for both systems, we can
quantitatively identify PS (from now on, we omit (ε) and ·̂ in P̂(ε)(τ) to simplify
the notation). The proposed algorithm then consists of two steps:

• Compute P1,2(τ) of both systems based on Eq. (10.5).

2 This can be considered as an alternative definition of the phase to Eqs. (10.2) and (10.3).
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Fig. 10.3: P(τ) for a periodically driven Rössler (Eqs. (10.7)) in PS (a) and in non-PS
(b). Solid line: P(τ) of the driven Rössler, dashed line: P(τ) of the periodic forcing.

• Compute the cross-correlation coefficient between P1(τ) and P2(τ) (correlation
between probabilities of recurrence, CPR)

CPR1,2 =
〈P̄1(τ)P̄2(τ)〉τ

σ1σ2
, (10.6)

where P̄1,2 means that the mean value has been subtracted and σ1 and σ2 are
the standard deviations of P1(τ) and P2(τ), respectively.

If both systems are in PS, the probability of recurrence is maximal simultane-
ously and CPR1,2 ∼ 1. In contrast, if the systems are not in PS, the maxima of the
probability of recurrence do not occur jointly and expect low values of CPR1,2.

10.2.1 Examples of Application

In this section we exemplify the application of CPR to detect PS for four prototyp-
ical chaotic systems. The number of data points used for the analysis presented
here is 5000.

1. We start with the periodically driven Rössler system [1–4]

ẋ = −y − z + µ cos(ωt)

ẏ = x + 0.15y

ż = 0.4 + z(x − 8.5) .

(10.7)

For the frequency ω = 1.04 and the coupling strength µ = 0.16, the periodic
forcing locks the frequency of the Rössler system. This can be clearly seen in
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Fig. 10.4: P(τ) for a periodically driven Lorenz in PS (a) and in non-PS (b). Solid
line: P(τ) of the driven Lorenz, dashed line: P(τ) of the periodic forcing.

Fig. 10.3(a). The position of the maxima coincide. The value of the recurrence-
based PS index (Eq. (10.6)) is CPR = 0.862.

For the parameters ω = 1.1 and µ = 0.16, the periodic forcing does not syn-
chronize the Rössler system. Hence, the joint probability of recurrence is very
low, which is reflected in the drift of the peaks of the corresponding P(τ)

(Fig. 10.3(b)). In this case, CPR = −0.00241.

2. We continue our considerations with the periodically driven Lorenz system
for the standard parameters

ẋ = 10(y − x)

ẏ = 28x − y − xz

ż = −8/3z + xy + µ cos(ωt) .

(10.8)

In Fig. 10.4(a) the probabilities of recurrence P(τ) in the PS case (µ = 10,
ω = 8.35) are represented. We see that the position of the local maxima of the
Lorenz oscillator coincide with the ones of the periodic forcing. However, the
local maxima are not as high as in the case of the Rössler system, and they
are broader. This reflects the effective noise which is intrinsic in the Lorenz
system [1–4]. Therefore, the phase synchronization is not perfect: An exact
frequency locking between the periodic forcing and the driven Lorenz cannot
be observed [30]. In this case, we obtain CPR = 0.667. In the non-PS case
(µ = 10, ω = 7.5), we obtain CPR = 0.147 (Fig. 10.4(b)).

3. Next, we consider the case of two mutually coupled Rössler systems in the
phase coherent regime, more precisely we analyze Eqs. (10.1) with a = 0.16.
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Fig. 10.5: P(τ) for two mutually coupled Rössler systems (Eqs. (10.1)) in phase
coherent regime (a = 0.16) for µ = 0.05 (a) and for µ = 0.02 (b).

According to [17], for ω1 = 0.98, ω2 = 1.02 and µ = 0.05 both systems are in
PS. We observe that the local maxima of P1 and P2 occur at τ = n · T , where
T is the mean period of both Rössler systems (Fig. 10.5(a)). The heights of
the local maxima are in general different for both systems if they are only in
PS and not in, e.g., complete synchronization or generalized synchronization.
But the positions of the local maxima of P(τ) coincide. In this case, we obtain
CPR = 0.998.

At a coupling strength of µ = 0.02 the systems are not in PS and the positions
of the maxima of P(τ) do not coincide anymore (Fig. 10.5(b)), clearly indicating
that the frequencies are not locked. In this case, we obtain CPR = 0.115.

4. As a last example with simulated data, we analyze the challenging case of two
mutually coupled Rössler systems in the funnel regime. Therefore, we study
Eqs. (10.1) with a = 0.2925, ω1 = 0.98, and ω2 = 1.02. We analyze two dif-
ferent coupling strengths: µ = 0.2 and µ = 0.05. We observe that the structure
of P(τ) in the funnel regime (Fig. 10.6) is rather different from the one in the
phase coherent Rössler system (Fig. 10.5). The peaks in P(τ) are not as well
pronounced as in the coherent regime, reflecting the different time scales that
play a crucial role and the broad-band power spectrum of this system. How-
ever, we notice that for µ = 0.2 the locations of the local maxima coincide for
both oscillators (Fig. 10.6(a)), indicating PS, whereas for µ = 0.05 the positions
of the local maxima do not coincide anymore (Fig. 10.6(b)), indicating non-PS.
These results are in accordance with [17].

In the PS case, we obtain CPR = 0.988, and in the non-PS case, CPR = 0.145.
Note that the position of the first peak in Fig. 10.6(b) coincides, although the
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Fig. 10.6: P(τ) for two mutually coupled Rössler systems (Eqs. (10.1)) in funnel
regime (a = 0.2925) for µ = 0.2 (a) and for µ = 0.05 (b). Bold line: P1(τ), solid line:
P2(τ).

Fig. 10.7: First component x1 of Eqs. (10.1) with 80% independent Gaussian noise
(for µ = 0.05). From the figure it is clearly recognizable that it is difficult to com-
pute the phase by means of, e.g., the Hilbert transformation.

oscillators are not in PS. This is due to the small frequency mismatch (|ω1 −

ω2| = 0.04). However, by means of the index CPR we can distinguish rather
well between both regimes.
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10.2.2 Influence of Noise

Measurement errors are omnipresent in experimental time series. Hence, it is
necessary to analyze the influence of noise on CPR (correlation of probability of
recurrence).
First, we treat additive or observational white noise. We use Eqs. (10.1) with

two different coupling strengths, so that we can compute the deviation which is
caused by noise in the nonsynchronized and in the synchronized case.
We add independent Gaussian noise with standard deviation σnoise = ασj

to each coordinate j of the system, where σj is the standard deviation of the
component j and α is the noise level. In Fig. 10.7 the “corrupted” x-component
of the first Rössler subsystem x̃1(t) = x1(t) + ασ1η(t) is represented. Herein η(t)

is a realization of Gaussian noise and α = 0.8. From Fig. 10.7 it is obvious that it
is difficult to compute the phase by means of, e.g., the Hilbert transformation for
such a high noise level without filtering.
The choice of ε for the computation of P1(τ) and P2(τ) in the presence of noise

is performed automatically by fixing the recurrence rate RR, i.e., the percentage
of recurrence points in the recurrence matrix, Eq. (10.4). The results presented
below were computed for RR = 0.1, but the results are rather independent of the
choice of RR. However, RR should not be chosen too small if the level of noise is
very high [23–27].
In order to compute CPR for the noisy oscillators, we calculate first the prob-

abilities of recurrence P1(τ) and P2(τ) for coupling strengths µ = 0.05 (PS,
Fig. 10.8) and µ = 0.02 (non-PS, Fig. 10.9).
We note that the peaks in P1(τ) and P2(τ) become lower and broader

(Figs. 10.8(b) and 10.9(b)) compared with the noise free case (Figs. 10.8(a)
and 10.9(a)), which is expected. However, despite of the large level of noise, the
positions of the local maxima coincide in the PS case, and they drift away in the
non-PS case. This a convenient result, because we can still decide whether the
oscillators are synchronized in a statistical sense or not. This is reflected in the
obtained values for the CPR index: at a noise level of 80% noise, in the PS case
the obtained value for CPR is exactly the same with and without noise, and in
the non-PS case it is nearly the same (see Table 10.1). This shows that the index
CPR for PS is very robust against observational noise.
Now, we analyze the influence of colored noise on the index CPR. We add a

realization of colored noise with a very high noise amplitude to each component
of the first system and another realization of colored noise with a smaller noise
amplitude to each component of the second system (see Fig. 10.10(a) and (b) and
the corresponding caption). Other methods fail determining the phase in this
case, as for example the one presented in [17], because it requires the computation
of the derivative of the time series, and due to the large level of noise, this is not
possible. But by means of P(τ) we can distinguish PS from non-PS even in this
case (Fig. 10.10(c) and (d)): We obtain CPR = 0.0276 for the non-PS case and
CPR = 0.530 for the PS case.
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Fig. 10.8: Probabilities of recurrence for two coupled Rössler systems (Eqs. (10.1))
in PS (µ = 0.05) without noise (a) and with 80% Gaussian observational noise (b).
Bold line: subsystem 1, solid line: subsystem 2. Note that the position of the peaks
of P1(τ) and P2(τ) coincide in both cases, and hence the solid line is hidden by the
bold one.

Fig. 10.9: Probabilities of recurrence for two coupled Rössler systems (Eqs. (10.1))
in non-PS (µ = 0.02) without noise (a) and with 80% Gaussian observational
noise (b). Bold line: subsystem 1, solid line: subsystem 2.

10.3 Generalized Synchronization and Recurrence

In this section we treat the issue of synchronization of coupled systems which
are essentially different. This problem has been addressed first in [31, 32]. In this
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Tab. 10.1: Index CPR for PS calculated for two coupled Rössler systems (10.1) with
observational noise and without noise, for comparison.

µ CPR (80% noise) CPR (0% noise)

0.02 (non-PS) 0.149 0.115
0.05 (PS) 0.998 0.998

case, there is in general no trivial manifold in the phase space which attracts
the systems’ trajectories. It has been shown that these systems can synchronize
in a more general way, namely y = ψ(x), where ψ is a transformation which
maps asymptotically the trajectories of x into the ones of the attractor y. This
kind of synchronization is called generalized synchronization (GS). The proper-
ties of the function ψ depend on the features of the systems x and y, as well as
on the attraction properties of the synchronization manifold y = ψ(x) [33]. GS
has been demonstrated in laboratory experiments for electronic circuits and laser
systems [34–38] and has found applications for the the design of communication
devices [39–43] and model verification and parameter estimations from time se-
ries [44, 45].
Some statistical measures have been introduced for the detection of GS, such

as the method of mutual false nearest neighbors [31, 32] or variations of the
method proposed and analyzed in [46–48], which are based on the squared mean
distance and conditional distance between mutual nearest neighbors. Some other
methods are based on the mutual predictability to detect dynamical interdepen-
dence [49, 50]. There, the nearest neighbors of each subsystem are computed
separately in the respective (sub)state space.
In this section we present a criterion for the detection of GS, which exploits the

relationship between the geometric connection of both systems and their recur-
rences. The connection between recurrences and GS is even more straightforward
than the one between recurrences and PS. One can see that the concept of GS is
linked to the one of recurrence, considering the fact that when x(t) and y(t) are
in GS, two close states in the phase space of x correspond to two close states
in the space of y [31, 32]. Hence, the “neighborhood identity” in phase space
is preserved, i.e., they are topologically equivalent. Since the recurrence matrix
(Eq. (10.4)) is nothing else but a record of the neighborhood of each point of the
trajectory, one can conclude that two systems are in GS if their respective RPs are
almost identical. Note that it is possible, under some conditions, to reconstruct
the rank order of the time series considering only the information contained in
the RP [29]. Therefore, we can use the recurrence properties to detect and quan-
tify GS.
However, in practice we note that the recurrence matrices of two systems in

GS are very similar, but not identical. Several reasons can be given to explain
this observation: The finite ε-threshold, computational roundoff errors, measure-
ments inaccuracies, etc. Hence, we construct an index that quantifies the degree
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Fig. 10.10: (a,b) Segments of the x-components of the trajectories of two mutually
coupled Rössler systems in phase coherent regime (a = 0.16) strongly contami-
nated by colored noise. A realization of rt+1 = 0.99rt +10ηt and st+1 = 0.982st +ξt

were respectively added to each component of the Rössler systems. (a) non-PS
(µ = 0.02). (b) PS (µ = 0.05). (c) P(τ) for the two noisy Rössler for µ = 0.02

(non-PS), (d) P(τ) for the two noisy Rössler for µ = 0.05 (PS). Solid line: system 1,
dashed line: system 2.

of similarity between the respective recurrences of both systems. It compares the
recurrences of each point of the first system with the local recurrences of the
second system. This index has the advantage that it distinguishes rather well be-
tween non-PS, PS, and GS.
This index is based on the average probability of joint recurrence over time,

given by

RRx,y =
1

N2

N∑
i,j=1

Θ(εx − ‖xi − xj‖)Θ(εy − ‖yi − yj‖) . (10.9)

If both systems x and y are independent from each other, then the average prob-
ability of a joint recurrence3 is given by RRx,y = RRxRRy. If the oscillators are
on the other hand in GS, we expect an approximate identity of their respective
recurrences, and hence RRx,y = RRx = RRy [31, 32].
For the computation of the recurrence matrix in the case of essentially dif-

ferent systems that undergo GS, it is more appropriate to use a fixed number
of nearest neighbors for each column in the matrix, following the idea pre-
sented in [46–48], than using a fixed threshold. This means that the threshold
is different for each column in the RP, but subjected to the following condition∑N

j=1 Θ(εi −‖xi −xj‖) = A ∀i, where A is the fixed number of nearest neighbors.

3 Note that the average probability of a joint recurrence is the recurrence rate of the joint recurrence
plot (JRP) [51].
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We can automatically fix the RR by means of RR = AN/N2 = A/N, and using
the same A for each subsystem x and y, RRx = RRy = RR.
Hence, the coefficient S = RRx,y

RR is an index for GS that varies from RR to 1:
It is approximately RR for independent systems, and it is close to 1 for systems
in GS. However, with the index S we would not detect lag synchronization (LS)
(y(t+τ) = x(t)). Since LS can be considered as a special case of GS [52], it would
be desirable to have an index that also detects LS. For this reason, we include a
time lag τ in the similarity and introduce the following quotient:

S(τ) =
1/N2

∑N
i,j=1 Θ(εi

x − ‖xi − xj‖)Θ(εi
y − ‖yi+τ − yj+τ‖)

RR
, (10.10)

where the thresholds εi
x and εi

y fullfil the following conditions:
∑N

j=1 Θ(εi
x−‖xi−

xj‖) = A and
∑N

j=1 Θ(εi
y − ‖yi − yj‖) = A ∀i. Then, we choose the maximum

value of S(τ) and normalize

JPR = max
τ

S(τ) − RR
1 − RR

. (10.11)

We denote this index by JPR because it is based on the average joint probability
of recurrence. Since S(τ) varies between RR and 1, JPR ranges from 0 to 1. The
value of RR is a free parameter and its choice depends on the case under study.
We consider rather low values of RR, e.g., 1% or 2% as appropriate.

10.3.1 Examples of Application

In this section we show two examples of chaotic systems that undergo GS and
compute for them the recurrence-based index JPR (Eq. (10.11)).

1. First we consider a Lorenz system driven by a Rössler system. The equations
of the driving system are

ẋ1 = 2 + x1(x2 − 4)

ẋ2 = −x1 + x3

ẋ3 = x2 + 0.45x3 ,

(10.12)

and following are the equations of the driven system:

ẏ1 = −σ(y1 − y2)

ẏ2 = ru(t) − y2 − u(t)y3

ẏ3 = u(t)y2 − by3 ,

(10.13)

where u(t) = x1(t) + x2(t) + x3(t) and the parameters were chosen as follows:
σ = 10, r = 28, and b = 2.666. In [53] it was shown that the systems given by
Eqs. (10.12) and (10.13) are in GS, since the driven Lorenz system is asymptot-
ically stable.
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Fig. 10.11: Projection of the Rössler driving system (a), the driven Lorenz system (b)
and the diagram x2 versus y2 of Eqs. (10.12) and (10.13) (c).

To illustrate that they are completely different systems and that they are not
in LS or even complete synchronized, Fig. 10.11 shows the projections of the
system (Eqs. (10.12)) (a), of the system (Eqs. (10.13)) (b) and the x2 versus y2

diagram (c).

When dealing with experimental time series, usually only one observable of
the system is available. Hence, we perform the analysis with just one com-
ponent of each system to illustrate the applicability of the proposed method
(we use 10 000 data points with a sampling time interval of 0.02 s). In this ex-
ample, we take x3 and y3 as observables, respectively. Then, we reconstruct
the phase space vectors using delay coordinates [54]. For the subsystem x we
obtain the following embedding parameters [55]: delay time τ = 5 and embed-
ding dimension m = 3. For the subsystem y we find: τ = 5 and m = 7. The
corresponding RPs and JRP are represented in Fig. 10.12.

We see that despite of the essential difference between both subsystems, their
RPs are very similar (Fig. 10.12(a) and (b)). Therefore, the structures are re-
flected also in the JRP and consequently, its recurrence rate is rather high. In
this case, with the choice RR = 0.02 we obtain JPR = 0.605 (the value of JPR is
similar for other choices of RR).

In order to illustrate the second case, where both subsystems are independent
(Fig. 10.13), we compute the RP of the Rössler system (Eqs. (10.12)) and of
the independent Lorenz system,4 as well as their JRP (Fig. 10.14). Note that
the mean probability over time for a joint recurrence is very small, as the JRP
has almost no recurrence points. In this case, one obtains JPR = 0.047 using
embedding parameters τ = 5 and m = 3 for both systems, and RR = 0.02.

For σ = 10 and b = 8/3 they display chaotic behavior.

2. Two mutually coupled Rössler systems (Eqs. (10.1)): for the coupling strength
µ = 0.11 both oscillators are in LS, as can be seen from Fig. 10.15.

4 The Lorenz equations are given by ẋ = −σx+σy, ẏ = −xz+rx−y, ż = xy−bz. For σ = 10
and b = 8/3 they display chaotic behavior.
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Fig. 10.12: (a) RP of the Rössler subsystem (Eqs. (10.12)). (b) RP of the driven
Lorenz subsystem (Eqs. (10.13)). (c) JRP of whole system (Eqs. (10.12) and (10.13)).

Fig. 10.13: Projection of the Rössler system (Eqs. (10.12)) (a), the independent
Lorenz system (see footnote 4) (b) and the diagram x2 versus y2, where x2 is
the second component of the Rössler system and y2 is the second component of
the independent Lorenz system (c).

In this case, the RPs of both subsystems are obviously almost identical, except
for a displacement on τ in the diagonal direction. Computing the index fol-
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Fig. 10.14: (a) RP of the Rössler subsystem (Eqs. (10.12)). (b) RP of the independent
Lorenz system (see footnote 4) (c) JRP of whole system.

lowing Eq. (10.11), we obtain the value JPR = 0.988 (JPR in this case is not
exactly 1), because we do not have perfect LS, i.e., x(t + τ) � y(t) [52]). For a
smaller coupling strength µ = 0.02 the oscillators are not in LS anymore. The
obtained value in this is case JPR = 0.014.

10.4 Transitions to Synchronization

We have seen in the previous sections that the indices CPR and JPR clearly distin-
guish between oscillators in PS and oscillators which are not in PS, respectively of
GS. On the other hand, the synchronization indices should not only distinguish
between synchronized and nonsynchronized regimes, but also clearly indicate
the onset of PS, respectively of GS.
In order to demonstrate that the recurrence-based indices fulfill this condition,

we exemplify their application in the two cases: Two mutually coupled Rössler
systems in a phase coherent regime and in a non-phase-coherent funnel regime
(Eqs. (10.1)) with a = 0.16, respectively a = 0.2925). In both the cases we increase
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Fig. 10.15: Example of lag synchronization: It is clearly seen that x1 (bold line) goes
behind y1 (solid line). It holds: x1(t + τ) = y1(t), with τ = 4.

the coupling strength µ continuously and compute for each value of µ the indices
CPR and JPR.
On the other hand, in the phase coherent case for a not too large but fixed fre-

quency mismatch between both oscillators and increasing coupling strength, the
transitions to PS and LS are reflected by the Lyapunov spectrum [1–4].5 If both os-
cillators are not in PS, there are two zero Lyapunov exponents (λ3 and λ4), which
correspond to the (almost) independent phases. Increasing the coupling strength,
the fourth Lyapunov exponent λ4 becomes negative (Fig. 10.16(c)), indicating the
onset of PS. For higher coupling strengths, the second Lyapunov exponent λ2

crosses zero, which indicates the establishment of a strong correlation between
the amplitudes (Fig. 10.16(c)). This last transition occurs almost simultaneously
with the onset of LS [52]. Therefore, we compute for our two examples also λ2

and λ4 in order to validate the results obtained with CPR and JPR.
In Fig. 10.16 the indices CPR (a) and JPR (b) are represented for increasing

coupling strength µ for the phase coherent case. In (c) λ2 and λ4 are shown in
dependence on µ.
By means of CPR, the transition to PS is detected when CPR becomes of the

order of 1. We see from Fig. 10.16(a) that the transition to PS occurs at approx-
imately µ = 0.037, in accordance with the transition of the fourth Lyapunov
exponent λ4 to negative values. The index JPR shows three plateaus in depen-
dence on the coupling strength (Fig. 10.16(b)), indicating the onset of PS at the
beginning of the second one. On the other hand, JPR clearly indicates the onset

5 For other cases, e.g., for a fixed coupling strength and decreasing frequency mismatch, or for a
large frequency mismatch and increasing coupling strength, the transition to PS is not always
simply reflected in the Lyapunov spectrum [17, 51].
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Fig. 10.16: CPR index, JPR index and λ2 and λ4 as functions of the coupling
strength µ for two mutually coupled Rössler systems in phase coherent regime
(a,c,e) and in funnel one (b,d,f). The dotted zero line in (e) and (f) is plotted to
guide the eye. Here, we choose ε corresponding to 10% recurrence points in each
RP.

of LS because it becomes nearly one (third plateau) at approximately µ = 0.1

(Fig. 10.16(b)), after the transition from hyperchaoticity to chaoticity, which takes
place at approximately µ = 0.08 (Fig. 10.16(c)). Between µ = 0.08 and µ = 0.1,
the values of JPR have large fluctuations. This reflects the intermittent LS [1–4],
where LS is interrupted by intermittent bursts of no synchronization.
Now we regard the more complex case of two coupled Rössler systems in the

non-phase-coherent funnel regime, where the direct application of the Hilbert
transformation is not possible [17]. In Fig. 10.16 the coefficients CPR and JPR are
represented for this case in dependence on the coupling strength µ. Again, λ2

and λ4 are also shown (Fig. 10.16(f)).
First, note that for µ > 0.02, λ4 has already passed to negative values

(Fig. 10.16(f)). However, CPR is still rather low, indicating that both oscillators
are not in PS yet. CPR does not indicate PS until µ = 0.18 (Fig. 10.16(d)), as
found with other techniques [17]. Furthermore, we see from Fig. 10.16(f) that λ2

vanishes at µ ∼ 0.17. This transition indicates that the amplitudes of both oscil-
lators become highly correlated. At approximately the same coupling strength,
JPR reaches rather high values, indicating the transition to GS (Fig. 10.16(e)).
Then, according to the index CPR the transition to PS occurs after the onset of
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GS. This is a general result that holds for systems with a strong phase diffusion,
as reported in [17]. For highly non-phase-coherent systems, there is more than
one characteristic time scale. Hence, a rather high coupling strength is necessary
in order to obtain phase locking of both oscillators. Hence, PS is not possible
without a strong correlation in the amplitudes. PS for such non-phase-coherent
systems has been recently found and analyzed in electrochemical oscillators [56]
and in El Niño-Monsoon system [57].
Note that the synchronization indices presented in these sections based on

recurrences are applicable to multivariate time series.

10.5 Twin Surrogates to Test for PS

As we have mentioned in Section 10.1, another essential problem in the synchro-
nization analysis of observed time series is the construction of an appropriate
hypothesis test to test for PS. Several approaches in this direction have been pub-
lished [58, 59]. Usually, these are linear surrogates based on randomization of
the Fourier phases [60, 61]. They mimic the individual spectra of the two com-
ponents of the original bivariate series as well as their cross-spectrum, i.e., their
linear properties, but not the higher order moments. In this case, the correspond-
ing null hypothesis is that the putative synchronization in the underlying system
can be explained by a bivariate linear stochastic process. The specificity of this
test is not always satisfactory, because the concept of PS assumes the mutual
adaption of self-sustained oscillators, i.e., nonlinear deterministic systems. On
the other hand, pseudo-periodic surrogates (PPS) have been proposed to test the
null hypothesis that an observed time series is consistent with an uncorrelated
noise-driven periodic orbit [62]. The PPS are in a certain sense closer to the sur-
rogates needed to test for PS as they correspond to trajectories of a deterministic
system with noise, but they are still not appropriate to test for PS, as they are not
able to model chaotic oscillators. Therefore, we present a technique for the gen-
eration of surrogates which are consistent with the null hypothesis of a trajectory
of the same underlying system, but starting at different initial conditions [63].
Hence, they can also be used to test for PS in the case of chaotic oscillators.
The main idea consists in exchanging one original subsystem with one sur-

rogate. Then, if the synchronization index obtained for the original system is not
significantly different from the one computed for the exchanged subsystems, we
have no sufficient evidence to claim synchronization (see Fig. 10.17). One could
argue that the same can be achieved using different realizations of the same
process and exchanging the subsystems. However, there are cases where it is not
possible to measure several realizations, like, e.g., in geophysical systems.
The construction of the surrogates we present in this section is also based on

the recurrence matrix (10.4). It is important to note that if the recurrence matrix
is computed from a univariate time series, it contains all topological information
about the underlying attractor, which therefore can be reconstructed from it [29].
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Fig. 10.17: This diagram represents the main idea using twin surrogates to test
for PS.

Hence, a first idea for the generation of surrogates is to change the structures
in a RP consistently with the ones produced by the underlying dynamical system.
In this way one could reconstruct a new realization of the trajectory from the
modified Ri,j. However, one cannot arbitrarily interchange columns in an RP,
because such a modification changes the distribution of diagonal lines and hence
the entropy and predictability of the system [28].
Therefore, we propose a modified approach. In general, in an RP there are

identical columns, i.e., Rk,i = Rk,j ∀k [28]. Thus, there are points which are not
only neighbors (i.e., ‖xi − xj‖∞ < ε), but which also share the same neighbor-
hood. Reconstructing the attractor from an RP, the respective neighborhoods of
these points cannot help to distinguish them, i.e., from this point of view they
are identical. This is why we will call them twins. Twins are special points of the
time series as they are indistinguishable considering their neighborhoods but in
general different and hence, have different pasts and—more important—different
futures. The key idea of how to introduce the randomness needed for the gener-
ation of surrogates of a deterministic system is that one can jump randomly to
one of the possible futures of the existing twins.
A surrogate trajectory xs(i) of x(i) with i = 1, . . . , N is then generated in the

following way:

1. Identify all pairs of twins.

2. Choose an arbitrary starting point, say xs(1) = x(k).

3. If x(k) has no twin, the next point of the surrogate trajectory is xs(2) = x(k+1).

4. If x(k) has a twin, say x(m), then one can go to either x(k + 1) or to x(m + 1),
i.e., xs(2) = x(k + 1) or xs(2) = x(m + 1) with equal probability6.
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Steps three and four are then iterated until the surrogate time series has the same
length as the original one.
This algorithm creates twin surrogates (TS) which are shadows of a (typical)

trajectory of the system [64]. In the limit of an infinitely long original trajectory,
its surrogates are characterized by the same dynamical invariants and the same
attractor. However, if the measure of the attractor can be estimated from the ob-
served finite trajectory reasonably well, its surrogates share the same statistics.
Also their power spectra and correlation functions are consistent with the ones
of the original system. TS do not only seem to give reasonable results for deter-
ministic systems; the TS of for example an ARMA process also show the typical
behavior of a linear Gaussian process.
Next, we use the TS to test for PS. The idea behind this approach is simi-

lar to the one by means of “natural surrogates” in the mother–fetus heartbeat
synchronization [15]. Suppose that we have two coupled self-sustained oscilla-
tors x1(t) and x2(t). Then, we generate M TS of the joint system, i.e., xsi

1 (t)

and xsi

2 (t), with i = 1, . . . , M. These surrogates are independent copies of the
joint system, i.e., trajectories of the whole system beginning at different initial
conditions. Note that the coupling between x1(t) and x2(t) is also mimicked
by the surrogates. Next, we compute the differences between the phases of the
original system ∆Φ(t) = Φ1(t) − Φ2(t) applying, e.g., the analytical signal ap-
proach [1–4] and compare them with ∆Φsi (t) = Φ1(t)−Φsi

2 (t) (one can also con-
sider Φsi

1 (t) − Φ2(t)). Then, if ∆Φ(t) does not differ significantly from ∆Φsi(t)

with respect to some index for PS, the null hypothesis cannot be rejected and
hence, we do not have enough evidence to state PS.
As a test case, we consider two nonidentical, mutually coupled Rössler oscil-

lators

ẋ1,2 = −(1 ± ν)y1,2 − z1,2 + ε(x2,1 − x1,2),

ẏ1,2 = (1 ± ν)x1 + 0.15y1,2,

ż1,2 = 0.2 + z1,2 + z1,2(x1,2 − 10) ,

(10.14)

where ν = 0.015 denotes the frequency mismatch. In this “active experiment”, we
vary the coupling strength ε from 0 to 0.08 and compute a PS index for the orig-
inal trajectory for each value of ε. Next we generate 200 TS and compute the PS
index between the measured first oscillator and the surrogates of the second one.
As PS index we use the mean resultant length R of complex phase vectors [65, 66],
which is motivated by Kuramoto’s order parameter [67]

R =

∣
∣∣
∣
∣
1

N

N∑
t=1

exp
(
i∆Φ(t)

)
∣
∣∣
∣
∣
. (10.15)

It takes on values in the interval from 0 (non PS) to 1 (perfect PS) [65, 66]. Let Rsi

denote the PS index between the first oscillator and the surrogate i of the second
6 If triplets occur one proceeds analogously.
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one. To reject the null hypothesis at a significance value α, R must be larger
than (1 − α) · 100 percent of all Rsi . Note that this corresponds to computing the
significance level from the cumulative histogram at the level (1 − α).
Figure 10.18(a) shows the results for R of the original system (bold line) and

the 1% (solid) significance level. Figure 10.18(b) displays the difference between R

of the original system and the 1%, 2% and 5% significance level. For ε < 0.025, R
of the original system is, as expected, below the significance levels and hence the
difference is negative, and for higher values of ε the curves cross (the difference
becomes positive). This is in agreement with the criterion for PS via Lyapunov
exponents λi [1–4]: λ4 becomes negative at ε ∼ 0.028 (Fig. 10.18(b)), which ap-
proximately coincides with the intersection of the curve of R for the original
system and the significance level (zero-crossing of the curves in Fig. 10.18(b)).
Therefore, we recognize successfully the PS region by means of the TS.
Note that also the significance limit increases when the transition to PS occurs

(Fig. 10.18(a)). As the TS mimic both the linear and nonlinear characteristics of
the system, the surrogates of the second oscillator have in the PS region the same
mean frequency as the first original oscillator. Hence Rsi is rather high. However,
Φ1(t) and Φsi

2 (t) do not adapt to each other, as they are independent. Hence, the
value of R for the original system is significantly higher than the Rsi . We state
in conclusion that even though the obtained value for a normalized PS index
is higher than 0.97 (right side of Fig. 10.18(a)), this does not offer conclusive
evidence for PS. Hence, the knowledge of the PS index alone does not provide sufficient
evidence for PS. Note that the more phase coherent the oscillators are, the more
difficult it is to decide whether they are in PS or not. A certain phase diffusion,
which allows to measure the adaptation of the phases of the interacting oscillators
is necessary to detect PS. However, the test based on the TS reveals whether there
is enough evidence for PS.
Next, we perform an analysis of the specificity and sensitivity of the test

for ε = 0 and ν = 0. For 100 random initial conditions of the Rössler system
and a significance level of α = 1%, the null hypothesis was erroneously rejected
only in 1 out of the 100 cases. This is a rather auspicious result, as due to the
identical frequencies, it is extremely difficult to recognize that there is no PS in
this case [68]. In the case of ε = 0.02 (e.g., no PS) and ν = 0.015, there were
no erroneous rejections of the null hypothesis. Finally, for PS (ε = 0.045 and
ν = 0.015), in all 100 test runs the null hypothesis was correctly rejected. These
results indicate that the specificity and sensitivity of the test are good.

10.6 Application to Fixational Eye Movements

Next we apply the recurrence approach to check fixational movements of left and
right eyes for PS. During fixation of a stationary target our eyes perform small
involuntary and allegedly erratic movements to counteract retinal adaptation. If
these eye movements are experimentally suppressed, retinal adaptation to the
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Fig. 10.18: (a) R of the original two mutually coupled Rössler systems with a fre-
quency mismatch of ν = 0.015 (bold) and significance level of 1% (solid). (b) Dif-
ference between R of the original data and significance level of 1% (solid), 2%
(dashed) and 5% (dashed-dotted). The zero line is plotted (dotted) to guide the
eye. (c) Four largest Lyapunov exponents for the six-dimensional system consid-
ered. λ4 is highlighted and the arrow indicates the transition to PS.

constant input induces very rapid perceptual fading [69, 70]. Moreover, statistical
correlations show a timescale separation from persistence to antipersistence [71].
Persistence on the short timescale counteracts retinal fading, whereas antipersis-
tence on the long timescale contributes to stability of ocular disparity. According
to current textbook knowledge, the fixational movements of the left and right eyes
are correlated very poorly at best [72]. Therefore, it is highly desirable to exam-
ine these processes from a perspective of PS. We analyze the data of two subjects.
Each performed three trials, in which they fixated a small stimulus (black square
on a white background, 3× pixels on a computer display) with a spatial extent of
0.12°, or 7.2 arc ·min. Eye movements were recorded using an EyeLink-II system
(SR Research, Osgoode, Ontario, Canada) with a sampling rate of 500Hz and
an instrument spatial resolution less than 0.005°. Figure 10.19 shows a segment
of the horizontal (a) and vertical (b) component of the eye movements for one
person.
The data were first high-pass filtered applying a difference filter x̃(t) = x(t)−

x(t − τ) with τ = 40ms in order to eliminate the slow drift of the data. Af-
ter this filtering, we find an oscillatory trajectory, which has maximum spectral
power in the frequency range between 3 and 8Hz (Fig. 10.20(a) and (b)). How-
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Fig. 10.19: Simultaneous recording of left (bold) and right (solid) fixational eye
movements (a) horizontal component (b) vertical component.

Fig. 10.20: Filtered horizontal component of the left eye of one participant (a) and
its corresponding periodogram (b). In (c) the horizontal component of one surro-
gate of the left eye is represented and in (d) its corresponding periodogram.

ever, the trajectories of the eyes are rather noisy and non-phase-coherent. There-
fore, it is cumbersome to estimate the phase of these data. Hence we apply the
recurrence-based measure CPR introduced in Section 10.2 and we obtain the val-
ues displayed in the first column of Table 10.2. First, we observe that the variabil-
ity between the different trials is smaller for the first participant as for the second
one. Furthermore, the values of CPR are rather high for the first participant but
not so high for the second one. Hence, a hypothesis test should be performed in
order to get statistically significant results.
Therefore, we compute 200 twin surrogates of the left eye’s trajectory. In

Fig. 10.20(c) the horizontal component of one surrogate is represented. At a first
glance, the characteristics of the original time series are well reproduced by the
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Fig. 10.21: Result of the test performed for one trial of one participant. The PS
index for the original data (bold line) is significantly different from the one of the
surrogates (solid).

twin surrogate. In Fig. 10.20(d) the corresponding periodogram is displayed. It
is also noteworthy that the structure of the original curve (Fig. 10.20(b)) is also
qualitatively reproduced. The periodogram of the twin surrogate is of course not
identical with the one of the original time series. This is consistent with the null
hypothesis of another realization of the same underlying process, respectively
another trajectory starting at different initial conditions of the same underlying
dynamical system.
Now, we compute the recurrence-based synchronization index CPRsi between

the twin surrogates of the left eye and the measured right eye’s trajectory. In
Fig. 10.21 the results of the test of one trial are visualized.
The second column of Table 10.2 summarizes the results for both subjects and

all trials.
In all cases, the PS index of the original data is significantly different from the

ones of the surrogates, which strongly indicates that the concept of PS can be suc-
cessfully applied to study the interaction between the trajectories of the left and
right eyes during fixation. This result also suggests that the physiological mech-
anism in the brain that produces the fixational eye movements controls both eyes
simultaneously, i.e., there might be only one center in the brain that produces
the fixational movements in both eyes or a close link between two centers. Our
finding of PS between left and right eyes is in good agreement with current
knowledge of the physiology of the oculomotor circuitry. In a single-cell study,
66% of abducens motor neurons fired in relation to the movements of either eye,
while premotor neurons in the brainstem encode monocular movements [73].
Thus, motor neurons—as the final common pathway of neural control of eye
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Tab. 10.2: Results for the test for PS between the trajectories of the left and right
fixational eye movements performed for three trials for the two participants. Two
hundred surrogates were used for the test. The null hypothesis was rejected in all
cases at a 2% level.

Participant CPR of the original data Null hypothesis

M.R. 0.9112 Rejected
0.9432 Rejected
0.9264 Rejected

M.T. 0.6080 Rejected
0.4844 Rejected
0.3520 Rejected

movements—are candidates for the synchronization of left and right fixational
movements. Furthermore, we are interested in whether the fixational movements
in the horizontal and vertical direction of one eye are synchronized. Horizon-
tal and vertical saccadic eye movements are controlled in two spatially distinct
brainstem nuclei [74]. Therefore, we can expect that, on the level of fixational
eye movements, horizontal and vertical components are independent. Applying
the synchronization index CPR between the x- and y-component of the left eye of
each participant for each trial and generate 200 surrogates of the two-dimensional
trajectory of the left eye. Then we compare the synchronization index CPRsi be-
tween the original x-component and the y-component of the surrogates. We find
in all but one cases that CPR is not significantly different from CPRsi (see Ta-
ble 10.3). Hence, we do not have evidence to claim synchronization between the
horizontal and vertical components of the eye movements, as expected.

Tab. 10.3: Results for the test for PS between the horizontal and vertical compo-
nents of fixational movements of one eye performed for three trials for the two
participants. 200 surrogates were used for the test. In all cases but one, we failed
to reject the null hypothesis at a 2% level.

Participant CPR of the original data Null hypothesis

M.R. 0.3746 Not rejected
0.6103 Not rejected
0.4812 Rejected

M.T. 0.4681 Not rejected
0.3194 Not rejected
0.4172 Not rejected
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10.7 Conclusions

In conclusion, we have presented solutions to two main problems of the syn-
chronization analysis of measured time series: The detection of PS in non-phase-
coherent systems and the hypothesis test for PS, which is interesting especially
for passive experiments, where the coupling strength between the two subsys-
tems cannot be varied systematically.
We have given solutions to these two problems based on the concept of recur-

rence in phase space. First, we have shown that by means of the recurrence prop-
erties it is possible to detect indirectly PS even in the case of non-phase-coherent
and strong noisy time series. Furthermore, it is also possible to detect GS by
means of recurrences. Second, the method of twin surrogates has been presented,
which is also based on recurrence, and we have shown that it can be used to test
for PS.
We have used the well studied system of two mutually coupled Rössler oscil-

lators in order to validate the techniques proposed. Furthermore, we have tested
for PS in experiments of binocular fixational movements and found that the left
and right eyes are in PS, in agreement with physiological results about the func-
tional role of motor neurons in the final common pathway for the control of eye
movements. Hence, we have shown that the techniques proposed are also ap-
plicable to rather noisy observed time series.
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11 Detecting Coupling in the Presence of Noise
and Nonlinearity

Theoden I. Netoff, Thomas L. Carroll, Louis M. Pecora, and Steven J. Schiff

Establishing the presence of coupling and interaction in weakly coupled systems,
especially in the presence of noise and nonlinearity, is a difficult problem. In this
chapter, we explore different measures to detect a relationship between two sys-
tems. We compare the sensitivity of the different measures to stochastic coupled
systems, discontinuous chaotic systems and continuous chaotic systems. We then
test the robustness of the detection of coupling in the presence of additive noise.
In conclusion, we find that nonlinear methods are more sensitive to detecting
coupling under ideal conditions. However, in the presence of noise, linear tech-
niques are more robust.

11.1 Introduction

When are two or more dynamical systems coupled? Although this issue has
been extensively studied for linear systems [1–3], the interest in nonlinear dy-
namics and nonlinear (generalized) synchronization has renewed interest in this
issue in recent years [4–6]. Detecting coupling when the underlying equations
are unknown, and when an arbitrary amount of measurement or dynamical
noise is present is especially unclear [7]. Such is the problem when analyzing
data taken from neuronal systems, especially when coupling is weak and noise
is high. When detecting coupling between cells or cortical areas in nervous sys-
tems, the dynamics of spiking neurons and their synaptic connections are highly
nonlinear functions, in biological networks which seem built upon and appear to
require a certain level of noise to function properly. In this case, one never knows
the underlying equations or the complete network topology, and verification of
detected coupling is impossible.
Recent results have highlighted this issue for nonlinear and neuronal systems.

It has been shown that the application of certain nonlinear synchronization detec-
tion methods may give spurious results when applied to experimental neuronal
networks [8]. Furthermore, it has been shown that linear methods may clearly
outperform a sensitive nonlinear measure when faced with additive noise for
coupled nonlinear systems [7].

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We will compare how linear and nonlinear methods succeed at detecting cou-
pling under various conditions in known numerical and experimental nonlinear
systems with known levels of coupling. We will first test whether various lin-
ear and nonlinear methods, described in Section 11.2, can detect the absence of
coupling for known uncoupled systems, described in Section 11.3. This is done
by quantifying the false positive detection of coupling in such uncoupled sys-
tems in Section 11.4. We then compare these methods on linear and nonlinear
systems with known levels of coupling and additive noise in Section 11.5, lastly
examining these methods on a known set of coupled nonlinear circuits in Sec-
tion 11.5.4. We offer our conclusions that faced with unknown levels of noise and
nonlinearity, in systems where the coupling may be manifest through a variety
of dynamical expressions, no solitary linear or nonlinear approach can be relied
upon to adequately detect subtle coupling, and that linear methods should al-
ways be included in such analysis.

11.2 Methods of Detecting Coupling

Cross-correlation (CC), mutual information (MI), mutual information in two di-
mensions (MI2D), phase correlation (PC), and continuity measure (CM) will be
employed on linear and nonlinear data sets.

11.2.1 Cross-Correlation

Cross-correlation is a linear test that measures the significance of the linear cor-
relation between two data sets. It has several advantages: it is a global measure
(using all the points in the time series), its statistics are well understood and it is
computationally efficient.
Cross-correlation between two channels was calculated as

CC1,2(τ) =
1

σ1σ2(N − 2τ)

N∑
t=τ

(X1(t) − µ1)(X2(t − τ) − µ2), (11.1)

where X1(t) and X2(t) are the two time series of length N, with sample means µ1

and µ2, sample standard deviations σ1 and σ2, and time lag τ. It is well known
that any finite length set of uncorrelated time series, whose spectra are not both
white noise, will have a finite value of cross-correlation which is of course spuri-
ous [2, 9]. To compensate for this, we employ an estimator of the expected cross-
correlation for uncoupled linear stochastic time series with finite auto-correlation
as developed by Bartlett [2, 9]. The expected variance of the CC at a given lag l is

var(l) =
1

(n − l)

n∑
τ=−n

CC1,1(τ)CC2,2(τ), (11.2)

where CCi,i is the auto-correlation value of channel i at lag τ. For a given lag,
τ, CC1,2(τ) values were considered significant if they were greater than a signif-
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icance limit set so that false positives will occur only 5% of the time. Because
multiple time lags are employed, one must compensate for the multiple compar-
isons tested for significance. We assume that the distribution of CC1,2(τ) values
are normal with a standard deviation estimated using the Bartlett estimator. We
then set the significance level at 1.96 times the standard deviation at τ = 0 and
expect 5% false positives for each time lag. But, the correlation is measured at k
lags and it is necessary to correct for multiple measures. Therefore, we use the
Bonferroni correction to set the probability of the false detection for each lag, pi,
so that the total probability, pt =

∏k
i=1 pi, and therefore pi � 1 − (1 − pt)/k for

small (1 − pt). If we set pt = 0.95 over ±20 lags, for a total of 41 lags, including
the zero lag, then pi = 0.9988. For a normal distribution this results in a signif-
icance cutoff at 3.0 times the expected standard deviation for a two sided t-test
(and 2.8 for a one sided t-test). However, there is an expected auto-correlation
of the auto-correlation functions (see [2]), this allows for a more sophisticated
compensation for multiple comparisons. This significance cutoff works well for
weak correaltions. For strongly coupled data sets, the significance cutoff can
become larger than one because the distribution of correlation values are lim-
ited to the range of −1 to 1 and the distribution is related to a normal distri-
bution through a tanh function [10]. In this case we use a significance cutoff
of tanh(3.0 atanh(

√
var(l))).

11.2.2 Mutual Information

Mutual information (MI) is a nonlinear measure. It is a measure of how much
information can be known about time series Y by knowing the distribution of
time series X. The information capacity, I, of a single trace, X(t), is

IX = −

N∑
i=1

PX(i) log2 PX(i), (11.3)

where N bins were used to partition the data, and PX(i) is the probability that
the voltage values of time series X will fall within bin i [11]. The MI from two
channels can be calculated as

MIX,Y = −
∑

i

∑
j

PX,Y(i, j) log2

PX,Y(i, j)

PX(i)PY(j)
. (11.4)

This measure of MI is an estimate that must be less than the true amount of infor-
mation in the system. This systematic bias can be compensated for by estimating
the errors introduced by the partitioning into bins. The corrected MI is as follows

MI∞
X,Y

=MIX,Y +
BX + BY − BXY − 1

2N
, (11.5)

where BX, BY , BX,Y are the number of bins that have points in them for the X data
set, Y data set and the combined data set respectively, and N is the number of
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points in each time series [12]. Because we lack an analytic method of establish-
ing confidence limits for false positive MI values in uncoupled systems, we will
employ a bootstrap statistic. Mutual information at short lags (< 100ms) were
compared to mutual information calculated between the channels with randomly
selected lags. These shift surrogate data sets were generated by time shifting one
data set relative to the other, and wrapping the extra values to the beginning of
each data set. Shift surrogates have an advantage in that they preserve the statis-
tical structure of the original time series, but destroy the short-term correlations
between them. MI was tested at 20 positive and negative time shift lags for a total
of 41 lags. Each lag was chosen randomly with the restriction that time shifts be
longer than four seconds. We considered the MI detected between the two chan-
nels significant if the value was greater than 2.8 standard deviations (one-sided
t-test) from the mean calculated using 20 shift surrogates.

11.2.3 Mutual Information in Two Dimensions

In multivariate time series from unknown experimental systems, the systems may
be higher dimensional and the interactions between them may occur in higher
dimensions. Mutual information can be calculated in more than one dimension.
If two data sets are each multivariate in two dimensions, or have been embedded
in two dimensions by time delay embedding [13, 14], the MI of the combined sys-
tem must be calculated in higher dimensions. If the systems and their coupling
are nonlinear, then MI in higher dimension may reveal the coupling with more
sensitivity than the standard univariate approach. While embedding in higher
dimensions allows for more complex interactions, it requires more data to fill out
the state space to achieve the same level of accuracy. Mutual Information in two
dimensions (MI2D) is calculated as

MIXi,j,Yk,l
= −

∑
i,j,k,l

PX,Y(i, j, k, l) log2

PX,Y(i, j, k, l)

PX(i, j)PY(k, l)
. (11.6)

For time delay embedding, delays were chosen based on the decay of mutual in-
formation between a signal and a time shifted version of itself [15]. As with MI,
highest significance of the 41 time lags, compared to mean and standard devi-
ation determined using shift surrogates, was used. Significance cutoff was set
at 2.8 standard deviations from the mean of the surrogates for a one sided t-test.

11.2.4 Phase Correlation

Similar to CC where correlation between amplitudes are measured, phase corre-
lation (PC) measures the correlation between phases. A growing body of work
suggests that PC can detect weak correlations that occur in simultaneous phase
shifts of two data sets. This method may be sensitive to detecting coupling in
nonlinear systems including neuronal systems where methods that depend on
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the amplitude may fail [16, 17]. One way to assign a phase to a univariate sig-
nal X(t) is to employ the Hilbert transform

H(t) =
1

π

∫∞
−∞

X(τ)

τ − t
dτ , (11.7)

where the Cauchy principal value of the integral is used. In practice, for discrete
signals, one uses H(t) = Im[2

∫∞
0 X(f)ei2πωt df], where X(f) is the Fourier trans-

form of X(t), and ω is frequency [3].
The data can be expressed as a Gabor analytic signal of vectors X(t) + iH(t).

Amplitude A(t) and phase φ(t) can be measured at each time step as A(t) =

|X(t) + iH(t)|, where |.| indicates absolute value, and phase φ(t) = arctan
(

H(t)
X(t)

)

[3]. To quantify phase correlation, mutual information was calculated between
the phase angles of the two data sets

MIX,Y = −
∑
i,j

P(φX
i , φY

j ) log2

P(φX
i , φY

j )

P(φX
i )P(φY

j )

where P(φX
i , φY

j ) is the joint probability that signal X has the phase angle φX
i

while signal Y has the phase angle φY
j , at times i, j. Similarly, one time series

can be time shifted, and a surrogate phase correlation calculated. The phase cor-
relation between the data sets will be considered significant if the MI for the
unshifted phase angles is greater than 2.8 standard deviations from the mean,
calculated from 20 surrogates.
To visually display phase differences between channels X and Y, histograms

of phase difference

pX,Y
φi,j

= p(mod(φX
i − φY

j , 2π)), (11.8)

were calculated modulus 2π . If the signals are uncoupled, such histograms will
be flat from uniformly random associations of phase, and if coupled, such his-
tograms will be peaked.

