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Preface

A casual glance at the relevant literature suggests that the amount of nonlinear
time series models that can be potentially useful for modelling and forecast-
ing economic time series is enormous. Practitioners facing this plethora of
models may have difficulty choosing the model that is most appropriate for their
particular application, as very few systematic accounts of the pros and cons of
the different models are available. In this book we provide an in-depth treatment
of several recently developed models, such as regime-switching models and
artificial neural networks. We narrow our focus to examining their potential
applicability for describing and forecasting financial asset returns and their
associated volatilities. The models are presented in substantial detail and are
not treated as ‘black boxes’. All models are illustrated on data concerning stock
markets and exchange rates.

Our book can be used as a textbook for (advanced) undergraduate and grad-
uate students. In fact, this book emerges from our own lecture notes prepared
for courses given at the Econometric Institute, Rotterdam and the Tinbergen
Institute graduate school. It must be stressed, though, that students must have
had a solid training in mathematics and econometrics and should be famil-
iar with at least the basics of time series analysis. We do review some major
concepts in time series analysis in the relevant chapters, but this can hardly
be viewed as a complete introduction to the field. We further believe that our
book is most useful for academics and practitioners who are confronted with
an overwhelmingly large literature and who want to have a first introduction to
the area.

We thank the Econometric Institute at the Erasmus University Rotterdam
and the Tinbergen Institute (Rotterdam branch) for providing a stimulating
research and teaching environment. We strongly believe that ‘learning by
doing’ (that is, learning how to write this book by teaching on the sub-
ject first) helped to shape the quality of this book. We thank all our co-
authors on joint papers, elements of which are used in this book. We would
specifically like to mention André Lucas, whose econometrics skills are very

xv



xvi Preface

impressive. Also, we thank Ashwin Rattan at Cambridge University Press for
his support.

Finally, we hope that the reader enjoys reading this book as much as we
enjoyed writing it.

Rotterdam, August 1999



1 Introduction

This book deals with the empirical analysis of financial time series with an
explicit focus on, first, describing the data in order to obtain insights into their
dynamic patterns and, second, out-of-sample forecasting. We restrict attention
to modelling and forecasting the conditional mean and the conditional variance
of such series – or, in other words, the return and risk of financial assets. As
documented in detail below, financial time series display typical nonlinear char-
acteristics. Important examples of those features are the occasional presence of
(sequences of) aberrant observations and the plausible existence of regimes
within which returns and volatility display different dynamic behaviour. We
therefore choose to consider only nonlinear models in substantial detail, in
contrast to Mills (1999), where linear models are also considered. Financial
theory does not provide many motivations for nonlinear models, but we believe
that the data themselves are quite informative. Through an extensive forecasting
experiment (for a range of daily and weekly data on stock markets and exchange
rates) in chapter 2, we also demonstrate that linear time series models simply
do not yield reliable forecasts. Of course, this does not automatically imply
that nonlinear time series models might, but it is worth a try. As there is a host
of possible nonlinear time series models, we review only what we believe are
currently the most relevant ones and the ones we think are most likely to persist
as practical descriptive and forecasting devices.

1.1 Introduction and outline of the book

Forecasting future returns on assets such as stocks and currencies’ exchange
rates is of obvious interest in empirical finance. For example, if one were able
to forecast tomorrow’s return on the Dow Jones index with some degree of
precision, one could use this information in an investment decision today. Of
course, we are seldom able to generate a very accurate prediction for asset
returns, but hopefully we can perhaps at least forecast, for example, the sign of
tomorrow’s return.

1



2 Nonlinear time series models in empirical finance

The trade-off between return and risk plays a prominent role in many financial
theories and models, such as Modern Portfolio theory and option pricing. Given
that volatility is often regarded as a measure of this risk, one is interested not
only in obtaining accurate forecasts of returns on financial assets, but also in
forecasts of the associated volatility. Much recent evidence shows that volatility
of financial assets is not constant, but rather that relatively volatile periods
alternate with more tranquil ones. Thus, there may be opportunities to obtain
forecasts of this time-varying risk.

Many models that are commonly used in empirical finance to describe returns
and volatility are linear. There are, however, several indications that nonlinear
models may be more appropriate (see section 1.2 for details). In this book, we
therefore focus on the construction of nonlinear time series models that can be
useful for describing and forecasting returns and volatility. While doing this, we
do not aim to treat those models as ‘black boxes’. On the contrary, we provide
ample details of representation and inference issues. Naturally, we will compare
the descriptive models and their implied forecasts with those of linear models,
in order to illustrate their potential relevance.

We focus on forecasting out-of-sample returns and volatility as such and
abstain from incorporating such forecasts in investment strategies. We usually
take (functions of) past returns as explanatory variables for current returns and
volatility. With some degree of market efficiency, one may expect that most
information is included in recent returns. Hence, we do not consider the possi-
bility of explaining returns by variables that measure aspects of the underlying
assets – such as, for example, specific news events and key indicators of eco-
nomic activity. Another reason for restricting the analysis to univariate models
is that we focus mainly on short-term forecasting – that is, not more than a few
days or weeks ahead. Explanatory variables such as dividend yields, term struc-
ture variables and macroeconomic variables have been found mainly useful for
predicting stock returns at longer horizons, ranging from one quarter to several
years (see Kaul, 1996, for an overview of the relevant literature).

Numerous reasons may be evinced for the interest in nonlinear models. For
example, in empirical finance it is by now well understood that financial time
series data display asymmetric behaviour. An example of this behaviour is
that large negative returns appear more frequently than large positive returns.
Indeed, the stock market crash on Monday 19 October 1987 concerned a
return of about −23 per cent on the S&P 500 index, while for most stock
markets we rarely observe positive returns of even 10 per cent or higher.
Another example is that large negative returns are often a prelude to a period
of substantial volatility, while large positive returns are less so. Needless to
say, such asymmetries should be incorporated in a time series model used for
description and out-of-sample forecasting, otherwise one may obtain forecasts
that are always too low or too high. We will call such time series models,
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which allow for an explicit description of asymmetries, nonlinear time series
models.

An important debate in empirical finance concerns the question whether
large negative returns, such as the 1987 stock market crash, are events that are
atypical or naturally implied by an underlying process, which the nonlinear time
series model should capture. It is well known that neglected atypical events
can blur inference in linear time series models and can thus be the culprit
of rather inaccurate forecasts. As nonlinear time series models are typically
designed to accommodate features of the data that cannot be captured by linear
models, one can expect that neglecting such atypical observations will have
even more impact on out-of-sample forecasts. Therefore, in this book we pay
quite considerable attention to take care of such observations while constructing
nonlinear models.

Most descriptive and forecasting models in this book concern univariate
financial time series – that is, we construct separate models for, for example, the
Dow Jones and the FTSE index, ignoring the potential links between these two
important stock markets. A multivariate model for the returns or volatilities of
two or more stock markets jointly while allowing for asymmetries is a possible
next step once univariate models have been considered. In specific sections in
relevant chapters, we will give some attention to multivariate nonlinear models.
It must be stressed, though, that the theory of multivariate nonlinear time series
models has not yet been fully developed, and so we limit our discussion to only
a few specific models.

This book is divided into six chapters. The current chapter and chapter 2 offer
a first glance at some typical features of many financial time series and deal
with some elementary concepts in time series analysis, respectively. Chapter 2
reviews only the key concepts needed for further reading, and the reader should
consult textbooks on time series analysis, such as Hamilton (1994), Fuller
(1996), Brockwell and Davis (1997) and Franses (1998), among others, for
more detailed treatments. The concepts in chapter 2 can be viewed as the
essential tools necessary for understanding the material in subsequent chap-
ters. Readers who already are acquainted with most of the standard tools of
time series analysis can skip this chapter and proceed directly to chapter 3.

Many economic time series display one or more of the following five features:
a trend, seasonality, atypical observations, clusters of outliers and nonlinearity
(see Franses, 1998). In this book, we focus on the last three features, while
considering financial time series. The purpose of section 1.2 is to describe some
of the characteristic features of financial time series, which strongly suggest
the necessity for considering nonlinear time series models instead of linear
models. In particular, we show that (1) large returns (in absolute terms) occur
more frequently than one might expect under the assumption that the data are
normally distributed (which often goes hand-in-hand with the use of linear
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models and which often is assumed in financial theory), (2) such large absolute
returns tend to appear in clusters (indicating the possible presence of time-
varying risk or volatility), (3) large negative returns appear more often than
large positive ones in stock markets, while it may be the other way around for
exchange rates, and (4) volatile periods are often preceded by large negative
returns. The empirical analysis relies only on simple statistical techniques, and
aims merely at highlighting which features of financial time series suggest the
potential usefulness of, and should be incorporated in, a nonlinear time series
model. For returns, features (1) and (3) suggest the usefulness of models that
have different regimes (see also Granger, 1992). Those models will be analysed
in detail in chapter 3 (and to some extent also in chapter 5). Features (2) and
(4) suggest the relevance of models that allow for a description of time-varying
volatility, with possibly different impact of positive and negative past returns.
These models are the subject of chapter 4. A final feature of returns, which
will be discussed at length in section 2.3, is that linear time series models do
not appear to yield accurate out-of-sample forecasts, thus providing a more
pragmatic argument for entertaining nonlinear models.

As running examples throughout this book, we consider daily indexes for
eight major stock markets (including those of New York, Tokyo, London and
Frankfurt), and eight daily exchange rates vis-à-vis the US dollar (includ-
ing the Deutschmark and the British pound). We do not use all data to
illustrate all models and methods, and often we take only a few series for
selected applications. For convenience, we will analyse mainly the daily data
in temporally aggregated form – that is, we mainly consider weekly data.
In our experience, however, similar models can be useful for data sampled
at other frequencies. As a courtesy to the reader who wishes to experiment
with specific models, all data used in this book can be downloaded from
〈http://www.few.eur.nl/few/people/franses〉.

Chapter 3 focuses on nonlinear models for returns that impose a regime-
switching structure. We review models with two or more regimes, models where
the regimes switch abruptly and where they do not and models in which the
switches between the different regimes are determined by specific functions
of past returns or by an unobserved process. We pay attention to the impact
of atypical events, and we show how these events can be incorporated in the
model or in the estimation method, using a selective set of returns to illustrate the
various models. In the last section of chapter 3 (3.7), we touch upon the issue of
multivariate nonlinear models. The main conclusion from the empirical results
in chapter 3 is that nonlinear models for returns may sometimes outperform
linear models (in terms of within-sample fit and out-of-sample forecasting).

In chapter 4, we discuss models for volatility. We limit attention to those
models that consider some form of autoregressive conditional heteroscedasticity
(ARCH), although we briefly discuss the alternative class of stochastic volatility
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models as well. The focus is on the basic ARCH model (which itself can be
viewed as a nonlinear time series model) as was proposed in Engle (1982), and
on testing, estimation, forecasting and the persistence of shocks. Again, we pay
substantial attention to the impact of atypical events on estimated volatility.
We also discuss extensions of the class of ARCH models in order to capture
the asymmetries described in section 1.2. Generally, such extensions amount
to modifying the standard ARCH model to allow for regime-switching effects
in the persistence of past returns on future volatility.

Chapter 5 deals with models that allow the data to determine if there are
different regimes that need different descriptive measures, while the number
of regimes is also indicated by the data themselves. These flexible models are
called ‘artificial neural network models’. In contrast to the prevalent strategy
in the empirical finance literature (which may lead people to believe that these
models are merely a passing fad), we decide, so to say, to ‘open up the black
box’ and to explicitly demonstrate how and why these models can be useful in
practice. Indeed, the empirical applications in this chapter suggest that neural
networks can be quite useful for out-of-sample forecasting and for recognizing a
variety of patterns in the data. We discuss estimation and model selection issues,
and we pay attention to how such neural networks handle atypical observations.

Finally, chapter 6 contains a brief summary and some thoughts and sugges-
tions for further research.

All computations in this book have been performed using GAUSS, version
3.2.35. The code of many of the programs that have been used can be down-
loaded from 〈http://www.few.eur.nl/few/people/franses〉.

In the remainder of this chapter we will turn our focus to some typical features
of financial time series which suggest the potential relevance of nonlinear time
series models.

1.2 Typical features of financial time series

Empirical research has brought forth a considerable number of stylized facts of
high-frequency financial time series. The purpose of this section is to describe
some of these characteristic features. In particular, we show that returns on
financial assets display erratic behaviour, in the sense that large outlying obser-
vations occur with rather high-frequency, that large negative returns occur more
often than large positive ones, that these large returns tend to occur in clusters
and that periods of high volatility are often preceded by large negative returns.
Using simple and easy-to-compute statistical and graphical techniques, we illus-
trate these properties for a number of stock index and exchange rate returns,
sampled at daily and weekly frequencies. The data are described in more detail
below. Throughout this section we emphasize that the above-mentioned stylized
facts seem to imply the necessity of considering nonlinear models to describe
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the observed patterns in such financial time series adequately and to render
sensible out-of-sample forecasts. In chapter 2, we will show more rigorously
that linear models appear not to be useful for out-of-sample forecasting of
returns on financial assets.

Finally, it should be remarked that the maintained hypothesis for high-
frequency financial time series is that (logarithmic) prices of financial assets
display random walk-type behaviour (see Campbell, Lo and MacKinlay, 1997).
Put differently, when linear models are used, asset prices are assumed to conform
to a martingale – that is, the expected value of (the logarithm of) tomorrow’s
price Pt+1, given all relevant information up to and including today, denoted as
�t , should equal today’s value, possibly up to a deterministic growth component
which is denoted as µ, or,

E[lnPt+1|�t ] = lnPt + µ, (1.1)

where E[·] denotes the mathematical expectation operator and ln denotes the
natural logarithmic transformation. In section 2.3 we will examine if (1.1) also
gives the best forecasts when compared with other linear models.

The data
The data that we use to illustrate the typical features of financial time

series consist of eight indexes of major stock markets and eight exchange
rates vis-à-vis the US dollar. To be more precise, we employ the indexes of
the stock markets in Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang
Seng), London (FTSE100), New York, (S&P 500), Paris (CAC40), Singapore
(Singapore All Shares) and Tokyo (Nikkei). The exchange rates are the Aus-
tralian dollar, British pound, Canadian dollar, German Deutschmark, Dutch
guilder, French franc, Japanese yen and Swiss franc, all expressed as a num-
ber of units of the foreign currency per US dollar. The sample period for the
stock indexes runs from 6 January 1986 until 31 December 1997, whereas for
the exchange rates the sample covers the period from 2 January 1980 until
31 December 1997. The original series are sampled at daily frequency. The
sample periods correspond with 3,127 and 4,521 observations for the stock
market indexes and exchange rates, respectively. We often analyse the series
on a weekly basis, in which case we use observations recorded on Wednes-
days. The stock market data have been obtained from Datastream, whereas the
exchange rate data have been obtained from the New York Federal Reserve.

Figures 1.1 and 1.2 offer a first look at the data by showing a selection of the
original price series Pt and the corresponding logarithmic returns measured in
percentage terms, denoted yt and computed as

yt = 100 · (pt − pt−1), (1.2)
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Figure 1.1 Daily observations on the level (upper panel) and returns (lower panel) of
(a) the Frankfurt, (b) the London and (c) the Tokyo stock indexes, from 6 January 1986
until 31 December 1997
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Figure 1.2 Daily observations on the level (upper panel) and returns (lower panel) of
(a) the British pound, (b) the Japanese yen and (c) the Dutch guilder exchange rates
vis-à-vis the US dollar, from 6 January 1986 until 31 December 1997
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where pt = ln(Pt ). Strictly speaking, returns should also take into account
dividends, but for daily data one often uses (1.2). Prices and returns for the
Frankfurt, London and Tokyo indexes are shown in figure 1.1, and prices and
returns for the British pound, Japanese yen and Dutch guilder exchange rates
are shown in figure 1.2 (also for the period 1986–97).

Summary statistics for the stock and exchange rate returns are given in
tables 1.1 and 1.2, respectively, for both daily and weekly sampling frequencies.
These statistics are used in the discussion of the characteristic features of these
series below.

Large returns occur more often than expected
One of the usual assumptions in the (theoretical) finance literature is

that the logarithmic returns yt are normally distributed random variables, with
mean µ and variance σ 2, that is,

yt ∼ N(µ, σ 2). (1.3)

Table 1.1 Summary statistics for stock returns

Stock market Mean Med Min Max Var Skew Kurt

Daily returns
Amsterdam 0.038 0.029 −12.788 11.179 1.279 −0.693 19.795
Frankfurt 0.035 0.026 −13.710 7.288 1.520 −0.946 15.066
Hong Kong 0.057 0.022 −40.542 17.247 2.867 −5.003 119.241
London 0.041 0.027 −13.029 7.597 0.845 −1.590 27.408
New York 0.049 0.038 −22.833 8.709 0.987 −4.299 99.680
Paris 0.026 0.000 −10.138 8.225 1.437 −0.529 10.560
Singapore 0.019 0.000 −9.403 14.313 1.021 −0.247 28.146
Tokyo 0.005 0.000 −16.135 12.430 1.842 −0.213 14.798

Weekly returns
Amsterdam 0.190 0.339 −19.962 7.953 5.853 −1.389 11.929
Frankfurt 0.169 0.354 −18.881 8.250 6.989 −1.060 8.093
Hong Kong 0.283 0.556 −34.969 11.046 13.681 −2.190 18.258
London 0.207 0.305 −17.817 9.822 4.617 −1.478 15.548
New York 0.246 0.400 −16.663 6.505 4.251 −1.370 11.257
Paris 0.128 0.272 −20.941 11.594 8.092 −0.995 9.167
Singapore 0.091 0.110 −27.335 10.510 6.986 −2.168 23.509
Tokyo 0.025 0.261 −10.892 12.139 8.305 −0.398 4.897

Notes: Summary statistics for returns on stock market indexes.
The sample period is 6 January 1986 until 31 December 1997, which equals 3,127 (625)
daily (weekly) observations.
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Table 1.2 Summary statistics for exchange rate returns

Currency Mean Med Min Max Var Skew Kurt

Daily returns
Australian dollar 0.012 −0.012 −5.074 10.554 0.377 1.893 35.076
British pound 0.006 0.000 −4.589 3.843 0.442 0.058 5.932
Canadian dollar 0.006 0.000 −1.864 1.728 0.076 0.101 6.578
Dutch guilder −0.000 0.012 −3.985 3.188 0.464 −0.143 4.971
French franc 0.008 0.016 −3.876 5.875 0.457 0.054 6.638
German Dmark −0.001 0.017 −4.141 3.227 0.475 −0.136 4.921
Japanese yen −0.016 0.006 −5.630 3.366 0.478 −0.541 6.898
Swiss franc −0.003 0.020 −4.408 3.300 0.582 −0.188 4.557

Weekly returns
Australian dollar 0.057 −0.022 −5.526 10.815 1.731 1.454 11.906
British pound 0.033 −0.027 −7.397 8.669 2.385 0.218 6.069
Canadian dollar 0.022 0.016 −2.551 2.300 0.343 0.040 4.093
Dutch guilder 0.007 0.051 −7.673 7.212 2.416 −0.155 4.518
French franc 0.043 0.074 −7.741 6.858 2.383 −0.014 5.006
German Dmark 0.005 0.052 −8.113 7.274 2.483 −0.168 4.545
Japanese yen −0.064 0.059 −6.546 6.582 2.192 −0.419 4.595
Swiss franc −0.008 0.105 −7.969 6.636 2.929 −0.314 3.930

Notes: Summary statistics for exchange rate returns.
The sample period is 2 January 1980 until 31 December 1997, which equals 4,521 (939)
daily (weekly) observations.

The kurtosis of yt is defined as

Ky = E

[
(yt − µ)4
σ 4

]
. (1.4)

For an observed time series y1, . . . , yn, the kurtosis can be estimated
consistently by the sample analogue of (1.4),

K̂y = 1

n

n∑
t=1

(yt − µ̂)4
σ̂ 4

, (1.5)

where µ̂ = 1
n

∑n
t=1 yt and σ̂ 2 = 1

n

∑n
t=1(yt − µ̂)2 are the sample mean and

variance, respectively. The kurtosis for the normal distribution is equal to 3.
One of the features which stands out most prominently from the last columns of
tables 1.1 and 1.2 is that the kurtosis of all series is much larger than this normal
value, especially for the daily series. This reflects the fact that the tails of the
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distributions of these series are fatter than the tails of the normal distribution.
Put differently, large observations occur (much) more often than one might
expect for a normally distributed variable.

This is illustrated further in figures 1.3 and 1.4, which show estimates of the
distributionsf (y)of the daily returns on the Frankfurt and London stock indexes

Figure 1.3 Kernel estimates of the distribution of daily returns on (a) the Frankfurt
and (b) the London stock indexes (solid line) and normal distribution with same mean
and variance (dashed line); each whisker represents one observation
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Figure 1.4 Kernel estimates of the distribution of daily returns on (a) the British
pound and (b) Japanese yen exchange rates vis-à-vis the US dollar (solid line) and
normal distribution with same mean and variance (dashed line); each whisker
represents one observation

and the British pound and Japanese yen exchange rates, respectively. The esti-
mates are obtained with a kernel density estimator,

f̂ (y) = 1

nh

n∑
t=1

K

(
yt − y
h

)
,
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where K(z) is a function which satisfies
∫
K(z) dz = 1 and h is the so-called

bandwidth. UsuallyK(z) is taken to be a unimodal probability density function;
here we use the Gaussian kernel

K(z) = 1√
2π

exp

(
−1

2
z2
)
.

Following Silverman (1986), we set the bandwidth h according to h =
0.9·min(σ̂ , iqr/1.349)n−1/5, where iqr denotes the sample interquartile range –
that is, iqr = y�(3n/4)�−y�(n/4)�, where y(i) is the ith order statistic of the series
yt , t = 1, . . . , n, and �·� denotes the integer part. (See Wand and Jones, 1995,
for discussion of this and other kernel estimators, and various methods of band-
width selection.) In all graphs, a normal distribution with mean and variance
obtained from tables 1.1 and 1.2 for the different series has also been drawn
for ease of comparison. Each whisker on the horizontal axis represents one
observation. Clearly, all distributions are more peaked and have fatter tails than
the corresponding normal distributions. Thus, both very small and very large
observations occur more often compared to a normally distributed variable with
the same first and second moments.

Finally, it is worth noting that the kurtosis of the stock returns is much larger
than the kurtosis of the exchange rate returns, at both the daily and weekly
sampling frequency. This may reflect the fact that central banks can intervene
in the foreign exchange market, while there are virtually no such opportunities
in stock markets.

Large stock market returns are often negative
The skewness of yt is defined as

SKy = E

[
(yt − µ)3
σ 3

]
, (1.6)

and is a measure of the asymmetry of the distribution of yt . The skewness for
an observed time series y1, . . . , yn can be estimated consistently by the sample
analogue of (1.6) as

ŜKy = 1

n

n∑
t=1

(yt − µ̂)3
σ̂ 3

. (1.7)

All symmetric distributions, including the normal distribution, have skewness
equal to zero. From table 1.1 it is seen that the stock return series all have
negative skewness, which implies that the left tail of the distribution is fatter
than the right tail, or that large negative returns tend to occur more often than
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large positive ones. This is visible in the distributions displayed in figure 1.3 as
well, as more whiskers are present in the left tail than in the right tail.

Skewness of the daily exchange rate returns is positive for certain currencies,
while it is negative for others. This makes sense, as it is not a priori clear why
exchange rate returns should have either positive or negative skewness when
measured in the way we do here.

Large returns tend to occur in clusters
From figures 1.1 and 1.2 it appears that relatively volatile periods,

characterized by large price changes – and, hence, large returns – alternate with
more tranquil periods in which prices remain more or less stable and returns
are, consequently, small. In other words, large returns seem to occur in clusters.
This feature of our time series becomes even more apparent when inspecting
scatterplots of the return of day t , denoted yt , against the return of day t − 1.
Figures 1.5–1.7 provide such plots for the daily observed Amsterdam, Frankfurt
and London stock indexes. Similar scatterplots for daily data on the British

Figure 1.5 Scatterplot of the return on the Amsterdam stock index on day t , yt ,
against the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses
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Figure 1.6 Scatterplot of the return on the Frankfurt stock index on day t , yt , against
the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

pound, Canadian dollar and Dutch guilder are shown in figures 1.8–1.10. In
these scatterplots, the observations for the three largest negative and the three
largest positive values of yt are connected with the two preceding and the two
following observations by means of arrows, pointing in the direction in which
the time series evolves. All observations that are starting and/or end-points of
arrows are marked with crosses.

Following the route indicated by the arrows reveals that the return series
frequently travel around the main cloud of observations for an extended period
of time. This holds for stock returns in particular. For example, the arrows in
figure 1.5 really comprise only two stretches of large returns. The first stretch
starts at (yt−1, yt ) = (−1.90,−2.15) which corresponds to 14 and 15 October
1987. On subsequent trading days, the return on the Amsterdam stock index was
equal to −0.58, −12.79 (19 October), −6.10, 8.81, −7.52, 0.22,−9.74, 3.21,
−6.14 and 0.25 per cent on 29 October, which is where the first path ends. The
second one starts with the pair of returns on 6 and 9 November 1987, which are
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Figure 1.7 Scatterplot of the return on the London stock index on day t , yt , against
the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

equal to 0.31 and −7.39, respectively, and were followed by returns of −4.52,
11.18, 8.35, −2.79, 3.89 and −3.99 per cent.

From figures 1.8–1.10 it appears that clustering of large returns occurs less
frequently for exchange rates. The arrows seem to constitute a three-cycle quite
often, where ‘three-cycle’ refers to the situation where the return series leaves
the main cloud of observations owing to a large value of yt , moves to the next
observation (which necessarily is outside of the main cloud as well, as now yt−1
is large) and moves back into the main clutter the next day. Evidently, such three-
cycles are caused by a single large return. Still, some longer stretches of arrows
are present as well.

Large volatility often follows large negative stock market returns
Another property of the stock return series that can be inferred from the

scatterplots presented is that periods of large volatility tend to be triggered by a
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Figure 1.8 Scatterplot of the return on the British pound/US dollar exchange rate on
day t , yt , against the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

large negative return. Further inspection of figures 1.5–1.7 shows that the stock
return series almost invariably leave the central cloud in a southern direction –
that is, today’s return is large and negative. Given that it can take quite some
time before the return series calms down and that scatter observations disappear
into the main cloud again, it seems justified to state that a volatile period often
starts with a large negative return.

The second column of table 1.3 contains estimates of the correlation between
the squared return at day t and the return at day t − 1 for the various stock
indexes. The fact that all these correlations are negative also illustrates that
large volatility often follows upon a negative return.

For the exchange rate returns this property is much less clear-cut (as it should
be, as the return series can be inverted by simply expressing the exchange rate
as the number of US dollars per unit of foreign currency). Figures 1.8–1.10 do
not reveal any preference of the exchange rate return series to leave the main
cloud of observations either to the north or to the south. The estimates of the
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Table 1.3 Correlation between squared returns at day t and returns at day t − 1

Stock market Corr(y2
t , yt−1) Exchange rate Corr(y2

t , yt−1)

Amsterdam −0.049 Australian dollar 0.168
Frankfurt −0.095 British pound 0.074
Hong Kong −0.081 Canadian dollar 0.041
London −0.199 Dutch guilder 0.042
New York −0.108 French franc 0.047
Paris −0.042 German Dmark 0.041
Singapore −0.107 Japanese yen −0.008
Tokyo −0.130 Swiss franc 0.014

Note: Correlation between squared return at day t and return at day t−1 for stock market
indices and exchange rates.

Figure 1.9 Scatterplot of the return on the Canadian dollar/US dollar exchange rate
on day t , yt , against the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses
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Figure 1.10 Scatterplot of the return on the Dutch guilder exchange rate on day t , yt ,
against the return on day t − 1
The observations for the three largest negative and the three largest positive values of yt are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

correlations between y2
t and yt−1, as shown in the final column of table 1.3, are

positive for all exchange rate series except the Japanese yen.
To summarize, the typical features of financial time series documented in this

first chapter seem to require nonlinear models, simply because linear models
would not be able to generate data that have these features. Before we turn to
a discussion of nonlinear models for the returns in chapter 3, we first review
several important time series analysis tools in chapter 2, which are needed for
a better understanding of the material later in the book.



2 Some concepts in time series
analysis

In this chapter we discuss several concepts that are useful for the analysis of
time series with linear models, while some of them can also fruitfully be applied
to nonlinear time series. Examples of these concepts are autocorrelation func-
tions, estimation, diagnostic measures, model selection and forecasting. After
introducing the linear time series models which are of interest in section 2.1,
we discuss these concepts in section 2.2 in the context of an empirical model
specification strategy, to demonstrate how the various elements can be used in
practice. In section 2.3 we demonstrate that linear time series models are less
useful for out-of-sample forecasting of returns on stock indexes and exchange
rates. Subsequent sections elaborate on concepts which are of special interest
when dealing with economic time series – such as unit roots, seasonality and
aberrant observations, first two being included for the sake of completeness.

As will become clear in later chapters, not all statistical tools which are
commonly applied in linear time series analysis are useful in nonlinear time
series analysis. However, as one often starts the analysis of empirical time series
with linear models even if one is ultimately interested in nonlinear features, we
feel that a basic knowledge and understanding of the most important concepts
in linear time series analysis are indispensable. This chapter highlights only the
main aspects. Readers interested in more detailed or advanced expositions may
consult textbooks such as Box and Jenkins (1970); Anderson (1971); Granger
and Newbold (1986); Mills (1990); Hamilton (1994); Fuller (1996); Brockwell
and Davis (1997); and Franses (1998), among many others. Readers who already
are acquainted with most of the standard tools of linear time series analysis can
skip this chapter and proceed directly to chapter 3.

2.1 Preliminaries

We denote the univariate time series of interest as yt , where yt can be a return
on a financial asset. The variable yt is observed for t = 1, 2, . . . , n, while
we assume that initial conditions or pre-sample values y0, y−1, . . . , y1−p are

20
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available whenever necessary. We denote by �t−1 the history or information
set at time t − 1, which contains all available information that can be exploited
for forecasting future values yt , yt+1, yt+2, . . . Where �t−1 does not contain
any information that can be used in a linear forecasting model for yt , the cor-
responding time series is usually called a white noise time series. Throughout
we denote such series as εt . Usually it is required that εt has a constant (uncon-
ditional) mean equal to zero and a constant (unconditional) variance as well.
Hence, a white noise series εt is defined by

E[εt ] = 0, (2.1)

E[ε2
t ] = σ 2, (2.2)

E[εt εs] = 0 ∀ s �= t. (2.3)

The condition that all autocovariances of εt are equal to zero, as stated in (2.3),
is equivalent to the statement that the information set �t−1 does not contain
information to forecast εt with linear models. This will be explained in more
detail below.

Linear time series models
In general, any time series yt can be thought of as being the sum of

two parts: what can and what cannot be predicted using the knowledge from
the past as gathered in �t−1. That is, yt can be decomposed as

yt = E[yt |�t−1] + νt , (2.4)

where E[·|·] denotes the conditional expectation operator and νt is called the
unpredictable part, with E[νt |�t−1] = 0. In this chapter we assume that νt
satisfies the white noise properties (2.1)–(2.3).

A commonly applied model for the predictable component of yt assumes
that it is a linear combination of p of its lagged values, that is,

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt , t = 1, . . . , n, (2.5)

where φ1, . . . , φp are unknown parameters. This simple model, which often
turns out to be very useful for descriptive and forecasting purposes, is called
an autoregressive model of order p [AR(p)] or autoregression of order p. For
many financial returns p is unlikely to be very large (see section 2.3), while
for volatility, p can take large values (see chapter 4). Using the lag operator
L, defined by Lkyt = yt−k for k = 0, 1, 2, . . . , (2.5) can be written in a more
concise form as

φp(L)yt = εt ,
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where

φp(L) = 1 − φ1L− · · · − φpLp, (2.6)

which is called the AR-polynomial in L of order p.
When p in the AR(p) model is large, one may try to approximate the AR-

polynomial by a ratio of two polynomials which together involve a smaller
number of parameters. The resultant model then is

φp(L)yt = θq(L)εt , t = 1, . . . , n, (2.7)

with

φp(L) = 1 − φ1L− · · · − φpLp,
θq(L) = 1 + θ1L+ · · · + θqLq,

where the p in (2.7) is usually much smaller than the p in (2.5). This model is
called an autoregressive moving average model of order (p, q) [ARMA(p, q)].
The ARMA model class was popularized by Box and Jenkins (1970). We
will see in chapter 4 that an ARMA-type model is relevant for modelling
volatility.

Sometimes it is convenient to assume that the predictable part of yt is a
linear combination of the q most recent shocks εt−1, . . . , εt−q . This effectively
reduces the ARMA model (2.7) to a moving average model of order q [MA(q)],
given by

yt = εt + θ1εt−1 + · · · + θqεt−q, t = 1, . . . , n. (2.8)

Covariance stationarity
A white noise series as defined by (2.1)–(2.3) is a special case of a

covariance stationary time series. In general, a given time series yt is said to
be covariance stationary if it has constant mean, variance and autocovariances,
that is,

E[yt ] = µ ∀ t = 1, . . . , n, (2.9)

E[(yt − µ)2] = γ0 ∀ t = 1, . . . , n, (2.10)

E[(yt − µ)(yt−k − µ)] = γk ∀ t = 1, . . . , n and k = 0, 1, 2, . . . ,
(2.11)

where µ, γ0 and γk are finite-valued numbers.
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Whether or not a time series yt generated by an ARMA(p, q) model is covari-
ance stationary is determined by the autoregressive parameters φ1, . . . , φp. For
example, consider the first-order autoregression

yt = φ0 + φ1yt−1 + εt , (2.12)

where we have included an intercept φ0 to describe a nonzero mean of yt . By
taking expectations of both sides of (2.12), that is,

E[yt ] = φ0 + φ1E[yt−1] + E[εt ], (2.13)

and assuming that yt is covariance stationary and using (2.9) and (2.1), it follows
that

µ = φ0

1 − φ1
. (2.14)

Notice that (2.14) makes sense only if |φ1| < 1. For example, when φ1 exceeds
1 and φ0 is a positive number, (2.14) implies that the mean of yt is negative,
whereas (2.12) says that, on average, yt is a multiple of its previous value plus a
positive constant. This apparent contradiction is caused by the fact that in order
to derive (2.14) we assumed yt to be covariance stationary in the first place,
which is not the case when |φ1| ≥ 1, as will become clear below.

Another way to understand the relevance of the condition |φ1| < 1 is to
rewrite (2.12) by recursive substitution as

yt = φt1y0 +
t−1∑
i=0

φi1φ0 +
t−1∑
i=0

φi1εt−i , (2.15)

from which it follows that E[yt ] = φt1y0 +∑t−1
i=0 φ

i
1φ0. When |φ1| < 1, it holds

that

t−1∑
i=0

φi1 = (1 − φt1)/(1 − φ1) <∞ for all t ≥ 0,

whereas φt1 → 0 as t → ∞. It then follows that E[yt ] = φ0/(1 − φ1) for t

sufficiently large. On the other hand, when |φ1| ≥ 1, the summation
∑t−1
i=0 φ

i
1

does not converge when t becomes larger and the above does not hold. For
example, in case φ1 = 1 we obtain E[yt ] = y0 + φ0t , which certainly is not
constant.
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To derive the variance and autocovariances for the AR(1) model it is conve-
nient to rewrite (2.12) as

(yt − µ) = φ1(yt−1 − µ)+ εt , (2.16)

with µ = φ0/(1 − φ1). Taking expectations of the squares of both sides of
(2.16) results in

E[(yt − µ)2] = φ2
1E[(yt−1 − µ)2] + E[ε2

t ] + 2φ1E[(yt−1 − µ)εt ].
(2.17)

From (2.15) lagged one period it follows that yt−1 can be expressed as a function
of the shocks εt−1, εt−2, . . . (and the starting value y0). Combining this with
(2.3) it should be clear that yt−1 and εt are uncorrelated and, hence, the last
term on the right-hand side of (2.17) is equal to zero. Under the assumption
that yt is covariance stationary or, equivalently, |φ1| < 1, we thus have

γ0 = σ 2

1 − φ2
1

. (2.18)

The first-order autocovariance for an AR(1) time series is

γ1 = E[(yt − µ)(yt−1 − µ)]
= φ1E[(yt−1 − µ)(yt−1 − µ)] + E[εt (yt−1 − µ)]
= φ1γ0. (2.19)

For the AR(1) model it holds more generally that for any k > 1

E[(yt − µ)(yt−k − µ)] = φ1E[(yt−1 − µ)(yt−k − µ)], (2.20)

and hence that

γk = φ1γk−1 for k = 1, 2, 3, . . . (2.21)

An AR(1) model with φ1 = 1
In case the parameter φ1 in (2.12) exceeds 1, the time series yt is

explosive, in the sense that yt diverges to ±∞. As this is quite unlikely for
financial returns or volatility, from now on we do not consider such explosive
processes. An interesting case, though, concerns φ1 = 1. In that case, assuming
φ0 = 0 (without loss of generality), (2.15) can be rewritten as

yt = y0 +
t∑
i=1

εi . (2.22)

From this expression it follows that γ0,t ≡ E[y2
t ] = tσ 2 and in general γk,t ≡

E[ytyt−k] = (t − k)σ 2 for all k ≥ 0. The additional index t on the γ s is used
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to highlight the fact that the variance and autocovariances are not constant over
time but rather increase linearly.

The expression in (2.22) also shows that the effects of all past shocks εi, i =
1, . . . , t , on yt are equally large. Equivalently, the effect of the shock εt on yt+k
is the same for k = 0, 1, . . . Therefore, shocks are often called permanent in
this case. This is to be contrasted with stationary time series yt . From (2.15)
it follows that the effect of εt on yt+k, k ≥ 0 becomes smaller as k increases
and eventually dies out as k → ∞. In this case, shocks are called transitory.
The time series in (2.22) is called a ‘random walk’. As noted in chapter 1,
the random walk model as a description of the behaviour of asset prices is an
important hypothesis in empirical finance (see Campbell, Lo and MacKinlay,
1997, chapter 2).

When shocks are permanent, it is common practice to proceed with an ana-
lysis of!1yt ≡ (1 −L)yt = yt − yt−1 – that is, the differenced series instead
of yt . An extended motivation for this practice is given in section 2.4. When
pt denotes the natural logarithm of an asset price Pt – that is, pt = lnPt – the
application of the differencing filter results in pt − pt−1, which approximates
the returns when Pt/Pt−1 is close to 1. When a time series needs to be dif-
ferenced d times – that is, the filter !d1 has to be applied – one says that it is
integrated of order d [I (d)]. When an ARMA model is considered for !d1yt ,
one says that yt is described by an autoregressive integrated moving average
model of order (p, d, q) [ARIMA(p, d, q)].

To provide more insights in the peculiarity of a random walk time series,
consider again (2.22). As E[εt ] = 0, the expected value of yt is y0, which
is rather odd for a time series that wanders around freely. In fact, this means
that the sample mean is not a good estimator for the expected value. Note,
however, that one is always able, given a series of observedyt values, to calculate
ȳ = 1/n

∑n
t=1 yt , but for the random walk this sample mean is not a useful

statistic.

AR(p) models and stationarity
The above results generalize to AR(p) models withp ≥ 1. To see how,

consider the characteristic equation of the AR(1) and AR(p) models, given by

1 − φ1z = 0, (2.23)

and

1 − φ1z− · · · − φpzp = 0, (2.24)

respectively. The solution, or root, of (2.23) is z = φ−1
1 . Hence, the condition

that |φ1| is less than 1 for time series yt generated by an AR(1) model to be
stationary is equivalent to the condition that the root of (2.23) is larger than 1.
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The condition for covariance stationarity of time series generated by an AR(p)
model then simply is that all p solutions of (2.24) are larger than 1 – or, rather,
as the solutions can be complex numbers, that they are outside the unit circle
(see, for example, Fuller, 1996 ). Notice that (2.24) can be rewritten as

(1 − α1z)(1 − α2z) · · · (1 − αpz) = 0 (2.25)

which shows that the stationarity condition is equivalent to the requirement that
all αi, i = 1, . . . , p, are inside the unit circle. When the largest of the αis is
equal to 1, z = 1 is a solution to (2.24). In this case we say that the AR(p)
polynomial has a unit root.

MA models and invertibility
One of the properties of MA models is that time series which are

generated from such models are always covariance stationary. In fact, from
(2.8) it follows directly that E[yt ] = 0 and that the variance of yt equals

γ0 = (1 + θ2
1 + θ2

2 + · · · + θ2
q )σ

2. (2.26)

Furthermore, it can simply be derived that

γk =
{
σ 2∑q−k

i=0 θiθi+k for k = 1, . . . , q,

0 for k > q,
(2.27)

with θ0 ≡ 1.
Another desirable property of time series is that of invertibility. A time series

yt is said to be invertible if it is possible to reconstruct the value of the shock
at time t , εt , given only the current and past observations yt , yt−1, yt−2, . . .

Whether or not a time series yt generated by an ARMA(p, q) model is invertible
is determined by the moving average parameters θ1, . . . , θq .

The fact that time series generated by AR models are always invertible follows
trivially from (2.5), for example. The condition for invertibility of time series
generated by the MA(q) model (2.8) is that the q solutions to the characteristic
equation

1 + θ1z+ · · · + θqzq = 0, (2.28)

are all outside the unit circle. Notice that this is analogous to the stationarity
condition for the AR(p) model. If the invertibility condition is satisfied, the MA
model can be expressed alternatively as an AR(∞) model. For example, for the
MA(1) model yt = εt + θ1εt−1 with |θ1| < 1

εt = yt

(1 + θ1L)
= yt − θ1yt−1 + θ2

1 yt−2 − θ3
1yt−3 + · · · , (2.29)
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from which it is easily seen that yt depends on an infinite number of its own
lagged values.

2.2 Empirical specification strategy

In this section we describe a typical specification strategy for linear time series
models. In general, the various steps in this strategy also hold for nonlinear
models, although at times there are differences in the statistical tools which
should be used. We will indicate where the main differences are expected to
be found across linear and nonlinear models. The modelling sequence usually
involves the following steps:
(1) calculate certain statistics for a time series at hand
(2) compare the values or sizes of these statistics with the theoretical values that

would hold true if a certain model is adequate (or a certain null hypothesis
holds true)

(3) estimate the parameters in the time series model suggested by the results
in step (2)

(4) evaluate the model using diagnostic measures
(5) respecify the model if necessary
(6) use the model for descriptive or forecasting purposes.
The principal advantage of modelling sequentially observed time series data is
that specific models imply specific properties of data that are generated by these
models. By comparing these properties with the corresponding characteristics
of the time series under investigation, one can get an idea of the usefulness of the
model for describing the time series. For example, it follows from (2.27) that a
moving average model of order 1 implies that only the first order autocovariance
for yt differs from zero. Statistical tests can be used to see if this holds for the
estimated autocovariances for an observed time series – and, if yes, one can
start off with an MA(1) model in step (3).

If attention is restricted to linear ARIMA models, the main objective of steps
(1) and (2) in the specification strategy is to determine the appropriate AR and
MA orders p and q. This part of the specification strategy is often called model
identification (see Box and Jenkins, 1970). Note that this is a different concept
than parameter identification, which is often used in simultaneous models and
in several nonlinear time series models below. As an example, in the model yt =
αφ1yt−1 + εt , the parameters α and φ1 are not identified, unless a restriction
on one of them is imposed. Identification of an ARIMA model also includes
determining the appropriate order of differencing d. This topic is discussed in
some detail in section 2.4; here we assume for convenience that d is known to
be equal to 0.

The most relevant statistics that may suggest the appropriate orders of a lin-
ear ARMA type model are contained in the autocorrelation function [ACF]



28 Nonlinear time series models in empirical finance

and partial autocorrelation function [PACF], which are defined more precisely
below. If a time series is most adequately described by an ARMA(p,q) model,
it should in theory obey certain (partial) autocorrelation properties. In practice,
the orders p and q are of course unknown and have to be estimated from the
data. It is hoped that this can be achieved by comparing the values of the esti-
mated (P)ACF [E(P)ACF] with the theoretical values as implied by ARMA(p,q)
models for different p and q. If a reasonable match between the estimated and
theoretical correlations is found for certain ARMA orders, one can select this
model and proceed with estimation of the parameters in step (3). It should
be stressed here, though, that only for simple models are the ACF and PACF
easy to interpret. When the models become more complicated – say, an ARMA
model of order (4,3) – one needs considerable skill and experience to deduce the
correct orders of this model based on estimated autocorrelation functions only.
On the other hand, for many financial returns, memory in the data is expected
not to be very long, and the estimated autocorrelation functions may prove
useful.

The ACF of a time series yt is defined by

ρk = γk/γ0, k = 1, 2, 3, . . . , (2.30)

where γk is the kth order autocovariance of yt defined in (2.11).
Given (2.3), it is clear that for a white noise series, ρk = 0 for all k �= 0.

In section 2.1 it was shown that for the stationary AR(1) model (2.12) with
|φ1| < 1 it holds that γk = φ1γk−1 for k = 1, 2, 3, . . . Hence, the theoretical
first-order autocorrelation ρ1 for an AR(1) model equals

ρ1 = γ1/γ0 = φ1, (2.31)

and, in general,

ρk = φ1ρk−1 = φk1 for k = 1, 2, 3, . . . , (2.32)

with ρ0 = 1. Hence, the ACF of an AR(1) model starts at ρ1 = φ1 and then
decays geometrically towards zero.

As an aside, it is useful to note here that for an AR(1) model with φ1 = 1,
it follows from the analysis just below (2.22) that the kth order autocorrelation
at time t is equal to

ρk,t = t − k
t
, (2.33)

for k = 1, 2, . . . Obviously, as the autocovariances are varying over time, the
autocorrelations are as well. The main point to take from (2.33) is that if we
erroneously assume that the autocorrelations ρk,t are constant and estimate
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common ρks for k = 1, 2, . . . at time n using the observations y1, . . . , yn, we
are most likely to observe that all values of ρ̂k are very close to 1, provided that
the sample size n is large enough.

The ACF is useful for identification of the order of a pure MA model. From
(2.27) it follows that for the MA(q) model the autocorrelations at lags q + i,
with i = 1, 2, . . . are equal to zero. For mixed ARMA models, the theoretical
ACF already becomes quite involved for fairly small values of the orders p and
q. The pattern can also become difficult to distinguish from patterns of pure AR
models or of ARMA models with different values ofp and q. Hence, in practice,
one usually takes a casual glance at the estimated autocorrelation function. If
there is clear-cut evidence that an MA model can be useful, one proceeds with
estimating its parameters – that is, with step (3). Otherwise, one starts off with
an ARMA model with small values of p and q, and uses diagnostic measures
in step (4) to see if the model is in need of modification. For linear time series
models this would mean that, for example, p or q are increased to p + 1 or
q + 1, respectively.

The kth order partial autocorrelation can be interpreted as the correlation
between yt and yt−k after accounting for the correlation which is caused
by intermediate observations yt−1, . . . , yt−k+1. For example, where a time
series is generated by an AR(1) model (2.12), the normal correlation between
yt and yt−2 is equal to ρ2

1 . However, this correlation is caused entirely by
the fact that both yt and yt−2 are correlated with yt−1. After removing this
common component from both yt and yt−2, the remaining or partial cor-
relation is zero. An intuitive way to see this is to notice that there is no
need to add the regressor yt−2 to an AR(1) model, and where one does
so, the corresponding parameter should equal 0. In general, the regressors
yt−(p+i), i = 1, 2, . . . are redundant variables if the series is really gener-
ated by an AR(p) model. Hence, for such a series, the partial autocorrelations
of orders k > p are equal to zero. For invertible MA(q) models, on the other
hand, there is no clear cut-off point but, rather, the partial autocorrelations
slowly decay towards zero. This can be understood from (2.29), which demon-
strates that an invertible MA(q) model has an equivalent AR(∞) representation.
The same holds for mixed ARMA(p,q) processes with both p and q greater
than zero. In sum, the PACF is most useful to identify the order of a pure AR
model.

In practice, the correlation and partial correlation functions have to be esti-
mated from the observed time series. The kth order autocorrelation can be
estimated by means of the sample covariances as

ρ̂k =
1
n

∑n
t=k+1(yt − ȳ)(yt−k − ȳ)

1
n

∑n
t=1(yt − ȳ)2

, (2.34)
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where ȳ is the sample mean of yt , t = 1, . . . , n. An easy way to obtain
estimates of the partial autocorrelations is by estimating AR(k) models

yt − ȳ = ψ(k)1 (yt−1 − ȳ)+ · · · + ψ(k)k (yt−k − ȳ)+ νt , (2.35)

for increasing orders k = 1, 2, . . . The kth order partial autocorrelation is given
by the last coefficient in the estimated AR(k) model, ψ̂(k)k .

In figures 2.1 and 2.2 we give the first 50 autocorrelations for the log prices,
daily returns, absolute returns and squared returns of the Frankfurt and Tokyo
stock indexes and the British pound and Dutch guilder exchange rate series,
respectively. Clearly, the log asset prices have autocorrelations close to unity at
all selected lags and, hence, they seem to mimic the correlation properties of a
random walk process as given in (2.33). It is seen that the autocorrelations of
the return series are very small, even at low lags. Given that the asymptotic vari-
ance of the autocorrelation estimates is roughly equal to 1/

√
n, the appropriate

(two-sided) 5 per cent critical value for evaluating these estimates is equal to
0.035 (= 1.96/

√
3,127) for the stock returns and 0.029 (= 1.96/

√
4,521) for

the exchange rate returns. By contrast, for the absolute and squared returns,
the autocorrelations start off at a moderate level (the first-order autocorrelation
generally ranges between 0.2 and 0.3 for the stock returns and 0.1 and 0.2 for
the exchange rate returns) but remain (significantly) positive for a substantial
number of lags. In addition, the autocorrelation in the absolute returns is gener-
ally somewhat higher than the autocorrelation in the squared returns, especially
for the stock market indices. This illustrates what has become known as the
‘Taylor property’ (see Taylor, 1986, pp. 52–5) – that is, when calculating the
autocorrelations for the series |yt |δ for various values of δ, one almost invariably
finds that the autocorrelations are largest for δ = 1.

The autocorrelations and partial autocorrelations as discussed above are mea-
sures of linear association and predictability. Their usefulness in a specification
procedure for nonlinear models is very limited. For example, one may derive
the autocorrelation function of a nonlinear time series model like

yt = φ1yt−1 + β1εt−1yt−1 + εt , (2.36)

which is a so-called bilinear time series model (see Granger and Andersen,
1978). However, even for this simple example, it already becomes quite difficult
to use (see Li, 1984). Moreover, it is not difficult to construct nonlinear time
series models for which all autocorrelations are equal to zero. An example is
the bilinear model

yt = β2εt−1yt−2 + εt . (2.37)

When only the autocorrelation properties of time series generated by this model
are considered, one might conclude that the series is white noise – and, hence,
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Figure 2.1 First 50 autocorrelations of (a), (b) daily Frankfurt and (c), (d) Tokyo
stock market indexes
Figures (a) and (c) show autocorrelations of the log prices; figures (b) and (d) show
autocorrelations of returns (solid line with circles), absolute returns (dashed line with squares)
and squared returns (dotted line with triangles)

not linearly forecastable. Of course, the series is forecastable using a nonlinear
model. An alternative strategy is to start off with a linear time series model,
based on a rough guess using linear autocorrelation functions, and then, in a
next step, to use diagnostic tests which have power against the alternative model
of interest. In the bilinear model (2.36), for example, one might first estimate
an AR(1) model for yt – that is, yt = κyt−1 + ut – and then investigate if the
regressor ut−1yt−1 adds significantly to the fit. Before we return to this strategy
in subsequent chapters, we first outline the other elements in the specification
procedure for linear models.

Estimation
The parameters in the AR(p) model

yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt , (2.38)
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Figure 2.2 First 50 autocorrelations of (a), (b) daily British pound and (c), (d) French
franc exchange rates vis-à-vis the US dollar
Figures (a) and (c) show autocorrelations of the log exchange rates; figures (b) and (d) show
autocorrelations of returns (solid line with circles), absolute returns (dashed line with squares)
and squared returns (dotted line with triangles)

can be estimated by Ordinary Least Squares (OLS). It can be shown that under
relatively weak assumptions about the properties of the innovations εt (much
weaker than the white noise assumptions (2.1)–(2.3) which we use here), the
OLS estimates of the parameters are consistent and asymptotically normal, and
that standard t-statistics can be used to investigate the significance of φ1 to
φp (see Box and Jenkins, 1970). The mean µ of yt can be estimated from
µ̂ = φ̂0/(1 − φ̂1 − φ̂2 − · · · − φ̂p). Using the parameter estimates, the residual
series ε̂t can be constructed.

Several methods for estimating the parameters of (AR)MA models have been
developed (see Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 1997,
for examples of maximum likelihood and least squares methods). The fact
that there is no unanimously preferred estimation method is mainly caused by
the fact that the lagged εt variables in the MA part are unobserved, and their
realizations have to be estimated jointly with the parameters. The proposed
estimation procedures mainly differ in the way they estimate these unobserved
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shocks. A method often applied is an iterative least squares method. To pro-
vide intuition for this procedure, consider the ARMA(1,1) model when it is
written as

(1 + θ1L)−1yt = φ1(1 + θ1L)−1yt−1 + εt . (2.39)

Denoting zt = (1 + θ1L)
−1yt , (2.39) implies that we can define (assuming

y0 = 0 and n to be odd)

z1 = y1,

z2 = y2 − θ1y1,

z3 = y3 − θ1y2 + θ2
1 y1,

...

zn = yn − θ1yn−1 + · · · + θn−1
1 y1.

For a given value of θ1, one can generate observations zt , and apply OLS to
(2.39) written in terms of zt – that is, zt = φ1zt−1 + εt – to obtain an estimate
φ̂1 of the AR parameter. This results in a residual series ε̂t which, when setting
ε̂1 = 0, can be used to obtain a new estimate for the MA parameter θ by
considering the regression ε̂t − (yt − φ̂1yt−1) = θ1ε̂t−1. This new estimate of
θ1 can be used to construct a new zt series, which can be used to obtain a new
estimate of the AR parameter, and so on. These steps should be iterated until
convergence – that is, until the estimates of the parameters φ1 and θ1 do not
change any more.

Diagnostic testing for residual autocorrelation
Testing the adequacy of an estimated ARMA model in step (4) of the

suggested specification strategy usually involves several elements. It is quite
common to start with examining whether the residual series ε̂t is approximately
white noise, by testing whether its autocovariances – or autocorrelations – are
equal to zero (see (2.3)). If this turns out not to be the case, there is a need
to modify the model by increasing the value of p and/or q. There are three
commonly applied methods to test for residual autocorrelation, all of which
can also be considered (or modified) for nonlinear time series models. The first
method is to look at individual elements of the sample ACF of the residuals,
given by

rk(ε̂) =
∑n
t=k+1 ε̂t ε̂t−k∑n

t=1 ε̂
2
t

, (2.40)

for k = 1, 2, 3, . . . Box and Jenkins (1970) show that, given model adequacy,
the population equivalents of rk(ε̂) are asymptotically uncorrelated and have
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variances approximately equal to n−1. Assuming normality, one may use the
interval (−1.96/

√
n, 1.96/

√
n) to examine if certain residual autocorrelations

are different from zero at the 5 per cent significance level.
A second method amounts to testing for the joint significance of the first m

residual autocorrelations. The test-statistic developed by Ljung and Box (1978),
given by

LB(m) = n(n+ 2)
m∑
k=1

(n− k)−1r2
k (ε̂), (2.41)

can be used for this purpose. Under the null hypothesis of no residual autocor-
relation at lags 1 to m in the residuals from an ARMA(p, q) model, the LB
test has an asymptotic χ2(m− p− q) distribution, provided that m/n is small
andm is moderately large. Simulation studies have shown that this LB test may
not have much power (see, for example, Hall and McAleer, 1989). Despite this
unfortunate property, the test is often used because of its ease of computation.

The third method follows the Lagrange Multiplier (LM) principle (see, for
example, Godfrey, 1979). To test an AR(p) model against an AR(p + r) or an
ARMA(p, r) model, we consider the auxiliary regression

ε̂t = α1yt−1 + · · · + αpyt−p + β1ε̂t−1 + · · · + βr ε̂t−r + νt , (2.42)

where ε̂t are the residuals of the AR(p) model with ε̂t = 0 for t ≤ 0. The
LM test-statistic which tests the significance of the parameters β1, . . . , βr is
calculated as nR2, where R2 is the (uncentred) coefficient of determination
from (2.42). Under the null hypothesis that the AR(p) is an adequate model –
or, equivalently, β1 = · · · = βr = 0 – this LM test has an asymptotic χ2(r)

distribution. Usually, one considers the F-version of this LM test as it has better
size and power properties in small samples.

In case of ARMA(p, q) models, one cannot add the regressor ε̂t−q to the
model as it is already included in the model. For the MA(1) model, for example,
one should then create new variables like

y∗
t = yt + θ̂1y∗

t−1 with y∗
0 = 0,

ε̂∗t = ε̂t + θ̂1ε̂∗t−1 with ε̂∗0 = 0,

and consider the auxiliary regression

ε̂t = α̂1ε̂
∗
t−1 + β1y

∗
t−1 + · · · + βry∗

t−r + νt , (2.43)

to test against an MA(1 + r) or an ARMA(r ,1) model.
Several nonlinear time series models contain linear components, and then

the above three methods may still be useful as a rough-and-ready first check.
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In case one is interested to see if, for example, the variable yt−1εt−1 should
be added, one should however preferably use the LM principle, as it leads to
specifically designed tests.

Diagnostic testing for homoscedasticity of the residuals
Another property of the residuals which should be tested concerns the

constancy of their variance. If this is indeed the case, the residuals are said to be
homoscedastic, while if the variance changes they are called heteroscedastic.

Neglecting heteroscedasticity of the residuals has potentially quite severe
consequences. For example, even though the OLS estimates of the ARMA
parameters are still consistent and asymptotically normal distributed, their
variance–covariance matrix is no longer the usual one. Hence, ordinary
t-statistics cannot be used to assess the significance of individual regressors
in the model. Furthermore, other diagnostic tests, such as tests for nonlinearity
(some of which will be discussed in chapter 3), are affected by heteroscedasticity
as well, in the sense that their usual asymptotic distributions no longer apply. In
particular, neglected heteroscedasticity can easily suggest spurious nonlinear-
ity in the conditional mean. Davidson and MacKinnon (1985) and Wooldridge
(1990, 1991) discuss general principles for constructing heteroscedasticity-
consistent test statistics. Finally, confidence intervals for forecasts, which are
discussed in detail below, can no longer be computed in the usual manner.

Several statistics for testing the null hypothesis of constant residual variance
can be applied. Which test is used depends partly on whether or not one has a
specific alternative in mind – and, if so, which alternative. For example, suppose
the alternative of interest is a change in the unconditional variance at a certain
point in the sample, that is,

σ 2
t =

{
σ 2

1 for t ≤ τ ,
σ 2

2 for t > τ,
(2.44)

for certain 1 < τ < n, where σ 2
t is the variance of the shock at time t . A

test against this alternative can be computed by comparing the variance of the
residuals before and after the hypothesized change point τ . Another alternative
of interest might be to assume that the variance of εt depends on a regressor
xt – for example, σ 2

t = α0 + α1x
2
t . In this case, the null hypothesis of constant

variance can be tested by testing α1 = 0.
Of course, it happens much more often that an obvious alternative to

homoscedasticity is not available – in such cases a general test against an unspec-
ified alternative can be applied. The test-statistic developed by McLeod and Li
(1983) is commonly used for this purpose. This statistic is in fact computed in
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exactly the same way as the LB test (2.41), except that it tests for autocorrelation
in the squared residuals. The test-statistic is given by

McL(m) = n(n+ 2)
m∑
k=1

(n− k)−1r2
k (ε̂

2). (2.45)

When applied to the residuals from an ARMA(p,q) model, the McL test has an
asymptotic χ2(m− p − q) distribution, again provided that m/n is small and
m is moderately large.

It was noted above that in the presence of heteroscedasticity the variance–
covariance matrix of the asymptotic normal distribution of the OLS estimates
of the ARMA parameters is no longer the usual OLS one. As shown by White
(1980), however, the OLS estimates can be used to compute standard errors
which are robust against unspecified heteroscedasticity (see also Hsieh, 1983).
As heteroscedasticity plays quite a prominent role in financial data, we elaborate
on this issue in some more detail.

Consider the AR(1) model without an intercept,

yt = φ1yt−1 + εt , t = 1, 2, . . . , n. (2.46)

The OLS estimate of the AR parameter φ1 is equal to

φ̂1 =
[ n∑
t=1

y2
t−1

]−1[ n∑
t=1

yt−1yt

]

=
[ n∑
t=1

y2
t−1

]−1[ n∑
t=1

yt−1(φ1yt−1 + εt )
]

= φ1 +
[ n∑
t=1

y2
t−1

]−1[ n∑
t=1

yt−1εt

]
, (2.47)

from which it follows that

√
n(φ̂1 − φ1) =

[
1

n

n∑
t=1

y2
t−1

]−1[ 1√
n

n∑
t=1

yt−1εt

]
. (2.48)

If the shocks εt are homoscedastic with E[ε2
t ] = σ 2 for all t , 1

n

∑n
t=1 y

2
t−1 is

equal to γ̂0, the estimate of the variance of yt . Furthermore, it can be shown
that 1√

n

∑n
t=1 yt−1εt converges to a normally distributed random variable with

mean zero and variance equal to E[y2
t−1ε

2
t ] = E[y2

t−1] · E[ε2
t ] = γ0σ

2. It then

follows that
√
n(φ̂1−φ1) is asymptotically normal with mean zero and variance

σ 2γ−1
0 . Hence, in finite samples, the standard error of φ̂1 can be estimated as
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the square root of[
1

n

n∑
t=1

ε̂2
t

][ n∑
t=1

y2
t−1

]−1

.

If, on the other hand, the shocks εt are heteroscedastic with E[ε2
t ] = σ 2

t , it is not
clear what is estimated by 1

n

∑n
t=1 y

2
t−1, while in general it is also the case that

E[y2
t−1ε

2
t ] �= E[y2

t−1] · E[ε2
t ]. Fortunately, it still holds that 1√

n

∑n
t=1 yt−1εt

converges to a normally distributed random variable with mean zero and vari-
ance now given by the limit of 1

n

∑n
t=1 y

2
t−1ε

2
t . Assuming that 1

n

∑n
t=1 y

2
t−1 also

converges to some nonzero number ζ , it then follows that
√
n(φ̂1−φ1) is asymp-

totically normal with mean zero and variance given by the limit of the square of
the right-hand side of (2.48). Hence, in finite samples, the heteroscedasticity-
consistent [HCC] standard error of φ̂1 can be estimated as the square root of[ n∑

t=1

y2
t−1

]−1[ n∑
t=1

ε̂2
t y

2
t−1

][ n∑
t=1

y2
t−1

]−1

. (2.49)

In general, for an AR(p) model, the HCC variance–covariance matrix of the
OLS estimates of the AR parameters φ = (φ1, . . . , φp)

′ is computed as

V (φ̂) =
[ n∑
t=1

xt−1x
′
t−1

]−1[ n∑
t=1

ε̂2
t xt−1x

′
t−1

][ n∑
t=1

xt−1x
′
t−1

]−1

,

(2.50)

where xt−1 = (yt−1, . . . , yt−p)′. The HCC standard errors for φ̂1, . . . , φ̂p can
be obtained as the square roots of the diagonal elements of V (φ̂).

Diagnostic testing for normality of the residuals
A usual assumption for the series εt is that its realizations are indepen-

dent and identically distributed according to a normal distribution with mean 0
and common variance σ 2. The notation for this assumption is εt ∼ NID(0, σ 2).
Notice that this assumption adds Gaussianity to (2.1)–(2.3). Given this assump-
tion, we can use standard tools to evaluate the parameter estimates and their
t-ratios. Importantly, and relevant for the material in this book, if we erroneously
consider a linear time series model while a nonlinear model would have been
more appropriate, the estimated residuals from the linear model often are not
NID. Hence, it can be relevant to test the assumption of NID. For this purpose,
we typically use a χ2(2) normality test which consists of a component for the
skewness and for the kurtosis.



38 Nonlinear time series models in empirical finance

Defining the j th moment of the estimated residuals as

m̂j = 1

n

n∑
t=1

ε̂
j
t , (2.51)

the skewness of ε̂t can be calculated as

ŜKε̂ = m̂3√
m̂3

2

, (2.52)

and the kurtosis as

K̂ε̂ = m̂4

m̂2
2

. (2.53)

As noted already in section 1.2, the normal distribution has skewness equal
to 0 and kurtosis equal to 3. Under the null hypothesis of normality (and
no autocorrelation in ε̂t ), the standardized skewness

√
n/6 · ŜKε̂ and kurtosis√

n/24 · (K̂ε̂−3), are independent and have an asymptoticN(0, 1) distribution
(see Lomnicki, 1961). A joint test for normality is then given by

norm = n

6
ŜK

2
ε̂ + n

24
(K̂ε̂ − 3)2, (2.54)

which has an asymptoticχ2(2)distribution. Rejection of normality may indicate
that there are outlying observations, that the error process is not homoscedastic,
and/or that the data should better be described by a nonlinear time series model.

