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Preface

A casual glance at the relevant literature suggests that the amount of nonlinear
time series models that can be potentially useful for modelling and forecast-
ing economic time series is enormous. Practitioners facing this plethora of
models may have difficulty choosing the model that is most appropriate for their
particular application, as very few systematic accounts of the pros and cons of
the different models are available. In this book we provide an in-depth treatment
of several recently developed models, such as regime-switching models and
artificial neural networks. We narrow our focus to examining their potential
applicability for describing and forecasting financial asset returns and their
associated volatilities. The models are presented in substantial detail and are
not treated as ‘black boxes’. All models are illustrated on data concerning stock
markets and exchange rates.

Our book can be used as a textbook for (advanced) undergraduate and grad-
uate students. In fact, this book emerges from our own lecture notes prepared
for courses given at the Econometric Institute, Rotterdam and the Tinbergen
Institute graduate school. It must be stressed, though, that students must have
had a solid training in mathematics and econometrics and should be famil-
iar with at least the basics of time series analysis. We do review some major
concepts in time series analysis in the relevant chapters, but this can hardly
be viewed as a complete introduction to the field. We further believe that our
book is most useful for academics and practitioners who are confronted with
an overwhelmingly large literature and who want to have a first introduction to
the area.

We thank the Econometric Institute at the Erasmus University Rotterdam
and the Tinbergen Institute (Rotterdam branch) for providing a stimulating
research and teaching environment. We strongly believe that ‘learning by
doing’ (that is, learning how to write this book by teaching on the sub-
ject first) helped to shape the quality of this book. We thank all our co-
authors on joint papers, elements of which are used in this book. We would
specifically like to mention André Lucas, whose econometrics skills are very

XV



Xvi Preface

impressive. Also, we thank Ashwin Rattan at Cambridge University Press for
his support.

Finally, we hope that the reader enjoys reading this book as much as we
enjoyed writing it.

Rotterdam, August 1999



1 Introduction

This book deals with the empirical analysis of financial time series with an
explicit focus on, first, describing the data in order to obtain insights into their
dynamic patterns and, second, out-of-sample forecasting. We restrict attention
to modelling and forecasting the conditional mean and the conditional variance
of such series — or, in other words, the return and risk of financial assets. As
documented in detail below, financial time series display typical nonlinear char-
acteristics. Important examples of those features are the occasional presence of
(sequences of) aberrant observations and the plausible existence of regimes
within which returns and volatility display different dynamic behaviour. We
therefore choose to consider only nonlinear models in substantial detail, in
contrast to Mills (1999), where linear models are also considered. Financial
theory does not provide many motivations for nonlinear models, but we believe
that the data themselves are quite informative. Through an extensive forecasting
experiment (for arange of daily and weekly data on stock markets and exchange
rates) in chapter 2, we also demonstrate that linear time series models simply
do not yield reliable forecasts. Of course, this does not automatically imply
that nonlinear time series models might, but it is worth a try. As there is a host
of possible nonlinear time series models, we review only what we believe are
currently the most relevant ones and the ones we think are most likely to persist
as practical descriptive and forecasting devices.

1.1 Introduction and outline of the book

Forecasting future returns on assets such as stocks and currencies’ exchange
rates is of obvious interest in empirical finance. For example, if one were able
to forecast tomorrow’s return on the Dow Jones index with some degree of
precision, one could use this information in an investment decision today. Of
course, we are seldom able to generate a very accurate prediction for asset
returns, but hopefully we can perhaps at least forecast, for example, the sign of
tomorrow’s return.
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The trade-off between return and risk plays a prominent role in many financial
theories and models, such as Modern Portfolio theory and option pricing. Given
that volatility is often regarded as a measure of this risk, one is interested not
only in obtaining accurate forecasts of returns on financial assets, but also in
forecasts of the associated volatility. Much recent evidence shows that volatility
of financial assets is not constant, but rather that relatively volatile periods
alternate with more tranquil ones. Thus, there may be opportunities to obtain
forecasts of this time-varying risk.

Many models that are commonly used in empirical finance to describe returns
and volatility are linear. There are, however, several indications that nonlinear
models may be more appropriate (see section 1.2 for details). In this book, we
therefore focus on the construction of nonlinear time series models that can be
useful for describing and forecasting returns and volatility. While doing this, we
do not aim to treat those models as ‘black boxes’. On the contrary, we provide
ample details of representation and inference issues. Naturally, we will compare
the descriptive models and their implied forecasts with those of linear models,
in order to illustrate their potential relevance.

We focus on forecasting out-of-sample returns and volatility as such and
abstain from incorporating such forecasts in investment strategies. We usually
take (functions of) past returns as explanatory variables for current returns and
volatility. With some degree of market efficiency, one may expect that most
information is included in recent returns. Hence, we do not consider the possi-
bility of explaining returns by variables that measure aspects of the underlying
assets — such as, for example, specific news events and key indicators of eco-
nomic activity. Another reason for restricting the analysis to univariate models
is that we focus mainly on short-term forecasting — that is, not more than a few
days or weeks ahead. Explanatory variables such as dividend yields, term struc-
ture variables and macroeconomic variables have been found mainly useful for
predicting stock returns at longer horizons, ranging from one quarter to several
years (see Kaul, 1996, for an overview of the relevant literature).

Numerous reasons may be evinced for the interest in nonlinear models. For
example, in empirical finance it is by now well understood that financial time
series data display asymmetric behaviour. An example of this behaviour is
that large negative returns appear more frequently than large positive returns.
Indeed, the stock market crash on Monday 19 October 1987 concerned a
return of about —23 per cent on the S&P 500 index, while for most stock
markets we rarely observe positive returns of even 10 per cent or higher.
Another example is that large negative returns are often a prelude to a period
of substantial volatility, while large positive returns are less so. Needless to
say, such asymmetries should be incorporated in a time series model used for
description and out-of-sample forecasting, otherwise one may obtain forecasts
that are always too low or too high. We will call such time series models,
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which allow for an explicit description of asymmetries, nonlinear time series
models.

An important debate in empirical finance concerns the question whether
large negative returns, such as the 1987 stock market crash, are events that are
atypical or naturally implied by an underlying process, which the nonlinear time
series model should capture. It is well known that neglected atypical events
can blur inference in linear time series models and can thus be the culprit
of rather inaccurate forecasts. As nonlinear time series models are typically
designed to accommodate features of the data that cannot be captured by linear
models, one can expect that neglecting such atypical observations will have
even more impact on out-of-sample forecasts. Therefore, in this book we pay
quite considerable attention to take care of such observations while constructing
nonlinear models.

Most descriptive and forecasting models in this book concern univariate
financial time series — that is, we construct separate models for, for example, the
Dow Jones and the FTSE index, ignoring the potential links between these two
important stock markets. A multivariate model for the returns or volatilities of
two or more stock markets jointly while allowing for asymmetries is a possible
next step once univariate models have been considered. In specific sections in
relevant chapters, we will give some attention to multivariate nonlinear models.
It must be stressed, though, that the theory of multivariate nonlinear time series
models has not yet been fully developed, and so we limit our discussion to only
a few specific models.

This book is divided into six chapters. The current chapter and chapter 2 offer
a first glance at some typical features of many financial time series and deal
with some elementary concepts in time series analysis, respectively. Chapter 2
reviews only the key concepts needed for further reading, and the reader should
consult textbooks on time series analysis, such as Hamilton (1994), Fuller
(1996), Brockwell and Davis (1997) and Franses (1998), among others, for
more detailed treatments. The concepts in chapter 2 can be viewed as the
essential tools necessary for understanding the material in subsequent chap-
ters. Readers who already are acquainted with most of the standard tools of
time series analysis can skip this chapter and proceed directly to chapter 3.

Many economic time series display one or more of the following five features:
a trend, seasonality, atypical observations, clusters of outliers and nonlinearity
(see Franses, 1998). In this book, we focus on the last three features, while
considering financial time series. The purpose of section 1.2 is to describe some
of the characteristic features of financial time series, which strongly suggest
the necessity for considering nonlinear time series models instead of linear
models. In particular, we show that (1) large returns (in absolute terms) occur
more frequently than one might expect under the assumption that the data are
normally distributed (which often goes hand-in-hand with the use of linear
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models and which often is assumed in financial theory), (2) such large absolute
returns tend to appear in clusters (indicating the possible presence of time-
varying risk or volatility), (3) large negative returns appear more often than
large positive ones in stock markets, while it may be the other way around for
exchange rates, and (4) volatile periods are often preceded by large negative
returns. The empirical analysis relies only on simple statistical techniques, and
aims merely at highlighting which features of financial time series suggest the
potential usefulness of, and should be incorporated in, a nonlinear time series
model. For returns, features (1) and (3) suggest the usefulness of models that
have different regimes (see also Granger, 1992). Those models will be analysed
in detail in chapter 3 (and to some extent also in chapter 5). Features (2) and
(4) suggest the relevance of models that allow for a description of time-varying
volatility, with possibly different impact of positive and negative past returns.
These models are the subject of chapter 4. A final feature of returns, which
will be discussed at length in section 2.3, is that linear time series models do
not appear to yield accurate out-of-sample forecasts, thus providing a more
pragmatic argument for entertaining nonlinear models.

As running examples throughout this book, we consider daily indexes for
eight major stock markets (including those of New York, Tokyo, London and
Frankfurt), and eight daily exchange rates vis-a-vis the US dollar (includ-
ing the Deutschmark and the British pound). We do not use all data to
illustrate all models and methods, and often we take only a few series for
selected applications. For convenience, we will analyse mainly the daily data
in temporally aggregated form — that is, we mainly consider weekly data.
In our experience, however, similar models can be useful for data sampled
at other frequencies. As a courtesy to the reader who wishes to experiment
with specific models, all data used in this book can be downloaded from
(http://www.few.eur.nl/few/people/franses).

Chapter 3 focuses on nonlinear models for returns that impose a regime-
switching structure. We review models with two or more regimes, models where
the regimes switch abruptly and where they do not and models in which the
switches between the different regimes are determined by specific functions
of past returns or by an unobserved process. We pay attention to the impact
of atypical events, and we show how these events can be incorporated in the
model or in the estimation method, using a selective set of returns to illustrate the
various models. In the last section of chapter 3 (3.7), we touch upon the issue of
multivariate nonlinear models. The main conclusion from the empirical results
in chapter 3 is that nonlinear models for returns may sometimes outperform
linear models (in terms of within-sample fit and out-of-sample forecasting).

In chapter 4, we discuss models for volatility. We limit attention to those
models that consider some form of autoregressive conditional heteroscedasticity
(ARCH), although we briefly discuss the alternative class of stochastic volatility
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models as well. The focus is on the basic ARCH model (which itself can be
viewed as a nonlinear time series model) as was proposed in Engle (1982), and
on testing, estimation, forecasting and the persistence of shocks. Again, we pay
substantial attention to the impact of atypical events on estimated volatility.
We also discuss extensions of the class of ARCH models in order to capture
the asymmetries described in section 1.2. Generally, such extensions amount
to modifying the standard ARCH model to allow for regime-switching effects
in the persistence of past returns on future volatility.

Chapter 5 deals with models that allow the data to determine if there are
different regimes that need different descriptive measures, while the number
of regimes is also indicated by the data themselves. These flexible models are
called ‘artificial neural network models’. In contrast to the prevalent strategy
in the empirical finance literature (which may lead people to believe that these
models are merely a passing fad), we decide, so to say, to ‘open up the black
box’ and to explicitly demonstrate how and why these models can be useful in
practice. Indeed, the empirical applications in this chapter suggest that neural
networks can be quite useful for out-of-sample forecasting and for recognizing a
variety of patterns in the data. We discuss estimation and model selection issues,
and we pay attention to how such neural networks handle atypical observations.

Finally, chapter 6 contains a brief summary and some thoughts and sugges-
tions for further research.

All computations in this book have been performed using GAUSS, version
3.2.35. The code of many of the programs that have been used can be down-
loaded from (http://www.few.eur.nl/few/people/franses).

In the remainder of this chapter we will turn our focus to some typical features
of financial time series which suggest the potential relevance of nonlinear time
series models.

1.2 Typical features of financial time series

Empirical research has brought forth a considerable number of stylized facts of
high-frequency financial time series. The purpose of this section is to describe
some of these characteristic features. In particular, we show that returns on
financial assets display erratic behaviour, in the sense that large outlying obser-
vations occur with rather high-frequency, that large negative returns occur more
often than large positive ones, that these large returns tend to occur in clusters
and that periods of high volatility are often preceded by large negative returns.
Using simple and easy-to-compute statistical and graphical techniques, we illus-
trate these properties for a number of stock index and exchange rate returns,
sampled at daily and weekly frequencies. The data are described in more detail
below. Throughout this section we emphasize that the above-mentioned stylized
facts seem to imply the necessity of considering nonlinear models to describe
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the observed patterns in such financial time series adequately and to render
sensible out-of-sample forecasts. In chapter 2, we will show more rigorously
that linear models appear not to be useful for out-of-sample forecasting of
returns on financial assets.

Finally, it should be remarked that the maintained hypothesis for high-
frequency financial time series is that (logarithmic) prices of financial assets
display random walk-type behaviour (see Campbell, Lo and MacKinlay, 1997).
Put differently, when linear models are used, asset prices are assumed to conform
to a martingale — that is, the expected value of (the logarithm of) tomorrow’s
price P41, given all relevant information up to and including today, denoted as
s, should equal today’s value, possibly up to a deterministic growth component
which is denoted as u, or,

E[ln Pry(|€2] =1n P + p, (I.D)

where E[-] denotes the mathematical expectation operator and In denotes the
natural logarithmic transformation. In section 2.3 we will examine if (1.1) also
gives the best forecasts when compared with other linear models.

The data
The data that we use to illustrate the typical features of financial time
series consist of eight indexes of major stock markets and eight exchange
rates vis-a-vis the US dollar. To be more precise, we employ the indexes of
the stock markets in Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang
Seng), London (FTSE100), New York, (S&P 500), Paris (CAC40), Singapore
(Singapore All Shares) and Tokyo (Nikkei). The exchange rates are the Aus-
tralian dollar, British pound, Canadian dollar, German Deutschmark, Dutch
guilder, French franc, Japanese yen and Swiss franc, all expressed as a num-
ber of units of the foreign currency per US dollar. The sample period for the
stock indexes runs from 6 January 1986 until 31 December 1997, whereas for
the exchange rates the sample covers the period from 2 January 1980 until
31 December 1997. The original series are sampled at daily frequency. The
sample periods correspond with 3,127 and 4,521 observations for the stock
market indexes and exchange rates, respectively. We often analyse the series
on a weekly basis, in which case we use observations recorded on Wednes-
days. The stock market data have been obtained from Datastream, whereas the
exchange rate data have been obtained from the New York Federal Reserve.
Figures 1.1 and 1.2 offer a first look at the data by showing a selection of the
original price series P; and the corresponding logarithmic returns measured in
percentage terms, denoted y; and computed as

ye =100 (p; — pr—1), (1.2)
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where p; = In(P;). Strictly speaking, returns should also take into account
dividends, but for daily data one often uses (1.2). Prices and returns for the
Frankfurt, London and Tokyo indexes are shown in figure 1.1, and prices and
returns for the British pound, Japanese yen and Dutch guilder exchange rates
are shown in figure 1.2 (also for the period 1986-97).

Summary statistics for the stock and exchange rate returns are given in
tables 1.1 and 1.2, respectively, for both daily and weekly sampling frequencies.
These statistics are used in the discussion of the characteristic features of these
series below.

Large returns occur more often than expected

One of the usual assumptions in the (theoretical) finance literature is
that the logarithmic returns y; are normally distributed random variables, with
mean p and variance 02, that is,

yi ~ N(u, o?). (1.3)

Table 1.1  Summary statistics for stock returns

Stock market Mean Med Min Max Var Skew Kurt
Daily returns

Amsterdam 0.038 0.029 —12.788 11.179 1279 —0.693  19.795
Frankfurt 0.035 0.026 —13.710 7.288 1.520 —0.946 15.066
Hong Kong 0.057 0.022 —40.542 17.247 2.867 —5.003 119.241
London 0.041 0.027 —13.029 7.597 0.845 —1.590 27.408
New York 0.049 0.038 —22.833 8.709 0.987 —4.299  99.680
Paris 0.026 0.000 —10.138 8.225 1437 —-0.529 10.560
Singapore 0.019 0.000 —9.403 14.313 1.021 —0.247  28.146
Tokyo 0.005 0.000 —16.135 12.430 1.842 —0.213 14.798
Weekly returns

Amsterdam 0.190 0.339 —19.962 7953 5853 —1.389 11.929
Frankfurt 0.169 0.354 —18.881 8250 6989 —1.060 8.093
Hong Kong 0.283 0.556 —34.969 11.046 13.681 —2.190 18.258
London 0.207 0305 —17.817 9.822 4.617 —1478 15.548
New York 0.246 0400 —-16.663 6.505 4.251 —1.370 11.257
Paris 0.128 0.272 —-20.941 11.594 8.092 —-0.995 9.167
Singapore 0.091 0.110 -27.335 10.510 6.986 —2.168 23.509
Tokyo 0.025 0.261 —10.892 12.139 8305 —0.398 4.897

Notes: Summary statistics for returns on stock market indexes.
The sample period is 6 January 1986 until 31 December 1997, which equals 3,127 (625)
daily (weekly) observations.
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Table 1.2 Summary statistics for exchange rate returns

Currency Mean Med Min Max Var Skew Kurt
Daily returns

Australian dollar 0.012 —-0.012 —-5.074 10.554 0.377 1.893 35.076
British pound 0.006  0.000 —4.589 3.843 0442 0.058 5.932
Canadian dollar 0.006  0.000 —1.864 1.728 0.076  0.101  6.578
Dutch guilder —0.000  0.012 —-3985 3.188 0.464 —0.143 4971
French franc 0.008 0.016 —3.876 5.875 0.457 0.054 6.638
German Dmark —0.001 0.017 —4.141 3.227 0475 -0.136 4.921
Japanese yen —-0.016  0.006 —-5.630 3.366 0478 —0.541 6.898
Swiss franc —0.003 0.020 —4.408 3.300 0.582 —0.188 4.557
Weekly returns

Australian dollar 0.057 —-0.022 -5.526 10.815 1.731 1.454 11.906
British pound 0.033 —-0.027 -—-7.397 8.669 2.385 0.218  6.069
Canadian dollar 0.022 0.016 —2.551 2.300 0.343 0.040  4.093
Dutch guilder 0.007  0.051 —-7.673 7.212 2416 —-0.155 4.518
French franc 0.043 0.074 —-7.741 6.858 2.383 —0.014 5.006
German Dmark 0.005 0.052 —8.113 7.274 2483 —0.168 4.545
Japanese yen —0.064  0.059 —-6.546 6.582 2.192 —-0.419 4.595
Swiss franc —0.008  0.105 —-7.969 6.636 2929 -0.314 3.930

Notes: Summary statistics for exchange rate returns.
The sample period is 2 January 1980 until 31 December 1997, which equals 4,521 (939)
daily (weekly) observations.

The kurtosis of y; is defined as

_ 4
K, ZE[M} . (1.4)

o

For an observed time series yi,...,yn, the kurtosis can be estimated
consistently by the sample analogue of (1.4),

= &0t
Ry=->" Y’T (1.5)

t=1

where I = % S yand 6% = % S (v — u)? are the sample mean and
variance, respectively. The kurtosis for the normal distribution is equal to 3.
One of the features which stands out most prominently from the last columns of
tables 1.1 and 1.2 is that the kurtosis of all series is much larger than this normal
value, especially for the daily series. This reflects the fact that the tails of the
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distributions of these series are fatter than the tails of the normal distribution.
Put differently, large observations occur (much) more often than one might
expect for a normally distributed variable.

This is illustrated further in figures 1.3 and 1.4, which show estimates of the
distributions f (y) of the daily returns on the Frankfurt and London stock indexes
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Figure 1.3  Kernel estimates of the distribution of daily returns on (a) the Frankfurt
and (b) the London stock indexes (solid line) and normal distribution with same mean
and variance (dashed line); each whisker represents one observation
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Figure 1.4 Kernel estimates of the distribution of daily returns on (a) the British
pound and (b) Japanese yen exchange rates vis-a-vis the US dollar (solid line) and
normal distribution with same mean and variance (dashed line); each whisker
represents one observation

and the British pound and Japanese yen exchange rates, respectively. The esti-
mates are obtained with a kernel density estimator,

7 _in ye—Y
f(y)—nh;K( - )
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where K (z) is a function which satisfies | K (z) dz = 1 and h is the so-called
bandwidth. Usually K (z) is taken to be a unimodal probability density function;
here we use the Gaussian kernel

1 1,
K () mexp( 2z>.

Following Silverman (1986), we set the bandwidth /& according to h =
0.9-min(&, iqr/1.349)n~ /3, where iqr denotes the sample interquartile range —
thatis, iqr = y|(3n/4)] — Y| (n/4)|» Where y(;) is the ith order statistic of the series
vi,t =1,...,n,and |-] denotes the integer part. (See Wand and Jones, 1995,
for discussion of this and other kernel estimators, and various methods of band-
width selection.) In all graphs, a normal distribution with mean and variance
obtained from tables 1.1 and 1.2 for the different series has also been drawn
for ease of comparison. Each whisker on the horizontal axis represents one
observation. Clearly, all distributions are more peaked and have fatter tails than
the corresponding normal distributions. Thus, both very small and very large
observations occur more often compared to a normally distributed variable with
the same first and second moments.

Finally, it is worth noting that the kurtosis of the stock returns is much larger
than the kurtosis of the exchange rate returns, at both the daily and weekly
sampling frequency. This may reflect the fact that central banks can intervene
in the foreign exchange market, while there are virtually no such opportunities
in stock markets.

Large stock market returns are often negative
The skewness of y; is defined as

_ 3
(v — ) } 16

SKy =E

y |: o3
and is a measure of the asymmetry of the distribution of y;. The skewness for
an observed time series y1, . . ., ¥, can be estimated consistently by the sample
analogue of (1.6) as

& _ Iy o=’
SKy = — ; = 1.7)
All symmetric distributions, including the normal distribution, have skewness
equal to zero. From table 1.1 it is seen that the stock return series all have
negative skewness, which implies that the left tail of the distribution is fatter
than the right tail, or that large negative returns tend to occur more often than
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large positive ones. This is visible in the distributions displayed in figure 1.3 as
well, as more whiskers are present in the left tail than in the right tail.

Skewness of the daily exchange rate returns is positive for certain currencies,
while it is negative for others. This makes sense, as it is not a priori clear why
exchange rate returns should have either positive or negative skewness when
measured in the way we do here.

Large returns tend to occur in clusters

From figures 1.1 and 1.2 it appears that relatively volatile periods,
characterized by large price changes — and, hence, large returns — alternate with
more tranquil periods in which prices remain more or less stable and returns
are, consequently, small. In other words, large returns seem to occur in clusters.
This feature of our time series becomes even more apparent when inspecting
scatterplots of the return of day 7, denoted y;, against the return of day ¢ — 1.
Figures 1.5-1.7 provide such plots for the daily observed Amsterdam, Frankfurt
and London stock indexes. Similar scatterplots for daily data on the British

12

712 -

6 \ \ \ \ \ \
—-16 -12 -8 -4 0 4 8 12

Figure 1.5 Scatterplot of the return on the Amsterdam stock index on day ¢, y;,
against the return on day ¢t — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses
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Figure 1.6  Scatterplot of the return on the Frankfurt stock index on day ¢, y;, against
the return on day ¢ — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

pound, Canadian dollar and Dutch guilder are shown in figures 1.8-1.10. In
these scatterplots, the observations for the three largest negative and the three
largest positive values of y; are connected with the two preceding and the two
following observations by means of arrows, pointing in the direction in which
the time series evolves. All observations that are starting and/or end-points of
arrows are marked with crosses.

Following the route indicated by the arrows reveals that the return series
frequently travel around the main cloud of observations for an extended period
of time. This holds for stock returns in particular. For example, the arrows in
figure 1.5 really comprise only two stretches of large returns. The first stretch
starts at (y;—1, ¥r) = (—1.90, —2.15) which corresponds to 14 and 15 October
1987. On subsequent trading days, the return on the Amsterdam stock index was
equal to —0.58, —12.79 (19 October), —6.10, 8.81, —7.52, 0.22,—9.74, 3.21,
—6.14 and 0.25 per cent on 29 October, which is where the first path ends. The
second one starts with the pair of returns on 6 and 9 November 1987, which are
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Figure 1.7  Scatterplot of the return on the London stock index on day ¢, y;, against
the return on day r — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,

pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

equal to 0.31 and —7.39, respectively, and were followed by returns of —4.52,
11.18, 8.35, —2.79, 3.89 and —3.99 per cent.

From figures 1.8—1.10 it appears that clustering of large returns occurs less
frequently for exchange rates. The arrows seem to constitute a three-cycle quite
often, where ‘three-cycle’ refers to the situation where the return series leaves
the main cloud of observations owing to a large value of y;, moves to the next
observation (which necessarily is outside of the main cloud as well, as now y; |
is large) and moves back into the main clutter the next day. Evidently, such three-

cycles are caused by a single large return. Still, some longer stretches of arrows
are present as well.

Large volatility often follows large negative stock market returns
Another property of the stock return series that can be inferred from the
scatterplots presented is that periods of large volatility tend to be triggered by a



Introduction 17

Figure 1.8 Scatterplot of the return on the British pound/US dollar exchange rate on
day ¢, y;, against the return on day ¢ — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

large negative return. Further inspection of figures 1.5—1.7 shows that the stock
return series almost invariably leave the central cloud in a southern direction —
that is, today’s return is large and negative. Given that it can take quite some
time before the return series calms down and that scatter observations disappear
into the main cloud again, it seems justified to state that a volatile period often
starts with a large negative return.

The second column of table 1.3 contains estimates of the correlation between
the squared return at day ¢ and the return at day ¢+ — 1 for the various stock
indexes. The fact that all these correlations are negative also illustrates that
large volatility often follows upon a negative return.

For the exchange rate returns this property is much less clear-cut (as it should
be, as the return series can be inverted by simply expressing the exchange rate
as the number of US dollars per unit of foreign currency). Figures 1.8—1.10 do
not reveal any preference of the exchange rate return series to leave the main
cloud of observations either to the north or to the south. The estimates of the
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Table 1.3 Correlation between squared returns at day t and returns at day t — 1

Stock market Corr( y,z, Vi—1) Exchange rate Corr( ytz, Vi—1)
Amsterdam —0.049 Australian dollar 0.168
Frankfurt —0.095 British pound 0.074
Hong Kong —0.081 Canadian dollar 0.041
London —0.199 Dutch guilder 0.042
New York —0.108 French franc 0.047
Paris —0.042 German Dmark 0.041
Singapore —-0.107 Japanese yen —0.008
Tokyo —0.130 Swiss franc 0.014

Note: Correlation between squared return at day ¢ and return at day ¢ — 1 for stock market
indices and exchange rates.
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Figure 1.9  Scatterplot of the return on the Canadian dollar/US dollar exchange rate
on day 7, y;, against the return on day ¢ — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses
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Figure 1.10  Scatterplot of the return on the Dutch guilder exchange rate on day ¢, y;,
against the return on day t — 1

The observations for the three largest negative and the three largest positive values of y; are
connected with the two preceding and the two following observations by means of arrows,
pointing in the direction in which the time series evolves; all observations that are starting- and/or
end-points of arrows are marked with crosses

correlations between y,2 and y;_1, as shown in the final column of table 1.3, are
positive for all exchange rate series except the Japanese yen.

To summarize, the typical features of financial time series documented in this
first chapter seem to require nonlinear models, simply because linear models
would not be able to generate data that have these features. Before we turn to
a discussion of nonlinear models for the returns in chapter 3, we first review
several important time series analysis tools in chapter 2, which are needed for
a better understanding of the material later in the book.



2 Some concepts in time series
analysis

In this chapter we discuss several concepts that are useful for the analysis of
time series with linear models, while some of them can also fruitfully be applied
to nonlinear time series. Examples of these concepts are autocorrelation func-
tions, estimation, diagnostic measures, model selection and forecasting. After
introducing the linear time series models which are of interest in section 2.1,
we discuss these concepts in section 2.2 in the context of an empirical model
specification strategy, to demonstrate how the various elements can be used in
practice. In section 2.3 we demonstrate that linear time series models are less
useful for out-of-sample forecasting of returns on stock indexes and exchange
rates. Subsequent sections elaborate on concepts which are of special interest
when dealing with economic time series — such as unit roots, seasonality and
aberrant observations, first two being included for the sake of completeness.

As will become clear in later chapters, not all statistical tools which are
commonly applied in linear time series analysis are useful in nonlinear time
series analysis. However, as one often starts the analysis of empirical time series
with linear models even if one is ultimately interested in nonlinear features, we
feel that a basic knowledge and understanding of the most important concepts
in linear time series analysis are indispensable. This chapter highlights only the
main aspects. Readers interested in more detailed or advanced expositions may
consult textbooks such as Box and Jenkins (1970); Anderson (1971); Granger
and Newbold (1986); Mills (1990); Hamilton (1994); Fuller (1996); Brockwell
and Davis (1997); and Franses (1998), among many others. Readers who already
are acquainted with most of the standard tools of linear time series analysis can
skip this chapter and proceed directly to chapter 3.

2.1 Preliminaries

We denote the univariate time series of interest as y;, where y; can be a return
on a financial asset. The variable y; is observed for t = 1,2, ..., n, while
we assume that initial conditions or pre-sample values yo, y_1, ..., y1—p are

20
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available whenever necessary. We denote by €2;_1 the history or information
set at time t — 1, which contains all available information that can be exploited
for forecasting future values y;, y;+1, Y142, ... Where ,_1 does not contain
any information that can be used in a linear forecasting model for y;, the cor-
responding time series is usually called a white noise time series. Throughout
we denote such series as ;. Usually it is required that &; has a constant (uncon-
ditional) mean equal to zero and a constant (unconditional) variance as well.
Hence, a white noise series &; is defined by

Ele/] =0, (2.1)
E[¢?] = 02, (22)
Eleres] =0 Vs #t. (2.3)

The condition that all autocovariances of ¢; are equal to zero, as stated in (2.3),
is equivalent to the statement that the information set €2, does not contain
information to forecast ¢; with linear models. This will be explained in more
detail below.

Linear time series models

In general, any time series y; can be thought of as being the sum of
two parts: what can and what cannot be predicted using the knowledge from
the past as gathered in €2;_1. That is, y; can be decomposed as

yr = B[yl 11+ v, 2.4)

where E[-|-] denotes the conditional expectation operator and v; is called the
unpredictable part, with E[v;|Q2;_1] = 0. In this chapter we assume that v;
satisfies the white noise properties (2.1)—(2.3).

A commonly applied model for the predictable component of y; assumes
that it is a linear combination of p of its lagged values, that is,

Vi =®1yr—1t+®yr2+ -+ Ppyi—p+e, t=1,...,n, (2.5)

where @1, ..., ¢p are unknown parameters. This simple model, which often
turns out to be very useful for descriptive and forecasting purposes, is called
an autoregressive model of order p [AR(p)] or autoregression of order p. For
many financial returns p is unlikely to be very large (see section 2.3), while
for volatility, p can take large values (see chapter 4). Using the lag operator
L, defined by ka, =y fork =0,1,2,...,(2.5) can be written in a more
concise form as

dp(L)y: = &,
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where

¢p(L)=1—¢1L—--—¢pL7, (2.6)

which is called the AR-polynomial in L of order p.

When p in the AR(p) model is large, one may try to approximate the AR-
polynomial by a ratio of two polynomials which together involve a smaller
number of parameters. The resultant model then is

¢p(L)yr =604(L)e;, t=1,...,n, 2.7)
with

¢p(L) =1 _¢1L_"’_¢pr,
Oqg(L) =1 +91L+~-~+9qu,

where the p in (2.7) is usually much smaller than the p in (2.5). This model is
called an autoregressive moving average model of order (p, g) [ARMA(p, q)].
The ARMA model class was popularized by Box and Jenkins (1970). We
will see in chapter 4 that an ARMA-type model is relevant for modelling

volatility.
Sometimes it is convenient to assume that the predictable part of y; is a
linear combination of the g most recent shocks &;_1, .. ., &—g4. This effectively

reduces the ARMA model (2.7) to a moving average model of order g [MA(q)],
given by

ye=¢& +0g 1+ +08—q, t=1,...,n 2.8)

Covariance stationarity

A white noise series as defined by (2.1)-(2.3) is a special case of a
covariance stationary time series. In general, a given time series y; is said to
be covariance stationary if it has constant mean, variance and autocovariances,
that is,

Elyyl=pn Vi=1,...,n, (2.9)

El(:—w =y Yr=1,....n, (2.10)

E[(vi — i)k — )l =wm VYe=1,...,nandk=0,1,2,...,
.11

where i, o and yy are finite-valued numbers.
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Whether or not a time series y; generated by an ARMA(p, ¢) model is covari-
ance stationary is determined by the autoregressive parameters ¢y, . .., ¢p. For
example, consider the first-order autoregression

Yt =0+ d1y—1+ &, (2.12)

where we have included an intercept ¢ to describe a nonzero mean of y;. By
taking expectations of both sides of (2.12), that is,

Elyr] = ¢o + ¢1E[yr—1] + E[es], (2.13)

and assuming that y; is covariance stationary and using (2.9) and (2.1), it follows
that

_ o)
1—¢1

m (2.14)

Notice that (2.14) makes sense only if |¢1| < 1. For example, when ¢ exceeds
1 and ¢y is a positive number, (2.14) implies that the mean of y; is negative,
whereas (2.12) says that, on average, y; is a multiple of its previous value plus a
positive constant. This apparent contradiction is caused by the fact that in order
to derive (2.14) we assumed y; to be covariance stationary in the first place,
which is not the case when |¢1| > 1, as will become clear below.

Another way to understand the relevance of the condition |¢1| < 1 is to
rewrite (2.12) by recursive substitution as

=1
d1€1—is (2.15)
0

t—1
Y=o+ Y _ dido+

l:0 1=
from which it follows that E[y,] = ¢! yo+Y_/_} #¢o. When |¢;] < 1, itholds
that

t—1

fo’i =(1-¢))/(1—¢1) <oo forallt >0,

i=0

whereas qbﬁ — 0 ast — oo. It then follows that E[y;] = ¢g/(1 — ¢1) for ¢

sufficiently large. On the other hand, when |¢1| > 1, the summation Z;;(l) ¢{
does not converge when ¢ becomes larger and the above does not hold. For
example, in case ¢; = 1 we obtain E[y;] = yg + ¢ot, which certainly is not
constant.
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To derive the variance and autocovariances for the AR(1) model it is conve-
nient to rewrite (2.12) as

r =) =d1(yi—1 — W) + &1, (2.16)

with u = ¢o/(1 — ¢1). Taking expectations of the squares of both sides of
(2.16) results in

E[(y; — )21 = ¢?E[(y—1 — 1)1 + Ele2] + 201 E[(y1—1 — wer]-
(2.17)

From (2.15) lagged one period it follows that y; | can be expressed as a function
of the shocks ¢;_1, &;_7, ... (and the starting value yp). Combining this with
(2.3) it should be clear that y,_; and &; are uncorrelated and, hence, the last
term on the right-hand side of (2.17) is equal to zero. Under the assumption
that y; is covariance stationary or, equivalently, |¢1| < 1, we thus have

02
Yo = 1_¢12. (2.18)
The first-order autocovariance for an AR(1) time series is
y1 =Elor = ) (-1 — ]
= P1E[(yr—1 — W) -1 — W1+ Eler (vi—1 — )]
= 9170- (2.19)
For the AR(1) model it holds more generally that for any k > 1
E[(v: — ) r—k — )] = G1E[(yi—1 — ) r—i — 1, (2.20)
and hence that
Vi = ¢1yk—1 fork=1,2,3,... (2.21)

An AR(1) model with ¢1 = 1

In case the parameter ¢; in (2.12) exceeds 1, the time series y; is
explosive, in the sense that y; diverges to +00. As this is quite unlikely for
financial returns or volatility, from now on we do not consider such explosive
processes. An interesting case, though, concerns ¢; = 1. In that case, assuming
¢o = 0 (without loss of generality), (2.15) can be rewritten as

t
=0+ ) s (2.22)
i=1

From this expression it follows that yp ; = E[ytz] = to2 andin general y ; =
Elyiyi—i] = (t — k)o2 for all k > 0. The additional index 7 on the ys is used
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to highlight the fact that the variance and autocovariances are not constant over
time but rather increase linearly.