11.2.5 Continuity Measure

The continuity measure (CM) is a method for detecting a functional relationship
between two systems. This is done by testing for continuity of mapping between
neighboring points in one data set to their corresponding points in the other data
set. One advantage of CM is that it makes no distributional assumptions of the
data, and another is that we have developed an analytical derivation of signif-
icance [7]. CM can also be used to infer directionality of a connection. A drive
system has no information about a unidirectionally driven response system, but
the responding system, having input from the drive, can predict the activity of
the drive system. This method is outlined in detail elsewhere [7].
Briefly, data set X is time delay embedded in N dimensions. A fiduciary point

is selected at random at time τ, X(τ), and a number of neighboring points nδ
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within a small region δ are found. Around the fiduciary point’s time correspond-
ing point, Y(τ), in the second data set, we select nε neighbors within a small
region ε. Of the nδ neighbors about X(τ), we find how many were amongst the
ε neighbors about Y(τ). This is illustrated using coupled Hénon maps in Fig. 11.1.
By using the hypergeometric function (for selection without replacement), it can
be calculated how many nδ points need to map into ε to be significantly greater
than random. Repeating this calculation for all fiduciary points, the number of
points that reach significance is counted. The binomial theorem is then employed
to assess whether more points around each fiduciary mapped than expected by
chance, and a global estimate of continuity significance is obtained. Because the
quality of the mapping depends on the magnitude of the noise relative to the
magnitude of the dynamics, the mapping is dependent on the size of δ and ε,
and we test the global mapping for a range of δ and ε values, excluding δ > ε.
We will use 36 tests of continuity using different δ, ε pairs in each direction for a
total of 72 tests. Because there are multiple tests, we use the Bonferroni correction
to adjust the significance level. Therefore, we set the limit at 1 − (1 − 0.95)/72, so
that only 5% of the time will any of the 72 tests reach significance.

11.3 Linear and Nonlinear Systems

11.3.1 Gaussian Distributed White Noise

The simplest model of the data is to assume they are independent and completely
stochastic processes. Two Gaussian distributed, white noise (with a uniformly flat
spectrum and no correlations in time), random data sets were generated using
the random number generator from Matlab (Mathworks, Natick, MA).

11.3.2 Autoregressive Model

In Gaussian white noise, there is no functional relationship between the neigh-
boring points in time. To introduce some correlation in the data, and a way to
couple them together, we use a second-order autoregressive model [2] to gener-
ate random time series with finite autocorrelation

X1(t) = A1X1(t − 1) + B1X1(t − 2) + αξ1 (11.9)

X2(t) = A2X2(t − 1) + B2X1(t − 2) + αξ2 + C (X2(t − 1) − X1(t − 1))

(11.10)

where the ξi are uniformly distributed random numbers. The coefficients B1

and B2 were set equal to −0.99. Because it is very difficult on short time scales to
distinguish coupling from the null hypothesis for processes that have the exact
same frequency, we frequency shift one of the time series. This allows the two
time series to decorrelate over time if they are uncoupled. To give the two time
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Fig. 11.1: Continuity method demonstrated on unidirectionally coupled Hénon
maps. The top two rows show time series from each Hénon map. Equations are
given in Section 11.3.3. In the middle panel is plotted the delay embedding of the
driver and response system. A fiduciary point is selected in one time series and
the nδ nearest neighbors selected. Their corresponding time points in the other
system are indicated with darker circles. The region ε around the fiduciary point’s
corresponding time point is indicated. The number of points that map from δ

into ε are counted. The calculated probability of mapping about the fiduciary
points geometrically averaged and plotted for varying δ and ε sizes is shown in
the bottom panel. Note that, as expected, significance was found mapping from
response to driver but not vice versa in this unidirectionally coupled system.

series slightly different frequencies we set A1 = 1.95 and A2 = 1.96. Unidirec-
tional coupling from the first processes to the second is set through the term with
coefficient C.
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11.3.3 Hénon Map

The autoregressive model is a linear stochastic system. In contrast, we will next
use coupled nonlinear deterministic systems that are not smooth in time − cou-
pled Hénon maps [18]. Hénon maps are chaotic in suitable parameter regimes,
giving them very complex time series. Plotting the time sequence of a variable
from coupled systems like these can look very similar to nonuniformly distrib-
uted noise. By plotting one time series against itself delayed by a time step reveals
very precise and deterministic behavior. The Hénon maps were iterated from one
time step to the next using the following equation [19]:

X(t + 1) = 1.4 − X(t)2 + A1X(t − 1) (11.11)

Y(t + 1) = 1.4 − (CX(t) + (1 − C)Y(t))Y(t) + A2Y(t − 1) . (11.12)

The value 1.4 sets the dynamics of the isolated equations within the chaotic re-
gime. The variable C adjusts the unidirectional coupling strength between the
first and second map. The coefficients A1 and A2 were set to 0.3.
The nervous system is highly nonlinear and complex, but it also contains a

stochastic element due to fluctuations of ions, the probabilistic release of neu-
rotransmitter, branch point conductance failure, and the intrinsically stochastic
nature of voltage and chemically activated membrane channels. To determine
the effect of noise on the detection of synchrony, noise was added to the mea-
sured values. Normally distributed noise was added to the variables X and Y

with standard deviations of 0, 0.125, 0.25, and 0.5 times the standard deviation
of X.

11.3.4 Rössler Attractor

Coupled Rössler systems [5] were used as an example of a system with contin-
uous but chaotic variables. This system is integrated in time rather than iterated
like the map. The differential equations are described as follows, distinguishing
the two systems by their subscript, 1 or 2

dX1/dt = (−Y1 − Z1)S(r1, s) + ρξ1(t)
√
dt (11.13)

dX2/dt = (−Y2 − Z2 − C(X2 − Y1))S(r2, s) + ρξ1(t)
√
dt (11.14)

dY1,2/dt = (X1,2 + 0.2Y1,2)S(r1,2, s) + ρξ1,2(t)
√
dt (11.15)

dZ1,2/dt = (0.2 + Z1,2(X1,2 − µ1,2))S(r1,2, s) + ρξ1,2(t)
√
dt . (11.16)

The coefficients µ1 = 5.7 and µ2 = 6.5 were set so that both the driving and re-
sponse attractors were chaotic. C is the coupling strength between the Y variable
of the drive attractor to the X variable of the slave attractor, so that they only syn-
chronize out of phase with each other. Because these Rössler systems can be close
to periodic, we increased the diffusion rate between the two attractors through a
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Fig. 11.2: Circuit diagram of coupled scroll attractor circuits.

function S(r, s) = s(r2 − r̄2), where r =
√

X2
i + Y2

i is the distance from the center
of the attractor and r is the average radius of the attractor and s scales the ampli-
tude of the oscillations. S(r, s) therefore changes the rotation rate as a function of
radius, which increases the diffusion rate between two uncoupled attractors.
Dynamical noise was added by adding independent noise ξ1,2(t) to the each

term of the equations. We used uniformly distributed noise with range from −ρ to
ρ so that the system would not become unstable with a large perturbation. Each
noise step was scaled by the square root of the integration time step, so that noise
amplitude would be independent of time step size. The attractors were integrated
with a time step of 0.01 using a fourth-order Runge–Kutta integrator, and sam-
pled at every 10th time step [20].

11.3.5 Circuit Data

To experimentally reflect measurement noise in the setting of coupled nonlinear
systems, two electronic circuits that produce activity similar to Rössler attractors
were coupled using resistors of different magnitude (R, Fig. 11.2). These circuits
are described in further detail in [21]. Four voltage measurements were recorded,
two from each circuit. A selection of 65 536 points from the first channel of each
data set were chosen for analysis, corresponding to roughly 3 500 rotations. Cir-
cuit data were digitized and stored on computer.

11.4 Uncoupled Systems

Detecting coupling implies that we reject the null hypothesis that the systems
are uncoupled. So we begin with a simple question—can each method detect
the uncoupled state when confidence limits are applied? In Fig. 11.3, we display



274 11 Detecting Coupling in the Presence of Noise and Nonlinearity

time series from five uncoupled data sets: Gaussian distributed random data,
AR models, Hénon attractors, Rössler attractors, and uncoupled circuit data.
For each data set CC, MI, and MI2D were measured at ±20 time lags, for a

total of 41 lags including the zero lag. The largest value from all the lags for each
trial was plotted with significance limit in each panel. CC values were normal-
ized by three times the Bartlett estimate so that the significance level of the line
shown is one. MI values were divided by the mean of 20 surrogates and nor-
malized by the standard deviation of the surrogates to provide (with significance
level set at 2.8 standard deviations) the value at which only one of the 41 lags
should reach significance 5% of the time. For phase correlation, information was
used as a measure of the nonuniformity of the phase difference histogram. Re-
sults for phase correlation were compared to mean and standard deviation of 20
surrogates. To achieve a 95% significance limit using a one-sided t-test, the limit
was set to 1.65 SD above the surrogate mean for the univariate comparisons.
For continuity, we measure continuity between the two data sets for eight sizes
of δ and ε in each domain and range for a total of 72 tests. Therefore, using
the Bonferroni correction for multiple samples, we set the significance cutoff to
be 1 − (1 − 0.95)/72 = 0.9993.
For delay embedded measures (MI2D and CM) each point is expressed as

a vector X(t) = (X(t), X(t − τ)). We used the time lag τ at which the mutual
information is 1/e (i.e., 0.37) the maximum MI. Values of τ are indicated in the
caption of Fig. 11.3.

11.4.1 Correlation Between Gaussian Distributed Random Data
Sets

The simplest model of data is that each trace is completely uncorrelated in time.
In the first column of Fig. 11.3, we show excerpts from two random time series
with Gaussian distribution. We then plot the first trace against itself, in a delay
embedding, which reveals no structure between the current point and a previ-
ous point in time. CC at varying lags shows points that cross the significance
lines approximately 5% of the time, as expected. The Bartlett estimate, used to
establish the significance limits, uses the frequency content shared by both traces
to calculate the expected amount of cross-correlation under the null hypothesis
that they are unconnected. MI, MI2D, and PC also only rarely touch the signif-
icance lines with respect to the surrogate data distribution. CM does not show
any significant continuity at any group size, and grids of blank CM measures are
omitted from this figure.

11.4.2 Correlation Between Uncoupled AR Models

The uncoupled AR models are two stochastic processes filtered with slightly dif-
ferent frequency filters. Unlike the Gaussian distributed white noise, such finite
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time series appear correlated in time due to their intrinsic auto-correlation. By
plotting one system against the other, in the third row, we see ellipses. However,
the history of the system cannot yield predictive value beyond the correlation
time, determined by the spectral content of the time series. When systems like
these, in the uncoupled state, are closely matched in frequency, the amount of
spurious cross-correlation increases as the length of the sampled data decreases.
The results for MI show crossings of the significance line, but they are outside of
the range of lags used to identify correlation (indicated by the dark bar on the
significance line). Were more lags used to include these crossings, it would be
necessary to raise the significance limit to account for the increased number of
lags. Increasing the range of lags used will also decrease the power of the test
(the ability to detect correlation when the systems are actually coupled) by in-
creasing the rate of false negatives. All the other tests, MI2D, PC, and CM (data
not shown) confirm that these data sets are uncoupled.

11.4.3 Correlation Between Uncoupled Hénon Maps

In the third column of Fig. 11.3 results are shown from two time series from
the uncoupled Hénon map. Because the Hénon map is iterated through a map,
it produces points that have very little correlation in time. However, because
this system is deterministic, nearby points in the same state space can be used
to predict the future behavior of the system. The chaotic nature of the Hénon
map causes nearby trajectories to diverge, which confines prediction to only local
behavior. The chaotic and highly structured nature of this system is demonstrated
in the delay embedding plotted on the third row. Testing for coupling between
the two uncoupled systems shows no significance with any method.

11.4.4 Correlation Between Uncoupled Rössler Attractors

The Rössler system has both the smooth trajectory, as seen in the AR models,
and the deterministic behavior of the Hénon map. Delay embedding of one of
the data sets demonstrates their complex yet highly structured nature. When
weakly coupled, plotting one system against the other produces similarly com-
plex relationships (not shown). For the uncoupled Rössler data, no significant
correlation was detected with any method.

11.4.5 Uncoupled Electrical Systems

The uncoupled electrical circuit demonstrates several real-world problems. The
data sets are short and have measurement noise. Nevertheless, the uncoupled
circuit data reveal that no significant correlation is detected with any method.
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Fig. 11.3: Five different pairs of independent data sets from (in columns from left
to right): Gaussian distributed white noise (GWN), autoregressive (AR) model,
Hénon map, Rössler attractor, and electrical circuit. Samples of raw data are pro-
vided in the top two rows, and in the third row is a time delay embedding plot for
one of the data sets, where measurement at time t is plotted against the measure-
ment at time t − τ (τ = 1 for noise and the Hénon map, τ = 10 for the AR model,
τ = 7 for the Rössler attractor, and τ = 6 for the circuit data). Below is plotted
results from 100 lags using cross-correlation (CC), mutual information (MI), and
mutual information in two dimensions (MI2D). Significance is only tested in the
range of ±20 lags, indicated by the solid portion of the significance line. Signifi-
cance limits were set for CC using Bartlett’s estimator (three standard deviations
shown, calculated at 5% limit for 41 lags and a two sided t-test), for MI 2.8 stan-
dard deviations (for 5% limit of 41 lags and a one-sided t-test) from the mean
of shift surrogate data, and MI2D at 2.8 standard deviations from the mean of
shift surrogate data (same as MI significance limits). In the bottom row, the his-
togram of phase differences used to calculate the phase correlation (PC) is plotted.
Significance for PC was calculated by measuring the information content of the
histogram and comparing it to the information distribution calculated from 20

shift surrogates (significance is not shown in this graph). Continuity (CM) was
also measured, but data were not shown because no plots indicated significant re-
sults for any of these uncoupled data sets.
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11.5 Weakly Coupled Systems

In this section, the sensitivity thresholds of different methods are tested on known
levels of weak coupling in different models. The robustness of the methods to
noise is also tested. Results are plotted in Fig. 11.4.
For each data set CC, MI, and MI2D were measured at ±20 time lags, for a

total of 41 lags, including the zero lag. The largest value across the lags for each
trial was used to test for significance. For each test, ten different data sets were
generated and results averaged. Because results for the CM are log normally
distributed, the geometric mean across trials is plotted. Otherwise, statistics are
the same as in the uncoupled conditions described earlier.

11.5.1 Coupled AR Models

The AR equations are linear stochastic systems. They were coupled for a range
of coupling strengths. For the AR model τ = 10 was used. CC was the most
sensitive test for detecting coupling in this system. MI, MI2D, and PC did poorly
by comparison. Continuity performs poorly for coupled AR systems. This is be-
cause the dynamics of the system are stochastic and not deterministic, therefore
the continuity between the systems is expected to be poor.

11.5.2 Coupled Hénon Maps

For coupled identical Hénon maps, CM was by far the most sensitive test for
the noise free condition. Unexpectedly, even though there was very little auto-
correlation in time within each signal, CC was quite effective in detecting weak
coupling between the two maps. Additive measurement noise, with Gaussian
distribution and standard deviation 0.125, 0.25, and 0.5, was added to the Hénon
data. With the introduction of noise into this system, CC and MI2D appeared
to be the most robust tools for detecting weak coupling in the presence of noise,
while the performance of MI and CM rapidly degraded. Similar qualitative effects
from introducing dynamical noise (< 0.125 SD to maintain system stability) were
noted but not shown in the figure. In the presence of noise, linear CC was the
most sensitive detector of coupling in this nonlinear map system.

11.5.3 Weakly Coupled Rössler Attractors

For coupled Rössler systems, MI, both in 1D and 2D, appeared to be the most
robust methods at detecting coupling. Although CC cannot take advantage of
the highly complex nature of the interaction, it was very effective at detecting
such coupling, although not as robust as MI and MI2D. Dynamical noise, with
Gaussian distribution and standard deviation 0.0125, 0.025, and 0.05, was added
to the equations. Unlike in the Hénon map, the addition of large amounts of noise
to the dynamical system made this system unstable. The small amounts of noise
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that did not create instability did not result in a substantial loss of sensitivity
for CM measure. Similar qualitative effects from introducing dynamical noise
(< 0.125 SD to maintain system stability) was noted but not shown in the figure.
Surprisingly, we found that additive noise (data not shown) and dynamical noise,
up to the level that it created instability, did not effect the ability of the methods
to detect coupling (as seen by the similarity of the curves). This may be due to
the smoothness of the data caused by oversampling in time.

11.5.4 Experimental Electrical Nonlinear Coupled Circuit

When real systems are encountered, it is almost always the case that the equations
specifying the dynamics of the system are unknown, and the coupling strength
is determined through experimental measures. Here, we provide an examina-
tion of an experimental nonlinear system where the full specification of the dy-
namics and coupling is available. We chose seven levels of coupling strengths
by changing resistors connecting the circuits. The data sets were collected and
coded so that they were analyzed blindly with respect to knowledge of the cou-
pling strengths, and only afterward identified and compared.
CC was an inconsistent detector of coupling in this circuit for short data sets

with similar frequencies. Significant results are shown for 10kΩ, 400kΩ, and
1.0MΩ resistances. One reason for this poor performance of CC is caused by the
similarities of the frequencies from these circuits, which was resistor dependent.
For this low noise system, MI and MI2D found significant coupling at all levels of
coupling. PC suffered from the same problems that cross-correlation suffered, we
suspect because the systems had such similar frequencies that even the surrogates
showed strong correlation. It appears that as the systems becamemore uncoupled
and the phases could shift more, PC method became more sensitive. In contrast,
CM showed strong coupling strength dependency for stronger coupling, yet, as
resistance increased, the value of CM became lost in the measurement noise.

11.6 Conclusions

In conclusion, it was found that nonlinear methods are indeed very sensitive for
detecting complex correlations between nonlinear systems, in noiseless systems.
However, because methods such as continuity and mutual information section
state spaces into discrete sizes, noise on the order of the sectioning results in a
great loss of sensitivity. Global methods, such as cross-correlation, are much more
robust to noise. In coupled stochastic systems, the continuity method is insensi-
tive to detecting correlations because historical repeats of a particular activity do
not improve the ability to predict the future trajectory of a trace.
Although all methods are subject to false positives in uncoupled data, the

use of appropriate confidence limits and corrections for multiple comparisons
reduces false positive rates to a minimum.
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Fig. 11.4:Weak correlations within weakly coupled AR, Hénon, and Rössler equa-
tions and Electrical Circuit. In all panels, increased coupling is plotted from left
to right and all points above the solid lines are significant. Additive noise is
in the Hénon map and dynamical noise (1/10 the amplitude) are indicated by
indicated markers. CC results in the top row show maximum cross-correlation
for all lags normalized by three standard deviations (for 41 lags, and two sided
t-test significance cutoff at 5%) calculated by the Bartlett estimator at different
coupling strengths. All points above the heavy line at are considered signifi-
cant. MI results in the second row showing mutual information at maximum
of 41 lags normalized by standard deviation of 20 shift surrogates, plotting val-
ues as t =

MIdata−<MIsurrogates>
STD(MIsurrogates)

. All points above the heavy line at 2.8 are considered
significant at 5% for a one-sided t-test. Third row, mutual information calculated
in two dimensions at different coupling strengths, all points above the heavy line
at 2.8 are considered significant for 41 lags at 5% for a one sided t-test. Fourth row,
phase correlation results, maximum information of the phase difference histogram
measured in standard deviations calculated using 20 shift surrogates, significance
level for one lag is at 5% for single sided t-test is 1.64. Bottom row, results from
continuity reported in 1/p, where p is the smallest probability from all measured
mappings at various sizes of δ and ε. Significance limit set at results from continu-
ity measured at different coupling strengths. The maximum continuity measured
is for eight δ and ε sizes ranging from eight to 256 points. The significance line
is set at 1/0.9993, the value of which the maximum value for all δ and ε sizes is
only expected to reach 5% of the time for uncoupled systems. Values above the
line indicates significant continuity.
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Detecting correlations between systems that are broadband with short auto-
correlations is straightforward. When systems have similar frequencies and long
auto-correlations it becomes difficult to distinguish coupling from systems that
take a very long time to diverge in time. This can result in false negatives.
For smooth systems, like the Rössler attractor, we found that dynamical noise,

up to the point of causing instability, (results shown) and additive noise (results
not shown), had little effect on sensitivity of all the methods used in detecting
coupling. Qualitatively, oversampling renders the detection of correlation fairly
robust to noise.

11.7 Discussion

We compared the performance of linear and nonlinear methods of coupling de-
tection on known numerical and experimental data. Although it seems natural to
assume that nonlinear methods would generically be more suitable for coupling
detection in nonlinear systems, especially for map data, this may not be true in
practice. Indeed, the primary conclusion that we would stress is that when the
level of coupling needs to be measured from a system whose degree of nonlin-
earity, noise, and coupling nature is unspecified, the most plausible approach
would be to probe for coupling employing a variety of independent methods as
presented here.
Defining significance cutoffs is a difficult part of determining coupling. Al-

though there are some analytical methods of estimating the degree of apparent
coupling for uncoupled linear [9] or nonlinear [7] systems, for many methods
there is much value in being able to test the measure on the uncoupled state.
Ideally data should be taken to test this null hypothesis, since this will detect
fundamental problems with the data acquisition or analysis. In many cases, un-
coupling two data sets may not be possible; a good alternative is to test correla-
tions taken from separate recordings under identical recording conditions. If this
is not possible, then a time shifted surrogate of the two data sets can be used. We
recommend not only testing that the null hypothesis is correctly identified, but
also that the false positive rate occurs at the rate expected.
A single positive or negative result should never be considered conclusive in

isolation − there seems much value in demonstrating the reproducibility of such
measurements, and further in the the use of independent strategies to confirm
the validity of coupling. In contrast, it should also be cautioned that the failure
of a single method in detecting coupling is not evidence that the systems are not
connected, but rather that the method was unable to detect connectivity. Ideally,
failure of one method and success of another should help characterize the nature
of the coupling. Unfortunately, our ability to handle conflicting results from these
different coupling tests remains incomplete.
To analytically determine significance limits, two approaches were used: Bart-

lett’s estimator [2, 9] and the CM confidence limit, introduced elsewhere [7]. Un-
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fortunately, the simple form of Bartlett’s estimator is problematic. It is a long-lag
estimator, whose inaccuracy increases as the length of the data set decreases, the
similarity of frequencies increases, the ratio of fundamental frequency to data set
length decreases, and degree of irrationality in the relationship between funda-
mental frequencies from different data sets decreases. A more complex form of
this cross-correlation expectation can be found in the discussion in [22]. Although
we have refined an analytical approach to CM detection, this method relies on
an accurate state space reconstruction, and is extremely sensitive to noise and
nonstationarity [7].
When analytical statistical methods for defining significance limits are diffi-

cult to construct, the use of shift surrogates as a boot strap method can be very
effective for determining coupling. Although there is some reduction in low fre-
quency cross-spectrum from such shift surrogate data, the statistical properties
of the data sets are largely retained.
Although our data were statistically stationary, real systems are generally not.

When faced with such data, any method that relies on an accurate state space
reconstruction (such as MI2D or CM) will be inherently at a disadvantage over
measures whose computation admits some tolerance for variation in the data sets
as a function of time, such as CC and PC.
We have been as guilty as any of our colleagues in being fascinated by the

theory and methods of nonlinear dynamics. Hence we have continually been
surprised by the robust capabilities of linear CC to detect weak coupling in non-
linear systems, especially in the presence of noise [7]. CC was even effective in
detecting weak coupling in map data, where it was the most effective in the pres-
ence of noise. Our findings here further strengthen our view that robust linear
methods should always be included in an analysis of coupling in arbitrary sys-
tems.
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12 Linear Models for Mutivariate Time Series

Manfred Deistler

This contribution is concerned with system identification, i.e., with data driven
modeling, for multivariate time series. Linear dynamic models in the frame-
work of stationary processes are considered. After an introduction to stationary
processes, two topics are treated: The first is identification of multivariate state
space- and ARMA(X) systems, with focus on modern approaches to state space
system identification. It is argued that, in this case, opposed to the AR(X) case,
a rather deep understanding of problems of realization and parameterization
is required for construction of powerful identification procedures and for their
evaluation. Subspace procedures and maximum likelihood estimation using data
driven local coordinates are described. The second topic is concerned mainly
with modeling high dimensional time series, for cases where “full” state space
modeling would result into, in relation to sample size, too high dimensional
parameter spaces and where therefore lower dimensional parameterizations are
needed. Dynamic principal component analysis, linear dynamic factor models
with idiosyncratic noise, and generalized linear dynamic factor models are dis-
cussed.

12.1 Introduction

In areas such as economics, finance, business, engineering, biology and medicine,
often several single time series are collected and information exceeding the uni-
variate information in every single time series is of interest. The main reasons for
joint or conditional modeling of multivariate time series are:

1. The analysis of the dynamic relations between time series.

2. Extraction of factors or features common to all time series.

3. The improvement of forecasts.

Here we only consider discrete-time, equally spaced observations yt, t = 1, . . . , T ,
yt = (y

(i)
t )i=1,...,s ∈ Rs. Of course there are many possibilities to model multi-

variate time series. In this contribution we consider two groups of model classes:

1. “Full” state space- and ARMA(X) models.

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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2. Factor type models.

Both cases are dealt within a stationary context. This contribution consists of
three parts. The first part, Section 12.2, is concerned with results from the theory
of stationary processes, which are necessary for an understanding of the two
main parts. The reader familiar with the basic facts of this theory may skip this
part.
The second part, Section 12.3, is concerned with identification (in the sense

of data driven modeling) of full state space and ARMA(X) systems, where the
state space point of view is emphasized. Despite the fact that state space and
ARMA(X) identification is, in a certain sense, a mature subject now, in many
applications, in particular in an automatized context, still severe problems arise.
This is particularly true for the multivariable case. A good part of these problems
does not show up in the usual asymptotic analysis. Because of these problems
AR(X) modeling still dominates in many applications.
In this part our aim is not to present an extensive survey on multivariable state

space and ARMA(X) identification, but instead we present two novel approaches,
namely a special subspace estimation procedure (as an important representative
for subspace procedures) and maximum likelihood estimation using data driven
local coordinates. We claim that, opposed to the AR(X) case, both for a proper
understanding and for the development of powerful identification algorithms, a
rather deep understanding of the underlying structure theory for state space and
ARMA(X) systems is needed. For this reason the relevant parts of this theory
are reported. Given the importance of the subject, it is not surprising that there
exist several other novel approaches to multivariable ARMA(X) or state space
estimation, see e.g., [1–3], to mention a few.
The third part, Section 12.4, is concerned with factor models for time series.

Despite the fact that factor models and the related errors-in-variables have a long
history, this subject is much less mature. Recently, there has been a resurging
interest in factor models, in particular for modeling and forecasting of high di-
mensional time series, e.g., in finance and macroeconomics. We present three
important classes of factor models, dynamic principal components, linear dy-
namic factor models with idiosyncratic noise and generalized linear dynamic
factor models and discuss identification for these classes.

12.2 Stationary Processes and Linear Systems

Stationary processes are extremely important as models for time series. The the-
ory of stationary processes was developed in the thirties and fourties of the last
century; the extensions to the multivariable case have been made a few decades
later; [4, 5] are major references which include the multivariate case. Here we
only give a very brief account of the main results needed for a better under-
standing of this contribution. Let (yt | tεZ) = (yt) denote a stochastic process
over an underlying probability space (Ω, A, P ). Here Z denotes the integers and
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yt : Ω → Rs are random variables. A process (yt) is called (wide sense) stationary
if Ey′

tyt < ∞, t ∈ Z; Eyt = const. and if Eyt+ry
′
t does not depend on t. Let a ′

denote the transpose of a vector or a matrix a.
For simplicity of presentation, we assume that Eyt = 0 holds. For our pur-

poses, the main information about a stationary process is contained in the covari-
ance function

γ : Z → Rs×s : γ(r) = Eyt+ry
′
t . (12.1)

A central result in the theory of stationary processes states that every stationary
process admits a spectral representation

yt =

∫
[−π,π]

eiλt dz(λ), (12.2)

where the stochastic process
(
z(λ) | λε[−π, π]

)
, z(λ) : Ω → Cs (C denotes the

complex numbers) satisfies Ez(λ)∗z(λ) < ∞, z(−π) = 0, limε↓0z(λ + ε) = z(λ)

and E
(
z(λ4) − z(λ3)

)(
z(λ2) − z(λ1)

)∗
= 0 for λ1 < λ2 � λ3 < λ4. Here ∗ denotes

the conjugate transpose and if not extra mentioned, limits of random variables
are understood in mean squares sense.
The spectral distribution function is defined as F : [−π, π] → Cs×s : F(λ) =

Ez(λ)z(λ)∗. The spectral representation of a stationary process leads to the spec-
tral representation

γ(t) =

∫
[−π,π]

eiλt dF, (12.3)

of the covariance function and this constitutes a one-to-one relation between γ

and F. Thus F and γ contain the same information about the underlying process.
In many cases F is absolutely continuous w.r.t. the Lebesque measure ν; then the
spectral density f : [−π, π] → Cs×s exists and satisfies

F(λ) =

∫λ

−π

f(ν)dν . (12.4)

A sufficient condition for the existence of a spectral density is that

∞∑
t=−∞

‖γ(t)‖2 < ∞ (12.5)

holds, where ‖ ‖ denotes a (matrix) norm. In this case, the relation between the
covariance function γ and the spectral density f is given by

γ(t) =

∫π

−π

eiλtf(λ)dλ (12.6)
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and

f(λ) = (2π)−1
∞∑

t=−∞
e−iλtγ(t) (12.7)

where the infinite sum on the right-hand side of Eq. (12.7) is defined in the sense
of mean squares convergence.
Consider a linear transformation of a stationary process (xt)

yt =

∞∑
j=−∞

kjxt−j kj ∈ Rs×m . (12.8)

Equation (12.8) can be interpreted as a (noise-free) linear system with input (xt)

and output (yt). As can be easily seen, the stationarity of (xt) implies (joint)
stationarity of (x ′

t, y
′
t)

′ and, using an obvious notation, from the spectral repre-
sentation we obtain

yt =

∫
[−π,π]

eiλt dzy(λ) =

∫
[−π,π]

eiλt(

∞∑
j=−∞

kje−iλj)dzx(λ) . (12.9)

The transfer function of the linear system (12.8) is defined by

k(z) =

∞∑
j=∞

kjz
j , z ∈ C . (12.10)

If the spectral density fx of (xt) exists, then the spectral density fy of (yt) and
the cross-spectral density fyx between (yt) and (xt) exist and are given by

fy(λ) = k(e−iλ)fx(λ)k(e−iλ)∗ (12.11)

and

fyx(λ) = k(e−iλ)fx(λ) . (12.12)

A linear transformation (Eq. (12.8)) is called causal, if kj = 0, for j < 0 holds. An
important special case is causal, linear transformations

yt =

∞∑
j=0

kjεt−j ,

∞∑
j=0

‖kj‖2 < ∞ (12.13)

of white noise (εt) (i.e., Eεt = 0, Eεsε
′
t = δstΣ). Then, by Eq. (12.11)

fy(λ) = (2π)−1k(e−iλ)Σk(e−iλ)∗ (12.14)

and thus the information contained in the second moments of (yt) is contained
in the transfer function k and the variance matrix Σ.
Important insight in the structure of stationary processes is provided by the

Wold decomposition: Let ŷt+h|t denote the best linear least-squares forecast of yt+h
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given ys, s � t. Then a stationary process (yt) is called (linearly) singular, if
ŷt+h|t = yt+h (for one and thus for all t ∈ Z, h > 0) holds and (linearly) regular
if

lim
h→∞ ŷt+h|t = 0

(for one and thus for all t) holds. Now the Wold decomposition says that every
stationary process (xt) can be uniquely decomposed as

xt = yt + zt

where Eysz
′
t = 0 for all s, t ∈ Z and both (yt) and (zt) are obtained as causal

linear transformations (or as limits of such transformations) from (xt) and where
(yt) is regular and (zt) is singular. In addition, every regular process (yt) can be
represented (Wold representation) as a causal linear transformation of white noise
, Eq. (12.13), where in addition also (εt) is a causal linear transformation of (yt)

(or a limit of such transformations).
By the Wold decomposition the regular and the singular component can be

forecasted separately, and for the regular component we have

ŷt+h|h =

∞∑
j=h

kjεt+h−j . (12.15)

The spectral factorization problem is concerned with finding k(z) corresponding
to the Wold representation (and Σ) from the spectral density fy. If we assume
Σ > 0 and (w.l.o.g.) k0 = I then k(z) and Σ are uniquely determined from fy.
In many cases the observed outputs are not exact transformations of the ob-

served inputs. Then we consider linear systems with noise of the form

ŷt =

∞∑
j=−∞

ljzt−j , lj ∈ Rs×m (12.16)

and

yt = ŷt + ut (12.17)

where

ut =

∞∑
j=0

kjεt−j kj ∈ Rs×s . (12.18)

Here zt are observed inputs, ŷt are unobserved outputs, yt are observed outputs,
(ut) is a regular (unobserved) noise process and Eq. (12.18) is in Wold represen-
tation. By

l(z) =

∞∑
j=−∞

ljz
j and k(z) =

∞∑
j=0

kjz
j,
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we denote the input-to-unobserved output and the noise transfer function, re-
spectively. Throughout we assume that

Ezsu
′
t = 0 for all s, t

holds, which is equivalent to assume that ŷt is the best linear squares approxi-
mation of yt by (zt). In addition we assume that Eq. (12.16) is causal.
The relation between the transfer functions l(z), k(z), and the innovation

variance Σ = Eεtε
′
t on the one side and the second moments of the observed

processes on the other side is given by (compare Eqs. (12.11), (12.12))

fyz(λ) = l(e−iλ)fz(λ) (12.19)

fy(λ) = l(e−iλ)fz(λ)l(e−iλ)∗ + (2π)−1k(e−iλ)Σk(e−iλ)∗ (12.20)

using an obvious notation. In particular, if fz(λ) > 0 for all λ ∈ [−π, π], then

l(e−iλ) = fyz(λ)fz(λ)−1 (12.21)

holds. Equation (12.21) is the so-called Wiener filter formula.

12.3 Multivariable State Space and ARMA(X) Models

AR(X), ARMA(X), and (linear) state space (SS) systems are the most important
models for time series. In this section we consider the case of “full models” where
no overidentifying or structural a priori restrictions in addition to stability, the
miniphase assumption and minimality are imposed.
In many applications AR(X) models still dominate. The main advantages of

AR(X) modeling when compared to ARMA(X) and SS modeling are:

• There are no problems with identifiability in the AR(X) case. More generally,
the structure theory is so simple that it does not have to be explicitly consid-
ered.

• For estimation of parameters least-squares-type procedures can be used, which
are explicitly given, asymptotically efficient and numerically fast and reliable.

On the other hand SS and ARMA(X) systems, (both describe the same class of
transfer functions) are more flexible compared to AR(X) systems and thus often
fewer parameters have to be used in order to obtain a good model.
For the multivariate case, i.e., when the output dimension s is larger than one,

additional problems arise:

• The “curse of dimensionality”: Even for the AR case, when the specified max-
imum lag is denoted by p, the parameter space for the system parameters
(a1, . . . , ap) in Eq. (12.29) has dimension s2p and thus depends quadratically
on s.
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• When compared to the univariate case, for multivariate ARMA(X) and SS
systems, problems of parameterization are both more intricate and more im-
portant.

We claim that a proper understanding of the structure theory for ARMA(X) and
SS systems leads to better identification procedures, which, in turn, will extend
the range of applications for such systems. The basic references for Section 12.3
are [6, 7].

12.3.1 State Space and ARMA(X) Systems

We consider linear state space systems in the prediction error form ([6] chapter 1)

xt+1 = Axt + Bεt (+Lzt) (12.22)

yt = Cxt + εt (+Dzt) (12.23)

where xt is the n-dimensional state, (εt) is the s-dimensional white noise, yt

are the s-dimensional observed outputs, zt the m-dimensional observed inputs
and A ∈ Rn×n, B ∈ Rn×s, L ∈ Rn×m, C ∈ Rs×n, and D ∈ Rs×m are the
parameter matrices. Throughout we assume that the stability condition

|λmax(A)| < 1, (12.24)

where λmax denotes an eigenvalue of maximum modulus and the miniphase con-
dition

|λmax(A − BC)| � 1 (12.25)

hold. In addition we assume that

Ezsε
′
t = 0 for all s, t .

The steady-state solution of Eqs. (12.22)–(12.23) is given by

yt = C(Iz−1 − A)−1(Bεt + Lzt) + εt + Dzt, (12.26)

where z is used for a complex variable as well as for the backward shift on the
integers Z, i.e., z(yt|t ∈ Z) = (yt−1|t ∈ Z). Thus the solution (12.26) is a system
of the form, Eqs. (12.16-12.18). In particular, by Eq. (12.25)

k(z)εt = C(Iz−1 − A)−1Bεt + εt (12.27)

is already in Wold representation. Note that the transfer function coefficients kj

are of the form

kj = CAj−1B for j > 0 and k0 = I (12.28)

and an analogous result holds for lj.
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In the following, for the sake of brevity, unless the contrary is explicitly stated,
we will assume that we have no observed inputs.
An important notion for state space systems is minimality; a state space system

is called minimal, if there is no other state space system with the same transfer
function having smaller state dimension. A state space system is minimal if and
only if the matrices

Cn = (B, AB, . . . , An−1B)

and

On = (C′, A ′C′, . . . , (A ′)n−1C′)′

both have rank n. For the case of observed inputs, B in Cn is replaced by (B, L).
Throughout we assume that Σ = Eεtε

′
t is nonsingular.

ARMA(X) systems are (vector-) difference equations of the form

a(z)yt = b(z)εt(+d(z)zt) (12.29)

where

a(z) =

p∑
j=0

ajz
j , aj ∈ Rs×s ;

b(z) =

q∑
j=0

bjz
j , bj ∈ Rs×s ;

d(z) =

r∑
j=0

djz
j , dj ∈ Rs×m .

(12.30)

We assume that the stability condition

deta(z) �= 0 |z| � 1 (12.31)

and the miniphase condition

detb(z) �= 0 |z| < 1 (12.32)

hold, and again we assume

Ezsε
′
t = 0

and that Σ is nonsingular. The steady-state solution then is given by

yt = a−1(z)[b(z)εt(+d(z)zt)] . (12.33)

Again we see that this gives a system of the form, Eqs. (12.16-12.18). Minimal-
ity for ARMA(X) systems is expressed as left coprimeness of a(z) and b(z)

(and d(z)), see [6] chapter 2. Equations (12.16)–(12.18) are sometimes called the
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input–output representation, Eqs. (12.22)–(12.23) the state space representation and
Eq. (12.29) the ARMA(X) representation.
For the case of no observed inputs we have the following relation between

these representations ([6], chapter 1):
Under our assumptions,

• Every state space systems (12.22)–(12.23) and every ARMA system (12.29) has
a rational transfer function k(z) which is analytic in a disk containing the
closed unit disk (and thus is causal and stable) and which satisfies det k(z) �= 0,
|z| < 1.

• Conversely, for every rational transfer function k(z) which is analytic in a
disk containing the closed unit disk and which satisfies detk(z) �= 0, |z| < 1

and k(0) = I there is a stable and miniphase state space-, and a stable and
miniphase ARMA representation.

Thus, in particular, SS- and ARMA representations are two alternative ways to
describe the same class of input/output behaviors k(z). Note that the assumption
k(0) = I is a normalizing condition defining Σ. We have ([6], chapter 1).
Any rational and a.e. nonsingular spectral density matrix fy may be uniquely

factorized as in Eq. (12.14), where k(z) is rational, analytic within a circle con-
taining the closed unit disk, detk(z) �= 0, |z| < 1 and k(0) = I and where Σ > 0.

12.3.2 Realization of State Space and ARMA Systems

Realization is concerned with the construction of a state space or an ARMA sys-
tem from the observed process (yt), or from its population second moments,
or from the transfer function k(z) corresponding to the Wold representation
Eq. (12.13). Thus realization is concerned with an idealized identification prob-
lem, commencing, e.g., from the observed process (or in the ergodic case, from
an infinite data string) rather than from a finite number of observations.
Formula (12.13) can be rewritten as the following infinite-dimensional state

space system

x̃t+1 = Ãx̃t + B̃εt (12.34)

yt = C̃x̃t + εt (12.35)

where

x̃t =




ŷt|t−1

ŷt+1|t−1

ŷt+2|t−1

...




︸ ︷︷ ︸
Ŷ+

t

=




k1 k2 k3 . . .

k2 k3 k4 . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .




︸ ︷︷ ︸
H∞




εt−1

εt−2

εt−3

...




︸ ︷︷ ︸
E−

t

(12.36)
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and where

Ã =


0 I 0 . . .

0 0 I 0

. . . . . . . . . . . . .


 , B̃ =




k1

k2

...


 , C̃ = (I, 0, 0, . . . ) . (12.37)

The matrix H∞ is called the Hankel matrix of the transfer function. It can be
shown that, since k(z) is rational, H∞ must have finite rank equal to the dimen-
sion n (called the order) of the state of a minimal state space system with this
transfer function (see, e.g., [6], chapter 2). Such a minimal state space system can
be obtained from H∞ as follows (see, e.g., [8]): Let S ∈ Rn×∞ be a matrix such
that the rows of SH∞ form a basis for the row space of H∞. Then from Eq. (12.36)
we obtain

xt+1 = Sx̃t+1 = SH∞E−
t+1 = S


k2 k3 . . .

k3 k4 . . .

. . . . . . . . . . . .


E−

t + S




k1

k2

...


εt . (12.38)

Now, determine (A, B, C) from

S




k2 k3

...

k3 k4

...
...

...
...


 = ASH∞ (12.39)

B = S(k ′
1, k ′

2, . . . )′ (12.40)

(k1, k2, . . . ) = CSH∞ . (12.41)

Note that for given S, the system (A, B, C) is uniquely defined. From Eq. (12.38)–
Eq. (12.41) we obtain

xt+1 = Axt + Bεt (12.42)

yt = C̃x̃t + εt = C̃H∞E−
t + εt = CSH∞E−

t + εt = Cxt + εt (12.43)

To repeat, the state space representation (12.42–12.43) is minimal.
Two minimal state space systems (A, B, C) and (Ā, B̄, C̄) are observationally

equivalent (i.e., they have the same transfer function ) if and only if there exists
a nonsingular matrix T such that

Ā = TAT−1 ; B̄ = TB ; C̄ = CT−1 (12.44)

hold.
The realization procedure described above has a nice interpretation in the

Hilbert space spanned by the one-dimensional components y
(i)
t , i = 1 . . . s, t ∈ Z

of the process (yt), see [9]: From Eq. (12.36) we see that the linear dependence
structure of the rows of H∞ and of the one-dimensional components of x̃t is
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identical. Thus a minimal state xt is obtained as a basis for the space obtained by
projecting the space spanned by the future variables y

(i)
r , i = 1, . . . s, r � t on the

space spanned by the past variables y
(i)
r , i = 1, . . . s, r < t. This space is called

the state space. Thus the state makes the future and the past of the process (yt)

conditionally orthogonal. This is the so-called splitting property of the state. The
state contains the information from the past of the inputs relevant for the future
outputs.
In order to obtain identifiability we have to choose representatives from the

equivalence classes described by Eq. (12.44). One example is echelon forms, where
we select a special basis for the row space of H∞, namely the first rows of H∞
which form a basis for its row space ([6], chapter 2). In an analogous way, echelon
forms for ARMA systems are defined (see again [6], chapter 2). In this way a
nice (homeomorphic and diffeomorphic) bijection between minimal ARMA and
minimal state space systems is defined. In particular, once a state space system
has been estimated, we can transform it to the state space echelon form and then
to the ARMA echelon form.

12.3.3 Parametrization and Semi-Nonparametric Identification

Structure theory in general is concerned with the relation between (properties
of) observed processes and internal parameters; here it is concerned with the
relation between transfer functions and state space or ARMA parameters; our
focus will be on the state space case, where this relation is given by Eq. (12.28).
Parametrization is concerned with describing sets of transfer functions by state
space or ARMA parameters. Parametrization and realization are part of structure
theory. For a more detailed presentation of the ideas described here we refer
to [10]. From now on, for simplicity of notation, we will assume that the strict
miniphase assumption holds, i.e., that inequality (12.25) is strict.
In semi-nonparametric identification, estimation consists of two steps:

• In the first step, the model selection step, a subclass of the whole model class
is determined from the data. In the case considered here this is done by esti-
mating the order n, e.g., by information criteria such as AIC or BIC (see [6],
chapter 5). Let Sm(n) denote the set of all (A, B, C) ∈ Rn2+2sn satisfying
Eq. (12.24) and the strict miniphase assumption and which are in addition
minimal. Additionally imposing minimality leaves an open dense set and
Sm(n) is open in Rn2+2sn. Then Sm(n) is such a subclass. By M(n) we de-
note the set of the corresponding transfer functions. M(n) is endowed with
the so-called pointwise topology, which corresponds to the relative topology
in the product space (Rs×s)N0 for the coefficients (kj|j ∈ N0) and M(n) can
be shown to be a real analytic manifold of dimension 2sn, see [6], chapter 2.
Let π : Sm(n) → M(n) denote the mapping attaching transfer functions to
state space matrices, defined by Eq. (12.28). The mapping π is not injective,
and by Eq. (12.44) the classes of observational equivalence are n2 dimensional
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manifolds. Thus, in a certain sense, we have n2 too many coordinates if we use
Sm(n) directly as parameter space. For s > 1, more than one chart is needed to
describe M(n). Identifiable parameter spaces for parts of M(n) are obtained
either from an overlapping description ofM(n) or from canonical forms, such
as echelon form. These parts of M(n), Vα say, are characterized by a vector
α = (n1, . . . , ns) of integers ni, which also have to be estimated. For this and
for further details we refer to [6] and [10].

• In the second step, the state space matrices (A, B, C) (or the free parameters
for (A, B, C)) are estimated. The (Gaussian) likelihood function is given by

LT (A, B, C, Σ) = T−1 log det ΓT (A, B, C, Σ)

+ T−1y(T)′Γ−1
T (A, B, C, Σ)y(T) (12.45)

where y(T) = (y′
1, . . . , y′

T )′ is the stacked sample and

ΓT (A, B, C, Σ) =

(∫π

−π

e−iλ(r−t)fy(λ;A, B, C, Σ)dλ
)

r,t=1,...,T

where fy(λ;A, B, C, Σ) is the spectral density of a process given by Eq. (12.26).
To be precise, Eq. (12.45) is −2T−1 times the log-likelihood function up to a
constant.

Note that ΓT (A, B, C, Σ) and thus the likelihood function depends on (A, B, C)

only via the transfer function. Thus we can define a coordinate free maximum
likelihood estimator (MLE) (k̂T , Σ̂T ), which does not depend on the specific pa-
rameterization under consideration.
For the asymptotic properties of the MLE we refer to [6], chapter 4. Under

general conditions, the coordinate free MLEs k̂T , Σ̂T overM(n) are consistent. If
Sm(n) is used as a parameter space, we have, as has been stated, a nonunique-
ness problem for the corresponding parameter estimators. For overlapping de-
scriptions or for, e.g., echelon forms, the mapping from transfer functions to
parameters is continuous and thus consistency for the transfer functions implies
consistency for the MLEs for the system parameters. In this case also, under gen-
eral assumptions, these parameter estimators are asymptotically normal and as-
ymptotically efficient. Even, if the true transfer function is not contained inM(n),
the MLEs have a nice asymptotic behavior ([6], chapters 4 and 7).
A number of problems in actual estimation of SS and ARMA systems do not

show up in asymptotic theory and even not in the usual statistical analysis at
all, since this analysis deals with the exact MLE (defined by the exact optimum
of the likelihood function). In general, the MLE is not explicitly given, but has
to be obtained by a numerical optimization procedure, typically by a gradient
search procedure, e.g., a Gauss–Newton procedure. The optimization problem is
nonconvex, the choice of a good initial estimator is important and problems of
multiple local optima occur. It turns out that numerical properties of optimiza-
tion algorithms strongly depend on the choice of the parameterization. As has
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been shown in [11], “traditional” parameterizations such as echelon forms, from
a certain order onwards, face severe numerical problems, which can be overcome
by the so-called data driven local coordinates discussed in Section 12.3.5. This is
quite remarkable, since for the univariate ARMA case, echelon forms correspond
to the usual parameterization in terms of the coefficients of numerator and de-
nominator polynomials of the transfer functions. One advantage of SS compared
to ARMA systems is that for the SS case, typically, the classes of observational
equivalence are larger, so we can select a numerically better representative.
Explicitly given estimators, such as subspace estimators or instrumental vari-

ables estimators are used either to obtain initial estimators for the numerical
optimization of the likelihood function or as an alternative to MLE. The so-called
Hannan–Rissanen procedure and its multivariable generalization (see, e.g., [6]) is
an integrated approach consisting of initial estimation commencing from fitting
a long autoregression, a Gauss–Newton step and order estimation.
In the following two subsections we describe two modern estimation proce-

dures, the CCA subspace procedure and ML estimation based on data driven
local coordinates.

12.3.4 CCA-Subspace Estimators

Subspace estimators for state space systems are based on a realization algorithm
combined with a model reduction step, see, e.g., [12–16]. The main advantage of
subspace procedures is that they are numerically fast and reliable. Throughout
we assume that n has already been estimated.
Here we describe the CCA (canonical correlations analysis) procedure pro-

posed by [13]. This procedure consists of two steps:

• In the first step an estimator x̂t of the state xt is obtained as follows: As has
been explained in Section 12.3.2, a minimal state is a basis for the space ob-
tained by projecting the space spanned by the future variables on the space
spanned by the past variables: Let Y+

t = (y′
t, y

′
t+1, . . . )′ and Y−

t = (y′
t−1,

y′
t−2, . . . )′. We write the Wold representation (12.13) as

Y−
t =


I k1 k2 . . .

0 I k1 . . .

. . . . . . . . . . . . . . .




︸ ︷︷ ︸
T

E−
t (12.46)

then we obtain from Eq. (12.36)

Y+
t = H∞T−1︸ ︷︷ ︸

P

Y−
t + vt, (12.47)

where vt = Y+
t − Ŷ+

t is the infinite vector of prediction errors. Since H∞ has
rank n, also P has rank n. Every decomposition P = OK where O ∈ R∞×n,
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K ∈ Rn×∞, where O and K both have rank n, then fixes a basis for the state
space and xt = KY−

t defines a minimal state.

The statistical analogon for this procedure is as follows: We estimate the north-
west corner of P, say β ∈ Rsf×sp, from the truncated analogon of Eq. (12.47),
from a finite future and a finite past

Y+
t,f = βY−

t,p + ṽt, (12.48)

where Y+
t,f = (y′

t . . . , y′
t+f−1)′; Y−

t,p = (y′
t−1, . . . , y′

t−p)′; f, p > n, by ordinary
least squares, to obtain an estimate β̂, say.

Now, typically, β̂ has rank equal to min(fs, ps)whereas β has rank n. A model
reduction step is now performed as follows: Let Ŵ+

f = (Γ̂+
f )−1/2 denote a

square root (e.g., a Cholesky factor) of the inverse of the sample covariance
matrix Γ̂+

f of Y+
t,f and let Ŵ−

f denote a square root of the sample covariance
matrix of Y−

t,p (also other choices for weighting matrices are used). Now con-
sider the singular value decomposition of the weighted estimate

Ŵ+
f β̂Ŵ−

p = ÛΛ̂V̂ ′ = ÛnΛ̂nV̂ ′
n + R, (12.49)

where Λ̂n is the diagonal matrix consisting of the n largest singular val-
ues of Ŵ+

f β̂Ŵ−
p (i.e., the n largest elements of the diagonal matrix Λ̂) and

Ûn ∈ Rfs×n and V̂n ∈ Rps×n are the matrices consisting of the correspond-
ing left and right singular vectors, respectively. The matrix R corresponds to
the neglected smaller singular values. In this way we define a rank n ap-
proximization to β̂ by ÔfK̂p, where Ôf = (Ŵ+

f )−1ÛnΛ̂
1/2
n ∈ Rfs×n and K̂p =

Λ̂
1/2
n V̂ ′

n(Ŵ−
p )−1 ∈ Rn×ps and the estimator for the state is given by x̂t =

K̂pY−
t,p.