Model selection by evaluating in-sample fit
In case one has two or more linear (or nonlinear) time series models

that pass relevant diagnostic tests, one may want to investigate which model
yields the best in-sample fit. Unfortunately, the R2 measure is not useful for
linear time series models (see Nelson, 1976; Harvey, 1989), as it is only a
function of the parameter values. For example, theR2 of an AR(1) model simply
equals φ2

1 .
More appropriate model selection criteria are the information criteria put

forward by Akaike (1974) and Schwarz (1978) (which equals that proposed by
Rissanen, 1978, who uses a different derivation). These criteria compare the
in-sample fit, which is measured by the residual variance, against the number
of estimated parameters. Let k denote the total number of parameters in the
ARMA model – that is, k = p + q + 1. The Akaike Information Criterion
(AIC) is computed as

AIC(k) = n ln σ̂ 2 + 2k, (2.55)

where σ̂ 2 = 1/n
∑n
t=1 ε̂

2
t , with ε̂t the residuals from the ARMA model. The

values of p and q that minimize AIC(k) are selected as the appropriate orders
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for the ARMA model. The minimization is done by varying p and q such that
k ∈ {1, . . . , k̄} for a certain upper bound k̄ on the total number of parameters,
which needs to be set in advance. The same rule applies to the Schwarz criterion
(BIC) (originating from Bayesian arguments), which is computed as

BIC(k) = n ln σ̂ 2 + k ln n. (2.56)

Because ln n > 2 for n > 8, the BIC penalizes additional parameters more
heavily than the AIC. Therefore, the model order selected by the BIC is likely
to be smaller than that selected by the AIC. The improvement in fit caused
by increasing the AR and/or MA orders needs to be quite substantial for the
BIC to favour a more elaborate model. In practice, one often finds that the
BIC prefers very parsimonious models, containing only few parameters. This
has implications for the use of these criteria in evaluating nonlinear time series
models, where sometimes quite a large number of parameters is needed to obtain
only a slightly improved fit (see, for example, chapter 5).

Out-of-sample forecasting
The other main purpose of specifying a statistical model for a time

series yt , besides describing certain of its features, is to forecast future values.
Let ŷt+h|t denote a forecast of yt+h made at time t , which has an associated
forecast error or prediction error et+h|t ,

et+h|t = yt+h − ŷt+h|t . (2.57)

Obviously, many different forecasts ŷt+h|t could be used to obtain an estimate
of the future value yt+h. Analogous to the estimation of a time series model,
where the parameters are chosen such that the residual variance is minimized, in
forecasting it is often considered desirable to choose the forecast ŷt+h|t which
minimizes the squared prediction error (SPE)

SPE(h) ≡ E[e2
t+h|t ] = E[(yt+h − ŷt+h|t )2]. (2.58)

It turns out that the forecast that minimizes (2.58) is the conditional expectation
of yt+h at time t , that is,

ŷt+h|t = E[yt+h|�t ] (2.59)

(see Box and Jenkins, 1970).
To illustrate the principles of forecasting from linear ARMA models, consider

first the MA(q) model

yt =
q∑
i=0

θiεt−i , (2.60)
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with θ0 ≡ 1. Using (2.59) and the white noise properties of εt , it follows
that the optimal forecast (‘optimal’ in the squared prediction error sense) is
given by

ŷt+h|t =
{∑q

i=h θiεt+h−i for h = 1, . . . , q,

0 for h > q,
(2.61)

whereas the corresponding forecast error follows from combining (2.60) and
(2.61) as

et+h|t =
{∑h−1

i=0 θiεt+h−i for h = 1, . . . , q,∑q
i=0 θiεt+h−i for h > q,

(2.62)

which can be simplified to εt+h|t = ∑h−1
i=0 θiεt+h−i by defining θi ≡ 0 for

h > q. Notice that we assume θi known, and hence we do not explicitly intro-
duce additional uncertainty in (2.62) by considering θ̂i instead of θi . Clements
and Hendry (1998) give a taxonomy of forecast errors and discuss the relative
importance of the different sources of forecast uncertainty in linear time series
models. Given the assumptions on εt it follows that

E[et+h|t ] = 0, (2.63)

and for the squared prediction error

E[e2
t+h|t ] = σ 2

h−1∑
i=0

θ2
i . (2.64)

Assuming normality, a 95 per cent forecasting interval for yt+h is bounded by

ŷt+h|t − 1.96 · RSPE(h) and ŷt+h|t + 1.96 · RSPE(h),

where RSPE(h) denotes the square root of SPE(h).
Forecasting from AR models (or ARMA models in general) proceeds in a

similar way. In fact, forecasts for different forecast horizons h can be obtained
quite conveniently by using a recursive relationship. For example, for the AR(2)
model

yt = φ1yt−1 + φ2yt−2 + εt , (2.65)

the 1-step-ahead forecast at time t is

ŷt+1|t = φ1yt + φ2yt−1, (2.66)
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again assuming knowledge of the values of the parameters φ1 and φ2. The
2-steps-ahead forecast can be derived as follows

ŷt+2|t = E[yt+2|�t ]
= φ1E[yt+1|�t ] + φ2yt

= φ1ŷt+1|t + φ2yt

= φ1(φ1yt + φ2yt−1)+ φ2yt . (2.67)

The third line of (2.67) shows the relation between the 1- and 2-steps-ahead
forecasts at time t . It is not difficult to show that in general it holds that

ŷt+h|t = φ1ŷt+h−1|t + φ2ŷt+h−2|t , (2.68)

with ŷt+i|t = yt+i for i ≤ 0. Obviously, this recursive relationship can be used
to compute multiple-steps-ahead forecasts quite easily.

To obtain expressions for the forecast error and squared prediction errors
for forecasts made from ARMA(p, q) models, it is convenient to rewrite the
particular model of interest as an MA(∞) model – that is,yt = φp(L)−1θq(L)εt
or

yt = εt + η1εt−1 + η2εt−2 + η3εt−3 + · · · , (2.69)

from which it follows that the h-step-ahead prediction error is given by

et+h|t = εt+h + η1εt+h−1 + · · · + ηh−1εt+1, (2.70)

whereas the squared prediction error becomes

SPE(h) = σ 2
h−1∑
i=0

η2
i , (2.71)

with η0 ≡ 1. For the AR(2) model, for example, it is easy to verify that η1 = φ1
and η2 = φ2

1 + φ2.
As we will demonstrate in chapter 3, for most nonlinear time series models

the expressions for forecast error variances become much more complicated
or even intractable analytically. In that case, we need to rely on simulation
techniques to construct confidence intervals for the forecasts ŷt+h|t .

Model selection by comparing forecasts
Additional to (or instead of) selecting a model based on measures of

the in-sample fit, one may also want to compare the forecasting performance
of two or more alternative models. Usually one then retains m observations
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to evaluate h-steps-ahead forecasts generated from models fitted to the first n
observations. To simplify the exposition, the various forecast evaluation criteria
which are discussed below are formulated in terms of 1-step-ahead forecasts. It
should be remarked in advance that they can also be applied for h-steps-ahead
forecasts with h > 1.

A simple check on the quality of forecasts which are obtained from a model
concerns the percentage of them observations that is in the 95 per cent forecast
confidence intervals. A formal test for this procedure is given in Christoffersen
(1998). Additionally, a binomial test can be used to examine if the forecast
errors are about equally often positive or negative.

Other criteria are the mean squared prediction error (MSPE)

MSPE = 1

m

m∑
j=1

(ŷn+j |n+j−1 − yn+j )2, (2.72)

and the mean absolute prediction error (MAPE)

MAPE = 1

m

m∑
j=1

|ŷn+j |n+j−1 − yn+j |. (2.73)

Also, because returns display rather erratic behaviour and may take sudden
exceptional values, as was demonstrated in chapter 1, it sometimes makes more
sense to consider the median SPE (MedSPE) and median APE (MedAPE).

If one wants to decide whether the SPEs or APEs of two alternative models
A and B are significantly different, a simple procedure is to use the so-called
‘loss differential’

dj = ekn+j |n+j−1,A − ekn+j |n+j−1,B, j = 1, 2, . . . , m,

with en+j |n+j−1,A and en+j |n+j−1,B the forecast errors at time n + j made
by the forecasts from models A and B, respectively, and k equal to 2 and 1 if
the goal is to compare the SPEs and APEs, respectively. One possibility to test
the null hypothesis that there is no qualitative difference between the forecasts
from the two models is to use the sign test statistic S, defined by

S = 2√
m

m∑
j=1

(
I [dj > 0] − 1

2

)
a∼ N(0, 1). (2.74)

Simulation results in Diebold and Mariano (1995) indicate that the S test is very
useful in practice. For small values of m, one needs to use exact critical values
because then the asymptotic N(0, 1) distribution does not hold.
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The statistic S compares only the relative magnitude of the prediction errors
of models A and B. Diebold and Mariano (1995) also develop a statistic which
compares the absolute magnitudes by testing whether the average loss dif-
ferential d̄ = 1

m

∑m
j=1 dj is significantly different from zero. The relevant

test-statistic is given by

DM = d̄√
ω

a∼ N(0, 1), (2.75)

where ω is the asymptotic variance of the average difference d̄. Diebold and
Mariano (1995) suggest estimating ω by an unweighted sum of the autocovari-
ances of dj , denoted γ̂i (d), as

ω̂ =
h−1∑

i=−(h−1)

γ̂i (d), (2.76)

where h is the forecast horizon for which the prediction errors are compared.
The reason for using this estimate of ω can be understood intuitively by noting
that (2.70) implies that h-step-ahead forecast errors are serially correlated up
to order h− 1. Notice that where h = 1, it follows from (2.76) that ω̂ is simply
the variance of dj , γ̂0(d).

Out-of-sample forecasts can also be evaluated by comparing the sign of the
forecasts ŷn+j |n+j−1, after subtracting the mean if this is nonzero, with the
true withheld observations yn+j for j = 1, 2, . . . , m. This can be particularly
relevant for asset returns as investors may be more interested in accurate fore-
casts of the direction in which, for example, the stock market is moving than
in the exact magnitude of the change. For this purpose, consider the so-called
success ratio (SR)

SR = 1

m

m∑
j=1

Ij [yn+j · ŷn+j |n+j−1 > 0]. (2.77)

Notice that SR is simply the fraction of the m forecasts ŷn+j |n+j−1 that have
the same sign as the realizations yn+j – or, put differently, the fraction of times
the sign of yn+j is predicted correctly. To evaluate the performance of the out-
of-sample forecasts on this criterion, we test whether the value of SR differs
significantly from the success ratio that would be obtained where yn+j and
ŷn+j |n+j−1 are independent. A test for this hypothesis is proposed in Pesaran
and Timmermann (1992). Define

P = 1

m

m∑
j=1

Ij [yn+j > 0],



44 Nonlinear time series models in empirical finance

and

P̂ = 1

m

m∑
j=1

Ij [ŷn+j |n+j−1 > 0].

The success rate in case of independence (SRI) of yn+j and ŷn+j |n+j−1 can
be computed as

SRI = P P̂ + (1 − P)(1 − P̂ ), (2.78)

which has variance given by

var(SRI) = 1

m
[(2P̂ − 1)2P(1 − P)+

(2P − 1)2P̂ (1 − P̂ )+ 4

m
PP̂ (1 − P)(1 − P̂ )]. (2.79)

The variance of the success ratio SR in (2.77) is equal to

var(SR) = 1

m
SRI(1 − SRI). (2.80)

The so-called Directional Accuracy (DA) test of Pesaran and Timmermann
(1992) is now calculated as

DA = (SR − SRI)√
var(SR)− var(SRI)

a∼ N(0, 1), (2.81)

where the asymptotic standard normal distribution is obtained under the null
hypothesis that yn+j and ŷn+j |n+j−1 are independently distributed.

2.3 Forecasting returns with linear models

The lack of autocorrelation in stock and exchange rate returns in figures 2.1
and 2.2 suggests that linear association between consecutive observations is
not large. Hence, linear time series models can be expected not to be very
useful for forecasting returns. In this section we illustrate that this indeed is
the case by performing an out-of-sample forecasting experiment for our daily
return series.

In all experiments, the random walk with drift model is the benchmark that is
used to evaluate the forecasting performance of more elaborate linear models.
We investigate the out-of-sample forecasting performance of three alternative
autoregressive models. In the first model the AR orderp is specified according to
the AIC given in (2.55). The preference of the BIC (2.56) for more parsimonious
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models is illustrated by the fact that when it is applied to the stock index and
foreign exchange returns, it always opts forp = 0. As the AR model collapses to
the random walk model in this case, this is not considered any further here. The
second and third models have the AR order fixed at 5 and 10, respectively. The
rationale for considering those specific lag orders is that they correspond to one
and two weeks of daily observations, respectively. Furthermore, we consider
models with a single intercept and models with daily intercepts. These daily
intercepts are included as there is evidence that returns may display a seasonal
pattern within a week (see, for example, French, 1980). The forecasts from
the latter models are compared with a random walk model with a drift that is
allowed to vary over the days of the week.

We examine both short- and long(er)-term forecasting performance, by
focusing on return forecasts 1, 5 and 10 days ahead. The initial estimation
sample is taken to be the first five years of data, from 1 January 1986 until 12
December 1990 – thus leaving 7 years of data for out-of-sample forecasting.
The parameters in the models are re-estimated each day as we move forward in
time. We make use of both expanding and moving samples. That is, in case of
the expanding sample, the models are estimated using the entire history from
January 1986, while in case of the moving sample, only the last 5 years of
data are used. Besides re-estimating the model each time a new observation is
added, we also allow the order selected by the AIC to vary on a day-to-day
basis.

The forecasting performance of the different models is evaluated using a
number of different criteria discussed in the previous section. First, we compute
the MSPE, the MAPE and the MedSPE for the various models. Second, we
directly compare the forecasts of the more elaborate models with the random
walk forecasts by means of the DM-statistic given in (2.75). Third, we evaluate
the ability of the various models to forecast the sign of the returns by computing
the DA-statistic given in (2.81). All statistics are computed on a year-to-year
basis, to see whether the forecastability of returns changes over time.

As the results for the stock index and exchange rate series and for the moving
and expanding samples are qualitatively similar, we present only results for the
forecasts of stock returns based on an expanding estimation sample. Tables 2.1–
2.3 contain information on the relative magnitudes of the MSPE, MAPE and
MedSPE of the different models for the expanding sample method, at forecast
horizons h = 1, 5 and 10 days. To be precise, the tables list the mean rank of
the models (taken over the 8 stock index series), where the rank of a model is
equal to 1 if it attains the lowest value for the relevant criterion, 2 if it attains
the second lowest value, and so on.

It is evident from these tables that the more elaborate linear models do not
improve upon the random walk forecasts. On the contrary, the random walk
forecasts attain the lowest mean rank in general, suggesting that the AR models
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Table 2.1 Average ranks of linear models to forecast stock returns according to
MSPE, 1991–1997

Models with single intercept Models with daily intercepts

Year RW AIC AR(5) AR(10) RW AIC AR(5) AR(10)

h = 1
1991 1.13 3.25 2.31 3.31 1.13 3.13 2.06 3.69
1992 2.00 3.06 2.06 2.88 1.75 2.88 1.69 3.69
1993 2.50 2.38 2.44 2.69 2.50 2.38 2.69 2.44
1994 1.50 2.75 2.06 3.69 1.75 2.75 1.94 3.56
1995 1.75 2.25 2.94 3.06 1.63 2.63 2.56 3.19
1996 1.81 2.94 2.31 2.94 1.69 3.06 2.31 2.94
1997 1.88 2.88 2.31 2.94 1.88 2.94 2.19 3.00
All 1.79 2.79 2.35 3.07 1.76 2.82 2.21 3.21

h = 5
1991 1.63 3.25 1.94 3.19 1.50 3.00 1.94 3.56
1992 1.75 3.44 2.06 2.75 1.63 2.88 1.94 3.56
1993 2.13 2.38 2.69 2.81 2.38 2.25 2.69 2.69
1994 1.50 2.63 2.19 3.69 1.75 2.63 1.94 3.69
1995 1.75 2.13 2.94 3.19 2.00 2.38 2.56 3.06
1996 1.69 2.69 2.44 3.19 1.56 2.94 2.19 3.31
1997 1.88 2.75 2.56 2.81 1.75 2.81 2.31 3.13
All 1.76 2.75 2.40 3.09 1.79 2.70 2.22 3.29

h = 10
1991 2.88 2.38 2.44 2.31 2.50 3.00 2.56 1.94
1992 2.25 2.44 2.81 2.50 2.00 2.63 2.81 2.56
1993 2.50 2.50 2.81 2.19 2.75 2.38 2.31 2.56
1994 2.63 2.00 2.44 2.94 2.50 1.88 2.56 3.06
1995 2.50 2.38 2.31 2.81 2.50 2.75 2.06 2.69
1996 1.94 2.81 2.06 3.19 2.19 2.81 1.94 3.06
1997 2.88 2.88 1.81 2.44 2.75 2.44 2.44 2.38
All 2.51 2.48 2.38 2.63 2.46 2.55 2.38 2.61

Notes: Average ranks of linear models used to forecast stock market returns h days ahead
based on an expanding sample, according to the MSPE criterion (2.72).
RW denotes the random walk with drift, AIC denotes an AR(p) model with the order p
selected by the AIC criterion.

do even worse. Note that this holds for both the models with and without daily
intercepts. As the forecast horizon increases, the performance of the models
becomes comparable, in the sense that the mean ranks are much closer to the
mean rank of the random walk forecasts.
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Table 2.2 Average ranks of linear models to forecast stock returns according to
MAPE, 1991–1997

Models with single intercept Models with daily intercepts

Year RW AIC AR(5) AR(10) RW AIC AR(5) AR(10)

h = 1
1991 1.00 3.00 2.31 3.69 1.25 2.88 2.19 3.69
1992 1.25 3.19 2.44 3.13 1.63 2.50 2.56 3.31
1993 2.25 2.75 2.19 2.81 2.25 2.50 2.44 2.81
1994 1.25 3.13 2.19 3.44 1.13 2.75 2.19 3.94
1995 1.13 2.88 2.69 3.31 1.38 2.75 3.06 2.81
1996 1.19 3.19 2.69 2.94 1.94 3.06 2.31 2.69
1997 2.25 2.75 2.19 2.81 2.13 2.94 2.19 2.75
All 1.47 2.98 2.38 3.16 1.67 2.77 2.42 3.14

h = 5
1991 1.13 3.25 1.94 3.69 1.13 3.13 2.06 3.69
1992 1.13 3.19 2.56 3.13 1.63 2.38 2.69 3.31
1993 2.38 2.50 2.19 2.94 2.50 2.63 2.19 2.69
1994 1.50 3.00 2.06 3.44 1.63 2.63 1.81 3.94
1995 1.50 2.75 2.44 3.31 2.13 2.75 2.31 2.81
1996 1.69 2.94 2.19 3.19 1.94 2.94 2.31 2.81
1997 2.00 2.75 2.19 3.06 1.75 2.56 2.44 3.25
All 1.62 2.91 2.22 3.25 1.81 2.71 2.26 3.21

h = 10
1991 2.75 2.25 2.44 2.56 3.00 2.63 2.81 1.56
1992 2.00 2.56 2.31 3.13 2.25 2.38 2.81 2.56
1993 2.75 2.63 2.44 2.19 2.88 2.63 2.44 2.06
1994 2.38 1.88 2.56 3.19 2.25 2.00 2.44 3.31
1995 2.38 2.63 2.19 2.81 2.00 3.00 2.56 2.44
1996 2.56 2.56 2.19 2.69 2.19 2.94 2.06 2.81
1997 2.63 2.50 1.69 3.19 2.13 2.56 2.44 2.88
All 2.49 2.43 2.26 2.82 2.38 2.59 2.51 2.52

Notes: Average ranks of linear models used to forecast stock market returns h days ahead
based on an expanding sample, according to the MAPE criterion (2.73).
RW denotes the random walk with drift, AIC denotes an AR(p) model with the order p
selected by the AIC criterion.

To test whether the random walk forecasts are significantly different from the
forecasts from the linear models, we compute the DM-statistic (2.75). Tables 2.4
and 2.5 report the outcomes of this pairwise model comparison, based on the
squared and absolute prediction errors, respectively. The various entries indicate
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Table 2.3 Average ranks of linear models to forecast stock returns according to
MedSPE, 1991–1997

Models with single intercept Models with daily intercepts

Year RW AIC AR(5) AR(10) RW AIC AR(5) AR(10)

h = 1
1991 2.00 2.81 2.19 3.00 1.38 2.88 2.94 2.81
1992 2.00 2.75 2.81 2.44 1.88 2.88 2.69 2.56
1993 1.63 2.69 2.56 3.13 1.50 3.38 2.44 2.69
1994 1.75 2.75 2.44 3.06 2.13 2.50 2.44 2.94
1995 1.63 2.88 2.69 2.81 2.13 2.63 2.81 2.44
1996 2.19 2.56 2.81 2.44 2.06 2.94 2.31 2.69
1997 2.38 2.38 2.69 2.56 2.75 2.50 2.44 2.31
All 1.94 2.69 2.60 2.78 1.97 2.81 2.58 2.63

h = 5
1991 2.13 3.00 1.69 3.19 1.88 3.13 1.56 3.44
1992 2.38 2.63 2.56 2.44 2.13 2.50 2.94 2.44
1993 2.00 2.38 3.31 2.31 2.13 2.25 2.44 3.19
1994 2.25 2.38 2.56 2.81 1.88 2.88 2.44 2.81
1995 1.63 3.25 2.44 2.69 2.25 2.38 2.81 2.56
1996 2.44 2.44 1.94 3.19 2.44 2.81 1.69 3.06
1997 3.00 2.50 2.19 2.31 2.63 2.38 2.69 2.31
All 2.26 2.65 2.38 2.71 2.19 2.62 2.37 2.83

h = 10
1991 2.50 2.88 2.19 2.44 3.00 2.50 2.31 2.19
1992 2.75 2.25 2.56 2.44 2.25 2.63 2.81 2.31
1993 3.50 1.50 2.19 2.81 2.38 1.63 2.69 3.31
1994 2.75 2.25 2.44 2.56 2.63 2.50 2.56 2.31
1995 1.75 3.00 2.19 3.06 2.31 2.81 2.44 2.44
1996 2.44 2.56 1.94 3.06 2.44 2.44 2.56 2.56
1997 2.25 2.75 2.44 2.56 2.13 2.50 2.56 2.81
All 2.56 2.46 2.28 2.71 2.45 2.43 2.56 2.56

Notes: Average ranks of linear models used to forecast stock market returns h days
ahead based on an expanding sample, according to the MedSPE criterion.
RW denotes the random walk with drift, AIC denotes an AR(p) model with the order
p selected by the AIC criterion.

the number of series in a particular year (or summed over all 7 years in rows
headed ‘All’) for which the random walk forecasts are better than the forecasts
from the linear model and vice versa, at the 5 per cent significance level. As can
be seen, the forecasts from the different models are not significantly different
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Table 2.4 Forecast comparison of linear models with random walk – stock returns,
squared prediction errors, 1991–1997

Models with single intercept Models with daily intercepts

Year AIC AR(5) AR(10) AIC AR(5) AR(10)

h = 1
1991 0/0 0/0 0/0 2/0 1/0 2/0
1992 1/0 0/0 0/0 0/0 0/0 0/0
1993 1/1 1/2 1/1 1/1 0/1 1/1
1994 2/0 2/0 3/0 2/0 2/0 3/0
1995 1/0 1/0 1/0 1/0 1/0 1/0
1996 1/0 0/0 1/0 1/0 0/0 1/0
1997 0/0 1/0 0/0 0/0 1/0 0/0
All 6/1 5/2 6/1 7/1 5/1 8/1

h = 5
1991 1/0 1/0 0/0 2/0 0/0 1/0
1992 1/0 0/0 1/0 1/0 0/0 1/0
1993 1/0 0/0 1/1 1/0 0/0 1/1
1994 3/0 1/0 3/0 2/0 1/0 3/0
1995 1/0 2/0 2/0 1/1 2/0 2/1
1996 1/0 1/0 0/0 1/0 1/0 0/0
1997 1/0 2/0 0/0 1/0 1/0 1/0
All 9/0 7/0 7/1 9/1 5/0 9/2

h = 10
1991 1/0 0/0 0/0 1/0 0/0 0/0
1992 1/0 0/0 1/1 0/0 0/0 1/1
1993 0/0 0/0 0/0 0/0 0/0 0/0
1994 0/1 0/0 2/0 0/1 1/0 1/0
1995 0/0 0/0 0/0 0/0 0/0 0/0
1996 0/0 0/0 0/0 0/0 0/0 0/0
1997 2/1 0/1 2/0 2/1 1/1 2/0
All 4/2 0/1 5/1 3/2 2/1 4/1

Notes: Comparison of forecast performance of linear models with random walk forecast
of daily stock market returns h days ahead based on an expanding sample. The compar-
ison is based on the DM-statistic (2.75), using squared prediction errors.
The figure preceding (following) the slash denotes the number of series for which the
random walk (linear model) forecasts outperform the linear model (random walk) fore-
casts at the 5 per cent significance level.
AIC denotes an AR(p) model with the order p selected by the AIC criterion.
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Table 2.5 Forecast comparison of linear models with random walk – stock returns,
absolute prediction errors, 1991–1997

Models with single intercept Models with daily intercepts

Year AIC AR(5) AR(10) AIC AR(5) AR(10)

h = 1
1991 1/0 2/0 1/0 2/0 2/0 2/0
1992 3/0 1/0 2/0 3/0 1/0 3/0
1993 1/0 1/0 1/0 2/0 1/0 2/0
1994 3/0 2/0 5/0 2/0 3/0 4/0
1995 4/0 3/0 4/0 2/0 3/0 4/0
1996 1/0 1/0 1/0 0/0 1/0 1/0
1997 0/0 0/0 0/0 0/0 0/0 0/0
All 13/0 10/0 14/0 11/0 11/0 16/0

h = 5
1991 1/0 1/1 1/0 2/0 0/1 1/0
1992 0/0 0/0 0/0 0/0 1/0 0/0
1993 2/0 0/0 3/0 2/0 0/0 2/0
1994 4/0 2/0 3/0 2/0 0/0 3/0
1995 2/0 3/0 3/0 1/0 3/0 1/1
1996 1/0 0/0 1/0 1/0 0/0 1/0
1997 0/0 0/0 0/0 0/0 0/0 0/0
All 10/0 6/1 11/0 8/0 4/1 8/1

h = 10
1991 0/0 0/0 0/0 0/1 0/0 0/0
1992 1/0 1/0 2/1 0/0 1/0 1/1
1993 0/0 0/0 0/0 0/1 0/2 0/1
1994 1/1 0/0 2/1 0/1 0/0 0/1
1995 1/0 1/1 1/0 1/0 1/1 0/0
1996 0/0 1/0 0/0 0/0 1/0 0/0
1997 2/1 0/1 1/0 1/1 0/1 1/0
All 5/2 3/2 6/2 2/4 3/4 2/3

Notes: Comparison of forecast performance of linear models with random walk forecast
of daily stock market returns h days ahead based on an expanding sample. The compar-
ison is based on the DM-statistic (2.75), using absolute prediction errors.
The figure preceding (following) the slash denotes the number of series for which the
random walk (linear model) forecasts outperform the linear model (random walk) fore-
casts at the 5 per cent significance level.
AIC denotes an AR(p) model with the order p selected by the AIC criterion.
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from each other – although the random walk model seems to do particularly
well in 1994.

Finally, we examine the ability of the models to forecast the sign of the stock
returns, relative to the mean, by computing the DA-statistic (2.81). The results
are shown in table 2.6. Here each entry indicates the number of series for which
the model predicts the sign significantly worse/better than a completely random
forecast of the sign of the return. Note that no statistics for the random walk
are given. The reason for this is that forecasts from the random walk model
are all equal to the estimated drift. Hence, the difference between the forecasts
and their mean is always exactly equal to zero or, in other words, the sign of
the forecast relative to its mean is undetermined and the DA-statistic cannot be
computed.

In sum, we can conclude that generally linear models do not yield useful
out-of-sample forecasts. Before we turn our focus on nonlinear models, we
conclude this chapter with a discussion of various other features of economic
and financial time series, some of which are useful for later chapters.

2.4 Unit roots and seasonality

The discussion in section 2.1 shows that the values of the autoregressive param-
eters in ARMA models determine whether or not time series generated from
such a model are covariance stationary or not. Consider again the AR(p) model

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt , (2.82)

or φp(L)yt = εt , with φp(L) = 1 − φ1L − · · · − φpL
p. Recall that the

AR(p) model is nonstationary if its characteristic equation has a solution equal
to unity – or, put differently, a unit root. The presence of a unit root causes
the autocorrelations to be varying over time (see (2.33)) and, hence, invalidates
their use for specification of the appropriate AR order. Another consequence
of nonstationarity of a linear time series is that the effect of shocks on the time
series are permanent (see (2.22)).

Notice that in case of a unit root the AR polynomial φp(L) can be factor-
ized as

φp(L) = φ∗
p−1(L)(1 − L), (2.83)

where φ∗
p−1(L) is a lag-polynomial of order p − 1 which has all roots outside

the unit circle. It then follows that if we apply the (1 − L) filter to yt to obtain
wt = (1 − L)yt , this new variable is described by a (covariance) stationary
AR(p−1) model. Of course, in practice the correct order p is unknown, which
complicates matters slightly. The usual practice is to check if the AR polynomial
in a model for yt contains the component (1 − L) – and, if so, use the variable
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Table 2.6 Performance of linear models in forecasting sign of stock returns,
1991–1997

Models with single intercept Models with daily intercepts

Year AIC AR(5) AR(10) RW AIC AR(5) AR(10)

h = 1
1991 1/0 2/0 0/0 1/0 1/0 1/0 2/0
1992 0/0 0/0 0/0 0/0 1/0 1/0 1/0
1993 1/0 0/0 0/1 1/0 0/0 0/0 0/0
1994 0/0 0/0 1/0 0/0 0/0 1/0 0/0
1995 1/0 1/0 1/0 0/0 1/0 0/0 0/0
1996 1/0 0/0 0/0 1/0 0/0 0/0 0/0
1997 0/0 0/0 0/0 0/0 0/0 1/0 0/1
All 4/0 3/0 2/0 3/0 3/0 4/0 3/1

h = 5
1991 1/0 2/0 0/0 0/0 1/0 0/0 2/0
1992 0/0 0/0 0/0 0/0 0/0 0/0 0/0
1993 1/0 2/0 1/0 1/0 1/0 1/0 0/0
1994 4/0 1/0 1/0 1/0 1/0 1/0 1/0
1995 2/0 1/0 1/0 0/0 0/0 0/0 0/0
1996 2/0 3/0 1/0 2/0 1/0 2/0 0/0
1997 1/0 1/0 0/0 0/0 1/0 0/0 1/0
All 11/0 10/0 4/0 4/0 5/0 4/0 4/0

h = 10
1991 2/0 5/0 0/0 0/0 0/0 1/0 1/0
1992 2/0 5/0 4/0 0/0 0/0 0/0 0/0
1993 3/0 7/0 1/0 1/0 1/0 1/0 0/0
1994 4/0 8/0 2/0 0/0 1/0 1/0 0/0
1995 4/0 8/0 1/0 0/0 1/0 1/0 0/0
1996 4/0 8/0 1/0 2/0 2/0 2/0 1/0
1997 4/0 7/0 1/0 0/0 1/0 0/0 0/0
All 23/0 48/0 10/0 3/0 6/0 6/0 2/0

Notes: Performance of linear models in forecasting the sign of stock market returns h
days ahead based on an expanding sample. The evaluation is based on the DA-statistic
(2.81).
The figure preceding (following) the slash denotes the number of series for which the
no-change (linear model) forecasts outperform the linear model (no-change) forecasts
at the 5 per cent significance level.
AIC denotes an AR(p) model with the order p selected by the AIC criterion. Further
details concerning the methodology are given in section 2.3.
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wt in a next round of model identification. In this section we provide some
details on testing for the presence of unit roots or permanent (or persistent)
shocks. There is of course much more to say about this issue, and the interested
reader should consult, for example, Banerjee et al. (1993); Hatanaka (1996);
and Boswijk (2001), among many others.

Deterministic terms
An important consequence of a unit root in the AR(p) polynomial is

that the regressors for the nonzero mean and trend appear differently in models
with and without unit roots. This can be illustrated for the simple AR(1) model,
where we now consider yt in deviation from a mean and trend, that is,

yt −µ− δt = φ1(yt−1 −µ− δ(t −1))+ εt , t = 1, . . . , n. (2.84)

This can be written as

yt = µ∗ + δ∗t + φ1yt−1 + εt , (2.85)

where µ∗ = (1 − φ1)µ+ φ1δ and δ∗ = (1 − φ1)δ. Defining zt = yt −µ− δt ,
we can solve (2.85) as

zt = (φ1)
t z0 +

t∑
i=1

(φ1)
t−iεi ,

where z0 denotes a starting value as usual.
When |φ1| < 1, the shocks to zt (and hence to yt after correction for a mean

and trend) are transitory, in the sense that the effect of εt on zt+k dies out
when k increases without bound. Writing (2.85) as !1zt = (φ1 − 1)zt−1 +
εt , positive values of zt−1 will lead to a decrease in zt , and negative values
lead to an increase. As positive and negative values of zt correspond with yt
being larger or smaller than its (trending) mean µ + δt , yt displays so-called
mean- (or trend-)reverting behaviour. As a deterministic trend variable t is
included in (2.85), the time series yt is said to be trend-stationary (TS).

When φ1 = 1, (2.85) becomes

yt = δ + yt−1 + εt , (2.86)

where the trend variable is seen to have disappeared. This model concerns a
random walk with drift δ. Recursive substitution results in

yt = y0 + δt +
t∑
i=1

εi . (2.87)

The partial sum time series St =∑t
i=1 εi is called the stochastic trend.
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When εt in (2.84) is replaced by ηt = [φp−1(L)]−1εt , where φp−1(L)

does not contain the component (1 − L), one has an AR(p) model with a
stochastic trend. Hence, when an AR(p) polynomial can be decomposed as
φp−1(L)(1 − L), the time series yt has a stochastic trend. A time series with
a stochastic trend can be made stationary by applying the differencing filter
!1. Therefore, in this case the time series yt is called difference-stationary
(DS).

As noted before, a time series yt that requires the first-differencing filter!1 to
remove the stochastic trend also is called a time series that is integrated of order
1 (I (1)). An I (2) time series needs the !1 filter twice to become stationary.
Intuitively, a time series with a growth rate that fluctuates as a random walk
is an I (2) series. The impact of past shocks can be demonstrated by recursive
substitution of lagged yt in !2

1yt = δ + εt as

yt = y0 + z0t + δt (t + 1)/2 +
t∑
i=1

i∑
j=1

εj , (2.88)

where y0 and z0 are values that depend on pre-sample observations. This result
shows that when δ is positive, an I (2) time series displays explosive growth
because of the t (t + 1)/2 component. Haldrup (1998) gives a comprehensive
survey of the analysis of I (2) time series.

Testing for unit roots
If z = 1 is a solution to the characteristic equation of the AR(p) model,

it holds that

φp(1) = 1 − φ1 − φ2 − · · · − φp = 0. (2.89)

This shows that for an AR(p) time series with a unit root, the sum of the AR
parameters equals 1. To test the empirical validity of the relevant parameter
restriction, it is useful to decompose the AR(p) polynomial φp(L) as

φp(L) = (1 − φ1 − φ2 − · · · − φp)Li + φ∗
p−1(L)(1 − L), (2.90)

which holds for any i ∈ {1, 2, . . . , p}. Setting i = 1, an AR(2) polynomial, for
example, can be written as

1 − φ1L− φ2L
2 = (1 − φ1 − φ2)L+ (1 + φ2L)(1 − L). (2.91)

Hence φ∗
0 and φ∗

1 in (2.90) are 1 and −φ2, respectively. Replacing φ2(L) by
the right-hand side of (2.91), the AR(2) model can thus be written as

φ∗
p−1(L)!1yt = (φ1 + φ2 − 1)yt−1 + εt , (2.92)

with φ∗
p−1(L) = (1 − φ∗

1L). When φ1 + φ2 − 1 equals zero, (2.92) becomes
an AR(1) model for !1yt .
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Based on (2.90), Dickey and Fuller (1979) propose to test for a unit root by
testing the statistical relevance of yt−1 in the auxiliary regression

!1yt = ρyt−1 + α∗
1!1yt−1 + · · · + α∗

p−1!1yt−(p−1) + εt , (2.93)

where α∗
i = −φ∗

i . The null hypothesis is ρ = 0 and the relevant alternative
is ρ < 0, resulting in a one-sided test-statistic. The t-test-statistic for ρ [t (ρ̂)]
commonly is referred to as the Augmented Dickey–Fuller (ADF) test-statistic.
Phillips (1987) derives the nonstandard asymptotic distribution of the ADF
statistic. The distribution is nonstandard because under the null hypothesis of
a unit root, the yt series is nonstationary and standard limit theory does not
apply. The critical values for t (ρ̂) have to be obtained through Monte Carlo
simulation (see, for example, Fuller, 1996, for a tabulation of the appropriate
critical values).

Hall (1994) shows that when the orderp in the AR(p) model for yt is selected
through sequential t-tests on the α∗

p−1 to α∗
1 parameters in the so-called ADF

regression (2.93), the same critical values can be used (see also Ng and Perron,
1995). Furthermore, Said and Dickey (1984) argue that the same is true if
data which are generated from an ARMA model are approximated by an AR
model, provided that the AR order p − 1 in (2.93) is set at a high enough
value. Obviously, for such an ARMA model, the MA component should not be
approximately similar to the AR component because that would lead to (near-)
cancellation of polynomials and hence to great difficulties to test for a unit root
in the AR polynomial (see Schwert, 1989). Finally, Dickey and Pantula (1987)
show that critical values for t (ρ̂) can be used for testing for two unit roots,
provided that one replaces yt for !1yt in (2.93). An excellent survey on unit
root testing is given in Phillips and Xiao (1998).

Comparing (2.86) with (2.85), we see that the parameter µ for the
mean is not identified under the null hypothesis of a unit root, but that
it is identified only under the alternative hypothesis. In general, it appears
best to include a mean and linear trend in the ADF regression, to make
the test independent of nuisance parameters. The ADF regression then
becomes

!1yt = µ∗∗+δ∗∗t+ρyt−1+α∗
1!1yt−1+· · ·+α∗

p−1!1yt−(p−1)+εt .
(2.94)

Under the unit root hypothesis, ρ and δ∗∗ are both equal to zero. Dickey and
Fuller (1981) develop a joint F -test for the hypothesis ρ = δ∗∗ = 0, and in the
case of no trends, for ρ = µ∗∗ = 0. A common practical procedure, however,
is to test ρ = 0 in (2.94) and to consider critical values depending on the type
of deterministic regressors included.
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Testing for stationarity
A test for the null hypothesis of stationarity (with the unit root

hypothesis as the alternative) is developed in Kwiatkowski et al. (KPSS). It
focuses on the estimated partial sum series

Ŝt =
t∑
i=1

êi , (2.95)

where the relevant êt are obtained from an auxiliary regression like

yt = τ̂ + δ̂t + êt . (2.96)

The test-statistic of interest is

η = 1

n2s2(l)

n∑
t=1

Ŝ2
t , (2.97)

where the scaling factor s2(l) is the so-called long-run variance of êt .
Phillips (1987) and Phillips and Perron (1988) propose to estimate this quan-
tity by

ŝ2(l) = 1

n

n∑
t=1

ê2
t + 2

n

l∑
j=1

w(j, l)

n∑
t=j+1

êt êt−j , (2.98)

where the weights w(j, l) can be set equal to

w(j, l) = 1 − j/(l + 1), (2.99)

following Newey and West (1987), although one can also use other weights.
The value of l is usually set at l = n1/2 (see Newey and West, 1994).

The test-statistic for the null hypothesis of stationarity is

η̂ = 1

n2ŝ2(l)

n∑
t=1

Ŝ2
t . (2.100)

The asymptotic distribution of this test-statistic is derived in Kwiatkowski et al.
(1992).

Impulse response function
The two methods for analysing the stationarity properties of time series

outlined in this section so far assume that the data can best be described by a
linear time series model. For some specific nonlinear models, parameter restric-
tions have been derived that correspond with persistence of the shocks. We will
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discuss a few examples in chapter 3. However, for many other nonlinear models,
such expressions do not exist. Simulation techniques should then be useful
to investigate the persistence of shocks. This persistence is usually measured
through the impulse response function (IRF).

Consider again the AR(p) model

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt t = 1, . . . , n. (2.101)

Using recursive substitution we obtain a generalization of (2.15) in which the
current observation yt is expressed in terms of the starting values y0, . . . , y1−p,
and the current and past shocks εt , . . . , ε1, as

yt =
p∑
i=1

φti y1−i +
t−1∑
i=0

ciεt−i , (2.102)

where the sequence c1, . . . , ct−1 is defined from the recursion

ci =
min(i,p)∑
j−1

φj ci−j for i = 1, 2, . . . , (2.103)

with c0 ≡ 1. Note that the coefficient ck defines the effect of the shock εt−k
on the current observation yt – or, equivalently, the effect of the current shock
εt on the future observation yt+k , provided that all intermediate shocks are
held constant. The sequence {ck, k = 0, 1, . . . } is called the impulse response
function. An alternative definition of the IRF, due to Sims (1980), is

IRF(k, δ) = E[yt+k|εt = δ, εt+1 = · · · = εt+k = 0]

− E[yt+k|εt = 0, εt+1 = · · · = εt+k = 0], (2.104)

which measures the effect of a shock δ occurring at time t relative to the situation
where no shock occurs at time t , while setting the shocks in intermediate periods
t + 1, . . . , t + k equal to zero. In linear models, the impulse response (2.104) is
in fact independent of the intermediate shocks εt+1, . . . , εt+k and of the history
or past yt−1, yt−2, . . . , up to the moment when the shock of interest occurs,
and linear in the size of the shock δ. To make the latter more precise, it is
straightforward to see from (2.102) that IRF(k, δ) = ckδ. The time series yt is
said to have transient shocks if the effect of the shock εt on future observations
dies out eventually – or, more formally, if limk→∞ ck = 0. In the AR(p) model,
this is the case if and only if the characteristic equation 1−φ1z−· · ·−φpzp = 0
does not contain a unit root – that is, if the process is stationary. This can most
easily be understood by comparing (2.15) and (2.22) for the AR(1) case. If the
impulse responses do not die out, the process has permanent or persistent shocks,
and we may define limk→∞ ck as the degree of persistence, provided the limit
exists, of course. In subsequent chapters, we will often rely on (modifications
of) the IRF to measure the persistence of shocks for nonlinear models.
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Fractional integration
The concept of fractional integration (FI) within the context of ARIMA

models was independently put forward by Granger and Joyeux (1980) and
Hosking (1981). A fractionally integrated model appears useful to describe a
time series with very long cycles for which it is difficult to estimate its mean.
Typically, the application of such a model concerns inflation rates and returns
on exchange rates and their volatility, see Cheung (1993); Hassler and Wolters
(1995); Baillie, Bollerslev and Mikkelsen (1996); and Bos, Franses and Ooms
(1999), among others.

The basic fractionally integrated time series model is defined as

(1 − L)dyt = εt , 0 < δ < 1, (2.105)

where the differencing operator (1 − L)d can be expanded as

(1 − L)d = 1 − dL− d(1 − d)
2

L2 − d(1 − d)(2 − d)
6

L3

− · · · − d(1 − d)(2 − d) · · · ((j − 1)− d)
j !

Lj − · · · ,
(2.106)

which becomes 1 for d = 0 and (1−L) for d = 1. When 0 < d < 0.5, the time
series is said to be long-memory, and when 0.5 < d < 1, it is nonstationary.
Clearly, (2.106) shows that a fractionally integrated time series model compares
with an AR(∞) model. The reason why this model is called ‘long-memory’ is
that the autocovariances of fractionally integrated time series decay towards
zero at a much slower rate than the autocovariances of stationary AR time
series with d = 0. Estimation routines for general ARFIMA models, which
include additional AR and MA parts in (2.105) are proposed in Sowell (1992)
and Beran (1995).

Seasonality
Next to a trend, a second quite dominant source of variation in many

economic time series is seasonality. This applies mainly to macroeconomic time
series and to data in marketing, but many financial returns series also display
some form of seasonal variation, as we will indicate below. Here we briefly
outline two commonly considered models for seasonal data. The first assumes
that seasonal variation appears in the lag structure. For example, for daily data
this means that yt−5 may be a relevant variable. The second model assumes
seasonal variation in the ARMA parameters. The resultant models are usually
called ‘periodic models’.

A seasonally observed time series yt , t = 1, 2, . . . , n, is observed during
S seasons in a specific time interval, where S may take such values as 12, 52
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or 5. For macroeconomic data, this interval usually concerns a year, while for
financial returns, one may think of minutes in a day, or days in a week. The
data may have a nonzero mean µs for s = 1, 2, . . . , S. Furthermore, Ds,t ,
s = 1, 2, . . . , S denote seasonal dummy variables, where Ds,t takes a value of
1 in season s and a value of 0 in other seasons.

Consider again the AR(p) model for yt

yt = φ0,1D1,t+· · ·+φ0,SDS,t+φ1yt−1+· · ·+φpyt−p+εt , (2.107)

where the intercept φ0,S is allowed to vary to allow the mean to vary across
different seasons. Note thatµs = φ0,s/(1−φ1−· · ·−φp). If seasonal variation
is approximately deterministic, one will find that the estimated means µ̂s �= µ̂,
where µ̂ is the estimated mean from an AR(p) model with a single intercept.
Consider for example the evidence in table 2.7, where we observe that returns
and volatility of the stock index series tend to be higher on Mondays compared
to other days of the week.

Table 2.7 Daily means and variances of stock index returns

Stock market Monday Tuesday Wednesday Thursday Friday St. err.

Daily means
Amsterdam −0.061 0.089 0.145 0.009 0.010 0.045
Frankfurt −0.056 0.017 0.125 0.040 0.048 0.049
Hong Kong −0.142 0.109 0.217 −0.041 0.142 0.068
London −0.083 0.076 0.095 0.038 0.079 0.037
New York −0.029 0.105 0.087 −0.005 0.027 0.040
Paris −0.174 0.088 0.087 0.087 0.041 0.051
Singapore −0.089 0.034 0.063 0.032 0.056 0.040
Tokyo −0.160 0.032 0.070 0.103 −0.020 0.054

Daily variances
Amsterdam 2.013 1.087 1.313 1.082 0.875 0.218
Frankfurt 2.387 1.524 1.347 1.178 1.147 0.225
Hong Kong 5.895 2.214 2.312 2.177 1.651 1.232
London 1.030 0.943 0.730 0.732 0.768 0.172
New York 1.787 0.815 0.666 0.774 0.881 0.391
Paris 2.004 1.213 1.374 1.413 1.127 0.186
Singapore 1.852 0.841 0.785 0.856 0.751 0.213
Tokyo 2.286 1.994 1.780 1.487 1.617 0.273

Notes: Daily means of stock market returns (upper panel) and squared residuals from
regression of returns on daily dummies (lower panel).
The sample period is 6 January 1986 until 31 December 1997, which equals 3,127
observations.
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Loosely speaking, if seasonal variation appears in the lags, (2.107) contains
yt−S , yt−2S , and so on. If the AR parameters in (2.107) are such that the
differencing filter !S is required to transform yt to stationarity, a time series
is said to be seasonally integrated. Writing !S = (1 − LS) and solving the
equation

(1 − zS) = 0 (2.108)

or

exp(Siφ) = 1,

for z or φ, demonstrates that the solutions to (2.108) are equal to 1 and
cos(2πk/S) + i sin(2πk/S) for k = 1, 2, . . . , S − 1. This amounts to S dif-
ferent solutions, which all lie on the unit circle. The first solution 1 is called
the nonseasonal unit root and the S − 1 other solutions are called seasonal unit
roots (see Hylleberg et al., 1990). When a time series has seasonal unit roots,
shocks change the seasonal pattern permanently. There are several tests for
seasonal unit roots, but empirical evidence obtained so far (see Osborn, 1990;
Clare, Psaradakis and Thomas, 1995) indicates that seasonal unit roots are quite
unlikely for stock index and exchange rate returns (and their volatility).

An alternative seasonal model is a periodic autoregression (PAR) (see
Franses, 1996, for extensive discussion). It extends a nonperiodic AR(p) model
by allowing the autoregressive parameters φ1, . . . , φp to vary with the seasons.
In other words, the PAR model assumes that the observations in each of the
seasons can be described by a different model. Such a property may be use-
ful as sometimes one may expect economic agents to have different memory
in different seasons. Hence, correlations between daily returns and volatility
can also display day-of-the-week effects. For example, it is well documented
that returns on Mondays are positively correlated with those on the preced-
ing Fridays, while returns on Tuesdays are negatively correlated with those on
Mondays (see Boudoukh, Richardson and Whitelaw, 1994, among others). It is
precisely in such situations that PAR models may be useful. Applications of PAR
models to stock index returns can be found in Bessembinder and Hertzel (1993)
and Abraham and Ikenberry (1994). Bollerslev and Ghysels (1996) discuss PAR
models for volatility, while Franses and Paap (2000) explore a combination of
periodic models for both returns and volatilities.

To illustrate, table 2.8 contains daily first-order autocorrelations for the
returns and squared returns of our stock index series. It appears that the day-of-
the-week effects in the autocorrelations for the returns themselves are largely
an American phenomenon, in the sense that only for the S&P 500 series it is
evident that indeed returns on Mondays are positively correlated with those on
the preceding Fridays, while returns on Tuesdays are negatively correlated with
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Table 2.8 Periodic autocorrelations of stock returns

Stock market Monday Tuesday Wednesday Thursday Friday

Daily returns
Amsterdam 0.002 0.002 −0.027 −0.003 0.006
Frankfurt 0.018 −0.021 −0.013 −0.003 0.006
Hong Kong 0.033 −0.045 −0.028 0.026 −0.008
London 0.026 0.063 −0.035 −0.015 0.023
New York 0.047 −0.085 0.026 −0.004 0.013
Paris 0.018 0.004 −0.009 −0.016 0.022
Singapore 0.071 −0.001 0.004 0.037 0.044
Tokyo 0.028 −0.024 −0.023 −0.002 0.011

Daily squared returns
Amsterdam 0.004 0.134 0.078 0.412 0.010
Frankfurt 0.004 0.240 0.093 0.097 0.008
Hong Kong 0.001 0.245 0.227 0.109 0.012
London 0.002 0.413 0.637 0.198 0.013
New York 0.116 0.765 0.093 0.059 0.002
Paris 0.016 0.044 0.015 0.156 0.013
Singapore 0.033 0.100 0.061 0.028 0.092
Tokyo 0.015 0.018 0.439 0.050 0.032

Notes: Daily first-order autocorrelations of stock market returns (upper panel) and
squared residuals from regression of returns on daily dummies (lower panel).
The sample period is 6 January 1986 until 31 December 1997, which equals 3,127
observations.

those on Mondays. For the squared returns, on the other hand, the autocorrela-
tions vary quite dramatically during the week for all series.

In principle, the nonlinear models discussed in the following chapters can be
extended to allow for various forms of seasonality. Although examples of such
models exist in the literature, there still is much further research to do on how
one should incorporate seasonality in nonlinear time series models. We will
therefore abstain from a detailed discussion on this matter and, consequently,
consider mainly weekly data for the forthcoming nonlinear models.

2.5 Aberrant observations

As has become clear in chapter 1, quite a number of observations on financial
time series may be viewed as aberrant. A recurring question often concerns
whether an aberrant observation somehow belongs to the time series, in the
sense that it is part of the data-generating process (DGP), or that it should be
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viewed as a measurement error. Aberrant data may also appear in clusters. For
example, returns may sometimes show periods of structurally different volatility
(owing to exogenous events), and one may examine if this corresponds to the
DGP or not. This is particularly relevant for the models to be discussed in chapter
4, as they assume that temporary periods of high or low volatility are part of
the process. Hence, when modelling linear or nonlinear data, it is important to
study the presence of aberrant observations and their effects on modelling and
forecasting. In this section, we therefore review the time series representations
of the so-called additive outlier (AO), innovative outlier (IO) and level shift
(LS).

An additive outlier can be viewed as an observation which is the genuine
data point plus or minus some value. This latter value can be nonzero because
of a recording error or by misinterpreting sudden news flashes, which in turn
can cause returns on stock markets to take unexpectedly large absolute values.
In other words, in the case of an AO, the data point is aberrant because of a
cause outside the intrinsic economic environment that generates the time series
data. Given a time series yt , it is clear that additive outliers cannot be predicted
using the historical information set �t−1.

An additive outlier can be described by

yt = xt + ωI [t = τ ], t = 1, . . . , n, (2.109)

where I [t = τ ] is an indicator variable, taking a value of 1 when t = τ and a
value of zero otherwise. The time seriesxt is the uncontaminated but unobserved
time series, while yt is the observed variable. The size of the outlier is denoted
by ω. Notice that, in practice, the value of τ may be unknown.

Suppose that we observe a time series yt as defined by (2.109) and want
to describe this series by an AR(1) model. To get a quick impression of the
correlation between yt and yt−1 and hence, the value of the autoregressive
parameter φ1 that is to be expected, we might make a scatterplot of yt versus
yt−1. In such a plot, the AO shows up as two irregular data points, corresponding
to the observation pairs (yτ , yτ−1) and (yτ+1, yτ ). An example is shown in
panels (a) and (c) of figure 2.3, where the time series xt is generated according
to an AR(1) model xt = φ1xt−1 + εt , with φ1 = 0.7 and εt ∼ NID(0, σ 2),
σ = 0.1. A single AO of size ω = 5σ occurs at t = τ = 50. When we
apply OLS to estimate the parameters in an AR(1) model for yt , neglecting this
AO, the observation (yτ+1, yτ )will have a downward-biasing effect on φ̂1 (see
Lucas, 1996). Also, AOs yield large values of skewness and kurtosis because
the two observations at time τ and τ + 1 cannot be properly predicted by the
model. Finally, the estimated standard error for the φ̂1 parameter will increase
with increasing ω.

A second important type of outlier is the innovative outlier, where the outlier
now occurs in the noise process. An ARMA(p, q) model including an IO at
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Figure 2.3 Example of the effects of a single AO (panels (a) and (c)) or IO
(panels (b) and (d))
The series xt is generated according to an AR(1) model xt = φ1xt−1 + εt , with φ1 = 0.7 and
εt ∼ NID(0, σ2), σ = 0.1; a single outlier of size 5σ occurs at t = τ = 50; the dashed line in
panels (c) and (d) indicates the AR(1) regression line, yt = φ1yt−1

time τ is

yt = xt + ω θq(L)
φp(L)

I [t = τ ], (2.110)

where φp(L)xt = θq(L)εt . An alternative representation is

φp(L)yt = θq(L)(εt + ωI [t = τ ]), (2.111)
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which clearly shows that an IO is an atypical observation in the noise process.
For illustration, consider the AR(1) model with an IO at time τ , that is

yt = φ1yt−1 + εt + ωI [t = τ ]. (2.112)

This expression shows that for most observations the predicted value of yt is
φ1yt−1. In case the IO is neglected, the optimal 1-step-ahead forecast of yτ is
ŷτ |τ−1 = φ1yτ−1, and the associated forecast error equals eτ |τ−1 = ετ + ω.
This forecast error does not have expectation equal to zero – and, hence, the
predictor for yτ is biased. However, in contrast to the AO model, the predictor
for the next observation yτ+1 has no bias. In a scatterplot of yt versus yt−1, one
would observe only the single aberrant combination (yτ , yτ−1), while all other
combinations lie close to the regression line. As this combination lies above the
bulk of the data, the OLS estimate φ̂1 may show little bias. Panels (b) and (d)
of figure 2.3 show an example, where the series yt is generated according to
(2.112) with φ1 = 0.7 and and εt ∼ NID(0, σ 2), σ = 0.1. A single IO of size
ω = 5σ occurs at t = τ = 50. When an IO is neglected for an AR(1) series,
one will have only a single extraordinarily large estimated residual, owing to
the fact that φ̂1yτ−1 is a biased predictor for yτ .

When φ1 in (2.112) equals 1, it is clear that an IO at time τ can result in
a permanent change in the level of a time series. An alternative description
of such a level shift in case of an AR(p) model, which does not require that
φ1 = 1, is given by the model including a level shift

φp(L)yt = φ0 + ωI [t ≥ τ ] + εt , (2.113)

where the mean of yt shifts from φ0/(1 − φ1 − · · · − φp) in the first part of the
sample to (φ0 + ω)/(1 − φ1 − · · · − φp) in the second part.

There are several methods to test for the presence of additive outliers, inno-
vative outliers and level shifts. A first set of methods consider a search over
all possible dates τ for the presence of some type of aberrant data (see, for
example, Tsay, 1988; Chen and Liu, 1993). These techniques can be viewed as
diagnostic checks for model adequacy. Notice that because of this searching,
which leads to sequences of decision rules based on, for example, the 5 per cent
significance level, the test-statistics may not be distributed as χ2 or standard
normal.

A second method to guard against the influence of aberrant observations is to
use robust estimation methods (see Huber, 1981; Hampel et al., 1986, for general
introductions to such robust estimation methods). Denby and Martin (1979),
Bustos and Yohai (1986) and, more recently, Lucas (1996) discuss how these
methods can be used to estimate the parameters in linear time series models.
Here we illustrate the intuition behind a particular form of such estimation
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techniques, the Generalized M (GM) estimator, in the context of the AR(1)
model

yt = φ1yt−1 + εt , t = 1, . . . , n. (2.114)

A GM estimator of the autoregressive parameter φ1 in (2.114) can be defined
as the solution to the first-order condition

n∑
t=1

(yt − φ1yt−1)yt−1 · wr(rt ) = 0, (2.115)

where rt denotes the standardized residual, rt ≡ (yt −φ1yt−1)/(σεwy(yt−1)),
with σε a measure of scale of the residuals εt ≡ yt −φ1yt−1 andwz(·) a weight
function that is bounded between 0 and 1. From (2.115) it can be seen that the
GM estimator is a type of weighted least squares estimator, with the weight for
the tth observation given by the value of wr(·). As mentioned above, an AO at
t = τ shows up as an aberrant value of yτ and/or (yτ+1 − φ1yτ )/σε, whereas
the latter can also be caused by an AO at time τ + 1 of course. The functions
wy(·) and wr(·) should be chosen such that the τ + 1st observation receives
a relatively small weight if either the regressor yτ or the standardized residual
(yτ+1 − φ1yτ )/σε becomes large, such that the outlier does not influence the
estimates of φ1 and σε.

The weight function wr(rt ) usually is specified in terms of a function ψ(rt )
as wr(rt ) = ψ(rt )/rt for rt �= 0 and wr(0) = 1. Common choices for the ψ(·)
function are the Huber and Tukey bisquare functions. The Huber ψ function is
given by

ψ(rt ) =


−c if rt ≤ −c,
rt if −c < rt ≤ c,
c if rt > c,

(2.116)

or ψ(r) = med(−c, c, r), where med denotes the median and c > 0. The
tuning constant c determines the robustness and efficiency of the resulting esti-
mator. Because these properties are decreasing and increasing functions of c,
respectively, the tuning constant should be chosen such that the two are bal-
anced. Usually c is taken equal to 1.345 to produce an estimator that has an
efficiency of 95 per cent compared to the OLS estimator if εt is normally dis-
tributed. The weights wr(rt ) implied by the Huber function have the attractive
property that wr(rt ) = 1 if −c ≤ rt < c. Only observations for which the
standardized residual is outside this region receive less weight. A disadvantage
is that these weights decline to zero only very slowly. Subjective judgement is
thus required to decide whether a weight is small or not.
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The Tukey bisquare function is given by

ψ(rt ) =
{
rt (1 − (rt /c)2)2 if |rt | ≤ c,
0 if |rt | > c.

(2.117)

The tuning constant c again determines the robustness and the efficiency of the
resultant estimator. Usually c is set equal to 4.685, again to achieve 95 per cent
efficiency for normally distributed εt . The Tukey function might be considered
as the mirror image of the Huber function, in the sense that downweighting
occurs for all nonzero values of rt , but the resulting weights decline to 0 quite
rapidly.

A third possibility is the polynomial ψ function as proposed in Lucas, van
Dijk and Kloek (1996), given by

ψ(rt ) =


rt if |rt | ≤ c1,

sgn(rt )g(|rt |) if c1 < |rt | ≤ c2,

0 if |rt | > c2,

(2.118)

or more compactly,

ψ(rt ) = rt I [|rt | ≤ c1] + I [|rt | > c1]I [|rt | ≤ c2]sgn(rt )g(|rt |),
(2.119)

where c1 and c2 are tuning constants, sgn is the signum function and g(|rt |) is
a fifth-order polynomial such that ψ(rt ) is twice continuously differentiable.
This ψ function combines the attractive properties of the Huber and Tukey ψ
functions. Observations receive a weight wr(rt ) = ψ(rt )/rt equal to 1 if their
standardized residuals are within (−c1, c1) and a weight equal to zero if the
residuals are larger than c2 in absolute value. The polynomial g(|rt |) is such that
partial weighting occurs in between. The tuning constants c1 and c2 are taken
to be the square roots of the 0.99 and 0.999 quantiles of the χ2(1) distribution –
that is, c1 = 2.576 and c2 = 3.291.

The weights implied by the three ψ functions discussed above are shown in
figure 2.4, which clearly demonstrates the differences and similarities between
the different functions.

The weight function wx(·) for the regressor is commonly specified as

wx(yt−1) = ψ(d(yt−1)
α)/d(yt−1)

α , (2.120)

where ψ(·) is again given by (2.118), d(yt−1) is the Mahalanobis distance of
yt−1 – that is, d(yt−1) = |yt−1 − my |/σy , with my and σy measures of loca-
tion and scale of yt−1, respectively. These measures can be estimated robustly
by the median my = med(yt−1) and the median absolute deviation (MAD)
σy = 1.483 ·med|yt−1 −my |, respectively. The constant 1.483 is used to make
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Figure 2.4 Weight functions wr(rt ) as implied by the polynomial ψ function given in
(2.118), with c1 = 2.576 and c2 = 3.291 (solid line), the Huber function given in
(2.116) with c = 1.345 (long dashed line) and the Tukey function given in (2.117) with
c = 4.685 (short dashed line)

the MAD a consistent estimator of the standard deviation where yt is normally
distributed. Finally, following Simpson, Ruppert and Carroll (1992), the con-
stant α in (2.120) usually is set equal to 2 to obtain robustness of standard
errors.

Notice that the weights wr(·) depend on the unknown parameter φ1 and
therefore are not fixed a priori but are determined endogenously. Consequently,
the first-order condition (2.115) is nonlinear in φ1 and σε, and estimation of
these parameters requires an iterative procedure. In fact, interpretingwr(·) as a
function of (φ1, σε),wr(φ1, σε), and denoting the estimates of φ1 and σε at the
nth iteration by φ̂(n)1 and σ̂ (n)ε , respectively, it follows from (2.115) that φ̂(n+1)

1
might be computed as the weighted least squares estimate

φ̂
(n+1)
1 =

∑n
t=1wr(φ̂

(n)
1 , σ̂

(n)
ε )yt−1yt∑n

t=1wr(φ̂
(n)
1 , σ̂

(n)
ε )y2

t−1

, (2.121)

where the estimate ofσε can be updated at each iteration using a robust estimator
of scale, such as the median absolute deviation (MAD) given by σε = 1.483 ·
med|εt −med(εt )|. Following the estimation, the weightswr(·) assigned to the
observations in the GM procedure can be used to detect aberrant data points.

When a time series seems to have many aberrant data, it is possible that a
univariate linear time series model such as an ARMA model does not yield
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a good description of the data. In fact, approximating a nonlinear time series
model with a linear model may result in many large residuals. Also, outliers
may reflect the fact that a multivariate time series model or an AR model with
exogenous variables may have been more appropriate.

In the following chapters we will pay considerable attention to the inter-
play between outliers, nonlinearity and temporarily volatile periods. Nonlinear
models often assume the presence of two or more regimes. When a regime con-
cerns only a few observations, one can be tempted to consider these as outliers.
However, it may well be that this regime concerns the most important obser-
vations one would want to forecast. On the other hand, one would not want
a few genuine outliers to suggest more volatility or a separate regime. Hence,
when specifying and estimating the nonlinear models in subsequent chapters,
one should somehow take the potential presence of outliers into consideration.



3 Regime-switching models for
returns

In this chapter we turn to one of the main subjects of this book, nonlinear
models for returns. The problem one immediately faces when considering the
use of nonlinear time series models is the vast, if not unlimited, number of
possible models. Sometimes economic theory is helpful in choosing a particular
model, but more often it is not. Nonlinearity in stock prices and exchange rates
has often been detected by various statistical tests, (see Hinich and Patterson,
1985; Scheinkmann and LeBaron, 1989; Hsieh, 1989, 1991; Crato and de Lima,
1994; Brooks, 1996, among others). However, only few attempts have been
made to subsequently model the nonlinearity explicitly. In this book we restrict
ourselves to models that have a clear interpretation and are plausible from an
economic perspective. For previous and more general surveys on nonlinear time
series models, the interested reader is referred to Tong (1990) and Granger and
Teräsvirta (1993).

A natural approach to modelling economic time series with nonlinear models
seems to be to define different states of the world or regimes, and to allow for
the possibility that the dynamic behaviour of economic variables depends on
the regime that occurs at any given point in time (see Priestley, 1980, 1988).
By ‘state-dependent dynamic behaviour’ of a time series it is meant that certain
properties of the time series, such as its mean, variance and/or autocorrela-
tion, are different in different regimes. An example of such state-dependent
or regime-switching behaviour was encountered in section 2.4, where it was
shown that the means and autocorrelations of returns and squared returns on
stock market indexes vary during the week. Hence, we can say that each day
of the week constitutes a different regime. The interpretation of these seasonal
effects as regime-switching behaviour might seem somewhat odd, for in this
case the regime process is deterministic, in the sense that the regime that occurs
at any given in point in time is known with certainty in advance. In contrast, in
this chapter we focus on situations in which the regime process is stochastic.

