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ABSTRACT: 

 

Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and 

analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal 

changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to 

develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in 

Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based 

classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM).  

For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010-2011 cropping 

season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon 

objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as 

well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural 

parameters and ten spectral parameters of the objects.  

We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, 

considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that 

higher overall classification accuracy (95%) was observed in the object-based SVM compared with that of traditional pixel-based 

classification (89%) using maximum likelihood classifier (MLC). Object-based classification also resulted speckle-free images. 

Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The 

influence of different shape, textural and spectral variables, and their weights on crop-mapping accuracy, was also examined. 

Temporal change in the spectral characteristics, specifically through vegetation indices derived from multi-temporal Landsat data, 

was found to be the most critical information that affects the accuracy of classification. However, use of these variables was 

constrained by the data availability and cloud cover. 

 

1. INTRODUCTION 

Land management practices have significant impacts on the 

condition of land and water and the profitability and 

sustainability of agriculture. Crop mapping and time series 

analysis of agronomic cycles are critical for monitoring landuse 

and land management practices, and analysing the issues of 

agro-environmental impacts and climate change.  

 

Developments in remote sensing techniques offer a powerful 

and cost effective means for land use/land cover mapping, by 

virtue of their synoptic coverage and their ability to collect data 

at different spatial, spectral, radiometric and temporal 

resolutions. Multi-temporal Landsat data can be used to analyse 

decadal changes in cropping patterns at paddock level, owing to 

its medium spatial resolution and historical availability. Various 

investigations have demonstrated the benefits of crop mapping 

using remote sensing data (Congalton et al., 1998; Oetter et al., 

2001; Ulaby et al., 1982). Utilisation of time series satellite data 

was proved to be essential for high accuracy of crop 

classification (Barbosa et al., 1996; Serra and Pons, 2008; 

Simonneaux et al., 2008). 

 

Object-based techniques have been increasingly implemented in 

remotely sensed image analysis to overcome problems due to 

pixel heterogeneity and crop variability within the field 

(Blaschke, 2010; Castillejo-González et al., 2009; Peña-

Barragán et al., 2011). Object-based image analysis segments 

the image and constructs a hierarchical network of 

homogeneous objects. Object-based methods enable the 

analysis of aggregated sets of pixels, and exploit shape-related 

and textural variation, as well as spectral characteristics  (Baatz 

and Schäpe, 2000). In the classification process, all pixels in the 

entire objects are assigned to the same class, thus removing the 

problems of spectral variability and mixed pixels (Peña-

Barragán et al., 2011).   

 

Numerous classification algorithms have been developed since 

acquisition of the first Landsat image in early 1970s 

(Townshend, 1992). Maximum likelihood classifier (MLC), a 

parametric classifier, is one of the most widely used classifiers 

(Dixon and Candade, 2007; Hansen et al., 1996). The support 

vector machine (SVM) represents a group of theoretically 

superior non-parametric machine learning algorithms. There is 

no assumption made on the distribution of underlying data 

(Boser et al., 1992; Vapnik, 1979; Vapnik, 1998). The SVM 

employs optimization algorithms to locate the optimal 

boundaries between classes (Huang et al., 2002) and can be 

successfully applied to the problems of image classification 

with large input dimensionality. SVMs are particularly 

appealing in the remote sensing field due to their ability to 

generalize well even with limited training samples, a common 

limitation for remote sensing applications (Mountrakis et al., 

2011). 
 

In this context, this study attempts to develop robust SVM-

based techniques for classification of object-based data 

generated from multi-temporal Landsat images.  Operational 

application of these techniques across a large geographic extent, 
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for state-wide mapping of cropping history in Queensland, 

Australia, is also investigated. 

 
2. METHODS 

2.1 Study area  

Queensland is the 2nd largest state of Australia, covering over 

1.7 million square kilometres, and a broad range of climate 

zones, topography, vegetation communities, geological 

landforms and soils. The study focussed on a Landsat scene 

area (path 90 and row 79) covering about 352,456 hectares 

(Figure 1).  