The expression in (2.22) also shows that the effects of all past shocks ¢;, i =
1,...,t,onYy; are equally large. Equivalently, the effect of the shock &; on y,
is the same for k = 0, 1, ... Therefore, shocks are often called permanent in
this case. This is to be contrasted with stationary time series y;. From (2.15)
it follows that the effect of &; on y, 4, k > 0 becomes smaller as k increases
and eventually dies out as k — oo. In this case, shocks are called transitory.
The time series in (2.22) is called a ‘random walk’. As noted in chapter 1,
the random walk model as a description of the behaviour of asset prices is an
important hypothesis in empirical finance (see Campbell, Lo and MacKinlay,
1997, chapter 2).

When shocks are permanent, it is common practice to proceed with an ana-
lysisof 1y; = (1 — L)y, = y; — y;—1 —that is, the differenced series instead
of y;. An extended motivation for this practice is given in section 2.4. When
p: denotes the natural logarithm of an asset price P; —thatis, p; = In P; — the
application of the differencing filter results in p; — p;_1, which approximates
the returns when P;/P;_1 is close to 1. When a time series needs to be dif-
ferenced d times — that is, the filter ‘1‘1 has to be applied — one says that it is
integrated of order d [I(d)]. When an ARMA model is considered for ‘11 Vi,
one says that y; is described by an autoregressive integrated moving average
model of order (p, d, q) [ARIMA(p, d, q)].

To provide more insights in the peculiarity of a random walk time series,
consider again (2.22). As E[e;] = 0, the expected value of y; is yg, which
is rather odd for a time series that wanders around freely. In fact, this means
that the sample mean is not a good estimator for the expected value. Note,
however, that one is always able, given a series of observed y; values, to calculate
y = 1/n Y /_; v, but for the random walk this sample mean is not a useful
statistic.

AR(p) models and stationarity
The above results generalize to AR(p) models with p > 1. To see how,
consider the characteristic equation of the AR(1) and AR(p) models, given by

1 -¢1z2=0, (2.23)
and
1 —¢1z—-~-—¢pzp =0, (2.24)

respectively. The solution, or root, of (2.23)is z = qﬁfl. Hence, the condition
that |¢1| is less than 1 for time series y; generated by an AR(1) model to be
stationary is equivalent to the condition that the root of (2.23) is larger than 1.
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The condition for covariance stationarity of time series generated by an AR(p)
model then simply is that all p solutions of (2.24) are larger than 1 — or, rather,
as the solutions can be complex numbers, that they are outside the unit circle
(see, for example, Fuller, 1996 ). Notice that (2.24) can be rewritten as

(I—-a1)(I =) (1 —apz) =0 (2.25)

which shows that the stationarity condition is equivalent to the requirement that
all ¢;,i = 1,..., p, are inside the unit circle. When the largest of the «;s is
equal to 1, z = 1 is a solution to (2.24). In this case we say that the AR(p)
polynomial has a unit root.

MA models and invertibility

One of the properties of MA models is that time series which are
generated from such models are always covariance stationary. In fact, from
(2.8) it follows directly that E[y;] = 0 and that the variance of y; equals

yo=(1+00+07+ - +6)0" (2.26)
Furthermore, it can simply be derived that

o2 Z?:_é{ 0;0;4y fork=1,...,q,

2.27
0 fork > g, ( )

Yk =
with 6y = 1.

Another desirable property of time series is that of invertibility. A time series
y; is said to be invertible if it is possible to reconstruct the value of the shock
at time ¢, &, given only the current and past observations y;, y;—1, Yr—2, . ..
Whether or not a time series y; generated by an ARMA(p, ¢g) model is invertible
is determined by the moving average parameters 61, .. ., 6.

The fact that time series generated by AR models are always invertible follows
trivially from (2.5), for example. The condition for invertibility of time series
generated by the MA(g) model (2.8) is that the g solutions to the characteristic
equation

140124 +60427 =0, (2.28)

are all outside the unit circle. Notice that this is analogous to the stationarity
condition for the AR(p) model. If the invertibility condition is satisfied, the MA
model can be expressed alternatively as an AR(oco) model. For example, for the
MA(1) model y; = &; + 61&;,_1 with |01] < 1

S
(1+6,L)

=y —O01y—1 + 0Py — Oy 3+, (2.29)

&y
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from which it is easily seen that y; depends on an infinite number of its own
lagged values.

2.2 Empirical specification strategy

In this section we describe a typical specification strategy for linear time series

models. In general, the various steps in this strategy also hold for nonlinear

models, although at times there are differences in the statistical tools which

should be used. We will indicate where the main differences are expected to

be found across linear and nonlinear models. The modelling sequence usually

involves the following steps:

(1) calculate certain statistics for a time series at hand

(2) compare the values or sizes of these statistics with the theoretical values that
would hold true if a certain model is adequate (or a certain null hypothesis
holds true)

(3) estimate the parameters in the time series model suggested by the results
in step (2)

(4) evaluate the model using diagnostic measures

(5) respecify the model if necessary

(6) use the model for descriptive or forecasting purposes.

The principal advantage of modelling sequentially observed time series data is

that specific models imply specific properties of data that are generated by these

models. By comparing these properties with the corresponding characteristics

of the time series under investigation, one can get an idea of the usefulness of the

model for describing the time series. For example, it follows from (2.27) that a

moving average model of order 1 implies that only the first order autocovariance

for y, differs from zero. Statistical tests can be used to see if this holds for the

estimated autocovariances for an observed time series — and, if yes, one can

start off with an MA(1) model in step (3).

If attention is restricted to linear ARIMA models, the main objective of steps
(1) and (2) in the specification strategy is to determine the appropriate AR and
MA orders p and g. This part of the specification strategy is often called model
identification (see Box and Jenkins, 1970). Note that this is a different concept
than parameter identification, which is often used in simultaneous models and
in several nonlinear time series models below. As an example, in the model y; =
adryr—1 + &, the parameters « and ¢ are not identified, unless a restriction
on one of them is imposed. Identification of an ARIMA model also includes
determining the appropriate order of differencing d. This topic is discussed in
some detail in section 2.4; here we assume for convenience that d is known to
be equal to O.

The most relevant statistics that may suggest the appropriate orders of a lin-
ear ARMA type model are contained in the autocorrelation function [ACF]
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and partial autocorrelation function [PACF], which are defined more precisely
below. If a time series is most adequately described by an ARMA(p,q) model,
it should in theory obey certain (partial) autocorrelation properties. In practice,
the orders p and ¢ are of course unknown and have to be estimated from the
data. It is hoped that this can be achieved by comparing the values of the esti-
mated (P)ACF [E(P)ACF] with the theoretical values as implied by ARMA(p,q)
models for different p and g. If a reasonable match between the estimated and
theoretical correlations is found for certain ARMA orders, one can select this
model and proceed with estimation of the parameters in step (3). It should
be stressed here, though, that only for simple models are the ACF and PACF
easy to interpret. When the models become more complicated — say, an ARMA
model of order (4,3) — one needs considerable skill and experience to deduce the
correct orders of this model based on estimated autocorrelation functions only.
On the other hand, for many financial returns, memory in the data is expected
not to be very long, and the estimated autocorrelation functions may prove
useful.
The ACF of a time series y; is defined by

Pk =Yk/vo, k=12,3,..., (2.30)

where yy is the kth order autocovariance of y; defined in (2.11).

Given (2.3), it is clear that for a white noise series, pr = 0 for all &k # 0.
In section 2.1 it was shown that for the stationary AR(1) model (2.12) with
|$1] < 1itholds that y, = ¢1yx—1 fork = 1,2,3, ... Hence, the theoretical
first-order autocorrelation p1 for an AR(1) model equals

o1 =v1/Y0 = ¢1, (2.31)

and, in general,
ok =d1pk—1 = ¢f fork=1,2,3,..., (2.32)

with pg = 1. Hence, the ACF of an AR(1) model starts at p; = ¢; and then
decays geometrically towards zero.

As an aside, it is useful to note here that for an AR(1) model with ¢1 = 1,
it follows from the analysis just below (2.22) that the kth order autocorrelation
at time ¢ is equal to

t—k
Pk,t = T, (2.33)
for k = 1,2, ... Obviously, as the autocovariances are varying over time, the
autocorrelations are as well. The main point to take from (2.33) is that if we
erroneously assume that the autocorrelations o ; are constant and estimate



Concepts in time series analysis 29

common pgs for k = 1,2, ... at time n using the observations yp, ..., y,, we
are most likely to observe that all values of g are very close to 1, provided that
the sample size n is large enough.

The ACF is useful for identification of the order of a pure MA model. From
(2.27) it follows that for the MA(g) model the autocorrelations at lags g + i,
withi = 1,2, ... are equal to zero. For mixed ARMA models, the theoretical
ACF already becomes quite involved for fairly small values of the orders p and
q. The pattern can also become difficult to distinguish from patterns of pure AR
models or of ARMA models with different values of p and g. Hence, in practice,
one usually takes a casual glance at the estimated autocorrelation function. If
there is clear-cut evidence that an MA model can be useful, one proceeds with
estimating its parameters — that is, with step (3). Otherwise, one starts off with
an ARMA model with small values of p and ¢, and uses diagnostic measures
in step (4) to see if the model is in need of modification. For linear time series
models this would mean that, for example, p or ¢ are increased to p + 1 or
q + 1, respectively.

The kth order partial autocorrelation can be interpreted as the correlation
between y; and y,_; after accounting for the correlation which is caused
by intermediate observations y;_1, ..., y;—k+1. For example, where a time
series is generated by an AR(1) model (2.12), the normal correlation between
y; and y;_; is equal to p%. However, this correlation is caused entirely by
the fact that both y, and y,_; are correlated with y,_1. After removing this
common component from both y; and y;_», the remaining or partial cor-
relation is zero. An intuitive way to see this is to notice that there is no
need to add the regressor y;_»> to an AR(1) model, and where one does
so, the corresponding parameter should equal 0. In general, the regressors
Yi—(p+i)»i = 1,2,... are redundant variables if the series is really gener-
ated by an AR(p) model. Hence, for such a series, the partial autocorrelations
of orders k > p are equal to zero. For invertible MA(g) models, on the other
hand, there is no clear cut-off point but, rather, the partial autocorrelations
slowly decay towards zero. This can be understood from (2.29), which demon-
strates that an invertible MA(q) model has an equivalent AR(co) representation.
The same holds for mixed ARMA(p,g) processes with both p and g greater
than zero. In sum, the PACF is most useful to identify the order of a pure AR
model.

In practice, the correlation and partial correlation functions have to be esti-
mated from the observed time series. The kth order autocorrelation can be
estimated by means of the sample covariances as

1y 5 -5
P it 1 e = -k y)’ 2.34)

s e —3)?
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where y is the sample mean of y;, t = 1,...,n. An easy way to obtain
estimates of the partial autocorrelations is by estimating AR(k) models

- k _ k —
== =D+ AV Gk — 7 + s (2.35)

for increasing orders k = 1, 2, ... The kth order partial autocorrelation is given

by the last coefficient in the estimated AR(k) model, @ng).

In figures 2.1 and 2.2 we give the first 50 autocorrelations for the log prices,
daily returns, absolute returns and squared returns of the Frankfurt and Tokyo
stock indexes and the British pound and Dutch guilder exchange rate series,
respectively. Clearly, the log asset prices have autocorrelations close to unity at
all selected lags and, hence, they seem to mimic the correlation properties of a
random walk process as given in (2.33). It is seen that the autocorrelations of
the return series are very small, even at low lags. Given that the asymptotic vari-
ance of the autocorrelation estimates is roughly equal to 1/4/n, the appropriate
(two-sided) 5 per cent critical value for evaluating these estimates is equal to
0.035 (= 1.96/4/3,127) for the stock returns and 0.029 (= 1.96/4/4,521) for
the exchange rate returns. By contrast, for the absolute and squared returns,
the autocorrelations start off at a moderate level (the first-order autocorrelation
generally ranges between 0.2 and 0.3 for the stock returns and 0.1 and 0.2 for
the exchange rate returns) but remain (significantly) positive for a substantial
number of lags. In addition, the autocorrelation in the absolute returns is gener-
ally somewhat higher than the autocorrelation in the squared returns, especially
for the stock market indices. This illustrates what has become known as the
‘Taylor property’ (see Taylor, 1986, pp. 52-5) — that is, when calculating the
autocorrelations for the series | y; |9 for various values of §, one almost invariably
finds that the autocorrelations are largest for § = 1.

The autocorrelations and partial autocorrelations as discussed above are mea-
sures of linear association and predictability. Their usefulness in a specification
procedure for nonlinear models is very limited. For example, one may derive
the autocorrelation function of a nonlinear time series model like

Ve =¢1y—1+ Br&r—1y1—1 + &1, (2.36)

which is a so-called bilinear time series model (see Granger and Andersen,
1978). However, even for this simple example, it already becomes quite difficult
to use (see Li, 1984). Moreover, it is not difficult to construct nonlinear time
series models for which all autocorrelations are equal to zero. An example is
the bilinear model

e = Ba&r—1yr—2 + & (2.37)

When only the autocorrelation properties of time series generated by this model
are considered, one might conclude that the series is white noise — and, hence,
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Figure 2.1 First 50 autocorrelations of (a), (b) daily Frankfurt and (c), (d) Tokyo

stock market indexes

Figures (a) and (c) show autocorrelations of the log prices; figures (b) and (d) show
autocorrelations of returns (solid line with circles), absolute returns (dashed line with squares)
and squared returns (dotted line with triangles)

not linearly forecastable. Of course, the series is forecastable using a nonlinear
model. An alternative strategy is to start off with a linear time series model,
based on a rough guess using linear autocorrelation functions, and then, in a
next step, to use diagnostic tests which have power against the alternative model
of interest. In the bilinear model (2.36), for example, one might first estimate
an AR(1) model for y; — that is, y; = ky;—1 + u; — and then investigate if the
regressor u; 1 y;—1 adds significantly to the fit. Before we return to this strategy
in subsequent chapters, we first outline the other elements in the specification
procedure for linear models.

Estimation
The parameters in the AR(p) model

ye=¢o+d1yi—1t+ &yt +Ppyi—p + &, (2.38)
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Figure 2.2 First 50 autocorrelations of (a), (b) daily British pound and (c), (d) French
franc exchange rates vis-a-vis the US dollar

Figures (a) and (c) show autocorrelations of the log exchange rates; figures (b) and (d) show
autocorrelations of returns (solid line with circles), absolute returns (dashed line with squares)
and squared returns (dotted line with triangles)

can be estimated by Ordinary Least Squares (OLS). It can be shown that under
relatively weak assumptions about the properties of the innovations &; (much
weaker than the white noise assumptions (2.1)—(2.3) which we use here), the
OLS estimates of the parameters are consistent and asymptotically normal, and
that standard ¢-statistics can be used to investigate the significance of ¢ to
¢p (see Box and Jenkins, 1970). The mean u of y; can be estimated from
= qgo /(11— ¢A>1 — 432 — = qu). Using the parameter estimates, the residual
series £, can be constructed.

Several methods for estimating the parameters of (AR)MA models have been
developed (see Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 1997,
for examples of maximum likelihood and least squares methods). The fact
that there is no unanimously preferred estimation method is mainly caused by
the fact that the lagged &, variables in the MA part are unobserved, and their
realizations have to be estimated jointly with the parameters. The proposed
estimation procedures mainly differ in the way they estimate these unobserved
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shocks. A method often applied is an iterative least squares method. To pro-
vide intuition for this procedure, consider the ARMA(1,1) model when it is
written as

A+6 L)y =11 +6, L)y 1+ (2.39)

Denoting z; = (1 + 6?1L)_1 ¥z, (2.39) implies that we can define (assuming
yo = 0 and n to be odd)

71 = )1,
2=y —01y1,
3=y3—01y» +912y1,

Zn=Yn —Oyn—1+---+ 9?_1)’1-

For a given value of 61, one can generate observations z;, and apply OLS to
(2.39) written in terms of z; — that is, z; = ¢1z;—1 + & — to obtain an estimate
¢1 of the AR parameter. This results in a residual series &; which, when setting
€1 = 0, can be used to obtain a new estimate for the MA parameter 6 by
considering the regression & — (y; — qgl Vi—1) = 01&;_1. This new estimate of
01 can be used to construct a new z; series, which can be used to obtain a new
estimate of the AR parameter, and so on. These steps should be iterated until
convergence — that is, until the estimates of the parameters ¢; and 6; do not
change any more.

Diagnostic testing for residual autocorrelation
Testing the adequacy of an estimated ARMA model in step (4) of the
suggested specification strategy usually involves several elements. It is quite
common to start with examining whether the residual series &; is approximately
white noise, by testing whether its autocovariances — or autocorrelations — are
equal to zero (see (2.3)). If this turns out not to be the case, there is a need
to modify the model by increasing the value of p and/or g. There are three
commonly applied methods to test for residual autocorrelation, all of which
can also be considered (or modified) for nonlinear time series models. The first
method is to look at individual elements of the sample ACF of the residuals,
given by
n A A
(@) = Zt:*&?_k (2.40)
1=1°%1
fork =1,2,3,... Box and Jenkins (1970) show that, given model adequacy,
the population equivalents of ri(€) are asymptotically uncorrelated and have
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variances approximately equal to n~!. Assuming normality, one may use the
interval (—1.96/4/n, 1.96/./n) to examine if certain residual autocorrelations
are different from zero at the 5 per cent significance level.

A second method amounts to testing for the joint significance of the first m
residual autocorrelations. The test-statistic developed by Ljung and Box (1978),
given by

LB(m) = n(n +2) Z(n — k72 @), (2.41)
k=1

can be used for this purpose. Under the null hypothesis of no residual autocor-
relation at lags 1 to m in the residuals from an ARMA(p, ¢) model, the LB
test has an asymptotic x2(m — p — ¢) distribution, provided that m /n is small
and m is moderately large. Simulation studies have shown that this LB test may
not have much power (see, for example, Hall and McAleer, 1989). Despite this
unfortunate property, the test is often used because of its ease of computation.

The third method follows the Lagrange Multiplier (LM) principle (see, for
example, Godfrey, 1979). To test an AR(p) model against an AR(p + r) or an
ARMA(p, r) model, we consider the auxiliary regression

g =o1y—1+-tapy—pt+Pré—1+- -+ Bré—r +vr,  (242)

where &; are the residuals of the AR(p) model with & = 0 for ¢ < 0. The
LM test-statistic which tests the significance of the parameters S, ..., f, is
calculated as nRZ, where R? is the (uncentred) coefficient of determination
from (2.42). Under the null hypothesis that the AR(p) is an adequate model —
or, equivalently, 1 = --- = B, = 0 — this LM test has an asymptotic x2(r)
distribution. Usually, one considers the F-version of this LM test as it has better
size and power properties in small samples.

In case of ARMA(p, ¢) models, one cannot add the regressor ét_q to the
model as it is already included in the model. For the MA(1) model, for example,
one should then create new variables like

Yi =y +0yf, withy5 =0,
8 =& +618" | with &} =0,
and consider the auxiliary regression
Bo= QB+ B o By, (2.43)

to test against an MA(1 + r) or an ARMA(r,1) model.
Several nonlinear time series models contain linear components, and then
the above three methods may still be useful as a rough-and-ready first check.
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In case one is interested to see if, for example, the variable y;_1&;—1 should
be added, one should however preferably use the LM principle, as it leads to
specifically designed tests.

Diagnostic testing for homoscedasticity of the residuals
Another property of the residuals which should be tested concerns the

constancy of their variance. If this is indeed the case, the residuals are said to be
homoscedastic, while if the variance changes they are called heteroscedastic.

Neglecting heteroscedasticity of the residuals has potentially quite severe
consequences. For example, even though the OLS estimates of the ARMA
parameters are still consistent and asymptotically normal distributed, their
variance—covariance matrix is no longer the usual one. Hence, ordinary
t-statistics cannot be used to assess the significance of individual regressors
in the model. Furthermore, other diagnostic tests, such as tests for nonlinearity
(some of which will be discussed in chapter 3), are affected by heteroscedasticity
as well, in the sense that their usual asymptotic distributions no longer apply. In
particular, neglected heteroscedasticity can easily suggest spurious nonlinear-
ity in the conditional mean. Davidson and MacKinnon (1985) and Wooldridge
(1990, 1991) discuss general principles for constructing heteroscedasticity-
consistent test statistics. Finally, confidence intervals for forecasts, which are
discussed in detail below, can no longer be computed in the usual manner.

Several statistics for testing the null hypothesis of constant residual variance
can be applied. Which test is used depends partly on whether or not one has a
specific alternative in mind — and, if so, which alternative. For example, suppose
the alternative of interest is a change in the unconditional variance at a certain
point in the sample, that is,

2
fort <,
e (2.44)
05 fort > 1,

for certain 1 < t < n, where otz is the variance of the shock at time 7. A
test against this alternative can be computed by comparing the variance of the
residuals before and after the hypothesized change point t. Another alternative
of interest might be to assume that the variance of &; depends on a regressor
x; — for example, 0,2 =g+ oclxtz. In this case, the null hypothesis of constant
variance can be tested by testing oy = 0.

Of course, it happens much more often that an obvious alternative to
homoscedasticity is not available —in such cases a general test against an unspec-
ified alternative can be applied. The test-statistic developed by McLeod and Li
(1983) is commonly used for this purpose. This statistic is in fact computed in
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exactly the same way as the LB test (2.41), except that it tests for autocorrelation
in the squared residuals. The test-statistic is given by

m
McL(m) =n(n+2) Y (n — k)~ rg (€%). (2.45)
kzl
When applied to the residuals from an ARMA(p,q) model, the McL test has an
asymptotic x2(m — p — q) distribution, again provided that m/n is small and
m is moderately large.

It was noted above that in the presence of heteroscedasticity the variance—
covariance matrix of the asymptotic normal distribution of the OLS estimates
of the ARMA parameters is no longer the usual OLS one. As shown by White
(1980), however, the OLS estimates can be used to compute standard errors
which are robust against unspecified heteroscedasticity (see also Hsieh, 1983).
As heteroscedasticity plays quite a prominent role in financial data, we elaborate
on this issue in some more detail.

Consider the AR(1) model without an intercept,

ye=¢1y—1+te, t=12,...,n (2.46)

The OLS estimate of the AR parameter ¢ is equal to
. n —1lr n
b= Xt | [ L]
t=1 t=1
n —1lF n
[ 202] [ Eo@e vl
=1 t=1
n -1 n
=1+ [Zy?_l} [Zy,_let} (2.47)
t=1 =1

from which it follows that

. B 1 ) -1 1 n
V(g1 —¢1) = [r—l ;ytl] [ﬁ ;yz—lsz] (2.48)

If the shocks &; are homoscedastic with E[s?] = o2 for all 1, % ?:1 ytz_1 is

equal to yy, the estimate of the variance of y;. Furthermore, it can be shown
that \/L; Y 7—1 Yr—1€&; converges to a normally distributed random variable with
mean zero and variance equal to E[ytzflstz] = E[yzzil] . E[stz] = yooz. It then
follows that \/n (431 —¢1) is asymptotically normal with mean zero and variance
02),0—1. Hence, in finite samples, the standard error of 431 can be estimated as
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the square root of

23 R

t=1

If, on the other hand, the shocks &; are heteroscedastic with E[8,2] = atz, it is not
clear what is estimated by % Yo ytz_l, while in general it is also the case that
. . 1

E[ytz_letz] %+ E[ytz_l] . E[etz]. Fortunately, it still holds that T Z?:l Vi—1&t
converges to a normally distributed random variable with mean zero and vari-
ance now given by the limit of rll > ytz_letz. Assuming that rll 1 ytz_1 also
converges to some nonzero number ¢, it then follows that /i (431 —¢1) isasymp-
totically normal with mean zero and variance given by the limit of the square of
the right-hand side of (2.48). Hence, in finite samples, the heteroscedasticity-
consistent [HCC] standard error of ¢»; can be estimated as the square root of

n -1 n n —1
[ny_l} [Zéfyf_l}[znz_l] : (2.49)
t=1 t=1 t=1

In general, for an AR(p) model, the HCC variance—covariance matrix of the
OLS estimates of the AR parameters ¢ = (¢, ..., ¢,)’ is computed as

n —1 n n —1

v<¢>=[2xt_1x;1} [z][z] ,
=1 t=1 t=1

(2.50)

where x;_1 = (y,—1, ..., yi—p)". The HCC standard errors for (131, e, qu can
be obtained as the square roots of the diagonal elements of V((ﬁ).

Diagnostic testing for normality of the residuals

A usual assumption for the series ¢; is that its realizations are indepen-
dent and identically distributed according to a normal distribution with mean 0
and common variance o 2. The notation for this assumption is g; ~ NID(O0, 02).
Notice that this assumption adds Gaussianity to (2.1)—(2.3). Given this assump-
tion, we can use standard tools to evaluate the parameter estimates and their
t-ratios. Importantly, and relevant for the material in this book, if we erroneously
consider a linear time series model while a nonlinear model would have been
more appropriate, the estimated residuals from the linear model often are not
NID. Hence, it can be relevant to test the assumption of NID. For this purpose,
we typically use a x 2(2) normality test which consists of a component for the
skewness and for the kurtosis.
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Defining the jth moment of the estimated residuals as

| LN

A alJ

mJ—nZSt , 2.51)
t=1

the skewness of &; can be calculated as

—~ i

SK; = , (2.52)
i3

and the kurtosis as

~ iy
K; =—. (2.53)
my

As noted already in section 1.2, the normal distribution has skewness equal
to 0 and kurtosis equal to 3. Under the null hypothesis of normality (and
no autocorrelation in &), the standardized skewness +/n/6 - SK; and kurtosis
Jn/24- (/Kg —3), are independent and have an asymptotic N (0, 1) distribution
(see Lomnicki, 1961). A joint test for normality is then given by

norm = —SK? 4+ -~ (K — 3)%, (2.54)
67 8 T gt

which has an asymptotic x 2(2) distribution. Rejection of normality may indicate
that there are outlying observations, that the error process is not homoscedastic,
and/or that the data should better be described by a nonlinear time series model.

Model selection by evaluating in-sample fit

In case one has two or more linear (or nonlinear) time series models
that pass relevant diagnostic tests, one may want to investigate which model
yields the best in-sample fit. Unfortunately, the R? measure is not useful for
linear time series models (see Nelson, 1976; Harvey, 1989), as it is only a
function of the parameter values. For example, the RZ of an AR(1) model simply
equals 4512.

More appropriate model selection criteria are the information criteria put
forward by Akaike (1974) and Schwarz (1978) (which equals that proposed by
Rissanen, 1978, who uses a different derivation). These criteria compare the
in-sample fit, which is measured by the residual variance, against the number
of estimated parameters. Let k denote the total number of parameters in the
ARMA model - that is, k = p 4+ g + 1. The Akaike Information Criterion
(AIC) is computed as

AIC(k) = n1né?2 + 2k, (2.55)

where 62 = 1/n 1 §t2 with &; the residuals from the ARMA model. The
values of p and ¢ that minimize AIC(k) are selected as the appropriate orders
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for the ARMA model. The minimization is done by varying p and g such that
kell, ..., IE} for a certain upper bound k on the total number of parameters,
which needs to be set in advance. The same rule applies to the Schwarz criterion
(BIC) (originating from Bayesian arguments), which is computed as

BIC(k) =nIné62 + kInn. (2.56)

Because Inn > 2 for n > 8§, the BIC penalizes additional parameters more
heavily than the AIC. Therefore, the model order selected by the BIC is likely
to be smaller than that selected by the AIC. The improvement in fit caused
by increasing the AR and/or MA orders needs to be quite substantial for the
BIC to favour a more elaborate model. In practice, one often finds that the
BIC prefers very parsimonious models, containing only few parameters. This
has implications for the use of these criteria in evaluating nonlinear time series
models, where sometimes quite a large number of parameters is needed to obtain
only a slightly improved fit (see, for example, chapter 5).

Out-of-sample forecasting

The other main purpose of specifying a statistical model for a time
series y;, besides describing certain of its features, is to forecast future values.
Let 3;44|; denote a forecast of y;;;, made at time 7, which has an associated
forecast error or prediction error e; 1|,

€rth|t = Yt+h — 5’t+h|t~ (2.57)

Obviously, many different forecasts y;,|; could be used to obtain an estimate
of the future value y;;j. Analogous to the estimation of a time series model,
where the parameters are chosen such that the residual variance is minimized, in
forecasting it is often considered desirable to choose the forecast J;4,|; which
minimizes the squared prediction error (SPE)

SPE(h) = Ele}, 4,1 = BL(i+h — $rni0)*]- (2.58)

It turns out that the forecast that minimizes (2.58) is the conditional expectation
of y;4, at time ¢, that is,

5’t+h|z = E[ys+nl2] (2.59)

(see Box and Jenkins, 1970).
To illustrate the principles of forecasting from linear ARMA models, consider
first the MA(q) model

q
=Y bieii, (2.60)
i=0
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with 8p = 1. Using (2.59) and the white noise properties of &;, it follows
that the optimal forecast (‘optimal’ in the squared prediction error sense) is
given by

. Y Oiern—i forh=1,....q,
Vr+hlr {0 forh > g. 2.61)

whereas the corresponding forecast error follows from combining (2.60) and
(2.61) as

h—1

i~ gen i forh=1,....q,

ernr = Zé,:‘) iErh—i 0T 1 (2.62)
Yoicobicrtn—i forh>gq,

which can be simplified to &, = 25:01 0;e14+n—; by defining 6; = 0 for
h > g. Notice that we assume 6; known, and hence we do not explicitly intro-
duce additional uncertainty in (2.62) by considering é,- instead of ;. Clements
and Hendry (1998) give a taxonomy of forecast errors and discuss the relative
importance of the different sources of forecast uncertainty in linear time series
models. Given the assumptions on ¢; it follows that

Eleryn:1 =0, (2.63)
and for the squared prediction error
h—1
E[et2+h|t] =o? > 02. (2.64)
i=0
Assuming normality, a 95 per cent forecasting interval for y,j, is bounded by
Vi4hr —1.96 - RSPE(h) and  $;4p)s + 1.96 - RSPE(h),

where RSPE(/) denotes the square root of SPE(#).

Forecasting from AR models (or ARMA models in general) proceeds in a
similar way. In fact, forecasts for different forecast horizons / can be obtained
quite conveniently by using a recursive relationship. For example, for the AR(2)
model

Yt = Q1Yi—1 T d2yi—2 + &1, (2.65)

the 1-step-ahead forecast at time ¢ is

Vi1 = G1ye + 2Yi—1, (2.66)
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again assuming knowledge of the values of the parameters ¢; and ¢,. The
2-steps-ahead forecast can be derived as follows

)A}H-th = E[yr121€2]
= $1E[yr+112 ]+ oy
=111t + P2t
= ¢1(P1yr + d2Y1—1) + P21 (2.67)

The third line of (2.67) shows the relation between the 1- and 2-steps-ahead
forecasts at time ¢. It is not difficult to show that in general it holds that

Vewhlt = P1I14n—110 + P2Vr4h—21» (2.68)

with $;4;|; = y;4i fori < 0. Obviously, this recursive relationship can be used
to compute multiple-steps-ahead forecasts quite easily.

To obtain expressions for the forecast error and squared prediction errors
for forecasts made from ARMA(p, ¢g) models, it is convenient to rewrite the
particular model of interest as an MA(oo) model —that s, y; = ¢ 1,,(L)_1 04 (L)ée;
or

Vo =& +ME—1 +1ME-2 + 1383+, (2.69)
from which it follows that the A-step-ahead prediction error is given by

er+hlt = Er+h T N1E+h—1+ -+ Nh—18141, (2.70)
whereas the squared prediction error becomes

h—1
SPE(h) =02 " n7, (2.71)
i=0

with ng = 1. For the AR(2) model, for example, it is easy to verify that n; = ¢
and ny = ¢7 + ¢,

As we will demonstrate in chapter 3, for most nonlinear time series models
the expressions for forecast error variances become much more complicated
or even intractable analytically. In that case, we need to rely on simulation
techniques to construct confidence intervals for the forecasts 5’z+h\ ‘.

Model selection by comparing forecasts

Additional to (or instead of) selecting a model based on measures of
the in-sample fit, one may also want to compare the forecasting performance
of two or more alternative models. Usually one then retains m observations
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to evaluate h-steps-ahead forecasts generated from models fitted to the first n
observations. To simplify the exposition, the various forecast evaluation criteria
which are discussed below are formulated in terms of 1-step-ahead forecasts. It
should be remarked in advance that they can also be applied for i-steps-ahead
forecasts with & > 1.

A simple check on the quality of forecasts which are obtained from a model
concerns the percentage of the m observations that is in the 95 per cent forecast
confidence intervals. A formal test for this procedure is given in Christoffersen
(1998). Additionally, a binomial test can be used to examine if the forecast
errors are about equally often positive or negative.

Other criteria are the mean squared prediction error (MSPE)

1 &, 2
MSPE = — Zl<yn+,-|n+ =1 = Ynt ) (2.72)
and the mean absolute prediction error (MAPE)

] m
MAPE = — 3 " [ jintj—1 = Yt - (2.73)
j=1

Also, because returns display rather erratic behaviour and may take sudden
exceptional values, as was demonstrated in chapter 1, it sometimes makes more
sense to consider the median SPE (MedSPE) and median APE (MedAPE).

If one wants to decide whether the SPEs or APEs of two alternative models
A and B are significantly different, a simple procedure is to use the so-called
‘loss differential’

dj = eln<+j|n+j—1,A - e§+j\n+j—1,3’ J=12...,m,

with e, jjntj—1,4 and e,y jju+j—1,B the forecast errors at time n + j made
by the forecasts from models A and B, respectively, and k equal to 2 and 1 if
the goal is to compare the SPEs and APEs, respectively. One possibility to test
the null hypothesis that there is no qualitative difference between the forecasts
from the two models is to use the sign test statistic S, defined by

2 & 1\ «
S = N ; <I[dj > 0] — 5) LN, 1). (2.74)

Simulation results in Diebold and Mariano (1995) indicate that the S test is very
useful in practice. For small values of m, one needs to use exact critical values
because then the asymptotic N (0, 1) distribution does not hold.
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The statistic § compares only the relative magnitude of the prediction errors
of models A and B. Diebold and Mariano (1995) also develop a statistic which
compares the absolute magnitudes by testing whether the average loss dif-
ferential. d = % Z’}L] d; is significantly different from zero. The relevant
test-statistic is given by

d

DM = XN, 1), (2.75)

&l

where o is the asymptotic variance of the average difference d. Diebold and
Mariano (1995) suggest estimating @ by an unweighted sum of the autocovari-
ances of d, denoted y; (d), as

h—1

o= ) %@, (2.76)
i=—(h—1)

where £ is the forecast horizon for which the prediction errors are compared.
The reason for using this estimate of @ can be understood intuitively by noting
that (2.70) implies that k-step-ahead forecast errors are serially correlated up
to order i — 1. Notice that where & = 1, it follows from (2.76) that @ is simply
the variance of d;, Yo (d).

Out-of-sample forecasts can also be evaluated by comparing the sign of the
forecasts J,4 j|n+j—1. after subtracting the mean if this is nonzero, with the
true withheld observations y,, j for j = 1,2, ..., m. This can be particularly
relevant for asset returns as investors may be more interested in accurate fore-
casts of the direction in which, for example, the stock market is moving than
in the exact magnitude of the change. For this purpose, consider the so-called
success ratio (SR)

1o
SR = % JZ; Lilyn+j - Yn+jin+j—1 > 0]. 2.77)

Notice that SR is simply the fraction of the m forecasts 4 jj,+j—1 that have
the same sign as the realizations y;, 4 ; — or, put differently, the fraction of times
the sign of y, ; is predicted correctly. To evaluate the performance of the out-
of-sample forecasts on this criterion, we test whether the value of SR differs
significantly from the success ratio that would be obtained where y,; and
Vn+jin+j—1 are independent. A test for this hypothesis is proposed in Pesaran
and Timmermann (1992). Define

1 m
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and

A A
Pzazlj[yn-i-jln—&-j—l > 0].
Jj=1

The success rate in case of independence (SRI) of y,; and 3,4 jj4+,—1 can
be computed as

SRI = PP + (1 — P)(1— P), (2.78)

which has variance given by
var(SRI) = %[(213 —D2P(1 - P)+
QP —1)2P(1 - P)+ %Pﬁ(l - P)1 - P). (2.79)
The variance of the success ratio SR in (2.77) is equal to
var(SR) = %SRI(I — SRI). (2.80)

The so-called Directional Accuracy (DA) test of Pesaran and Timmermann
(1992) is now calculated as

(SR — SRI)

- /var(SR) — var(SRI) ~NO D, (2.81)

DA

where the asymptotic standard normal distribution is obtained under the null
hypothesis that y, ; and 4 j|»+—1 are independently distributed.