• In the second step, given the state estimator x̂t, the matrix C is estimated by
the least-squares formula

ĈT =

(
1

T

T∑
t=1

ytx̂
′
t

)(
1

T

T∑
t=1

x̂tx̂
′
t

)−1

(12.50)

and εt is estimated by ε̂t = yt − ĈT x̂t. In the same way, A and B are estimated
by regressing x̂t+1 on x̂t and ε̂t. The matrix Σ is estimated by

Σ̂T = (T − p)−1
∑T

t=p+1
ε̂tε̂

′
t .

If the estimated system is not miniphase, the corresponding estimated spectral
density has to be factorized again to obtain a stable miniphase factor.

In the case of observed inputs the effect of the future observed inputs on the
forecasts has to be taken into account, in addition.
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As has been stated already the advantage of subspace methods lies in the
substantial reduction of computational effort compared to MLEs obtained by
numerical optimization. Typically subspace methods do not use canonical forms,
or, more generally, no a priori prescribed representatives from the equivalence
classes.
Consistency and asymptotic normality of the CCA method, partially also for

the case of observed inputs, have been shown in [17–21]. In [22] it is shown
that CCA, for the case of no observed inputs and when the true system is de-
scribed inM(n), is asymptotically equivalent to MLE in the sense that by trans-
forming the CCA estimates to the echelon form,

√
T times their difference to the

corresponding MLE converges to zero in probability. Unfortunately, this is not
the case when observed inputs are present.
Recently, an EM algorithm based on a state estimation step has been proposed

in [3] which seems to superior to CCA in a number of cases.

12.3.5 Maximum Likelihood Estimation Using Data Driven Local
Coordinates

Data driven local coordinates (DDLs) have been introduced in [11] and [23].
A closely related idea has been developed in [24]. Properties of DDLCs have been
derived in [25]. The basic idea of DDLCs is as follows: We commence from the
model class Sm(n) and an initial estimate, (A0, B0, C0) say. (A0, B0, C0) ∈ Sm(n)

is obtained, e.g., by a subspace procedure. Consider the class E(A0, B0, C0), of
all (minimal) systems observationally equivalent to (A0, B0, C0), choose a point
(Ã0, B̃0, C̃0) in this class (the choice of such a point is a design parameter for
the procedure), construct the tangent space (in Rn2+2sn) to E(A0, B0, C0) at this
point and take the orthocomplement (in Rn2+2sn) to this tangent space as a
preliminary parameter space. E(A0, B0, C0) has dimension n2 and the orthocom-
plement is of dimension 2sn. Let Q⊥ denote a (n2 + 2sn) × 2sn matrix whose
columns form an orthonormal basis for this orthocomplement. Then we consider
the mapping

γD : R2sn → Rn2+2sn : γD(τD) = vec


Ã0

B̃0

C̃0


+Q⊥τD , τD ∈ R2sn . (12.51)

The corresponding parameter space TD ⊂ R2sn is defined by removing the
nonminimal, the unstable and the not strictly miniphase systems and the corre-
sponding space of transfer functions is VD = π

(
γD(TD)

)
. Now, e.g., a Gauss–

Newton step is performed in TD for optimizing the likelihood. This gives a new,
second initial estimate and the procedure is iterated.
The procedure can be interpreted as optimization of the likelihood overM(n).

The asymptotic properties are just the properties of the MLE. The advantage of
the procedure compared, e.g., to MLE using echolon forms lies in its numer-
ical properties: The intuitive motivation behind DDLC is that, due to the or-
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thogonality of the parameter space to the tangent space, the numerical proper-
ties of optimization procedures are, at least locally, favorable. Comparisons with
other parameterizations corroborate this notion, see, e.g., [23, 26]. In particular
these comparisons show that echolon forms are clearly outperformed by DDLC.
DDLC, together with a subspace initial estimator is now the default option in the
“system identification” toolbox of MATLAB 6.x.
As can be shown, the parameter space TD is not identifiable, however there

exist open neighborhoods T locD ⊂ TD of 0 ∈ TD and V locD of π(A0, B0, C0) ∈ M(n)

such that T locD is identifiable and the restriction of the mapping π ◦ γD to T locD is a
homeomorphism.
One way to reduce the dimension of the parameter space over which (a suit-

able version of) the likelihood function has to be optimized numerically, is to
concentrate out parameters which appear linearly in the prediction error by a
(ordinary or generalized) least-squares step [27]. For the concentrated likelihood
again the DDLC approach is used, see [26, 28, 29]. We call this the separable least
squares (sls) DDLC approach.
We commence from the inverse state space system

xt+1 = Āxt + B̄yt (12.52)

εt = C̄xt + yt (12.53)

where Ā = (A − BC), B̄ = B and C̄ = −C and (Ā, B̄, C̄) and (A, B, C) are in
a one-to-one relation. The conditional (Gaussian) likelihood function, which is
asymptotically equivalent to Eq. (12.45), is given as

L̃T (Ā, B̄, C̄, Σ) = log detΣ + T−1
T∑

t=1

tr{εt(Ā, B̄, C̄)εt(Ā, B̄, C̄)′Σ−1} . (12.54)

Here tr denotes the trace and εt is the function of Ā, B̄, C̄ and the observa-
tion y1, . . . , yt defined by Eq. (12.52) and Eq. (12.53). Now either C̄ or B̄ ap-
pear linearly in the prediction error and can be concentrated out in a first step.
For example, if C̄ is concentrated out, then the system parameters are written
as τ = (τ ′

1, τ ′
2)′, where τ1 =

(
(vec Ā)′, (vec B̄)′

) ′ and τ2 = (vec C̄)′. Concentrat-
ing out in addition Σ, leads to the doubly concentrated likelihood

Lcc
T (τ1) = log det

T∑
t=1

εt(τ1)εt(τ1)′ . (12.55)

Thus the nonlinear optimization problem for Eq. (12.54) has been reduced to a
nonlinear optimization problem in τ1. For Ā, B̄ the equivalence classes are given
by

{TĀT−1, T B̄ | det T �= 0} (12.56)

compare Eq. (12.44) and the DDLC idea is applied in the Ā, B̄ space, thus reduc-
ing the dimension from n2 + sn to sn. Simulations show (see [29]) that in many
cases sls DDLC has better numerical properties than even DDLC.



12.4 Factor Models for Time Series 299

12.4 Factor Models for Time Series

Factor analysis has been developed by psychologists for measurement of intel-
ligence in the beginning of the twentieth century. The motivations for the use
of factor models are compression of the information contained in a high dimen-
sional data vector into a small number of factors and the idea of underlying
latent unobserved variables influencing the observations. Whereas the initial ap-
proach to factor analysis was oriented to data originating from independent,
identically distributed random variables, the idea has been further generalized
to the modeling of multivariate time series, thus compressing information in two
dimensions, the cross-sectional and the time dimension. This idea has been per-
sued, rather independently, in a number of areas, such as econometrics [30–32] or
signal processing [33]. This idea is of particular importance, if the cross-sectional
dimension s is large (in relation to sample size T ), where the so-called curse of
dimensionality occurs. “Conventional” time series modeling by full AR, ARMA
or “typical” state space model leads to a parameter space with dimension pro-
portional to s2; on the other hand the number of data points, for fixed T , is linear
in s. Factor models are used to mitigate this curse of dimensionality. The basic,
common equation for the different kinds of factor models considered here is of
the form

yt = Λ(z)ξt + ut , t ∈ Z, (12.57)

where yt is the s-dimensional vector of observations, ξt are the r < s typical di-
mensional factors, (ut) is the noise and the transfer function Λ(z) =

∑∞
j=−∞ Λjz

j,
Λj ∈ Rs×r, is called the factor loading matrix.
Throughout we assume Eξt = 0, Eut = 0, (ξt) and (ut) are stationary and

regular with absolutely summable covariances and

Eξtu
′
s = 0 for all s, t . (12.58)

For the spectral density fy of (yt) then we have an obvious notation

fy(λ) = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ + fu(λ) . (12.59)

In addition we assume throughout that Λ(e−iλ) and fξ(λ) have rank r and that
fy(λ) has rank s for all λ ∈ [−π, π]. A special case often considered occurs when
Λ(z) = Λ is constant. Then we have

Σy = ΛΣξΛ ′ + Σu, (12.60)

where Σy denotes the variance matrix of yt.
The assumptions imposed so far do not determine a reasonable model class

in the sense that for given fy or Σy too many models would be possible, see [34].
Thus, in order to obtain reasonable model classes, further assumptions have to
be imposed. Three important cases are principal component analysis (PCA), lin-
ear factor models with idiosyncratic noise and generalized linear factor models
which will be discussed below. For these model classes we are interested in
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• Estimation of (a parametrized version of) Λ(z), fξ, and fu.

• Estimation of the factors ξt and of the latent variables ŷt = Λ(z)ξt.

• Forecasting.

Preceding to estimation in the narrow sense, problems of the structure of such
models, in particular of identifiability, have to be discussed, see, e.g., [34]. Factor
models (12.57) where Λ is constant, but where (ξt) and (ut) are not necessarily
white, are called quasi static [35] and static if (ξt) and (ut) are white.
It should be noted that factor models (12.57) are closely related to errors-in-

variables (EV) models

yt = ŷt + ut

where ∞∑
j=−∞

wjŷt−j = 0 , wj ∈ R(s−r)×s .

This is immediate for the quasi-static case, where the restriction that ŷt has its
image in a linear subspace of Rs is expressed in the factor formulation by the
range of Λ and in the EV case by the kernel of w0. For the dynamic case, this is
explained in [34], see also [36].
The EV formulation emphasizes the point of view of “true” unobserved vari-

ables ŷt satisfying the exact relation w(z) =
∑∞

j=−∞ wjz
j and that in principle

all observed variables yt may be contaminated by noise. In addition, both, the
relation between the latent variables and the noise model are “symmetric,” in the
sense that no a priori assumption about the classification into inputs and outputs
and even not about the number s − r of equations has to be made.
For the quasi-static case, forecasting models are obtained by fitting AR(X)

models to the estimated factors and by using these models for forecasting of
factors and (using an estimate of Λ) of latent variables. For forecasting the obser-
vations yt either the forecasts for the latent variables are used or these forecasts
are combined with the individual forecasts for the one-dimensional noise compo-
nents [35]. If r 	 s, then this gives a substantial reduction of dimension compared
to full, e.g., AR(X) models.

12.4.1 Principal Component Analysis

In dynamic PCA [33] we commence from the canonical representation of the
spectral density

fy = O1Ω1O2 + O2Ω2O2, (12.61)

where Oi(e−iλ), Ωi(e−iλ), i = 1, 2 depend on frequency λ, Ω1(e−iλ) is the diago-
nal matrix of the r largest eigenvalues of fy(λ), ordered according to decreasing
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size, Ω2(e−iλ) is the diagonal matrix of the s − r smallest eigenvalues of fy(λ),
again ordered according to decreasing size and O1(e−iλ) and O2(e−iλ) are the
matrices consisting of the corresponding eigenvectors. Under the assumptions
given in [33], by

ξt = O1(z)∗yt , Λ(z) = O1(z) ,

fξ(λ) = Ω1(e−iλ) , ut = O2(z)O2(z)∗yt

fu(λ) = O2(e−iλ)Ω2(e−iλ)O2(e−iλ)∗,

(12.62)

we obtain a special factor model of the type (12.57), the dynamic PCA model.
PCA gives the best approximation of fy by a rank r spectral density ΛfξΛ∗ in the
sense that trEutu

′
t is minimal.

For estimation, fy is replaced by an estimator of fy and the estimators of ξt,
Λ(z), fξ and fu are defined as in Eq. (12.62). Note that if all eigenvalues are as-
sumed to be distinct, then the eigenvalues and the suitably normalized eigenvec-
tors are continuous functions of the original matrix and thus consistent estima-
tors of fy(λ) give consistent estimators of Λ(e−iλ), fξ(e−iλ), and fu(e−iλ). By the
choice of r, the degree of dimension reduction in the cross-section, and, as a trade
off, the quality of approximation are determined. Note that r is not intrinsic, in
the sense that it is not a property of fy. Dimension reduction in the time dimen-
sion may be performed by using finite-dimensional parameterizations. However
note, that for rational fy, the matrices on the right-hand side of Eq. (12.61) are
not necessarily rational.
An important special case occurs if O1 and O2 in Eq. (12.61) do not depend

on frequency λ, but Ω1 andΩ2 may depend on frequency λ; in this case the PCA
is quasi static.

12.4.2 Factor Models with Idiosyncratic Noise

Here, in addition it is assumed that the noise components are uncorrelated, i.e.,
fu is diagonal (or , in the static case, that Σu is diagonal). In other words the
basic idea is not to look for the best approximation of observations yt by the
latent variables ŷt, but to separate the common components described by the
factors, from the individual components, described by the noise. Note that the
factors here have a splitting property in cross-section which is analogous to the
property of the states in time: They make the components of (yt) conditionally
uncorrelated. Such models are commonly used, for, e.g., in finance, where for,
e.g., returns in the stock market, the factors describe for instance the development
of the market, and the “noise” describes the development of the individual firms.
The static model with idiosyncratic noise is the classical factor model, with a

long history, dating back to the beginning of the twentieth century. Commencing
from given Σy, we see from Eq. (12.60) that in the static case the following two
identifiability problems arise:
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• For given Σy, what is the set of all pairs Σŷ = ΛΣξΛ ′ and Σu, where Σŷ is
positive semidefinite, singular and symmetric and Σu is positive semidefinite
and diagonal, such that Eq. (12.60) is satisfied. In this set rmay not be constant;
we restrict ourselves to the subset, where r is minimal. Throughout r is used
for the minimal r.

• How can we determine Λ and Σξ from Σŷ. Throughout Σξ = I is assumed,
then Λ is unique up to multiplication by orthogonal matrices, corresponding
to factor rotation.

As far as the first question is concerned, the answer is that Σŷ and Σu are, in
general, not uniquely defined from Σy (see, e.g., [37]), but they are generically
unique if r is smaller than or equal to the so-called Ledermann bound

2s + 1

2
−

√
(2s + 1)2

4
− s2 + s .

If uniqueness of Σŷ is obtained, Λ is made unique by a suitable normalization
(see, e.g., [38]).
Estimators Λ̂ and Σ̂u of Λ and Σu are obtained from optimizing the (Gaussian

log) likelihood function, which up to a constant, is given by

LT (Λ, Σu | Σ̂y,T ) = −
T

2
log det(ΛΛ ′ + Σu) −

T

2
tr(ΛΛ ′ + Σu)−1Σ̂y,T (12.63)

subject to rank Λ = r, Σu > 0 and suitable normalization conditions on Λ. Here
Σ̂y,T denotes the sample variance

T−1
T∑

t=1

yty
′
t . (12.64)

The corresponding ML estimators can be shown to be consistent. This holds even
for the quasi-static case, where Λ is constant, but (ξt) and (ut) may be correlated
and thus Eq. (12.63) is no longer the likelihood.
As opposed to the PCA case, here, r or to be more precise, the minimal r in

all decompositions (12.60) of Σy is intrinsic. Tests for determining r have been
proposed in [39].
For the factor model with idiosyncratic noise, the factors, in general, are not

functions of the observations and thus have to be approximated by the observa-
tions. One method for doing this is obtained from minimizing

E(ξt − Lyt)(ξt − Lyt)
′

over L ∈ Rr×n in the ordering corresponding to positive semidefiniteness of
matrices, giving L = Λ ′Σ−1

y , leading to a factor estimator (omitting T in the
notation) of the form

ξ̂t = Λ̂ ′(Λ̂Λ̂ ′ + Σ̂u)−1yt . (12.65)
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For dynamic factor models, a rather complete structure theory, with focus on
the relation w(z) between the latent variables, has been developed in [34]. As far
as the analogon to the first question above is concerned, namely the uniqueness
of Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ and fu(λ) from fy(λ), we have generic uniqueness for
r � s −

√
s. More general, in [34], sets of observationally equivalent relationsw(z)

are described and their continuous dependence on the spectral density fy is
shown. In addition, a description of the set of all spectral densities fy corre-
sponding to a given r is derived.
For estimation and model selection in the dynamic case we refer to [30]

and [32]. In this area there is still a substantial number of unsolved problems.

12.4.3 Generalized Linear Dynamic Factor Models

In a number of applications, e.g., in asset pricing [40], in cross-country business
cycle analysis or in monitoring and forecasting economic activity by estimation
of common factors [41], the cross-sectional dimension may be very high, and may
even exceed sample size. In addition, the assumption that fu is diagonal turns
out to be too restrictive for many applications, where, e.g., “local” dependency
between noise components may occur.
Both the issue of weakening the assumption of uncorrelatedness on the noise

components and the issue to exploit information contained in very high dimen-
sional time series and to add information by adding an additional time series, led
to the development of generalized linear quasi-static and dynamic factor models,
see [42–44].
For the corresponding analysis the cross-sectional dimension s is not kept

fixed. We consider a double sequence (yt
(i) | i ∈ N, t ∈ Z) of observations

and assume that (ys
t = (y

(i)
t )i=1,...,s | t ∈ Z) has mean zero and is regular and

stationary for every s ∈ N. Using an obvious notation we write Eq. (12.57) as

ys
t = Λs(z)ξt + us

t , s ∈ N . (12.66)

Here, the factors ξt are assumed to be independent of s and, in particular, r

is constant. A basic idea is to replace the assumption of uncorrelatedness of the
noise components by a weak form of dependence which allows for an “averaging
out” (for s → ∞) of these components for certain linear combinations. For a
complete set of assumption for Eq. (12.66) we refer to [42] for the quasi-static
case and to [43] for the dynamic case. The main assumptions are:
Let ωy

s,k denote the kth largest eigenvalue of the spectral density fs
y of (ys

t |

t ∈ Z); we use an analogous notation for fs
ŷ and fs

u. Then we assume that all
s eigenvalues of fs

y(λ) are distinct for all λ and that

• lims→∞ ω
y
s,k(λ) = ∞ for all λ , k = 1, . . . , r (i.e., the first r eigenvalues of fs

y

diverge for s → ∞)
• there exists a c > 0 such that ωy

s,r+1 � c, for all λ, s ∈ N.
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These assumptions are central for implying the existence of a sequence of mod-
els (12.66), where Λs, ŷs

t , and us
t are nested in the sense that, e.g., us+1

t =

(us′
t , u

(s+1)
t )′ and which satisfy the following assumptions:

• The spectral densities fs
ŷ of the latent variables ŷ

s
t have rank r (assuming s > r)

and the associated nonzero eigenvalues ω
ŷ
s,k(λ) diverge for s → ∞, for all

λ, k = 1, . . . , r

• All eigenvalues of the spectral densities fs
u(λ) remain bounded for all λ and s.

The latter condition formalizes what we mean by weak dependence of the noise
components.
These conditions do not guarantee identifiability for fixed s, but ensure as-

ymptotic identifiability, e.g., in the sense that they allow to separate ŷ
(i)
t and u

(i)
t

for s → ∞.
Estimation for the quasi-static and the dynamic case, respectively, may be

performed by quasi-static [42] or dynamic PCA [43], since PCA and generalized
linear factor models are asymptotically equivalent in the sense that, e.g., the PCA
latent variables and suitable estimators for these variables converge to the cor-
responding generalized factor model variables, see e.g., [43] for a more precise
statement. The asymptotic analysis is performed for T → ∞ and s → ∞, again
we refer to [42] for the quasi-static case and to [43] for the dynamic case for de-
tails.
For forecasting, dynamic PCA, in general, has a severe disadvantage, since in

general

ŷt = O1(z)O1(z)∗yt

is a non causal filtering operation and thus ŷt may depend on ys, s > t. One way
to overcome this difficulty is to assume that Λs(z) is polynomial with degree q,
independent of s, and to write Eq. (12.66) as a quasi-static model

ys
t = (Λs, . . . , Λs

q)(ξ ′
t, . . . , ξ

′
t−q) + us

t

on the cost of having higher dimensional factors. For estimation and forecasting
in this context, we refer to [41, 44].

12.5 Summary and Outlook

In general terms, this contribution is concerned with data-driven modeling for
multivariate, (equally spaced) discrete time, time series data. Despite that iden-
tification of nonlinear systems is of increasing importance, in most applications,
for a number of reasons, linear systems still dominate. The author likes the state-
ment that “nonlinear system identification” is word like “nonelephant-zoology.”
In particular for the multivariate case, there are still important open problems
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and accordingly intensive research in a number of sub-areas of linear system
identification.
A basic assumption in this contribution is the use of stochastic models in

a stationary context. This is a very common setting, however not a universally
justified one. Recently linear system identification in a nonstochastic setting has
been analyzed in detail (see [45, 46]) and there is a large body of literature on
identification of unstable linear systems in a nonstationary context, in particular
on cointegration, which is of great importance in economics.
Specifically, this contribution treats two topics. The first is identification of

(multivariate) state space- and ARMA(X) systems. Despite the fact that such sys-
tems are more flexible compared to AR(X) systems, in many applications, the
latter still prevail. The reasons for this are twofold. First, the least-squares type
estimators of AR(X) systems are numerically fast and reliable and statistically as-
ymptotically efficient at the same time, and second, there is no complicated struc-
ture theory involved in this case. We argue that powerful estimation procedures
for (in particular multivariate) state space systems (and thus also for ARMA(X)

systems) have to be based on a rather deep understanding of the underlying
structure theory. A short account of structure theory is given. The intention here
is not to give a survey on state space system identification; we focus on two im-
portant recent developments. The first is subspace, in particular CCA, estimation.
The idea of subspace methods is to combine realization algorithms, which solve
an idealized identification problem, e.g., commencing from the “true” transfer
function, with a model reduction step (in most cases performed by SVD), lead-
ing to compression of information contained in the data. The second focus in the
first topic is on a special parameterization, called DDLC, for MLE. The idea here
is not to work with a finite number of prespecified coordinates, but to use the
orthocomplement to the tangent space at a certain point in the equivalence class
corresponding to a previous estimator as a parameter space. In this way the nu-
merical performance of Gauss–Newton-type procedures for optimizing the like-
lihood is improved. Both, subspace identification and DDLC have been mainly
developed in systems engineering and there is still little “technology transfer” to
other areas.
A number of important areas such as “structural identification,” taking into

account “physical” a priori knowledge, identification for control or tracking time
varying parameters have not been considered in the contribution.
The second topic treated in this contribution is factor models for time series.

A main idea here is compression of information in cross-section and time, mainly
in order to model high dimensional time series. Dynamic principal components,
linear dynamic factor models with idiosyncratic noise and generalized linear dy-
namic factor models are considered. In particular for the two latter model classes,
there is still a number of open problems, both in structure theory and in estima-
tion. Generalized linear dynamic factor models have been developed in econo-
metrics, and again there is little “technology transfer” to other areas.
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13 Spatio-Temporal Modeling for Biosurveillance
Using a Spatially Constrained State Space Model

David S. Stoffer and Myron J. Katzoff

Real-time disease surveillance is an essential part of the detection of disease out-
breaks. Although data are currently being collected in real-time, data analytic
tools that support both temporal and spatial data analysis and visualization are
lacking. In many cases, the analysis is accomplished by dropping either time
or space. Here, we discuss a class of spatially constrained state space models,
and we demonstrate its viability by analyzing weekly influenza and pneumonia
mortality collected in the northeastern United States by the Centers for Disease
Control. For biosurveillance, the main concern is whether the process has been
tampered with by the introduction of an outside agent. For general disease sur-
veillance, one is typically interested in whether or not an epidemic is imminent.
Our idea is to develop an optimal method for the prediction of events using the
available data in both space and time. If the number of events varies from its pre-
diction in the next time period, this indicates the system should be investigated
and monitored more closely.

13.1 Introduction

Real-time disease surveillance is essential in helping detect the presence of a dis-
ease outbreak, and in supporting the characterization of that outbreak by public
health officials. Although data are being collected in real-time, for example, by
the Centers for Disease Control (CDC) or by the Realtime Outbreak and Disease
Surveillance Laboratory (RODS) at the University of Pittsburgh, data analytic
tools that support both temporal and spatial data analysis and visualization are
lacking. At the present time, most analyses are accomplished by dropping (by
ignoring or by aggregating) either time or space.
We will present a viable method for monitoring such processes. The model

is related to the STARMAX model first discussed in Stoffer [1, 2]. The STAR-
MAX model is essentially a spatially constrained state space model, and we will
demonstrate the benefits of the model for the general analysis of processes col-
lected in both space and time.

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
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For biosurveillance, one of the main concerns is whether the process has been
tampered with by the introduction of an outside agent. Our idea is to develop
optimal methods for the prediction of events using the available data (or history)
in both space and time. This may be thought of as tracking an event (or disease).
If the number of events varies from its prediction in the next time period, this
produces a flag that indicates the process should be investigated and monitored
more closely. Although various methods appear to be promising, it seems that a
spatially constrained time series model is best suited for the job. The state space
model was developed for tracking a space vehicle to make sure it remains on
its orbit. In essence, we feel the biosurveillance problem has similarities to the
tracking problem.
To fix ideas, suppose we observe several processes evolving in space over

time, say

{Yt(s) : s = 1, . . . , q; t = 1, . . . , n}, (13.1)

where s denotes the location of the process and t denotes time. For most biosur-
veillance problems, it is reasonable to assume the processes are observed regu-
larly in time, but irregularly in space. Our goal is to predict Yn+1(s), for each s,
using the data given in Eq. (13.1). If we let Ŷn+1(s) denote the predicted value at
location s, then our interest is in the innovations

εn+1(s) = Yn+1(s) − Ŷn+1(s) (13.2)

for s = 1, . . . , q. If, when Yn+1(s) is observed, εn+1(s) is unduly large in magni-
tude, at any location s, this produces a flag that indicates the events should be
investigated and monitored by an expert (or experts). Hence, in biosurveillance,
we see our goal as optimal prediction in time for each location, as opposed to
optimal prediction of an unmonitored location (e.g., kriging).

13.2 Background

Although there has been a substantial amount of research in the area of spatio-
temporal analysis, the area is not nearly as developed as purely spatial analysis or
purely time series analysis. Much of the literature in the area of spatio-temporal
analysis has been authored by spatial analysts, although some work has been
done by time series analysts. For the most part, spatial analysts focus primarily on
estimation and prediction in space using time as a nuisance dimension, whereas
time series analysts focus on estimation and prediction in time using space as a
nuisance dimension. In this section we give some background on the research in
this area. We concern ourselves mainly with state space or dynamic linear models
(DLMs) because that is the focus of this work.
Pfeifer and Deutsch [3, 4] developed estimation for space–time ARMA mod-

els for prediction in time using known spatial constraints. The model is a vec-
tor ARMA with (known) spatially weighted coefficient parameter matrices. The
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model was originally developed in [5]. As previously mentioned, this idea was
generalized in Stoffer [1, 2], which is the basis of our investigation. In these pa-
pers, a spatially constrained ARMAX-type model was introduced. The state space
form of the model was introduced for use in cases where there are possibly miss-
ing observations. Huang and Cressie [6] proposed a simple modeling technique
using a vector autoregressive model with spatially dependent innovations.
Mardia et al. [7] defined the Kriged Kalman filter (KKF) as a particular type

of state space model for the analysis of spatio-temporal data. In this method, the
space–time field is decomposed into mean and error components. The mean com-
ponent is expressed as a time-varying linear combination of a time-dependent
parameter vector (state vector) and spatial fields (common fields). The state vec-
tor introduces a stochastic component into the mean structure. The spatial fields
are selected from a basis of the space of all possible spatial kriging estimates
for a given set of m sites and for a given second-order spatial structure (vari-
ogram). Then, the Kalman filter recursion is used. Maximum-likelihood estima-
tion via Newton–Raphson or the expectation–maximization (EM) algorithm was
suggested for parameter estimation.
Higdon [8, 9], used the state space form, but where the observation matrix has

elements that are a kernel over space. The model consists of a state process whose
dimension is the dimension of the number of locations of the underlying process
of interest. The observation equation can be of smaller dimension, depending
on which locations are actually being observed at a given time. The matrix that
relates the observations to the states is assumed to be a spatial kernel.
Wikle and Cressie [10, 11] introduce the space–time Kalman filter by assum-

ing that noisy observations are coming from an unobservable, latent, space–time
process. The latent (or state) process is modeled as a sum of weighted lagged
means and an error term. The weights from neighboring spatial locations form
an orthonormal basis; the error term has temporal variability but no temporal
dynamics. Then Kalman filter is used to obtain the value of the weighting para-
meters and the latent variable.
Sanso and Guenni [12, 13] used the Bayesian DLM, as described in [14], to ana-

lyze the Venezuelan rainfall data. Their framework accommodated time-varying
seasonality, trends and dependent lagged values in its linear structure. Spatial
correlations were handled by the parameters of the observation equation, by con-
sidering a completely unknown correlation matrix. Hence, their parameterization
calls for informative priors. Then Monte Carlo methods were used to obtain pos-
terior distributions for the parameters of the model.
A hierarchical DLMwas introduced in Brown et al. [15], where a time-varying

regression was used to find the relationship between gauge measurements and
radar rainfall. The time-varying coefficients were stochastically modeled using a
vector autoregressive (VAR) model, where the instantaneous covariance matrix
has a component that influences the purely spatial covariance. This component
was modeled in two ways, as separable and nonseparable correlation functions.
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For a separable correlation function, a product of an exponential function and
a Matern family correlation1 was used. For nonseparable correlation functions,
the method of blurring and smoothing was used. Then maximum likelihood was
used to estimate the parameters.
Stroud et al. [16] modeled the mean function jointly in space and time by

locally weighted mixtures of regression surfaces, i.e., the product of a weighting
kernel and a set of basis functions, where the regression surfaces vary through
time. Temporal trends and seasonal cycles and other exogenous variables can
be included in the model. The authors used the Kalman filter and smoothing
algorithms to obtain posterior predictive distributions in the closed form. This
modeling technique does not resort to MCMC simulations.

13.3 The State Space Model

Because the state space model or DLM is the workhorse of our procedure, we
present some of the basic ideas. In this case, we write the vector of observations
at time t and for all q locations as a q × 1 vector

Yt =
(
Yt(1), . . . , Yt(q)

) ′
. (13.3)

In the DLM, we suppose that Yt are observations of an unobserved latent, or state,
process Xt that is p-dimensional. The state process is assumed to be observed
with noise, say vt through the observation equation

Yt = MtXt + vt, (13.4)

where Mt are q × p measurement matrices that describe how the states are ob-
served at time t, and vt is assumed to be q-dimensional white noise, with the
variance–covariance matrix R. In its basic form, the state equation, which describes
the dynamic behavior of the state, is given by a vector autoregression,

Xt+1 = FXt + Gwt . (13.5)

In Eq. (13.5), F is a p×pmatrix of transition parameters, G is a p×rmatrix of pa-
rameter coefficients that describe the relationship of the r× 1 white noise process
wt to the states. We assume that the variance–covariance matrix of wt is Q. In
addition, we allow for the observation noise and state noise to be correlated at
time t, that is,

cov{wt, vu} = Sδu
t

where S is an r × q matrix and δu
t = 1 when t = u and zero otherwise. Typically

vt and wt are taken to be Gaussian processes, which are independent of the

1 This is defined as ρ(u;φ,κ) =
(
2κ−1Γ(κ)

)−1
(u/φ)κKκ(u/φ), whereφ and κ are parameters

and Kκ(·) denotes the modified Bessel function of the third kind, of order κ. The family is valid
for φ > 0 and κ > 0.
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initial state vector, X0 ∼ Np(µ0, Σ0). The coefficient matrices should be spatially
constrained, of course, and we will discuss this problem in the next section.
In general, our goal is to predict Yt+1 from the data Y1, . . .Yt. If the parame-

ters are known and the process is Gaussian, then we are interested in calculating
the minimum mean-square error predictor,

Yt
t+1

def
= E{Yt+1 | Yt, . . . ,Y1} , (13.6)

and the mean-square prediction error (MSPE),

Σt+1
def
= E{(Yt+1 − Yt

t+1)(Yt+1 − Yt
t+1)′} . (13.7)

Noting, from Eq. (13.4), that

Yt
t+1 = MtX

t
t+1 ,

where

Xt
t+1

def
= E{Xt+1 | Yt, . . . ,Y1} ,

our goal becomes obtaining Xt
t+1 and its MSPE,

Pt
t+1

def
= E{(Xt+1 − Xt

t+1)(Xt+1 − Xt
t+1)′} .

The results are contained in the famous Kalman filter, which we now state.

Theorem 13.1 (The Kalman filter). For the state space model specified in Eq. (13.4) and
Eq. (13.5), with initial conditions X0

1 = Fµ0 and P0
1 = FΣ0F′ +GQG ′, for t = 1, . . . , n,

Xt
t+1 = FXt−1

t + Kt(Yt − MtX
t−1
t ) , (13.8)

Pt
t+1 = (F − KtMt)P

t−1
t (F − KtMt)

′ + GQG ′

+ KtRK ′
t − GSK ′

t − KtS
′G ′ ,

(13.9)

where the so-called gain matrix is given by

Kt = (FPt−1
t M ′

t + GS)(MtP
t−1
t M ′

t + R)−1 . (13.10)

Proof. To establish Eq. (13.8), consider the innovations

εt = Yt − Yt−1
t = Yt − MtX

t−1
t , (13.11)

and note that

Xt
t+1 = E{Xt+1 | Y1, . . . ,Yt−1, Yt} = E{Xt+1 | Y1, . . . ,Yt−1, εt}

= FXt−1
t + Ktεt ,

(13.12)

where

Kt = cov(Xt+1, εt)[var(εt)]
−1 .
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The first part of the summand on the right-hand side of Eq. (13.12) follows be-
cause

E{Xt+1 | Y1, . . . ,Yt−1} = E{FXt + Gwt | Y1, . . . ,Yt−1} = FXt−1
t .

To evaluate Pt
t+1 given by Eq. (13.9), first note that by using Eq. (13.4) and

Eq. (13.12), we may write

Xt+1 − Xt
t+1 = (F − KtMt)(Xt − Xt−1

t ) + Gwt − Ktvt .

Thus, Eq. (13.9) follows from straight forward calculations by noting E(wtv
′
t) = S

and its transpose are the only cross-product terms that survive in the calculation.
The evaluation of Kt given in Eq. (13.10) also follows from straight forward

calculations. To verify Eq. (13.10), we have

cov(Xt+1, εt) = cov{FXt + Gwt, Mt(Xt − Xt−1
t ) + vt} = FPt−1

t M ′
t + GS ,

and

Σt = var(εt) = var{Mt(Xt − Xt−1
t ) + vt} = MtP

t−1
t M ′

t + R . (13.13)

Similarly, the initial conditions for the filter (13.8)–(13.10) are given by

X0
1 = E(X1) = Fµ0

P0
1 = var(X1 − FX0

1) = var(F[X0 − µ0] + Gw0) = FΣ0F′ + GQG ′ .

We also remark that fixed inputs (exogenous variables) can enter into the
model (13.4) and (13.5). The inclusion of inputs in the state and observation equa-
tions leads to simple and obvious adjustments to the predictions. For example,
suppose ut is an � × 1 vector of fixed inputs, and the model is now

Xt+1 = FXt + Hut + Gwt (13.14)

Yt = MtXt + Γut + vt (13.15)

where H (p × �) and Γ (q × �) are the parameter matrices. Then, the only change
to the filter is that Eq. (13.8) becomes

Xt
t+1 = FXt−1

t + Hut + Ktεt

where the innovation is now

εt = Yt − MtX
t−1
t − Γut .

The values in Eq. (13.11) and Eq. (13.13) are important quantities that will be
used for estimation. As previously mentioned, the prediction errors, εt, are called
the innovations, with corresponding innovation variance–covariance matrices, Σt.
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We may use Eq. (13.8) and Eq. (13.11) to write Eq. (13.4) and Eq. (13.5) in the
innovations form of the model given by

Xt
t+1 = FXt−1

t + Ktεt , (13.16)

Yt = MtX
t−1
t + εt . (13.17)

If the process is not Gaussian, the Kalman filter yields best linear prediction.
In this case, we may think of conditional expectation in the above arguments
as projection onto the closed span of the space generated by the conditioning
arguments.
For estimation, we can use the Gaussian form of the innovations likelihood.

Let Θ denote the k × 1 vector of parameters of interest, noting that in the model
(13.4)–Eq. (13.5), we have F = F(Θ), G = G(Θ), Q = Q(Θ), and R = R(Θ). Letting
LY(Θ) denote the likelihood of the data Y1, . . . ,Yn, note that we may write

LY(Θ) = fΘ(Y1, . . . ,Yn) =

n∏
t=1

fΘ(Yt | Yt−1, . . . ,Y1) =

n∏
t=1

fΘ(εt) .

The innovations are Gaussian, hence, ignoring a constant, we may write the like-
lihood as

− lnLY(Θ) =
1

2

n∑
t=1

log|Σt(Θ)| +
1

2

n∑
t=1

εt(Θ)′Σt(Θ)−1εt(Θ) , (13.18)

where we have emphasized the dependence of the innovations on the para-
meters Θ. Of course, Eq. (13.18) is a highly nonlinear and complicated func-
tion of the unknown parameters. A Newton–Raphson algorithm can be used
to minimize Eq. (13.18) with respect to Θ. The steps involved in performing a
Newton–Raphson estimation procedure are as follows:

1. Select initial values for the parameters, say, Θ(0).

2. Run the Kalman filter, Eqs. (13.8)–(13.10), using the initial parameter val-
ues, Θ(0), to obtain a set of innovations and error covariances, say, {ε(0)

t , Σ
(0)
t ;

t = 1, . . . , n}.

3. Run one iteration of a Newton–Raphson procedure with − lnLY(Θ) given in
Eq. (13.18) as the criterion function to be minimized, to obtain a new set of
estimates, say Θ(1).

4. At iteration j (j = 1, 2, . . . ), repeat step 2 using Θ(j) in place of Θ(j−1) to obtain
a new set of innovation values {ε

(j)
t , Σ

(j)
t ; t = 1, . . . , n}. Then repeat step 3

to obtain a new estimate Θ(j+1). Stop when the estimates or the likelihood
stabilize; for example, stop when the values of Θ(j+1) differ from Θ(j), or when
LY(Θ(j+1)) differs from LY(Θ(j)), by some predetermined, but small amount.
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We stress the fact that it is not necessary for the data to be Gaussian to consider
Eq. (13.18) as the criterion function to be used for parameter estimation. Further-
more, under certain rare conditions, the Gaussian MLE of Θ when the process is
non-Gaussian is asymptotically optimal; details can be found in [17].

13.4 Spatially Constrained Models

To motivate our approach, first consider the problem of fitting individual ARMA
models to each location. For ease, we will first concentrate on an ARMA(1, 1)

model. That is, suppose for each location s = 1, . . . , q, we model the time series
as

Yt(s) = φ(s)Yt−1(s) + vt(s) − θ(s)vt−1(s) , (13.19)

where vt(s) is white noise. These models can be combined into a vector state
space model as follows:

Xt+1 =




φ(1) · · · 0
...

. . .
...

0 · · · φ(q)


 Xt +



φ(1) − θ(1) · · · 0

...
. . .

...

0 · · · φ(q) − θ(q)


 vt ,

Yt = Xt + vt ,

(13.20)

where Xt, Yt and vt =
(
vt(1), . . . , vt(q)

) ′ are all q × 1 vector processes, Yt is as
described in Eq. (13.3). To verify Eq. (13.20), for any s = 1, . . . , q,

Yt(s) = Xt(s) + vt(s)

=
{

φ(s)Xt−1(s) + φ(s)vt−1(s) − θ(s)vt−1(s)
}

+ vt(s)

= φ(s)Yt−1(s) − θ(s)vt−1(s) + vt(s) .

Correlation among the locations can be introduced through R, the variance–co-
variance matrix of the q × 1 noise process, vt. This technique, which was used
in [18], will only be useful, however, if the processes are coherent equally across
all frequencies. That is, for such a model, the squared coherency between any
two locations, Yt(j) and Yt(k), is constant across all frequencies, ω, and will
be ρ2

jk(ω) = r2
jk/(rjj rkk), where rjk is the (j, k)th element of the R matrix. An

obvious extension of Eq. (13.20) is to write the state with general, rather than
diagonal, coefficient parameters, say

Xt+1 = FXt + Gvt and Yt = Xt + vt ,

where Xt and Yt are q×1 vector processes, and F and G are both q×q parameter
matrices. Thus, in full generality, there are 2q2 + q(q + 1)/2 parameters (coeffi-
cient and variance–covariance components) to estimate, where we recall q is the
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number of locations. Hence, the estimation problem will become restrictive even
for a relatively small number of sites.
Rather than use general F and G, it seems more appropriate to spatially con-

strain them using the knowledge of the spatial relationships among the sites. To
fix ideas, we concentrate on the representation given in Eq. (13.20) and use some
of the ideas presented in [2]. For example, consider the following model

Xt+1 = DΦXt + D(Φ − Θ)vt t = 0, 1, . . . , n (13.21)

Yt = Xt + vt t = 1, . . . , n (13.22)

where Xt is the q-dimensional state vector, Yt is the q-dimensional observation
vector consisting of observations Yt(s) for s = 1, . . . , q, taken at all locations at
time t, and vt is the q-dimensional noise vector with variance–covariance ma-
trix R. The q × q parameter matrices Φ and Θ are, as in Eq. (13.20), diagonal, and
D is a q × q matrix of spatial constraints with 1’s along the diagonal. If D is
the identity matrix, then there are no spatial constraints and Eqs. (13.21)–(13.22)
become the model specified in Eq. (13.20).
Using the same arguments that showed Eq. (13.19) can be written as Eq. (13.20),

the model (13.21)–(13.22) implies the model

Yt = DΦYt−1 + vt − DΘvt−1 . (13.23)

Of course, exogenous variables may be included, in which case the model be-
comes

Yt = DΦYt−1 + Γut + vt − DΘvt−1 , (13.24)

as previously discussed. We will refer to this model as a STARMAX(1, 1) model;
this model can be compared with the less general model given in [2].
The STARMAX model is easily generalized to arbitrary orders and spatial

constraints. For example,

Xt+1 =

[
D1Φ1 D2Φ2

I 0

]
Xt +

[
D1(Φ1 − Θ1)

D2Φ2

]
vt

Yt =
[
I, 0

]
Xt + Γut + vt

(13.25)

yields the STARMAX(2, 1) model

Yt = D1Φ1Yt−1 + D2Φ2Yt−2 + Γut + vt − D1Θ1vt−1, (13.26)

where I is the q × q identity matrix, D1 and D2 are the q × q first-order and
second-order spatial constraint matrices and Φ1, Φ2, Θ1 are diagonal q × q ma-
trices, as before. In this case, Xt is 2q × 1 and Yt is q × 1.
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If we examine Eq. (13.23) for an individual site, Yt(s), we see that

Yt(s) =

q∑
k=1

ds,kφkYt−1(k) −

q∑
k=1

ds,kθkvt−1(k) + vt(s)

= φsYt−1(s) − θsvt−1(s) + vt(s)

+
∑
k�=s

ds,k{φkYt−1(k) − θkvt−1(k)} ,

(13.27)

for s = 1, . . . , q, where we have writtenD = {ds,k},Φ = diag{φ1, . . . , φq} and Θ =

diag{θ1, . . . , θq}. From Eq. (13.27) we may deduce that forecasting the outcome
at location s at time n + 1, given the data Y1, . . . ,Yn, consists of two parts. The
first part is based on the model for the individual site s, and the second part is a
spatially weighted linear combination of the predicted outcomes from the other
sites. We can write this predictor as

Yn
n+1(s) = φsYn(s) − θsv

n
n(s) +

∑
k�=s

ds,k{φkYn(k) − θkvn
n(k)}, (13.28)

where vn
n =

(
vn

n(1), . . . , vn
n(q)

) ′
= E(vn | Y1, . . . ,Yn).

An interesting aspect of this problem is that, in biosurveillance, the processes
are typically evolving relatively slowly, over a week in our example. In that case,
it may be of interest to include contemporaneously measured outcomes in the
predictions. For example, we might consider changing Eq. (13.28) to

Yn
n+1(s) = φsYn(s)− θsv

n
n(s) +

∑
k�=s

δs,kYn+1(k)+ ds,k{φkYn(k)− θkvn
n(k)} ,

(13.29)

where the δs,k may be unknown parameters that can be spatially constrained.
The prediction equations (13.29) can be obtained by rewriting the basic model
given in Eq. (13.23) as

(I − ∆)Yt = DΦYt−1 + vt − DΘvt−1 , (13.30)

where ∆ has zeros along its diagonal and δs,k on the off-diagonals. Higher order
models can be written analogously. There will be an identifiability problem here
unless we assume that vt has independent components; for further details, see
Shumway and Stoffer ([19], pp. 397–400).
Another possibility that does not include adding more parameters would be

to include contemporaneously measured outcomes in terms of their local inno-
vations, namely,

Yn
n+1(s) = φsYn(s)−θsv

n
n(s)+

∑
k�=s

δs,k{Yn+1(k)−[φkYn(k)−θkvn
n(k)]} . (13.31)
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The prediction equation (13.31) may also be obtained from Eq. (13.30) by set-
ting ds,k = −δs,k, where, as previously indicated, vt has independent compo-
nents.
We formally define a STARMAX(a, b) model for spatial data Yt =

(
Yt(1), . . . ,

Yt(q)
) ′ collected (possibly irregularly) at q locations and regularly over time t =

1, . . . , n, with inputs ut, as

Yt =

a∑
j=1

DjΦjYt−j + Γut + vt −

b∑
j=1

DjΘjvt−j, (13.32)

where Φj and Θj are the diagonal q×q matrices, vt is white noise with the vari-
ance–covariance matrix R, and Dj are the q × q spatial constraint matrices with
ones along the diagonal. The model may be put into a state space representation
as was done in Eqs. (13.25) and (13.26), and the parameters may be estimated
using the innovations likelihood given in Eq. (13.18).
Model identification proceeds as is typical for a multivariate ARMAX process.

First, one would evaluate the dynamics of each univariate series and build the
multivariate model from the univariate models. This approach is justified by con-
sidering fitting a first-order model, as discussed in Eq. (13.27), where one first
proceeds by setting dsk = 0 in Eq. (13.27). Then, the results of the individual
model fits can be combined to construct the overall model; consideration of the
distance matrices, Dj in Eq. (13.32), may be handled as described in [2]. We give
a brief discussion here.
The specification of the spatial weighting matrices is left to the investigator

of the space–time system so that as many of the physical characteristics and con-
straints of the map can be employed. For regularly spaced systems, equal scaled
weighting is typically employed (see [20] or [4]). The weighting is a measure
of inverse distance between neighbors in which the nearest neighbors have the
most effect on each other. The weighting matrices adopted in the equal scaled
scheme are of the formW

(j)
sk = 1/n

(j)
s if locations s and k = 1, . . . , q are jth-order

neighbors, and W
(j)
sk = 0 otherwise, where W

(j)
sk is the skth element of a spatial

weighting matrix W(j), and n
(j)
s is the number of jth-order neighbors possessed

by site s. Thus all nonzero weights of a given site for a particular spatial order
are equal and scaled so that

∑
k W

(j)
sk = 1. To employ this idea in the STARMAX

model, one could choose the spatial distance matrices in to be of the form

Dj = I + W(1) + · · · + W(νj)

where νj is the spatial order of the jth coefficient in the model.
For some irregularly spaced systems, a reasonable method of spatial weight-

ing would be to base the weights on the Euclidean distance between each loca-
tion. For example, if δsk is the distance between location s and location k, pos-
sible weighting functions might be dj,sk = cj[δsk + 1]−αj , dj,sk = cj[δ

2
sk + 1]−αj

or dj,sk = cj exp[−αjδsk] for some constants cj > 0 and αj � 0, where dj,sk
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is the s, kth element of Dj. To include the effects of order on spatial weighting,
one might choose αj = jα, for example, where α is a constant. This approach, of
course, may be modified by allowing nonsymmetric weighting schemes wherein
dj,sk �= dj,ks when s �= k.
An alternative to the use of weighting as a function of the distance between

sites is to use the variogram to spatially weight the data. The variogram is
currently used in kriging as a method for estimating the spatial variation of
the map. Let δsk be the distance between site s and site k, and suppose that
E[Yt+h(s) − Yt(k)] = 0 and

var[Yt+h(s) − Yt(k)] = 2ηh(δsk) .

The function ηh(δsk) is called the variogram at lag h. These assumptions imply
that the spatial variation is stationary in its increments and is weaker than the
assumption of second-order spatial stationarity. The estimation of the variogram
depends on the particular phenomenon being studied. If the sites are at regular
spacing, one can estimate the variogram using the sample variance. If the exper-
imental sites are irregularly spaced, they may be grouped by classes of distance
(δ and angle φ), for example, all pairs of points less than one mile apart, from
one to two miles apart, and so forth, separating the pairs oriented approximately
north, south, east, and west. After estimating the variogram, one may wish to
propose and fit a theoretical model. Possible models, whose behaviors are based
on the sample variogram of actual data and are widely used, are the general-
ized linear model, the spherical model, the exponential model and the Gaussian model;
see [2] for details. Once the experimenter has arrived at a suitable measure of
spatial variation via the variogram, the measure may be used to create the spatial
weighting matrices D based on inverse distance. For example, if η̂1(δsk) is the
estimated variogram between site s and site k at lag 1, one could choose D1 to
have elements of the form d1,sk = c[η̂1(δsk) + 1]−α or d1,sk = c exp{−αη̂1(δsk)}

for some constants α � 0 and c > 0. Again note that one may choose asymmetric
spatial weights.

13.5 Data Analysis

In this section we present an analysis of surveillance data. For background, the
CDC receives weekly mortality reports from 122 cities and metropolitan areas in
the United States within two, three weeks from the date of death. These reports
summarize the total number of deaths occurring in these cities/areas each week,
as well as the number due to pneumonia and influenza. This system consistently
covers approximately one-third of the deaths in the United States and provides
CDC epidemiologists with preliminary information with which to evaluate the
impact of influenza on mortality in the United States and the severity of the
currently circulating virus strains. The advantage of this system is that it provides
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NYC

Newark

Philadelphia

Fig. 13.1: Location of the three cities in our example; New York City in New York,
Newark in New Jersey, and Philadelphia in Pennsylvania.

timely data two to three years before finalized mortality data are available from
the National Center for Health Statistics (NCHS).
Most often, the data collected are counts. Although Poisson models have been

developed for correlated data, we have found that the correlation structure and
multivariate nature (considering both space and time) of surveillance data may
be too complicated for analysis by Poisson time series models at this time. We
do acknowledge the fact that models such as generalized linear ARMA models
(see, e.g., [21]) and exponential family state space models (see, e.g., [22], Chapter
10) may be extended to include the spatial dimension. Also, the non-Gaussian
models and corresponding methodology based on Markov Chain Monte Carlo
methods presented in [23] might be able to be extended to the spatio-temporal
problem. Although we may produce slightly better predictions developing mod-
els for count data, it is not clear whether the complexity of such models will
render them useless for obtaining quick predictions that are needed for biosur-
veillance. We have, however, found that simple transformations such as differ-
encing can accomplish much in simplifying the correlation structure of the data.
The mortality data collected by the CDC exhibit long memory and level shifts.
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Fig. 13.2: Influenza and Pneumonia Mortality for Newark, New York City, and
Philadelphia.

