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Preface

Every mathematical discipline goes
through three periods of development:
the naive, the formal, and the critical.

David Hilbert

The goal of this book is to explain the principles that made support vector
machines (SVMs) a successful modeling and prediction tool for a variety of
applications. We try to achieve this by presenting the basic ideas of SVMs
together with the latest developments and current research questions in a
unified style. In a nutshell, we identify at least three reasons for the success
of SVMs: their ability to learn well with only a very small number of free
parameters, their robustness against several types of model violations and
outliers, and last but not least their computational efficiency compared with
several other methods.

Although there are several roots and precursors of SVMs, these methods
gained particular momentum during the last 15 years since Vapnik (1995,
1998) published his well-known textbooks on statistical learning theory with
a special emphasis on support vector machines. Since then, the field of machine
learning has witnessed intense activity in the study of SVMs, which has spread
more and more to other disciplines such as statistics and mathematics. Thus it
seems fair to say that several communities are currently working on support
vector machines and on related kernel-based methods. Although there are
many interactions between these communities, we think that there is still
room for additional fruitful interaction and would be glad if this textbook were
found helpful in stimulating further research. Many of the results presented in
this book have previously been scattered in the journal literature or are still
under review. As a consequence, these results have been accessible only to a
relatively small number of specialists, sometimes probably only to people from
one community but not the others. In view of the importance of SVMs for
statistical machine learning, we hope that the unified presentation given here
will make these results more accessible to researchers and users from different
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communities (e.g.; from the fields of statistics, mathematics, computer science,
bioinformatics, data and text mining, and engineering).

As in most monographs, the selection of topics treated in this textbook is
biased for several reasons. We have of course focused on those that particularly
interest us and those that we have been working on during the last decade.
We also decided to concentrate on some important and selected topics, so for
these topics we can offer not only the results but also the proofs. This is in
contrast to some other textbooks on SVMs or statistical machine learning in
general, but we try to follow the path described by Devroye et al. (1996) and
Györfi et al. (2002). Moreover, some topics, such as the robustness properties
of SVMs, a detailed treatment of loss functions and reproducing kernel Hilbert
spaces, recent advances in the statistical analysis of SVMs, and the relation-
ship between good learning properties and good robustness properties such
as a bounded influence function and a bounded maxbias, are not covered by
other currently available books on SVMs. On the other hand, the area of sta-
tistical machine learning is nowadays so rich and progressing so rapidly that
covering all aspects in detail in a single book hardly seems possible. The con-
sequence is of course that several important and interesting topics of SVMs
and related methods are not covered in this monograph. This includes, for
example, SVMs for anomaly detection, kernel principal component analysis,
kernel-based independence measures, structured estimation, recent progress in
computational algorithms, boosting, Bayesian approaches, and the analysis of
time series or text data. A reader interested in these topics will get useful in-
formation in the books by Vapnik (1995, 1998), Cristianini and Shawe-Taylor
(2000), Hastie et al. (2001), Schölkopf and Smola (2002), Shawe-Taylor and
Cristianini (2004), and Bishop (2006), among others. Moreover, many of the
most recent developments can be found in journals such as Journal of Ma-
chine Learning Research, Machine Learning, and Annals of Statistics, or in
the proceedings to conferences such as NIPS or COLT.

The process of writing this book took about four years. Springer asked
one of us (A.C.), after a talk on robustness properties of SVMs, whether he
was willing to write a book on this topic. After a few weeks to convince Ingo
to write a joint textbook, our plan was to write a very condensed book of
about 200–250 pages within one-and-a-half years. However, this soon turned
out to be unrealistic because we aimed to include some of our own research
results that were partially written simultaneously to the book. Moreover, we
totally underestimated the richness of the available literature on SVMs and
the field’s speed of progress.
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Reading Guide

This book contains both the foundations and advanced material on support
vector machines, and as such it can serve several purposes.

First, it can serve as a textbook on SVMs for a one-semester course for
graduate students by explaining the key ingredients and principles of support
vector machines. For example, the following chapters or parts of them can
be used in this respect: the introduction in Chapter 1 written in a tutorial
style, Chapter 2 (on loss functions), Chapter 4 (on kernels and reproducing
kernel Hilbert spaces), and Chapter 6 (on the statistical analysis of SVMs)
are prerequisites for the understanding of SVMs and hence they should be
included. This core material can be complemented for example by Chapter 5
(on infinite sample versions of SVMs), or Chapters 8 and 9 (on classification
and regression) to present more concrete applications. Finally, Chapter 10 (on
robustness properties) and Chapter 11 (on computational aspects) broaden
the knowledge of SVMs.

Second, an advanced course for graduate students can cover the remaining
parts of the book, such as surrogate loss functions, additional concentration
inequalities, the parts of the chapters on classification or regression not treated
in the first course, additional results on robustness properties of SVMs, and
the chapter explaining how SVMs fit in as a tool in a whole data mining
strategy. The second course can thus be based for example on Chapters 3, 7,
8 or 9, and 12.

Last but not least, the somewhat more advanced topics may also be in-
teresting to researchers joining, or already working in, the field of statistical
machine learning theory. The chapters and sections containing such more ad-
vanced material are indicated by an asterisk (*) in the title.

Besides the introduction, all chapters contain various exercises with levels
of difficulty (indicated by a scale of one to four stars (�)) ranging from those
of a more repetitive nature to a serious challenge.

Moreover, to keep the book as self-contained as possible, we also added
an extensive appendix that collects necessary notions and results from sev-
eral disciplines, such as topology, probability theory and statistics, functional
analysis, and convex analysis.

A website for this book is located at

http://www.staff.uni-bayreuth.de/∼btms01/svm.html
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1

Introduction

Overview. The goal of this introduction is to give a gentle and infor-
mal overview of what this book is about. In particular, we will discuss
key concepts and questions on statistical learning. Furthermore, the
underlying ideas of support vector machines are presented, and im-
portant questions for understanding their learning mechanisms will be
raised.

Usage. This introduction serves as a tutorial that presents key con-
cepts and questions of this book. By connecting these to corresponding
parts of the book, it is furthermore a guidepost for reading this book.

It is by no means a simple task to give a precise definition of learning and,
furthermore, the notion of learning is used in many different topics. Rather
than attempting to give a definition of learning on our own, we thus only
mention two possible versions. Following the Encyclopædia Britannica (on-
line version), learning is the

“process of acquiring modifications in existing knowledge, skills, habits,
or tendencies through experience, practice, or exercise.”

Simon (1983, p. 28), who was awarded the Nobel Prize in Economic Sciences
in 1978, defined learning in the following way:

“Learning denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the
same population more efficiently and more effectively the next time.”

1.1 Statistical Learning

Statistical learning is a particular mathematical formulation of the general
concept of learning. Before we present this formulation, let us first describe
and motivate it in a rather informal way. To this end, let us assume that we
want to relate a certain type of input value or measurement(s) to an output
or response. Knowing whether such a dependence structure between input
and output values exists, and if so which functional relationship describes it,
might be of interest in real-life applications such as the following:

(a) make a diagnosis based on some clinical measurements;
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(b) assign the ASCII code to digitalized images of handwritten characters;
(c) predict whether a client will pay back a loan to a bank;
(d) assess the price of a house based on certain characteristics;
(e) estimate the costs of claims of insurees based on insurance data.

Another characteristic of the applications we have in mind is that there is a
need to automatically assign the response. For example, this may be the case
because the structure of the measurements is too complex to be reasonably
understood by human experts, or the amount of measurements is too vast
to be manually processed in a timely fashion. The examples above illustrate,
however, that we often do not have a reasonable description of a functional
relationship between the measurements and the desired response that can
easily be formalized and implemented on a computer. One way to resolve this
problem is the one taken by statistical learning theory or machine learning.
In this approach, it is assumed that we have already gathered a finite set
of input values together with corresponding output values. For example, in
the scenarios above, we could have collected: (a) data on some patients who
had already developed the disease, (b) handwritten characters with manually
assigned ASCII code, (c) data on clients who got a loan from the bank within
the last ten years, (d) the prices of recently sold houses, or (e) insurance data
of previous years. In the machine learning approach, the limited number of
input values with known output values are then used to “learn” the assumed
but unknown functional relationship between the input values and the output
values by an algorithm, which in turn makes it possible to predict the output
value for future input values. This is a crucial point. In many applications, the
collected data set consisting of input values and output values can be thought
of as a finite sample taken from all possible input and output values. However,
the goal is not to find a suitable description of the dependency between input
and output values of the collected data set (because we already know the
output values) but to find a prediction rule for output values that works well
for new, so far unseen input values.

In order to formalize this approach, we first assume that all input val-
ues x are contained in a known set X that describes their format and their
range. In the examples above, this could be (a) the set of possible values of
clinically measured parameters, (b) the set of all possible sixteen by sixteen
digitalized black and white images, (c) the set of all possible information on
the clients, (d) the set of possible configurations and locations of houses in a
town, or (e) the set of all possible collected personal information of insurees.
In addition, we assume that we have a known set Y that describes the format
and the range of possible responses. For example, this could simply be the
set {“negative”,“positive”} or {−1,+1} when we want to diagnose a disease,
while in the other examples Y could be the set of ASCII codes related to
numerals or letters, a price range, or a range that contains all possible claim
amounts.
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As already mentioned informally, we assume in the machine learning ap-
proach that we have collected a sequence D := ((x1, y1), . . . , (xn, yn)) of in-
put/output pairs that are used to “learn” a function f : X → Y such that
f(x) is a good approximation of the possible response y to an arbitrary x.
Obviously, in order to find such a function, it is necessary that the already
collected data D have something in common with the new and unseen data.
In the framework of statistical learning theory, this is guaranteed by assuming
that both past and future pairs (x, y) are independently generated by the same,
but of course unknown, probability distribution P on X × Y . In other words,
a pair (x, y) is generated in two steps. First, the input value x is generated
according to the marginal distribution PX . Second, the output value y is gen-
erated according to the conditional probability P( · |x) on Y given the value
of x. Note that by letting x be generated by an unknown distribution PX ,
we basically assume that we have no control over how the input values have
been and will be observed. Furthermore, assuming that the output value y to
a given x is stochastically generated by P( · |x) accommodates the fact that
in general the information contained in x may not be sufficient to determine
a single response in a deterministic manner. In particular, this assumption
includes the two extreme cases where either all input values determine an
(almost surely) unique output value or the input values are completely irrele-
vant for the output value. Finally, assuming that the conditional probability
P( · |x) is unknown contributes to the fact that we assume that we do not
have a reasonable description of the relationship between the input and out-
put values. Note that this is a fundamental difference from parametric models,
in which the relationship between the inputs x and the outputs y is assumed
to follow some unknown function f ∈ F from a known, finite-dimensional set
of functions F .

So far, we have only described the nature of the data with which we are
dealing. Our next goal is to describe what we actually mean by “learning.” To
this end, we assume that we have means to assess the quality of an estimated
response f(x) when the true input and output pair is (x, y). To simplify things,
we assume throughout this book that the set of possible responses Y is a subset
of R and that all estimated responses are real-valued. Moreover, we assume
that our quality measure is a non-negative real number L(x, y, f(x)) that is
smaller when the estimated response f(x) is better. In other words, we have
a function L : X × Y × R → [0,∞), which in the following is called a loss
function, where the term “loss” indicates that we are interested in small values
of L. Of course, in order to assess the quality of a learned function f , it does
not suffice to know the value L(x, y, f(x)) for a particular choice of (x, y), but
in fact we need to quantify how small the function (x, y) �→ L(x, y, f(x)) is.
Clearly, there are many different ways to do this, but in statistical learning
theory one usually considers the expected loss of f , that is, the quantity

RL,P(f) :=
∫

X×Y

L
(
x, y, f(x)

)
dP(x, y) =

∫
X

∫
Y

L
(
x, y, f(x)

)
dP(y|x)dPX ,
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which in the following is called the risk of f .1 Let us consider a few examples
to motivate this choice.

For the first example, we recall the scenario (b), where the goal was to as-
sign ASCII codes to digitalized images of handwritten characters. A straight-
forward loss function for this problem is the function L(x, y, f(x)), which
equals one whenever the prediction f(x) does not equal the true ASCII code
y and is otherwise equal to zero. Now assume that we have already learned
a function f and our goal is now to apply f to new bitmaps xn+1, . . . , xm

that correspond to the ASCII codes yn+1, . . . , ym. Then intuitively a func-
tion is better the fewer errors it makes on xn+1, . . . , xm, and obviously this is
equivalent to saying that the average future empirical loss

1
m− n

m∑
i=n+1

L
(
xi, yi, f(xi)

)
(1.1)

should be as small as possible. Now recall that we always assume that
(xn+1, yn+1), . . . , (xm, ym) are independently generated by the same distri-
bution P, and consequently the law of large numbers (see Theorem A.4.8)
shows that, for m→∞, the average empirical loss in (1.1) converges in prob-
ability to RL,P(f). In other words, the risk is indeed a very reasonable quality
measure for the function f .

In the example above the risk directly assesses how well a function f per-
forms a certain task, namely classification. In contrast to this, our second
example considers a case where the main learning objective is to estimate a
function f∗ and the risk used is only a relatively arbitrary tool to describe
this objective. To be more concrete, let us recall the scenario (d), where we
wished to assess the prices of houses. According to our general assumption,
these prices have the unknown distributions P( · |x), where x may describe the
configuration and location of a certain house. Now, depending on the particu-
lar application, it could be reasonable to estimate the center of the conditional
probability distribution such as the conditional mean or the conditional me-
dian of Y given x. Let us write f∗(x) for either of them. Intuitively, a good
estimator f(x) of the quantity f∗(x) should be close to it, and hence we could
consider loss functions of the form

Lp(x, y, f(x)) := |f∗(x)− f(x)|p,
where p > 0 is some fixed number.2 The average loss (i.e., the risk) of an
estimator f then becomes
1 Throughout the introduction, we ignore technicalities such as measurability, inte-

grability, etc., to simplify the presentation. In the subsequent chapters, however,
we will seriously address these issues.

2 The experienced reader probably noticed that for these learning goals one often
uses the least squares loss or the absolute distance loss, respectively. However,
these loss functions are strictly speaking only tools to determine f∗ and do not
define the goal itself. While later in the book we will also use these loss functions



1.1 Statistical Learning 5

RLp,P(f) =
∫

X

∣∣f∗(x)− f(x)
∣∣p dPX(x) ,

which obviously is a reasonable quality measure with a clear intuitive meaning.
Note, however, that, unlike in the first example, we are not able to actually
compute the loss functions Lp since we do not know f∗. Moreover, there seems
to be no natural choice for p either, though at least for the problem of esti-
mating the conditional mean we will see in Example 2.6 that p = 2 is in some
sense a canonical choice. Similarly, we will see in Example 3.67 that, under
some relatively mild assumptions on the conditional distributions P( · |x), the
choice p = 1 is suitable for the problem of estimating the conditional median.

Let us now return to the general description of the learning problem. To
this end, recall that a function is considered to be better the smaller its risk
RL,P(f) is. Hence it is natural to consider the smallest possible risk,

R∗
L,P := inf

f :X→R
RL,P(f) ,

where the infimum is taken over the set of all possible functions. Note that
considering all possible functions is in general necessary since we do not make
assumptions on the distribution P. Nevertheless, for particular loss functions,
we can actually consider smaller sets of functions without changing the quan-
tity R∗

L,P. For example, in the scenario where we wish to assign ASCII codes
to digitalized images, it clearly makes no difference whether we consider all
functions or just all functions that take values in the ASCII codes of interest.
Moreover, we will see in Section 5.5 that in many cases it suffices to consider
sets of functions that are in some sense dense.

So far, we have described that we wish to find a function f : X → R that
(approximately) minimizes the risk RL,P. If the distribution P is known, this
is often a relatively easy task, as we will see in Section 3.1.3 In our setup,
however, the distribution P is unknown, and hence it is in general impossible
to find such an (approximate) minimizer without additional information. In
the framework of statistical learning theory, this information comes in the form
of the already collected finite data set D := ((x1, y1), . . . , (xn, yn)), where all
n data points (xi, yi) are assumed to be generated independently from the
same distribution P. Based on this data set, we then want to build a function
fD : X → R whose risk RL,P(fD) is close to the minimal risk R∗

L,P. Since the
process of building such a function should be done in a systematic manner,
we restrict our considerations throughout this book to learning methods, that

as tools, it is conceptionally important to distinguish between the learning goal
and the tools to achieve this goal. A systematic treatment of this difference will
be given in Chapter 3.

3 In this case there is, of course, no need to learn since we already know the dis-
tribution P that describes the desired functional relationship between input and
output values. Nonetheless, we will see that we gain substantial insight into the
learning process by considering the case of known P.
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is, to deterministic methods that assign to every finite sequence D a unique
function fD. Now one way to formalize what is meant by saying that a learning
method is able to learn is the notion of universal consistency. This notion
which we will discuss in detail in Section 6.1, requires that, for all distributions
P on X × Y , the functions fD produced by the learning method satisfy

RL,P(fD)→ R∗
L,P , n→∞, (1.2)

in probability. In other words, we wish to have a learning method that in
the long run finds functions with near optimal response performance with-
out knowing any specifics of P. Although this generality with respect to P
may seem to be a very strong goal, it has been known since a seminal paper
by Stone (1977) that for certain loss functions there do exist such learning
methods. Moreover, in Section 6.4 and Chapter 9, we will see that the learn-
ing methods we will deal with, namely support vector machines (SVMs), are
often universally consistent.

One clear disadvantage of the notion of universal consistency is that no
speed of convergence is quantified in (1.2). In particular, we cannot a priori
exclude the possibility that universally consistent methods are only able to
find functions fD with near optimal response performances for extremely large
values of n. Unfortunately, it turns out by the so-called no-free-lunch theorem
shown by Devroye (1982) that in general this issue cannot be resolved. To
be more precise, we will see in Section 6.1 that for every learning method
and every a priori fixed speed of convergence there exists a distribution P for
which the learning method cannot achieve (1.2) with the prescribed speed.
Having said that, it is, however, well-known that for many learning meth-
ods it is possible to derive uniform convergence rates, and sometimes also
asymptotic distributions, under certain additional assumptions on P. For the
earlier mentioned and more restrictive case of parametric models and for local
asymptotic optimality results, we refer to Lehmann and Casella (1998) and
LeCam (1986), respectively. Moreover, if P is an element of a neighborhood of
a parametric model and a robust statistical method is used, we refer to Huber
(1964, 1967, 1981), Hampel et al. (1986), and Rieder (1994). On the other
hand, convergence rates for regression with smooth but otherwise unspecified
target functions are discussed in great detail by Györfi et al. (2002). While
one can show that convergence rates for regression can also be obtained by
certain SVMs, we will mainly focus on convergence rates for classification.
In particular, we will present a class of mild assumptions on P in Chapter 8
that, while realistic in many cases, still allow us to derive reasonable learning
rates. Finally, one should always keep in mind that the existence of conver-
gence rates only provides theoretical assurance up to a certain degree since in
practice we can almost never rigorously prove that the required assumptions
are met.
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1.2 Support Vector Machines: An Overview

Let us now describe the basic ideas of support vector machines. In order to fix
ideas, we focus here in the introduction on only one particular type of learning
problem, namely binary classification. For convenience, let us in this and the
following section assume that the loss function depends on x only via f(x) such
that we can simply write L(y, f(x)) instead of L(x, y, f(x)). As in example (a)
mentioned earlier, where the goal was to make a diagnosis, the goal in binary
classification is to estimate a response that only has two states. Consequently,
we define the set of possible response values by Y := {−1,+1}. Moreover,
the classification loss function Lclass commonly used in binary classification
only penalizes misclassifications (i.e., Lclass(y, f(x)) equals 1 if sign f(x) �= y
and equals 0 otherwise). Finally, we assume that all possible input values are
contained in some set, say X ⊂ Rd.

Let us now recall that the learning goal was to find a function f∗ that
(approximately) achieves the smallest possible risk,

R∗
L,P = inf

f :X→R
RL,P(f) , (1.3)

where L := Lclass. Since the distribution P generating the input/output pairs
is unknown, the risk RL,P(f) is unknown and consequently we cannot directly
find f∗. To resolve this problem, it is tempting to replace the risk RL,P(f) in
(1.3) by its empirical counterpart

RL,D(f) :=
1
n

n∑
i=1

L(yi, f(xi)) ,

where D := ((x1, y1), . . . , (xn, yn)) is the finite sequence of already gathered
samples.4 Unfortunately, however, even though the law of large numbers shows
that RL,D(f) is an approximation of RL,P(f) for each single f , solving

inf
f :X→R

RL,D(f) (1.4)

does not in general lead to an approximate minimizer of RL,P( · ). To see
this, consider the function that classifies all xi in D correctly but equals 0
everywhere else. Then this function is clearly a solution of (1.4), but since
this function only memorizes D, it is in general a very poor approximation of
(1.3). This example is an extreme form of a phenomenon called overfitting , in
which the learning method produces a function that models too closely the
output values in D and, as a result, has a poor performance on future data.

One common way to avoid overfitting is to choose a small set F of functions
f : X → R that is assumed to contain a reasonably good approximation of
the solution of (1.3). Then, instead of minimizing RL,D( · ) over all functions,
one minimizes only over F ; i.e., one solves
4 The corresponding empirical distribution is denoted by D := 1

n

∑n
i=1 δ(xi,yi).
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inf
f∈F
RL,D(f) . (1.5)

This approach, which is called empirical risk minimization (ERM), often tends
to produce approximate solutions of the infinite-sample counterpart of (1.5),

R∗
L,P,F := inf

f∈F
RL,P(f) . (1.6)

In particular, we will see in Section 6.3 that this is true if F is finite or if F can
at least be approximated by a finite set of functions. Unfortunately, however,
this approach has two serious issues. The first one is that in the problems we
are interested in our knowledge of P is in general not rich enough to identify a
set F such that a solution of (1.6) is a reasonably good approximation of the
solution of (1.3). In other words, we usually cannot guarantee that the model
error or approximation error

R∗
L,P,F −R∗

L,P (1.7)

is sufficiently small. The second issue is that solving (1.5) may be computation-
ally infeasible. For example, the 0/1 loss function used in binary classification
is non-convex, and as a consequence solving (1.5) is often NP-hard, as Höffgen
et al. (1995) showed.