2.3 Forecasting returns with linear models

The lack of autocorrelation in stock and exchange rate returns in figures 2.1
and 2.2 suggests that linear association between consecutive observations is
not large. Hence, linear time series models can be expected not to be very
useful for forecasting returns. In this section we illustrate that this indeed is
the case by performing an out-of-sample forecasting experiment for our daily
return series.

In all experiments, the random walk with drift model is the benchmark that is
used to evaluate the forecasting performance of more elaborate linear models.
We investigate the out-of-sample forecasting performance of three alternative
autoregressive models. In the first model the AR order p is specified according to
the AIC givenin (2.55). The preference of the BIC (2.56) for more parsimonious
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models is illustrated by the fact that when it is applied to the stock index and
foreign exchange returns, it always opts for p = 0. As the AR model collapses to
the random walk model in this case, this is not considered any further here. The
second and third models have the AR order fixed at 5 and 10, respectively. The
rationale for considering those specific lag orders is that they correspond to one
and two weeks of daily observations, respectively. Furthermore, we consider
models with a single intercept and models with daily intercepts. These daily
intercepts are included as there is evidence that returns may display a seasonal
pattern within a week (see, for example, French, 1980). The forecasts from
the latter models are compared with a random walk model with a drift that is
allowed to vary over the days of the week.

We examine both short- and long(er)-term forecasting performance, by
focusing on return forecasts 1, 5 and 10 days ahead. The initial estimation
sample is taken to be the first five years of data, from 1 January 1986 until 12
December 1990 — thus leaving 7 years of data for out-of-sample forecasting.
The parameters in the models are re-estimated each day as we move forward in
time. We make use of both expanding and moving samples. That is, in case of
the expanding sample, the models are estimated using the entire history from
January 1986, while in case of the moving sample, only the last 5 years of
data are used. Besides re-estimating the model each time a new observation is
added, we also allow the order selected by the AIC to vary on a day-to-day
basis.

The forecasting performance of the different models is evaluated using a
number of different criteria discussed in the previous section. First, we compute
the MSPE, the MAPE and the MedSPE for the various models. Second, we
directly compare the forecasts of the more elaborate models with the random
walk forecasts by means of the DM-statistic given in (2.75). Third, we evaluate
the ability of the various models to forecast the sign of the returns by computing
the DA-statistic given in (2.81). All statistics are computed on a year-to-year
basis, to see whether the forecastability of returns changes over time.

As the results for the stock index and exchange rate series and for the moving
and expanding samples are qualitatively similar, we present only results for the
forecasts of stock returns based on an expanding estimation sample. Tables 2.1—
2.3 contain information on the relative magnitudes of the MSPE, MAPE and
MedSPE of the different models for the expanding sample method, at forecast
horizons & = 1, 5 and 10 days. To be precise, the tables list the mean rank of
the models (taken over the 8 stock index series), where the rank of a model is
equal to 1 if it attains the lowest value for the relevant criterion, 2 if it attains
the second lowest value, and so on.

It is evident from these tables that the more elaborate linear models do not
improve upon the random walk forecasts. On the contrary, the random walk
forecasts attain the lowest mean rank in general, suggesting that the AR models
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Table 2.1 Average ranks of linear models to forecast stock returns according to
MSPE, 1991-1997

Models with single intercept Models with daily intercepts
Year RW AIC AR(5) AR(10) RW AIC AR() AR(10)
h=1
1991 1.13 325 231 3.31 1.13  3.13 2.06 3.69
1992 2.00 3.06 2.06 2.88 1.75 2.88 1.69 3.69
1993 250 238 244 2.69 2.50 238 2.69 2.44
1994 1.50 275 2.06 3.69 1.75 275 194 3.56
1995 1.75 225 294 3.06 1.63 2.63 2.56 3.19
1996 1.81 294 231 2.94 1.69 3.06 231 2.94
1997 1.88 2.88 231 2.94 1.88 294 2.19 3.00
All 1.79 279 235 3.07 1.76  2.82 221 3.21
h=5
1991 1.63 325 194 3.19 1.50 3.00 1.94 3.56
1992 175 344 2.06 2.75 1.63 288 194 3.56
1993 213 238 2.69 2.81 238 225 269 2.69
1994 1.50 263 2.19 3.69 1.75 263 194 3.69
1995 175 213 294 3.19 2.00 238 256 3.06
1996 1.69 2.69 244 3.19 1.56 294 2.19 3.31
1997 1.88 275 256 2.81 1.75 281 231 3.13
All 1.76 275 240 3.09 1.79 270 222 3.29
h=10
1991 2.88 238 244 2.31 2.50 3.00 256 1.94
1992 225 244 281 2.50 2.00 2.63 2381 2.56
1993 2,50 2,50 281 2.19 275 238 231 2.56
1994 2.63 200 244 2.94 250 1.88 256 3.06
1995 2.50 238 231 2.81 250 275 2.06 2.69
1996 1.94 281 2.06 3.19 219 281 194 3.06
1997 2.88 2.88 1.81 2.44 275 244 244 2.38
All 2,51 248 238 2.63 246 255 238 2.61

Notes: Average ranks of linear models used to forecast stock market returns / days ahead
based on an expanding sample, according to the MSPE criterion (2.72).

RW denotes the random walk with drift, AIC denotes an AR(p) model with the order p
selected by the AIC criterion.

do even worse. Note that this holds for both the models with and without daily
intercepts. As the forecast horizon increases, the performance of the models
becomes comparable, in the sense that the mean ranks are much closer to the
mean rank of the random walk forecasts.
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Table 2.2 Average ranks of linear models to forecast stock returns according to
MAPE, 1991-1997

Models with single intercept Models with daily intercepts
Year RW AIC AR(5) AR(10) RW AIC AR(5) AR(10)
h =
1991 1.00  3.00 231 3.69 125 2.88 219 3.69
1992 125 3.19 244 3.13 1.63 250 2.56 3.31
1993 225 275 219 2.81 225 250 244 2.81
1994 1.25 3.13 219 3.44 .13 275 219 3.94
1995 1.13 288 2.69 3.31 1.38 275 3.06 2.81
1996 .19 3.19 2.69 2.94 1.94 3.06 231 2.69
1997 225 275 219 2.81 213 294 219 2.75
All 1.47 298 238 3.16 1.67 277 242 3.14
h=5
1991 .13 325 194 3.69 .13 3.13  2.06 3.69
1992 .13 3.19 256 3.13 1.63 238 2.69 3.31
1993 238 250 219 2.94 250 2.63 2.19 2.69
1994 1.50 3.00 2.06 3.44 1.63 2.63 1.81 3.94
1995 1.50 275 244 3.31 213 275 231 2.81
1996 1.69 294 2.19 3.19 194 294 231 2.81
1997 200 275 219 3.06 1.75 256 244 3.25
All 1.62 291 222 3.25 1.81 271 226 3.21
h =10
1991 275 225 244 2.56 3.00 2.63 281 1.56
1992 200 256 231 3.13 225 238 281 2.56
1993 275 263 244 2.19 288 263 244 2.06
1994 238 1.88 256 3.19 225 2.00 244 3.31
1995 238 263 219 2.81 200 3.00 256 2.44
1996 256 256 219 2.69 2.19 294 2.06 2.81
1997 263 250 1.69 3.19 2.13 256 244 2.88
All 249 243 226 2.82 238 259 251 2.52

Notes: Average ranks of linear models used to forecast stock market returns / days ahead
based on an expanding sample, according to the MAPE criterion (2.73).

RW denotes the random walk with drift, AIC denotes an AR(p) model with the order p
selected by the AIC criterion.

To test whether the random walk forecasts are significantly different from the
forecasts from the linear models, we compute the DM-statistic (2.75). Tables 2.4
and 2.5 report the outcomes of this pairwise model comparison, based on the
squared and absolute prediction errors, respectively. The various entries indicate
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Table 2.3  Average ranks of linear models to forecast stock returns according to
MedSPE, 1991-1997

Models with single intercept Models with daily intercepts
Year RW AIC AR(5) AR(10) RW AIC AR(5) AR(10)
h=1
1991 200 2.81 219 3.00 1.38 2.88 294 2.81
1992 200 275 281 2.44 1.88 2.88 2.69 2.56
1993 1.63 269 256 3.13 1.50 338 244 2.69
1994 1.75 275 244 3.06 213 250 244 2.94
1995 1.63 288 2.69 2.81 213 263 281 2.44
1996 219 256 281 2.44 206 294 231 2.69
1997 238 238 2.69 2.56 275 250 244 231
All 194 269 2.60 2.78 1.97 2.81 258 2.63
h=S5
1991 213 3.00 1.69 3.19 1.88 3.13 1.56 3.44
1992 238 263 256 2.44 2.13 250 294 2.44
1993 200 238 331 2.31 213 225 244 3.19
1994 225 238 256 2.81 1.88 2.88 244 2.81
1995 1.63 325 244 2.69 225 238 281 2.56
1996 244 244 194 3.19 244 281 1.69 3.06
1997 3.00 250 2.19 2.31 263 238 2.69 2.31
All 226 265 238 2.71 2.19 2.62 237 2.83
h=10
1991 250 2.88 2.19 2.44 3.00 250 231 2.19
1992 275 225 256 2.44 225 263 281 231
1993 350 150 2.19 2.81 238 1.63 2.69 3.31
1994 275 225 244 2.56 263 250 2.56 231
1995 1.75 3.00 2.19 3.06 231 281 244 2.44
1996 244 256 194 3.06 244 244 256 2.56
1997 225 275 244 2.56 213 250 2.56 2.81
All 256 246 2.28 2.71 245 243 256 2.56

Notes: Average ranks of linear models used to forecast stock market returns /# days
ahead based on an expanding sample, according to the MedSPE criterion.

RW denotes the random walk with drift, AIC denotes an AR(p) model with the order
p selected by the AIC criterion.

the number of series in a particular year (or summed over all 7 years in rows
headed ‘All’) for which the random walk forecasts are better than the forecasts
from the linear model and vice versa, at the 5 per cent significance level. As can
be seen, the forecasts from the different models are not significantly different
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Table 2.4 Forecast comparison of linear models with random walk — stock returns,
squared prediction errors, 1991-1997

Models with single intercept Models with daily intercepts
Year AIC AR(5) AR(10) AIC AR(5) AR(10)
h =
1991 0/0 0/0 0/0 2/0 1/0 2/0
1992 1/0 0/0 0/0 0/0 0/0 0/0
1993 1/1 172 1/1 1/1 0/1 1/1
1994 2/0 2/0 3/0 2/0 2/0 3/0
1995 1/0 1/0 1/0 1/0 1/0 1/0
1996 1/0 0/0 1/0 1/0 0/0 1/0
1997 0/0 1/0 0/0 0/0 1/0 0/0
All 6/1 5/2 6/1 7/1 5/1 8/1
h=5
1991 1/0 1/0 0/0 2/0 0/0 1/0
1992 1/0 0/0 1/0 1/0 0/0 1/0
1993 1/0 0/0 1/1 1/0 0/0 1/1
1994 3/0 1/0 3/0 2/0 1/0 3/0
1995 1/0 2/0 2/0 1/1 2/0 2/1
1996 1/0 1/0 0/0 1/0 1/0 0/0
1997 1/0 2/0 0/0 1/0 1/0 1/0
All 9/0 7/0 7/1 9/1 5/0 9/2
h =10
1991 1/0 0/0 0/0 1/0 0/0 0/0
1992 1/0 0/0 1/1 0/0 0/0 1/1
1993 0/0 0/0 0/0 0/0 0/0 0/0
1994 0/1 0/0 2/0 0/1 1/0 1/0
1995 0/0 0/0 0/0 0/0 0/0 0/0
1996 0/0 0/0 0/0 0/0 0/0 0/0
1997 2/1 0/1 2/0 2/1 1/1 2/0
All 4/2 0/1 5/1 3/2 2/1 4/1

Notes: Comparison of forecast performance of linear models with random walk forecast
of daily stock market returns & days ahead based on an expanding sample. The compar-
ison is based on the DM-statistic (2.75), using squared prediction errors.

The figure preceding (following) the slash denotes the number of series for which the
random walk (linear model) forecasts outperform the linear model (random walk) fore-
casts at the 5 per cent significance level.

AIC denotes an AR(p) model with the order p selected by the AIC criterion.
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Table 2.5 Forecast comparison of linear models with random walk — stock returns,
absolute prediction errors, 1991-1997

Models with single intercept Models with daily intercepts
Year AIC AR(S) AR(10) AIC AR(S) AR(10)
h=1
1991 1/0 2/0 1/0 2/0 2/0 2/0
1992 3/0 1/0 2/0 3/0 1/0 3/0
1993 1/0 1/0 1/0 2/0 1/0 2/0
1994 3/0 2/0 5/0 2/0 3/0 4/0
1995 4/0 3/0 4/0 2/0 3/0 4/0
1996 1/0 1/0 1/0 0/0 1/0 1/0
1997 0/0 0/0 0/0 0/0 0/0 0/0
All 13/0 10/0 14/0 11/0 11/0 16/0
h=5
1991 1/0 1/1 1/0 2/0 0/1 1/0
1992 0/0 0/0 0/0 0/0 1/0 0/0
1993 2/0 0/0 3/0 2/0 0/0 2/0
1994 4/0 2/0 3/0 2/0 0/0 3/0
1995 2/0 3/0 3/0 1/0 3/0 1/1
1996 1/0 0/0 1/0 1/0 0/0 1/0
1997 0/0 0/0 0/0 0/0 0/0 0/0
All 10/0 6/1 11/0 8/0 4/1 8/1
h=10
1991 0/0 0/0 0/0 0/1 0/0 0/0
1992 1/0 1/0 2/1 0/0 1/0 1/1
1993 0/0 0/0 0/0 0/1 0/2 0/1
1994 1/1 0/0 2/1 0/1 0/0 0/1
1995 1/0 1/1 1/0 1/0 1/1 0/0
1996 0/0 1/0 0/0 0/0 1/0 0/0
1997 2/1 0/1 1/0 1/1 0/1 1/0
All 52 32 6/2 2/4 3/4 2/3

Notes: Comparison of forecast performance of linear models with random walk forecast
of daily stock market returns 4 days ahead based on an expanding sample. The compar-
ison is based on the DM-statistic (2.75), using absolute prediction errors.

The figure preceding (following) the slash denotes the number of series for which the
random walk (linear model) forecasts outperform the linear model (random walk) fore-
casts at the 5 per cent significance level.

AIC denotes an AR(p) model with the order p selected by the AIC criterion.
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from each other — although the random walk model seems to do particularly
well in 1994.

Finally, we examine the ability of the models to forecast the sign of the stock
returns, relative to the mean, by computing the DA-statistic (2.81). The results
are shown in table 2.6. Here each entry indicates the number of series for which
the model predicts the sign significantly worse/better than a completely random
forecast of the sign of the return. Note that no statistics for the random walk
are given. The reason for this is that forecasts from the random walk model
are all equal to the estimated drift. Hence, the difference between the forecasts
and their mean is always exactly equal to zero or, in other words, the sign of
the forecast relative to its mean is undetermined and the DA-statistic cannot be
computed.

In sum, we can conclude that generally linear models do not yield useful
out-of-sample forecasts. Before we turn our focus on nonlinear models, we
conclude this chapter with a discussion of various other features of economic
and financial time series, some of which are useful for later chapters.

2.4 Unit roots and seasonality

The discussion in section 2.1 shows that the values of the autoregressive param-
eters in ARMA models determine whether or not time series generated from
such a model are covariance stationary or not. Consider again the AR(p) model

Ve =1yi—1+ G2yr—2+ -+ Ppyi—p + &1, (2.82)

or ¢p(L)y; = &, with ¢p(L) = 1 — ¢1L — --- — ¢, LP. Recall that the
AR(p) model is nonstationary if its characteristic equation has a solution equal
to unity — or, put differently, a unit root. The presence of a unit root causes
the autocorrelations to be varying over time (see (2.33)) and, hence, invalidates
their use for specification of the appropriate AR order. Another consequence
of nonstationarity of a linear time series is that the effect of shocks on the time
series are permanent (see (2.22)).

Notice that in case of a unit root the AR polynomial ¢ (L) can be factor-
ized as

¢p(L) =¢,_ (L)1 - L), (2.83)

where ¢;‘7_1 (L) is a lag-polynomial of order p — 1 which has all roots outside
the unit circle. It then follows that if we apply the (1 — L) filter to y; to obtain
w; = (1 — L)y, this new variable is described by a (covariance) stationary
AR(p — 1) model. Of course, in practice the correct order p is unknown, which
complicates matters slightly. The usual practice is to check if the AR polynomial
in a model for y; contains the component (1 — L) — and, if so, use the variable
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Table 2.6  Performance of linear models in forecasting sign of stock returns,
1991-1997

Models with single intercept Models with daily intercepts
Year AIC AR(5) AR(10) RW AIC AR(5) AR(10)
h=1
1991 1/0 2/0 0/0 1/0 1/0 1/0 2/0
1992 0/0 0/0 0/0 0/0 1/0 1/0 1/0
1993 1/0 0/0 0/1 1/0 0/0 0/0 0/0
1994 0/0 0/0 1/0 0/0 0/0 1/0 0/0
1995 1/0 1/0 1/0 0/0 1/0 0/0 0/0
1996 1/0 0/0 0/0 1/0 0/0 0/0 0/0
1997 0/0 0/0 0/0 0/0 0/0 1/0 0/1
All 4/0 3/0 2/0 3/0 3/0 4/0 3/1
h=5
1991 1/0 2/0 0/0 0/0 1/0 0/0 2/0
1992 0/0 0/0 0/0 0/0 0/0 0/0 0/0
1993 1/0 2/0 1/0 1/0 1/0 1/0 0/0
1994 4/0 1/0 1/0 1/0 1/0 1/0 1/0
1995 2/0 1/0 1/0 0/0 0/0 0/0 0/0
1996 2/0 3/0 1/0 2/0 1/0 2/0 0/0
1997 1/0 1/0 0/0 0/0 1/0 0/0 1/0
All 11/0 10/0 4/0 4/0 5/0 4/0 4/0
h =10
1991 2/0 5/0 0/0 0/0 0/0 1/0 1/0
1992 2/0 5/0 4/0 0/0 0/0 0/0 0/0
1993 3/0 7/0 1/0 1/0 1/0 1/0 0/0
1994 4/0 8/0 2/0 0/0 1/0 1/0 0/0
1995 4/0 8/0 1/0 0/0 1/0 1/0 0/0
1996 4/0 8/0 1/0 2/0 2/0 2/0 1/0
1997 4/0 7/0 1/0 0/0 1/0 0/0 0/0
All 23/0  48/0 10/0 3/0 6/0 6/0 2/0

Notes: Performance of linear models in forecasting the sign of stock market returns £
days ahead based on an expanding sample. The evaluation is based on the DA-statistic
(2.81).

The figure preceding (following) the slash denotes the number of series for which the
no-change (linear model) forecasts outperform the linear model (no-change) forecasts
at the 5 per cent significance level.

AIC denotes an AR(p) model with the order p selected by the AIC criterion. Further
details concerning the methodology are given in section 2.3.



Concepts in time series analysis 53

w; in a next round of model identification. In this section we provide some
details on testing for the presence of unit roots or permanent (or persistent)
shocks. There is of course much more to say about this issue, and the interested
reader should consult, for example, Banerjee et al. (1993); Hatanaka (1996);
and Boswijk (2001), among many others.

Deterministic terms

An important consequence of a unit root in the AR(p) polynomial is
that the regressors for the nonzero mean and trend appear differently in models
with and without unit roots. This can be illustrated for the simple AR(1) model,
where we now consider y; in deviation from a mean and trend, that is,

Vi—p—=0t=¢1(yi—1—pu—0(t—-1)+&, t=1,...,n. (2.84)
This can be written as
yi =+ 8%t +dr1yi—1+ &, (2.85)

where u* = (1 — ¢1)u + ¢16 and §* = (1 — ¢1)$. Defining z; = y; — u — 8¢,
we can solve (2.85) as

t
=)' 20+ Y D e,
i=1

where zg denotes a starting value as usual.

When |¢1| < 1, the shocks to z; (and hence to y; after correction for a mean
and trend) are transitory, in the sense that the effect of &, on z;44 dies out
when k increases without bound. Writing (2.85) as  1z; = (¢1 — D)z;—1 +
&¢, positive values of z;_; will lead to a decrease in z;, and negative values
lead to an increase. As positive and negative values of z; correspond with y;
being larger or smaller than its (trending) mean u + &¢, y; displays so-called
mean- (or trend-)reverting behaviour. As a deterministic trend variable 7 is
included in (2.85), the time series y; is said to be trend-stationary (TS).

When ¢ = 1, (2.85) becomes

yo=08+yi—1+eér, (2.86)

where the trend variable is seen to have disappeared. This model concerns a
random walk with drift §. Recursive substitution results in

13
Ye=Yo+dt+) & (2.87)

i=1

The partial sum time series S; = Z?:l &; is called the stochastic trend.
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When &; in (2.84) is replaced by n; = [qbp_l(L)]_let, where ¢,_1(L)
does not contain the component (I — L), one has an AR(p) model with a
stochastic trend. Hence, when an AR(p) polynomial can be decomposed as
¢p—1(L)(1 — L), the time series y; has a stochastic trend. A time series with
a stochastic trend can be made stationary by applying the differencing filter

1. Therefore, in this case the time series y; is called difference-stationary
(DS).

Asnoted before, a time series y; that requires the first-differencing filter | to
remove the stochastic trend also is called a time series that is integrated of order
1 (I(1)). An I(2) time series needs the | filter twice to become stationary.
Intuitively, a time series with a growth rate that fluctuates as a random walk
is an I (2) series. The impact of past shocks can be demonstrated by recursive
substitution of lagged y; in % y: =6+ & as

ti
ye=yo+z0t +81G+D/2+Y Y e, (2.88)
i=1j=1

where yq and zq are values that depend on pre-sample observations. This result
shows that when § is positive, an /(2) time series displays explosive growth
because of the #(¢ 4+ 1)/2 component. Haldrup (1998) gives a comprehensive
survey of the analysis of /(2) time series.

Testing for unit roots
If z = 1isasolution to the characteristic equation of the AR(p) model,
it holds that

pp(H=1—-¢1—¢2—---—¢p=0. (2.89)

This shows that for an AR(p) time series with a unit root, the sum of the AR
parameters equals 1. To test the empirical validity of the relevant parameter
restriction, it is useful to decompose the AR(p) polynomial ¢, (L) as

¢p(L) == —ds— - —¢p)L +¢, (LA —-L), (2.90)

which holds forany i € {1, 2, ..., p}. Setting i = 1, an AR(2) polynomial, for
example, can be written as

L= ¢1L—¢ol? =(1—¢1 — )L+ (1 + L)1 —L). (291)

Hence (]56‘ and qbi" in (2.90) are 1 and —¢;, respectively. Replacing ¢, (L) by
the right-hand side of (2.91), the AR(2) model can thus be written as

¢p_1(L) 1y = (1 +d2— Dy—1 +er, (2.92)

with ¢;’;71(L) = (1 — ¢L). When ¢ + ¢ — 1 equals zero, (2.92) becomes
an AR(1) model for 1y;.
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Based on (2.90), Dickey and Fuller (1979) propose to test for a unit root by
testing the statistical relevance of y,_ in the auxiliary regression

1= pYi—1 o] a1+t 1 —(p-1) t &, (2.93)

where ' = —¢/. The null hypothesis is p = 0 and the relevant alternative
is p < 0, resulting in a one-sided test-statistic. The ¢-test-statistic for p [# ()]
commonly is referred to as the Augmented Dickey—Fuller (ADF) test-statistic.
Phillips (1987) derives the nonstandard asymptotic distribution of the ADF
statistic. The distribution is nonstandard because under the null hypothesis of
a unit root, the y; series is nonstationary and standard limit theory does not
apply. The critical values for #(0) have to be obtained through Monte Carlo
simulation (see, for example, Fuller, 1996, for a tabulation of the appropriate
critical values).

Hall (1994) shows that when the order p in the AR(p) model for y; is selected
through sequential z-tests on the “;—1 to ] parameters in the so-called ADF
regression (2.93), the same critical values can be used (see also Ng and Perron,
1995). Furthermore, Said and Dickey (1984) argue that the same is true if
data which are generated from an ARMA model are approximated by an AR
model, provided that the AR order p — 1 in (2.93) is set at a high enough
value. Obviously, for such an ARMA model, the MA component should not be
approximately similar to the AR component because that would lead to (near-)
cancellation of polynomials and hence to great difficulties to test for a unit root
in the AR polynomial (see Schwert, 1989). Finally, Dickey and Pantula (1987)
show that critical values for 7(0) can be used for testing for two unit roots,
provided that one replaces y; for 1y; in (2.93). An excellent survey on unit
root testing is given in Phillips and Xiao (1998).

Comparing (2.86) with (2.85), we see that the parameter u for the
mean is not identified under the null hypothesis of a unit root, but that
it is identified only under the alternative hypothesis. In general, it appears
best to include a mean and linear trend in the ADF regression, to make
the test independent of nuisance parameters. The ADF regression then
becomes

1y = WS oy e y—it e,y 1V (p—1y e
(2.94)

Under the unit root hypothesis, p and §** are both equal to zero. Dickey and
Fuller (1981) develop a joint F-test for the hypothesis p = §** = 0, and in the
case of no trends, for p = u** = 0. A common practical procedure, however,
is to test p = 0 in (2.94) and to consider critical values depending on the type
of deterministic regressors included.
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Testing for stationarity

A test for the null hypothesis of stationarity (with the unit root
hypothesis as the alternative) is developed in Kwiatkowski et al. (KPSS). It
focuses on the estimated partial sum series

t
S$i=Yé. (2.95)
i=1

where the relevant ¢; are obtained from an auxiliary regression like
=%+t +é. (2.96)

The test-statistic of interest is

1 K.
n= > 87 (2.97)

n2s2(l) pr

where the scaling factor s2(I) is the so-called long-run variance of é;.
Phillips (1987) and Phillips and Perron (1988) propose to estimate this quan-
tity by

R Iy 2
s%l):;Ze?—i—;Jz—:lw(],l) Z ererj, (2.98)

=1 t=j+1
where the weights w(j, [) can be set equal to
w(j,)=1=j/0+1), (2.99)

following Newey and West (1987), although one can also use other weights.
The value of [ is usually set at | = n'/? (see Newey and West, 1994).
The test-statistic for the null hypothesis of stationarity is

1 &,
= Zs}. (2.100)

n252() &

The asymptotic distribution of this test-statistic is derived in Kwiatkowski et al.
(1992).

Impulse response function

The two methods for analysing the stationarity properties of time series
outlined in this section so far assume that the data can best be described by a
linear time series model. For some specific nonlinear models, parameter restric-
tions have been derived that correspond with persistence of the shocks. We will
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discuss a few examples in chapter 3. However, for many other nonlinear models,
such expressions do not exist. Simulation techniques should then be useful
to investigate the persistence of shocks. This persistence is usually measured
through the impulse response function (IRF).

Consider again the AR(p) model

yi=¢1yi—1+dyi 2+ +opy—pt+e t=1,...,n (2.101)

Using recursive substitution we obtain a generalization of (2.15) in which the

current observation y; is expressed in terms of the starting values yo, ..., y1—p,
and the current and past shocks ¢, ..., €1, as
p t—1
=Y $ivici+ ) cieii, (2.102)
i=1 i=0
where the sequence cy, ..., ¢;— is defined from the recursion
min(i, p)
ci= Y ¢jcij fori=12 .., (2.103)
j—1

with ¢g = 1. Note that the coefficient ¢} defines the effect of the shock &;_
on the current observation y; — or, equivalently, the effect of the current shock
&; on the future observation y;y, provided that all intermediate shocks are

held constant. The sequence {cx, k = 0, 1, ...} is called the impulse response
function. An alternative definition of the IRF, due to Sims (1980), is
IRF(k,8) = Elyi+kler =6, 6141 =+ = €144 = 0]
—Elyiakler = 0,641 = = g4 =01, (2.104)

which measures the effect of a shock § occurring at time ¢ relative to the situation
where no shock occurs at time 7, while setting the shocks in intermediate periods
t+1,...,t+kequal to zero. In linear models, the impulse response (2.104) is
in fact independent of the intermediate shocks €, 1, . . ., &+ and of the history
or past y,_1, ¥;—2, ..., up to the moment when the shock of interest occurs,
and linear in the size of the shock §. To make the latter more precise, it is
straightforward to see from (2.102) that IRF(k, §) = cxé. The time series y; is
said to have transient shocks if the effect of the shock &; on future observations
dies out eventually — or, more formally, if limy_, o, cx = 0. In the AR(p) model,
this is the case if and only if the characteristic equation 1 —¢jz—- - - —¢pz” =0
does not contain a unit root — that is, if the process is stationary. This can most
easily be understood by comparing (2.15) and (2.22) for the AR(1) case. If the
impulse responses do not die out, the process has permanent or persistent shocks,
and we may define limy_, », ¢ as the degree of persistence, provided the limit
exists, of course. In subsequent chapters, we will often rely on (modifications
of) the IRF to measure the persistence of shocks for nonlinear models.
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Fractional integration

The concept of fractional integration (FI) within the context of ARIMA
models was independently put forward by Granger and Joyeux (1980) and
Hosking (1981). A fractionally integrated model appears useful to describe a
time series with very long cycles for which it is difficult to estimate its mean.
Typically, the application of such a model concerns inflation rates and returns
on exchange rates and their volatility, see Cheung (1993); Hassler and Wolters
(1995); Baillie, Bollerslev and Mikkelsen (1996); and Bos, Franses and Ooms
(1999), among others.

The basic fractionally integrated time series model is defined as

A=L¥y,=¢, 0<8<1, (2.105)
where the differencing operator (1 — L) can be expanded as

(I_L)dzl—dL—d(l—z_d)LZ_Wﬁ

_d0-dQ-d-((G-D=d) ;
j!

(2.106)

which becomes 1 ford = 0and (1—L) ford = 1. When0 < d < 0.5, the time
series is said to be long-memory, and when 0.5 < d < 1, it is nonstationary.
Clearly, (2.106) shows that a fractionally integrated time series model compares
with an AR(co) model. The reason why this model is called ‘long-memory’ is
that the autocovariances of fractionally integrated time series decay towards
zero at a much slower rate than the autocovariances of stationary AR time
series with d = 0. Estimation routines for general ARFIMA models, which
include additional AR and MA parts in (2.105) are proposed in Sowell (1992)
and Beran (1995).

Seasonality
Next to a trend, a second quite dominant source of variation in many
economic time series is seasonality. This applies mainly to macroeconomic time
series and to data in marketing, but many financial returns series also display
some form of seasonal variation, as we will indicate below. Here we briefly
outline two commonly considered models for seasonal data. The first assumes
that seasonal variation appears in the lag structure. For example, for daily data
this means that y;_5 may be a relevant variable. The second model assumes
seasonal variation in the ARMA parameters. The resultant models are usually
called ‘periodic models’.
A seasonally observed time series y;, t = 1,2, ..., n, is observed during
S seasons in a specific time interval, where S may take such values as 12, 52
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or 5. For macroeconomic data, this interval usually concerns a year, while for
financial returns, one may think of minutes in a day, or days in a week. The
data may have a nonzero mean g for s = 1,2,..., S. Furthermore, Dy,
s =1,2,..., S denote seasonal dummy variables, where D; ; takes a value of
1 in season s and a value of 0 in other seasons.

Consider again the AR(p) model for y;

e = @01 D1+ +Po, sDs 1 +P1yi—1+ -+ Ppyi—p+er,  (2.107)

where the intercept ¢ s is allowed to vary to allow the mean to vary across
different seasons. Note that s = ¢g s/(1 —¢p1—---—¢p). If seasonal variation
is approximately deterministic, one will find that the estimated means jis # [,
where [1 is the estimated mean from an AR(p) model with a single intercept.
Consider for example the evidence in table 2.7, where we observe that returns
and volatility of the stock index series tend to be higher on Mondays compared
to other days of the week.

Table 2.7 Daily means and variances of stock index returns

Stock market Monday Tuesday Wednesday Thursday Friday St err.

Daily means

Amsterdam —0.061  0.089 0.145 0.009 0.010 0.045
Frankfurt —0.056 0.017 0.125 0.040 0.048 0.049
Hong Kong —0.142  0.109 0.217 —0.041 0.142  0.068
London —0.083  0.076 0.095 0.038 0.079 0.037
New York —0.029  0.105 0.087 —0.005 0.027  0.040
Paris —0.174  0.088 0.087 0.087 0.041 0.051
Singapore —0.089  0.034 0.063 0.032 0.056  0.040
Tokyo —0.160  0.032 0.070 0.103 —0.020 0.054
Daily variances

Amsterdam 2.013  1.087 1.313 1.082 0.875 0.218
Frankfurt 2387 1.524 1.347 1.178 1.147 0.225
Hong Kong 5895 2214 2312 2.177 1.651 1.232
London 1.030 0943 0.730 0.732 0.768 0.172
New York 1.787  0.815 0.666 0.774 0.881 0.391
Paris 2.004 1.213 1.374 1.413 1.127 0.186
Singapore 1.852  0.841 0.785 0.856 0.751 0.213
Tokyo 2286  1.994 1.780 1.487 1.617 0.273

Notes: Daily means of stock market returns (upper panel) and squared residuals from
regression of returns on daily dummies (lower panel).

The sample period is 6 January 1986 until 31 December 1997, which equals 3,127
observations.
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Loosely speaking, if seasonal variation appears in the lags, (2.107) contains
Yi—S, Yr—25, and so on. If the AR parameters in (2.107) are such that the
differencing filter g is required to transform y; to stationarity, a time series
is said to be seasonally integrated. Writing s = (1 — L) and solving the
equation

(1-2z5=0 (2.108)
or

exp(Sig) =1,

for z or ¢, demonstrates that the solutions to (2.108) are equal to 1 and
cos(2rk/S) + isin(2nk/S) fork = 1,2,...,S — 1. This amounts to S dif-
ferent solutions, which all lie on the unit circle. The first solution 1 is called
the nonseasonal unit root and the S — 1 other solutions are called seasonal unit
roots (see Hylleberg et al., 1990). When a time series has seasonal unit roots,
shocks change the seasonal pattern permanently. There are several tests for
seasonal unit roots, but empirical evidence obtained so far (see Osborn, 1990;
Clare, Psaradakis and Thomas, 1995) indicates that seasonal unit roots are quite
unlikely for stock index and exchange rate returns (and their volatility).

An alternative seasonal model is a periodic autoregression (PAR) (see
Franses, 1996, for extensive discussion). It extends a nonperiodic AR(p) model
by allowing the autoregressive parameters ¢1, .. ., ¢p to vary with the seasons.
In other words, the PAR model assumes that the observations in each of the
seasons can be described by a different model. Such a property may be use-
ful as sometimes one may expect economic agents to have different memory
in different seasons. Hence, correlations between daily returns and volatility
can also display day-of-the-week effects. For example, it is well documented
that returns on Mondays are positively correlated with those on the preced-
ing Fridays, while returns on Tuesdays are negatively correlated with those on
Mondays (see Boudoukh, Richardson and Whitelaw, 1994, among others). It is
precisely in such situations that PAR models may be useful. Applications of PAR
models to stock index returns can be found in Bessembinder and Hertzel (1993)
and Abraham and Ikenberry (1994). Bollerslev and Ghysels (1996) discuss PAR
models for volatility, while Franses and Paap (2000) explore a combination of
periodic models for both returns and volatilities.

To illustrate, table 2.8 contains daily first-order autocorrelations for the
returns and squared returns of our stock index series. It appears that the day-of-
the-week effects in the autocorrelations for the returns themselves are largely
an American phenomenon, in the sense that only for the S&P 500 series it is
evident that indeed returns on Mondays are positively correlated with those on
the preceding Fridays, while returns on Tuesdays are negatively correlated with
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Table 2.8  Periodic autocorrelations of stock returns

Stock market Monday Tuesday Wednesday Thursday Friday
Daily returns

Amsterdam 0.002 0.002  —0.027 —0.003 0.006
Frankfurt 0.018 —-0.021  —0.013 —0.003 0.006
Hong Kong 0.033 —0.045  —0.028 0.026 —0.008
London 0.026 0.063  —0.035 —0.015 0.023
New York 0.047 —0.085 0.026 —0.004 0.013
Paris 0.018 0.004 —0.009 —0.016 0.022
Singapore 0.071 —0.001 0.004 0.037 0.044
Tokyo 0.028 —0.024  —0.023 —0.002 0.011
Daily squared returns

Amsterdam 0.004 0.134 0.078 0.412 0.010
Frankfurt 0.004 0.240 0.093 0.097 0.008
Hong Kong 0.001 0.245 0.227 0.109 0.012
London 0.002 0413 0.637 0.198 0.013
New York 0.116 0.765 0.093 0.059 0.002
Paris 0.016 0.044 0.015 0.156 0.013
Singapore 0.033 0.100 0.061 0.028 0.092
Tokyo 0.015 0.018 0.439 0.050 0.032

Notes: Daily first-order autocorrelations of stock market returns (upper panel) and
squared residuals from regression of returns on daily dummies (lower panel).