The following examples illustrate that stochastic regime-switching is relevant
for financial time series. First, LeBaron (1992) shows that the autocorrelations

69
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of stock returns are related to the level of volatility of these returns. In particular,
autocorrelations tend to be larger during periods of low volatility and smaller
during periods of high volatility. The periods of low and high volatility can be
interpreted as distinct regimes – or, put differently, the level of volatility can be
regarded as the regime-determining process. Of course, the level of volatility in
the future is not known with certainty. The best one can do is to make a sensible
forecast of this level and, hence, of the regime that will occur in the future. As
another example, Kräger and Kugler (1993) argue that exchange rates might
show regime-switching behaviour, in particular under a system of managed
floating such as occurred in the 1980s when it was attempted to stabilize the
exchange rate of the US dollar. Intuitively, monetary authorities may intervene in
the foreign exchange market as a reaction to large depreciations or appreciations
of a currency, which lead to different behaviour for moderate and large changes
of the exchange rate. Similar behaviour may be observed for an exchange rate
which is constrained to lie within a prescribed band or target zone, as was the
case in the Exchange Rate Mechanism (ERM) in Europe (see Chappell et al.,
1996). In this case, the level of the exchange rate rather than the change in the
exchange rate determines the regimes.

In recent years several time series models have been proposed which for-
malize the idea of the existence of different regimes generated by a stochastic
process. In this chapter we discuss (some of) these models and explore their use-
fulness for modelling (absolute) returns of financial assets. Nonlinear models
for volatility will be discussed in chapter 4. We restrict our attention to models
that assume that in each of the regimes the dynamic behaviour of the time series
can be described adequately by a linear AR model. In other words, the time
series is modelled with an AR model, where the autoregressive parameters are
allowed to depend on the regime or state. Generalizations of the MA model
to a regime-switching context have also been considered (see Wecker, 1981;
de Gooijer, 1998), but we abstain from discussing these models here.

The available regime-switching models differ in the way the regime evolves
over time. Roughly speaking, two main classes of models can be distinguished.
The models in the first class assume that the regimes can be characterized (or
determined) by an observable variable. Consequently, the regimes that have
occurred in the past and present are known with certainty (although they have
to be found by statistical techniques, of course). The models in the second
class assume that the regime cannot actually be observed but is determined
by an underlying unobservable stochastic process. This implies that one can
never be certain that a particular regime has occurred at a particular point
in time, but can only assign probabilities to the occurrence of the different
regimes.

In the following sections, we discuss representations of the different regime-
switching models, interpretation of the model parameters, estimation, testing
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for the presence of regime-switching effects, evaluation of estimated regime-
switching models, out-of-sample forecasting, measures of the persistence of
shocks and the effects of outliers on inference in regime-switching models. As
in chapter 2, we emphasize how these different elements can be used in an
empirical specification strategy.

3.1 Representation

In this section we introduce the two classes of regime-switching models and
discuss their basic properties. To simplify the exposition, we initially focus
attention on models which involve only two regimes. Some remarks on extend-
ing the models to allow for multiple regimes are made below.

3.1.1 Regimes determined by observable variables

The most prominent member of the first class of models, which assume
that the regime that occurs at time t can be determined by an observable vari-
able qt , is the Threshold Autoregressive (TAR) model, initially proposed by
Tong (1978) and Tong and Lim (1980), and discussed extensively in Tong
(1990). The TAR model assumes that the regime is determined by the value
of qt relative to a threshold value, which we denote as c. A special case arises
when the threshold variable qt is taken to be a lagged value of the time series
itself – that is, qt = yt−d for a certain integer d > 0. As in this case the
regime is determined by the time series itself, the resulting model is called a
Self-Exciting TAR (SETAR) model.

For example, where d = 1 and an AR(1) model is assumed in both regimes,
a 2-regime SETAR model is given by

yt =
{
φ0,1 + φ1,1 yt−1 + εt if yt−1 ≤ c,
φ0,2 + φ1,2 yt−1 + εt if yt−1 > c,

(3.1)

where for the moment the εt are assumed to be an i.i.d. white noise sequence
conditional upon the history of the time series, which is denoted �t−1 =
{yt−1, yt−2, . . . , y1−(p−1), y1−p} as before – that is, E[εt |�t−1] = 0 and
E[ε2

t |�t−1] = σ 2. An alternative way to write the SETAR model (3.1) is

yt = (φ0,1 + φ1,1 yt−1)(1 − I [yt−1 > c])

+ (φ0,2 + φ1,2 yt−1)I [yt−1 > c] + εt , (3.2)

where I [A] is an indicator function with I [A] = 1 if the event A occurs and
I [A] = 0 otherwise.
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The SETAR model assumes that the border between the two regimes is given
by a specific value of the threshold variable yt−1. A more gradual transition
between the different regimes can be obtained by replacing the indicator func-
tion I [yt−1 > c] in (3.2) by a continuous functionG(yt−1; γ, c), which changes
smoothly from 0 to 1 as yt−1 increases. The resultant model is called a Smooth
Transition AR (STAR) model and is given by

yt = (φ0,1 + φ1,1 yt−1)(1 −G(yt−1; γ, c))
+ (φ0,2 + φ1,2 yt−1)G(yt−1; γ, c)+ εt (3.3)

(see Teräsvirta, 1994, among others). A popular choice for the so-called tran-
sition function G(yt−1; γ, c) is the logistic function

G(yt−1; γ, c) = 1

1 + exp(−γ [yt−1 − c]) , (3.4)

and the resultant model is then called a Logistic STAR (LSTAR) model. The
parameter c in (3.4) can be interpreted as the threshold between the two regimes
corresponding toG(yt−1; γ, c) = 0 andG(yt−1; γ, c) = 1, in the sense that the
logistic function changes monotonically from 0 to 1 as yt−1 increases, while
G(c; γ, c) = 0.5. The parameter γ determines the smoothness of the change
in the value of the logistic function, and thus the transition from one regime to
the other.

Figure 3.1 shows some examples of the logistic function for various differ-
ent values of the smoothness parameter γ . From this graph it is seen that as γ
becomes very large, the change of G(yt−1; γ, c) from 0 to 1 becomes almost

Figure 3.1 Examples of the logistic function G(yt−1; γ, c) as given in (3.4) for
various values of the smoothness parameter γ and threshold c = 0
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instantaneous atyt−1 = c and, consequently, the logistic functionG(yt−1; γ, c)
approaches the indicator function I [yt−1 > c]. Hence the SETAR model
(3.2) can be approximated arbitrarily well by the LSTAR model (3.3) with
(3.4). When γ → 0, the logistic function becomes equal to a constant (equal
to 0.5) and when γ = 0, the STAR model reduces to a linear model.

The idea of smooth transition between regimes dates back to Bacon and Watts
(1971). It was introduced into the nonlinear time series literature by Chan and
Tong (1986) and popularized by Granger and Teräsvirta (1993) and Teräsvirta
(1994). A comprehensive review of the STAR model, and extensions that allow
for exogenous variables as regressors as well, is given in Teräsvirta (1998).

To see that the SETAR and STAR models are indeed capable of captur-
ing regime-switching behaviour, notice that in the SETAR model (3.1), the
first-order autocorrelation of yt is either φ1,1 or φ1,2, depending on whether
yt−1 ≤ c or yt−1 > c, respectively. In the STAR model (3.3), the first-order
autocorrelation changes gradually from φ1,1 to φ1,2 as yt−1 increases. In fact,
quite a large variety of dynamic patterns can be generated by a simple model
such as the SETAR model in (3.1) by choosing the parameters appropriately.
To give some impression of the possibilities, figure 3.2 shows four realizations

Figure 3.2 Four series generated from the SETAR model (3.1), with φ1,1 = −0.5,
φ1,2 = 0.5, c = 0 and εt ∼ NID(0, 0.252)
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Figure 3.3 Scatterplots of four series generated from the SETAR model (3.1), with
φ1,1 = −0.5, φ1,2 = 0.5, c = 0 and εt ∼ NID(0, 0.252). The solid lines are the
skeletons of the model, the dashed line is the 45-degree line

of n = 200 observations from (3.1) with φ1,1 = −0.5, φ1,2 = 0.5, c = 0
and εt ∼ NID(0, 0.252). All series are started with y0 = 0, while the same
values for the shocks εt , t = 1, . . . , n, are used to generate subsequent obser-
vations. The intercepts φ0,1 and φ0,2 are varied to generate different behaviour.
Figure 3.3 shows the corresponding scatterplots of yt versus yt−1.

Before we discuss the properties of the various time series that are shown in
these figures, we must first introduce some terminology associated with non-
linear time series models in general. In the scatterplots in figure 3.3, the deter-
ministic part of the model F(yt−1) ≡ (φ0,1 + φ1,1 yt−1)(1 − I [yt−1 > c])+
(φ0,2 +φ1,2 yt−1)I [yt−1 > c] is also shown. Notice that F(yt−1) is in fact the
conditional expectation of yt at time t − 1. This deterministic and predictable
part of the model is commonly referred to as the skeleton of the model, a concept
introduced by Chan and Tong (1985).

The model is said to have an equilibrium at y∗ if y∗ is a fixed point of the
skeleton – that is, if y∗ = F(y∗). The equilibrium is called stable if the time
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series converges to y∗ where the noise εt is turned off, which simply means that
all εt are set equal to zero. A (stationary) linear time series always has a unique
and stable equilibrium y∗ which is equal to its mean. As will be seen shortly, a
nonlinear time series can have a single (stable or unstable) equilibrium, multiple
equilibria or no equilibrium at all. Furthermore, even if the equilibrium is unique
and stable, it is not necessarily equal to the mean of the time series. As noted
above, the equilibria, if any exist, can be found by determining the fixed points of
the skeleton F(·) – that is, by solving y∗ = F(y∗). If the skeleton only depends
on the first-order lag yt−1, as in the examples considered here, an alternative
way to find the equilibria is to look for intersection points of the skeleton with
the 45-degree line in the scatterplot of yt versus yt−1. A stable equilibrium is
also called an attractor, which stems from the fact that in the absence of shocks
the time series is attracted by the stable equilibrium. Given that a nonlinear time
series can have any number of stable equilibria, it follows that it can also have
several attractors. That is, y∗ is the attractor for ȳ if yt = ȳ and

yt+h → y∗ as h→ ∞ if εt+j = 0 for all j > 0.

A different way to express this is to say that ȳ is in the domain of attraction of
y∗. As will be seen below, a stable equilibrium is not the only possible form of
attractor of a nonlinear time series.

Panel (a) of figure 3.3 shows the scatterplot of the series generated from (3.1)
with both intercepts equal to 0, which implies that the means of the AR models
in the two regimes are equal to 0. In this case, the equilibrium is unique and
stable and also equal to 0. However, the mean of the time series yt is not equal
to 0. This can be understood by noting that, because φ1,1 is negative, the series
has a tendency to leave the lower regime yt−1 < 0 quite rapidly. In fact, in
the absence of a shock εt (or if εt = 0) the series reverts to the upper regime
immediately, as E[yt |yt−1] = φ1,1 yt−1 > 0 if yt−1 < 0. As φ1,2 is positive,
the series is expected to remain in the upper regime (although it will be pulled
towards the threshold c = 0 because φ1,2 < 1). This suggests that yt will be
positive on average and, hence, the mean of yt will be larger than 0.

The skeleton in panel (b) of figure 3.3 has two points of intersection with
the 45-degree line. This is an example of a model with multiple equilibria,
at y∗

1 = −0.2 and y∗
2 = 0.2, which can easily be checked using (3.1). Both

equilibria are stable. An intuitive way to see this is to note that the intercepts are
such that the mean of the AR model in the lower regime yt−1 ≤ 0 is within the
lower regime, while the mean of the AR model in the upper regime yt−1 > 0
is within the upper regime. Consequently, in the absence of exogenous shocks
the time series has no tendency to move to the other regime, but rather will
converge to the mean of the AR model in the particular regime. Put differently,
the domains of attraction of y∗

1 (y∗
2 ) are negative (positive) values of the time

series, ȳ < 0 (ȳ > 0).
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Panel (c) of figure 3.3 again shows an example of a model with a unique and
stable equilibrium y∗ = −0.2. Notice that the mean of the AR model in the
upper regime in this case is negative (the fact that it is exactly equal to −0.2
is not crucial). Hence, if the series starts in the upper regime, it is attracted by
the lower regime. As the mean of the AR model in the lower regime is also
negative, this mean is the attractor of the model.

Finally, the intercepts of the model in panel (d) of figure 3.3 are set such that
the model has no equilibrium, which can be seen by observing that there are
no points y∗ such that y∗ = F(y∗) – or, equivalently, that the skeleton has no
intersection points with the 45-degree line in each of the regimes. Also note that
the means of the AR models in the two regimes are both in the other regime.
Intuitively, this suggests that the series has no point at which ‘it could come to
rest’. If it is in the upper regime it is pulled towards the lower regime and vice
versa. Still, the model does have an attractor. In fact, the model contains a so-
called limit cycle. A k-period limit cycle is defined as a set of points y∗

1 , . . . , y
∗
k ,

such that y∗
j = F(y∗

j−1) for j = 2, . . . , k, and y∗
1 = F(y∗

k ). That is, if the time
series started in one of the points y∗

j , j = 1, . . . , k, and no shocks occurred,
the series would cycle among the k-points y∗

1 , . . . , y
∗
k . In the example shown in

panel (d) of figure 3.3, the limit cycle consists of three points, y∗
1 = 0.06667,

y∗
2 = −0.06667 and y∗

3 = 0.33333. It can also be shown that the limit cycle is
the attractor, in the sense that the series would converge to the cycle if the noise
were turned off.

This last example demonstrates that nonlinear models can contain endo-
genous dynamics, which means to say that even in the absence of shocks yt
fluctuates. This is in contrast with linear time series, for which the fluctuations
are caused entirely by the exogenous shocks εt . The debate whether observed
dynamics in time series are endogenous or exogenous has a long history, also in
the financial time series literature (see, for example, Brock, Hsieh and LeBaron,
1991; Hsieh, 1991; Creedy and Martin, 1994). A more recent application of
endogenous dynamics in finance can be found in Brock and Hommes (1998). A
general discussion of nonlinear time series models, endogenous dynamics and
the related concept of chaos is given in Tong (1995).

As a final remark, notice that the four models in the example above differ
only in the values taken by the intercepts in the two regimes, φ0,1 and φ0,2,
whereas the autoregressive parameters φ1,1 and φ1,2 are kept the same. The fact
that the four models nevertheless generate series with quite different behaviour
illustrates the important role that is played by intercepts in nonlinear time series
models.

Higher-order models
Although the SETAR and STAR models with an AR(1) model in both

regimes can already generate a large variety of dynamic patterns, in practice
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one may want to allow for higher-order AR models in the different regimes.
For example, in the two-regime case, the AR orders might be set to p1 and p2
in the lower and upper regimes, respectively. In this case, the SETAR model
becomes

yt =
{
φ0,1 + φ1,1 yt−1 + · · · + φp1,1 yt−p1 + εt if yt−1 ≤ c,
φ0,2 + φ1,2 yt−1 + · · · + φp2,2 yt−p2 + εt if yt−1 > c,

(3.5)

whereas the equivalent STAR model is given by

yt = (φ0,1 + φ1,1 yt−1 + · · · + φp1,1 yt−p1)(1 −G(yt−1; γ, c))
+ (φ0,2 + φ1,2 yt−1 + · · · + φp2,2 yt−p2)G(yt−1; γ, c)+ εt .

(3.6)

In higher-order models, it may also be relevant to consider the possibility that
yt−d with d > 1 is the threshold or transition variable. For such higher-order
models, it can be quite difficult to establish the existence of equilibria, attrac-
tors and/or limit cycles analytically. A pragmatic way to investigate the proper-
ties of the skeleton of a higher-order model is to use what might be called
deterministic simulation. That is, given starting values y0, . . . , y1−p, with
p = max(p1, p2), one computes the values taken by y1, y2, . . . , while setting
all εt , t = 1, 2, . . . equal to zero. Doing this for many different starting values
gives an impression about the characteristics of the (skeleton of the) model (see
Teräsvitra and Anderson, 1992; Peel and Speight, 1996 for applications of this
procedure).

Identification of lag orders
An important question concerns determining the appropriate ordersp1

and p2 in the general 2-regime models (3.5) and (3.6). One of the approaches
that is commonly applied, especially in case of STAR models, is to start by
specifying a linear AR(p) model for yt and to assume that the order p, which
is based on the (partial) autocorrelations of yt or an information criterion such
as AIC or BIC, is the appropriate order in both regimes of the nonlinear model.
This procedure is quite hazardous, in the sense that it can easily happen that
the lag order that is obtained in this way is inappropriate. For example, as
remarked in chapter 2 for a bilinear model, nonlinear time series may have zero
autocorrelations at all lags. In such a case it is very likely that the selected lag
order based upon inspection of the estimated autocorrelation function is too low.
On the other hand, relatively simple nonlinear time series models may give rise
to rather complicated autocorrelation structures, which can be captured only by



78 Nonlinear time series models in empirical finance

an AR(p) model with p very large. For example, Granger and Teräsvitra (1999)
discuss the so-called sign model,

yt = sign(yt−1)+ εt , (3.7)

where sign(x) = 1 if x is positive and –1 if x is negative. It is shown that time
series from this model have long-memory properties.

As another example, table 3.1 contains the values for the AIC as given in
(2.55) for AR(p) models estimated for the simulated series shown in figure 3.2.
For the first three series, the AIC selects the correct value of p = 1. For the last
series, however, the AIC is minimized at p = 4. Hence, the AR order would
be overestimated in this last case.

An alternative procedure is to choose the lag ordersp1 andp2 in (3.5) or (3.6)
directly based upon an information criterion. Sin and White (1996) demonstrate
that such a procedure is consistent, in the sense that the correct lag orders will
be selected with probability one asymptotically. An obvious drawback of this
approach is that the SETAR or STAR model has to be estimated for all possible
combinations of p1 and p2.

In section 2.2 it was argued that, especially in the case of BIC, the improve-
ment in fit from a more elaborate model needs to be considerable to compensate
for the penalty incurred for including additional parameters in the model. This
seems to be a problem in nonlinear modelling in particular. For example, in
applications of regime-switching models it often happens that the large major-
ity of observations is in one of the regimes. In such cases, the improvement in
fit compared to a linear model is probably quite modest and not large enough
for the nonlinear model to be selected by an information criterion. However,
it seems fair to take into account the fact that the parameters in the additional
regime(s) are needed for relatively few observations. This can be achieved
by not penalizing the inclusion of the additional parameters for the whole

Table 3.1 AIC for AR(p) models estimated on simulated SETAR series

Intercepts p

φ0,1 φ0,2 0 1 2 3 4 5 6

0 0 −2.652 −2.705 −2.695 −2.685 −2.701 −2.695 −2.684
−0.3 0.1 −2.037 −2.453 −2.443 −2.432 −2.428 −2.431 −2.436
−0.3 −0.1 −2.604 −2.619 −2.609 −2.600 −2.616 −2.607 −2.596

0.3 −0.1 −2.373 −2.423 −2.413 −2.409 −2.450 −2.440 −2.431

Note: Values of AIC for AR(p) models estimated on four series of length n = 200
generated from the SETAR model (3.1), with φ1,1 = −0.5, φ1,2 = 0.5, c = 0 and
εt ∼ NID(0, 0.252).
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sample size but only for the number of observations for which these parameters
are functional. Tong (1990, p. 379) defines an alternative AIC for a 2-regime
SETAR model as the sum of the AICs for the AR models in the two regimes,
that is,

AIC(p1, p2) = n1 ln σ̂ 2
1 + n2 ln σ̂ 2

2 + 2(p1 + 1)+ 2(p2 + 1), (3.8)

where nj , j = 1, 2, is the number of observations in the j th regime, and
σ̂ 2
j , j = 1, 2, is the variance of the residuals in the j th regime. Even though

the εt may have the same variance across regimes, the estimates σ̂ 2
1 and σ̂ 2

2 can
differ. The BIC for a SETAR model can be defined analogously as

BIC(p1, p2) = n1 ln σ̂ 2
1 + n2 ln σ̂ 2

2 + (p1 + 1) ln n1 + (p2 + 1) ln n2.

(3.9)

For given upper bounds p∗
1 and p∗

2 on p1 and p2, respectively, the selected lag
orders in the two regimes are those for which the information criterion is min-
imized. Especially the BIC (3.9) demonstrates that the number of observations
in each of the regimes is taken into account when computing the information
criterion.

Stationarity
Little is known about the conditions under which SETAR and STAR

models generate time series that are stationary. Such conditions have been
established only for the first-order model (3.1). As shown by Chan and Tong
(1985), a sufficient condition for stationarity of (3.1) is max(|φ1,1|, |φ1,2|) < 1,
which is equivalent to the requirement that the AR(1) models in the two
regimes are stationary. Chan et al. (1985) show that stationarity of the first-
order model actually holds under less restrictive conditions. In particular, the
SETAR model (3.1) is stationary if and only if one of the following conditions is
satisfied:
(1) φ1,1 < 1, φ1,2 < 1, φ1,1φ1,2 < 1;
(2) φ1,1 = 1, φ1,2 < 1, φ0,1 > 0;
(3) φ1,1 < 1, φ1,2 = 1, φ0,2 < 0;
(4) φ1,1 = 1, φ1,2 = 1, φ0,2 < 0 < φ0,1;
(5) φ1,1φ1,2 = 1, φ1,1 < 0, φ0,2 + φ1,2φ0,1 > 0.
Condition (1) corresponds with the sufficient condition of Chan and Tong
(1985), although it should be noted that (1) allows one of the AR parame-
ters to become smaller than −1. Conditions (2)–(4) show that the AR model in
one or even both regimes may contain a unit root. In such cases, the time series
is locally nonstationary. The conditions on the intercepts φ0,1 and φ0,2 are such
that the time series has a tendency to revert to the stationary regime and, hence,
the time series is globally stationary. Testing for unit roots in SETAR models
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is discussed in Caner and Hansen (1997), Enders and Granger (1998) and
Berben and van Dijk (1999). A rough-and-ready check for stationarity of
nonlinear time series models in general is to determine whether or not the skele-
ton is stable. Intuitively, if the skeleton is such that the series tends to explode
for certain starting values, the series is nonstationary. This can be established
by simulation.

Even less is known about the stationary distributions of SETAR and STAR
time series. Anděl (1989) discusses some analytic results for a special case of
the first-order SETAR model (3.1), in which φ0,1 = φ0,2 = c = 0, φ1,1 =
−φ1,2 and φ1,1 ∈ (0, 1). In general, one has to resort to numerical procedures
to evaluate the stationary distribution of yt . Some of the methods that can
be applied are discussed in Moeanaddin and Tong (1990) and Tong (1990,
section 4.2).

Multiple regimes
Sometimes it is of interest to allow for more than two regimes. The

SETAR and STAR models can be extended in a relatively straightforward way
to allow for this. It is useful to distinguish two cases, depending on whether the
regimes are characterized by a single variable or by a combination of several
variables.

In the first case, where the prevailing regime is determined by a single vari-
able, an m-regime SETAR model can be obtained by defining a set of m + 1
thresholds c0, c1, . . . , cm, such that −∞ = c0 < c1 < · · · < ck−1 < cm = ∞.
The m-regime equivalent of (3.1) then is given by

yt = φ0,j + φ1,j yt−1 + εt if cj−1 < yt−1 ≤ cj , (3.10)

for j = 1, . . . , m. An application of this model can be found in Kräger and
Kugler (1993).

For the STAR model, a similar procedure can be followed. First note that
(3.3) can be rewritten as

yt = φ′
1xt + (φ2 − φ1)

′xtG(yt−1; γ, c)+ εt , (3.11)

where xt = (1, yt−1)
′ and φj = (φ0,j , φ1,j )

′ for j = 1, 2. By using the subset
c1, . . . , cm−1 of the thresholds defined above for the SETAR model, and an
additional set of smoothness parameters γ1, . . . , γm−1, a STAR model with m
regimes can be defined as

yt = φ′
1xt + (φ2 − φ1)

′xtG1(yt−1)+ (φ3 − φ2)
′xtG2(yt−1)

+ · · · + (φm − φm−1)
′xtGm−1(yt−1)+ εt , (3.12)
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where the Gj(yt−1) ≡ Gj(yt−1; γj , cj ), j = 1, . . . , m− 1, are logistic func-
tions as in (3.4) with smoothness parameter γj and threshold cj .

As an example of the case where the regime is determined by more than
one variable, suppose that the behaviour of the time series yt not only depends
on the value of yt−1 relative to some threshold c1, but also upon the value of
yt−2 relative to another threshold c2. This gives rise to four regimes in total, as
demonstrated by the SETAR model

yt =


φ0,1 + φ1,1yt−1 + εt if yt−1 ≤ c1 and yt−2 ≤ c2,

φ0,2 + φ1,2yt−1 + εt if yt−1 ≤ c1 and yt−2 > c2,

φ0,3 + φ1,3yt−1 + εt if yt−1 > c1 and yt−2 ≤ c2,

φ0,4 + φ1,4yt−1 + εt if yt−1 > c1 and yt−2 > c2.

(3.13)

The model in (3.13) is referred to as a Nested TAR (NeTAR) model by Astatkie,
Watts and Watt (1997). This name stems from the fact that the time series can
be thought of as being described by a 2-regime SETAR model with regimes
defined by yt−1, and within each of those regimes by a 2-regime SETAR model
with regimes defined by yt−2, or vice versa.

Finally, van Dijk and Franses (1999) propose the corresponding multiple
regime STAR model. Its representation is

yt = [φ′
1xt (1 −G1(yt−1))+ φ′

2xtG1(yt−1)][1 −G2(yt−2)]

+ [φ′
3xt (1 −G1(yt−1))+ φ′

4xtG1(yt−1)]G2(yt−2)+ εt ,
(3.14)

which illustrates the interpretation of nested models perhaps more clearly.

3.1.2 Regimes determined by unobservable variables

The second class of regime-switching models assumes that the regime
that occurs at time t cannot be observed, as it is determined by an unobservable
process, which we denote as st . In case of only two regimes, st can simply be
assumed to take on the values 1 and 2, such that the model with an AR(1) model
in both regimes is given by

yt =
{
φ0,1 + φ1,1yt−1 + εt if st = 1,

φ0,2 + φ1,2yt−1 + εt if st = 2,
(3.15)

or, using an obvious shorthand notation,

yt = φ0,st + φ1,st yt−1 + εt . (3.16)
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To complete the model, the properties of the process st need to be speci-
fied. The most popular model in this class, which was advocated by Hamilton
(1989), is the Markov-Switching (MSW) model, in which the process st is
assumed to be a first-order Markov-process. This implies that the current regime
st only depends on the regime one period ago, st−1. Hence, the model is com-
pleted by defining the transition probabilities of moving from one state to the
other,

P(st = 1|st−1 = 1) = p11,

P (st = 2|st−1 = 1) = p12,

P (st = 1|st−1 = 2) = p21,

P (st = 2|st−1 = 2) = p22.

Thus, pij is equal to the probability that the Markov chain moves from state i
at time t − 1 to state j at time t – or, put differently, the probability that regime
i at time t−1 is followed by regime j at time t . Obviously, for the pijs to define
proper probabilities, they should be nonnegative, while it should also hold that
p11 + p12 = 1 and p21 + p22 = 1. Also of interest in the MSW models are
the unconditional probabilities that the process is in each of the regimes – that
is, P(st = i) for i = 1, 2. Using the theory of ergodic Markov chains it is
straightforward to show that for the two-state MSW model these unconditional
probabilities are given by

P(st = 1) = 1 − p22

2 − p11 − p22
, (3.17)

P(st = 2) = 1 − p11

2 − p11 − p22
, (3.18)

see Hamilton (1994, pp. 681–3) for an explicit derivation of this result. Sta-
tionarity conditions for the 2-regime MSW model are discussed in Holst et al.
(1994).

Multiple regimes
An MSW model with m regimes is obtained by allowing the unob-

servable Markov chain st to take on any one of m > 2 different values, each
determining a particular regime. That is, the model becomes

yt = φ0,j + φ1,j yt−1 + εt , if st = j, (3.19)

for j = 1, . . . , m, with transition probabilities

pij ≡ P(st = j |st−1 = i), i, j = 1, . . . , m, (3.20)
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which satisfy pij ≥ 0 for i, j = 1, . . . , m and
∑m
j=1 pij = 1 for all i =

1, . . . , m. See Boldin (1996) for an application.

Empirical specification procedure
Granger (1993) strongly recommends employing a specific-to-general

procedure when considering the use of nonlinear time series models to describe
the features of a particular variable. An empirical specification procedure for
SETAR, STAR and MSW models that follows this approach consists of the
following steps:
(1) specify an appropriate linear AR model of order p [AR(p)] for the time

series under investigation
(2) test the null hypothesis of linearity against the alternative of SETAR-,

STAR- and/or MSW-type nonlinearity; for the SETAR and STAR models,
this step also consists of selecting the appropriate variable that determines
the regimes

(3) estimate the parameters in the selected model
(4) evaluate the model using diagnostic tests
(5) modify the model if necessary
(6) use the model for descriptive or forecasting purposes.
Steps (2)–(6) in this specification procedure are discussed in detail in the follow-
ing sections. It turns out that tests against SETAR- and MSW-type nonlinearity,
which are to be used in step (2), require the input of estimates of the param-
eters in these models. Hence, in the next section we first discuss parameter
estimation, and turn to testing for nonlinearity in section 3.3.

Finally, in step (2) one may also compute several portmanteau tests for non-
linearity, such as the BDS test of Brock et al. (1996), the bispectrum tests of
Hinich (1982) and Ashley, Patterson and Hinich (1986) or the neural network
test which is to be discussed in section 5.6, as a diagnostic check to test the
adequacy of the specified linear model. A limitation of portmanteau tests is,
though, that they provide (almost) no information concerning the appropriate
alternative – that is, if linearity is rejected it is not clear in which direction to
proceed or which nonlinear model to consider.

3.2 Estimation

The discussion of estimating the parameters in the different regime-switching
models in this section is necessarily rather brief and describes only the general
ideas of the estimation methods. For more elaborate discussions we refer to
Tong (1990) and Hansen (1997, 2000) for the SETAR model, to Teräsvirta
(1994, 1998) for the STAR model and to Hamilton (1990, 1993, 1994) for the
MSW model. For notational convenience, we discuss the estimation problem
for 2-regime models with equal AR orders in the two regimes – that is, p1 =
p2 = p.
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3.2.1 Estimation of SETAR models

The parameters of interest in the 2-regime SETAR model (3.5) – that
is, φi,j , i = 0, . . . , p, j = 1, 2, c and σ 2 – can conveniently be estimated by
sequential conditional least squares. Under the additional assumption that the
εt s are normally distributed, the resulting estimates are equivalent to maximum
likelihood estimates.

To see why least squares is the appropriate estimation method, rewrite (3.5) as

yt = (φ0,1 + φ1,1yt−1 + · · · + φp,1yt−p)I [yt−1 ≤ c]
+ (φ0,2 + φ1,2yt−1 + · · · + φp,2yt−p)I [yt−1 > c] + εt ,

(3.21)

or more compactly as

yt = φ′
1xt I [yt−1 ≤ c] + φ′

2xt I [yt−1 > c] + εt , (3.22)

where φj = (φ0,j , φ1,j , . . . , φp,j )
′, j = 1, 2, and xt = (1, yt−1, . . . , yt−p)′.

Note that where the threshold c is fixed, the model is linear in the remaining
parameters. Estimates of φ = (φ′

1, φ
′
2)

′ are then easily obtained by OLS as

φ̂(c) =
(
n∑
t=1

xt (c)xt (c)
′
)−1 ( n∑

t=1

xt (c)yt

)
, (3.23)

where xt (c) = (x′
t I [yt−1 ≤ c], x′

t I [yt−1 > c])′ and the notation φ̂(c) is used to
indicate that the estimate ofφ is conditional upon c. The corresponding residuals
are denoted ε̂t (c) = yt − φ̂(c)′xt (c) with variance σ̂ 2(c) = 1

n

∑n
t=1 ε̂t (c)

2.
The least squares estimate of c can be obtained by minimizing this residual
variance, that is

ĉ = argmin
c∈C

σ̂ 2(c), (3.24)

where C denotes the set of all allowable threshold values. The final estimates
of the autoregressive parameters are given by φ̂ = φ̂(ĉ), while the residual
variance is estimated as σ̂ 2 = σ̂ 2(ĉ).

The set of allowable threshold values C in (3.24) should be such that each
regime contains enough observations for the estimator defined above to produce
reliable estimates of the autoregressive parameters. A popular choice for C is
to require that each regime contains at least a (pre-specified) fraction π0 of the
observations, that is,

C = {c | y([π0(n−1)]) ≤ c ≤ y([(1−π0)(n−1)])}, (3.25)

where y(0), . . . , y(n−1) denote the order statistics of the threshold variable yt−1,
y(0) ≤ · · · ≤ y(n−1), and [·] denotes integer part. A safe choice for π0 appears
to be 0.15.
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The minimization problem (3.24) can be solved by means of direct search. It
suffices to compute the residual variance σ̂ 2(c) only for threshold values equal
to the order statistics of yt−1 – that is, for c = y(i) for each i such that y(i) ∈ C.
This follows from the observation that the value of σ̂ 2(c) does not change as
c is varied between two consecutive order statistics, as no observations move
from one regime to the other in this case.

Chan (1993) demonstrates that the LS estimator of the threshold ĉ is consis-
tent at rate n and asymptotically independent of the other parameter estimates.
Chan (1993) also shows that the asymptotic distribution of ĉ depends upon many
nuisance parameters, for instance the true regression parameters φ. Using an
alternative approach, Hansen (1997) derives a limiting distribution for ĉ that is
free of nuisance parameters apart from a scale parameter. The estimates of the
autoregressive parameters are consistent at the usual rate of

√
n and asymptot-

ically normal.

Confidence intervals
The asymptotic distribution of the threshold estimate is available in

closed-form, so in principle it could be used to construct confidence intervals
for c. However, this requires estimation of the scale parameter in the distribution,
which appears to be quite cumbersome. Hansen (1997) therefore recommends
an alternative approach, which is based on inverting the likelihood ratio test-
statistic to test the hypothesis that the threshold is equal to some specific value
c0, given by

LR(c0) = n
(
σ̂ 2(c0)− σ̂ 2(ĉ)

σ̂ 2(ĉ)

)
. (3.26)

Notice that LR(ĉ) = 0. The 100 · α% confidence interval for the threshold is
given by the set Ĉα consisting of those values of c for which the null hypothesis
is not rejected at significance level α. That is,

Ĉα = {c : LR(c) ≤ z(α)}, (3.27)

where z(α) is the 100 · α percentile of the asymptotic distribution of the
LR-statistic. These percentiles are given in Hansen (1997, table 1) for various
values of α. The set Ĉα provides a valid confidence region as the probability
that the true threshold value is contained in Ĉα approaches α as the sample size
n becomes large. An easy graphical method to obtain the region Ĉα is to plot
the LR-statistic (3.26) against c and draw a horizontal line at z(α). All points
for which the value of the statistic is below the line are included in Ĉα .

To see how this works in practice, SETAR models with p1 = p2 = 1 are
estimated for the series shown in panels (b) and (c) of figure 3.2. Figure 3.4
shows the sequences of LR-statistics for these examples. As can be seen, for the
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Figure 3.4 Sequences of LR-statistics for two series generated from the SETAR
model (3.1), with φ1,1 = −0.5, φ1,2 = 0.5, c = 0 and εt ∼ NID(0, 0.252) The
95 per cent confidence region for the threshold is given by the values c such that
LR(c) is below the 95 per cent critical value

first series the threshold estimate is quite precise, in the sense that the 95 per cent
confidence interval is fairly small. For the second series, on the other hand, the
threshold estimate is rather imprecise, judged from the wide confidence region.

The estimates of the autoregressive parameters φ1 and φ2 are asymp-
totically normal distributed. Hence, one might proceed as usual and con-
struct an asymptotic 95 per cent confidence interval for φ1,2, for example, as
(φ̂1,2−1.96σ̂φ1,2 , φ̂1,2+1.96σ̂φ1,2), where σ̂φ1,2 is the estimated standard error
of φ1,2. Hansen (1997) shows that the confidence intervals that are obtained in
this way do not yield good finite sample approximations. He therefore recom-
mends an alternative procedure, in which a 95 per cent confidence interval for
φ1 and φ2 is computed for each value of c in the set Ĉα , and the union of these
intervals is taken as the confidence interval for φ1 and φ2. Some simulation
evidence suggests that α = 0.8 is a reasonable confidence level for the set Ĉα
in this case.

To illustrate the differences that can result from the two approaches, consider
again the SETAR models that are estimated for the series shown in panels (b)
and (c) of figure 3.2. For the series in panel (b), the confidence region Ĉ0.8 for
the threshold is rather tight (see figure 3.4). Hence it might be expected that
the two confidence intervals for the autoregressive parameters are roughly the
same, which indeed turns out to be the case. The point estimate and asymptotic
standard error of φ1,2 are equal to 0.54 and 0.12, respectively. The confidence
interval based on the asymptotic normal distribution thus would be (0.31, 0.79).
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This is very similar to the confidence interval based on the region Ĉ0.8, which
is (0.28, 0.81). For the second series, the point estimate of φ1,2 is equal to
0.49, with asymptotic standard error 0.27. Hence, the usual confidence interval
for this parameter would be (−0.05, 1.03). The alternative approach based on
the set Ĉ0.8, on the other hand, renders the much wider confidence interval
(−0.17, 1.29). This large difference is caused by the fact that the threshold c is
estimated rather imprecisely and, therefore, the region Ĉ0.8 is rather wide. In
fact, as shown in figure 3.4, the region Ĉ0.8 is disjoint. One segment is centred
around the point estimate of the threshold, which is equal to 0.01, while there
is another segment for threshold values in the range (−0.12, −0.08).

Choosing the threshold variable
So far, we have implicitly assumed that the threshold variable qt , which

defines the regime that occurs at any given point in time, is known (and equal to
yt−1). In practice, the appropriate threshold variable is of course unknown and
an important question is how it can be determined. In the context of SETAR
models we might restrict attention to lagged endogenous variables yt−d for
positive integers d as candidate threshold variables. It turns out that in this case d
can be estimated along with the other parameters in the model, by performing the
above calculations for various choices of d (say, d ∈ {1, . . . , d∗} for some upper
bound d∗), and estimate d as the value that minimizes the residual variance.

An alternative way to interpret this procedure is that effectively the grid
search in (3.24) is augmented with a search over d – that is, the minimization
problem becomes

(ĉ, d̂) = argmin
c∈C, d ∈D

σ̂ 2(c, d), (3.28)

where D = {1, . . . , d∗} and the notation σ̂ 2(c, d) is used to indicate that the
estimate of the residual variance now depends on d as well as on c. As the
parameter space for d is discrete, the least squares estimate d̂ is super-consistent
and d can be treated as known when computing confidence intervals for the
remaining parameters, for example.

If one wants to allow for an exogenous threshold variable qt , a similar proce-
dure can be followed. In that case, the SETAR model is estimated with different
candidate threshold variables, and the variable that renders the best fit is selected
as the most appropriate one. See Chen (1995) for alternative methods of select-
ing the threshold variable.

Notice that there is a loop in the part of the specification procedure of SETAR
models discussed so far. Recall that to determine the appropriate orders of the
AR models in the two regimes with, for example, the AIC in (3.8), the threshold
variable was assumed known, while to determine the appropriate threshold
variable using a grid search as outlined above, the AR orders are assumed
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known. One way to break this loop is to include the search for the appropriate
threshold variable in the minimization of the information criterion – that is,
minimize the AIC over p1, p2 and d as suggested by Tong (1990, p. 379). Of
course, this increases the computational burden considerably, as nowp∗

1 ·p∗
2 ·d∗

different models have to be estimated.

Example 3.1: Dutch guilder We apply the part of the SETAR spec-
ification procedure outlined so far to weekly returns on the exchange
rate of the Dutch guilder vis-à-vis the US dollar. We use the sample
January 1980–December 1989 to specify the model, and hold back the remain-
ing observations for out-of-sample forecasting later in this chapter.

We start by determining the appropriate threshold variable and lag orders
in the SETAR model, using the AIC in (3.8). In addition to lagged returns
yt−d , we also consider a measure of volatility as candidate threshold variable
(cf. LeBaron, 1992). To be precise, we use the variable vt,j , which is defined
as the average absolute returns over the last j weeks, that is,

vt,j = 1

j

j−1∑
i= 0

|yt−i |. (3.29)

We consider vt−1,j with j = 1, . . . , 4 as possible threshold variables. Lagged
returns yt−d are considered for d = 1, . . . , d∗ with d∗ = 4. In the minimization
of the AIC, we consider only models in which the AR orders in the two regimes
are equal, and not larger than p∗ = 5. The results are shown in table 3.2.

Table 3.2 AIC values for SETAR models for weekly returns on the Dutch guilder
exchange rate

p
Threshold
variable 0 1 2 3 4 5

yt−1 370.88 371.83 370.28 347.32 341.51 413.40
yt−2 393.41 408.90 404.47 408.32 415.40 408.49
yt−3 402.38 399.76 400.72 403.39 401.50 404.42
yt−4 385.64 402.03 393.58 407.26 403.30 398.38
vt−1,1 354.37 354.74 358.25 361.12 361.97 363.23
vt−1,2 363.00 378.34 378.89 351.46 348.11 336.38
vt−1,3 337.09 349.91 349.15 331.76 333.48 330.70
vt−1,4 332.75 327.38 328.03 347.79 351.52 324.62

Note: Values of AIC for SETAR models estimated on weekly returns on the Dutch
guilder exchange rate vis-à-vis the US dollar.
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Table 3.3 SETAR estimates for weekly percentage returns on the Dutch guilder
exchange rate

Confidence intervals

Asymptotic LR-statistic

Variable Estimate Low High Low High

vt−1,4 ≤ ĉ (380 obs.)
Constant 0.034 −0.089 0.157 −0.093 0.210
yt−1 0.245 0.063 0.427 −0.017 0.614
yt−2 0.172 0.011 0.333 −0.047 0.581

vt−1,4 > ĉ (131 obs.)
Constant 0.266 −0.071 0.603 −0.149 0.692
yt−1 −0.116 −0.300 0.068 −0.288 0.082
yt−2 0.051 −0.110 0.212 −0.096 0.223
Threshold 1.151 — 0.534 1.532

Notes: Estimates of SETAR model for weekly returns on the Dutch guilder exchange
rate vis-à-vis the US dollar.
The columns headed ‘Asymptotic’ and ‘LR-statistic’ contain limits of the confidence
intervals based on the asymptotic normal distribution and on the confidence set for the
threshold estimate Ĉ0.8, respectively.

Minimization of the AIC suggests that the average absolute return over the
previous four weeks, vt−1,4, is the appropriate threshold variable, with an AR
orderp = 5. Note, however, that the values of the AIC forp = 1 andp = 2 (and
vt−1,4 as threshold variable) are quite close to the minimum. For convenience,
we proceed with estimating a SETAR model with p = 2. Estimates of the
parameters of the model are given in table 3.3. Heteroscedasticity-consistent
standard errors and the limits of the confidence intervals based on the set Ĉ0.8
are reported as well.

It appears that the AR parameters in the high volatility regime, vt−1,4 > ĉ

are insignificant as well – even when the confidence interval is based on
the asymptotic normal distribution. This corresponds with the findings of
Kräger and Kugler (1993), who estimate 3-regime models with yt−1 as thresh-
old variable. For four out of their five exchange rates, they find that the return
is best described as a white noise series in the outer regimes, where yt−1 is
large in absolute value (and thus volatility is high), and by means of a sta-
tionary AR model in the middle regime, where yt−1 (and thus volatility) is
moderate.
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3.2.2 Estimation of STAR models

Estimation of the parameters in the STAR model (3.6) is a relatively
straightforward application of nonlinear least squares (NLS) – that is, the param-
eters θ = (φ′

1, φ
′
2, γ, c)

′ can be estimated as

θ̂ = argmin
θ

Qn(θ) = argmin
θ

n∑
t=1

[yt − F(xt ; θ)]2, (3.30)

where F(xt ; θ) is the skeleton of the model, that is,

F(xt ; θ) ≡ φ′
1xt (1 −G(yt−1; γ, c))+ φ′

2xtG(yt−1; γ, c).
Under the additional assumption that the errors εt are normally distributed,
NLS is equivalent to maximum likelihood. Otherwise, the NLS estimates can
be interpreted as quasi-maximum likelihood estimates. Under certain regularity
conditions (which are discussed in White and Domowitz, 1984; Gallant, 1987;
Pötscher and Prucha, 1997, among others), the NLS estimates are consistent
and asymptotically normal, that is,

√
T (θ̂ − θ0)→ N(0, C), (3.31)

where θ0 denotes the true parameter values. The asymptotic covariance-matrix
C of θ̂ can be estimated consistently as Â−1

n B̂nÂ
−1
n , where Ân is the Hessian

evaluated at θ̂

Ân = −1

n

n∑
t=1

∇2qt (θ̂ )

= 1

n

n∑
t=1

(∇F(xt ; θ̂ )∇F(xt ; θ̂ )′ − ∇2F(xt ; θ̂ )ε̂t ), (3.32)

with qt (θ̂ ) = [yt −F(xt ; θ̂ )]2, ∇F(xt ; θ̂ ) = ∂F (xt ; θ̂ )/∂θ , and B̂n is the outer
product of the gradient

B̂n = 1

n

n∑
t=1

∇qt (θ̂ )∇qt (θ̂ )′ = 1

n

n∑
t=1

ε̂2
t ∇F(xt ; θ̂ )∇F(xt ; θ̂ )′. (3.33)

The estimation can be performed using any conventional nonlinear opti-
mization procedure (see Quandt, 1983; Hamilton, 1994, section 5.7; Hendry,
1995, appendix A5, for surveys). Issues that deserve particular attention are
the choice of starting values for the optimization algorithm, concentrating the
sum of squares function and the estimate of the smoothness parameter γ in the
transition function.
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Starting values
Obviously, the burden put on the optimization algorithm can be allevi-

ated by using good starting values. Note that for fixed values of the parameters
in the transition function, γ and c, the STAR model is linear in the autoregres-
sive parameters φ1 and φ2, similar to the SETAR model. Thus, conditional upon
γ and c, estimates of φ = (φ′

1, φ
′
2)

′ can be obtained by OLS as

φ̂(γ, c) =
( n∑
t=1

xt (γ, c)xt (γ, c)
′
)−1( n∑

t=1

xt (γ, c)yt

)
, (3.34)

where xt (γ, c) = (x′
t (1 − G(yt−1; γ, c)), x′

tG(yt−1; γ, c))′ and the notation
φ(γ, c) is used to indicate that the estimate of φ is conditional upon γ and c.
The corresponding residuals can be computed as ε̂t = yt − φ̂(γ, c)′xt (γ, c)
with associated variance σ̂ 2(γ, c) = n−1∑n

t=1 ε̂
2
t (γ, c). A convenient method

to obtain sensible starting values for the nonlinear optimization algorithm then
is to perform a two-dimensional grid search over γ and c and select those
parameter estimates which render the smallest estimate for the residual variance
σ̂ 2(γ, c).

Concentrating the sum of squares function
As suggested by Leybourne, Newbold and Vougas (1998), another

way to simplify the estimation problem is to concentrate the sum of squares
function. Owing to the fact that the STAR model is linear in the autoregressive
parameters for given values of γ and c, the sum of squares functionQn(θ) can
be concentrated with respect to φ1 and φ2 as

Qn(γ, c) =
n∑
t=1

(yt − φ(γ, c)′xt (γ, c))2. (3.35)

This reduces the dimensionality of the NLS estimation problem considerably,
as the sum of squares function as given in (3.35) needs to be minimized with
respect to the two parameters γ and c only.

The estimate of γ
It turns out to be notoriously difficult to obtain a precise estimate

of the smoothness parameter γ . One reason for this is that for large values
of γ , the shape of the logistic function (3.4) changes only little. Hence, to
obtain an accurate estimate of γ one needs many observations in the immediate
neighbourhood of the threshold c. As this is typically not the case, the estimate
of γ is rather imprecise in general and often appears to be insignificant when
judged by its t-statistic. This estimation problem is discussed in a more general
context in Bates and Watts (1988, p. 87). The main point to be taken is that
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insignificance of the estimate of γ should not be interpreted as evidence against
the presence of STAR-type nonlinearity. This should be assessed by means of
different diagnostics, some of which are discussed below.

3.2.3 Estimation of the Markov-Switching model

The parameters in the MSW model can be estimated using maximum
likelihood techniques. However, owing to the fact that the Markov-process st
is not observed, the estimation problem is highly nonstandard. The aim of the
estimation procedure in fact is not only to obtain estimates of the parameters
in the autoregressive models in the different regimes and the probabilities of
transition from one regime to the other, but also to obtain an estimate of the state
that occurs at each point of the sample – or, more precisely, the probabilities
with which each state occurs at each point in time.

Consider the 2-regime MSW model with an AR(p) specification in both
regimes,

yt =
{
φ0,1 + φ1,1yt−1 + · · · + φp,1yt−p + εt if st = 1,

φ0,2 + φ1,2yt−1 + · · · + φp,2yt−p + εt if st = 2,
(3.36)

or in shorthand notation,

yt = φ0,st + φ1,st yt−1 + · · · + φp,st yt−p + εt . (3.37)

Under the additional assumption that the εt in (3.36) are normally distributed
(conditional upon the history�t−1), the density of yt conditional on the regime
st and the history�t−1 is a normal distribution with mean φ0,st + φ1,st yt−1 +
· · · + φp,st yt−p and variance σ 2,

f (yt |st = j,�t−1; θ) = 1√
2πσ

exp

{−(yt − φ′
j xt )

2

2σ 2

}
, (3.38)

where again xt = (1, yt−1, . . . , yt−p)′, φj = (φ0,j , φ1,j , . . . , φp,j )
′ for

j = 1, 2, and θ is a vector that contains all parameters in the model,
θ = (φ′

1, φ
′
2, p11, p22, σ

2)′. Notice that the parameters p11 and p22 com-
pletely define all transition probabilities because, for example, p12 = 1 − p11.
Given that the state st is unobserved, the conditional log likelihood for the t th
observation lt (θ) is given by the log of the density of yt conditional only upon
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the history�t−1 – that is, lt (θ) = ln f (yt |�t−1; θ). The density f (yt |�t−1; θ)
can be obtained from the joint density of yt and st as follows,

f (yt |�t−1; θ) = f (yt , st = 1|�t−1; θ)+ f (yt , st = 2|�t−1; θ)

=
2∑
j=1

f (yt |st = j,�t−1; θ) · P(st = j |�t−1; θ),

(3.39)

where the second equality follows directly from the basic law of conditional
probability, which states that the joint probability of two events A and B,
P(A and B), is equal to P(A|B)P (B).

In order to be able to compute the density (3.39), we obviously need to
quantify the conditional probabilities of being in either regime given the history
of the process,P(st = j |�t−1; θ). In fact, it turns out that in order to develop the
maximum likelihood estimates of the parameters in the model, three different
estimates of the probabilities of each of the regimes occurring at time t are
needed: estimates of the probability that the process is in regime j at time t
given all observations up to time t−1, given all observations up to and including
time t and given all observations in the entire sample. These estimates usually
are called, respectively, the forecast, inference and smoothed inference of the
regime probabilities.

Intuitively, if the regime that occurs at time t − 1 were known and included
in the information set �t−1, the optimal forecasts of the regime probabilities
are simply equal to the transition probabilities of the Markov-process st . More
formally,

ξ̂t |t−1 = P · ξt−1, (3.40)

where ξ̂t |t−1 denotes the 2×1 vector containing the conditional probabilities of
interest – that is, ξ̂t |t−1 = (P (st = 1|�t−1; θ), P (st = 2|�t−1; θ))′, ξt−1 =
(1, 0)′ if st−1 = 1 and ξt−1 = (0, 1)′ if st−1 = 2, andP is the matrix containing
the transition probabilities,

P =
(
p11 1 − p22

1 − p11 p22

)
. (3.41)

In practice the regime at time t − 1 is unknown, as it is unobservable. The best
one can do is to replace ξt−1 in (3.40) by an estimate of the probabilities of
each regime occurring at time t − 1 conditional upon all information up to and
including the observation at t − 1 itself. Denote the 2 × 1 vector containing
the optimal inference concerning the regime probabilities as ξ̂t−1|t−1. Given a
starting value ξ̂1|0 and values of the parameters contained in θ , one can compute
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the optimal forecast and inference for the conditional regime probabilities by
iterating on the pair of equations

ξ̂t |t = ξ̂t |t−1 � f t

1′(ξ̂t |t−1 � f t )
(3.42)

ξ̂t+1|t = P · ξ̂t |t , (3.43)

for t = 1, . . . , n, where f t denotes the vector containing the conditional
densities (3.38) for the two regimes, 1 is a 2 × 1 vector of ones and the symbol
� indicates element-by-element multiplication. The necessary starting values
ξ̂1|0 can either be taken to be a fixed vector of constants which sum to unity, or
can be included as separate parameters that need to be estimated. See Hamilton
(1994, p. 693) for an intuitive explanation of why this algorithm works.

Finally, let ξ̂t |n denote the vector which contains the smoothed inference on
the regime probabilities – that is, estimates of the probability that regime j
occurs at time t given all available observations, P(st = j |�n; θ). Kim (1993)
develops an algorithm to obtain these regime probabilities from the conditional
probabilities ξ̂t |t and ξ̂t+1|t given by (3.42) and (3.43). The smoothed inference
on the regime probabilities at time t is computed as

ξ̂t |n = ξ̂t |t � (P ′[ξ̂t+1|n ÷ ξ̂t+1|t ]), (3.44)

where ÷ indicates element-by-element division. The algorithm runs backwards
through the sample – that is, starting with ξ̂n|n from (3.42) one applies (3.44)
for t = n− 1, n− 2, . . . , 1. For more details we refer to Kim (1993).

Returning to (3.42), notice that the denominator of the right-hand-side expres-
sion actually is the conditional log likelihood for the observation at time t as
given in (3.39), which follows directly from the definitions of ξ̂t |t−1 and f t . As
shown in Hamilton (1990), the maximum likelihood estimates of the transition
probabilities are given by

p̂ij =
∑n
t=2 P(st = j, st−1 = i|�n; θ̂ )∑n

t=2 P(st−1 = i|�n; θ̂ )
, (3.45)

where θ̂ denotes the maximum likelihood estimates of θ . It is also shown in
Hamilton (1990) that these satisfy the first-order conditions

n∑
t=1

(yt − φ̂′
j xt )xtP (st = j |�n; θ̂ ) = 0, j = 1, 2, (3.46)
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and

σ̂ 2 = 1

n

n∑
t=1

2∑
j=1

(yt − φ̂′
j xt )

2P(st = j |�n; θ̂ ). (3.47)

Notice that (3.46) implies that φ̂j is the estimate corresponding to a weighted
least squares regression of yt on xt , with weights given by the square root of
the smoothed probability of regime j occurring. Hence, the estimates φ̂j can
be obtained as

φ̂j =
(
n∑
t=1

xt (j)xt (j)
′
)−1 ( n∑

t=1

xt (j)yt (j)

)
, (3.48)

where

yt (j) = yt
√
P(st = j |�n; θ̂ ),

xt (j) = xt
√
P(st = j |�n; θ̂ ).

Finally, the ML estimate of the residual variance is obtained using (3.47) as the
mean of the squared residuals from the two WLS regressions.

Putting all the above elements together suggests the following iterative pro-
cedure to estimate the parameters of the MSW model. Given starting values
for the parameter vector θ̂ (0), first compute the smoothed regime probabilities
using (3.42), (3.43) and (3.44). Next, the smoothed regime probabilities ξ̂t |n are
combined with the initial estimates of the transition probabilities p̂(0)ij to obtain
new estimates of the transition probabilities p̂(1)ij from (3.45). Finally, (3.48)
and (3.47) can be used to obtain a new set of estimates of the autoregressive
parameters and the residual variance. Combined with the new estimates of the
transition probabilities, this gives a new set of estimates for all parameters in
the model, θ̂ (1). Iterating this procedure renders estimates θ̂ (2), θ̂ (3), . . . and
this can be continued until convergence occurs – that is, until the estimates in
subsequent iterations are the same. This procedure turns out to be an applica-
tion of the Expectation Maximization (EM) algorithm developed by Dempster,
Laird and Rubin (1977). It can be shown that each iteration of this procedure
increases the value of the likelihood function, which guarantees that the final
estimates are ML estimates.

Example 3.2: Frankfurt stock index We estimate a 2-regime MSW model
with an AR(2) model in both regimes for weekly absolute returns on the



96 Nonlinear time series models in empirical finance

Table 3.4 Parameter estimates for a MSW model for weekly absolute returns on the
Frankfurt stock index

φ0,1 φ1,1 φ2,1 φ0,2 φ1,2 φ2,2 p1,1 p2,2

0.909 0.173 0.294 5.860 −0.505 −0.596 0.952 0.754
(0.206) (0.070) (0.072) (0.954) (0.160) (0.172) (0.022) (0.132)

Frankfurt stock index over the period January 1988–December 1992 (260
observations). Table 3.4 contains the estimates of the autoregressive param-
eters and the parameters determining the regime transition probabilities, p11
and p22. Figure 3.5 shows the filtered and smoothed inference on the regime
probabilities ξ̂t |t and ξ̂t |n.

Based on the estimated transition probabilities p11 and p22 it appears that
the regime st = 1 is much more persistent than the regime st = 2, where this
last regime seems to correspond with more volatile periods. The unconditional
regime probabilities are computed from (3.17) and (3.18) as P(st = 1) = 0.84
and P(st = 2) = 0.16. Indeed, the regime probabilities in figure 3.5 confirm
that the regime st = 1 occurs much more often.

3.2.4 Robust estimation of SETAR models

In section 2.5 it was argued that especially additive outliers (AOs)
affect inference in linear time series models, as such aberrant observations lead
to biased estimates of the parameters in the model, among other things. It might
be expected that AOs have similar effects in nonlinear time series models,
although this has not yet been investigated rigorously.

Extending the GM estimation method discussed in section 2.5 to esti-
mate the parameters of a SETAR model turns out to be fairly straightfor-
ward (see Chan and Cheung, 1994). Consider for example the 2-regime SETAR
model

yt =
{
φ1,1yt−1 + εt if yt−1 ≤ c,
φ1,2yt−1 + εt if yt−1 > c.

(3.49)

For fixed threshold c, the autoregressive parameters φ1,1 and φ1,2 can be esti-
mated separately by applying the GM estimator discussed in section 2.5 using
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Figure 3.5 The upper graph shows absolute weekly returns on the Frankfurt stock
index: observations for which the smoothed probability of being in regime 1 is smaller
than 0.5 are marked with a solid circle; the lower graph contains the filtered (dashed
line) and smoothed (solid line) probability for the regime st = 1

the observations in the particular regime only, that is,

φ̂
(n+1)
1,1 =

∑
yt−1≤c wr

(
φ̂
(n)
1,1, σ̂

(n)
ε,1

)
yt−1yt∑

yt−1≤c wr
(
φ̂
(n)
1,1, σ̂

(n)
ε,1

)
y2
t−1

, (3.50)

φ̂
(n+1)
1,2 =

∑
yt−1>c

wr

(
φ̂
(n)
1,2, σ̂

(n)
ε,2

)
yt−1yt∑

yt−1>c
wr

(
φ̂
(n)
1,2, σ̂

(n)
ε,2

)
y2
t−1

, (3.51)
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where σε,j , j = 1, 2 is the scale of the residuals in each of the regimes. To
estimate the threshold c, notice that the GM estimator (2.115) ofφ1 in the AR(1)
model can be thought of as minimizing the objective function

n∑
t=1

ρ(yt−1, (yt − φ1yt−1)/σε), (3.52)

where ρ(yt−1, rt ) is such that ∂ρ(yt−1, rt )/∂rt = (yt − φ1yt−1)wr(rt ). Sim-
ilarly, the GM estimators of parameters in the SETAR model (3.49) can be
thought of as minimizing the composite objective function∑

yt−1≤ c
ρ(yt−1, (yt − φ1,1yt−1)/σε)

+
∑

yt−1>c
ρ(yt−1, (yt − φ1,2yt−1)/σε), (3.53)

for fixed c. The threshold itself can be estimated by minimizing (3.53) with
respect to c, using a grid search as described in subsection 3.2.1.

To our knowledge, robust estimation methods for STAR and MSW models
still have to be developed. The simulation results in van Dijk (1999, chapter 7)
show that the usual GM estimators cannot readily be applied.

Example 3.1: Dutch guilder We apply the robust estimation procedure
as outlined above to estimate a SETAR model for weekly returns on the
exchange rate of the Dutch guilder vis-à-vis the US dollar, over the period
January 1980–December 1989. The specification of the model is taken as
previously – that is, we use the average absolute returns over the past four
weeks vt−1,4, as given in (3.29), as the threshold variable and use an AR(p)
model with p = 2 in both regimes. We use the weight function based on the
polynomial ψ-function given in (2.118).

The robust estimation method gives rather different results than the standard
method, as reported in table 3.3. Most importantly, the robust estimate of the
threshold is equal to ĉ = 0.385, which is considerably lower than the ‘standard’
estimate ĉ = 1.151. Consequently, the lower regime (vt−1,4 < ĉ) now con-
tains only 87 observations, whereas the upper regime contains the remaining
434 observations. The parameters of the AR(2) model in the lower regime are
estimated as φ̂0,1 = −0.059, φ̂1,1 = 0.298, φ̂2,1 = 0.526. The correspond-
ing estimates of the AR(2) model in the upper regime are φ̂0,2 = −0.053,
φ̂1,2 = 0.012, φ̂2,2 = 0.060.

The upper panel of figure 3.6 shows the weekly returns series, with obser-
vations that receive weight less than one in the robust estimation procedure



Regime-switching models for returns 99

Figure 3.6 The upper graph shows weekly returns on the Dutch guilder exchange
rate
Observations that receive a weight smaller than 1 in the outlier-robust estimation procedure
which is used to estimate a SETAR model, are marked with a solid circle, and observations
which are classified as being in the lower regime (vt−1,4 < 0.385) are marked with a cross;
the lower graph contains the actual weights wt

marked with circles and observations which belong to the lower regime marked
with crosses. The actual weights are shown in the lower panel of this figure.
It is seen the lower regime is realized mainly during the first few years in the
sample period, when volatility appeared to be smaller. Most outliers are found
in the second half of the sample with a large concentration in 1985, and are
associated with large positive or negative returns.
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3.3 Testing for regime-switching nonlinearity

Perhaps the most important question that needs to be answered when consid-
ering regime-switching models is whether the additional regime(s) (relative to
the single regime in a linear AR model) add(s) significantly to explaining the
dynamic behaviour of the time series yt . One possible method of addressing
this question is to compare the in-sample fit of the regime-switching model with
that of a linear model. A natural approach is then to take the linear model as the
null hypothesis and the regime-switching model as the alternative. In the case
of a 2-regime model, the null hypothesis can be expressed as equality of the
autoregressive parameters in the two regimes – that is, H0 : φ1 = φ2 – which
is tested against the alternative hypothesis H1 : φi,1 �= φi,2 for at least one
i ∈ {0, . . . , p}.

The statistical tests which take either one of the three regime-switching
models as the alternative all suffer from the problem of so-called unidentified
nuisance parameters under the null hypothesis. By this it is meant that the non-
linear model contains certain parameters which are not restricted under the null
hypothesis and which are not present in the linear model. In both the SETAR
and STAR models, the threshold c is such an unidentified nuisance parameter,
whereas in the STAR model, the smoothness parameter γ is one as well. In
the MSW model, the unidentified nuisance parameters are p11 and p22, which
define the transition probabilities between the two regimes. The main conse-
quence of the presence of such parameters is that the conventional statistical
theory cannot be applied to obtain the (asymptotic) distribution of the test-
statistics (see Davies, 1977, 1987 and Hansen, 1996, among others). Instead,
the test-statistics tend to have a nonstandard distribution, for which an analyti-
cal expression is often not available. This implies that critical values have to be
determined by means of simulation methods.

Although estimation methods for the regime-switching models are readily
available, it still seems a good idea to explore the potential usefulness of these
models before actually attempting to estimate them. It turns out that no such
tests against the SETAR and MSW models are available. Only after estimat-
ing a 2-regime model can one assess the relevance of the additional regime
(relative to a linear AR model, which might be thought of as a 1-regime
model). For the STAR model, on the other hand, Lagrange Multiplier (LM)-
statistics are available, which avoid estimating the model under the alternative
hypothesis.

3.3.1 Testing the SETAR model

Testing linearity against the alternative of a SETAR model is discussed
in Chan (1990, 1991), Chan and Tong (1990) and Hansen (1997, 2000). A solu-
tion to the above-mentioned identification problem here is to use the estimates
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of the SETAR model to define a likelihood ratio or F -statistic which tests the
restrictions as given by the null hypothesis, that is

F(ĉ) = n
(
σ̃ 2 − σ̂ 2

σ̂ 2

)
, (3.54)

where σ̃ 2 is an estimate of the residual variance under the null hypothesis of
linearity, σ̃ 2 = ∑n

t=1 ε̃
2
t with ε̃t = yt − φ̂′xt , and σ̂ 2 is defined just below

(3.24). Notice that the statistic (3.54) is a monotonic transformation of σ̂ 2,
in the sense that F(ĉ) always increases when σ̂ 2 decreases, and vice versa.
As ĉ minimizes the residual variance over the set C of allowable threshold
values, F(ĉ) is equivalent to the supremum over this set C of the pointwise
test-statistic F(c),

F(ĉ) = sup
c∈C

F(c), (3.55)

where

F(c) = n
(
σ̃ 2 − σ̂ 2(c)

σ̂ 2(c)

)
, (3.56)

where σ̂ 2(c) is defined just below (3.34).
The pointwise F(c)-statistic can also be computed as nR2 with R2 the

coefficient of determination of an artificial regression of ε̃t on xt I (yt−1 ≤ c)

and xt I (yt−1 > c) (or, equivalently, on xt and xt I (yt−1 ≤ c)). Hence,F(c) has
an asymptotic χ2 distribution with p+ 1 degrees of freedom. The test-statistic
(3.55) is therefore the supremum of a number of dependent statistics, each of
which follows an asymptotic χ2 distribution. This shows that the distribution of
F(ĉ) itself is nonstandard. Because the exact form of the dependence between
the differentF(c)s is difficult to analyse or characterize, critical values are most
easily determined by means of simulation (see Hansen 1997, 2000, for more
details).