To resolve the first issue, one usually increases the size of the set F with
the sample size n so that the approximation error (1.7) decreases with the
sample size. In this approach, it is crucial to ensure that solving (1.5) for
larger sets F still leads to approximate solutions of (1.6), which is usually
achieved by controlling the growth of F with the sample size. The second
issue is often resolved by replacing the risk RL,D( · ) in (1.5) by a suitable
surrogate that is computationally more attractive. Various proposed learning
methods follow these two basic ideas in one form or another, and a complete
account of these methods would fill another textbook. Consequently, we will
focus in the following on how support vector machines implement these two
basic strategies.

Let us first explain the idea of how SVMs make the optimization problem
computationally feasible. Here the first step is to replace the 0/1 classification
loss by a convex surrogate. The most common choice in this regard is the
hinge loss, which is defined by

Lhinge(y, t) := max{0, 1− yt}, y ∈ {−1,+1}, t ∈ R;

see also Figure 3.1. It is easy to see that the corresponding empirical risk
RLhinge,D(f) is convex in f , and consequently, if we further assume that F is
a convex set, we end up with the convex optimization problem

inf
f∈F
RLhinge,D(f) , (1.8)

which defines our learning method . Before we present another step SVMs take
to make the optimization problem more attractive, let us briefly note that
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using the surrogate loss function Lhinge instead of the non-convex classification
loss raises a new issue. To explain this, let us assume that (1.8) is well-behaved
in the sense that solving (1.8) leads to a function fD whose risk RLhinge,P(fD)
is close to

R∗
Lhinge,P,F := inf

f∈F
RLhinge,P(f) .

Moreover, we assume that the approximation error R∗
Lhinge,P,F − R∗

Lhinge,P

with respect to the hinge loss is small. In other words, we assume that we are
in a situation where we can hope to find a function fD ∈ F such that

RLhinge,P(fD)−R∗
Lhinge,P

is small. However, we are actually interested in learning with respect to the
classification risk; i.e., we wantRLclass,P(fD)−R∗

Lclass,P
to be small. Obviously,

one way to ensure this is to establish inequalities between the two differences.
Fortunately, for the hinge and classification losses, it will turn out in Section
2.3 that relatively elementary considerations yield

RLclass,P(f)−R∗
Lclass,P

≤ RLhinge,P(f)−R∗
Lhinge,P

for all functions f : X → R. Therefore, the idea of using the hinge loss is
justified as long as we can guarantee that our learning method learns well
in terms of the hinge loss. Unfortunately, however, for several other learn-
ing problems, such as estimating the conditional median, it turns out to be
substantially more difficult to establish inequalities that relate the risk used
in the learning method to the risk defining the learning goal . Since this is a
rather general issue, we will develop in Chapter 3 a set of tools that make it
possible to derive such inequalities in a systematic way.

Let us now return to support vector machines. So far, we have seen that
for binary classification they replace the non-convex 0/1-classification loss by
a convex surrogate loss such as the hinge loss. Now, the second step of SVMs
toward computational feasibility is to consider very specific sets of functions,
namely reproducing kernel Hilbert spaces5 H. These spaces will be introduced
and investigated in detail in Chapter 4, and hence we skip a formal definition
here in the introduction and only mention that for now we may simply think
of them as Hilbert spaces that consist of functions f : X → R. We will see
in Chapter 4 that every RKHS possesses a unique function k : X × X →
R, called its kernel , that can be used to describe all functions contained in
H. Moreover, the value k(x, x′) can often be interpreted as a measure of
dissimilarity between the input values x and x′. Let us fix such an RKHS H
and denote its norm by ‖ · ‖H . For a fixed real number λ > 0, support vector
machines then find a minimizer of

inf
f∈H

λ‖f‖2H +RL,D(f) , (1.9)

5 We will often use the abbreviation RKHS for such Hilbert spaces.
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where the regularization term λ‖f‖2H is used to penalize functions f with a
large RKHS norm. One motivation of this regularization term is to reduce the
danger of overfitting; rather complex functions f ∈ H, which model too closely
the output values in the training data set D, tend to have large H-norms. The
regularization term penalizes such functions more than “simple” functions.

If L is a convex loss function such as the hinge loss, the objective function in
(1.9) becomes convex in f . Using this, we will see in Section 5.1 and Chapter
11 that (1.9) has in basically all situations of interest a unique and exact
minimizer, which in the following we denote by fD,λ. Moreover, we will see in
Section 5.1 that this minimizer is of the form

fD,λ =
n∑

i=1

αik(xi, · ) , (1.10)

where k : X ×X → R is the kernel that belongs to H and α1, . . . , αn ∈ R are
suitable coefficients. In other words, the minimizer fD,λ is a weighted average
of (at most) n functions k(xi, · ), where the weights αi are data-dependent. A
remarkable consequence of the representation given in (1.10) is the fact that
fD,λ is contained in a known finite dimensional space, namely the linear span
of k(xi, · ), 1 ≤ i ≤ n, even if the space H itself is substantially larger. This
observation makes it possible to consider even infinite dimensional spaces H
such as the one belonging to the popular Gaussian radial basis function (RBF)
kernel (see Section 4.4 for a detailed account) defined by

kγ(x, x′) := exp
(−γ−2‖x− x′‖22

)
, x, x′ ∈ Rd,

where γ > 0 is a fixed parameter called the width. Moreover, for particular
loss functions such as the hinge loss, we will see below, and in much more
detail in Chapter 11, that the solution fD,λ of (1.9) can be found by solving a
convex quadratic optimization problem with linear constraints. For the hinge
loss, we will further develop and analyze efficient algorithms to compute fD,λ

in Section 11.2.
Although computational feasibility is an important feature of every learn-

ing algorithm, one of the most important features is definitely its ability to
find decision functions having near optimal risks. Let us now motivate why
SVMs can find such functions in many situations. To this end, we again re-
strict our considerations here in the introduction to SVMs using the hinge loss
L. For this loss function, we easily check that RL,D(0) = 1 for every sample
set D and hence obtain

λ‖fD,λ‖2H ≤ λ‖fD,λ‖2H +RL,D(fD,λ) ≤ RL,D(0) = 1 ,

where in the second estimate we used that, by definition, fD,λ is a solution of
(1.9). Consequently, fD,λ is also a solution of the optimization problem

min
‖f‖H≤λ−1/2

λ‖f‖2H +RL,D(f) .
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Now smaller values of λ lead to larger sets {f ∈ H : ‖f‖H ≤ λ−1/2}, the min-
imum is computed over, and in addition smaller values of λ also reduce the
influence of the regularization term λ‖ ·‖2H . Consequently, the SVM optimiza-
tion problem can be interpreted as an approximation of the ERM approach
with increasing sets of functions. So far this interpretation is, however, little
more than a vague analogy, but we will see in Section 6.4 that the techniques
used to analyze ERM can actually be extended to a basic statistical analysis
of SVMs. In particular, we will see there that with probability not smaller
than 1− e−τ we have

λ‖fD,λ‖2H +RL,P(fD,λ) ≤ inf
f∈H

λ‖f‖2H +RL,P(f) + ε(n, λ, τ) , (1.11)

where τ > 0 is arbitrary and the value ε(n, λ, τ), which we will derive ex-
plicitly, converges to 0 for n → ∞. Consequently, we see that besides this
statistical analysis we also need to understand how the right-hand side of
(1.11) behaves as a function of λ. This will be one of the major topics of
Chapter 5, where we will in particular show that

lim
λ→0

(
inf

f∈H
λ‖f‖2H +RL,P(f)

)
= inf

f∈H
RL,P(f) . (1.12)

Starting from this observation, we will further investigate in Section 5.5 under
which conditions H can be used to approximate the minimal risk in the sense
of inff∈H RL,P(f) = R∗

L,P. In particular, we will see with some results from
Section 4.4 that in almost all situations the RKHSs of the Gaussian RBF
kernels satisfy this equality. Combining this with (1.11), we will then show in
Section 6.4 that SVMs using such a kernel can be made universally consistent
by using suitable null sequences (λn) of regularization parameters that depend
only on the sample size n but not on the distribution P. In addition, similar
consistency results for more general cases with unbounded Y are given in
Section 9.2 for regression and Section 9.3 for quantile regression. Interestingly,
the analysis of Section 6.4 further shows that we obtain learning rates for
such sequences (λn) whenever we know the speed of convergence in (1.12).
Unfortunately, however, the best possible rates this analysis yields can only be
achieved by sequences (λn) that use knowledge about the speed of convergence
in (1.12).6 Since the latter is unknown in almost all applications, we thus need
strategies that adaptively (i.e., without knowledge of P) find nearly optimal
values for λ. In Section 6.5, we will analyze a very simple version of such a
strategy that despite its simplicity resembles many ideas of commonly used,
more complex strategies. In practice, not only the quantity λ but also some
other so-called hyperparameters have an impact on the quality of fD,λ. For
example, if we use a Gaussian RBF kernel, we have to specify the value of the
width γ. We will deal with this issue in Section 8.2 from a theoretical point
of view and in Section 11.3 from a practical point of view.

6 This phenomenon remains true for the more advanced analysis in Chapter 7.
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The discussion above showed that, in order to understand when SVMs
learn with a favorable learning rate, one needs to know when the RKHS H
approximates the risk easily in the sense of the convergence given in (1.12).
By the no-free-lunch theorem mentioned earlier and (1.11), the latter requires
assumptions on the distribution P and the space H. In Section 8.2, we will
present such an assumption for binary classification that (a) is weak enough
to be likely met in practice and (b) still allows a reasonable mathematical
treatment. Roughly speaking (see Figures 8.1 and 8.2 for some illustrations),
this type of assumption describes how the data are typically concentrated in
the vicinity of the decision boundary.

The ability to learn from a finite number of data points with a reason-
able algorithmic complexity is in general not enough for a learning method
to be successful from both a theoretical and an applied point of view. Indeed,
already Hadamard (1902) thought that a well-posed mathematical problem
should have the property that there exists a unique solution that additionally
depends continuously on the data. In our case, this means that a few outlying
data points that are far away from the pattern set by the majority of the data
should influence fD,λ and its associated risk RL,D(fD,λ) only in a continuous
and bounded manner. More generally, a good learning method should give
stable results for (almost all) distributions Q lying in a small neighborhood of
the unknown distribution P. Therefore, we will describe in Chapter 10 some
modern concepts of robust statistics such as the influence function, sensitiv-
ity curve, and maxbias. By applying these general concepts to SVMs, it will
be shown that SVMs have—besides other good properties—the advantage of
being robust if the loss function L and the kernel k are suitably chosen. In
particular, weak conditions on L and k are derived that guarantee good ro-
bustness of SVM methods for large classes of probability distributions. These
results will be derived not only for the classification case but also for quan-
tile regression and regression for the mean, where for the latter two cases we
assume an unbounded range Y of possible outputs. For the latter, we will
need an explicit control over the growth of the loss function, and in Section
2.2 we therefore introduce a general notion, namely so-called Nemitski loss
functions, that describes this growth. Although this notion was originally tai-
lored to regression with unbounded Y , it will turn out that it is also a very
fruitful concept for many other learning problems. Finally, we would like to
point out that combining the robustness results from Chapter 10 with those
from Chapter 9 on SVMs for regression shows that learning properties and
robustness properties of SVMs are connected to each other. Roughly speak-
ing, it will turn out that the SVMs with better robustness properties are able
to learn over larger classes of distributions than those SVMs with worse ro-
bustness properties. Chapter 10 therefore complements recent stability results
obtained by Poggio et al. (2004) and Mukherjee et al. (2006), who study the
impact of one data point on SVMs under the boundedness assumption of the
space of input and output values.
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Besides robustness, another important property of learning methods is
their ability to find decision functions that can be evaluated in a computa-
tionally efficient manner. For support vector machines, the time needed to
evaluate fD,λ(x) is obviously proportional to the number of nonzero coeffi-
cients αi in the representation (1.10). For SVMs used for binary classification,
we will thus investigate the typical number of such coefficients in Sections 8.4
and 8.5. Here and also in Chapter 11, on computational aspects of SVMs, it
will turn out that yet another time the choice of the loss function in (1.9)
plays a crucial role.

Finally, it is important to mention that support vector machines are often
used as one tool in data mining projects. Therefore, we will briefly describe
in Chapter 12 a general and typical data mining strategy. In particular, we
will show how SVMs can be a successful part of a data mining project and
mention a few alternative statistical modeling tools often used for data mining
purposes, such as generalized linear models and trees. Last but not least,
a brief comparison of the advantages and disadvantages of such tools with
respect to SVMs is given.

1.3 History of SVMs and Geometrical Interpretation

Considering regularized empirical (least squares) risks over reproducing ker-
nel Hilbert spaces is a relatively old idea (see, e.g., Poggio and Girosi, 1990;
Wahba, 1990; and the references therein). Although this view on support vec-
tor machines will be adopted throughout the rest of this book, it is nonetheless
interesting to take a sidestep and have a look of how a geometric idea led to
the first algorithms named “support vector machines.” To this end, we again
consider a binary classification problem with Y = {−1,+1}. For this learn-
ing problem, the original SVM approach by Boser et al. (1992) was derived
from the generalized portrait algorithm invented earlier by Vapnik and Lerner
(1963). Therefore, we begin by describing the latter algorithm. To this end,
let us assume that our input space X is a subset of the Euclidean space Rd.
Moreover, we assume that we have a training set D = ((x1, y1), . . . , (xn, yn))
for which there exists an element w ∈ Rd with ‖w‖2 = 1 and a real number
b ∈ R such that

〈w, xi〉+ b > 0, for all i with yi = +1,
〈w, xi〉+ b < 0, for all i with yi = −1.

In other words, the affine linear hyperplane described by (w, b) perfectly sep-
arates the training set D into the two groups {(xi, yi) ∈ D : yi = +1} and
{(xi, yi) ∈ D : yi = −1}. Now, the generalized portrait algorithm constructs a
perfectly separating hyperplane, described by (wD, bD) with ‖wD‖2 = 1, that
has maximal margin (i.e., maximal distance to the points in D). Its resulting
decision function is then defined by
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fD(x) := sign
(〈wD, x〉+ bD

)
(1.13)

for all x ∈ Rd. In other words, the decision function fD assigns negative labels
to one affine half-space defined by the hyperplane (wD, bD) and positive labels
to the other affine half-space. Now note that these half-spaces do not change
if we consider (κwD, κbD) for some κ > 0. Instead of looking for an element
wD ∈ Rd with ‖wD‖2 = 1 that maximizes the margin, we can thus also fix a
lower bound on the margin and look for a vector w∗ ∈ Rd that respects this
lower bound and has minimal norm. In other words, we can seek a solution
(w∗

D, b
∗
D) ∈ Rd ×R of the optimization problem

minimize 〈w,w〉 over w ∈ Rd, b ∈ R

subject to yi(〈w, xi〉+ b) ≥ 1 i = 1, . . . , n . (1.14)

Simple linear algebra shows that wD = w∗
D/‖w∗

D‖2 and bD = b∗D/‖w∗
D‖2,

and hence solving the optimization problem (1.14) indeed yields the affine
hyperplane constructed by the generalized portrait algorithm.

Although geometrically compelling, the ansatz of the generalized portrait
algorithm obviously has two shortcomings:

i) A linear form of the decision function may not be suitable for the classi-
fication task at hand. In particular, we may be confronted with situations
in which the training set D cannot be linearly separated at all and hence
(wD, bD) does not exist.

ii) In the presence of noise, it can happen that we need to misclassify some
training points in order to avoid overfitting. In particular, if the dimension
d is greater than or equal to the sample size n, overfitting can be a serious
issue.

To resolve the first issue, the SVM initially proposed by Boser et al. (1992)
maps the input data (x1, . . . , xn) into a (possibly infinite-dimensional) Hilbert
space H0, the so-called feature space, by a typically non-linear map Φ : X →
H0 called the feature map. Then the generalized portrait algorithm is applied
to the mapped data set ((Φ(x1), y1), . . . , (Φ(xn), yn)); i.e., it is applied in H0

instead of in X. In other words, we replace x and xi in (1.13) and (1.14)
by Φ(x) and Φ(xi), respectively, and the vector w in (1.14) is chosen from
the Hilbert space H0. The corresponding learning method was initially called
maximal margin classifier, and later also hard margin SVM.

We will see in Section 4.6 that for certain feature maps Φ the first issue of
the generalized portrait algorithm is successfully addressed. In particular, we
will show that there exist feature maps for which every training set without
contradicting examples (i.e., without samples (xi, yi) and (xj , yj) satisfying
xi = xj and yi �= yj) can be perfectly separated by a hyperplane in the
feature space. The price for this high flexibility however is, that the separating
hyperplane now lies in a high or even infinite-dimensional space, and hence
the second issue of generating overfitted decision functions becomes even more
serious.
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Fig. 1.1. Geometric interpretation of the soft margin SVM in a two-dimensional
feature space.

This second issue was first addressed by the soft margin support vector
machine of Cortes and Vapnik (1995). To explain their approach, recall that
in the optimization problem (1.14) the constraints yi(〈w, xi〉 + b) ≥ 1 forced
the hyperplanes to make no errors on the training data set D. The approach
of the soft margin SVM is thus to relax these constraints by requiring only
that (w, b) satisfy yi

(〈w, xi〉 + b
) ≥ 1 − ξi for some so-called slack variables

ξi ≥ 0. However, if these slack variables are too large, the relaxed constraints
would be trivially satisfied, and hence one has to add safeguards against such
behavior. One way to do so is to add the slack variables to the objective
function in (1.14).7 Combining these modifications with the feature map idea
leads to the quadratic optimization problem

minimize 1
2 〈w,w〉+ C

n∑
i=1

ξi for w ∈ H0, b ∈ R, ξ ∈ Rn

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n,

(1.15)

where C > 0 is a free (but fixed) parameter that is used to balance the
first term of the objective function with the second. Note that, due to the
special form of the supplemented term C

∑n
i=1 ξi, the objective function is

still convex, or to be more precise, quadratic, while the constraints are all
linear.

Although this optimization problem looks at first glance more complicated
than that of the generalized portrait algorithm, it still enjoys a nice geomet-
rical interpretation for linear kernels k(x, x′) := 〈x, x′〉 where x, x′ ∈ Rd (see
Lemma 4.7). Let us illustrate this in the case where X = H0 = R2 and

7 Their original motivation for this step was a little more involved, but at this point
we decided to slightly sacrifice historical accuracy for the sake of clarity.
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Φ : X → H0 is the identity; see Figure 1.1. To this end, we fix a vector
w = (w1, w2) ∈ R2, where without loss of generality we assume w1 < 0 and
w2 > 0. Moreover, we fix a sample (x, y) from D whose index denoting the
sample number we omit here for notational reasons. Instead we denote the
coordinates of x by indexes; i.e., we write x = (x1, x2). Let us first consider
the case y = 1. Since 〈w,Φ(x)〉 = w1x1 + w2x2 it is then easy to see that the
linear constraint

y(〈w,Φ(x)〉+ b) ≥ 1− ξ (1.16)

requires a strictly positive slack variable (i.e., ξ > 0) if and only if

x2 <
1− b
w2

− w1

w2
x1. (1.17)

In an analogous manner, we obtain in the case y = −1 that (1.16) requires a
strictly positive slack variable if and only if

x2 >
−1− b
w2

− w1

w2
x1.

A comparison of these inequalities shows that both lines have equal slopes but
different intercept terms. The latter terms define a tube of width 2/w2 in the
x2-direction around the affine hyperplane given by (w, b), which in our simple
case is described by

x2 = − b

w2
− w1

w2
x1.

Let us compare the decisions made by this hyperplane with the behavior of
the slack variables. To this end, we again restrict our considerations to the
case y = 1. Moreover, we assume that x = (x1, x2) is correctly classified, i.e.,

x2 > − b

w2
− w1

w2
x1,

and that x is contained inside the tube around the separating hyperplane.
Then (1.17) is satisfied and hence we have a strictly positive slack variable that
is penalized in the objective function of (1.15). In other words, the objective
function in (1.15) penalizes margin errors (i.e., points inside the tube or lying
in the wrong affine hyperplane) and not only classification errors (i.e., points
lying in the wrong affine half-space).

Let us now relate the optimization problem (1.15) to the previous SVM for-
mulation given by the optimization problem (1.9). To this end, we observe that
the first set of linear constraints can be rewritten as ξi ≥ 1−yi(〈w,Φ(xi)〉+b).
Combining this constraint with the second set of constraints, namely ξi ≥ 0,
we see that the slack variables must satisfy

ξi ≥ max
{
0, 1− yi(〈w,Φ(xi)〉+ b)

}
= L
(
yi, 〈w,Φ(xi)〉+ b

)
,

where L is the hinge loss introduced earlier. Obviously, the objective function
in (1.15) becomes minimal in ξi if this inequality is actually an equality. For a
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given (w, b) ∈ H0×R, let us now consider the function f(w,b) : X → R defined
by f(w,b)(x) := 〈w,Φ(xi)〉+ b. Multiplying the objective function in (1.15) by
2λ := 1

nC we can thus rewrite (1.15) in the form

min
(w,b)∈H0×R

λ〈w,w〉+ 1
n

n∑
i=1

L
(
yi, f(w,b)(xi)

)
. (1.18)

Compared with the optimization problem (1.9), that is,

inf
f∈H

λ‖f‖2H +
1
n

n∑
i=1

L
(
yi, f(xi)

)
,

there are obviously two major differences. The first one is that in the geomet-
rical approach we consider a general Hilbert space H0 and define a function
f(w,b) in terms of an affine hyperplane specified by (w, b) in this space, while in
(1.9) we start with an RKHS H and directly consider the functions contained
in H. Remarkably, however, both approaches are equivalent if we fix b. More
precisely, we will see in Section 4.2 that the functions 〈w,Φ( · )〉, w ∈ H0, form
an RKHS H whose norm can be computed by

‖f‖H = inf
{‖w‖H0 : w ∈ H0 with f = 〈w,Φ( · )〉}.