The sample period is 6 January 1986 until 31 December 1997, which equals 3,127
observations.

those on Mondays. For the squared returns, on the other hand, the autocorrela-
tions vary quite dramatically during the week for all series.

In principle, the nonlinear models discussed in the following chapters can be
extended to allow for various forms of seasonality. Although examples of such
models exist in the literature, there still is much further research to do on how
one should incorporate seasonality in nonlinear time series models. We will
therefore abstain from a detailed discussion on this matter and, consequently,
consider mainly weekly data for the forthcoming nonlinear models.

2.5 Aberrant observations

As has become clear in chapter 1, quite a number of observations on financial
time series may be viewed as aberrant. A recurring question often concerns
whether an aberrant observation somehow belongs to the time series, in the
sense that it is part of the data-generating process (DGP), or that it should be
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viewed as a measurement error. Aberrant data may also appear in clusters. For
example, returns may sometimes show periods of structurally different volatility
(owing to exogenous events), and one may examine if this corresponds to the
DGP or not. This is particularly relevant for the models to be discussed in chapter
4, as they assume that temporary periods of high or low volatility are part of
the process. Hence, when modelling linear or nonlinear data, it is important to
study the presence of aberrant observations and their effects on modelling and
forecasting. In this section, we therefore review the time series representations
of the so-called additive outlier (AO), innovative outlier (10) and level shift
(LS).

An additive outlier can be viewed as an observation which is the genuine
data point plus or minus some value. This latter value can be nonzero because
of a recording error or by misinterpreting sudden news flashes, which in turn
can cause returns on stock markets to take unexpectedly large absolute values.
In other words, in the case of an AO, the data point is aberrant because of a
cause outside the intrinsic economic environment that generates the time series
data. Given a time series y;, it is clear that additive outliers cannot be predicted
using the historical information set £2;_1.

An additive outlier can be described by

yv=xtt+owllt=1], t=1,...,n, (2.109)

where /[t = 7] is an indicator variable, taking a value of 1 whenr = 7 and a
value of zero otherwise. The time series x; is the uncontaminated but unobserved
time series, while y; is the observed variable. The size of the outlier is denoted
by w. Notice that, in practice, the value of T may be unknown.

Suppose that we observe a time series y; as defined by (2.109) and want
to describe this series by an AR(1) model. To get a quick impression of the
correlation between y; and y,_1 and hence, the value of the autoregressive
parameter ¢ that is to be expected, we might make a scatterplot of y; versus
v¢—1. Insuch aplot, the AO shows up as two irregular data points, corresponding
to the observation pairs (yr, yr—1) and (yr+1, ¥z). An example is shown in
panels (a) and (c) of figure 2.3, where the time series x; is generated according
to an AR(1) model x; = ¢1x;,-1 + &, with ¢; = 0.7 and &, ~ NID(O, 02),
o = 0.1. A single AO of size @ = 50 occurs at t = 7 = 50. When we
apply OLS to estimate the parameters in an AR(1) model for y;, neglecting this
AO, the observation (y;1, ¥r) will have a downward-biasing effect on (ﬁ 1 (see
Lucas, 1996). Also, AOs yield large values of skewness and kurtosis because
the two observations at time T and t + 1 cannot be properly predicted by the
model. Finally, the estimated standard error for the b1 parameter will increase
with increasing w.

A second important type of outlier is the innovative outlier, where the outlier
now occurs in the noise process. An ARMA(p, ¢) model including an 1O at
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Figure 2.3 Example of the effects of a single AO (panels (a) and (¢)) or IO

(panels (b) and (d))

The series x; is generated according to an AR(1) model x; = ¢1x;_1 + &, with ¢; = 0.7 and
&t ~ NID(O, (72), o = 0.1; a single outlier of size 50 occurs at t = T = 50; the dashed line in
panels (c) and (d) indicates the AR(1) regression line, y; = ¢1y,_1

time T is
6y (L)
¢dp(L)

Vi =Xt o

It = 7],

(2.110)

where ¢, (L)x; = 6;(L)&;. An alternative representation is

¢p(L)yr = 04 (L) (e + It = 1)),

@2.111)
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which clearly shows that an IO is an atypical observation in the noise process.
For illustration, consider the AR(1) model with an IO at time 7, that is

Vi =¢1yi—1+ & +ollt =1]. (2.112)

This expression shows that for most observations the predicted value of y; is
¢1y:—1. In case the 1O is neglected, the optimal 1-step-ahead forecast of y; is
Vzjr—1 = $1y-—1, and the associated forecast error equals e;|;—1 = &; + w.
This forecast error does not have expectation equal to zero — and, hence, the
predictor for y; is biased. However, in contrast to the AO model, the predictor
for the next observation y;1 has no bias. In a scatterplot of y; versus y;_1, one
would observe only the single aberrant combination (yz, y;—1), while all other
combinations lie close to the regression line. As this combination lies above the
bulk of the data, the OLS estimate 431 may show little bias. Panels (b) and (d)
of figure 2.3 show an example, where the series y; is generated according to
(2.112) with ¢1 = 0.7 and and &; ~ NID(O0, 62,0 =0.1.A single 10 of size
w = 50 occurs at t = T = 50. When an IO is neglected for an AR(1) series,
one will have only a single extraordinarily large estimated residual, owing to
the fact that ¢31 yr—1 is a biased predictor for y;.

When ¢ in (2.112) equals 1, it is clear that an IO at time t can result in
a permanent change in the level of a time series. An alternative description
of such a level shift in case of an AR(p) model, which does not require that
¢1 = 1, is given by the model including a level shift

¢p(L)y:r = ¢o + wlt = ]+ &, (2.113)
where the mean of y; shifts from ¢/(1 — ¢1 — - - - — ¢p) in the first part of the
sample to (¢o + @)/(1 — ¢y — - - - — ¢p) in the second part.

There are several methods to test for the presence of additive outliers, inno-
vative outliers and level shifts. A first set of methods consider a search over
all possible dates t for the presence of some type of aberrant data (see, for
example, Tsay, 1988; Chen and Liu, 1993). These techniques can be viewed as
diagnostic checks for model adequacy. Notice that because of this searching,
which leads to sequences of decision rules based on, for example, the 5 per cent
significance level, the test-statistics may not be distributed as x2 or standard
normal.

A second method to guard against the influence of aberrant observations is to
userobust estimation methods (see Huber, 1981; Hampel et al., 1986, for general
introductions to such robust estimation methods). Denby and Martin (1979),
Bustos and Yohai (1986) and, more recently, Lucas (1996) discuss how these
methods can be used to estimate the parameters in linear time series models.
Here we illustrate the intuition behind a particular form of such estimation
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techniques, the Generalized M (GM) estimator, in the context of the AR(1)
model

yi=¢1y—1+e, t=1,...,n (2.114)

A GM estimator of the autoregressive parameter ¢ in (2.114) can be defined
as the solution to the first-order condition

Z()’t — G1Yi—1)Yi—1 - wr(rr) =0, (2.115)

t=1

where r; denotes the standardized residual, s = (yr — ¢1y:—1)/(Cewy (¥1—1)),
with o, a measure of scale of the residuals &; = y; —¢1y,—1 and w,(-) a weight
function that is bounded between O and 1. From (2.115) it can be seen that the
GM estimator is a type of weighted least squares estimator, with the weight for
the ¢th observation given by the value of w,(-). As mentioned above, an AO at
t = t shows up as an aberrant value of y; and/or (y;4+1 — ¢1yr)/0e, Whereas
the latter can also be caused by an AO at time t + 1 of course. The functions
wy(-) and w,(-) should be chosen such that the T + 1st observation receives
a relatively small weight if either the regressor y; or the standardized residual
(yr4+1 — ¢1y7)/0 becomes large, such that the outlier does not influence the
estimates of ¢ and o5.

The weight function w, (r;) usually is specified in terms of a function ¥ (r;)
as wy(ry) = Y (ry)/rs for ry # 0 and w,(0) = 1. Common choices for the ¥ (-)
function are the Huber and Tukey bisquare functions. The Huber i function is
given by

—c ifr, < —c,
V() =4r if—-c<r<c, (2.116)

c ifr, > c,

or Y (r) = med(—c, c, r), where med denotes the median and ¢ > 0. The
tuning constant ¢ determines the robustness and efficiency of the resulting esti-
mator. Because these properties are decreasing and increasing functions of c,
respectively, the tuning constant should be chosen such that the two are bal-
anced. Usually c is taken equal to 1.345 to produce an estimator that has an
efficiency of 95 per cent compared to the OLS estimator if ¢; is normally dis-
tributed. The weights w, (r;) implied by the Huber function have the attractive
property that w,(r;) = 1 if —c < r; < c. Only observations for which the
standardized residual is outside this region receive less weight. A disadvantage
is that these weights decline to zero only very slowly. Subjective judgement is
thus required to decide whether a weight is small or not.



66 Nonlinear time series models in empirical finance
The Tukey bisquare function is given by

_ 2y2
1p(m:{rt(l (re/)? ifln| <c. e

0 if |r,| > c.

The tuning constant ¢ again determines the robustness and the efficiency of the
resultant estimator. Usually c is set equal to 4.685, again to achieve 95 per cent
efficiency for normally distributed ¢;. The Tukey function might be considered
as the mirror image of the Huber function, in the sense that downweighting
occurs for all nonzero values of r;, but the resulting weights decline to 0 quite
rapidly.

A third possibility is the polynomial i function as proposed in Lucas, van
Dijk and Kloek (1996), given by

It if [r:| < ¢,
Y(r) = ysgn(r)g(re)) ifer < || < co, (2.118)
0 if |r,] > 2,

or more compactly,

Y(re) = redllre] < cr] + Illre] > el [|re] < colsgn(r)g(|rel),
(2.119)

where ¢ and ¢; are tuning constants, sgn is the signum function and g(|r;|) is
a fifth-order polynomial such that v (r;) is twice continuously differentiable.
This ¢ function combines the attractive properties of the Huber and Tukey ¢
functions. Observations receive a weight w, (r;) = ¥ (r;)/r; equal to 1 if their
standardized residuals are within (—c1, ¢1) and a weight equal to zero if the
residuals are larger than c¢; in absolute value. The polynomial g(|r;|) is such that
partial weighting occurs in between. The tuning constants ¢; and ¢; are taken
to be the square roots of the 0.99 and 0.999 quantiles of the x 2(1) distribution —
that is, c; = 2.576 and ¢ = 3.291.

The weights implied by the three i functions discussed above are shown in
figure 2.4, which clearly demonstrates the differences and similarities between
the different functions.

The weight function wy (-) for the regressor is commonly specified as

wx (Vr—1) = ¥ dr—*)/d (-, (2.120)

where ¥ (+) is again given by (2.118), d(y;—1) is the Mahalanobis distance of
yr—1 —thatis, d(y,—1) = |y,—1 — my|/oy, with my and o, measures of loca-
tion and scale of y,_1, respectively. These measures can be estimated robustly
by the median m, = med(y,—1) and the median absolute deviation (MAD)
oy = 1.483 -med|y;_1 —my]|, respectively. The constant 1.483 is used to make
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w,(r))

Figure 2.4 Weight functions w, (r;) as implied by the polynomial ¢ function given in
(2.118), with ¢; = 2.576 and ¢ = 3.291 (solid line), the Huber function given in
(2.116) with ¢ = 1.345 (long dashed line) and the Tukey function given in (2.117) with
¢ = 4.685 (short dashed line)

the MAD a consistent estimator of the standard deviation where y; is normally
distributed. Finally, following Simpson, Ruppert and Carroll (1992), the con-
stant o in (2.120) usually is set equal to 2 to obtain robustness of standard
errors.

Notice that the weights w,(-) depend on the unknown parameter ¢; and
therefore are not fixed a priori but are determined endogenously. Consequently,
the first-order condition (2.115) is nonlinear in ¢ and o, and estimation of
these parameters requires an iterative procedure. In fact, interpreting w,(-) as a
function of (¢1, 0¢), wy(¢1, 0¢), and denoting the estimates of ¢; and o at the

nth iteration by q@i") and 6™, respectively, it follows from (2.115) that $§"+1)
might be computed as the weighted least squares estimate

. nw A(n)’a_(n) B

¢§n+1) _ Z,_] r(¢1 e IVt 1)’t’ (2.121)

Y w682

where the estimate of o, can be updated at each iteration using a robust estimator
of scale, such as the median absolute deviation (MAD) given by o, = 1.483 -
med|e; —med(e;)|. Following the estimation, the weights w, (-) assigned to the
observations in the GM procedure can be used to detect aberrant data points.
When a time series seems to have many aberrant data, it is possible that a
univariate linear time series model such as an ARMA model does not yield
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a good description of the data. In fact, approximating a nonlinear time series
model with a linear model may result in many large residuals. Also, outliers
may reflect the fact that a multivariate time series model or an AR model with
exogenous variables may have been more appropriate.

In the following chapters we will pay considerable attention to the inter-
play between outliers, nonlinearity and temporarily volatile periods. Nonlinear
models often assume the presence of two or more regimes. When a regime con-
cerns only a few observations, one can be tempted to consider these as outliers.
However, it may well be that this regime concerns the most important obser-
vations one would want to forecast. On the other hand, one would not want
a few genuine outliers to suggest more volatility or a separate regime. Hence,
when specifying and estimating the nonlinear models in subsequent chapters,
one should somehow take the potential presence of outliers into consideration.



3  Regime-switching models for
returns

In this chapter we turn to one of the main subjects of this book, nonlinear
models for returns. The problem one immediately faces when considering the
use of nonlinear time series models is the vast, if not unlimited, number of
possible models. Sometimes economic theory is helpful in choosing a particular
model, but more often it is not. Nonlinearity in stock prices and exchange rates
has often been detected by various statistical tests, (see Hinich and Patterson,
1985; Scheinkmann and LeBaron, 1989; Hsieh, 1989, 1991; Crato and de Lima,
1994; Brooks, 1996, among others). However, only few attempts have been
made to subsequently model the nonlinearity explicitly. In this book we restrict
ourselves to models that have a clear interpretation and are plausible from an
economic perspective. For previous and more general surveys on nonlinear time
series models, the interested reader is referred to Tong (1990) and Granger and
Terdsvirta (1993).

A natural approach to modelling economic time series with nonlinear models
seems to be to define different states of the world or regimes, and to allow for
the possibility that the dynamic behaviour of economic variables depends on
the regime that occurs at any given point in time (see Priestley, 1980, 1988).
By ‘state-dependent dynamic behaviour’ of a time series it is meant that certain
properties of the time series, such as its mean, variance and/or autocorrela-
tion, are different in different regimes. An example of such state-dependent
or regime-switching behaviour was encountered in section 2.4, where it was
shown that the means and autocorrelations of returns and squared returns on
stock market indexes vary during the week. Hence, we can say that each day
of the week constitutes a different regime. The interpretation of these seasonal
effects as regime-switching behaviour might seem somewhat odd, for in this
case the regime process is deterministic, in the sense that the regime that occurs
at any given in point in time is known with certainty in advance. In contrast, in
this chapter we focus on situations in which the regime process is stochastic.

The following examples illustrate that stochastic regime-switching is relevant
for financial time series. First, LeBaron (1992) shows that the autocorrelations
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of stock returns are related to the level of volatility of these returns. In particular,
autocorrelations tend to be larger during periods of low volatility and smaller
during periods of high volatility. The periods of low and high volatility can be
interpreted as distinct regimes — or, put differently, the level of volatility can be
regarded as the regime-determining process. Of course, the level of volatility in
the future is not known with certainty. The best one can do is to make a sensible
forecast of this level and, hence, of the regime that will occur in the future. As
another example, Kriger and Kugler (1993) argue that exchange rates might
show regime-switching behaviour, in particular under a system of managed
floating such as occurred in the 1980s when it was attempted to stabilize the
exchange rate of the US dollar. Intuitively, monetary authorities may intervene in
the foreign exchange market as a reaction to large depreciations or appreciations
of a currency, which lead to different behaviour for moderate and large changes
of the exchange rate. Similar behaviour may be observed for an exchange rate
which is constrained to lie within a prescribed band or target zone, as was the
case in the Exchange Rate Mechanism (ERM) in Europe (see Chappell et al.,
1996). In this case, the level of the exchange rate rather than the change in the
exchange rate determines the regimes.

In recent years several time series models have been proposed which for-
malize the idea of the existence of different regimes generated by a stochastic
process. In this chapter we discuss (some of) these models and explore their use-
fulness for modelling (absolute) returns of financial assets. Nonlinear models
for volatility will be discussed in chapter 4. We restrict our attention to models
that assume that in each of the regimes the dynamic behaviour of the time series
can be described adequately by a linear AR model. In other words, the time
series is modelled with an AR model, where the autoregressive parameters are
allowed to depend on the regime or state. Generalizations of the MA model
to a regime-switching context have also been considered (see Wecker, 1981;
de Gooijer, 1998), but we abstain from discussing these models here.

The available regime-switching models differ in the way the regime evolves
over time. Roughly speaking, two main classes of models can be distinguished.
The models in the first class assume that the regimes can be characterized (or
determined) by an observable variable. Consequently, the regimes that have
occurred in the past and present are known with certainty (although they have
to be found by statistical techniques, of course). The models in the second
class assume that the regime cannot actually be observed but is determined
by an underlying unobservable stochastic process. This implies that one can
never be certain that a particular regime has occurred at a particular point
in time, but can only assign probabilities to the occurrence of the different
regimes.

In the following sections, we discuss representations of the different regime-
switching models, interpretation of the model parameters, estimation, testing
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for the presence of regime-switching effects, evaluation of estimated regime-
switching models, out-of-sample forecasting, measures of the persistence of
shocks and the effects of outliers on inference in regime-switching models. As
in chapter 2, we emphasize how these different elements can be used in an
empirical specification strategy.

3.1 Representation

In this section we introduce the two classes of regime-switching models and
discuss their basic properties. To simplify the exposition, we initially focus
attention on models which involve only two regimes. Some remarks on extend-
ing the models to allow for multiple regimes are made below.

3.1.1 Regimes determined by observable variables

The most prominent member of the first class of models, which assume
that the regime that occurs at time ¢ can be determined by an observable vari-
able gy, is the Threshold Autoregressive (TAR) model, initially proposed by
Tong (1978) and Tong and Lim (1980), and discussed extensively in Tong
(1990). The TAR model assumes that the regime is determined by the value
of g; relative to a threshold value, which we denote as c. A special case arises
when the threshold variable g; is taken to be a lagged value of the time series
itself — that is, ¢, = y;—_4 for a certain integer d > 0. As in this case the
regime is determined by the time series itself, the resulting model is called a
Self-Exciting TAR (SETAR) model.

For example, where d = 1 and an AR(1) model is assumed in both regimes,
a 2-regime SETAR model is given by

@3.1)

do1+P11y—1+e ify1 =<c,
P02 +d12y—1+& iy >c,

where for the moment the &; are assumed to be an i.i.d. white noise sequence
conditional upon the history of the time series, which is denoted 2;,_; =
(V=1 Y1—25 -+ s Y1—(p=1)» Y1—p} as before — that is, E[¢/[2,—1] = 0 and
E[¢?2;_1] = 0. An alternative way to write the SETAR model (3.1) is

e = (¢o,1 +&1,1 yi—1)A = I[y;—1 > c])
+ (P02 + P12 VeI [yr—1 > cl + &, (3.2)

where I[A] is an indicator function with /[A] = 1 if the event A occurs and
I[A] = 0 otherwise.
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The SETAR model assumes that the border between the two regimes is given
by a specific value of the threshold variable y;_1. A more gradual transition
between the different regimes can be obtained by replacing the indicator func-
tion I[y;—1 > c]in(3.2) by acontinuous function G(y;_1; v, ¢), which changes
smoothly from O to 1 as y,_ increases. The resultant model is called a Smooth
Transition AR (STAR) model and is given by

ye = (¢o,1 +&1,1 y1—1)A = G(yr—1: ¥, ©))
+ (P02 + P12 i—1)G—1; V. 0) + & (3.3)

(see Terdsvirta, 1994, among others). A popular choice for the so-called tran-
sition function G(y;—1; ¥, c) is the logistic function

1
1 +exp(=y[y—1 —cl)’

and the resultant model is then called a Logistic STAR (LSTAR) model. The
parameter c in (3.4) can be interpreted as the threshold between the two regimes
corresponding to G(y;—1; ¥, ¢) = 0and G(y;—1; ¥, ¢) = 1, inthe sense that the
logistic function changes monotonically from O to 1 as y,_1 increases, while
G(c; y,c) = 0.5. The parameter y determines the smoothness of the change
in the value of the logistic function, and thus the transition from one regime to
the other.

Figure 3.1 shows some examples of the logistic function for various differ-
ent values of the smoothness parameter y. From this graph it is seen that as y
becomes very large, the change of G(y;—1; ¥, ¢) from 0 to 1 becomes almost

G(yi—1:7,¢) = (3.4)

~

Figure 3.1 Examples of the logistic function G (y;—1; ¥, ¢) as given in (3.4) for
various values of the smoothness parameter y and threshold ¢ = 0
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instantaneous at y;,_1 = c and, consequently, the logistic function G (y;_1; y, ¢)
approaches the indicator function I[y;—; > c]. Hence the SETAR model
(3.2) can be approximated arbitrarily well by the LSTAR model (3.3) with
(3.4). When y — 0, the logistic function becomes equal to a constant (equal
to 0.5) and when y = 0, the STAR model reduces to a linear model.

The idea of smooth transition between regimes dates back to Bacon and Watts
(1971). It was introduced into the nonlinear time series literature by Chan and
Tong (1986) and popularized by Granger and Terésvirta (1993) and Terésvirta
(1994). A comprehensive review of the STAR model, and extensions that allow
for exogenous variables as regressors as well, is given in Terédsvirta (1998).

To see that the SETAR and STAR models are indeed capable of captur-
ing regime-switching behaviour, notice that in the SETAR model (3.1), the
first-order autocorrelation of y; is either ¢ 1 or ¢ 2, depending on whether
yi—1 < cor y;—1 > c, respectively. In the STAR model (3.3), the first-order
autocorrelation changes gradually from ¢ 1 to ¢ 2 as y;—; increases. In fact,
quite a large variety of dynamic patterns can be generated by a simple model
such as the SETAR model in (3.1) by choosing the parameters appropriately.
To give some impression of the possibilities, figure 3.2 shows four realizations
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=00 =00
~05} ~0.5

oo b b b o b b oo b b b o b b

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
(@) 0,1 =0,00,=0 (b) $o,1=-0.3,¢9,=0.1
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(©) 99,1 =—0.3,¢9,=-0.1 (d) ¢01=0.3,90,=-03
Figure 3.2  Four series generated from the SETAR model (3.1), with ¢y 1 = —0.5,

¢1,2 =0.5,c =0and & ~ NID(0, 0.25%)
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Figure 3.3  Scatterplots of four series generated from the SETAR model (3.1), with
¢1,1 =-05,¢12=0.5,c=0and & ~ NID(, 0.252%). The solid lines are the
skeletons of the model, the dashed line is the 45-degree line

of n = 200 observations from (3.1) with ¢1; = —0.5, ¢12 = 0.5,¢c =0
and &; ~ NID(O, 0.252). All series are started with yg = 0, while the same
values for the shocks ¢, = 1, ..., n, are used to generate subsequent obser-
vations. The intercepts ¢y, 1 and ¢ 7 are varied to generate different behaviour.
Figure 3.3 shows the corresponding scatterplots of y; versus y;_1.

Before we discuss the properties of the various time series that are shown in
these figures, we must first introduce some terminology associated with non-
linear time series models in general. In the scatterplots in figure 3.3, the deter-
ministic part of the model F(y;—1) = (¢o,1 + ¢1,1 yr—1)(A — I[y,—1 > c]) +
(902 +d1.2 y+—1)I[y;—1 > c]is also shown. Notice that F'(y;_1) is in fact the
conditional expectation of y; at time ¢+ — 1. This deterministic and predictable
part of the model is commonly referred to as the skeleton of the model, a concept
introduced by Chan and Tong (1985).

The model is said to have an equilibrium at y* if y* is a fixed point of the
skeleton — that is, if y* = F(y*). The equilibrium is called stable if the time
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series converges to y* where the noise &; is turned off, which simply means that
all &; are set equal to zero. A (stationary) linear time series always has a unique
and stable equilibrium y* which is equal to its mean. As will be seen shortly, a
nonlinear time series can have a single (stable or unstable) equilibrium, multiple
equilibria or no equilibrium at all. Furthermore, even if the equilibrium is unique
and stable, it is not necessarily equal to the mean of the time series. As noted
above, the equilibria, if any exist, can be found by determining the fixed points of
the skeleton F(-) —that s, by solving y* = F(y*). If the skeleton only depends
on the first-order lag y;_1, as in the examples considered here, an alternative
way to find the equilibria is to look for intersection points of the skeleton with
the 45-degree line in the scatterplot of y; versus y;_;. A stable equilibrium is
also called an attractor, which stems from the fact that in the absence of shocks
the time series is attracted by the stable equilibrium. Given that a nonlinear time
series can have any number of stable equilibria, it follows that it can also have
several attractors. That is, y* is the attractor for y if y, = y and

)’z+h—>y* ash — oo iferr ;=0 forall j > 0.

A different way to express this is to say that y is in the domain of attraction of
y*. As will be seen below, a stable equilibrium is not the only possible form of
attractor of a nonlinear time series.

Panel (a) of figure 3.3 shows the scatterplot of the series generated from (3.1)
with both intercepts equal to 0, which implies that the means of the AR models
in the two regimes are equal to 0. In this case, the equilibrium is unique and
stable and also equal to 0. However, the mean of the time series y; is not equal
to 0. This can be understood by noting that, because ¢ 1 is negative, the series
has a tendency to leave the lower regime y,—; < 0 quite rapidly. In fact, in
the absence of a shock &; (or if &, = 0) the series reverts to the upper regime
immediately, as E[y;|y,—1] = ¢1,1 yi—1 > 01if y,—1 < 0. As ¢ 2 is positive,
the series is expected to remain in the upper regime (although it will be pulled
towards the threshold ¢ = 0 because ¢1 » < 1). This suggests that y; will be
positive on average and, hence, the mean of y; will be larger than 0.

The skeleton in panel (b) of figure 3.3 has two points of intersection with
the 45-degree line. This is an example of a model with multiple equilibria,
at y{ = —0.2 and y; = 0.2, which can easily be checked using (3.1). Both
equilibria are stable. An intuitive way to see this is to note that the intercepts are
such that the mean of the AR model in the lower regime y;_; < 0 is within the
lower regime, while the mean of the AR model in the upper regime y;—; > 0
is within the upper regime. Consequently, in the absence of exogenous shocks
the time series has no tendency to move to the other regime, but rather will
converge to the mean of the AR model in the particular regime. Put differently,
the domains of attraction of y} (y3) are negative (positive) values of the time
series, y < 0 (y > 0).
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Panel (c) of figure 3.3 again shows an example of a model with a unique and
stable equilibrium y* = —0.2. Notice that the mean of the AR model in the
upper regime in this case is negative (the fact that it is exactly equal to —0.2
is not crucial). Hence, if the series starts in the upper regime, it is attracted by
the lower regime. As the mean of the AR model in the lower regime is also
negative, this mean is the attractor of the model.

Finally, the intercepts of the model in panel (d) of figure 3.3 are set such that
the model has no equilibrium, which can be seen by observing that there are
no points y* such that y* = F(y*) — or, equivalently, that the skeleton has no
intersection points with the 45-degree line in each of the regimes. Also note that
the means of the AR models in the two regimes are both in the other regime.
Intuitively, this suggests that the series has no point at which ‘it could come to
rest’. If it is in the upper regime it is pulled towards the lower regime and vice
versa. Still, the model does have an attractor. In fact, the model contains a so-
called limit cycle. A k-period limit cycle is defined as a set of points y, ..., vy,
such that y;‘.‘ = F(y;’.‘_]) for j =2,...,k,and yj = F(y;). Thatis, if the time
series started in one of the points y;’.‘, j = 1,...,k, and no shocks occurred,

the series would cycle among the k-points y{, ..., y;'. In the example shown in
panel (d) of figure 3.3, the limit cycle consists of three points, y; = 0.06667,
y; = —0.06667 and y; = 0.33333. It can also be shown that the limit cycle is
the attractor, in the sense that the series would converge to the cycle if the noise
were turned off.

This last example demonstrates that nonlinear models can contain endo-
genous dynamics, which means to say that even in the absence of shocks y;
fluctuates. This is in contrast with linear time series, for which the fluctuations
are caused entirely by the exogenous shocks ;. The debate whether observed
dynamics in time series are endogenous or exogenous has a long history, also in
the financial time series literature (see, for example, Brock, Hsieh and LeBaron,
1991; Hsieh, 1991; Creedy and Martin, 1994). A more recent application of
endogenous dynamics in finance can be found in Brock and Hommes (1998). A
general discussion of nonlinear time series models, endogenous dynamics and
the related concept of chaos is given in Tong (1995).

As a final remark, notice that the four models in the example above differ
only in the values taken by the intercepts in the two regimes, ¢g 1 and ¢ 2,
whereas the autoregressive parameters ¢ 1 and ¢ 7 are kept the same. The fact
that the four models nevertheless generate series with quite different behaviour
illustrates the important role that is played by intercepts in nonlinear time series
models.

Higher-order models
Although the SETAR and STAR models with an AR(1) model in both
regimes can already generate a large variety of dynamic patterns, in practice
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one may want to allow for higher-order AR models in the different regimes.
For example, in the two-regime case, the AR orders might be set to p; and p,
in the lower and upper regimes, respectively. In this case, the SETAR model
becomes

_Joat+diayi—1+ o+ dpayi—p o iy Zc,
t — .
P02+ P12Yi—1+ -+ bpy2yi—py +e iy >c,
3.5)

whereas the equivalent STAR model is given by

yi = (o1 +b1,1Yi—1+ -+ &p 1 Yi—p))(L = G(yi—15¥.0))

+ (@02 +d12yi—1+ -+ &py2V—py))Gi—15 ¥, €) + &1
(3.6)

In higher-order models, it may also be relevant to consider the possibility that
Vi—q With d > 1 is the threshold or transition variable. For such higher-order
models, it can be quite difficult to establish the existence of equilibria, attrac-
tors and/or limit cycles analytically. A pragmatic way to investigate the proper-
ties of the skeleton of a higher-order model is to use what might be called

deterministic simulation. That is, given starting values yo, ..., y|—p, With
p = max(p1, p2), one computes the values taken by y{, y3, ..., while setting
all g, t =1,2,... equal to zero. Doing this for many different starting values

gives an impression about the characteristics of the (skeleton of the) model (see
Terésvitra and Anderson, 1992; Peel and Speight, 1996 for applications of this
procedure).

Identification of lag orders

An important question concerns determining the appropriate orders p
and p» in the general 2-regime models (3.5) and (3.6). One of the approaches
that is commonly applied, especially in case of STAR models, is to start by
specifying a linear AR(p) model for y; and to assume that the order p, which
is based on the (partial) autocorrelations of y; or an information criterion such
as AIC or BIC, is the appropriate order in both regimes of the nonlinear model.
This procedure is quite hazardous, in the sense that it can easily happen that
the lag order that is obtained in this way is inappropriate. For example, as
remarked in chapter 2 for a bilinear model, nonlinear time series may have zero
autocorrelations at all lags. In such a case it is very likely that the selected lag
order based upon inspection of the estimated autocorrelation function is too low.
On the other hand, relatively simple nonlinear time series models may give rise
to rather complicated autocorrelation structures, which can be captured only by
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an AR(p) model with p very large. For example, Granger and Terdsvitra (1999)
discuss the so-called sign model,

ye = sign(yr—1) + &, (3.7

where sign(x) = 1 if x is positive and —1 if x is negative. It is shown that time
series from this model have long-memory properties.

As another example, table 3.1 contains the values for the AIC as given in
(2.55) for AR(p) models estimated for the simulated series shown in figure 3.2.
For the first three series, the AIC selects the correct value of p = 1. For the last
series, however, the AIC is minimized at p = 4. Hence, the AR order would
be overestimated in this last case.

An alternative procedure is to choose the lag orders p; and p, in (3.5) or (3.6)
directly based upon an information criterion. Sin and White (1996) demonstrate
that such a procedure is consistent, in the sense that the correct lag orders will
be selected with probability one asymptotically. An obvious drawback of this
approach is that the SETAR or STAR model has to be estimated for all possible
combinations of p; and p5.

In section 2.2 it was argued that, especially in the case of BIC, the improve-
ment in fit from a more elaborate model needs to be considerable to compensate
for the penalty incurred for including additional parameters in the model. This
seems to be a problem in nonlinear modelling in particular. For example, in
applications of regime-switching models it often happens that the large major-
ity of observations is in one of the regimes. In such cases, the improvement in
fit compared to a linear model is probably quite modest and not large enough
for the nonlinear model to be selected by an information criterion. However,
it seems fair to take into account the fact that the parameters in the additional
regime(s) are needed for relatively few observations. This can be achieved
by not penalizing the inclusion of the additional parameters for the whole

Table 3.1 AIC for AR(p) models estimated on simulated SETAR series

Intercepts p

P01 90,2 0 1 2 3 4 5 6

0 0 —2.652 —=2.705 —-2.695 —-2.685 —2.701 —-2.695 -—2.684
-0.3 0.1 —2.037 —2.453 —2443 2432 2428 —2.431 —-2.436
-03 -0.1 -2.604 -2.619 -2.609 -2.600 -2.616 —-2.607 —2.596

03 —-0.1 —=2373 —-2423 2413 —-2.409 —-2450 —-2.440 —-2.431

Note: Values of AIC for AR(p) models estimated on four series of length n = 200
generated from the SETAR model (3.1), with ¢ 1 = —0.5, ¢12 = 0.5, ¢ = 0 and
& ~ NID(0, 0.252).
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sample size but only for the number of observations for which these parameters
are functional. Tong (1990, p. 379) defines an alternative AIC for a 2-regime
SETAR model as the sum of the AICs for the AR models in the two regimes,
that is,

AIC(py, p2) =niIn62 4 nyiné? +2(p1 + 1) +2(pa + 1), (3.8)

where nj, j = 1,2, is the number of observations in the jth regime, and
8/2, Jj = 1,2, is the variance of the residuals in the jth regime. Even though
the &; may have the same variance across regimes, the estimates 6]2 and &22 can
differ. The BIC for a SETAR model can be defined analogously as

BIC(p1, p2) = n ln612+n21n&22+(p1 +Dlnny+(p2+1)Inn;.
(3.9)

For given upper bounds p} and p; on py and pa, respectively, the selected lag
orders in the two regimes are those for which the information criterion is min-
imized. Especially the BIC (3.9) demonstrates that the number of observations
in each of the regimes is taken into account when computing the information
criterion.

Stationarity

Little is known about the conditions under which SETAR and STAR
models generate time series that are stationary. Such conditions have been
established only for the first-order model (3.1). As shown by Chan and Tong
(1985), a sufficient condition for stationarity of (3.1) ismax(|¢1 11, |¢1.2]) < 1,
which is equivalent to the requirement that the AR(1) models in the two
regimes are stationary. Chan et al. (1985) show that stationarity of the first-
order model actually holds under less restrictive conditions. In particular, the
SETAR model (3.1) is stationary if and only if one of the following conditions is
satisfied:
(D) ¢11<Lgra<Ldrid12<1;
(2) p11=1¢12<1,¢01 > 0;
3) d11 <Ldr1p=1,6¢02<0;
@ dr1=1L¢12=1¢02<0<¢o1;
(%) ¢1.1012=1,011 <0,¢02 + ¢1,2¢00,1 > 0.
Condition (1) corresponds with the sufficient condition of Chan and Tong
(1985), although it should be noted that (1) allows one of the AR parame-
ters to become smaller than — 1. Conditions (2)—(4) show that the AR model in
one or even both regimes may contain a unit root. In such cases, the time series
is locally nonstationary. The conditions on the intercepts ¢ 1 and ¢ 2 are such
that the time series has a tendency to revert to the stationary regime and, hence,
the time series is globally stationary. Testing for unit roots in SETAR models
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is discussed in Caner and Hansen (1997), Enders and Granger (1998) and
Berben and van Dijk (1999). A rough-and-ready check for stationarity of
nonlinear time series models in general is to determine whether or not the skele-
ton is stable. Intuitively, if the skeleton is such that the series tends to explode
for certain starting values, the series is nonstationary. This can be established
by simulation.