We discovered that a simple variance-stabilizing transformation (the square root
transformation used for count data) followed by a differencing operation lead to
a simplified correlation and distribution structure for the data in much the same
way that one proceeds with financial data by considering percentage change (or
returns) rather than the raw data.
For example, Fig. 13.1 displays the spatial relationship of three sites in the

northeastern United States: Newark, New York City and Philadelphia. Figure 13.2
shows the combined influenza and pneumonia mortality series at these three
CDC sites from 1990 to 2003. We will denote the mortality series by mt(s) for
s = 1 (Newark), 2 (New York City), and 3 (Philadelphia). Figure 13.3 shows the
autocorrelation function (ACF) of each series. The ACF for Newark shows classic
long memory behavior. In addition to long memory, the ACF of the New York
City and Philadelphia series show seasonal persistence. Also, it is clear from
Fig. 13.2 that each series shows a slight negative trend over the approximate
13 year period and this may be accounting for the signs of long memory in the
ACFs. The negative trend suggests that we might first difference each series prior
to an analysis.



13.5 Data Analysis 323

Fig. 13.3: ACFs of the Newark, New York City, and Philadelphia mortality series.

Because the data are counts, we first take a square root transformation for
each site s = 1, 2, 3. Let

m∗
t(s) =

√
mt(s) + 1 ,
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Fig. 13.4: Transformed Newark, New York City, and Philadelphia mortality series.

which may be considered a variance-stabilizing transformation. Figure 13.4 shows
the first difference of each transformed series, that is,

∇m∗
t(s) = m∗

t(s) − m∗
t−1(s) .

It is clear that the transformed series are rather well behaved stationary series,
with the possibility of a few outliers. Figure 13.5 compares the empirical distrib-
ution functions (EDFs) of each series, ∇m∗

t(s), with the corresponding Gaussian
CDF. Clearly, except for the aforementioned outliers, a Gaussian model for the
transformed series seems appropriate in this case.
Figures 13.6–13.8 show the ACFs and PACFs of each of the transformed se-

ries, ∇m∗
t(s), for s = 1, 2, 3. We note that each series m∗

t(s) displays classic
IMA(1, 1) behavior. After preliminary fits of IMA(1, 1) models to each sepa-
rate series, it was clear that an AR term is needed for some of the series. Fi-
nally, we settle on a STARMAX(1, 1) model for the transformed, difference data,
Yt =

(∇m∗
t(1),∇m∗

t(2),∇m∗
t(3)

) ′,

Yt = DΦYt−1 + vt − DΘvt−1 , (13.33)
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Fig. 13.5: EDFs (solid line) versus Normal CDFs (dashed line) for the transformed
Newark, New York City, and Philadelphia mortality series.

where vt ∼ iid N3(0, R). We note that forecasts of m∗
t(s) can be easily obtained

from the forecasts of Yt.
In our analysis, we used maximum-likelihood estimation to estimate the six

off-diagonal elements of D, which we do not assume is symmetric, in addition to
the three diagonal elements of Φ, the three diagonal elements of Θ, and the six
elements of R. Thus, a total of 18 parameters are being estimated in contrast to
the 24 parameters that would be needed for unconstrained model. In addition to
reducing the number of parameters, of course, the Dmatrix helps in understand-
ing the spatial relationships among the sites. The final estimates are as follows:

D̂ =


 1 −0.08 0.00

−0.05 1 0.05

−0.04 −0.04 1


 (13.34)

Φ̂ = diag{0.00(.04), 0.09(.08), 0.12(.06)} (13.35)

Θ̂ = diag{0.94(.04), 0.63(.04), 0.85(.04)} (13.36)

where the terms in parentheses are standard errors, and
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Fig. 13.6: ACF and PACF of the transformed Newark mortality series.

chol(R̂) =


0.58 0.03 0.04

0.79 0.01

0.80


 (13.37)
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Fig. 13.7: ACF and PACF of the transformed New York City mortality series.

where chol(R̂) is the Cholesky decomposition of the estimate of R (with the zeros
deleted for ease of display).
From Φ̂ we note that the AR term is needed only for the Philadelphia mor-

tality series, but not for Newark or New York City. As expected from the ACFs
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Fig. 13.8: ACF and PACF of the transformed Philadelphia mortality series.

and PACFs in Figs. 13.6–13.8, the terms in Θ̂ are highly significant, supporting
the claim that the transformed mortality series are essentially IMA(1, 1) series. It
is interesting to consider the values of D̂. For example, the off-diagonal elements
of D̂ are small, indicating that the transformed processes are nearly uncorrelated
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Fig. 13.9: Diagnostics for the Newark fit.
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Fig. 13.10: Diagnostics for the New York City fit.

with each other. This fact is surprising when we consider how close the cities
are to one another. We also note that the spatial weighting is not symmetric; the
spatial relationship using Philadelphia mortality to predict Newark mortality is
nonexistent (d̂13 = 0), whereas the reverse is not true (d̂31 = −0.04).
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Fig. 13.11: Diagnostics for the Philadelphia fit.
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Fig. 13.12: Observed (as points) and predicted (as lines) values for each mortality
series.
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As previously mentioned, the Newark mortality series exhibit classic long
memory behavior. Rather than fit a long memory model, we chose to difference
the data, and this may be considered too severe an operation (as opposed to using
fractional differencing) in some cases. While this does not seem to be a problem
with the New York and Philadelphia series, there is some indication that the
Newark series was over-differenced (θ̂1 = 0.94(.04) is close to 1). Moreover, as
seen in top of Fig. 13.3, the ACF of the Newark series is small, but significant,
for large lag values, and it decreases linearly (rather than exponentially); this is
a strong indication of long memory. Because our goal is short-term forecasting
(one-step-ahead, in particular), we prefer to fit a simpler IMA(1, 1)-type model
than to fit a more complicated ARFIMA-type model to one of the series. As
discussed in [24], if the interest is in short-term prediction, low-order ARMA
models can produce competitive forecasts when predicting long memory time
series with fractionally differenced ARFIMA structure.
Figures 13.9–13.11 show diagnostics for each fit by displaying the standard-

ized innovations

et(s) =
(
Yt(s) − Ŷt−1

t (s)
)
/

√
P̂t−1

t (s)

where Ŷt−1
t (s) and P̂t−1

t (s) are the estimated one-step-ahead prediction and the
corresponding estimated MSPE at location s. The bottom halves of Figs. 13.9–
13.11 show the p-value for the Ljung–Box–Pierce statistic for each lag, up to lag 52
(lag 52 corresponds to the yearly lag). It is apparent from the diagnostics that the
innovations appear to be white noise, although there may be some small amount
of correlation left at the one year lag in the Newark and Philadelphia residuals.
Further investigation, however, showed that any correlation exhibited at the one
year lag is insignificant.
In terms of biosurveillance, the standardized innovations can be used to set

up some criteria for raising flags, indicating a series is out of control or has been
tampered with. For example, we would suggest having an expert (or experts)
closely monitor the series or related events, such as the number of emergency
calls, if the standardized innovation exceeds 2.5 or 3. That is, if the observed
mortality is larger than the predicted mortality by 2.5 or 3 times the standard
prediction error, the process, or related events, should be scrutinized. Figure 13.12
shows each mortality series as points, with the predicted values as lines. We note
that the predictions are very good, but there is a tendency to under-predict some
peaks in the New York City series.

13.6 Discussion

Motivated by problems in biosurveillance, we extended the work of [1] and [2]
for forecasting processes observed in both space and time. We presented the
STARMAX model, which is a spatially constrained ARMAX model. The benefit
of the model is that identification can be accomplished using well-known results
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from the fitting ARMAX models, while still reducing the numbers of unknown
parameters. We showed the viability of the model by comparing one-week-ahead
forecasts with their actual values for weekly influenza and pneumonia mortality
in three cities in the northeastern portion of the USA.
Many possible extensions to the modeling technique exist. For example, while

the STARMAX model uses the state space model for setting up the likelihood
(for estimation) and the Kalman filter (for prediction), we did not fully use the
idea of a latent process such as the state process Xt. Recall the general model
(without inputs) given in Eqs. (13.4)–(13.5). The data Yt(s), for s = 1, . . . , q, are
observations on a p-dimensional latent process, say Xt, which is evolving as
Xt+1 = FXt +Gwt where F is p×p, G is p×r, andwt is the r×1white noise with
the variance–covariance matrix Q. The observations in this case can be written as
Yt = MtXt + vt whereMt is a sequence of q × p measurement matrices, and vt

is white noise with the variance–covariance matrix R. The STARMAX model is
only a special case of this general model, but other approaches to the space–time
problem can be considered. As a simple example, suppose xt represents a latent
process that is the underlying cause of pneumonia mortality. In addition, for
example, suppose that xt follows an AR(2) process given by

xt = φ1xt−1 + φ2xt−2 + wt . (13.38)

This equation can be written as

Xt =

[
φ1 φ2

1 0

]
Xt−1 +

[
1

0

]
wt, (13.39)

where Xt = (xt, xt−1)′. Suppose further that, as in the data analysis section, we
are taking observations at q = 3 locations, and let Yt =

(
Yt(1), Yt(2), Yt(3)

) ′. The
observation equation is then

Yt = MtXt + vt, (13.40)

whereMt is a 3 × 2 matrix (of possibly parameter values) and vt is white noise
that is independent of wt. For example, if the first two sites are observing xt,
while the third site, which is far from the first two sites, is observing xt−1 (i.e.,
the process delayed by one time unit), then

Mt =


1 0

1 0

0 1




for all t. This, of course, assumes the relationship of the observations to the latent
process xt is known. If the relationship is unknown,Mt could consist of parame-
ters to be estimated, with possible spatial constraints among the parameters.
Another problem that we have not focused on, is the case when observations

are missing or are partially observed. For example, there were a few cases in
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the New York City series where no deaths were reported for a particular week,
and where only a few deaths were reported in a week. This can be seen in the
middle part of Fig. 13.12 around 1999, when there is a sudden drop in mortality.
It is more than likely that this effect was caused by under-reporting, although we
cannot be certain. In our example we filled in the few cases where zero deaths
were reported and left the under-reporting alone. However, if it were a problem,
we could try to fix it by using a technique discussed in Shumway and Stoffer
([19], § 4.4). The basic idea is that Mt in Eq. (13.40) would have a zero row for a
time t in which data are missing or under-reported. The actual value could be
estimated using Kalman smoothing, which we did not discuss here. We refer the
reader to [19] for details.
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14 Graphical Modeling of Dynamic Relationships in
Multivariate Time Series

Michael Eichler

The identification and analysis of interactions among multiple simultaneously
recorded time series is an important problem in many scientific areas. Of partic-
ular interest are directed interactions that describe the dynamics of the systems
and thus help to determine the causal driving mechanisms of the underlying
system. The dynamic relationships among multiple series intuitively can be vi-
sualized by a path diagram (or graph), in which the variables are represented
by vertices or nodes, and directed edges between the vertices indicate the dy-
namic or causal influences among the variables. In this chapter, we review re-
cent results on the properties of such graphical representation, which show that
path diagrams provide an ideal basis for discussing and investigating causal re-
lationships in multivariate time series. The key role in this graphical approach
is played by the so-called global Markov properties, which provide graphical
conditions for the (in-)dependences that may be observed if only subprocesses
instead of the full process are considered. Such considerations are, for example,
central for the discussion of systems that may contain latent variables. The em-
pirical analysis of dynamic interactions is commonly based on the concept of
Granger causality. While this concept is well understood in the time domain, the
time series of interest often are characterized in terms of their spectral properties.
Therefore, particular emphasis will be given to the frequency-domain interpreta-
tion of Granger causality and the graphical concepts discussed in this chapter.

14.1 Introduction

The analysis of the interrelationships among multiple simultaneously recorded
time series is an important problem in a variety of fields such as economics, engi-
neering, the physical and the life sciences. Of particular interest are the dynamic
relationships over time among the series, which help to determine the causal
driving mechanisms of the underlying system. In neuroscience, for instance, sig-
nals reflecting neural activity such as electroencephalographic (EEG) or local field
potentials (LFP) recordings have been used to learn patterns of interactions be-
tween brain areas that are activated during certain tasks and to improve thus our
understanding of neural processing of information (e.g., [1, 2]).
Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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The most commonly used approach for describing and inferring dynamic or
causal relationships in multivariate time series is based on vector autoregressive
models and the concept of Granger causality [3]. This probabilistic concept of
causality is based on the common sense perception that causes always precede
their effects in time: if one time series causes another series, knowledge of the
former series should help to predict future values of the latter series after influ-
ences of other variables have been taken into account. Since the concept does not
rely on an a priori specification of a causal model, it is particularly suited for em-
pirical investigations of cause-effect relationships; being basically a measure of
association, however, it can lead to the so-called spurious causalities if important
relevant variables are not included in the analysis (e.g., [4]).
An intuitive approach to summarize the dynamic relationships in complex

systems is to represent them in a graph, in which a set of vertices or nodes repre-
sents the variables and directed edges between the vertices indicate the dynamic
or causal influences among the variables. The graphical representation of causal
structures goes back to Wright [5, 6], who introduced path diagrams for the dis-
cussion of linear structural equation systems. More recently, graphs have been
used to visualize and analyze the dependences among variables in multivariate
data; for an introduction to the theory of graphical models we refer to the mono-
graphs of Whittaker [7], Cox and Wermuth [8], Lauritzen [9], and Edwards [10].
These theoretical advances and the introduction of Bayesian networks [11, 12]
have stimulated new interest in graphical representations of causal structures
and have led to the developments of concepts for a graph-theoretic analysis of
causality (e.g., [13–16]).
For the analysis of the dynamic relationships in multivariate time series, Eich-

ler [17, 18, 19] has introduced path diagrams that visualize the autoregressive
structure of weakly stationary processes and, thus, encode the Granger-causal
relationships among the variables of these processes. These graphs provide an
ideal basis for discussing and investigating causal relationships in multivariate
time series since, on the one hand, their Markov interpretation allows conclu-
sions on which dependences may be observed in arbitrary subprocesses and, on
the other hand, they have a natural causal interpretation if the observed process
comprises all relevant variables. Thus, the graphs can be used, for instance, to
examine whether the observed (in-)dependences in a vector time series are con-
sistent with the theoretically predicted (in-)dependences derived from a hypoth-
esized causal structure that possibly contains latent variables.
In this chapter we review the basic concepts for this graphical approach:

Granger causality, path diagrams for vector autoregressions and their Markov
properties, and statistical inference for such graphs. Since in many applications,
especially in neuroscience, the time series of interest are characterized in terms
of their spectral properties, particular emphasis will be given to the frequency-
domain interpretation of Granger causality and the related graphical represen-
tations. We find that causal modeling in the frequency domain leads to linear
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structural equation systems for the frequency components of the process, whose
structure is visualized by the path diagram associated with the autoregressive
representation of the process.

14.2 Granger Causality in Multivariate Time Series

The concept of Granger causality is a fundamental tool for the empirical inves-
tigation of dynamic interactions in multivariate time series. This probabilistic
concept of causality is based on the common sense conception that causes al-
ways precede their effects. Thus an event taking place in the future cannot cause
another event in the past or present. This temporal ordering implies that the past
and present values of a series X that influences another series Y should help to
predict future values of this latter series Y. Furthermore, the improvement in the
prediction of future values of Y should persist after any other relevant informa-
tion for the prediction has been exploited. Suppose that the vector time series Z

comprises all variables that might affect the dependence between X and Y such
as confounding variables. Then we say that a series X Granger-causes another
series Y with respect to the information given by the series (X, Y, Z) if the value
of Y(t + 1) can be better predicted by using the entire information available at
time t than by using the same information apart from the past and present values
of X. Here, “better” means a smaller variance of forecast error.
Because of the temporal ordering, it is clear that Granger causality can only

capture functional relationships for which cause and effect are sufficiently sepa-
rated in time. To describe causal dependences between variables at the same time
point, Granger [3] proposed the notion of “instantaneous causality.” In general, it
is not possible to attribute a unique direction to such “instantaneous causalities”
and we therefore will only speak of contemporaneous dependences.
In practice, the use of Granger causality mostly has been restricted to the

investigation of linear relationships. This notion of linear Granger causality is
closely related to the autoregressive representation of a weakly stationary process.

14.2.1 Granger Causality and Vector Autoregressions

Let XV = {XV(t), t ∈ Z} with XV (t) = (Xv(t), v ∈ V)′ be a weakly stationary
vector time series with mean zero and covariances c(u) = EXV (t)XV (t − u)′.
Throughout this chapter, we assume that the spectral density matrix

f(λ) =
1

2π

∑
u∈Z

c(u)e−iλu

exists and that all its eigenvalues are bounded and bounded away from zero uni-
formly for all frequencies λ ∈ [−π, π]. Under these assumptions, the process XV

has an autoregressive representation of the form

XV (t) =
∑
u∈N

a(u)XV (t − u) + εV(t) , (14.1)
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where a(u) is a square summable sequence of V × V matrices and {εV(t)} is a
white noise process with mean zero and nonsingular covariance matrix Σ. From
the equation for Xi(t), we obtain for the mean-square prediction error when Xi(t)

is predicted from the past values of XV

var
(
Xi(t) | X̄V (t − 1)

)
= var

(
εi(t)

)
= σii . (14.2)

Here, X̄V (t − 1) = {XV(t − u), u ∈ N} denotes the past values of XV at time t and
conditional variance is taken to be the variance about the linear projection.
Similarly, if we consider the subprocess X−j = XV\{j} consisting of all compo-

nents but Xi, it follows from the above assumptions on the spectral matrix that
X−j has an autoregressive representation

X−j(t) =
∑
u∈N

ã(u)X−j(t − u) + η−j(t) , (14.3)

where {η−j(t)} is a white noise process with mean zero and covariance matrix Σ̃.
Thus, the mean square prediction error for predicting Xi(t) from the past values
of X−j is given by

var
(
Xi(t) | X̄−j(t − 1)

)
= var

(
ηi(t)

)
= σ̃ii . (14.4)

In general, the mean square prediction error in Eq. (14.4) will be larger than that
in Eq. (14.2), and the two variances will be equal if and only if the best linear
predictor of Xi(t) based on the full past X̄V(t − 1) does not depend on the past
values of Xj. This leads to the following definition of Granger noncausality, which
we state more generally for vector subprocesses XI and XJ. Here, |A| denotes the
determinant of a square matrix A.

Definition 14.1. Let I and J be two disjoint subsets of V . Then XJ is Granger-
noncausal for XI with respect to XV if the following two equivalent conditions
hold:

(i)
∣∣var(XI(t) | X̄V\J(t − 1)

)∣∣ =
∣∣var(XI(t) | X̄V (t − 1)

)∣∣;
(ii) aIJ(u) = 0 for all u ∈ N.

Furthermore, if ΣIJ = 0, we say that XI and XJ are contemporaneously uncorrelated
with respect to XV .

In other words, the variables XI(t) and XJ(t) are contemporaneously uncorre-
lated with respect to XV if they are uncorrelated after removing the linear effects
of X̄V (t − 1). We note that the autoregressive representations describe only lin-
ear relationships among the variables and thus, strictly speaking, relate to linear
Granger noncausality. In the sequel, we will use the term Granger noncausality
in this restricted meaning.
In practice, tests for Granger noncausality are mostly based on condition (ii)

as it is formulated only in terms of the autoregressive coefficients in the full
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model and, thus, does not require fitting of multiple models (e.g., [4, 20–22]); the
measure for conditional linear feedback proposed by Geweke [23], however, is
based on condition (i).
From the definition of Granger noncausality in terms of the autoregressive

parameters, it is clear that the notion of Granger noncausality depends on the
multivariate time series XV available for the analysis. If we consider only a sub-
process XV ′ with V ′ ⊆ V instead of the full process XV , the vector time series XV ′

has again an autoregressive representation

XV ′(t) =
∑
u∈N

ã(u)XV ′(t − u) + ε̃V ′(t) ,

but the coefficients ã(u) in general will differ from the coefficients aV ′V ′(u) in
the representation (14.1). To illustrate this dependence on the set of selected vari-
ables, we consider the four-dimensional vector autoregressive process XV with
components

X1(t) = αX4(t − 2) + ε1(t) ,

X2(t) = βX4(t − 1) + γX3(t − 1) + ε2(t),

X3(t) = ε3(t),

X4(t) = ε4(t),

(14.5)

where εv(t), v = 1, . . . , 4 are independent and identically normally distributed
with mean zero and variance σ2. From Eq. (14.5), we find that, for example,
X3 Granger-causes X2 with respect to XV , but not X1 or X4. However, if we con-
sider only the three-dimensional subprocess X{1,2,3}, simple calculations show
that X{1,2,3} is given by

X1(t) =
αβ

1 + β2
X2(t − 1) −

αβγ

1 + β2
X3(t − 2) + ε̃1(t) ,

X2(t) = γX3(t − 1) + ε̃2(t) ,

X3(t) = ε̃3(t) ,

(14.6)

where ε̃3(t) = ε3(t), ε̃2(t) = ε2(t) + βX4(t − 1), and

ε̃1(t) = ε1(t) −
αβ

1 + β2
ε2(t − 1) +

α

1 + β2
X4(t − 2) .

From this representation, it follows that X3 Granger-causes not only X2 but
also X1 with respect to X{1,2,3}. In contrast, if we restrict the information further
and consider only the bivariate subprocess X{1,3}, we obtain from Eq. (14.6) that
the two components X1 and X3 are two uncorrelated white noise processes; in
particular, this implies that X3 is Granger-noncausal for X1 with respect to X{1,3}.
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14.2.2 Granger Causality in the Frequency Domain

In many applications, the time series of interest are characterized in terms of
their frequency properties; typical examples can be found in Chapters 15 and
16. It is therefore important to examine the relationships among multiple time
series also in the frequency domain. The frequency-domain analysis of weakly
stationary vector time series XV is based on the spectral representation of XV ,
which is given by

XV (t) =

∫π

−π

eiλt dZXV
(λ), (14.7)

where dZXV
(λ) is a random process on [−π, π] that takes values in CV and

has mean zero and orthogonal increments (e.g., [24]). In this representation, the
complex-valued random increments dZXi

(λ) indicate the frequency components
of the time series Xi at frequency λ. The increments are related to the spectral
density matrix of XV by

E
(
dZXV

(λ)dZXV
(µ)′

)
= f(λ)δ(λ − µ)dλdµ ,

where δ(u) is the Dirac-delta function. In other words, the spectral density ma-
trix f(λ) can be viewed as the covariance matrix of the frequency components
of XV at frequency λ. Similarly, let

εV (t) =

∫π

−π

eiλt dZεV
(λ)

be the spectral representation of the error process εV = {εV(t)} in the autoregres-
sive representation of XV in Eq. (14.1). Since εV is a white noise process with the
covariance matrix Σ, the increments dZεV

(λ) satisfy

E
(
dZεV

(λ)dZεV
(µ)′

)
= Σδ(λ − µ)dλdµ .

The autoregressive representation implies that the frequency components of the
processes XV and εV are related by the linear equation system

dZXV
(λ) = A(λ)dZXV

(λ) + dZεV
(λ) , (14.8)

where

A(λ) =
∑
u∈N

a(u)e−iλu (14.9)

is the Fourier transform of the autoregressive coefficients a(u). The coeffici-
ent Aij(λ) vanishes uniformly for all λ ∈ [−π, π] if and only if Xj is Granger-
noncausal for Xi with respect to XV . This suggests that the linear equation system
Eq. (14.8) reflects the causal pathways by which the frequency components influ-
ence each other. More precisely, the complex-valued coefficient Aij(λ) indicates
how a change in the frequency component of the series Xj affects the frequency
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component of Xi if all other components are held fixed, that is, Aij(λ) measures
the direct causal effect of Xj on Xi at frequency λ.
As a coefficient in a linear equation system, Aij(λ) is not scale invariant, which

makes it difficult to assess the strength of a directed relationship. Baccala and
Sameshima [25, 26] used a factorization of the partial spectral coherence to derive
a normalized frequency-domain measure for Granger causality, which they called
the partial directed coherence (PDC). The PDC from Xj to Xi is defined as

πij(λ) =
Āij(λ)√∑

k∈V |Ākj(λ)|2
,

where Ā(λ) = I − A(λ) and I is the identity matrix. With this normalization, the
PDC indicates the relative strength of the effect of Xj on Xi as compared to the
strength of the effect of Xj on the other variables. Thus, partial directed coherence
ranks the relative interaction strengths with respect to a given signal source.
We note that other normalizations are possible; in Section 14.5, we propose an
alternative rescaling based on an asymptotic significance level.
Linear equation systems have been widely used in economics and in the social

sciences for simultaneously representing causal and statistical hypotheses relat-
ing a set of variables (e.g., [27–29]). In general, the structure of such systems is
not uniquely determined by the distribution of the variables and, thus, cannot
be determined empirically from data, but, on the contrary, must be determined
from prior knowledge of the causal relations. In contrast, the coefficients in the
above systems (14.9) are completely specified by the unique autoregressive rep-
resentation of the process XV and the implied requirements that A(λ) must be
of the form (14.9) and that the covariance matrix of the error term dZεV

(λ) does
not depend on the frequency λ.
Finally, we note that such causal interpretations should be treated with cau-

tion since they rely on the assumption that all relevant information has been
included. The omission of important variables can lead to the so-called spurious
causalities, which invalidate the causal interpretation of empirically determined
Granger-causal relationships among the variables.

14.2.3 Bivariate Granger Causality

Although Granger [3, 30] always stressed the need to include all relevant infor-
mation in an analysis to avoid spurious causalities, much of the literature on
Granger causality has been concerned with the analysis of relationships between
two time series or two vector time series (see, e.g., [31–34]). As a consequence,
relationships among multiple time series are still quite frequently investigated
using bivariate Granger causality, that is, analyzing pairs of time series sepa-
rately (see, e.g., [35–38]). For a better understanding of this bivariate approach
and its relation to a full multivariate analysis based on multivariate Granger cau-
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sality, we will discuss in the sequel also the use of bivariate Granger causality for
describing directed relationships among multiple time series.
Suppose that XV is a weakly stationary process of the form Eq. (14.1). Then

for i, j ∈ V the bivariate subprocess X{i,j} is again a weakly stationary process
and has an autoregressive representation

Xi(t) =
∑
u∈N

ãii(u)Xi(t − u) +
∑
u∈N

ãij(u)Xj(t − u) + ε̃i(t) ,

Xj(t) =
∑
u∈N

ãji(u)Xi(t − u) +
∑
u∈N

ãjj(u)Xj(t − u) + ε̃j(t) ,
(14.10)

where ε̃(t) =
(
ε̃i(t), ε̃j(t)

) ′ is a white noise process with the covariance matrix Σ̃.
From this representation, it follows that Xj is bivariately Granger-causal for Xi if
and only if the coefficients ãij(u) are zero for all lags u ∈ N. Similarly, Xi and Xj

are bivariately contemporaneously uncorrelated if σ̃ij = 0.

14.3 Graphical Representations of Granger Causality

The causal relationships among the variables in complex multivariate systems
are often visually summarized by graphs in which the nodes or vertices rep-
resent the variables and directed edges between the vertices indicate causal in-
fluences among the variables. In this section, we formally define such graphs
for representing the multivariate or the bivariate Granger-causal relationships in
multivariate time series; the properties of these graphs will then be discussed in
Section 14.4.

14.3.1 Path Diagrams for Multivariate Time Series

Intuitively, the Granger-causal relationships in a weakly stationary vector time
series XV can be encoded and visualized by a path diagram in which the ver-
tices v ∈ V represent the components Xv of the process and directed edges (−→)
between the vertices indicate Granger-causal influences. To obtain a complete
description of the dependence structure of XV , we additionally include undi-
rected edges (���) to depict contemporaneous correlations between the compo-
nents of XV . Since the Granger-causal relationships of XV are determined by the
autoregressive representation of XV , we obtain the following definition of path
diagrams associated with vector autoregressive processes [19, 39].

Definition 14.2. Let XV be a weakly stationary time series with autoregressive
representation Eq. (14.1). Then the path diagram associated with XV is a graph
G = (V, E) with vertex set V and edge set E such that for i, j ∈ V with i �= j

(i) j −→ i /∈ E ⇐⇒ aij(u) = 0 for u ∈ N;

(ii) j ��� i /∈ E ⇐⇒ σij = 0.
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1

2

3

4

5

Fig. 14.1: Path diagram associated with a five-dimensional VAR(1) process that
satisfies the parameter constraints in Eqs. (14.11) and (14.12).

In other words, the path diagram G contains a directed edge j −→ i if and
only if Xj Granger-causes Xi with respect to the full series XV ; similarly, an undi-
rected edge i ��� j is present in the path diagram if and only if Xi and Xj are
contemporaneously correlated with respect to XV . For this reason, such path di-
agrams have also been called Granger causality graphs [17, 40].
The path diagram associated with a process XV has also a natural interpre-

tation in terms of the frequency components dZXV
(λ) of XV . As we have seen

in Section 14.2.2 that the autoregressive representation of XV corresponds to the
linear equation systems

dZXV
(λ) = A(λ)dZXV

(λ) + dZεV
(λ) ,

where the error component dZεV
(λ) has basically the covariance matrix Σ. It

follows that the path diagram G associated with XV can also be viewed as the
path diagram of the above linear equation systems1 for all frequencies λ, and its
edges equivalently are determined by the conditions

(i) j −→ i /∈ E ⇐⇒ Aij(λ) = 0 for λ ∈ [−π, π];

(ii) j ��� i /∈ E ⇐⇒ σij = 0.

We note that two vertices in a path diagram may be connected by up to three
edges. As an example, we consider the five-dimensional vector autoregressive
process

X(t) = aX(t − 1) + ε(t), var
(
ε(t)

)
= Σ

with the coefficient matrix

a =




a11 0 a13 0 0

0 a22 0 a24 0

a31 a32 a33 0 0

0 0 a43 a44 a45

0 0 a53 0 a55




(14.11)

1 In path diagrams for structural equation systems, correlated errors commonly are represented
by bi-directed edges (←→) instead of dashed lines (���). Since in our approach directions are
associated with temporal ordering, we prefer (dashed) undirected edges to indicate correlation be-
tween the error variables. Dashed edges with a similar connotation are used for covariance graphs
(e.g., [8]), whereas undirected edges −−− are commonly associated with nonzero entries in the in-
verse of the variance matrix (e.g., [9]).
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(a)

1

2

3

4 (b)

1

2

3

Fig. 14.2: Path diagrams associated with (a) four-dimensional process XV given by
Eq. (14.5) and with (b) three-dimensional subprocess X{1,2,3}.

and the covariance matrix

Σ =




σ11 σ12 σ13 0 0

σ21 σ22 σ23 0 0

σ31 σ32 σ33 0 0

0 0 0 σ44 0

0 0 0 0 σ55




. (14.12)

The autoregressive structure of XV is visualized by the associated path diagram
shown in Fig. 14.1. The diagram indicates, for example, that there is a feedback
loop between variables X1 and X3, or that X1 affects X4 indirectly with X3 as
mediating variable.
From our discussion in Section 14.2.1, it is clear that the path diagram de-

pends on the set of variables included in the process XV . To illustrate this depen-
dence, let us again consider the four-dimensional process in Eq. (14.5). Its asso-
ciated path diagram is depicted in Fig. 14.2(a), which, for example, shows that
X3 is Granger-noncausal for X1 with respect to XV . In contrast, if we consider
only variables X1, X2, and X3, the corresponding autoregressive representation
in Eq. (14.6) yields the path diagram in Fig. 14.2(b); in this graph, there is a di-
rected edge from vertex 3 to vertex 1, which implies that X3 Granger-causes X1

with respect to the subprocess X{1,2,3}.
We note that more detailed graphical descriptions of the dependences among

the components of XV are possible by representing each variable Xv(t) for all
time points t by a separate node (see, e.g., [40–42]). However, identification of
such graphs easily becomes infeasible due to the large number of possible edges.
Moreover, such a level of detail is not always wanted; in particular, graphs of this
type have no direct interpretation in terms of the frequency components of the
process.

14.3.2 Bivariate Granger Causality Graphs

When the directed relationships in a vector time series XV are described in terms
of bivariate Granger causality, the results of such bivariate analyzes again can be
graphically represented by a path diagram. In these graphs, bivariate Granger-
causal relationships will be indicated by the dashed directed edges (���) in order
to distinguish these edges from the directed edges in multivariate path diagrams,
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1
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3

4

Fig. 14.3: Bivariate Granger causality graph associated with four-dimensional
process XV given by Eq. (14.5).

which represent Granger causal influences with respect to the full multivariate
process XV . This leads to the following definition of bivariate path diagrams or
bivariate Granger causality graphs, which visualizes the bivariate connectivities in
vector time series.

Definition 14.3. Let XV be a weakly stationary time series of the form Eq. (14.1).
Then the bivariate path diagram associated with XV is a graph G = (V, E)with vertex
set V and edge set E such that for all i, j ∈ V with i �= j

(i) j ��� i /∈ E ⇐⇒ ãij(u) = 0 for u ∈ N,

(ii) j ��� i /∈ E ⇐⇒ σ̃ij = 0,

where ãij(u), u ∈ N and σ̃ij are the parameters in the autoregressive representa-
tion (14.10) of the bivariate subprocess X{i,j}.

From the above definition, it is clear that, for any subprocess XS of XV , the
bivariate Granger causality graph of XS is given by the subgraph GS that is
obtained from the bivariate causality graph G by removing all vertices that are
not in S and all edges—directed or undirected—that do not have both endpoints
in S.
As an example, we again consider the four-dimensional process in Eq. (14.5).

For the bivariate Granger causality graph, we have to determine the bivariate
autoregressive representations for all pairs Xi and Xj. Simple calculations show,
for example, that X{1,2} is given by

X1(t) =
αβ

1 + β2 + γ2
X2(t − 1) + ε̃1(t),

X2(t) = ε̃2(t).

Furthermore, we have already shown in Section 14.2.1 that the components X1

and X3 are completely uncorrelated in a bivariate analysis. Evaluating similarly
the autoregressive representations for all other bivariate subprocesses, we obtain
the bivariate path diagram in Fig. 14.3 as a visualization of the bivariate Granger-
causal relationships among the variables. In this graph, the directed edge 2 ��� 1

suggests a causal influence of X2 on X1. Comparison with the corresponding
multivariate path diagram in Fig. 14.2(a) shows that this “causal influence” is
spurious as it is only induced by the common influence from variable X4.
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In general, the relationship between the two notions of multivariate and bi-
variate Granger causality is more complicated than in this simple example, and,
in most cases, an analytic derivation of the bivariate representation would be
very difficult to obtain. In the following section, we discuss graphical conditions
that allow drawing conclusions about one graph from the other.

14.4 Markov Interpretation of Path Diagrams

The edges in the path diagrams discussed in this chapter represent pairwise
Granger-causal relationships with respect to either the complete process in the
case of multivariate path diagrams or with respect to bivariate subprocesses in
the case of path diagrams depicting bivariate connectivity structures. The results
in this section show that both types of path diagrams more generally provide suf-
ficient conditions for Granger-causal relationships with respect to subprocesses
XS for arbitrary subsets S of V .

14.4.1 Separation in Graphs and the Global Markov Property

The basic idea of graphical modeling is to represent the Markov properties of
a set of random variables in a graph by relating certain separation properties
of the graph to statements about conditional independence or, in the linear case,
partial noncorrelation between the variables. To this end, we firstly review a path-
oriented concept of separating subsets of vertices in a mixed graph that has been
used to represent the Markov properties of linear structural equation systems
(e.g., [43, 44]). Following Richardson [45] we will call this notion of separation in
mixed graphs as m-separation.
Let G = (V, E) be a mixed graph with directed edges (−→) and undirected

edges (���). A path in G is a sequence π = 〈e1, . . . , en〉 of edges ei ∈ E with
an associated sequence of vertices v0, . . . , vn such that edge ei connects vertices
vi−1 and vi. We say that v0 and vn are the endpoints of the path, while the vertices
v1, . . . , vn−1 are the intermediate vertices on the path. Note that the vertices v i in
the sequence do not need to be distinct and that therefore the paths considered
in this chapter may be self-intersecting.
Furthermore, an intermediate vertex c on a path π is said to be a collider on the

path if the edges preceding and succeeding c on the path both have an arrowhead
or a dashed tail at c, i.e., −→ c ←−, −→ c ���, ��� c ←−, ��� c ���; otherwise the
vertex c is said to be a noncollider on the path. Next, let S be a subset of V and
let i and j be two vertices that are not in S. Then a path π between the vertices i

and j is said to be m-connecting given the set S if

(i) every noncollider on the path is not in S and

(ii) every collider on the path is in S,
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Fig. 14.4: Illustration of m-separation in mixed graphs: Vertices 1 and 4 are m-
separated given S = {3} since all paths between 1 and 4 are m-blocked given S.
(a) path 4 −→ 3 −→ 1 is m-blocked by noncollider 3 ∈ S; (b) path 4 −→ 2 ←− 1

is m-blocked by collider 2 �∈ S; (c) path 4 −→ 3 ��� 2 ←− 1 is m-blocked by
collider 2 �∈ S

otherwise we say the path is m-blocked given S. If all paths between i and j are
m-blocked given S, then i and j are said to be m-separated given S. Similarly, two
disjoint subsets I and J are said to be m-separated given S if for every pair i ∈ I

and j ∈ J, the vertices i and j are m-separated given S.
To illustrate these graph-theoretic concepts, we consider the graph in Fig. 14.4.

In this graph, vertices 1 and 4 are m-separated given S = {3}. To show this, we
have to examine all paths between the two vertices:

• We note that every path that passes through vertex 2 contains this vertex as a
collider. Two examples of such paths are given in Fig. 14.4(b) and (c). Since 2

is not contained in S = {3}, all these paths are m-blocked given S.

• The only path between vertices 1 and 4 that does not pass through vertex 2 is
the path 4 −→ 3 −→ 1 (Fig. 14.4(a)). The intermediate vertex 3 on this path is a
noncollider and, thus, the path is m-blocked given {3}.

It follows that there exists no path between 1 and 4 that ism-connecting given S =

{3}, and the vertices 1 and 4 are consequently m-separated given S.
For linear structural equation systems, Koster [44] has shown that the asso-

ciated path diagrams have indeed a Markov interpretation, namely, if two sets
I and J of vertices are m-separated given a third set S, the corresponding vari-
ables XI and XJ are independent conditionally on XS. The linear equation system
(14.8) for the frequency components dZXV

(λ) suggests that a similar result also
holds for the frequency components in the time series case. Moreover, since the
frequency components at different frequencies are uncorrelated—or independent
in the Gaussian case—the separation statements should also translate into non-
correlation between complete subprocesses.
To make this precise, let XV be a weakly stationary time series with autore-

gressive representation (14.1), and let G be its associated multivariate path dia-
gram. Furthermore, suppose that I, J, and S are disjoint subsets of V , and let YI|S

and YJ|S be the residual time series of XI and XJ, respectively, after the linear
effects of the components in XS have been removed (see [46], Section 8.3). Then
the two subprocesses XI and XJ are partially uncorrelated given XS if

corr
(
XI(t), XJ(s) | XS

)
= corr

(
YI|S(t), YJ|S(s)

)
= 0 (14.13)
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for all t, s ∈ Z; this will be denoted by XI ⊥ XJ | XS. For an alternative formula-
tion in the frequency domain, let

fIJ|S(λ) = fIJ(λ) − fIS(λ)fSS(λ)−1fSJ(λ) = fYI|SYJ|S
(λ)

be the partial cross-spectrum between XI and XJ given XS, and let RIJ|S(λ) be
the partial spectral coherency given by

Rij|S(λ) =
fij|S(λ)√

fii|S(λ)fjj|S(λ)
(14.14)

for i ∈ I and j ∈ J (see [46], Section 8.3). Then condition (14.13) is equivalent to

RIJ|S(λ) = 0 for all λ ∈ [−π, π] . (14.15)

Since the partial spectral coherency can be viewed as the partial correlation be-
tween frequency components, this implies that dZXI

(λ) and dZXJ
(λ) are par-

tially uncorrelated given dZXS
(λ) for all frequencies λ ∈ [−π, π]. With these defi-

nitions, it can be shown (e.g., [19]) that path diagrams associated with vector time
series have a Markov interpretation both in the time and the frequency domain.

Theorem 14.1. Suppose XV is a weakly stationary time series with autoregressive repre-
sentation (14.1), and let G be the path diagram associated with XV . Furthermore, let I, J,
and S be disjoint subsets of V . Then, if I and J are m-separated given S, the process XV

satisfies

(i) XI ⊥ XJ | XS;

(ii) dZXI
(λ) ⊥ dZXJ

(λ) | dZXS
(λ) for all λ ∈ [−π, π].

This property is called the global Markov property with respect to G.

As an example, we again consider the four-dimensional process in Eq. (14.5)
and its associated path diagram in Fig. 14.2(a). Here, vertices 1 and 3 are linked
by the path 1 ←− 4 −→ 2 ←− 3. Obviously, the path is m-connecting given S only
if S = {2} since 2 is a collider and 4 is a noncollider on this path. It follows from
Theorem 14.1 that the two processes X1 and X3 are uncorrelated in a bivariate
analysis, but not in a trivariate analysis that also includes X2.

14.4.2 The Global Granger-Causal Markov Property

Next, we discuss how the graph-theoretic concepts presented in the previous sec-
tion can be used for deriving Granger noncausality relations from path diagrams.
For a better understanding of the problem, we firstly consider the autoregressive
process XV given by

X1(t) = αX2(t − 1) + ε1(t) ,

X2(t) = βX3(t − 1) + ε2(t) ,

X3(t) = ε3(t)

(14.16)
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Fig. 14.5: (a) Multivariate path diagram associated with the trivariate process XV

given by Eq. (14.16); (b) bivariate path diagram associated with XV

with var
(
ε(t)

)
= I. The associated path diagram is shown in Fig. 14.5(a). The dia-

gram shows a directed path from vertex 3 to 1, which suggests an indirect causal
influence of X3 on X1. Indeed, noting that the autoregressive representation of
the subprocess X{1,3} is given by

X1(t) = αβX3(t − 2) + ε̃1(t) ,

X3(t) = ε̃3(t)

with ε̃1(t) = ε1(t) + βε2(t − 1), ε̃3(t) = ε3(t), and associated bivariate path
diagram as shown in Fig. 14.5(b), we find that X3 bivariately Granger-causes X1,
whereas X1 is bivariately Granger-noncausal for X3. Obviously, the notion of m-
separation is too strong for the derivation of such Granger noncausality relations
from multivariate path diagrams: the definition of m-separation requires that all
paths between vertices 1 and 3 are m-blocked whereas the path 3 −→ 2 −→ 1

intuitively is interpreted as a causal link from X3 to X1. Consequently, the path
should not be considered when discussing Granger noncausality from X1 to X3.
The example suggests the following definition. A path π between vertices

j and i is said to be i-pointing if it has an arrowhead at the endpoint i. More
generally, a path π between J and I is said to be I-pointing if it is i-pointing
for some i ∈ I. In order to establish Granger noncausality from XJ to XI, it is
sufficient to consider only all I-pointing paths between I and J (cf. [19]).

Theorem 14.2. Suppose XV is a weakly stationary time series with autoregressive repre-
sentation (14.1) and let G be the path diagram associated with XV . Furthermore, suppose
that S ⊂ V and let I and J be the two disjoint subsets of S. If every I-pointing path be-
tween J and I ism-blocked given S\ J, then XJ is Granger-noncausal for XI with respect
to XS.

Similarly, a graphical condition for contemporaneous correlation can be ob-
tained. Intuitively, two variables Xi and Xj are contemporaneously uncorrelated
with respect to XS if they are contemporaneously uncorrelated with respect to
XV and, furthermore, the variables are not jointly affected by past values of the
omitted variables XV\S. For a precise formulation of the condition, we need the
following definition. A path π between vertices i and j is said to be bi-pointing if
it has an arrowhead at both endpoints i and j. Then the sufficient condition for
contemporaneous correlation can be stated as follows (cf. [19]):
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Theorem 14.3. Suppose XV is a weakly stationary time series with autoregressive rep-
resentation (14.1), and let G = (V, E) be the path diagram associated with XV . Further-
more, suppose that S ⊂ V and let I and J be the two disjoint subsets of S. If

(i) i ��� j /∈ E for all i ∈ I and j ∈ J, and

(ii) every bi-pointing path between I and J is m-blocked given S,

then XI and XJ are contemporaneously uncorrelated with respect to XS.

In other words, if two variables Xi and Xj are contemporaneously correlated
in the subprocess XS, then they are also contemporaneously correlated in the full
process XV or the contemporaneous correlation is due to confounding through
the variables along an m-connecting path between i and j.
As an example, consider the four-dimensional process XV given by Eq. (14.5).

The path diagram associated with XV is shown in Fig. 14.6(a). Suppose that
we are interested in the Granger-causal relationships that hold for the three-
dimensional subprocess X{1,2,3}.

• The directed edge 3 −→ 2 implies that X3 Granger-causes X2 also with respect
to X{1,2,3}.

• Vertices 1 and 3 are connected by the path 3 −→ 2 ←− 4 −→ 1. Of the two inter-
mediate vertices 2 and 4 on this path, the former is anm-collider, whereas the
latter is an m-noncollider. Thus the path is m-blocked given the set {2}, which
implies by Theorem 14.2 that X3 is Granger-noncausal for X1 in a bivariate
analysis but not in a trivariate analysis including X2.

• Vertices 1 and 2 are connected by the bi-pointing path 1 ←− 4 −→ 2, which is
m-blocked only given vertex 4. Therefore, it follows by Theorems 14.2 and 14.3
that X1 and X2 Granger-cause each other and additionally are contemporane-
ously correlated regardless whether X3 is included in the analysis or not.

The Granger-causal relationships with respect to X{1,2,3} that can be inferred
from the path diagram in Fig. 14.6(a) can be summarized by the graph in Fig-
ure 14.6(b).
More generally, if a mixed graph G encodes certain Granger noncausality

relations of a process XV , we say that XV satisfies a Markov property with respect
to the graph G.

Definition 14.4. We say that a weakly stationary time series XV satisfies the global
Granger-causal Markov property with respect to a mixed graph G if for all S ⊆ V

and all disjoint subsets I and J of S the following conditions hold:

(i) XJ is Granger-noncausal for XI with respect to XS whenever in the graph G

every I-pointing path between J and I is m-blocked given S \ J.

(ii) XI and XJ are contemporaneously uncorrelated with respect to XS when-
ever in the graph G the sets I and J are not connected by an undirected edge
(���) and every bi-pointing path between I and J is m-blocked given S.
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Fig. 14.6: (a) Path diagram of four-dimensional process XV ; (b) derived path dia-
gram of X{1,2,3} obtained from the graph in (a); (c) path diagram of X{1,2,3}; (d) bi-
variate path diagram of X{1,2,3}

With this definition, Theorems 14.2 and 14.3 state that a weakly stationary
process XV with autoregressive representation (14.1) satisfies the global Granger-
causal Markov property with respect to its multivariate path diagram G.
For the four-dimensional vector time series XV in Eq. (14.5), we have shown

above that the Granger-causal relationships with respect to the subprocess X{1,2,3}

that can be derived from the multivariate path diagram (Fig. 14.6(a)) are encoded
by the graph in Fig. 14.6(b). It follows from Theorems 14.2 and 14.3 that the
trivariate subprocess X{1,2,3} satisfies the global Granger-causal Markov property
with respect to the graph in Fig. 14.6(b). On the other hand, the autoregressive
representation of the subprocess X{1,2,3} is given in Eq. (14.6); the corresponding
path diagram is depicted in Fig. 14.6(c). We note that this path diagram is a sub-
graph of the graph in Fig. 14.6(b), which has been derived from the multivariate
path diagram of the complete series XV . This demonstrates that Theorems 14.2
and 14.3 provide only sufficient, not necessary conditions for Granger noncausal-
ity with respect to subprocesses.

14.4.3 Markov Properties for Bivariate Path Diagrams

Next, we discuss the properties of the bivariate path diagrams introduced in Sec-
tion 14.3.2. Recall that these path diagrams may have two kind of edges, namely
dashed directed edges (���) and undirected edges (���). The representation of
bivariate Granger-causal relationships by dashed directed edges allows applying
the concept of m-separation without further modifications. More precisely, let G
be a mixed graph with directed edges (���) and undirected edges (���) and let
π be a path in G. Then the intermediate vertices on π can be characterized as col-
liders and noncolliders as in the previous section, that is, an intermediate vertex
c on the path π is said to be a collider if the edges preceding and succeeding
c on the path both have an arrowhead or a dashed tail at c. However, since G

contains only edges of the form ��� or ���, it follows that all paths π in G are
pure-collider paths, that is, all intermediate vertices are colliders. Consequently,
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a path π between vertices i and j is m-connecting given a set S if and only if all
intermediate vertices are contained in S.
In the previous section, we have shown that the concepts of m-separation

and of pointing paths can be used to derive Granger noncausality relations with
respect to subprocesses XS from multivariate path diagrams. The same is also
true for bivariate path diagrams. More precisely, we have the following result
(cf. [39]):

Theorem 14.4. Let XV be a weakly stationary time series with autoregressive represen-
tation (14.1) and let G be the bivariate path diagram of XV . Then XV satisfies the global
Granger-causal Markov property with respect to G.

For an illustration of the Markov interpretation of bivariate path diagrams,
we consider again the four-dimensional process XV in Eq. (14.5) and suppose
that variable X4 has not been observed. The bivariate path diagram associated
with the subprocess X{1,2,3} is depicted in Fig. 14.6(d); as noted before it can be
obtained as subgraph of the bivariate path diagram associated with the complete
process XV (Fig. 14.3). What can we learn from this diagram about the Granger-
causal relationships with respect to XS = X{1,2,3}?

• Since there is no 3-pointing path in the graph, it follows that the components
X1 and X2 are Granger-noncausal for X3 with respect to XS. Similarly, the ab-
sence of an undirected edge or a bi-pointing path between vertex 3 and the
other two vertices implies that X{1,2} and X3 are contemporaneously uncorre-
lated with respect to XS.

• Vertices 1 and 3 are connected by the 1-pointing path 3 ��� 2 ��� 1. This sug-
gests that in a trivariate analysis based on XS the series X3 Granger-causes X1.