3.3.2 Testing the STAR model

Testing linearity against the STAR model offers the opportunity to
illustrate the problems of unidentified nuisance parameters in a different manner,
in the sense that more than one restriction can be used to make the STAR model
collapse to a linear AR model. Besides equality of the AR parameters in the
two regimes, H0 : φ1 = φ2, the null hypothesis of linearity can alternatively
be expressed as H ′

0 : γ = 0. If γ = 0, the logistic function (3.4) is equal to
0.5 for all values of yt−1 and the STAR model reduces to an AR model with
parameters (φ1 +φ2)/2. Whichever formulation of the null hypothesis is used,
the model contains unidentified parameters. Where H0 is used to characterize
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the null hypothesis of linearity, the parameters γ and c in the transition function
are the unidentified nuisance parameters. WhereH ′

0 is used, the threshold c and
the parameters φ1 and φ2 are. To see the latter, note that under H ′

0, φ1 and φ2
can take any value as long as their average remains the same.

The approach that has been used in this case to solve the identification prob-
lem is slightly different from the one discussed above for the SETAR model. It
turns out that in the case of testing against the alternative of a STAR model it
is feasible to use a Lagrange Multiplier (LM)-statistic which has an asymptotic
χ2 distribution. The main advantage of the ability to use this statistic is that it
is not necessary to estimate the model under the alternative hypothesis.

To demonstrate why the conventional distribution theory is still applicable,
we describe the analysis in Luukkonen, Saikkonen and Teräsvirta (1988). Con-
sider again the STAR model as given in (3.6), and rewrite this as

yt = 1

2
(φ1 + φ2)

′xt + (φ2 − φ1)
′xtG∗(yt−1; γ, c)+ εt , (3.57)

whereG∗(yt−1; γ, c) = G(yt−1; γ, c)−1/2. Notice that under the null hypoth-
esis γ = 0, G∗(yt−1, 0, c) = 0. Luukkonen, Saikkonen and Teräsvirta (1988)
suggest approximating the function G∗(yt−1, γ, c) with a first-order Taylor
approximation around γ = 0, that is,

T1(yt−1; γ, c) ≈ G∗(yt−1; 0, c)+ γ ∂G
∗(yt−1; γ, c)
∂γ

∣∣∣∣
γ=0

= 1

4
γ (yt−1 − c), (3.58)

where we have used the fact that G∗(yt−1; 0, c) = 0. After substituting T1(·)
for G∗

1(·) in (3.57) and rearranging terms this gives the auxiliary regression
model

yt = β0,0 + β ′
0x̃t + β ′

1x̃t yt−1 + ηt , (3.59)

where x̃t = (yt−1, . . . , yt−p)′ and βj = (β1,j , . . . , βp,j )
′, j = 0, 1. The

relationships between the parameters in the auxiliary regression model (3.59)
and the parameters in the STAR model (3.57) can be shown to be

β0,0 = (φ0,1 + φ0,2)/2 − 1

4
γ c(φ0,2 − φ0,1), (3.60)

β1,0 = (φ1,1 + φ1,2)/2 − 1

4
γ (c(φ1,2 − φ1,1)− (φ0,2 − φ0,1)),

(3.61)

βi,0 = (φi,1 + φi,2)/2 − 1

4
γ c(φi,2 − φi,1), i = 2, . . . , p, (3.62)

βi,1 = 1

4
γ c(φi,2 − φi,1), i = 1, . . . , p. (3.63)
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The above equations demonstrate that the restriction γ = 0 implies βi,1 = 0 for
i = 1, . . . , p. Hence testing the null hypothesis H ′

0 : γ = 0 in (3.57) is equiv-
alent to testing the null hypothesis H ′′

0 : β1 = 0 in (3.59). This null hypothesis
can be tested by a standard variable addition test-statistic in a straightforward
manner. Under the null hypothesis of linearity, the test-statistic has a χ2 distri-
bution with p degrees of freedom asymptotically. As the statistic does not test
the original null hypothesisH ′

0 : γ = 0 but rather the auxiliary null hypothesis
H ′′

0 : β1 = 0, this test is usually referred to as an LM-type-statistic.
The test-statistic described above can also be developed from first principles

as a genuine LM-statistic (see Granger and Teräsvirta, 1993, pp. 71–2). It can
be shown that the statistic is in fact the supremum of the pointwise-statistics for
fixed φ2 − φ1 and c and, hence, is similar in spirit to the test-statistic against
the SETAR alternative discussed in the previous subsection.

As noted by Luukkonen, Saikkonen and Teräsvirta (1988), the above test-
statistic does not have power in situations where only the intercept is different
across regimes – that is, whenφ0,1 �= φ0,2 butφi,1 = φi,2 for i = 1, . . . , p. This
is seen immediately from (3.63) which shows that none of theβi,1, i = 1, . . . , p
parameters depends on φ0,2 and/or φ0,1. Luukkonen, Saikkonen and Teräsvirta
(1988) suggest remedying this deficiency by replacing the transition function
G∗(yt−1; γ, c) by a third-order Taylor approximation instead, that is,

T3(yt−1; γ, c) ≈ γ ∂G
∗(yt−1; γ, c)
∂γ

∣∣∣∣
γ=0

+ 1

6
γ 3 ∂

3G∗(yt−1; γ, c)
∂γ 3

∣∣∣∣∣
γ=0

= 1

4
γ (yt−1 − c)+ 1

48
γ 3(yt−1 − c)3, (3.64)

where we have used the fact the second derivative ofG∗(yt−1; γ, c)with respect
to γ evaluated at γ = 0 equals zero. Using this approximation yields the
auxiliary model

yt = β0,0 + β ′
0x̃t + β ′

1x̃t yt−1 + β ′
2x̃t y

2
t−1 + β ′

3x̃t y
3
t−1 + ηt , (3.65)

where β0,0 and the βj , j = 1, 2, 3, again are functions of the parameters
φ1, φ2, γ and c. Inspection of the exact relationships demonstrates that the null
hypothesis H ′

0 : γ = 0 now corresponds to H ′′
0 : β1 = β2 = β3 = 0, which

again can be tested by a standard LM-type test. Under the null hypothesis of
linearity, the test-statistic has a χ2 distribution with 3p degrees of freedom
asymptotically.

In small samples, the usual recommendation is to use F -versions of the LM-
test-statistics, as these have better size and power properties. The F -version of
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the test-statistic based on (3.65) can be computed as follows:
1. estimate the model under the null hypothesis of linearity by regressing yt

on xt . Compute the residuals ε̃t and the sum of squared residuals SSR0 =∑n
t=1 ε̃

2
t

2. estimate the auxiliary regression of ε̃t on xt and x̃t y
j
t−1, j = 1, 2, 3, and

compute the sum of squared residuals from this regression SSR1
3. the LM test-statistic can be computed as

LM = (SSR0 − SSR1)/3p

SSR1/(n− 4p − 1)
, (3.66)

and is approximately F -distributed with 3p and n − 4p − 1 degrees of
freedom under the null hypothesis.

Choosing the transition variable
Teräsvirta (1994) suggests that the LM-type test (3.66) can also be

used to select the appropriate transition variable in the STAR model. The statis-
tic is computed for several candidate transition variables and the one for which
the p-value of the test is smallest is selected as the true transition variable. The
rationale behind this procedure is that the test should have maximum power
if the alternative model is correctly specified – that is, if the correct transi-
tion variable is used. Simulation results in Teräsvirta (1994) suggest that this
approach works quite well, at least in a univariate setting.

3.3.3 Testing the Markov-Switching model

When assessing the relevance of the MSW model, a natural approach
is to use a Likelihood Ratio (LR)-statistic, which tests the null hypothesis of
linearity against the alternative of a MSW model – that is, H0 : φ1 = φ2 is
tested by means of the test-statistic

LRMSW =�MSW − �AR, (3.67)

where �MSW and �AR are the values of the log likelihood functions correspond-
ing to the MSW and AR models, respectively. As noted in the introduction
to this section, the parameters p11 and p22 defining the transition probabil-
ities in the MSW model are unidentified nuisance parameters under the null
hypothesis. As shown by Hansen (1992), the LR-statistic (3.67) has a nonstan-
dard distribution which cannot be characterized analytically. Critical values to
determine the significance of the test-statistic therefore have to be determined
by means of simulation. The basic structure of such a simulation experiment is
that one generates a large number of artificial time series y∗

t according to the
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model that holds under the null hypothesis. Next, one estimates both AR and
MSW models for each artificial time series and computes the corresponding
LR-statistic LR∗

MSW according to (3.67). These test-statistics might be used to
obtain an estimate of the complete distribution of the test-statistic under the
null hypothesis, or simply to compute the p-value of the LR-statistic for the
true time series, which is given by the fraction of artificial samples for which
LR∗

MSW exceeds the observed LRMSW . Given that the estimation of the MSW
model can be rather time-consuming, this procedure demands a considerable
amount of computing time.

3.3.4 Outliers and tests for nonlinearity

A consequence of the presence of additive outliers (AOs) is that they
affect diagnostic statistics which one might want to use prior to estimating a
nonlinear model. van Dijk, Franses and Lucas (1999a) analyse the properties
of the tests against STAR nonlinearity discussed in subsection 3.3.2 in the pres-
ence of AOs. It is shown that in the case of a linear process with some AOs
the tests for STAR nonlinearity tend to reject the correct null hypothesis of
linearity too often, even asymptotically. van Dijk, Franses and Lucas (1999a)
suggest using outlier-robust estimation techniques, as discussed in section 2.5
to estimate the model under the null hypothesis as a solution to this problem. In
addition to rendering better estimates of the model under the null hypothesis,
robust estimation procedures allow us to construct test-statistics that are robust
to outliers. As shown by van Dijk, Franses and Lucas (1999a), a robust equiv-
alent to test H ′′

0 : β1 = β2 = β3 = 0 in (3.65) is nR2, using the R2 from the
regression of the weighted residuals ψ̂(r̂t ) = ŵr (r̂t )r̂t on the weighted regres-
sors ŵy(xt )� (xt x̃t yt−1 x̃t y

2
t−1 x̃t y

3
t−1)

′. The weights ŵr (r̂t ) and ŵy(xt ) are
obtained from GM estimation of the AR(p) model, analogous to (2.121). The
resulting LM-type-statistic has an asymptotic χ2 distribution with 3p degrees
of freedom. An outlier-robust equivalent of the F -version (3.66) can also be
computed straightforwardly.

3.3.5 Heteroscedasticity and tests for nonlinearity

Neglected heteroscedasticity may also lead to spurious rejection of
the null hypothesis of linearity. Intuitively, this can be understood from the
auxiliary model (3.65), for example. Davidson and MacKinnon (1985) and
Wooldridge (1990, 1991) have developed specification tests that can be used in
the presence of heteroscedasticity, without the need to specify the form of the
heteroscedasticity (which often is unknown). Their procedures may be read-
ily applied to robustify linearity tests (see also Granger and Teräsvirta, 1993,
pp. 69–70; Hansen, 1996).
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For example, a heteroscedasticity-consistent (HCC) variant of the LM-type
test-statistic against STAR based upon (3.65) can be computed as follows:
1. regress yt on xt and obtain the residuals ût
2. regress the auxiliary regressors x̃t y

j
t−1, j = 1, 2, 3, on xt and compute the

residuals r̂t
3. weight the residuals r̂t from the regression in (2) with the residuals ût

obtained in (1) and regress 1 on ût r̂t ; the explained sum of squares from
this regression is the LM-type-statistic.

Similar procedures can be used to compute HCC tests against the SETAR alter-
native (see Hansen, 1997; Wong and Li, 1997) and the MSW alternative.

Example 3.1: Dutch guilder Table 3.5 contains p-values for the
heteroscedasticity-robust variant of the test of linearity against a 2-regime
SETAR alternative applied to the weekly returns on the Dutch guilder exchange
rate. We consider the same threshold variables and autoregressive orders as
before. The null hypothesis can be rejected at conventional significance levels
for several combinations of p and qt . The smallest p-values are achieved where
the threshold variable is the average volatility during the past four weeks vt−1,4
and p = 1 and 2. This confirms the choices made in the previous section.

Table 3.6 contains p-values of the LM-type test against STAR nonlinearity,
based on an AR(2) model. We give p-values for the standard, outlier-robust
and heteroscedasticity-consistent variants to highlight the differences that can
occur. For example, where yt−d is considered as the transition variable, one
might be inclined to reject the null hypothesis of linearity for d = 1, 2, 3, based

Table 3.5 p-values for HCC test of linearity against a SETAR alternative for weekly
returns on the Dutch guilder exchange rate

p
Threshold
variable 0 1 2 3 4 5

yt−1 0.698 0.315 0.685 0.696 0.918 0.908
yt−2 0.131 0.201 0.871 0.969 0.933 0.584
yt−3 0.592 0.376 0.706 0.137 0.378 0.430
yt−4 0.060 0.147 0.337 0.373 0.819 0.776
vt−1,1 0.301 0.544 0.437 0.224 0.443 0.549
vt−1,2 0.330 0.062 0.223 0.049 0.066 0.098
vt−1,3 0.571 0.090 0.075 0.059 0.128 0.139
vt−1,4 0.090 0.004 0.015 0.027 0.086 0.021

Note: p-values of HCC test of linearity against 2-regime SETAR alternative for weekly
returns on the Dutch guilder exchange rate vis-à-vis the US dollar.
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Table 3.6 p-values of LM-type test for STAR nonlinearity for
weekly returns on the Dutch guilder exchange rate

Transition
variable LS HCC GM

yt−1 0.079 0.192 0.248
yt−2 0.097 0.253 0.976
yt−3 0.099 0.496 0.601
yt−4 0.293 0.525 0.253
vt−1,1 0.313 0.403 0.204
vt−1,2 0.075 0.103 0.046
vt−1,3 0.008 0.013 0.006
vt−1,4 0.002 0.003 0.001

Notes: The LM-type test is based on an AR(2) model.
LS, HCC and GM denote the standard, HCC (Wooldridge method)
and outlier-robust variants of the test, respectively.

on the outcomes of the standard test, given that the p-values are smaller than
0.10. The p-values for the GM and HCC test, on the other hand, are much
higher, and suggest that the evidence for nonlinearity is spurious, and might be
caused either by the presence of outliers or heteroscedasticity. For other choices
of transition variables, notably for vt−1,4, the p-values for all variants of the
test are very small. On the basis of the minimum p-value rule discussed at the
end of subsection 3.3.2, we select vt−1,4 as the appropriate transition variable
in the STAR model (which is not really surprising given the earlier estimation
results for the SETAR model).

After estimating a 2-regime STAR model with an AR(2) model in both
regimes, it turns out that the autoregressive parameters in the regime corre-
sponding to G(vt−1,4; γ, c) = 1 are not significant, similar to the findings
for the SETAR model reported in table 3.3. Consequently, the model is re-
estimated after deleting those insignificant parameters. The final estimates of
the model are given in table 3.7. Standard errors for the smoothness parameter
γ are not given, for reasons discussed in subsection 3.2.2. The transition func-
tion G(vt−1,4; γ̂ , ĉ) is graphed in figure 3.7, both over time and against the
transition variable vt−1,4. As suggested by the small magnitude of the point
estimate of γ , the transition from one regime to the other is seen to be rather
smooth.

Example 3.3: Tokyo stock index We also apply the STAR modelling proce-
dure to absolute values of weekly percentage returns on the Tokyo stock index.
The sample period is January 1988–December 1993. It turns out that we can
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Table 3.7 Parameter estimates for a STAR model for weekly
returns on the Dutch guilder exchange rate

Variable Estimate LS st. err. HCC st. err.

Lower regime (G(vt−1,4; γ̂ , ĉ) = 0)
Constant 0.060 0.101 0.091
yt−1 0.287 0.107 0.093
yt−2 0.213 0.100 0.094

Upper regime (G(vt−1,4; γ̂ , ĉ) = 1)
Constant −0.180 0.131 0.155
ĉ 1.355 0.152 0.153
γ̂ 4.316

set p = 2 in the AR model that is used as the model under the null hypoth-
esis of linearity. The p-values for the LM-type tests for linearity are given in
table 3.8. Comparing these values, we are again tempted to select vt−1,4 as the
transition variable. The parameter estimates of the resultant model are given
in table 3.9. The large value of the estimate of the parameter γ suggests that
the transition from one regime to another occurs instantaneously at the esti-
mated threshold ĉ. This is confirmed by the graphs of the transition function in
figure 3.8.

3.4 Diagnostic checking

In this section we discuss several diagnostic tests which can be used to evalu-
ate estimated regime-switching models. First and foremost, one might subject
the residuals to a battery of diagnostic tests, comparable to the usual practice
in the Box–Jenkins approach in linear time series modelling, as described in
section 2.2. It turns out however, that not all the test-statistics that have been
developed in the context of ARMA models are applicable to the residuals from
nonlinear models as well. The test for normality of the residuals given in (2.54)
is an example of a test which remains valid, while the Ljung–Box test-statistic
(2.41) is an example of a test which does not (see Eitrheim and Teräsvirta,
1996). The LM approach to testing for serial correlation can still be used, how-
ever, as shown by Eitrheim and Teräsvirta (1996) and discussed in some detail
below.

3.4.1 Diagnostic tests for SETAR and STAR models

In this subsection we discuss three important diagnostic checks for
SETAR and STAR models, developed by Eitrheim and Teräsvirta (1996). Other
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Figure 3.7 Transition function in STAR model for weekly returns on the Dutch
guilder exchange rate; each dot in the graph in panel (b) represents an observation

methods for evaluating estimated SETAR models are discussed in Tong (1990,
section 5.6).

Testing for serial correlation
Consider the general nonlinear autoregressive model of order p,

yt = F(xt ; θ)+ εt , (3.68)

where xt = (1, yt−1, . . . , yt−p)′ as before and the skeletonF(xt ; θ) is a general
nonlinear function of the parameters θ which is at least twice continuously



110 Nonlinear time series models in empirical finance

Table 3.8 p-values of LM-type test for STAR nonlinearity
for weekly absolute returns on the Tokyo stock index

Transition
variable LS HCC GM

yt−1 0.592 0.794 0.256
yt−2 0.001 0.085 0.012
yt−3 0.098 0.184 0.033
yt−4 0.064 0.322 0.000
vt−1,1 0.347 0.338 0.549
vt−1,2 0.001 0.296 0.043
vt−1,3 0.028 0.132 0.074
vt−1,4 0.009 0.063 0.000

Notes: The LM-type test is based on an AR(2) model.
LS, HCC and GM denote the standard, HCC (Wooldridge
method) and outlier-robust variants of the test, respectively.

Table 3.9 Parameter estimates for a STAR model for
weekly absolute returns on the Tokyo stock index

Variable Estimate LS st. err. HCC st. err.

Lower regime (G(vt−1,4; γ̂ , ĉ) = 0)
Constant 1.319 0.237 0.163
yt−1 0.145 0.110 0.069
yt−2 −0.033 0.113 0.068

Upper regime (G(vt−1,4; γ̂ , ĉ) = 1)
Constant 2.695 0.459 0.600
yt−1 −0.027 0.071 0.097
yt−2 0.232 0.074 0.109
ĉ 2.406 0.038 0.020
γ̂ 500.0

differentiable. An LM test for qth order serial dependence in εt can be obtained
as nR2, where R2 is the coefficient of determination from the regression of
ε̂t on ẑt ≡ ∂F (xt ; θ̂ )/∂θ and q lagged residuals ε̂t−1, . . . , ε̂t−q , where hats
indicate that the relevant quantities are estimates under the null hypothesis of
serial independence of εt . The resulting test-statistic is χ2 distributed with q
degrees of freedom asymptotically.

This test-statistic is in fact a generalization of the LM test for serial cor-
relation in an AR(p) model of Breusch and Pagan (1979), which is based
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Figure 3.8 Transition function in STAR model for absolute weekly percentage returns
on Tokyo stock index; each dot in the graph in panel (b) represents an observation

on the auxiliary regression (2.42). To understand why, note that for a lin-
ear AR(p) model (without an intercept) F(xt ; θ) =∑p

i=1 φiyt−i and ẑt =
∂F (xt ; θ̂ )/∂θ = (yt−1, . . . , yt−p)′. In case of a STAR model, the skele-
ton is given by F(xt ; θ) = φ′

1xt (1 − G(yt−1; γ, c)) + φ′
2xtG(yt−1; γ, c).

Hence, in this case θ = (φ1, φ2, γ, c) and the relevant partial derivatives
ẑt = ∂F (xt ; θ̂ )/∂θ can be obtained in a straightforward manner (see Eitrheim
and Teräsvirta, 1996, for details).
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The nonlinear functionF(xt ; θ) needs to be twice continuously differentiable
for the above approach to be valid. The skeleton of the SETAR model does
not satisfy this requirement, as it is possibly discontinuous and in no case
differentiable at the threshold value (see the examples in figure 3.3). Therefore,
the LM-statistic for serial correlation cannot be applied to the residuals from
an estimated SETAR model. A possible way to circumvent this problem is
to approximate the SETAR model with a STAR model by setting γ equal to
some large but finite value. Recall that in this case the logistic function (3.4)
effectively becomes a step function which equals 0 for yt−1 < c and 1 for
yt−1 > c. Fixing γ at γ0, say, the remaining parameters in the STAR model
can again be estimated by NLS. When computing the test-statistic for residual
autocorrelation in this case, the partial derivative of the regression function with
respect to γ should be omitted from the auxiliary regression as this parameter
is kept fixed.

Testing for remaining nonlinearity
An important question when using nonlinear time series models is

whether the proposed model adequately captures all nonlinear features of the
time series under investigation. One possible way to examine this is to apply
a test for remaining nonlinearity to an estimated model. For the SETAR and
STAR models, a natural approach is to specify the alternative hypothesis of
remaining nonlinearity as the presence of an additional regime. For example,
one might want to test the null hypothesis that a 2-regime model is adequate
against the alternative that a third regime is necessary.

It turns out that only for the STAR model an LM test is available which allows
us to test this hypothesis without the necessity to estimate the more complicated
model. For the SETAR model, testing for remaining nonlinearity necessarily
involves estimating the multiple-regime model. In fact, this is analogous to the
situation of testing linearity against a 2-regime model, compare the discussion
in the introduction to section 3.3.

For the SETAR model, one can essentially apply the methodology described
in subsection 3.3.1 to each of the two subsamples defined by the estimated
threshold ĉ – that is, test linearity against the alternative of a 2-regime SETAR
model on the subsamples for which yt−1 ≤ ĉ and yt−1 > ĉ by using the
test-statistic (3.55). Recall that computing the test involves estimating the
2-regime model under the alternative. Hence, it appears that where the statis-
tics indicate the presence of an additional regime, estimates of the 3-regime
model are readily available by combining the original estimation results for the
2-regime SETAR model with those for the 2-regime model on the subsample
for which linearity is rejected. However, in case the true model is indeed a
3-regime model, it can be shown that while the estimate of the second threshold
ĉ2, say, is consistent, the estimate of the first threshold ĉ1 ≡ ĉ is not. To obtain a



Regime-switching models for returns 113

consistent estimate of the first threshold as well, it is necessary to perform a so-
called ‘repartitioning step’, in which a 2-regime SETAR model is estimated on
the subsample defined by yt−1 ≤ ĉ2 if ĉ1 < ĉ2 and on the subsample defined
by yt−1 > ĉ2 if ĉ1 > ĉ2. See Bai (1997) and Bai and Perron (1998) for an
application of this idea in the context of testing for multiple structural breaks
in time series.

Eitrheim and Teräsvirta (1996) develop an LM-statistic to test a 2-regime
STAR model against the alternative of an additive 3-regime model which can
be written as,

yt = φ′
1xt + (φ2 − φ1)

′xtG1(yt−1; γ1, c1)

+ (φ3 − φ2)
′xtG2(yt−1; γ2, c2)+ εt , (3.69)

where xt = (1, x̃′
t )

′, x̃t = (yt−1, . . . , yt−p)′, where both G1 and G2 are given
by (3.4) and where we assume c1 < c2 without loss of generality. The null
hypothesis of a 2-regime model can be expressed as H0 : γ2 = 0. This testing
problem suffers from similar identification problems as the problem of testing
the null hypothesis of linearity against the alternative of a 2-regime STAR
model discussed in subsection 3.3.2. The solution here is the same as well.
The transition functionG2(yt−1; γ2, c2) is replaced by a Taylor approximation
around the point γ2 = 0. In case of a third-order approximation, the resulting
auxiliary model is given by

yt = β ′
0xt + (φ2 − φ1)

′xtG1(yt−1; γ1, c1)

+ β ′
1x̃t yt−1 + β ′

2x̃t y
2
t−1 + β ′

3x̃t y
3
t−1 + ηt , (3.70)

where the βj , j = 0, 1, 2, 3, are functions of the parameters φ1, φ3, γ2 and
c2. The null hypothesis H0 : γ2 = 0 in (3.69) translates into H ′

0 : β1 = β2 =
β3 = 0 in (3.70). The test-statistic can be computed as nR2 from the auxiliary
regression of the residuals obtained from estimating the model under the null
hypothesis ε̂t on the partial derivates of the regression function with respect to
the parameters in the 2-regime model, φ1, φ2, γ1 and c1, evaluated under the
null hypothesis, and the auxiliary regressors x̃t y

j
t−1, j = 1, 2, 3. The resulting

test-statistic has an asymptotic χ2 distribution with 3p degrees of freedom. For
more details we again refer to Eitrheim and Teräsvirta (1996).

In the above, it has been implicitly assumed that the additional regime is
determined by the same variable (yt−1 in our case) as the original two regimes.
As discussed previously, one might also consider situations where the regimes
are determined by several variables – for example, yt−1 and yt−2. For the STAR
model, the null hypothesis of a 2-regime model can be tested against the alterna-
tive of the 4-regime model (3.14) by testingH0 : γ2 = 0. The LM test-statistic
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derived by van Dijk and Franses (1999) is similar to the LM-type-statistic
for testing against a 3-regime alternative discussed above. Starting from the
model given in (3.14), the second transition function G2(yt−2; γ2, c2) is
again replaced by a third-order Taylor approximation to render the auxiliary
regression

yt = β ′
0xt + (φ2 − φ1)

′xtG1(yt−1; γ1, c1)

+ β ′
1x̃t yt−2 + β ′

2x̃t y
2
t−2 + β ′

3x̃t y
3
t−2

+ β ′
4x̃tG1(yt−1; γ1, c1)yt−2 + β ′

5x̃tG1(yt−1; γ1, c1)y
2
t−2

+ β ′
6x̃tG1(yt−1; γ1, c1)y

3
t−2 + ηt . (3.71)

The null hypothesisH0 : γ2 = 0 in (3.14) now becomes intoH ′
0 : βj = 0, j =

1, . . . , 6 which can be tested in exactly the same way as outlined before.

Testing parameter constancy
An interesting special case of the multiple-regime model (3.14) arises

if the transition variable in the second transition function G2 is not taken to be
yt−2 but time t instead. This gives rise to a so-called Time-Varying STAR
model, which allows for both nonlinear dynamics of the STAR-type and
time-varying parameters. This model is discussed in detail in Lundbergh,
Teräsvirta and van Dijk (1999). The point of interest here is that by test-
ing the hypothesis γ2 = 0 in this case, one tests for parameter constancy in
the 2-regime STAR model (3.6), against the alternative of smoothly changing
parameters. Again this test can be adopted to test for parameter constancy in a
SETAR model by approximating it with a STAR model with γ1 fixed at a large
value.

Example 3.1: Dutch guilder To evaluate the estimated STAR model for the
weekly returns on the Dutch guilder exchange rate, we apply the diagnostic
tests for serial correlation, remaining nonlinearity and parameter constancy.
Table 3.10 contains p-values for the various test-statistics. These results sug-
gest that the model is adequate, in the sense that the p-values are such that
neither null hypothesis needs to be rejected.

Example 3.3: Tokyo stock index The estimated STAR model for absolute
weekly returns on the Tokyo stock index is evaluated in a similar manner.
Table 3.11 contains p-values for the various diagnostic tests. Again the results
do not suggest any serious misspecification of the model.
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Table 3.10 Diagnostic tests of a STAR model estimated for
weekly returns on the Dutch guilder exchange rate

Tests for qth-order serial correlation

q 4 8 12
p-value 0.436 0.175 0.169

Tests for parameter constancy
LMC1 LMC2 LMC3

p-value 0.411 0.436 0.121

Tests for remaining nonlinearity
Tr. var. LMET LMVDF

yt−1 0.299 0.614
yt−2 0.199 0.399
yt−3 0.301 0.475
yt−4 0.646 0.732
vt−1,1 0.781 0.169
vt−1,2 0.652 0.702
vt−1,3 0.596 0.612
vt−1,4 0.522 0.371

Notes: LMCi , i = 1, 2, 3, denote the LM-type test for para-
meter constancy based on an ith-order Taylor approximation
of the transition function.
LMET and LMVDF denote the tests for no remaining non-
linearity based upon (3.70) and (3.71), respectively.

3.4.2 Diagnostic tests for Markov-Switching models

Diagnostic checking of estimated Markov-Switching models has been
dealt with by Hamilton (1996). He develops tests for residual autocorrelation,
heteroscedasticity, misspecification of the Markov-process st , and omitted
explanatory variables. The tests are LM-type tests, and thus have the attrac-
tive property that their computation only requires estimation of the model
under the null hypothesis. The tests make heavy use of the score ht (θ),
which is defined as the derivative of the log of the conditional density (or
likelihood) f (yt |�t−1; θ), given in (3.39), with respect to the parameter
vector θ ,

ht (θ) ≡ ∂ ln f (yt |�t−1; θ)
∂θ

. (3.72)
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Table 3.11 Diagnostic tests of a STAR model estimated
for absolute weekly returns on the Tokyo stock index

Tests for qth-order serial correlation

q 4 8 12
p-value 0.382 0.222 0.219

Tests for parameter constancy
LMC1 LMC2 LMC3

p-value 0.142 0.116 0.159

Tests for remaining nonlinearity
Tr. var. LMET LMVDF

yt−1 0.359 0.209
yt−2 0.017 0.177
yt−3 0.332 0.341
yt−4 0.463 0.822
vt−1,1 0.359 0.209
vt−1,2 0.128 0.945
vt−1,3 0.851 0.852
vt−1,4 0.765 0.796

Notes: LMCi, i = 1, 2, 3, denote the LM-type test
for parameter constancy based on an ith-order Taylor
approximation of the transition function.
LMET and LMVDF denote the tests for no remaining non-
linearity based upon (3.70) and (3.71), respectively.

For example, for the 2-regime MSW model in (3.36) it can be shown that

∂ ln f (yt |�t−1; θ)
∂φj

= 1

σ 2
(yt − φ′

j xt )xt · P(st = j |�t)

+ 1

σ 2

t−1∑
τ= 2

(yτ − φ′
j xτ )xτ · (P (sτ = j |�t ; θ)

− P(sτ = j |�t−1; θ)), (3.73)

for j = 1, 2. Hamilton (1996) describes an algorithm to compute the change in
the inference concerning the state the process was in at time τ that is brought
about by the addition of yt ,P(sτ = j |�t ; θ)−P(sτ = j |�t−1; θ). The remain-
ing elements of the score in (3.73) can be computed directly after estimation
of the model. The same holds for the score with respect to the parameters p11
and p22, which determine the transition probabilities of the Markov-process st
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(see Hamilton, 1996, eq. (3.12)). By construction, the score evaluated at the
ML estimates θ̂ has sample mean zero,

∑n
t=1 ht (θ̂) = 0.

One of the possible uses of the conditional scores is to construct standard
errors for the ML estimates of θ . To be precise, standard errors are obtained as
the square roots of the diagonal elements of the inverse of the outer product of
the scores,

n∑
t=1

ht (θ̂)ht (θ̂ )
′. (3.74)

Another use of the scores is to construct LM-statistics. For example, suppose
we want to test that some variables zt have been omitted from the 2-regime
MSW model – that is, we want to test (3.37) against the alternative

yt = φ0,st + φ1,st yt−1 + · · · + φp,st yt−p + δ′zt + εt . (3.75)

The score with respect to δ, evaluated under the null hypothesis H0 : δ = 0 is
equal to

∂ ln f (yt |�t−1; θ)
∂δ

∣∣∣∣
δ=0

=
2∑
j=1

(yt − φ̂′
j xt )zt · P(st = j |�n; θ̂ ),

(3.76)

where θ̂ are ML estimates of the parameter vector θ ′ = (φ′
1, φ2, p11, p22, δ)

under the null hypothesis. The LM test-statistic to test H0 is given by

n

(
1

n

n∑
t=1

ht (θ̂)

)′ (
1

n

n∑
t=1

ht (θ̂)ht (θ̂ )
′
)−1 (

1

n

n∑
t=1

ht (θ̂)

)
, (3.77)

and has an asymptotic χ2 distribution with degrees of freedom equal to the
number of variables in zt .

3.5 Forecasting

Nonlinear time series models may be considered for various purposes. Some-
times the main objective is merely obtaining an adequate description of the
dynamic patterns that are present in a particular variable. Very often, however,
an additional goal is to employ the model for forecasting future values of the
time series. Furthermore, out-of-sample forecasting can also be considered as a
way to evaluate estimated regime-switching models. In particular, comparison
of the forecasts from nonlinear models with those from a benchmark linear
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model might enable one to determine the added value of the nonlinear features
of the model. In this section we discuss several ways to obtain point and interval
forecasts from nonlinear models. This is followed by some remarks on how to
evaluate forecasts from nonlinear models, and on how to compare forecasts
from linear and nonlinear models.

Point forecasts
Computing point forecasts from nonlinear models is considerably

more involved than computing forecasts from linear models. Consider the
case where yt is described by the general nonlinear autoregressive model of
order 1,

yt = F(yt−1; θ)+ εt , (3.78)

for some nonlinear function F(yt−1; θ). When using a least squares criterion,
the optimal point forecasts of future values of the time series are given by
their conditional expectations, as discussed in section 2.2. That is, the optimal
h-step-ahead forecast of yt+h at time t is given by

ŷt+h|t = E[yt+h|�t ], (3.79)

where �t again denotes the history of the time series up to and including the
observation at time t . Using (3.78) and the fact that E[εt+1|�t ] = 0, the optimal
1-step-ahead forecast is easily obtained as

ŷt+1|t = E[yt+1|�t ] = F(yt ; θ), (3.80)

which is equivalent to the optimal 1-step-ahead forecast where the model
F(yt−1; θ) is linear.

When the forecast horizon is longer than 1 period, things become more
complicated, however. For example, the optimal 2-step-ahead forecast follows
from (3.79) and (3.78) as

ŷt+2|t = E[yt+2|�t ] = E[F(yt+1; θ)|�t ]. (3.81)

In general, the linear conditional expectation operator E cannot be interchanged
with the nonlinear operator F , that is

E[F(·)] �= F(E[·]).
Put differently, the expected value of a nonlinear function is not equal to the
function evaluated at the expected value of its argument. Hence,

E[F(yt+1; θ)|�t ] �= F(E[yt+1|�t ]; θ) = F(ŷt+1|t ; θ). (3.82)
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Rather, the relation between the 1- and 2-step-ahead forecasts is given by

ŷt+2|t = E[F(F(yt ; θ)+ εt+1; θ)|�t ]
= E[F(ŷt+1|t + εt+1; θ)|�t ].

(3.83)

The above demonstrates that a simple recursive relationship between forecasts at
different horizons, which could be used to obtain multiple-step-ahead forecasts
in an easy fashion analogous to (2.68) for the AR(1) model, does not exist for
nonlinear models in general. Of course, a 2-step-ahead forecast might still be
constructed as

ŷ
(n)
t+2|t = F(ŷt+1|t ; θ). (3.84)

Brown and Mariano (1989) show that this ‘naı̈ve’ approach, which takes its
name from the fact that it effectively boils down to setting εt+1 = 0 in (3.83)
(or interchanging E and F in (3.81)), renders biased forecasts. Over the years,
several methods have been developed to obtain more adequate multiple-step-
ahead forecasts, some of which are discussed below.

First, one might attempt to obtain the conditional expectation (3.83) directly
by computing

ŷ
(c)
t+2|t =

∫ ∞

−∞
F(ŷt+1|t + ε; θ)f (ε) dε, (3.85)

where f denotes the density of εt . Brown and Mariano (1989) refer to this
forecast as the closed-form forecast – hence the superscript (c). An alternative
way to express this integral follows from (3.81) as

ŷ
(c)
t+2|t =

∫ ∞

−∞
F(yt+1; θ)g(yt+1|�t) dyt+1

=
∫ ∞

−∞
E[yt+2|yt+1]g(yt+1|�t) dyt+1, (3.86)

where g(yt+1|�t) is the distribution of yt+1 conditional upon �t . This con-
ditional distribution is in fact equal to the distribution f (·) of the shock εt+1
with mean equal to F(yt ; θ) – that is, g(yt+1|�t) = f (yt+1 −F(yt ; θ)). As an
analytic expression for the integral (3.85) (or (3.86)) is not available in general,
it needs to be approximated using numerical integration techniques. An addi-
tional complication is the fact that the distribution of εt is never known with
certainty. Usual practice is to assume normality of εt .

The closed-form forecast becomes quite tedious to compute for forecasts
more than 2 periods ahead. To see why, consider the Chapman–Kolgomorov
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relation

g(yt+h|�t) =
∫ ∞

−∞
g(yt+h|yt+h−1)g(yt+h−1|�t) dyt+h−1, (3.87)

where g(yt+h|yt+h−1) is the conditional distribution of yt+h conditional upon
yt+h−1. By taking conditional expectations on both sides of (3.87) it follows that

E[yt+h|�t ] =
∫ ∞

−∞
E[yt+h|yt+h−1]g(yt+h−1|�t) dyt+h−1, (3.88)

which can be recognized as a generalization of (3.86). In order to evaluate this
integral to obtain the h-step-ahead exact forecast, one needs the conditional
distribution g(yt+h−1|�t). In principle, this distribution can be obtained recur-
sively from (3.87), by observing that g(yt+1|yt+h−1) is again equal to the distri-
bution of the shocks εt+1 with its mean shifted to F(yt+h−1; θ). The recursion
can be started for h = 2 by using the fact that g(yt+1|�t) = f (yt+1−F(yt ; θ))
as noted above. To obtain the conditional distribution g(yt+h−1|�t) for h > 2
involves repeated numerical integration, which may become rather time-
consuming, in particular if a large number of forecasts has to be made.

An alternative is to assume that the (h − 1)-step-ahead forecast error
et+h−1|t = yt+h−1 − ŷt+h−1|t is normally distributed with mean zero and
variance σ 2

h−1. In that case, g(yt+h−1|�t) is normal with mean equal to the
(h−1)-step-ahead forecast ŷt+h−1|t and variance σ 2

h−1. This so-called ‘normal
forecast error’ (NFE) method was developed by Pemberton (1987) for general
nonlinear autoregressive models, and applied by Al-Qassam and Lane (1989) to
exponential autoregressive models (which are closely related to STAR models)
and by de Gooijer and de Bruin (1998) to SETAR models. For the 2-regime
SETAR model (3.1), h-step-ahead NFE forecasts can be computed from the
recursion

ŷ
(nfe)
t+h|t = H(zt+h−1|t )(φ0,1 + φ1,1ŷt+h−1|t )

+H(−zt+h−1|t )(φ0,2 + φ1,2ŷt+h−1|t )
+ φ(zt+h−1|t )(φ1,2 − φ1,1)σh−1, (3.89)

where H(·) and φ(·) are the standard normal distribution and density, respec-
tively, σ 2

h−1 is the variance of the (h−1)-step-ahead forecast error et+h−1|t and
zt+h−1|t = (c− ŷt+h−1|t )/σh−1. Observe that (3.89) is essentially a weighted
average of the optimal forecasts from the two regimes, with weights equal to the
probability of being in the particular regime at time t + h− 1 under normality,
plus an additional correction factor. A similar recursion for the variance of the
forecast error, σ 2

h , is also available (see de Gooijer and de Bruin, 1998).
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An alternative approach to computing multiple-step-ahead forecasts is to use
Monte Carlo or bootstrap methods to approximate the conditional expectation
(3.83). The 2-step-ahead Monte Carlo forecast is given by

ŷ
(mc)
t+2|t = 1

k

k∑
i=1

F(ŷt+1|t + εi; θ), (3.90)

where k is some large number and the εi are drawn from the presumed distri-
bution of εt+1. The bootstrap forecast is very similar, the only difference being
that the residuals from the estimated model, ε̂t , t = 1, . . . , n are used,

ŷ
(b)
t+2|t = 1

k

k∑
i=1

F(ŷt+1|t + ε̂i; θ). (3.91)

The advantage of the bootstrap over the Monte Carlo method is that no assump-
tions need to be made about the distribution of εt+1.

Lin and Granger (1994) and Clements and Smith (1997) compare various
methods to obtain multiple-step-ahead forecasts for STAR and SETAR models,
respectively. Their main findings are that the Monte Carlo and bootstrap meth-
ods compare favourably to the other methods.

An attractive feature of the Markov-Switching model is the relative ease with
which analytic expressions for multiple-step-ahead forecasts can be obtained.
The essential thing to note is that the forecast of the future value of the time
series, yt+h, can be decomposed into a forecast of yt+h conditional upon the
regime that will be realized at t+h, st+h, and a forecast of the probabilities with
which each of the regimes will occur at t + h. For example, the 1-step-ahead
forecast for the two-state MSW model given in (3.15) can be written as

ŷt+1|t = E[yt+1|st+1 = 1, �t ] · P(st+1 = 1|�t ; θ)
× E[yt+1|st+1 = 2, �t ] · P(st+1 = 2|�t ; θ). (3.92)

The forecasts of yt+1 conditional upon the regime at t + 1 follow directly from
(3.15) as

E[yt+1|st+1 = j,�t ] = φ0,j + φ1,j yt ,

whereas P(st+1 = j |�t ; θ)j = 1, 2 are given by the optimal forecasts of
the regime probabilities ξ̂t+1|t , which can be obtained from (3.42) and (3.43).
Multiple-step-ahead forecasts can be computed in a similar way (see Tjøstheim,
1986; Hamilton, 1989, for details).

Interval forecasts
In addition to point forecasts one may also be interested in confidence

intervals for these point forecasts. As discussed in section 2.2, for forecasts



122 Nonlinear time series models in empirical finance

obtained from linear models, the usual forecast confidence region is taken to be
an interval symmetric around the point forecast. This is based upon the fact that
the conditional distribution g(yt+h|�t) of a linear time series is normal (under
the assumption of normally distributed innovations) with mean ŷt+h|t .

For nonlinear models this is not the case. In fact, the conditional distribution
can be asymmetric and even contain multiple modes. Whether a symmetric
interval around the mean is the most appropriate forecast confidence region
in this case can be questioned. This topic is discussed in detail in Hyndman
(1995). He argues that there are three methods to construct a 100(1 − α)%
forecast region:

1. An interval symmetric around the mean, that is,

Sα = (ŷt+h|t − w, ŷt+h|t + w),
where w is such that P(yt+h ∈ Sα|�t) = 1 − α.

2. The interval between the α/2 and (1 − α/2) quantiles of the forecast distri-
bution, denoted qα/2 and q1−α/2, respectively,

Qα = (qα/2, q1−α/2).

3. The highest-density region (HDR), that is

HDRα = {yt+h|g(yt+h|�t) ≥ gα}, (3.93)

where gα is such that P(yt+h ∈ HDRα|�t) = 1 − α.

For symmetric and unimodal distributions, these three regions are identical. For
asymmetric or multimodal distributions they are not. Hyndman (1995) argues
that the HDR is the most natural choice. The reasons for this claim are that first,
HDRα is the smallest of all possible 100(1−α)% forecast regions and, second,
every point inside the HDR has conditional density g(yt+h|�t) at least as
large as every point outside the region. Furthermore, only the HDR will reveal
features such as asymmetry or multimodality of the conditional distribution
g(yt+h|�t).

HDRs are straightforward to compute when the Monte Carlo or boot-
strap methods described previously are used to compute the point forecast
ŷt+h|t . Let yit+h|t , i = 1, . . . , k, denote the ith element used in comput-
ing the Monte Carlo forecast (3.90) or bootstrap forecast (3.90) – that is,
yit+h|t = F(yt+h−1|t + εi; θ) or yit+h|t = F(yt+h−1|t + ε̂i; θ). Note that the
yit+h|t can be thought of as being realizations drawn from the conditional dis-
tribution of interest g(yt+h|�t). Estimates gi ≡ g(yit+h|t |�t), i = 1, . . . , k,
can then can be obtained by using a standard kernel density estimator, that is

gi = 1

k

k∑
j=1

K
([
yit+h|t − yjt+h|t

]
/b
)
, (3.94)
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Figure 3.9 2-step-ahead conditional distributions for the SETAR model (3.1), with
φ0,1 = 0.3, φ1,1 = −0.5, φ0,2 = −0.1, φ1,2 = 0.5, c = 0 and εt ∼ NID(0, 0.1252),
together with confidence regions for the 2-step-ahead forecast

where K(·) is a kernel function such as the Gaussian density and b > 0 is the
bandwidth. An estimate of gα in (3.93) is given by ĝα = g(�αk�), where g(i)
are the ordered gi and �·� denotes integer part. See Hyndman (1995) for more
details and some suggestions about the display of HDRs.

As an example, consider again the SETAR model (3.1), with φ0,1 = 0.3,
φ1,1 = −0.5, φ0,2 = −0.1 and φ1,2 = 0.5 and εt ∼ N(0, 0.1252). Notice that
the variance of εt has been reduced compared to previous examples. Naturally,
this does not change the properties of the skeleton. Recall that this model has
a limit cycle consisting of three points, y∗

1 = 0.06667, y∗
2 = −0.06667 and

y∗
3 = 0.33333. The optimal 2-step-ahead forecast given yn = y∗

1 is equal
to E[yn+2|yn = y∗

1 ] = 0.238, which can be obtained using the recursive
NFE forecast (3.89), as this is identical to the exact forecast ahead for 2 steps
ahead where the errors are normally distributed. The corresponding 2-step-
ahead forecast error variance is equal to 0.2582. The conditional distribution
g(yn+2|y∗

1 ) is given in figure 3.9, and is seen to be bimodal. Intuitively, if
yn = y∗

1 , it is very likely that yn+2 will be close to y∗
3 as the time series iterates

among the three points of the limit cycle if no shocks occur. This corresponds
with the largest mode of the conditional distribution. There is, however, a small
probability that the time series will linger around either y∗

1 or y∗
2 , giving rise to

the smaller mode. The optimal point forecast ŷn+2|n is shown as a solid circle.
Below the conditional densities, 95 and 80 per cent confidence regions have

been drawn in the left and right panels, respectively. For the 95 per cent con-
fidence regions, the HDR is almost identical to the region Q0.05 based on the
quantiles of the conditional distribution. The interval symmetric around the
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point forecast, S0.05 is shifted somewhat to the right. Also shown is a region
N0.05, which is the confidence interval obtained when the conditional distri-
bution is assumed to be normal, and the confidence interval is constructed in
the usual manner as (ŷn+2|n − 1.96σ2, ŷn+2|n + 1.96σ2). Clearly, this renders
far too wide an interval this case, which has more than 95 per cent coverage.
The 80 per cent confidence region shown in the right panel demonstrates that
the HDR needs not be a continuous interval, but can consist of several disjoint
segments.

Evaluating forecasts
In general, the fact that a particular model describes the features of a

time series within the estimation sample better than other models is no guar-
antee that this model also renders better out-of-sample forecasts. Clements and
Hendry (1998) provide an in-depth analysis of forecasting with linear models
and discuss various reasons why a model with a superior in-sample fit may
nevertheless yield inferior out-of-sample forecasts. The above seems particu-
larly relevant for nonlinear time series models. It is found quite often that, even
though a nonlinear model appears to describe certain characteristics of the time
series at hand much better than a linear model, the forecasting performance
of the linear model is no worse than that of the nonlinear model (see Brooks,
1997, for specific examples in the context of high-frequency financial time series
and de Gooijer and Kumar, 1992, for a general review). Many reasons can be
brought up why this may be the case (see also Diebold and Nason, 1990). For
example, the nonlinearity may be spurious, in the sense that other features of
the time series, such as heteroscedasticity, structural breaks or outliers, suggest
the presence of nonlinearity (see also subsections 3.3.4 and 3.3.5). Even though
one might successfully estimate a nonlinear model for such a series, it is very
unlikely that this will result in improved forecasts.

Another cause for poor forecast performance of nonlinear models is that the
nonlinearity does not show up during the forecast period. In the case of regime-
switching models it might be that only one of the regimes is realized during
the entire forecast period. Hence, empirical forecasts do not always allow us to
assess the forecasting quality of the nonlinear model completely. A potential
solution to this problem of the absence of nonlinearity during the forecast period
is to perform a simulation experiment in which one uses an estimated regime-
switching model (or a set of models if the goal is to compare their forecasting
performance) to generate artificial time series and to perform an out-of-sample
forecasting exercise on each of those series. In this controlled environment one
can make sure that forecasts in each of the regimes are involved. See Clements
and Smith (1998, 1999) for an example of this approach.

The choice of evaluation criteria is also of importance. Even though tra-
ditional criteria such as the MSPE are applicable to forecasts from nonlinear
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models, they may not do justice to the nonlinear model. As noted by Tong
(1995), ‘how well we can forecast depends on where we are’. In the case of
regime-switching models for example, it might very well be that the forecasta-
bility of the time series is very different in different regimes. One might there-
fore evaluate the forecasts for each regime individually to investigate whether
the nonlinear model is particularly useful to obtain forecasts in a particular
regime or state (see Tiao and Tsay, 1994, and Clements and Smith, 1999).
A related point is made by Dacco and Satchell (1999), who demonstrate that
even if time series are generated according to a regime-switching process, the
MSPE of a linear model for such series can be smaller than the MSPE of the
true nonlinear model if there is a possibility of incorrectly predicting which
regime the process will be in. Finally, it should be noted that the issue of
evaluating forecasts from nonlinear time series models is a topic of much cur-
rent research, and that at the time of writing no conclusive results have been
obtained.

Example 3.1: Dutch guilder We examine the forecast performance of the
STAR model that was estimated for weekly returns on the Dutch guilder
exchange rate. Using the bootstrap method (3.91), we compute 1- to 5-step-
ahead forecasts from the STAR model for the years 1990–7. Tables 3.12 and
3.13 contain ratios of the MSPE and MedSPE criteria, relative to an AR(2)
model which is used as the benchmark linear model. Besides the ratios for all
forecasts jointly (rows ‘Overall’), table 3.12 also shows ratios for sets of fore-
cast origins which are constructed such that they correspond with the quintiles
of the distribution of the transition variable vt−1,4. Table 3.13 shows ratios for
the individual years in the forecast period.

Based upon the MSPE criterion, there is not much to be gained in terms
of out-of-sample forecasting by using the STAR model, as the MSPE ratios
in general are larger than 1. The MedSPE ratios suggest that occasionally the
nonlinear model renders superior forecasts, especially for 4 and 5 weeks ahead
when the transition variable is in the first, second or third quintile.

3.6 Impulse response functions

Another method to evaluate the properties of estimated regime-switching
models is to examine the effects of the shocks εt on the evolution of the time
series yt . Impulse response functions are a convenient tool to carry out such an
analysis.

As discussed in section 2.4, impulse response functions are meant to provide
a measure of the response of yt+h to an impulse δ at time t . The impulse response
measure that is commonly used in the analysis of linear models is defined as the
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Table 3.12 Forecast evaluation of a STAR model for weekly
returns on the Dutch guilder exchange rate

Forecast horizon

Quintile 1 2 3 4 5

MSPE
Overall 1.032 1.025 1.023 1.009 0.999
1st 1.073 1.034 1.014 1.019 1.006
2nd 1.078 1.048 1.025 0.999 1.024
3rd 1.087 1.077 1.028 0.995 1.000
4th 0.950 0.986 1.016 1.011 0.985
5th 1.018 1.016 1.027 1.015 0.996

MedSPE
Overall 0.985 1.099 1.056 1.090 1.043
1st 1.053 0.836 1.180 0.880 0.934
2nd 0.981 0.969 1.154 0.910 0.929
3rd 1.079 0.996 1.114 0.961 0.976
4th 0.732 1.084 1.019 1.173 0.927
5th 1.264 1.450 1.134 1.109 1.058

Notes: The entries in the table 3.12 are the ratio of the MSPE
and MedSPE values for forecasts of the STAR model in
table 3.7 and an AR(2) model for weekly returns on the Dutch
guilder exchange rate vis-à-vis the US dollar.
Forecasts are made for the period 1 January 1990–31
December 1997.
Quintile refers to the distribution of the transition variable
vt−1,4.

difference between two realizations of yt+h which start from identical histories
of the time series up to time t − 1, ωt−1. In one realization, the process is hit
by a shock of size δ at time t , while in the other realization no shock occurs
at time t . All shocks in intermediate periods between t and t + h are set equal
to zero in both realizations. That is, the traditional impulse response function
(TIRF) is given by

TIRFy(h, δ, ωt−1) = E[yt+h|εt = δ, εt+1 = · · · = εt+h = 0, ωt−1]

− E[yt+h|εt = 0, εt+1 = · · · = εt+h = 0, ωt−1],
(3.95)

for h = 1, 2, 3, . . . . The second conditional expectation usually is called the
benchmark profile.
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Table 3.13 Forecast evaluation of a STAR model for weekly
returns on the Dutch guilder exchange rate, 1990–1997

Forecast horizon

Year 1 2 3 4 5

MSPE
1990 1.099 1.079 1.014 1.000 1.018
1991 1.014 1.006 1.029 1.023 0.993
1992 0.995 0.998 1.040 1.014 0.984
1993 1.074 1.031 1.008 0.988 1.010
1994 1.114 1.084 1.048 1.008 1.039
1995 1.020 1.032 1.018 1.032 0.992
1996 1.054 1.058 1.027 0.964 0.986
1997 1.006 0.961 0.958 0.981 0.989

MedSPE
1990 1.200 1.218 1.233 1.035 0.894
1991 1.145 1.146 1.008 0.966 0.943
1992 0.825 1.136 0.967 1.023 1.004
1993 0.934 0.804 1.047 1.002 0.966
1994 1.298 1.543 1.239 1.156 1.179
1995 1.405 0.930 1.107 1.138 0.913
1996 1.002 0.831 0.877 0.959 1.046
1997 0.891 1.430 0.956 1.005 1.060

Note: The entries in the table 3.13 are the ratio of the MSFE and
MedSFE values for forecasts of the STAR model in table 3.7
and an AR(2) model for weekly returns on the Dutch guilder
exchange rate vis-à-vis the US dollar computed on a year-to-
year basis.

The traditional impulse response function as defined above has some char-
acteristic properties if the model is linear. First, the TIRF is then symmetric,
in the sense that a shock of −δ has exactly the opposite effect as a shock of
size +δ. Furthermore, it might be called linear, as the impulse response is
proportional to the size of the shock. Finally, the impulse response is history-
independent as it does not depend on the particular history ωt−1. For example,
in the AR(1) model (2.6), it follows easily that TIRFy(h, δ, ωt−1) = φhδ which
clearly demonstrates the properties of the impulse response function mentioned
above.

These properties do not carry over to nonlinear models. In nonlinear models,
the impact of a shock depends on the sign and the size of the shock, as well as
on the history of the process. Furthermore, if the effect of a shock on the time
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series h > 1 periods ahead is to be analysed, the assumption that no shocks
occur in intermediate periods may give rise to misleading inference concerning
the propagation mechanism of the model.

To illustrate these points, consider the simple SETAR model

yt =
{
φ1,1yt−1 + εt if yt−1 ≤ 0,

φ1,2yt−1 + εt if yt−1 > 0.
(3.96)

The traditional 1-period impulse response in this case is equal to

TIRFy(1, δ, ωt−1) =


φ1,1δ if yt−1 + δ ≤ 0 and yt−1 ≤ 0,

φ1,1δ + φ1,2(φ1,1 − φ1,2)yt−1 if yt−1 + δ ≤ 0 and yt−1 > 0,

φ1,2δ + φ1,1(φ1,2 − φ1,1)yt−1 if yt−1 + δ > 0 and yt−1 ≤ 0,

φ1,2δ if yt−1 + δ > 0 and yt−1 > 0.

This simple example makes clear that the impulse response depends on the
combined magnitude of the historyyt−1 and the shock δ (relative to the threshold
c = 0). Hence, the impulse response is not symmetric, as it might easily happen
that yt−1 + δ > 0 while yt−1 − δ ≤ 0, nor is it linear- or history-independent.

To illustrate the consequences of assuming no shocks occurring after time t ,
assume that φ1,1 > 0, yt−1 = 0 and the shock δ is negative. As no more shocks
enter the system, the process remains in the lower regime after time t , and the
effect of the shock δ decays geometrically with rate φ1,1. However, in practice,
regime switches are quite likely to occur owing to subsequent shocks, which
changes the dynamics of the process and hence the persistence of the shock δ.
Thus, it might be misleading to consider only the response that occurs when all
shocks in intermediate periods are equal to zero.

In fact, for linear models the assumption of zero shocks in intermediate
periods can be justified by the Wold representation,

yt =
∞∑
i= 0

ψiεt−i , (3.97)

which shows that shocks in different periods do not interact. Nonlinear time
series models do not have a Wold representation however. They can be rewritten
in terms of (past and present) shocks only by means of the Volterra expansion,

yt =
∞∑
i= 0

ψiεt−i +
∞∑
i= 0

∞∑
i=j
ξij εt−iεt−j

+
∞∑
i= 0

∞∑
i=j

∞∑
k=j

ζij εt−iεt−j εt−k + . . . , (3.98)
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(see Priestley, 1988). This expression shows that the effect of the shock εt
on yt+h depends on the shocks εt+1, . . . , εt+h, as well as on past shocks
εt−1, εt−2, . . . which constitute the history ωt−1.

The Generalized Impulse Response Function (GIRF), introduced by Koop,
Pesaran and Potter (1996) provides a natural solution to the problems involved
in defining impulse responses in nonlinear models. The GIRF for an arbitrary
shock εt = δ and history ωt−1 is defined as

GIRFy(h, δ, ωt−1) = E[yt+h|εt = δ, ωt−1] − E[yt+h|ωt−1],

(3.99)

for h = 1, 2, . . . . In the GIRF, the expectations of yt+h are conditioned only
on the history and/or on the shock. Put differently, the problem of dealing with
shocks occurring in intermediate time periods is dealt with by averaging them
out. Given this choice, the natural benchmark profile for the impulse response
is the expectation of yt+h given only the history of the process as summarized
in ωt−1 (that is, in the benchmark profile, the current shock is averaged out as
well). It is easily seen that for linear models the GIRF in (3.99) is equivalent to
the TIRF in (3.95).

The GIRF is a function of δ and ωt−1, which are realizations of the random
variables εt and �t−1. Koop, Pesaran and Potter (1996) stress that, hence, the
GIRF as defined in (3.99) is itself a realization of a random variable given by

GIRFy(h, εt , �t−1) = E[yt+h|εt ,�t−1] − E[yt+h|�t−1]. (3.100)

Using this interpretation of the GIRF as a random variable, various conditional
versions of the GIRF can be defined which are of potential interest. For example,
one might consider only a particular historyωt−1 and treat the GIRF as a random
variable in terms of εt , that is,

GIRFy(h, εt , ωt−1) = E[yt+h|εt , ωt−1] − E[yt+h|ωt−1]. (3.101)

Alternatively, one could reverse the role of the shock and the history by fixing the
shock at εt = δ and considering the GIRF as a random variable in terms of the
history�t−1. In general, we might compute the GIRF conditional on particular
subsetsA andB of shocks and histories respectively – that is, GIRFy(h,A,B).
For example, one might condition on all histories in a particular regime and
consider only negative shocks.

In particular, the GIRF can be used to assess the significance of asymmetric
effects over time. Potter (1994) defines a measure of asymmetric response to a
particular shock εt = δ, given a particular history ωt−1, as the sum of the GIRF
for this particular shock and the GIRF for the shock of the same magnitude but
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with opposite sign, that is,

ASYy(h, δ, ωt−1) = GIRFy(h, δ, ωt−1)+ GIRFy(h,−δ, ωt−1).

(3.102)

Alternatively, we could average across all possible histories to obtain

ASY∗
y(h, δ) = E[GIRFy(h, δ, ωt−1)] + E[GIRFy(h,−δ, ωt−1)]

= E[yt+h|εt = δ] + E[yt+h|εt = −δ]. (3.103)

Koop, Pesaran and Potter (1996) discuss in detail how the GIRF can be used to
examine the persistence of shocks (see also Potter, 1995). It is intuitively clear
that if a nonlinear model is stationary, the effect of a particular shock on the
time series eventually becomes zero for all possible histories of the process.
Hence, the distribution of the GIRF as defined in (3.100) collapses to a spike at
zero as the horizon goes to infinity. From this it follows that the dispersion of
the distribution of the GIRF at finite horizons can be interpreted as a measure
of persistence of shocks. Conditional versions of the GIRF are particularly
suited to assess the persistence of shocks. For example, we might compare the
dispersion of the distributions of GIRFs conditional on positive and negative
shocks to determine whether negative shocks are more persistent than positive,
or vice versa. A potential problem with this approach is that no unambiguous
measure of dispersion exists, although, as noted by Koop, Pesaran and Potter
(1996), the notion of second-order stochastic dominance might be useful.

Notice that the second conditional expectation in the right-hand-side of (3.99)
is the optimal point forecasts of yt+h at time t − 1 (cf. (3.79)), while the first
conditional expectation can be interpreted as the optimal forecast of yt+h at
time t in case εt = δ. Therefore the GIRF can be interpreted as the change in
forecast of yt+h at time t relative to time t − 1, given that a shock δ occurs at
time t . This also suggests that if the distribution of the conditional GIRF (3.101)
(or other versions of the GIRF) is effectively a spike at zero for certain h ≥ m,
the nonlinear model is not useful for forecasting more thanm periods ahead. As
for general nonlinear models analytic expressions for these conditional expec-
tations are not available, the Monte Carlo methods discussed in the previous
subsection can be used to obtain estimates of the GIRF (3.99) and subsequent
conditional versions. Koop, Pesaran and Potter (1996) suggest using the same
realizations of the shocks in intermediate time periods for computing the two
components of the GIRF, in order to reduce the Monte Carlo error.

Example 3.1: Dutch guilder Figures 3.10 and 3.11 contain generalized
impulse responses for the STAR model estimated for weekly returns on the
Dutch guilder exchange rate. These graphs are meant to illustrate the possible
use of GIRFs and to give some impression of possible patterns that may arise.
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Figure 3.10 Generalized impulse responses GIRFy(h, δ, ωt−1) for the STAR model
estimated for weekly returns on the Dutch guilder exchange rate

Figure 3.11 Generalized impulse responses GIRFy(h,A,B) for a STAR model
estimated for weekly returns on Dutch guilder exchange rate

Figure 3.10 contains some shock- and history-specific GIRFs (3.99), for
δ = ±3,±2 and ±1, and ωt−1 such that the transition functionG(vt−1,4; γ̂ , ĉ)
is equal to 0 (left panel) or equal to 0.5 (right panel). The GIRFs in the left panel
resemble traditional impulse responses which may be computed using (3.95).
For this history, the past volatility vt−1,4 is very low. Even when a large shock δ
hits the system, the time series does not move out of the lower regime. Therefore,
the effect of the shocks decays roughly as if the model were an AR(2) (which
it is in the lower regime). The GIRFs shown in the right panel are different. In
particular, the response to large positive shocks is seen to be negative one period
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after the shocks arrive, followed by a gradual decay towards zero. This response
is caused by the fact that for this history, large positive shocks increase the 4-
week average volatility such that the time series moves to the upper regime,
where it behaves conform a white noise series.

Figure 3.11 contains conditional GIRFs, GIRFy(h,A,B), where the set A
consists of positive shocks, and the set B consists of histories for which the
value of the transition function is either smaller or larger than 0.5. The difference
between the GIRFs is most pronounced for h = 1 and 2. Again this is due to the
fact that for the histories for which G(vt−1,4; γ̂ , ĉ) > 0.5, a sufficiently large
shock increases the volatility such that the series moves to the upper regime,
whereas for histories for whichG(vt−1,4; γ̂ , ĉ) < 0.5 this hardly ever happens.
The differences have disappeared for the largest part at horizons larger than 5
periods.

3.7 On multivariate regime-switching models

So far attention has been restricted to univariate models, in which a time series yt
is described in terms of only its own lagged values yt−1, . . . , yt−p (or possible
transformations thereof). Sometimes it may be worthwhile to model several
time series jointly, to exploit possible linkages that might exist between them.
This might be particularly relevant in the context of empirical finance, where it
can be expected that certain characteristics of different assets are related. For
example, it is well documented that returns and volatilities of different stock
indexes move together over time (Engle and Susmel, 1993), while the same
holds for exchange rates (Engle, Ito and Lin, 1990; Baillie and Bollerslev, 1991)
and interest rates at different maturities (Hall, Anderson and Granger, 1992).
An alternative use of multivariate models is to describe several characteristics
of a certain asset, such as returns or volatility and trading volume (Gallant,
Rossi and Tauchen, 1992; Hiemstra and Jones, 1994), simultaneously.