Consequently, (1.18) is equivalent to the optimization problem

inf
(f,b)∈H×R

λ‖f‖2H +
1
n

n∑
i=1

L
(
yi, f(xi) + b

)
;

i.e., modulo the so-called offset term or intercept term b, the geometric ap-
proach is indeed equivalent to the RKHS approach (1.9). The offset term,
however, makes a real difference and, in general, the decision functions pro-
duced by both approaches are different. This, of course, raises the question
which optimization problem one should prefer. For very simple feature maps
such as the identity map id : Rd → Rd, the offset term has obviously a clear
advantage since it addresses translated data. Moreover, the version with the
offset term is implemented in many standard software packages for SVMs. On
the other hand, for more flexible feature maps such as those of Gaussian RBF
kernels, which belong to the most important kernels in practice, the offset
term has neither a known theoretical nor an empirical advantage. In addi-
tion, the theoretical analysis is often substantially complicated by the offset
term. For the theoretical chapters of this book, we thus decided to exclusively
consider the approach without an offset, while Chapter 11, which deals with
computational aspects of SVMs, considers the approaches with and without
an offset term. However, we sometimes mention theoretical results covering
the offset term in the sections “Further Reading and Advanced Topics”, such
as in Section 10.7 for robustness properties of SVMs.
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The optimization problem (1.15) has the drawback that it has to be solved
in an often high- or even infinite-dimensional Hilbert space H0. We will see in
Chapter 11 that in practice one thus uses the Lagrange approach to compute
the corresponding dual program. For the hinge loss function, for example, this
dual program is given by

maximize
n∑

i=1

αi − 1
2

n∑
i,j=1

yiyjαiαj〈Φ(xi), Φ(xj)〉 over α ∈ [0, C]n

subject to
n∑

i=1

yiαi = 0;

see Example 11.3. Moreover, we will see that if (α∗
1, . . . , α

∗
n) denotes a solution

of this optimization problem, the solution (w∗
D, b

∗
D) of (1.15) can be computed

by

w∗
D =

n∑
i=1

yiα
∗
iΦ(xi)

and

b∗D = yj −
n∑

i=1

yiα
∗
i 〈Φ(xi), Φ(xj)〉,

where j is an index with 0 < α∗
j < c. Note that w∗

D only depends on the
samples xi whose weights satisfy α∗

i �= 0. Geometrically, this means that the
affine hyperplane described by (w∗

D, b
∗
D) is only “supported” by these Φ(xi),

and hence the corresponding data points (xi, yi) are called support vectors.
As mentioned above, the decision function of the soft margin SVM is given
by the constructed affine hyperplane,

fw∗
D,b∗D (x) = 〈w∗

D, Φ(x)〉+ b∗D =
n∑

i=1

yiα
∗
i 〈Φ(xi), Φ(x)〉+ b∗D , x ∈ X.

Now note that in both the dual optimization problem and the evaluation
of the resulting decision function only inner products of Φ with itself occur.
Thus, instead of computing the feature map directly, it suffices to know the
function 〈Φ(·), Φ(·)〉 : X ×X → R. Interestingly, there do exist cases in which
this function can be computed without knowing the feature map Φ itself. The
Gaussian RBF kernels are examples of such a case, but there are many more.
In Chapter 4, we will thus systematically investigate kernels; i.e., functions
k : X ×X → R for which there exists a feature map satisfying

k(x, x′) = 〈Φ(x), Φ(x′)〉 , x, x′ ∈ X.

Obviously, using kernels directly instead of first computing feature maps works
for all statistical methods and algorithms in which inner products of the fea-
ture map but not the feature map itself are needed. By using kernels, we can
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thus build a non-linear algorithm from a linear one without changing the core
design of the algorithm. This observation, known as the “kernel-trick,” was
to the best of our knowledge first explicitly stated by Schölkopf et al. (1998);
however, it had already been used earlier by Aizerman et al. (1964) and Boser
et al. (1992). Since then, various algorithms have been “kernelized,” such as
principal component analysis or Fisher’s discriminant analysis. We refer to
Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) for de-
tailed accounts. A second advantage of the kernel trick is that the input space
X is no longer required to be a subset of Rd since all computations are done in
the feature space. Interestingly, there exist various kernels that are defined on
non-vectorial data such as text or DNA sequences. Therefore, the kernel trick
indeed extends the applicability of methods that can be kernelized. We refer
to Schölkopf and Smola (2002), Joachims (2002), Schölkopf et al. (2004), and
Shawe-Taylor and Cristianini (2004) for various examples of kernel approaches
for non-vectorial data.

1.4 Alternatives to SVMs

There exists a vast body of literature on both classification and regression
procedures, and hence describing all these methods even briefly would fill yet
another book. Nonetheless, it is always good to have alternatives, and hence
we would like to briefly mention at least some of the most classical approaches.
However, a comparison of a few of these methods is postponed to Section 12.2
on data mining, when our knowledge of SVMs will be more complete.

Besides the least squares method , which goes back to Gauss, Legendre, and
Adrain, linear discriminant analysis is probably one of the oldest methods
for pattern recognition. This procedure, which was developed by Sir R. A.
Fisher in 1936, is strongly linked to multivariate normal distributions and uses
affine hyperplanes as decision functions. A generalization of this procedure is
quadratic discriminant analysis, which allows quadratic decision functions.
Both methods are still used by many practitioners often with good success.

In 1956, one of the first iterative algorithms for learning a linear classifi-
cation rule was proposed by Rosenblatt (1956, 1962) with the perceptron.

Another classical method is the k-nearest-neighbor rule which was intro-
duced in 1951; see Fix and Hodges (1951, 1952). It has attracted many follow-
ers and is still used by many researchers. In addition, it was the first method
for which universal consistency was established; see Stone (1977). The idea of
k-nearest-neighbor methods for classificaton is to construct a decision function
pointwise for each x by first determining the k points of D that are closest to
x and then making the prediction for y = 1 if and only if the average of the
k corresponding y-values is positive.

The goal in cluster analysis is to recognize clusters in unlabeled data. We
refer to the books by Hartigan (1975) and Kaufman and Rousseeuw (2005)
for an introduction to cluster analysis techniques.
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Parametric logistic regression was proposed by Sir D.R. Cox to model bi-
nomial distributed outputs; see Cox and Snell (1989). This method is based
on linear decision functions but does not make specific assumptions on the
distribution of the inputs. Parametric logistic regression is a special case of
generalized linear models in which the outputs are assumed to have a distri-
bution from an exponential family, see McCullagh and Nelder (1989). Hastie
and Tibshirani (1990) proposed a semi-parametric generalization called gen-
eralized additive models where the inputs may influence the outputs in an
additive but not necessarily linear manner. The lasso (Tibshirani, 1996) is
a method for regularizing a least squares regression. It minimizes the usual
sum of squared errors, with a bound on the sum of the absolute values of the
coefficients.

Other classical methods for classification and regression are trees, which
were proposed by Breiman et al. (1984). The idea of trees is to partition the
input space recursively into disjoint subsets such that points belonging to the
same subset behave more homogeneously than points from different subsets.
Trees often produce not only accurate results but are also able to uncover the
predictive structure of the problem.

Neural networks in the context of machine learning are non-linear statis-
tical data modeling tools that can be used to model complex relationships
between inputs and outputs or to find patterns in data sets. In a neural net-
work model, simple nodes (or “neurons”) are connected together to form a
network of nodes. The strength of the connections in the network depends
on the data and may be time-dependent to allow for adaptivity. The motiva-
tion for neural networks, which were very popular in the 1990s, goes back to
McCullogh and Pitts (1943) and Rosenblatt (1962). We refer also to Bishop
(1996), Anthony and Bartlett (1999), and Vidyasagar (2002).

There also exist various other kernel-based methods. For wavelets, we refer
to Daubechies (1991), and for splines to Wahba (1990). Recent developments
for kernel-based methods in the context of SVMs are descibed by Cristianini
and Shawe-Taylor (2000), Schölkopf and Smola (2002), and Shawe-Taylor and
Cristianini (2004).

Boosting algorithms are based on an adaptive aggregation to construct
from a set of weak learners a strong learner; see Schapire (1990), Freund
(1995), and Freund and Schapire (1997).

Finally, the books by Hastie et al. (2001), Duda et al. (2001), and Bishop
(2006) give a broad overview of various techniques used in statistical machine
learning, whereas both Devroye et al. (1996) and Györfi et al. (2002) treat sev-
eral classification and regression methods in a mathematically more rigorous
way.
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Loss Functions and Their Risks

Overview. We saw in the introduction that the learning problems
we consider in this book can be described by loss functions and their
associated risks. In this chapter, we present some common examples of
such learning problems and introduce a general notion for losses and
their risks. Furthermore, we discuss some elementary yet fundamental
properties of these concepts.

Prerequisites. Basic knowledge of measure and integration theory
provided in Section A.3.

Usage. Sections 2.1 and 2.2 are essential for the rest of this book, and
Sections 2.3 and 2.4 are used whenever we deal with classification and
regression problems, respectively.

Every learning problem requires that we specify our learning goal, i.e., what we
ideally would like to achieve. We saw in the introduction that the specification
of the learning problems treated in this book needs a loss L(x, y, f(x)) that
describes the cost of the discrepancy between the prediction f(x) and the
observation y at the point x. To the loss L we then associate a risk that is
defined by the average future loss of f . This chapter introduces these concepts
and presents important examples of learning goals described by losses. In
addition, basic yet useful properties of risks are derived from properties of the
corresponding losses.

2.1 Loss Functions: Definition and Examples

In this section, we will first introduce loss functions and their associated risks.
We will then present some basic examples of loss functions that describe the
most important learning scenarios we are dealing with in this book.

In order to avoid notational overload, we assume throughout this chapter
that subsets of Rd are equipped with their Borel σ-algebra and that products
of measurable spaces are equipped with the corresponding product σ-algebra.

Let us now recall from the introduction that we wish to find a function
f : X → R such that for (x, y) ∈ X × Y the value f(x) is a good prediction
of y at x. The following definition will help us to define what we mean by
“good”.
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Definition 2.1. Let (X,A) be a measurable space and Y ⊂ R be a closed
subset. Then a function L : X × Y × R → [0,∞) is called a loss function,
or simply a loss, if it is measurable.

In the following, we will interpret L(x, y, f(x)) as the cost, or loss, of
predicting y by f(x) if x is observed, i.e., the smaller the value L(x, y, f(x))
is, the better f(x) predicts y in the sense of L. From this it becomes clear
that constant loss functions, such as L := 0, are rather meaningless for our
purposes, since they do not distinguish between good and bad predictions.

Let us now recall from the introduction that our major goal is to have
a small average loss for future unseen observations (x, y). This leads to the
following definition.

Definition 2.2. Let L : X × Y × R → [0,∞) be a loss function and P be a
probability measure on X × Y . Then, for a measurable function f : X → R,
the L-risk is defined by

RL,P(f) :=
∫

X×Y

L
(
x, y, f(x)

)
dP(x, y) =

∫
X

∫
Y

L
(
x, y, f(x)

)
dP(y|x) dPX(x).

Note that the function (x, y) �→ L(x, y, f(x)) is measurable by our as-
sumptions, and since it is also non-negative, the above integral over X × Y
always exists, although it is not necessarily finite. In addition, our label space
Y ⊂ R is closed, and hence Lemma A.3.16 ensures the existence of the regular
conditional probability P( · |x), used in the inner integral.

For a given sequence D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, we write
D := 1

n

∑n
i=1 δ(xi,yi), where δ(xi,yi) denotes the Dirac measure at (xi, yi). In

other words, D is the empirical measure associated to D. The risk of a function
f : X → R with respect to this measure is called the empirical L-risk

RL,D(f) =
1
n

n∑
i=1

L
(
xi, yi, f(xi)

)
. (2.1)

Let us now assume for a moment that D is a sequence of i.i.d. observations
generated by P and f satisfies RL,P(f) <∞. Recalling the law of large num-
bers, we then see that the empirical risk RL,D(f) is close to RL,P(f) with high
probability. In this sense, the L-risk of f can be seen as an approximation to
the average loss on the observations D (and vice versa).

Now recall that L(x, y, f(x)) was interpreted as a cost that we wish to
keep small, and hence it is natural to look for functions f whose risks are
as small as possible. Since the smallest possible risk plays an important role
throughout this book, we now formally introduce it.

Definition 2.3. Let L : X × Y × R → [0,∞) be a loss function and P be a
probability measure on X × Y . Then the minimal L-risk

R∗
L,P := inf

{RL,P(f)
∣∣ f : X → R measurable

}
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is called the Bayes risk with respect to P and L. In addition, a measurable
f∗L,P : X → R with RL,P(f∗L,P) = R∗

L,P is called a Bayes decision function.

Usually the first step in solving a practical learning problem is finding a
loss function that best describes the often only informally specified learning
goal. In general, the choice of a suitable loss function strongly depends on
the specific application, and hence only a few general statements are possible
in this regard. However, there are a few basic learning scenarios that often
fit the learning problem at hand, and hence we will formally introduce these
scenarios and their corresponding loss functions now.

Example 2.4 (Standard binary classification). Let Y := {−1, 1} and P be an
unknown data-generating distribution on X × Y . Then the informal goal in
(binary) classification is to predict the label y of a pair (x, y) drawn from P
if only x is observed. The most common loss function describing this learning
goal is the classification loss1 Lclass : Y ×R→ [0,∞), which is defined by

Lclass(y, t) := 1(−∞,0]

(
y sign t

)
, y ∈ Y, t ∈ R , (2.2)

where we use the convention sign 0 := 1. Note that Lclass only penalizes predic-
tions t whose signs disagree with that of y, so it indeed reflects our informal
learning goal. Now, for a measurable function f : X → R, an elementary
calculation shows

RLclass,P(f) =
∫

X

η(x)1(−∞,0)(f(x)) + (1− η(x))1[0,∞)(f(x)) dPX(x)

= P
({(x, y) ∈ X × Y : sign f(x) �= y}) ,

where η(x) := P(y = 1|x), x ∈ X. From this we conclude that f is a Bayes
decision function if and only if (2η(x) − 1) sign f(x) ≥ 0 for PX -almost all
x ∈ X. In addition, this consideration yields

R∗
Lclass,P

=
∫

X

min{η, 1− η} dPX . �

The loss function Lclass equally weights both types of errors, namely y = 1
while f(x) < 0, and y = −1 while f(x) ≥ 0. This particularly makes sense
in situations in which one wishes to categorize objects such as hand-written
characters or images. In many practical situations, however, both error types
should be weighted differently. For example, if one wants to detect computer
network intrusions, then depending on the available resources for investigating
alarms and the sensitivity of the network, the two types of errors, namely false
alarms and undetected intrusions, are likely to have different actual costs.
1 Formally, Lclass is not a loss function; however, we can canonically identify it with

the loss function (x, y, t) �→ Lclass(y, t), and hence we usually do not distinguish
between Lclass and its associated loss function. Since this kind of identification
also occurs in the following examples, we will later formalize it in Definition 2.7.
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Since this example is rather typical for classification problems in which the
goal is to detect certain objects or events, we now present a weighted version
of the classification scenario above.

Example 2.5 (Weighted binary classification). Let Y := {−1, 1} and α ∈ (0, 1).
Then the α-weighted classification loss Lα-class : Y ×R→ [0,∞) is defined
by

Lα-class(y, t) :=

⎧⎪⎨
⎪⎩

1− α if y = 1 and t < 0
α if y = −1 and t ≥ 0
0 otherwise

(2.3)

for all y ∈ Y, t ∈ R. Obviously we have 2L1/2-class = Lclass, i.e., the stan-
dard binary classification scenario is a special case of the general weighted
classification scenario. Now, given a probability measure P on X × Y and a
measurable f : X → R, the Lα-class-risk can be computed by

RLα-class,P(f) = (1− α)
∫

f<0

η dPX + α

∫
f≥0

(1− η) dPX ,

where again η(x) := P(y = 1|x), x ∈ X. From this we easily conclude that f is
a Bayes decision function if and only if (η(x)−α) sign f(x) ≥ 0 for PX -almost
all x ∈ X. Finally, the Bayes Lα-class-risk is

R∗
Lα-class,P =

∫
X

min
{
(1− α)η, α(1− η)} dPX . �

In the two examples above the goal was to predict labels y from the set
{−1, 1}. In the next example, we wish to predict general real-valued labels.

Example 2.6 (Least squares regression). The informal goal in regression is to
predict the label y ∈ Y := R of a pair (x, y) drawn from an unknown proba-
bility measure P on X × Y if only x is observed. The most common way to
formalize this goal is based on the least squares loss LLS : Y ×R→ [0,∞)
defined by

LLS(y, t) := (y − t)2 , y ∈ Y, t ∈ R . (2.4)

In other words, the least squares loss penalizes the discrepancy between y and
t quadratically. Obviously, for a measurable function f : X → R, the LLS-risk
is

RLLS,P(f) =
∫

X

∫
Y

(
y − f(x)

)2
dP(y|x) dPX(x) .

By minimizing the inner integral with respect to f(x), we then see that f is a
Bayes decision function if and only if f(x) almost surely equals the expected
Y -value in x, i.e., if and only if

f(x) = EP(Y |x) :=
∫

Y

y dP(y|x) (2.5)
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for PX -almost all x ∈ X. Moreover, plugging x �→ EP(Y |x) into RLLS,P( · )
shows that the Bayes LLS-risk is the average conditional Y -variance, i.e.,

R∗
LLS,P =

∫
X

EP(Y 2|x)− (EP(Y |x))2 dPX(x) .

Finally, an elementary calculation shows that the excess LLS-risk of f : X → R

is
RLLS,P(f)−R∗

LLS,P =
∫

X

(
EP(Y |x)− f(x)

)2
dPX(x) ,

i.e., if RLLS,P(f) is close to R∗
LLS,P, then f is close to the Bayes decision

function in the sense of the ‖ · ‖L2(PX). �

Using the least squares loss to make the informal regression goal precise
seems to be rather arbitrary since, for example, for p > 0, the loss function

(y, t) �→ |y − t|p , y ∈ R, t ∈ R ,

reflects the informal regression goal just as well. Nevertheless, the least
squares loss is often chosen since it “simplifies the mathematical treatment
(and). . . leads naturally to estimates which can be computed rapidly”, as Györfi
et al. (2002) write on p. 2. For SVMs, however, we will see later that none
of these properties is exclusive for the least squares loss, and therefore we do
not have to stick to the least squares loss for, e.g., computational reasons.
On the other hand, the least squares loss is (essentially) the only loss whose
Bayes decision functions have the form (2.5) for all distributions P with finite
Bayes risk (see Proposition 3.44 for details), and hence the least squares loss
is often the first choice when we wish to estimate the conditional expecta-
tions EP(Y |x), x ∈ X. Unfortunately, however, we will see in Chapter 10 that
SVMs based on the least squares loss are rather sensitive to large deviations in
y, and hence other losses may be preferred in some situations. We will discuss
these questions in more detail in Sections 3.7 and 3.9 and Chapter 9.

A common feature of the loss functions above is that they are all indepen-
dent of the input value x. Since this will also be the case for many other loss
functions considered later, we introduce the following notion.

Definition 2.7. A function L : Y ×R→ [0,∞) is called a supervised loss
function , or simply a supervised loss, if it is measurable.

Note that a supervised loss L can be canonically identified with the loss
function L̄ : (x, y, t) �→ L(y, t). As in the examples above, we will thus write
RL,P(f) := RL̄,P(f) and R∗

L,P := R∗̄
L,P

in order to avoid notational overload.
Formally, we can also consider losses that are independent of y, i.e., we

can introduce the following notion.

Definition 2.8. A function L : X × R → [0,∞) is called an unsupervised
loss function, or simply an unsupervised loss, if it is measurable.
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Obviously, an unsupervised loss L can be canonically identified with the
loss function L̄ : (x, y, t) �→ L(x, t). As for supervised losses, we thus write

RL,P(f) := RL̄,P(f) =
∫

X

L
(
x, f(x)

)
dPX(x)

and R∗
L,P := R∗̄

L,P
. Note that, in contrast to the risks for supervised losses,

the risks for unsupervised losses are independent of the supervisor P( · |x)
that generates the labels. This explains the term “unsupervised loss”. Since
unsupervised losses do not depend on labeling information, these loss functions
often occur in learning scenarios that lack labels in the available sample data.
The two most important scenarios of this type are introduced in the following
examples.

Example 2.9 (Density level detection). Let us suppose that we have some sam-
ples D := (x1, . . . , xn) ∈ Xn drawn in an i.i.d. fashion from an unknown dis-
tribution Q on X. Moreover, assume that our informal learning goal is to find
the region where Q has relatively high concentration.

One way to formalize this learning goal is to assume that Q is absolutely
continuous with respect to some known reference measure μ. Let g : X →
[0,∞) be the corresponding unknown density with respect to μ, i.e., Q = gμ.
Then Q is highly concentrated in exactly the region where g is “large”, i.e., our
informal learning goal is to find the density level sets {g > ρ} or {g ≥ ρ}
for some fixed threshold ρ > 0. In order to find a formal specification of
this learning goal, let us consider the unsupervised density level detection
(DLD) loss LDLD : X ×R→ [0,∞), which is defined by

LDLD(x, t) := 1(−∞,0)

(
(g(x)− ρ) sign t

)
, x ∈ X, t ∈ R . (2.6)

Note that for f : X → R the loss LDLD(x, f(x)) penalizes the prediction f(x)
at x if either f(x) ≥ 0 and g(x) < ρ, or f(x) < 0 and g(x) > ρ, whereas it
ignores f(x) if g(x) = ρ. In this sense, {f ≥ 0} is the prediction of f for our
desired level set. In order to further formalize our informal learning goal, recall
that the risks of unsupervised losses only depend on the marginal distributions
PX . In the density level detection scenario, we are mainly interested in the
case PX = μ, and thus we usually use the notation

RLDLD,μ(f) := RLDLD,P(f) =
∫

X

LDLD

(
x, f(x)

)
dμ(x) .