• Similarly, because of the 2-pointing path 1 ��� 2 ��� 3 ��� 2, we cannot con-
clude that X1 is Granger-noncausal for X2 with respect to XS. Since the path is
also bi-pointing, we additionally cannot rule out that X1 and X2 are contem-
poraneously correlated with respect to XS.

Summarizing the results, we find that the bivariate path diagram associated
with XS encodes the same statements about Granger noncausality or contem-
poraneous noncorrelation with respect to XS as the graph in Fig. 14.6(b).

14.4.4 Comparison of Bivariate and Multivariate Granger Causality

The notion of Granger causality is based on the idea that a correlation between
two variables that cannot be explained otherwise must be a causal influence; the
temporal ordering then determines the direction of the causal link. This approach
requires that all relevant information is included in the analysis. Given data from
a multivariate time series XV , it therefore seems plausible to discuss Granger
causality with respect to the full multivariate process XV .
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Fig. 14.7: (a) Multivariate path diagram associated with the process XV in
Eq. (14.17); (b) bivariate path diagram associated with XV .

As an example, we consider the vector time series XV given by

X1(t) = αX2(t − 2) + ε1(t) ,

X2(t) = ε2(t) ,

X3(t) = βX2(t − 1) + ε3(t) ,

(14.17)

where {ε(t)} is a white noise process with var
(
ε(t)

)
= I. Simple calculations

show that the bivariate path diagram of XV is given by the graph in Fig. 14.7(b).
Here, the bivariate analyses suggest a causal link from X3 to X1 although the
observed correlation between X1 and X3 is only due to confounding by X2. In
contrast, the multivariate path diagram in Fig. 14.7(a) correctly shows neither
direct connections nor a causal pathway between X1 and X3. This inability of the
bivariate approach to discriminate between causal influences and confounded
relationships has been noted by several authors (e.g., [47–49]).
One serious problem that arises in practice is that relevant variables are omit-

ted from the analysis, for example, because they could not be measured. For an
illustration, we consider again the four-dimensional process XV in Eq. (14.5). As
in the previous section, we assume that only the subprocess XS = X{1,2,3} is
available for an analysis of interrelationships. The multivariate path diagram in
Fig. 14.6(c) indicates the presence of a direct causal link from X3 to X1, whereas in
a bivariate analysis of X{1,3} this Granger-causal influence vanishes. In this situa-
tion, the bivariate path diagram in Fig. 14.6(d) clearly provides a better graphical
description of the relationships among the variables than the multivariate path
diagram.
More generally, it can be shown that systems in which all relationships be-

tween the observed variables are due to confounding by latent variables can be
best represented by bivariate path diagrams. In contrast, multivariate path di-
agrams are best suited for the representation of causal structures that do not
involve confounding by latent variables. In practice, however, causal structures
may be a combination of both situations with only a part of the Granger-causal
relationships being due to confounding by latent variables. In such cases nei-
ther graphical representation would provide an optimal description of the de-
pendences among the observed variables. Eichler [39] presented a graphical ap-
proach for evaluating the connectivity of such systems based on general mixed
graphs that generalize both multivariate and bivariate path diagrams.
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14.5 Statistical Inference

In practice, the autoregressive structure of the processes of interest typically is
unknown and must be identified from data. One straightforward approach is to
test for the presence of edges in the path diagram; this approach can be used
for both types of path diagrams. In the case of multivariate path diagrams, the
path diagram can be identified alternatively by model selection based on fitting
graphical vector autoregressive models that are constrained according to a path
diagram (e.g., [50, 51]).

14.5.1 Inference in the Time Domain

For the analysis of empirical data, VAR(p) models can be fitted using least-
squares estimation. For observations XV (1), . . . ,XV(T) from a d-dimensional mul-
tiple time seriesXV , let R̂p =

(
R̂p(u, v)

)
u,v=1,...,p

be the pd×pdmatrix composed
by submatrices

R̂p(u, v) =
1

T − p

T∑
t=p+1

X(t − u)X(t − v)′ .

Similarly, we set r̂p =
(
R̂p(0, 1), . . . , R̂p(0, p)

)
. Then the least-squares estimates

of the autoregressive coefficients are given by

â(u) =

p∑
v=1

(R̂p)−1(u, v)r̂p(v) (14.18)

for u = 1, . . . , p, while the covariance matrix Σ is estimated by

Σ̂ =
1

T

T∑
t=p+1

ε̂(t)ε̂(t)′ ,

where ε̂(t) = X(t) −
∑p

u=1 â(u)X(t − u) are the least-squares residuals. The
estimates âij(u) are asymptotically jointly normally distributed with mean aij(u)

and covariances satisfying

lim
T→∞ T cov

(
âij(u), âkl(v)

)
= Hjl(u, v)σik ,

where Hjl(u, v) are entries in the inverse Hp = R−1
p of the covariance matrix Rp.

For details, we refer to Lütkepohl [52].
The coefficients aij(u) depend like any regression coefficient on the unit of

measurement of Xi and Xj and thus are not suited for comparisons of the strength
of causal relationships between different pairs of variables. Therefore, Dahlhaus
and Eichler [40] proposed partial directed correlations as a measure of the
strength of causal effects. For u > 0, the partial directed correlation πij(u) is



14.5 Statistical Inference 355

defined as the correlation between Xi(t) and Xj(t − u) after removing the linear
effects of XV\{b}(t − u), u ∈ N. Similarly, we define πij(0) as the correlation be-
tween Xi(t) and Xj(t) after removing the linear effects of XV (t−u), u ∈ N, while
for u < 0 we have πij(u) = πji(−u). It has been shown (see [53]) that estimates
for the partial directed correlations πij(u) with u > 0 can be obtained from the
parameter estimates of a VAR(p) model by rescaling the coefficients âij(u),

π̂ij(u) =
âij(u)√
σ̂iiτ̂ij(u)

where

τ̂ij(u) = K̂jj +

u−1∑
v=1

∑
k,l∈V

âkj(v)K̂klâlj(v) +
âij(u)2

σ̂ii

with K̂ = Σ̂−1. For u = 0, we obviously have

π̂ij(0) =
σ̂ij√
σ̂iiσ̂jj

.

For large sample length T , the partial directed correlations are approximately
normally distributed with mean πij(u) and variance 1/T .
Tests for Granger-causal relationships among the variables can be derived

from the asymptotic distribution of the parameters of the VAR(p) model. More
precisely, let V̂(u, v) = Ĥjj(u, v)σ̂ii be the estimate of the asymptotic covari-
ance between âij(u) and âij(v), let V̂ be the corresponding p × p matrix and
set Ŵ = V̂−1 with entries Ŵ(u, v). Then the existence of a Granger-causal effect
of Xj on Xi can be tested by evaluating the test statistic

Sij = T

p∑
u,v=1

âij(u)Ŵ(u, v)âij(v) .

Under the null hypothesis that Xj is Granger-noncausal for Xi with respect to XV ,
the test statistic Sij is asymptotically χ2-distributed with p degrees of freedom.

14.5.2 Inference in the Frequency Domain

In the frequency domain, the Granger-causal relationships in a multivariate time
series XV can be evaluated by the Fourier transform

Â(λ) =

p∑
u=1

â(u)e−iλu ,

where â(u), u = 1, . . . , p, are the autoregressive estimates given by Eq. (14.18).
From this, estimates for the partial directed coherence can be obtained by suitable
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normalization. We note that because of the asymptotic normality of the estimates
âij(u) the real and imaginary parts of Âij(λ) are also jointly asymptotically nor-
mally distributed. Furthermore, it has been shown (see [54]) that, if Aij(λ) = 0,
then the asymptotic distribution of

T
|Âij(λ)|2

Cij(λ)
, (14.19)

where

Cij(λ) = σii

( p∑
k,l=1

Hjj(k, l)
[
cos(kλ) cos(lλ) + sin(kλ) sin(lλ)

])
(14.20)

is that of a weighted average of two independent χ2-distributed random variables
each with one degree of freedom. Noting that the 1 − α quantiles of this asymp-
totic distribution can be bounded by the 1−α quantile χ2

1,1−α of a χ2-distribution
with one degree of freedom, we can use

1

T
Ĉij(λ)χ2

1,1−α ,

where Ĉij(λ) is an estimate of Cij(λ) in Eq. (14.20), as an approximate α-signif-
icance level for testing whether Aij(λ) = 0. Similarly, a significance level for the
partial directed coherence can be derived [54].
We note that the functions Aij(λ) like the coefficients aij(u) depend on the

unit of measurement of Xi and Xj and thus are unsuitable for comparing the
strength of Granger-causal relationships between different pairs of variables. As
noted before, the partial directed coherence does not provide a complete solution
to this problem as it measures the relative strength with respect to a given signal
source. Instead, we will consider for the examples in Section 14.6 the statistic

α̂2
ij(λ) =

|Âij(λ)|2

Ĉij(λ)
,

which allows the use of the same significance level χ2
1,1−α/T for all frequencies λ

and all pairs i, j ∈ V . We will call the statistic the rescaled partial directed coherence
(PDC) from Xj to Xi.

14.5.3 Graphical Modeling

An alternative approach for inference on causal structures in multivariate time
series is based on fitting graphical vector autoregressive models. For given graph
G = (V, E) and order p, we consider vector autoregressive (VAR) models of the
form

XV (t) =

p∑
u=1

a(u)XV (t − u) + εV (t) , var
(
ε(t)

)
= Σ,

where the parameters a(u), u = 1, . . . , p, and Σ satisfy the constraints
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(i) aij(u) = 0 for u = 1, . . . , p, whenever j −→ i /∈ E and

(ii) σij = 0, whenever i ��� j /∈ E.

It follows that the processes XV satisfy the global Granger-causal Markov prop-
erty with respect to the graph G, and we therefore call the VAR model with these
constraints on the parameters the graphical vector autoregressive model of the
order p with respect to graph G or short the VAR(p,G) model.
Given observations XV (1), . . . , XV(T), the unconstrained parameters in a

VAR(p,G) model can be estimated iteratively by the following two steps.

(i) Let the estimate Σ̂ be fixed. Then the estimates â(u), u = 1, . . . , p are deter-
mined as the solution of the linear equations

( p∑
v=1

Σ̂−1a(v)R̂p(u, v)
)

ij
=

(
Σ̂−1R̂p(0, v)

)
ij

for u = 1, . . . , p and all i, j ∈ V such that j −→ i ∈ E under the constraints
that aij(u) = 0, whenever the directed edge j −→ i is absent in the graph G.

(ii) Let â(u), u = 1, . . . , p be fixed and let ε̂(t) be the corresponding residuals.
Then the estimate Σ̂ is obtained by solving the nonlinear equations

(Σ−1)ij = (Σ−1Σ̂0Σ−1)ij

for all i, j ∈ V such that i ��� j ∈ E, where Σ̂0 = 1
T

∑T
t=p+1 ε̂(t)ε̂(t)′ is an

unconstrained estimate of Σ.

The second step corresponds to fitting a covariance model to the residuals ε̂(t),
which is determined by the above zero constraints on the covariance matrix Σ.
An iterative algorithm for fitting such covariance models has been introduced
by Drton and Richardson [55]. Since the solution of both sets of equations are not
independent, an iteration of the two steps is needed to obtain a joint solution. For
details on fitting graphical vector autoregressive models, we refer to Eichler [53].
Graphical vector autoregressive models can be used to determine the Granger-

causal relationships among multiple time series by minimizing model selection
criteria like AIC [56] or BIC [57]. The AIC for the VAR(p,G) model is given by

AIC(p, G) =
1

2
log|Σ̂| +

r

T
,

where Σ̂ is the estimate for Σ in the VAR(p,G) model and r is the number of
unconstrained parameters in the model.

14.6 Applications

In this section, we present three examples to demonstrate how graphical repre-
sentations facilitate our understanding of interrelationships in multivariate time
series.
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Fig. 14.8: Results for neuronal spike train data: estimates of log-spectral densities
(on diagonal) and nonnormalized PDC |Aij(λ)|2 (off-diagonals). The dotted lines
signify pointwise 95% test bounds for the hypothesis that the PDC is zero.

14.6.1 Frequency-Domain Analysis of Multivariate Time Series

In our first example, we review various frequency-domain-based methods for
the description of interrelations among multiple time series and discuss their
relations to each other. To illustrate the theoretical results, we apply the meth-
ods to neuronal spike train data recorded from the lumbar spinal dorsal horn
of a pentobarbital-anaesthetized rat during noxious stimulation. The firing times
of ten neurons were recorded simultaneously by a single electrode with an ob-
servation time of 100 s. The data have been described in detail in Sandkühler
and Eblen-Zajjur [58]; the connectivity among the recorded neurons has been
analyzed previously by partial correlation analysis [59] and partial directed cor-
relations [60].
For the analysis, we converted the spike trains of five neurons to binary time

series and fitted a VAR model of the order p = 100. Figure 14.8 displays the
estimated spectra for these five neurons. The strong peaks in the spectra for
neurons 1 and 2 indicate that these neurons show rhythmic discharges at 5Hz;
similarly, neuron 5 fires rhythmically at 7.5Hz.
For the identification of the effective connectivity among these five neurons,
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Fig. 14.9: Results for neuronal spike train data: multivariate path diagram identi-
fied from the PDCs in Fig. 14.8.

we have estimated the nonnormalized PDC |Aij(λ)|2 (Fig. 14.8). The PDC detects
strongly significant directed relationships for five pairs of neurons. Additionally,
tests for contemporaneous noncorrelation yielded no significant links between
the neurons. Thus, the dependences between the five neurons can be represented
by the path diagram in Fig. 14.9.
One nondirectional measure for the direct interdependences between the fre-

quency components of a process XV is the partial spectral coherence |Rij|V\{i,j}(λ)|2

with Rij|V\{i,j}(λ) defined as in Eq. (14.14) (see, e.g., [46, 61]). As we have seen
in Section 14.4.1, it is closely related to the Markov interpretation of multivariate
path diagrams in the frequency domain. In particular, Theorem 14.1 implies that
the partial spectral coherence |Rij|V\{i,j}(λ)|2 vanishes uniformly for all frequen-
cies λ, whenever the vertices i and j are m-separated given V \ {i, j}.
Figure 14.10 shows nonparametric and parametric estimates of the partial

spectral coherence for the neuronal spike train data. Here, the partial spectral
coherence between neurons i and j shows a strong association between the corre-
sponding frequency components, whenever i and j are connected by an edge. Ad-
ditionally, we also find a small, but significant partial spectral coherence between
neurons 1 and 3, which corresponds with the graphical characterization since in
the path diagram in Fig. 14.9 vertices 1 and 3 are linked by the m-connecting
path 1 −→ 4 ←− 3.
Another important measure for directed information flow in multivariate sys-

tems is the directed transfer function (DTF), which has been proposed by Kamiński
and Blinowska [62] and is based on the transfer function B(λ) =

(
I − A(λ)

)−1.
The transfer function relates the frequency components of X and εV by the linear
system

dZXV
(λ) = B(λ)dZεV

(λ)

and thus describes how the frequency components of the input process εV are
transformed by the linear system to the frequency components of the output
process X. In particular, the entry Bij(λ) measures the response of variable Xi to
sinusoidal random shocks of frequency λ at variable Xj. The DTF is a normalized
version of the transfer function given by

γ2
ij(λ) =

|Bij(λ)|2∑
k

∣∣Bik(λ)
∣∣2 (14.21)
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Fig. 14.10: Nonparametric (solid lines) and parametric (dotted lines) estimates of
partial spectral coherence for the neuronal spike train data. For the nonparametric
estimates, the horizontal dashed lines signify pointwise 95% test bounds for the
hypothesis that the partial spectral coherence is zero.

and describes the ratio of the influence of component Xj on component Xi to all
the influences on component Xi. Due to the normalization, the DTF takes values
in [ 0, 1]. For the comparison of the information flow for different target processes
or between different experiments, also a nonnormalized version of the DTF given
by

θ2
ij(λ) = |Bij(λ)|2 (14.22)

has been suggested [35, 49]. Expanding the inverse
(
I − A(λ)

)−1 as a geometric
series, we find that

Bij(λ) = Aij(λ)+

d∑
k=1

Aik(λ)Akj(λ)+

d∑
k1,k2=1

Aik1
(λ)Ak1k2

(λ)Ak2j(λ)+ · · · .

(14.23)

It follows that the DTF accumulates the information flow from direct pathways—
measured by Aij(λ)—as well as from indirect pathways via components Xk1

, . . . ,
Xkr
. In particular, this implies that the DTF from Xj to Xi vanishes uniformly for

all frequencies, whenever there exists no directed path j −→ · · · −→ i in the multi-
variate path diagram associated with XV . To illustrate this fact, we estimated the
DTF for the neuronal spike train data (Fig. 14.11) with pointwise significance lev-
els as described in Eichler [63]. Comparing the results with the path diagram in
Fig. 14.9, we find that the DTF indeed identifies information flow from neuron j

to neuron i, whenever there is a directed path from j to i in the path diagram,
which is in line with the graph theoretical predictions.
We conclude that the DTF can be used to describe the propagation of informa-

tion in multivariate systems, but cannot be used for the detection of the pathways
by which the information is propagated, which would entail discrimination be-
tween direct and indirect interactions. This also implies that the DTF cannot be
used as a measure for Granger causality as defined in Definition 14.1 (see [63]).
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Fig. 14.11: Estimates of log-spectral densities (on diagonal) and normalized DTF
γ2

ij(λ) (off-diagonals) for the neuronal spike train data. The dotted lines signify
pointwise 95% test bounds for the hypothesis that the DTF is zero.

To resolve the problem of indirect information flow, Korzeniewska et al. [64]
proposed a modification of the DTF, which combines the DTF and the partial
spectral coherence. This direct DTF (dDTF) is defined as the product

δij(λ) = γij(λ)|Rij|V\{i,j}(λ)| .

The motivation behind this definition is that the DTF γij(λ) measures the propa-
gation of information within a system and, in particular, identifies the direction
of the information flow—both direct and indirect—while the partial spectral co-
herence vanishes if there is no direct interaction between the corresponding fre-
quency components [65]. From the graphical conditions for the partial spectral
coherence and the DTF, we immediately find that the dDTF δij(λ) vanishes at all
frequencies λ whenever in the path diagram

• i and j are m-separated given V \ {i, j} or

• there exists no directed path j −→ . . . −→ i.

Since the second condition determines only if there is information flow from j

to i, the discrimination of direct and indirect information flow must be accom-
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Fig. 14.12: (a) Path diagram with one cycle; (b) direct information flow as identified
by the dDTF.

plished by the first condition. This, however, is obviously not the case since two
vertices i and j are not m-separated given all other vertices V \ {i, j} if and only if

(i) they are linked by an edge (regardless of its direction or type) or

(ii) connected by a path of the form i −→ k ←− j.

In particular, this implies that the discrimination fails whenever the path diagram
contains a directed cycle, that is, a path of the form v −→ . . . −→ v. As an example,
we consider the path diagram in Fig. 14.12(a): in this graph, any two vertices i

and j are connected by a directed path from j to i (either j −→ i or j −→ k −→ i)
and are linked by an edge (either j −→ i or i −→ j), which means that the dDTF
δij(λ) is nonzero for all i and j. Clearly, in this case, the dDTF cannot distinguish
between direct and indirect information flow (Fig. 14.12(b)).
The effect in (ii) that two independent variables become conditionally depen-

dent if they both affect a third variable that is included in the conditioning set
is well known in graphical modeling theory and is called the marrying parents
effect (see, e.g., [7, 66]). For an illustration of this effect and how it affects the
dDTF, we consider again the neuronal spike train data. In the path diagram in
Fig. 14.9 showing the identified connectivity for the five neurons, we find that
the two vertices 1 and 3 are linked by both a directed path (1 −→ 2 −→ 3) and
an m-connecting path (1 −→ 4 ←− 3). According to the above characterization,
this implies that the dDTF from X1 to X3 is nonzero, and indeed the estimates
in Fig. 14.13 show two small peaks at frequencies 5Hz and 10Hz in the dDTF
from neuron 1 to neuron 3. The assessment of the significance of these peaks is
difficult since the statistical properties of the dDTF have not been investigated
so far. However, we note that the path 1 −→ 4 ←− 3 is only m-connecting if
vertex 4 is included in the separating set. In other words, if neuron 4 is omitted
from the analysis, the dDTF should become zero. The corresponding estimates of
the dDTF obtained from the process X{1,2,3,5} are also shown in Fig. 14.13 (dotted
curves). Comparing these estimates with those obtained from the full process, we
find that the dDTF from neuron 1 to neuron 3 is reduced considerably, while for
all other pairs the omission of neuron 4 leaves the estimates basically unchanged.
This indicates that the peaks in the former estimate of the dDTF from neuron 1
to neuron 3 were indeed induced by the combination of an m-connecting and a
directed pathway from X1 to X3.
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Fig. 14.13: Direct DTF (dDTF) for the neuronal spike train data: dDTF obtained
from the five-dimensional process X{1,...,5} (solid lines) and dDTF obtained from
the four-dimensional process X{1,2,3,5} (dotted lines).

If the true path diagram is a directed acyclic graph, that is, it does not contain
any undirected edges or directed cycles, then the iterative algorithm presented
in Dahlhaus et al. [66] can be applied to identify direct information flow among
the components of XV by the dDTF. However, in general, identification based on
the dDTF can lead to wrongly detected relationships. Therefore, analysis of the
information flow and the connectivity in multivariate systems should be based
on the PDC or the DTF, which both have a clear interpretation as direct and as
total information flow, respectively.

14.6.2 Identification of Tremor-Related Pathways

The second example is concerned with the analysis of simultaneous electroen-
cephalographic (EEG) and electromyographic (EMG) recordings from patients
suffering from essential tremor. This neurological disease manifests itself by an
involuntary, oscillatory movement of parts of the body, mainly the upper limbs,
with a typical trembling frequency of 4Hz to 10Hz. In previous studies based on
coherence analysis, tremor correlated cortical activity has been observed in the
EEG [67, 68], but the direction of the relationship remained unclear.
The analyzed data consist of the EMG from the left-wrist extensor measuring

the movement of that hand and the recordings from EEG channels C4 and PZA,
which both showed a strong correlation with the EMG at the tremor frequency of
about 5Hz. The EMG signal was band-pass filtered to avoid aliasing effects and
undesired slow drifts. Additionally, the signal was digitally full wave rectified.
The resulting time series reflects the muscle activity encoded in the envelope of
the originally measured signal.
Figure 14.14 shows estimates of the log-spectral densities and the PDC for

the data. Furthermore, Table 14.1 shows the significant contemporaneous corre-
lations between the series. This leads to the path diagram in Fig. 14.15(a). We
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Fig. 14.14: Results for tremor-related EEG channels C4 (X1) and PZA (X2) and
EMG channel (X3): estimates of log-spectral densities (on diagonal) and rescaled
PDC α2

ij(λ) (off-diagonals). The horizontal dashed lines signify pointwise 95% test
bounds for the hypothesis that the PDC is zero.

Tab. 14.1: p-values for testing for contemporaneous noncorrelation in the tremor-
related EEG/EMG signals.

C4���PZA C4���EMG PZA���EMG

0.000 0.011 0.103

(a)

EMG
C4

PZA (b)

EMG
C4

PZA

Fig. 14.15: Path diagrams for tremor-related EEG/EMG data: (a) path diagram
for dependences over frequency range 0Hz to 25Hz; (a) path diagram for depen-
dences at tremor frequency λ ≈ 5Hz.

note that the EMG signal Granger-causes the EEG signals of both channels C4
and PZA, which suggests that the muscle activity is reflected in the cortex via
proprioceptive afferences. Additionally, we find a significant contemporaneous
correlation between the EMG signal and channel C4. Since we cannot identify a
direction for this association, it remains an open question whether the oscillatory
cortical activity reflected in the signal in channel C4 is involved in the generation
of the tremor.
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Alternatively, we could restrict ourselves to the dependences at the tremor
frequency, which leads to the omission of the edge C4 −→ PZA (Fig. 14.15(b)).
The conclusions concerning the relationship between the EMG signal and the
cortical activity, however, remain the same.

14.6.3 Causal Inference

In the last example, we apply the graphical approach to concurrent recordings
from EEG and functional magnetic resonance imaging (fMRI) for the investi-
gation of the interrelations between the alpha rhythm in the EEG and blood
oxygenation level dependent (BOLD) responses in the fMRI. The data and their
requisition are described in detail in Goldman et al. [69].
The EEG was sampled at 200Hz from an array of 16 bipolar pairs, with an ad-

ditional channel for the EKG and scan trigger. For the analysis, the time-varying
spectrum of the EEG has been decomposed by parallel factor (PARAFAC) analy-
sis into trilinear components (called atoms), each being the product of a spatial,
spectral, and temporal factors [70]. The PARAFAC analysis extracted three signif-
icant atoms characterized by their spectral signature. Only the temporal factor of
the alpha atom corresponding to a frequency range 8Hz to 12Hz was included
in the effective connectivity analysis.
The fMRI series were measured with a time resolution of 2.5 s. Here, we con-

sider two time series of length T = 108 for two regions in the brain, namely visual
cortex and thalamus, whose activation seemed directly related with the EEG al-
pha atom, namely visual cortex and thalamus. For each region, the time series
was obtained by averaging the time series of all voxels in that region.

Tab. 14.2: p-values for testing for multivariate and bivariate contemporaneous non-
correlation in the fMRI/EEG data.

VC ��� TH VC ��� EEG TH ��� EEG
Bivariate 0.08 0.70 0.22
Multivariate 0.00 0.49 0.10

For the analysis of the effective connectivity, we have fitted a VAR model of
order 2 to the data; the order has been determined by minimizing the AIC. Fig-
ure 14.16 shows the estimates of the PDC obtained by a trivariate analysis (solid
lines) and by bivariate analyses (dotted lines). Additionally we have tested for
contemporaneous noncorrelation; the results are given in Table 14.2. The results
of the analyses are summarized by the multivariate and bivariate path diagrams
G(m) and G(b) in Fig. 14.17(a) and (b), respectively. Here, the multivariate path
diagram G(m) implies that thalamus and visual cortex neither Granger-cause the
EEG alpha atom nor are they contemporaneously correlated with the EEG com-
ponent, while the bivariate path diagram G(b) additionally encodes that, firstly,
the EEG alpha atom does not bivariately Granger-cause the thalamus and, sec-
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Fig. 14.16: Results for fMRI time series from visual cortex (X1) and thalamus (X2)
and EEG alpha atom (X3): estimates of log-spectral densities (on diagonal) and
rescaled PDC α2

ij(λ) (off-diagonals). The dotted lines represent the rescaled PDCs
obtained from bivariate analysis of the corresponding pairs Xi and Xj. The hori-
zontal dashed lines signify pointwise 95% test bounds for the hypothesis that the
PDC is zero.

(a)

EEG
VC

TH (b)

EEG
VC

TH (c)

EEG
VC

TH

Fig. 14.17: Identification of effective connectivity between the EEG alpha atom, the
visual cortex, and the thalamus: (a) multivariate path diagram; (b) bivariate path
diagram; (c) alternative path diagram that is Markov equivalent to the graph in
(b).

ondly, visual cortex and thalamus are bivariately contemporaneously uncorre-
lated. Thus the bivariate Granger causality graph encodes more Granger non-
causality relations than the multivariate path diagram, which suggests that at
least part of the directed relationships shown in the latter are induced by latent
variables.
To describe systems that are partly affected by latent variables, Eichler [39]

considered more general graphical representations that combine features of bi-
variate and multivariate path diagrams. In these graphs, ordinary directed edges
(−→) represent causal links while the dashed directed edges (���) indicate spuri-
ous causalities induced by latent variables. An example of such a graph is shown
in Fig. 14.17(c). In contrast to G(b), this graph indicates a causal influence from
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the thalamus to the visual cortex. Simple evaluations show that the graph is
Markov equivalent to the bivariate path diagram, that is, it encodes the same re-
lationships among the variables. This implies that we cannot decide empirically
between the two graphs as possible descriptions of the connectivity among the
variables. We note that in both the graphs the correlation between EEG alpha
atom and thalamic BOLD responses that is observed in a multivariate analysis is
attributed to the indirect link EEG ��� VC ��� TH mediated by the visual cortex.
This is in line with previous results [70], which identified the visual cortex as the
source of the “EEG alpha rhythm.” Similarly, we note that the contemporaneous
correlation between thalamus and visual cortex in a multivariate analysis is at-
tributed to the pathway TH ��� VC ��� EEG ��� VC.

14.7 Conclusion

In this chapter, we have described a graphical approach for visualizing and an-
alyzing the causal relationships in multivariate time series based on the concept
of Granger causality. We have seen that by the global (Granger-causal) Markov
property certain pathways in a graph can be related to dependences between the
variables. This can be exploited for determining whether a given causal struc-
ture that possibly contains unmeasured latent variables is consistent with the
dynamic dependences that have been found empirically between the observed
variables. The graphical analysis shows in particular that the causal structure of
systems that may be affected by latent variables in general cannot be resolved by
multivariate and bivariate analyses alone, but only by examination of Granger
noncausality relations with respect to all possible subseries.
In Section 14.6.3, we have briefly touched general Granger causality graphs for

the representation of causal structures with latent variables. Unlike bivariate or
multivariate path diagrams, which can be specified by pairwise Granger causality
relations, these graphs are determined solely through the global Granger-causal
Markov property. This holds a number of problems for the empirical identifi-
cation of causal structures. First, such general Granger causality graphs are not
uniquely determined by the Granger noncausality relations that they encode;
Fig. 14.17 has shown an example of two such Markov equivalent graphs. Sec-
ondly, the identification of such graphical representations is based on a multistep
procedure where each step requires the fitting of a new autoregressive model to
a subseries. As a consequence, it is impossible to compare two graphical repre-
sentations of the effective connectivity and to test between them. Moreover, the
statistical errors in different steps may lead to contradictory results. To avoid
these problems associated with this multistep identification, future research aims
at the development of new graphical time series models that satisfy the global
Granger-causal Markov property with respect to such general Granger causality
graphs; the identification of the causal structure could then be achieved by model
selection.
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15 Multivariate Signal Analysis
by Parametric Models

Katarzyna J. Blinowska and Maciej Kamiński

Multivariate time series analysis by parametric models finds a broad range of
applications: in biomedical research, economics, geophysics or industry. To fully
utilize the information contained in the recorded signals, methods describing
the relations in the whole data set are needed. Parametric methods extract a
meaningful description of the data and then the signal properties are derived
from the parameters of the model, not from the data themselves. Particularly
useful in respect of multivariate time series analysis are autoregressive models
(MVAR) which fulfill the maximum entropy property.
In the following the formalism and the method of the estimation of the model

is presented. The basic statistical measures used in multivariate data analysis
are described. The concept of coherence and ordinary (bivariate), partial and
multiple coherences are introduced and their properties are characterized.
Linear modeling allows for description of causal relations between data chan-

nels within a multichannel set. The basic concepts, e.g., Granger causality are
introduced. Then an extension of the formalism for a multivariate case is pre-
sented. The Directed Transfer Function (DTF) is described and its properties are
discussed.
Different measures involving the causality relations in time series or direction

of signal propagation are considered. Multivariate methods such as DTF and par-
tial directed coherence (PDC) are compared with a bivariate approach by means
of simulations. Their performance is also tested on experimental signals.
Of particular interest, especially in the field of biomedical applications, is

the dynamical propagation of signals. The short-time directed transfer function
(SDTF) allows for estimation of propagation of signals in time and frequency
when multiple realizations of the investigated process are available. The formal-
ism of SDTF estimation is described and then the performance of the function is
characterized.
Examples of application of the presented formalism to experimental data are

presented. In particular, the propagation of electroencephalography (EEG) and
local field potentials (LFP) signals in time and frequency is considered.
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15.1 Introduction

Currently, state-of-the-art measurements in a variety of fields offer large batter-
ies of data recorded by multiple sensors. Multichannel data analysis inherently
includes analysis of interrelations between channels. When a single data chan-
nel is considered, we may calculate measures describing only that channel, the
so-called auto-quantities. A multivariate set of data, e.g., a multichannel EEG
recorded simultaneously, contain auto-quantities for every data channel of the set
and, moreover, it contains information about interrelations between data chan-
nels of the set, called cross-quantities. Cross-correlation in the time domain or
coherence in the frequency domain are typical examples of such quantities. It
should be noted that (i) cross-quantities are independent of and are not directly
related to auto-quantities of the same set and (ii) they are functions of two (or
more) channels. If the measured signals come from the same system or intercon-
nected systems, they are usually correlated. In tracking causality between these
signals methods are needed which consider the system as a whole entity and
take into account mutual dependencies between full set of signals.
Data analysis methods can be divided in two groups: nonparametric and

parametric. The nonparametric approach relies on estimating the desired quan-
tities directly from the data. For instance, Fourier analysis is a nonparametric
method and spectral estimates are obtained by calculations performed on the
data samples. On the other hand, the parametric approach is based on another
idea: a data-generation model is assumed and fitted to the signals. The signals are
then represented by a set of model parameters. All further analysis is performed
on the fitted model parameters. When the data are of random character, a sto-
chastic model of data generation should be assumed. Such signals, containing
a random component, are often encountered in biomedical recordings or indus-
trial processes. A good example of such data could be EEG signals. Although the
parametric analysis can be applied to a wide range of time series, from economics
to dendrology, the main issues connected with that technique will be exemplified
in this chapter on biomedical signals.

15.2 Parametric Modeling

The model approximating the time series should be chosen with care in order to
describe the data appropriately. The problem of proper selection of the model to
the given data can be considered a drawback of the parametric approach. On the
other hand, that approach has many advantages. The description of the process
is simplified and its properties can be estimated from the model itself. Based
on that property, the parametric analysis in the frequency domain can overcome
the window problem, which is always present in the nonparametric approach.
Fourier analysis theory assumes operations on infinite or periodic signals. Finite
data sets (that means: all real data sets) are considered as multiplied by a finite
time window function. The transform of the data is then always convolved with
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the transform of the window function, which distorts the spectral estimate. Para-
metric modeling assumes validity of the model inside and outside the window of
observation, which is more realistic than assuming the signal to be zero when we
do not measure it. The model-based spectra have no sidelobes and are smooth,
since they are typically described by an analytical function. Moreover, parametric
modeling is especially suitable for the consideration of multichannel data, since
it allows for defining truly multichannel estimators of causal relations between
channels; this important property will be discussed later in this chapter.
The origins of the linear modeling lie in economical and social sciences, yet it

is now a popular technique in many fields of science and engineering. In biomed-
ical data analysis from a wide class of possible models the autoregressive (AR)
and autoregressive-moving average (ARMA) models are of primary importance.
Such models can describe a wide class of signals commonly appearing in practice
and there are numerous examples of their successful applications. The theoretical
foundation of multichannel AR model can be found as early as in the 1960s. In
the paper from 1965, Akaike [1] considered frequency characteristics of a system
having multiple inputs. Later, in the 1970s, several authors considered such lin-
ear models in data analysis, e.g., [2–7]. Measures of dependencies between chan-
nels such as correlation, coherence or causality were first introduced for pairs of
channels. Granger (Nobel prize winner in 2003) defined the causality principle
for two time series and applied it to economic problems [8]. However, even in
the early attempts of identification of interrelation between signals a reservation
was made concerning the validity of information drawn from bivariate measures
in a case when more than two channels are involved in a given process (Granger,
Gersch 1972). The three-channel AR model was elaborated by Gersch [9–11] and
tested on epileptic EEG signals, with the indication concerning the extension of
the model to the arbitrary number of channels. The formalism for the estima-
tion of the MVAR model for the arbitrary number of channels and calculation
of ordinary, partial and multiple coherences and application of that formalism to
biological signals was given by Franaszczuk et al. 1985. In [12] coherences were
calculated for electrocorticogram data (ECoG) registered from four electrodes.
The MVAR model, besides its wide range of applications in electroencephalog-
raphy (EEG) analysis, has been used in functional magneto-resonance imaging
(fMRI) data processing as well [13]. The formalism of MVAR coefficient estima-
tion developed in this paper was later used in designing the Directed Transfer
Function (DTF) and for the calculation of partial and multiple coherences and
DTFs, e.g., for 21 channels of EEG in Kamiński et al. [14]. Moreover, the DTF
method has been applied to localize epileptic foci [15], to determine LFP prop-
agation between brain structures in different behavioral states of animals [16] to
investigate EEG activity propagation in different sleep stages [14] and to study
epileptogenesis [17].
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15.3 Linear Models

The AR model assumes that

X(t) =
(
X1(t), X2(t), . . . , Xk(t)

)T (15.1)

—a sample of data at a time t—can be expressed as a sum of its p previous values
weighted by model coefficients A plus a random value E(t)

X(t) =

p∑

j=1

A(j)X(t − j) + E(t) . (15.2)

The p is called the model order. For a k-channel process X(t) and E(t) are vectors
of size k and the coefficients A are k × k-sized matrices.
Equation (15.2) can be easily transformed to describe relations in the fre-

quency domain. After rewriting Eq. (15.2) in the form (sign of A changed)

E(t) =

p∑

j=0

A(j)X(t − j) (15.3)

the application of Z transform yields

E(f) = A(f)X(f)

X(f) = A−1(f)E(f) = H(f)E(f)

H(f) =

( p∑

m=0

A(m) exp(−2πimf∆t)

)−1

.

(15.4)

Details of the procedure can be found in various signal analysis textbooks and
papers [18–23]. From the form of that equation we see that the model can be
considered as a linear filter with white noises E(f) on its input (flat dependence
on frequency) and the signals X(f) on its output. The matrix of filter coefficients
H(f) is called the transfer matrix of the system. It contains information about all
relations between data channels in the given set. It easily follows that the spectral
matrix is given by

S(f) = X(f)X∗(f) = H(f)E(f)E∗(f)H∗(f) = H(f)VH∗(f), (15.5)

where the asterisk denotes a transpose and complex conjugate operation. The
matrix S(f) contains auto-spectra of each channel on the diagonal and cross-
spectra off the diagonal.
The moving average (MA) model is defined by

q∑

i=0

B(i)E(t − i) = X(t) . (15.6)
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The data sample X(t) is generated as a weighted (with coefficients B) sum of q

previous white noise values E(t). Although this type of linear model is not di-
rectly applicable in biomedical data analysis, it can be shown that a finite order
MA model can be expressed as an AR model (possibly of infinite order) and vice
versa. Moreover, MA model can be combined with the previously described AR
model producing an autoregressive-moving average (ARMA) model, commonly
used in parametric data analysis. It is defined as

q∑

i=0

B(i)E(t − i) =

p∑

j=0

A(j)X(t − j) . (15.7)

ARMA models can describe a more general class of processes than AR mod-
els. It can be shown that a spectrum of an AR process has the form of a constant
over a polynomial (of A coefficients) while a spectrum of an ARMA process has
the form of a ratio of polynomials (of B and A coefficients). Roots of polynomials
in the denominator correspond to maxima (peaks) in the spectrum and roots of
the polynomial in the numerator correspond to dips in the spectrum. Therefore,
AR models can describe well a signal containing a set of distinct rhythms respon-
sible for peaks in the spectrum. Additionally, ARMA models can handle well a
process with dips (together with peaks) in its spectral power. However, dips in
spectral power are a rather rare feature in biomedical data. Moreover, ARMA
models, although similar to AR models, require nonlinear algorithms for the es-
timation of parameters. Procedures are more complicated, typically iterative, in
contrast to AR modeling algorithms which are rather straightforward. These facts
may explain lower popularity of ARMA applications in the field of biomedical
data analysis.

15.4 Model Estimation

The parametric analysis starts with fitting a model to the data. We will present the
main issues of the fitting procedure using AR model as an example. Each type of
model requires a different algorithm for estimating its parameters [18–27]. There
is an abundance of publications concerning the estimation of AR model parame-
ters. Although computational speed is no longer a key issue when choosing an
algorithm, small differences in properties of the estimates may favor the applica-
tion of a particular algorithm to a certain type of data.
Since typically signals of stochastic nature are investigated, estimation pro-

cedures rely on statistical properties of the available data. One must make sure
that the analyzed data segment is stationary, i.e., the statistical properties of the
data do not vary in time, and long enough to get reliable estimates. It is hard to
give any precise limits; however, we must assume that the number of available
data points is several times bigger than the number of data channels. In the case
of short data windows or nonstationary signals, there are special techniques to
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deal with the data, which will be described later in this chapter. It is worth not-
ing that typically spectral estimates of short data segments obtained by means
of parametric modeling perform better than similar estimates obtained using a
nonparametric approach.
Before starting a fitting procedure certain preprocessing steps are needed.

First of all, the temporal mean should be subtracted for every channel. Equa-
tion (15.2) is written assuming that the data are of zero mean. Additionally, in
most cases normalization of the data is recommended by dividing each channel
by its temporal variance. This is especially useful when data channels have dif-
ferent amplification ratio.
Another problem is the choice of the model order p. An order too low may

not allow to describe the data to its full extent while too big an order may intro-
duce spurious artifacts to the estimates. Sometimes it is possible to evaluate the
optimal model order directly. For instance, the spectrum of an AR model is given
by a rational function with a polynomial of order p in the denominator. So, the
number of maxima (peaks) in the spectrum cannot exceed the number of roots
of the polynomial in the denominator. Because the roots are always in conjugate
pairs, we can expect p/2 (or (p − 1)/2 for an odd p) peaks in the spectrum. If we
know that data would contain more rhythmic components we should extend the
model order accordingly. Unfortunately, such a simple deduction is not possible
for multichannel models where the spectrum in each channel is given by a more
complicated formula. Certain statistical criteria have been proposed to deal with
the problem of optimal model order selection, like Akaike’s final prediction er-
ror FPE or Akaike information criterion AIC [19, 28]. We calculate the value of a
criterion for every model order within a certain range. The criterion value takes
its minimum for the optimal model order. Such criteria are designed to find a
balance between the tendency to increase the accuracy of the fit by increasing the
model order and a penalty function designed to decrease the order value.
The classical technique of ARmodel parameters estimation is the Yule–Walker

algorithm which will be presented below. It requires calculating the correlation
matrix R of the system up to lag p

Rij(s) =
1

NS

NS∑

t=1

Xi(t)Xj(t + s) for s = 0, . . . , p . (15.8)

In the next step the model equation (15.1) is multiplied by XT (t − s), for
s = 0, . . . , p and expectations of both sides of each equation are taken. Assuming
that the noise component is not correlated with the signals, we get a set of linear
equations to solve, the Yule–Walker equations
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R(0) R(−1) . . . R(p − 1)

R(1) R(0) · · · R(p − 2)
...

...
. . .

...

R(1 − p) R(2 − p) . . . R(0)







A(1)

A(2)
...

A(p)


 =




R(−1)

R(−2)
...

R(−p)




V =

p∑

j=0

A(j)R(j) .

(15.9)

Another popular method is the Burg (LWR) algorithm [29]. It is a recursive
procedure, where the matrix R is not calculated. The Burg algorithm produces
high-resolution spectra and is preferred when closely spaced spectral compo-
nents are to be distinguished. Sinusoidal components in a spectrum are better
described by the covariance algorithm or its modification. Recently, a Bayesian
approach has been proposed for estimating the optimal model order and model
parameters as well [30, 31]. In most cases, however, the spectra produced by dif-
ferent algorithms are very similar to each other.

15.5 Cross Measures

In order to evaluate relations between channels of a multivariate dataset, cross-
quantities, depending on two or more time series simultaneously, are used. The
commonly known cross quantity is coherence. The ordinary coherence between
signals i and j is defined as the normalized cross-spectral element Sij

Kij(f) =
Sij(f)√

Sii(f)Sjj(f)
. (15.10)

Coherence is a complex number, having an amplitude and phase. The normaliza-
tion assures that the modulus of the function takes values within the range [0, 1].
The Kij(f) describes which part of both signals is common and coherent in phase
in the channels i and j at frequency f.
If a data set contains more than two channels, the signals can be related with

each other in a more complicated way. Namely, two (or more) signals may simul-
taneously have a common component. Depending on the character of relations
between channels, some of them may be connected directly with each other and
some connections can be indirect (through other channels). To distinguish be-
tween these situations partial and multiple coherences were introduced.
Partial coherence is defined using minors of the spectral matrix S, in the

following way:

Cij(f) =
Mij(f)√

Mii(f)Mjj(f)
, (15.11)

where Mij is a minor of S with the ith row and jth column removed. Its prop-
erties are similar to ordinary coherence, however, it is nonzero only when the
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given relation between channels is direct. If a signal in a given channel can be
explained by a linear combination of some other signals of the set, the partial
coherence between them will be low.
Multiple coherence is given by

Gi(f) =

√
1 −

det
(
S(f)

)
Sii(f)Mii(f)

. (15.12)

Its value describes the amount of common components in the given channel and
the rest of the set. If the value of multiple coherence is low then the channel has
no common signal with any other channel of the set.
All coherence functions can be calculated from the spectral matrix S by means

of nonparametric methods as well. However, by application of parametric model-
ing we get the spectral matrix for the whole multichannel system. This property
is very important in multichannel data analysis and will be discussed later in
Section 15.8.

15.6 Causal Estimators

Although at a first glance it seems that the phase of the coherence function can
be utilized to estimate the direction of influence between signals, in practice this
is rarely possible and often leads to ambiguous results as will be demonstrated
below. Therefore, other reliable measures of causal relations were proposed. In
order to precisely describe causal relations, a basic definition of causality should
be adopted. The definition given by Granger [8] received big popularity because
it can be easily transformed to time series modeling. Granger defined causality
in terms of predictability of time series which was based on previous works of
Wiener [32]. Let us consider two time series X and Y. If we try to predict a value
of X(t) using p previous values of the series X only, we get a prediction error e1

X(t) =

p∑

j=1

A11(j)X(t − j) + e1(t) . (15.13)

If we try to predict a value of X(t) using p previous values of the series X and q

previous values of Y we get another prediction error e2

X(t) =

p∑

j=1

A ′
11(j)X(t − j) +

p∑

j=1

A12(j)Y(t − j) + e2(t) . (15.14)

If the variance of e2 (after including series Y to the prediction) is lower than the
variance of e1 we say that Y causes X in the sense of Granger causality.
Parametric analysis of time series provides a natural tool to describe causal

relations. When considering Eq. (15.3) we see that all the relations between data
channels are contained in the transfer matrix H. We may define directed transfer
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function (DTF) which describes causal influence of channel j on channel i at
frequency f (Kamiński and Blinowska [33])

γ2
ij(f) =

|Hij(f)|
2

∑k
m=1 |Him(f)|

2
. (15.15)

The above equation defines a normalized version of DTF, which takes values
from zero to one producing a ratio between the inflow from channel j to channel i
to all the inflows to channel i. Sometimes it is easier to abandon the normalization
property and use values of elements of transfer matrix which are related to causal
connection strength [34]. The nonnormalized DTF can be defined as

θ2
ij(f) = |Hij(f)|

2
. (15.16)

The DTF method, although is based on the Granger causality idea modeled by
a MVAR model, describes rather a joint effect of transmission between channels
than direct relations. The original definition of the Granger causality, which (in
terms of linear models) was given for a pair of channels, can be extended for the
multichannel case. Then we predict signal X1(t) using all available signals. If we
are interested in a specific relation, say, between channels X1 and Xm, we compare
prediction errors in a situation when channel m is included or not included into
the prediction

X1(t) =

k∑

i=1

pi∑

j=1

A1i(j)X(t − j) + e3(t) i �= m . (15.17)

Similar to the case of coherences, there is still a problem of identifying direct and
indirect causal relations in the frequency domain. DTF does not discriminate be-
tween these two types of relations. Several functions were proposed to solve the
problem. The partial directed coherence (PDC)
indexpartial directed coherence (PDC) was defined by Baccala and Sameshima [35]
in the following form:

Pij(f) =
Aij(f)√

a∗
j (f)aj(f)

. (15.18)

In the above equation Aij(f) is an element of A(f)—a Fourier transform of model
coefficients A(t), where aj(f) is jth column of A(f) and the asterisk denotes the
transpose and complex conjugate operation. Although it is a function operating
in the frequency domain, the dependence of A(f) on the frequency has not a
direct correspondence to the power spectrum.
Another function—the direct Directed Transfer Function (dDTF)—was pro-

posed in Korzeniewska et al. [36]. The dDTF is defined as a multiplication of a
modified DTF by partial coherence. The modification of DTF concerned normal-
ization of the function in such a way as to make the denominator independent of
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frequency. The dDTF (χij(f)) showing direct propagation from channel j to i is
defined as

χ2
ij(f) = F2

ij(f)C
2
ij(f)

F2
ij(f) =

|Hij(f)|
2

∑
f

∑k
m=1|Him(f)|2

.
(15.19)

χij(f) has a nonzero value when both functions F2
ij(f) and C2

ij(f) are nonzero, in
that case there exists a causal relation between channels j → i and that relation is
direct.
Because of different normalizations, the results of PDC and dDTF may differ

in specific situations. This point will be illustrated by means of simulations in the
next chapter.

15.7 Modeling of Dynamic Processes

In order to fit a linear model to a dataset the data segment must be long enough
to fulfill the requirement that the number of fitted parameters must not exceed
the number of data points. In practice, to assure correct statistical properties of
the model, we need several times more data points than model parameters. The
number of MVAR parameters is pk2, where p is the model order and k is the
number of channels, whereas the number of data points is given by kn, where
n is the data segment length in each channel. The number of MVAR parameters
increases strongly with the number of channels and sometimes it is difficult to ob-
tain stationary data of appropriate length to fit the model well. This is especially
the case for dynamic phenomena, e.g., evoked potentials. Several techniques have
been proposed to deal with the problem of nonstationary data modeling.
Some approaches extend the fixed-parameter linear models by including adap-

tive changes of the model parameters in time. Besides allowing for periodic (or
quasi-periodic) components modeled by a set of seasonal parameters in the mod-
els, continuous changes of the parameters in time are calculated. This can be
accomplished by estimating the parameters over a short time window and suc-
cessively including new points in the estimate to update the set of model para-
meters. Another approach is the recursive Kalman [37, 38] filter algorithm. We
will not present these methods in a more detailed way; theory and examples can
be found in [39–42]. Instead, we will focus on the short sliding window idea,
proposed in [43].
When multiple repetitions of an experiment are available, another approach

can be proposed. We may repeat the experiment and treat data from each rep-
etition as a realization of the same stochastic process. Then the number of data
points is nkNT (where NT is the number of realizations) and their ratio to the
number of parameters effectively increases. Based on this observation, we can
divide a nonstationary recording into shorter time windows, short enough to
treat the data within a window as quasi stationary. In practice, due to random
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jitter effects, it is impossible to obtain perfect synchronization of trials in time.
Instead, we use the property that auto- and cross-correlations within each trial
are preserved and do not depend on jitter. We calculate the correlation matrix for
each trial separately. The resulting model coefficients are based on the correlation
matrix averaged over trials. The correlation matrix has the form

R̃ij(s) =
1

NT

NT∑

r=1

R
(r)
ij (s) =

1

NT

NT∑

r=1

1

NS

NS∑

t=1

X
(r)
i (t)X

(r)
j (t + s) . (15.20)

The averaging concerns correlation matrices for short data windows—data are
not averaged in the process. The details of the procedure involve specific pre-
processing in order to avoid problems with model fitting. Besides data normal-
ization in each channel, it is recommended to subtract the ensemble average from
the data and divide them by the ensemble variance in each channel to reduce the
risk of instability of the models in certain data windows. The choice of window
size depends on the investigated problem and it is always a compromise be-
tween quality of fit (the ratio between the number of data points and the number
of model parameters) and time resolution. Discussion of the preprocessing steps
was presented in [34, 43].
By application of the above-described procedure the MVAR coefficients are

obtained for each short data window and, subsequently, the estimators charac-
terizing the signals (power spectra, coherences, DTFs) are found. By means of
a sliding window the evolution in time is determined. In this way multivariate
estimators may be expressed as functions of time and frequency. The Short-Time
Directed Transfer Function (SDTF, STDTF) obtained in this way creates a possi-
bility to follow the dynamics of transmissions between data channels.
To estimate the variance of evaluated SDTF functions, the bootstrap ap-

proach [44–46] can be utilized. In this technique we simulate multiple experi-
ments by repeatedly randomly selecting a set of input data trials from the pool
of experiment repetitions. For each trial the calculation of the model parameters
and the estimators is performed. That procedure allows to evaluate the distribu-
tion of the results.
There remains a problem of estimation of the admissible level of flows.