In this section we discuss multivariate generalizations of the regime-
switching models described earlier in this chapter. For the sake of simplic-
ity we focus on bivariate models only. Generalizations to k-dimensional time
series with k > 2 are straightforward, at least conceptually. At the outset we
should remark that the interest in multivariate nonlinear modelling has started
to develop only very recently. Therefore, the relevant statistical theory has by
no means been fully developed yet, and still is a topic of much current research.

Let yt = (y1t , y2t )
′ be a (2 × 1) vector time series. A bivariate analogue of

the 2-regime SETAR model (3.2) then can be specified as

yt = (���0,1 + ���1,1yt−1)(1 − I [qt > c])

+ (���0,2 + ���1,2yt−1)I [qt > c] + �t , (3.104)
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where ���0,j , j = 1, 2, are (2 × 1) vectors, ���1,j , j = 1, 2, are (2 × 2) matrices,
�t = (ε1t , ε2t )

′ is a bivariate white noise process with mean equal to zero and
variance-covariance matrix �. The threshold variable qt can be a lagged value
of one the time series contained in yt or, for example, a linear combination
of the two series. A multivariate LSTAR model can be obtained by replacing
the indicator function I [·] by the logistic function given in (3.4) (see Anderson
and Vahid, 1998; Weise, 1999, for applications of this model). Similarly, a
multivariate MSW model results if the indicator function I [·] is replaced by a
Markov-process st as defined just below (3.16) (see Krolzig, 1997).

Tsay (1998) describes a specification procedure for multivariate threshold
models such as (3.104), based upon the specification procedure for univariate
TAR models developed in Tsay (1989). The procedure includes elements such as
testing for multivariate threshold nonlinearity and estimation of the parameters
in the model.

A particular variant of the TAR model (3.104) which has been popular in
financial applications is a 3-regime model, where the time series yit , i = 1, 2,
behave as unrelated I (1) series in the middle regime and as cointegrated series in
the two outer regimes. This so-called threshold error-correction model (TECM)
is discussed extensively in Balke and Fomby (1997). The model is applied by
Dwyer, Locke and Yu (1996), Martens, Kofman and Vorst (1998) and Tsay
(1998) to modelling the relationship between the spot and future prices of
the S&P 500 index. These two prices are related to each other by means of
a no-arbitrage relationship, and deviations from this relationship should exist
for only a very short time. In the presence of transaction costs or other market
imperfections, however, small deviations may persist as they cannot be exploited
for profitable arbitrage. Taylor et al. (2000) use a Smooth Transition ECM
(STECM) for the same purpose, while Anderson (1997) and van Dijk and
Franses (2000) apply this model to describe the relationship between interest
rates with different maturities.

Common nonlinearity
In the case of multiple time series, one has to take into account the

possibility that the nonlinearity is caused by common nonlinear components.
Following Anderson and Vahid (1998), the time series yt is said to contain a
common nonlinear component if there exists a linear combination �′yt whose
conditional expectation is linear in the past of yt . For example, rewrite model
(3.104) as

yt = ���0 + ���1yt−1 + (���0 + ���1yt−1)I [qt > c] + ���t , (3.105)

where ���i = ���i,1, i = 0, 1, and ���i = ���i,2 − ���i,1, i = 0, 1. The existence of a
common nonlinear component as defined above then means that there exists a
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2 × 1 vector ααα such that

�′(���0 + ���1yt−1)I [qt > c] = 0, (3.106)

for all yt−1 and qt > c. This implies that α is such that

�′�0 = 0, (3.107)

�′�1 = 0. (3.108)

Anderson and Vahid (1998) develop test-statistics for the existence of common
nonlinearity that are based upon testing restrictions such as (3.107) and (3.108).

Conclusion
In this chapter we have reviewed several nonlinear time series models,

which are potentially useful for modelling and forecasting returns on financial
assets. Most attention was given to univariate models, simply because the theory
(involving representation, estimation, diagnostics and inference) for multivari-
ate nonlinear models has not yet been fully developed.



4 Regime-switching models for
volatility

Uncertainty, or risk, is of paramount importance in financial analysis. For
example, the Capital Asset-Pricing Model (CAPM) (Sharpe, 1964; Lintner,
1965; Mossin, 1966; Merton, 1973) postulates a direct relationship between
the required return on an asset and its risk, where the latter is determined by
the covariance of the returns on the particular asset and some benchmark port-
folio. Similarly, the most important determinant of the price of an option is the
uncertainty associated with the price of the underlying asset, as measured by
its volatility.

One of the most prominent stylized facts of returns on financial assets is that
their volatility changes over time. In particular, periods of large movements in
prices alternate with periods during which prices hardly change (see section 1.2).
This characteristic feature commonly is referred to as volatility clustering. Even
though the time-varying nature of the volatility of financial assets has long
been recognized (see Mandelbrot, 1963a, 1963b, 1967; Fama, 1965), explicit
modelling of the properties of the volatility process has been taken up only
fairly recently.

In this chapter we discuss (extensions of) the class of (Generalized) Autore-
gressive Conditional Heteroscedasticity ((G)ARCH) models, introduced by
Engle (1982) and Bollerslev (1986). Nowadays, models from the GARCH class
are the most popular volatility models among practitioners. GARCH models
enjoy such popularity because they are capable of describing not only the fea-
ture of volatility clustering, but also certain other characteristics of financial
time series, such as their pronounced excess kurtosis or fat-tailedness. Still, the
standard GARCH model cannot capture other empirically relevant properties
of volatility. For example, since Black (1976), negative shocks or news are
believed to affect volatility quite differently than positive shocks of equal size
(see also section 1.2). In the standard GARCH model, however, the effect of a
shock on volatility depends only on its size. The sign of the shock is irrelevant.
Another limitation of the standard GARCH model is that it does not imply that
expected returns and volatility are related directly, as is the case in the CAPM.

135
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Over the past few years, quite a few nonlinear variants of the basic GARCH
model have been proposed, most of them designed to capture such aspects as
the asymmetric effect of positive and negative shocks on volatility, and possible
correlation between the return and volatility.

The outline of this chapter is as follows. In section 4.1, we discuss repre-
sentations of the basic GARCH model and several nonlinear extensions. We
emphasize which of the stylized facts of returns on financial assets can and
cannot be captured by the various models. Testing for GARCH is the sub-
ject of section 4.2. We discuss tests for the standard GARCH model and for
its nonlinear variants, and we examine the influence of outliers on the var-
ious test-statistics. Estimation of ARCH models is discussed in section 4.3.
In section 4.4 various diagnostic checks which can be used to evaluate esti-
mated GARCH models are reviewed. In section 4.5 we focus on out-of-sample
forecasting: both the consequences for forecasting the conditional mean in the
presence of ARCH, as well as forecasting volatility itself are discussed. Mea-
sures of persistence of shocks in GARCH models are discussed in section 4.6;
we emphasize the role these various elements play in the empirical specification
of ARCH models. The final section of this chapter (section 4.7) contains a brief
discussion on multivariate GARCH models.

We should remark that the aim of this chapter is not to provide a complete
account of the vast literature on GARCH models, but rather to provide an intro-
duction to this area, with a specific focus on asymmetric GARCH models and
the impact of outliers. For topics not covered in this chapter, the interested
reader should consult one of the many surveys on GARCH models which have
appeared in recent years. Bollerslev, Chou and Kroner (1992) provide a com-
prehensive overview of empirical applications of GARCH models to financial
time series. Bollerslev, Engle and Nelson (1994) focus on the theoretical aspects
of GARCH models. Gourieroux (1997) discusses in great detail how GARCH
models can be incorporated in financial decision problems such as asset-pricing
and portfolio management. Additional reviews of GARCH and related models
can be found in Bera and Higgins (1993); Diebold and Lopez (1995); Pagan
(1996); Palm (1996); and Shephard (1996).

4.1 Representation

As stated in section 2.1, an observed time series yt can be written as the sum
of a predictable and an unpredictable part,

yt = E[yt |�t−1] + εt , (4.1)

where �t−1 is the information set consisting of all relevant information up to
and including time t−1. In previous chapters we have concentrated on different
specifications for the predictable part or conditional mean E[yt |�t−1], while
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simply assuming that the unpredictable part or shock εt satisfies the white noise
properties (2.1)–(2.3). In particular, εt was assumed to be both unconditionally
and conditionally homoscedastic – that is, E[ε2

t ] = E[ε2
t |�t−1] = σ 2 for all t .

Here we relax part of this assumption and allow the conditional variance of εt to
vary over time – that is, E[ε2

t |�t−1] = ht for some nonnegative function ht ≡
ht (�t−1). Put differently, εt is conditionally heteroscedastic. A convenient way
to express this in general is

εt = zt
√
ht , (4.2)

where zt is independent and identically distributed with zero mean and unit
variance. For convenience, we assume that zt has a standard normal distribution
throughout this section. Some remarks on this assumption are made at the end
of this section.

From (4.2) and the properties of zt it follows immediately that the distribution
of εt conditional upon the history�t−1 is normal with mean zero and variance
ht . Also note that the unconditional variance of εt is still assumed to be constant.
Using the law of iterated expectations,

σ 2 ≡ E[ε2
t ] = E[E[ε2

t |�t−1]] = E[ht ]. (4.3)

Hence, we assume that the unconditional expectation of ht is constant.
To complete the model, we need to specify how the conditional variance of

εt evolves over time. In this section, we discuss the representation of various
linear and nonlinear models for ht . The properties of the resultant time series
εt are used to see whether these models can capture (some of) the stylized facts
of stock and exchange rate returns.

4.1.1 Linear GARCH models

Engle (1982) introduced the class of AutoRegressive Conditionally
heteroscedastic (ARCH) models to capture the volatility clustering of financial
time series (even though the first empirical applications did not deal with high-
frequency financial data). In the basic ARCH model, the conditional variance
of the shock that occurs at time t is a linear function of the squares of past
shocks. For example, in the ARCH model of order 1, ht is specified as

ht = ω + α1ε
2
t−1. (4.4)

Obviously, the (conditional) variance ht needs to be nonnegative. In order to
guarantee that this is the case for the ARCH(1) model, the parameters in (4.4)
have to satisfy the conditionsω > 0 and α1 ≥ 0. Where α1 = 0, the conditional
variance is constant and, hence, the series εt is conditionally homoscedastic.
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To understand why the ARCH model can describe volatility clustering,
observe that model (4.2) with (4.4) basically states that the conditional vari-
ance of εt is an increasing function of the square of the shock that occurred in
the previous time period. Therefore, if εt−1 is large (in absolute value), εt is
expected to be large (in absolute value) as well. In other words, large (small)
shocks tend to be followed by large (small) shocks, of either sign.

An alternative way to see the same thing is to note that the ARCH(1) model
can be rewritten as an AR(1) model for ε2

t . Adding ε2
t to (4.4) and subtracting

ht from both sides gives

ε2
t = ω + α1ε

2
t−1 + νt , (4.5)

where νt ≡ ε2
t −ht = ht (z2

t −1). Notice that E[νt |�t−1] = 0. Using the theory
for AR models summarized in chapter 2, it follows that (4.5) is covariance-
stationary if α1 < 1. In that case the unconditional mean of ε2

t , or the uncondi-
tional variance of εt , can be obtained as

σ 2 ≡ E[ε2
t ] = ω

1 − α1
. (4.6)

Furthermore, (4.5) can be rewritten as

ε2
t = (1 − α1)

ω

1 − α1
+ α1ε

2
t−1 + νt

= (1 − α1)σ
2 + α1ε

2
t−1 + νt

= σ 2 + α1(ε
2
t−1 − σ 2)+ νt . (4.7)

Assuming that 0 ≤ α1 < 1, (4.7) shows that if ε2
t−1 is larger (smaller) than its

unconditional expected value σ 2, ε2
t is expected to be larger (smaller) than σ 2

as well.
The ARCH model cannot only capture the volatility clustering of financial

data, but also their excess kurtosis. From (4.2) it can be seen that the kurtosis
of εt always exceeds the kurtosis of zt ,

E[ε4
t ] = E[z4

t ]E[h2
t ] ≥ E[z4

t ]E[ht ]
2 = E[z4

t ]E[ε2
t ]2, (4.8)

which follows from Jensen’s inequality. As shown by Engle (1982), for the
ARCH(1) model with normally distributed zt the kurtosis of εt is equal to

Kε = E[ε4
t ]

E[ε2
t ]2

= 3(1 − α2
1)

1 − 3α2
1

, (4.9)

which is finite if 3α2
1 < 1. Clearly, Kε is always larger than the normal value of 3.
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Another characteristic of the ARCH(1) model which is worthwhile noting
is the implied autocorrelation function for the squared shocks ε2

t . From the
AR(1) representation in (4.5), it follows that the kth order autocorrelation of
ε2
t is equal to αk1. In figures 2.1 and 2.2 it could be seen that the first-order

autocorrelation of squared stock and exchange returns generally is quite small,
while the subsequent decay is very slow. The small first-order autocorrelation
would imply a small value of α1 in the ARCH(1) model, but this in turn would
imply that the autocorrelations would become close to zero quite quickly. Thus it
appears that the ARCH(1) model cannot describe the two characteristic features
of the empirical autocorrelations of the returns series simultaneously.

To cope with the extended persistence of the empirical autocorrelation func-
tion, one may consider generalizations of the ARCH(1) model. One possibility
to allow for more persistent autocorrelations is to include additional lagged
squared shocks in the conditional variance function. The general ARCH(q)
model is given by

ht = ω + α1ε
2
t−1 + α2ε

2
t−2 + · · · + αqε2

t−q . (4.10)

To guarantee nonnegativeness of the conditional variance, it is required that
ω > 0 and αi ≥ 0 for all i = 1, . . . , q. The ARCH(q) model can be rewritten
as an AR(q) model for ε2

t in exactly the same fashion as writing (4.4) as (4.5),
that is,

ε2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε2

t−q + νt . (4.11)

It follows that the unconditional variance of εt is equal to

σ 2 = ω

1 − α1 − · · · − αq , (4.12)

while the ARCH(q) model is covariance-stationary if all roots of the lag poly-
nomial 1 −α1L−· · ·−αqLq are outside the unit circle. Milhøj (1985) derives
conditions for the existence of unconditional moments of ARCH(q) processes.

To capture the dynamic patterns in conditional volatility adequately by means
of an ARCH(q) model, q often needs to be taken quite large. It turns out that it
can be quite cumbersome to estimate the parameters in such a model, because
of the nonnegativity and stationarity conditions that need to be imposed. To
reduce the computational problems, it is common to impose some structure on
the parameters in the ARCH(q) model, such as αi = α(q+1−i)/(q(q+1)/2),
i = 1, . . . , q, which implies that the parameters of the lagged squared shocks
decline linearly and sum toα (see Engle, 1982, 1983). As an alternative solution,
Bollerslev (1986) suggested adding lagged conditional variances to the ARCH
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model instead. For example, adding ht−1 to the ARCH(1) model (4.4) results
in the Generalized ARCH (GARCH) model of order (1,1)

ht = ω + α1ε
2
t−1 + β1ht−1. (4.13)

The parameters in this model should satisfy ω > 0, α1 > 0 and β1 ≥ 0 to
guarantee that ht ≥ 0, while α1 must be strictly positive for β1 to be identified
(see also (4.16)).

To see why the lagged conditional variance avoids the necessity of adding
many lagged squared residual terms to the model, notice that (4.13) can be
rewritten as

ht = ω + α1ε
2
t−1 + β1(ω + α1ε

2
t−2 + β1ht−2), (4.14)

or, by continuing the recursive substitution, as

ht =
∞∑
i=1

βi1ω + α1

∞∑
i=1

βi−1
1 ε2

t−i . (4.15)

This shows that the GARCH(1,1) model corresponds to an ARCH(∞) model
with a particular structure for the parameters of the lagged ε2

t terms.
Alternatively, by adding ε2

t to both sides of (4.13) and moving ht to the right-
hand side, the GARCH(1,1) model can be rewritten as an ARMA(1,1) model
for ε2

t as

ε2
t = ω + (α1 + β1)ε

2
t−1 + νt − β1νt−1, (4.16)

where again νt = ε2
t − ht . Using the theory for ARMA models discussed

in section 2.1, it follows that the GARCH(1,1) model is covariance-stationary
if and only if α1 + β1 < 1. In that case the unconditional mean of ε2

t – or,
equivalently, the unconditional variance of εt – is equal to

σ 2 = ω

1 − α1 − β1
. (4.17)

The ARMA(1,1) representation in (4.16) also makes clear why α1 needs to be
strictly positive for identification of β1. If α1 = 0, the AR and MA polynomials
both are equal to 1−β1L. Rewriting the ARMA(1,1) model for ε2

t as an MA(∞),
these polynomials cancel out,

ε2
t = 1 − β1L

1 − β1L
νt = νt , (4.18)

which shows that β1 then is not identified.
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As shown by Bollerslev (1986), the unconditional fourth moment of εt is
finite if (α1 +β1)

2 + 2α2
1 < 1. If in addition the zt are assumed to be normally

distributed, the kurtosis of εt is given by

Kε = 3[1 − (α1 + β1)
2]

1 − (α1 + β1)
2 − 2α2

1

, (4.19)

which again is always larger than the normal value of 3. Notice that if β1 = 0,
(4.19) reduces to (4.9).

The autocorrelations of ε2
t are derived in Bollerslev (1988) and are found to be

ρ1 = α1 + α2
1β1

1 − 2α1β1 − β2
1

, (4.20)

ρk = (α1 + β1)
k−1ρ1 for k = 2, 3, . . . (4.21)

Even though the autocorrelations still decline exponentially, the decay factor
in this case is α1 + β1. If this sum is close to one, the autocorrelations will
decrease only very gradually. When the fourth moment of εt is not finite, the
autocorrelations of ε2

t are time-varying. Of course, one can still compute the
sample autocorrelations in this case. As shown by Ding and Granger (1996), if
α1 + β1 < 1 and (α1 + β1)

2 + 2α2
1 ≥ 1, such that the GARCH(1,1) model is

covariance-stationary but with infinite fourth moment, the autocorrelations of
ε2
t behave approximately as

ρ1 ≈ α1 + β1/3, (4.22)

ρk ≈ (α1 + β1)
k−1ρ1 for k = 2, 3, . . . (4.23)

The parameter restriction (α1 + β1)
2 + 2α2

1 = 1 is equivalent to 1 − 2α1β1 −
β2

1 = 3α2
1, from which it follows that (4.22) is identical to (4.20) where this

restriction is satisfied. Therefore, the autocorrelations of ε2
t can be considered

as continuous functions of α1 and β1, in the sense that their behaviour does not
suddenly change when these parameters take values for which the condition for
existence of the fourth moment is no longer satisfied.

The general GARCH(p,q) model is given by

ht = ω +
q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i

= ω + α(L)ε2
t + β(L)ht , (4.24)

where α(L) = α1L+ · · · + αqLq and β(L) = β1L+ · · · + βpLp. Assuming
that all the roots of 1 − β(L) are outside the unit circle, the model can be
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rewritten as an infinite-order ARCH model

ht = ω

1 − β(1) + α(L)

1 − β(L)ε
2
t

= ω

1 − β1 − · · · − βp +
∞∑
i=1

δiε
2
t−i . (4.25)

For nonnegativeness of the conditional variance it is required that all δi in (4.25)
are nonnegative. Nelson and Cao (1992) discuss the conditions this implies
for the parameters αi , i = 1, . . . , q, and βi , i = 1 . . . , q, in the original
model (4.24).

Alternatively, the GARCH(p,q) can be interpreted as an ARMA(m,p) model
for ε2

t given by

ε2
t = ω +

m∑
i=1

(αi + βi)ε2
t−i −

p∑
i=1

βiνt−i + νt , (4.26)

wherem = max(p, q),αi ≡ 0 for i > q andβi ≡ 0 for i > p. It follows that the
GARCH(p,q) model is covariance-stationary if all the roots of 1−α(L)−β(L)
are outside the unit circle.

To determine the appropriate orders p and q in the GARCH(p,q) model,
one can use a general-to-specific procedure by starting with a model with p
and q set equal to large values, and testing down using likelihood-ratio-type
restrictions (see Akgiray, 1989; Cao and Tsay, 1992). Alternatively, one can use
modified information criteria, as suggested by Brooks and Burke (1997, 1998).

Even though the general GARCH(p,q) model might be of theoretical interest,
the GARCH(1,1) model often appears adequate in practice (see also Bollerslev,
Chou and Kroner, 1992). Furthermore, many nonlinear extensions to be dis-
cussed below have been considered only for the GARCH(1,1) case.

IGARCH
In applications of the GARCH(1,1) model (4.13) to high-frequency

financial time series, it is often found that the estimates of α1 and β1 are such
that their sum is close or equal to one. Following Engle and Bollerslev (1986),
the model that results when α1 +β1 = 1 is commonly referred to as Integrated
GARCH (IGARCH). The reason for this is that the restriction α1 + β1 = 1
implies a unit root in the ARMA(1,1) model for ε2

t given in (4.16), which then
can be written as

(1 − L)ε2
t = ω + νt − β1νt−1. (4.27)

The analogy with a unit root in an ARMA model for the conditional mean of a
time series is however rather subtle. For example, from (4.17) it is seen that the
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unconditional variance of εt is not finite in this case. Therefore, the IGARCH
model is not covariance-stationary. However, the IGARCH(1,1) model may
still be strictly stationary, as shown by Nelson (1990). This can be illustrated
by rewriting (4.13) as

ht = ω + (α1z
2
t−1 + β1)ht−1

= ω + (α1z
2
t−1 + β1)(ω + (α1z

2
t−2 + β1)ht−2)

= ω(1 + (α1z
2
t−1 + β1))+ (α1z

2
t−1 + β1)(α1z

2
t−2 + β1)ht−2,

and continuing the substitution for ht−i , it follows that

ht = ω
(

1+
t−1∑
i=1

i∏
j=1

(α1z
2
t−j +β1)

)
+

t∏
i=1

(α1z
2
t−i+β1)h0. (4.28)

As shown by Nelson (1990), a necessary condition for strict stationarity of the
GARCH(1,1) model is E[ln(α1z

2
t−i + β1)] < 0. If this condition is satisfied,

the impact of h0 disappears asymptotically.
As expected, the autocorrelations of ε2

t for an IGARCH model are not defined
properly. However, Ding and Granger (1996) show that the approximate auto-
correlations are given by

ρk = 1

3
(1 + 2α)(1 + 2α2)−k/2. (4.29)

Hence, the autocorrelations still decay exponentially. This is in sharp contrast
with the autocorrelations for a random walk model, for which the autocorrela-
tions are approximately equal to 1 (see (2.33)).

FIGARCH
The properties of the conditional variance ht as implied by the

IGARCH model are not very attractive from an empirical point of view. Still,
estimates of the parameters of GARCH(1,1) models for high-frequency finan-
cial time series invariably yield a sum of α1 and β1 close to 1, with α1 small
and β1 large. This implies that the impact of shocks on the conditional vari-
ance diminishes only very slowly. From the ARCH(∞) representation of the
GARCH(1,1) model as given in (4.15), the impact of the shock εt on ht+k
is given by α1β

k−1
1 . With β1 close to 1, this impact decays very slowly as k

increases. Similarly, the autocorrelations for ε2
t given in (4.20) and (4.21) die

out very slowly if the sum α1 + β1 is close to 1. However, the decay is still
at an exponential rate, which might be too fast to mimic the observed autocor-
relation patterns of empirical time series, no matter how small the difference
1− (α1 +β1) is. For example, Ding, Granger and Engle (1993) suggest that the
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sample autocorrelations of squared – and, especially, absolute – returns decline
only at a hyperbolic rate. This type of behaviour of the autocorrelations can
be modelled by means of long-memory or fractionally integrated processes, as
discussed in section 2.4.

Baillie, Bollerslev and Mikkelsen (1996) propose the class of Fractionally
Integrated GARCH (FIGARCH) models. The basic FIGARCH(1,d,0) model
is most easily obtained from (4.27), by simply adding an exponent d to the
first-difference operator (1 − L), that is,

(1 − L)dε2
t = ω + νt − β1νt−1, (4.30)

where 0 < d < 1. Using the definition of νt = ε2
t − ht , this can be rewritten

as an ARCH(∞) process for the conditional variance as

ht = ω/(1 − β1)+ (1 − (1 − L)d/(1 − β1L))ε
2
t

= ω/(1 − β1)+ λ(L)ε2
t , (4.31)

where λ(L) ≡ 1 − (1 − L)d/(1 − β1L). By using the expansion (2.106) for
(1 − L)d , it can be shown that for large k

λk ≈ [(1 − β1)K(d)
−1]kd−1, (4.32)

where K(·) is the gamma function. This expression shows that the effect of εt
on ht+k decays only at a hyperbolic rate as k increases. FIGARCH models are
applied to exchange rates by Baillie, Bollerslev and Mikkelsen (1996), while
Bollerslev and Mikkelsen (1996) apply the model to stock returns and option
prices.

Ding and Granger (1996) argue that the sample autocorrelation functions
of squared returns initially decrease faster than exponentially, and that only
at higher lags does the decrease become (much) slower. This pattern suggests
that volatility may consist of several components, some of which have a strong
effect on volatility in the short run but die out quite rapidly, while others may
have a small but persistent effect. To formalize this notion, Ding and Granger
(1996) put forward the component GARCH model

ht = γ h1,t + (1 − γ )h2,t , (4.33)

h1,t = α1ε
2
t−1 + (1 − α1)h1,t−1, (4.34)

h2,t = ω + α2ε
2
t−1 + β2h2,t−1. (4.35)

In this model, the conditional variance is seen to be a weighted sum of two
components, one specified as an IGARCH model and the other as a GARCH
model. A similar model is applied by Jones, Lamont and Lumsdaine (1998)
to investigate whether shocks that occur on specific days, on which announce-
ments of important macroeconomic figures are made, have different effects on
volatility than shocks that occur on other days.



Regime-switching models for volatility 145

GARCH in mean
Many financial theories postulate a direct relationship between the

return and risk of financial assets. For example, in the CAPM the excess return
on a risky asset is proportional to its nondiversifiable risk, which is measured by
the covariance with the market portfolio. The GARCH in mean (GARCH-M)
model introduced by Engle, Lilien and Robins (1987) was explicitly designed
to capture such direct relationships between return and possibly time-varying
risk (as measured by the conditional variance). This is established by including
(a function) of the conditional variance ht in the model for the conditional mean
of the variable of interest yt , for example,

yt = φ0 + φ1yt−1 + · · · + φpyt−p + δg(ht )+ εt , (4.36)

where g(ht ) is some function of the conditional variance of εt , ht , which is
assumed to follow a (possibly nonlinear) GARCH process. In most applications,
g(ht ) is taken to be the identity function or square root function – that is,
g(ht ) = ht or g(ht ) = √

ht . The additional term δg(ht ) in (4.36) is often
interpreted as some sort of risk premium. As ht varies over time, so does this
risk premium.

To gain some intuition for the properties of yt as implied by the GARCH-M
model, consider (4.36) with p = 0 and g(ht ) = ht and assume that ht follows
an ARCH(1) process

yt = δht + εt , (4.37)

ht = ω + α1ε
2
t−1. (4.38)

Substituting (4.38) in (4.37) and using the fact that E[ε2
t−1] = ω/(1 − α1) (see

(4.6)), it follows that the unconditional expectation of yt is equal to

E[yt ] = δω
(

1 + α1

1 − α1

)
.

Similarly, it can be shown that the unconditional variance of yt is equal to

σ 2
y = ω

1 − α1
+ (δα1)

22ω2

(1 − α1)
2(1 − 3α2

1)
,

which is larger than the unconditional variance of yt in the absence of the
GARCH-M effect, as in that case σ 2

y = ω
1−α1

. Another consequence of the
presence of ht as regressor in the conditional mean equation (4.37) is that yt is
serially correlated. As shown by Hong (1991),

ρ1 = 2α3
1δ

2ω

2α2
1δ

2ω + (1 − α1)(1 − 3α2
1)

(4.39)

ρk = αk−1
1 ρ1 k = 2, 3, . . . (4.40)
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An overview of applications of GARCH-M models to stock returns, interest
rates and exchange rates can be found in Bollerslev, Chou and Kroner (1992).

Stochastic volatility
In the GARCH model, the conditional volatility of the observed time

series yt is driven by the same shocks as its conditional mean. Furthermore,
conditional upon the history of the time series as summarized in the information
set�t−1, current volatility ht is deterministic. An alternative class of volatility
models which has received considerable attention assumes that ht is subject
to an additional contemporaneous shock. The basic stochastic volatility (SV)
model, introduced by Taylor (1986), is given by

εt = zt
√
ht , (4.41)

ln(ht ) = γ0 + γ1 ln(ht−1)+ γ2ηt , (4.42)

with zt ∼ NID(0, 1), ηt ∼ NID(0, 1), and ηt and zt uncorrelated. A heuristic
interpretation of the SV model is that the shock ηt represents shocks to the
intensity of the flow of new information as measured by ht , whereas the shock
zt represents the contents (large/small, positive/negative) of the news.

To understand the similarities and differences between the GARCH(1,1)
and SV models, it is useful to consider the implied moments and correlation
properties of εt . First note that, if |γ1| < 1 in (4.42), ln(ht ) follows a stationary
AR(1) process and ln(ht ) ∼ N(µh, σ 2

h ) with

µh = E[ln(ht )] = γ0

1 − γ1
, (4.43)

σ 2
h = var[ln(ht )] = γ 2

2

1 − γ 2
1

. (4.44)

Put differently, ht has a log-normal distribution. For the series εt , this
implies that

E[εrt ] = 0 for r odd, (4.45)

E[ε2
t ] = E[z2

t ht ] = E[z2
t ]E[ht ] = exp(µh + σ 2

h /2), (4.46)

E[ε4
t ] = E[z4

t h
2
t ] = E[z4

t ]E[h2
t ] = 3 exp(2µh + 2σ 2

h ). (4.47)

In particular, from (4.46) and (4.47) it follows that

Kε = E[ε4
t ]

E[ε2
t ]2

= 3 exp(σ 2
h ), (4.48)

which demonstrates that the SV model implies excess kurtosis in the series εt ,
similar to the GARCH(1,1) model (see (4.19)). A difference, however, is that
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the GARCH(1,1) model with zt normally distributed typically cannot capture
the excess kurtosis observed in financial time series completely (as will be
discussed in more detail below), whereas the SV model can, as exp(σ 2

h ) can
take any value.

The correlation properties of ε2
t can be derived by noting that E[ε2

t ε
2
t−k] =

E[z2
t ht z

2
t−kht−k] = E[h2

t h
2
t−k]. It follows that

ρk = exp(σ 2
hγ
k
1 )− 1

3 exp(σ 2
h )− 1

≈ exp(σ 2
h )− 1

3 exp(σ 2
h )− 1

γ k1 , (4.49)

where the approximation is valid for small values of σ 2
h and/or large γ1 (see

Taylor, 1986, pp. 74–5). Comparing (4.49) with the autocorrelations of ε2
t

implied by the GARCH(1,1) model as given in (4.20) and (4.21) shows that in
both cases the ACF of ε2

t is characterized by exponential decay towards zero.
For the GARCH(1,1) model, the sum α1 + β1 determines how fast the auto-
correlations decline towards zero, whereas in the SV model this is determined
by γ1. When SV models are applied to high-frequency financial time series,
the parameter estimates that are typically found imply that the first-order auto-
correlation is small, whereas the subsequent decay is very slow. For example,
typical parameter estimates are σ̂η = 0.3 and γ̂1 = 0.95, which according to
(4.44) and (4.49) imply ρ̂1 ≈ 0.21 and ρ̂k ≈ 0.95kρ̂1.

The main difference between the GARCH and SV models is found at the
estimation stage. In the GARCH model, the parameters can be estimated by
straightforward application of maximum likelihood techniques, as will be dis-
cussed in section 4.3. This is owing to the fact that even though the conditional
volatility ht appears to be unobserved, it can be reconstructed using the past
shocks εt−1, εt−2, . . . (assuming these can be obtained from the observed series
yt−1, yt−2, . . . ,) and h0. Technically, ht is measurable with respect to the infor-
mation set �t−1. As a consequence, the distribution of εt conditional upon the
history �t−1 can be obtained directly from the distribution of zt , and the like-
lihood function can easily be constructed. By contrast, for the SV model the
distribution of εt |�t−1 cannot be characterized explicitly, owing to the fact
that ht is not only unobserved, but also cannot be reconstructed from the his-
tory of the time series. Therefore, standard maximum likelihood techniques
cannot be applied to estimate the parameters in SV models. Several alterna-
tive procedures have been examined, such as a (simulation-based) generalized
method of moments (Melino and Turnbull, 1990; Duffie and Singleton, 1993),
quasi-maximum likelihood via the Kalman filter (Harvey, Ruiz and Shephard,
1994), indirect inference (Gourieroux, Monfort and Renault, 1993), simulation-
based maximum likelihood (Danielsson and Richard, 1993; Danielsson, 1994)
and Bayesian methods (Jacquier, Polson and Rossi, 1994). As of yet, there is
no consensus on the appropriate method(s) of estimation and inference in SV
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models. For that reason, we do not consider these models any further in this
chapter and restrict ourselves to the GARCH class. Surveys of the SV literature
can be found in Ghysels, Harvey and Renault (1996) and Shephard (1996).

4.1.2 Nonlinear GARCH models

As shown in section 1.2, for stock returns it appears to be the case that
volatile periods often are initiated by a large negative shock, which suggests that
positive and negative shocks may have an asymmetric impact on the conditional
volatility of subsequent observations. This was recognized by Black (1976),
who suggested that a possible explanation for this finding might be the way
firms are financed. When the value of (the stock of) a firm falls, the debt-to-
equity ratio increases, which in turn leads to an increase in the volatility of the
returns on equity. As the debt-to-equity ratio is also known as the ‘leverage’ of
the firm, this phenomenon is commonly referred to as the ‘leverage effect’.

The GARCH models discussed above cannot capture such asymmetric effects
of positive and negative shocks. As the conditional variance depends only on the
square of the shock, positive and negative shocks of the same magnitude have
the same effect on the conditional volatility – that is, the sign of the shock is not
important. Most nonlinear extensions of the GARCH model which have been
developed over the years are designed to allow for different effects of positive
and negative shocks or other types of asymmetries. In this section we review
several of such nonlinear GARCH models. The models that are discussed below
are only a small sample from all the different nonlinear GARCH models which
have been proposed. For more complete overviews, the interested reader is
referred to Hentschel (1995), among others. We generally concentrate on those
models that make use of the idea of regime switching, as discussed in chapter 3
for nonlinear models for the conditional mean.

Most nonlinear GARCH models are motivated by the desire to capture the
different effects of positive and negative shocks on conditional volatility or other
types of asymmetry. A natural question to ask, then, is whether all these models
are indeed different from each other, or whether they are more or less similar.
A convenient way to compare different GARCH models is by means of the
so-called news impact curve (NIC), introduced by Pagan and Schwert (1990)
and popularized by Engle and Ng (1993). The NIC measures how new infor-
mation is incorporated into volatility. To be more precise, the NIC shows the
relationship between the current shock or news εt and conditional volatility 1
period ahead ht+1, holding constant all other past and current information. In
the basic GARCH(1,1) model and nonlinear variants thereof, the only relevant
information from the past is the current conditional variance ht . Thus, the NIC
for the GARCH(1,1) model (4.13) is defined as

NIC(εt |ht = h) = ω + α1ε
2
t + β1h = A+ α1ε

2
t , (4.50)
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whereA = ω+β1h. Hence, the NIC is a quadratic function centred on εt = 0.
As the value of the lagged conditional variance ht affects only the constant A
in (4.50), it only shifts the NIC vertically, but does not change its basic shape.
In practice, it is customary to take ht equal to the unconditional variance σ 2.

Exponential GARCH
The earliest variant of the GARCH model which allows for asymmetric

effects is the Exponential GARCH (EGARCH) model, introduced by Nelson
(1991). The EGARCH(1,1) model is given by

ln(ht ) = ω+α1zt−1+γ1(|zt−1|−E(|zt−1|))+β1 ln(ht−1). (4.51)

As the EGARCH model (4.51) describes the relation between past shocks and
the logarithm of the conditional variance, no restrictions on the parameters
α1, γ1 and β1 have to be imposed to ensure that ht is nonnegative. Using the
properties of zt , it follows that g(zt ) ≡ α1zt + γ1(|zt | − E(|zt |)) has mean
zero and is uncorrelated. The function g(zt ) is piecewise linear in zt , as it can
be rewritten as

g(zt ) = (α1 + γ1)zt I (zt > 0)+ (α1 − γ1)zt I (zt < 0)− γ1E(|zt |).
Thus, negative shocks have an impact α1 − γ1 on the log of the conditional
variance, while for positive shocks the impact is α1 + γ1. This property of
the function g(zt ) leads to an asymmetric NIC. In particular, the NIC for the
EGARCH(1,1) model (4.51) is given by

NIC(εt |ht = σ 2) =


A exp

(
α1 + γ1

σ
εt

)
for εt > 0,

A exp

(
α1 − γ1

σ
εt

)
for εt < 0,

(4.52)

with A = σ 2β1 exp(ω − γ1
√

2/π).
Typical NICs for the GARCH(1,1) and EGARCH(1,1) models are shown in

panel (a) of figure 4.1. The parameters in the models have been chosen such
that the constants A in (4.52) and (4.50) are the same and, hence, the NICs are
equal when εt = 0. The shape of the NIC of the EGARCH model is typical
for parameterizations with α1 < 0, 0 ≤ γ1 < 1 and γ1 + β1 < 1. For such
parameter configurations, negative shocks have a larger effect on the conditional
variance than positive shocks of the same size. For the range of εt for which
the NIC is plotted in figure 4.1, it also appears that negative shocks in the
EGARCH model have a larger effect on the conditional variance than shocks
in the GARCH model, while the reverse holds for positive shocks. However, as
εt increases, the impact on ht will eventually become larger in the EGARCH
model, as the exponential function in (4.52) dominates the quadratic in (4.50)
for large εt .
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Figure 4.1 Examples of news impact curves for various nonlinear models (solid
lines); for comparison, the news impact curve of a GARCH(1,1) model is also shown
in each panel (dashed line) (a) The parameters in the EGARCH model (4.51) are such
that α1 < 0, 0 ≤ γ1 < 1 and γ1 + β1 < 1 (b) The parameters in the GJR-GARCH
model (4.53) are such that α1 > γ1, while (α1 + γ1)/2 is equal to α1 in the
GARCH(1,1) model (c) The parameters in the ESTGARCH model (4.55) with (4.58)
are such that α1 > γ1 and their average is equal to α1 in the GARCH(1,1) model
(d) The parameters in the VS-GARCH model (4.59) are set such that α1 > γ1 and
ω + β1h < ζ + δ1h, while the averages of all three pairs of parameters in the two
regimes are equal to the corresponding parameter in the GARCH(1,1) model

GJR-GARCH
The model introduced by Glosten, Jagannathan and Runkle (1993)

offers an alternative method to allow for asymmetric effects of positive and
negative shocks on volatility. The model is obtained from the GARCH(1,1)
model (4.13) by assuming that the parameter of ε2

t−1 depends on the sign of the
shock, that is,

ht = ω + α1ε
2
t−1(1 − I [εt−1 > 0])+ γ1ε

2
t−1I [εt−1 > 0] + β1ht−1,

(4.53)
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where as usual I [·] is an indicator function. The conditions for nonnegativeness
of the conditional variance are ω > 0, (α1 + γ1)/2 ≥ 0 and β1 > 0. The
condition for covariance-stationarity is (α1 + γ1)/2 +β1 < 1. If this condition
is satisfied, the unconditional variance of εt is σ 2 = ω/(1− (α1 +γ1)/2−β1).
The NIC for the GJR-GARCH model follows directly from (4.53) and is equal to

NIC(εt |ht = σ 2) = A+
{
α1ε

2
t if εt < 0,

γ1ε
2
t if εt > 0,

(4.54)

where A = ω + β1σ
2. The NIC of the GJR-GARCH model is a quadratic

function centred on εt = 0, similar to the NIC of the basic GARCH model.
However, the slopes of the GJR-GARCH NIC are allowed to be different for
positive and negative shocks. Depending on the values of α1 and γ1 in (4.53),
the NIC (4.54) can be steeper or less steep than the GARCH NIC (4.50). An
example of the GJR-GARCH NIC is shown in panel (b) of figure 4.1, where we
have set α1 and γ1 such that α1 > γ1 while their average is equal to the value of
α1 in the GARCH(1,1) model. In this case, the NIC is steeper than the GARCH
NIC for negative news and less steep for positive news. Comparing the NICs
of the EGARCH and GJR-GARCH models as shown in panels (a) and (b) of
figure 4.1 shows that they are rather similar. Hence, the GJR-GARCH model
and the EGARCH model may be considered as alternative models for the same
series. It may be difficult to develop criteria that can help to distinguish between
the two models.

Smooth Transition GARCH
The GJR-GARCH model (4.53) can be interpreted as a threshold

model, as it allows the parameter corresponding to the lagged squared shock
to change abruptly from α1 to γ1 at εt−1 = 0. Hagerud (1997) and González-
Rivera (1998) independently applied the idea of smooth transition, discussed in
section 3.1, to allow for a more gradual change of this parameter. The Logistic
Smooth Transition GARCH (LSTGARCH) model is given by

ht = ω + α1ε
2
t−1[1 − F(εt−1)] + γ1ε

2
t−1F(εt−1)+ β1ht−1, (4.55)

where the function F(εt−1) is the logistic function

F(εt−1) = 1

1 + exp(−θεt−1)
, θ > 0. (4.56)

As the function F(εt−1) in (4.56) changes monotonically from 0 to 1 as εt−1
increases, the impact of ε2

t−1 on ht changes smoothly from α1 to γ1. When the
parameter θ in (4.56) becomes large, the logistic function approaches a step
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function which equals 0 for negative εt−1 and 1 for positive εt−1. In that case,
the LSTGARCH model reduces to the GJR-GARCH model (4.53).

The parameter restrictions necessary for ht to be positive and for the model
to be covariance-stationary are the same as for the GJR-GARCH model given
above. The NIC for the LSTGARCH model is given by

NIC(εt |ht = σ 2) = [A+ α1ε
2
t ][1 − F(εt )] + γ1ε

2
t ]F(εt ), (4.57)

where A = ω + β1σ
2.

The STGARCH model (4.55) can also be used to describe asymmetric effects
of large and small shocks on conditional volatility, by using the exponential
function

F(εt−1) = 1 − exp(−θε2
t−1), θ > 0. (4.58)

The function F(εt−1) in (4.58) changes from 1 for large negative values of
εt−1 to 0 for εt−1 = 0 and increases back again to 1 for large positive values
of εt−1. Thus, the effective parameter of ε2

t−1 in the Exponential STGARCH
(ESTGARCH) model given by (4.55) with (4.58) changes from γ1 to α1 and
back to γ1 again. Panel (c) of figure 4.1 shows an example of the NIC of the
ESTGARCH model.

Volatility-Switching GARCH
The LSTGARCH and GJR-GARCH models assume that the asym-

metric behaviour of ht depends only on the sign of the past shock εt−1. In
applications it is typically found that γ1 < α1, such that a negative shock
increases the conditional variance more than a positive shock of the same size.
On the other hand, the ESTGARCH model assumes that the asymmetry is
caused entirely by the size of the shock. Rabemananjara and Zakoı̈an (1993)
point out that the asymmetric behaviour of ht may be more complicated and
that both the sign and the size of the shock may be important. In particular, they
argue that negative shocks increase future conditional volatility more than pos-
itive shocks only if the shock is large in absolute value. For small shocks they
observe the opposite kind of asymmetry, in that small positive shocks increase
the conditional volatility more than small negative shocks.

Fornari and Mele (1996, 1997) discuss a model which allows for such com-
plicated asymmetric behaviour. The model is in fact a generalization of the
GJR-GARCH model, and is obtained by allowing all parameters in the condi-
tional variance equation to depend on the sign of the shock εt−1. The Volatility-
Switching GARCH (VS-GARCH) model of order (1,1) is given by

ht =(ω + α1ε
2
t−1 + β1ht−1)(1 − I [εt−1 > 0])

+ (ζ + γ1ε
2
t−1 + δ1ht−1)I [εt−1 > 0]. (4.59)
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Fornari and Mele (1997) show that the unconditional variance of εt is equal to
σ 2 = [(ω+ ζ )/2]/[1 − (α1 + γ1)/2 − (β1 + δ1)/2]. The fourth unconditional
moment of εt , and hence the kurtosis, implied by (4.59) is typically higher
than that of a GARCH(1,1) model with parameters equal to the average of the
parameters in the two regimes of the VS-GARCH model (see Fornari and Mele,
1997) for the exact expression.

The NIC for the VS-GARCH model is given by

NIC(εt |ht = h) =
{
ω + α1ε

2
t + β1h if εt < 0,

ζ + γ1ε
2
t + δ1h if εt > 0.

(4.60)

This NIC is seen to be an asymmetric quadratic function centred on εt = 0,
with possibly different slopes for positive and negative shocks. In this respect,
the NIC of the VS-GARCH model is identical to the NIC of the GJR-GARCH
model. However, as in generalω+β1h �= ζ+δ1h, the NIC (4.60) can be discon-
tinuous at εt = 0. The size of the jump at this point depends on the magnitude of
the past conditional volatility ht = h. An example of the NIC (4.60) is shown in
panel (d) of figure 4.1. The parameters in the VS-GARCH model (4.59) are set
such that α1 > γ1 and ω+ β1h < ζ + δ1h. For such parameter configurations,
small positive shocks have a larger impact on the conditional volatility than
small negative shocks, while the reverse holds for large shocks. This demon-
strates that the VS-GARCH can describe more complicated asymmetric effects
of shocks on conditional volatility than just sign or size effects.

Asymmetric Nonlinear Smooth Transition GARCH
Anderson, Nam and Vahid (1999) modify the VS-GARCH model by

allowing the transition from one regime to the other to be smooth. The resulting
Asymmetric Nonlinear Smooth Transition GARCH (ANST-GARCH) model is
given by

ht = [ω + α1ε
2
t−1 + β1ht−1][1 − F(εt−1)]

+ [ζ + γ1ε
2
t−1 + δ1ht−1]F(εt−1), (4.61)

where F(εt−1) is the logistic function (4.56). Even though the correspond-
ing NIC,

NIC(εt |ht = h) = [ω + α1ε
2
t + β1h][1 − F(εt )]

+ [ζ + γ1ε
2
t + δ1h]F(εt ), (4.62)

looks similar to the NIC of the VS-GARCH model at first sight, closer inspection
of its properties reveals that it is rather different. In particular, the NIC of the
ANST-GARCH model is always continuous at εt = 0, but it does not necessarily
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attain its minimum value at this point (which is the case for the NIC of the VS-
GARCH model). It might be that the best news, which is defined as the shock
that minimizes next period’s conditional volatility, is nonzero. The exact size of
the shock εt that constitutes the best news depends in a nontrivial way on current
conditional volatility. Anderson, Nam and Vahid, (1999) demonstrate that the
relationship between the best news and ht is positive when δ1 < β1. Some
examples of NIC for this model are shown in figure 4.2. Evidently, the NIC
changes shape as the current conditional volatility changes. As ht increases,
the asymmetry of the NIC becomes more pronounced while the shock εt that
minimizes next period’s volatility becomes increasingly positive.

Quadratic GARCH
Sentana (1995) introduced the Quadratic GARCH (QGARCH) model

as another way to cope with asymmetric effects of shocks on volatility. The
QGARCH(1,1) model is specified as

ht = ω + γ1εt−1 + α1ε
2
t−1 + β1ht−1. (4.63)

The additional term γ1εt−1 makes it possible for positive and negative shocks to
have different effects on ht . To see this, note that the model can be rewritten as

ht = ω +
(
γ1

εt−1
+ α1

)
ε2
t−1 + β1ht−1, (4.64)

Figure 4.2 Examples of news impact curves for the ANST-GARCH model
The parameters in the model (4.61) are such that ω > ζ , α1 < γ1 and β1 > δ1; the
location of the best news for each level of past conditional volatility is marked with a
solid circle
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which shows that the impact of ε2
t−1 on ht is equal to γ1/εt−1 + α1. If γ1 < 0,

the effect of negative shocks on ht will be larger than the effect of a positive
shock of the same size. Notice that in addition the effect depends on the size of
the shock.

Alternatively, (4.63) can be expressed as

ht = ω − γ 2
1

4α1
+ α1

(
εt−1 + γ1

2α1

)2

+ β1ht−1 (4.65)

(see also Engle and Ng, 1993). This representation shows that in the QGARCH
model, the effect of shocks on the conditional variance is symmetric around
εt = −γ1/(2α1).

Apart from the asymmetry, the QGARCH model is very similar to the stan-
dard GARCH model. For example, as shown in Sentana (1995), the uncondi-
tional variance of εt as implied by the QGARCH(1,1) model (4.63) is the same as
that implied by the GARCH(1,1) model (4.13) – that is, σ 2 = ω/(1−α1 −β1).
Furthermore, the condition for covariance-stationarity of the QGARCH(1,1)
model and the condition for existence of the unconditional fourth moment are
the same as the corresponding conditions in the GARCH(1,1) model. The kur-
tosis of εt is, however, different from (4.19) and depends on the asymmetry
parameter γ1 as follows,

Kε = 3[1 − (α1 + β1)
2 + γ 2

1 (1 − α1 − β1)/ω]

1 − (α1 + β1)
2 − 2α2

1

. (4.66)

In particular, (4.66) shows that the kurtosis of the QGARCH model is an increas-
ing function of the absolute value of γ1. Therefore, for fixed values of the
parametersω, α1 and β1, the kurtosis for the QGARCH model is larger than the
kurtosis for the corresponding GARCH model, which results if γ1 = 0. Finally,
from (4.65) it follows that the NIC of the QGARCH model is the same as the
NIC of the basic GARCH model, except that it is centred at −γ1/(2α1).

Markov-Switching GARCH
In the previous specifications, the parameters in the model change

according to the sign and/or the size of the lagged shock εt−1. Therefore, these
models can be interpreted as regime-switching models where the regime is
determined by an observable variable, similar in spirit to the SETAR and STAR
models for the conditional mean discussed in chapter 3.

An obvious alternative is to assume that the regime is determined by an
unobservable Markov-process st , as in the Markov-Switching model discussed
in subsection 3.1.2. A general Markov-Switching GARCH [MSW-GARCH]
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model is given by

ht = [ω + α1ε
2
t−1 + β1ht−1]I [st = 1]

+ [ζ + γ1ε
2
t−1 + δ1ht−1]I [st = 2], (4.67)

where st is a two-state Markov chain with transition probabilities defined below
(3.16). The general form in (4.67) is considered in Klaassen (1999). Various
restricted versions are applied in Kim (1993); Cai (1994); Hamilton and Susmel
(1994) and Dueker (1997).

Alternative error distributions
So far we have assumed that the innovations zt in (4.2) are normally

distributed, which is equivalent to stating that the conditional distribution of εt
is normal with mean zero and variance ht . The unconditional distribution of a
series εt for which the conditional variance follows a GARCH model is nonnor-
mal in this case. In particular, as the kurtosis of εt is larger than the normal value
of 3, the unconditional distribution has fatter tails than the normal distribution.
However, in many applications of the standard GARCH(1,1) model (4.13) to
high-frequency financial time series it is found that the unconditional kurtosis
of εt given in (4.19) is much smaller than the kurtosis of the observed time
series. Put differently, the kurtosis of the standardized residuals ẑt ≡ ε̂t ĥ

−1/2
t

is found to be larger than 3. The nonlinear GARCH models discussed above
imply a higher kurtosis of εt (see, for example, 4.66) for the QGARCH model.
Therefore, nonlinear GARCH models might be able to accommodate this defi-
ciency of the standard GARCH model (in addition to the asymmetric response
of the conditional variance to positive and negative shocks for which these
nonlinear models were originally designed). He and Teräsvirta (1999a, 1999b)
derive expressions for the unconditional moments of εt (and the autocorrelations
of ε2

t ) for various nonlinear GARCH models. In principle, these expressions
can be used to select a nonlinear GARCH model which best suits the moment
(and correlation) properties of an observed time series, although this has not
been thoroughly investigated yet.

An alternative approach which has been followed is to consider alternative
distributions for zt . The unconditional kurtosis of εt is an increasing function
of the kurtosis of zt (see Teräsvirta, 1996) and, hence, Kε can be increased by
assuming a leptokurtic distribution for zt . Following Bollerslev (1987), a pop-
ular choice has become the standardized Student-t distribution with η degrees
of freedom, that is,

f (zt ) = K((η + 1)/2)√
π(η − 2)K(η/2)

(
1 + z2

t

η − 2

)−(η+1)/2

, (4.68)

where K(·) is the Gamma function. The Student-t distribution is symmetric
around zero (and thus E[zt ] = 0), while it converges to the normal distribution
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as the number of degrees of freedom η becomes larger. A further characteristic
of the Student-t distribution is that only moments up to order η exist. Hence,
for η > 4, the fourth moment of zt exists and is equal to 3(η − 2)/(η − 4).
As this is larger than the normal value of 3, the unconditional kurtosis of εt
will also be larger than in case zt followed a normal distribution. The number
of degrees of freedom of the Student-t distribution need not be specified in
advance. Rather, η can be treated as a parameter and can be estimated along
with the other parameters in the model.

4.2 Testing for GARCH

It seems self-evident that a formal test for the presence of conditional het-
eroscedasticity of εt should be part of a specification procedure for GARCH
models. In particular, even though it appears obvious from summary statistics
and graphs such as those presented in chapter 1 that the conditional volatility of
high-frequency financial time series changes over time, one might want to per-
form such a test prior to actually estimating a GARCH model. In this section we
review several tests for linear and nonlinear GARCH models. We also discuss
whether these tests are sensitive to various sorts of model misspecification, and
elaborate upon the effects of outliers on the test-statistics in some more detail.

4.2.1 Testing for linear GARCH

Engle (1982) developed a test for conditional heteroscedasticity in the
context of ARCH models based on the Lagrange Multiplier (LM) principle.
The conditional variance ht in the ARCH(q) model in (4.10) is constant if the
parameters corresponding to the lagged squared shocks ε2

t−i , i = 1, . . . , q, are
equal to zero. Therefore, the null hypothesis of conditional homoscedasticity
can be formulated as H0 : α1 = . . . = αq . The corresponding LM test can be
computed as nR2, where n is the sample size and the R2 is obtained from a
regression of the squared residuals on a constant and q of its lags,

ε̂2
t = ω + α1ε̂

2
t−1 + · · · + αqε̂2

t−q + ut , (4.69)

where the residuals ε̂t are obtained by estimating the model for the condi-
tional mean of the observed time series yt under the null hypothesis. The LM
test-statistic has an asymptotic χ2(q) distribution. The test for ARCH can alter-
natively be interpreted as a test for serial correlation in the squared residuals. In
fact, the ARCH test is asymptotically equivalent to the test of McLeod and Li
(1983) given in (2.45) (see Granger and Teräsvirta, 1993, pp. 93–4). Lee (1991)
shows that the LM test against this GARCH(p, q) alternative is the same as the
LM test against the alternative of ARCH(q) errors.
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Example 4.1: Testing for ARCH in stock and exchange rate returns We
apply the LM test for ARCH(q) to the weekly returns on stock indexes and
exchange rates. We calculate the test-statistics for two sample periods of 5 years,
from January 1986–December 1990 and January 1991–December 1995. For
simplicity, we assume that the conditional mean of the time series can be ade-
quately described by an AR(k) model, where the autoregressive-order k is deter-
mined by the AIC. The second–fourth columns of tables 4.1 and 4.2 contain
p-values for the LM test for ARCH(q) with q = 1, 5 and 10 for the stock and
exchange rate returns, respectively.

The results in tables 4.1 and 4.2 show that there is substantial evidence for
the presence of ARCH, especially if we allow q > 1, which should capture
GARCH-type properties. Notice that for the stock returns the p-values for the

Table 4.1 Testing for ARCH in weekly stock index returns

Standard test Robust test
No. obs. with

Stock market q 1 5 10 1 5 10 wr(rt ) < 0.05

Sample 1986–90
Amsterdam 0.000 0.000 0.000 0.125 0.506 0.752 6
Frankfurt 0.020 0.024 0.125 0.359 0.125 0.034 8
Hong Kong 0.006 0.104 0.422 0.004 0.006 0.029 13
London 0.000 0.000 0.000 0.487 0.490 0.563 4
New York 0.000 0.000 0.000 0.832 0.825 0.415 6
Paris 0.277 0.125 0.038 0.070 0.811 0.340 6
Singapore 0.001 0.060 0.330 0.159 0.012 0.036 17
Tokyo 0.000 0.000 0.000 0.003 0.036 0.024 22

Sample 1991–95
Amsterdam 0.565 0.016 0.199 1.000 0.023 0.311 2
Frankfurt 0.881 0.448 0.606 0.870 0.747 0.854 2
Hong Kong 0.560 0.010 0.004 0.503 0.054 0.176 7
London 0.642 0.922 0.971 0.963 0.093 0.224 2
New York 0.041 0.334 0.052 0.915 0.835 0.284 9
Paris 0.593 0.426 0.456 0.593 0.426 0.456 0
Singapore 0.271 0.026 0.044 0.128 0.015 0.122 2
Tokyo 0.162 0.000 0.000 0.295 0.310 0.083 5

Notes: p-values of the standard and outlier-robust variants of the LM test for ARCH(q)
for weekly stock index returns.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.
The last column reports the number of observations (out of 260) which receive a weight
less than 0.05 in the robust estimation procedure for the AR(k) model.
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Table 4.2 Testing for ARCH in weekly exchange rate returns

Standard test Robust test
No. obs. with

Currency q 1 5 10 1 5 10 wr(rt ) < 0.05

Sample 1986–90
Australian dollar 0.384 0.558 0.664 0.984 0.972 0.438 9
British pound 0.902 0.393 0.516 0.711 0.862 0.941 2
Canadian dollar 0.714 0.000 0.000 0.165 0.606 0.803 5
Dutch guilder 0.790 0.323 0.645 0.326 0.398 0.693 1
French franc 0.494 0.191 0.458 0.213 0.198 0.398 1
German Dmark 0.820 0.325 0.617 0.394 0.373 0.617 1
Japanese yen 0.105 0.257 0.584 0.610 0.948 0.941 3
Swiss franc 0.588 0.190 0.581 0.755 0.342 0.818 0

Sample 1991–95
Australian dollar 0.184 0.414 0.131 0.198 0.462 0.171 0
British pound 0.000 0.000 0.000 0.425 0.207 0.468 8
Canadian dollar 0.406 0.297 0.401 0.756 0.068 0.283 0
Dutch guilder 0.937 0.018 0.097 0.908 0.571 0.723 6
French franc 0.925 0.001 0.019 0.680 0.841 0.531 5
German Dmark 0.951 0.013 0.084 0.973 0.713 0.644 4
Japanese yen 0.658 0.131 0.061 0.833 0.541 0.976 11
Swiss franc 0.556 0.058 0.184 0.700 0.561 0.517 5

Notes: p-values of the standard and outlier-robust variants of the LM test for ARCH(q)
for weekly exchange rate returns.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.
The last column reports the number of observations (out of 260) which receive a weight
less than 0.05 in the robust estimation procedure for the AR(k) model.

tests are, in general, much smaller for the first subsample 1986–90. For the
exchange rate returns, the evidence for ARCH seems largely confined to the
second subsample 1991–95.

4.2.2 Testing for nonlinear GARCH

With respect to the specification of nonlinear GARCH models dis-
cussed in the previous subsection, there are two possible routes one might
follow. First, one can start with specifying and estimating a linear GARCH
model and subsequently test the need for asymmetric of other nonlinear com-
ponents in the model. The test-statistics that are involved in this approach are
discussed in detail in section 4.4. Second, one can test the null hypothesis
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of conditional homoscedasticity directly against the alternative of asymmetric
ARCH. In this section we present test-statistics which might be used for this
purpose.

Engle and Ng (1993) discuss tests to check whether positive and negative
shocks have a different impact on the conditional variance. Let S−

t−1 denote a
dummy variable which takes the value 1 when ε̂t−1 is negative and 0 otherwise,
where ε̂t are the residuals from estimating a model for the conditional mean
of yt under the assumption of conditional homoscedasticity. The tests examine
whether the squared residual ε̂2

t can be predicted by S−
t−1, S−

t−1ε̂t−1, and/or

S+
t−1ε̂t−1, where S+

t−1 ≡ 1 − S−
t−1. The test-statistics are computed as the

t-ratio of the parameter φ1 in the regression

ε̂2
t = φ0 + φ1ŵt−1 + ξt , (4.70)

where ŵt−1 is one of the three measures of asymmetry defined above and ξt
the residual.

Where ŵt = S−
t−1 in (4.70), the test is called the Sign Bias (SB) test, as

it simply tests whether the magnitude of the square of the current shock εt
(and, hence, the conditional variance ht ) depends on the sign of the lagged
shock εt−1. In case ŵt = S−

t−1ε̂t−1 or ŵt = S+
t−1ε̂t−1, the tests are called

the Negative Size Bias (NSB) and Positive Size Bias (PSB) tests, respectively.
These tests examine whether the effect of negative or positive shocks on the
conditional variance also depends on their size. As the SB-, NSB- and PSB-
statistics are t-ratios, they follow a standard normal distribution asymptotically.

The tests can also be conducted jointly, by estimating the regression

ε̂2
t = φ0 + φ1S

−
t−1 + φ2S

−
t−1ε̂t−1 + φ3S

+
t−1ε̂t−1 + ξt . (4.71)

The null hypothesis H0 : φ1 = φ2 = φ3 = 0 can be evaluated by computing n
times the R2 from this regression. The resultant test-statistic has an asymptotic
χ2 distribution with 3 degrees of freedom.

Example 4.2: Testing for Sign and Size Bias in stock and exchange rate
returns We apply the SB, NSB, PSB tests and the general test for asymmetry
based on (4.71) to weekly stock and exchange rate returns over the 10-year
sample period from January 1986 until December 1995. The tests are com-
puted for the residuals from an AR(k) model, where the order k is determined
by minimizing the AIC. The values of the test-statistics along with the corre-
sponding p-values are given in table 4.3. Clearly, there is substantial evidence
of asymmetric ARCH effects. Comparing the p-values of the SB test with those
of the NSB and PSB tests, for the majority of these series size effects appear to
be more important than sign effects.
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Table 4.3 Testing for asymmetric ARCH effects in weekly stock index and exchange
rate returns

SB test NSB test PSB test General test

Stock market Test p-value Test p-value Test p-value Test p-value

Amsterdam 1.93 0.027 −22.73 0.000 6.43 0.000 381.78 0.000
Frankfurt 1.65 0.049 −21.15 0.000 6.89 0.000 381.28 0.000
Hong Kong 1.95 0.025 −25.86 0.000 3.15 0.001 375.69 0.000
London 1.18 0.118 −21.34 0.000 7.20 0.000 373.42 0.000
New York 1.94 0.026 −24.44 0.000 4.96 0.000 377.85 0.000
Singapore 1.06 0.145 −25.81 0.000 4.95 0.000 380.05 0.000
Tokyo 1.73 0.042 −16.99 0.000 17.75 0.000 433.18 0.000

Exchange rate

Australian dollar −2.87 0.002 −4.12 0.000 49.69 0.000 431.72 0.000
British pound −2.31 0.010 −4.39 0.000 51.49 0.000 425.98 0.000
Canadian dollar −2.22 0.013 −10.70 0.000 22.42 0.000 435.07 0.000
Dutch guilder −0.67 0.250 −9.43 0.000 28.03 0.000 423.55 0.000
French franc −0.68 0.247 −9.71 0.000 26.42 0.000 418.71 0.000
German Dmark −0.594 0.278 −9.38 0.000 28.17 0.000 422.17 0.000
Japanese yen 0.80 0.212 −13.90 0.000 20.91 0.000 450.40 0.000
Swiss franc −0.10 0.462 −12.11 0.000 20.73 0.000 442.13 0.000

Notes: Sign Bias (SB), Negative Size Bias (NSB), Positive Size Bias (PSB) tests and
general test for asymmetric volatility effects for weekly stock and exchange rate returns.
The sample runs from January 1986 until December 1995.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.

An alternative to the tests of Engle and Ng (1993) are LM tests against various
forms of asymmetric ARCH. Sentana (1995) discusses a test of homoscedas-
ticity against the alternative of quadratic ARCH (QARCH). Consider the
QARCH(q) model, which can be obtained from (4.63) by setting β1 = 0
and adding lagged shocks εt−2, . . . , εt−q and their squares, that is,

ht = ω + γ1εt−1 + γ2εt−2 + · · · + γqεt−q
+ α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε2

t−q, (4.72)

where α1 = · · · = αq = γ1 = · · · = γq = 0, ht is constant. A LM-statistic
to test these parameter restrictions can be computed as n times the R2 from a
regression of the squared residuals ε̂2

t on ε̂t−1, . . . , ε̂t−q and ε̂2
t−1, . . . , ε̂

2
t−q .