From (2.6) it is then easy to conclude that a measurable f : X → R is a Bayes
decision function with respect to μ if and only if {g > ρ} ⊂ {f ≥ 0} ⊂ {g ≥ ρ}
holds true up to μ-zero sets. Consequently, we always have R∗

LDLD,μ = 0 and,
in addition, if μ({g = ρ}) = 0, we find

RLDLD,μ(f) = μ
({g ≥ ρ}�{f ≥ 0})
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for all measurable f : X → R, where � denotes the symmetric difference
A�B := A\B ∪ B\A. In this sense, RLDLD,μ(f) measures how well {f ≥ 0}
detects the level set {g ≥ ρ}.

Finally, observe that, unlike for the supervised loss functions of the previ-
ous examples, we cannot compute LDLD(x, t) since g is unknown to us. Con-
sequently, we cannot use an ERM scheme based on LDLD simply because we
cannot compute the empirical risk RLDLD,D(f) for any f : X → R. Moreover,
note that for the same reason we cannot estimate the quality of a found ap-
proximation {f ≥ 0} by RLDLD,D(f) either. Because of these disadvantages
of LDLD, we will investigate more accessible supervised surrogate losses for
LDLD in Section 3.8. �

The density level detection scenario is often used if one wants to iden-
tify anomalous future samples x ∈ X on the basis of unlabeled training data
D := (x1, . . . , xn) ∈ Xn. To this end, it is assumed that anomalous sam-
ples are somewhat atypical in the sense that they are not clustered. In other
words, they occur in regions with low concentration, and consequently they
are described by a level set {g ≥ ρ} for some suitably specified ρ.

In some sense, the density level detection scenario is an unsupervised coun-
terpart of binary classification, and in fact we will establish a precise connec-
tion between these two in Section 3.8. The following, last example describes
in a similar way an unsupervised counterpart of the regression scenario.

Example 2.10 (Density estimation). Let μ be a known probability measure on
X and g : X → [0,∞) be an unknown density with respect to μ. Let us further
assume that our goal is to estimate the density g. Then one possible way to
specify this goal is based on the unsupervised loss Lq : X×R→ [0,∞), q > 0,
defined by

Lq(x, t) :=
∣∣g(x)− t∣∣q , x ∈ X, t ∈ R. (2.7)

As for the DLD problem, we are usually interested in distributions P with
PX = μ, and for such we have

RLq,P(f) =
∫

X

∣∣g(x)− f(x)
∣∣q dμ(x)

for all measurable f : X → R. From this we find R∗
Lq,P = 0 and, in addition,

it is not hard to see that every Bayes decision function equals g modulo some
μ-zero set. �

The presented examples of unsupervised learning scenarios suggest that
the absence of labels is characteristic for situations where unsupervised losses
occur. However, we will see in Chapter 3 that unsupervised losses are also
a very powerful tool for investigating certain questions related to supervised
learning scenarios.
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2.2 Basic Properties of Loss Functions and Their Risks

In this section, we introduce some additional features of loss functions such as
convexity, continuity, and differentiability and relate these features to analo-
gous features of the associated risks. Since the results of this section will be
used throughout this book, we recommend that even the experienced reader
becomes familiar with the material of this section.

Our first lemma shows that under some circumstances risk functionals are
measurable.

Lemma 2.11 (Measurability of risks). Let L : X × Y ×R→ [0,∞) be a
loss and F ⊂ L0(X) be a subset that is equipped with a complete and separable
metric d and its corresponding Borel σ-algebra. Assume that the metric d
dominates the pointwise convergence, i.e.,

lim
n→∞ d(fn, f) = 0 =⇒ lim

n→∞ fn(x) = f(x) , x ∈ X, (2.8)

for all f, fn ∈ F . Then the evaluation map

F ×X → R

(f, x) �→ f(x)

is measurable, and consequently the map (x, y, f) �→ L(x, y, f(x)) defined on
X × Y ×F is also measurable. Finally, given a distribution P on X × Y , the
risk functional RL,P : F → [0,∞] is measurable.

Proof. Since d dominates the pointwise convergence, we see that, for fixed
x ∈ X, the R-valued map f �→ f(x) defined on F is continuous with respect
to d. Furthermore, F ⊂ L0(X) implies that, for fixed f ∈ F , the R-valued
map x �→ f(x) defined on X is measurable. By Lemma A.3.17, we then obtain
the first assertion. Since this implies that the map (x, y, f) �→ (x, y, f(x)) is
measurable, we obtain the second assertion. The third assertion now follows
from the measurability statement in Tonelli’s Theorem A.3.10. ��

Obviously, the metric defined by the supremum norm ‖·‖∞ dominates the
pointwise convergence for every F ⊂ L∞(X). Moreover, we will see in Section
4.2 that the metric of reproducing kernel Hilbert spaces also dominates the
pointwise convergence.

Let us now consider some additional properties of loss functions and their
risks. We begin with convexity.

Definition 2.12. A loss L : X×Y ×R→ [0,∞) is called (strictly) convex
if L(x, y, · ) : R→ [0,∞) is (strictly) convex for all x ∈ X and y ∈ Y .

If L is a supervised or unsupervised loss function, then we call L (strictly)
convex if its canonically associated loss function L̄ is (strictly) convex. In the
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following, we will analogously assign other properties to L via its identification
with L̄.

The next simple lemma, whose proof is left as an exercise, shows that
convexity of the loss implies convexity of its risks.

Lemma 2.13 (Convexity of risks). Let L : X × Y × R → [0,∞) be a
(strictly) convex loss and P be a distribution on X×Y . Then RL,P : L0(X)→
[0,∞] is (strictly) convex.

Besides convexity we also need some notions of continuity for loss func-
tions. We begin with a qualitative definition.

Definition 2.14. A loss L : X × Y × R → [0,∞) is called continuous if
L(x, y, · ) : R→ [0,∞) is continuous for all x ∈ X, y ∈ Y .

If we have a continuous loss function L : X × Y × R → [0,∞) and a
sequence (fn) of measurable functions fn : X → R that converges pointwise to
a function f : X → R, then we obviously have L(x, y, fn(x)) → L(x, y, f(x))
for all (x, y) ∈ X × Y . However, it is well-known from integration theory
that such a convergence does not imply a convergence of the corresponding
integrals, i.e., in general we cannot conclude RL,P(fn)→ RL,P(f). However,
the following, weaker result always holds.

Lemma 2.15 (Lower semi-continuity of risks). Let L : X × Y × R →
[0,∞) be a continuous loss, P be a distribution on X×Y , and (fn) ⊂ L0(PX)
be a sequence that converges to an f ∈ L0(PX) in probability with respect to
the marginal distribution PX . Then we have

RL,P(f) ≤ lim inf
n→∞ RL,P(fn) .

Proof. Since (fn) converges in probability PX , there exists a subsequence
(fnk

) of (fn) with

lim
k→∞

RL,P(fnk
) = lim inf

n→∞ RL,P(fn)

and fnk
(x)→ f(x) for PX -almost all x ∈ X. By the continuity of L, we then

have L(x, y, fnk
(x))→ L(x, y, f(x)) for P-almost all (x, y) ∈ X×Y , and hence

Fatou’s lemma (see Theorem A.3.4) gives

RL,P(f) =
∫

X×Y

lim
k→∞

L
(
x, y, fnk

(x)
)
dP(x, y)

≤ lim inf
k→∞

∫
X×Y

L
(
x, y, fnk

(x)
)
dP(x, y)

= lim inf
n→∞ RL,P(fn) . ��

If we have an integrable majorant of the sequence L( · , · , fn( · )) in the
proof above, Lebesgue’s Theorem A.3.6 obviously gives RL,P(fn)→ RL,P(f).
The following definition describes losses for which we have such a majorant.
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Definition 2.16. We call a loss L : X × Y × R → [0,∞) a Nemitski loss
if there exist a measurable function b : X × Y → [0,∞) and an increasing
function h : [0,∞)→ [0,∞) such that

L(x, y, t) ≤ b(x, y) + h(|t|) , (x, y, t) ∈ X × Y ×R. (2.9)

Furthermore, we say that L is a Nemitski loss of order p ∈ (0,∞) if there
exists a constant c > 0 such that

L(x, y, t) ≤ b(x, y) + c |t|p , (x, y, t) ∈ X × Y ×R.

Finally, if P is a distribution on X × Y with b ∈ L1(P), we say that L is a
P-integrable Nemitski loss.

Note that P-integrable Nemitski losses L satisfy RL,P(f) < ∞ for all
f ∈ L∞(PX), and consequently we also have RL,P(0) < ∞ and R∗

L,P < ∞.
In addition, we should keep in mind that the notion of Nemitski losses will
become of particular interest when dealing with unbounded Y , which is typical
for the regression problems treated in Chapters 9 and 10.

Let us now investigate the continuity of risks based on Nemitski losses.

Lemma 2.17 (Continuity of risks). Let P be a distribution on X × Y and
L : X × Y × R → [0,∞) be a continuous, P-integrable Nemitski loss. Then
the following statements hold:

i) Let fn : X → R, n ≥ 1, be bounded, measurable functions for which there
exists a constant B > 0 with ‖fn‖∞ ≤ B for all n ≥ 1. If the sequence
(fn) converges PX-almost surely to a function f : X → R, then we have

lim
n→∞RL,P(fn) = RL,P(f) .

ii) The map RL,P : L∞(PX)→ [0,∞) is well-defined and continuous.
iii) If L is of order p ∈ [1,∞), then RL,P : Lp(PX) → [0,∞) is well-defined

and continuous.

Proof. i). Obviously, f is a bounded and measurable function with ‖f‖∞ ≤ B.
Furthermore, the continuity of L shows

lim
n→∞
∣∣L(x, y, fn(x))− L(x, y, f(x))

∣∣ = 0

for P-almost all (x, y) ∈ X × Y . In addition, we have∣∣L(x, y, fn(x))− L(x, y, f(x))
∣∣ ≤ 2b(x, y) + h(|fn(x)|) + h(|f(x)|)
≤ 2b(x, y) + 2h(B)

for all (x, y) ∈ X × Y and all n ≥ 1. Since the function 2b( · , · ) + 2h(B) is
P-integrable, Lebesgue’s theorem together with
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∣∣RL,P(fn)−RL,P(f)
∣∣ ≤ ∫

X×Y

∣∣L(x, y, fn(x))− L(x, y, f(x))
∣∣ dP(x, y)

gives the assertion.
ii). Condition (2.9) together with b ∈ L1(P) obviously ensures RL,P(f) <

∞ for all f ∈ L∞(PX), i.e., RL,P actually maps L∞(PX) into [0,∞). More-
over, the continuity is a direct consequence of i).

iii). Since L is a P-integrable Nemitski loss of order p, we obviously have
RL,P(f) < ∞ for all f ∈ Lp(PX). Now let (fn) ⊂ Lp(PX) be a convergent
sequence with limit f ∈ Lp(PX). Since convergence in Lp(PX) implies con-
vergence in probability PX , Lemma 2.15 then yields

RL,P(f) ≤ lim inf
n→∞ RL,P(fn) .

Moreover, L̃(x, y, t) := b(x, y) + c |t|p − L(x, y, t) defines a continuous loss
function, and hence Lemma 2.15 also gives

‖b‖L1(P) + c‖f‖pp −RL,P(f) = RL̃,P(f)
≤ lim inf

n→∞ RL̃,P(fn)

= lim inf
n→∞
(‖b‖L1(P) + c‖fn‖pp −RL,P(fn)

)
.

Using that ‖ · ‖pp is continuous on Lp(PX), we thus obtain

lim sup
n→∞

RL,P(fn) ≤ RL,P(f) . ��

Let us now turn to a quantitative notion of continuity for loss functions.

Definition 2.18. A loss L : X × Y ×R→ [0,∞) is called locally Lipschitz
continuous if for all a ≥ 0 there exists a constant ca ≥ 0 such that

sup
x∈X
y∈Y

∣∣L(x, y, t)− L(x, y, t′)
∣∣ ≤ ca |t− t′| , t, t′ ∈ [−a, a] . (2.10)

Moreover, for a ≥ 0, the smallest such constant ca is denoted by |L|a,1. Finally,
if we have |L|1 := supa≥0 |L|a,1 <∞, we call L Lipschitz continuous.

Note that if Y is finite and L : Y × R → [0,∞) is a supervised convex
loss, then L is locally Lipschitz continuous since every convex function is
locally Lipschitz continuous by Lemma A.6.5. Furthermore, a locally Lipschitz
continuous loss L is a Nemitski loss since the definition of |L||t|,1 yields

L(x, y, t) ≤ L(x, y, 0) + |L||t|,1|t| , (x, y) ∈ X × Y, t ∈ R. (2.11)

In particular, a locally Lipschitz continuous loss L is a P-integrable Nemitski
loss if and only if RL,P(0) < ∞. Finally, if L is Lipschitz continuous, then L
is a Nemitski loss of order p = 1.

The following lemma, whose proof is left as an exercise, relates the (local)
Lipschitz continuity of L to the (local) Lipschitz continuity of its risk.
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Lemma 2.19 (Lipschitz continuity of risks). Let L : X×Y ×R→ [0,∞)
be a locally Lipschitz continuous loss and P be a distribution on X ×Y . Then
for all B ≥ 0 and all f, g ∈ L∞(PX) with ‖f‖∞ ≤ B and ‖g‖∞ ≤ B, we have∣∣RL,P(f)−RL,P(g)

∣∣ ≤ |L|B,1 · ‖f − g‖L1(PX) .

Our next goal is to consider the differentiability of risks. To this end, we
first have to introduce differentiable loss functions in the following definition.

Definition 2.20. A loss L : X × Y ×R→ [0,∞) is called differentiable if
L(x, y, · ) : R → [0,∞) is differentiable for all x ∈ X, y ∈ Y . In this case,
L′(x, y, t) denotes the derivative of L(x, y, · ) at t ∈ R.

In general, we cannot expect that the risk of a differentiable loss function is
differentiable. However, for certain integrable Nemitski losses, we can actually
establish the differentiability of the associated risk.

Lemma 2.21 (Differentiability of risks). Let P be a distribution on X×Y
and L : X × Y × R → [0,∞) be a differentiable loss such that both L and
|L′| : X × Y × R → [0,∞) are P-integrable Nemitski losses. Then the risk
functional RL,P : L∞(PX)→ [0,∞) is Fréchet differentiable and its derivative
at f ∈ L∞(PX) is the bounded linear operator R′

L,P(f) : L∞(PX)→ R given
by

R′
L,P(f)g =

∫
X×Y

g(x)L′(x, y, f(x)
)
dP(x, y) , g ∈ L∞(PX).

Proof. We first observe that the derivative L′ : X×Y ×R→ R is measurable
since

L′(x, y, t) = lim
n→∞

L(x, y, t+ 1/n)− L(x, y, t)
1/n

, (x, y, t) ∈ X × Y ×R.

Now let f ∈ L∞(PX) and (fn) ⊂ L∞(PX) be a sequence with fn �= 0, n ≥ 1,
and limn→∞ ‖fn‖∞ = 0. Without loss of generality, we additionally assume
for later use that ‖fn‖∞ ≤ 1 for all n ≥ 1. For (x, y) ∈ X × Y and n ≥ 1, we
now define

Gn(x, y) :=
∣∣∣∣L
(
x, y, f(x) + fn(x)

)− L(x, y, f(x)
)

fn(x)
− L′(x, y, f(x)

)∣∣∣∣
if fn(x) �= 0, and Gn(x, y) := 0 otherwise. Now an easy estimation gives∣∣∣∣RL,P(f + fn)−RL,P(f)−R′

L,P(f)fn

‖fn‖∞

∣∣∣∣
≤
∫

X×Y

∣∣∣∣L
(
x, y, f(x) + fn(x)

)− L(x, y, f(x)
)− fn(x)L′(x, y, f(x)

)
‖fn‖∞

∣∣∣∣ dP(x, y)

≤
∫

X×Y

Gn(x, y) dP(x, y) (2.12)
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for all n ≥ 1. Furthermore, for (x, y) ∈ X × Y , the definitions of Gn and
L′(x, y, · ) obviously yield

lim
n→∞Gn(x, y) = 0. (2.13)

Moreover, for (x, y) ∈ X × Y and n ≥ 1 with fn(x) �= 0, the mean value
theorem shows that there exists a gn(x, y) with |gn(x, y)| ∈ [0, |fn(x)|] and

L
(
x, y, f(x) + fn(x)

)− L(x, y, f(x)
)

fn(x)
= L′(x, y, f(x) + gn(x, y)

)
.

Since |L′| is a P-integrable Nemitski loss, there also exist a b : X×Y → [0,∞)
with b ∈ L1(P) and an increasing function h : [0,∞)→ [0,∞) with

|L′(x, y, t)| ≤ b(x, y) + h(t) , (x, y, t) ∈ X × Y ×R.

This together with ‖fn‖∞ ≤ 1, n ≥ 1, implies∣∣∣∣L
(
x, y, f(x) + fn(x)

)− L(x, y, f(x)
)

fn(x)

∣∣∣∣ ≤ b(x, y) + h
(|f(x) + gn(x, y)|)

≤ b(x, y) + h
(‖f‖∞ + 1

)
for all (x, y) ∈ X × Y and n ≥ 1 with fn(x) �= 0. Since these estimates show
that

Gn(x, y) ≤ 2b(x, y) + 2h
(‖f‖∞ + 1

)
for all (x, y) ∈ X × Y and n ≥ 1, we then obtain the assertion by (2.12),
(2.13), and Lebesgue’s Theorem A.3.6. ��

Our last goal in this section is to investigate loss functions that in some
sense can be restricted to domains of the form X × Y × [−M,M ].

Definition 2.22. We say that a loss L : X × Y ×R→ [0,∞) can be clipped
at M > 0 if, for all (x, y, t) ∈ X × Y ×R, we have

L(x, y,�t ) ≤ L(x, y, t) ,

where �t denotes the clipped value of t at ±M , that is

�t :=

⎧⎪⎨
⎪⎩
−M if t < −M
t if t ∈ [−M,M ]
M if t > M .

(2.14)

Moreover, we say that L can be clipped if it can be clipped at some M > 0.

For most losses, it is elementary to check whether they can be clipped,
but for convex losses this work can be further simplified by the following
elementary criterion.
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Lemma 2.23 (Clipped convex losses). Let L : X × Y ×R → [0,∞) be a
convex loss and M > 0. Then the following statements are equivalent:

i) L can be clipped at M.
ii) For all (x, y) ∈ X × Y , the function L(x, y, · ) : R → [0,∞) has at least

one global minimizer in [−M,M ].

Proof. For (x, y) ∈ X × Y , we denote the set of minimizers of L(x, y, · ) by
Mx,y := {t∗ ∈ R : L(x, y, t∗) = inft∈R L(x, y, t)}. For later use, note that the
convexity of L implies that Mx,y is a closed interval by Lemma A.6.2.

i) ⇒ ii). Assume that there exists a pair (x, y) ∈ X × Y such that
Mx,y ∩ [−M,M ] = ∅. In the case Mx,y = ∅, the convexity of L shows that
L(x, y, · ) : R → [0,∞) is strictly monotone and hence L cannot be clipped
at any real number. Therefore we may assume without loss of generality that
t := infMx,y satisfies M < t <∞. However, in this case we have

L(x, y,�t ) = L(x, y,M) > L(x, y, t) ,

i.e., L cannot be clipped at M .
ii)⇒ i). Our assumption ii) guarantees Mx,y ∩ [−M,M ] �= ∅, and hence

we have infMx,y ≤ M and supMx,y ≥ −M . Moreover, the convexity of
L shows that L(x, y, · ) : R → [0,∞) is increasing on [supMx,y,∞) and
decreasing on (−∞, infMx,y], and hence L can be clipped at M . ��

The criterion above will be of particular interest in Section 7.4, where we
investigate the statistical properties of SVMs that use clippable losses. There-
fore, it will be important to remember that, for the loss functions introduced
in the following sections, condition ii) is usually elementary to check.

2.3 Margin-Based Losses for Classification Problems

In Examples 2.4 and 2.5, we considered the (weighted) binary classification
scenario, which is described by the supervised loss functions Lclass and Lα-class,
respectively. Now observe that both loss functions are not convex , which may
lead to computational problems if, for example, one tries to minimize an
empirical risk RLclass,D( · ) over some set F of functions f : X → R. This
is the reason why many machine learning algorithms consider the empirical
risk RL,D( · ) of a surrogate loss function L : Y ×R→ [0,∞) instead. In this
section, we will introduce some commonly used surrogate losses and establish
a few basic properties of these losses. Finally, we show why the hinge loss used
in SVMs for classification is a good surrogate.

Throughout this section, we assume Y := {−1, 1}. Let us begin with the
following basic definition, which introduces a type of loss function often used
in classification algorithms.
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Fig. 2.1. The shape of the representing function ϕ for some margin-based loss
functions considered in the text.

Definition 2.24. A supervised loss L : Y × R → [0,∞) is called margin-
based if there exists a representing function ϕ : R→ [0,∞) such that

L(y, t) = ϕ(yt) , y ∈ Y, t ∈ R.

The following lemma relates some simple properties of margin-based losses
to analogous properties of their representing functions.

Lemma 2.25 (Properties of margin-based losses). Let L be a margin-
based loss represented by ϕ. Then the following statements are true:

i) L is (strictly) convex if and only if ϕ is (strictly) convex.
ii) L is continuous if and only if ϕ is.
iii) L is (locally) Lipschitz continuous if and only if ϕ is.
iv) If L is convex, then it is locally Lipschitz continuous.
v) L is a P-integrable Nemitski loss for all measurable spaces X and all

distributions P on X × Y .

Proof. Recalling the definitions of Section 2.2, the first three assertions are
trivial and iv) follows from Lemma A.6.5. Finally, v) follows from

L(y, t) ≤ max
{
ϕ(−t), ϕ(t)

}
, y ∈ Y, t ∈ R. ��

Note that the classification loss Lclass is not margin-based, while many
commonly used surrogates for Lclass are margin-based. We are in particular
interested in the following examples (see also Figure 2.1 for some illustrations).