Even less is known about the stationary distributions of SETAR and STAR
time series. Andél (1989) discusses some analytic results for a special case of
the first-order SETAR model (3.1), in which ¢p.1 = ¢p2 = ¢ =0, ¢11 =
—¢12 and ¢1 1 € (0, 1). In general, one has to resort to numerical procedures
to evaluate the stationary distribution of y;. Some of the methods that can
be applied are discussed in Moeanaddin and Tong (1990) and Tong (1990,
section 4.2).

Multiple regimes

Sometimes it is of interest to allow for more than two regimes. The
SETAR and STAR models can be extended in a relatively straightforward way
to allow for this. It is useful to distinguish two cases, depending on whether the
regimes are characterized by a single variable or by a combination of several
variables.

In the first case, where the prevailing regime is determined by a single vari-
able, an m-regime SETAR model can be obtained by defining a set of m + 1
thresholds cq, c1, ..., cm,suchthat —oco =c¢cp < ¢y < -+ < cp_| < ¢y = 0O.
The m-regime equivalent of (3.1) then is given by

Ye=¢0,j +¢1,jyi—1 +& ifcj_1 <y-1 =Zcj, (3.10)
for j = 1,..., m. An application of this model can be found in Kriger and
Kugler (1993).

For the STAR model, a similar procedure can be followed. First note that
(3.3) can be rewritten as

yi=¢1x + (b2 — ¢ G(yi-1; 7, 0) + &, (G.1D

where x; = (1, y,—1)" and ¢; = (¢, , ¢1,;) for j = 1, 2. By using the subset
C1, ..., cpu—1 of the thresholds defined above for the SETAR model, and an
additional set of smoothness parameters y1, ..., ¥u—1, @ STAR model with m
regimes can be defined as

i = ¢1x+ (@2 — d1)' x5 G1(ye—1) + (@3 — $2) G2 (y—1)
4ot (Gm — Gm—1)xG—1 (vi—1) + &1, (3.12)
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where the G;(yr—1) = G;(yr—1; vj>cj), J = 1,...,m — 1, are logistic func-
tions as in (3.4) with smoothness parameter y; and threshold c;.

As an example of the case where the regime is determined by more than
one variable, suppose that the behaviour of the time series y; not only depends
on the value of y,;_1 relative to some threshold cp, but also upon the value of
y;— relative to another threshold c;. This gives rise to four regimes in total, as
demonstrated by the SETAR model

$0,1 + 1,151 +& ify1 <crandy > <c,
= $02+P12y—1+& ify—y <cpandy_o > c, (3.13)
r — . .
$03 +d13y-1+e& ify_1>crandy, > <,

$0,4 +P1,4Yr-1+& ify 1 >crandy 2> c.

The model in (3.13) is referred to as a Nested TAR (NeTAR) model by Astatkie,
Watts and Watt (1997). This name stems from the fact that the time series can
be thought of as being described by a 2-regime SETAR model with regimes
defined by y,_1, and within each of those regimes by a 2-regime SETAR model
with regimes defined by y;_», or vice versa.

Finally, van Dijk and Franses (1999) propose the corresponding multiple
regime STAR model. Its representation is

yi = [@1x: (1 = G1(ye—1) + $5x:G1 (v~ DI — G2(y—2)]

+ [#3x:(1 = G1(v—1) + 4% G1(v—DIG2(yr-2) + &1,
(3.14)

which illustrates the interpretation of nested models perhaps more clearly.

3.1.2 Regimes determined by unobservable variables

The second class of regime-switching models assumes that the regime
that occurs at time ¢ cannot be observed, as it is determined by an unobservable
process, which we denote as s;. In case of only two regimes, s; can simply be
assumed to take on the values 1 and 2, such that the model with an AR(1) model
in both regimes is given by

o {450,1 + 11y e ifs =1, (3.15)

b0+ Q121+ & ifs, =2,
or, using an obvious shorthand notation,

e = o5y + P15, Vi1t &1 (3.16)
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To complete the model, the properties of the process s; need to be speci-
fied. The most popular model in this class, which was advocated by Hamilton
(1989), is the Markov-Switching (MSW) model, in which the process s; is
assumed to be a first-order Markov-process. This implies that the current regime
s; only depends on the regime one period ago, s;_1. Hence, the model is com-
pleted by defining the transition probabilities of moving from one state to the
other,

P(s; = 1ls;—1 = 1) = p11,
P(st =2|sq—1 = 1) = p12,
P(s;y = 1ls,—1 = 2) = poy,
P(st = 2|s4—1 = 2) = p2.

Thus, p;; is equal to the probability that the Markov chain moves from state i
at time ¢ — 1 to state j at time ¢ — or, put differently, the probability that regime
i attime r — 1 is followed by regime j at time z. Obviously, for the pj;s to define
proper probabilities, they should be nonnegative, while it should also hold that
P11 + p12 = 1 and pa1 + pry = 1. Also of interest in the MSW models are
the unconditional probabilities that the process is in each of the regimes — that
is, P(s; = i) fori = 1, 2. Using the theory of ergodic Markov chains it is
straightforward to show that for the two-state MSW model these unconditional
probabilities are given by

1 —px»
2—pii—pn
I —pn
2—pi—pn

P(s;=1)= (3.17)

P(s; =2) = (3.18)

see Hamilton (1994, pp. 681-3) for an explicit derivation of this result. Sta-
tionarity conditions for the 2-regime MSW model are discussed in Holst et al.
(1994).

Multiple regimes

An MSW model with m regimes is obtained by allowing the unob-
servable Markov chain s; to take on any one of m > 2 different values, each
determining a particular regime. That is, the model becomes

ye=¢o,j +&1,jyi—1 + &, ifsp =], (3.19)
for j =1, ..., m, with transition probabilities

pij=P(st = jlsi—1=1), i,j=1,...,m, (3.20)
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which satisfy p;; > O fori,j = 1,...,m and Z’}’:] pij = lforalli =
1,...,m. See Boldin (1996) for an application.

Empirical specification procedure
Granger (1993) strongly recommends employing a specific-to-general
procedure when considering the use of nonlinear time series models to describe
the features of a particular variable. An empirical specification procedure for
SETAR, STAR and MSW models that follows this approach consists of the
following steps:
(1) specify an appropriate linear AR model of order p [AR(p)] for the time
series under investigation
(2) test the null hypothesis of linearity against the alternative of SETAR-,
STAR- and/or MSW-type nonlinearity; for the SETAR and STAR models,
this step also consists of selecting the appropriate variable that determines
the regimes
(3) estimate the parameters in the selected model
(4) evaluate the model using diagnostic tests
(5) modify the model if necessary
(6) use the model for descriptive or forecasting purposes.
Steps (2)—(6) in this specification procedure are discussed in detail in the follow-
ing sections. It turns out that tests against SETAR- and MSW-type nonlinearity,
which are to be used in step (2), require the input of estimates of the param-
eters in these models. Hence, in the next section we first discuss parameter
estimation, and turn to testing for nonlinearity in section 3.3.

Finally, in step (2) one may also compute several portmanteau tests for non-
linearity, such as the BDS test of Brock et al. (1996), the bispectrum tests of
Hinich (1982) and Ashley, Patterson and Hinich (1986) or the neural network
test which is to be discussed in section 5.6, as a diagnostic check to test the
adequacy of the specified linear model. A limitation of portmanteau tests is,
though, that they provide (almost) no information concerning the appropriate
alternative — that is, if linearity is rejected it is not clear in which direction to
proceed or which nonlinear model to consider.

3.2 Estimation

The discussion of estimating the parameters in the different regime-switching
models in this section is necessarily rather brief and describes only the general
ideas of the estimation methods. For more elaborate discussions we refer to
Tong (1990) and Hansen (1997, 2000) for the SETAR model, to Terésvirta
(1994, 1998) for the STAR model and to Hamilton (1990, 1993, 1994) for the
MSW model. For notational convenience, we discuss the estimation problem
for 2-regime models with equal AR orders in the two regimes — that is, p; =

p2=p-
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3.2.1 Estimation of SETAR models

The parameters of interest in the 2-regime SETAR model (3.5) — that
is,¢; j,i =0,...,p,j=1,2,cand o2 —can conveniently be estimated by
sequential conditional least squares. Under the additional assumption that the
&rs are normally distributed, the resulting estimates are equivalent to maximum
likelihood estimates.

To see why least squares is the appropriate estimation method, rewrite (3.5) as

yr = (90,1 +P1,1Vt—1+ -+ dp1Yi—p)[yr—1 < cl

+ (P02 + Pro2ye—1+ -+ Pp2yi—p)yi—1 > c]l+ &,
(3.21)

or more compactly as
Vi = ¢;xtl[)’t—1 <cl]+ ¢éxtl[)’t—l > cl+¢g, (3.22)

Where ¢] = (¢0,], ¢1,j9 cve d’p,j)/v .] = 15 2» and Xy = (1’ yl—l’ DR} Yt—p)/-
Note that where the threshold c is fixed, the model is linear in the remaining
parameters. Estimates of ¢ = (¢}, ¢})’ are then easily obtained by OLS as

n -1 n
$(c) = (Z X (c)xt<c)’> (Z xt<c>y,> : (3.23)
t=1 t=1

where x; (¢) = (x/I[y;—1 < cl, xI[y;—1 > c])’ and the notation ¢(c) is used to
indicate that the estimate of ¢ is conditional upon c. The corresponding residuals
are denoted & (c) = y; — $(c)'x;(c) with variance 62(c) = % Y1 é (c)?.
The least squares estimate of ¢ can be obtained by minimizing this residual
variance, that is

¢ = argmin 62(c), (3.24)

ceC

where C denotes the set of all allowable threshold values. The final estimates
of the autoregressive parameters are given by $ = $(&), while the residual
variance is estimated as 62 = 62(¢).

The set of allowable threshold values C in (3.24) should be such that each
regime contains enough observations for the estimator defined above to produce
reliable estimates of the autoregressive parameters. A popular choice for C is
to require that each regime contains at least a (pre-specified) fraction mq of the
observations, that is,

C={c| Yrym—n) = ¢ = Y(1-rnp)n—1)D}> (3.25)

where y(), . . ., ¥(n—1) denote the order statistics of the threshold variable y,_1,
Y©0) < -+ =< Yu—1), and [-] denotes integer part. A safe choice for 7y appears
to be 0.15.
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The minimization problem (3.24) can be solved by means of direct search. It
suffices to compute the residual variance 62(c) only for threshold values equal
to the order statistics of y,_ —thatis, for ¢ = y(;) for each i such that y(;y € C.
This follows from the observation that the value of 6’2(6‘) does not change as
c is varied between two consecutive order statistics, as no observations move
from one regime to the other in this case.

Chan (1993) demonstrates that the LS estimator of the threshold ¢ is consis-
tent at rate n and asymptotically independent of the other parameter estimates.
Chan (1993) also shows that the asymptotic distribution of ¢ depends upon many
nuisance parameters, for instance the true regression parameters ¢. Using an
alternative approach, Hansen (1997) derives a limiting distribution for ¢ that is
free of nuisance parameters apart from a scale parameter. The estimates of the
autoregressive parameters are consistent at the usual rate of ﬁ and asymptot-
ically normal.

Confidence intervals

The asymptotic distribution of the threshold estimate is available in
closed-form, so in principle it could be used to construct confidence intervals
for c. However, this requires estimation of the scale parameter in the distribution,
which appears to be quite cumbersome. Hansen (1997) therefore recommends
an alternative approach, which is based on inverting the likelihood ratio test-
statistic to test the hypothesis that the threshold is equal to some specific value
cp, given by

A2 _ /\2 A
M)_ (3.26)

LR(co) =n
(“o) ( %)
Notice that LR(Q = 0. The 100 - % confidence interval for the threshold is
given by the set C, consisting of those values of ¢ for which the null hypothesis
is not rejected at significance level . That is,

Cy = {c: LR(c) < z(a)), (3.27)

where z(a) is the 100 - o percentile of the asymptotic distribution of the
LR-statistic. These percentiles are given in Hansen (1997, table 1) for various
values of o. The set Cy provides a valid confidence region as the probability
that the true threshold value is contained in C, approaches « as the sample size
n becomes large. An easy graphical method to obtain the region ax is to plot
the LR-statistic (3.26) against ¢ and draw a horizontal line at z(«). All points
for which the value of the statistic is below the line are included in C,,.

To see how this works in practice, SETAR models with p; = p, = 1 are
estimated for the series shown in panels (b) and (c) of figure 3.2. Figure 3.4
shows the sequences of LR-statistics for these examples. As can be seen, for the
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Figure 3.4 Sequences of LR-statistics for two series generated from the SETAR
model (3.1), with ¢p.| = —0.5, 12 = 0.5, ¢ = 0 and &, ~ NID(0, 0.252) The
95 per cent confidence region for the threshold is given by the values ¢ such that
LR(c) is below the 95 per cent critical value

first series the threshold estimate is quite precise, in the sense that the 95 per cent
confidence interval is fairly small. For the second series, on the other hand, the
threshold estimate is rather imprecise, judged from the wide confidence region.

The estimates of the autoregressive parameters ¢; and ¢, are asymp-
totically normal distributed. Hence, one might proceed as usual and con-
struct an asymptotic 95 per cent confidence interval for ¢; 2, for example, as
(¢1 —1. 96c7¢,1 2 ¢1 2+1. 960¢1 2) where 6 %) 2 is the estimated standard error
of ¢y 2. Hansen (1997) shows that the confidence intervals that are obtained in
this way do not yield good finite sample approximations. He therefore recom-
mends an alternative procedure, in which a 95 per cent confidence interval for
¢1 and ¢, is computed for each value of ¢ in the set Cy,, and the union of these
intervals is taken as the confidence interval for ¢ and ¢,. Some simulation
evidence suggests that « = 0.8 is a reasonable confidence level for the set C,,
in this case.

To illustrate the differences that can result from the two approaches, consider
again the SETAR models that are estimated for the series shown in panels (b)
and (c) of figure 3.2. For the series in panel (b), the confidence region 60,3 for
the threshold is rather tight (see figure 3.4). Hence it might be expected that
the two confidence intervals for the autoregressive parameters are roughly the
same, which indeed turns out to be the case. The point estimate and asymptotic
standard error of ¢  are equal to 0.54 and 0.12, respectively. The confidence
interval based on the asymptotic normal distribution thus would be (0.31,0.79).
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This is very similar to the confidence interval based on the region 60.8, which
is (0.28,0.81). For the second series, the point estimate of ¢; > is equal to
0.49, with asymptotic standard error 0.27. Hence, the usual confidence interval
for this parameter would be (—0.05, 1.03). The alternative approach based on
the set Cp g, on the other hand, renders the much wider confidence interval
(—0.17, 1.29). This large difference is caused by the fact that the threshold c is
estimated rather imprecisely and, therefore, the region Co g is rather wide. In
fact, as shown in figure 3.4, the region Cy g is disjoint. One segment is centred
around the point estimate of the threshold, which is equal to 0.01, while there
is another segment for threshold values in the range (—0.12, —0.08).

Choosing the threshold variable

So far, we have implicitly assumed that the threshold variable ¢;, which
defines the regime that occurs at any given point in time, is known (and equal to
v;—1). In practice, the appropriate threshold variable is of course unknown and
an important question is how it can be determined. In the context of SETAR
models we might restrict attention to lagged endogenous variables y,_; for
positive integers d as candidate threshold variables. It turns out that in this case d
can be estimated along with the other parameters in the model, by performing the
above calculations for various choices of d (say,d € {1, ..., d*} for some upper
bound d*), and estimate d as the value that minimizes the residual variance.

An alternative way to interpret this procedure is that effectively the grid

search in (3.24) is augmented with a search over d — that is, the minimization
problem becomes

(é,d) = argmin 62(c, d), (3.28)
ceC,deD
where D = {1, ..., d*} and the notation 62(c, d) is used to indicate that the

estimate of the residual variance now depends on d as well as on c. As the
parameter space for d is discrete, the least squares estimate dis super-consistent
and d can be treated as known when computing confidence intervals for the
remaining parameters, for example.

If one wants to allow for an exogenous threshold variable g;, a similar proce-
dure can be followed. In that case, the SETAR model is estimated with different
candidate threshold variables, and the variable that renders the best fit is selected
as the most appropriate one. See Chen (1995) for alternative methods of select-
ing the threshold variable.

Notice that there is a loop in the part of the specification procedure of SETAR
models discussed so far. Recall that to determine the appropriate orders of the
AR models in the two regimes with, for example, the AIC in (3.8), the threshold
variable was assumed known, while to determine the appropriate threshold
variable using a grid search as outlined above, the AR orders are assumed
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known. One way to break this loop is to include the search for the appropriate
threshold variable in the minimization of the information criterion — that is,
minimize the AIC over pj, p; and d as suggested by Tong (1990, p. 379). Of
course, this increases the computational burden considerably, as now p} - p5 -d*
different models have to be estimated.

Example 3.1: Dutch guilder We apply the part of the SETAR spec-
ification procedure outlined so far to weekly returns on the exchange
rate of the Dutch guilder vis-a-vis the US dollar. We use the sample
January 1980-December 1989 to specify the model, and hold back the remain-
ing observations for out-of-sample forecasting later in this chapter.

We start by determining the appropriate threshold variable and lag orders
in the SETAR model, using the AIC in (3.8). In addition to lagged returns
Yi—d, we also consider a measure of volatility as candidate threshold variable
(cf. LeBaron, 1992). To be precise, we use the variable vy, j, which is defined
as the average absolute returns over the last j weeks, that is,

13
V== ) Vil (3.29)

Ji=o
We consider v, ; with j =1, ..., 4 as possible threshold variables. Lagged
returns y; g4 are considered ford = 1, ..., d* withd™* = 4. In the minimization

of the AIC, we consider only models in which the AR orders in the two regimes
are equal, and not larger than p* = 5. The results are shown in table 3.2.

Table 3.2 AIC values for SETAR models for weekly returns on the Dutch guilder
exchange rate

Threshold b

variable 0 1 2 3 4 5
Yi—1 370.88 371.83 370.28 347.32 341.51 413.40
Yi-2 393.41 408.90 404.47 408.32 415.40 408.49
V-3 402.38 399.76 400.72 403.39 401.50 404.42
Yi—4 385.64 402.03 393.58 407.26 403.30 398.38
Vr—1,1 354.37 354.74 358.25 361.12 361.97 363.23
Vr—1,2 363.00 378.34 378.89 351.46 348.11 336.38
Vi—13 337.09 34991 349.15 331.76 333.48 330.70
Vr—1,4 332.75 327.38 328.03 347.79 351.52 324.62

Note: Values of AIC for SETAR models estimated on weekly returns on the Dutch
guilder exchange rate vis-a-vis the US dollar.
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Table 3.3 SETAR estimates for weekly percentage returns on the Dutch guilder
exchange rate

Confidence intervals

Asymptotic LR-statistic

Variable Estimate Low High Low High
vr—1,4 < ¢ (380 obs.)

Constant 0.034 —0.089 0.157 —0.093 0.210
V-1 0.245 0.063 0.427 —0.017 0.614
Yt—2 0.172 0.011 0.333 —0.047 0.581
Vr—1,4 > ¢ (131 obs.)

Constant 0.266 —0.071 0.603 —0.149 0.692
Ye—1 —0.116 —0.300 0.068 —0.288 0.082
V-2 0.051 —0.110 0.212 —0.096 0.223
Threshold 1.151 — 0.534 1.532

Notes: Estimates of SETAR model for weekly returns on the Dutch guilder exchange
rate vis-a-vis the US dollar.

The columns headed ‘Asymptotic’ and ‘LR-statistic’ contain limits of the confidence
intervals based on the asymptotic normal distribution and on the confidence set for the
threshold estimate a)_g, respectively.

Minimization of the AIC suggests that the average absolute return over the
previous four weeks, v;_1 4, is the appropriate threshold variable, with an AR
order p = 5. Note, however, that the values of the AIC for p = 1 and p = 2 (and
V1,4 as threshold variable) are quite close to the minimum. For convenience,
we proceed with estimating a SETAR model with p = 2. Estimates of the
parameters of the model are given in table 3.3. Heteroscedasticity-consistent
standard errors and the limits of the confidence intervals based on the set Cy g
are reported as well.

It appears that the AR parameters in the high volatility regime, v;—1 4 > ¢
are insignificant as well — even when the confidence interval is based on
the asymptotic normal distribution. This corresponds with the findings of
Kriger and Kugler (1993), who estimate 3-regime models with y,_| as thresh-
old variable. For four out of their five exchange rates, they find that the return
is best described as a white noise series in the outer regimes, where y,_1 is
large in absolute value (and thus volatility is high), and by means of a sta-
tionary AR model in the middle regime, where y;_; (and thus volatility) is
moderate.
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3.2.2 Estimation of STAR models

Estimation of the parameters in the STAR model (3.6) is a relatively
straightforward application of nonlinear least squares (NLS) — that is, the param-
eters 0 = (¢}, ¢}, v, ¢)’ can be estimated as

argmln 0,6) = argmln Z yi — F(x; 0)12, (3.30)
t=1

where F (x;; 0) is the skeleton of the model, that is,

F(x:;0) = ¢/1xt(1 —G(yi—137,0) + ¢éxtG(yt—l; Y, 0).

Under the additional assumption that the errors &; are normally distributed,
NLS is equivalent to maximum likelihood. Otherwise, the NLS estimates can
be interpreted as quasi-maximum likelihood estimates. Under certain regularity
conditions (which are discussed in White and Domowitz, 1984; Gallant, 1987,
Potscher and Prucha, 1997, among others), the NLS estimates are consistent
and asymptotically normal, that is,

VT @ —6y) — N, C), (3.31)

where 6 denotes the true parameter values. The asymptotlc covariance-matrix
C of 6 can be estimated consistently as A BnA , Where An is the Hessian
evaluated at 6

~ 1 <& R
n=—=3 Vaq®
t=1

1 & A N N
==Y (VF(x; O)VF (x5 0) — V*F (x;3 0))), (3.32)
n
t=1

with g;(9) = [y; — F(xs; 0)1%, VF (x;; 0) = 9F (x;; 6)/36, and B), is the outer
product of the gradient

1 ~ ~ 1 N ~
= - E Vq (0)Vq (0) = — E 5;2VF(xz; OYVF (x;;0) . (3.33)
i3 i3

The estimation can be performed using any conventional nonlinear opti-
mization procedure (see Quandt, 1983; Hamilton, 1994, section 5.7; Hendry,
1995, appendix AS5, for surveys). Issues that deserve particular attention are
the choice of starting values for the optimization algorithm, concentrating the
sum of squares function and the estimate of the smoothness parameter y in the
transition function.
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Starting values

Obviously, the burden put on the optimization algorithm can be allevi-
ated by using good starting values. Note that for fixed values of the parameters
in the transition function, y and c, the STAR model is linear in the autoregres-
sive parameters ¢| and ¢, similar to the SETAR model. Thus, conditional upon
y and c, estimates of ¢ = (¢], ¢) can be obtained by OLS as

n —1 n
¢3<y,c>=(Zx,(y,c)x,(y,c)’> (thw,c)yt), (3.34)
t=1 t=1

where x;(y,¢) = (x;(1 — G(y;—1; 7. ¢)), x{G(yt—1; ¥, ¢)) and the notation
¢ (v, c) is used to indicate that the estimate of ¢ is conditional upon y and c.
The corresponding residuals can be computed as & = y; — 43()/, ¢)'x(y,c)
with associated variance &2()/, c) = n1 :’:1 étz(y, ¢). A convenient method
to obtain sensible starting values for the nonlinear optimization algorithm then
is to perform a two-dimensional grid search over y and c¢ and select those
parameter estimates which render the smallest estimate for the residual variance

&2()/, c).

Concentrating the sum of squares function

As suggested by Leybourne, Newbold and Vougas (1998), another
way to simplify the estimation problem is to concentrate the sum of squares
function. Owing to the fact that the STAR model is linear in the autoregressive
parameters for given values of y and c, the sum of squares function Q,(0) can
be concentrated with respect to ¢| and ¢, as

On(y.c) =Y (i — ¢ ) xi (v, ). (3.35)
t=1

This reduces the dimensionality of the NLS estimation problem considerably,
as the sum of squares function as given in (3.35) needs to be minimized with
respect to the two parameters y and c only.

The estimate of y

It turns out to be notoriously difficult to obtain a precise estimate
of the smoothness parameter y. One reason for this is that for large values
of y, the shape of the logistic function (3.4) changes only little. Hence, to
obtain an accurate estimate of y one needs many observations in the immediate
neighbourhood of the threshold c. As this is typically not the case, the estimate
of y is rather imprecise in general and often appears to be insignificant when
judged by its z-statistic. This estimation problem is discussed in a more general
context in Bates and Watts (1988, p. 87). The main point to be taken is that
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insignificance of the estimate of y should not be interpreted as evidence against
the presence of STAR-type nonlinearity. This should be assessed by means of
different diagnostics, some of which are discussed below.

3.2.3 Estimation of the Markov-Switching model

The parameters in the MSW model can be estimated using maximum
likelihood techniques. However, owing to the fact that the Markov-process s;
is not observed, the estimation problem is highly nonstandard. The aim of the
estimation procedure in fact is not only to obtain estimates of the parameters
in the autoregressive models in the different regimes and the probabilities of
transition from one regime to the other, but also to obtain an estimate of the state
that occurs at each point of the sample — or, more precisely, the probabilities
with which each state occurs at each point in time.

Consider the 2-regime MSW model with an AR(p) specification in both
regimes,

_Jeoat o1+ dpavi—pte ifs =1,

;= ) (3.36)
o2+ 12yi—1+ -+ dpoyi—p+e ifs =2,
or in shorthand notation,
Yr = ¢0,s; + ¢1,st Yi—1+ -+ ¢p,s;yt7p + & (3.37)

Under the additional assumption that the &; in (3.36) are normally distributed
(conditional upon the history €2;_1), the density of y; conditional on the regime
sy and the history €2, is a normal distribution with mean ¢g 5, + ¢1,5, yr—1 +

-+ @p, s, yr—p and variance o2,
: 1 - — ¢}xt)2
f(ytlst =7 Qt_]; 9) = T exp 20.2 , (338)

where again x; = (1, y—1,...,yi—p), ¢; = (d0,j,P1,j>--.,Pp, ;) for
j = 1,2, and 6 is a vector that contains all parameters in the model,
6 = (91,95, P11, P22, o2)'. Notice that the parameters pi; and py> com-
pletely define all transition probabilities because, for example, p1o = 1 — p11.
Given that the state s; is unobserved, the conditional log likelihood for the rth
observation /;(9) is given by the log of the density of y; conditional only upon
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the history Q;_1 —thatis, [;(0) = In f(y;|Q2;—1; ). The density f (y;|2;—1; 6)
can be obtained from the joint density of y, and s; as follows,

SOl 1:0) = fr st = 1Q2—1;0) + f(ye, 50 = 2|82,-1:0)
2
=D fOilsi = j. Q-1:0) - Psi = jI—1:0),
j=1
(3.39)

where the second equality follows directly from the basic law of conditional
probability, which states that the joint probability of two events A and B,
P(A and B), isequalto P(A|B)P(B).

In order to be able to compute the density (3.39), we obviously need to
quantify the conditional probabilities of being in either regime given the history
of the process, P (s; = j|Q2;—1; 0).Infact, it turns out that in order to develop the
maximum likelihood estimates of the parameters in the model, three different
estimates of the probabilities of each of the regimes occurring at time ¢ are
needed: estimates of the probability that the process is in regime j at time ¢
given all observations up to time 7 — 1, given all observations up to and including
time ¢ and given all observations in the entire sample. These estimates usually
are called, respectively, the forecast, inference and smoothed inference of the
regime probabilities.

Intuitively, if the regime that occurs at time t — 1 were known and included
in the information set €2;_1, the optimal forecasts of the regime probabilities
are simply equal to the transition probabilities of the Markov-process s;. More
formally,

ét|t71 =P &1, (3.40)

where é‘ﬂ —1 denotes the 2 x 1 vector containing the conditional probabilities of
interest — that is, é‘t‘,_l = (P(s; = 112;-1;0), P(s; = 2|Q%_1;0)),&_1 =
(1,0)ifs;_1 = 1and & _; = (0, 1) if s, = 2, and P is the matrix containing
the transition probabilities,

P:( Pt 1_p22>. (3.41)
l—pn  p2

In practice the regime at time ¢ — 1 is unknown, as it is unobservable. The best
one can do is to replace &_1 in (3.40) by an estimate of the probabilities of
each regime occurring at time ¢ — 1 conditional upon all information up to and
including the observation at + — 1 itself. Denote the 2 x 1 vector containing
the optimal in]ference concerning the regime probabilities as ét—llt—l- Given a
starting value &1|o and values of the parameters contained in 6, one can compute
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the optimal forecast and inference for the conditional regime probabilities by
iterating on the pair of equations

A Ei10f
b= g1 (3.42)
V10 f))
Er =P &, (3.43)
for t = 1,...,n, where f, denotes the vector containing the conditional

densities (3.38) for the two regimes, 1is a2 x 1 vector of ones and the symbol
O indicates element-by-element multiplication. The necessary starting values
é‘ 1|0 can either be taken to be a fixed vector of constants which sum to unity, or
can be included as separate parameters that need to be estimated. See Hamilton
(1994, p. 693) for an intuitive explanation of why this algorithm works.

Finally, let §,| » denote the vector which contains the smoothed inference on
the regime probabilities — that is, estimates of the probability that regime j
occurs at time ¢ given all available observations, P (s; = j|$2,; 6). Kim (1993)
develops an algorithm to obtain these regime probabilities from the conditional
probabilities §;| ; and §z+1 ¢ given by (3.42) and (3.43). The smoothed inference
on the regime probabilities at time ¢ is computed as

Ein = &1 © (P'lers1pn =+ Er110)), (3.44)

where = indicates element-by-element division. The algorithm runs backwards
through the sample — that is, starting with §n|n from (3.42) one applies (3.44)
fort =n—1,n—2,..., 1. For more details we refer to Kim (1993).

Returning to (3.42), notice that the denominator of the right-hand-side expres-
sion actually is the conditional log likelihood for the observation at time ¢ as
given in (3.39), which follows directly from the definitions of §t| r—1and f;. As
shown in Hamilton (1990), the maximum likelihood estimates of the transition
probabilities are given by

b= S P(st = J,Si—1 = i|Qn; 0)
ly — . A~
Y8, P(si—1 = i3 0)

(3.45)

where 6 denotes the maximum likelihood estimates of . It is also shown in
Hamilton (1990) that these satisfy the first-order conditions

n
D =X P(si = jIQu: ) =0, j=1,2, (3.46)

t=1
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and

n

1 2 R X
= ;ZZ(% —¢’}Xt)2P(Sr = j|SQn; 0). (3.47)
=1 j=1

Notice that (3.46) implies that é ; is the estimate corresponding to a weighted
least squares regression of y, on x;, with weights given by the square root of
the smoothed probability of regime j occurring. Hence, the estimates ¢§ j can
be obtained as

n -1 /4
¢j = (Z xt(f)xt(J')’) (Z xt(j))’t(j)) , (3.48)
=1 =1
where

i (7) = ye/ P(se = j1Q;: 6),
x1(j) = xy) P(st = jIQ3 0).

Finally, the ML estimate of the residual variance is obtained using (3.47) as the
mean of the squared residuals from the two WLS regressions.

Putting all the above elements together suggests the following iterative pro-
cedure to estimate the parameters of the MSW model. Given starting values
for the parameter vector 6O first compute the smoothed regime probabilities
using (3.42), (3.43) and (3.44). Next, the smoothed regime probabilities §,‘n are
combined with the initial estimates of the transmon probabilities p; ) to obtain
new estimates of the transition probabilities p ij ) from (3.45). Finally, (3.48)
and (3.47) can be used to obtain a new set of estimates of the autoregressive
parameters and the residual variance. Combined with the new estimates of the
transition probabilities, this gives a new set of estimates for all parameters in
the model, 6. Iterating this procedure renders estimates 6@ 6@ ... and
this can be continued until convergence occurs — that is, until the estimates in
subsequent iterations are the same. This procedure turns out to be an applica-
tion of the Expectation Maximization (EM) algorithm developed by Dempster,
Laird and Rubin (1977). It can be shown that each iteration of this procedure
increases the value of the likelihood function, which guarantees that the final
estimates are ML estimates.

Example 3.2: Frankfurt stock index We estimate a 2-regime MSW model
with an AR(2) model in both regimes for weekly absolute returns on the
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Table 3.4  Parameter estimates for a MSW model for weekly absolute returns on the
Frankfurt stock index

90,1 1,1 2,1 90,2 1,2 $22 P1,1 D22

0.909 0.173 0.294 5.860 —0.505 —0.596 0.952 0.754
(0.206)  (0.070)  (0.072)  (0.954) (0.160) (0.172) ~ (0.022) (0.132)

Frankfurt stock index over the period January 1988-December 1992 (260
observations). Table 3.4 contains the estimates of the autoregressive param-
eters and the parameters determining the regime transition probabilities, p1;
and pp;. Figure 3.5 shows the filtered and smoothed inference on the regime
probabilities étlt and §,|n.

Based on the estimated transition probabilities p11 and pj> it appears that
the regime s; = 1 is much more persistent than the regime s; = 2, where this
last regime seems to correspond with more volatile periods. The unconditional
regime probabilities are computed from (3.17) and (3.18) as P(s; = 1) = 0.84
and P(s; = 2) = 0.16. Indeed, the regime probabilities in figure 3.5 confirm
that the regime s; = 1 occurs much more often.

3.2.4 Robust estimation of SETAR models

In section 2.5 it was argued that especially additive outliers (AOs)
affect inference in linear time series models, as such aberrant observations lead
to biased estimates of the parameters in the model, among other things. It might
be expected that AOs have similar effects in nonlinear time series models,
although this has not yet been investigated rigorously.

Extending the GM estimation method discussed in section 2.5 to esti-
mate the parameters of a SETAR model turns out to be fairly straightfor-
ward (see Chan and Cheung, 1994). Consider for example the 2-regime SETAR
model

_ if y,_1 <ec,
V= P1,1yr—1 +& ify 1 <c (3.49)

d12yr-1+& ify_1>c

For fixed threshold c, the autoregressive parameters ¢ 1 and ¢ 2 can be esti-
mated separately by applying the GM estimator discussed in section 2.5 using
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Figure 3.5 The upper graph shows absolute weekly returns on the Frankfurt stock
index: observations for which the smoothed probability of being in regime 1 is smaller

than 0.5 are marked with a solid circle; the lower graph contains the filtered (dashed
line) and smoothed (solid line) probability for the regime s, = 1

the observations in the particular regime only, that is,

(n) ~(n)
2(n+1) Zyt 1<Cw’<¢11’ ))’t—lyz

L1 = " , (3.50)
>y jzeWr (¢§"f (")>y,,
(n) (n)
n > Wy <¢1 20, ))’t—lyz
Y,lzﬂ) alad (3.51)

(n) ~(n) ’
2> wr(‘f’lz’ eZ)ytf
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where o, j, j = 1,2 is the scale of the residuals in each of the regimes. To
estimate the threshold ¢, notice that the GM estimator (2.115) of ¢ in the AR(1)
model can be thought of as minimizing the objective function

D o1, 5 — $1yi-1)/0e), (3.52)

t=1

where p(y;—1, r¢) is such that 9o (yr—1, 1) /0r: = (yr — d1Yr—1)wy(ry). Sim-
ilarly, the GM estimators of parameters in the SETAR model (3.49) can be
thought of as minimizing the composite objective function

Y pGiot O — ¢1.1yi-1)/0%)

R

+ D pGimt, O — d12y-1)/0%), (3.53)

Yr—1>¢

for fixed c. The threshold itself can be estimated by minimizing (3.53) with
respect to ¢, using a grid search as described in subsection 3.2.1.

To our knowledge, robust estimation methods for STAR and MSW models
still have to be developed. The simulation results in van Dijk (1999, chapter 7)
show that the usual GM estimators cannot readily be applied.