Asymptotically, the statistic is χ2 distributed with 2q degrees of freedom.
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Hagerud (1997) suggests two test-statistics to test constant conditional vari-
ance against Smooth Transition ARCH (STARCH). The STARCH(q) model is
given by

ht = ω + α1ε
2
t−1[1 − F(εt−1)] + γ1ε

2
t−1F(εt−1)

+ · · · + αqε2
t−q [1 − F(εt−q)] + γqε2

t−qF (εt−q), (4.73)

where F(·) is either the logistic function (4.56) or the exponential function
(4.58). The null hypothesis of conditional homoscedasticity can again be spec-
ified as H0 : α1 = · · · = αq = γ1 = · · · = γq = 0. The testing problem is
complicated in this case as the parameter θ in the transition function F(·) is not
identified under the null hypothesis. This identification problem is similar to the
one discussed in subsection 3.3.2 in case of testing linearity of the conditional
mean against STAR-type alternatives. The solution here is also the same – that
is, the transition function can be approximated by a low-order Taylor approxi-
mation. In case of the Logistic STARCH (LSTARCH) model (4.73) with (4.56),
this results in the auxiliary model

ht = ω+α∗
1ε

2
t−1 +· · ·+α∗

qε
2
t−q +γ ∗

1 ε
3
t−1 +· · ·+γ ∗

q ε
3
t−q . (4.74)

An LM-statistic to test the equivalent null hypothesis H ∗
0 : α∗

1 = · · · = α∗
q =

γ ∗
1 = · · · = γ ∗

q = 0 can be obtained as n times the R2 from the regres-

sion of ε̂2
t on ε̂2

t−1, . . . , ε̂
2
t−q and ε̂3

t−1, . . . , ε̂
3
t−q . Asymptotically, the statis-

tic is χ2 distributed with 2q degrees of freedom. In case of the Exponential
STARCH (ESTARCH) model (4.73) with (4.58), the auxiliary model is sim-
ilar to (4.74) except that ε4

t−i , i = 1, . . . , q, are included instead of ε3
t−i ,

i = 1, . . . , q. The null hypothesis of constant conditional variance can be
tested by n times the R2 of the auxiliary regression of ε̂2

t on ε̂2
t−1, . . . , ε̂

2
t−q

and ε̂4
t−1, . . . , ε̂

4
t−q . This statistic also has an asymptotic χ2 distribution with

2q degrees of freedom.

Example 4.3: Testing for nonlinear ARCH in stock and exchange
rate returns We apply the LM tests for QARCH(q), LSTARCH(q) and
ESTARCH(q) to the weekly returns on stock indices and exchange rates, using
the same strategy as in example 4.1. The left-hand side panels of tables 4.4
and 4.5 contain p-values for the above LM tests with q = 5 for the stock and
exchange rate returns, respectively. The results in these tables suggest that there
is ample evidence of nonlinear ARCH.
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Table 4.4 Testing for nonlinear ARCH in weekly stock index returns

Standard tests Robust tests

Stock market LMQ LML LME LMQ LML LME

Sample 1986–90
Amsterdam 0.000 0.000 0.000 0.509 0.276 0.181
Frankfurt 0.033 0.042 0.000 0.183 0.020 0.291
Hong Kong 0.000 0.000 0.000 0.068 0.063 0.039
London 0.001 0.000 0.000 0.603 0.742 0.908
New York 0.000 0.000 0.000 0.427 0.580 0.778
Paris 0.101 0.136 0.187 0.957 0.858 0.936
Singapore 0.015 0.022 0.000 0.081 0.067 0.026
Tokyo 0.000 0.000 0.002 0.032 0.068 0.107

Sample 1991–5
Amsterdam 0.064 0.077 0.042 0.088 0.112 0.108
Frankfurt 0.112 0.075 0.492 0.181 0.067 0.446
Hong Kong 0.049 0.005 0.002 0.154 0.144 0.008
London 0.097 0.111 0.720 0.022 0.020 0.127
New York 0.710 0.802 0.336 0.903 0.891 0.960
Paris 0.409 0.312 0.323 0.409 0.312 0.323
Singapore 0.005 0.004 0.008 0.046 0.013 0.101
Tokyo 0.000 0.000 0.000 0.214 0.150 0.123

Notes:p-values of the standard and outlier-robust variants of the LM test for QARCH(q)
[LMQ], LSTARCH(q) [LML] and ESTARCH(q) [LME] for q = 5 applied to weekly
stock index returns.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.

4.2.3 Testing for ARCH in the presence of misspecification

The small sample properties of the LM test for linear (G)ARCH have
been investigated quite extensively. In particular, it has been found that rejection
of the null hypothesis of homoscedasticity might be due to other sorts of model
misspecification, such as neglected serial correlation, nonlinearity and omitted
variables in the model for the conditional mean. For example, Engle, Hendry and
Trumble (1985), Bera, Higgins and Lee (1992) and Sullivan and Giles (1995)
show that in the presence of neglected serial correlation, the LM test tends to
overreject the null hypothesis. Bera and Higgins (1997) discuss the similarity
between ARCH and bilinear processes such as (2.37) and suggest that the
two may easily be mistaken. Giles, Giles and Wong (1993) provide simulation
evidence on the effects of omitted variables, which demonstrates that this may
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Table 4.5 Testing for nonlinear ARCH in weekly exchange rate returns

Standard tests Robust tests

Currency LMQ LML LME LMQ LML LME

Sample 1986–90
Australian dollar 0.154 0.581 0.514 0.944 0.947 0.997
British pound 0.458 0.202 0.315 0.567 0.752 0.698
Canadian dollar 0.006 0.000 0.001 0.769 0.569 0.303
Dutch guilder 0.563 0.198 0.524 0.545 0.270 0.533
French franc 0.280 0.088 0.374 0.234 0.069 0.504
German Dmark 0.601 0.214 0.549 0.513 0.246 0.475
Japanese yen 0.553 0.535 0.514 0.977 0.978 0.954
Swiss franc 0.454 0.540 0.390 0.715 0.543 0.394

Sample 1991–5
Australian dollar 0.747 0.841 0.690 0.805 0.741 0.676
British pound 0.000 0.000 0.000 0.223 0.068 0.390
Canadian dollar 0.263 0.035 0.137 0.108 0.070 0.178
Dutch guilder 0.012 0.002 0.001 0.772 0.432 0.494
French franc 0.003 0.000 0.000 0.955 0.881 0.978
German Dmark 0.011 0.002 0.001 0.875 0.705 0.664
Japanese yen 0.198 0.385 0.041 0.697 0.584 0.646
Swiss franc 0.145 0.103 0.116 0.729 0.665 0.284

Notes: p-values of the standard and outlier-robust variants of the LM tests for
QARCH(q) [LMQ], LSTARCH(q) [LML] and ESTARCH(q) [LME] for q = 5 applied
to weekly exchange rate returns.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.

also lead to significant ARCH-statistics. Lumsdaine and Ng (1999) investigate
the properties of the LM test for ARCH in the presence of misspecification
in the conditional mean model at a general level. They conclude that model
misspecification causes the regression residuals ε̂t to be serially correlated even
if the true errors εt are not. Consequently, the squared regression residuals
also exhibit spurious correlation and, hence, model misspecification necessarily
leads to positive (and never negative) size distortion for the LM test. In the next
subsection we elaborate upon the properties of the LM test in the presence of
outliers in more detail.

Example 4.4: Properties of the ARCH tests in case of neglected nonlinearity
To illustrate the properties of the LM tests for ARCH, QARCH, LSTARCH
and ESTARCH in the presence of misspecification, the following simulation
experiment is performed. We generate 5,000 series of length n = 250 from
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Table 4.6 Testing for ARCH and QARCH in simulated SETAR series

Intercepts

φ0,1 φ0,2 LMA LMQ LML LME

0 0 24.04 23.72 28.82 25.68
−0.3 0.1 67.46 68.24 78.22 65.10
−0.3 −0.1 78.46 90.18 85.92 73.06

0.3 −0.1 9.06 9.96 6.98 22.34

Notes: Rejection frequencies of the null hypothesis of condi-
tional homoscedasticity against ARCH(1) [LMA], QARCH(1) [LMQ],
LSTARCH(1) [LML] and ESTARCH(1) [LME], for series of length
n = 250 generated from the SETAR model (3.1), with φ1,1 = −0.5,
φ1,2 = 0.5, c = 0 and εt ∼ NID(0, 0.252), based on 5,000 replications.

the SETAR model (3.1), with φ1,1 = −0.5, φ1,2 = 0.5, c = 0 and εt ∼
NID(0, 0.252). For the interceptsφ0,1 andφ0,2 we take the values that were used
to generate the example series discussed in subsection 3.1.1. For each series,
we erroneously specify and estimate a linear AR(1) model for the conditional
mean, and test the residuals for conditional heteroscedasticity by means of the
various LM tests against ARCH with q = 1. Table 4.6 contains the rejection
frequencies of the null hypothesis using the 5 per cent asymptotic critical value.
These frequencies vary substantially, depending on the values of φ0,1 and φ0,2,
but in all cases they are above the nominal significance level.

4.2.4 Testing for ARCH in the presence of outliers

The adverse effects of outliers on estimates of models for the con-
ditional mean and specification tests for such models have been discussed in
chapters 2 and 3, respectively. In the light of these results, it should come as no
surprise that outliers, additive outliers in particular, affect the tests for ARCH
as well. van Dijk, Franses and Lucas (1999b) show that the behaviour of the
LM test for ARCH based on the regression (4.69) in the presence of AOs is
very similar to the behaviour of the test for STAR nonlinearity under such cir-
cumstances, as discussed in subsection 3.3.4. If the AOs are neglected, the LM
test rejects the null hypothesis of conditional homoscedasticity too often when
it is in fact true, while the test has difficulty detecting genuine GARCH effects,
in the sense that the power of the test is reduced considerably.

An alternative test-statistic which is robust to the presence of AOs can
be obtained by employing the robust estimation techniques discussed in
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section 2.5. For example, where an AR(1) model is entertained for the con-
ditional mean of the series yt , one can use the standardized residuals rt defined
just below (2.115) and the weights wr(rt ) to construct the weighted resid-
uals wr(rt )rt ≡ ψ(rt ). A robust equivalent to the LM test for ARCH(q)
is obtained as n times the R2 of a regression of ψ(rt )2 on a constant and
ψ(rt−1)

2, . . . , ψ(rt−q)2. Under conventional assumptions, the outlier-robust
LM test has a χ2(q) distribution asymptotically. A similar procedure can be fol-
lowed to obtain outlier-robust tests against the alternative of nonlinear ARCH.
For example, a robust test against LSTARCH(q) can be computed as n times
the R2 of the auxiliary regression of ψ(rt )2 on ψ(rt−1)

2, . . . , ψ(rt−q)2 and
ψ(rt−1)

3, . . . , ψ(rt−q)3.
The analysis of van Dijk, Franses and Lucas (1999b) concerns AOs that occur

in isolation. Additionally, Franses, van Dijk and Lucas (1998) demonstrate that
the effects on the standard LM test can be even more dramatic if outliers appear
as consecutive observations. Reassuringly, the outlier-robust test is affected to a
much lesser extent by such patches of outliers. Of course, patches of outliers are
difficult to distinguish from genuine GARCH effects, as they look very similar
upon casual inspection of a graph of a time series. However, combining the
outcomes of the standard and robust tests for ARCH can sometimes provide a
way to tell the two apart, as illustrated in the example below.

Example 4.5: Properties of the ARCH tests in the presence of neglected
outliers To examine the effects of outliers on the LM tests for ARCH, we
conduct the following simulation experiment. We generate artificial time series
from an AR(1) model,

yt = φ1yt−1 + εt , t = 1, . . . , n, (4.75)

with φ1 = 0.5. The shocks εt are either drawn from a standard normal distribu-
tion or defined as εt = zt

√
ht , with ht generated according to a GARCH(1,1)

model as in (4.13) and zt ∼ NID(0, 1). In the GARCH(1,1) model for ht , we
set α1 = 0.25, β1 = 0.65 and ω = 1 − α1 − β1, such that εt has unconditional
variance equal to 1. The sample size n is set equal to 100, 250 or 500 observa-
tions. Next, we add a single outlier of size ζ = 0, 3, 5 or 7 to the observation at
the middle of the sample, yn/2. For the resultant series, we estimate an AR(1)
model and obtain the residuals ε̂t . Given the AR(1) model for the conditional
mean, the AO at t = n/2 potentially yields two large consecutive residuals. We
compute the standard and outlier-robust test-statistics against qth order ARCH
and nonlinear ARCH for q = 1 to see whether the tests are affected by these
large residuals. Table 4.7 shows the rejection frequencies of the null hypothesis
at a nominal significance level of 5 per cent, based on 5,000 replications.
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Table 4.7 Rejection frequencies of standard and robust tests for (nonlinear)
ARCH in the presence of outliers

Standard tests Robust tests

LMA LMQ LML LME LMA LMQ LML LME

εt ∼ NID(0, 1)
100 0 3.62 3.78 3.62 3.94 4.02 4.14 3.64 4.30

3 7.84 8.38 10.82 9.82 4.86 4.96 5.42 5.40
5 20.22 18.90 27.10 22.92 3.96 4.02 4.22 5.02
7 17.62 16.06 15.98 16.82 3.54 3.96 3.98 4.54

250 0 4.36 4.60 4.86 4.64 4.48 4.68 4.64 4.54
3 9.46 9.42 13.02 13.70 5.10 5.40 5.30 5.30
5 35.04 32.06 40.08 43.98 4.86 4.78 4.68 4.88
7 51.98 45.76 50.48 52.10 4.54 4.86 4.78 4.74

500 0 3.88 4.30 4.38 4.26 4.46 4.32 4.08 3.76
3 7.42 7.38 10.56 11.94 4.62 4.58 4.44 4.20
5 37.46 33.62 45.46 57.52 4.54 4.18 3.74 3.92
7 68.46 62.92 70.04 71.60 4.42 4.28 4.08 3.94

εt ∼ GARCH(1, 1)
100 0 43.46 42.64 42.86 46.06 27.96 25.36 26.50 26.68

3 38.56 36.72 37.20 40.48 27.24 24.76 26.08 26.48
5 31.66 28.46 29.10 31.18 28.92 26.40 27.24 27.94
7 19.28 18.02 18.02 19.00 29.64 27.22 28.10 29.06

250 0 83.74 81.24 81.84 85.86 61.96 55.92 57.18 59.14
3 81.80 78.66 80.22 83.44 61.78 55.46 56.46 58.48
5 78.82 74.24 74.90 77.06 62.50 56.04 57.54 60.42
7 70.98 64.74 64.98 66.28 63.28 56.84 58.16 60.88

500 0 98.90 98.18 98.26 99.06 89.20 84.66 84.78 87.20
3 98.24 97.66 97.86 98.70 88.62 83.80 84.22 86.98
5 97.20 96.06 96.96 97.46 89.28 85.00 85.44 87.38
7 95.64 93.90 94.80 95.22 89.50 85.30 85.84 87.82

Notes: Rejection frequencies of the standard and outlier-robust LM statistics for
ARCH(1) [LMA], QARCH(1) [LMQ], LSTARCH(1) [LML] and ESTARCH(1)
[LME], using the 5 per cent asymptotic critical value.
Time series are generated according to the AR(1) model (4.75) and an AO of mag-
nitude ζ is added to the observation in the middle of the sample.
The empirical power in the lower panel is not adjusted for empirical size.
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The results in the upper panel of table 4.7 show that the rejection frequencies
under the null hypothesis for the standard tests are much larger than the nominal
significance level if the magnitude of the outlier is substantial. The robust tests
do not suffer from size distortion at all. The lower panel shows that the power of
the robust test where no outliers occur is smaller than the power of the standard
test. This illustrates that protection against aberrant observations comes at a
cost in terms of a decrease in power where no outliers occur. The rejection
frequencies of the non-robust test decrease in the presence of outliers, especially
for sample sizes n = 100 and 250.

The different effects of isolated outliers and patches of outliers on the LM
test for linear ARCH are illustrated by means of a similar simulation experi-
ment. Artificial time series of length n = 500 are obtained from (4.75) with
φ1 = 0 and the properties of the shocks εt are as specified above. Next, we
add either m = 5 or 10 isolated outliers, or m = 1 or 2 patches of k = 2, 3
or 5 outliers at random places in the series. The absolute magnitude of the
outliers is set equal to ζ = 3, 5 or 7, while the sign of each outlier is posi-
tive or negative with equal probability. The ARCH tests are applied to series
from which the mean has been removed, either by estimating it with OLS or
the outlier-robust GM estimator. For each replication we record whether we
find ARCH with both the standard and robust tests, denoted as (Y,Y), ARCH
with the standard test but not with the robust test [(Y,N)], or one of the other
combinations [(N,Y) or (N,N)]. The results for this experiment are reported in
table 4.8.

From table 4.8, several conclusions emerge. First, the size of both the standard
and robust tests, which can be obtained by adding up the entries in the columns
headed (Y,Y) and (Y,N) or (Y,Y) and (N,Y), respectively, is hardly affected by
the occurrence of isolated outliers. Note that for the standard test this differs
from the results in table 4.7. This is due to the fact that in this case the true
value of the autoregressive parameter φ1 is assumed to be known (and equal to
zero). In contrast to the limited impact of neglecting isolated AOs in white noise
series on the standard ARCH test, it is seen that in case of clustering of AOs the
standard LM test is affected to a much larger extent. For almost all combinations
of m, k and ζ considered here, the test-statistic is severely oversized. In fact,
the empirical rejection frequency equals 100 per cent already in case of a single
patch of 3 outliers or 2 patches of 2 outliers (of absolute magnitude 5 or 7) out of
the 500 observations. In sharp contrast with these findings for the standard test,
the empirical size of the robust test is usually close to the nominal 5 per cent
significance level.

If isolated outliers occur, the power of the standard test decreases quite dra-
matically, while the power of the robust test remains high. In the presence
of patchy outliers, the power of both the standard and robust tests is very
high.
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Table 4.8 Properties of standard and robust tests for ARCH in the presence of patchy
outliers

εt ∼ NID(0, 1) εt ∼ GARCH(1, 1)

m k ζ (Y,Y) (Y,N) (N,Y) (N,N) (Y,Y) (Y,N) (N,Y) (N,N)

1 2 3 3.8 25.8 2.6 67.8 90.1 9.7 0.2 0.0
5 5.6 90.4 0.2 3.8 90.7 9.2 0.1 0.0
7 5.9 93.8 0.0 0.3 90.7 9.2 0.1 0.0

3 3 4.9 49.6 2.2 43.3 90.9 9.0 0.0 0.1
5 6.2 93.1 0.0 0.7 92.1 7.8 0.1 0.0
7 6.3 93.6 0.0 0.1 92.2 7.7 0.1 0.0

5 3 5.5 75.4 1.4 17.7 89.3 10.4 0.1 0.2
5 4.6 95.4 0.0 0.0 91.7 8.1 0.0 0.2
7 4.9 95.1 0.0 0.0 91.8 8.0 0.0 0.2

2 2 3 3.9 49.3 1.9 44.9 89.6 10.3 0.1 0.0
5 4.8 95.2 0.0 0.0 91.4 8.6 0.1 0.0
7 4.8 95.2 0.0 0.0 91.6 8.4 0.0 0.0

3 3 6.9 76.1 0.7 16.3 88.3 11.7 0.0 0.0
5 6.1 93.9 0.0 0.0 90.3 9.7 0.0 0.0
7 6.2 93.8 0.0 0.0 90.2 9.8 0.0 0.0

5 3 10.3 87.3 0.0 2.4 89.9 10.1 0.0 0.0
5 5.2 94.8 0.0 0.0 93.0 7.0 0.0 0.0
7 5.3 94.7 0.0 0.0 93.0 7.0 0.0 0.0

5 1 3 1.4 2.8 4.7 91.1 79.8 9.9 7.9 2.4
5 0.3 3.3 5.4 91.0 42.3 3.7 47.0 7.0
7 0.4 4.1 5.3 90.2 17.0 0.9 72.0 10.1

10 1 3 0.9 3.4 4.0 91.7 71.5 7.8 16.9 3.8
5 0.2 4.9 5.6 89.3 30.2 2.4 60.8 6.6
7 0.4 6.1 5.2 88.3 13.6 1.2 76.8 8.4

Notes: Rejection frequencies of the standard and robust LM tests against ARCH(1),
based on 1,000 replications.
The cells report the number of times that a certain outcome occurs when the test statistics
are evaluated at the 5 per cent nominal significance level. For example, (Y,N) means that
the standard LM test detects ARCH (Y) while the robust test does not (N).
The series are generated according to an AR(1) process.
m patches of k outliers of absolute magnitude ζ are added at random places in the series.

The above simulation results suggest how the outcomes of the standard and
robust ARCH tests can sometimes be helpful to distinguish genuine GARCH
effects from outliers. If the robust test finds no ARCH, there probably is no
ARCH, and when it finds ARCH, there probably is. Furthermore, the result
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(Y,N), meaning finding ARCH with the standard test but not with the robust
test, can most likely be seen as evidence against ARCH in favour of a short
sequence of extraordinary observations. The opposite result (N,Y), meaning
finding ARCH with the robust test but not with the standard test, can be inter-
preted as evidence of ARCH, possibly contaminated with a few isolated outliers.
In both cases it is recommended to have a closer look at the weights from the
robust regression and the corresponding observations in the original time series,
before carrying on with any subsequent analyses.

Example 4.1/4.3: Testing for (nonlinear) ARCH in stock and exchange rate
returns The sample periods of 5 years for which the LM tests for (nonlinear)
ARCH(q) were computed for the weekly returns on stock indices and exchange
rates are such that one of the samples is more or less regular, whereas the other
clearly contains an unusual event, which might be regarded as an outlier. For the
stock index returns, the unusual event is the crash on 19 October 1987, which is
part of the first sample from January 1986–December 1990. For the exchange
rates, the unusual event is the speculative attack on a number of European
currencies in September 1992, which is contained in the second sample running
from January 1991 until December 1995. Columns 5–7 of tables 4.1 and 4.2
contain p-values for the outlier-robust variants of the LM test for ARCH(q)
with q = 1, 5 and 10 for the stock and exchange rate returns, respectively.
The same columns of tables 4.4 and 4.5 contain results for the robust test for
QARCH(q). The overwhelming evidence for, possibly nonlinear, ARCH found
by the standard tests becomes somewhat weaker when we consider the robust
tests. In the rightmost columns of tables 4.1 and 4.2, we present the fraction
of estimated weights in the robust estimation method that is smaller than 0.05.
Apparently, only a few observations may cause the nonrobust tests to reject the
null hypothesis of conditional homoscedasticity.

The differences that may occur across robust and nonrobust tests should be
interpreted with great care. In particular, the evidence for time variation in the
conditional volatility of high-frequency financial time series is so overwhelming
that it may seem odd to attribute this entirely to aberrant observations. It is
therefore not recommended to discard the GARCH model altogether in case
the robust test fails to reject the null hypothesis. It may be better to conclude that
AOs are possibly relevant and should be taken into account when estimating
the parameters in a GARCH model. Some methods which are potentially useful
for this purpose are discussed in subsection 4.3.3.

4.3 Estimation

In this section we discuss estimation of the parameters in GARCH models.
General principles are discussed first, followed by some remarks on
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simplifications which are available in case of linear GARCH models and on
estimation in the presence of outliers.

4.3.1 General principles

Consider the general nonlinear autoregressive model of order p,

yt = G(xt ; ξ)+ εt , (4.76)

where xt = (1, yt−1, . . . , yt−p)′ and the skeleton G(xt ; ξ) is a general
nonlinear function of the parameters ξ that is at least twice continuously
differentiable. The conditional variance ht of εt is assumed to follow a pos-
sibly nonlinear GARCH model with parameters ψ . For example, where a
QGARCH(1,1) model (4.63) is specified for ht , ψ = (ω, α1, γ1, β1)

′. The
parameters in the models for the conditional mean and conditional variance are
gathered in the vector θ ≡ (ξ ′, ψ ′)′. The true parameter values are denoted
θ0 = (ξ ′

0, ψ
′
0)

′. The parameters in θ can conveniently be estimated by maxi-
mum likelihood (ML). The conditional log likelihood for the t th observation is
equal to

lt (θ) = ln f (εt /
√
ht )− ln

√
ht , (4.77)

where f (·) denotes the density of the i.i.d. shocks zt . For example, if zt is
assumed to be normally distributed,

lt (θ) = −1

2
ln 2π − 1

2
ln ht − ε2

t

2ht
. (4.78)

The maximum likelihood estimate (MLE) for θ , which we denote as θ̂ML, is
found by maximizing the log likelihood function for the full sample, which is
simply the sum of the conditional log likelihoods as given in (4.77). The MLE
solves the first-order condition

n∑
t=1

∂lt (θ)

∂θ
= 0. (4.79)

The vector of derivatives of the log likelihood with respect to the parameters is
usually referred to as the score st (θ) ≡ ∂lt (θ)/∂θ . For the model (4.76) with
εt = zt

√
ht , the score can be decomposed as st (θ) = (∂lt (θ)/∂ξ ′, ∂lt (θ)/∂ψ ′),

where

∂lt (θ)

∂ξ
= εt

ht

∂G(xt ; ξ)
∂ξ

+ 1

2ht

(
ε2
t

ht
− 1

)
∂ht

∂ξ
, (4.80)

∂lt (θ)

∂ψ
= 1

2ht

(
ε2
t

ht
− 1

)
∂ht

∂ψ
. (4.81)
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The second term on the right-hand-side of (4.80) arises because the conditional
variance ht in general depends on εt−1, and thus on the parameters in the
conditional mean for yt , as εt−1 = yt−1 −G(xt−1; ξ).

As the first-order conditions in (4.79) are nonlinear in the parameters, an
iterative optimization procedure has to be used to obtain the MLE θ̂ML. If
the conditional distribution f (·) is correctly specified, the resulting estimates
are consistent and asymptotically normal. The asymptotic covariance matrix
of

√
n(θ̂ML − θ0) is then equal to A−1

0 , the inverse of the information matrix
evaluated at the true parameter vector θ0,

A0 = −1

n

n∑
t=1

E

(
∂2lt (θ0)

∂θ∂θ ′

)
= 1

n

n∑
t=1

E(Ht (θ0)). (4.82)

The negative of the matrix of second-order partial derivatives of the log like-
lihood with respect to the parameters, Ht(θ) ≡ −∂2lt (θ)/∂θ∂θ

′, is called the
Hessian. The matrix A0 can be consistently estimated by its sample analogue

An(θ̂ML) = −1

n

n∑
t=1

(
∂2lt (θ̂ML)

∂θ∂θ ′

)
. (4.83)

As argued in section 4.1.2, conditional normality of εt is often not a very real-
istic assumption for high-frequency financial time series, as the resulting model
fails to capture the kurtosis in the data. Instead, one sometimes assumes that zt is
drawn from a (standardized) Student-t distribution given in (4.68) or any other
distribution. The parameters in the GARCH models can then be estimated by
maximizing the log likelihood corresponding with this particular distribution.
As one can never be sure that the specified distribution of zt is the correct one,
an alternative approach is to ignore the problem and base the likelihood on the
normal distribution as in (4.78). This method usually is referred to as quasi-
maximum likelihood estimation (QMLE). In general, the resulting estimates
still are consistent and asymptotically normal, provided that the models for the
conditional mean and conditional variance are correctly specified. Weiss (1984,
1986) has demonstrated this for ARCH(q) models as in (4.10), while Bollerslev
and Wooldridge (1992), Lee and Hansen (1994) and Lumsdaine (1996) have
obtained the same result where ht follows a GARCH(1,1) model as in (4.13),
under varying assumptions on the properties of zt .

Interestingly, consistency and asymptotic normality of the QMLE estimates
do not require that the parameters in the GARCH(1,1) model satisfy the
covariance-stationarity condition α1 +β1 < 1, but they continue to hold for the
IGARCH(1,1) model. This is another difference with unit root models for the
conditional mean. Recall from chapter 2 that the properties of the estimates of,
for example, autoregressive parameters change dramatically where the model
contains a unit root.
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As the true distribution of zt is not assumed to be the same as the normal
distribution which is used to construct the likelihood function, the standard
errors of the parameters have to be adjusted accordingly. In particular, the
asymptotic covariance matrix of

√
n(θ̂ − θ0) is equal to A−1

0 B0A
−1
0 , where

A0 is the information matrix (4.82) and B0 is the expected value of the outer
product of the gradient matrix,

B0 = 1

n

n∑
t=1

E

(
∂lt (θ0)

∂θ

∂lt (θ0)

∂θ ′

)
= 1

n

n∑
t=1

E(st (θ0)st (θ0)
′). (4.84)

The asymptotic covariance matrix can be estimated consistently by using the
sample analogues for both A0, as given in (4.83), and B0, given by

Bn(θ̂ML) = 1

n

n∑
t=1

(
∂lt (θ̂ML)

∂θ

∂lt (θ̂ML)

∂θ ′

)
= 1

n

n∑
t=1

st (θ̂ML)st (θ̂ML)
′.

(4.85)

The finite sample properties of the quasi-maximum likelihood estimates for
GARCH(1,1) models are considered in Engle and González-Rivera (1991) and
Bollerslev and Wooldridge (1992). It appears that as long as the distribution
of zt is symmetric, QMLE is reasonably accurate and close to the estimates
obtained from exact MLE methods, while for skewed distributions this is no
longer the case. Lumsdaine (1995) investigates the finite sample properties of
the MLE method where the series follow an IGARCH model and she concludes
that this method is quite accurate.

The iterative optimization procedures that can be used to estimate the parame-
ters typically require the first- and second-order derivatives of the log likelihood
with respect to θ – that is, the score st (θ) and Hessian matrix Ht(θ) defined
above. For example, the iterations in the well known Newton–Raphson method
take the form

θ̂ (m) = θ̂ (m−1) − λ
( n∑
t=1

Ht(θ̂
(m−1))

)−1 n∑
t=1

st (θ̂
(m−1)), (4.86)

where θ̂ (m) is the estimate of the parameter vector obtained in themth iteration
and the scalar λ denotes a step size. In the algorithm of Berndt et al. (1974)
(BHHH) , which is by far the most popular method to estimate GARCH models,
the HessianHt(θ̂ (m−1)) in (4.86) is replaced by the outer product of the gradient
matrixBn(θ̂ (m−1)) obtained from (4.85). It is common to use numerical approx-
imations to these quantities, as the analytical derivatives are fairly complex and
contain recursions which are thought to be too cumbersome to compute. How-
ever, Fiorentini, Calzolari and Panatoni (1996) show that this is not the case



174 Nonlinear time series models in empirical finance

and suggest that it might be advantageous to use analytic derivatives. In gen-
eral, convergence of the optimization algorithm requires much less iteration,
whereas the standard errors of the parameter estimates are far more accurate.

At the outset of this section, it was assumed that the conditional mean func-
tion G(xt ; ξ) is at least twice continuously differentiable with respect to the
parameters ξ . The STAR and Markov-Switching models discussed in chapter 3
obviously satisfy this requirement. Specification of STAR models for the con-
ditional mean combined with GARCH models for the conditional variance is
discussed in detail in Lundbergh and Teräsvirta (1998a). The parameters of such
models can be estimated using the (Q)MLE method described above. To esti-
mate the parameters of a model with Markov-Switching in either the conditional
mean or variance (or both), the algorithm discussed in section 3.2.3 can be used
(see Hamilton and Susmel, 1994, and Dueker, 1997). The SETAR model is not
continuous and, hence, the parameters of a SETAR-GARCH models cannot be
estimated by the (quasi-)maximum likelihood method outlined above. Li and
Li (1996) suggest an alternative estimation procedure for such models, see also
Liu, Li and Li (1997).

Example 4.6: Nonlinear GARCH models for Tokyo stock index returns
We estimate several nonlinear variants of the GARCH(1,1) model for weekly
returns on the Tokyo stock index (as the relevant tests computed earlier indi-
cate their potential usefulness), for the 10-year sample from January 1986 until
December 1995. For convenience, we assume that the conditional mean of the
returns is constant and need not be described by a linear or nonlinear model.
Parameter estimates for GARCH, GJR-GARCH, QGARCH and VS-GARCH
models are given in table 4.9. In the GJR-GARCH model, the estimate of α1
is larger than the estimate of γ1, which implies that negative shocks have a
larger effect on conditional volatility than positive shocks of the same magni-
tude. The negative estimate of γ1 in the QGARCH model implies that the news
impact curve (NIC) is shifted to the right, relative to the standard GARCH(1,1)
model, implying that positive shocks have smaller impact on the conditional
variance than negative shocks. The VS-GARCH model also implies rather dif-
ferent behaviour of ht following negative and positive shocks. In particular, if
the shock in the previous period was negative, the conditional volatility process
is explosive (as α̂1 + β̂1 > 1).

The conditional standard deviations as implied by the GARCH(1,1) model
and the three nonlinear variants discussed here are shown in figure 4.3. These
plots confirm that the main difference between the linear GARCH model and
the GJR-GARCH and QGARCH model is the response of conditional volatility
to positive shocks. For example, in the second week of August 1992 and the
first week of July 1995, the Nikkei index experienced large positive returns of
12.1 per cent and 11.3 per cent, respectively. According to the GARCH model,
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Figure 4.3 Conditional standard deviation for weekly returns on the Tokyo stock
index as implied by estimated nonlinear GARCH(1,1) models

the volatility of subsequent returns increases considerably, whereas according
to the QGARCH and especially the GJR-GARCH model this was not the case.

4.3.2 Estimation of linear GARCH models

As the parameter vector θ consists of the parameters in the models
for the conditional mean and variance, the Hessian matrix Ht(θ) can be partit-
ioned as

Ht(θ) =


∂2lt (θ)

∂ξ∂ξ ′
∂2lt (θ)

∂ξ∂ψ ′

∂2lt (θ)

∂ψ∂ξ ′
∂2lt (θ)

∂ψ∂ψ ′

 =
 Hξξt (θ) H

ξψ
t (θ)

H
ξψ
t (θ)′ H

ψψ
t (θ)

 . (4.87)

Where the conditional variance ht is a symmetric function of εt , it can be
shown that the expected values of the elements in the block Hξψt (θ) are equal
to zero (see Engle, 1982). It then follows that the Hessian and, based on (4.82),
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the information matrix are block-diagonal, which implies that consistent and
asymptotically efficient estimates of the parameters ξ and ψ can be obtained
separately. In this case, the parameters in the model for the conditional mean
can be estimated in a first step by (nonlinear) least squares. In a second step,
the parameters in the GARCH model are estimated with maximum likelihood,
using the residuals ε̂t obtained in the first step. Of the GARCH models discussed
in section 4.1, only the basic ARCH and GARCH models and the ESTGARCH
model describe the conditional variance as a symmetric function of εt . For the
other nonlinear GARCH models, the information matrix is not block-diagonal
and the parameters in the model for the conditional mean and variance have to
be estimated jointly.

Example 4.7: GARCH models for stock index and exchange rate returns
To illustrate the methods discussed in this section, we estimate GARCH(1,1)
models for some selected weekly stock index and exchange rate returns. Again
we assume that the conditional mean of the series is constant. The parameter
estimates that are reported in table 4.10 illustrate the typical findings in empiri-
cal applications of the GARCH(1,1) model. For all time series, the estimate of

Table 4.10 Estimates of GARCH(1,1) models for weekly stock index and exchange
rate returns

Stock index ω α1 β1 Exchange rate ω α1 β1

Frankfurt 1.560 0.144 0.635 British pound 0.171 0.071 0.856
(0.490) (0.019) (0.085) (0.061) (0.025) (0.042)
[0.790] [0.045] [0.142] [0.105] [0.028] [0.062]
{1.742} {0.118} {0.330} {0.191} {0.037} {0.105}

New York 0.082 0.099 0.888 French franc 0.367 0.097 0.748
(0.033) (0.019) (0.025) (0.195) (0.035) (0.108)
[0.054] [0.038] [0.041] [0.174] [0.037] [0.093]
{0.097} {0.092} {0.086} {0.160} {0.043} {0.083}

Paris 0.468 0.074 0.852 German Dmark 0.405 0.088 0.754
(0.315) (0.039) (0.080) (0.239) (0.039) (0.122)
[0.256] [0.029] [0.057] [0.184] [0.036] [0.089]
{0.255} {0.023} {0.043} {0.153} {0.038} {0.068}

Estimates of GARCH(1,1) models, ht = ω+ α1ε
2
t−1 + β1ht−1, for weekly stock index

and exchange rate returns.
The sample runs from January 1986 until December 1995.
Figures in round, straight and curly brackets are standard errors based on the outer prod-
uct of the gradient matrix Bn(θ̂ML) as given in (4.85), the Hessian matrix An(θ̂ML)

as given in (4.83) and the robust quasi-maximum likelihood covariance estimator
A−1
n BnA

−1
n , respectively.
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α1 is fairly small, the estimate of β1 is large and the sum α1 + β1 is close to
unity. The standard errors of the parameter estimates which are given in brackets
demonstrate that large differences may exist between the different methods to
compute them.

Figure 4.4 shows the conditional standard deviation as implied by the esti-
mated GARCH(1,1) models together with the absolute values of the returns
series. One feature which stands out from all graphs is that the models tend
to overestimate the conditional volatility during relatively quiet periods. The
absolute returns suggest that periods of large changes in the stock indexes
and exchange rates are relatively short-lived, and the return to more quiet spells
occurs quickly. By contrast, the estimates of the parameters in the GARCH(1,1)
model imply that conditional volatility is persistent, in the sense that shocks to
the conditional variance die out very slowly. Notice again, though, that the
GARCH model describes unobserved volatility. It may well be that this latent
variable displays strong persistence, but that this does not feed through the
returns because of small values of zt .

4.3.3 Robust estimation of GARCH models

In subsection 4.2.4, it was argued that neglected outliers might easily
be mistaken for conditional heteroscedasticity. The evidence for time varia-
tion in the conditional volatility of high-frequency financial time series is so
overwhelming, though, that it may seem odd to maintain that all of this is
caused entirely by one-time exogenous events. However, even if conditional
heteroscedasticity is a characteristic of the time series under study, it might still
happen that outliers occur (see also Friedman and Laibson, 1989, for a theo-
retical motivation). Hence, it is of interest to consider statistical methods for
inference in GARCH models that are applicable where such aberrant observa-
tions are present.

Several approaches to handle outliers in GARCH models have been investi-
gated. Sakata and White (1998) consider outlier-robust estimation for GARCH
models, using techniques similar to the ones discussed in subsection 3.2.4. Hotta
and Tsay (1998) derive test-statistics to detect outliers in a GARCH model, dis-
tinguishing between outliers which do and which do not affect the conditional
volatility. Franses and Ghijsels (1999) apply the outlier detection method of
Chen and Liu (1993) to GARCH models. For illustrative purposes, the latter
method is discussed in more detail below.

Consider the GARCH(1,1) model

εt = zt
√
ht , (4.88)

ht = ω + α1ε
2
t−1 + β1ht−1, (4.89)
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Figure 4.4 Conditional standard deviation for weekly stock index returns as implied
by estimated GARCH(1,1) models
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where ω > 0, α1 > 0, β1 > 0 and α1 + β1 < 1, such that the model is
covariance-stationary. For simplicity, we ignore the conditional mean of the
observed time series yt and simply assume that it is equal to 0 – that is, εt = yt .
As shown in subsection 4.1.1, the GARCH(1,1) model (4.89) can be rewritten
as an ARMA(1,1) model for ε2

t ,

ε2
t = ω + (α1 + β1)ε

2
t−1 + νt − β1νt−1, (4.90)

where νt = ε2
t − ht . Franses and Ghijsels (1999) exploit this analogy of the

GARCH model with an ARMA model to adapt the method of Chen and Liu
(1993) to detect and correct (additive) outliers in GARCH models. Specifically,
suppose that instead of the true series εt one observes the series et which is
defined by

e2
t = ε2

t + ζ I [t = τ ], (4.91)

where I [t = τ ] is the indicator function defined as I [t = τ ] = 1 if t = τ and
zero otherwise, and where ζ is a nonzero constant. Define the lag polynomial
π(L) as

π(L) = (1 − β1L)
−1(1 − (α1 + β1)L)

= (1 + β1L+ β2
1L

2 + β3
1L

3 + · · · )(1 − (α1 + β1)L)

= 1 − α1L− α1β1L
2 − α1β

2
1L

3 − · · · . (4.92)

The polynomialπ(L) allows (4.90) to be written as νt = −ω/(1−β1)+π(L)ε2
t .

Similarly, where the GARCH(1,1) model is applied to the observed series e2
t ,

it is straightforward to show that the corresponding residuals vt are given by

vt = −ω
1 − β1

+ π(L)e2
t

= −ω
1 − β1

+ π(L)(ε2
t + ζ I [t = τ ])

= νt + π(L)ζI [t = τ ]. (4.93)

The last line of (4.93) can be interpreted as a regression model for vt , that is,

vt = ζxt + νt , (4.94)

with

xt = 0 for t < τ,

xτ = 1,

xτ+k = −πk for k = 1, 2, . . . .
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The magnitude ζ of the outlier at time t = τ then can be estimated as

ζ̂ (τ ) =
( n∑
t = τ

x2
t

)−1( n∑
t = τ

xt vt

)
. (4.95)

For fixed τ , the t-statistic of ζ̂ (τ ), denoted as t
ζ̂ (τ )

, has an asymptotic standard
normal distribution. Hence, one can test for an outlier at time t = τ by com-
paring t

ζ̂ (τ )
with the normal critical value. In practice, the timing of possible

outliers is of course unknown. In that case, an intuitively plausible test-statistic
is the maximum of the absolute values of the t-statistic over the entire sample,
that is,

tmax(ζ̂ ) ≡ max
1≤τ≤n

|t
ζ̂ (τ )

|. (4.96)

The distribution of tmax(ζ̂ ) is nonstandard. Usually it is compared with a pre-
specified critical value C to determine whether an outlier has occurred.

The outlier detection method for GARCH(1,1) models then consists of the
following steps.
(1) Estimate a GARCH(1,1) model for the observed series et and obtain esti-

mates of the conditional variance ĥt and v̂t ≡ e2
t − ĥt .

(2) Obtain estimates ζ̂ (τ ) for all possible τ = 1, . . . , n, using (4.95) and com-
pute the test-statistic tmax(ζ̂ ) from (4.96). If the value of the test-statistic
exceeds the pre-specified critical valueC an outlier is detected at the obser-
vation for which the t-statistic of ζ̂ is maximized (in absolute value), say τ̂ .

(3) Replace e2
τ̂

with e∗2
τ̂

≡ e2
τ̂

− ζ̂ (τ̂ ) and define the outlier corrected series e∗t
as e∗t = et for t �= τ̂ and

e∗
τ̂

= sgn(eτ̂ )
√
e∗2
τ̂
.

(4) Return to step (1) to estimate a GARCH(1,1) model for the series e∗t .
The iterations terminate if the tmax(ζ̂ ) statistic no longer exceeds the critical
value C.

Example 4.8: Outlier detection in GARCH models for stock index returns
We apply the outlier detection method for GARCH(1,1) models to weekly stock
index returns using a critical value C = 10. This choice for C is based on the
outcome of the following simulation experiment. We generate 1,000 series of
n = 250 and 500 observations from the GARCH(1,1) model (4.88) with (4.89)
for various values of α1 and β1 and set ω = 1 − α1 − β1. For each series,
we estimate a GARCH(1,1) model and compute the outlier detection statistic
tmax(ζ̂ ) as given in (4.96). In this way we obtain an estimate of the distribution
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Table 4.11 Percentiles of the distribution of the outlier detection statistic in
GARCH(1,1) models

n = 250 n = 500

α1 β1 0.80 0.90 0.95 0.99 0.80 0.90 0.95 0.99

0.10 0.50 7.68 8.80 9.67 12.50 8.61 9.96 10.94 14.86
0.10 0.60 7.79 8.84 9.95 12.61 8.70 9.90 11.11 14.99
0.10 0.70 7.94 8.99 10.42 13.27 8.90 10.23 11.35 15.66
0.10 0.80 8.21 9.59 10.59 15.09 9.36 10.73 12.27 16.93
0.20 0.50 8.86 10.54 11.68 16.46 10.35 12.01 15.23 20.65
0.20 0.60 9.11 10.92 12.82 17.91 10.72 12.97 15.45 23.23
0.20 0.70 9.87 11.83 13.96 18.98 11.82 14.29 16.93 25.01

Notes: Percentiles of the distribution of the tmax(ζ̂ )-statistic (4.96) for detection of AOs
in the GARCH(1,1) model (4.88) and (4.89), based on 1,000 replications.

of the tmax(ζ̂ )-statistic under the null hypothesis that no outliers are present.
Table 4.11 shows some percentiles of this distribution for several values of α1
and β1. It is seen that the value of C = 10 is reasonably close to the 90th
percentile of this distribution for most parameter combinations. Notice that the
value C = 4, as recommended in Franses and Ghijsels (1999), would imply a
much larger nominal size.

Table 4.12 shows estimates of GARCH(1,1) models for weekly returns on
the Amsterdam (AEX) and New York (S&P 500) stock indexes over the sample
period January 1986–December 1990, before and after applying the outlier-
correction method. For both series, two AOs are detected in the weeks ending
21 and 28 October. The outlier-statistic tmax(ζ̂ ) takes the values 14.59 and 22.14
for the AEX returns, with corresponding magnitudes of the AOs ζ̂ = −12.11
and −18.74. For the returns on the S&P 500, tmax(ζ̂ ) = 29.92 and 11.52 with
outliers of size ζ̂ = −15.73 and −9.62, respectively. The parameter estimates
in table 4.12 demonstrate that these can be heavily influenced by only very
few aberrant observations. Also notice that removing these outliers causes the
skewness and kurtosis of the standardized residuals zt = εt /

√
ht to be closer

to the normal values of 0 and 3, respectively.

4.4 Diagnostic checking

Just as it is good practice to check the adequacy of a time series model for
the conditional mean by computing a number of misspecification tests, such
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Table 4.12 Estimates of GARCH(1,1) models for weekly returns on the Amsterdam
and New York stock indexes, before and after outlier correction

µ ω α1 β1 SKẑ Kẑ

Amsterdam
Before 0.203 2.220 0.311 0.419 −0.75 5.01

(0.162) (0.677) (0.064) (0.106)

After 0.093 0.893 0.110 0.750 −0.56 4.03
(0.164) (0.414) (0.058) (0.109)

New York
Before 0.402 2.248 0.381 0.302 −1.09 5.51

(0.136) (0.629) (0.054) (0.107)

After 0.254 0.236 0.052 0.902 −0.62 3.75
(0.145) (0.190) (0.032) (0.060)

Notes: Estimates of GARCH(1,1) models for weekly returns on the Amsterdam and
New York stock indexes, yt = µ+ εt , with εt = zt

√
ht and ht = ω+α1ε

2
t−1 +β1ht−1.

Models are estimated for the sample January 1986–December 1990.
Standard errors based on the outer product of the gradient are given in parentheses.
The final two columns contain the skewness and kurtosis of the standardized residuals
ẑt = ε̂t ĥ−1/2

t , respectively.

diagnostic checking should also be part of a specification strategy for models
for the conditional variance. In this section we discuss tests which might be
used for this purpose.

Testing properties of standardized residuals
One of the assumptions which is made in GARCH models is that the

innovations zt = εth
−1/2
t are independent and identically distributed. Hence,

if the model is correctly specified, the standardized residuals ẑt = ε̂t ĥ
−1/2
t

should possess the classical properties of well behaved regression errors, such
as constant variance, lack of serial correlation, and so on. Standard test-statistics
as discussed in section 2.2 can be used to determine whether this is the case
or not.

Of particular interest is to test whether the standardized residuals still contain
signs of conditional heteroscedasticity. Li and Mak (1994) and Lundbergh and
Teräsvirta (1998b) develop statistics which can be used to test for remaining
ARCH in the standardized residuals, which are variants of the statistics of
McLeod and Li (1983) and Engle (1982), respectively. For example, the LM test
for remaining ARCH(m) in ẑt proposed by Lundbergh and Teräsvirta (1998b)
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can be computed as nR2, where R2 is obtained from the auxiliary regression

ẑ2
t = φ0 + φ1ẑ

2
t−1 + · · · + φmẑ2

t−m + λ′x̂t + ut , (4.97)

where the vector x̂t consists of the partial derivatives of the conditional variance
ht with respect to the parameters in the original GARCH model, evaluated under
the null hypothesis – that is, x̂t ≡ ĥ−1

t ∂ĥt /∂θ . For example, in the case of a
GARCH(1,1) model

ht = ω + α1ε
2
t−1 + β1ht−1, (4.98)

it follows that

∂ht

∂θ ′ = (1, ε2
t−1, ht−1

)+ β1
∂ht−1

∂θ ′ . (4.99)

As the pre-sample conditional variance h0 is usually computed as the sample
average of the squared residuals, h0 = 1/n

∑n
t=1 ε

2
t , h0 does not depend on θ ,

and ∂h0/∂θ = 0. This allows (4.99) to be computed recursively. Alternatively,
the partial derivatives can be obtained by recursive substitution as

x̂′
t =

(∑t−1
i= 1 β̂

i−1

ĥt
,

∑t−1
i= 1 β̂

i−1ε̂2
t−i

ĥt
,

∑t−1
i= 1 β̂

i−1ĥt−i
ĥt

)
. (4.100)

The test-statistic based on (4.97), which tests the null hypothesis H0 : φ1 =
· · · = φm = 0 is asymptotically χ2 distributed with m degrees of freedom.

Testing for higher-order GARCH
The statistic discussed above tests for correlation in the squared stan-

dardized residuals. This is closely related to the LM-statistics discussed by
Bollerslev (1986), which can be used to test a GARCH(p, q) specification
against either a GARCH(p + r, q) or GARCH(p, q + s) alternative. The test-
statistics are given by n times the R2 from the auxiliary regression (4.97),
with the lagged squared standardized residuals ẑ2

t−i , i = 1, . . . , m replaced by

ε̂2
t−q−1, . . . , ε

2
t−q−r or ĥt−p−1, . . . , ĥt−p−s , respectively.

Misspecification tests for linear GARCH models
As discussed in subsection 3.1.2, in specifying a suitable model for

the conditional mean of a time series, it is common practice to start with a linear
model and consider nonlinear models only if diagnostic checks indicate that the
linear model is inadequate. A similar strategy can be pursued when specifying
a model for the conditional variance. That is, one may start with specifying and
estimating a linear GARCH model and move on to nonlinear variants only if
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certain misspecification tests suggest that symmetry of the conditional variance
function is an untenable assumption.

One possible method to test a linear GARCH specification against nonlinear
alternatives is by means of the Sign Bias, Negative Size Bias and Positive Size
Bias tests of Engle and Ng (1993), discussed in subsection 4.2.2. In this case, the
squared standardized residuals ẑ2

t should be taken as the dependent variable in
the regressions that are involved, while the partial derivatives x̂t ≡ ĥ−1

t ∂ĥt /∂θ

should be added as regressors. The analogue of (4.70) is given by

ẑ2
t = φ0 + φ1ŵt−1 + λ′x̂t + ξt , (4.101)

where ŵt−1 is taken equal to one of the three measures of asymmetry, S−
t−1,

S−
t−1ε̂t−1 or S+

t−1ε̂t−1. Similarly, the analogue of (4.71) is

ẑ2
t = φ0 +φ1S

−
t−1 +φ2S

−
t−1ε̂t−1 +φ3S

+
t−1ε̂t−1 +λ′x̂t+ξt . (4.102)

Hagerud (1997) examines the ability of the Sign Bias, Negative Size Bias and
Positive Size Bias tests to detect various of the asymmetric GARCH effects dis-
cussed in subsection 4.1.2 by means of Monte Carlo simulation. In general, the
power of the statistics is not very high. Moreover, rejection of the null hypoth-
esis by one or several of the tests does not give much information concerning
which nonlinear GARCH model might be the appropriate alternative. It turns
out to be difficult to obtain such information on the basis of statistical tests,
even if one uses statistics which are designed against a particular alternative
model.

Hagerud (1997) develops statistics to test the linear GARCH(1,1) model
against the QGARCH(1,1) model given in (4.63) and the LSTGARCH(1,1)
model given in (4.55). The test against the QGARCH(1,1) alternative can be
computed as nR2 from the regression of the squared standardized residuals ẑ2

t

on the elements of x̂t given in (4.100) and
(∑t−1

i= 1 β̂
i−1ε̂t−i

)
/ĥt . This latter

quantity is the partial derivative of the conditional variance ht with respect to
the parameter γ1 in (4.63), evaluated under the null hypothesis γ1 = 0. The
test-statistic is asymptotically χ2-distributed with 1 degree of freedom.

If one wants to test the null hypothesis of GARCH(1,1) against the LST-
GARCH(1,1) alternative, the same identification problem occurs as encountered
when testing homoscedasticity against the LSTARCH alternative, discussed in
subsection 4.2.2. The solution is again to replace the logistic function F(εt−1)

in (4.55) with a first-order Taylor approximation, yielding the auxiliary model

ht = ω∗ + α∗
1ε

2
t−1 + γ ∗

1 ε
3
t−1 + β1ht−1, (4.103)

where ω∗, α∗
1 and γ ∗

1 are functions of the parameters in the original model.
The null hypothesis H0 : γ ∗

1 = 0 can now be tested by computing nR2 from
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the regression of ẑ2
t on x̂t as given in (4.100) and

(∑t−1
i= 1 β̂

i−1ε̂3
t−i
)
/ĥt , which

is the partial derivative of ht with respect to γ ∗
1 evaluated under γ ∗

1 = 0.
The resultant test statistic has an asymptotic χ2 distribution with 1 degree of
freedom under the null hypothesis. Even though these test-statistics are derived
against an explicit alternative model, it turns out that they also reject the null
hypothesis quite often in case of time series generated from other nonlinear
GARCH models (see Hagerud, 1997). Hence, these tests cannot be used to
distinguish between different forms of nonlinear GARCH, but should instead
be interpreted as tests against general asymmetry.

Testing parameter constancy
In empirical applications, GARCH models are frequently estimated for

time series which cover a very long period of time, sometimes up to 75 years
(see, for example Ding, Granger and Engle, 1993). It is hard to imagine that
the properties of a time series over such a long time period can be captured
by a model with constant parameters. In fact, it has been argued that the typ-
ical estimates of the parameters in the GARCH model, implying very strong
persistence of shocks, might be caused by occasional shifts in the parame-
ters (see Lamoureux and Lastrapes, 1990; Franses, 1995, among others). Chu
(1995) develops a test for parameter constancy in GARCH models against a sin-
gle structural break, while Lundbergh and Teräsvirta (1998b) consider testing
parameter constancy against the alternative of smoothly changing parameters.
In the latter case, constancy of the parameters in a GARCH(1,1) model is tested
against the alternative

ht = [ω+α1ε
2
t−1+β1ht−1][1−F(t)]+[ζ+γ1ε

2
t−1+δ1ht−1]F(t),

(4.104)

where F(.) is the logistic function given in (4.56). Notice that the model in
(4.104) is similar to the ANST-GARCH model given in (4.61). Testing the
null hypothesis of parameter constancy, or H0 : ω = ζ , α1 = γ1 and β1 =
δ1 is complicated by the fact that the parameter θ in F(t) is not identified
under the null hypothesis. Replacing the function F(t) by a first-order Taylor
approximation yields the auxiliary model,

ht = ω∗ + α∗
1ε

2
t−1 + β∗

1ht−1 + ζ ∗t + γ ∗
1 ε

2
t−1t + δ∗1ht−1t. (4.105)

The null hypothesis H0 : ζ ∗ = γ ∗
1 = δ∗1 = 0 can now be tested by an LM-

statistic in a straightforward manner. It also is possible to test constancy of
individual parameters in a GARCH(1,1) model, assuming that the remaining
ones are constant.
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Example 4.9: Evaluating estimated GARCH models for stock index and
exchange rate returns Table 4.13 containsp-values of diagnostic tests for the
GARCH(1,1) models that are estimated for weekly stock index and exchange
rate returns. Especially for the stock index returns, the small p-values indicate
that the models suffer from various kinds of misspecification. As most tests also
have power against alternatives other than the one for which they are designed,
the statistics are not helpful in deciding exactly in which direction one should
proceed.

4.5 Forecasting

The presence of time-varying volatility has some pronounced consequences for
out-of-sample forecasting. Most of these effects can be understood intuitively.

Table 4.13 Diagnostic tests for estimated GARCH models for weekly stock index and
exchange rate returns

Stock index Exchange rate

Test FFT NY PRS BP FFR DM

No remaining ARCH (m = 1) 0.004 0.145 0.572 0.332 0.055 0.078
Higher-order ARCH (r = 1) 0.488 0.068 0.423 0.954 0.032 0.035
Higher-order GARCH (s = 1) 0.490 0.068 0.418 0.954 0.032 0.035

Sign Bias 0.183 0.025 0.823 0.562 0.703 0.842
Positive Size Bias 0.067 0.085 0.407 0.158 0.845 0.802
Negative Size Bias 0.042 0.005 0.731 0.050 0.037 0.106
Sign and Size Bias 0.222 0.037 0.800 0.118 0.031 0.067
QGARCH 0.006 0.147 0.002 0.308 0.641 0.171
LSTGARCH 0.001 0.963 0.062 0.633 0.861 0.370

Parameter constancy
Intercept 0.060 0.022 0.811 0.367 0.809 0.916
ARCH parameter 0.048 0.020 0.552 0.895 0.908 0.932
All parameters 0.065 0.088 0.799 0.338 0.928 0.979

Standardized residuals
Skewness −0.680 −1.156 −0.471 0.818 0.338 0.264
Kurtosis 4.881 7.932 3.888 6.312 4.245 4.209
Normality test 0.000 0.000 0.000 0.000 0.000 0.000

Notes: p-values of diagnostic tests for estimated GARCH(1,1) models, ht = ω +
α1ε

2
t−1 + β1ht−1, for weekly stock index and exchange rate returns.

FFT = Frankfurt, NY = New York, PRS = Paris, BP = British pound, FFR = French
franc, DM = German Dmark.
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First, the optimal h-step-ahead predictor of yt+h, ŷt+h|t , is given by the condi-
tional mean, regardless of whether the shocks εt are conditionally heteroscedas-
tic or not. The methods discussed in sections 2.3 and 3.5 for forecasting with
linear and nonlinear models, respectively, under the assumption of homoscedas-
ticity can still be used in case of heteroscedastic shocks. The analytical expres-
sions for yt+h|t in case of linear models discussed in section 2.3 do not depend
on the conditional distribution of yt+h, which implies that the numerical value
of ŷt+h|t is the same. For nonlinear models this need not be the case. Sec-
ond, the conditional variance of the associated h-step-ahead forecast error
et+h|t = yt+h−ŷt+h|t becomes time-varying, which in fact was one of the main
motivations for proposing the ARCH model (see Engle, 1982). This makes sense
as et+h|t is a linear combination of the shocks that occur between the forecast
origin and the forecast horizon, εt+1, . . . , εt+h. As the conditional variance of
these shocks is time-varying, the conditional variance of any function of these
shocks is time-varying as well. Below we discuss these results in detail for the
case where the observed time series yt follows an AR(1) model,

yt = φ1yt−1 + εt , (4.106)

and the conditional variance of the shocks εt is described by a GARCH(1,1)
model

ht = ω + α1ε
2
t−1 + β1ht−1. (4.107)

The general case of ARMA(k,l)-GARCH(p,q) models is discussed in Baillie
and Bollerslev (1992).

Forecasting the conditional mean in the presence of conditional
heteroscedasticity
Let ŷt+h|t denote the h-step-ahead forecast of yt which minimizes the

squared prediction error (SPE)

SPE(h) ≡ E[e2
t+h|t ] = E[(yt+h − ŷt+h|t )2], (4.108)

where et+h|t is the h-step-ahead forecast error et+h|t = yt+h − ŷt+h|t . Baillie
and Bollerslev (1992) show that the forecast that minimizes (4.108) is the same
irrespective of whether the shocks εt in (4.106) are conditionally homoscedastic
or conditionally heteroscedastic. Thus, the optimal h-step-ahead forecast of
yt+h is its conditional expectation at time t , that is,

ŷt+h|t = E[yt+h|�t ]. (4.109)

For the AR(1) model (4.106) this means that the optimal 1-step-ahead fore-
cast is given by ŷt+1|t = φ1yt . The forecasts for h > 1 steps ahead can be
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obtained from the recursive relationship ŷt+h|t = φ1ŷt+h−1|t , or can be com-
puted directly as

ŷt+h|t = φh1yt . (4.110)

For the h-step-ahead prediction error, it follows that

et+h|t = yt+h − ŷt+h|t = φ1yt+h−1 + εt+h − φh1yt
= φ2

1yt+h−2 + φ1εt+h−1 + εt+h − φh1yt
= . . .

= φh1yt +
h∑
i= 1

φh−i1 εt+i − φh1yt

=
h∑
i= 1

φh−i1 εt+i .

(4.111)

The conditional SPE of et+h|t is given by

E[e2
t+h|t |�t ] = E

[( h∑
i= 1

φh−i1 εt+i
)2

|�t
]

=
h∑
i= 1

φ
2(h−i)
1 E[ε2

t+i |�t ]

=
h∑
i= 1

φ
2(h−i)
1 E[ht+i |�t ]. (4.112)

In the case of homoscedastic errors, the conditional SPE for the optimal h-
step-ahead forecast is constant, as E[ht+i |�t ] is constant and equal to the
unconditional variance of εt , σ 2. Expression (4.112) shows that in the case
of heteroscedastic errors, the conditional SPE is varying over time. To see the
relation between the two, rewrite (4.112) as

E[e2
t+h|t |�t ] =

h∑
i= 1

φ
2(h−i)
1 σ 2 +

h∑
i= 1

φ
2(h−i)
1 (E[ht+i |�t ] − σ 2).

(4.113)

The first term on the right-hand-side of (4.113) is the conventional SPE for
homoscedastic errors. Notice that the second term on the right-hand-side can
be both positive and negative, depending on the conditional expectation of future
volatility. Hence, the conditional SPE in the case of heteroscedastic errors can
be both larger and smaller than in the case of homoscedastic errors.
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Recall that in the homoscedastic case, the SPE converges to the unconditional
variance of the model as the forecast horizon increases, that is,

lim
h→∞

E[e2
t+h|t |�t ] = lim

h→∞

h∑
i= 1

φ
2(h−i)
1 σ 2 = σ 2

1 − φ2
≡ σ 2

y .

(4.114)

Moreover, the convergence is monotonic, in the sense that the h-step-ahead SPE
is always smaller than the unconditional variance σ 2

y , while the h-step-ahead
SPE is larger than the (h − 1)-step SPE for all finite horizons h. The conver-
gence of the SPE to the unconditional variance of the time series also holds in
the present case of heteroscedastic errors. This follows from the fact that the
forecasts of the conditional variance E[ht+i |�t ] converge to the unconditional
variance σ 2 (as will be shown explicitly below). However, the convergence
need no longer be monotonic, in the sense that the h-step conditional SPE may
be smaller than the (h− 1)-step conditional SPE. In fact, the conditional SPE
may be larger than the unconditional variance of the time series for certain fore-
cast horizons. Intuitively, in periods of large uncertainty, characterized by large
values of the conditional variance ht , it is extremely difficult to forecast the con-
ditional mean of the series yt accurately. In such cases, the forecast uncertainty
may be larger at shorter forecast horizons compared to longer horizons.

The conditional SPE as given in (4.112) might be used to construct prediction
intervals. The conditional distribution of theh-step-ahead prediction error et+h|t
is, however, nonnormal and, consequently, the conventional forecasting interval
discussed in section 2.3, is not a reliable measure of the true forecast uncertainty.
Granger, White and Kamstra (1989) discuss an alternative approach based on
quantile estimators (see also Taylor, 1999).

An additional complication in using (4.112) is that conditional expectations
of the future conditional variances ht+i at time t are required. How to obtain
such forecasts of future volatility is discussed next.

Forecasting the conditional variance
In the case of the GARCH(1,1) model, the conditional expectation of

ht+s – or, put differently, the optimal s-step-ahead forecast of the conditional
variance – can be computed recursively from

ĥt+s|t = ω + α1ε̂
2
t+s−1|t + β1ĥt+s−1|t , (4.115)

where ε̂2
t+i|t = ĥt+i|t for i > 0 by definition, while ε̂2

t+i|t = ε2
t+i and ĥt+i|t =

ht+i for i ≤ 0. Alternatively, by recursive substitution in (4.115) we obtain

ĥt+s|t = ω
s−1∑
i= 0

(α1 + β1)
i + (α1 + β1)

s−1ht+1, (4.116)
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which allows the s-step-ahead forecast to be computed directly from ht+1.
Notice that ht+1 is contained in the information set �t , as it can be com-
puted from observations yt , yt−1, . . . (given knowledge of the parameters in the
model). If the GARCH(1,1) model is covariance-stationary with α1 + β1 < 1,
(4.116) can be rewritten as

ĥt+s|t = σ 2 + (α1 + β1)
s−1(ht+1 − σ 2), (4.117)

where σ 2 = ω/(1 − α1 − β1) is the unconditional variance of εt , which shows
that the forecasts for the conditional variance are similar to forecasts from an
AR(1) model with mean σ 2 and AR parameter α1 + β1. The right-hand-side
of (4.117) follows from the fact that

∑s−1
i= 1 r

i = (1 − rs−1)/(1 − r) for all r
with |r| < 1. Also note that for the IGARCH model with α1 + β1 = 1, (4.116)
simplifies to

ĥt+s|t = ω(s − 1)+ ht+1, (4.118)

which shows that the forecasts for the conditional variance increase linearly as
the forecast horizon s increases, provided ω > 0.

To express the uncertainty in the s-step-ahead forecast of the conditional
variance, one might consider the associated forecast error vt+s|t ≡ ht+s −
ĥt+s|t . Subtracting the expression of the s-step-ahead forecast in (4.115) from
the definition of the GARCH(1,1) model for ht+s , ht+s = ω + α1ε

2
t+s−1 +

β1ht+s−1, we obtain

vt+s|t ≡ ht+s − ĥt+s|t
= α1(ε

2
t+s−1 − ε̂2

t+s−1|t )+ β1(ht+s−1 − ĥt+s−1|t )

= α1(ε
2
t+s−1 − ht+s−1 + ht+s−1 − ĥ2

t+s−1|t )

+ β1(ht+s−1 − ĥt+s−1|t )
= α1νt+s−1 + (α1 + β1)vt+s−1|t , (4.119)

where we have used the fact that ε̂2
t+i|t = ĥt+i|t for i > 0 and the definition

νt ≡ ε2
t − ht . By continued recursive substitution, we finally arrive at

vt+s|t = α1νt+s−1 + (α1 + β1)α1νt+s−2 + · · ·
+ (α1 + β1)

s−2α1νt+1

= α1

s−1∑
i= 1

(α1 + β1)
i−1νt+s−i . (4.120)
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As the νt s are serially uncorrelated and can be written as νt = ht (z
2
t − 1), it

follows that the conditional SPE of the s-step-ahead forecast ĥt+s|t is given by

E[v2
t+s|t |�t ] = (κ − 1)α2

1

s−1∑
i= 1

(α1 + β1)
2(i−1)E[h2

t+s−i |�t ], (4.121)

where κ is the kurtosis of zt . Baillie and Bollerslev (1992) give expressions for
the expectation of h2

t , the conditional fourth moment of εt , which is required to
evaluate (4.121). However, even if the value of the conditional SPE is available,
it is quite problematic to use it to construct a confidence interval for the s-step-
ahead forecast ĥt+s|t , because the distribution of ht+s conditional upon �t is
highly nonnormal.