Example 2.26. The least squares loss LLS is margin-based since it satisfies

LLS(y, t) = (y − t)2 = (1− yt)2 , y = ±1, t ∈ R.

In addition, LLS is obviously strictly convex, and for a > 0 its local Lipschitz
constant is |LLS|a,1 = 2a+ 2 by Lemma A.6.8. Finally, LLS can be clipped at
M = 1. �
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Example 2.27. The hinge loss Lhinge : Y ×R→ [0,∞) is defined by

Lhinge(y, t) := max{0, 1− yt} , y = ±1, t ∈ R.

It is clearly a margin-based loss that linearly penalizes every prediction t with
yt ≤ 1. In addition, it is obviously convex and Lipschitz continuous with
|Lhinge|1 = 1. Finally, Lhinge can be clipped at M = 1. �

Example 2.28. The truncated least squares loss or squared hinge loss
is defined by

Ltrunc-ls(y, t) :=
(
max{0, 1− yt})2 , y = ±1, t ∈ R.

It is obviously a margin-based loss that quadratically penalizes every predic-
tion t with yt ≤ 1. In addition, it is convex, and its local Lipschitz constants
are |Ltrunc-ls|a,1 = 2a+ 2, a > 0. Finally, LLS can be clipped at M = 1. �

Example 2.29. The logistic loss for classification Lc-logist is defined by

Lc-logist(y, t) := ln
(
1 + exp(−yt)) , y = ±1, t ∈ R.

It is obviously a margin-based loss function whose shape is close to that of the
hinge loss. However, unlike the hinge loss, the logistic loss is infinitely many
times differentiable. In addition, it is strictly convex and Lipschitz continuous
with |Lc-logist|1 = 1. Finally, Lc-logist cannot be clipped. �

Let us finally investigate in which sense the hinge loss used in the soft
margin SVM is a reasonable surrogate for the classification loss. To this end,
we need the following elementary lemma.

Lemma 2.30. For all η ∈ [0, 1] and all t ∈ [−1, 1], we have

|2η − 1|1(−∞,0]

(
(2η − 1) sign t

) ≤ |2η − 1| · ∣∣t− sign(2η − 1)
∣∣ . (2.15)

Proof. For η = 1/2, there is nothing to prove. In order to prove the other cases,
let us first recall our convention sign 0 := 1. For η ∈ [0, 1/2) and t ∈ [−1, 0),
we now have (2η − 1) sign t > 0, and hence the left-hand side of (2.15) equals
zero. From this we immediately obtain the assertion. Moreover, for t ∈ [0, 1],
we have (2η − 1) sign t < 0, which in turn yields

|2η−1|1(−∞,0]

(
(2η−1) sign t

) ≤ |2η−1| · (t+1) = |2η−1| · ∣∣t− sign(2η−1)
∣∣ .

In other words, we have shown the assertion for η < 1/2. The case η > 1/2
can be shown completely analogously and is left as an additional exercise for
the reader. ��

With the help of the lemma above we can now investigate the relationship
between the Lhinge-risk and the classification risk.
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Theorem 2.31 (Zhang’s inequality). Given a distribution P on X × Y ,
we write η(x) := P(y = 1|x), x ∈ X. Moreover, let f∗Lclass,P

be the Bayes
classification function given by f∗Lclass,P

(x) := sign(2η(x) − 1), x ∈ X. Then,
for all measurable f : X → [−1, 1], we have

RLhinge,P(f)−R∗
Lhinge,P =

∫
X

|f(x)− f∗Lclass,P
(x)| · |2η(x)− 1| dPX(x) .

Moreover, for every measurable f : X → R, we have

RLclass,P(f)−R∗
Lclass,P

≤ RLhinge,P(f)−R∗
Lhinge,P .

Proof. For f : X → [−1, 1], the definition of the hinge loss yields

RLhinge,P(f) =
∫

X

(1− f(x)) η(x) + (1 + f(x))(1− η(x)) dPX(x)

=
∫

X

1 + f(x)(1− 2η(x)) dPX(x) ,

which in turn implies R∗
Lhinge,P = RLhinge,P(f∗Lclass,P

) since the hinge loss can
be clipped at M = 1 by Lemma 2.23. From this we conclude that

RLhinge,P(f)−R∗
Lhinge,P =

∫
X

f(x)(1− 2η(x)) + |2η(x)− 1| dPX(x)

=
∫

X

|f(x)− f∗Lclass,P
(x)| · |2η(x)− 1| dPX(x) ,

i.e., we have shown the first assertion. To prove the second assertion, we first
use that Lhinge can be clipped at M = 1 to obtain

RLhinge,P(
�
f )−R∗

Lhinge,P ≤ RLhinge,P(f)−R∗
Lhinge,P

for the clipped version
�
f of a function f : X → R. Moreover, this clipped

version also satisfies

RLclass,P(f)−R∗
Lclass,P

= RLclass,P(
�
f )−R∗

Lclass,P
,

and consequently it suffices to show the second assertion for f : X → [−1, 1].
Now recall Example 2.4, where we saw R∗

Lclass,P
= RLclass,P(f∗Lclass,P

) and

RLclass,P(f)−R∗
Lclass,P

=
∫

X

η 1(−∞,0)(f) + (1− η)1[0,∞)(f)−min{η, 1− η} dPX

=
∫

X

|2η(x)− 1|1(−∞,0]

(
(2η(x)− 1) sign f(x)

)
dPX(x) .

Lemma 2.30 and the first assertion then yield the second assertion. ��
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Recall that the goal in binary classification was to find a function f whose
excess classification risk RLclass,P(f)−R∗

Lclass,P
is small. By Theorem 2.31, we

now see that we achieve this goal whenever RLhinge,P(f)−R∗
Lhinge,P is small. In

this sense, the hinge loss is a reasonable surrogate for the classification loss.
Finally, note that we will show in Section 3.4 that the other margin-based
losses introduced in this section are also reasonable surrogates.

Finally, observe that all calculations in the preceding proof are solely in
terms of η(x) = P(y = 1|x) and f(x). This observation will be the key trick
for analyzing general surrogate losses in Chapter 3.

2.4 Distance-Based Losses for Regression Problems

In regression, the problem is to predict a real-valued output y given an input
x. The discrepancy between the prediction f(x) and the observation y is often
measured by the least squares loss we introduced in Example 2.6. However, we
also mentioned there that this is by no means the only reasonable loss. In this
section, we therefore introduce some other loss functions for the regression
problem. In addition, we establish some basic properties of these losses and
their associated risks.

Let us begin with the following basic definitions.

Definition 2.32. We say that a supervised loss L : R×R→ [0,∞) is:

i) distance-based if there exists a representing function ψ : R→ [0,∞)
satisfying ψ(0) = 0 and

L(y, t) = ψ(y − t) , y ∈ Y, t ∈ R;

ii) symmetric if L is distance-based and its representing function ψ satisfies

ψ(r) = ψ(−r) , r ∈ R.

Obviously, the least squares loss as well as the family of losses mentioned
after Example 2.6 are symmetric loss functions. Further examples of this type
of loss will be presented later in this section. Let us first, however, establish
some basic properties of distance-based losses and their associated risks. We
begin with the following lemma, which relates properties of L with properties
of ψ. Its proof is left as an exercise.

Lemma 2.33 (Properties of distance-based losses). Let L be a distance-
based loss with representing function ψ : R→ [0,∞). Then we have:

i) L is (strictly) convex if and only if ψ is (strictly) convex.
ii) L is continuous if and only if ψ is continuous.
iii) L is Lipschitz continuous if and only if ψ is Lipschitz continuous.
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Note that the local Lipschitz continuity of ψ does not imply the local
Lipschitz continuity of the corresponding distance-based loss function as, for
example, the least squares loss shows.

Our next goal is to investigate under which conditions on the distribution
P a distance-based loss function is a P-integrable Nemitski loss. This analysis
will be conducted in two steps: a) the analysis of the integrals of the form

CL,Q(t) :=
∫
R

L(y, t) dQ(y) , (2.16)

which occur for Q := P(Y |x) as inner integrals in the definition of the L-risk,
and b) a subsequent analysis of the averaging with respect to PX . For the first
step, we need the following definition, which will be used to describe the tail
behavior of the conditional distributions P(Y |x).
Definition 2.34. For a distribution Q on R, the p-th moment, p ∈ (0,∞),
is defined by

|Q|p :=
(∫

R

|y|p dQ(y)
)1/p

.

Moreover, its ∞-moment is defined by |Q|∞ := sup
∣∣suppQ

∣∣.
Note that in general the p-th moment of a distribution Q on R is not

finite. In particular, we have |Q|∞ < ∞ if and only if Q has a bounded
support. Moreover, for 0 < p ≤ q ≤ ∞, we always have |Q|p ≤ |Q|q.

Besides controlling the tail behavior of the conditional distributions we
also need to describe the growth behavior of the loss function considered.
This is done in the following definition.

Definition 2.35. Let p ∈ (0,∞) and L : R×R→ [0,∞) be a distance-based
loss with representing function ψ. We say that L is of:

i) upper growth p if there is a constant c > 0 such that

ψ(r) ≤ c (|r|p + 1
)
, r ∈ R;

ii) lower growth p if there is a constant c > 0 such that

ψ(r) ≥ c (|r|p − 1
)
, r ∈ R;

iii) growth type p if L is of both upper and lower growth type p.

Our next goal is to relate the tail behavior of the conditional distributions
with the growth behavior of L and the integrals (2.16). To this end, recall
that convex functions are locally Lipschitz continuous (see Lemma A.6.5),
and hence, for convex distance-based loss functions L, the representing ψ is
locally Lipschitz continuous on every interval [−r, r]. Consequently,

r �→ |ψ|[−r,r]|1 , r ≥ 0, (2.17)
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defines an increasing, non-negative function. The following lemma establishes
some basic properties of this function and relates them to the growth type of
distance-based loss functions.

Lemma 2.36 (Growth type and moments). Let L be a distance-based loss
with representing function ψ and Q be a distribution on R. For p ∈ (0,∞),
we then have:

i) If ψ is convex and lim|r|→∞ ψ(r) =∞, then L is of lower growth type 1.
ii) If ψ is Lipschitz continuous, then L is of upper growth type 1.
iii) If ψ is convex, then for all r > 0 we have

|ψ|[−r,r]|1 ≤ 2
r
‖ψ|[−2r,2r]‖∞ ≤ 4|ψ|[−2r,2r]|1 .

iv) If L is convex and of upper growth type 1, then it is Lipschitz continuous.
v) If L is of upper growth type p, then there exists a constant cL,p > 0

independent of Q such that

CL,Q(t) ≤ cL,p

(|Q|pp + |t|p + 1
)
, t ∈ R. (2.18)

Moreover, L is a Nemitski loss of order p.
vi) If L is of lower growth type p, then there exists a constant cL,p > 0 inde-

pendent of Q such that

|Q|pp ≤ cL,p

(CL,Q(t) + |t|p + 1
)
, t ∈ R, (2.19)

and
|t|p ≤ cL,p

(CL,Q(t) + |Q|pp + 1
)
, t ∈ R. (2.20)

vii) If L is of growth type p, then we have C∗L,Q <∞ if and only if |Q|p <∞.

Proof. iii). Follows immediately from Lemma A.6.5.
iv). Follows from the left inequality of iii) and Lemma 2.33.
ii). Follows from |ψ(s)| = |ψ(s)− ψ(0)| ≤ |ψ|1 |s| for all s ∈ R.
i). The assumption lim|r|→∞ ψ(r) = ∞ implies that |ψ|[−r,r]|1 > 0 for all

sufficiently large r > 0. Moreover, it shows that ψ is decreasing on (−∞, 0]
and increasing on [0,∞). Consequently, we have ‖ψ|[−r,0]‖∞ = ψ(r) for r ≤ 0,
and ‖ψ|[0,r]‖∞ = ψ(r) for r ≥ 0. Now, the assertion follows from applying the
first part of Lemma A.6.5 to the convex functions 1(−∞,0]ψ and 1[0,∞)ψ.

v). Writing cp := max{1, 2p−1}, the second assertion follows from

L(y, t) = ψ(y − t) ≤ c (cp|y|p + cp|t|p + 1
)
, y, t ∈ R. (2.21)

Using this inequality, we then immediately obtain

CL,Q(t) =
∫
R

ψ(y − t) dQ(y) ≤ c cp
(|Q|pp + |t|p)+ c .
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vi). We fix a t ∈ R and write cp := max{1, 2p−1}. Since without loss of
generality we may assume CL,Q(t) <∞, we can estimate

|Q|pp =
∫
R

|y|p dQ(y) ≤ cp
∫
R

|y − t|p + |t|p dQ(y)

=
cp
c

∫
R

c
(|y − t|p − 1

)
dQ(y) + cp + cp|t|p

≤ cp
c
CL,Q(t) + cp + cp|t|p .

Now we easily find (2.19). Moreover, (2.20) can be shown analogously.
vii). The assertion immediately follows from v) and vi). ��
So far we have analyzed the interplay between the growth behavior of L

and the tail behavior of the conditional distributions P( · |x). Our next step
is to investigate the effect of the integration with respect to PX . To this end,
we need the following definition.

Definition 2.37. For a distribution P on X×R, the average p-th moment,
p ∈ (0,∞), is defined by

|P|p :=
(∫

X

∫
R

|y|p dP(x, y)
)1/p

=
(∫

X

∣∣P( · |x)∣∣p
p
dPX(x)

)1/p

.

Moreover, its average 0-moment is defined by |P|0 := 1 and its average
∞-moment is defined by |P|∞ := ess-supx∈X

∣∣P( · |x)∣∣∞.

Again, the p-th moment of a distribution P on X × R is not necessarily
finite. In particular, it is easy to see that |P|∞ <∞ if and only if there is an
M > 0 such that supp P( · |x) ⊂ [−M,M ] for PX -almost all x ∈ X. Finally,
for 0 < p ≤ q ≤ ∞ we again have |P|p ≤ |P|q.

Let us now investigate how average moments and risks interplay.

Lemma 2.38 (Average moments and risks). Let L be a distance-based
loss and P be a distribution on X × Y . For p > 0, we then have:

i) If L is of upper growth type p, there exists a constant cL,p > 0 independent
of P such that, for all measurable f : X → R, we have

RL,P(f) ≤ cL,p

(|P|pp + ‖f‖pLp(PX) + 1
)
. (2.22)

Moreover, if |P|p <∞, then L is a P-integrable Nemitski loss of order p,
and RL,P( · ) : Lp(PX)→ [0,∞) is well-defined and continuous.

ii) If L is convex and of upper growth type p with p ≥ 1, then for all q ∈
[p − 1,∞] with q > 0 there exists a constant cL,p,q > 0 independent of P
such that, for all measurable f : X → R and g : X → R, we have∣∣RL,P(f)−RL,P(g)

∣∣
≤ cL,p,q

(
|P|p−1

q + ‖f‖p−1
Lq(PX) + ‖g‖p−1

Lq(PX) + 1
)
‖f − g‖L q

q−p+1
(PX). (2.23)
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iii) If L is of lower growth type p, there exists a constant cL,p > 0 independent
of P such that, for all measurable f : X → R, we have

|P|pp ≤ cL,p

(RL,P(f) + ‖f‖pLp(PX) + 1
)

(2.24)

and
‖f‖pLp(PX) ≤ cL,p

(RL,P(f) + |P|pp + 1
)
. (2.25)

Proof. i). Inequality (2.22) follows from integrating (2.18). The second asser-
tion follows from Inequality (2.21) and the last assertion is a consequence of
Lemma 2.17.

ii). We define r(x, y) := |y|+ |f(x)|+ |g(x)|+1, (x, y) ∈ X×Y . By Lemma
2.36, we then obtain

∣∣RL,P(f)−RL,P(g)
∣∣ ≤ ∫

X×Y

∣∣∣ψ(y − f(x)
)− ψ(y − g(x))∣∣∣dP(x, y)

≤
∫

X×Y

∣∣ψ|[−r(x,y),r(x,y)]

∣∣
1

∣∣f(x)− g(x)∣∣dP(x, y)

≤ 2
∫

X×Y

‖ψ|[−2r(x,y),2r(x,y)]‖∞
r(x, y)

∣∣f(x)− g(x)∣∣dP(x, y)

≤ c
∫

X×Y

|2r(x, y)|p + 1
2r(x, y)

∣∣f(x)− g(x)∣∣dP(x, y)

for a suitable constant c > 0 only depending on L. Using tp+1
t ≤ 2tp−1 for all

t ≥ 1 and Hölder’s inequality, we then conclude

∣∣RL,P(f)−RL,P(g)
∣∣ ≤ 2pc

∫
X×Y

|r(x, y)|p−1
∣∣f(x)− g(x)∣∣dP(x, y)

≤ 2pc

(∫
X×Y

|r|(p−1)sdP
)1/s(∫

X×Y

∣∣f − g∣∣s′
dP
)1/s′

,

where s := q
p−1 and 1

s′ := 1− 1
s = 1− p−1

q = q−p+1
q . Using the definition of r,

we further find(∫
X×Y

|r|(p−1)sdP
)1/s

=
(∫

X×Y

(|y|+ |f(x)|+ |g(x)|+ 1
)q
dP(x, y)

)(p−1)/q

≤ cq
(
|P|q + ‖f‖Lq(PX) + ‖g‖Lq(PX) + 1

)p−1

for a suitable constant cq > 0. By combining the estimates, we then obtain
the assertion.

iii). The inequalities (2.24) and (2.25) follow from integrating (2.19) and
(2.20), respectively. ��
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Fig. 2.2. The shape of the representing function ψ for some distance-based loss
functions considered in the text.

If L is a distance-based loss function of growth type p and P is a distribu-
tion on X ×R with |P|p =∞, the preceding lemma shows RL,P(f) =∞ for
all f ∈ Lp(PX). This suggests that we may even have R∗

L,P = ∞. However,
in general, this is not the case, as Exercise 2.6 shows.

Let us finally consider some examples of distance-based loss functions (see
also Figure 2.2 for some illustrations) together with some of their basic prop-
erties. We will see later in Section 3.7 that the first three losses can be used
to estimate the conditional mean whenever P( · |x) is symmetric.
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Example 2.39. For p > 0, the p-th power absolute distance loss Lp-dist is
the distance-based loss function represented by

ψ(r) := |r|p , r ∈ R.

Note that for p = 2 this definition recovers the least squares loss. Moreover,
for p = 1, we call Lp-dist simply the absolute distance loss. It is not hard
to see that Lp-dist is of growth type p and that Lp-dist is convex if and only
if p ≥ 1. Furthermore, Lp-dist is strictly convex if and only if p > 1, and it is
Lipschitz continuous if and only if p = 1. �

Example 2.40. The distance-based logistic loss for regression Lr-logist is
represented by

ψ(r) := − ln
4er

(1 + er)2
, r ∈ R.

Some simple calculations show that Lr-logist is strictly convex and Lipschitz
continuous, and consequently Lr-logist is of growth type 1. �

Example 2.41. For α > 0, Huber’s loss Lα-Huber is the distance-based loss
represented by

ψ(r) :=

{
r2

2 if |r| ≤ α
α|r| − α2

2 otherwise.

Note that, for small r, Huber’s loss has the shape of the least squares loss,
whereas for large r it has the shape of the absolute distance loss. Consequently,
Lα-Huber is convex but not strictly convex. Furthermore, it is Lipschitz contin-
uous, and thus Lα-Huber is of growth type 1. Finally, note that the derivative
of ψ equals the clipping operation (2.14) for M = α. �

Example 2.42. For ε > 0, the distance-based ε-insensitive loss Lε-insens is
represented by

ψ(r) := max
{
0, |r| − ε} , r ∈ R.

The ε-insensitive loss ignores deviances smaller than ε, whereas it linearly pe-
nalizes larger deviances. It is easy to see that Lε-insens is Lipschitz continuous
and convex but not strictly convex. Therefore it is of growth type 1. We will
see in Section 9.5 that this loss function can be used to estimate the condi-
tional median, i.e., the median of P( · |x), x ∈ X, whenever these conditional
distributions are symmetric and have, for example, a Lebesgue density that
is bounded away from zero on the support of P( · |x). �

Example 2.43. For τ ∈ (0, 1), the distance-based pinball loss Lτ -pin is repre-
sented by

ψ(r) =

{
−(1− τ)r, if r < 0
τr, if r ≥ 0.

(2.26)
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Obviously, this loss function is convex and Lipschitz continuous, but for τ �=
1/2 it is not symmetric. We will see in Sections 3.9 and 9.3 that this loss
function can be used to estimate conditional τ -quantiles defined by

f∗τ,P(x) :=
{
t∗ ∈ R : P

(
(−∞, t∗] |x) ≥ τ and P

(
[t∗,∞) |x) ≥ 1− τ} . �

2.5 Further Reading and Advanced Topics

Loss functions and their associated risks have a long history in mathemat-
ical statistics and machine learning. For example, the least squares loss for
regression was already used by Legendre, Gauss, and Adrain in the early 19th
century (see, e.g., Harter, 1983; Stigler, 1981; and the references therein),
and the classification loss function dates back to the beginning of machine
learning.

In the statistical literature, density level detection has been studied by
Hartigan (1987), Müller and Sawitzki (1991), Polonik (1995), Sawitzki (1996),
and Tsybakov (1997), among others. Most of these authors focus on the so-
called excess mass approach. Steinwart et al. (2005) showed that this approach
is equivalent to an empirical risk minimization approach using a particular
classification problem, and based on this observation the authors derived an
SVM for the density level detection problem (see also Sections 3.8 and 8.6).
Moreover, the risk based on the density level detection loss defined in (2.6) was
proposed by Polonik (1995) and later also used by, e.g., Tsybakov (1997) and
Ben-David and Lindenbaum (1997). Various applications of the DLD problem,
such as cluster analysis, testing for multimodality, and spectral analysis, are
described by Hartigan (1975), Müller and Sawitzki (1991), and Polonik (1995).
Finally, using DLD for anomaly detection is a widely known technique; see
Davies and Gather (1993) and Ripley (1996), for example.