Example 3.1: Dutch guilder We apply the robust estimation procedure
as outlined above to estimate a SETAR model for weekly returns on the
exchange rate of the Dutch guilder vis-a-vis the US dollar, over the period
January 1980-December 1989. The specification of the model is taken as
previously — that is, we use the average absolute returns over the past four
weeks v;_1 4, as given in (3.29), as the threshold variable and use an AR(p)
model with p = 2 in both regimes. We use the weight function based on the
polynomial yr-function given in (2.118).

The robust estimation method gives rather different results than the standard
method, as reported in table 3.3. Most importantly, the robust estimate of the
threshold is equal to ¢ = 0.385, which is considerably lower than the ‘standard’
estimate ¢ = 1.151. Consequently, the lower regime (v;_j 4 < ¢) now con-
tains only 87 observations, whereas the upper regime contains the remaining
434 observations. The parameters of the AR(2) model in the lower regime are
estimated as ¢A50,1 = —0.059, qAbl,l = 0.298, ¢A>2,1 = 0.526. The correspond-
ing estimates of the AR(2) model in the upper regime are ¢A>0,2 = —0.053,
b1.20 =0.012, ¢35 = 0.060.

The upper panel of figure 3.6 shows the weekly returns series, with obser-
vations that receive weight less than one in the robust estimation procedure
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Figure 3.6  The upper graph shows weekly returns on the Dutch guilder exchange
rate

Observations that receive a weight smaller than 1 in the outlier-robust estimation procedure
which is used to estimate a SETAR model, are marked with a solid circle, and observations
which are classified as being in the lower regime (v;_1 4 < 0.385) are marked with a cross;
the lower graph contains the actual weights wy

marked with circles and observations which belong to the lower regime marked
with crosses. The actual weights are shown in the lower panel of this figure.
It is seen the lower regime is realized mainly during the first few years in the
sample period, when volatility appeared to be smaller. Most outliers are found
in the second half of the sample with a large concentration in 1985, and are
associated with large positive or negative returns.




100 Nonlinear time series models in empirical finance

3.3 Testing for regime-switching nonlinearity

Perhaps the most important question that needs to be answered when consid-
ering regime-switching models is whether the additional regime(s) (relative to
the single regime in a linear AR model) add(s) significantly to explaining the
dynamic behaviour of the time series y;. One possible method of addressing
this question is to compare the in-sample fit of the regime-switching model with
that of a linear model. A natural approach is then to take the linear model as the
null hypothesis and the regime-switching model as the alternative. In the case
of a 2-regime model, the null hypothesis can be expressed as equality of the
autoregressive parameters in the two regimes — that is, Hy : ¢1 = ¢ — which
is tested against the alternative hypothesis H; : ¢; 1 # ¢; 2 for at least one
ief{0,...,p}

The statistical tests which take either one of the three regime-switching
models as the alternative all suffer from the problem of so-called unidentified
nuisance parameters under the null hypothesis. By this it is meant that the non-
linear model contains certain parameters which are not restricted under the null
hypothesis and which are not present in the linear model. In both the SETAR
and STAR models, the threshold c is such an unidentified nuisance parameter,
whereas in the STAR model, the smoothness parameter y is one as well. In
the MSW model, the unidentified nuisance parameters are py; and pp», which
define the transition probabilities between the two regimes. The main conse-
quence of the presence of such parameters is that the conventional statistical
theory cannot be applied to obtain the (asymptotic) distribution of the test-
statistics (see Davies, 1977, 1987 and Hansen, 1996, among others). Instead,
the test-statistics tend to have a nonstandard distribution, for which an analyti-
cal expression is often not available. This implies that critical values have to be
determined by means of simulation methods.

Although estimation methods for the regime-switching models are readily
available, it still seems a good idea to explore the potential usefulness of these
models before actually attempting to estimate them. It turns out that no such
tests against the SETAR and MSW models are available. Only after estimat-
ing a 2-regime model can one assess the relevance of the additional regime
(relative to a linear AR model, which might be thought of as a 1-regime
model). For the STAR model, on the other hand, Lagrange Multiplier (LM)-
statistics are available, which avoid estimating the model under the alternative
hypothesis.

3.3.1 Testing the SETAR model

Testing linearity against the alternative of a SETAR model is discussed
in Chan (1990, 1991), Chan and Tong (1990) and Hansen (1997, 2000). A solu-
tion to the above-mentioned identification problem here is to use the estimates
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of the SETAR model to define a likelihood ratio or F-statistic which tests the
restrictions as given by the null hypothesis, that is

52 _ &2
o

where &2 is an estimate of the residual variance under the null hypothesis of

linearity, 62 = S &2 with & = y — ¢'x:, and 62 is defined just below
(3.24). Notice that the statistic (3.54) is a monotonic transformation of &2,
in the sense that F(¢) always increases when 62 decreases, and vice versa.
As ¢ minimizes the residual variance over the set C of allowable threshold
values, F(¢) is equivalent to the supremum over this set C of the pointwise
test-statistic F(c),

F(¢) = sup F(c), (3.55)
ceC
where
52 —6%(c)

where 62(c) is defined just below (3.34).

The pointwise F(c)-statistic can also be computed as nR> with R? the
coefficient of determination of an artificial regression of & on x;1(y;—1 < ¢)
and x; I (y;—1 > c) (or, equivalently, on x; and x; I (y;—1 < ¢)). Hence, F(c) has
an asymptotic x 2 distribution with p + 1 degrees of freedom. The test-statistic
(3.55) is therefore the supremum of a number of dependent statistics, each of
which follows an asymptotic x > distribution. This shows that the distribution of
F(¢) itself is nonstandard. Because the exact form of the dependence between
the different F (c)s is difficult to analyse or characterize, critical values are most
easily determined by means of simulation (see Hansen 1997, 2000, for more
details).

3.3.2 Testing the STAR model

Testing linearity against the STAR model offers the opportunity to
illustrate the problems of unidentified nuisance parameters in a different manner,
in the sense that more than one restriction can be used to make the STAR model
collapse to a linear AR model. Besides equality of the AR parameters in the
two regimes, Hy : ¢1 = ¢, the null hypothesis of linearity can alternatively
be expressed as H(/) :y = 0.If y = 0, the logistic function (3.4) is equal to
0.5 for all values of y;_; and the STAR model reduces to an AR model with
parameters (¢ + ¢2)/2. Whichever formulation of the null hypothesis is used,
the model contains unidentified parameters. Where Hy is used to characterize
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the null hypothesis of linearity, the parameters y and c in the transition function
are the unidentified nuisance parameters. Where H(g is used, the threshold ¢ and
the parameters ¢ and ¢, are. To see the latter, note that under H), ¢ and ¢»
can take any value as long as their average remains the same.

The approach that has been used in this case to solve the identification prob-
lem is slightly different from the one discussed above for the SETAR model. It
turns out that in the case of testing against the alternative of a STAR model it
is feasible to use a Lagrange Multiplier (LM)-statistic which has an asymptotic
x? distribution. The main advantage of the ability to use this statistic is that it
is not necessary to estimate the model under the alternative hypothesis.

To demonstrate why the conventional distribution theory is still applicable,
we describe the analysis in Luukkonen, Saikkonen and Terésvirta (1988). Con-
sider again the STAR model as given in (3.6), and rewrite this as

1
Ve = §(¢1 +¢2) x4+ (¢ — d1) x:G*(yi—1; v, ) + &1, (3.57)

where G*(y;_1; ¥, ¢) = G(y;—_1; ¥, ¢)—1/2. Notice that under the null hypoth-
esisy =0, G*(y;_1, 0, ¢) = 0. Luukkonen, Saikkonen and Terasvirta (1988)
suggest approximating the function G*(y;_1, ¥, ¢) with a first-order Taylor
approximation around y = 0, that is,

0G*(yi—1; ¥, ©)
T1(yi—15 ¥, ) ~ G*(y1-1:0,0) + ¥ y’a—y
Y y:O
1
= ZV()’t—l —c), (3.58)

where we have used the fact that G*(y;_1; 0, ¢) = 0. After substituting 7y (-)
for GJ(-) in (3.57) and rearranging terms this gives the auxiliary regression
model

yi = Bo,o + Boki + BiXiyi—1 + 1t (3.59)

where X, = (yi—1,....y—p) and B; = (B1,j,....Bp,;), j = 0,1. The
relationships between the parameters in the auxiliary regression model (3.59)
and the parameters in the STAR model (3.57) can be shown to be

1
Bo.0 = (¢0,1 + ¢0,2)/2 — ZVC(¢0,2 — ¢0.,1)> (3.60)

1
B1,0= (P11 +¢12)/2 - ZV(C(¢1,2 —¢1,1) — (0,2 — $0,1)),
(3.61)

1
Bio=(@i1+¢i2)/2 = Jye(diz— i), 1=2.....p. (3.62)

1 )
Bi1 = ZVC((I%‘,z —¢i1), i=1,...,p. (3.63)
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The above equations demonstrate that the restriction y = 0implies 8; 1 = 0 for
i =1,..., p. Hence testing the null hypothesis Hé 1y = 01in (3.57) is equiv-
alent to testing the null hypothesis Hy : 1 = 0 in (3.59). This null hypothesis
can be tested by a standard variable addition test-statistic in a straightforward
manner. Under the null hypothesis of linearity, the test-statistic has a x 2 distri-
bution with p degrees of freedom asymptotically. As the statistic does not test
the original null hypothesis Hé 1y = 0 but rather the auxiliary null hypothesis
Hy : B1 = 0, this test is usually referred to as an LM-type-statistic.

The test-statistic described above can also be developed from first principles
as a genuine LM-statistic (see Granger and Terésvirta, 1993, pp. 71-2). It can
be shown that the statistic is in fact the supremum of the pointwise-statistics for
fixed ¢p — ¢ and ¢ and, hence, is similar in spirit to the test-statistic against
the SETAR alternative discussed in the previous subsection.

As noted by Luukkonen, Saikkonen and Terdsvirta (1988), the above test-
statistic does not have power in situations where only the intercept is different
acrossregimes —thatis, when ¢y | # ¢p2but; | = ¢; 2fori =1, ..., p. This
is seen immediately from (3.63) which shows thatnone of the 8; 1, i = 1,..., p
parameters depends on ¢ > and/or ¢ 1. Luukkonen, Saikkonen and Terésvirta
(1988) suggest remedying this deficiency by replacing the transition function
G*(y;—1; ¥, ¢) by a third-order Taylor approximation instead, that is,

AG*(yr—15 ¥, ©)
3)/ y=0

1 - 3G*(y,—1; v, ¢
+—)/3 O 31 Y, )
6 ay

3(yi—1;7,0) =y

y=0
=L LIV )3 (3.64)
= 4V Yt—1 c 487/ Yt—1 c), .

where we have used the fact the second derivative of G*(y;_1; y, ¢) withrespect
to y evaluated at y = 0 equals zero. Using this approximation yields the
auxiliary model

i = Bo.o + BoF: + BEiyi—1 + BhE v+ By 4+, (3.65)

where oo and the B;, j = 1,2,3, again are functions of the parameters
@1, P2, y and c. Inspection of the exact relationships demonstrates that the null
hypothesis Hj : ¥ = 0 now corresponds to Hy : 1 = 2 = p3 = 0, which
again can be tested by a standard LM-type test. Under the null hypothesis of
linearity, the test-statistic has a x2 distribution with 3p degrees of freedom
asymptotically.

In small samples, the usual recommendation is to use F'-versions of the LM-
test-statistics, as these have better size and power properties. The F-version of
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the test-statistic based on (3.65) can be computed as follows:

1. estimate the model under the null hypothesis of linearity by regressing y;
on x;. Compute the residuals &; and the sum of squared residuals SSRy =
Y8 |

2. estimate the auxiliary regression of & on x; and X; ytjfl, j=1,2,3, and
compute the sum of squared residuals from this regression SSR

3. the LM test-statistic can be computed as

_ (SSRo — SSR1)/3p

LM = ,
SSRi1/(n —4p — 1)

(3.66)

and is approximately F-distributed with 3p and n — 4p — 1 degrees of
freedom under the null hypothesis.

Choosing the transition variable

Terdsvirta (1994) suggests that the LM-type test (3.66) can also be
used to select the appropriate transition variable in the STAR model. The statis-
tic is computed for several candidate transition variables and the one for which
the p-value of the test is smallest is selected as the true transition variable. The
rationale behind this procedure is that the test should have maximum power
if the alternative model is correctly specified — that is, if the correct transi-
tion variable is used. Simulation results in Terdsvirta (1994) suggest that this
approach works quite well, at least in a univariate setting.

3.3.3 Testing the Markov-Switching model

When assessing the relevance of the MSW model, a natural approach
is to use a Likelihood Ratio (LR)-statistic, which tests the null hypothesis of
linearity against the alternative of a MSW model — that is, Hy : ¢1 = ¢» is
tested by means of the test-statistic

LRysw =Lpsw — Lar, (3.67)

where £ yrsw and L4 are the values of the log likelihood functions correspond-
ing to the MSW and AR models, respectively. As noted in the introduction
to this section, the parameters pj; and p;, defining the transition probabil-
ities in the MSW model are unidentified nuisance parameters under the null
hypothesis. As shown by Hansen (1992), the LR-statistic (3.67) has a nonstan-
dard distribution which cannot be characterized analytically. Critical values to
determine the significance of the test-statistic therefore have to be determined
by means of simulation. The basic structure of such a simulation experiment is
that one generates a large number of artificial time series y; according to the
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model that holds under the null hypothesis. Next, one estimates both AR and
MSW models for each artificial time series and computes the corresponding
LR-statistic LR}y, according to (3.67). These test-statistics might be used to
obtain an estimate of the complete distribution of the test-statistic under the
null hypothesis, or simply to compute the p-value of the LR-statistic for the
true time series, which is given by the fraction of artificial samples for which
LRI/ISW exceeds the observed LRy sw. Given that the estimation of the MSW
model can be rather time-consuming, this procedure demands a considerable
amount of computing time.

3.3.4 Outliers and tests for nonlinearity

A consequence of the presence of additive outliers (AOs) is that they
affect diagnostic statistics which one might want to use prior to estimating a
nonlinear model. van Dijk, Franses and Lucas (1999a) analyse the properties
of the tests against STAR nonlinearity discussed in subsection 3.3.2 in the pres-
ence of AOs. It is shown that in the case of a linear process with some AOs
the tests for STAR nonlinearity tend to reject the correct null hypothesis of
linearity too often, even asymptotically. van Dijk, Franses and Lucas (1999a)
suggest using outlier-robust estimation techniques, as discussed in section 2.5
to estimate the model under the null hypothesis as a solution to this problem. In
addition to rendering better estimates of the model under the null hypothesis,
robust estimation procedures allow us to construct test-statistics that are robust
to outliers. As shown by van Dijk, Franses and Lucas (1999a), a robust equiv-
alent to test Hy' : f1 = p2 = B3 = 0in (3.65) is nR2, using the R? from the
regression of the weighted residuals ¥/ (7;) = w(7;)7; on the weighted regres-
sors Wy (x;) © (x; X1 yr—1 i,ytz_l i,y?_l)’. The weights W, (7,) and Wy (x;) are
obtained from GM estimation of the AR(p) model, analogous to (2.121). The
resulting LM-type-statistic has an asymptotic x 2 distribution with 3p degrees
of freedom. An outlier-robust equivalent of the F-version (3.66) can also be
computed straightforwardly.

3.3.5 Heteroscedasticity and tests for nonlinearity

Neglected heteroscedasticity may also lead to spurious rejection of
the null hypothesis of linearity. Intuitively, this can be understood from the
auxiliary model (3.65), for example. Davidson and MacKinnon (1985) and
Wooldridge (1990, 1991) have developed specification tests that can be used in
the presence of heteroscedasticity, without the need to specify the form of the
heteroscedasticity (which often is unknown). Their procedures may be read-
ily applied to robustify linearity tests (see also Granger and Teridsvirta, 1993,
pp. 69-70; Hansen, 1996).
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For example, a heteroscedasticity-consistent (HCC) variant of the LM-type
test-statistic against STAR based upon (3.65) can be computed as follows:

1. regress y; on x; and obtain the residuals i,

2. regress the auxiliary regressors X; ytjil, Jj =1,2,3, on x; and compute the
residuals 7;

3. weight the residuals 7; from the regression in (2) with the residuals i,
obtained in (1) and regress 1 on ii;7;; the explained sum of squares from
this regression is the LM-type-statistic.

Similar procedures can be used to compute HCC tests against the SETAR alter-

native (see Hansen, 1997; Wong and Li, 1997) and the MSW alternative.

Example 3.1: Dutch guilder Table 3.5 contains p-values for the
heteroscedasticity-robust variant of the test of linearity against a 2-regime
SETAR alternative applied to the weekly returns on the Dutch guilder exchange
rate. We consider the same threshold variables and autoregressive orders as
before. The null hypothesis can be rejected at conventional significance levels
for several combinations of p and ¢;. The smallest p-values are achieved where
the threshold variable is the average volatility during the past four weeks v;_1 4
and p = 1 and 2. This confirms the choices made in the previous section.
Table 3.6 contains p-values of the LM-type test against STAR nonlinearity,
based on an AR(2) model. We give p-values for the standard, outlier-robust
and heteroscedasticity-consistent variants to highlight the differences that can
occur. For example, where y;_; is considered as the transition variable, one
might be inclined to reject the null hypothesis of linearity ford = 1, 2, 3, based

Table 3.5 p-values for HCC test of linearity against a SETAR alternative for weekly
returns on the Dutch guilder exchange rate

Threshold P

variable 0 1 2 3 4 5
Ye—1 0.698 0.315 0.685 0.696 0.918 0.908
Yi-2 0.131 0.201 0.871 0.969 0.933 0.584
Vi3 0.592 0.376 0.706 0.137 0.378 0.430
Yi—4 0.060 0.147 0.337 0.373 0.819 0.776
Vi—1.1 0.301 0.544 0.437 0.224 0.443 0.549
Vr—1,2 0.330 0.062 0.223 0.049 0.066 0.098
Vi—13 0.571 0.090 0.075 0.059 0.128 0.139
Vi—1.4 0.090 0.004 0.015 0.027 0.086 0.021

Note: p-values of HCC test of linearity against 2-regime SETAR alternative for weekly
returns on the Dutch guilder exchange rate vis-a-vis the US dollar.
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Table 3.6  p-values of LM-type test for STAR nonlinearity for
weekly returns on the Dutch guilder exchange rate

Transition

variable LS HCC GM
Yi—1 0.079 0.192 0.248
Vi—2 0.097 0.253 0.976
Vi—3 0.099 0.496 0.601
Yi—4 0.293 0.525 0.253
Vr—1,1 0.313 0.403 0.204
Vi—1,2 0.075 0.103 0.046
Vr—1,3 0.008 0.013 0.006
Vr—1,4 0.002 0.003 0.001

Notes: The LM-type test is based on an AR(2) model.
LS, HCC and GM denote the standard, HCC (Wooldridge method)
and outlier-robust variants of the test, respectively.

on the outcomes of the standard test, given that the p-values are smaller than
0.10. The p-values for the GM and HCC test, on the other hand, are much
higher, and suggest that the evidence for nonlinearity is spurious, and might be
caused either by the presence of outliers or heteroscedasticity. For other choices
of transition variables, notably for v,_j 4, the p-values for all variants of the
test are very small. On the basis of the minimum p-value rule discussed at the
end of subsection 3.3.2, we select v,_1 4 as the appropriate transition variable
in the STAR model (which is not really surprising given the earlier estimation
results for the SETAR model).

After estimating a 2-regime STAR model with an AR(2) model in both
regimes, it turns out that the autoregressive parameters in the regime corre-
sponding to G(v;—1 4;y,c¢) = 1 are not significant, similar to the findings
for the SETAR model reported in table 3.3. Consequently, the model is re-
estimated after deleting those insignificant parameters. The final estimates of
the model are given in table 3.7. Standard errors for the smoothness parameter
y are not given, for reasons discussed in subsection 3.2.2. The transition func-
tion G(v;_14; ¥, ) is graphed in figure 3.7, both over time and against the
transition variable v;_ 4. As suggested by the small magnitude of the point
estimate of y, the transition from one regime to the other is seen to be rather
smooth.

Example 3.3: Tokyo stock index We also apply the STAR modelling proce-
dure to absolute values of weekly percentage returns on the Tokyo stock index.
The sample period is January 1988—December 1993. It turns out that we can
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Table 3.7 Parameter estimates for a STAR model for weekly
returns on the Dutch guilder exchange rate

Variable Estimate LS st. err. HCC st. err.
Lower regime (G(v—1.4; 7, ¢) =0)

Constant 0.060 0.101 0.091

Yi—1 0.287 0.107 0.093

Yi—2 0.213 0.100 0.094
Upper regime (G (vi—1,4;7,¢) = 1)

Constant —0.180 0.131 0.155

¢ 1.355 0.152 0.153

y 4.316

set p = 2 in the AR model that is used as the model under the null hypoth-
esis of linearity. The p-values for the LM-type tests for linearity are given in
table 3.8. Comparing these values, we are again tempted to select v;_1 4 as the
transition variable. The parameter estimates of the resultant model are given
in table 3.9. The large value of the estimate of the parameter y suggests that
the transition from one regime to another occurs instantaneously at the esti-
mated threshold ¢. This is confirmed by the graphs of the transition function in
figure 3.8.

3.4 Diagnostic checking

In this section we discuss several diagnostic tests which can be used to evalu-
ate estimated regime-switching models. First and foremost, one might subject
the residuals to a battery of diagnostic tests, comparable to the usual practice
in the Box—Jenkins approach in linear time series modelling, as described in
section 2.2. It turns out however, that not all the test-statistics that have been
developed in the context of ARMA models are applicable to the residuals from
nonlinear models as well. The test for normality of the residuals given in (2.54)
is an example of a test which remains valid, while the Ljung—Box test-statistic
(2.41) is an example of a test which does not (see Eitrheim and Terdsvirta,
1996). The LM approach to testing for serial correlation can still be used, how-
ever, as shown by Eitrheim and Terésvirta (1996) and discussed in some detail
below.

3.4.1 Diagnostic tests for SETAR and STAR models

In this subsection we discuss three important diagnostic checks for
SETAR and STAR models, developed by Eitrheim and Terédsvirta (1996). Other



Regime-switching models for returns 109

B |

._.
=]
|

0.8

0.6

0.4

Gy, - 14>V c)

0.2

L L 5 L S . A
—

LR

0.0
1980 82 84 86 38 90
Time

(a) Transition function versus time

1.0 : ‘ ﬁ e

0.8

0.6

0.4

G(Ut — 1,4 Vs C)

0.2

N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Vi—14

W
n
by
o

(b) Transition function versus transition variable v, ;4

Figure 3.7 Transition function in STAR model for weekly returns on the Dutch
guilder exchange rate; each dot in the graph in panel (b) represents an observation

methods for evaluating estimated SETAR models are discussed in Tong (1990,
section 5.6).

Testing for serial correlation
Consider the general nonlinear autoregressive model of order p,

e = F(x;0) + &, (3.68)

wherex; = (1, y;—1, ..., yt_p)’ as before and the skeleton F(x;; 6) is a general
nonlinear function of the parameters 6 which is at least twice continuously
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Table 3.8  p-values of LM-type test for STAR nonlinearity
for weekly absolute returns on the Tokyo stock index

Transition

variable LS HCC GM
Yi—1 0.592 0.794 0.256
Yi=2 0.001 0.085 0.012
Vi3 0.098 0.184 0.033
Yi—4 0.064 0.322 0.000
Vi—1.1 0.347 0.338 0.549
Vi—12 0.001 0.296 0.043
V13 0.028 0.132 0.074
Vi—1.4 0.009 0.063 0.000

Notes: The LM-type test is based on an AR(2) model.
LS, HCC and GM denote the standard, HCC (Wooldridge
method) and outlier-robust variants of the test, respectively.

Table 3.9  Parameter estimates for a STAR model for
weekly absolute returns on the Tokyo stock index

Variable Estimate LS st. err. HCC st. err.

Lower regime (G(vi—1.4; 7, ¢) =0)

Constant 1.319 0.237 0.163
Yi—1 0.145 0.110 0.069
Yi-2 —0.033 0.113 0.068
Upper regime (G (vi—1,4; y,¢) = 1)

Constant 2.695 0.459 0.600
Yi—1 —0.027 0.071 0.097
Yi—2 0.232 0.074 0.109
¢ 2.406 0.038 0.020
y 500.0

differentiable. An LM test for gth order serial dependence in &; can be obtained
as nR?, where R? is the coefficient of determination from the regression of
g onz = 0F (x; é)/é)@ and ¢ lagged residuals &_1, ..., &_4, where hats
indicate that the relevant quantities are estimates under the null hypothesis of
serial independence of ¢;. The resulting test-statistic is x2 distributed with q
degrees of freedom asymptotically.

This test-statistic is in fact a generalization of the LM test for serial cor-
relation in an AR(p) model of Breusch and Pagan (1979), which is based
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Figure 3.8 Transition function in STAR model for absolute weekly percentage returns
on Tokyo stock index; each dot in the graph in panel (b) represents an observation

on the auxiliary regression (2.42). To understand why, note that for a lin-
ear AR( p) model (without an intercept) F(x;;0) = Zipzl ¢ivi—; and Z; =
0F (x:;0)/00 = (y¢—1, ...,yt_p)’. In case of a STAR model, the skele-
ton is given by F(x;;60) = ¢\x;(1 — G(yi—15 ¥, ¢) + ¢5x:G(yr—1: . ©).
Hence, in this case 8 = (¢1, ¢2, ¥, c) and the relevant partial derivatives
2t = 0F (xg; é) /90 can be obtained in a straightforward manner (see Eitrheim
and Terédsvirta, 1996, for details).
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The nonlinear function F (x;; €) needs to be twice continuously differentiable
for the above approach to be valid. The skeleton of the SETAR model does
not satisfy this requirement, as it is possibly discontinuous and in no case
differentiable at the threshold value (see the examples in figure 3.3). Therefore,
the LM-statistic for serial correlation cannot be applied to the residuals from
an estimated SETAR model. A possible way to circumvent this problem is
to approximate the SETAR model with a STAR model by setting y equal to
some large but finite value. Recall that in this case the logistic function (3.4)
effectively becomes a step function which equals O for y;,_; < ¢ and 1 for
yi—1 > c. Fixing y at yq, say, the remaining parameters in the STAR model
can again be estimated by NLS. When computing the test-statistic for residual
autocorrelation in this case, the partial derivative of the regression function with
respect to y should be omitted from the auxiliary regression as this parameter
is kept fixed.

Testing for remaining nonlinearity

An important question when using nonlinear time series models is
whether the proposed model adequately captures all nonlinear features of the
time series under investigation. One possible way to examine this is to apply
a test for remaining nonlinearity to an estimated model. For the SETAR and
STAR models, a natural approach is to specify the alternative hypothesis of
remaining nonlinearity as the presence of an additional regime. For example,
one might want to test the null hypothesis that a 2-regime model is adequate
against the alternative that a third regime is necessary.

It turns out that only for the STAR model an LM test is available which allows
us to test this hypothesis without the necessity to estimate the more complicated
model. For the SETAR model, testing for remaining nonlinearity necessarily
involves estimating the multiple-regime model. In fact, this is analogous to the
situation of testing linearity against a 2-regime model, compare the discussion
in the introduction to section 3.3.

For the SETAR model, one can essentially apply the methodology described
in subsection 3.3.1 to each of the two subsamples defined by the estimated
threshold ¢ — that is, test linearity against the alternative of a 2-regime SETAR
model on the subsamples for which y,_; < ¢ and y,_; > ¢ by using the
test-statistic (3.55). Recall that computing the test involves estimating the
2-regime model under the alternative. Hence, it appears that where the statis-
tics indicate the presence of an additional regime, estimates of the 3-regime
model are readily available by combining the original estimation results for the
2-regime SETAR model with those for the 2-regime model on the subsample
for which linearity is rejected. However, in case the true model is indeed a
3-regime model, it can be shown that while the estimate of the second threshold
Cp, say, is consistent, the estimate of the first threshold ¢; = ¢ is not. To obtain a
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consistent estimate of the first threshold as well, it is necessary to perform a so-
called ‘repartitioning step’, in which a 2-regime SETAR model is estimated on
the subsample defined by y; | < ¢; if ¢; < ¢ and on the subsample defined
by y;_1 > ¢y if ¢; > ¢p. See Bai (1997) and Bai and Perron (1998) for an
application of this idea in the context of testing for multiple structural breaks
in time series.

Eitrheim and Terdsvirta (1996) develop an LM-statistic to test a 2-regime
STAR model against the alternative of an additive 3-regime model which can
be written as,

yi = §1x + (d2 — ¢1) ' xG1(ye—15 y1. €1)
+ (3 — $2)' %/ G2 (yi—15 v2. €2) + &1, (3.69)

where x; = (1, X)), Xt = (yi—1, ..., yi—p)', where both G| and G are given
by (3.4) and where we assume c¢; < c¢p without loss of generality. The null
hypothesis of a 2-regime model can be expressed as Hy : y» = 0. This testing
problem suffers from similar identification problems as the problem of testing
the null hypothesis of linearity against the alternative of a 2-regime STAR
model discussed in subsection 3.3.2. The solution here is the same as well.
The transition function G2 (y;—1; ¥2, ¢2) is replaced by a Taylor approximation
around the point y» = 0. In case of a third-order approximation, the resulting
auxiliary model is given by

Vi = Boxt + (2 — 01 xG1(i—1: 1, €1)
+ BliEyi—1 + ByEyE | + BiEyD | + e, (3.70)

where the B;, j = 0,1, 2,3, are functions of the parameters ¢y, ¢3, y» and
c2. The null hypothesis Hy : y» = 0 in (3.69) translates into Hé B =B =

B3 = 01in (3.70). The test-statistic can be computed as nR? from the auxiliary
regression of the residuals obtained from estimating the model under the null
hypothesis &; on the partial derivates of the regression function with respect to
the parameters in the 2-regime model, ¢1, ¢>, 1 and cq, evaluated under the
null hypothesis, and the auxiliary regressors X; ytj_l, j = 1,2, 3. The resulting
test-statistic has an asymptotic x 2 distribution with 3 p degrees of freedom. For
more details we again refer to Eitrheim and Terdsvirta (1996).

In the above, it has been implicitly assumed that the additional regime is
determined by the same variable (y,_1 in our case) as the original two regimes.
As discussed previously, one might also consider situations where the regimes
are determined by several variables — for example, y;_1 and y; ;. For the STAR
model, the null hypothesis of a 2-regime model can be tested against the alterna-
tive of the 4-regime model (3.14) by testing Hy : y» = 0. The LM test-statistic
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derived by van Dijk and Franses (1999) is similar to the LM-type-statistic
for testing against a 3-regime alternative discussed above. Starting from the
model given in (3.14), the second transition function Gy(y;—2; ¥2, c2) is
again replaced by a third-order Taylor approximation to render the auxiliary
regression

yi = Boxt + (92 — 01 %G1 (=15 1. €1)
+ Bl %y + ByFi vy + BiEy
+ BiE G113 Y1, D) Yi—2 + BEEG1 (v—13 V1. €)Y,
+ BexiG1 (=15 V1, €)Yy + 1. (3.71)

The null hypothesis Hy : 2 = 01in (3.14) now becomes into Hé :Bj=0,j=
1, ..., 6 which can be tested in exactly the same way as outlined before.

Testing parameter constancy

An interesting special case of the multiple-regime model (3.14) arises
if the transition variable in the second transition function G is not taken to be
y;—o but time ¢ instead. This gives rise to a so-called Time-Varying STAR
model, which allows for both nonlinear dynamics of the STAR-type and
time-varying parameters. This model is discussed in detail in Lundbergh,
Terdsvirta and van Dijk (1999). The point of interest here is that by test-
ing the hypothesis y» = 0 in this case, one tests for parameter constancy in
the 2-regime STAR model (3.6), against the alternative of smoothly changing
parameters. Again this test can be adopted to test for parameter constancy in a
SETAR model by approximating it with a STAR model with y; fixed at a large
value.

Example 3.1: Dutch guilder To evaluate the estimated STAR model for the
weekly returns on the Dutch guilder exchange rate, we apply the diagnostic
tests for serial correlation, remaining nonlinearity and parameter constancy.
Table 3.10 contains p-values for the various test-statistics. These results sug-
gest that the model is adequate, in the sense that the p-values are such that
neither null hypothesis needs to be rejected.

Example 3.3: Tokyo stock index The estimated STAR model for absolute
weekly returns on the Tokyo stock index is evaluated in a similar manner.
Table 3.11 contains p-values for the various diagnostic tests. Again the results
do not suggest any serious misspecification of the model.
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Table 3.10 Diagnostic tests of a STAR model estimated for

weekly returns on the Dutch guilder exchange rate

Tests for qth-order serial correlation

q 4 8 12
p-value 0.436 0.175 0.169
Tests for parameter constancy
LM ¢ LM 2 LMc3
p-value 0.411 0.436 0.121
Tests for remaining nonlinearity
Tr. var. LMET LMVDF
Yi—1 0.299 0.614
Yi—2 0.199 0.399
Y3 0.301 0.475
Yi—4 0.646 0.732
Vr—1,1 0.781 0.169
Vi—1,2 0.652 0.702
Vi—1.3 0.596 0.612
Vi—1,4 0.522 0.371

Notes: LM ci, i = 1,2, 3, denote the LM-type test for para-
meter constancy based on an ith-order Taylor approximation

of the transition function.

LMEgr and LMypr denote the tests for no remaining non-

linearity based upon (3.70) and (3.71), respectively.
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3.4.2 Diagnostic tests for Markov-Switching models

Diagnostic checking of estimated Markov-Switching models has been
dealt with by Hamilton (1996). He develops tests for residual autocorrelation,
heteroscedasticity, misspecification of the Markov-process s;, and omitted
explanatory variables. The tests are LM-type tests, and thus have the attrac-
tive property that their computation only requires estimation of the model
under the null hypothesis. The tests make heavy use of the score h;(6),
which is defined as the derivative of the log of the conditional density (or
likelihood) f(y:|€2;—1;6), given in (3.39), with respect to the parameter

vector 6,

h,(é‘) =

d1n f(y:[€2/-1; 6)

00

(3.72)
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Table 3.11  Diagnostic tests of a STAR model estimated
for absolute weekly returns on the Tokyo stock index

Tests for qth-order serial correlation

q 4 8 12
p-value 0.382 0.222 0.219
Tests for parameter constancy
LM LM > LM 3
p-value 0.142 0.116 0.159
Tests for remaining nonlinearity
Tr. var. LM ET LM VDF
Yi—1 0.359 0.209
V-2 0.017 0.177
V-3 0.332 0.341
Vi—4 0.463 0.822
V1,1 0.359 0.209
Vi—12 0.128 0.945
Vr—13 0.851 0.852
Vi—1.4 0.765 0.796
Notes: LMci, i = 1,2,3, denote the LM-type test

for parameter constancy based on an ith-order Taylor
approximation of the transition function.

LM gr and LM ypr denote the tests for no remaining non-
linearity based upon (3.70) and (3.71), respectively.

For example, for the 2-regime MSW model in (3.36) it can be shown that

dln f(ye[§2—1;60) 1 /
f >g¢jt 1 :;(yt—%xt)xt'l)(sf:]'gz’)

t—1

1
+ 5 D O = dfroxe - (Plse = j1943 6)
=2
— P(st = jIQ4-1;0)), (3.73)

for j = 1, 2. Hamilton (1996) describes an algorithm to compute the change in
the inference concerning the state the process was in at time t that is brought
about by the addition of y;, P(s¢ = j|2; 0)— P (st = j|2;—1; 0). The remain-
ing elements of the score in (3.73) can be computed directly after estimation
of the model. The same holds for the score with respect to the parameters p1
and p»;, which determine the transition probabilities of the Markov-process s;
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(see Hamilton, 1996, eq. (3.12)). By construction, the score evaluated at the
ML estimates 6 has sample mean zero, y ,_; ht(e) =0.

One of the possible uses of the conditional scores is to construct standard
errors for the ML estimates of 6. To be precise, standard errors are obtained as
the square roots of the diagonal elements of the inverse of the outer product of
the scores,

> h(@)hi (9. (3.74)
t=1

Another use of the scores is to construct LM-statistics. For example, suppose
we want to test that some variables z; have been omitted from the 2-regime
MSW model — that is, we want to test (3.37) against the alternative

Yt = ¢O,s[ + ¢1,s;yt—1 +---+ ¢p,s[)’t—p + 5/21 + & (3.75)

The score with respect to §, evaluated under the null hypothesis Hy : § = 0 is
equal to

oln f(yr12,-1;0)
EE)

2
=Y = $xz - Pl = j1Q: 6),

=1

§=0
(3.76)

where 6 are ML estimates of the parameter vector 6’ = (¢{ , 2, P11, P22, 6)
under the null hypothesis. The LM test-statistic to test Hy is given by

/ —1
1 & A 1 & A A 1 & A
n(; ZM@)) (; th(mh,(e)/) (; Zh,w)), (3.77)
=1 t=1 t=1

and has an asymptotic x 2 distribution with degrees of freedom equal to the
number of variables in z;.