Forecasting conditional volatility for nonlinear GARCH models
In the discussion of out-of-sample forecasting with regime-switching

models for the conditional mean in section 3.5, it was argued that one should
resort to numerical techniques to obtain multiple-step-ahead forecasts because
analytic expressions are impossible to obtain. By contrast, for most nonlinear
GARCH models discussed in this chapter, out-of-sample forecasts for the con-
ditional variance can be computed analytically in a straightforward manner. As
an example, consider the GJR-GARCH(1,1) model

ht = ω + α1ε
2
t−1(1 − I [εt−1 > 0])+ γ1ε

2
t−1I [εt−1 > 0] + β1ht−1.

(4.122)

Assuming that the distribution of zt is symmetric around 0, the 2-step-ahead
forecast of ht+2 is given by

ĥt+2|t = E[ω + α1ε
2
t+1(1 − I [εt+1 > 0])

+ γ1ε
2
t+1I [εt+1 > 0] + β1ht+1|�t ]

= ω + ((α1 + γ1)/2 + β1)ht+1, (4.123)

which follows from observing that ε2
t+1 and the indicator function I [εt+1 > 0]

are uncorrelated and E[I [εt+1 > 0]] = P(εt+1 > 0) = 0.5, and again using
E[ε2

t+1|�t ] = ht+1. In general, s-step-ahead forecasts can be computed either
recursively as

ĥt+s|t = ω + ((α1 + γ1)/2 + β1)ĥt+s−1|t , (4.124)

or directly from

ĥt+s|t = ω
s−1∑
i= 0

((α1 + γ1)/2 + β1)
i + ((α1 + γ1)/2 + β1)

s−1ht+1,

(4.125)
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compare the analogous expressions for the GARCH(1,1) model, as given in
(4.115) and (4.116).

For the LSTGARCH model given in (4.55) the same formulae apply. This
follows because ε2

t+i and the logistic function F(εt+i ) = [1+exp(−θεt+i )]−1

are uncorrelated, combined with the fact that F(εt+i ) is anti-symmetric around
the expected value of εt+i (= 0) and, thus, E[F(εt+i )] = F(E[εt+i]) = 0.5. In
general, a function G(x) is said to be anti-symmetric around a if G(x + a) −
G(a) = −(G(−x + a) − G(a)) for all x. If furthermore x is symmetrically
distributed with mean a it holds that E[G(x)] = G(E[x]) = G(a).

Using the properties of the indicator function I [εt > 0] and the logistic
function F(εt ) noted above, it is straightforward to show that s-step-ahead
forecasts for the conditional variance from the VS-GARCH model in (4.59)
and the ANST-GARCH model in (4.61) can be computed either recursively
from

ĥt+s|t = ω + ((α1 + γ1)/2 + (β1 + δ1)/2)ĥt+s−1|t , (4.126)

or directly from

ĥt+s|t = ω
s−1∑
i= 0

((α1 + γ1)/2 + (β1 + δ1)/2)i

+ ((α1 + γ1)/2 + (β1 + δ1)/2)s−1ht+1. (4.127)

For the QGARCH(1,1) model given in (4.63), the asymmetry term γ1εt−1
does not affect the forecasts for the conditional variance, as the conditional
expectation of εt+i with i > 0 is 0 by assumption. Hence, point forecasts for
the conditional variance can be obtained using the expressions given in (4.115)
and (4.116) for the GARCH(1,1) model. Note, however, that γ1εt−1 does alter
the forecast error vt+s|t , which now becomes

vt+s|t ≡ ht+s − ĥt+s|t
= γ1εt+s−1 + α1(ε

2
t+s−1 − ε̂2

t+s−1|t )

+ β1(ht+s−1 − ĥt+s−1|t )
= γ1εt+s−1 + α1νt+s−1 + (α1 + β1)vt+s−1|t

= α1

s−1∑
i= 1

(α1 + β1)
i−1νt+s−i + γ1

s−1∑
i= 1

(α1 + β1)
i−1εt+s−i .

(4.128)

As E[νt+s−i |�t ] = E[εt+s−i |�t ] = 0 for all i = 1, . . . , s−1, the forecasts are
unbiased, in the sense that E[vt+s|t |�t ] = 0. However, the conditional variance
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of vt+s|t and, hence, the uncertainty in the forecast of ht+s will be larger than
in the GARCH(1,1) case.

Of the nonlinear GARCH models discussed in subsection 4.1.2, the only
model for which analytic expressions for multiple-step-ahead forecasts of the
conditional variance cannot be obtained is the ESTGARCH model given in
(4.55) with (4.58). The exponential function F(εt+1) = 1 − exp(−θε2

t+1) is

correlated with ε2
t+1, and it also is not the case that E[F(εt+1)] = F(E[εt+1]).

Therefore, it is not possible to derive a recursive or direct formula for the
s-step-ahead forecast ĥt+s|t in this case. Instead, forecasts for future conditional
variances have to be obtained by means of simulation.

Finally, analytic expressions for multiple-step-ahead forecasts of the condi-
tional variance for the Markov-Switching GARCH model given in (4.67) can
be obtained by exploiting the properties of the Markov-process (see Hamilton
and Lin, 1996; Dueker, 1997; Klaassen, 1999).

Evaluating forecasts of conditional volatility
As just discussed, it is quite difficult to select a suitable nonlinear

GARCH model on the basis of specification tests only. The out-of-sample fore-
casting ability of various GARCH models is an alternative approach to judge
the adequacy of different models. Obviously, if a volatility model is to be of
any use to practitioners in financial markets, it should be capable of generating
accurate predictions of future volatility.

Whereas forecasting the future conditional volatility from (nonlinear)
GARCH models is fairly straightforward, evaluating the forecasts is a more
challenging task. In the following we assume that a GARCH model has
been estimated using a sample of n observations, whereas observations at
t = n + 1, . . . n + m + s − 1 are held back for evaluation of s-step-ahead
forecasts for the conditional variance.

Most studies use statistical criteria such as the mean squared prediction error
(MSPE), which for a set of m s-step-ahead forecasts is computed as

MSPE = 1

m

m−1∑
j = 0

(ĥn+s+j |n+j − hn+s+j )2 (4.129)

(see Akgiray, 1989; West and Cho, 1995; Brailsford and Faff, 1996; Franses
and van Dijk, 1996, among many others), or the regression

hn+s+j = a+bĥn+s+j |n+j+en+s+j , j = 0, . . . , m−1 (4.130)

(see Pagan and Schwert, 1990; Day and Lewis, 1992; Cumby, Figlewski and
Hasbrouck, 1993; Lamoureux and Lastrapes, 1993; Jorion, 1995). In this
case ĥn+s+j |n+j is an unbiased forecast of hn+s+j , a = 0, b = 1 and
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E(en+s+j ) = 0 in (4.130). The MSPE as defined in (4.129) cannot be com-
puted as the true volatility hn+s+j is unobserved, whereas for the same rea-
son the parameters in (4.130) cannot be estimated. To make these forecast
evaluation criteria operational, ht is usually replaced by the squared shock
ε2
n+s+j = z2

n+s+j hn+s+j . As E[z2
n+s+j ] = 1, ε2

n+s+j is an unbiased estimate
of hn+s+j .

A common finding from forecast competitions is that all GARCH models
provide seemingly poor volatility forecasts and explain only very little of the
variability of asset returns, in the sense that the MSPE (or any other measure
of forecast accuracy) is very large while the R2 from the regression (4.130)
is very small, typically below 0.10. In addition, the forecasts from GARCH
appear to be biased, as it commonly found that â �= 0 in (4.130). Andersen and
Bollerslev (1998) and Christodoulakis and Satchell (1998) demonstrated that
this poor forecasting performance is caused by the fact that the unobserved true
volatility hn+s+j is approximated with the squared shock ε2

n+s+j . As shown
by Andersen and Bollerslev (1998), for a GARCH(1,1) model with a finite
unconditional fourth moment the population R2 from the regression (4.130)
for s = 1 and hn+s+j replaced by ε2

n+s+j is equal to

R2 = α2
1

1 − β2
1 − 2α1β1

. (4.131)

As the condition for a finite unconditional fourth moment in the GARCH(1,1)
model is given by κα2

1 + β2
1 + 2α1β1 < 1, it follows that the population R2 is

bounded from above by 1/κ . Where zt is normally distributed, the R2 cannot
be larger than 1/3, while the upper bound is even smaller if, for example, zt is
assumed to be Student-t-distributed.

Christodoulakis and Satchell (1998) explain the occurrence of apparent bias
in GARCH volatility forecasts by noting that

ln(ε2
n+s+j ) = ln(hn+s+j )+ ln(z2

n+s+j ), (4.132)

or

ln(ε2
n+s+j )− ln(ĥn+s+j |n+j ) = ( ln(hn+s+j )− ln(ĥn+s+j |n+j )

)
+ ln(z2

n+s+j ). (4.133)

As ln(x) ≈ −(1−x) for small x, the left-hand-side of (4.133) is approximately
equal to the observed bias ε2

n+s+j − ĥn+s+j |n+j . If the GARCH forecasts
are unbiased, the first term on the right-hand-side of (4.133) is equal to zero.
Hence, the expected observed bias is equal to E[ln(z2

n+s+j )], which in the case
of normally distributed zt is equal to –1.27.
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Andersen and Bollerslev (1998) suggest that a (partial) solution to the above-
mentioned problems might be to estimate the unobserved volatility with data
which is sampled more frequently than the time series of interest. For example,
if yt is a time series of weekly returns, the corresponding daily returns – if avail-
able – might be used to obtain a more accurate measure of the weekly volatility.

Other criteria have also been considered to evaluate the forecasts from
GARCH models. Examples are the profitability of trading or investment strate-
gies which make use of GARCH models to forecast conditional variance (see
Engle et al., 1993), or utility-based measures (see West, Edison and Cho, 1993).

Example 4.10: Forecasting the volatility of the Tokyo stock index As
an alternative way to evaluate the nonlinear GARCH models estimated previ-
ously for weekly returns on the Tokyo stock index we compare their out-of-
sample forecasting performance. To obtain forecasts of the conditional volatility
we follow the methodology used in Franses and van Dijk (1996) (see also
Donaldson and Kamstra, 1997). GARCH, GJR-GARCH, QGARCH and VS-
GARCH models are estimated using a moving window of 5 years of data (260
observations). We start with the sample ranging from the first week of January
1986 until the last week of December 1990. The fitted models then are used to
obtain 1- to 5-steps-ahead forecasts of ht – that is, the conditional variance dur-
ing the first 5 weeks of 1991. Next, the window is moved 1 week into the future,
by deleting the observation from the first week of January 1986 and adding the
observation for the first week of January 1991. The various GARCH models are
re-estimated on this sample, and are used to obtain forecasts for ht during the
second until the sixth week of 1991. This procedure is repeated until the final
estimation sample consists of observations from the first week of 1991 until the
last week of 1995. In this way, we obtain 260 1- to 5-steps-ahead forecasts of the
conditional variance. To evaluate and compare the forecasts from the different
models, several forecast evaluation criteria are computed, with true volatility
measured by the squared realized return. Table 4.14 reports the ratio of the fore-
cast error criteria of the nonlinear GARCH models to those of the GARCH(1,1)
model. For example, the figure 0.94 in the row h = 1 and column MSPE for
the GJR-GARCH model means that the MSPE for 1-step-ahead forecasts from
this model is 6 per cent smaller than the corresponding criterion for forecasts
from the linear GARCH model. It is seen that the GJR-GARCH and QGARCH
model perform better on all four criteria across all forecast horizons considered.
Also reported are p-values for the predictive accuracy test of Diebold and Mar-
iano (1995) as given in (2.75), based on both absolute and squared prediction
errors. These p-values suggest that, even though the difference in the forecast
error criteria is substantial, the forecasts from the linear and nonlinear GARCH
models need not be significantly different from each other.
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Table 4.14 Forecast evaluation of nonlinear GARCH models for weekly returns on
the Tokyo stock index, as compared to the GARCH (1,1) model

Model h MSPE MedSPE DM(S) MAPE MedAPE DM(A)

GJR-GARCH 1 0.94 0.74 0.05 0.95 0.86 0.05
2 0.93 0.77 0.15 0.93 0.88 0.06
3 0.92 0.75 0.27 0.91 0.87 0.07
4 0.89 0.80 0.26 0.92 0.90 0.12
5 0.89 0.75 0.35 0.90 0.87 0.12

QGARCH 1 0.95 0.83 0.19 0.93 0.91 0.01
2 0.94 0.87 0.32 0.91 0.93 0.01
3 0.92 0.92 0.25 0.90 0.96 0.02
4 0.94 0.88 0.48 0.91 0.94 0.05
5 0.89 0.86 0.37 0.89 0.93 0.06

VS-GARCH 1 1.01 0.54 0.87 0.86 0.74 0.00
2 1.03 0.36 0.77 0.82 0.60 0.00
3 1.04 0.37 0.84 0.80 0.61 0.00
4 1.02 0.32 0.96 0.79 0.56 0.00
5 1.05 0.27 0.83 0.77 0.52 0.01

Notes: Forecast evaluation criteria for nonlinear GARCH models for weekly returns on
the Tokyo stock index.
Out-of-sample forecasts are constructed for the period January 1991–December 1995,
with models estimated on a rolling window of 5 years.
The columns labelled DM(S) and DM(A) contain p-values for the prediction accuracy
test given in (2.75), based on squared and absolute prediction errors, respectively.

Finally, table 4.15 contains parameter estimates, with standard errors in
parentheses, and R2 measures from the regression of (demeaned) returns on
the forecasts of conditional variance. Only for the linear GARCH model are the
estimate of the intercept â and the slope b̂ significantly different from 0 and 1,
respectively. Hence it appears that forecasts from the GARCH model are not
unbiased, whereas for the nonlinear GARCH models they generally are. The
low values of theR2 suggest that the models explain only a small fraction of the
variability in the conditional variance of the returns, which confirms previous
findings as discussed above.

4.6 Impulse response functions

Of particular interest in the context of GARCH models is the influence of shocks
on future conditional volatility, or the persistence of shocks. A natural mea-
sure of this influence is the expectation of the conditional volatility s-periods



198 Nonlinear time series models in empirical finance

Table 4.15 Forecast evaluation of nonlinear GARCH models for weekly returns on
the Tokyo stock index

Model h 1 2 3 4 5

GARCH â 3.58 2.93 3.68 4.80 4.13
(1.71) (1.72) (1.76) (1.80) (1.80)

b̂ 0.56 0.61 0.53 0.42 0.47
(0.12) (0.12) (0.12) (0.12) (0.12)

R2 0.07 0.09 0.07 0.04 0.05

GJR-GARCH â 2.21 1.04 1.70 2.07 1.42
(1.77) (1.78) (1.84) (1.90) (1.93)

b̂ 0.75 0.88 0.81 0.78 0.86
(0.14) (0.15) (0.15) (0.16) (0.17)

R2 0.10 0.12 0.10 0.08 0.09

QGARCH â 1.99 0.39 0.51 3.45 0.34
(1.93) (1.96) (2.05) (2.19) (2.18)

b̂ 0.82 0.98 0.98 0.66 0.99
(0.17) (0.18) (0.19) (0.20) (0.20)

R2 0.08 0.11 0.05 0.04 0.08

VS-GARCH â 2.56 −1.00 0.55 1.68 2.10
(2.08) (2.19) (2.39) (2.54) (2.62)

b̂ 1.13 1.93 1.87 1.82 1.89
(0.28) (0.35) (0.44) (0.52) (0.60)

R2 0.06 0.11 0.07 0.04 0.04

Notes: Summary statistics for regressions of observed (demeaned) squared return on
forecast of conditional variance from nonlinear GARCH models for weekly returns on
the Tokyo stock index.
Out-of-sample forecasts are constructed for the period January 1991–December 1995,
with models estimated on a rolling window of 5 years.

ahead, conditional on a particular current shock and current conditional volatil-
ity, that is

E[ht+s |εt = δ, ht = h]. (4.134)

Notice that for s = 1, (4.134) is in fact the definition of the news impact
curve (NIC) discussed in subsection 4.1.2. The NIC measures the direct impact
of a shock on the conditional variance. By examining how the conditional
expectation (4.134) changes as s increases, one can obtain an impression of the
dynamic effect of a particular shock or, more generally, about the propagation of
shocks. It turns out that for most (nonlinear) GARCH models a simple recursive
relationship between the conditional expectations at different horizons can be
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derived. For example, for the GARCH(1,1) model it is straightforward to show
that

E[ht+s |εt = δ, ht = h] = (α1 + β1)E[ht+s−1|εt = δ, ht = h],

(4.135)

for all s ≥ 2. Hence, the effect of the shock εt on ht+s decays exponentially
with rate α1 + β1. Similarly, for the GJR-GARCH model given in (4.53),

E[ht+s |εt = δ, ht = h]

= ((α1 + γ1)/2 + β1)E[ht+s−1|εt = δ, ht = h]. (4.136)

The so-called conditional volatility profile (4.134) is discussed in detail in Gal-
lant, Rossi and Tauchen (1993) for univariate volatility models. Hafner and
Herwartz (1998a, 1998b) provide a generalization to multivariate GARCH
models.

The conditional expectation (4.134) is closely related to impulse response
functions. For example, Lin (1997) defines the impulse response function for
(multivariate) linear GARCH models as

TIRFh(s, δ) = E[ht+s |εt = δ, ht = h] − E[ht+s |εt = 0, ht = h].

(4.137)

Notice that this definition is similar to the traditional impulse response function
for the conditional mean of a time series as given in (3.95), in the sense that
the conditional expectation (4.134) is compared with the conditional expecta-
tion given that the current shock is equal to zero. Given that the conditional
variance essentially measures the expected value of ε2

t , this might not be the
most appropriate benchmark profile for comparison. It appears more natural
to set εt to its expected value ht in the second term on the right-hand-side
of (4.137).

Alternatively, one can compare E[ht+s |εt = δ, ht = h] with the expectation
ofht+s conditional only on the current conditional variance as in the generalized
impulse response functions (GIRF) discussed in section 3.6. That is, a GIRF
for the conditional variance may be defined as

GIRFh(s, δ, h) = E[ht+s |εt = δ, ht = h] − E[ht+s |ht = h].

(4.138)

The second conditional expectation can also be computed analytically for most
nonlinear GARCH models, although the algebra can become quite tedious. An
alternative is to resort to simulation techniques, as discussed in section 3.6.



200 Nonlinear time series models in empirical finance

4.7 On multivariate GARCH models

The GARCH models discussed so far all are univariate. Given the interpretation
of shocks as news and the fact that at least certain news items affect various
assets simultaneously, it might be suggested that the volatility of different assets
moves together over time. Consequently, it is of interest to consider multivariate
models to describe the volatility of several time series jointly, to exploit possible
linkages which exist. An alternative motivation for multivariate models is that
an important subject of financial economics is the construction of portfolios
from various assets. The covariances among the assets play a crucial role in
this decision problem, as in the CAPM, for example. Multivariate GARCH
models can be used to model the time-varying behaviour of these conditional
covariances.

A general multivariate GARCH model for the k-dimensional process
�t = (ε1t , . . . , εkt )

′ is given by

�t = ztH
1/2
t , (4.139)

where zt is a k-dimensional i.i.d. process with mean zero and covariance matrix
equal to the identity matrix Ik . From these properties of zt and (4.139), it
follows that E[�t |�t−1] = 0 and E[�t�′

t |�t−1] = Ht . To complete the model, a
parameterization for the conditional covariance matrix Ht needs to be specified.
This turns out to be a nontrivial task. As in the univariate GARCH models,
one may want to allow Ht to depend on lagged shocks �t−i , i = 1, . . . , q,
and on lagged conditional covariance matrices Ht−i , i = 1, . . . , p. Several
parameterizations have been proposed, some of which are discussed below. To
simplify the exposition, we discuss only the case p = q = 1.

The vec model
Let vech(·) denote the operator which stacks the lower portion of a

matrix in a vector. As the conditional covariance matrix is symmetric, vech(Ht )
contains all unique elements of Ht . A general representation for the multivariate
analogue of the GARCH(1,1) model in (4.13) is given by

vech(Ht ) = W∗ + A∗
1vech(�t−1�′

t−1)+ B∗
1vech(Ht−1), (4.140)

where W∗ is a k(k+1)/2×1 vector and A∗
1 and B∗

1 are (k(k+1)/2×k(k+1)/2)
matrices. This general model, which is called the vec representation by Engle
and Kroner (1995), is very flexible as it allows all elements of Ht to depend
on all elements of the cross-products of �t−1 and all elements of the lagged
conditional covariance matrix Ht .

The vec model has two important drawbacks. First, the number of parameters
in (4.140) equals (k(k+1)/2)(1 +2(k(k+1)/2)), which becomes excessively
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large as k increases. For example, in the bivariate case, (4.140) takes the form,h11,t
h12,t
h22,t

 =

ω
∗
11

ω∗
12

ω∗
22

+

α
∗
11 α∗

12 α∗
13

α∗
21 α∗

22 α∗
23

α∗
31 α∗

32 α∗
33


 ε2

1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1


+

β
∗
11 β∗

12 β∗
13

β∗
21 β∗

22 β∗
23

β∗
31 β∗

32 β∗
33


h11,t−1
h12,t−1
h22,t−1

 . (4.141)

For this simplest possible case, the model already contains 21 parameters which
have to be estimated. Estimation of this general model may therefore be quite
problematic. The second shortcoming of the vec model is that conditions on
the matrices A∗

1 and B∗
1 which guarantee positive semi-definiteness of the con-

ditional covariance matrix Ht are not easy to impose.

The diagonal model
Bollerslev, Engle and Wooldridge (1988) suggest reducing the number

of parameters in the multivariate GARCH model by constraining the matrices
A∗

1 and B∗
1 in (4.140) to be diagonal. In this case, the conditional covariance

between εi,t and εj,t , hij,t , depends only on lagged cross-products of the two
shocks involved and lagged values of the covariance itself,

hij,t = ωij + αij εi,t−1εj,t−1 + βijhij,t−1, (4.142)

where αij and βij are the (i, j)th element of the (k × k) matrices A1 and B1,
respectively, which are implicitly defined by A∗

1 = diag(vech(A1)) and B∗
1 =

diag(vech(B1)). These definitions allow the complete model to be written as

Ht = W + A1 � (εt−1ε
′
t−1)+ B1 � Ht−1, (4.143)

where � again denotes the Hadamard or element-by-element product.
The number of parameters in the diagonal GARCH(1,1) model equals

3(k(k + 1)/2). For the bivariate case, setting all off-diagonal elements α∗
ij and

β∗
ij , i �= j , in (4.141) equal to zero, it is seen that 9 parameters remain to be esti-

mated. An additional advantage of the diagonal model is that conditions which
ensure that the conditional covariance matrix is positive definite are quite easy
to check. In particular, Ht is positive definite if W is positive definite and A1
and B1 are positive semi-definite, see Attanasio (1991).

On the other hand, the diagonal model may be considered too restrictive, as
it does not allow the conditional variance of one series to depend on the history
of other variables in the system.
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The BEKK model
An alternative representation of the multivariate GARCH(1,1) model

is given by

Ht = W + A′
1�t−1�′

t−1A1 + B′
1Ht−1B1, (4.144)

where W , A1 and B1 are (k × k) matrices, with W symmetric and positive
definite. Engle and Kroner (1995) discuss this formulation, which they dub
the BEKK representation after Baba et al. (1991). As the second and third
terms on the right-hand-side of (4.144) are expressed as quadratic forms, Ht
is guaranteed to be positive definite without the need for imposing constraints
on the parameter matrices Ai and Bi . This is the main advantage of the BEKK
representation. On the other hand, the number of parameters in (4.144) equals
2k2 + k/2, which still becomes very large as k increases. In the bivariate case,
the BEKK model is given by(
h11,t h12,t
h12,t h22,t

)
=
(
w11 w12
w12 w22

)
+
(
α11 α12
α21 α22

)′ ( ε2
1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

)(
α11 α12
α21 α22

)
+
(
β11 β12
β21 β22

)′ (
h11,t−1 h12,t−1
h12,t−1 h22,t−1

)(
β11 β12
β21 β22

)
, (4.145)

which is seen to contain 12 parameters, compared with 21 for the vec model in
(4.141). By applying the vech operator to (4.144), the model can be expressed
in the vec representation (4.140). As shown by Engle and Kroner (1995),
this vec representation is unique. Conversely, every vec model which can
be rewritten as a BEKK representation renders positive definite covariance
matrices Ht .

The constant correlation model
Bollerslev (1990) put forward an alternative way to simplify the gen-

eral model (4.140), by assuming that the conditional correlations between the
elements of �t are time-invariant. This implies that the conditional covariance
hij,t between εit and εjt is proportional to the product of their conditional stan-
dard deviations. The individual conditional variances are assumed to follow
univariate GARCH(1,1) models. The diagonal model is given by

hii,t = ωii + αiiε2
i,t−1 + βiihii,t−1 for i = 1, . . . , k, (4.146)

hij,t = ρij
√
hii,t

√
hjj,t for all i �= j, (4.147)
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or alternatively,

Ht = D
1/2
t RD1/2

t , (4.148)

where Dt is a (k×k)matrix with the conditional variances hii,t on the diagonal,
and R is a (k × k) matrix containing the correlations ρij . For example, in the
bivariate case

Ht =
(√
h11,t 0
0

√
h22,t

)(
1 ρ12
ρ12 1

)(√
h11,t 0
0

√
h22,t

)
. (4.149)

It is seen from (4.149) that the dynamic properties of the covariance matrix Ht
are determined entirely by the conditional variances in Dt . All that is required for
the conditional covariance matrix implied by the constant correlation model to
be positive definite is that the univariate GARCH models forhii,t render positive
conditional variances and that the correlation matrix R is positive definite.

The factor model
One of the main motivations for considering multivariate GARCH

models is that the volatility of different assets is driven or affected by the same
sources of news. This can be made more explicit in the model by assuming the
presence of so-called common factors, as suggested in Diebold and Nerlove
(1989). An r-factor multivariate GARCH model can be represented as

�t = Bf t + vt , (4.150)

where B is a (k × r) matrix of full-column rank of so-called factor loadings,
f t is a r × 1 vector containing the common factors and vt is a k × 1 vector of
idiosyncratic noise. It is assumed that f t and vt have conditional mean zero and
conditional variance matrices given by �t and �t , respectively. Both �t and �t
are diagonal, while it is also common to assume that �t is constant over time.
Finally, f t and vt are assumed to be uncorrelated. The preceding assumptions
imply that the conditional covariance matrix of �t is given by

Ht = B�tB′ + �. (4.151)

For example, in the bivariate case, where we can have only one common factor,
this amounts to(

h11,t h12,t

h12,t h22,t

)
=
(
β2

1 β1β2

β1β2 β2
2

)
λt +

(
σ 2

1 0

0 σ 2
2

)
. (4.152)

The conditional variance of εit , i = 1, 2, is composed of the variance of the
news which is specific to the ith asset, σ 2

i and the conditional variance of the
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common news factor ft . A nonzero conditional covariance between ε1t and ε2t
is caused solely by this common factor. For the common factor(s) a standard
GARCH model can be postulated. Estimation of factor GARCH models is
considered in Lin (1992). Applications to financial time series can be found in
Engle, Ng and Rothschild (1990) and Ng, Engle and Rothschild (1992).

Common heteroscedasticity
An important consequence of the presence of common factors is that

there are linear combinations of the elements of εt which have constant con-
ditional variance. For example, in the bivariate factor GARCH model the
conditional variance of the linear combination β2ε1,t − β1ε2,t is given by
(β2,−β1)Ht (β2,−β1)

′. Substituting Ht from (4.153), it follows that this con-
ditional variance is constant and equal to β2

2σ
2
1 + β2

1σ
2
2 . Engle and Susmel

(1993) suggest a test for such common heteroscedasticity which avoids actu-
ally estimating a factor GARCH model. The test is based upon the intuitive idea
that, for fixed τ , a test for ARCH in the linear combination ε1,t − τε2,t can be
obtained as nR2 where R2 is the coefficient of determination of the regression
of ε1,t − τε2,t on lagged squares and cross-products of ε1,t and ε2,t – that is,
ε2
j,t−i , j = 1, 2, i = 1, . . . , p and ε1,t−iε2,t−i , i = 1, . . . , p, similar to the

univariate LM test for ARCH discussed in section 4.2. As τ is unknown, the
test-statistic is obtained as the minimum of the point-wise statistic, where a
grid search over τ is performed. As shown by Engle and Kozicki (1993), the
resulting test-statistic follows a chi-squared distribution with 3p−1 degrees of
freedom asymptotically.

Example 4.11: Testing for common ARCH in stock index and exchange
rate returns The test for common ARCH is computed for the indexes of the
four ‘big’ stock markets – Frankfurt, London, New York and Tokyo – for the
sample January 1986–December 1990, and for four European exchange rates
British pound, Dutch guilder, French franc and German Dmark for the sample
January 1991–December 1995. Table 4.16 shows p-values of the LM test for
q = 1, 5 and 10, as well as the estimates of the parameter τ for which the
T R2(τ ) function is minimized.

For the stock indexes, the null hypothesis of common ARCH can be rejected
for most combinations of stock markets. An exception are the stock markets in
Frankfurt and London. For the European exchange rates there appears to be more
evidence for common ARCH. In particular, the conditional heteroscedasticity in
the Dutch guilder, French franc and German Dmark appears to have a common
source, whereas the conditional volatility of the British pound seems to behave
independently from these currencies from the European continent.
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Table 4.16 Testing for common ARCH effects in weekly stock index and exchange
rate returns

p-value τ̂

q 1 5 10 1 5 10

Stock indexes
Frankfurt/London 0.911 0.908 0.982 1.346 2.860 3.197
Frankfurt/New York 0.028 0.434 0.771 2.300 2.610 2.596
Frankfurt/Tokyo 0.018 0.000 0.010 3.077 2.016 1.877
London/New York 0.128 0.008 0.039 0.889 0.579 0.586
London/Tokyo 0.088 0.016 0.201 0.913 0.208 −0.353
New York/Tokyo 0.045 0.039 0.286 1.005 1.408 1.536

Exchange rates
British pound/Dutch guilder 0.002 0.003 0.159 −0.521 −2.586 −2.307
British pound/French franc 0.000 0.000 0.032 −0.310 −0.829 −0.832
British pound/German Dmark 0.002 0.002 0.131 −0.508 −2.377 −2.220
Dutch guilder/French franc 0.993 0.841 0.938 −0.549 0.609 0.435
Dutch guilder/German Dmark 0.680 0.175 0.453 1.228 1.024 1.019
French franc/German Dmark 0.990 0.889 0.983 1.761 1.567 1.813

Notes: p-values of the LM test for common ARCH of order q for weekly stock index
and exchange rate returns.
The sample runs from January 1986 until December 1990 for the stock indexes, and
from January 1991 until December 1995 for the exchange rates.
The tests are applied to residuals from an AR(k) model, with k determined by the AIC.
The final three columns report the value of the parameter τ for which the T R2 function
is minimized.

Finally, multivariate nonlinear GARCH models have only recently been con-
sidered, see Hafner and Herwartz (1998a, 1998b) and Kroner and Ng (1998).
Kroner and Ng (1998) also discuss multivariate analogues of the Sign and Sign-
Bias tests discussed in section 4.4, which can be used to test for the presence of
asymmetric effects of positive and negative or large and small shocks. It seems
that much further research is needed on issues as representation, specification,
estimation, inference and forecasting for these models.



5 Artificial neural networks for
returns

Artificial neural network models (ANNs) are nowadays used in a large variety of
modelling and forecasting problems. In recent years neural networks have found
their way into financial analysis as well, as evidenced by conferences such as
‘Neural Networks in the Capital Markets’, and a large number of books (Trippi
and Turban, 1993; Azoff, 1994; Refenes, 1995; Gately, 1996) and articles in
scientific journals dealing with financial applications of neural networks. A
casual literature search suggests that each year about 20–30 of such articles
are published, dealing with modelling and forecasting stock prices (Gençay,
1996; Haefke and Helmenstein, 1996a, 1996b; Gençay and Stengos, 1998;
Qi and Maddala, 1999), exchange rates (Kuan and Liu, 1995; Franses and van
Griensven, 1998; Franses and van Homelen, 1998; Gençay, 1999), interest rates
(Swanson and White, 1995) and option pricing (Hutchinson, Lo and Poggio,
1994; Qi and Maddala, 1995), among others. See also Qi (1996) for a survey.

The main reason for this increased popularity of ANNs is that these models
have been shown to be able to approximate almost any nonlinear function
arbitrarily close. Hence, when applied to a time series which is characterized by
truly nonlinear dynamic relationships, the ANN will detect these and provide a
superior fit compared to linear time series models, without the need to construct
a specific parametric nonlinear time series model. An often-quoted drawback
of ANNs is that the parameters in the model are difficult, if not impossible,
to interpret. An estimated ANN does not (necessarily) provide information
on which type of parametric time series models might be suitable to describe
the nonlinear patterns which are detected. For this reason, and also because it
usually is difficult to assign meaning to the parameter values, ANNs often are
considered as ‘black box’ models and constructed mainly for the purpose of
pattern recognition and forecasting. However, the superior in-sample fit that
can be achieved is no guarantee that an ANN performs well in out-of-sample
forecasting. In fact, another drawback of ANNs is the danger of overfitting. By
increasing the flexibility of the model, it is possible to obtain an almost perfect
in-sample fit, with R2-type measures attaining values close to unity. As part of

206
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the ANN may fit irregular (and unpredictable) noise in this case, the model may
be less useful for out-of-sample forecasting. The topics mentioned above will
be made more explicit and discussed in more detail later in this chapter.

The outline of this chapter is as follows. In section 5.1, we introduce a specific
ANN, the so-called ‘single hidden layer feedforward model’, which is by far
the most popular type of ANN among practitioners. Because ANNs are used in
many different fields of scientific research and areas of application, a specific
ANN nomenclature has developed. We briefly summarize this and relate this
to common econometric terminology. We also demonstrate that an ANN can
capture aberrant events, such as additive and innovative outliers and level shifts.
In section 5.2, we describe several ways of estimating the parameters in an ANN.
In section 5.3 we reflect upon issues related to model selection and evaluation.
Forecasting and impulse response analysis are briefly discussed in section 5.4.
In section 5.5, we discuss links with the regime-switching time series models
discussed in chapter 3 and explore the ability of ANNs to capture nonlinearity as
implied by S(E)TAR, Markov-Switching and GARCH models. In section 5.6,
we discuss a general test for nonlinearity based on ANNs. In this chapter we
consider only ANNs for (absolute) returns. An extension to a GARCH-type
model is discussed in Donaldson and Kamstra (1997).

The aim of this chapter is not to provide a complete coverage of neural
networks. In fact, we intend to give only a ‘glimpse into the black box’ by
discussing the basic structure of ANNs, pointing out connections with models
discussed in previous chapters, and addressing those topics which are most
relevant for practitioners. Introductory texts on neural networks are available in
abundance and for different audiences. Reviews of ANNs from statistical and
econometric perspectives can be found in Cheng and Titterington (1994) and
Kuan and White (1994), respectively.

5.1 Representation

Consider the following STAR model for a univariate time series yt , which may
be the (absolute) return on a financial asset,

yt = φ0 + β1G(γ [yt−1 − c])+ εt , (5.1)

where G(·) is the logistic function

G(z) = 1

1 + exp(−z) . (5.2)

The model in (5.1) describes the situation where the conditional mean of yt
depends on the value of yt−1 relative to the threshold c. For yt−1 " c, the
conditional mean of yt is equal to φ0, while it changes gradually to φ0 + β1 as
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yt−1 increases. An artificial neural network can now be obtained by assuming
that the conditional mean of yt depends on the value of a linear combination of
p lagged values yt−1, . . . , yt−p relative to the threshold c. The model in (5.1)
then becomes yt = φ0 +β1G(γ [x̃′

t δ− c])+ εt , where x̃t = (yt−1, . . . , yt−p)′,
or after some manipulation,

yt = φ0 + β1G(x
′
t γ1)+ εt , (5.3)

where xt = (1, x̃′
t )

′ and the individual elements of the parameter vector γ1 =
(γ0,1, γ1,1, . . . , γp,1)

′, are easily obtained from γ , δ and c.
This ANN can be interpreted as a switching-regression model, where the

switching is determined by a particular linear combination of the p lagged
variables in the vector xt . In applications of neural networks one does not
usually focus on such a regime interpretation. Instead, the aim is to model the,
possibly nonlinear, relationship between yt and xt . One way to achieve this is
to include additional logistic components in the model, which gives

yt = φ0 +
q∑
j=1

βjG(x
′
t γj )+ εt . (5.4)

Suppose that an appropriate relationship between yt and xt is given by

yt = g(xt ; ξ)+ ηt ,
where g(xt ; ξ) is a continuous function. It can be shown that ANNs of the
form (5.4) can approximate any such function g(xt ; ξ) to any desired degree of
accuracy, provided that the number of nonlinear components q is sufficiently
large. Technically, writing (5.4) as

yt = F(xt ; θ)+ εt ,
with

F(xt ; θ) = φ0 +
q∑
j=1

βjG(x
′
t γj ),

it can be shown that for any continuous function g(xt ; ξ), every compact subset
K of IRk, and every δ > 0, there exists an ANN F(xt ; θ) such that

sup
x∈K

|F(x; θ)− g(x; ξ)| < δ

(see Cybenko, 1989; Carroll and Dickinson, 1989; Funabashi, 1989; Hornik,
Stinchcombe and White, 1989, 1990, for details).
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Intuitively this result can be understood as follows. Consider the network
(5.4) and assume that only yt−1 acts as an input – that is, xt = (1, yt−1)

′.
Figure 5.1 shows the skeleton F(xt ; θ) of such a network with φ0 = 2, q = 3
and β1 = 8, β2 = −12, β3 = 6, G(x′

t γ1) = 1/(1 + exp[−40 − 10yt−1]),
G(x′

t γ2) = 1/(1 + exp[−yt−1]) and G(x′
t γ3) = 1/(1 + exp[20 − 20yt−1]).

The values of the logistic functions G(x′
t γj ), j = 1, 2, 3, are displayed on the

horizontal axis. For large negative values of yt−1, all three functions are equal
to zero, and F(xt ; θ) = φ0. Around the point yt−1 = −4, the functionG(x′

t γ1)

changes from 0 to 1 fairly rapidly, and the value of the skeleton increases
accordingly. At the same time, the function G(x′

t γ2) becomes activated and
slowly starts increasing. The skeleton declines smoothly until the point yt−1 =
1. Here G(x′

t γ3) goes from 0 to 1 almost instantaneously, causing a sharp
increase in the value of F(xt ; θ). After this point the skeleton resumes its
gradual decline owing to the continued increase inG(x′

t γ2). Summarizing, the
value of the network skeleton changes as a function of the input yt−1 as the
functionsG(xt ; γj ), j = 1, 2, 3 change value. It will be clear that, by increasing
the number of logistic components in (5.4), the resulting function F(xt ; θ)
becomes very flexible, and should be able to approximate almost any type of
nonlinear relationship that might exist between yt and yt−1. See Donaldson and
Kamstra (1996) for a similar example.

To see how this generalizes to more complicated networks involving multiple
inputs, consider a network in which x̃t contains the first two lags of yt – that

Figure 5.1 Skeleton F(xt ; θ) of an ANN (5.4) with a single input and q = 3 (solid
line); the values of the activation functions G(x′

t γj ), j = 1, 2, 3, are shown on the
horizontal axis
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is, x̃t = (yt−1, yt−2)
′. Then, the linear combination x′

t γ1 divides the space
of values that x̃t can take in two regimes, one regime for which γ1,1yt−1 +
γ2,1yt−2 < γ0,1 and another for which γ1,1yt−1 + γ2,1yt−2 > γ0,1. In the one
regime, the conditional mean of yt is equal to φ0, whereas in the other regime
it is equal to φ0 + β1 (assuming the transition of the logistic function G(x′

t γ1)

from 0 to 1 is instantaneous). By increasing the number of logistic components,
as in (5.4), the number of partitions of the space of (yt−1, yt−2) is increased,
effectively increasing the number of regimes (each of which is characterized by a
particular combination of 0-1 values of theG(x′

t γj )) and the number of different
values that the conditional mean of yt can take. Figure 5.2 shows an example of
a partitioning resulting from four linear combinations x′

t γ1, . . . , x
′
t γ4. We also

indicate the values of the associated logistic functions G(x′
t γ1), . . . ,G(x

′
t γ4)

in each of the implied regimes. As the number of logistic components in (5.4)
increases without bound, the partitioning of the (yt−1, yt−2) space becomes so
dense that the conditional mean of yt can more or less take on a distinct value
for each value of (yt−1, yt−2). Hence, any type of nonlinear relationship that
might exist between yt and yt−1 and yt−2 can be approximated in this way.

The above makes clear that ANNs are closely related to nonparametric
methods, which is the collective noun for a large set of techniques that, for exam-
ple, can be applied to estimate the relationship between yt and yt−1 without
specifying a particular parametric form. To illustrate this, consider the general
first-order nonlinear autoregressive model

yt = g(yt−1)+ εt , (5.5)

and suppose the interest lies in estimating the value of g(·) in a particular
point yt−1 = y∗, using the observed time series y0, y1, . . . , yn. Most non-
parametric estimation methods make use of what might be called ‘local
averaging’. For example, the local conditional mean estimator is given by the
average of all observations yt for which the corresponding yt−1 is inside the
interval (y∗ − h, y∗ + h) for certain h > 0, that is,

ĝ(y∗) =
∑n
t=1 I [|y∗ − yt−1| < h]yt∑n
t=1 I [|y∗ − yt−1| < h]

, (5.6)

where I [·] is the indicator function as usual. More sophisticated methods make
use of a weighted average of the observed yt s, where the weights typically
depend on the distance between yt−1 and y∗. For example, the Nadaraya–
Watson kernel estimator is given by

ĝ(y∗) =
∑n
t=1K((y

∗ − yt−1)/h)yt∑n
t=1K((y

∗ − yt−1)/h)
, (5.7)

where K(z) is a kernel function which satisfies
∫
K(z) dz = 1. Usually K(z)
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Figure 5.2 Partitioning of the (yt−1, yt−2) space by ANN model (5.4) with q = 4

is taken to be a unimodal probability density function such as the Gaussian
kernel

K(z) = 1√
2π

exp

(
−1

2
z2
)
.

Another method for estimating g(y∗) is local weighted regression. These esti-
mators stem from the fact that the function g(·) can be approximated by a linear
function in a neighborhood around y∗, that is

g(y) ≈ β0 + β1(y
∗ − y) for y close to y∗.

The value of g(y∗) then is estimated as β̂0, where β̂0 is obtained from mini-
mizing the weighted sum of squared residuals

Qn = 1

n

n∑
t=1

(yt − β0 − β1(y
∗ − yt−1))

2K((y∗ − yt−1)/h). (5.8)

Nonparametric methods constitute a large and rapidly developing field of
research, which we cannot possibly cover here. The survey article by Härdle,
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Lütkepohl and Chen (1997) gives an overview of the available techniques. More
in-depth treatments can be found in Härdle (1990); Wand and Jones (1995); and
Fan and Gijbels (1996), among others.

In econometric applications of ANNs, it is customary to incorporate the p
lagged variables in x̃t directly as linear regressors – that is, to extend (5.4) to
the augmented ANN

yt = φ0 + x̃′
t φ +

q∑
j=1

βjG(x
′
t γj )+ εt

= φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p

+
q∑
j=1

βjG(γ0,j + γ1,j yt−1 + γ2,j yt−2 + · · · + γp,j yt−p)+ εt .

(5.9)

Even though including these direct links from the explanatory variables to the
endogenous variable is not necessary from an approximation point of view,
it facilitates interpretation of the model. The term x̃′

t φ can be thought of as
representing the linear part of the relationship between yt and x̃t , while the
logistic components measure the amount of nonlinearity that is present.

The ANN in (5.9) can be generalized by including exogenous variables
z1,t , . . . , zm,t in the vector of inputs x̃t . In section 5.3 we discuss some pos-
sible choices for zt in the context of financial applications. Below we refer to
elements of x̃t as x1,t , . . . , xk,t , k = p + m, such that xi,t , i = 1, . . . , k, can
be a lagged endogenous variable yt−j , j = 1, . . . , p, or an exogenous vari-
able zj,t , j = 1, . . . , m. We refer to the ANN (5.9) as ANN(k,q,1), to identify
that the network has k input variables yt−1, . . . , yt−p, z1,t , . . . , zm,t , q logistic
componentsG(x′

t γj ), and one output variable yt . Because we consider only the
case with a single output, we often abbreviate this to ANN(k,q).

Network nomenclature
The terminology which is commonly used in discussions of neural

networks is rather different from the usual econometric practice. Here we briefly
summarize the meaning of the most important concepts (see Kuan and White,
1994; Warner and Misra, 1996, for more extensive discussions). Consider the
graphical representation of the ANN(k,q) model with k = 4 and q = 2 in
figure 5.3. The network is seen to consist of three different layers. At the basis
is the input layer, consisting of the explanatory variables in xt , which usually
are called inputs. These inputs are multiplied by so-called connection strengths
γi,j as they enter the hidden layer, which consists of q hidden units – that is,
the logistic functionsG(·). The name ‘hidden layer’ arises from the fact that it
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Figure 5.3 Graphical representation of the single hidden layer feedforward neural
network ANN(k,q) with k = 4 and q = 2

is not directly observed. In the hidden layer, the linear combinations x′
t γj are

formed and transformed into a value between 0 and 1 by the activation functions
G(·). Finally, these are multiplied by weights βj to produce the output yt . This
type of ANN is usually referred to as single hidden layer feedforward network
model, because it contains only one hidden layer and information flows only
in one direction, from inputs to outputs. Extensions of the model to allow for
multiple hidden layers or some form of feedback are possible. However, the
single hidden layer feedforward model by far has been the most popular in
(time series) econometrics, and in this chapter we therefore restrict attention to
this particular ANN.

Parameter interpretation and pattern recognition
Given that the fit from an ANN can approximate unity, and given that

sets of hidden layer units can fit random noise, it is clear that the individual
parameters cannot be interpreted. It therefore is not possible to infer the type
of nonlinearity that is captured by the ANN from (estimates of) the individual
parameters. To gain some insight in the properties of the nonlinear part of the
model, it is more appropriate to inspect the joint contribution of the nonlinear
components, that is,

q∑
j=1

βjG(x
′
t γj ), (5.10)

or the individual contributions of each hidden layer unit,

β1G(x
′
t γ1), β2G(x

′
t γ2), . . . , βqG(x

′
t γq). (5.11)
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Below we will show that this can be quite insightful. See also Franses and
Draisma (1997), where the fitted hidden layer components are used to see if
the data (in that case quarterly industrial production series) experience possible
structural breaks.

To conclude this section, we illustrate the flexibility of ANNs by demon-
strating that they are capable of capturing anomalous events, such as outliers
of different sorts and level shifts.

Experiment 5.1: Capturing outliers and structural breaks with ANNs
We perform some simulation experiments to examine the behaviour of ANNs
in the presence of outliers or level shifts. We generate time series xt from the
AR(2) model

xt = φ1xt−1 + φ2xt−2 + εt t = 1, . . . , n, (5.12)

with φ1 = 0.7, φ2 = −0.2. The shocks εt are drawn from a standard normal
distribution and the sample size is set equal to n = 500. The series xt is
contaminated with an additive outlier (AO), innovative outlier (IO) or level
shift (LS), each occurring at time t = τ . That is, the observed series yt is
obtained as

(AO) : yt = xt + ωI [t = τ ], (5.13)

(IO) : yt = xt + ωI [t = τ ]/φ(L), (5.14)

(LS) : yt = xt + ωI [t = τ ]/(1 − L), (5.15)

where I [A] is the familiar indicator function for the event A and φ(L) is the
lag polynomial, which in this case is equal to φ(L) = 1 − φ1L − φ2L

2. In
the AO and IO cases a single outlier of magnitude ω = 5 occurs at τ = n/4,
whereas in the LS case, a level shift of the same magnitude occurs at τ = �n/6�.
We fit ANN time series models as given in (5.9) with p = 0, 1, 2 and 3, and
q = 0, 1, 2 and 3, using the first half of the sample. Thus, the AO and IO occur
at the middle of the estimation sample, whereas the LS occurs at 1/3 of the
estimation sample. The estimation method is outlined in section 5.2 below. In
figures 5.4, 5.5, and 5.6 we give the output of the hidden layer

∑q
j=1 β̂jG(x

′
t γ̂j )

for ANNs with p = 2 averaged over 100 replications for the AO, IO and LS
cases, respectively. It is clearly seen that for both the AO and IO series, the
output of the hidden layer is markedly different at the time the outlier occurs.
In the LS experiments, the output of the hidden layer exhibits a level shift as
well, thus absorbing (part of) the change in the level of the observed time series.
Thus we are tempted to conclude that the ANN is capable of recognizing and
‘modelling’ the atypical events. In the third to sixth columns of tables 5.1 and
5.2 the average R2 and in-sample success ratio are shown for the AO and IO
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Figure 5.4 Average output of hidden layer in ANN(p,q) model (5.9), estimated on
series of 250 observations generated according to the additive outlier model (5.12)
with (5.13); a single AO of magnitude ω = 5 occurs half-way through the sample

cases, respectively, together with the number of replications for which each of
the models is preferred by the AIC and BIC. Except for BIC, these in-sample
diagnostics confirm the conclusion that ANNs seem suitable to take care of
anomalous events such as outliers and level shifts.

5.2 Estimation

The parameters in the ANN(k,q) model

yt = x′
t φ +

q∑
j=1

βjG(x
′
t γj )+ εt , (5.16)
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Figure 5.5 Average output of hidden layer in ANN(p,q) model (5.9), estimated on
series of 250 observations generated according to the innovative outlier model (5.12)
with (5.14); a single IO of magnitude ω = 5 occurs half-way through the sample

can be estimated by minimizing the residual sum of squares function

Qn(θ) =
n∑
t=1

[yt − F(xt ; θ)]2, (5.17)

where

F(xt ; θ) = x′
t φ +

q∑
j=1

βjG(x
′
t γj ),

with θ the vector consisting of the k + 1 + q(k + 2) parameters in
φ, β1, . . . , βq, γ1, . . . , γq . Because the ANN model usually is thought of as an
approximating model rather than an underlying process that generates the data,
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Figure 5.6 Average output of hidden layer in ANN(p,q) model (5.9), estimated on
series of 250 observations generated according to the level shift model (5.12) with
(5.15); a permanent level shift of magnitude ω = 5 occurs at one-third of the sample

the model is inherently misspecified. The theory of least squares estimation
in misspecified models is by now well developed (see Pötscher and Prucha,
1997, for a recent overview) and can be applied to obtain the properties of
the nonlinear least squares estimator of θ in (5.17), denoted θ̂n. Under general
conditions, θ̂n converges to θ∗, defined as

θ∗ = argmin
θ

E([yt − F(xt ; θ)]2),

as the sample size n increases without bound. Furthermore, the normalized
estimator

√
n(θ̂n − θ∗) converges to a multivariate normal distribution with

mean zero and a covariance matrix that can be estimated consistently.
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Table 5.1 Performance of ANNs when series are generated from an AR(2) model
contaminated with AOs

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.65 0 0 0.65 — 12.93 1.62 —

1 0 0.30 0.66 2 37 0.65 100–0 6.51 1.06 —
1 1 0.31 0.65 2 2 0.65 100–0 7.73 1.01 1–15
1 2 0.32 0.66 2 0 0.65 100–0 7.67 1.03 1–14
1 3 0.32 0.66 0 0 0.65 100–0 8.23 1.05 0–15

2 0 0.32 0.67 22 54 0.66 100–0 2.48 1.03 —
2 1 0.34 0.67 17 4 0.66 100–0 3.74 1.01 2–12
2 2 0.36 0.67 12 0 0.65 99–0 5.97 1.06 0–29
2 3 0.37 0.67 3 0 0.65 99–0 7.87 1.09 0–41

3 0 0.32 0.67 5 2 0.66 100–0 3.39 1.03 —
3 1 0.35 0.67 10 0 0.66 100–0 5.72 1.03 1–23
3 2 0.38 0.68 13 1 0.65 99–0 8.65 1.07 0–48
3 3 0.39 0.68 12 0 0.64 100–0 10.11 1.13 0–61

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated
from the AR(2) model with AO contamination (5.12) and (5.13).
Columns headed R2 and SR contain the average R2 and success ratio, AIC and BIC the
number of replications for which the model is the preferred one according to the AIC
and BIC, respectively, DA the number of replications for which the directional accuracy
test as given in (2.81) is significantly positive–negative at the 5 per cent significance
level.
Rank gives the average rank of the respective models according to MSPE.
MSPE contains the average MSPE for AR(p) models (q = 0), while for ANNs (q =
1, 2, 3), the average ratio of the MSPE of the model to the MSPE of the corresponding
AR(p) model is given.
DM is the number of replications for which the Diebold–Mariano test-statistic as given
in (2.75) based on squared forecast errors indicates that the ANN(p,q) model performs
better–worse than the corresponding AR(p) model at the 5 per cent significance level.
All statistics are based upon 1-step-ahead forecasts for 100 replications of length n =
500, of which the first 250 observations are used for estimating the ANN.

Any conventional nonlinear least squares algorithm can be applied to obtain
the estimate θ̂n. Given estimates at the rth iteration, θ̂ (r)n , one computes the sum
of squared residualsQn(θ̂

(r)
n ) and the gradient

∇Qn(θ̂ (r)n ) = ∂Qn(θ̂
(r)
n )

∂θ
(5.18)
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Table 5.2 Performance of ANNs when series are generated from an AR(2) model
contaminated with IOs

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.53 0 0 0.49 — 12.89 1.61 —

1 0 0.28 0.70 13 52 0.70 100–0 7.81 1.06 —
1 1 0.30 0.70 5 0 0.70 100–0 7.68 1.00 12–5
1 2 0.30 0.70 0 0 0.70 100–0 7.86 1.00 11–6
1 3 0.30 0.70 0 0 0.70 100–0 8.03 1.00 11–7

2 0 0.30 0.71 17 40 0.70 100–0 3.70 1.03 —
2 1 0.32 0.71 28 4 0.70 100–0 3.39 1.00 13–9
2 2 0.34 0.71 3 2 0.70 100–0 5.45 1.16 6–17
2 3 0.34 0.72 5 2 0.70 100–0 7.03 1.13 2–24

3 0 0.30 0.71 8 0 0.70 100–0 4.45 1.04 —
3 1 0.33 0.72 9 0 0.70 100–0 4.82 1.00 12–9
3 2 0.35 0.72 5 0 0.70 100–0 8.11 1.11 0–31
3 3 0.36 0.72 7 0 0.70 100–0 9.78 1.14 0–43

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated
from the AR(2) model with IO contamination (5.12) and (5.14).
All statistics are based upon 1-step-ahead forecasts for 100 replications of length n =
500, of which the first 250 observations are used for estimating the ANN.
See table 5.1 for explanation of the various entries.

to obtain a new estimate θ̂ (r+1)
n as

θ̂
(r+1)
n = θ̂ (r)n − λA(θ̂ (r)n )−1∇Qn(θ̂ (r)n ), (5.19)

where λ is a step length andA(θ̂(r)n ) is a matrix that possibly is a function of the
parameters θ . For example, in the Newton–Raphson algorithm,A(θ̂(r)n ) is taken
to be the Hessian matrix. One method that has been particularly popular in the
ANN literature is steepest descent, which amounts to settingA(θ̂(r)n ) equal to the
identity matrix. This usually is referred to as the method of backpropagation,
which arises from the fact that the different elements in the gradient vector
∇Qn(θ̂ (r)n ) can be computed recursively. For example, the partial derivative of
Qn(θ) with respect to βj is given by

∂Qn(θ)

∂βj
= −2

n∑
t=1

[yt − F(xt ; θ)]G(x′
t γj ), (5.20)
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whereas the partial derivative ofQn(θ) with respect to γi,j is equal to

∂Qn(θ)

∂γi,j
= −2

n∑
t=1

[yt − F(xt ; θ)]βjG(x′
t γj )[1 −G(x′

t γj )]xi,t

= −2
n∑
t=1

∂qt (θ)

∂βj
βj [1 −G(x′

t γj )]xi,t , (5.21)

where qt (θ) = [yt−F(xt ; θ)]2 denotes the squared residual for the t th observa-
tion. The process of estimation then is considered to proceed as follows. Given
estimates θ̂ (r)n , one computes the value of the hidden units β̂(r)j G(x

′
t γ̂
(r)
j ), the

fitted value F(xt ; θ̂ (r)n ) and the residual ε̂(r)t = yt − F(xt ; θ̂ (r)n ). Next, the

residuals ε̂(r)t are used to evaluate the partial derivatives (5.20) at θ̂ (r)n , which in
turn are used to obtain the partial derivatives (5.21). Finally, the estimates are
updated as θ̂ (r+1)

n = θ̂
(r)
n − λ∇θn(θ̂ (r)n ). Hence, every iteration in the steepest

descent algorithm consists of a loop, first going forward through the network
and then back(propagating) again.

In the discussion above, the parameter estimates are updated using the infor-
mation from all n observations in the sample (see (5.19)). An alternative that
is very popular in applications of ANNs is to base the updating on a single
observation only – that is, to use recursive estimation. Given starting values θ̂0,
the value of the gradient for the first observation, ∇q1(θ̂0), is computed and
used to obtain a new set of estimates θ̂1, which are used to obtain the gradient
for the second observation, ∇q2(θ̂1), and so forth. This process is repeated until
the parameter estimates have converged. If convergence has not been achieved
when all observations have been processed, it is possible to continue by starting
with the first observation again. As ∇qt (θ) = −2∇F(xt ; θ)[yt − F(xt ; θ)],
the updating formula for the parameter estimates now takes the form

θ̂t+1 = θ̂t + λ∇F(xt+1; θ̂t )[yt+1 − F(xt+1; θ̂t )],
where θ̂t denotes the parameter estimates based on the first t observations.
This method of estimating the parameters recursively is usually referred to as
learning and was popularized by Rumelhart, Hinton and Williams (1986). Its
asymptotic properties are analysed in detail in White (1989b) and Kuan and
White (1994). Learning by means of steepest descent is shown to be inefficient
compared to ordinary nonlinear least squares methods. In all examples and
experiments in this chapter, we apply the Broyden–Fletcher–Goldfarb–Shanno
algorithm (see Press et al., 1986, pp. 346–50).

Local minima
The sum of squares function Qn(θ) in (5.17) is known to possess

many local minima. Hence, if the estimation algorithm converges, it cannot be
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guaranteed that one has obtained the global minimum. A commonly applied
method of improving the chances of finding this global minimum is to esti-
mate the ANN several times, using different starting values θ̂ (0)n and choose
the estimates which achieve the smallest value of Qn(θ). In all examples and
experiments in this chapter, the ANNs are estimated 5 times. Starting values
are obtained from the simplex algorithm of Nelder and Mead (1965), which is a
fast method to search large parts of the parameter space (see Press et al., 1986,
pp. 326–330 for a description).

Data transformations
Another method to improve the properties of numerical nonlinear least

squares methods is to transform the variables yt and xi,t , i = 1, . . . , k, such that
they are on a comparable scale. It is common to either transform the variables
to the [0, 1] interval by applying

z∗t = zt − min(zt )

max(zt )− min(zt )
, (5.22)

or to rescale the variables such that they have zero mean and standard deviation
equal to 1 by applying

z∗t = zt − zt
σ (zt )

, (5.23)

where zt and σ(zt ) denote the mean and standard deviation of zt , respectively,
and zt is either the output yt or one of the inputs xi,t . In all examples and
experiments in this chapter, we transform the variables involved to the [0, 1]
interval according to (5.22).

Weight decay
Finally, estimation of the parameters in ANNs may benefit by pre-

venting individual parameter estimates from becoming unduly large. This can
effectively be achieved by augmenting the sum of squares function in (5.17)
with a penalty term, which is commonly referred to as weight decay. That is,
the objective function which is to be minimized is taken to be

Qn(θ) =
n∑
t=1

[yt−F(xt ; θ)]2+rφ
k∑
i= 0

φ2
i +rβ

q∑
j=1

β2
j+rγ

q∑
j=1

k∑
i= 0

γ 2
ij ,

(5.24)

where rφ , rβ and rγ should be specified in advance. In all examples and exper-
iments in this chapter, the weight decay parameters are set equal to rφ = 0.01,
and rβ = rγ = 0.0001. Notice that it is necessary to transform the input
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variables such that they are of comparable magnitude for weight decay to be
meaningful.

Example 5.1: ANNs for weekly returns on the Japanese yen/US dollar
exchange rate We illustrate the estimation method discussed above by apply-
ing ANN(p,q) models (5.9) to weekly returns on the Japanese yen/US dollar
exchange rate. We use the period from January 1986 until December 1992 (364
observations) for estimation, and reserve the period from January 1993 until
December 1995 for out-of-sample forecasting. We consider ANN(p,q) models
with p = 0, 1, . . . , 4 lagged returns as inputs and q = 0, 1, . . . , 4 hidden units.
The estimation results are summarized in table 5.3, which shows R2, the in-
sample success ratio, defined as the fraction of observations for which the sign
of ŷt corresponds with the sign of yt , and the values of the AIC and BIC. It is
seen that models with p = 2 attain a reasonable improvement in the in-sample
success ratio. The ANN(2,3) is also preferred by AIC. Graphs of the contri-
bution of the individual units in models with p = 2 are shown in figure 5.7.
Figure 5.8 shows the skeleton F(xt ; θ), of the ANN(2,3) model on the entire
space of possible input values [0, 1]× [0, 1]. This clearly demonstrates that the
relationship between yt and its first two lags is nonlinear.

Example 5.2: ANNs for weekly absolute returns on the Frankfurt stock
index Another illustration is provided by estimating ANN(p,q) models
(5.9) for weekly absolute returns on the Frankfurt stock index. The 10-year
sample is split 7–3 as in the example above. Other specifications for the estima-
tion (transformation of variables, weight decay parameters, number of trials)
also are taken the same. The estimation results are shown in table 5.4. Notice
that in this case, the success ratio is defined as the fraction of observations for
which the sign of ŷt − yt−1 corresponds with the sign of yt − yt−1 as we are
dealing with absolute returns. The increase of the R2 measure as either the
number of hidden units q or the number of inputs p increases clearly illustrates
the approximating possibilities of ANNs. In figure 5.9 we show the output of
the individual hidden units β̂jG(x′

t γ̂j ), j = 1, . . . , q for q = 1, 2 and 3 and
p = 2. Figure 5.10 shows the skeleton of the ANN(2,2) model. Again there
appears considerable evidence for nonlinearity.

5.3 Model evaluation and model selection

Consider again the ANN(p,q) model for yt
yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p

+
q∑
j=1

βjG(γ0,j + γ1,j yt−1 + γ2,j yt−2 + · · · + γp,j yt−p)+ εt ,

(5.25)
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Table 5.3 Performance of ANNs applied to weekly returns on the Japanese yen
exchange rate

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA MSPE DM

0 0 0.00 0.52 289.78 293.67 0.54 — 2.48 —

1 0 0.00 0.52 291.58 299.36 0.54 −0.92 2.48 −0.45
1 1 0.03 0.53 287.06 306.52 0.54 0.71 2.51 −0.43
1 2 0.06 0.57 282.34 313.47 0.51 0.14 4.82 −1.03
1 3 0.06 0.56 288.66 331.47 0.49 −0.49 2.71 −1.50◦
1 4 0.06 0.57 292.33 346.82 0.52 0.43 3.14 −1.23

2 0 0.01 0.53 289.88 301.56 0.54 0.24 2.39 1.56∗
2 1 0.04 0.54 286.24 313.48 0.61 2.57∗∗ 2.44 0.49
2 2 0.06 0.56 288.45 331.26 0.56 1.51∗ 2.47 0.08
2 3 0.09 0.59 280.04 338.42 0.57 1.80∗∗ 2.60 −0.85
2 4 0.09 0.59 288.26 362.20 0.59 2.33∗∗ 3.39 −0.94

3 0 0.02 0.58 289.03 304.60 0.56 0.98 2.41 1.02
3 1 0.05 0.60 285.57 320.60 0.56 1.38∗ 2.45 0.28
3 2 0.08 0.61 283.36 337.85 0.53 0.43 2.51 −0.25
3 3 0.10 0.60 286.24 360.18 0.51 0.14 2.66 −1.01
3 4 0.13 0.60 283.15 376.55 0.49 −0.28 2.76 −1.50◦

4 0 0.02 0.56 290.98 310.43 0.54 0.59 2.42 0.93
4 1 0.07 0.60 284.94 327.75 0.55 1.02 2.59 −1.07
4 2 0.11 0.61 280.78 346.94 0.57 1.51∗ 2.58 −0.85
4 3 0.14 0.61 280.20 369.71 0.55 1.09 2.78 −1.44◦
4 4 0.16 0.62 282.20 395.05 0.56 1.40∗ 3.13 −1.97◦◦

Notes: Performance of ANN(p,q) models (5.9) for weekly returns on the Japanese
yen/US dollar exchange rate.
The networks are estimated over the sample period January 1986–December 1992 (364
observations).
SR denotes the success ratio.
DA is the directional accuracy test given in (2.81), DM denotes the Diebold–Mariano
test-statistic given in (2.75) based on squared forecast errors, relative to forecasts from
the random walk model.
The preferred models by AIC and BIC are underlined.
∗,∗∗ (◦,◦◦) indicate that the ANN performs significantly better (worse) than the corre-
sponding linear model at the 10 and 5 per cent significance level, respectively.
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Figure 5.7 Output of hidden units β̂jG(x′
t γ̂j ) in ANN(2,q) models applied to weekly

returns on the Japanese yen/US dollar exchange rate over the period January
1986–December 1992

which contains p+ 1 + q(p+ 2) parameters to be estimated. Implementing an
ANN(p,q) model requires several decisions to be made:
• choosing the activation function G(·)
• choosing the number of hidden units q
• choosing the number of lags p to use as input variables.
Very often, the choice of the activation function is not considered to be a decision
problem. The logistic function is used almost invariably, although other choices,
such as the hyperbolic tangent functionG(z) = tanh(z), are sometimes applied
as well.