This can be accomplished by means of the surrogate data technique given by
Theiler et al. [47]. The idea is to construct a dataset similar to the given one, but
with all causal relations between channels removed. To accomplish this, the data
are Fourier transformed, their phases are replaced by random numbers from a
flat distribution and then they are transformed back to the time domain by in-
verse Fourier transform. Such surrogate signal has the same amplitude spectrum
as the original one but phases are random in each channel. Modeling and analy-
sis performed on repeatedly generated surrogate datasets provides the baseline
distribution for the given estimator of directedness.
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15.8 Simulations

The performance of different methods of multivariate data analysis can be illus-
trated by means of numerical experiments simulating patterns of flows [48–50].
In order to make simulations similar to real experimental situations, as an input
time series a human EEG signal recorded from a scalp electrode was used. The
signal of 20 s duration (2560 points) was highpass filtered with cut-off frequency
of 3Hz. In construction of the flow pattern the signal was in each step succes-
sively delayed; also in each step a random Gaussian noise (each time drawn from
a different generator) was added.
In the following simulations where differences between multivariate and bi-

variate approach are presented, certain functions will be applied twice to the
same set of data. The results will be estimated for the whole system of channels
simultaneously and for all pairs of channels from the given set. The cases will be
referred as “multichannel” or “bivariate,” respectively, but one should remember
that the same function was used (differently) to obtain both results.

15.8.1 Common Source in Three Channels System

The first simulation, including only three channels, illustrates a basic property
of causal relations in the multichannel systems. In this case the delay in channel
two was one sample and in channel three two samples. The results are shown in
Fig. 15.1. It is easy to notice that the correct pattern of flows is obtained—we get
DTF functions indicating propagation from channel one only. If the same system
would be analyzed pairwise, additionally the two → three transmission would
be found (see the next simulation). However, there is no such transmission in the
system. In this case the application of a multichannel measure can help to avoid
confusing results.
Note that the correct pattern was found for very noisy signals. In the simu-

lation the variance of the noise in channels two and three was nine times bigger
than the input EEG signal in channel one. This robustness to noise of the DTF
function is especially important for biological time series, where the noise com-
ponent is usually very strong.

15.8.2 Activity Sink in Five Channels System

Based on the observation from the above simulation, we may construct a more
complicated system. Quite common a situation in biological systems is the case of
propagation of activity from a source to locations situated at different distances,
where recording electrodes are placed. In the following extended simulation the
signal from a source channel one was transmitted with delays of one to four
samples to the channels two to five. The signals in the destination channels were
embedded in noise twice as big as the input signal.
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Fig. 15.1: Top: simulated signals. Bottom left: simulation scheme. Bottom right: in
each box DTF as a function of frequency (0Hz to 25Hz); the numbers above the
columns indicate output channels, the numbers on the left of the rows indicate
destination channels. Reprinted with permission from [48] (© (2004) by the Amer-
ican Physical Society).

This pattern of flows was used as a model for testing the performance of
bivariate versus multivariate estimates of directionality. The first of the tested
methods was the bivariate Granger causality. In this approach the MVAR model
was fitted to two channels at a time and the Granger causality estimate was cal-
culated. The bivariate results (Fig. 15.2) show propagation not only from source
channel 1 but from other channels which were not sources of signal in this simu-
lation. Propagation was found always when a coherent phase difference existed
between a pair of channels.
Similar results are obtained from the consideration of phases of bivariate co-

herences (Fig. 15.3). In Fig. 15.3 the ordinary coherences calculated pairwise are
shown, their amplitude spectra are presented at the upper triangle and phases at
the lower triangle of the picture matrix. From the phase spectrum of coherences,
values corresponding to the frequency of the maximum of amplitude spectrum,
namely 11Hz, were estimated. Subsequently we have found the corresponding
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Fig. 15.2: Top: Granger causality calculated pairwise, each graph represents the
function describing transmission from the channel marked above the column to
the channel marked on the left of the row. Granger causality in arbitrary units on
vertical axes; graphs on the diagonal contain power spectra; frequency on hori-
zontal axes (0Hz to 25Hz range); Bottom left: simulation scheme. Bottom right:
resulting flow scheme. Black arrows represent true (simulated) flows, dotted ar-
rows represent false flows found by the applied method. Reprinted with permis-
sion from [48] (© (2004) by the American Physical Society).

delays (in samples). The obtained effective pattern of propagations together with
the input diagram of flows are illustrated at the bottom of the figure. In the pic-
ture showing phases one can observe discontinuities connected with the fact that
phases are determined modulo 2π. This ambiguity makes determination of flows
from coherences even more doubtful.
The DTF functions are obtained by fitting the MVARmodel simultaneously to

all channels of the simulated process. The resulting flow scheme is presented in
Fig. 15.4. In this case the pattern of flows is reproduced correctly. One can see only
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Fig. 15.3: Pair-wise coherences and resulting flows. Top: coherence amplitude
(black graphs above diagonal) and coherence phase (graphs below diagonal); each
graph represents the function for the pair of channels marked on the left of the
row and above the column; on the horizontal axes frequency (0Hz to 25Hz); on
vertical axes coherence amplitudes (0 to 1 range) or phases (−180° to 180° range);
delay values (in samples) estimated from phases, marked by the numbers shown
over the phase graphs. Bottom left: simulation scheme. Bottom right: resulting flow
scheme. The same convention in drawing arrows as in Fig. 15.2. Reprinted with
permission from [48] (© (2004) by the American Physical Society).

small “leak flows” in the direction opposite to the designed one. The question
concerning an admissible level of weak flows may be resolved by means of the
surrogate data test or by the bootstrap method. The advantage of the surrogate
data test is that the shapes of the spectra are preserved. The maximal levels
of flows obtained from surrogate data (illustrated at the bottom of Fig. 15.4) are
similar to the “leak flows” of the results obtained by DTF (upper part of Fig. 15.4).
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Fig. 15.4: Top: nonnormalized multichannel DTFs for the same simulation as in
Figs. 15.2 and 15.3. Each graph represents the function describing transmission
from the channel marked above the column to the channel marked on the left of the
row (on the diagonal power spectra). Bottom: DTFs obtained from surrogate data.
Thick line: the average obtained from 100 surrogates. 95% of surrogate realizations
are contained between the thin lines. Plots in both panels in the same scale in
the arbitrary units. Frequency on horizontal axes, 0Hz to 25Hz range. At left
the resulting flow pattern. Reprinted with permission from [48] (© (2004) by the
American Physical Society).

15.8.3 Cascade Flows

The next simulations will concern a more complicated situation encountered,
e.g., in case of signals measured from electrodes implanted in different brain
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Fig. 15.5: Scheme of simulation. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. ∆ denotes time delay of one sample.
Reprinted with permission from [49] (© IEEE 2005).

structures. The scheme of the pattern of flows is shown in Fig. 15.5. The signal
in the input channel was the same as in the previous simulations. In each step
the signal was successively delayed by one sample; also in each step a random
Gaussian noise was added and the time series obtained in this way were trans-
mitted to another channel with a weight 0.8. The amplitude of noise, added in
each step, was 0.5 of the amplitude of the original EEG signal. The signal from
channel one propagated to channel three through channel two and to channels
five and six through channel four. Channel seven was uncoupled to the other
channels in any way.
Figure 15.6 presents the results obtained by means of the Granger causality

measure calculated pairwise. We can observe that besides the simulated flows
some additional propagations are obtained —e.g., from channel two to six, from
two to five and from four to three. This result comes from the fact that in case of a
difference in delays for bivariate estimates we obtain a flow from the less delayed
channel to the more delayed channel, even if they are not connected. This effect
is absent for multivariate estimates, when all sources of the signal are included
in the calculations.
In the next picture (Fig. 15.7) the ordinary coherences calculated pairwise

are shown. The delays between channels and the resulting flow scheme were
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Fig. 15.6: (A) Granger causality calculated pairwise, each graph represents the
function describing transmission from the channel marked above the row to the
channel marked on the left of the row, frequency on horizontal axes (0Hz to
25Hz range); Granger causality in arbitrary units on vertical axes; graphs on the
diagonal contain power spectra. (B) the resulting flow scheme. Black arrows rep-
resent true (simulated) flows, gray arrows represent indirect flows revealed by the
applied method, dotted arrows represent false flows found by the applied method.
Reprinted with permission from [49] (© IEEE 2005).
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Fig. 15.7: Pair-wise coherences and resulting flow scheme for simulation I shown
in Fig. 15.5. (A) coherence amplitude (black graphs above diagonal) and coher-
ence phase (graphs below diagonal); each graph represents the function for pair
of channels marked on the left of the row and above the column; on the hori-
zontal axes frequency (0Hz to 25Hz); on vertical axes coherence amplitudes (0
to 1 range) or phases (−π to π range); delay values (in samples) estimated from
phases, marked by the numbers shown over the phase graphs; (B) simulated pat-
tern of flows; (C) pattern of flows estimated from coherence values; (D) pattern
of flows obtained from bivariate coherence estimate for different delays between
channels. Convention of drawing arrows the same as in Fig. 15.6. Reprinted with
permission from [49] (© IEEE 2005).

obtained in the same way as in the example shown in Fig. 15.2. Again we obtain
the flows for each pair of electrodes differing in the delay value between them.
The results of application of a multivariate estimator are shown in Fig. 15.8.

The pattern of flows is almost correct, except that in the case of cascade, indirect
flows are present.
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Fig. 15.8: (A) Nonnormalized multichannel DTFs for the simulation illustrated in
Fig. 15.5.; (B) DTFs obtained from surrogate data; organization of pictures A and B
similar to Fig. 15.2 (on the diagonal power spectra). (C) the resulting flow pattern.
Plots in A and B in the same scale in arbitrary units. Reprinted with permission
from [49] (© IEEE 2005).

15.8.4 Comparison between DTF and PDC

In order to distinguish direct from indirect flows the direct Directed Transfer
Function (dDTF) may be used. It was designed especially for evaluation of ex-
perimental results from electrodes implanted in the brain structures [36]. This
function is constructed by multiplication of a modification of DTF by partial co-
herence (Eq. (15.19)). Figure 15.9 shows partial coherences and dDTF found for
the system of signals illustrated in Fig. 15.5. In this case the pattern of flows is
determined correctly.
Another multivariate method, which makes the distinction between indi-

rect and direct flows possible is Partial Directed Coherence—PDC (Baccala and
Sameshima [35]). The application of PDC to the pattern of flows shown in Fig. 15.5
is illustrated in Fig. 15.10. The application of PDC gives similar results as dDTF,
except that PDC estimators depend on frequency in a way different from power
spectra, which might sometimes cause difficulties in interpretation of the results.
In simple situations results obtained by dDTF and PDC agree with each other;

however, there are cases where the results of PDC and DTF give different pat-
terns of flows. This is the case when more than one source emits the activity
to the destination channels. In order to clarify the differences between DTF and
PDC a series of simulations were performed. In the following simulations again
the signal in source channel one is the same as in the preceding numerical exper-
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Fig. 15.9: (A) Ordinary (graphs above diagonal), partial (graphs below diago-
nal) and multiple coherences (graphs on the diagonal) for the simulation shown
in Fig. 15.5; in each panel: vertical axis—amplitude in 0 to 1 range, horizontal
axis—frequency in 0Hz to 25Hz range; (B) dDTFs for the simulated data (power
spectra shown on the diagonal); (C) pattern of direct connections estimated from
partial coherences; (D) pattern of direct flows estimated from dDTFs. Reprinted
with permission from [49] (© IEEE 2005).

iments. This signal is transmitted with weight 0.8 and the delay of one sample
to channels two, three and four, with the noise components drawn from differ-
ent distributions. Time series in channel five is constructed in the same way as
signal one, but the input EEG comes from a different subject. This signal plus
the noise component is transmitted with delay of one sample and variance four
times smaller than the variance of signal one: in simulation II to channel four, in
simulation III to channels two, three and four (with different noise components).
In simulation IV the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these simulations are il-
lustrated in Fig. 15.11.
It is easy to see that DTF and PDC show the same correct directions of flows,

however, there are differences in their intensities. For simulation II the pattern
of flows is well reproduced by DTF; however, for PDC weak propagation from
channel five becomes predominant in the absence of other flows from that chan-
nel. In simulation III, PDC shows similar intensities of flows from electrodes one
to five, although originally those from electrode five are much weaker. In the
case of simulation IV, when the intensities of flows are same for both sources,
the results for DTF and PDC are very similar. These results follow from different
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Fig. 15.10: (A) PDC functions for simulation I (Fig. 15.5); (B) resulting pattern of
flows. Organization of the picture the same as in Fig. 15.2. Reprinted with permis-
sion from [49] (© IEEE 2005).

normalizations in DTF and PDC. DTF is normalized with respect to the inflows
to the destination channel and PDF with respect to the outflows from the given
channel, therefore for PDC it is difficult to estimate the strengths of the flows.
As the authors of the PDC method [35, 51, 52] admit, PDC portrays the relative
strengths of direct pairwise structure interactions, while DTF represents a bal-
ance of signal power that spreads from one structure to different destinations.
Simulations II, III, and IV will help to understand some discrepancies obtained
by application of different methods to the same experimental data.

15.9 Multivariate Analysis of Experimental Data

15.9.1 Human Sleep Data

The performance of different estimators can be best explained by their applica-
tion to real experimental data. The meaning of the ordinary, partial, and mul-
tiple coherences will be illustrated by human EEG recorded during sleep and
relaxed state, since for these behavioral states the main features of EEG activ-
ity are known and relatively long stationary epochs can be recorded. The data
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Fig. 15.11: DTF (left) and PDC (right) results for simulations II, III, IV (described in
the text). Below the pictures representing DTF and PDC deduced flows are shown
for each simulation. The schemes of simulations are shown in the middle column.
Reprinted from with permission [49] (© IEEE 2005).

analysis was done by fitting MVAR models to continuous artifact free station-
ary epochs. The typical graph of coherences for sleep stage two is presented in
Fig. 15.12. The multiple coherences are all high, indicating a close relation be-
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Fig. 15.12: Example of ordinary, partial, and multiple coherences for a set of
21 channels EEG recorded in sleep stage two. Each box in the presented matrix
is a graph of a coherence function connecting channel marked below the relevant
column and channel marked at left of the relevant row. Frequency on horizontal
axes (0Hz to 30Hz), function value on vertical axes (0–1). Ordinary coherences
above the diagonal, multiple coherences on the diagonal and partial coherences
below the diagonal of the matrix of graphs. Reprinted from [14], © (1997), with
permission from Elsevier.

tween all the channels in the set. In fact, multiple coherences are usually high for
an EEG recorded by scalp electrodes. A scalp EEG shows strong dependencies
between all channels in a large frequency range. In consequence, when we con-
sider only two channels at a time, neglecting all the others, we do not know if the
relation between them comes from their mutual dependencies or if they are due
to feeding from other channels. Closer inspection of ordinary coherences (upper
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triangle) shows that they depend mainly on the distance between the respective
electrodes.
The partial coherences, showing only directly coupled channels, are mostly

very low, with little change in frequency. The averaged values of partial coher-
ences were nonzero practically only for neighboring electrodes. This finding is
in agreement with the observations of Bullock et al. [53] who analyzed coher-
ences for electrodes implanted in the cortex at different distances, indicating that
coherence in the cortex is within a range of 10mm to 20mm. In [53] a weak de-
pendence of coherences on frequency was observed, which is also the case for
partial coherences (Fig. 15.12). Low values of partial coherences may seem con-
tradictory to the results of many papers showing high coherence between distant
electrodes, however, usually the authors analyzed ordinary coherences. Ordinary
coherences, especially for scalp electrodes indicate a sum of many indirect re-
lations between channels, therefore it is difficult to draw firm conclusions from
ordinary coherences about the interactions between channels.
Partial coherences are mostly observed for neighboring electrodes, although

interesting conclusions can be drawn from the pattern of their strength which
changes depending on the behavioral state. In the sleep study significant changes
were found for partial coherences for different sleep stages (Kamiński et al. [14]).
In order to visualize the performance of the estimators of directedness the

best way is to find an example where the sources of activity are known. This is
the case for alpha rhythm. With the eyes closed the sources of the EEG activity
are placed in the visual cortex at the back of the head and also some sources may
be placed frontally.
The calculations were performed on a 21 EEG channels (10–20) system

recorded in awake state with eyes closed. The signal was highpass filtered above
3Hz and lowpass filtered below 50Hz. The evaluated epoch length was 20 s. In
the case of the bivariate Granger causality the MVAR model was fitted to two
channels at a time. Since in our simulations the pattern of flows found by means
of coherence phase analysis and by the Granger causality measure were identical,
we made calculations only for pairwise Granger causality.
For the multivariate measures DTF, dDTF, multivariate Granger causality and

PDC, the MVAR model was fitted simultaneously to 21 channels. The model
order found by means of AIC criterion was four. For all estimators the calculated
transmissions between all channels were integrated in the 7Hz to 15Hz range in
order to represent alpha activity. The results showing the direction of propagation
and intensity of flow are illustrated in Fig. 15.13.
The multivariate estimates of Granger causality and DTF are quite similar and

they show a very consistent pattern of flows, directed mainly from the posterior
parts of the head toward the front. The difference between both estimates can be
observed for the Fz electrode. It comes from the fact that the Granger causality is
not normalized, it is simply an element of the transfer matrix. DTF is normalized
with respect to inflows. The Fz electrode sends the activity, but there is also a
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Fig. 15.13: Direction of flows for 21-channel EEG (awake state eyes closed) obtained
by means of different methods. The shade of gray of the arrow represents the
strength of the connection (black = the strongest), for each method 40 strongest
flows are shown. Reprinted from with permission [49] (© IEEE 2005).

lot of activity flowing to the destination channels from the posterior electrodes,
so the denominator in Eq. (15.6) is quite large, which diminishes the values of
DTFs showing outflows from Fz. For Granger causality and DTF there is no
propagation from the temporal electrodes. This is practically also the case for
dDTF. The dDTF shows only direct flows, we can see that in this case the pattern
of flows is consistent with anatomy, e.g., a lack of direct connection between Oz
and Pz, Fz, and Fpz—locations where hemispheres are partitioned. The main
sources of the activity—namely, electrodes P3, P4, O2, Oz, O1—are the same as
for the other multivariate estimates.
Inspecting the results of application of the PDC function to the same data

epoch we observe a different picture. One can notice that, unlike the results of
dDTF, some channels became sinks. This is due to the normalization of PDC. In
fact, we do not see the transmission, as is the case for dDTF, but the ratio between
the flow to a given channel with respect to all the outflows from the considered
channel. In this way, a channel propagating activity in all directions will show
weaker flows than a channel propagating only in one direction. Therefore, the
method is not suitable for identification of sources of EEG activity, but it may be
useful when the destination channel is of primary interest.
The pattern of propagations obtained for the bivariate estimates of the Granger
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Fig. 15.14: Simulation explaining reversal of the flow direction for bivariate es-
timate of Granger causality. From the top:—DTF and resulting flow pattern,
bottom—bivariate Granger causality and deduced flow pattern. In the middle the
simulation scheme is shown (∆—represents delay value in samples). Dotted line
shows nonexisting flow found by bivariate estimate. Reprinted with permission
from [49] (© IEEE 2005).

causality does not reveal any clear tendencies. The strong outflow from Fpz to
Fp1 may perhaps be explained by the fact that probably the delays of the EEG
signals coming to Fpz are smaller than the delays for Fp1 and F3. In this case we
observe for electrode C3 a flow in a different direction than shown by all three
multivariate estimates discussed above. In order to explain better this phenom-
enon we have made a simple simulation shown in Fig. 15.14. If the delay between
channels two and three is bigger than between one and three, we have inversion
of flow direction for the bivariate estimate. Such a situation, as shown in our
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simulation example, can easily happen for experimental EEG. The above consid-
erations demonstrate that drawing any physiological conclusions from pairwise
estimates of causality is very risky, if not impossible.

15.9.2 Application of a Time-Varying Estimator of Directedness

Quite often the dynamics of a multivariate process is of primary interest. This
is especially the case for many biological systems. A good example may be in-
formation processing by the brain which takes place in a fairly short time scale.
Therefore it is important to be able to estimate the topographic pattern of flows
not only as a function of frequency, but also follow its dynamics. The SDTF offers
an opportunity to trace propagation changes in time when multiple realizations
of an experiment are available. The performance of SDTF will be illustrated on
the example of the voluntary finger movement. The experiment involved the lift-
ing of the right- or left-hand index finger (or the imagination of this task) after
presentation of a cue indicating right/left direction. Eight seconds long epochs
were considered with a cue appearing in the fifth second. The description of the
experiment may be found in [54].
In order to follow the time evolution of transmissions a compromise has to

be found between the window length and the number of channels. Two sepa-
rate sets of nine electrodes were taken into account, one located over the left
hemisphere sensorimotor area and another at the opposite positions over the
right hemisphere; the middle electrodes were shared by both sets. Signals from
distinct hemispheres could be treated separately because of little coherence and
weak flow found between them. A 50 points (400ms) long window was chosen,
which resulted in a ratio of data points to number of parameters of about 50. In
order to calculate SDTF as a function of time the window position was consecu-
tively shifted by 10 points (80ms). In order to better recognize artifacts generated
by contraction of neck muscles, for each subject a certain threshold was estab-
lished for energy cumulated in the 15Hz to 40Hz band during an epoch, and
trials surpassing this threshold were rejected. Special measures to eliminate high
frequency artifacts were taken because in this experiment changes of flows in the
beta and gamma bands were of primary interest.
The SDTFs as functions of time and frequency are shown in Fig. 15.15. When

analyzing the matrix of SDTFs reflecting the propagation between the channels,
one can observe a characteristic gap in propagation in the beta band around time
zero (cue presentation), especially in the locations connected with a motor task
(electrodes C3, C1).
The analysis of graphs such as presented in Fig. 15.15 may be difficult. In

order to follow better the time course of propagation of particular rhythms the
SDTF values may be integrated in the frequency bands of interest. In this way
the time course of propagation in the given band may be followed. In Fig. 15.16
the propagation in the beta band (17Hz to 23Hz) as a function of time is shown
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Fig. 15.15: (a) Example of propagation of EEG activity in the left hemisphere dur-
ing right-hand movement imagination. In each small panel SDTF as a function of
time (horizontal axis in seconds) and frequency (vertical axis in hertz) is presented.
Intensity of flow coded by shades of gray (black = the strongest). Intensity scale
is the same for all panels. The flow of activity is from the electrode marked above
the column to the electrode marked at the relevant row. On the diagonal power
spectra are shown. Reprinted from [54], © (2001), with permission from Elsevier.

together with the corridors of errors determined by the bootstrap method. One
can see the similarities in the time evolution for the same pairs of electrodes for
both subjects and the characteristic decrease of activity during the movement and
increase after the completion of the task. By examining the curves it is possible
to determine from which electrode the propagation starts first.
In the investigation of cognitive and control processes gamma activity is

of special interest since it is connected with the information processing by the
brain [55]. Gamma activity is hard to detect by means of scalp electrodes. It is
observed for some subjects only. Thanks to its selectivity in respect of phase
dependencies and robustness in respect to noise, the SDTF method makes it
possible to follow the dynamics of gamma activity propagation. The best way
to present the abundant information supplied by DTF is to present it in the
form of a movie. Animations of gamma activity propagation are accessible at
web page http://brain.fuw.edu.pl/~kjbli/DTF_MOV.html. The animations il-
lustrate characteristic features of gamma rhythm propagation in case of a real



402 15 Multivariate Signal Analysis by Parametric Models

Fig. 15.16: Time course of SDTF in the beta band (15Hz to 30Hz) for two subjects.
The corridors of errors at the level of one standard deviation are shown. Reprinted
from [54], © (2001), with permission from Elsevier.

or imaginary movement. The interpretation of the observed pattern of flows is
straightforward: during the real movement a short burst of activity signaling the
command to perform the task is emitted from the corresponding motor areas.
It is followed by a flow from the more frontal areas, which may be interpreted
as recognition of the performance. In case of imagination the process is much
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Fig. 15.17: Example of transmissions in gamma band for real (left column) and
imaginary (right column) finger movement. Upper row presents the propagation
at 0.3 s, middle row at 1.1 s, and bottom row at 1.4 s after the cue presentation.
Arrows represent increase of the transmission in respect to the reference period
(between 80% and 100% percentiles, color scale at the left).

longer and several structures of sensorimotor cortex are involved, it especially
concerns Supplementary Motor Area (located mainly in beneath the Fz elec-
trode). Screenshots of one of the animations illustrating a typical situation are
shown in Fig 15.17. The above example of the Short-time Directed Transfer Func-
tion application shows that SDTF gives a coherent and detailed description of
information processing by brains connected with motor control. The obtained
evidence is in agreement with the known topographic and spectral features of
the investigated task and at the same time new information is obtained that is
not accessible by standard methods.

15.10 Discussion

In this chapter we have considered the possibilities offered by a parametric MVAR
model in respect of finding measures describing the relations between multichan-
nel data sets. MVAR offers a comprehensive means of depicting the properties
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of the related signals in the frequency domain, which is especially important in
the case of time series characterized by rhythmic components. Once an MVAR
model is adequately estimated many powerful spectral quantities can be derived
such as spectra, coherences, and causal influence measures.
The information contained in coherences is usually interpreted as a measure

of coupling between signals in a given frequency range; however, in drawing
conclusions about the coupling strength not only ordinary (bivariate) coherences
should be considered. Quite often the set of signals is strongly interrelated, es-
pecially if the signals are produced by the same process. Multiple coherences
show the relation between a given channel and all the others channels of the set.
They give an indication about the strength of the interactions in the considered
system. In the example given above concerning the EEG measured from scalp
electrodes, each of the channels revealed a very strong coupling with the system.
It may be taken as an indication that in consideration of relations between chan-
nels partial coherences should be taken into account, since they are a measure
of direct interaction between channels discriminating against influences of other
channels of the set. Complete information about coherence in the system may
be obtained by not only estimating ordinary, but also multiple and partial coher-
ences. Most papers, particularly in the field of neuroscience, address exclusively
ordinary coherences, which describe only part of the information contained in
the multivariate data structure and can hardly be interpreted in terms of a real
coupling between given channels.
The problem of determining directionality and finding causal relationships

between time series is at present at the center of interest in many different
fields, e.g., neuroscience, geophysics, economy, and sociology. Information about
causality is coded in the phases between the channels of a process, although
correct procedures are needed to reveal this information. We have demonstrated
by simulations and by examples of experimental signals, why attempts to find
directions from pairwise measures failed when more than two time series were
involved. The phases of ordinary coherences give very little information, since
they are blurred by multiple relationships between channels and, moreover, co-
herence phases are ambiguous by definition (determined modulo 2π). For that
reason the conclusions, which can be drawn from pairwise phase calculations,
are usually very weak.
The DTF function is a measure, which makes it possible to find causality rela-

tions for an arbitrary number of channels, with a reservation imposed by the sta-
tistical requirements concerning the number of model parameters in relation to
the data points. DTF advantages are robustness with respect to noise or constant
phase disturbances. Multivariate estimators of directedness DTF, nonnormalized
DTF and dDTF, show slightly different aspects of propagation, depending on
normalization, but their results are consistent and compatible with the physio-
logical and anatomical evidence. All the results obtained by simulations also hold
for SDTF since it is practically the same estimate, only the MVAR coefficients are
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calculated in a different way. By revealing the temporal changes of pattern of
transmissions SDTF opens a way to elucidate dynamical evolution of nonstation-
ary processes.
An interesting feature of DTF is the fact that it allows for extraction of weak

components from the noise background, if they reveal definite phase dependence.
An example may be the observation of gamma activity propagation during the
motor task. In this case gamma activity was hardly observed in the spectra, but
thanks to the selectivity of DTF a pattern of gamma activity propagation was
determined.
In this chapter we have demonstrated that correct causal relationships and

directions of signal propagation can only be found when all the interacting chan-
nels are evaluated simultaneously. The issue of the completeness of information
was pointed out already by Granger [56], he stated namely that a correct causality
measure can only be assessed, if the signal set contains all the possible relevant
information of the problem. How can we be sure that our battery of time series
forms a complete set? It is a difficult question, but usually we have some a priori
knowledge on the process generating signals and we can expect which channels
are mutually interdependent. The best solution is to take full sets of signals; how-
ever, that is not always possible, since the number of channels is connected to the
number of model parameters, which cannot be too high in comparison with the
number of points, as was pointed out above. In finding the balance between the
number of channels and the data window, partial coherences may be helpful. If
the partial coherence between two sets of channels is low we can assume low
coupling between these sets and consider them separately. This was the case for
our evoked response data where the signals from both the brain hemispheres
were considered separately because of low partial coherences between electrodes
belonging to the different hemispheres.
Some pitfalls should be mentioned in the context of the application of mul-

tivariate parametric models. The calculation of the MVAR model coefficients is
based on an estimation of the correlation matrix, therefore no preprocessing in-
volving the introduction of correlation between signals should be used. Introduc-
tion of any additional correlation ruins the causal estimate completely. We stress
this point, since e.g., in the field of brain signals analysis in order to discrimi-
nate against the volume conduction the Laplacian or Hjorth transforms are used.
Such preprocessing introduces additional correlations and moreover it is not nec-
essary, since DTF is insensitive to zero phase disturbance, hence it discriminates
against volume conduction.
In the recent literature there are many papers devoted to the nonlinear mea-

sures of dependencies between channels. These measures are exclusively bivari-
ate, since the design of multivariate nonlinear estimators of causality is very
difficult and the problem is not resolved yet. In each particular case the question
arises if we commit a bigger error assuming linearity or by using bivariate mea-
sures. As it was pointed out, pairwise estimates can lead to ambiguous or even
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wrong conclusions. Therefore it is worth testing if the assumption of linearity
does not hold. For EEG and LFP it was demonstrated by numerous studies based
on linear versus nonlinear forecasting [57] or surrogate data techniques [58, 59]
that EEG and LFP can be considered a colored noise time series and that one can
trace nonlinear behavior only in certain phases of epileptic seizure [60]. How-
ever, even in this case linear techniques perform well: e.g., in [15] the power of
the multivariate DTF function in epileptic focus localization was demonstrated.
Another aspect, which can not be neglected is the fact that nonlinear methods are
usually much more sensitive to noise. Therefore, if there is no strong evidence of
nonlinearity the linear approximation may be recommended.
In this study we have emphasized the importance of a multivariate approach,

which merits more attention, since the pitfalls in evaluating the direction of
causal relations in EEG or LFP connected with the use of bivariate instead of
multivariate techniques are much more serious than the limitations connected
with the assumption of linearity of time series.
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16 Computer Intensive Testing for the Influence
Between Time Series

Luiz Antonio Baccalá, Daniel Y. Takahashi, and Koichi Sameshima

Recent years have seen several different quantitative approaches to gauging the
mutual influence between multiple simultaneously measured time series with
applications that range from physiology to economics. Some of them, specially
those that portray that influence in the frequency domain, like partial directed co-
herence, in connection to the parametric modeling of jointly stationary time series
lead to estimators whose asymptotic behavior, even if known, is of limited practi-
cal value, as many time series of interest can only be often considered stationary
over very limited time spans. This chapter examines how to use the actually
observed data itself to: (a) set limits on the significance of the null hypothesis
of absence of relationship between the observed time series and (b) to produce
confidence interval estimates when the mutual influence is of significance. Two
different strategies to produce bootstrapped estimates are considered. The first
one is based on random model residual resampling and the second one on spec-
tral phase shuffling. Their relative merits are examined and examples of their
application to both real and simulated data are considered.

16.1 Introduction

Cost reductions in data acquisition technology have produced an overwhelm-
ing increase in the available information in many research areas. For instance,
electroneurophysiology which went from the simultaneous measurement of a
handful of signals to that of hundreds of electrodes in both high resolution dig-
ital electroencephalography (EEG) [1] and in multisingle unit recordings [2] is
allowing a more systematic treatment of the crucial question of functional con-
nectivity: i.e., finding how and when brain areas communicate among themselves
both under normal and pathological situations. For example, one such important
connectivity question is seizure focus determination in epilepsy [3].
To address questions like these, some authors have recently proposed a num-

ber of techniques (see Table 16.1 for a partial summary) based on frequency
domain representations of multivariate autoregressive models (of order p)

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9



412 16 Computer Intensive Testing for the Influence Between Time Series




x1(k)
...

xN(k)


 =

p∑
r=1

Ar




x1(k − r)
...

xN(k − r)


 +




w1(k)
...

wN(k)


 (16.1)

of simultaneously measured time series xi(n), (1 � i � N) where the coefficients
matrix Ar whose i, jth entry aij(r) describes the linear relationship between time
series xi(k) and xj(k) at the rth past lag and where wi(k) represent the driving
innovations.
Underlying Table 16.1 proposals is the idea of Granger causality [4]1, whereby

a time series xj(n) is said to Granger cause xi(n) if it is possible to significantly
improve prediction of the latter from the (exclusive) knowledge of xj(n)’s past.
For example, consider N = 2 and first equation in Eq. (16.1)

x1(k) = a11(1)x1(k − 1) + a12(2)x1(k − 2) + · · ·
+ a12(0)x2(k) + a12(1)x2(k − 1) + · · · . (16.2)

If a12(r) = 0 for r > 0, this implies that x2(k)’s past has no bearing on x1(k)

values, i.e., x2(k) does not Granger cause x1(k).
From the second equation in Eq. (16.1)

x2(k) = a22(1)x2(k − 1) + a21(2)x2(k − 2) + · · ·
+ a21(0)x1(k) + a21(1)x1(k − 1) + · · · (16.3)

Granger causality’s unreciprocal nature becomes clear since even if all a12(r) = 0

this does not mean that a21(r) = 0. This fact leads to the possibility of deducing
the direction of information flow from x1(k) to x2(k) if a21(r) �= 0 for some r � p.
Thus functional connectivity inference can be reduced to hypothesis testing

for

H0 : aij(r) = 0 (16.4)

for all r between 1 and p.
Whereas many approaches [5] exist for directly testing Eq. (16.4) in the time

domain, tests like

H0 : |πij(λ)|2 = 0 (16.5)

based on the allied frequency domain representations of Granger causality in Ta-
ble 16.1, which hold if and only if Eq. (16.4) hold, are either scarce or nonexistent.
In fact, former neuroscience applications [6–10], where frequency-band informa-
tion is specially relevant, were either made by extensive simulation [6, 11], via

1 In economics it has become a tool in the empirical investigation of systematic time prece-
dence/feedback questions between time series like employment and inflation.
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the choice of arbitrary thresholds [9] or more recently through the use of boot-
strap related ideas [12] similar to one of the approaches examined in the present
chapter (Section 16.3.2).
In fact, data-aided means like bootstrap of testing Eq. (16.5) are specially im-

portant because practical time series are usually short or non-Gaussian and vio-
late the commonest assumptions used in developing asymptotic tests for Eq. (16.4)
or Eq. (16.5) which at best amount only to rough indicators of the actual connec-
tivity.

Tab. 16.1: Partial list of time series connectivity inference methods based on mul-
tivariate autoregressive models (16.1) in the frequency domain whose description
is based on

A(λ) = I −

p∑
r=1

Are
−2πirλ

for the normalized frequency |λ| � 0.5 (The normalized sampling frequency is
given by the ratio the frequency of interest with respect to the sampling rate,
both in hertz) where I is an N × N identity matrix, i =

√
−1. This allows one to

define ak(λ) = [A1k(λ) · · ·ANk(λ)]T out ofA(λ)’s columns. Also letH(λ) = A−1(λ)

and hk(λ) = [Hk1(λ) . . . HkN(λ)]
T built from H(λ)’s lines. Further let Σw be the

innovations covariance matrix and σ2
ii the variance of wi(k).

Method Expression Reference

Cross spectrum
(CS)

Sij(λ) = hT
i (λ)Σwhj(λ) [13]

Coherence (C) Cij(λ) =
hT

i (λ)Σwhj(λ)√
(hT

i (λ)Σwhj(λ))
(
hT

j (λ)Σwhj(λ)
) [13]

Partial coherence
(PC)

κij(λ) =
aT

i (λ)Σ−1
w aj(λ)√(

aT
i (λ)Σ−1

w ai(λ)
) (

aT
j (λ)Σ−1

w aj(λ)
) [14]

Directed
coherence (DC)

γij(λ) =
σjjHij(λ)√∑N
j=1 σ2

jj|Hij(λ)|2
[15]

Partial directed
coherence (PDC)

πij(λ) =
Aij(λ)√∑N
j=1|Aij(λ)|2

[16]

Directed transfer
function (DTF)

DTFij(λ) =
Hij(λ)√∑N
j=1|Hij(λ)|2

[7]

Generalized PDC
(GPDC)

π̄ij(λ) =

1

σii
Aij(λ)√

∑N
i=1

1

σ2
ii

|Aij(λ)|2

[17]
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Rather than full generality, after a bootstrap refresher (Section 16.2), this
chapter concentrates (Section 16.3) on two of the many possible data-aided ap-
proaches for testing Eq. (16.5). This is followed by some numerical illustrations
(Section 16.4) and a brief discussion (Section 16.5).

16.2 Basic Resampling Concepts

Statistical estimation is concerned with making the best possible use of mea-
sured quantities affected by random perturbations. To improve the reliability
of computing a quantity θ(u) that depends on the measurement of u, one em-
ploys an estimator θ̂ that combines randomly perturbed measurements (samples)
u(1), . . . , u(K) of u. The statistical problem then is to describe the reliability of
the values for θ that are produced by θ̂ in the form of quantities like bias (β(θ̂)),
mean-squared error (MSE(θ̂)), confidence intervals, hypothesis test threshold val-
ues and so on. The latter are often called level 2 statistics whereas the computed
variable of interest θ̂ is a case of level 1 statistic.
An elementary example of this is the measurement of some constant value θ0

in random noise w. The samples produced are described by

u(k) = θ0 + w(k), (16.6)

where w(k) are assumed independent and identically distributed (iid) for sim-
plicity.
An estimator for θ0 is

θ̂0 =
1

K

K∑
k=1

u(k) (16.7)

and its statistical performance (given by the level 2 statistics) depends on what
is known about the description of w’s randomness; for example if w’s mean is
zero, Eq. (16.7) is unbiased (i.e., β(θ̂0) = 0).
Much of mathematical statistics is concerned with explicitly describing the

level 2 statistics as a function of one’s knowledge of G (w(1), . . . , w(K)), w’s sam-
pling distribution. The available answers are usually asymptotic (hold for K →
∞) and depend on how much is known about G a priori. For example, if in ad-
dition to being iid, w(k) are also Gaussian, the explicit asymptotic confidence
intervals for θ0 depend on whether w’s variance σ2

w is known or whether it must
also be estimated from the observations.
In many cases of interest, neither is the sample size K large nor much is

known about G. This apparent dead end was overcome in many important cases
by Efron’s proposal of the idea of bootstrap [18, 19] which consisted of using the
actually observed data to infer the level 2 statistics.
In the case of Eq. (16.7), bootstrap proceeds as

Procedure 16.1. Bootstrap for iid data:
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Fig. 16.1: (A) In the model-based approach, the observed data are used to generate
a model whose inversion leads to estimates of the innovations time series wi(·)
in the form of prediction errors (residuals). (B) If the model is adequate, passing
residual whiteness tests, one can sample the residuals with replacement and use
the estimated model to generate resampled time series whose modeling, in turn,
leads to the computation of the level 2 statistics of interest.

1. Randomly draw data with replacement and equal probability from the original sample
set U = {u(1), . . . , u(K)} to produce N∗ bootstrapped sets U(l) = {u

(l)
1 , . . . , u

(l)
K∗ }

where u(l)
k∗ are the resampled data.

2. Obtain the empirical distribution F∗ for θ̂∗
0 via

{θ̂0(U(1)), . . . , θ̂0(U(N∗))} (16.8)

3. Use F∗ to compute the level 2 statistics of interest.

The resampling literature [19] tells us that asN∗ increases (for large enough K)
through Procedure 16.1, F∗ → F, the actual sampling distribution of θ̂0. Whereas
bootstrap convergence holds for Eq. (16.7) and leads to statistically efficient re-
sults for small K, the same method may fail for other estimators; it fails for order
statistics such as minU or maxU even ifw’s distributions are defined on bounded
intervals [20, 21].
A major hindrance to the applicability of Procedure 16.1 to general time series

is the iid requirement as time series data samples usually exhibit some form of in-
terdependence which needs to be considered or circumvented (Section 16.3) [22].

16.3 Time Series Resampling

Observed time series, univariate or multivariate, correspond to samples
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x(·) = {x(k), k = 1, . . . , K} (16.9)

gathered sequentially from some random data generating mechanism (random
process)2. Time series analysis aims at describing the underlying sequential data
generating mechanisms. Usually the description is partial and concerns just some
aspects of the data dependence pattern. For stationary mechanisms, one may
be interested in the spectral representation of the data, or equivalently in the
autocovariance γx(m) = E[x(n)xT (n + m)] to be inferred from a single observed
process realization. Parameters from models like Eq. (16.1) and derived quantities
in Table 16.1 represent possible parameters of interest (level 1 statistics) whose
statistical accuracy needs to be assessed (via the level 2 statistics).
To carry out this process, as for Eq. (16.6), one must use the observed data,

Eq. (16.9), to generate other time sequences which preserve some (or all) proper-
ties of the parameters of interest. This is represented by the transformation

x(∗)(·) = T (x(·), ξ) (16.10)

that generates the sequence x(∗)(·) randomly as represented by the random vari-
able ξ in Eq. (16.10). Iterated application of Eq. (16.10) leads to resampled real-
izations

{x(1)(·), . . . ,x(N∗)(·)}, (16.11)

wherefrom the resampled parameters

{θ̂
(
x(1)(·)

)
, . . . , θ̂

(
x(N∗)(·)

)
} (16.12)

are generated and whose empirical distribution must approximate F(θ̂) for a
good choice of T. Clearly, Procedure 16.1 is a special case of T (x(·), ξ) that is
only good for time series without time dependence (white noise as the samples
in Eq. (16.6) may be interpreted). Note that ξ’s role is represented by step 1 of
Procedure 16.1.
Hence in time series resampling, one must choose T not only to match the

estimator of interest but also to handle the time dependence adequately.
In the remainder of this chapter, adequate description by models like Eq. (16.1)

that encode the time dependence in its parameters is assumed. As a result, if
this encoding is successful, the time dependence between modeling residues is
abolished and leads to T (x(·), ξ) based on prior data modeling as described in
Section 16.3.1.
Model independent resampling can be achieved in the case of stationary time

series by taking into account their spectral representation in terms of independent
random increments [23]. This is covered in Section 16.3.2 whereas other more
general time series resampling strategies are briefly discussed in Section 16.3.3.

2 Boldface quantities like x(·) = [x1(·), . . . , xN(·)]T denote multivariate time series.
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Due to the emphasis on providing answers to both confidence intervals and
to performing null hypothesis tests like Eq. (16.5), the forthcoming sections dis-
tinguish between correlation preserving TP and correlation abolishing TR trans-
formations.

16.3.1 Residue Resampling

Because of the central importance of the iid requirement, the first idea that comes
to mind is to use T to reduce the original observations equation (16.9) to an
equivalent iid data set as an intermediary step.
Models like Eq. (16.1), when adequately fitted, readily lead to a representation

of x(·) that is composed of the model parameters and its residuals3

w(·) = {w(k), k = 1, . . . , K} . (16.13)

Model parameters encode the time relationship between x(·) components and
their respective time samples whereas the residuals w(·) represent what cannot
be predicted from past x(·) based on the fitted model. When the models are in
addition invertible [24], Eq. (16.13) may be used directly to recompose the ob-
served time series (see Fig. 16.1). This is the key to:

Procedure 16.2. Model-based crosscorrelation preserving resampling (TM
P ):

1. Use the data (16.9) to fit a model M, say Eq. (16.1), and ensure that the residual
Eq. (16.13) cannot be distinguished from iid (uncorrelated) time series (modeling di-
agnostics). This step also produces θ(M), the level 1 statistics of interest.

2. Produce w(∗)(·) time series by resampling Eq. (16.13) with replacement and equal
probability (the ξ step).

3. Usew(∗)(·) to generate x(∗)(·) fromM.

4. Analysis of x(∗)(·) leads to modelM(∗) wherefrom θ∗ is generated.

5. Repeat the steps 2–4, N∗ times and use the resulting θ∗’s to compute F∗θ to approxi-
mate Fθ.

While Procedure 16.2 preserves the interaction between the time series and
can be used to produce confidence intervals, to test the null hypothesis of lack
of interaction, i.e., null hypothesis like Eq. (16.4) or Eq. (16.5), one must break
the relationship between the time series by modeling them separately. Thus, each
resampled component time series preserves all of its spectral distributions and at

3 If x(·) are Gaussian and the model is adequately fitted, w(·) cannot be distinguished from iid
time series. For linear models like Eq. (16.1), even if gaussianity does not hold, w(·) are just
uncorrelated in time and this suffices. Model fitting adequacy is ensured by whiteness tests [5, 23,
24] on Eq. (16.13).
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Resampled
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Fig. 16.2: Schematic diagram of the phase-resampling approach to bootstrap. The
original time series are transformed to the frequency domain where the phase is
randomly altered. Inverse Fourier transformation to the time domain produces the
resampled time series whose analysis provides the level 2 statistics information.

the same time obliterates any existing mutual interactions. Hence, any joint mul-
tivariate analysis on the separately resampled time series mimics the variability
one would observe if the underlying time series were unrelated. This allows es-
tablishing null hypothesis test decision thresholds as summarized in the next
procedure:

Procedure 16.3. Model-based resampling without cross-correlation preservation (TM
R ):

It is identical to Procedure 16.2, except that

1. It is applied to each component time series xi(·) separately and independently from
the other time series and generates Mi models whose residuals wi(·) are used for
resampling and reconstituting x

(∗)
i (·).

2. The reassembled joint time series x(l)(·) = [x
(l)
1 (·), . . . , x(l)

N (·)]T are then used to
generate M(l) models wherefrom the distribution of θ̂(M(l)) approximates Fθ̂ under
the null hypothesis of lacking interaction between the component time series.

Ordinarily, these approaches are limited by outliers or when model poles are
close to the unit circle [13] calling for alternative approaches (see Examples 16.2
and 16.3).

16.3.2 Phase Resampling

The essence of this approach is to realize that for frequencies given by ν = k/K,
where k is an integer (0 � k � K − 1), the Discrete Fourier Transform, DFT
of xi(k):

Xi(ν) =
1√
K

K−1∑
m=0

xi(m)e−2πimν (16.14)

are approximately iid complex random variables [21, 25]. As is well known, the
periodogram of xi(k)

IX(k) =

∣∣∣∣Xi

(
k

K

)∣∣∣∣
2

(16.15)

is the basis for nonparametric estimates of the spectrum of xi(k) after adequate
local averaging [23, 25]. This means that time series whose DFT values differ by a
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random phase ξ(ν) essentially have the same estimated spectrum. Thus, different
waveshapes x

(∗)
i (k) with the same estimated spectrum may be created.

By rewriting Eq. (16.14) in polar form, Xi(ν) = |Xi(ν)|ejΦXi
(ν), one may ran-

domize the phase either by writing:

Procedure 16.4. Phase randomization with correlation nullification (TΦ
R ) [26]:

Φ
(∗)
Xi

(ν) = ξi(ν), (16.16)

where ξi(ν) are uniform mutually independent real random variables in [−π, π]

or

Procedure 16.5. Phase randomization with correlation preservation (TΦ
P ) [27]:

Φ
(∗)
Xi

(ν) = ΦXi
(ν) + ξ(ν), (16.17)

where ξ(ν) are real uniform random variables in [−π, π] and are produced independently
at each frequency ν.

so that phase randomized x
(∗)
i (k) are obtained from computing the inverse DFT

of Xi(ν)

x
(∗)
i (k) =

1√
K

K−1∑
m=0

X
(∗)
i

(m

K

)
e

2πimk
K (16.18)

for k = 0, . . . , K − 1. This is summarized in Fig. 16.2.
What distinguishes Eq. (16.17) is that the same random phase is used in per-

turbing all time series for a given ν and this choice leaves the cross-spectra in-
variant [27] whereas in Eq. (16.16) the phases differ for each time series as well
so that on average unrelated time series are produced.
It should be remarked that the suitability of TΦ

P is proved in [28] who point
out the necessity of extracting the sample mean before using the method for
adequate convergence. The inadequacy of this method for non-Gaussian time
series is also discussed.
Also more general spectral resampling than the choice of random phases is

possible if adequate spectral estimation is carried out [23–25, 29] whereby the
full χ2

2 spectral statistic of
∣∣Xi

(
k
K

)∣∣2 can be used (Gaussian data) or if adequate
(nonparametric) spectral estimates are available (see Section 16.3.3).

16.3.2.1 Some Computational Issues

The residue resampling methods are very easy to program. The resampled residue
data are given by

w∗
(·)(1 : LB + K) = w(·)(�K rand(1 : LB + K)�), (16.19)

where rand stands for a random number generator function with uniform dis-
tribution in [0, 1] and where LB is the number of burn-in data points used to



420 16 Computer Intensive Testing for the Influence Between Time Series

obtain stationary output from simulating Eq. (16.1) with a total computation cost
ofO

(
(LB + K)N2p + Np

)
floating point operations versusO(K log2 K) operations

for the phase resampling methods if a fast algorithm is used [13]. Usually LB is
increased until the estimates become stable.