 
Figure 1. Location map of study area. Green areas indicate 

cropping regions for summer 2010. 

 

The growing season for summer crops is from December to 

April; the growing season for winter crops is from June to 

November. The study analysed satellite data for two crop 

seasons; summer 2010 (December 2010-April 2011) and winter 

2011 (June 2011-November 2011). For summer 2010, 13 

Landsat images and for winter 2011, 14 Landsat images were 

downloaded from USGS (http://glovis.usgs.gov/). 

2.2 Pre-processing of Landsat data  

Landsat 5TM and Landsat 7ETM+ data have spatial resolution 

of 30m with a 16 day revisit period. The swath width is 185 km 

with 7 spectral bands in visible, near infrared, mid infrared and 

thermal infrared (NASA, 2011).  

 

Radiometrically calibrated and orthocorrected images were 

acquired from USGS and an empirical radiometric correction 

was then applied to reduce the combined effects of surface and 

atmospheric bidirectional reflectance distribution function 

(BRDF)(Danaher, 2002; de Vries et al., 2007). This method 

incorporates conversion from radiance to top-of-atmosphere 

reflectance with a modified version of the Walthall empirical 

BRDF model (Walthall et al., 1985), which was parameterised 

using pairs of overlapping ETM+ images.  

2.3 Cloud masking and image compositing  

Automated cloud detection and masking were carried out on 

each image using cloud-detection techniques developed at the 

Queensland Remote Sensing Centre (Goodwin et al., 2011). 

The approach locates anomalies in the reflectance time series 

(large differences in reflectance between cloud affected and 

predicted non-cloud affected observations) and incorporates 

region-growing filters to spatially map the extent of the cloud / 

cloud shadow 

 

A cloud-free image composite was generated by selecting a 

primary image and replacing cloud-affected pixels with cloud-

free pixels from images as close in time to the primary image as 

possible. For the summer growing season, an image acquired in 

February was selected as the primary image, whereas an image 

acquired in September was chosen as the primary image for the 

winter growing season.  

2.4 Segmentation 

The multiresolution segmentation algorithm was applied to 

Landsat image composites, to partition the image into objects, 

using eCognition Developer 8.64.0 (Trimble, München, 

Germany) (Figure 2). The multiresolution segmentation 

algorithm is a bottom-up segmentation algorithm, based on a 

pairwise region-merging technique. This is an optimization 

procedure which, for a given number of image objects, 

minimizes the average heterogeneity and maximizes their 

respective homogeneity (Trimble, 2010). 

             
Figure 2. Segmenation of Landat image using eCoginition. 

Yellow lines indicate segment delineation. The 

images is visualised as false colour composite by 

projecting near infrared, red and green bands as red, 

green and blue, respectively. 

 

The segmentation procedure starts with single image objects of 

one pixel and repeatedly merges them in several loops in pairs 

to larger units as long as an upper threshold of homogeneity is 

not exceeded locally. This homogeneity criterion is defined as a 

combination of spectral homogeneity and shape homogeneity. 

The ‘scale’ parameter influences this calculation, with higher 

values resulting in larger image objects, smaller values in 

smaller image objects (Trimble, 2010). Colour and shape 

(smoothness and compactness) parameters define the 

percentage that the spectral values and the shape of objects, 

respectively, will contribute to the homogeneity criterion 

(Castillejo-González et al., 2009). This study applied values 90, 

0.7, 0.3, 0.5 and 0.5, for scale, colour, shape, smoothness and 

compactness, respectively, to generate meaningful image 

segments encompassing agricultural fields.  

2.5 Support Vector Machine (SVM) classification 

Classification of the image objects obtained from the 

segmentation procedure was carried out using the SVM 

technique. In the first phase, the study attempted to classify the 

objects into four major classes: fallow, crop, pasture and woody 

vegetation. In the following phase, the potential of SVM to 

classify different crop types was examined.  