There are various different strategies one can follow to decide upon the appro-
priate values of q and p in (5.25). The first is to estimate all possible ANN
models with p ∈ {1, 2, . . . , p∗} and q ∈ {0, 1, 2, . . . , q∗}, for certain pre-set
values of p∗ and q∗, and to use a model selection criterion such as the AIC

AIC = n ln(σ̂ 2)+ 2k, (5.26)

with k = p + 1 + q(p + 2), or BIC

BIC = n ln(σ̂ 2)+ k ln n, (5.27)
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Figure 5.8 Skeleton F(xt ; θ) of the estimated ANN(2,3) model for weekly returns on
the Japanese yen/US dollar exchange rate

where σ̂ 2 denotes the estimate of the residual variance. Notice that in this
strategy the number of hidden units and the number of input lags are chosen
simultaneously.

An alternative strategy is to decide upon the value of p first, by specifying
a linear AR(p) model for yt , using AIC, BIC or other criteria to select the
appropriate order. In a second stage, one can add hidden units to the model,
while keeping the value of p fixed. Again the AIC and BIC can be used to
decide upon the appropriate value of q. This strategy is subject to the caveats
as discussed in section 3.1, in the sense that the order p which is selected in the
first stage can be far too small or far too large.

When implementing ANN models which may include exogenous variables
among the k inputs, similar decisions have to be made to the ones discussed
above. In fact, the situation is more complicated, because one not only has
to decide upon k, the number of inputs to include, but also upon which
variables to use as inputs. This can be thought of as choosing the k appro-
priate inputs from a set of m candidates x1,t , . . . , xm,t . If the number of vari-
ables in this set m is large, the first strategy probably is too time-consuming.
The number of models to be estimated if one wants to decide upon q, k
and which of the m variables to include as inputs at the same time simply
becomes too large. It seems necessary to use economic reasoning to decide
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Table 5.4 Performance of ANNs applied to absolute weekly returns on the Frankfurt
stock index

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA MSPE DM

0 0 — 0.70 505.89 509.78 0.78 — 1.93 —

1 0 0.03 0.70 496.70 504.47 0.78 7.34∗∗ 1.97 —
1 1 0.04 0.70 499.74 519.17 0.80 7.67∗∗ 1.90 2.51∗∗
1 2 0.05 0.70 501.51 532.59 0.78 7.20∗∗ 1.91 1.43∗∗
1 3 0.06 0.70 503.61 546.36 0.78 7.20∗∗ 1.95 0.46
1 4 0.06 0.71 510.46 564.87 0.78 7.20∗∗ 1.95 0.41

2 0 0.06 0.70 487.61 499.27 0.77 6.90∗∗ 2.03 —
2 1 0.09 0.69 483.07 510.27 0.80 7.67∗∗ 1.96 1.85∗∗
2 2 0.12 0.70 477.55 520.30 0.79 7.52∗∗ 1.88 3.01∗∗
2 3 0.14 0.71 479.07 537.36 0.79 7.30∗∗ 1.91 3.14∗∗
2 4 0.14 0.70 485.58 559.41 0.79 7.30∗∗ 1.91 3.66∗∗

3 0 0.06 0.71 487.98 503.53 0.78 7.14∗∗ 1.99 —
3 1 0.09 0.71 485.23 520.21 0.79 7.52∗∗ 1.91 1.83∗∗
3 2 0.13 0.72 481.90 536.30 0.78 7.28∗∗ 1.95 1.09
3 3 0.13 0.71 489.87 563.71 0.78 7.12∗∗ 1.94 0.95
3 4 0.25 0.72 436.75 530.01 0.80 7.67∗∗ 1.91 1.98∗∗

4 0 0.06 0.71 489.98 509.41 0.78 7.14∗∗ 1.98 —
4 1 0.11 0.70 485.55 528.30 0.79 7.52∗∗ 1.88 2.23∗∗
4 2 0.13 0.71 487.10 553.16 0.78 7.00∗∗ 1.96 0.34
4 3 0.24 0.71 430.82 520.20 0.78 7.20∗∗ 1.83 2.70∗∗
4 4 0.30 0.71 420.54 533.24 0.79 7.24∗∗ 1.89 1.65∗∗

Notes: Performance of ANN(p,q) models (5.9) for absolute weekly returns on the
Frankfurt stock index.
The networks are estimated over the sample period January 1986–December 1992 (364
observations).
The DM statistic compares the forecasts from ANN(p,q) models with q > 0 with the
forecasts from the ANN(p,0) model.
See table 5.3 for explanation of the various entries.

upon the appropriate inputs, or to rely upon the second strategy and select
the inputs by means of linear regressions of yt on various selections of the m
candidates.

Swanson and White (1995, 1997a, 1997b) adopt a similar step-wise strategy,
by adding inputs and hidden units to the model until no more improvement in a
model selection criterion, such as BIC, can be obtained. At each step, the input
which is added is the one which gives the largest improvement in the selection
criterion that is used.
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Figure 5.9 Output of hidden units β̂jG(x′
t γ̂j ) in ANN(2,q) models applied to weekly

absolute returns on the Frankfurt stock index over the period January 1986–December
1992

Technical trading rules as input variables
In financial applications it might be worthwhile to include variables

such as trading volume, returns on other assets, leading indicators, and macro-
economic data as inputs in an ANN model (see Hiemstra, 1996; Brooks, 1998;
Qi and Maddala, 1999, for examples). Results in Gençay (1996, 1999), Gençay
and Stengos (1998) and Franses and van Griensven (1998) show that it also
may pay off to include functions of past yt observations, where these functions
correspond with technical trading rules.

Technical trading rules (TTR) are widely used among financial analysts
in their decisions to buy or sell stocks, currencies or other assets. Roughly
speaking, a TTR identifies moments at which to buy or sell an asset based on
patterns in the recent development of its price. One of the most popular TTRs
is based on moving averages, defined as

mt(τ) = 1

τ

τ−1∑
i= 0

pt−i , (5.28)

where pt is the price of a stock or level of the exchange rate, for example.
The moving average trading rule amounts to comparing a short-period and a
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Figure 5.10 Skeleton F(xt ; θ) of the estimated ANN(2,2) model for weekly absolute
returns on the Frankfurt stock index

long-period moving average. The simplest form of the strategy is to buy (sell)
when the short-period average rises above (falls below) the long-period average.
Put differently, one considers the signal

st (τ1, τ2) = mt(τ1)−mt(τ2), (5.29)

where τ1 < τ2. For daily data, typical choices of τ1 are 1 and 5, while for τ2
one tends to choose 50, 100, 150 or 200. Buy and sell signals are generated
when st (τ1, τ2) is positive and negative, respectively. It is common practice
to incorporate a threshold above which the absolute value of st (τ1, τ2) should
rise before a buy or sell signal is given. This avoids spurious signals when
the two moving averages are close. Figure 5.11 shows moving averages of the
level of the Japanese yen/US dollar exchange rate comprising 10, 20, 30 and
40 weeks, together with the current level of the exchange rate. Also indicated
are periods when the signal variable st (τ1, τ2) based on these moving averages
is positive. Obviously, longer moving averages generate fewer buy and sell
signals.

Another popular TTR is the trading range break-out rule (see
Brock, Lakonishok and LeBaron, 1992). This rule generates a buy signal when
the price of an asset rises above the so-called resistance level, defined as the
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Figure 5.11 Moving averages mt(τ1) (solid line) and mt(τ2) (dashed line) for weekly
observations on the Japanese yen/US dollar exchange rate; periods for which the signal
st (τ1, τ2) as given in (5.29) is positive are indicated on the horizontal axis

maximum price during the past τ periods. A sell signal is given when the price
falls below the so-called support level, defined as the minimum price over the
past τ periods. See Siddiqui (1998) for other examples of TTRs.

Historically, technical analysis has met much scepticism among academic
researchers (see Malkiel, 1981). Because technical analysis lacks a sound sci-
entific basis, it has long been avoided. In recent years, the interest in TTRs
has increased considerably. Various studies have been performed to explore the
potential usefulness of TTRs in predicting future prices or returns (see Brock,
Lakonishok and LeBaron, 1992; Levich and Thomas, 1993, among others).
Interestingly, Neftçi (1991) shows that TTRs can have predictive power over
and above a linear time series model only if the underlying process is nonlinear.
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This implies that a straightforward method to test the predictive value of tech-
nical analysis is to examine the significance of buy and sell signals in the
augmented AR model

yt = φ0 + φ1yt−1 + · · · + φpyt−p + β1st−1(τ1, τ2)+ εt ,
see Neftçi (1991) and Siddiqui (1998) for applications of this approach. Of
course, obtaining a significant estimate of the parameter β1 in this regression
does not necessarily imply that st−1(τ1, τ2) is helpful in predicting yt out-of-
sample.

An alternative aproach is taken in Gençay (1996, 1999), Gençay and Stengos
(1998) and Franses and van Griensven (1998), who include signal variables
such as the one given in (5.29) in an ANN, that is,

yt = φ0 + φ1st−1(τ1, τ2)+ · · · + φpst−p(τ1, τ2)

+
q∑
j=1

βjG(γ0,j + γ1,j st−1(τ1, τ2)

+ · · · + γp,j st−p(τ1, τ2))+ εt . (5.30)

Example 5.3: Technical trading rules to forecast returns on the Japanese
yen We consider the usefulness of the moving average trading rule (5.29) as
input in the ANN (5.30) to forecast weekly returns on the Japanese yen. We
construct trading signals st (τ1, τ2)with τ1 = 1 and τ2 = 10, 20, 30 and 40. We
set the number of lagged trading signals p equal to 2, and vary the number of
hidden units among q = 0, 1, . . . , 4. As the longest moving average which is
considered comprises 40 weeks, we use the period from November 1986 until
December 1992 to estimate the parameters in the model and use the period from
January 1993 until December 1995 for forecasting. In table 5.5 we document
measures of within-sample model adequacy and the forecasting results. It is
seen that linear models with lagged values of the signal variable as regressor
do not result in improved fit or forecast performance. By contrast, including
hidden units leads to a higher out-of-sample success ratio and lower MSPE.

Model evaluation
Consider again the ANN(k,q) model

yt = x′
t φ +

q∑
j=1

βjG(x
′
t γj )+ εt , (5.31)

with xt = (1, x̃t )′, x̃t = (x1,t , x2,t , . . . , xk,t )
′. No formal guidelines exist on
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Table 5.5 Performance of ANNs with technical trading rule applied to weekly returns
on Japanese yen

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA MSPE DM

0 0 0.00 0.50 251.54 255.33 0.54 — 2.48 —

τ2 = 10
2 0 0.01 0.51 253.71 265.07 0.54 0.46 2.44 1.42∗
2 1 0.02 0.56 254.28 280.78 0.57 1.59∗ 2.42 1.28
2 2 0.04 0.56 258.85 300.51 0.58 1.85∗∗ 2.42 0.93
2 3 0.05 0.56 261.57 318.37 0.56 1.44∗ 2.40 1.41∗
2 4 0.06 0.54 267.69 339.64 0.59 1.95∗∗ 2.40 1.33∗

τ2 = 20
2 0 0.00 0.49 255.26 266.62 0.56 0.95 2.47 1.13
2 1 0.01 0.58 257.99 284.50 0.56 1.44∗ 2.50 −0.29
2 2 0.03 0.57 261.60 303.25 0.54 1.13 2.51 −0.63
2 3 0.08 0.53 251.48 308.28 0.46 −0.81 2.47 0.12
2 4 0.09 0.57 252.62 324.58 0.58 1.96∗∗ 2.42 0.62

τ2 = 30
2 0 0.00 0.50 255.42 266.78 0.54 −0.92 2.48 −0.77
2 1 0.01 0.51 260.49 287.00 0.56 1.15 2.47 0.44
2 2 0.02 0.55 263.97 305.63 0.60 2.17∗∗ 2.46 0.58
2 3 0.06 0.54 257.47 314.27 0.57 1.36∗ 2.48 −0.06
2 4 0.06 0.56 263.26 335.21 0.58 1.77∗∗ 2.47 0.24

τ2 = 40
2 0 0.00 0.52 255.06 266.42 0.54 0.14 2.49 −0.62
2 1 0.01 0.53 259.22 285.73 0.54 0.13 2.47 1.20
2 2 0.03 0.53 261.09 302.74 0.59 1.95∗∗ 2.45 1.08
2 3 0.03 0.54 267.68 324.48 0.58 1.77∗∗ 2.45 0.77
2 4 0.08 0.56 257.00 328.95 0.54 0.75 2.46 0.31

Notes: Performance of ANN(p,q) models as given in (5.30) for weekly returns on the
Japanese yen/US dollar exchange rate.
The networks are estimated over the sample period November 1986–December 1992
(326 observations).
See table 5.3 for explanation of the various entries.

how to determine the significance of individual input variables xi,t . As individ-
ual parameters in the ANN do not have a well defined meaning, t-statistics of, for
example, the connection strengths γi,j cannot be used for this purpose. White
(1989b) and Kuan and White (1994) discuss a statistic to test the significance
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of all parameters related to xi,t jointly and argue that this might be useful to test
the significance of the input variable. If Si is the (q + 1)× (k + 1)+ q(k + 2)
selection matrix that selects φi and γi,j , j = 1, . . . , p, from the full param-
eter vector θ , the null hypothesis that xi,t is not relevant can be expressed as
H0 : Siθ = 0. Given an estimate θ̂n of θ , this hypothesis can be tested using
the Wald-statistic

W = nθ̂ ′
nS

′
i (SiĈnS

′
i )

−1Si θ̂n, (5.32)

where Ĉn = Â−1
n B̂nÂ

−1
n with

Ân = 1

n

n∑
t=1

∂2Qn(θ̂n)

∂θ∂θ ′ ,

withQn(θ) the sum of squares function given in (5.17), and

B̂n = 1

n

n∑
t=1

∂Qn(θ̂n)

∂θ

∂Qn(θ̂n)

∂θ ′ .

Under the null hypothesis, the Wald-statisticW has an asymptotic χ2 distribu-
tion with q + 1 degrees of freedom.

Another method to evaluate the influence of the input xi,t on the out-
put yt is to perform a sensitivity analysis. In this approach, the other inputs
x1,t , x2,t , . . . , xi−1,t , xi+1,t , . . . , xk,t are fixed at, for example, their mean val-
ues, while the input of interest xi,t is varied among a range of different values.
The change in output owing to a change in xi,t gives an impression of the
importance of this input variable.

A related diagnostic check is the derivative of yt with respect to xi,t . For the
ANN(k,q) model in (5.31) this derivative is equal to

∂yt

∂xi,t
= φi −

q∑
j=1

βjγi,jG(x
′
t γj )[1 −G(x′

t γj )], (5.33)

where we have used

∂G(x′
t γj )

∂xi,t
= −γi,jG(x′

t γj )[1 −G(x′
t γj )].

Examples 5.1/5.2: ANNs for weekly returns on Japanese yen/US dol-
lar exchange rate and absolute returns on the Frankfurt stock index
Figures 5.12 and 5.13 show the partial derivatives ∂yt/∂yt−1 and ∂yt/∂yt−2
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Figure 5.12 Partial derivatives of the output yt with respect to the inputs yt−1 and
yt−2 in ANN(2,3) model for weekly returns on the Japanese yen/US dollar
exchange rate

Figure 5.13 Partial derivatives of the output yt with respect to the inputs yt−1 and
yt−2 in ANN(2,2) model for weekly absolute returns on the Frankfurt stock index

based on the estimated ANN(2,3) model for weekly returns on the Japanese
yen/US dollar exchange rate and the estimated ANN(2,2) model for absolute
returns on the Frankfurt stock index. These graphs confirm figures 5.8 and
5.10 in that they show that the links between yt and yt−1 and yt−2 are highly
nonlinear.
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5.4 Forecasting

As mentioned before, ANNs are frequently considered to be ‘black box’ models
and constructed mainly for the purpose of forecasting. A survey of empirical
applications of forecasting with ANNs can be found in Zhang, Patuwo and
Hu (1998). Forecasting with neural networks is analogous to forecasting with
other parametric nonlinear models, such as SETAR and STAR models. The
main features can be summarized as follows. First, a 1-step-ahead forecast of
yn+1 can be computed directly from an ANN(p,q) model as

ŷt+1|t = x′
t φ +

q∑
j=1

βjG(x
′
t γj ), (5.34)

where xt = (1, yt , . . . , yt−p+1)
′. Under the additional assumption that the

shocks εt in (5.9) are normally distributed, the 1-step-ahead forecast error
et+1|t = yt+1 − yt+1|t is normally distributed (since et+1|t = εt+1 by def-
inition) and forecast confidence intervals can be constructed in the usual way.
Second, for multiple-step-ahead forecasts things become much more compli-
cated. No closed-form expressions exist for ŷt+h|t where h > 1 and one has
to rely on simulation techniques to obtain such forecasts. For construction of
forecast confidence intervals for multiple-step-ahead forecasts and evaluation
of forecasts from ANNs one can use the methods outlined in section 3.5.

Examples 5.1/5.2: ANNs for weekly returns on Japanese yen/US dol-
lar exchange rate and absolute returns on the Frankfurt stock index
Tables 5.3 and 5.4 (pp. 223 and 226) show statistics related to the out-of-sample
forecast performance of ANN(p,q) models for weekly returns on Japanese
yen/US dollar exchange rate and absolute returns on the Frankfurt stock index.
For the absolute returns on the DAX index, it seems that there is not much to
be gained by using ANNs in terms of predicting the direction of change. The
improvement in the out-of-sample success ratio is very small. By contrast, when
the ANNs are compared with AR(p) models on the basis of MSPE it is clear
that the nonlinear components have some predictive value. For the Japanese
yen, the opposite appears to be true: the ANN(p,q) models perform worse in
terms of MSPE than linear AR models, and only when p = 2 or 4 do they
achieve a higher success ratio.

Here it is important to stress again the danger of overfitting with neural networks.
By increasing the number of hidden units q, the ANN can be made very flexible,
such that an almost perfect in-sample fit can be obtained. It is not to say that
this automatically implies an improved out-of-sample forecast performance.



Artificial neural networks for returns 235

Rather, the opposite appears to be true. If the number of hidden units becomes
large, some of these units are bound to be used to capture noise or one-time
events such as outliers. It is not at all unlikely that such hidden units are activated
during the forecast period and, hence, predict outliers that are not there.

Experiment 5.1: Capturing outliers with ANNs To illustrate the dangers of
using ANNs for forecasting in an automated fashion – that is, without a proper
examination of its properties – we use the estimated ANNs in the AO and IO
experiments to form 1-step-ahead forecasts for the second half of the time series
(during which no outliers occur). The out-of-sample forecast performance is
summarized in the right half of tables 5.1 and 5.2 (pp. 218 and 219) by means
of various statistics. For both the AO and IO cases, the AR(2) model has the
lowest average rank based on the MSPE criterion – hence, on average this model
performs best in terms of mean squared prediction error. This is also illustrated
by the average ratio of the MSPE of the ANN(p,q) model to the MSPE of the
AR(p) model, which is always larger than 1. Finally, the forecasts from the
ANNs quite often are significantly worse than the AR forecasts according to
the DM statistic.

The balance between in-sample fit and out-of-sample forecast performance is
also influenced by the amount of weight decay that is used. When the penalty
term in the objective function is decreased, individual parameters are allowed
to become larger, which again causes certain hidden units to be used for fitting
outliers and the like. Thus, reducing the amount of weight decay leads to a
better fit for the estimation sample, but to worse out-of-sample forecasts.

It is not obvious how one can achieve an optimal balance between in-sample
fit and out-of-sample forecast performance. Obviously, the number of hidden
units q and the values of the weight decay parameters are important. A method
to limit the danger of overfitting that frequently is applied is so-called cross-
validation. In this case, the available observations are divided into an estimation
sample and a test sample. The parameters of the ANN are estimated using the
observations in the estimation sample only, but during the iterative optimization
the sum of squared errors for the observations in the test sample are recorded as
well. Estimation is stopped when this sum of squared errors starts to increase, as
it is believed that then the parameters are such that they can describe the general
nonlinear patterns that are present in the data, while any further improvement
of the fit in the estimation sample that can be attained would mean that the
network starts describing outliers or other atypical events. See LeBaron and
Weigend (1998) for a discussion of this approach and the effects of different
splits of the data into estimation and test samples.
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Another sensible possibility to safeguard against predicting nonexistent out-
liers or other one-time events is to examine the hidden units in the model to
check whether they are activated for only one or a few observations. If such
spurious hidden units are indeed present, it might be a good strategy to omit
them from the model at the forecasting stage. That is, suppose one estimates an
ANN(k,q) model

yt = x′
t φ + β1G(x

′
t γ1)+ · · · + βqG(x′

t γq)+ εt ,

where xt = (1, yt−1, . . . , yt−p, z1t , . . . , zmt )
′ and k = p+m and upon inspec-

tion of the individual activation functions finds that only the first q1 < q help
in describing the nonlinear relationships in the time series while the remain-
ing units are used to capture one-time events. One might then use the reduced
model

yt = x′
t φ+β1G(x

′
t γ1)+· · ·+βq1G(x′

t γq1)+
q∑

j=q1+1

βjG(x
′
t γj )+ηt ,

for out-of-sample forecasting, where G(x′
t γj ) is the average value of the j th

activation function, excluding the observation(s) for which it is activated. Notice
that this procedure requires some subjective judgement to decide whether or
not certain hidden units contribute to explaining regular patterns in the data
or only one-time events. It is not immediately clear whether objective rules or
guidelines can be developed to formalize this procedure.

Forecast evaluation can proceed along the same lines as for other (nonlinear)
models. Criteria such as MSPE and MAPE and statistics such as the directional
accuracy test of Pesaran and Timmermann (1992) given in (2.80) or the fore-
cast comparison statistic of Diebold and Mariano (1995) given in (2.74) can be
applied to assess the (relative) forecast performance of ANNs. In financial appli-
cations of ANNs, it is usual to consider other measures of forecast performance
as well. For example, the forecasts often are used in a trading strategy involving
active buying and selling stocks or currencies. A natural performance measure
is then to compare the profits from such an active strategy with the profits from
a buy-and-hold strategy; see Gençay (1998) for an example. The use of statis-
tical or economic criteria can lead to radically different outcomes (see Leitch
and Tanner, 1991; Satchell and Timmermann, 1995). By means of an example
involving interest rate forecasting, Leitch and Tanner (1991) demonstrate that
the correlation between criteria such as MSPE and actual profits is not signifi-
cant or even positive. By contrast, directional accuracy and profits appear to be
closely related. Satchell and Timmermann (1995) arrive at the same conclusion
by more formal arguments.
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Impulse response analysis in neural networks
Similar to the regime-switching models in chapter 3, it is virtually

impossible to examine the propagation of shocks in ANNs by using only the
parameter estimates. Persistence of shocks is difficult to define in ANN(p,q)
models. For specific models, one may derive parameter restrictions which
ensure that the effect of shocks eventually dies out. In most cases, however,
this cannot be done, and one has to rely on simulation techniques, such as the
generalized impulse response functions discussed in chapter 3.

Example 5.2: ANNs for weekly absolute returns on the Frankfurt stock
index Figure 5.14 shows GIRFs for the ANN(2,2) model estimated for weekly
absolute returns on the DAX index, for different combinations of the values
taken by the activation functions G(x′

t γ1) and G(x′
t γ2). The figures on the

left-hand-side give GIRFs for shocks of magnitude –4,–3,–2 and –1 times the
standard deviation of the in-sample residuals, whereas the figures on the right-
hand-side give GIRFs for positive shocks of the same magnitudes. It is seen
that the effects of shocks depend markedly on the values of the hidden units
and on the sign of the shocks. When both activation functions are equal to zero,
the impulse response declines fairly rapidly, in a monotonic and oscillatory
fashion for negative and positive shocks, respectively. Where G(x′

t γ1) = 1
and G(x′

t γ2) = 0 negative shocks of moderate size again die out quickly. By
contrast, large negative shocks are amplified as the horizon increases. Positive
shocks are seen to have a negative impact, after which their effect decreases
monotonically. Finally, where both hidden units are activated, the GIRFs are
mirror images from the case where they both are not activated, in the sense that
now the response to negative shocks declines in an oscillatory way, while the
response to positive shocks declines monotonically.

5.5 ANNs and other regime-switching models

In this section we describe the relations between ANNs and the regime-
switching models discussed in chapter 3, and explore whether ANNs are capable
of capturing different types of regime-switching behaviour and other forms of
nonlinearity.

Given that the ANN with one hidden unit in (5.3) was obtained from the
STAR model in (5.1), it is not difficult to understand that these two models are
closely related. In fact, the ANN(p,1) model

yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p
+ β1G(γ0,1 + γ1,1yt−1 + γ2,1yt−2 + · · · + γp,1yt−p)+ εt ,

(5.35)



Figure 5.14 Generalized impulse responses in ANN(2,2) model for weekly absolute
returns on the Frankfurt stock index, for different combinations of values of the
activation functions in the hidden units
Panels (a), (c) and (e) give GIRFs for shocks of magnitude −4,−3,−2 and −1 times
the standard deviation of the in-sample residuals, whereas panels (b), (d) and (f) give
GIRFs for positive shocks of the same magnitudes
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can be regarded as both a generalization and a simplification of the STAR model
as discussed in subsection 3.1.1,

yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p
+ (θ0 + θ1yt−1 + θ2yt−2 + · · · + θpyt−p)
×G(γ0 + γ1,1yt−1)+ ηt . (5.36)

On the one hand, (5.35) generalizes (5.36) because the regime-switching is
determined by p lagged values of yt instead of only 1. On the other hand,
(5.35) is simpler than (5.36) because only the intercept is allowed to switch,
from φ0 to φ0 + β1, whereas in (5.36) all parameters (can) change, from φi to
φi + θi , i = 0, 1, . . . , p. A model which combines the added features of the
ANN(p,1) and the STAR(p) model is given by

yt = x′
t φ + x′

t θG(x
′
t γ1)+ εt , (5.37)

where xt = (1, yt−1, . . . , yt−p)′. So far, this extended ANN has not been used
very often in practice.

Similarly, the ANN(p,q) model in (5.9) can be related to the Multiple Regime
STAR (MRSTAR) model discussed in subsection 3.1.1. For example, consider
the 4-regime MRSTAR model given in (3.14),

yt =[x′
t φ1(1 −G1(yt−1))+ x′

t φ2G1(yt−1)][1 −G2(yt−2)]

+ [x′
t φ3(1 −G1(yt−1))+ x′

t φ4G1(yt−1)]G2(yt−2)+ εt ,
(5.38)

where bothG1 andG2 are logistic functionsGj(yt−j ) = (1+exp{−γj [yt−j−
cj ]})−1, j = 1, 2. By imposing the restrictions φi,j = 0, i = 1, . . . , p, j =
2, . . . , 4 and φ4,0 = φ2,0 +φ3,0 −φ1,0, the model in (5.38) can be rewritten as

yt = x′
t φ

∗
1 + φ∗

2,0G1(yt−1)+ φ∗
3,0G2(yt−2)+ εt , (5.39)

where φ∗
1,j = φ1,j , j = 1, . . . , p, φ∗

2,0 = φ2,0 − φ1,0 and φ∗
3,0 = φ3,0 − φ1,0.

An ANN(p,2) model is then obtained by replacing the arguments yt−1 and yt−2
in the logistic functions with general linear combinations x′

t γ1 and x′
t γ2.

Given that STAR models nest SETAR models as a special case, it is not
surprising that ANNs also are closely related to SETAR models. In fact, ANNs
with indicator functions instead of logistic functions in the hidden layer are
among the first ones considered historically (see Warner and Misra, 1996, for
an overview of the historical developments concerning ANNs). An ANN(p,q)
with so-called threshold units is given by

yt = β0 +
q∑
j=1

βj I [x′
t γj ] + εt , (5.40)
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where I [x′
t γj ] = 1 if x′

t γj > 0 and 0 otherwise. The ANN with logistic
activation functions as given in (5.4) contains (5.40) as a special case. The
logistic function G(x′

t γj ) = [1 + exp(−x′
t γj )]

−1 approaches the indicator
function I [x′

t γj ] if one of the parameters γ1,j , . . . , γp,j becomes very large.
To see this, note that the logistic function can be rewritten in the format which
should be familiar from the discussion on STAR models,

G(x′
t γj ) = 1

1 + exp(−γh,j [x̃′
t γ̃

∗
j − γ ∗

0,j ])
,

where γ̃ ∗
j = (γ ∗

1,j , . . . , γ
∗
p,j )

′, γ ∗
i,j = γi,j /γh,j for i = 0, 1, . . . , p, and 1 ≤

h ≤ p. If the parameter γh,j becomes large, the transition of G(x′
t γj ) from 0

to 1 becomes almost instantaneous at x̃′
t γ̃

∗
j − γ ∗

0,j = 0. As this normalization
of the activation function can be done with respect to any γh,j , h = 1, . . . , p,
it follows that only a single connection strength needs to become large for the
logistic function to approximate an indicator function.

The relation between ANNs and Markov-Switching (MSW) models is less
clear. In the MSW model, the regime-switching is governed by the unobserved
Markov-process st , instead of lagged values of the time series itself or other
observable variables, as in the SETAR and STAR models. Even though this
implies nonlinear dynamic behaviour of the resultant time series yt , it is not
clear a priori whether or not this type of nonlinearity can be captured by ANNs.
We will investigate this further in one of the simulation experiments below.

How do neural networks deal with different forms of nonlinearity?
In practice it sometimes may be difficult to select a specific paramet-

ric nonlinear time series model. As discussed in chapter 3, test-statistics do
not always provide enough information on the particular type of nonlinearity
that is present in a time series, while economic theory is not always helpful
either. In such cases, one may maintain one or several ANN models. Because
of their ability to approximate any nonlinear function, the output of the hidden
layer(s) of the ANN may give some hint to the appropriate form of nonlinear-
ity. Alternatively, one can just settle for ANNs from a forecasting perspective,
and investigate whether any forecasting gains can be obtained by using these
models. Our next set of experiments aims to investigate whether ANN models
are useful when the data are indeed nonlinear. See Kuan and White (1994) for
a similar exercise for chaotic time series.

In all experiments below, we generate 100 time series yt of length n = 1,000.
We estimate ANN(p,q) models as given in (5.9), with p = 0, 1, 2, 3 and
q = 0, 1, 2, 3, using the first 750 observations by means of the estimation
method as discussed in section 5.2. We compute the R2, the in-sample suc-
cess ratio SR, and the AIC and BIC to compare the in-sample fit of the various
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models. Using the estimated network, we compute 1-step-ahead forecasts for
the final 250 observations of each series. To evaluate the models on their fore-
casting performance we compute the out-of-sample success ratio, the direc-
tional accuracy statistic of Pesaran and Timmermann (1992) as given in (2.81),
MSPE and MAPE criteria and the test-statistic of Diebold and Mariano (1995)
as given in (2.75). For time series generated from models which contain a lin-
early predictable component (experiments 5.2 and 5.3) we compare the forecast
performance of the ANN(p,q) models with the forecast performance of the cor-
responding linear AR(p) model (q = 0), while we define the success ratio as
the fraction of observations for which the predicted change ŷt |t−1 − yt and the
actual change yt−yt−1 have the same sign, where for the in-sample comparison
ŷt |t−1 is the fitted value. For time series which cannot be forecast with linear
models because they have zero autocorrelations at all lags (experiments 5.4 and
5.5), we compare the forecast performance of the neural networks with that of
an AR(0) model, and compute the success ratio using the signs of ŷt |t−1 and yt .

Experiment 5.2: SETAR model In the first experiment we generate data
from the SETAR model

yt = (φ0,1 + φ1,1yt−1 + φ2,1yt−2)(1 − I [yt−1 > c])

+ (φ0,2 + φ1,2yt−1 + φ2,2yt−2)I [yt−1 > c] + εt . (5.41)

We set the autoregressive parameters equal to φ0,1 = 0, φ1,1 = 1.4, φ2,1 =
−0.65, φ0,2 = 0, φ1,1 = 0.5, φ2,1 = 0.14, while the threshold c is set equal
to 0. The residuals εt are drawn from a normal distribution with mean zero and
variance 0.22. Table 5.6 shows the in- and out-of-sample summary statistics.
Clearly, the ANN(p,q) model has no difficulty in detecting the SETAR-type
nonlinearity and easily outperforms linear models, both in- and out-of-sample.

Experiment 5.3: Markov-Switching model To investigate whether ANNs
can capture nonlinearity which is not driven by the time series itself but by
another, unrelated process, we use the Markov-Switching model

yt =
{
φ0,1 + φ1,1yt−1 + φ2,1yt−2 + εt if st = 1,

φ0,2 + φ1,2yt−1 + φ2,2yt−2 + εt if st = 2,
(5.42)

to generate artificial data. The autoregressive parameters in the two regimes are
set to the same values as for the SETAR model considered above. The transition
probabilities of the Markov chain st are specified as p11 = 0.8 and p22 = 0.7.
The implied unconditional regime probabilities are equal to P(st = 1) = 0.6
and P(st = 2) = 0.4, see (3.17) and (3.18), which roughly correspond to the
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Table 5.6 Performance of ANNs when series are generated from a SETAR model

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.61 0 0 0.61 — 13.00 0.14 —

1 0 0.59 0.61 0 0 0.61 100–0 11.51 0.06 —
1 1 0.60 0.61 0 0 0.61 100–0 10.03 0.99 11–0
1 2 0.60 0.61 0 0 0.61 99–0 10.11 0.99 11–0
1 3 0.60 0.61 0 0 0.61 99–0 10.32 0.99 11–0

2 0 0.65 0.66 0 0 0.66 100–0 7.56 0.05 —
2 1 0.68 0.68 0 35 0.68 100–0 4.93 0.90 80–0
2 2 0.70 0.69 23 57 0.69 100–0 2.60 0.87 91–0
2 3 0.70 0.70 57 6 0.69 100–0 2.21 0.86 88–0

3 0 0.65 0.66 0 0 0.66 100–0 7.34 0.05 —
3 1 0.68 0.68 0 1 0.68 100–0 4.92 0.90 77–0
3 2 0.70 0.70 5 1 0.69 100–0 3.13 0.87 85–0
3 3 0.70 0.70 15 0 0.69 100–0 3.34 0.87 83–0

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated
from the SETAR model (5.41).
Columns headed R2 and SR contain the average R2 and success ratio, AIC and BIC the
number of replications for which the model is the preferred one according to the AIC and
BIC, respectively,DA the number of replications for which the directional accuracy test
as given in (2.81) is significantly positive–negative at the 5 per cent significance level.
Rank is the average rank of the respective models according to MSPE.
MSPE contains the average MSPE for AR(p) models (q = 0), while for ANNs (q =
1, 2, 3), the average ratio of the MSPE of the model to the MSPE of the corresponding
AR(p) model is given.
DM gives the number of replications for which the Diebold–Mariano test-statistic as
given in (2.75) based on squared forecast errors indicates that the model performs better–
worse than the AR(0) model at the 5 per cent significance level. All statistics are based
upon 1-step-ahead forecasts for 100 replications of length n = 1,000, of which the first
750 observations are used for estimating the ANN.

probabilities that the series from the SETAR model (5.41) is in each of the two
regimes.

The results set out in table 5.7 demonstrate that the ANN(p,q) model does
not improve upon a linear AR(p) model, either in terms of in-sample fit or in
terms of out-of-sample forecasting. Hence we conclude that neural networks
cannot capture Markov-Switching-type nonlinearity.
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Table 5.7 Performance of ANNs when series are generated from a Markov-Switching
model

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.61 0 0 0.60 — 13.00 0.16 —
1 0 0.64 0.61 0 0 0.60 99–0 9.69 0.06 —
1 1 0.64 0.61 0 0 0.60 99–0 10.24 1.00 0–3
1 2 0.64 0.61 0 0 0.60 99–0 10.37 1.00 0–6
1 3 0.64 0.61 0 0 0.60 99–0 10.20 1.01 0–6

2 0 0.68 0.64 9 62 0.64 100–0 3.99 0.05 —
2 1 0.68 0.64 4 0 0.64 100–0 4.72 1.01 4–9
2 2 0.68 0.65 2 0 0.64 100–0 4.91 1.01 5–12
2 3 0.68 0.65 3 0 0.63 100–0 5.77 1.02 3–21

3 0 0.68 0.65 36 38 0.64 100–0 3.24 0.05 —
3 1 0.68 0.65 17 0 0.64 100–0 4.13 1.01 3–14
3 2 0.69 0.65 16 0 0.64 100–0 4.96 1.02 2–16
3 3 0.69 0.65 13 0 0.64 100–0 5.78 1.03 1–22

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated
from the Markov-Switching model (5.42).
See table 5.6 for explanation of the various entries.

Experiment 5.4: Bilinear model As a third experiment, we generate time
series from the bilinear model

yt = βyt−2εt−1 + εt , (5.43)

with β = 0.6. As shown by Granger and Andersen (1978), this model has zero
autocorrelations at all lags and therefore cannot be forecast with linear models.
The statistics shown in table 5.8 confirm that AR(p) models are not useful to
describe or forecast these series. By contrast, the performance of ANN(p,q)
models is quite encouraging. If the number of lags of yt is taken at least equal
to 2, which corresponds with the lag order of yt in the bilinear term in (5.43),
both the in-sample fit and the out-of-sample forecast performance improve
considerably.

Experiment 5.5: GARCH(1,1) model In the final experiment, we generate
data from the GARCH(1,1) model

yt = zt
√
ht , (5.44)

ht = ω + α1y
2
t−1 + β1ht−1, (5.45)
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Table 5.8 Performance of ANNs when series are generated from a bilinear model

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.51 0 0 0.51 — 8.77 1.00 —
1 0 0.00 0.51 0 0 0.50 0–13 8.86 1.00 3–8
1 1 0.01 0.52 0 0 0.50 3–13 9.92 1.01 3–10
1 2 0.01 0.52 0 0 0.51 7–7 10.46 1.02 3–10
1 3 0.02 0.52 0 0 0.50 7–5 10.64 1.02 3–11

2 0 0.00 0.52 0 0 0.50 14–12 9.61 1.00 4–12
2 1 0.10 0.59 0 0 0.58 85–0 6.03 0.93 50–0
2 2 0.19 0.62 0 14 0.61 99–0 3.17 0.85 80–0
2 3 0.20 0.62 0 2 0.61 98–0 3.85 0.87 78–0

3 0 0.01 0.52 0 0 0.50 9–7 9.93 1.01 2–14
3 1 0.11 0.59 0 0 0.58 80–0 5.84 0.94 42–0
3 2 0.22 0.62 4 37 0.62 98–0 2.07 0.83 84–0
3 3 0.26 0.63 96 47 0.62 97–0 1.85 0.83 77–0

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated from the
bilinear model (5.43).
The forecast comparison of ANN(p,q) models in the columns headed MSPE and DM is relative to
the random walk.
See table 5.6 for explanation of the various entries.

where we set α1 = 0.2, β1 = 0.6 and ω = 1 − α1 − β1. The shocks zt are
drawn from a standard normal distribution.

At first sight it might seem rather strange to expect that an ANN can capture
GARCH-type effects because the nonlinearity in GARCH models occurs in the
(conditional) second moment of yt , whereas ANNs are nonlinear models for the
(conditional) first moment. However, the motivation for this experiment is (at
least) twofold. First, GARCH and bilinear models have been shown to be closely
related, in the sense that the resultant time series from these two models have
similar properties and it might be quite difficult to distinguish between them
(see Bera and Higgins, 1997). Given the successful modelling of bilinear time
series in the previous experiment, one may wonder whether GARCH effects
also can be captured with ANNs. Second, GARCH-type properties are one of
the most prominent features of daily and weekly financial data, as we observed
in chapter 4.

The results for this experiment are displayed in table 5.9, and clearly suggest
that GARCH-type nonlinearity cannot be predicted with ANN models.
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Table 5.9 Performance of ANNs when series are generated from a GARCH(1,1)
model

In-sample Out-of-sample

p q R2 SR AIC BIC SR DA Rank MSPE DM

0 0 — 0.51 10 93 0.50 — 4.27 1.00 —
1 0 0.00 0.51 0 1 0.50 3–20 4.56 1.00 4–6
1 1 0.01 0.52 2 1 0.51 8–11 5.69 1.05 3–7
1 2 0.02 0.52 2 1 0.50 5–8 6.92 1.06 1–12
1 3 0.02 0.52 2 0 0.50 5–5 6.98 1.06 2–10

2 0 0.00 0.51 1 1 0.50 5–7 4.75 1.00 1–6
2 1 0.02 0.52 4 1 0.51 10–2 6.55 1.03 4–3
2 2 0.03 0.53 5 1 0.50 6–2 8.33 1.05 2–21
2 3 0.04 0.53 13 0 0.50 5–4 9.19 1.05 1–25

3 0 0.01 0.52 1 1 0.50 5–8 5.29 1.01 1–12
3 1 0.03 0.53 4 0 0.50 8–6 7.87 1.04 0–18
3 2 0.05 0.53 13 0 0.50 9–2 9.73 1.12 0–27
3 3 0.06 0.54 43 0 0.50 5–3 10.87 1.17 0–41

Notes: Performance of ANN(p,q) models (5.9) when estimated on time series generated
from the GARCH(1,1) model (5.44)–(5.45).
The forecast comparison of ANN(p,q) models in the columns headed MSPE and DM
is relative to the random walk.
See table 5.6 for explanation of the various entries.

5.6 Testing for nonlinearity using ANNs

Even though an ANN is a parametric nonlinear model and we can give at least
some interpretation to its structure, it is not common to think of an ANN as the
actual data-generating process, but much more as an approximating model. For
that reason, it does not make sense to test for neural network-type nonlinearity
(in contrast to testing for SETAR, STAR and Markov-Switching-type nonlinear-
ity, for example). However, precisely because of the approximation capabilities
of ANNs, it is possible to use them to test for nonlinearity in general. White
(1989a) and Lee, White and Granger (1993) develop such a portmanteau test
for nonlinearity based on ANNs.

Consider again the ANN(p,q) model for yt with q hidden units and p lags of
the time series itself as inputs (extending the discussion below to ANNs with
exogenous inputs is straightforward),

yt = x′
t φ +

q∑
j=1

βjG(x
′
t γj )+ εt t = 1, . . . , n, (5.46)



246 Nonlinear time series models in empirical finance

where xt = (1, yt−1, . . . , yt−p)′. In case the dynamics in yt are linear, the
output of the hidden layer

∑q
j=1 βjG(x

′
t γj ) should be equal to zero (or at least

constant). The null hypothesis of linearity in this model thus can be expressed
as H0 : β1 = · · · = βq = 0. Notice that if this null hypothesis is true, the
parameters γj are not identified, similar to the case of testing for STAR-type
nonlinearity as discussed in subsection 3.3.2. White (1989a) suggests solving
this identification problem by fixing these parameters a priori, by drawing them
randomly from some distribution. The neural network test for neglected non-
linearity then is obtained in a number of steps. First, one estimates an AR(p)
model for yt , which renders residuals ût . Second, one draws random parameter
values γ ∗

i,j , i = 0, . . . , p, j = 1, 2, . . . , q, and computes the activation func-

tions G(x′
t γ

∗
j ), j = 1, . . . , q. The test-statistic then can be computed as nR2

from the auxiliary regression

ût = x′
t α+δ1G(x′

t γ
∗
1 )+δ2G(x′

t γ
∗
2 )+· · ·+δqG(x′

t γ
∗
q )+ηt . (5.47)

The resultant test has a χ2 distribution with q degrees of freedom
asymptotically.

Before the test can be implemented, two decisions have to be made. The
most critical of these is the choice of the number of hidden units q in the alter-
native model (5.46). Lee, White and Granger (1993) suggest setting q fairly
large – say, equal to 10 or 20 – in order to obtain a representative set of the
possible patterns that the activation functions G(·) can take. A drawback of
setting q large is that the resultant auxiliary regressors G(x′

t γ
∗
j ) tend to be

highly collinear. Lee, White and Granger (1993) therefore recommend includ-
ing the first q∗ principal components ofG(x′

t γ
∗
j ), j = 1, . . . , q, in the auxiliary

regression instead of the original activation functions. The number of princi-
pal components should be set fairly small – say, q∗ = 2 or 3 – whereas they
should also be orthogonal to the inputs xt . This can be achieved by disregarding
the largest principal component and using the second until (q∗ + 1)st largest
ones. The second decision to be made concerns the distribution from which to
draw the parameters γi,j . Lee, White and Granger (1993) use a uniform distri-
bution on the interval [−2, 2]. Notice that in the presence of exogenous inputs
z1t , . . . , zkt , it is crucial to rescale the variables such that they are of comparable
magnitude.

The value of the neural network test obviously depends on the randomly
drawn values for the unidentified parameters γi,j . Hence, the decision to reject
or not reject the null hypothesis is to some extent due to chance. For one set
of γ ∗

i,j s one might reject linearity, while for another set one might not. An
alternative method proposed by Lee, White and Granger (1993) is to com-
pute the neural network test for several different draws of the γi,j and use
the Bonferroni inequality to obtain an upper bound on the p-value of the test.
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Suppose the test is computed r times, with corresponding p-values p1, . . . , pr
obtained from the asymptotic χ2(q) distribution, and denote the ordered p-
values as p(1), . . . , p(r), with p(1) being the smallest. Intuitively, the Bonfer-
roni inequality states that, if the null hypothesis is true, the probability of not
rejecting on any of the r tests is at least 1− rα, where α is the significance level
used for the individual statistics. Put differently, the probability of at least one
rejection is at most rα. By reversing the argument, if the overall significance
level of the r tests is to be α∗, the null hypothesis is rejected ifp(1) ≤ α∗/r . The
classic Bonferroni bound thus is given by rp(1), which can be interpreted as the
overall p-value of the r tests. Because this bound depends only on the small-
est observed p-value, it might not be very accurate. Lee, White and Granger
(1993) employ a modification due to Hochberg (1988). The decision rule in
this case is to reject the null hypothesis at the α∗ level if there exists a j such
that p(j) ≤ α∗/(r − j + 1) for j = 1, . . . , r . The improved Bonferroni bound
of the p-value of the r tests jointly then becomes minj=1,...,r (r − j + 1)p(j).
Simulation evidence in Lee, White and Granger (1993) suggests that the neural
network test indeed is a useful diagnostic check for neglected nonlinearity of
various forms, and compares favourably with other portmanteau tests for non-
linearity such as the tests of Keenan (1985) and Tsay (1986), the RESET test of
Ramsey (1969) and Thursby and Schmidt (1977), the information matrix test
of White (1987, 1992), the bispectrum tests of Hinich (1982) and Ashley, Pat-
terson and Hinich (1986). We refer to Granger and Teräsvirta (1993, chapter 6)
for an overview of these test statistics.

In the neural network test above, the identification problem in the ANN
(5.46) is handled by replacing the unidentified nuisance parameters γi,j with
random values. Teräsvirta, Lin and Granger (1993) tackle the problem in a
different manner, analogous to the solution applied in testing for STAR-type
nonlinearity. That is, the activation functions G(x′

t γj ) are replaced by third-
order Taylor approximations around the null hypothesis, which alternatively
can be expressed as γj = 0, j = 1, . . . , q. This renders the reparameterized
model

yt = x′
t φ

∗+
p∑
i=1

p∑
j=i
ξij yt−iyt−j+

p∑
i=1

p∑
j=i

p∑
k=j

ψijkyt−iyt−j yt−k+ηt ,

(5.48)

where φ∗, ξij and ψijk are functions of the parameters in the original model
(5.46), such that the null hypothesis γj = 0, j = 1, . . . , q, corresponds with
ξij = 0, ψijk = 0, i = 1, . . . , p, j = i, . . . , p and k = j, . . . , p. This null
hypothesis can be tested in a straightforward manner with a standard variable
addition test. One drawback of this test is that the number of restrictions that
is tested is equal to p(p + 1)/2 + p(p + 1)(p + 2)/6, which becomes large
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very quickly when p increases. Hence, to be able to apply the test, p needs to
be set fairly small or the length of the time series has to be sufficiently large.
Simulation results obtained by Teräsvirta, Lin and Granger (1993) suggest that
this test performs better than the test based on (5.47).

Example 5.4: Testing for nonlinearity in weekly (absolute) stock index and
exchange rate returns We apply the two ANN-based tests for nonlinearity
to weekly (absolute) stock index and exchange rate returns, over the sample from
January 1986 until December 1992. Both tests are computed for p = 1, 2, 3
and 4 lagged returns as inputs. For the test of White (1989a), we follow the

Table 5.10 Testing for nonlinearity in weekly stock index and exchange rate returns
with ANN-based tests

ANN test LM test

p 1 2 3 4 1 2 3 4

Stock market
Amsterdam 0.000 0.020 0.001 0.398 0.000 0.000 0.000 0.000
Frankfurt 0.917 0.012 0.000 0.308 0.826 0.001 0.000 0.001
Hong Kong 0.015 0.077 0.003 0.073 0.013 0.011 0.000 0.000
London 0.000 0.000 0.011 0.194 0.000 0.000 0.002 0.037
New York 0.000 0.010 0.102 0.069 0.000 0.000 0.001 0.001
Paris 0.559 0.650 0.199 0.869 0.689 0.380 0.287 0.042
Singapore 0.000 0.001 0.001 0.066 0.000 0.000 0.000 0.000
Tokyo 0.139 0.475 0.351 0.092 0.058 0.017 0.000 0.000

Exchange rate
Australian dollar 0.773 0.949 0.998 0.596 0.590 0.333 0.616 0.418
British pound 0.609 0.808 0.663 0.414 0.387 0.006 0.011 0.045
Canadian dollar 0.249 0.245 0.517 0.575 0.103 0.053 0.045 0.058
Dutch guilder 0.399 0.342 0.013 0.012 0.099 0.004 0.000 0.001
French franc 0.558 0.069 0.029 0.039 0.182 0.005 0.000 0.001
German Dmark 0.448 0.328 0.012 0.014 0.123 0.004 0.000 0.001
Japanese yen 0.110 0.055 0.126 0.310 0.033 0.087 0.024 0.051
Swiss franc 0.832 0.302 0.049 0.020 0.290 0.033 0.001 0.002

Notes: p-values of the ANN test for nonlinearity based on (5.47) [ANN test] and the
test based on the reparameterized model (5.48) [LM test], applied to weekly stock and
exchange rate returns.
The sample runs from January 1986 until December 1992. The p-value for the ANN
test is the improved Bonferroni bound obtained from r = 10 replications of the statistic.
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Table 5.11 Testing for nonlinearity in weekly absolute stock index and exchange rate
returns with ANN-based tests

ANN test LM test

p 1 2 3 4 1 2 3 4

Stock market
Amsterdam 0.000 0.001 0.262 0.036 0.000 0.000 0.000 0.000
Frankfurt 0.479 0.007 0.339 0.382 0.282 0.002 0.070 0.019
Hong Kong 0.000 0.011 0.000 0.117 0.000 0.000 0.000 0.000
London 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
New York 0.001 0.003 0.019 0.172 0.001 0.024 0.063 0.005
Paris 0.619 0.194 0.742 0.491 0.431 0.266 0.219 0.431
Singapore 0.000 0.001 0.011 0.168 0.000 0.000 0.000 0.000
Tokyo 0.588 0.001 0.067 0.670 0.212 0.004 0.019 0.016

Exchange rate
Australian dollar 0.481 0.196 0.695 0.078 0.122 0.114 0.286 0.424
British pound 0.000 0.000 0.002 0.024 0.000 0.000 0.001 0.001
Canadian dollar 0.981 0.786 0.008 0.629 0.918 0.444 0.014 0.002
Dutch guilder 0.144 0.000 0.001 0.264 0.063 0.000 0.001 0.021
French franc 0.604 0.000 0.010 0.426 0.512 0.000 0.001 0.002
German Dmark 0.157 0.000 0.001 0.567 0.063 0.000 0.002 0.027
Japanese yen 0.366 0.357 0.444 0.003 0.190 0.154 0.182 0.118
Swiss franc 0.933 0.333 0.002 0.639 0.618 0.121 0.025 0.192

Notes: p-values of the ANN test for nonlinearity based on (5.47) [ANN test] and the
test based on the reparameterized model (5.48) [LM test], applied to weekly absolute
stock and exchange rate returns.
The sample runs from January 1986 until December 1992.
The p-value for the ANN test is the improved Bonferroni bound obtained from r = 10
replications of the statistic.

recommendations of Lee, White and Granger (1993). We start with an ANN
with q = 10 hidden units, and sample the parameters γi,j from a uniform
distribution on [−2, 2]. Next, we compute the second and third largest principal
components ofG(x′

t γ
∗
1 ), . . . ,G(x

′
t γ

∗
10) and compute the test-statistic as n times

the R2 from a regression of the residuals from an AR(p) model on xt and these
principal components. This procedure is repeated r = 10 times, and thep-value
is computed using the improved Bonferroni bound as discussed above.

Not unexpectedly, the test results in tables 5.10 and 5.11 show that there is
ample evidence of nonlinearity in (absolute) returns.
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Conclusion
In this chapter we reviewed several modelling and inference issues for

artificial neural networks. We demonstrated that they can be useful for pattern
recognition, forecasting and diagnostic checking. Finally, we illustrated that it
pays off to open the ‘black box’, and spend some time analysing the properties
of a neural network.



6 Conclusions

In this book we discussed nonlinear time series models for financial asset
returns, which can be used for generating out-of-sample forecasts for returns
and volatility. The reason for considering nonlinear models is the observa-
tion that many financial time series display typical nonlinear characteristics,
as documented in chapters 1 and 2. Important examples of those features are
the occasional presence of (sequences of) aberrant observations and the possi-
ble existence of regimes within which returns and volatility display different
dynamic behaviour. Through an extensive forecasting experiment (for a wide
range of daily data on stock markets and exchange rates), we also demonstrated
that linear time series models do not yield reliable forecasts. Of course, this
does not automatically imply that nonlinear time series models do but, as we
argued in this book, it is worth a try. As there is a host of possible nonlinear
time series models, we decided to review in chapters 3, 4 and 5, the (what we
believe to be) currently most relevant ones and the ones that are most likely to
persist as practical descriptive and forecasting devices.

In chapter 3, we discussed several regime-switching models such as the
self-exciting threshold model, the smooth transition model and the Markov-
Switching model. In this chapter we confined the analysis to the returns on
financial assets, although they can also be considered for measures of risk (or
volatility) like squared or absolute returns. We considered tools for specifying,
estimating and evaluating these models and methods to generate out-of-sample
forecasts. Illustrations for several empirical series showed that these models
can be quite useful in practice.

In chapter 4, we considered similar kinds of regime-switching models for
unobserved volatility, which in fact amounted to various extensions of the basic
GARCH model. This well known and often-applied model exploits the empir-
ical regularity that aberrant observations in financial time series appear in clus-
ters (thereby indicating periods of high volatility), and hence that out-of-sample
forecasts for volatility can be generated. The models in chapter 4 mainly chal-
lenge the assumption in the basic GARCH model that the model parameters
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are constant over time and/or that positive and negative news have the same
impact on subsequent volatility. Indeed, the empirical analysis in this chapter
shows that it seems worthwhile to consider a relaxation of these assumptions.
Again, we discussed tools for specification, estimation and evaluation, and we
outlined how out-of-sample forecasts can be generated and evaluated.

Finally, in chapter 5, we dealt with a currently fashionable class of models –
that is, with artificial neural networks. In contrast to the prevalent strategy in
the empirical finance literature (which may lead people to believe that these
models are merely a passing fad), we decided to ‘open up the black box’, so to
say, and to explicitly demonstrate how and why these models can be useful in
practice. Indeed, the empirical applications in this chapter suggest that neural
networks can be quite useful for out-of-sample forecasting and for recognizing
a variety of patterns in the data.

Having reviewed these three areas in modelling empirical finance data, we
are well aware of the fact that we have missed out (or at least, have not dis-
cussed in similar detail) several other potentially fruitful models. Examples of
these are the stochastic volatility models and the models that address possible
fractional integration properties of financial returns (and volatility). Also, to
keep matters at a tractable level, we completely abstained from detailed discus-
sions of seasonality. Indeed, there is a large body of literature documenting that
financial returns display day-of-the-week or month-of-the-year effects. It seems
to us, though, that extending the models presented in this book to incorporate
seasonal features should not be too complicated. Additionally, we did not treat
models for data that are measured at higher frequencies than a day. As intra-
day data have become available, the time series analyst faces new opportunities,
which may include (but probably will expand on) the models discussed in this
book: for example, this abundance of data facilitates the use of nonparametric
methods. Finally, we did not treat multivariate nonlinear models in substantial
detail. Only for this last omission do we have a good excuse – that the analysis
of multivariate nonlinear models has been taken up only very recently, and at
the time of writing there are no generally accepted ideas on how to construct
such multivariate models in the first place. It is our experience so far that these
models contain a wealth of parameters and that they are not easy to analyse in
practice. We do believe, though, that developing useful multivariate (linear and
nonlinear) time series models is a very important area of further research.

Another area of future research, which we would like to address in a little
more detail here, concerns the practical use of the models discussed in this
book. One of the main conclusions from the material presented, at least as we
see it, is that the informative content in financial data (that can be exploited for
generating reliable forecasts) is not equally distributed over the observations.
Put otherwise, some data points are more important than others in the sense that
they can be predicted relatively easily or that they can serve a useful basis for
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generating forecasts. In practical terms this would imply that, even though the
model is specified for all observations, it is used only infrequently: for example,
an ARCH-type model would then be used only during volatile periods. One may
even consider extending this notion of more and less relevant observations by
modifying parameter estimation methods.

As the title already indicates, this book mainly deals with time series models.
A natural question is now whether these models can be usefully implemented in
day-to-day financial practice. Of course, having reliable forecasts at hand can
be rather important, but still the question remains open whether one learns any-
thing about the underlying economic process. We would not want to claim that
the practical adequacy of a nonlinear time series model refutes, for example,
the market efficiency hypothesis, but we do believe that the empirical evidence
should be taken seriously when considering, for example, Value-at-Risk, option
pricing and portfolio management. Much too often it is assumed that returns
have a symmetric distribution (and often unconditional normal) around a con-
stant mean and with common variance. The empirical finance literature provides
ample evidence that this assumption is not even close to being valid. The inclu-
sion of this empirical evidence into theoretical and empirical models in finance
seems to us a genuine challenge for further research.
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D. Tjøstheim and A.H. Würtz (eds.), Nonlinear Econometric Modeling,
Cambridge: Cambridge University Press

1999. Modeling multiple regimes in the business cycle, Macroeconomic Dynamics
3, 311–40

van Dijk, D., P.H. Franses and A. Lucas, 1999a. Testing for smooth transition nonlinear-
ity in the presence of additive outliers, Journal of Business & Economic Statistics
17, 217–35

1999b. Testing for ARCH in the presence of additive outliers, Journal of Applied
Econometrics 14, 539–62

Wand, M.P. and M.C. Jones, 1995. Kernel Smoothing, London: Chapman & Hall
Warner, B. and M. Misra, 1996. Understanding neural networks as statistical tools,

American Statistican 50, 284–93
Wecker, W.E., 1981. Asymmetric time series, Journal of the American Statistical

Association 76, 16–21
Weise, C.L., 1999. The asymmetric effects of monetary policy, Journal of Money, Credit

and Banking 31, 85–108
Weiss, A.A., 1984. ARMA models with ARCH errors, Journal of Time Series Analysis

5, 129–43
1986. Asymptotic theory for ARCH models: estimation and testing, Econometric

Theory 2, 107–31
West, K.D. and D. Cho, 1995. The predictive ability of several models of exchange rate

volatility, Journal of Econometrics 69, 367–91
West, K.D., H.J. Edison and D. Cho, 1993. A utility based comparison of some models

of exchange rate volatility, Journal of International Economics 35, 23–45
White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a

direct test for heteroskedasticity, Econometrica 48, 817–38
1987. Specification testing in dynamic models, in T.F. Bewley (ed.), Advances in

Econometrics Fifth World Congress – I, Cambridge: Cambridge University Press,
1–58

1989a. An additional hidden unit test for neglected nonlinearity in multilayer feed-
forward networks, Proceedings of the International Joint Conference on Neural
Networks (Washington, DC), New York: IEEE Press, 451–5

1989b. Some asymptotic results for learning in single hidden-layer feedforward
network models, Journal of the American Statistical Association 84, 1003–13

1992. Estimation, Inference and Specification Analysis, New York: Cambridge
University Press



Bibliography 271

White, H. and I. Domowitz, 1984. Nonlinear regression with dependent observations,
Econometrica 52, 143–61

Wong, C.S. and W.K. Li, 1997. Testing for threshold autoregression with conditional
heteroskedasticity, Biometrika 84, 407–18

Wooldridge, J.M., 1990. A unified approach to robust, regression-based specification
tests, Econometric Theory 6, 17–43

1991. On the application of robust, regression-based diagnostics to models of condi-
tional means and conditional variances, Journal of Econometrics 47, 5–46

Zhang, G., B.E. Patuwo and M.Y. Hu, 1998. Forecasting with artificial neural networks:
the state of the art, International Journal of Forecasting 14, 35–62



Author index

Abraham, A., 60
Akaike, H., 38
Akgiray, V., 142, 194
Al-Qassam, M.S., 120
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González-Rivera, G., 151, 173
Gourieroux, C., 136, 147
Granger, C.W.J., 4, 20, 30, 58, 60, 69, 73, 78,

80, 83, 103, 105, 121, 132, 141, 143, 144,
157, 186, 190, 243, 245–9

Haefke, C., 206
Hafner, C., 199, 205
Hagerud, G.E., 151, 162, 185, 186
Haldrup, N., 54
Hall, A., 55
Hall, A.D., 34, 132
Hall, B.H., 173
Hall, R.E., 173
Hamilton, J.D., 3, 20, 82, 83, 90, 94, 115–17,

121, 156, 174, 194
Hampel, H.R., 64
Hansen, B.E., 80, 83, 85, 86, 100, 101, 104–6,

172
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Neftçi, S.N., 229, 230
Nelder, J.A., 221
Nelson, C.R., 38
Nelson, D.B., 136, 142, 143, 149
Nerlove, M., 203
Newbold, P., 20, 91
Newey, W.K., 56
Ng, S., 55, 164
Ng, V.K., 148, 155, 160, 161, 185, 204, 205
Noh, J., 196

Ooms, M., 58
Osborn, D.R., 60

Paap, R., 60
Padmore, J., 70
Pagan, A.R., 110, 136, 148, 194
Palm, F.C., 136
Panatoni, L., 173



Author index 275

Pantula, S.G., 55
Patterson, D.M., 69, 83, 247
Patuwo, B.E., 234
Peel, D.A., 77
Pemberton, J., 120
Perron, P., 55, 56, 113
Pesaran, M.H., 43, 44, 129, 130, 236, 241
Petrucelli, J.D., 79
Phillips, P.C.B., 55, 56
Poggio, T., 206
Polson, N.G., 147
Potter, S.M., 129, 130
Pötscher, B.M., 90, 217
Press, W.H., 220, 221
Priestley, M.B., 69, 129
Prucha, I.V., 90, 217
Psaradakis, Z., 60

Qi, M., 206, 227
Quandt, R., 90

Rabemananjara, R., 152
Ramsey, J.B., 247
Refenes, A.N., 206
Reinsel, G.C., 32
Renault, E., 147, 148
Richard, J.-F., 147
Richardson, M.P., 60
Rissanen, J., 38
Robins, R.P., 145
Ronchetti, E.M., 64
Rossi, P.E., 132, 147, 199
Rothschild, M., 204
Rousseeuw, P.J., 64
Rubin, D.B., 95
Ruiz, E., 147
Rumelhart, D.E., 220
Runkle, D.E., 150
Ruppert, D., 67

Said, S.E., 55
Saikkonen, P., 102, 103
Sakata, S., 178
Satchell, S.E., 125, 195, 236
Scheinkman, J.A., 69, 83, 247
Schmidt, P., 56, 247
Schwarz, G., 38
Schwert, G.W., 55, 148, 194
Sentana, E., 154, 155, 161
Sharpe, W.F., 135
Shephard, N., 136, 147, 148
Shin, Y., 56
Siddiqui, S., 229, 230
Silverman, B.W., 13
Simpson, D.G., 67

Sims, C., 57
Sin, C.-Y., 78
Singleton, K.J., 147
Smith, J., 121, 124, 125
Sowell, F., 58
Speight, A.E.H., 77
Stahel, W.A., 64
Stengos, T., 206, 227, 230
Stinchcombe, M., 208
Sullivan, M.J., 163
Susmel, R., 132, 156, 174, 204
Swanson, N.R., 206, 226

Tanner, J.E., 236
Tauchen, G., 132, 199
Taylor, J.W., 190
Taylor, N., 133
Taylor, S.J., 30, 146, 147
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