It is well-known that empirical risk minimization for the classification loss
typically leads to combinatorial optimization problems that in many cases
are NP-hard to solve (see, e.g., Höffgen et al., 1995). Using a margin-based
loss as a surrogate for the classification loss is a well-known trick in ma-
chine learning to make the training process algorithmically more tractable
(see, e.g., the motivation for the hinge loss by Cortes and Vapnik, 1995). In
particular, for SVMs, the first surrogates for the classification loss were the
hinge loss and its squared variant, the truncated least squares loss. Later,
other loss functions, such as the least squares loss and the logistic loss, were
introduced into the support vector machine literature by Suykens and Van-
dewalle (1999), see also Poggio and Girosi (1990), Wahba (1990), and Girosi
et al. (1995) for earlier work in this direction, and Wahba (1999), respec-
tively. Other margin-based loss functions used in the literature include the
exponential loss ϕ(t) := exp(−t), t ∈ R, used in the AdaBoost algorithm
(see Freund and Schapire, 1996; Breiman, 1999b) and the loss ϕ(t) := (1− t)5
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used in the ARC-X4 procedure of Breiman (1998). Some further margin-based
losses used in boosting algorithms are listed by Mason et al. (2000). Finally,
Zhang’s inequality was shown by Zhang (2004b).

The importance of Nemitski losses for conditional distributions with un-
bounded support was first discovered by De Vito et al. (2004), and the growth
type of distance-based losses was introduced by Christmann and Steinwart
(2007).

Huber’s loss was proposed by Huber (1964) in the context of robust sta-
tistics, and the logistic loss function was already used in the Princeton study
by Andrews et al. (1972). Moreover, the pinball loss was utilized by Koenker
and Bassett (1978) in the context of quantile regression. Last but not least,
for a comparison between the absolute distance loss and the least squares loss
regarding computational speed for certain algorithms, we refer to Portnoy and
Koenker (1997).

2.6 Summary

In this chapter, we introduced loss functions and their associated risks. We saw
in Section 2.1 that loss functions can be used to formalize many learning goals,
including classification, regression, and density level detection problems. We
then investigated simple yet important properties of loss functions. Among
them, the notion of integrable Nemitski losses will be a central tool in the
following chapters.

Since the classification loss typically leads to computationally hard opti-
mization problems, we presented margin-based surrogates in Section 2.3. For
one of these surrogates, namely the hinge loss, we explicitly showed in Zhang’s
inequality how its excess risk relates to the excess classification risk. In Chap-
ter 3, we will see that a similar relation holds for the other margin-based losses
we presented.

Finally, we investigated distance-based loss functions for regression prob-
lems in Section 2.4. There, we first showed how the growth behavior of the loss
function L together with the average conditional tail behavior of the distribu-
tion P determines whether L is a P-integrable Nemitski loss. These consider-
ations will play a crucial role in Chapter 9, where we investigate the learning
capabilities of SVMs in regression problems. At the end of Section 2.4, we
presented some examples of distance-based losses, including the least squares
loss, the pinball loss, the logistic loss, Huber’s loss, and the ε-insensitive loss.
In Chapter 3, we will investigate their relationships to each other.

2.7 Exercises

2.1. Convex and Lipschitz continuous risks (�)
Prove Lemma 2.13 and Lemma 2.19.
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2.2. Properties of some margin-based losses (�)
Verify the assertions made in the examples of Section 2.3. Moreover, inves-
tigate the properties of the exponential loss represented by ϕ(t) := exp(−t),
t ∈ R, and the sigmoid loss represented by ϕ(t) := 1− tanh(t), t ∈ R.

2.3. A surrogate inequality for the logistic loss (����)
Try to find an inequality between the excess classification risk and the excess
Lc-logist-risk. Compare your findings with the inequality we will obtain in
Section 3.4.

2.4. Properties of some distance-based losses (�)
Verify the assertions made in the examples of Section 2.4.

2.5. Clippable convex distance-based losses (��)
Let L be a distance-based loss function whose representing function ψ satisfies
limr→±∞ ψ(r) = ∞. Show that L can be clipped at some M > 0 if and only
if Y is bounded.

2.6. Infinite Bayes risk for regression (��)
Let L be a distance-based loss of growth type p and X := Y := R. Find
a distribution P on X × Y such that |P|p = ∞ and RL,P(f) = ∞ for all
f ∈ Lp(PX) but R∗

L,P <∞.
Hint: Use a measurable function g : X → R with g �∈ Lp(PX).
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Surrogate Loss Functions (*)

Overview. In many cases, the loss describing a learning problem is
not suitable when designing a learning algorithm. A common approach
to resolve this issue is to use a surrogate loss in the algorithm design.
For example, we saw in the introduction that SVMs use the convex
hinge loss instead of the discontinuous classification loss. The goal of
this chapter is to systematically develop a theory that makes it possible
to identify suitable surrogate losses for general learning problems.

Prerequisites. Besides Chapter 2 and Section A.3.3, only basic
mathematical knowledge is required.

Usage. Sections 3.1 – 3.3 and 3.6 provide the theoretical framework
required for Sections 3.4, 3.5, and 3.7 – 3.9, which deal with surro-
gate losses for common learning scenarios. These examples are im-
portant but not essential for classification, regression, and robustness,
discussed in Chapters 8, 9, and 10, respectively. On the other hand,
most of the material in this chapter is of general interest for machine
learning and hence relatively independent of the rest of this book.

In Chapter 2, we introduced some important learning scenarios and their cor-
responding loss functions. One way to design learning algorithms for these
learning scenarios is to use a straightforward empirical risk minimization
(ERM) ansatz based on the corresponding loss function. However, this ap-
proach may often be flawed, as the following examples illustrate:

• ERM optimization problems based on the classification loss are usually
combinatorial problems, and even solving these problems approximately
is often NP-hard.

• The least squares loss is known to be rather sensitive to outliers, and hence
for certain data sets a (regularized) ERM approach based on this loss may
fail, as we will see in Chapter 10.

• For some unsupervised learning scenarios, including the DLD scenario, we
do not know the associated loss function since it depends on the unknown
density.

These examples demonstrate that in many cases the loss function describing
the learning problem is not suitable for a (regularized) ERM ansatz. Now recall
that in the SVM approach discussed in the introduction one of the main ideas
was to use the hinge loss function as a surrogate for the classification loss, and
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consequently it is tempting to try surrogate losses in other learning scenarios,
too. However, it is not hard to imagine that, given a target loss, not every loss
function is a good surrogate, and hence we need some guidance for choosing
a suitable surrogate loss.

Therefore, let us now describe what properties we do expect from good
surrogate losses. To this end let, Ltar be a target loss that describes our
learning goal and Lsur be a surrogate loss. Furthermore, assume that we
have a learning method A, e.g., a regularized Lsur-ERM approach, that as-
ymptotically learns the surrogate learning problem defined by Lsur, i.e.,

lim
|D|→∞

RLsur,P(fD) = R∗
Lsur,P (3.1)

holds in probability, where fD is the decision function the method A produces
for the training set D of length |D|. However, since our learning goal is defined
by Ltar, we are actually interested in Ltar-consistency of A, i.e., in

lim
|D|→∞

RLtar,P(fD) = R∗
Ltar,P . (3.2)

Obviously, we obtain the latter if the convergence in (3.1) implies the conver-
gence in (3.2). This leads to the first question we will address in this chapter.

Question 3.1. Given a target loss Ltar, which surrogate losses Lsur ensure
the implication

lim
n→∞RLsur,P(fn) = R∗

Lsur,P =⇒ lim
n→∞RLtar,P(fn) = R∗

Ltar,P (3.3)

for all sequences (fn) of measurable functions fn : X → R ?

Question 3.1 is of purely asymptotic nature, i.e., it does consider any con-
vergence rate in (3.1) or (3.2). Consequently, the surrogate losses that we find
by answering Question 3.1 are a reasonable choice when dealing with consis-
tency but may be less suitable when we wish to establish convergence rates
for (3.2). This leads to the second question we will address.

Question 3.2. Given a target loss Ltar, which surrogate losses Lsur allow us
to deduce convergence rates for the right-hand side of (3.3) from convergence
rates on the left-hand side of (3.3)?

In particular, does there exist an increasing function Υ : [0,∞) → [0,∞)
that is continuous at 0 with Υ (0) = 0 such that, for all measurable f : X → R,
we have

RLtar,P(f)−R∗
Ltar,P ≤ Υ

(RLsur,P(f)−R∗
Lsur,P

)
?

Recall that we have already seen an example of such an inequality in Sec-
tion 2.3, namely Zhang’s inequality, which relates the excess classification risk
to the excess hinge risk. In this chapter, we will systematically generalize
the ideas used in the proof of that inequality to develop a general theory on
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surrogate losses. The main results in this direction, including answers to the
questions above, can be found in Sections 3.2 and 3.3. Furthermore, these
general results will be applied to standard learning scenarios such as classi-
fication, regression, and density level detection in Sections 3.4, 3.5, 3.7, and
3.8.

3.1 Inner Risks and the Calibration Function

In order to address Questions 3.1 and 3.2, we need some tools and notions that
will be introduced in this section. To this end let, us first recall that, given
a loss function L and a distribution P on X × Y , the L-risk of a measurable
function f : X → R is given by

RL,P(f) =
∫

X

∫
Y

L
(
x, y, f(x)

)
dP(y|x) dPX(x). (3.4)

Now, motivated by the calculations made in the proof of Zhang’s inequality,
the basic idea of our approach is to treat the inner and outer integrals sepa-
rately. Besides some technical advantages, it will turn out that this approach
has the important benefit of making our analysis rather independent of the
specific distribution P, which, from the machine learning point of view, is
unknown to us.

Let us begin with some fundamental definitions that will be used through-
out this chapter.

Definition 3.3. Let L : X×Y ×R→ [0,∞) be a loss and Q be a distribution
on Y . We define the inner L-risks of Q by

CL,Q,x(t) :=
∫

Y

L(x, y, t) dQ(y) , x ∈ X, t ∈ R .

Furthermore, the minimal inner L-risks are denoted by

C∗L,Q,x := inf
t∈R
CL,Q,x(t) , x ∈ X.

Finally, if L is a supervised loss, we usually drop the subscript x in these
notations, and for unsupervised losses we analogously omit the subscript Q.

Note that by (3.4) and the definition of the inner risks, we immediately
obtain

RL,P(f) =
∫

X

CL,P( · |x),x

(
f(x)
)
dPX(x) . (3.5)

Our first goal is to establish the same relation between the minimal inner risks
C∗L,P( · |x),x, x ∈ X, and the Bayes risk R∗

L,P. To this end, we have to recall
the notion of a complete measurable space given after Lemma A.3.3.
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Lemma 3.4 (Computation of Bayes risks). Let X be a complete measur-
able space, L : X × Y × R → [0,∞) be a loss, and P be a distribution on
X × Y . Then x �→ C∗L,P( · |x),x is measurable and we have

R∗
L,P =

∫
X

C∗L,P( · |x),x dPX(x) . (3.6)

Proof. Let us define ϕ : X ×R→ [0,∞] by

ϕ(x, t) := CL,P( · |x),x(t) , x ∈ X, t ∈ R.

Then ϕ is measurable by the measurability statement in Tonelli’s theorem, and
hence the first assertion follows from iii) of Lemma A.3.18 using F (x) := R,
x ∈ X. Consequently, the integral on the right-hand side of (3.6) exists, and
it is easy to see that it satisfies

R∗
L,P = inf

f∈L0(X)

∫
X

CL,P( · |x),x(f(x)) dPX(x) ≥
∫

X

C∗L,P( · |x),x dPX(x) .

On the other hand, given n ≥ 1, the second part of iii) in Lemma A.3.18
yields a measurable function fn : X → R with

CL,P( · |x),x(fn(x)) ≤ C∗L,P( · |x),x +
1
n
, x ∈ X, (3.7)

and hence we obtain

R∗
L,P ≤ RL,P(fn) ≤

∫
X

C∗L,P( · |x),x dPX(x) +
1
n
.

Letting n→∞ then yields the assertion. ��
Lemma 3.4 shows that the Bayes risk R∗

L,P can be achieved by minimizing
the inner risks CL,P( · |x),x( · ), x ∈ X, which in general will be easier than
a direct minimization of RL,P( · ). Now assume that R∗

L,P < ∞. Then the
excess risk RL,P(f)−R∗

L,P is defined and can be computed by

RL,P(f)−R∗
L,P =

∫
X

CL,P( · |x),x(f(x))− C∗L,P( · |x),x dPX(x)

for all measurable f : X → R. Consequently, we can split the analysis of the
excess risk into:

i) the analysis of the inner excess risks CL,P( · |x),x( · )−C∗L,P( · |x),x, x ∈ X;
ii) the investigation of the integration with respect to PX .

The benefit of this approach is that the analysis in i) only depends on P via
the conditional distributions P( · |x), and hence we can consider the excess
inner risks CL,Q,x( · )−C∗L,Q,x for suitable classes of distributions Q on Y as a
template for CL,P( · |x),x( · )−C∗L,P( · |x),x. This leads to the following definition.
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Definition 3.5. Let Q be a set of distributions on Y . We say that a distrib-
ution P on X × Y is of type Q if P( · |x) ∈ Q for PX-almost all x ∈ X.

In view of Questions 3.1 and 3.2, we are mainly interested in functions
f : X → R that almost minimize the risk under consideration. Following the
idea of splitting the analysis into the steps i) and ii), we therefore write

ML,Q,x(ε) :=
{
t ∈ R : CL,Q,x(t) < C∗L,Q,x + ε

}
, ε ∈ [0,∞],

for the sets containing the ε-approximate minimizers of CL,Q,x( · ). More-
over, the set of exact minimizers is denoted by

ML,Q,x(0+) :=
⋂
ε>0

ML,Q,x(ε) .

Again, for supervised and unsupervised losses, we usually omit the subscripts
x and Q in the preceding definitions, respectively.

Before we investigate properties of the concepts above let us first illustrate
these definitions with some examples. We begin with some margin-based losses
introduced in Section 2.3. To this end, observe that any distribution Q on
Y := {−1, 1} can be uniquely described by an η ∈ [0, 1] using the identification
η = Q({1}). For a supervised loss L : Y ×R→ [0,∞), we thus use the notation

CL,η(t) := CL,Q(t) , t ∈ R ,
C∗L,η := C∗L,Q ,

(3.8)

as well as ML,η(0+) :=ML,Q(0+) andML,η(ε) :=ML,Q(ε) for ε ∈ [0,∞].

Example 3.6. Let L be the least squares loss defined in Example 2.26. For
t ∈ R and η ∈ [0, 1], a simple calculation then shows

CL,η(t) = η(1− t)2 + (1− η)(1 + t)2 = 1 + 2t+ t2 − 4ηt ,

and hence elementary calculus givesML,η(0+) = {2η − 1}, C∗L,η = 4η(1− η),
and CL,η(t)− C∗L,η = (t− 2η + 1)2 for all t ∈ R and η ∈ [0, 1]. �

Example 3.7. Recall that in Example 2.27 we defined the hinge loss by
L(y, t) := max{0, 1 − yt}, y = ±1, t ∈ R. Now, for η ∈ [0, 1] and t ∈ R,
a simple calculation shows

CL,η(t) =

⎧⎪⎨
⎪⎩
η(1− t) if t ≤ −1
1 + t(1− 2η) if t ∈ [−1, 1]
(1− η)(1 + t) if t ≥ 1.

For η ∈ [1/2, 1], we thus have

ML,η(0+) =

⎧⎪⎨
⎪⎩

[−1, 1] if η = 1
2

{1} if 1
2 < η < 1

[1,∞) if η = 1 ,
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Fig. 3.1. The representing functions ϕ for some important margin-based loss func-
tions L (top row) and their minimizing sets ML,η(0+), η ∈ [0, 1] (bottom row). For
some losses and values of η, these sets are not singletons. This situation is displayed
by vertical lines. Moreover, the arrows at the ends of some of these vertical lines
indicate that the corresponding set is unbounded in the direction of the arrow.

C∗L,η = 2(1− η), and

CL,η(t)− C∗L,η =

⎧⎪⎨
⎪⎩

3η − 2− ηt if t ≤ −1
(1− t)(2η − 1) if t ∈ [−1, 1]
(t− 1)(1− η) if t ≥ 1.

In addition, similar formulas hold for η ∈ [0, 1/2] by symmetry. �

Both margin-based loss functions discussed above will serve us as surro-
gates for the classification loss. Therefore, let us now consider the inner risks
and the set of minimizers for the standard classification loss itself.

Example 3.8. Recall that the standard binary classification loss is defined
by L(y, t) := 1(−∞,0]

(
y sign t

)
, y ∈ Y , t ∈ R. For this loss, the inner risk is

given by
CL,η(t) = η1(−∞,0)(t) + (1− η)1[0,∞)(t)

for all η ∈ [0, 1] and t ∈ R. From this we easily conclude C∗L,η = min{η, 1−η},
which in turn yields
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CL,η(t)− C∗L,η = |2η − 1| · 1(−∞,0]

(
(2η − 1) sign t

)
(3.9)

for all η ∈ [0, 1] and t ∈ R. Considering the cases ε > |2η− 1| and ε ≤ |2η− 1|
separately, we thus find

ML,η(ε) =

{
R if ε > |2η − 1|
{t ∈ R : (2η − 1) sign t > 0} if 0 < ε ≤ |2η − 1| . �

Let us finally determine the inner risks and their minimizers for a more
elaborate example.

Proposition 3.9 (Quantiles and the pinball loss). For τ ∈ (0, 1), let L
be the τ -pinball loss defined in Example 2.43. Moreover, let Q be a distribution
on R with |Q|1 <∞ and let t∗ be a τ -quantile of Q, i.e., we have

Q
(
(−∞, t∗]) ≥ τ and Q

(
[t∗,∞)

) ≥ 1− τ .
Then there exist real numbers q+, q− ≥ 0 such that q+ + q− = Q({t∗}) and

CL,Q(t∗ + t)− C∗L,Q = tq+ +
∫ t

0

Q
(
(t∗, t∗ + s)

)
ds , (3.10)

CL,Q(t∗ − t)− C∗L,Q = tq− +
∫ t

0

Q
(
(t∗ − s, t∗)) ds , (3.11)

for all t ≥ 0. Moreover, we have

ML,Q(0+) = {t∗}∪{t > t∗ : q++Q((t∗, t))=0
}∪{t < t∗ : q−+Q((−t, t∗))=0

}
.

Proof. Recall from Example 2.43 that distance-based τ -pinball loss is repre-
sented by

ψ(r) =

{
(τ − 1)r, if r < 0
τr, if r ≥ 0.

Now let us consider the distribution Q(t∗) defined by Q(t∗)(A) := Q(t∗+A) for
all measurable A ⊂ R. Then it is not hard to see that 0 is a τ -quantile of Q(t∗).
Moreover, we obviously have CL,Q(t∗ + t) = CL,Q(t∗)(t), and hence we may
assume without loss of generality that t∗ = 0. Then our assumptions together
with Q((−∞, 0])+Q([0,∞)) = 1+Q({0}) yield τ ≤ Q((−∞, 0]) ≤ τ+Q({0}),
i.e., there exists a q+ satisfying 0 ≤ q+ ≤ Q({0}) and

Q((−∞, 0]) = τ + q+ . (3.12)

Let us now prove the first expression for the inner risks of L. To this end, we
first observe that for t ≥ 0 we have∫

y<t

(y − t) dQ(y) =
∫

y<0

y dQ(y)− tQ((−∞, t)) +
∫

0≤y<t

y dQ(y)
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and ∫
y≥t

(y − t) dQ(y) =
∫

y≥0

y dQ(y)− tQ([t,∞))−
∫

0≤y<t

y dQ(y) .

Consequently, we obtain

CL,Q(t) = (τ − 1)
∫

y<t

(y − t) dQ(y) + τ

∫
y≥t

(y − t) dQ(y)

= CL,Q(0)− τt+ tQ((−∞, 0)) + tQ([0, t))−
∫

0≤y<t

y dQ(y) .

Moreover, using Lemma A.3.11, we find

tQ([0, t))−
∫

0≤y<t

y dQ(y) =
∫ t

0

Q([0, t)) ds−
∫ t

0

Q([s, t)) ds

= tQ({0}) +
∫ t

0

Q((0, s)) ds ,

and since (3.12) implies Q((−∞, 0))+Q({0}) = Q((−∞, 0]) = τ+q+, we thus
obtain

CL,Q(t) = CL,Q(0) + tq+ +
∫ t

0

Q
(
(0, s)
)
ds .

Moreover, applying this equation to the pinball loss with parameter 1− τ and
the distribution Q̄ defined by Q̄(A) := Q(−A), A ⊂ R measurable, gives a
real number 0 ≤ q− ≤ Q({0}) such that Q([0,∞)) = 1− τ + q− and

CL,Q(−t) = CL,Q(0) + tq− +
∫ t

0

Q
(
(−s, 0)

)
ds

for all t ≥ 0. Consequently, t∗ = 0 is a minimizer of CL,Q( · ) and hence we
find both (3.10) and (3.11). Moreover, combining Q([0,∞)) = 1− τ + q− with
(3.12), we find q+ + q− = Q({0}). Finally, the formula for the set of exact
minimizers is an obvious consequence of (3.10) and (3.11). ��

Let us now return to our general theory. We begin with the following
lemma, which collects some useful properties of the setsML,Q,x( · ). Its proof
is left as an exercise.

Lemma 3.10 (Properties of minimizers). Let L : X ×Y ×R→ [0,∞) be
a loss and Q be a distribution on Y . For x ∈ X and t ∈ R, we then have:

i)ML,Q,x(0) = ∅.
ii)ML,Q,x(ε) �= ∅ for some ε ∈ (0,∞] if and only if C∗L,Q,x <∞.
iii)ML,Q,x(ε1) ⊂ML,Q,x(ε2) for all 0 ≤ ε1 ≤ ε2 ≤ ∞.
iv) t ∈ML,Q,x(0+) if and only if CL,Q,x(t) = C∗L,Q,x and C∗L,Q,x <∞.
v) t ∈ML,Q,x(∞) if and only if CL,Q,x(t) <∞.
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Our goal in the following two lemmas is to show that we can use the sets
ML,P( · |x),x( · ) to construct (approximate) L-risk minimizers. Note that the
main difficulty in these lemmas is to ensure the measurability of the (approx-
imate) minimizers.