16.3.3 Other Resampling Methods

The methods of the previous sections are by no means the only ones. The first
proposals for time series bootstrapping (or for other dependent data) was made
via the so-called block bootstraping methods [30] which admit a variety of “fla-
vors” like moving block bootstrap (MBB), nonoverlapping block bootstrap (NBB),
circular block bootstrap (CBB), and stationary bootstrap (SB) [22].
The essential feature of these methods is to randomly select data blocks of

an appropriate length l from the original time series data set. When rejoined,
the blocks produce resampled time series x∗(·) for analysis. These different block
methods differ in how block selection takes place: for example CBB uses period-
ically extended time series [22].
It is important to note, however, that for the purpose of inferring quantities

that depend on second order statistics as those in Table 16.1, one must use ’block
of blocks’ methods which consist of picking up blocks themselves made up by
other blocks whose length reflects the lag structure dependence of the data [22].
As in Section 16.3.1, the block procedures may be applied to the time se-

ries vector x(·) as whole (TP) or to each component time series xi(·) indepen-
dently (TR).
Other bootstrap methods include subsampling (a generalized form of ‘jack-

knife’) [31], sieve bootstrap [32] and transformation-based bootstrap (TBB) of
which the method in Section 16.3.2 is an example. In fact, more general use of
the frequency domain (FDB) for bootstrap is discussed in [22, 33, 34].
All of these methods differ in their statistical efficiency and applicability.

Lengthy theoretical details can be found in [22].

16.4 Numerical Examples and Applications

In this section, we examine the resampling strategies adopted in Sections 16.3.1
and 16.3.2, first via simple toy models to illustrate the statistical behavior that
should be expected under controlled situations and then apply the methods to
some experimentally observed data.

16.4.1 Simulated Data

When the innovations wi(k) have identical variances and the model is bivariate,
DC, DTF, PDC, GPDC in Table 16.1 amount to basically the same quantities. As
such, consider
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1 2

A
1 2 3

B

Fig. 16.3: (A) Connectivity patterns for Examples 16.1 and 16.2 and (B) for Exam-
ple 16.3.

Example 16.1. The simplest possible case of analyzing data generated by[
x1(k)

x2(k)

]
=

[
0.5 0

0.5 0.5

] [
x1(k − 1)

x2(k − 1)

]
+

[
w1(k)

w2(k),

]
(16.20)

where wi(k) are iid mutually independent random zero mean unit variance
Gaussian sequences. The connectivity between x1(k) and x2(k) is summarized
in Fig. 16.3(A).

Null connectivity hypothesis tests using PDC’s estimator for TR resampling
strategies for the absent connection x2(k) → x1(k) are compared in Fig. 16.4. It is
seen that less strict thresholds are provided by TM

R than for TΦ
R which is closer to

the asymptotic thresholds defined in [35] when just K = 100 points are used.
For x1(k) → x2(k), connectivity cannot be rejected as its PDC value is well

above the null hypothesis thresholds (Fig. 16.5). In this case PDC confidence
limits obtained via bootstrap can be computed and the TM

P (2.5%, 97.5%) limits
are slightly larger than those computed using TΦ

P .
Further insight on PDC’s bootstrap distributions under the null connection

hypothesis for λ = 0.1088 is provided in Fig. 16.6 where one readily sees in
this case that TΦ

R is less likely to generate false positives than TM
R . For com-

parison, numerical approximations of the asymptotic PDC distributions are also
depicted [35].
Now consider an example that differs from the previous one in that its poles

are close to the unit circle.

Example 16.2. Two unidirectionally coupled linear oscillator structures with the
same connectivity pattern as that of Example 16.1 (Fig. 16.3(A)) whose data gen-
erating model is described by the following matrices:

A1 =

[
1.8266 0

0.3 1.7537

]
A2 =

[
−0.9409 0

0 −0.9409

]
(16.21)

and where wi(k) are defined as in Example 16.1.

This model was chosen because extensive simulations [9, 11, 36, 37] have
shown the high degree of false positive detections in the reverse unconnected
direction using frequency independent thresholds like |πij(λ)|2 > 0.1 for coupled
oscillators when little energy dissipation is involved. In this case, only K = 100

points (roughly just two observed cycles) are used in the inferences.
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Fig. 16.4: Under the null hypothesis, the bootstrap thresholds for TM
R (dot dashed),

TΦ
R (dashed) and the theoretical asymptotic value (gray) for PDC estimates (solid)
of Example 16.1 for the nonexisting x2(k) → x1(k) connection by using K = 100

data points as a function of the normalized frequency λ.
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Fig. 16.5: Confidence intervals (2.5%, 97.5%) for the existing x1(k) → x2(k) (TΦ
P –

dots TM
P – dashed) in Example 16.1 using K = 100 points to estimate PDC (solid)

as a function of the normalized frequency λ. Hypothesis tests 95% thresholds are
also shown at the bottom (gray) and reflect the connection’s high significance.
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Fig. 16.6: Comparative cumulative resampling distributions (TΦ
R in black, T

M
R in

gray and asymptotic PDC from [35] – dashed) under the null hypothesis of con-
nection, respectively, x2(k) → x1(k) (A) and x1(k) → x2(k) (B) for the normalized
frequency λ = 0.109 using K = 100 in Example 16.1. The vertical dashed line cor-
responds to estimated PDC value which is absent from (B) as its value is above the
scale.

The inference results are shown in Fig. 16.7. Decision threshold dependence
on K is portrayed in Fig. 16.8 for λ = 0.09 that corresponds to the frequency
where the estimated PDC is maximum. Note that in accord with theory, residual
resampling furnishes slacker thresholds in this case. A flavor of the small depen-
dence of the decision threshold value on the number of resamples for TΦ

R can be
appreciated in Fig. 16.9.
Illustration of the reversed roles of the methods in regard to confidence limit

estimation for x1(n) → x2(n) can be appreciated in Fig. 16.10 where the estimated
PDC value lies within computed TM

P methods as opposed to TΦ
P methods which

generate evidently biased limits. Compare this situation with that of Fig. 16.5.
The next example covers more than two time series. In this case, the connectiv-

ity estimators differ in what they conceptually mean [38]. As opposed to the case
of PDC, whose asymptotic frequency domain characteristics have been recently
worked out [35], most of the other estimators in Table 16.1 have unknown pre-
cise asymptotic behavior for parametric estimation methods. As such, bootstrap
methods provide the only approximate guidelines to the statistical variability that
should be expected.

Example 16.3. Consider the data generating model described by:

A1 =


1.6498 0 0

0.1 1.663 −0.81

0 1 0


 A2 =


−0.81 0 0

0 0 0

0 0 0


 (16.22)

(see Fig. 16.3(B)) for wi(k) statistics defined as before. This model is also one of
the two coupled oscillators where access is now available to the internal variables
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Fig. 16.7: Null hypothesis test results for the existing (A) x1(k) → x2(k) and the
nonexisting connection (B) x2(k) → x1(k) in Example 16.2 for K = 100 points using
TΦ

R (dashed) thresholds against the actual PDC estimate (solid). The gray lines refer
to thresholds obtained via the approximation adopted in [35] and mean, that for
this case, asymptotic reliable decisions are not possible as the latter thresholds are
above the |π12(λ)|2 = 1 theoretical upper bound.
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Fig. 16.8: Comparison between the null hypothesis test distributions for N∗ = 100

resamples, respectively, for TΦ
R (A) and TM

R (B) using K = 100 (black) and K = 500

(gray) data points at λ = 0.09 showing convergence to the theoretical asymp-
totic distribution (dashed). The horizontal dotted line refers to the 95% probability
threshold.

of the second receiving oscillator whose oscillation, if it were alone, would be
achieved by the feedback in Fig. 16.3(B).
As before, a short data segment (K = 100) is used in the illustrations using

N∗ = 100 resampled time series.
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Fig. 16.9: Changes in null hypothesis distribution for TΦ
R applied to Example 16.2

at λ = 0.1 for the x2(k) → x1(k) as a function the number of resampled time
seriesN∗. It is readily seen that N∗ = 100 (black) resampled series is not markedly
different from N∗ = 500 (gray). The estimated PDC value (vertical dotted line) is
well below the 95% TΦ

R threshold value (signalled by the horizontal dotted line).
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Fig. 16.10: Confidence interval (2.5%, 97.5%) results (dashed lines) against the es-
timated PDC (solid) for TΦ

P (A) and TM
P (B) for the existing x1(n) → x2(n) connec-

tion portraying the interval bias of each method.

From theoretical considerations, since DTF involves a matrix inversion dis-
pensed by PDC, one should expect that its bootstrap results will be subject to
larger variability. This is confirmed by comparing the results in Figs. 16.11 and
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Fig. 16.11: DTF null hypothesis results for the connections in Example 16.3 using
K = 100 (and N∗ = 100) made by comparing the estimated DTF (solid) against
the 95% thresholds via TΦ

R (dashed). Only the x2(n) → x1(n) and x3(n) → x1(n)

witness correct decisions for all frequency bands. The fact that power emanates
from x1(n) to x3(n) is incorrectly identified as is the mutual feedback between
x2(n) and x3(n) at the resonance frequency.

16.12. Improvement in DTF descriptions for this model is attained for K = 300 as
can be appreciated in Fig. 16.13.

16.4.2 Real Data

The first real data example is taken from Andrews and Herzberg [39].
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Fig. 16.12: PDC null hypothesis test results reproduce much more closely the the-
oretical structure in Fig. 16.3(B) (Example 16.3) as the PDC estimates (solid) are
above the TΦ

R 95% thresholds (dashed) for almost all frequencies when the con-
nection exists.

Example 16.4. The data relate the time series of melanoma incidence in Con-
necticut after trend removal (x1(k)) and Wölfer sunspot data (x2(n)) between
1936 and 1972 in a total of K = 37 data points.

Naturally, the true causal relation can only be that of solar activity induced
melanomas. The resulting model is severely unbalanced with respect to wi(k)

innovation time series variances. Results of using TΦ
R for PDC connectivity sig-

nificance analysis in Fig. 16.14 with4 and without data normalization prior to
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Fig. 16.13: An example of the same type of DTF (solid) results under null hypoth-
esis tests for K = 300 show much closer agreement to the actual theoretically DTF
connectivity description as thresholds (dashed) are correctly crossed (solid) for the
structure in Example 16.3. Compare with Fig. 16.11.

modeling leads to false conclusions, whereas the use of GPDC, because of its
variance stabilization properties [17], leads to correct conclusions both with and
without data normalization (Fig. 16.15). It is worth noting that the usual time do-
main Granger causality tests agree with those obtained visually through GPDC.
Experience has, in fact, shown that lack of variance stabilization can lead to

unacceptably high decision error rates. This is what induced the introduction
of GPDC in the first place [17].

4 By fitting x1(k)/σx1
and x2(k)/σx2

instead of the actual series x1(k) and x2(k), where σxi

stand for the estimated standard deviations of the time series.
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Fig. 16.14: PDC results (solid) and the allied decision thresholds (dashed) using
TΦ

R for unnormalized (A) and normalized (B) data showing reversed causality
estimates between the detrended melanoma (x1(k)) and Wölfer sunspot time se-
ries (x2(k)).

Example 16.5. Three time series (T3, T4, and O1) obtained via a standard inter-
national 10–20 EEG system and sampled at 200Hz were derived from a patient
with left mesial temporal lobe epilepsy, with a seizure focus roughly localized at
the T3 channel area as clinically diagnosed with post-surgical confirmation from
the Neurological Division of Hospital das Clínicas from the University of São
Paulo. Two distinct data segments (1000 data points, i.e., 5 s), during and imme-
diately before a seizure onset, separated by 20 s to exclude the transition period,
were used in characterizing the relationship between these brain areas.

Three-variate models were estimated for each segment with model orders
obtained via AIC (Akaike’s Information Criterion) leading to p = 4 and p = 5,
respectively. Model adequacy, in addition, was ensured by a Portmanteau test
on estimated wi(k) autocorrelations whose whiteness could not be rejected at
5% [5].
After PDC computation, null hypothesis tests were performed at each fre-

quency for each channel pair at 5%. When Eq. (16.5) could be rejected using TΦ
R ,
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Fig. 16.15: GPDC results (solid) and the allied decision thresholds (dashed) us-
ing TΦ

R for unnormalized (A) and normalized (B) data showing correct causality
estimates. Detrended Melanoma time series (x1(k)) and Wölfer sunspot time se-
ries (x2(k)). Compare with Fig. 16.14.

confidence intervals were computed under the normal approximation, leading to
Figs. 16.16 and 16.17 via TΦ

P .
Before seizure onset, TΦ

R indicates lack of significant interactions below 5Hz,
even though PDC is significant for higher frequencies (Fig. 16.16). During the
seizure, lower frequencies (Fig. 16.17) become significant in agreement with phys-
iological information since temporal lobe seizures are characterized by both low-
frequency oscillations (≈ 3Hz) and channel synchronization [1]. Confidence in-
tervals were plotted based on TΦ

P using N∗ = 800 resampled time series.
The data in this example was used to illustrate the asymptotic PDC results

in [35] and the present results using bootstrap methods agree both with time
domain asymptotic Granger Causality tests [5] and with those in [35].
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Fig. 16.16: Estimated PDC values between O1, T3, and T4 channels preceding the
seizure onset. Black solid lines represent the estimated PDC value for each fre-
quency in hertz. Bootstrap thresholds (TΦ

R ) at 5% for each frequency (dashed
lines) are contrasted to asymptotic ones (gray lines). Between both limits are in
fair agreement. The bootstrap (2.5%, 97.5%) confidence intervals (TΦ

P ) for the esti-
mated PDC are also plotted.

16.5 Discussion

A large variety of resampling methods is available. Only two such methods were
considered here and it was possible to illustrate the convenience, if not the need
for all these methods as they manage to adequately capture the level 2 statistics
with different degrees of reliability depending on what is intended. This is clearly
shown in Fig. 16.10, where TΦ

P fails to capture reasonable confidence interval lim-
its as opposed to TM

P . In fact, T
Φ
P inadequacy is immediately apparent calling for

the use of other resampling methods to estimate the confidence limits. The rea-
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Fig. 16.17: Estimated PDC values between O1, T3, and T4 channels during the
seizure onset. See legend to Fig. 16.16 for further explanation.

son for TΦ
P ’s failure is associated with the limited cross-spectral range explored

by resampling through the addition of just a common random phase factor for
each resample as opposed to perturbing the spectral amplitudes as well.
It is interesting to note that the number of resamplesN∗, if large enough, does

not seem to be too much of an issue (see Fig. 16.9).
The list of resampling methods presented here is by no means exhaustive and

many more ideas can be used as done for example in [36], where neuronal spike
time series were randomly circularly rotated before reconstruction and analy-
sis [40] to generate phase scrambled data with identical spectral properties for
each resample. The development of other application ready resampling tools is
therefore welcome.
The applicability of these methods is not restricted to the quantities in Ta-

ble 16.1, on the contrary, the empirical resampling distribution of model variables
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like aij(r) or even of time domain statistics used in conventional Granger causal-
ity tests could also have been computed.
What is of even greater importance is that these methods provide a clearer

picture of how much variability should be expected from a model derived from
a given data set, which is most often just what is needed in practice to convey a
sense of how reliable one’s conclusion about connectivity should be.
It is perhaps reassuring that specially for null hypothesis testing the resam-

pling methods, given limitations peculiar to each, converge to the asymptotic
decision threshold limits of quantities with known statistics (Fig. 16.8). In fact, in
practical situations, resampling provides relatively large limits that prevent the
false positives that were common in this case [9, 36, 37] when arbitrary frequency
independent thresholds were employed.
Finally, the importance of using variance stabilized estimators is shown in Ex-

ample 16.4. One should note, however, that it is possible to go one step ahead and
“bootstrap the bootstrap” to achieve variance stabilization [41, 42] so that even
in this case, this problem that often leads to high rates of incorrect connectivity
inferences can be circumvented.

16.6 Conclusions

Both methods discussed here show that the actually observed data can provide
insight on the amount of variability that can be expected from modeling an ob-
served data set and lead to reasonable criteria for connectivity analysis.
Each method has its domain of applicability that needs to be considered

vis-à-vis what is desired such as hypothesis testing or confidence interval de-
termination or some other level 2 statistic of interest.
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17 Granger Causality: Basic Theory
and Application to Neuroscience

Mingzhou Ding, Yonghong Chen, and Steven L. Bressler

Multielectrode neurophysiological recordings produce massive quantities of da-
ta. Multivariate time series analysis provides the basic framework for analyzing
the patterns of neural interactions in these data. It has long been recognized
that neural interactions are directional. Being able to assess the directionality of
neuronal interactions is thus a highly desired capability for understanding the
cooperative nature of neural computation. Research over the last few years has
shown that Granger causality is a key technique to furnish this capability. The
main goal of this chapter is to provide an expository introduction to the concept
of Granger causality. Mathematical frameworks for both the bivariate Granger
causality and conditional Granger causality are developed in detail, with partic-
ular emphasis on their spectral representations. The technique is demonstrated
in numerical examples where the exact answers of causal influences are known.
It is then applied to analyze multichannel local field potentials recorded from
monkeys performing a visuomotor task. Our results are shown to be physiolog-
ically interpretable and yield new insights into the dynamical organization of
large-scale oscillatory cortical networks.

17.1 Introduction

In neuroscience, as in many other fields of science and engineering, signals of
interest are often collected in the form of multiple simultaneous time series. To
evaluate the statistical interdependence among these signals, one calculates cross-
correlation functions in the time domain and ordinary coherence functions in the
spectral domain. However, in many situations of interest, symmetric1 measures
like ordinary coherence are not completely satisfactory, and further dissection
of the interaction patterns among the recorded signals is required to parcel out
effective functional connectivity in complex networks. Recent work has begun to
consider the causal influence one neural time series can exert on another. The
basic idea can be traced back to Wiener [1] who conceived the notion that, if the
prediction of one time series could be improved by incorporating the knowledge

1 Here by symmetric we mean that, when A is coherent with B, B is equally coherent with A.

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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of a second one, then the second series is said to have a causal influence on the
first. Wiener’s idea lacks the machinery for practical implementation. Granger
later formalized the prediction idea in the context of linear regression models [2].
Specifically, if the variance of the autoregressive prediction error of the first time
series at the present time is reduced by inclusion of past measurements from the
second time series, then the second time series is said to have a causal influence
on the first one. The roles of the two time series can be reversed to address
the question of causal influence in the opposite direction. From this definition
it is clear that the flow of time plays a vital role in allowing inferences to be
made about directional causal influences from time series data. The interaction
discovered in this way may be reciprocal or it may be unidirectional.
Two additional developments of Granger’s causality idea are important. First,

for three or more simultaneous time series, the causal relation between any two of
the series may be direct, may be mediated by a third one, or may be a combination
of both. This situation can be addressed by the technique of conditional Granger
causality. Second, natural time series, including ones from economics and neuro-
biology, contain oscillatory aspects in specific frequency bands. It is thus desir-
able to have a spectral representation of causal influence. Major progress in this
direction has been made by Geweke [3, 4] who found a novel time series decom-
position technique that expresses the time domain Granger causality in terms
of its frequency content. In this chapter we review the essential mathematical
elements of Granger causality with special emphasis on its spectral decomposi-
tion. We then discuss practical issues concerning how to estimate such measures
from time series data. Simulations are used to illustrate the theoretical concepts.
Finally, we apply the technique to analyze the dynamics of a large-scale senso-
rimotor network in the cerebral cortex during cognitive performance. Our result
demonstrates that, for a well designed experiment, a carefully executed causality
analysis can reveal insights that are not possible with other techniques.

17.2 Bivariate Time Series and Pairwise Granger Causality

Our exposition in this and the next section follows closely that of Geweke [3, 4].
To avoid excessive mathematical complexity we develop the analysis framework
for two time series. The framework can be generalized to two sets of time se-
ries [3].

17.2.1 Time Domain Formulation

Consider two stochastic processes Xt and Yt. Assume that they are jointly sta-
tionary. Individually, under fairly general conditions, each process admits an au-
toregressive representation
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Xt =

∞∑
j=1

a1jXt−j + ε1t , var(ε1t) = Σ1 , (17.1)

Yt =

∞∑
j=1

d1jYt−j + η1t , var(η1t) = Γ1 . (17.2)

Jointly, they are represented as

Xt =

∞∑
j=1

a2jXt−j +

∞∑
j=1

b2jYt−j + ε2t , (17.3)

Yt =

∞∑
j=1

c2jXt−j +

∞∑
j=1

d2jYt−j + η2t , (17.4)

where the noise terms are uncorrelated over time and their contemporaneous
covariance matrix is

Σ =

(
Σ2 Υ2

Υ2 Γ2

)
. (17.5)

The entries are defined as Σ2 = var(ε2t), Γ2 = var(η2t), Υ2 = cov(ε2t, η2t). If Xt

and Yt are independent, then {b2j} and {c2j} are uniformly zero, Υ2 = 0, Σ1 = Σ2

and Γ1 = Γ2. This observation motivates the definition of total interdependence
between Xt and Yt as

FX,Y = ln
Σ1Γ1

|Σ|
, (17.6)

where |·| denotes the determinant of the enclosed matrix. According to this def-
inition, FX,Y = 0 when the two time series are independent, and FX,Y > 0 when
they are not.
Consider Eqs. (17.1) and (17.3). The value of Σ1 measures the accuracy of the

autoregressive prediction of Xt based on its previous values, whereas the value
of Σ2 represents the accuracy of predicting the present value of Xt based on the
previous values of both Xt and Yt. According to Wiener [1] and Granger [2], if
Σ2 is less than Σ1 in some suitable statistical sense, then Yt is said to have a causal
influence on Xt. We quantify this causal influence by

FY→X = ln
Σ1

Σ2
. (17.7)

It is clear that FY→X = 0when there is no causal influence from Y to X and FY→X >

0 when there is. Similarly, one can define causal influence from X to Y as

FX→Y = ln
Γ1

Γ2
. (17.8)

It is possible that the interdependence between Xt and Yt cannot be fully ex-
plained by their interactions. The remaining interdependence is captured by Υ2,
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the covariance between ε2t and η2t. This interdependence is referred to as in-
stantaneous causality and is characterized by

FX·Y = ln
Σ2Γ2

|Σ|
. (17.9)

When Υ2 is zero, FX·Y is also zero. When Υ2 is not zero, FX·Y > 0.
The above definitions imply that

FX,Y = FX→Y + FY→X + FX·Y . (17.10)

Thus we decompose the total interdependence between the two time series Xt

and Yt into three components: two directional causal influences due to their in-
teraction patterns, and the instantaneous causality due to factors possibly exoge-
nous to the (X, Y) system, e.g., a common driving input.

17.2.2 Frequency Domain Formulation

To begin we define the lag operator L to be LXt = Xt−1. Rewrite Eqs. (17.3) and
(17.4) in terms of the lag operator

(
a2(L) b2(L)

c2(L) d2(L)

) (
Xt

Yt

)
=

(
ε2t

η2t

)
, (17.11)

where a2(0) = 1, b2(0) = 0, c2(0) = 0, d2(0) = 1. Fourier transforming both sides
of Eq. (17.11) leads to

(
a2(ω) b2(ω)

c2(ω) d2(ω)

) (
X(ω)

Y(ω)

)
=

(
Ex(ω)

Ey(ω)

)
, (17.12)

where the components of the coefficient matrix A(ω) are

a2(ω) = 1 −

∞∑
j=1

a2je
−iωj , b2(ω) = −

∞∑
j=1

b2je
−iωj ,

c2(ω) = −

∞∑
j=1

c2je
−iωj , d2(ω) = 1 −

∞∑
j=1

d2je
−iωj .

Recasting Eq. (17.12) into the transfer function format we obtain
(

X(ω)

Y(ω)

)
=

(
Hxx(ω) Hxy(ω)

Hyx(ω) Hyy(ω)

) (
Ex(ω)

Ey(ω)

)
, (17.13)

where the transfer function is H(ω) = A−1(ω) whose components are

Hxx(ω) =
1

detA
d2(ω) , Hxy(ω) = −

1

detA
b2(ω) ,

Hyx(ω) = −
1

detA
c2(ω) , Hyy(ω) =

1

detA
a2(ω) .

(17.14)
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After proper ensemble averaging we have the spectral matrix

S(ω) = H(ω)ΣH∗(ω), (17.15)

where ∗ denotes the complex conjugate and matrix transpose.
The spectral matrix contains cross-spectra and auto-spectra. If Xt and Yt are

independent, then the cross-spectra are zero and |S(ω)| equals the product of
two auto-spectra. This observation motivates the spectral domain representation
of total interdependence between Xt and Yt as

fX,Y(ω) = ln
Sxx(ω)Syy(ω)

|S(ω)|
, (17.16)

where |S(ω)| = Sxx(ω)Syy(ω) − Sxy(ω)Syx(ω) and Syx(ω) = S∗
xy(ω). It is easy

to see that this decomposition of interdependence is related to coherence by the
following relation

fX,Y(ω) = − ln (1 − C(ω)) , (17.17)

where coherence is defined as

C(ω) =
|Sxy(ω)|2

Sxx(ω)Syy(ω)
.

The coherence defined in this way is sometimes referred to as the squared coher-
ence.
To obtain the frequency decomposition of the time domain causality defined

in the previous section, we look at the auto-spectrum of Xt

Sxx(ω) = Hxx(ω)Σ2H∗
xx(ω) + 2Υ2 Re

(
Hxx(ω)H∗

xy(ω)
)

+ Hxy(ω)Γ2H∗
xy(ω) . (17.18)

It is instructive to consider the case where Υ2 = 0. In this case there is no in-
stantaneous causality and the interdependence between Xt and Yt is entirely
due to their interactions through the regression terms on the right-hand sides
of Eqs. (17.3) and (17.4). The spectrum has two terms. The first term, viewed as
the intrinsic part, involves only the variance of ε2t, which is the noise term that
drives the Xt time series. The second term, viewed as the causal part, involves
only the variance of η2t, which is the noise term that drives Yt. This power de-
composition into an “intrinsic” term and a “causal" term will become important
for defining a measure for spectral domain causality.
When Υ2 is not zero it becomes harder to attribute the power of the Xt series

to different sources. Here we consider a transformation introduced by Geweke [3]
that removes the cross term and makes the identification of an intrinsic power
term and a causal power term possible. The procedure is called normalization
and it consists of left multiplying

P =

(
1 0

−Υ2

Σ2
1

)
(17.19)
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on both sides of Eq. (17.12). The result is
(

a2(ω) b2(ω)

c3(ω) d3(ω)

) (
X(ω)

Y(ω)

)
=

(
Ex(ω)

Ẽy(ω)

)
, (17.20)

where c3(ω) = c2(ω) − Υ2

Σ2
a2(ω), d3(ω) = d2(ω) − Υ2

Σ2
b2(ω), Ẽy(ω) = Ey(ω) −

Υ2

Σ2
Ex(ω). The new transfer function H̃(ω) for Eq. (17.20) is the inverse of the

new coefficient matrix Ã(ω)

H̃(ω) =

(
H̃xx(ω) H̃xy(ω)

H̃yx(ω) H̃yy(ω)

)
=

1

det Ã

(
d3(ω) −b2(ω)

−c3(ω) a2(ω)

)
. (17.21)

Since det Ã = detA we have

H̃xx(ω) = Hxx(ω) +
Υ2

Σ2
Hxy(ω) , H̃xy(ω) = Hxy(ω) ,

H̃yx(ω) = Hyx(ω) +
Υ2

Σ2
Hxx(ω) , H̃yy(ω) = Hyy(ω) .

(17.22)

From the construction it is easy to see that Ex and Ẽy are uncorrelated, that
is, cov(Ex, Ẽy) = 0. The variance of the noise term for the normalized Yt equation
is Γ̃2 = Γ2 −

Υ2
2

Σ2
. From Eq. (17.20), following the same steps that lead to Eq. (17.18),

the spectrum of Xt is found to be

Sxx(ω) = H̃xx(ω)Σ2H̃∗
xx(ω) + Hxy(ω)Γ̃2H∗

xy(ω) . (17.23)

Here the first term is interpreted as the intrinsic power and the second term as the
causal power of Xt due to Yt. This is an important relation because it explicitly
identifies that portion of the total power of Xt at frequency ω that is contributed
by Yt. Based on this interpretation we define the causal influence from Yt to Xt

at frequency ω as

fY→X(ω) = ln
Sxx(ω)

H̃xx(ω)Σ2H̃∗
xx(ω)

. (17.24)

Note that this definition of causal influence is expressed in terms of the intrinsic
power rather than the causal power. It is expressed in this way so that the causal
influence is zero when the causal power is zero (i.e., the intrinsic power equals
the total power), and increases as the causal power increases (i.e., the intrinsic
power decreases).
By taking the transformation matrix as

(
1 −Υ2/Γ2

0 1

)
(17.25)

and performing the same analysis, we get the causal influence from Xt to Yt

fX→Y(ω) = ln
Syy(ω)

Ĥyy(ω)Γ2Ĥ∗
yy(ω)

, (17.26)
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where Ĥyy(ω) = Hyy(ω) + Υ2

Γ2
Hyx(ω).

By defining the spectral decomposition of instantaneous causality as [5]

fX·Y(ω) = ln

(
H̃xx(ω)Σ2H̃∗

xx(ω)
) (

Ĥyy(ω)Γ2Ĥ∗
yy(ω)

)
|S(ω)|

, (17.27)

we achieve a spectral domain expression for the total interdependence that is
analogous to Eq. (17.10) in the time domain, namely

fX,Y(ω) = fX→Y(ω) + fY→X(ω) + fX·Y(ω) . (17.28)

We caution that the spectral instantaneous causality may become negative for
some frequencies in certain situations and may not have a readily interpretable
physical meaning.
It is important to note that, under general conditions, these spectral measures

relate to the time domain measures as

FY,X =
1

2π

∫π

−π

fY,X(ω)dω ,

FY→X =
1

2π

∫π

−π

fY→X(ω)dω ,

FX→Y =
1

2π

∫π

−π

fX→Y(ω)dω ,

FY·X =
1

2π

∫π

−π

fY·X(ω)dω .

(17.29)

The existence of these equalities gives credence to the spectral decomposition
procedures described above.

17.3 Trivariate Time Series and Conditional Granger Causality

For three or more time series one can perform a pairwise analysis and thus re-
duce the problem to a bivariate problem. This approach has some inherent limi-
tations. For example, for the two coupling schemes in Fig. 17.1, a pairwise analy-
sis will give the same patterns of connectivity like that in Fig. 17.1(b). Another
example involves three processes where one process drives the other two with
differential time delays. A pairwise analysis would indicate a causal influence
from the process that receives an early input to the process that receives a late
input. To disambiguate these situations requires additional measures. Here we
define conditional Granger causality which has the ability to resolve whether the
interaction between two time series is direct or is mediated by another recorded
time series and whether the causal influence is simply due to differential time
delays in their respective driving inputs. Our development is for three time se-
ries. The framework can be generalized to three sets of time series [4].
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Y     Z
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Fig. 17.1: Two distinct patterns of connectivity among three time series. A pairwise
causality analysis cannot distinguish these two patterns.

17.3.1 Time Domain Formulation

Consider three stochastic processes Xt, Yt and Zt. Suppose that a pairwise analy-
sis reveals a causal influence from Yt to Xt. To examine whether this influence
has a direct component (Fig. 17.1(b)) or is mediated entirely by Zt (Fig. 17.1(a))
we carry out the following procedure. First, let the joint autoregressive represen-
tation of Xt and Zt be

Xt =

∞∑
j=1

a3jXt−j +

∞∑
j=1

b3jZt−j + ε3t , (17.30)

Zt =

∞∑
j=1

c3jXt−j +

∞∑
j=1

d3jZt−j + γ3t , (17.31)

where the covariance matrix of the noise terms is

Σ3 =

(
Σ3 Υ3

Υ3 Γ3

)
. (17.32)

Next we consider the joint autoregressive representation of all the three processes
Xt, Yt, and Zt

Xt =

∞∑
j=1

a4jXt−j +

∞∑
j=1

b4jYt−j +

∞∑
j=1

c4jZt−j + ε4t , (17.33)

Yt =

∞∑
j=1

d4jXt−j +

∞∑
j=1

e4jYt−j +

∞∑
j=1

g4jZt−j + η4t , (17.34)

Zt =

∞∑
j=1

u4jXt−j +

∞∑
j=1

v4jYt−j +

∞∑
j=1

w4jZt−j + γ4t , (17.35)
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where the covariance matrix of the noise terms is

Σ4 =


Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz


 .

From these two sets of equations we define the Granger causality from Yt to Xt

conditional on Zt to be

FY→X|Z = ln
Σ3

Σxx
. (17.36)

The intuitive meaning of this definition is quite clear. When the causal influence
from Yt to Xt is entirely mediated by Zt (Fig. 17.1(a)), {b4j} is uniformly zero,
and Σxx = Σ3. Thus, we have FY→X|Z = 0, meaning that no further improvement
in the prediction of Xt can be expected by including past measurements of Yt. On
the other hand, when there is still a direct component from Yt to Xt (Fig. 17.1(b)),
the inclusion of past measurements of Yt in addition to that of Xt and Zt results
in better predictions of Xt, leading to Σxx < Σ3, and FY→X|Z > 0.

17.3.2 Frequency Domain Formulation

To derive the spectral decomposition of the time domain conditional Granger
causality we carry out a normalization procedure like that for the bivariate case.
For Eq. (17.30) and Eq. (17.31) the normalized equations are

(
D11(L) D12(L)

D21(L) D22(L)

) (
xt

zt

)
=

(
x∗

t

z∗t

)
, (17.37)

where D11(0) = 1, D22(0) = 1, D12(0) = 0, cov(x∗
t , z

∗
t) = 0, and D21(0) is gener-

ally not zero. We note that var(x∗
t) = Σ3 and this becomes useful in what follows.

For Eqs. (17.33), (17.34), and (17.35) the normalization process involves left-
multiplying both sides by the matrix

P = P2 · P1 (17.38)

where

P1 =


 1 0 0

−ΣyxΣ−1
xx 1 0

−ΣzxΣ−1
xx 0 1


 , (17.39)

and

P2 =


1 0 0

0 1 0

0 −(Σzy − ΣzxΣ−1
xx Σxy)(Σyy − ΣyxΣ−1

xx Σxy)−1 1


 . (17.40)
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We denote the normalized equations as

B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)





xt

yt

zt


 =


εxt

εyt

εzt


 , (17.41)

where the noise terms are independent, and their respective variances are Σ̂xx,
Σ̂yy, and Σ̂zz.
To proceed further we need the following important relation [4]:

FY→X|Z = FYZ∗→X∗ (17.42)

and its frequency domain counterpart

fY→X|Z(ω) = fYZ∗→X∗(ω) . (17.43)

To obtain fYZ∗→X∗(ω), we need to decompose the spectrum of X∗. The Fourier
transform of Eqs. (17.37) and (17.41) gives

(
X(ω)

Z(ω)

)
=

(
Gxx(ω) Gxz(ω)

Gzx(ω) Gzz(ω)

) (
X∗(ω)

Z∗(ω)

)
, (17.44)

and 
X(ω)

Y(ω)

Z(ω)


 =


Hxx(ω) Hxy(ω) Hxz(ω)

Hyx(ω) Hyy(ω) Hyz(ω)

Hzx(ω) Hzy(ω) Hzz(ω)





Ex(ω)

Ey(ω)

Ez(ω)


 . (17.45)

Assuming that X(ω) and Z(ω) from Eq. (17.44) can be equated with that from
Eq. (17.45), we combine Eqs. (17.44) and (17.45) to yield


X∗(ω)

Y(ω)

Z∗(ω)


 =


Gxx(ω) 0 Gxz(ω)

0 1 0

Gzx(ω) 0 Gzz(ω)




−1 
Hxx(ω) Hxy(ω) Hxz(ω)

Hyx(ω) Hyy(ω) Hyz(ω)

Hzx(ω) Hzy(ω) Hzz(ω)




·

Ex(ω)

Ey(ω)

Ez(ω)




=


Qxx(ω) Qxy(ω) Qxz(ω)

Qyx(ω) Qyy(ω) Qyz(ω)

Qzx(ω) Qzy(ω) Qzz(ω)





Ex(ω)

Ey(ω)

Ez(ω)


 , (17.46)

where Q(ω) = G−1(ω)H(ω). After suitable ensemble averaging, the spectral
matrix can be obtained from which the power spectrum of X∗ is found to be

Sx∗x∗(ω) = Qxx(ω)Σ̂xxQ∗
xx(ω)+Qxy(ω)Σ̂yyQ∗

xy(ω)+Qxz(ω)Σ̂zzQ
∗
xz(ω) .

(17.47)
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The first term can be thought of as the intrinsic power and the remaining two
terms as the combined causal influences from Y to Z∗. This interpretation leads
immediately to the definition

fYZ∗→X∗(ω) = ln
|Sx∗x∗(ω)|

|Qxx(ω)Σ̂xxQ∗
xx(ω)|

. (17.48)

We note that Sx∗x∗(ω) is actually the variance of ε3t as pointed out earlier. On
the basis of the relation in Eq. (17.43), the final expression for Granger causality
from Yt to Xt conditional on Zt is

fY→X|Z(ω) = ln
Σ3

|Qxx(ω)Σ̂xxQ∗
xx(ω)|

. (17.49)

It can be shown that fY→X|Z(ω) relates to the time domain measure FY→X|Z via

FY→X|Z =
1

2π

∫π

−π

fY→X|Z(ω)dω ,

under general conditions.
The above derivation is made possible by the key assumption that X(ω)

and Z(ω) in Eqs. (17.44) and (17.45) are identical. This certainly holds true on
purely theoretical grounds, and it may very well be true for simple mathematical
systems. For actual physical data, however, this condition may be very hard to
satisfy due to practical estimation errors. In a recent paper we developed a parti-
tion matrix technique to overcome this problem [6]. The subsequent calculations
of conditional Granger causality are based on this partition matrix procedure.

17.4 Estimation of Autoregressive Models

The preceding theoretical development assumes that the time series can be
well represented by autoregressive processes. Such theoretical autoregressive
processes have infinite model orders. Here we discuss how to estimate autore-
gressive models from empirical time series data, with emphasis on the incorpo-
ration of multiple time series segments into the estimation procedure [7]. This
consideration is motivated by the goal of applying autoregressive modeling in
neuroscience. It is typical in behavioral and cognitive neuroscience experiments
for the same event to be repeated on many successive trials. Under appropriate
conditions, time series data recorded from these repeated trials may be viewed
as realizations of a common underlying stochastic process.
Let Xt = [X1t, X2t, . . . , Xpt]

T be a p-dimensional random process. Here T de-
notes the matrix transposition. In multivariate neural data, p represents the total
number of recording channels. Assume that the process Xt is stationary and can
be described by the following mth order autoregressive equation:

Xt + A(1)Xt−1 + · · · + A(m)Xt−m = Et , (17.50)
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where A(i) are p × p coefficient matrices and Et = [E1t, E2t, . . . , Ept]
T is a zero

mean uncorrelated noise vector with the covariance matrix Σ.
To estimate A(i) and Σ, we multiply Eq. (17.50) from the right by XT

t−k, where
k = 1, 2, . . . , m. Taking expectations, we obtain the Yule–Walker equations

R(−k) + A(1)R(−k + 1) + · · · + A(m)R(−k + m) = 0 , (17.51)

where R(n) = 〈XtX
T
t+n〉 is Xt’s covariance matrix of lag n. In deriving these

equations, we have used the fact that 〈EtX
T
t−k〉 = 0 as a result of Et being an

uncorrelated process.
For a single realization of the X process, {xi}

N
i=1, we compute the covariance

matrix in Eq. (17.51) according to

R̃(n) =
1

N − n

N−n∑
i=1

xix
T
i+n . (17.52)

If multiple realizations of the same process are available, then we compute the
above quantity for each realization, and average across all the realizations to ob-
tain the final estimate of the covariance matrix. Note that for a single short trial
of data one uses the divisor N for evaluating covariance to reduce inconsistency.
Due to the availability of multiple trials in neural applications, we have used the
divisor (N − n) in the above definition, Eq. (17.52), to achieve an unbiased esti-
mate. It is quite clear that, for a single realization, if N is small, one will not get
good estimates of R(n) and hence will not be able to obtain a good model. This
problem can be overcome if a large number of realizations of the same process is
available. In this case the length of each realization can be as short as the model
order m plus 1. Equation (17.50) contain a total of mp2 unknown model coef-
ficients. In Eq. (17.51) there is exactly the same number of simultaneous linear
equations. One can simply solve these equations to obtain the model coefficients.
An alternative approach is to use the Levinson, Wiggins, Robinson (LWR) algo-
rithm, which is a more robust solution procedure based on the ideas of maximum
entropy. This algorithm was implemented in the analysis of neural data described
below. The noise covariance matrix Σ may be obtained as part of the LWR algo-
rithm. Otherwise one may obtain Σ through

Σ = R(0) +

m∑
i=1

A(i)R(i) . (17.53)

Here we note that RT (k) = R(−k).
The above estimation procedure can be carried out for any model order m.

The correct m is usually determined by minimizing the Akaike Information Cri-
terion (AIC) defined as

AIC(m) = 2 log[det(Σ)] +
2p2m

Ntotal
(17.54)
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where Ntotal is the total number of data points from all the trials. Plotted as
a function of m the proper model order corresponds to the minimum of this
function. It is often the case that for neurobiological data Ntotal is very large.
Consequently, for a reasonable range of m, the AIC function does not achieve a
minimum. An alternative criterion is the Bayesian Information Criterion (BIC),
which is defined as

BIC(m) = 2 log[det(Σ)] +
2p2m logNtotal

Ntotal
. (17.55)

This criterion can compensate for the large number of data points and may
perform better in neural applications. A final step, necessary for determining
whether the autoregressive time series model is suited for a given data set, is to
check whether the residual noise is white. Here the residual noise is obtained by
computing the difference between the model’s predicted values and the actually
measured values.
Once an autoregressive model is adequately estimated, it becomes the basis

for both time domain and spectral domain causality analysis. Specifically, in the
spectral domain, Eq. (17.50) can be written as

X(ω) = H(ω)E(ω), (17.56)

where

H(ω) =


 m∑

j=0

A(j)e−iωj




−1

(17.57)

is the transfer function with A(0) being the identity matrix. From Eq. (17.56),
after proper ensemble averaging, we obtain the spectral matrix

S(ω) = H(ω)ΣH∗(ω) . (17.58)

Once we obtain the transfer function, the noise covariance, and the spectral ma-
trix, we can then carry out causality analysis according to the procedures outlined
in the previous sections.

17.5 Numerical Examples

In this section we consider three examples that illustrate various aspects of the
general approach outlined earlier.

17.5.1 Example 1

Consider the following AR(2) model

Xt = 0.9Xt−1 − 0.5Xt−2 + εt

Yt = 0.8Yt−1 − 0.5Yt−2 + 0.16Xt−1 − 0.2Xt−2 + ηt

,

(17.59)
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Fig. 17.2: Simulation results for an AR(2) model consisting of two coupled time
series. Power (black for X, gray for Y) spectra, interdependence spectrum (related
to the coherence spectrum), and Granger causality spectra are displayed. Note that
the total causality spectrum, representing the sum of directional causalities and the
instantaneous causality, is nearly identical to the interdependence spectrum.

where εt, ηt are Gaussian white noise processes with zero means and vari-
ances σ2

1 = 1, σ2
2 = 0.7, respectively. The covariance between εt and ηt is 0.4.

From the construction of the model, we can see that Xt has a causal influence
on Yt and that there is also instantaneous causality between Xt and Yt.
We simulated Eq. (17.59) to generate a data set of 500 realizations of 100 time

points each. Assuming no knowledge of Eq. (17.59) we fitted a MVAR model on
the generated data set and calculated power, coherence, and Granger causality
spectra. The result is shown in Fig. 17.2. The interdependence spectrum is com-
puted according to Eq. (17.17) and the total causality is defined as the sum of
directional causalities and the instantaneous causality. The result clearly recovers
the pattern of connectivity in Eq. (17.59). It also illustrates that the interdepen-
dence spectrum, as computed according to Eq. (17.17), is almost identical to the
total causality spectrum as defined on the right-hand side of Eq. (17.28).
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Fig. 17.3: Simulation results for three coupled time series. Two distinct patterns
of connectivity as that illustrated in Fig. 17.1 are considered. Results for the case
with a direct causal influence are shown as solid curves and the results for the case
with indirect causal influence are shown as dashed curves. (a) Pairwise Granger
causality analysis gives very similar results for both cases which indicates that the
pairwise analysis cannot differentiate these two patterns of connectivity. (b) Con-
ditional causality analysis shows a nonzero spectrum (solid) for the direct case and
almost zero spectrum (dashed) for the indirect case.

17.5.2 Example 2

Here we consider two models. The first consists of three time series simulating
the case shown in Fig. 17.1(a), in which the causal influence from Yt to Xt is
indirect and completely mediated by Zt
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Xt = 0.8Xt−1 − 0.5Xt−2 + 0.4Zt−1 + εt

Yt = 0.9Yt−1 − 0.8Yt−2 + ξt

Zt = 0.5Zt−1 − 0.2Zt−2 + 0.5Yt−1 + ηt .

(17.60)

The second model creates a situation corresponding to Fig. 17.1(b), containing
both direct and indirect causal influences from Yt to Xt. This is achieved by
using the same system as in Eq. (17.60), but with an additional term in the first
equation

Xt = 0.8Xt−1 − 0.5Xt−2 + 0.4Zt−1 + 0.2Yt−2 + εt

Yt = 0.9Yt−1 − 0.8Yt−2 + ξt

Zt = 0.5Zt−1 − 0.2Zt−2 + 0.5Yt−1 + ηt .

(17.61)

For both models. ε(t), ξ(t), η(t) are three independent Gaussian white noise
processes with zero means and variances of σ2

1 = 0.3, σ2
2 = 1, σ2

3 = 0.2, respec-
tively.
Each model was simulated to generate a data set of 500 realizations of 100

time points each. First, pairwise Granger causality analysis was performed on
the simulated data set of each model. The results are shown in Fig. 17.3(a), with
the dashed curves showing the results for the first model and the solid curves
for the second model. From these plots it is clear that pairwise analysis cannot
differentiate the two coupling schemes. This problem occurs because the indi-
rect causal influence from Yt to Xt that depends completely on Zt in the first
model cannot be clearly distinguished from the direct influence from Yt to Xt in
the second model. Next, conditional Granger causality analysis was performed
on both simulated data sets. The Granger causality spectra from Yt to Xt con-
ditional on Zt are shown in Fig. 17.3(b), with the second model’s result shown
as the solid curve and the first model’s result as the dashed curve. Clearly, the
causal influence from Yt to Xt that was prominent in the pairwise analysis of
the first model in Fig. 17.3(a), is no longer present in Fig. 17.3(b). Thus, by cor-
rectly determining that there is no direct causal influence from Yt to Xt in the
first model, the conditional Granger causality analysis provides an unambiguous
dissociation of the coupling schemes represented by the two models.

17.5.3 Example 3

We simulated a five-node oscillatory network structurally connected with differ-
ent delays. This example has been analyzed with partial directed coherence and
directed transfer function methods in [8]. The network involves the following
multivariate autoregressive model:
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Fig. 17.4: Simulation results for a five-node network structurally connected with
different time delays. (a) Schematic illustration of the system. (b) Calculated power
spectra are shown in the diagonal panels, results of pairwise (solid) and con-
ditional Granger causality analysis (dashed) are in off-diagonal panels. Granger
causal influence is from the horizontal index to the vertical index. Features of
Granger causality spectra (both pairwise and conditional) are consistent with that
of power spectra.

X1t = 0.95
√

2X1(t−1) − 0.9025X1(t−2) + ε1t

X2t = 0.5X1(t−2) + ε2t

X3t = −0.4X1(t−3) + ε3t

X4t = −0.5X1(t−2) + 0.25
√

2X4(t−1) + 0.25
√

2X5(t−1) + ε4t

X5t = −0.25
√

2X4(t−1) + 0.25
√

2X5(t−1) + ε5t ,

(17.62)
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where ε1t, ε2t, ε3t, ε4t, ε5t are independent Gaussian white noise processes with
zero means and variances of σ2

1 = 0.6, σ2
2 = 0.5, σ2

3 = 0.3, σ2
4 = 0.3, σ2

5 = 0.6,
respectively. The structure of the network is illustrated in Fig. 17.4(a).
We simulated the network model to generate a data set of 500 realizations

each with ten time points. Assuming no knowledge of the model, we fitted a fifth
order MVAR model on the generated data set and performed power spectra, co-
herence, and Granger causality analysis on the fitted model. The results of power
spectra are given in the diagonal panels of Fig. 17.4(b). It is clearly seen that all
five oscillators have a spectral peak at around 25Hz and the fifth has some addi-
tional high frequency activity as well. The results of pairwise Granger causality
spectra are shown in the off-diagonal panels of Fig. 17.4(b) (solid curves). Com-
pared to the network diagram in Fig. 17.4(a) we can see that pairwise analysis
yields connections that can be the result of direct causal influences (e.g., 1 → 2),
indirect causal influences (e.g., 1 → 5) and differentially delayed driving inputs
(e.g., 2 → 3). We further performed a conditional Granger causality analysis in
which the direct causal influence between any two nodes are examined while
the influences from the other three nodes are conditioned out. The results are
shown as dashed curves in Fig. 17.4(b). For many pairs the dashed curves and
solid curves coincide (e.g., 1 → 2), indicating that the underlying causal influ-
ence is direct. For other pairs the dashed curves become zero, indicating that
the causal influences in these pairs are either indirect or are the result of dif-
ferentially delayed inputs. These results demonstrate that conditional Granger
causality furnishes a more precise network connectivity diagram that matches
the known structural connectivity. One noteworthy feature about Fig. 17.4(b) is
that the spectral features (e.g., peak frequency) are consistent across both power
and Granger causality spectra. This is important since it allows us to link local
dynamics with that of the network.