 

A SVM optimally separates the different classes of data by a 

hyperplane (Karatzoglou and Meyer, 2006; Kavzoglu and 

Colkesen, 2009; Vapnik, 1998). The points lying on the 

boundaries are called support vectors and the middle of the 

margin is the optimal separating hyperplane (Meyer, 2001; 

Mountrakis et al., 2011) (Figure 3).  
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Figure 3. Classification using support vectors and separating 

hyperplane (Meyer, 2001). Hollow and solid dots 

represent two classes in feature space. 

 

An optimum hyperplane is determined using a training dataset, 

and its generalization ability is verified using a validation 

dataset. Training vectors xi are projected into a higher 

dimensional space by the functionφ . SVM finds a linear 

separating hyperplane with the maximal margin in this higher 

dimensional space. The methodology for SVM implementation 

are well described by Karatzoglou and Meyer (2006) and 

Kavzoglu and Colkesen (Kavzoglu and Colkesen, 2009). The 

study used a polynomial kernel and employed ‘one-against-one’ 

technique to allow multi-class classification. The SVM 

algorithm was implemented in R open-source software (Chang 

and Lin, 2001; Meyer, 2001) 

2.6 Training data collection 

Spatially diffuse training data sets covering the study area were 

collected for two crop seasons, summer 2010 and winter 2011. 

A global positioning system and a laptop computer were used to 

record the dominant vegetation species at particular roadside 

locations. Nearly 50% of the data points collected for each crop 

season was utilised for SVM modelling and remaining data sets 

were used for validation purposes.  

2.7 Selection of input variables 

Three shape-based parameters, twenty-three textural parameters 

and ten spectral parameters of the objects were analysed to 

determine the appropriate set of input variables for the SVM 

model. A combination of random forest variable importance 

measures (Breiman, 2001; Liaw and Wiener, 2002) and 

repeated classification accuracy assessment procedure was 

carried out for model reduction and the selection of input 

variables. Based on this analysis, the following variables (Table 

1) were chosen as input to SVM model. 

 

Table 1.  Spectral and textural input variables selected for SVM 

modelling 

Variable name and formula References 

Textural parameters 

Grey level co-occurrence matrix (GLCM) 

Entropy
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i is the row number of the image 
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Vi, j is the value in the cell i, j of the matrix 

N is the number or rows or columns  

 

(Trimble, 

2010) 

Vegetation indices 

Normalised Difference Index 4-7 



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
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Normalized Difference Index 4-5 
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Enhanced Vegetation Index 
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G=2.5, C1=6, C2=7.5 and L=1 

(Huete et al., 

2002) 

Modified Chlorophyll Absorption and 

Reflectance Index 
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(Daughtry et 

al., 2000) 

Green Normalised Difference Vegetation 

Index 





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



+

−
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B2B4

B2B4
GNDVI

 

(Gitelson and 

Merzlyak, 

1996) 

Temporal spectral variables 

EVI-range (winter/summer crop season)  

EVI-minimum (winter/summer crop 

season) 

 

Other spectral variables 

Reflectance in Blue-Green (B1)  

Reflectance in Red (B3)  

Reflectance in Near Infrared (B4)  

Reflectance in Mid Infrared (B5)  

B indicates the band of Landsat data converted to exo-

atmospheric reflectance. eg. B4 means band 4 as shown in 

Landsat hand book (NASA, 2011). 

 

3. RESULTS AND DISCUSSION 

Ground reference data collected (Section 2.6) for crop seasons 

summer 2010 and winter 2011 were analysed in conjunction 

with the spatial data variables described in Section 2.7.    