3.5 Forecasting

Nonlinear time series models may be considered for various purposes. Some-
times the main objective is merely obtaining an adequate description of the
dynamic patterns that are present in a particular variable. Very often, however,
an additional goal is to employ the model for forecasting future values of the
time series. Furthermore, out-of-sample forecasting can also be considered as a
way to evaluate estimated regime-switching models. In particular, comparison
of the forecasts from nonlinear models with those from a benchmark linear
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model might enable one to determine the added value of the nonlinear features
of the model. In this section we discuss several ways to obtain point and interval
forecasts from nonlinear models. This is followed by some remarks on how to
evaluate forecasts from nonlinear models, and on how to compare forecasts
from linear and nonlinear models.

Point forecasts

Computing point forecasts from nonlinear models is considerably
more involved than computing forecasts from linear models. Consider the
case where y; is described by the general nonlinear autoregressive model of
order 1,

ye=Fy-1;0) + &, (3.78)

for some nonlinear function F(y;—_1; #). When using a least squares criterion,
the optimal point forecasts of future values of the time series are given by
their conditional expectations, as discussed in section 2.2. That is, the optimal
h-step-ahead forecast of y,yj at time ¢ is given by

Verhie = BlYrnlS], (3.79)

where €; again denotes the history of the time series up to and including the
observation at time . Using (3.78) and the fact that E[¢;41[€2;] = 0, the optimal
1-step-ahead forecast is easily obtained as

Vir1r = Elyi+112] = F(y:: 6), (3.80)

which is equivalent to the optimal 1-step-ahead forecast where the model
F(y;_1; 0) is linear.

When the forecast horizon is longer than 1 period, things become more
complicated, however. For example, the optimal 2-step-ahead forecast follows
from (3.79) and (3.78) as

)A’t+2|t = E[yr421€2¢] = E[F (y;11; 0)[€2]. (3.81)

In general, the linear conditional expectation operator E cannot be interchanged
with the nonlinear operator F, that is

E[F()] # FELD.

Put differently, the expected value of a nonlinear function is not equal to the
function evaluated at the expected value of its argument. Hence,

E[F (yi415 0)194] # F(ELy 41121 6) = F (Ji411: 6)- (3.82)



Regime-switching models for returns 119

Rather, the relation between the 1- and 2-step-ahead forecasts is given by

Vigolr = E[F(F(y;:0) + &141: 0)1€2] (3.83)

= E[F Gr+1)r + &r41; 0)12]. '
The above demonstrates that a simple recursive relationship between forecasts at
different horizons, which could be used to obtain multiple-step-ahead forecasts
in an easy fashion analogous to (2.68) for the AR(1) model, does not exist for
nonlinear models in general. Of course, a 2-step-ahead forecast might still be
constructed as

Seh = F G 0)- (3.84)

Brown and Mariano (1989) show that this ‘naive’ approach, which takes its
name from the fact that it effectively boils down to setting &,41 = 0 in (3.83)
(or interchanging E and F in (3.81)), renders biased forecasts. Over the years,
several methods have been developed to obtain more adequate multiple-step-
ahead forecasts, some of which are discussed below.

First, one might attempt to obtain the conditional expectation (3.83) directly
by computing

o¢]
= [ PG+ e 0)f @) de, (3.85)

where f denotes the density of ¢;. Brown and Mariano (1989) refer to this
forecast as the closed-form forecast — hence the superscript (¢). An alternative
way to express this integral follows from (3.81) as

o
Py = f F(yeg1; 0801190 dyry1

—0o0

o0
- / Elyrsalyesi1gGist 190 dyest. (3.86)

—00

where g(y;41/€2;) is the distribution of y;;1 conditional upon €2;. This con-
ditional distribution is in fact equal to the distribution f(-) of the shock &,
with mean equal to F(yy; 6) —thatis, g(y1+112) = f(Vi+1 — F(ys; 6)). Asan
analytic expression for the integral (3.85) (or (3.86)) is not available in general,
it needs to be approximated using numerical integration techniques. An addi-
tional complication is the fact that the distribution of ¢; is never known with
certainty. Usual practice is to assume normality of &;.

The closed-form forecast becomes quite tedious to compute for forecasts
more than 2 periods ahead. To see why, consider the Chapman—Kolgomorov
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relation

(o.¢]

8(Vt+n82) Z/ EVtanYian—18YVrgn—112) dysypn—1, (3.87)
o0

where g(y;4+n|Yr+n—1) is the conditional distribution of y,j conditional upon
Yt+h—1. By taking conditional expectations on both sides of (3.87) it follows that

o0

E[yt+h|9t]=/ Elyr4nlYith—118 Vian—-1120) dyrpn—1,  (3.88)

—00

which can be recognized as a generalization of (3.86). In order to evaluate this
integral to obtain the h-step-ahead exact forecast, one needs the conditional
distribution g(y;+x—1/€2;). In principle, this distribution can be obtained recur-
sively from (3.87), by observing that g(y;+1|y;+r—1) is again equal to the distri-
bution of the shocks &, with its mean shifted to F (y;4,—1; 6). The recursion
can be started for 7 = 2 by using the fact that g(y;+112;) = f(Vi+1—F (yr; 0))
as noted above. To obtain the conditional distribution g(y;+4—1|2;) for h > 2
involves repeated numerical integration, which may become rather time-
consuming, in particular if a large number of forecasts has to be made.

An alternative is to assume that the (A — 1)-step-ahead forecast error
€r+h—1lt = Yi+h—1 — Yi+h—1}¢ is normally distributed with mean zero and
variance 0}%_1. In that case, g(¥;4+1—1/€2;) is normal with mean equal to the
(h —1)-step-ahead forecast J; 1|, and variance a}%_l . This so-called ‘normal
forecast error’ (NFE) method was developed by Pemberton (1987) for general
nonlinear autoregressive models, and applied by Al-Qassam and Lane (1989) to
exponential autoregressive models (which are closely related to STAR models)
and by de Gooijer and de Bruin (1998) to SETAR models. For the 2-regime
SETAR model (3.1), h-step-ahead NFE forecasts can be computed from the
recursion

ﬁt(ij;,?t = ®(Zi4h—1)0)(P0,1 + P1,151+h—1]1)

+ @ (=zrpn—110)(P0,2 + D123 +h—111)
+ & @rph—110) (P12 — P1,1)08 -1, (3.89)

where ®(-) and ¢ (-) are the standard normal distribution and density, respec-
tively, oﬁ_l is the variance of the (h — 1)-step-ahead forecast error e; 11|, and
Zith—1)r = (¢ — Vi+h—1 |1)/on—1. Observe that (3.89) is essentially a weighted
average of the optimal forecasts from the two regimes, with weights equal to the
probability of being in the particular regime at time ¢ 4+ 4 — 1 under normality,
plus an additional correction factor. A similar recursion for the variance of the
forecast error, U}%, is also available (see de Gooijer and de Bruin, 1998).
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An alternative approach to computing multiple-step-ahead forecasts is to use
Monte Carlo or bootstrap methods to approximate the conditional expectation
(3.83). The 2-step-ahead Monte Carlo forecast is given by

k

. 1 .

Siiah = 7 20 F Gt +ei:0). (3.90)
i=1

where k is some large number and the &; are drawn from the presumed distri-
bution of &, 1. The bootstrap forecast is very similar, the only difference being

that the residuals from the estimated model, &;,¢ =1, ..., n are used,
) -
Siga = 7 2 F G +850). (3.91)
i=l1

The advantage of the bootstrap over the Monte Carlo method is that no assump-
tions need to be made about the distribution of & 1.

Lin and Granger (1994) and Clements and Smith (1997) compare various
methods to obtain multiple-step-ahead forecasts for STAR and SETAR models,
respectively. Their main findings are that the Monte Carlo and bootstrap meth-
ods compare favourably to the other methods.

An attractive feature of the Markov-Switching model is the relative ease with
which analytic expressions for multiple-step-ahead forecasts can be obtained.
The essential thing to note is that the forecast of the future value of the time
series, y;+p, can be decomposed into a forecast of y,y; conditional upon the
regime that will be realized at ¢ 4 A, 5,4, and a forecast of the probabilities with
which each of the regimes will occur at ¢ + k. For example, the 1-step-ahead
forecast for the two-state MSW model given in (3.15) can be written as

Vir1)r = Elyip1lsi41 = 1, 1 P(s41 = 11243 0)
X E[y[+] |Sl‘+1 = 2, Q[] . P(S[+] = 2|Q[, 9) (392)

The forecasts of y, 1 conditional upon the regime at ¢ + 1 follow directly from
(3.15) as

Elyryilsi11 = J, Q] = ¢o,j + &1, 1

whereas P(s;+1 = j|S2;60)j = 1,2 are given by the optimal forecasts of
the regime probabilities §,+1| +,» which can be obtained from (3.42) and (3.43).
Multiple-step-ahead forecasts can be computed in a similar way (see Tj@stheim,
1986; Hamilton, 1989, for details).

Interval forecasts
In addition to point forecasts one may also be interested in confidence
intervals for these point forecasts. As discussed in section 2.2, for forecasts
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obtained from linear models, the usual forecast confidence region is taken to be
an interval symmetric around the point forecast. This is based upon the fact that
the conditional distribution g(y;|€2) of a linear time series is normal (under
the assumption of normally distributed innovations) with mean $; ;.

For nonlinear models this is not the case. In fact, the conditional distribution
can be asymmetric and even contain multiple modes. Whether a symmetric
interval around the mean is the most appropriate forecast confidence region
in this case can be questioned. This topic is discussed in detail in Hyndman
(1995). He argues that there are three methods to construct a 100(1 — «)%
forecast region:

1. An interval symmetric around the mean, that is,

Se = Granjr — W, Jrvnp +w),

where w is such that P(y;4+p € S¢|2) =1 — .
2. The interval between the o/2 and (1 — «/2) quantiles of the forecast distri-
bution, denoted g,/2 and g1 2, respectively,

Qo = (qa/2, 91-a/2)-
3. The highest-density region (HDR), that is

HDRo = {yi4+h18(Vi+r182) = gal, (3.93)
where gy is such that P(y;4+5 € HDRy|S2;) = 1 — «.

For symmetric and unimodal distributions, these three regions are identical. For
asymmetric or multimodal distributions they are not. Hyndman (1995) argues
that the HDR is the most natural choice. The reasons for this claim are that first,
HDR,, is the smallest of all possible 100(1 — «) % forecast regions and, second,
every point inside the HDR has conditional density g(y;45|€2;) at least as
large as every point outside the region. Furthermore, only the HDR will reveal
features such as asymmetry or multimodality of the conditional distribution
8(Vr+n1S2).

HDRs are straightforward to compute when the Monte Carlo or boot-
strap methods described previously are used to compute the point forecast
5),+h\, Let yf SAP i = 1,...,k, denote the ith element used in comput-
1ng the Monte Carlo forecast (3 90) or bootstrap forecast (3.90) — that is,
yz+h\z = F(Yt+h—1r + & 0) or yz+h\t = F(Yi4+n—1): + &i; 0). Note that the
v h| Can be thought of as being realizations drawn from the conditional dis-
tribution of interest g(y;+|€2). Estimates g; = g(yt+h\z|9t) i=1,...,k,
can then can be obtained by using a standard kernel density estimator, that is

k

ZK yt+h|t yr+h|z]/b) (3.94)
/_1
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Figure 3.9 2-step-ahead conditional distributions for the SETAR model (3.1), with
$0.1 =0.3,¢1.1 = —0.5, po.2 = —0.1, p1.2 = 0.5, ¢ = 0 and &, ~ NID(0, 0.125?),
together with confidence regions for the 2-step-ahead forecast

where K (-) is a kernel function such as the Gaussian density and b > 0 is the
bandwidth. An estimate of g, in (3.93) is given by go = g(|ak)), Where g;)
are the ordered g; and |-| denotes integer part. See Hyndman (1995) for more
details and some suggestions about the display of HDRs.

As an example, consider again the SETAR model (3.1), with ¢91 = 0.3,
$1.1=-05,¢02 =—0.1and ¢y = 0.5and & ~ N (O, 0.1252). Notice that
the variance of &; has been reduced compared to previous examples. Naturally,
this does not change the properties of the skeleton. Recall that this model has
a limit cycle consisting of three points, yj = 0.06667, y; = —0.06667 and
y; = 0.33333. The optimal 2-step-ahead forecast given y, = yj is equal
to E[y,42lyn = y{1 = 0.238, which can be obtained using the recursive
NFE forecast (3.89), as this is identical to the exact forecast ahead for 2 steps
ahead where the errors are normally distributed. The corresponding 2-step-
ahead forecast error variance is equal to 0.2582. The conditional distribution
g(n+2] yik) is given in figure 3.9, and is seen to be bimodal. Intuitively, if
yn = Y|, itis very likely that y, will be close to ygk as the time series iterates
among the three points of the limit cycle if no shocks occur. This corresponds
with the largest mode of the conditional distribution. There is, however, a small
probability that the time series will linger around either y} or y3, giving rise to
the smaller mode. The optimal point forecast J,, 42, is shown as a solid circle.

Below the conditional densities, 95 and 80 per cent confidence regions have
been drawn in the left and right panels, respectively. For the 95 per cent con-
fidence regions, the HDR is almost identical to the region Qg o5 based on the
quantiles of the conditional distribution. The interval symmetric around the
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point forecast, Sy o5 is shifted somewhat to the right. Also shown is a region
No.o5, which is the confidence interval obtained when the conditional distri-
bution is assumed to be normal, and the confidence interval is constructed in
the usual manner as (9,42, — 1.9602, ¥,42n + 1.96072). Clearly, this renders
far too wide an interval this case, which has more than 95 per cent coverage.
The 80 per cent confidence region shown in the right panel demonstrates that
the HDR needs not be a continuous interval, but can consist of several disjoint
segments.

Evaluating forecasts

In general, the fact that a particular model describes the features of a
time series within the estimation sample better than other models is no guar-
antee that this model also renders better out-of-sample forecasts. Clements and
Hendry (1998) provide an in-depth analysis of forecasting with linear models
and discuss various reasons why a model with a superior in-sample fit may
nevertheless yield inferior out-of-sample forecasts. The above seems particu-
larly relevant for nonlinear time series models. It is found quite often that, even
though a nonlinear model appears to describe certain characteristics of the time
series at hand much better than a linear model, the forecasting performance
of the linear model is no worse than that of the nonlinear model (see Brooks,
1997, for specific examples in the context of high-frequency financial time series
and de Gooijer and Kumar, 1992, for a general review). Many reasons can be
brought up why this may be the case (see also Diebold and Nason, 1990). For
example, the nonlinearity may be spurious, in the sense that other features of
the time series, such as heteroscedasticity, structural breaks or outliers, suggest
the presence of nonlinearity (see also subsections 3.3.4 and 3.3.5). Even though
one might successfully estimate a nonlinear model for such a series, it is very
unlikely that this will result in improved forecasts.

Another cause for poor forecast performance of nonlinear models is that the
nonlinearity does not show up during the forecast period. In the case of regime-
switching models it might be that only one of the regimes is realized during
the entire forecast period. Hence, empirical forecasts do not always allow us to
assess the forecasting quality of the nonlinear model completely. A potential
solution to this problem of the absence of nonlinearity during the forecast period
is to perform a simulation experiment in which one uses an estimated regime-
switching model (or a set of models if the goal is to compare their forecasting
performance) to generate artificial time series and to perform an out-of-sample
forecasting exercise on each of those series. In this controlled environment one
can make sure that forecasts in each of the regimes are involved. See Clements
and Smith (1998, 1999) for an example of this approach.

The choice of evaluation criteria is also of importance. Even though tra-
ditional criteria such as the MSPE are applicable to forecasts from nonlinear
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models, they may not do justice to the nonlinear model. As noted by Tong
(1995), ‘how well we can forecast depends on where we are’. In the case of
regime-switching models for example, it might very well be that the forecasta-
bility of the time series is very different in different regimes. One might there-
fore evaluate the forecasts for each regime individually to investigate whether
the nonlinear model is particularly useful to obtain forecasts in a particular
regime or state (see Tiao and Tsay, 1994, and Clements and Smith, 1999).
A related point is made by Dacco and Satchell (1999), who demonstrate that
even if time series are generated according to a regime-switching process, the
MSPE of a linear model for such series can be smaller than the MSPE of the
true nonlinear model if there is a possibility of incorrectly predicting which
regime the process will be in. Finally, it should be noted that the issue of
evaluating forecasts from nonlinear time series models is a topic of much cur-
rent research, and that at the time of writing no conclusive results have been
obtained.

Example 3.1: Dutch guilder We examine the forecast performance of the
STAR model that was estimated for weekly returns on the Dutch guilder
exchange rate. Using the bootstrap method (3.91), we compute 1- to 5-step-
ahead forecasts from the STAR model for the years 1990-7. Tables 3.12 and
3.13 contain ratios of the MSPE and MedSPE criteria, relative to an AR(2)
model which is used as the benchmark linear model. Besides the ratios for all
forecasts jointly (rows ‘Overall’), table 3.12 also shows ratios for sets of fore-
cast origins which are constructed such that they correspond with the quintiles
of the distribution of the transition variable v;_1 4. Table 3.13 shows ratios for
the individual years in the forecast period.

Based upon the MSPE criterion, there is not much to be gained in terms
of out-of-sample forecasting by using the STAR model, as the MSPE ratios
in general are larger than 1. The MedSPE ratios suggest that occasionally the
nonlinear model renders superior forecasts, especially for 4 and 5 weeks ahead
when the transition variable is in the first, second or third quintile.

3.6 Impulse response functions

Another method to evaluate the properties of estimated regime-switching
models is to examine the effects of the shocks &; on the evolution of the time
series y;. Impulse response functions are a convenient tool to carry out such an
analysis.

As discussed in section 2.4, impulse response functions are meant to provide
ameasure of the response of y; 5, to animpulse  at time . The impulse response
measure that is commonly used in the analysis of linear models is defined as the
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Table 3.12  Forecast evaluation of a STAR model for weekly

returns on the Dutch guilder exchange rate

Forecast horizon

Quintile 1 2 3 4 5
MSPE

Overall 1.032 1.025 1.023 1.009 0.999
Ist 1.073 1.034 1.014 1.019 1.006
2nd 1.078 1.048 1.025 0.999 1.024
3rd 1.087 1.077 1.028 0.995 1.000
4th 0.950 0.986 1.016 1.011 0.985
Sth 1.018 1.016 1.027 1.015 0.996
MedSPE

Overall 0.985 1.099 1.056 1.090 1.043
Ist 1.053 0.836 1.180 0.880 0.934
2nd 0.981 0.969 1.154 0.910 0.929
3rd 1.079 0.996 1.114 0.961 0.976
4th 0.732 1.084 1.019 1.173 0.927
5th 1.264 1.450 1.134 1.109 1.058

Notes: The entries in the table 3.12 are the ratio of the MSPE
and MedSPE values for forecasts of the STAR model in
table 3.7 and an AR(2) model for weekly returns on the Dutch

guilder exchange rate vis-a-vis the US dollar.

Forecasts are made for the period 1 January 1990-31

December 1997.

Quintile refers to the distribution of the transition variable

Vr—1,4-

difference between two realizations of y;;, which start from identical histories
of the time series up to time ¢ — 1, w;_1. In one realization, the process is hit
by a shock of size § at time ¢, while in the other realization no shock occurs
at time ¢. All shocks in intermediate periods between ¢ and ¢t 4 & are set equal
to zero in both realizations. That is, the traditional impulse response function

(TIRF) is given by

TIRFy (h, 8, 1) = Elyrsnler = 8, 6141 = -+ = 645 = 0, 1]

for h = 1,2,3,.... The second conditional expectation usually is called the

benchmark profile.

—Elyrynler =0,6401 = = &40 =0, w11,
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Table 3.13  Forecast evaluation of a STAR model for weekly
returns on the Dutch guilder exchange rate, 1990—1997

Forecast horizon

Year 1 2 3 4 5
MSPE
1990 1.099 1.079 1.014 1.000 1.018

1991 1.014 1.006 1.029 1.023 0.993
1992 0.995 0.998 1.040 1.014 0.984
1993 1.074 1.031 1.008 0.988 1.010
1994 1.114 1.084 1.048 1.008 1.039
1995 1.020 1.032 1.018 1.032 0.992
1996 1.054 1.058 1.027 0.964 0.986
1997 1.006 0.961 0.958 0.981 0.989

MedSPE

1990 1.200 1.218 1.233 1.035 0.894
1991 1.145 1.146 1.008 0.966 0.943
1992 0.825 1.136 0.967 1.023 1.004
1993 0.934 0.804 1.047 1.002 0.966
1994 1.298 1.543 1.239 1.156 1.179
1995 1.405 0.930 1.107 1.138 0.913
1996 1.002 0.831 0.877 0.959 1.046
1997 0.891 1.430 0.956 1.005 1.060

Note: The entries in the table 3.13 are the ratio of the MSFE and
MedSFE values for forecasts of the STAR model in table 3.7
and an AR(2) model for weekly returns on the Dutch guilder
exchange rate vis-a-vis the US dollar computed on a year-to-
year basis.

The traditional impulse response function as defined above has some char-
acteristic properties if the model is linear. First, the TIRF is then symmetric,
in the sense that a shock of —§ has exactly the opposite effect as a shock of
size +4§. Furthermore, it might be called linear, as the impulse response is
proportional to the size of the shock. Finally, the impulse response is history-
independent as it does not depend on the particular history w;_ 1. For example,
in the AR(1) model (2.6), it follows easily that TIRF  (h, §, w;—1) = ¢h8 which
clearly demonstrates the properties of the impulse response function mentioned
above.

These properties do not carry over to nonlinear models. In nonlinear models,
the impact of a shock depends on the sign and the size of the shock, as well as
on the history of the process. Furthermore, if the effect of a shock on the time
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series h > 1 periods ahead is to be analysed, the assumption that no shocks
occur in intermediate periods may give rise to misleading inference concerning
the propagation mechanism of the model.

To illustrate these points, consider the simple SETAR model

_ if y,_1 <0,
V= P1,1yr—1 +& ify, g < (3.96)

d12Yr—1+& ify_1>0.

The traditional 1-period impulse response in this case is equal to

$1,16 ify, 1 +d6 <0andy,; <0,
¢1.18 + 12011 —d12)yr—1 ify—1+6 <0and y,_; >0,

$1,20 + 1,112 —d1,1) -1 ify—1 +8>0and y,—y <0,
1,26 if .1+ >0and y,_; > 0.

TIRF (1,8, ;1) =

This simple example makes clear that the impulse response depends on the
combined magnitude of the history y,_1 and the shock § (relative to the threshold
¢ = 0). Hence, the impulse response is not symmetric, as it might easily happen
that y;_1 + & > 0 while y,_; — § < 0, nor is it linear- or history-independent.

To illustrate the consequences of assuming no shocks occurring after time 7,
assume that ¢1 1 > 0, y;_; = 0 and the shock § is negative. As no more shocks
enter the system, the process remains in the lower regime after time ¢, and the
effect of the shock § decays geometrically with rate ¢ ;. However, in practice,
regime switches are quite likely to occur owing to subsequent shocks, which
changes the dynamics of the process and hence the persistence of the shock 8.
Thus, it might be misleading to consider only the response that occurs when all
shocks in intermediate periods are equal to zero.

In fact, for linear models the assumption of zero shocks in intermediate
periods can be justified by the Wold representation,

(e8]
o=y Vieii, (3.97)
i=0

which shows that shocks in different periods do not interact. Nonlinear time
series models do not have a Wold representation however. They can be rewritten
in terms of (past and present) shocks only by means of the Volterra expansion,

o0 [ e ]
Y= Z%St—i + Z Zéijs,_ist_j
i=0

i=0i=j

0 o00 0
+ZZZ§ij8z_,-s,_js,_k+..., (3.98)
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(see Priestley, 1988). This expression shows that the effect of the shock &;
on y;1; depends on the shocks &;41, ..., &+p, as well as on past shocks
&—1,&—2, ... which constitute the history w;_.

The Generalized Impulse Response Function (GIRF), introduced by Koop,
Pesaran and Potter (1996) provides a natural solution to the problems involved
in defining impulse responses in nonlinear models. The GIRF for an arbitrary
shock ¢; = § and history w;_1 is defined as

GIRFy(h, 8, w;—1) = Elyrynler = 8, wr—1] — Elyrynloi—1],
(3.99)

forh = 1,2, .... In the GIRF, the expectations of y,;;; are conditioned only
on the history and/or on the shock. Put differently, the problem of dealing with
shocks occurring in intermediate time periods is dealt with by averaging them
out. Given this choice, the natural benchmark profile for the impulse response
is the expectation of y, 4, given only the history of the process as summarized
in w;_1 (that is, in the benchmark profile, the current shock is averaged out as
well). It is easily seen that for linear models the GIRF in (3.99) is equivalent to
the TIRF in (3.95).

The GIRF is a function of § and w;_1, which are realizations of the random
variables ¢; and ©;_1. Koop, Pesaran and Potter (1996) stress that, hence, the
GIRF as defined in (3.99) is itself a realization of a random variable given by

GIRFy(h, &1, $2—1) = Elyrynler, 211 — E[yi4n|2—11. - (3.100)

Using this interpretation of the GIRF as a random variable, various conditional
versions of the GIRF can be defined which are of potential interest. For example,
one might consider only a particular history w;_1 and treat the GIRF as arandom
variable in terms of &;, that is,

GIRFy(h, &, w—1) = Elyr4nlér, @r—1] = Elyrpnlor—1].  (3.101)

Alternatively, one could reverse the role of the shock and the history by fixing the
shock at ¢; = § and considering the GIRF as a random variable in terms of the
history €2;_1. In general, we might compute the GIRF conditional on particular
subsets A and B of shocks and histories respectively —thatis, GIRF y(h, A, B).
For example, one might condition on all histories in a particular regime and
consider only negative shocks.

In particular, the GIRF can be used to assess the significance of asymmetric
effects over time. Potter (1994) defines a measure of asymmetric response to a
particular shock &; = §, given a particular history w;_1, as the sum of the GIRF
for this particular shock and the GIRF for the shock of the same magnitude but
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with opposite sign, that is,

ASYy(h, 8, w,_1) = GIRFy(h, 8, w,_1) + GIRFy(h, =58, w;_1).
(3.102)

Alternatively, we could average across all possible histories to obtain
ASY’;(h, 8) = E[GIRFy(h, 8, w;—1)] + E[GIRF y (h, =8, w;_1)]
= Elyr+nler = 81 + Elyrynler = —41. (3.103)

Koop, Pesaran and Potter (1996) discuss in detail how the GIRF can be used to
examine the persistence of shocks (see also Potter, 1995). It is intuitively clear
that if a nonlinear model is stationary, the effect of a particular shock on the
time series eventually becomes zero for all possible histories of the process.
Hence, the distribution of the GIRF as defined in (3.100) collapses to a spike at
zero as the horizon goes to infinity. From this it follows that the dispersion of
the distribution of the GIRF at finite horizons can be interpreted as a measure
of persistence of shocks. Conditional versions of the GIRF are particularly
suited to assess the persistence of shocks. For example, we might compare the
dispersion of the distributions of GIRFs conditional on positive and negative
shocks to determine whether negative shocks are more persistent than positive,
or vice versa. A potential problem with this approach is that no unambiguous
measure of dispersion exists, although, as noted by Koop, Pesaran and Potter
(1996), the notion of second-order stochastic dominance might be useful.
Notice that the second conditional expectation in the right-hand-side of (3.99)
is the optimal point forecasts of y,yj at time t — 1 (cf. (3.79)), while the first
conditional expectation can be interpreted as the optimal forecast of y, . at
time ¢ in case &; = §. Therefore the GIRF can be interpreted as the change in
forecast of y;4p, at time ¢ relative to time ¢ — 1, given that a shock § occurs at
time ¢. This also suggests that if the distribution of the conditional GIRF (3.101)
(or other versions of the GIRF) is effectively a spike at zero for certain & > m,
the nonlinear model is not useful for forecasting more than m periods ahead. As
for general nonlinear models analytic expressions for these conditional expec-
tations are not available, the Monte Carlo methods discussed in the previous
subsection can be used to obtain estimates of the GIRF (3.99) and subsequent
conditional versions. Koop, Pesaran and Potter (1996) suggest using the same
realizations of the shocks in intermediate time periods for computing the two
components of the GIRF, in order to reduce the Monte Carlo error.

Example 3.1: Dutch guilder Figures 3.10 and 3.11 contain generalized
impulse responses for the STAR model estimated for weekly returns on the
Dutch guilder exchange rate. These graphs are meant to illustrate the possible
use of GIRFs and to give some impression of possible patterns that may arise.
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GIRF,(h, 8,0, )
GIRF,(h,d, 0, 1)

5 3 4 5
Horizon & Horizon &
(a) History G(v,— 1 4:9,6)=0 (b) History G(v, | 4;7,¢)=0.5

Figure 3.10  Generalized impulse responses GIRF 'y (h, &, w; 1) for the STAR model
estimated for weekly returns on the Dutch guilder exchange rate
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Figure 3.11  Generalized impulse responses GIRF y (h, A, B) for a STAR model
estimated for weekly returns on Dutch guilder exchange rate

Figure 3.10 contains some shock- and history-specific GIRFs (3.99), for
8 = £3, £2 and %1, and w,_; such that the transition function G (v;—1 4; 7, €)
is equal to O (left panel) or equal to 0.5 (right panel). The GIRFs in the left panel
resemble traditional impulse responses which may be computed using (3.95).
For this history, the past volatility v;_1 4 is very low. Even when a large shock §
hits the system, the time series does not move out of the lower regime. Therefore,
the effect of the shocks decays roughly as if the model were an AR(2) (which
it is in the lower regime). The GIRFs shown in the right panel are different. In
particular, the response to large positive shocks is seen to be negative one period
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after the shocks arrive, followed by a gradual decay towards zero. This response
is caused by the fact that for this history, large positive shocks increase the 4-
week average volatility such that the time series moves to the upper regime,
where it behaves conform a white noise series.

Figure 3.11 contains conditional GIRFs, GIRFy(h, A, B), where the set A
consists of positive shocks, and the set B consists of histories for which the
value of the transition function is either smaller or larger than 0.5. The difference
between the GIRFs is most pronounced for 4 = 1 and 2. Again this is due to the
fact that for the histories for which G (v;_1 4; 7, ¢) > 0.5, a sufficiently large
shock increases the volatility such that the series moves to the upper regime,
whereas for histories for which G (v;_1 4; ¥, ¢) < 0.5 this hardly ever happens.
The differences have disappeared for the largest part at horizons larger than 5
periods.

3.7 On multivariate regime-switching models

So far attention has been restricted to univariate models, in which a time series y;
is described in terms of only its own lagged values y;_1, ..., y;—p (or possible
transformations thereof). Sometimes it may be worthwhile to model several
time series jointly, to exploit possible linkages that might exist between them.
This might be particularly relevant in the context of empirical finance, where it
can be expected that certain characteristics of different assets are related. For
example, it is well documented that returns and volatilities of different stock
indexes move together over time (Engle and Susmel, 1993), while the same
holds for exchange rates (Engle, Ito and Lin, 1990; Baillie and Bollerslev, 1991)
and interest rates at different maturities (Hall, Anderson and Granger, 1992).
An alternative use of multivariate models is to describe several characteristics
of a certain asset, such as returns or volatility and trading volume (Gallant,
Rossi and Tauchen, 1992; Hiemstra and Jones, 1994), simultaneously.

In this section we discuss multivariate generalizations of the regime-
switching models described earlier in this chapter. For the sake of simplic-
ity we focus on bivariate models only. Generalizations to k-dimensional time
series with k > 2 are straightforward, at least conceptually. At the outset we
should remark that the interest in multivariate nonlinear modelling has started
to develop only very recently. Therefore, the relevant statistical theory has by
no means been fully developed yet, and still is a topic of much current research.

Lety; = (y1s, y2:)' be a (2 x 1) vector time series. A bivariate analogue of
the 2-regime SETAR model (3.2) then can be specified as

yi = (bo,1 +b11y,—1)( = Ilg: > c])
+ (o2 + d12yi-1) g > cl + &, (3.104)
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where &g j, j = 1,2, are (2 x 1) vectors, ¢y j, j = 1,2, are (2 x 2) matrices,
€; = (&1, £2;) is a bivariate white noise process with mean equal to zero and
variance-covariance matrix X. The threshold variable g; can be a lagged value
of one the time series contained in y; or, for example, a linear combination
of the two series. A multivariate LSTAR model can be obtained by replacing
the indicator function /[-] by the logistic function given in (3.4) (see Anderson
and Vahid, 1998; Weise, 1999, for applications of this model). Similarly, a
multivariate MSW model results if the indicator function /[-] is replaced by a
Markov-process s; as defined just below (3.16) (see Krolzig, 1997).

Tsay (1998) describes a specification procedure for multivariate threshold
models such as (3.104), based upon the specification procedure for univariate
TAR models developed in Tsay (1989). The procedure includes elements such as
testing for multivariate threshold nonlinearity and estimation of the parameters
in the model.

A particular variant of the TAR model (3.104) which has been popular in
financial applications is a 3-regime model, where the time series y;;, i = 1, 2,
behave as unrelated / (1) series in the middle regime and as cointegrated series in
the two outer regimes. This so-called threshold error-correction model (TECM)
is discussed extensively in Balke and Fomby (1997). The model is applied by
Dwyer, Locke and Yu (1996), Martens, Kofman and Vorst (1998) and Tsay
(1998) to modelling the relationship between the spot and future prices of
the S&P 500 index. These two prices are related to each other by means of
a no-arbitrage relationship, and deviations from this relationship should exist
for only a very short time. In the presence of transaction costs or other market
imperfections, however, small deviations may persist as they cannot be exploited
for profitable arbitrage. Taylor et al. (2000) use a Smooth Transition ECM
(STECM) for the same purpose, while Anderson (1997) and van Dijk and
Franses (2000) apply this model to describe the relationship between interest
rates with different maturities.

Common nonlinearity

In the case of multiple time series, one has to take into account the
possibility that the nonlinearity is caused by common nonlinear components.
Following Anderson and Vahid (1998), the time series y; is said to contain a
common nonlinear component if there exists a linear combination a’y, whose
conditional expectation is linear in the past of y;. For example, rewrite model
(3.104) as

yi =dbo + b1y —1 + @0 +01y,_1)1[g > c] + &, (3.105)

where ¢; = &; 1,i =0,1,and ®; = ;2> — ; 1, i = 0, 1. The existence of a
common nonlinear component as defined above then means that there exists a
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2 x 1 vector @ such that

o'@0 +01y,—1)I[g > c] =0, (3.106)
for all y,_1 and ¢g; > c. This implies that « is such that

a0y =0, (3.107)
o0, =0. (3.108)

Anderson and Vahid (1998) develop test-statistics for the existence of common
nonlinearity that are based upon testing restrictions such as (3.107) and (3.108).

Conclusion

In this chapter we have reviewed several nonlinear time series models,
which are potentially useful for modelling and forecasting returns on financial
assets. Most attention was given to univariate models, simply because the theory
(involving representation, estimation, diagnostics and inference) for multivari-
ate nonlinear models has not yet been fully developed.



4 Regime-switching models for
volatility

Uncertainty, or risk, is of paramount importance in financial analysis. For
example, the Capital Asset-Pricing Model (CAPM) (Sharpe, 1964; Lintner,
1965; Mossin, 1966; Merton, 1973) postulates a direct relationship between
the required return on an asset and its risk, where the latter is determined by
the covariance of the returns on the particular asset and some benchmark port-
folio. Similarly, the most important determinant of the price of an option is the
uncertainty associated with the price of the underlying asset, as measured by
its volatility.

One of the most prominent stylized facts of returns on financial assets is that
their volatility changes over time. In particular, periods of large movements in
prices alternate with periods during which prices hardly change (see section 1.2).
This characteristic feature commonly is referred to as volatility clustering. Even
though the time-varying nature of the volatility of financial assets has long
been recognized (see Mandelbrot, 1963a, 1963b, 1967; Fama, 1965), explicit
modelling of the properties of the volatility process has been taken up only
fairly recently.