17.6 Analysis of a Beta Oscillation Network in Sensorimotor
Cortex

A number of studies have appeared in the neuroscience literature where the issue
of causal effects in neural data is examined [6, 8–15]. Three of these studies [10,
11, 15] used the measures presented in this article. Below we review one study
published by our group [6, 15].
Local field potential data were recorded from two macaque monkeys using

transcortical bipolar electrodes at 15 distributed sites in multiple cortical areas
of one hemisphere (the right hemisphere in monkey GE and the left hemisphere
in monkey LU) while the monkeys performed a GO/NO–GO visual pattern dis-
crimination task [16]. The prestimulus stage began when the monkey depressed
a hand lever while monitoring a display screen. This was followed from 0.5 s to
1.25 s later by the appearance of a visual stimulus (a four-dot pattern) on the
screen. The monkey made a GO response (releasing the lever) or a NO–GO re-
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sponse (maintaining lever depression) depending on the stimulus category and
the session contingency. The entire trial lasted about 500ms, during which the
local field potentials were recorded at a sampling rate of 200Hz.
Previous studies have shown that synchronized beta-frequency (15Hz to

30Hz) oscillations in the primary motor cortex are involved in maintaining
steady contractions of contralateral arm and hand muscles. Relatively little is
known, however, about the role of postcentral cortical areas in motor mainte-
nance and their patterns of interaction with motor cortex. Making use of the
simultaneous recordings from distributed cortical sites we investigated the inter-
dependency relations of beta-synchronized neuronal assemblies in pre- and post-
central areas in the prestimulus time period. Using power and coherence spectral
analysis, we first identified a beta-synchronized large-scale network linking pre-
and postcentral areas. We then used Granger causality spectra to measure direc-
tional influences among recording sites, ascertaining that the dominant causal
influences occurred in the same part of the beta-frequency range as indicated
by the power and coherence analysis. The patterns of significant beta-frequency
Granger causality are summarized in the schematic Granger causality graphs
shown in Fig. 17.5. These patterns reveal that, for both monkeys, strong Granger
causal influences occurred from the primary somatosensory cortex (S1) to both
the primary motor cortex (M1) and inferior posterior parietal cortex (7a and 7b),
with the latter areas also exerting Granger causal influences on the primary mo-
tor cortex. Granger causal influences from the motor cortex to postcentral areas,
however, were not observed.2

Our results are the first to demonstrate in awake monkeys that synchronized
beta oscillations not only bind multiple sensorimotor areas into a large-scale
network during motor maintenance behavior, but also carry Granger causal in-
fluences from primary somatosensory and inferior posterior parietal cortices to
motor cortex. Furthermore, the Granger causality graphs in Fig. 17.5 provide
a basis for fruitful speculation about the functional role of each cortical area
in the sensorimotor network. First, steady pressure maintenance is akin to a
closed-loop-control problem and as such, sensory feedback is expected to pro-
vide critical input needed for cortical assessment of the current state of the be-
havior. This notion is consistent with our observation that primary somatosen-
sory area (S1) serves as the dominant source of causal influences to other areas in
the network. Second, posterior parietal area 7b is known to be involved in non-
visually guided movement. As a higher-order association area it may maintain
representations relating to the current goals of the motor system. This would im-
ply that area 7b receives sensory updates from area S1 and outputs correctional
signals to the motor cortex (M1). This conceptualization is consistent with the
causality patterns in Fig. 17.5. As mentioned earlier, previous work has identi-
fied beta range oscillations in the motor cortex as an important neural correlate of

2 A more stringent significance threshold was applied here which resulted in elimination of several
very small causal influences that were included in the previous report.
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7a

7b

S1 M1

(a)

M1 S1 7b

(b)

Fig. 17.5: Granger causality graphs for monkey GE (a) and monkey LU (b).

pressure maintenance behavior. The main contribution of our work is to demon-
strate that the beta network exists on a much larger scale and that postcentral
areas play a key role in organizing the dynamics of the cortical network. The
latter conclusion is made possible by the directional information provided by
Granger causality analysis.
Since the above analysis was pairwise, it had the disadvantage of not dis-

tinguishing between direct and indirect causal influences. In particular, in mon-
key GE, the possibility existed that the causal influence from area S1 to inferior
posterior parietal area 7a was actually mediated by inferior posterior parietal
area 7b (Fig. 17.5(a)). We used the conditional Granger causality to test the hy-
pothesis that the S1 → 7a influence was mediated by area 7b. In Fig. 17.6(a) is
presented the pairwise Granger causality spectrum from S1 to 7a (S1 → 7a, dark
solid curve), showing significant causal influence in the beta-frequency range. Su-
perimposed in Fig. 17.6(a) is the conditional Granger causality spectrum for the
same pair, but with area 7b taken into account (S1 → 7a | 7b, light solid curve).
The corresponding 99% significance thresholds are also presented (light and dark
dashed lines coincide). These significance thresholds were determined using a
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Fig. 17.6: Comparison of pairwise and conditional Granger causality spectra for
monkey GE (a,b), and monkey LU (c).
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permutation procedure that involved creating 500 permutations of the local field
potential data set by random rearrangement of the trial order independently for
each channel (site). Since the test was performed separately for each frequency,
a correction was necessary for the multiple comparisons over the whole range of
frequencies. The Bonferroni correction could not be employed because these mul-
tiple comparisons were not independent. An alternative strategy was employed
following Blair and Karniski [17]. The Granger causality spectrum was computed
for each permutation, and then the maximum causality value over the frequency
range was identified. After 500 permutation steps, a distribution of maximum
causality values was created. Choosing a p-value at p = 0.01 for this distribution
gave the thresholds shown in Fig. 17.6(a)–(c) as the dashed lines.
We see from Fig. 17.6(a) that the conditional Granger causality is greatly re-

duced in the beta-frequency range and no longer significant, meaning that the
causal influence from S1 to 7a is most likely an indirect effect mediated by 7b.
This conclusion is consistent with the known neuroanatomy of the sensorimotor
cortex [18] in which area 7a receives direct projections from area 7bwhich in turn
receives direct projections from the primary somatosensory cortex. No pathway
is known to project directly from the primary somatosensory cortex to area 7a.
From Fig. 17.5(a) we see that the possibility also existed that the causal influ-

ence from S1 to the primary motor cortex (M1) in monkey GE was mediated by
area 7b. To test this possibility, the Granger causality spectrum from S1 to M1

(S1 → M1, dark solid curve in Fig. 17.6(b)) was compared with the conditional
Granger causality spectrum with 7b taken into account (S1 → M1 | 7b, light solid
curve in Fig. 17.6(b)). In contrast to Fig. 17.6(a), we see that the beta-frequency
conditional Granger causality in Fig. 17.6(b) is only partially reduced, and re-
mains well above the 99% significance level. From Fig. 17.4(b), we see that the
same possibility existed in monkey LU of the S1 to M1 causal influence being
mediated by 7b. However, just as in Fig. 17.6(b), we see in Fig. 17.6(c) that the
beta-frequency conditional Granger causality for monkey LU is only partially re-
duced, and remains well above the 99% significance level.
The results from both the monkeys thus indicate that the observed Granger

causal influence from the primary somatosensory cortex to the primary motor
cortex was not simply an indirect effect mediated by area 7b. However, we fur-
ther found that area 7b did play a role in mediating the S1 to M1 causal in-
fluence in both the monkeys. This was determined by comparing the means of
bootstrap resampled distributions of the peak beta Granger causality values from
the spectra of S1 → M1 and S1 → M1 | 7b by the Student’s t-test. The significant
reduction of beta-frequency Granger causality when area 7b is taken into account
(t = 17.2 for GE; t = 18.2 for LU, p � 0.001 for both), indicates that the influence
from the primary somatosensory to primary motor area was partially mediated
by area 7b. Such an influence is consistent with the known neuroanatomy [18]
where the primary somatosensory area projects directly to both the motor cortex
and area 7b, and area 7b projects directly to primary motor cortex.
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17.7 Summary

In this chapter we have introduced the mathematical formalism for estimating
Granger causality in both the time and spectral domain from time series data.
Demonstrations of the technique’s utilities are carried out both on simulated
data, where the patterns of interactions are known, and on local field potential
recordings from monkeys performing a cognitive task. For the latter we have
stressed the physiological interpretability of the findings and pointed out the
new insights afforded by these findings. It is our belief that Granger causality
offers a new way of looking at cooperative neural computation and it enhances
our ability to identify key brain structures underlying the organization of a given
brain function.
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18 Granger Causality on Spatial Manifolds:
Applications to Neuroimaging

Pedro A. Valdés-Sosa, Jose Miguel Bornot-Sánchez, Mayrim Vega-Hernández,
Lester Melie-García, Agustin Lage-Castellanos, and Erick Canales-Rodríguez

The (discrete time) vector multivariate autoregressive (MAR) model is gener-
alized as a stochastic process defined over a continuous spatial manifold. The
underlying motivation is the study of brain connectivity via the application of
Granger causality measures to functional Neuroimages. Discretization of the spa-
tial MAR (sMAR) leads to a densely sampled MAR for which the number of time
series p is much larger than the length of the time seriesN. In this situation usual
time series models work badly or fail. Previous approaches, reviewed here, in-
volve the reduction of the dimensionality of the MAR, either by the selection of
arbitrary regions of interest or by latent variable analysis. An example of the lat-
ter is given using a multilinear reduction of the multichannel EEG spectrum into
atoms with spatial, temporal, and frequency signatures. Influence measures are
applied to the temporal signatures giving an interpretation of the interaction be-
tween brain rhythms. However, the approach introduced here is that of extending
usual influence measures for Granger causality to sMAR by defining “influence
fields,” that is the set of influence measures from one site (voxel) to the whole
manifold. Estimation is made possible by imposing Bayesian priors for sparsity,
smoothness, or both on the influence fields. In fact, a prior is introduced that
generalizes most common priors studied to date in the literature for variable se-
lection and penalization in regression. This prior is specified by defining penalties
paired with a priori covariance matrices. Simple pairs of penalties/covariances in-
clude as particular cases the LASSO, data fusion and Ridge regression. Double
pairs encompass the recently introduced Elastic Net and Fussed Lasso. Quadru-
ples of penalty/covariance combinations are also possible and used here for the
first time. Estimation is carried out via the MM algorithm, a new technique that
generalized the EM algorithm and allows efficient estimation even for massive
time series dimensionalities. The proposed technique performs adequately for a
simulated “small world” cortical network with linear dynamics, validating the
use of the more complex penalties. Application of this model to fMRI data vali-
date previous conceptual models for the brain circuits involved in the generation
of the EEG alpha rhythm.

Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40623-9
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18.1 Introduction

Devising methods for inferring the effective and functional connectivity of dif-
ferent brain regions is currently a major concern in Neuroimaging [1]. The task
is to determine the changing patterns of causal influences that different neural
structures exert on each other. This is to be done by the analysis of dynamical
brain imaging data. This type of data include EEG/MEG source distributions,
optical recordings [2] and fMRI [3] which are, from the statistical point of view,
spatiotemporal data sets [4, 5]—that is time series sampled from an underly-
ing continuous manifold Ω of spatial points. Multivariate autoregressive models
(in particular linear ones) for vector time series have proven to be an essential
and informative tool for the applied sciences. Within this framework Granger [6]
formulated a definition of causality between time series that has been pursued
extensively in many fields and especially in the neurosciences [7, 8].
It is striking though that work in this field has been limited to vector valued

time series in which the dimension p is very small [9, 10]—even if, as usual in
real applications, the number N of time samples gathered is large. As Granger
himself pointed out, his definition of causality would be valid only if all relevant
variables would be included in the analysis, a formidable task that is readily
appreciated by neuroscientists since they study the brain, which is the complex
system by excellence. We have therefore directed our attention to multivariate
autoregressive models (MAR) defined over spatial manifolds (a particular exam-
ple of which is the brain) and to deal with the issue of densely sampled (high
dimensional, highly correlated) time series that arise from a discretization of an
underlying spatial continuum into voxels [11].
As a concrete example, which will be used throughout the paper, consider the

concurrent EEG and fMRI time series gathered in order to analyze the origin of
resting brain rhythms [12–14]. The acquisition paradigm is described in more de-
tail in Section 18.8. Structured patterns of correlations have been found between
time-varying spectral components in different EEG bands and the BOLD signal
at different voxels. These reveal widely distributed anatomical systems appar-
ently involved in the generation of these oscillations (see Figs. 18.1–18.6). Here
N = 108, the number of EEG time series is only 16, but the number of fMRI time
series is 12 640! The usual MAR model cannot be fit to this amount of data.
The approach explored in this chapter follows the strategy of Functional Data

Analysis [15]. Quantities of interest in the spatial MAR (autoregressive coeffi-
cients) are estimated subject to constraints that make anatomical and physio-
logical sense. They not only allow inference for densely sampled data, but also
dovetail nicely with computational shortcuts that make the proposed procedures
feasible. In classical MAR models, Granger causality of one set of time series on
another set is quantified by means of influence measures [16, 17]. In the linear
case, these influence measures are usually multivariate tests that certain regres-
sion coefficients are zero. In our spatial MAR (sMAR) we extend this concept
to that of an influence field. For functional Neuroimages, these are topographic
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Fig. 18.1: MRI image as an example of a brain manifold. EPI MRI image of the
brain of a subject from [18]. The MRI section is at a level that passes through the
striate or primary visual cortex (VC). The arrow marks the voxel in VC for which
the BOLD response during alpha rhythm shows the highest correlation with the
power in that band.

maps of the influence of one brain site (voxel) on rest of the brain. For example in
the concurrent EEG-fMRI experiment just mentioned one is interested to know
what influence a site in the visual cortex (Figure 18.1) might have on all the rest
of the brain.
For this type of situation classical multivariate testing is difficult or fails. We

propose rather to apply the massive univariate approach that is at the heart of
Statistical Parametric Mapping (SPM) [19]. SPM essentially calculates a (uni- or
multivariate) statistic at each voxel of a brain image and then determines signif-
icantly activated regions by means of procedures that control the type I error.
The latter is achieved either by the use of Random Field Theory [19], resampling
methods [20], or the use of the False Discovery rate (FDR) [21]. We propose to
evaluate a spatial extension of Granger causality by a SPM of influence fields. In
effect, we are interested in detecting significant regions in the Cartesian product
set Ω × Ω. An alternative to using ordinary multivariate regression techniques
for this situation is to attempt a huge multivariate regression problem and as-
sociated testing of the regression coefficients. To be able to do so we shall work
with regression based on penalization in the spirit of Functional Data Analysis
(FDA) [15]. This approach drastically reduce the number of “effective” connec-
tions to be determined. This was the approach taken in [22] by introducing a FDA
variant of MARmodeling that imposed spatial smoothness on the influence field.
Massive data reduction was achieved by means of the singular value decompo-
sition and this paper showed the feasibility of working in the p > N situation.
A subsequent paper [23] also used penalized regression, in this case introducing
sparse multivariate autoregressive models. The latter can be estimated in a two
stage process involving: (1) penalized regression and (2) pruning of unlikely con-
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nections by means of the local false discovery rate developed by Efron. Extensive
simulations were performed with idealized cortical networks having small world
topologies and stable dynamics. These show that the detection efficiency of con-
nections of the proposed procedure is quite high. Furthermore, the sparsity or
conditional independence did not have to be specified a priori but is disclosed
automatically by an iterative process. In short, we use the fact that the brain is
sparsely connected as part of the solution, as opposed to treating as a specifica-
tion problem. This chapter unifies the two approaches—spatial smoothness and
sparseness in a much more general framework.

18.2 The Continuous Spatial Multivariate Autoregressive
Model and its Discretization

We shall be dealing with the following spatial multivariate autoregressive (sMAR)
model defined in discrete time

y(s, t) =

r∑
k=1

∫∫∫
Ω

ak(s, u)y(u, t − k)du + e(s, t), (18.1)

where y(s, t) is the variable of interest (for example, in our case, either functional
Magnetic Resonance Image BOLD, and optical image, EEG, or MEG). It is a sto-
chastic process which is indexed by the continuous spatial position variable s

and time t = 1, . . . , N. We posit an innovation process that is also a function of
space and time. Note that the integration is over the volumetric set Ω. Of central
interest here are the functions ak(s, u) that specify the influence of site u on site s

at after k time delays. This is actually a function ak : Ω × Ω → Re which will
specify the influences produced by small neighborhoods of each point s of the
manifold ∆(s) ⊂ Ω, which will be ak(s, u) ∆(s). We now introduce three defini-
tions of spatial influence measures:

• A point influence measure Is→u is the simple test H0 : a(s, u) = 0 for given
s, u ∈ Ω.

• An influence field Is→Ω is a multiple test H0 : a(s, u) = 0 for a given s ∈ Ω and
all u ∈ Ω.

• An influence space Is→Ω is a multiple test H0 : a(s, u) = 0 for all s, u ∈ Ω.

These concepts are illustrated in Fig. 18.2.
Of these, point influence measures have been studied to date and recently we

have addressed those for fields. The exploration of the entire influence space will
be touched upon in the final section.
Now suppose that we sample y(s, t) centering our discretization at voxels

s = {s1, . . . , si, . . . sp|si ∈ Ω} . (18.2)
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Fig. 18.2: Classical and spatial influence measures. On the left are the set of nodes
and how activity is propagated by a linear autoregressive model for successive
time instants. Arrows indicate nonzero autoregressive coefficients at different time
lags. On the right are the corresponding causality graphs indicating nonzero point
influence measures Ix→y. (a) Causality analysis of a time series graph with only
four nodes. In this hypothetical example only two time lags are relevant. Note that
each node depends on its own past through a order two autoregressive model.
Here we say y influences z at lag one and x influences z at lag two. (b) Spatial
extension of the concept of influence measure. The manifoldΩ in this case is a line
segment. Also here only two time lags are relevant. Here each point also depends
on its past through an order two autoregressive model. Additionally, we also have
nonzero point influence measures of x on y with lag one, point z influences the
whole of set P at lag two, and setM influences set N at lag one.

In this case, the data at time t will be represented by a vector

yt =




y1;t
...

yi;t
...

yp;t




p×1

(18.3)
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where i = 1, . . . , p indexes the voxels with

yi,t =

∫∫∫
∆(si)

y(u, t)du . (18.4)

We shall assume that the neighborhood of si is sufficiently large to avoid spatial
aliasing problems. The discretized version of Eq. (18.1) leads to the Multivariate
Autoregressive Model (MAR) for the yt

yt =

r∑
k=1

Akyt−k + et, (18.5)

where the continuous function ak(s, s′) transforms to a matrix Ak with dimen-
sions p × p and with elements

ak
i,j =

∫
· · ·

∫
∆(si)×∆(ui)

ak(s ′
i, u

′
j)ds

′ du′ . (18.6)

In what follows we assume et ∼ N(0, Σ), but of course this assumption may
be relaxed. Note that the larger the number of sampling points the better the
representation so we deal with a case in which ideally p → ∞.
Define B = [A1, . . . ,Ar]

T ,Z = [yr+1, . . . ,yN]T , andX =


 yT

r . . . yT
1

. . . . . . . . . . . . . . . . . .

yT
N−1 . . . yT

N−r




with dimensions pr×p, N−r×p, and N−r×pr, respectively. We can now recast
the original sMAR (18.1) as a multivariate regression model

Z = XB + E, (18.7)

where E = [er+1, . . . ,eN]T . Some additional notation will be useful. We shall
denote the vectorized version of B, β = vec(B) formed by stacking the columns
of B, βi. Note that βi measures the influence of a voxel i on the rest of the brain
for all time lags and, in turn, comprises the vectors of autoregressive coefficients
for each time lag

βi =


βi

1

. . .

βi
r


 . (18.8)

Thus the linear effect of voxel i at lag k on voxel j is measured by the coeffi-
cient βi

j,k.

18.3 Testing for Spatial Granger Causality

As noted before, MARmodeling has been widely applied in the neurosciences [3,
24, 25] for the analysis of causality. Though some doubt that causal analysis is
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possible at all [26], early work with Structural Equation Modeling [27] did face
up to the issue of inferring directional influences and was firmly grounded in
modern statistical techniques [28] via graphical models. These initial studies [27]
in Neuroimaging were based on nondynamical PET data and ignored temporal
information. The concept of Granger causality [6, 29, 30] does make use of tem-
poral information in order to establish a measure of directed influence. Granger
causality Ix→y of the time series x on y is demonstrated when one can reject
the null hypothesis of y not being predicted by the past of x [7, 31, 32]. Recent
work [33] have combined the notion of Granger causality analysis with that of
causality analysis via graphical models [34]. In this view, a system modeled by
a MAR is a network in which each node is a time series. These ideas general-
ize to the more general linear sMAR in Eq. (18.5) introduced above, by noting
that the coefficients ak

i,j measure the influence that the time series j exerts on
the time series i after k time instants. Knowing that ak

i,j is nonzero is equivalent
to establishing effective connectivity [1] and tests for this hypothesis have been
proposed as influence measures [6, 22, 25, 32, 35, 36]. From the graphical points
of view the question is: does an edge exists between the corresponding nodes?
The maximum likelihood (ML) estimation of Eq. (18.5), or equivalently Eq. (18.7)
can be obtained by standard methods [4, 37]

B̂ = arg min
B

‖Z − XB‖2 (18.9)

where for any matrix X, ‖X‖2 = tr(XT X), is the Frobenius norm. This results in
the well known explicit solution, the OLS estimator

B̂ = (XT X)−1XT Z . (18.10)

It should be noted that the unrestricted ML estimator of the regression coeffi-
cients does not depend on the spatial covariance matrix of the innovations [37].
One can therefore carry out separate regression analyses for each node. In other
words, it is possible to estimate separately each column βi of B

β̂i = (XT X)−1XT zi (18.11)

for i = 1, . . . , p where zi is the ith column of Z. Consider that we obtain the
usual t statistic for each regression coefficient

ti
k,j =

β̂i
k,j

SE(β̂i
k,j)

(18.12)

where SE is the usual standard error of the regression coefficient. Then we can
use SPM type procedures to detect which voxels are influenced by voxel i at
lag k. This suggests the one possible specific definition of influence field

Ik,i→Ω = {ti
k,j}1�i�p . (18.13)
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If, as is usual, we wish to collapse over the lags, then we use instead of the
ordinary t statistic we can use the Hotelling’s T2 statistic. Unfortunately, there is
a problem with this approach when dealing with Neuroimaging data: the total
number of parameters to be estimated for model (18.5) is

g = r · p2 +
(p2 + p)

2
(18.14)

which becomes rapidly large for increasing p, a situation for which usual time
series methods break down since the OLS estimator will not exist. In the next sec-
tion we shall review some attempts to cope with this problem by dimensionality
reduction in order to apply classical causality analysis. In the following section
we shall explain our approach to address the full problem via variable penaliza-
tion.

18.4 Dimension Reduction Approaches to sMAR Models

18.4.1 ROI-Based Causality Analysis

One common approach is to pre-select a small group of sets of voxels or regions
of interest (ROI) on the basis of prior knowledge, for example known anatomi-
cal structures, and to obtain an average time series over these volumes. In other
words the original manifold Ω is partitioned into sub-manifolds and the follow-
ing holds

Ω =

G⋃
g=1

ΩgyROIg,t =

∫∫∫
Ωg

y(s, t)ds . (18.15)

Causality analysis may then be assayed by the methods described above since
now N > G. Recent examples of this type of linear Granger causality analysis
for fMRI time series are [35, 38]. As an example, a ROI analysis of the concur-
rent EEG-fMRI times series is shown in Fig. 18.2 (taken from). The fMRI time
series are of length N = 109 for six ROI in the brain identified by previously
looking at the correlation with the EEG alpha atom: visual cortex, thalamus, left
and right insulae and left and right somatosensory areas. The resulting causal-
ity diagram clearly shows that electrophysiological activity is driving the BOLD
response in different brain structures, which is to be expected since the BOLD
response measured in fMRI experiments is secondary hemodynamic response
to neural activity. Thalamus and cortex have reciprocal relations and with other
structures. These results, in general, are in agreement with previous studies of
this material showing the utility of this type of analysis. However, the ROI strat-
egy has the potential problem of the appearance of spurious influences induced
by the brain structures not included in the analysis. An additional problem is
that it is not always clear how to establish the partition (18.15).
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Fig. 18.3: ROI Granger causality graphical model for concurrent EEG-fMRI record-
ing during alpha rhythm. The MRI from Fig. 18.1 has been divided into regions
of interest (ROI) and a MAR model fitted to identify significant influences. The
EEG node corresponds to the EEG PARAFAC α component power time series as
shown in Figs. 18.3 and 18.5. The rest of the nodes are fMRI time series obtained
by averaging activity over the following ROI: TH (thalamus), VC (Visual cortex),
RI (right insula), LI (left insula), RS (right somatosensory cortex), and LS (left so-
matosensory cortex).

18.4.2 Latent Variable-Based Causality Analysis

A different approach for dimensionality reduction is the use of latent variable
analysis (LVA). Essentially this involves creating linear or nonlinear combinations
of the original time series in an attempt to find series are in some sense the actual
underlying “physiological components”

yLVAc,t = f(yt), (18.16)

where f is the transformation from the original time series to the desired compo-
nents for c = 1, . . . , C. This approach has a long history in neuroscience; different
methods used being PCA [39, 40] or ICA [41].
We now give a recent example of LVAwhich extracted by means of multilinear

techniques and applied to the EEG-fMRI data described in [14]. The multichan-
nel EEG evolutionary spectrum S(f, t, d) is obtained from a channel by channel
wavelet transform, where ω is frequency, d is the derivation (channel) and t is
time. Parallel Factor Analysis (PARAFAC) [13, 14] decomposes three-way data
array S into the sum of “atoms”

S(d, ω, t) =
∑

k

ak(d)bk(ω)ck(t) + es(ω, t, d), (18.17)

where the kth atom is the trilinear product of loading vectors representing spatial
(ak), spectral (bk), and temporal (ck) “signatures.” This decomposition is shown



470 18 Granger Causality on Spatial Manifolds: Applications to Neuroimaging

Fig. 18.4: Spatial distribution of the α and θ atoms as determined by both
PARAFAC of the EEG and Multilinear Partial Least Squares of concurrent EEG-
fMRI recordings. Inverses solutions obtained from the spatial αk signatures. Note
the occipital and frontal distributions of the spatial signature for the α and θ atoms,
respectively.

schematically in Fig. 18.5. Two atoms were found α and θ, identified on the basis
of the frequency signature (Fig. 18.6(a)) peaking at the known frequency of these
well-known EEG rhythms.
The spatial distribution of these components both in the EEG and the fMRI

were occipital and frontal for the α and θ atoms, respectively (Fig. 18.4). Perusal
of the time signatures of these atoms shows a strong influence of imposing either
a resting condition or a mental task on the subject (Fig. 18.6(b)). Moreover, since
only two time series were involved, classical methods for measuring influences
were applied easily yielding the causality analysis shown in Fig. 18.7. It is to
be noted that assessment of the model order for all fMRI time series models
presented in this paper indicated that only a first-order model (r = 1) is required.

While consistent with known hypothesis about the brain, this type of analysis
only uses the instantaneous covariances to fit the model since time lags are not
usually included in the analysis. A more promising approach are methods devel-
oped for geostatistics [4, 5, 42] in which time series methods are combined with
component extraction. The latter techniques, to our knowledge, have not been
applied in neuroscience. In any case extraction of components avoids the issue of
analyzing directly spatial Granger causality; a point to which we shall now turn
our attention.



18.5 Penalized sMAR 471

Fig. 18.5: Schematic representation of the PARAFAC model. The multichannel EEG
evolutionary spectrum S(d,ω, t) is decomposed into the sum of “atoms” where
the kth atom is the trilinear product of loading vectors representing spatial (ak),
spectral (bk), and temporal (ck) “signatures.”

Fig. 18.6: Spectral and temporal signatures of the EEG PARAFAC atoms. Left:
Spectral signatures bk(f) of the two atoms corresponding to frequency peaks in
the traditional θ and α bands. The horizontal axis is frequency ω in Hz and the
vertical axis is the normalized amplitude. Right: temporal signatures, ck(t), of the
θ and α atoms.

18.5 Penalized sMAR

18.5.1 General Model

This section introduces a Bayesian sMAR that generalizes those proposed in [22,
23]. Consider once more the sMAR model

Z = XB + E . (18.18)

We now posit that the elements of β are sampled from an a priori that is the
product of several generalized multivariate normal densities

π(β; (P1, Σ1), . . . , (PM, ΣM)) = C

M∏
m=1

exp(−Pm(Σ−1
m β)) (18.19)
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Task

Fig. 18.7: Influence measure analysis of the EEG-fMRI atoms. The external variable
imposition of a mental task was found to directly influence (negatively) the activity
of the α atom, which in turn influenced negatively the θ atom (Itask→α, Iα→θ > 0).

where C is a normalizing constant, the Σm are a priori covariance matrices for the
β. The MAP estimate that follows from the likelihood of Eq. (18.18) and the prior
Eq. (18.19) is

B̂ = arg min
B

‖Z − X B‖2
Σ +

M∑
m=1

Pm(Σ−1
m β), (18.20)

where for any matrix X ‖X‖2
Σ= tr(XT Σ−1X). Finally, Pm(w) for any vector w is

defined as

Pm(w) =

length(x)∑
l=1

pm(|wl|) , (18.21)

and the functions pm(θ) are defined for θ > 0 are appropriate penalty functions
with the properties specified in [43]. Some examples are given in Table 18.1 as
well as illustrated in Fig. 18.8. Thus, our model consists of M regularization
constraints, each comprising a

1. Covariance matrix used to enforce a priori spatial constraints on the autore-
gressive coefficients; and a

2. Penalization function to enforce constraints on the magnitude of the variables
and therefore carry out variable selection.
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Fig. 18.8: Penalization functions: Plot of the penalization functions used to imple-
ment sparse and spatially constrained regression techniques. The meaning of the
abbreviations is summarized in Table 18.1.

Tab. 18.1: Examples of penalty functions.

Name Abbreviation

LASSO L1
Smoothly clipped absolute deviation SCAD
Hard thresholding HT
Ridge L2
Mixture of generalized Gaussians MIX
Normal-gamma NG
Normal-exponential-gamma NEG

The penalization pm functions that we have explored are summarized in Ta-
ble 18.1 with their abbreviations. These abbreviations, together with those for
the covariance matrices Σ1, allow the introduction of a notation for a particular
sMAR model based on the penalty function used. Thus (L1, Irp2) is an sMAR
model with a penalty that comprises only one term, the use of the l1 penalty and
a spherical covariance matrix. It should be noted that the proposed MAP (18.20)
includes as particular cases many currently used regularization schemes fre-
quently applied in isolation, some new combinations proposed in the literature,
as well as totally new proposals. Unfortunately, in the penalized case it is not
possible in general to carry out separate regressions for each βi. For sake of sim-
plicity, and to retain the possibility of independent estimation for each influence
field, we have been assuming that Σ is diagonal, that is, we assume that the in-
novations are spatially independent. In the final section we shall discuss avenues
to avoid this restriction.
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Tab. 18.2: Examples of a priori covariance Σm matrices defined in terms of their
inverses. These definitions are valid over rectangular domains in dimensions from
one to three. For irregular domains (areas in an image where there is gray matter
for example) these matrices are masked a 0–1 indicator function for the selected
voxels. Here m, n, and p are the dimensions of the rectangular region, ⊗ denotes
the Kronecker product of two matrices and ⊕ the Kronecker sum
Name Notation Inverse of matrix

Spherical In




1 0 0

0 . . . 0

. . . . . . . . .

0 0 1




1D gradient D1
n




1 −1 0 . . . 0

0 1 −1 . . . 0

. . .

0 . . . 0 1 −1

0 . . . 0 0 1




2D gradient D2
nm

[
In ⊗ D1

m

D1
m ⊗ In

]

2D Laplacian L2
nm D1

n ⊕ D1
m

3D gradient D3
nmp


In ⊗ Im ⊗ D1

p

In ⊗ D1
m ⊗ Ip

D1
n ⊗ Im ⊗ Ip




3D-Laplacian λL3
n,m,p λD1

m ⊕ D1
n ⊕ D1

p

Tab. 18.3: Mixing distribution of interest represented in the scale mixture form,
where IG(a,b) and Ga(a, b) are the inverse gamma and the gamma with shape a

and natural parameter b

Distribution Density

Normal-Jeffreys g(θ) ∝ 1/θ

t distribution g(θ) = IG(λ
2
, γ2λ

2
) λ, γ > 0

Mean-zero double exponential g(θ) = Ga(θ | λ, 1
2γ2 ) λ = 1

Normal-gamma (NG) g(θ) = Ga(θ | λ, 1
2γ2 ) λ > 0, γ < ∞

Normal-exponential-gamma (NEG) g(θ) = λ
γ2 (1 + θ/γ2)−(λ+1) λ > 0, γ < ∞

18.5.2 Achieving Sparsity Via Variable Selection

In a previous paper we proposed that attention be restricted to networks with
sparse connectivity. That this is a reasonable assumption that is justified by stud-
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ies of the numerical characteristics of network connectivity in anatomical brain
databases [44–46].
Sparsity of causal explanations may be achieved by variable selection. Re-

searchers into causality [47, 48] have explored the oldest of variable selection tech-
niques for regression—stepwise selection for the identification of causal graphs.
This is the basis of popular algorithms such as PC embodied in programs such as
TETRAD. These techniques have been used in graphical time series models [49].
Unfortunately, these techniques do not work well for p � N. A considerable
improvement may be achieved by stochastic search variable selection (SSVS) of
George and McCulloch [50, 51], which relies on Markov chain–Monte Carlo
(MCMC) exploration of possible sparse networks [52, 53]. These approaches,
however, are computationally very intensive and not practical for implement-
ing a pipeline for Neuroimaging analysis.
An alternative to MCMC-like methods is variable selection via penalized re-

gression models [43, 54] which unifies nearly all variable selection techniques into
an easy-to-implement iterative application of minimum norm or ridge regression.
These techniques have been shown to be useful for the identification of the topol-
ogy of huge networks [55, 56]. Penalized regression models were introduced for
the first time for the study of brain connectivity used in [22, 23]. Consider the
variant of the general model (18.20) with only one component (M = 1) and a
spherical covariance matrix. Some of the possible models are:

• (L2, Irp2) is the usual ridge regression model [57] or quadratic regulariza-
tion, λ being the regularization parameter which determines the amount of
penalization enforced. Due to the possibility of efficient computation this is a
widely applied form of regularization, recently applied for example to analyze
microarray data [58].

• (L1, Lrp2) is, as mentioned above, the LASSO [59].

• (HT, Lrp2) is the Hard Thresholding of regression coefficients only applicable
in the p < N case.

• (SCAD, Lrp2) [43] is a form of regression designed to avoid bias for larger
coefficients.

• (MIX, Lrp2) uses the penalty function − ln
(
p0fp0(β) + (1 − p0)fp1(β)

)
where

the mixture density are univariate generalized Gaussians. This is a regression
model designed to produce sparsity and implements a non-MCMC variant of
the “spike and slab” models for variable selection, the best known being the
SSVS method of George and McCulloch [50].

We introduce in this chapter a further generalization of the variable selection
penalties previously used. As pointed out in [60] it has been shown that most of
the mixture priors previously discussed are particular instances of scale mixtures
of normal distributions [61] that embody a high prior probability of the regres-
sion coefficients in the proximity of zero. These authors proposed a natural class
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of prior distribution that bridges the gap between classical normal-Jeffreys priors,
passing throughout ridge regression down to the double exponential distribution
used in the LASSO. Some particular mixture distribution of interest are shown in
Table 18.3. We single out for mention the following regression models used for
the first time to study brain connectivity:

• (NG, Lrp2) uses as a penalty the minus log of the normal-gamma (NG) dis-
tribution is often called as variance-gamma distribution, has the al distribu-
tion: p(βj) = 1√

π2λ−1/2γλ+1/2Γ(λ)
|βj|Kλ−1/2(|βj|/λ), where Kv(a) is the modi-

fied Bessel function of the third kind.

• (NEG, Lrp2) is based on the normal-exponential-gamma (NEG) can be ex-

pressed as p(βj) = λ2λ√
πγ

Γ(λ+1/2) exp
( β2

j

4γ2

)
D−2(λ+1/2)(|βj|/λ), whereDv(a) is

the parabolic cylinder function, the parameters γ and λ control the scale and
the heaviness of the tail, respectively.

18.5.3 Achieving Spatial Smoothness

The other constraint that makes sense is that of spatial smoothness of influence
fields. Consider Fig. 18.9 (left) which depicts the influence of a given brain struc-
ture on three others: two that are close to each other in the same hemisphere and
another that is further away in another hemisphere. It is a priori more likely that
the influences from the given voxel on the two closer voxels be more similar than
the influence on the distant voxel. This can be quantified by requiring

r∑
k=1

∫∫∫
Ω

∣∣∣∣∂ak(s, u)

∂s

∣∣∣∣
2

du (18.22)

be small, the distribution of influences to targets be smooth. Alternatively, one
may require that the distribution of sources influences to a single target as in
Fig. 18.9 (right) be smooth by imposing that

r∑
k=1

∫∫∫
Ω

∣∣∣∣∂ak(s, u)

∂u

∣∣∣∣
2

du (18.23)

be small. These definitions are actually for the L2 penalization and therefore spec-
ify Gaussian fields as a priori distributions. The discrete version of this is set up
by specifying the matrix operators defined in Table 18.3. Additionally, one may
modify the quadratic norm by applying the different penalties described in Ta-
ble 18.1. One may also conceive combinations of the two conditions—smoothness
of target or of source influences all these conditions following from the choice of
appropriate roughness penalty or, equivalently, the a priori covariance matrix. Im-
posing smoothness on the influence fields involves imposing conditions on each
column of B(βi) separately. It would be possible to impose similar conditions
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Fig. 18.9: Spatial constraints.

on the rows of B, that is on the map of sources of a given target, but this is not
computationally feasible at the moment for large p.
We shall now mention some one component sMAR models that impose dif-

ferent types of smoothness:

• (L1, Lrp2) this is the data “Fusion” model mentioned in [62], now applied to
sMAR.

• (L2, Lrp2) is a spline regression model in which the spatial Laplacian of the
estimated coefficients are to be minimized. Popularized for the solution of EEG
inverse problems as “LORETA” [63], this model was used for the first time to
study fMRI time-series connectivity in one of our previous paper [22].

We wish to emphasize that penalizing with roughness penalties is equivalent to
penalizing a spatial Fourier transform of the coefficients to be estimated.

18.5.4 Achieving Sparseness and Smoothness

There is no reason to restrict the number of penalty/smoothness constraints im-
posed. In fact, recent work in statistical learning has advanced the use of models
which are easily recognized in the framework of our general model. For example:

• (L1, Irp2)(L2, Irp2) can be recognized as the recently introduced “Elastic Net”
regression technique applied to sMAR [64]. The elastic net has been shown to
improve on the variable selection properties of the LASSO when p � N. Sim-
ulations have shown that when there are sets of correlated variables LASSO
picks just one variable from each set. In contrast, the elastic net picks all of the
members of the set giving them similar weights. When applied to sMAR this
would produce a “patchy” influence field. One would hope that these patches
correspond to coherent sets of neurons that act together in influencing other
brain structures.
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• (L1, Irp2)(L1, Drp2) can be recognized as the recently introduced “LASSO-
Fusion” [62] regression technique applied to sMAR. It is claimed that this also
selects patches of related variables and outperforms the LASSO when p � N.

Both these procedures were previously developed in the context of particular
algorithms: quadratic programming and LARS for LASSO-Fusion and the elastic
net, respectively. However, we have that it is possible even for huge problems (see
next section) to work with any number of combinations of penalties/covariance
matrices. We have therefore tried out the following new models:

• (L2, Irp2)(L2, Drp2) which we call “Ridge-Fusion” in analogy to LASSO-Fu-
sion.

• (L1, Irp2)(L1, Lrp2)(L2, Irp2)(L2, Lrp2)which can be seen either as: (1) a combi-
nation of the LASSO-Fusion and Ridge-Fusion or, alternatively as (2) a com-
bination of the Elastic NET applied with LORETA both for the L1 and L2 norm.

From our previous comment at the end of the last section it is obvious that these
attempts to combine norms are equivalent to penalizing/selecting variables from
the original coefficient domain as well as from the spatial frequency domain.

18.6 Estimation via the MM Algorithm

For implementation of algorithms for the estimation of the model equation (18.20),
advantage was taken of the recent demonstration [43, 54, 65] that estimation of
any of many penalized regression for the influence field of voxel i can be carried
out by iterative application of ridge regression

β̂i
k+1 = (XT X + D(β̂i

k+1))−1 XTzi, (18.24)

where k = 1, . . . , Niter, with Niter is the number of iterations and D(β̂i
k+1), a

diagonal matrix is defined by

D(βi) =

M∑
m=1

diag(p ′
m(|wi

l|)/|wi
l|) (18.25)

for l = 1, . . . , rp2, where w=Σ−1
m βi and p ′

λ is the derivative of the penalty func-
tion being evaluated. The derivatives p ′

m for different penalty functions are pro-
vided in Table 18.4.
The reason that this algorithm works may be inferred from Fig. 18.9. At

each step of the iterative process, the regression coefficients of each node with
all others are weighted according to their current size and the penalty function
chosen. Many coefficients are successively down-weighted and ultimately set to
zero—effectively carrying out variable selection in the case of the LASSO, HT,
SCAD, MIX, and NG penalization. It must be emphasized that the number of
variables set to zero in any of the methods described will depend on the value
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Tab. 18.4: p ′
λ(θ), derivatives of penalty functions for θ > 0.

Type Derivatives

L1 p ′
λ(θ) = λL1 θ

SCAD p ′
λ(θ) = λSCAD{I(θ � λ)+

(aλ − θ)

a − 1
I(θ > λ)}

for some a > 2

HT p ′
λ(θ) = −2(θ − λHT)

L2 p ′
λ(θ) = 2λL2 θ

MIX p ′
λ(θ) = −λMIX

[
pof ′p0

(θ) + p1f
′
p1

(θ)

pofp0
(θ) + p1fp1

(θ)

]

where

fp(θ) =
p1− 1

p

2σpΓ( 1
p
)
exp(−

1

p

|x − x0 |p

σp
) and Γ(·)

denotes the Gamma function

NG p ′
λ(θ) =

1

γNG

Kλ−3/2

(
θ

γNG

)

Kλ−1/2

(
θ

γNG

) where Kv(z)

is the modified Bessel function of the third
kind

NEG p ′
λ(θ) =

λNG + 1/2

γNG

D−2(λ+1)

(
θ

γNG

)

D−2(λ+1/2)

(
θ

γNG

) where

Dv(z) is the parabolic cylinder function

Tab. 18.5: The numerical results of simulations testing of the ROC for the different
studied methods are presented

Method I L I + L

L2 0.6825 0.7026 0.7438

L1 0.6157 0.7102 0.7657

L1+ L2 0.5766 0.6222 0.6257

NG 0.6722 0.6963 0.7434

of the regularization parameter, with higher values selecting fewer variables. In
this chapter, the value of the tuning parameters was selected to minimize the
generalized cross-validation criterion (GCV).
The specific implementation of penalized regression used in this work is that

of the maximization–minorization (MM) algorithm [65–67] which exploits an op-
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timization technique that extends the central idea of EM algorithms and Varia-
tional Bayes techniques to situations not necessarily involving missing data or
even maximum likelihood estimation. The MM algorithm retains virtues of the
Newton–Raphson algorithm. It is numerically stable and is never forced to delete
a covariate permanently in the process of iteration. The general convergence re-
sults known for MM algorithms imply among other things that the newly pro-
posed algorithm converges correctly to the maximizer of the perturbed penalized
likelihood whenever this maximizer is the unique local maximum. The selected
model based on the maximized penalized likelihood satisfies pm(|wi

l |) = 0 for
certain w = Σ−1

m βi, which components accordingly are not included in this fi-
nal model, and so model estimation is performed at the same time as model
selection. The tuning parameters λM may be chosen by a data-driven approach
such as cross-validation or generalized cross-validation [68]. An important point
is that Hunter and Li showed that simple use of iterations Eq. (18.24) with the
matrix D may permanently delete variables permanently from consideration be-
ing included in further iterations.
Hunter and Li [67] showed that a perturbed version of pm(θ) may be used to

define a new objective function that is similar to the original but does not lead to
permanent variable deletion. To this end, they define

pm,ε(θ) = pm(θ) − ε

∫ |θ|

0

pλ

ε + t
dt, (18.26)

which in practice is equivalent to using the following matrix: Dε instead of D

Dε(βi) =

M∑
m=1

diag
(
p ′

m(|wi
l |)/(|wi

l| + ε)
)
. (18.27)

Note that in the computations the original set of variables to be estimated β is by
definition augmented with spatial transforms (defined by the matrix operators
laid out in Table 18.2). Suppose that we have defined a model with covariance
matrices Σ1, . . . ,ΣM. Then we can use the following computational “trick,” defin-
ing

S = [Σ−T
1 , . . . ,Σ−T

M ]T T =
1

M
[Σ1, . . . ,ΣM] (18.28)

we have

q = Sβ (18.29)

one may carry out penalized regression on this new set of variables by defining
XM = XT and solving the new (larger) problem, where the definition ofQ is self
evident

Q̂ = arg min
B

‖(Z − XM Q )‖2
Σ +

M∑
m=1

Pm(q) . (18.30)

Back transformation to the desired solution is obtained by B̂ = TQ̂. We have
found this algorithm to work well in practice.
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Fig. 18.10: Ideal “cortex” used for simulations was modeled by a small world net-
work defined over a two-dimensional grid on the surface of a torus. This structure
has periodic boundary conditions in the plane. Different combinations of strengths
were used for defining the autoregressive matrices used to create simulated fMRI
time series.

18.7 Evaluation of Simulated Data

The procedures described in the two previous sections have been thoroughly
tested with simulated data. For simulations an “ideal cortex” was modeled by
a small world network defined over a two-dimensional grid on the surface of a
torus (Fig. 18.10). This structure has periodic boundary conditions in the plane.
In simulations described in detail in [23], the existence of a connection was

generated with a binomial probability that decreased with distance. The network
mean connectivity was 6.23, the scaled clustering 0.87, and the scaled length 0.19.
This type of small-world network has a high probability of connections between
geographical neighbors and a small proportion of larger range connections. The
network mean connectivity was 6.23, the scaled clustering 0.87, and the scaled
length 0.19. The autoregressive matrix being sampled from Eq. (18.5). The inno-
vations were sampled from a Gaussian distribution with a different prescribed
covariance matrices, including nondiagonal ones. A simulated fMRI is shown
in Fig. 18.11. The effect of different observed lengths of time-series (N) on the
detection of connections was studied. The behavior of different procedures was
compared by measuring the area under the ROC curve (AUC). We found that
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Fig. 18.11: Simulated fMRI time-series generated by a first-order multivariate au-
toregressive model.

while performance deteriorated with an increasing p
N ratio there was still signif-

icant detection rates with this ratio near ten. The performance of the methods
also deteriorated with increasing spatial innovation correlation. This latter obser-
vation underscores the need for also estimating the covariance matrix Σ. Doing
this with computational efficiency is still work in progress.
A number of further simulations were carried out in similar conditions as

those reported before to explore the usefulness of multiple penalty/covariance
matrix combinations. The p

N ratio was now set at two. From Table 18.5 it is ev-
ident that, except for one exception, imposing simultaneously sparseness and
smoothness outperforms either criteria alone.

18.8 Influence Fields for Real Data

To be able to apply these techniques to actual data it is necessary to have a
decision procedure as to which variables to finally retain. We have found that
although the methods described above do enforce considerable selection of vari-
ables, there is still a “gray zone” of variables with small values, for which the
decision has to be taken as whether to include or not.
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We have therefore combined methods for penalized regression with proce-
dures for the control of the false discovery rates (FDR) [20, 69, 70] in situations
where a large number of null hypothesis is expected to be true. The situation
p � n this case becomes strength instead of a weakness, because it allows the
nonparametric estimation of the distribution of the null hypotheses to control
false discoveries. To carry out this type of decision procedure it is preferable to
work with the influence measures defined by the t statistics equation (18.12).
For this we must estimate the standard errors of the β̂. We have explored two
procedures for this estimation. One is the “sandwich” formulas as described
in [67, 71, 72]. However, we have found the estimation of the standard errors
by means of the bootstrap more robust than with the sandwich estimator.
In [23] it was shown that efficient detection of connections possible simulated

neural networks. The method was additionally shown to give plausible results
with real fMRI data and is capable of being scaled to analyze very large data sets.
In that publication the variable-selection method combined with FDR was illus-
trated by the identification of the neural circuitry related to emotional processing
as measured by BOLD.
As a final, real-world example, we describe in more detail the concurrent EEG-

fMRI experiment that has been used as an example throughout this chapter. This
is a problem of sufficient size to test the practicality of the procedures proposed
since p the number of voxels is 16 240 and N is only 108. The EEG was sampled
at 200Hz from an array of 16 bipolar pairs, (Fp2-F8, F8-T4, T4-T6, T6-O2, O2-P4,
P4-C4, C4-F4, F4-Fp2; Fp1-F7, F7-T3, T3-T5, T5-O1, O1-P3, P3-C3, C3-F3, F3-Fp1),
with an additional channel for the EKG and scan trigger. The fMRI time series
was measured in six slice planes (4mm, skip 1mm) parallel to the AC–PC line,
with the second from the bottom slice through AC–PC. More details about this
data set can be found in [18]. In the work presented here we report a typical
subject from a set of five simultaneous EEG/fMRI recordings from three different
subjects.
For the fMRI, we examined the influence field with a source at that voxel

that had the largest (negative) correlation with the EEG PARAFAC component
for α rhythm. This latter component is the one obtained in the section above on
LVA methods and shown topographically in Fig. 18.4 (left). The selected voxel is
marked in Fig. 18.1 (arrow).
The influence fields for the selected voxel obtained by using different models

are shown in Fig. 18.12. The penalties are labeled on the left and the covariances
on the top. It is to be noted that the use of the spherical covariance matrix pro-
duces quite “rough” influence fields. When combined with the L1 penalty only a
scattering of points is selected, at most the same as N that is 108—a known prop-
erty of the LASSO. The (L2, Lr.p2) solution (“Ridge-Fusion”) produces a more
pleasing (but perhaps excessively smooth) map that is in very good correspon-
dence with previous studies with simple correlations as well as with PARAFAC.
All the most realistic seeming solutions are those that combine the spherical co-
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Fig. 18.12: Results of fitting the sMARwith multiple penalties/covariance matrices.
The a priori covariance matrix assumed is stated on the top (spherical, Laplacian,
and a combination of both). The type of penalization is stated on the left (L2 norm,
L1 norm, and a combination of both known as the elastic net). Each sub figure is
the influence field of the voxel marked in Fig. 18.1 with an arrow on the rest of the
voxels corresponding to the slice immediately below.

variance matrix as well as the Laplacian roughness penalty. In fact, the solution
that combines the spherical and Laplacian covariance matrices and also the L1
and L2 norm seems to be subjectively the best solution. This impression is born
out by comparison of the GCV values for all models. GCV not only serves to fit
the tuning parameters but also provides a yardstick for comparing models. In
this particular case, related to the models fit and displayed in Fig. 18.12 there is
a progressive decrease of GCV from top to bottom and from left to right, indi-
cating that the simpler models do not provide adequate modeling flexibility and
providing some empirical support for the usefulness of model (18.19).
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Work with the SMARmodel (18.19) is proceeding in several directions. Obviously
this approach can be extended for nonlinear autoregressions. This can be done
by

• Including bilinear, or higher order terms in the X matrix [73]; or by

• Defining a kernel weighting in the state space for the autoregressive coeffi-
cients as in [74].

On the other hand, a kernel method at different times would accommodate non-
stationary time series as in [32].
Extensions to the frequency domain of sMAR causality analysis are quite

straightforward. Either the sandwich formula or the bootstrap can be used to
provide estimates of any linear combination of influence fields and therefore to
the temporal Fourier transform of the influence fields over the different delays.
A vexing problem is the estimation of the covariance matrix Σ. We are cur-

rently attempting to this by including a zero lag autoregressive matrix A0 in the
formulation of the model.
In conclusion, we have introduced a spatial multivariate autoregressive model

based on a Bayesian formulation that combines several components of different
types of penalizations as well as spatial a priori covariance matrices. These are
shown by simulations and work with real data to be practical, even for huge
data sets, and that give plausible results. The methods continue to bring into the
framework of Statistical Parametric Mapping the analysis of effective connectivity
via the analysis of Granger causality.
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