 

Random forest variable importance analysis showed that the 

range of EVI was the most influential variable. Temporal 

signatures of average EVI values derived for different classes 

during the crop season of summer 2011 are illustrated in Figure 

4. Areas of cropping consistently shows higher range of EVI 

values compared with bare soil or pasture, due to the spectral 

variations associated with the crop phenological changes during 

the crop season. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sep 2010 Jan 2011 Feb 2011 Apr 2011

E
V

I

Fallow

Cotton

Pasture

Sorghum

 
Figure 4. Temporal changes in mean EVI values for different 

classes during summer 2010 crop season derived 

from Landsat time series data 

 

Accuracy assessment clearly demonstrated the potential of 

SVM techniques for classification of the major classes (fallow, 

crop, pasture and woody). Overall classification accuracy for 

summer 2010 was 87% (k = 0.73)(Table 2) while that of winter 

2011 was 93% (k = 0.9) ( ).  
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Table 2. Accuracy assessment of summer 2010 classification 

(major classes only) 

 
 Lower classification accuracy in the case of summer data could 

be attributed mainly to two reasons. During summer, there was 

more classification error between crop and pasture. High 

amount of rainfall during the summer growing season causes a 

significant increase in vegetative growth in pasture areas and 

this in turn could make it difficult to distinguish these areas 

from cropping, spectrally. The second reason could be the 

noticeably higher cloud cover during the summer. It may be 

noted that EVI range is observed to be the most important input 

variable for SVM modelling and cloud-affected pixels could 

decrease the number pixels available for EVI range estimation 

over the growing season. Further, a separate analysis, carried 

out by omitting training data sets over cloud-affected pixels, 

indicated the accuracy could be as high as 95 % (k = 0.9). The 

MLC was applied on the same dataset and the results clearly 

revealed that SVM techniques not only produced superior 

classification accuracy, but also generated a neater and 

speckle-free image (Figure 5).  

 
Figure 5. Comparison of Support Vector Machines and 

Maximum Likelihood Classified images 

 

Table 3. Accuracy assessment of winter 2011 classification 

(major classes only) 

  

 This project aims to develop operational methods for crop type 

classification for Queensland. In pursuit of this, a preliminary 

investigation was attempted to classify broadacre crop types for 

both crop seasons. For summer 2010, the crop class mapped in 

the first phase (Table 2 and  ) was further classified to different 

crop types. For summer, cotton and sorghum were considered 

as the major crops and crops like sunflower, mung beans, 

millets and fodder crops were grouped into a class called other 

crops. The SVM model generated classified the image into 

these broadacre crop types (Figure 6) with an overall accuracy 

of 78% (k = 0.7) (Table 4). 

 

 
Figure 6. Classification of broad acre crop types for summer  

2010 and winter 2011 

 

Table 4. Accuracy assessment of summer 2010 classification of 

crop types 

 

Similarly, SVM models were generated for separating 

broadacre crop types for winter 2011 (Figure 6). Major crop 

types identified were barley and wheat. Crops like chick pea, 

and fodder were grouped into other crops. Winter crop type 

classification accuracy was again found to be slightly higher 

(79%, k = 0.73) than that of summer (Table 5). 

 

Table 5. Accuracy assessment of winter 2011 classification of 

crop types 

 

 

Developing operational methods for the assessment of crop 

distribution is crucial for the effective implementation of 

agricultural policies. For example, the State Government of 

Queensland, Australia, passed the Strategic Cropping Land 

(SCL) Bill in December 2011 to protect land that is highly 

suitable for cropping, manage the impacts of development on 

  Reference 
Classes 

Cotton    Fallow Other crops Pasture Sorghum Woody Total 

Cotton 162 6 8 5 16 2 199 

Fallow 1 72 4 1 2 0 80 

Other crops 0 2 7 0 0 0 9 

Pasture 0 2 2 20 0 1 25 

Sorghum 19 17 23 12 132 1 204 

Woody 0 0 0 0 0 41 41 

C
la

ss
if

ie
d

 