Lemma 3.11 (Existence of approximate minimizers). Let X be a com-
plete measurable space, L : X × Y ×R→ [0,∞) be a loss, P be a distribution
on X × Y , and ε ∈ (0,∞]. Then the following statements are equivalent:

i) C∗L,P( · |x),x <∞ for PX-almost all x ∈ X.
ii) There exists a measurable f : X → R such that f(x) ∈ML,P( · |x),x(ε) for

PX-almost all x ∈ X.

Proof. ii)⇒ i). This immediately follows from ii) of Lemma 3.10.
i)⇒ ii). Let n ≥ 1 with 1/n < ε. As in the proof of Lemma 3.4, we then

obtain a measurable function fn : X → R satisfying (3.7) for all x ∈ X. Since
C∗L,P( · |x),x <∞ for PX -almost all x ∈ X, we thus find the assertion. ��

While the preceding lemma characterizes the situations where uniform ε-
approximate minimizers exist, the following lemma characterizes L-risks that
have an exact minimizer, i.e., a Bayes decision function.

Lemma 3.12 (Existence of exact minimizers). Let X be a complete mea-
surable space, L : X × Y × R → [0,∞) be a loss, and P be a distribution on
X × Y satisfying R∗

L,P <∞. Then the following are equivalent:

i)ML,P( · |x),x(0+) �= ∅ for PX-almost all x ∈ X.
ii) There exists a measurable f∗ : X → R such that RL,P(f∗) = R∗

L,P.

Moreover, if one of the conditions is satisfied, every Bayes decision function
f∗L,P : X → R satisfies f∗L,P(x) ∈ML,P( · |x),x(0+) for PX-almost all x ∈ X.

Proof. i)⇒ ii). Let ϕ and F be defined as in the proof of Lemma 3.4. Using
the last part of iii) in Lemma A.3.18, we then find a measurable f∗ : X → R

with f∗(x) ∈ ML,P( · |x),x(0+) for PX -almost all x ∈ X. Obviously, part iv)
of Lemma 3.10 and Lemma 3.4 then show RL,P(f∗) = R∗

L,P.
ii)⇒ i). Let f∗L,P be a Bayes decision function, i.e., it satisfiesRL,P(f∗L,P) =

R∗
L,P. Since CL,P( · |x),x(f∗L,P) ≥ C∗L,P( · |x),x for all x ∈ X, Lemma 3.4 together

with R∗
L,P < ∞ then yields CL,P( · |x),x(f∗L,P) = C∗L,P( · |x),x for PX -almost all

x ∈ X. Moreover,R∗
L,P <∞ implies C∗L,P( · |x),x <∞ for PX -almost all x ∈ X,

and hence we find f∗L,P(x) ∈ML,P( · |x),x(0+) for PX -almost all x ∈ X by part
iv) of Lemma 3.10. ��

Let us now assume for a moment that we have two loss functions Ltar :
X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞) such that

∅ �=MLsur,P( · |x),x(0+) ⊂MLtar,P( · |x),x(0+) , x ∈ X. (3.13)
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Then Lemmas 3.4 and 3.12 show that every exact minimizer of RLsur,P( · ) is
also an exact minimizer of RLtar,P( · ), i.e., we have the implication

RLsur,P(f) = R∗
Lsur,P =⇒ RLtar,P(f) = R∗

Ltar,P . (3.14)

However, exact minimizers do not necessarily exist, as one can see by com-
bining Lemma 3.11 with Lemma 3.12, and even if they do exist, it is rather
unlikely that we will find them by a learning procedure. On the other hand,
we have already indicated in Chapter 1 that many learning procedures are
able to find approximate minimizers, and therefore we need an approximate
version of (3.14) to answer Question 3.1. Now, the key idea for establishing
such a modification of (3.14) is to consider approximate versions of (3.13). To
this end, we begin with the following fundamental definition.

Definition 3.13. Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞)
be loss functions, Q be a distribution on Y , and x ∈ X. Then we define the
calibration function δmax ( · ,Q, x) : [0,∞]→ [0,∞] of (Ltar, Lsur) by

δmax (ε,Q, x) :=

⎧⎪⎨
⎪⎩

inf
t∈R

t�∈MLtar,Q,x(ε)

CLsur,Q,x(t)− C∗Lsur,Q,x if C∗Lsur,Q,x <∞

∞ if C∗Lsur,Q,x =∞

for all ε ∈ [0,∞]. Moreover, we write δmax,Ltar,Lsur(ε,Q, x) := δmax (ε,Q, x)
whenever it is necessary to explicitly mention the target and surrogate losses.
Finally, if both losses are supervised, we usually omit the argument x.

The following lemma collects some simple though extremely important
properties of the calibration function.

Lemma 3.14 (Properties of the calibration function). Let Ltar : X ×
Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be losses and Q be a distribution
on Y . For all x ∈ X and ε ∈ [0,∞], we then have:

i)MLsur,Q,x(δmax (ε,Q, x)) ⊂MLtar,Q,x(ε).
ii)MLsur,Q,x(δ) �⊂ MLtar,Q,x(ε) whenever δ > δmax (ε,Q, x).

Consequently, the calibration function can be computed by

δmax (ε,Q, x) = max
{
δ ∈ [0,∞] :MLsur,Q,x(δ) ⊂MLtar,Q,x(ε)

}
. (3.15)

Finally, if both C∗Ltar,Q,x <∞ and C∗Lsur,Q,x <∞, then for all t ∈ R we have

δmax

(CLtar,Q,x(t)− C∗Ltar,Q,x,Q, x
) ≤ CLsur,Q,x(t)− C∗Lsur,Q,x . (3.16)

Inequality (3.16) will be the key ingredient when we compare the excess
Ltar-risk with the excess Lsur-risk since it allows us to compare the inner
integrals of these risks. Furthermore, one can show by ii) that the calibration
function is the optimal way to compare these inner integrals. We refer to
Exercise 3.3 for details.
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Proof. Let us first assume C∗Lsur,Q,x =∞. Then we have δmax (ε,Q, x) =∞ and
hence ii) is trivially satisfied. Moreover, we haveMLsur,Q,x(δmax (ε,Q, x)) = ∅
by ii) of Lemma 3.10, and hence we obtain i). Let us now assume C∗Lsur,Q,x <
∞. Then, for t ∈MLsur,Q,x(δmax (ε,Q, x)), we have

CLsur,Q,x(t)− C∗Lsur,Q,x < δmax (ε,Q, x) = inf
t′∈R

t′ �∈MLtar,Q,x(ε)

CLsur,Q,x(t′)− C∗Lsur,Q,x,

which shows t ∈MLtar,Q,x(ε). For the proof of the second assertion, let us fix
a δ with δ > δmax (ε,Q, x). By definition, this means

inf
t∈R

t�∈MLtar,Q,x(ε)

CLsur,Q,x(t)− C∗Lsur,Q,x = δmax (ε,Q, x) < δ,

and hence there exists a t ∈ MLsur,Q,x(δ) with t �∈ MLtar,Q,x(ε). This shows
part ii). Moreover, (3.15) is a direct consequence of i) and ii).

Let us finally prove Inequality (3.16). To this end, we fix a t ∈ R and
write ε := CLtar,Q,x(t) − C∗Ltar,Q,x. Then have t �∈ MLtar,Q,x(ε), which implies
t �∈ MLsur,Q,x(δmax (ε,Q, x)) by i). The latter means

CLsur,Q,x(t) ≥ C∗Lsur,Q,x + δmax (ε,Q, x)

= C∗Lsur,Q,x + δmax

(CLtar,Q,x(t)− C∗Ltar,Q,x,Q, x
)
. ��

Due to algorithmic reasons, we are often interested in convex surrogate
losses. For such surrogates, the calibration function can be easily computed.

Lemma 3.15 (Calibration function for convex surrogates). Let Q be a
distribution on Y , Ltar : X × Y × R → [0,∞) be a loss, and x ∈ X, ε > 0
such thatMLtar,Q,x(ε) is an interval. Moreover, let Lsur : X×Y ×R→ [0,∞)
be a convex loss such that CLsur,Q,x(t) <∞ for all t ∈ R. If MLsur,Q,x(0+) ⊂
MLtar,Q,x(0+), then we have

δmax(ε,Q, x) = min
{CLsur,Q,x(t−ε ), CLsur,Q,x(t+ε )

}− C∗Lsur,Q,x , (3.17)

where we used the definitions t−ε := infMLtar,Q,x(ε), t+ε := supMLtar,Q,x(ε),
and CLsur,Q,x(±∞) :=∞.

Proof. Obviously, CLsur,Q,x( · ) : R → [0,∞) is convex, and thus it is also
continuous by Lemma A.6.2. SinceMLtar,Q,x(ε) is an interval, we then obtain

δmax(ε,Q, x) = min
{

inf
t≤t−ε
CLsur,Q,x(t), inf

t≥t+ε

CLsur,Q,x(t)
}
− C∗Lsur,Q,x .

Moreover, for t < t−ε , we have t �∈ MLtar,Q,x(ε) and hence t �∈ MLtar,Q,x(0+).
From this we conclude that t �∈ MLsur,Q,x(0+), i.e., CLsur,Q,x(t) > C∗Lsur,Q,x.
Consequently, the convexity of t �→ CLsur,Q,x(t) shows that this map is strictly
decreasing on (−∞, t−ε ], and hence we obtain inf{CLsur,Q,x(t) : t ≤ t−ε } =
CLsur,Q,x(t−ε ). For t ≥ t+ε , we can argue analogously. ��
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Let us close this section with an example that illustrates how to compute
the calibration function for specific loss functions.

Example 3.16. Let L be either the least squares loss LLS or the hinge loss
Lhinge. We write Lclass for the binary classification loss and identify distribu-
tions Q on {−1, 1} by η := Q({1}). Then Lemma 3.15 together with Example
3.8 yields δmax,Lclass,L(ε, η) =∞ if ε > |2η−1|. Moreover, for 0 < ε ≤ |2η−1|,
we find

δmax,Lclass,L(ε, η) = CL,η(0)− C∗L,η =

{
(2η − 1)2 if L = LLS

|2η − 1| if L = Lhinge

by applying Examples 3.6 and 3.7, respectively. In particular note that in both
cases we have δmax,Lclass,L(ε, η) > 0 for all η ∈ [0, 1] and all ε > 0. �

3.2 Asymptotic Theory of Surrogate Losses

In this section, we investigate the asymptotic relationship between excess risks
in the sense of Question 3.1. The main result in this direction is the following
theorem.

Theorem 3.17 (Asymptotic calibration of risks). Let X be a complete
measurable space, Ltar : X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞)
be losses, and P be a distribution on X × Y such that R∗

Ltar,P
< ∞ and

R∗
Lsur,P

<∞. Then
x �→ δmax(ε,P( · |x), x)

is measurable for all ε ∈ [0,∞]. In addition, consider the following statements:

i) For all ε ∈ (0,∞], we have PX

({x ∈ X : δmax(ε,P( · |x), x) = 0}) = 0.
ii) For all ε ∈ (0,∞], there exists a δ > 0 such that, for all measurable

functions f : X → R, we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε . (3.18)

Then we have ii) ⇒ i). Furthermore, i) ⇒ ii) holds if there exists a PX-
integrable function b : X → [0,∞) such that, for all x ∈ X, t ∈ R, we have

CLtar,P( · |x),x(t) ≤ C∗Ltar,P( · |x),x + b(x) . (3.19)

Proof. To show the measurability of δmax( · ,P( · |x), x), we may assume with-
out loss of generality that we have C∗Ltar,P( · |x),x < ∞ and C∗Lsur,P( · |x),x < ∞
for all x ∈ X. We equip [0,∞] with the Borel σ-algebra and write A := [ε,∞].
Furthermore, let h : X ×R→ [0,∞] be defined by

h(x, t) := CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x , (x, t) ∈ X ×R .
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Then h is measurable and, for the set-valued function F : X → 2R defined by
F (x) := {t ∈ R : h(x, t) ∈ A}, x ∈ X, we have R\MLtar,P( · |x),x(ε) = F (x)
for all x ∈ X. Furthermore, ϕ : X ×R→ [0,∞] defined by

ϕ(x, t) := CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x , (x, t) ∈ X ×R ,

is measurable. Now, for all x ∈ X, our construction yields

δmax(ε,P( · |x), x) = inf
t∈F (x)

ϕ(x, t) ,

and hence x �→ δmax(ε,P( · |x), x) is measurable by Lemma A.3.18.
ii)⇒ i). Assume that i) is not true. Then there is an ε ∈ (0,∞] such that

B :=
{
x ∈ X : δmax(ε,P( · |x), x) = 0 and C∗Ltar,P( · |x),x <∞

}
satisfies PX(B) > 0. Note that for x ∈ B we have C∗Lsur,P( · |x),x < ∞ by the
very definition of the calibration function. In addition, for x ∈ B, we have
δmax(ε,P( · |x), x) = 0 and hence there exists a t ∈ R\MLtar,Q,x(ε). Using the
notation of the first part of the proof, this t satisfies h(x, t) ≥ ε and hence we
have F (x) �= ∅. This shows B ⊂ DomF . By Lemma A.3.18, there thus exist
measurable functions f (1)

n : X → R such that

CLsur,P( · |x),x

(
f (1)

n (x)
)− C∗Lsur,P( · |x),x ≤

1
n

and
CLtar,P( · |x),x

(
f (1)

n (x)
)− C∗Ltar,P( · |x),x ≥ ε

for all x ∈ B and n ≥ 1. Furthermore, by Lemma 3.11, we find measurable
functions f (2)

n : X → R, n ≥ 1, with

CLsur,P( · |x),x

(
f (2)

n (x)
)
< C∗Lsur,P( · |x),x +

1
n

for PX -almost all x ∈ X. We define fn : X → R by

fn(x) :=

{
f

(1)
n (x) if x ∈ B
f

(2)
n (x) otherwise.

Then fn is measurable and our construction yields both

RLtar,P(fn)−R∗
Ltar,P ≥

∫
B

(
CLtar,P( · |x),x

(
fn(x)
)− C∗Ltar,P( · |x),x

)
dPX(x)

≥ εPX(B)

and limn→∞RLsur,P(fn) = R∗
Lsur,P

. From this we conclude that ii) is not true.
i)⇒ ii). Let us assume that ii) is not true. Then there exists an ε0 ∈ (0,∞]

such that for all n ≥ 1 there exists a measurable function fn : X → R with
RLtar,P(fn)−R∗

Ltar,P
≥ ε0 and
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1
n
≥ RLsur,P(fn)−R∗

Lsur,P =
∫

X

∣∣∣ CLsur,P( · |x),x

(
fn(x)
)−C∗Lsur,P( · |x),x

∣∣∣ dPX(x).

Hence there exists a sub-sequence (fni
) satisfying

CLsur,P( · |x),x

(
fni

(x)
)→ C∗Lsur,P( · |x),x

for PX -almost all x ∈ X. Let us fix an x ∈ X at which the convergence takes
place and that additionally satisfies C∗Ltar,P( · |x),x <∞, C∗Lsur,P( · |x),x <∞, and
δmax(ε,P( · |x), x) > 0 for all ε > 0. For later use, note that the probability
for such an element x is 1 since δmax(ε,P( · |x), x) is monotonically increasing
in ε. Now, for ε > 0, there exists an i0 such that for all i ≥ i0 we have

CLsur,P( · |x),x

(
fni

(x)
)
< C∗Lsur,P( · |x),x + δmax(ε,P( · |x), x) .

By part i) of Lemma 3.14, this yields CLtar,P( · |x),x(fni
(x)) < C∗Ltar,P( · |x),x +ε,

i.e., we have shown

lim
i→∞

CLtar,P( · |x),x

(
fni

(x)
)

= C∗Ltar,P( · |x),x . (3.20)

Since the probability of the considered x was 1, the limit relation (3.20) holds
for PX -almost all x ∈ X, and hence we obtain RLtar,P(fni

) → R∗
Ltar,P

by
Lebesgue’s convergence theorem and (3.19). However, this contradicts the
fact that RLtar,P(fn)−R∗

Ltar,P
≥ ε0 holds for all n ≥ 1. ��

Theorem 3.17 shows that an almost surely strictly positive calibration
function is necessary for a positive answer to Question 3.1, i.e., for having an
implication of the form

RLsur,P(fn)→ R∗
Lsur,P =⇒ RLtar,P(fn)→ R∗

Ltar,P (3.21)

for all sequences (fn) of measurable functions. Moreover, Theorem 3.17 also
shows that an almost surely strictly positive calibration function is sufficient
for (3.21) if the additional assumption (3.19) holds. In this regard, note that
in general this additional assumption is not superfluous. For details, we refer
to Exercise 3.11.

Let us now recall that from a machine learning point of view we are not
interested in a single distribution since we do not know the data-generating
distribution P. However, we may know that P is a distribution of a certain
type Q, and consequently the following definition is of great importance in
practical situations.

Definition 3.18. Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞)
be two losses and Q be a set of distributions on Y . We say that Lsur is Ltar-
calibrated with respect to Q if, for all ε ∈ (0,∞], Q ∈ Q, and x ∈ X, we
have

δmax (ε,Q, x) > 0 .
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Note that, using (3.15), we easily verify that Lsur is Ltar-calibrated with
respect to Q if and only if for all ε ∈ (0,∞], Q ∈ Q, and x ∈ X there is a
δ ∈ (0,∞] with

MLsur,Q,x(δ) ⊂MLtar,Q,x(ε) . (3.22)

Now assume that our only information on the data-generating distribution
P is that it is of some type Q. Then Theorem 3.17 shows that we can only
hope for a positive answer to Question 3.1 if our surrogate loss Lsur is Ltar-
calibrated with respect to Q. In this sense, calibration of Lsur is a first test on
whether Lsur is a reasonable surrogate. The following corollary, whose proof is
left as an exercise, shows that for some target losses this test is also sufficient.

Corollary 3.19. Let X be a complete measurable space, Ltar : X × Y ×R→
[0,∞) and Lsur : X × Y × R → [0,∞) be two losses, and Q be a set of
distributions on Y . If Ltar is bounded, i.e., there is B > 0 with L(x, y, t) ≤ B
for all (x, y, t) ∈ X × Y ×R, then the following statements are equivalent:

i) Lsur is Ltar-calibrated with respect to Q.
ii) For all ε ∈ (0,∞] and all distributions P of type Q with R∗

Lsur,P
< ∞,

there exists a δ ∈ (0,∞] such that, for all measurable f : X → R, we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε .

Recall that both the classification loss and the density level detection loss
are bounded losses, and consequently the preceding corollary applies to these
target losses. Moreover, for the classification loss being the target loss and
the least squares or the hinge loss being the surrogate loss, we have already
shown in Example 3.16 that the corresponding calibration function is strictly
positive. Consequently, Corollary 3.19 shows that both loss functions are rea-
sonable surrogates in an asymptotic sense. However, we have already seen in
Zhang’s inequality, see Theorem 2.31, that there is even a strong quantitative
relationship between the excess classification risk and the excess hinge risk.
Such stronger relationships are studied in the next section in more detail.

3.3 Inequalities between Excess Risks

If one wants to find a good surrogate loss Lsur for a given target loss Ltar,
then implication (3.18) is in some sense a minimal requirement. However, we
have already indicated in Question 3.2 that in many cases one actually needs
quantified versions of (3.18), e.g., in terms of inequalities between the excess
Ltar-risk and the excess Lsur-risk. Considering Theorem 3.17, such inequalities
are readily available if, for all ε > 0, we know a δ(ε) > 0 such that implication
(3.18) holds for all measurable f : X → R. Indeed, for f with ε := RLtar,P(f)−
R∗

Ltar,P
> 0, we have RLsur,P(f)−R∗

Lsur,P
≥ δ(ε), or in other words

δ
(RLtar,P(f)−R∗

Ltar,P

) ≤ RLsur,P(f)−R∗
Lsur,P . (3.23)
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In addition, if we define δ(0) := 0, then this inequality actually holds for
all measurable f : X → R. Unfortunately, however, the proof of Theorem
3.17 does not provide a constructive way to find a value for δ(ε), and hence
we have so far no method to establish inequalities of the form (3.23). This
problem is resolved in the following theorems for which we first introduce the
Fenchel-Legendre bi-conjugate of a function.

Definition 3.20. Let I ⊂ R be an interval and g : I → [0,∞] be a function.
Then the Fenchel-Legendre bi-conjugate g∗∗ : I → [0,∞] of g is the largest
convex function h : I → [0,∞] satisfying h ≤ g. Moreover, we write g∗∗(∞) :=
limt→∞ g∗∗(t) if I = [0,∞).

Note that if g : [0, B]→ [0,∞) is a strictly positive and increasing function
on (0, B] with g(0) = 0, then Lemma A.6.20 shows that its bi-conjugate
g∗∗ is also strictly positive on (0, B]. Furthermore, a similar result holds for
continuous functions (see Lemma A.6.21). However, these results are in general
false if one considers functions on I := [0,∞), as, e.g., the square root

√ · :
[0,∞)→ [0,∞) shows.

Besides the Fenchel-Legendre bi-conjugate, we also need some additional
notations and definitions. To this end, let X be a complete measurable space,
Ltar : X × Y × R → [0,∞) be a loss function, and P be a distribution on
X × Y such that R∗

Ltar,P
< ∞. For a measurable function f : X → R, we

write
Bf :=

∥∥∥x �→ (CLtar,P( · |x),x(f(x))− C∗Ltar,P( · |x),x

) ∥∥∥
∞
, (3.24)

i.e., Bf is the supremum of the excess inner target risk with respect to f . Note
that in the following considerations we do not require Bf <∞.

Our first two results on inequalities between excess risks will only assume
that the involved distribution P is of some type Q. In this case, the following
notion of calibration will be crucial.