In this chapter we discuss (extensions of) the class of (Generalized) Autore-
gressive Conditional Heteroscedasticity ((G)ARCH) models, introduced by
Engle (1982) and Bollerslev (1986). Nowadays, models from the GARCH class
are the most popular volatility models among practitioners. GARCH models
enjoy such popularity because they are capable of describing not only the fea-
ture of volatility clustering, but also certain other characteristics of financial
time series, such as their pronounced excess kurtosis or fat-tailedness. Still, the
standard GARCH model cannot capture other empirically relevant properties
of volatility. For example, since Black (1976), negative shocks or news are
believed to affect volatility quite differently than positive shocks of equal size
(see also section 1.2). In the standard GARCH model, however, the effect of a
shock on volatility depends only on its size. The sign of the shock is irrelevant.
Another limitation of the standard GARCH model is that it does not imply that
expected returns and volatility are related directly, as is the case in the CAPM.

135
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Over the past few years, quite a few nonlinear variants of the basic GARCH
model have been proposed, most of them designed to capture such aspects as
the asymmetric effect of positive and negative shocks on volatility, and possible
correlation between the return and volatility.

The outline of this chapter is as follows. In section 4.1, we discuss repre-
sentations of the basic GARCH model and several nonlinear extensions. We
emphasize which of the stylized facts of returns on financial assets can and
cannot be captured by the various models. Testing for GARCH is the sub-
ject of section 4.2. We discuss tests for the standard GARCH model and for
its nonlinear variants, and we examine the influence of outliers on the var-
ious test-statistics. Estimation of ARCH models is discussed in section 4.3.
In section 4.4 various diagnostic checks which can be used to evaluate esti-
mated GARCH models are reviewed. In section 4.5 we focus on out-of-sample
forecasting: both the consequences for forecasting the conditional mean in the
presence of ARCH, as well as forecasting volatility itself are discussed. Mea-
sures of persistence of shocks in GARCH models are discussed in section 4.6;
we emphasize the role these various elements play in the empirical specification
of ARCH models. The final section of this chapter (section 4.7) contains a brief
discussion on multivariate GARCH models.

We should remark that the aim of this chapter is not to provide a complete
account of the vast literature on GARCH models, but rather to provide an intro-
duction to this area, with a specific focus on asymmetric GARCH models and
the impact of outliers. For topics not covered in this chapter, the interested
reader should consult one of the many surveys on GARCH models which have
appeared in recent years. Bollerslev, Chou and Kroner (1992) provide a com-
prehensive overview of empirical applications of GARCH models to financial
time series. Bollerslev, Engle and Nelson (1994) focus on the theoretical aspects
of GARCH models. Gourieroux (1997) discusses in great detail how GARCH
models can be incorporated in financial decision problems such as asset-pricing
and portfolio management. Additional reviews of GARCH and related models
can be found in Bera and Higgins (1993); Diebold and Lopez (1995); Pagan
(1996); Palm (1996); and Shephard (1996).

4.1 Representation

As stated in section 2.1, an observed time series y; can be written as the sum
of a predictable and an unpredictable part,

vt = E[yr1€2: 1] + &, 4.1

where €2,_1 is the information set consisting of all relevant information up to
and including time 7 — 1. In previous chapters we have concentrated on different
specifications for the predictable part or conditional mean E[y;|€2;_1], while
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simply assuming that the unpredictable part or shock &; satisfies the white noise
properties (2.1)—(2.3). In particular, &; was assumed to be both unconditionally
and conditionally homoscedastic — that is, E[a,z] = E[8t2|§2[_1] = o2 forall 7.
Here we relax part of this assumption and allow the conditional variance of &; to
vary over time — that is, E[et2|Q,,1] = h; for some nonnegative function h; =
h; (2;_1). Put differently, ¢; is conditionally heteroscedastic. A convenient way
to express this in general is

&r = 2/ Iy, (4.2)

where z; is independent and identically distributed with zero mean and unit
variance. For convenience, we assume that z; has a standard normal distribution
throughout this section. Some remarks on this assumption are made at the end
of this section.

From (4.2) and the properties of z; it follows immediately that the distribution
of ¢; conditional upon the history €2;_; is normal with mean zero and variance
h;. Alsonote that the unconditional variance of g; is still assumed to be constant.
Using the law of iterated expectations,

o = Ele}] = B[E[}|2,—11] = E[h/]. 4.3)

Hence, we assume that the unconditional expectation of 4, is constant.

To complete the model, we need to specify how the conditional variance of
&; evolves over time. In this section, we discuss the representation of various
linear and nonlinear models for %;. The properties of the resultant time series
& are used to see whether these models can capture (some of) the stylized facts
of stock and exchange rate returns.

4.1.1 Linear GARCH models

Engle (1982) introduced the class of AutoRegressive Conditionally
heteroscedastic (ARCH) models to capture the volatility clustering of financial
time series (even though the first empirical applications did not deal with high-
frequency financial data). In the basic ARCH model, the conditional variance
of the shock that occurs at time ¢ is a linear function of the squares of past
shocks. For example, in the ARCH model of order 1, ; is specified as

hy = a)+a18t271. 4.4

Obviously, the (conditional) variance i; needs to be nonnegative. In order to
guarantee that this is the case for the ARCH(1) model, the parameters in (4.4)
have to satisfy the conditions @ > 0 and &; > 0. Where o1 = 0, the conditional
variance is constant and, hence, the series &; is conditionally homoscedastic.
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To understand why the ARCH model can describe volatility clustering,
observe that model (4.2) with (4.4) basically states that the conditional vari-
ance of & is an increasing function of the square of the shock that occurred in
the previous time period. Therefore, if &, is large (in absolute value), &; is
expected to be large (in absolute value) as well. In other words, large (small)
shocks tend to be followed by large (small) shocks, of either sign.

An alternative way to see the same thing is to note that the ARCH(1) model
can be rewritten as an AR(1) model for atz. Adding 8t2 to (4.4) and subtracting
h; from both sides gives

stz :a)+a18t271 + vy, 4.5)

where v, = 8,2 —hy = ht(z,2 —1). Notice that E[v;|€2;_1] = 0. Using the theory
for AR models summarized in chapter 2, it follows that (4.5) is covariance-
stationary if @ < 1. In that case the unconditional mean of e?, or the uncondi-
tional variance of &;, can be obtained as

o2 =E[e?] = . (4.6)
1—og
Furthermore, (4.5) can be rewritten as
etz =(1- oq)1 ~ +Ol18t2_1 + v
=(1- al)az + alstz_l + vy
=o? ta(e? | — o) + . 4.7

Assuming that 0 < o1 < 1, (4.7) shows that if etz_l is larger (smaller) than its

unconditional expected value o2, stz is expected to be larger (smaller) than o2

as well.

The ARCH model cannot only capture the volatility clustering of financial
data, but also their excess kurtosis. From (4.2) it can be seen that the kurtosis
of &; always exceeds the kurtosis of z;,

E[¢" = E[z}E[h?] > E[z}E[h,]* = E[z}]E[¢21%, 4.8)

which follows from Jensen’s inequality. As shown by Engle (1982), for the

ARCH(1) model with normally distributed z; the kurtosis of ¢; is equal to

_ Bl 3(1—ap)
E[e?2  1-3a3’

4.9)

€

which s finite if 3a12 < 1. Clearly, K, is always larger than the normal value of 3.
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Another characteristic of the ARCH(1) model which is worthwhile noting
is the implied autocorrelation function for the squared shocks 8?. From the
AR(1) representation in (4.5), it follows that the kth order autocorrelation of
stz is equal to oell‘ . In figures 2.1 and 2.2 it could be seen that the first-order
autocorrelation of squared stock and exchange returns generally is quite small,
while the subsequent decay is very slow. The small first-order autocorrelation
would imply a small value of o1 in the ARCH(1) model, but this in turn would
imply that the autocorrelations would become close to zero quite quickly. Thus it
appears that the ARCH(1) model cannot describe the two characteristic features
of the empirical autocorrelations of the returns series simultaneously.

To cope with the extended persistence of the empirical autocorrelation func-
tion, one may consider generalizations of the ARCH(1) model. One possibility
to allow for more persistent autocorrelations is to include additional lagged
squared shocks in the conditional variance function. The general ARCH(q)
model is given by

hi =w+arel_ | +oner o+ +age . (4.10)

To guarantee nonnegativeness of the conditional variance, it is required that
w>0ando; > 0foralli =1,...,q. The ARCH(g) model can be rewritten
as an AR(g) model for 8? in exactly the same fashion as writing (4.4) as (4.5),
that is,

8t2=a)+0l18t2_1 +(X2€t2_2+-~-+0lq8t27q+vt. 4.11)

It follows that the unconditional variance of ¢; is equal to

2 w
ol = , (4.12)
l_al_..._aq

while the ARCH(g) model is covariance-stationary if all roots of the lag poly-
nomial I —a L —--- — oy L9 are outside the unit circle. Milhgj (1985) derives
conditions for the existence of unconditional moments of ARCH(g) processes.

To capture the dynamic patterns in conditional volatility adequately by means
of an ARCH(g) model, g often needs to be taken quite large. It turns out that it
can be quite cumbersome to estimate the parameters in such a model, because
of the nonnegativity and stationarity conditions that need to be imposed. To
reduce the computational problems, it is common to impose some structure on
the parameters in the ARCH(q) model, suchaso; = a(g+1—i)/(q(g+1)/2),
i =1,...,q, which implies that the parameters of the lagged squared shocks
decline linearly and sum to « (see Engle, 1982, 1983). As an alternative solution,
Bollerslev (1986) suggested adding lagged conditional variances to the ARCH
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model instead. For example, adding /;_1 to the ARCH(1) model (4.4) results
in the Generalized ARCH (GARCH) model of order (1,1)

he =+ a1 | + Brhi_1. (4.13)

The parameters in this model should satisfy @ > 0, @y > 0 and 81 > 0 to
guarantee that #; > 0, while a1 must be strictly positive for 81 to be identified
(see also (4.16)).

To see why the lagged conditional variance avoids the necessity of adding
many lagged squared residual terms to the model, notice that (4.13) can be
rewritten as

he = w+a1er |+ Br(w+a1er 5 + Bihi_2), (4.14)

or, by continuing the recursive substitution, as
o0 o0
] i—1_2
hy = Zﬂ;w+a1 25; e .. (4.15)
i=1 i=1

This shows that the GARCH(1,1) model corresponds to an ARCH(co) model
with a particular structure for the parameters of the lagged e? terms.

Alternatively, by adding 8,2 to both sides of (4.13) and moving A; to the right-
handzside, the GARCH(1,1) model can be rewritten as an ARMA(1,1) model
for &f as

&7 = w+ (a1 + Ber_; + v — Brvi—1, (4.16)

where again v; = 8,2 — h;. Using the theory for ARMA models discussed
in section 2.1, it follows that the GARCH(1,1) model is covariance-stationary
if and only if @1 + B1 < 1. In that case the unconditional mean of 8,2 - or,
equivalently, the unconditional variance of &; — is equal to

2 w
1—a;— B

The ARMAC(1,1) representation in (4.16) also makes clear why o« needs to be

strictly positive for identification of 81. If o1 = 0, the AR and MA polynomials

both are equal to 1 — 81 L. Rewriting the ARMA(1,1) model for stz asan MA(00),
these polynomials cancel out,

02 1_,31Lv
T 1-8L

o 4.17)

t = Vr, (4.18)

which shows that 8; then is not identified.
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As shown by Bollerslev (1986), the unconditional fourth moment of ¢; is
finite if (1 + B1 )2+ 201% < 1. If in addition the z; are assumed to be normally
distributed, the kurtosis of ¢; is given by

_ 30— (@ +A)’]
1= (a1 + B1)? — 203"

(4.19)

€

which again is always larger than the normal value of 3. Notice that if 8| = 0,
(4.19) reduces to (4.9).
The autocorrelations of stz are derived in Bollerslev (1988) and are found to be

2
o
p1 =)+ l—ﬂlz (4.20)
I —2a181 — By
ok = (a1 + B o1 fork =2,3,... 4.21)

Even though the autocorrelations still decline exponentially, the decay factor
in this case is oy + B1. If this sum is close to one, the autocorrelations will
decrease only very gradually. When the fourth moment of &; is not finite, the
autocorrelations of 8? are time-varying. Of course, one can still compute the
sample autocorrelations in this case. As shown by Ding and Granger (1996), if
ar + 1 < Land (o) + B1)? + 2e3 > 1, such that the GARCH(1,1) model is
covariance-stationary but with infinite fourth moment, the autocorrelations of
8? behave approximately as

p1~ar+ B1/3, (4.22)
ok ~ (a1 + B py fork=2,3,... (4.23)

The parameter restriction (] + ,81)2 + Zoef = l isequivalentto 1 — 2a1 81 —
,312 = 30{%, from which it follows that (4.22) is identical to (4.20) where this
restriction is satisfied. Therefore, the autocorrelations of 8,2 can be considered
as continuous functions of @; and B, in the sense that their behaviour does not
suddenly change when these parameters take values for which the condition for

existence of the fourth moment is no longer satisfied.
The general GARCH(p,q) model is given by

q P
hi =w+ Zai8,2_i + Zﬂihzfi
i=1

i=1

=+ a(L)e? + B(L)h;, (4.24)

where (L) = a1 L + -+ +oag L9 and B(L) = B1L + - -+ B, LP. Assuming
that all the roots of 1 — B(L) are outside the unit circle, the model can be
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rewritten as an infinite-order ARCH model

"D T
w R 2
= +3 562 425
l_ﬁl_"'_ﬂp ; 8ll ( )

For nonnegativeness of the conditional variance it is required that all §; in (4.25)
are nonnegative. Nelson and Cao (1992) discuss the conditions this implies
for the parameters «;, i = 1,...,q, and B;, i = 1...,q, in the original
model (4.24).

Alternatively, the GARCH(p,q) can be interpreted as an ARMA(m, p) model
for etz given by

m

P
s =0+ Y (@ +B)e ;=Y Bivici+ v, (4.26)

i=1 i=1

wherem = max(p, q),o; = Ofori > gand 8; = Ofori > p.Itfollowsthatthe
GARCH(p,q) model is covariance-stationary if all the roots of 1 —«(L) — B(L)
are outside the unit circle.

To determine the appropriate orders p and g in the GARCH(p,g) model,
one can use a general-to-specific procedure by starting with a model with p
and g set equal to large values, and testing down using likelihood-ratio-type
restrictions (see Akgiray, 1989; Cao and Tsay, 1992). Alternatively, one can use
modified information criteria, as suggested by Brooks and Burke (1997, 1998).

Even though the general GARCH( p,q) model might be of theoretical interest,
the GARCH(1,1) model often appears adequate in practice (see also Bollerslev,
Chou and Kroner, 1992). Furthermore, many nonlinear extensions to be dis-
cussed below have been considered only for the GARCH(1,1) case.

IGARCH

In applications of the GARCH(1,1) model (4.13) to high-frequency
financial time series, it is often found that the estimates of «; and 8; are such
that their sum is close or equal to one. Following Engle and Bollerslev (1986),
the model that results when o1 + 81 = 1 is commonly referred to as Integrated
GARCH (IGARCH). The reason for this is that the restriction o1 + 81 = 1
implies a unit root in the ARMA(1,1) model for 8? given in (4.16), which then
can be written as

(1—-L)e? =w+v — Brv_1. 4.27)

The analogy with a unit root in an ARMA model for the conditional mean of a
time series is however rather subtle. For example, from (4.17) it is seen that the



Regime-switching models for volatility 143

unconditional variance of &; is not finite in this case. Therefore, the IGARCH
model is not covariance-stationary. However, the IGARCH(1,1) model may
still be strictly stationary, as shown by Nelson (1990). This can be illustrated
by rewriting (4.13) as

ht =+ (alztz,l + B1)hi—1
=+ (122 | + B (@ + (@122 5 + B)hi—2)
=o(l+ (122 + B) + (@122 | + B (122 5 + B2,

and continuing the substitution for A;_;, it follows that

t—1 i t
hy = w(l +y [z +ﬁ1)> +[ izt +B0ho.  (428)
i=1

i=1 j=1

As shown by Nelson (1990), a necessary condition for strict stationarity of the
GARCH(1,1) model is E[In(« 1ztz_i + B1)] < 0. If this condition is satisfied,
the impact of k¢ disappears asymptotically.

As expected, the autocorrelations of 8,2 for an IGARCH model are not defined
properly. However, Ding and Granger (1996) show that the approximate auto-
correlations are given by

1
pr = 3(1+2e)(1 + 20%)7k/2, (4.29)

Hence, the autocorrelations still decay exponentially. This is in sharp contrast
with the autocorrelations for a random walk model, for which the autocorrela-
tions are approximately equal to 1 (see (2.33)).

FIGARCH

The properties of the conditional variance h; as implied by the
IGARCH model are not very attractive from an empirical point of view. Still,
estimates of the parameters of GARCH(1,1) models for high-frequency finan-
cial time series invariably yield a sum of oy and B close to 1, with «; small
and B large. This implies that the impact of shocks on the conditional vari-
ance diminishes only very slowly. From the ARCH(co) representation of the
GARCH(1,1) model as given in (4.15), the impact of the shock &; on h;yy
is given by o ,3{‘71. With B; close to 1, this impact decays very slowly as k
increases. Similarly, the autocorrelations for etz given in (4.20) and (4.21) die
out very slowly if the sum o« + B; is close to 1. However, the decay is still
at an exponential rate, which might be too fast to mimic the observed autocor-
relation patterns of empirical time series, no matter how small the difference
1 — (1 + By) is. For example, Ding, Granger and Engle (1993) suggest that the
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sample autocorrelations of squared — and, especially, absolute — returns decline
only at a hyperbolic rate. This type of behaviour of the autocorrelations can
be modelled by means of long-memory or fractionally integrated processes, as
discussed in section 2.4.

Baillie, Bollerslev and Mikkelsen (1996) propose the class of Fractionally
Integrated GARCH (FIGARCH) models. The basic FIGARCH(1,d,0) model
is most easily obtained from (4.27), by simply adding an exponent d to the
first-difference operator (1 — L), that is,

(1-L)¥e? =w+v — Brv_1, (4.30)

where 0 < d < 1. Using the definition of v; = stz — hy, this can be rewritten
as an ARCH(oo) process for the conditional variance as

he =w/(1 =B+ 1 -1 -L)Y¢/1 - piL))e?
= /(1 = 1) + AL)e}, (4.31)

where A(L) =1 - (1 — L)d/(l — B1L). By using the expansion (2.106) for
(1 — L)4, it can be shown that for large k

A~ [(1 = D) kL, (4.32)

where I"(-) is the gamma function. This expression shows that the effect of ¢;
on h; 4k decays only at a hyperbolic rate as k increases. FIGARCH models are
applied to exchange rates by Baillie, Bollerslev and Mikkelsen (1996), while
Bollerslev and Mikkelsen (1996) apply the model to stock returns and option
prices.

Ding and Granger (1996) argue that the sample autocorrelation functions
of squared returns initially decrease faster than exponentially, and that only
at higher lags does the decrease become (much) slower. This pattern suggests
that volatility may consist of several components, some of which have a strong
effect on volatility in the short run but die out quite rapidly, while others may
have a small but persistent effect. To formalize this notion, Ding and Granger
(1996) put forward the component GARCH model

he =yhis+ (0 —y)ho,, (4.33)
hig = a1 |+ (1 —aphy 1, (4.34)
hyy =w+ 0628?,1 + Boho 1. (4.35)

In this model, the conditional variance is seen to be a weighted sum of two
components, one specified as an IGARCH model and the other as a GARCH
model. A similar model is applied by Jones, Lamont and Lumsdaine (1998)
to investigate whether shocks that occur on specific days, on which announce-
ments of important macroeconomic figures are made, have different effects on
volatility than shocks that occur on other days.
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GARCH in mean

Many financial theories postulate a direct relationship between the
return and risk of financial assets. For example, in the CAPM the excess return
on arisky asset is proportional to its nondiversifiable risk, which is measured by
the covariance with the market portfolio. The GARCH in mean (GARCH-M)
model introduced by Engle, Lilien and Robins (1987) was explicitly designed
to capture such direct relationships between return and possibly time-varying
risk (as measured by the conditional variance). This is established by including
(a function) of the conditional variance /; in the model for the conditional mean
of the variable of interest y;, for example,

Vi=¢0+P1yi—1+ -+ pyr—p +8g(hy) + &, (4.36)

where g(h;) is some function of the conditional variance of &;, h;, which is
assumed to follow a (possibly nonlinear) GARCH process. In most applications,
g(hy) is taken to be the identity function or square root function — that is,
g(hy) = h; or g(hy) = +/h;. The additional term g (h;) in (4.36) is often
interpreted as some sort of risk premium. As h; varies over time, so does this
risk premium.

To gain some intuition for the properties of y; as implied by the GARCH-M
model, consider (4.36) with p = 0 and g(h;) = h; and assume that ; follows
an ARCH(1) process

Y =8hs + &, 4.37)
hi = +aje? . (4.38)

Substituting (4.38) in (4.37) and using the fact that E[stzfl] =w/(l —ay) (see
(4.6)), it follows that the unconditional expectation of y; is equal to

Ely] =8a)<1 2 )

— o

Similarly, it can be shown that the unconditional variance of y; is equal to
) w (ap)?20?
o, = )
Yool—ar o (1 -api(l - 3ad)

which is larger than the unconditional variance of y; in the absence of the

GARCH-M effect, as in that case Uy2 = 1_“’0“ . Another consequence of the

presence of /; as regressor in the conditional mean equation (4.37) is that y; is
serially correlated. As shown by Hong (1991),

205?8260
203820 + (1 —a)(1 — 3ad)
pr=a"o k=23, (4.40)

p1 (4.39)
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An overview of applications of GARCH-M models to stock returns, interest
rates and exchange rates can be found in Bollerslev, Chou and Kroner (1992).

Stochastic volatility

In the GARCH model, the conditional volatility of the observed time
series y; is driven by the same shocks as its conditional mean. Furthermore,
conditional upon the history of the time series as summarized in the information
set €2;_1, current volatility %, is deterministic. An alternative class of volatility
models which has received considerable attention assumes that /; is subject
to an additional contemporaneous shock. The basic stochastic volatility (SV)
model, introduced by Taylor (1986), is given by

& = 2y hy, (4.41)
In(h;) = yo + y1 In(h—1) + vane, (4.42)

with z; ~ NID(0, 1), n; ~ NID(0, 1), and n; and z; uncorrelated. A heuristic
interpretation of the SV model is that the shock 75, represents shocks to the
intensity of the flow of new information as measured by /;, whereas the shock
z; represents the contents (large/small, positive/negative) of the news.

To understand the similarities and differences between the GARCH(1,1)
and SV models, it is useful to consider the implied moments and correlation
properties of ;. First note that, if |y;| < 1 in (4.42), In(h,) follows a stationary
AR(1) process and In(h;) ~ N (uy, a}?) with

i = Elln(h)] = -1, (4.43)
-
7/2
of = var[ln(h;)] = —2 . (4.44)
1-— Y

Put differently, #; has a log-normal distribution. For the series &;, this
implies that

Ele;1=0 forr odd, (4.45)
E[¢2] = El[z?h;] = E[z2IE[h] = exp(up, + 07 /2), (4.46)
Ele}] = Elz}h?] = Bl E[R?] = 3 expQuy, + 207). (4.47)

In particular, from (4.46) and (4.47) it follows that

Ke = —1= = 3exp(o}), (4.48)

which demonstrates that the SV model implies excess kurtosis in the series &;,
similar to the GARCH(1,1) model (see (4.19)). A difference, however, is that
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the GARCH(1,1) model with z; normally distributed typically cannot capture
the excess kurtosis observed in financial time series completely (as will be
discussed in more detail below), whereas the SV model can, as exp(ahz) can
take any value.

The correlation properties of 8,2 can be derived by noting that E[stzstz_ =

Elz2hiz? h—] = E[h?h?_,]. It follows that

B exp(o}%ylk) —1 N exp(a}%) -1 4
3exp(af) — 1 3explop) —1""

(4.49)

where the approximation is valid for small values of a}% and/or large y; (see
Taylor, 1986, pp. 74-5). Comparing (4.49) with the autocorrelations of 8%
implied by the GARCH(1,1) model as given in (4.20) and (4.21) shows that in
both cases the ACF of 8,2 is characterized by exponential decay towards zero.
For the GARCH(1,1) model, the sum «; + 1 determines how fast the auto-
correlations decline towards zero, whereas in the SV model this is determined
by y1. When SV models are applied to high-frequency financial time series,
the parameter estimates that are typically found imply that the first-order auto-
correlation is small, whereas the subsequent decay is very slow. For example,
typical parameter estimates are 6, = 0.3 and y; = 0.95, which according to
(4.44) and (4.49) imply p; ~ 0.21 and px ~ 0.955p;.

The main difference between the GARCH and SV models is found at the
estimation stage. In the GARCH model, the parameters can be estimated by
straightforward application of maximum likelihood techniques, as will be dis-
cussed in section 4.3. This is owing to the fact that even though the conditional
volatility A, appears to be unobserved, it can be reconstructed using the past
shocks €;_1, €;—2, ... (assuming these can be obtained from the observed series
Yi—1s Yt—2, ... ,)and hg. Technically, /; is measurable with respect to the infor-
mation set 2;_1. As a consequence, the distribution of &; conditional upon the
history €2;_| can be obtained directly from the distribution of z;, and the like-
lihood function can easily be constructed. By contrast, for the SV model the
distribution of &;|€2;_1 cannot be characterized explicitly, owing to the fact
that A, is not only unobserved, but also cannot be reconstructed from the his-
tory of the time series. Therefore, standard maximum likelihood techniques
cannot be applied to estimate the parameters in SV models. Several alterna-
tive procedures have been examined, such as a (simulation-based) generalized
method of moments (Melino and Turnbull, 1990; Duffie and Singleton, 1993),
quasi-maximum likelihood via the Kalman filter (Harvey, Ruiz and Shephard,
1994), indirect inference (Gourieroux, Monfort and Renault, 1993), simulation-
based maximum likelihood (Danielsson and Richard, 1993; Danielsson, 1994)
and Bayesian methods (Jacquier, Polson and Rossi, 1994). As of yet, there is
no consensus on the appropriate method(s) of estimation and inference in SV
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models. For that reason, we do not consider these models any further in this
chapter and restrict ourselves to the GARCH class. Surveys of the SV literature
can be found in Ghysels, Harvey and Renault (1996) and Shephard (1996).

4.1.2 Nonlinear GARCH models

As shown in section 1.2, for stock returns it appears to be the case that
volatile periods often are initiated by a large negative shock, which suggests that
positive and negative shocks may have an asymmetric impact on the conditional
volatility of subsequent observations. This was recognized by Black (1976),
who suggested that a possible explanation for this finding might be the way
firms are financed. When the value of (the stock of) a firm falls, the debt-to-
equity ratio increases, which in turn leads to an increase in the volatility of the
returns on equity. As the debt-to-equity ratio is also known as the ‘leverage’ of
the firm, this phenomenon is commonly referred to as the ‘leverage effect’.

The GARCH models discussed above cannot capture such asymmetric effects
of positive and negative shocks. As the conditional variance depends only on the
square of the shock, positive and negative shocks of the same magnitude have
the same effect on the conditional volatility — that is, the sign of the shock is not
important. Most nonlinear extensions of the GARCH model which have been
developed over the years are designed to allow for different effects of positive
and negative shocks or other types of asymmetries. In this section we review
several of such nonlinear GARCH models. The models that are discussed below
are only a small sample from all the different nonlinear GARCH models which
have been proposed. For more complete overviews, the interested reader is
referred to Hentschel (1995), among others. We generally concentrate on those
models that make use of the idea of regime switching, as discussed in chapter 3
for nonlinear models for the conditional mean.

Most nonlinear GARCH models are motivated by the desire to capture the
different effects of positive and negative shocks on conditional volatility or other
types of asymmetry. A natural question to ask, then, is whether all these models
are indeed different from each other, or whether they are more or less similar.
A convenient way to compare different GARCH models is by means of the
so-called news impact curve (NIC), introduced by Pagan and Schwert (1990)
and popularized by Engle and Ng (1993). The NIC measures how new infor-
mation is incorporated into volatility. To be more precise, the NIC shows the
relationship between the current shock or news ¢; and conditional volatility 1
period ahead ;4 1, holding constant all other past and current information. In
the basic GARCH(1,1) model and nonlinear variants thereof, the only relevant
information from the past is the current conditional variance /;. Thus, the NIC
for the GARCH(1,1) model (4.13) is defined as

NIC(g/|hy = h) = 0 + a16? + B1h = A + ay62, (4.50)



Regime-switching models for volatility 149

where A = w + B1h. Hence, the NIC is a quadratic function centred on &; = 0.
As the value of the lagged conditional variance #; affects only the constant A
in (4.50), it only shifts the NIC vertically, but does not change its basic shape.
In practice, it is customary to take /; equal to the unconditional variance ol.

Exponential GARCH

The earliest variant of the GARCH model which allows for asymmetric
effects is the Exponential GARCH (EGARCH) model, introduced by Nelson
(1991). The EGARCH(1,1) model is given by

In(hy) = wotarzi—1+yi1(|z—1l=E(lz—1D)+B1 In(h;—1). (451

As the EGARCH model (4.51) describes the relation between past shocks and
the logarithm of the conditional variance, no restrictions on the parameters
a1, y1 and B1 have to be imposed to ensure that /; is nonnegative. Using the
properties of z;, it follows that g(z;) = a1z + y1(|z:| — E(]z¢|)) has mean
zero and is uncorrelated. The function g(z;) is piecewise linear in z;, as it can
be rewritten as

8() = (a1 +yDzel(ze > 0) + (1 — ¥zl (21 < 0) — y1 E(|z4]).

Thus, negative shocks have an impact «; — y; on the log of the conditional
variance, while for positive shocks the impact is o1 + y;. This property of
the function g(z;) leads to an asymmetric NIC. In particular, the NIC for the
EGARCH(1,1) model (4.51) is given by

Aexp (met> fore; > 0,
o

Aexp <uet) fore; <O,
o

NIC(g¢|h; = 0%) = (4.52)

with A = 0281 exp(w — y1/2/7).

Typical NICs for the GARCH(1,1) and EGARCH(1,1) models are shown in
panel (a) of figure 4.1. The parameters in the models have been chosen such
that the constants A in (4.52) and (4.50) are the same and, hence, the NICs are
equal when ¢; = 0. The shape of the NIC of the EGARCH model is typical
for parameterizations with @y < 0,0 < y; < 1 and y; 4+ B1 < 1. For such
parameter configurations, negative shocks have a larger effect on the conditional
variance than positive shocks of the same size. For the range of &; for which
the NIC is plotted in figure 4.1, it also appears that negative shocks in the
EGARCH model have a larger effect on the conditional variance than shocks
in the GARCH model, while the reverse holds for positive shocks. However, as
& increases, the impact on h; will eventually become larger in the EGARCH
model, as the exponential function in (4.52) dominates the quadratic in (4.50)
for large &;.
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Figure 4.1 Examples of news impact curves for various nonlinear models (solid
lines); for comparison, the news impact curve of a GARCH(1,1) model is also shown
in each panel (dashed line) (a) The parameters in the EGARCH model (4.51) are such
thatv; < 0,0 < y; < 1and y; + B1 < 1 (b) The parameters in the GIR-GARCH
model (4.53) are such that o] > y1, while (@1 + y1)/2 is equal to 1 in the
GARCH(1,1) model (c) The parameters in the ESTGARCH model (4.55) with (4.58)
are such that o; > y; and their average is equal to «] in the GARCH(1,1) model

(d) The parameters in the VS-GARCH model (4.59) are set such that ¢ > y; and

w ~+ B1h < ¢ + §1h, while the averages of all three pairs of parameters in the two
regimes are equal to the corresponding parameter in the GARCH(1,1) model

GJR-GARCH

The model introduced by Glosten, Jagannathan and Runkle (1993)
offers an alternative method to allow for asymmetric effects of positive and
negative shocks on volatility. The model is obtained from the GARCH(1,1)
model (4.13) by assuming that the parameter of 812_1 depends on the sign of the
shock, that is,

hi = w+are] (1= 1Ig1 > 0D+ y1e;_ Ile—1 > 01+ Bih—1,
(4.53)
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where as usual /[-] is an indicator function. The conditions for nonnegativeness
of the conditional variance are w > 0, (@1 + ¥1)/2 > 0 and B; > 0. The
condition for covariance-stationarity is (o] + y1)/2 + 81 < 1. If this condition
is satisfied, the unconditional variance of &; is 0% = w/(1—=(1+v1)/2—PB1).
The NIC for the GIR-GARCH model follows directly from (4.53) and is equal to

aletz ifeg <O,

NIC(g;|hy = 0%) = A + (4.54)

y18,2 ife; >0,

where A = @ + B1o2. The NIC of the GIR-GARCH model is a quadratic
function centred on g; = 0, similar to the NIC of the basic GARCH model.
However, the slopes of the GJIR-GARCH NIC are allowed to be different for
positive and negative shocks. Depending on the values of a1 and y; in (4.53),
the NIC (4.54) can be steeper or less steep than the GARCH NIC (4.50). An
example of the GJR-GARCH NIC is shown in panel (b) of figure 4.1, where we
have set @y and y; such that @y > y| while their average is equal to the value of
o1 in the GARCH(1,1) model. In this case, the NIC is steeper than the GARCH
NIC for negative news and less steep for positive news. Comparing the NICs
of the EGARCH and GJR-GARCH models as shown in panels (a) and (b) of
figure 4.1 shows that they are rather similar. Hence, the GIR-GARCH model
and the EGARCH model may be considered as alternative models for the same
series. It may be difficult to develop criteria that can help to distinguish between
the two models.

Smooth Transition GARCH

The GJR-GARCH model (4.53) can be interpreted as a threshold
model, as it allows the parameter corresponding to the lagged squared shock
to change abruptly from o to y; at &,_1 = 0. Hagerud (1997) and Gonzalez-
Rivera (1998) independently applied the idea of smooth transition, discussed in
section 3.1, to allow for a more gradual change of this parameter. The Logistic
Smooth Transition GARCH (LSTGARCH) model is given by

he = 0+ a1 [1 — F(g_1)] + y1e2 | F(er—1) + Brhi—1, (4.55)

where the function F(g;_1) is the logistic function

1
F(g_1) = ———, 6 >0. 4.56
(e1-1) T+ exp(—0z,_1) > (4.56)

As the function F'(g;_1) in (4.56) changes monotonically from O to 1 as &,
increases, the impact of 812_1 on h; changes smoothly from «1 to ;. When the
parameter 6 in (4.56) becomes large, the logistic function approaches a step
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function which equals O for negative &, and 1 for positive ¢;_1. In that case,
the LSTGARCH model reduces to the GJIR-GARCH model (4.53).

The parameter restrictions necessary for 4, to be positive and for the model
to be covariance-stationary are the same as for the GJR-GARCH model given
above. The NIC for the LSTGARCH model is given by

NIC(g|hy = 0%) = [A 4+ a1e21[1 — F(e)] + y1€21F (s1),  (4.57)

where A = w + B1o2.

The STGARCH model (4.55) can also be used to describe asymmetric effects
of large and small shocks on conditional volatility, by using the exponential
function

F(ei_1)=1-— exp(—@stzfl), 6 > 0. (4.58)

The function F(g;—1) in (4.58) changes from 1 for large negative values of
&r—1 to 0 for ¢;,_1 = 0 and increases back again to 1 for large positive values
of &;_1. Thus, the effective parameter of 8,2,1 in the Exponential STGARCH
(ESTGARCH) model given by (4.55) with (4.58) changes from y; to @1 and
back to y; again. Panel (c) of figure 4.1 shows an example of the NIC of the
ESTGARCH model.

Volatility-Switching GARCH

The LSTGARCH and GJR-GARCH models assume that the asym-
metric behaviour of &, depends only on the sign of the past shock &;_;. In
applications it is typically found that y; < «j, such that a negative shock
increases the conditional variance more than a positive shock of the same size.
On the other hand, the ESTGARCH model assumes that the asymmetry is
caused entirely by the size of the shock. Rabemananjara and Zakoian (1993)
point out that the asymmetric behaviour of /; may be more complicated and
that both the sign and the size of the shock may be important. In particular, they
argue that negative shocks increase future conditional volatility more than pos-
itive shocks only if the shock is large in absolute value. For small shocks they
observe the opposite kind of asymmetry, in that small positive shocks increase
the conditional volatility more than small negative shocks.

Fornari 