Total 182 99 44 38 150 45 558 

  Overall accuracy = 78% 

  Kappa coefficient (k)  = 0.70 

Reference 
Classes 

Barley Fallow    Other crops Pasture Wheat Woody Total 

Barley 14 0 3 0 2 0 20 

Fallow 0 70 0 0 0 0 70 

Other crops 6 0 11 0 3 0 20 

Pasture 3 0 11 178 7 12 211 

Wheat 30 0 27 6 134 0 197 

Woody 0 0 2 0 2 78 80 

C
la

ss
if

ie
d

 

Total 50 70 54 184 0 90 598 

  Overall accuracy = 79% 

  Kappa coefficient (k)  = 0.73 

Reference 
Classes 

Fallow Crop Pasture Woody Total 

Fallow 68 7 1 0 76 

Crop 30 369 23 6 428 

Pasture 1 0 14 1 16 

Woody 0 0 0 38 38 

C
la

ss
if

ie
d

 

Total 99 376 38 45 558 

Overall accuracy = 87% 

Kappa coefficient (k) = 0.73 

 

Reference 
Classes 

Fallow Crop Pasture Woody Total 

Fallow 70 0 0 0 70 

Crop 0 244 4 4 274 

Pasture 0 1 158 8 167 

Woody 0 1 0 78 79 

C
la

ss
if

ie
d

 

Total 70 246 184 90 590 

Overall accuracy = 93% 

Kappa coefficient (k)  = 0.90 
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that land and preserve the productive capacity of that land for 

future generations (Figure 7).  

(See http://www.derm.qld.gov.au/land/planning/strategic-

cropping/index.html ).  

 
Figure 7. Cropping areas detected by this study within the 

Strategic Cropping Land trigger map during summer 

2011, as indicated by green patches in the map. 

Overlaid is the footprints of 35 Landsat scenes that 

cover the study area. 

 

The  legislation  aims  to  restrict  developmental  activities  on 

cropping areas, which have been cultivated at least three times 

between 1 January 1999 to 31 December 2010 and  that  meet  

on-ground  assessment against the site level SCL criteria. This 

has generated a demand for automated large area crop 

classification.  

 

The trigger map indicates the location of potential SCL in 

Queensland and is based on soil, land and climate information. 

The SCL area extends to 42-million ha, which is almost one-

quarter of Queensland and requires 35 Landsat scenes to cover 

the entire area. SVM models were applied on these 35 sets of 

multi-temporal Landsat data to demarcate areas cropped during 

summer 2010 (Figure 7) and winter 2011 (Figure 8) 

 

 
Figure 8. Cropping areas detected by this study within the 

Strategic Cropping Land trigger map during winter 

2011, as indicated by green patches in the map. 

 

4. CONCLUSIONS 

Results of this study demonstrated the distinctive advantage of 

object-based methods over pixel-based methods, considering 

the complexities of within-field spectral heterogeneity and 

spectral mixing. This is well supported by several other studies 

(Castillejo-González et al., 2009; Peña-Barragán et al., 2011). 

This investigation further combined the superiority of object-

based data with a powerful non-parametric SVM classifier 

(Boser et al., 1992; Dixon and Candade, 2007; Huang et al., 

2002) to perform automated large-area broadacre crop mapping. 

Comparative analysis clearly revealed that substantially higher 

overall classification accuracy (95%) was observed with the 

object-based SVM, compared with that of traditional pixel-

based classification (89%). Object-based classification also 

resulted in neater and speckle-free images.  Further, object-

based SVM models were used to classify different broadacre 

crop types for summer and winter seasons. Influence of 

different shape, textural and spectral variables and their weights 

on crop-mapping accuracy was also examined. Temporal 

change in the spectral characteristics, specifically through 

vegetation indices derived from multi-temporal Landsat data, 

was found to be the most critical information that aftected the 

accuracy of classification using SVM models. However, use of 

these variables was constrained by the multi-temporal data 

availability and cloud cover. 
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