Definition 3.21. Let Ltar : X × Y × R → [0,∞) and Lsur : X × Y × R →
[0,∞) be two losses and Q be a set of distributions on Y . Then the uniform
calibration function with respect to Q is defined by

δmax(ε,Q) := inf
Q∈Q
x∈X

δmax (ε,Q, x) , ε ∈ [0,∞].

Moreover, we say that Lsur is uniformly Ltar-calibrated with respect to Q
if δmax(ε,Q) > 0 for all ε ∈ (0,∞].

Obviously, every uniformly calibrated loss function is calibrated; however,
the converse implication does not hold in general. Since we will see important
examples of the latter statement in Section 3.7, we do not present such an
example here. Finally, note that an alternative definition of δmax(ε,Q) can be
found in Exercise 3.5.

Now we are well-prepared to formulate our first result, which establishes
inequalities between excess risks of different loss functions.
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Theorem 3.22 (Uniform calibration inequalities). Let X be a complete
measurable space, Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be
losses, and Q be a set of distributions on Y . Moreover, let δ : [0,∞]→ [0,∞]
be an increasing function such that

δmax(ε,Q) ≥ δ(ε) , ε ∈ [0,∞]. (3.25)

Then, for all distributions P of type Q satisfying R∗
Ltar,P

<∞ and R∗
Lsur,P

<
∞ and all measurable f : X → R, we have

δ∗∗Bf

(RLtar,P(f)−R∗
Ltar,P

) ≤ RLsur,P(f)−R∗
Lsur,P , (3.26)

where δ∗∗Bf
: [0, Bf ] → [0,∞] is the Fenchel-Legendre biconjugate of δ|[0,Bf ]

and Bf is defined by (3.24).

Proof. Inequalities (3.16) and (3.25) together withR∗
Ltar,P

<∞ andR∗
Lsur,P

<
∞ give

δ
(CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

) ≤ CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x (3.27)

for PX -almost all x ∈ X and all t ∈ R. For a measurable function f : X → R

with RLtar,P(f) < ∞, Jensen’s inequality together with the definition of Bf ,
δ∗∗Bf

( · ) ≤ δ( · ), and (3.27) now yields

δ∗∗Bf

(RLtar,P(f)−R∗
Ltar,P

)
≤
∫

X

δ∗∗Bf

(
CLtar,P( · |x),x

(
f(x)
)− C∗Ltar,P( · |x),x

)
dPX(x)

≤
∫

X

CLsur,P( · |x),x

(
f(x)
)− C∗Lsur,P( · |x),x dPX(x)

= RLsur,P(f)−R∗
Lsur,P .

Finally, for f : X → R with RLtar,P(f) =∞, we have Bf =∞. If δ∗∗∞(∞) = 0,
there is nothing to prove, and hence let us assume δ∗∗∞(∞) > 0. Then (3.25)
implies δ(0) = 0 and hence δ∗∗∞ is increasing because of its convexity and
δ∗∗∞(0) = δ(0) = 0. Consequently, if δ∗∗∞ is finite on [0,∞), then there exists a
t0 ≥ 0 and a c0 > 0 such that the (Lebesgue)-almost surely defined derivative
of δ∗∗∞ satisfies (δ∗∗∞)′(t) ≥ c0 for almost all t ≥ t0. By Lebesgue’s version of the
fundamental theorem of calculus, see Theorem A.6.6, we then find constants
c1, c2 ∈ (0,∞) with t ≤ c1δ

∗∗
∞(t) + c2 for all t ∈ [0,∞]. On the other hand,

if there is a t0 > 0 with δ∗∗∞(t0) = ∞, we have t ≤ c1δ
∗∗
∞(t) + c2 for c1 := 1,

c2 := t0, and all t ∈ [0,∞]. In both cases, (3.27) now yields

∞ =
∫

X

(
CLtar,P( · |x),x

(
f(x)
)− C∗Ltar,P( · |x),x

)
dPX(x)

≤ c1
∫

X

δ∗∗∞
(
CLtar,P( · |x),x

(
f(x)
)− C∗Ltar,P( · |x),x

)
dPX(x) + c2

≤ c1
(RLsur,P(f)−R∗

Lsur,P

)
+ c2

and hence we have RLsur,P(f)−R∗
Lsur,P

=∞. ��
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Note that if Lsur is uniformly Ltar-calibrated with respect to Q and the
function f : X → R satisfies Bf < ∞, then Lemma A.6.20 shows that the
bi-conjugate of δmax( · ,Q)|[0,Bf ] is strictly positive on (0, Bf ]. Consequently,
Theorem 3.22 gives a non-trivial inequality in this case.

Let us now illustrate the theory we have developed so far by a simple
example dealing with the least squares and the hinge loss.

Example 3.23. Let L be either the least squares loss or the hinge loss,
QY be the set of all distributions on Y := {−1, 1}, and Lclass be the binary
classification loss. Using Example 3.16, we then obtain

δmax,Lclass,L(ε,QY ) = inf
η∈[0,1]

δmax,Lclass,L(ε, η) = inf
|2η−1|≥ε

δmax,Lclass,L(ε, η)

for all ε > 0. For the least squares loss, this yields

δmax,Lclass,L(ε,QY ) = ε2 , ε > 0,

which by Theorem 3.22 implies that, for all measurable f : X → R, we have

RLclass,P(f)−R∗
Lclass,P

≤
√
RL,P(f)−R∗

L,P .

On the other hand, for the hinge loss, we find δmax,Lclass,L(ε,QY ) = ε for all
ε > 0, and hence Theorem 3.22 recovers Zhang’s inequality. �

The following result shows that uniform calibration is also necessary to
establish non-trivial inequalities that hold for all distributions of some type.

Theorem 3.24. Let X be a complete measurable space, Ltar : X × Y ×R→
[0,∞) and Lsur : X × Y × R → [0,∞) be two losses, and Q be a set of
distributions on Y such that C∗Ltar,Q,x < ∞ and C∗Lsur,Q,x < ∞ for all x ∈ X
and Q ∈ Q. Furthermore, let δ : [0,∞] → [0,∞] be increasing with δ(0) = 0
and δ(ε) > 0 for all ε > 0. If for all distributions P of type Q satisfying
R∗

Ltar,P
<∞ and R∗

Lsur,P
<∞ and all measurable f : X → R we have

δ
(RLtar,P(f)−R∗

Ltar,P

) ≤ RLsur,P(f)−R∗
Lsur,P ,

then Lsur is uniformly Ltar-calibrated with respect to Q.

Proof. Let us fix an x ∈ X and a Q ∈ Q. Furthermore, let P be the distribution
on X×Y with PX = δ{x} and P( · |x) = Q. Then P is of type Q, and we have
both RLi,P(f) = CLi,Q,x(f(x)) and R∗

Li,P
= C∗Li,Q,x < ∞ for i = {tar,sur}

and all measurable f : X → R. Consequently, our assumption yields

δ
(CLtar,Q,x(t)− C∗Ltar,Q,x

) ≤ CLsur,Q,x(t)− C∗Lsur,Q,x , t ∈ R.

Now let ε > 0 and t ∈MLsur,Q,x(δ(ε)). Then we have CLsur,Q,x(t)−C∗Lsur,Q,x <
δ(ε), and hence the inequality above yields δ(CLtar,Q,x(t) − C∗Ltar,Q,x) < δ(ε).
Since δ is monotonically increasing, the latter shows CLtar,Q,x(t)−C∗Ltar,Q,x < ε,
i.e., we have found MLsur,Q,x(δ(ε)) ⊂ MLtar,Q,x(ε). Equation (3.15) then
shows δ(ε) ≤ δmax (ε,Q, x), and hence Lsur is uniformly Ltar-calibrated with
respect to Q. ��
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It will turn out in Sections 3.7 and 3.9, for example, that in many situations
we have calibrated losses that are not uniformly calibrated. We have just seen
that in such cases we need assumptions on P stronger than the Q-type to
establish inequalities. The following theorem presents a result in this direction.

Theorem 3.25 (General calibration inequalities). Let X be a complete
measurable space, Ltar : X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞)
be two losses, and P be a distribution on X × Y such that R∗

Ltar,P
< ∞ and

R∗
Lsur,P

< ∞. Assume that there exist a p ∈ (0,∞] and functions b : X →
[0,∞] and δ : [0,∞)→ [0,∞) such that

δmax(ε,P( · |x), x) ≥ b(x) δ(ε) , ε ≥ 0, x ∈ X, (3.28)

and b−1 ∈ Lp(PX). Then, for δ̄ := δ
p

p+1 : [0,∞)→ [0,∞) and all measurable
f : X → R, we have

δ̄∗∗Bf

(RLtar,P(f)−R∗
Ltar,P

) ≤ ‖b−1‖
p

p+1

Lp(PX)

(RLsur,P(f)−R∗
Lsur,P

) p
p+1 ,

where δ̄∗∗Bf
: [0, Bf ] → [0,∞] is the Fenchel-Legendre biconjugate of δ̄|[0,Bf ]

and Bf is defined by (3.24).

Proof. Let us first consider the case RLtar,P(f) <∞. Since δ̄∗∗Bf
is convex and

satisfies δ̄∗∗Bf
(ε) ≤ δ̄(ε) for all ε ∈ [0, Bf ], we see by Jensen’s inequality that

δ̄∗∗Bf

(RLtar,P(f)−R∗
Ltar,P

) ≤ ∫
X

δ̄
(CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) .

Moreover, using (3.28) and (3.16), we obtain

b(x) δ
(CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

) ≤ CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x

for PX -almost all x ∈ X and all t ∈ R. Now note that for q := (1 + p)/p
the conjugate exponent satisfies q′ = 1 + p = pq. By the definition of δ̄ and
Hölder’s inequality in the form of E|hg|1/q ≤ (E|h|q′/q)1/q′

(E|g|)1/q, we thus
find ∫

X

δ̄
(CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x)

≤
∫

X

(
b(x)
)− 1

q

(
CLsur,P( · |x),x

(
f(x)
)− C∗Lsur,P( · |x),x

) 1
q

dPX(x)

≤
(∫

X

b−pdPX

) 1
qp
(∫

X

CLsur,P( · |x),x

(
f(x)
)− C∗Lsur,P( · |x),x dPX(x)

)1/q

= ‖b−1‖
1
q

Lp(PX)

(RLsur,P(f)−R∗
Ltar,P

)1/q
.

Combining this estimate with our first estimate then gives the assertion in
the case RLtar,P(f) < ∞. On the other hand, if RLtar,P(f) = ∞, we have
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Bf = ∞. If δ̄∗∗∞(∞) = 0, there is nothing to prove and hence we restrict
our considerations to the case where δ̄∗∗∞(∞) > 0. In this case, the proof of
Theorem 3.22 has already shown that then there exist constants c1, c2 ∈ (0,∞)
such that t ≤ c1δ̄∗∗∞(t) + c2 for all t ∈ [0,∞]. From this we obtain

∞ = RLtar,P(f)−R∗
Ltar,P

≤ c1
∫

X

δ̄∗∗∞
(CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) + c2

≤ c1
∫

X

(
b(x)
)− 1

q

(
CLsur,P( · |x),x

(
f(x)
)− C∗Lsur,P( · |x),x

) 1
q

dPX(x) + c2 ,

where the last step is analogous to our considerations in the case RLtar,P(f) <
∞. Using b−1 ∈ Lp(PX) and Hölder’s inequality, we then conclude from the
estimate above that RLsur,P(f)−R∗

Lsur,P
=∞. ��

The condition b−1 ∈ Lp(PX) in the preceding theorem measures how much
the calibration function δmax(ε,P( · |x), x) violates a uniform lower bound of
the form δmax(ε,P( · |x), x) ≥ c δ(ε), ε ∈ [0,∞]. Indeed, the larger we can
choose p in condition (3.28), the more the function b is away from the critical
level 0, and thus the closer condition (3.28) is to a uniform lower bound. In
the extremal case p =∞, condition (3.28) actually becomes a uniform bound,
and the inequality of Theorem 3.25 equals the inequality of Theorem 3.22.
Finally, for δ(ε) := εr, ε ≥ 0, the function δ̄(ε) := δ

p
p+1 (ε) = ε

rp
p+1 is convex if

r ≥ 1 + 1/p. In this case, we can thus omit the Fenchel-Legendre biconjugate
in Theorem 3.25 and obtain the simpler inequality

RLtar,P(f)−R∗
Ltar,P ≤ ‖b−1‖1/r

Lp(PX)

(RLsur,P(f)−R∗
Lsur,P

)1/r
.

Here, the condition r ≥ 1 + 1/p means that we have to increase the convexity
of δ if we wish to weaken the uniformity of the calibration.

Our last goal in this section is to improve the inequalities above for the
following type of loss, which will be of great utility in the next sections.

Definition 3.26. Let A ⊂ X × R and h : X → [0,∞) be measurable. Then
we call L : X ×R→ [0,∞) a detection loss with respect to (A, h) if

L(x, t) = 1A(x, t)h(x) , x ∈ X , t ∈ R.

Every detection loss function is obviously measurable and hence an unsu-
pervised loss function. In addition, for x ∈ X and t ∈ R, we have

CL,x(t)−C∗L,x =

{
0 if A(x) :={t′ ∈ R : (x, t′) ∈ A}=R

1A(x, t)h(x) otherwise.
(3.29)

Since detection losses will play an important role for both supervised and
unsupervised learning scenarios let us now establish some specific results for
this class of target loss function. We begin with the following theorem, whose
proof is similar to the proof of Corollary 3.19 and hence is left as Exercise 3.7.
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Theorem 3.27 (Asymptotic calibration for detection losses). Let X
be a complete measurable space and Ltar : X ×R→ [0,∞) be a detection loss
with respect to some (A, h). Moreover, let Lsur : X × Y × R → [0,∞) be a
loss and Q be a set of distributions on Y . Then the following statements are
equivalent:

i) Lsur is Ltar-calibrated with respect to Q.
ii) For all distributions P of type Q that satisfy h ∈ L1(PX) and R∗

Lsur,P
<∞

and all ε ∈ (0,∞], there exists a δ ∈ (0,∞] such that for all measurable
f : X → R we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε .

If the target loss is a detection loss, then we can, of course, establish
calibration inequalities by Theorems 3.22 and 3.25. However, using the specific
form of detection losses, one can often improve the resulting inequalities, as
we will discuss after the following rather general theorem.

Theorem 3.28 (Calibration inequalities for detection losses). Let X
be a complete measurable space, Ltar : X×R→ [0,∞) be a detection loss with
respect to (A, h), Lsur : X ×Y ×R→ [0,∞) be a loss, and P be a distribution
on X × Y with R∗

Ltar,P
<∞ and R∗

Lsur,P
<∞. For s > 0, we write

B(s) :=
{
x ∈ X : A(x) �= R and δmax

(
h(x),P( · |x), x) < sh(x)

}
.

If there exist constants c > 0 and α ∈ (0,∞] such that∫
X

1B(s)h dPX ≤ (c s)α , s > 0, (3.30)

then for all measurable functions f : X → R, we have

RLtar,P(f)−R∗
Ltar,P ≤ 2 c

α
α+1
(RLsur,P(f)−R∗

Lsur,P

) α
α+1 .

Proof. We write Ctar,x(f) := CLtar,P( · |x),x(f(x))−C∗Ltar,P( · |x),x for x ∈ X and
measurable f : X → R. Furthermore, for s > 0, we write

C(s) :=
{
x ∈ X : A(x) �= R, and δmax(h(x),P( · |x), x) ≥ s h(x)} .

By (3.16) and (3.29), we then obtain

RLtar,P(f)−R∗
Ltar,P

=
∫

B(s)

1A(x, f(x))h(x) dPX(x) +
∫

C(s)

1A(x, f(x))h(x) dPX(x)

≤
∫

X

1B(s)h dPX + s−1

∫
C(s)

δmax

(
h(x),P( · |x), x)1A(x, f(x)) dPX(x)

≤ (c s)α + s−1

∫
C(s)

δmax

(Ctar,x(f),P( · |x), x) dPX(x)

≤ (c s)α + s−1
(RLsur,P(f)−R∗

Lsur,P

)
.
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If α < ∞, we now choose s := (αcα)−
1

α+1 (RLsur,P(f) − R∗
Lsur,P

)
1

α+1 . Using

α− α
α+1 + α

1
α+1 ≤ 2 then yields the assertion. Furthermore, for α = ∞, the

assertion follows by setting s−1 := 2c. ��
The preceding theorem can improve the inequalities we obtained for gen-

eral target losses in various cases. The following two remarks illustrate this.

Remark 3.29. For detection losses with h = 1X , Theorem 3.28 yields an im-
provement over Theorem 3.25. Indeed, if (3.28) is satisfied for δ(ε) = εq and
a b : X → [0,∞] with b−1 ∈ Lp(PX) and q ≥ p+1

p , then Theorem 3.25 gives

RLtar,P(f)−R∗
Ltar,P ≤ ‖b−1‖1/q

Lp(PX)

(RLsur,P(f)−R∗
Lsur,P

)1/q
. (3.31)

On the other hand, some calculations show B(s) ⊂ {x ∈ X : b(x) < s}, and
since b−1 ∈ Lp(PX) implies

PX

({x ∈ X : b(x) < s}) ≤ ‖b−1‖pp sp , s > 0,

we find (3.30) for c := ‖b−1‖Lp(PX) and α := p. Theorem 3.28 thus yields

RLtar,P(f)−R∗
Ltar,P ≤ 2 ‖b−1‖

p
p+1

Lp(PX)

(RLsur,P(f)−R∗
Lsur,P

) p
p+1 . (3.32)

Now note that for q > p+1
p , (3.32) is sharper than (3.31) whenever the excess

risk RLsur,P(f)−R∗
Lsur,P

is sufficiently small. �

Remark 3.30. In some cases, Theorem 3.28 also improves the inequalities of
Theorem 3.22. Indeed, if Lsur is uniformly Ltar-calibrated with respect to
some class Q of distributions and the uniform calibration function satisfies
δmax( · ,Q) ≥ cqεq for some q > 1, cq > 0, and all ε ≥ 0, then Theorem 3.22
gives

RLtar,P(f)−R∗
Ltar,P ≤ c−1/q

q

(RLsur,P(f)−R∗
Lsur,P

)1/q (3.33)

for all measurable functions f : X → R. However, an easy calculation shows
that the assumptions above imply B(s) ⊂ {x ∈ X : 0 < h(x) < (s/cq)1/(q−1)}.
Consequently, if we have constants C > 0 and β ∈ (0,∞] such that

PX

({
x ∈ X : 0 < h(x) < s

}) ≤ (C s)β , s > 0, (3.34)

then it is easy to check that (3.30) is satisfied for c = c−1
q C

βq−β
β+1 and α := β+1

q−1 .
Theorem 3.28 thus yields

RLtar,P(f)−R∗
Ltar,P ≤ 2 c

− β+1
β+q

q C
βq−β
β+q
(RLsur,P(f)−R∗

Lsur,P

) β+1
β+q . (3.35)

Now note that for q > 1, we have β+1
β+q >

1
q , and thus (3.35) is sharper than

(3.33) whenever RLsur,P(f)−R∗
Lsur,P

is sufficiently small. �
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3.4 Surrogates for Unweighted Binary Classification

In this section, we apply the general theory on surrogate loss functions devel-
oped in the previous sections to the standard binary classification scenario.
The result of this section will be important for Section 8.5, where we investi-
gate SVMs for classification that do not use the hinge loss as a surrogate.

Let us first recall (see Example 2.4) that in binary classification we consider
the label space Y := {−1, 1} together with the supervised loss Lclass. In the
following, we write QY for the set of all distributions on Y . Moreover, recall
that any distribution Q ∈ QY can be uniquely described by an η ∈ [0, 1] using
the identification η = Q({1}). If L : Y ×R → [0,∞) is a supervised loss, we
therefore use the notation

CL,η(t) := CL,Q(t) , t ∈ R,
C∗L,η := C∗L,Q ,

(3.36)

as well as ML,η(0+) := ML,Q(0+), ML,η(ε) := ML,Q(ε), and δmax(ε, η) :=
δmax(ε,Q) for ε ∈ [0,∞]. Note that, by the special structure of margin-based
losses and the distributions Q ∈ QY , we have the following symmetries:

CL,η(t) = CL,1−η(−t) and C∗L,η = C∗L,1−η ,

ML,η(ε) = −ML,1−η(ε) and ML,η(0+) = −ML,1−η(0+) .

Furthermore, it is interesting to note that the quantity 2η−1, which will occur
at many places in the following results, is the expectation of the corresponding
Q, i.e., EQ := EQ idY = 2η−1. Before we present our first results, let us finally
simplify our nomenclature.

Definition 3.31. A supervised loss function L : Y ×R→ [0,∞) is said to be
(uniformly) classification calibrated if it is (uniformly) Lclass-calibrated
with respect to QY .

Now our first aim is to compute the calibration function δmax,Lclass,L( · , η)
for supervised surrogates L of Lclass.

Lemma 3.32 (Calibration function). Let L : Y ×R→ [0,∞) be a super-
vised loss. Then, for all η ∈ [0, 1] and ε ∈ (0,∞], we have

δmax,Lclass,L(ε, η) =

{
∞ if ε > |2η − 1|
inft∈R:(2η−1) sign t≤0

(CL,η(t)− C∗L,η

)
if ε ≤ |2η − 1|.

Proof. The assertion immediately follows from the formula

MLclass,η(ε) =

{
R if ε > |2η − 1|
{t ∈ R : (2η − 1) sign t > 0} if 0 < ε ≤ |2η − 1| ,

which we derived in Example 3.8, and inf ∅ =∞. ��
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The formula for the calibration function presented in Lemma 3.32 implies
that δmax( · , η) is a step function that only attains one value different from 0
and∞. This particular form of the calibration function is the key ingredient of
the following considerations on the relation between classification calibration
and uniform classification calibration. We begin with a preliminary lemma.

Lemma 3.33 (Alternative to the calibration function). Let L : Y ×R→
[0,∞) be a margin-based loss and H : [0, 1]→ [0,∞) be defined by

H(η) := inf
t∈R:(2η−1)t≤0

CL,η(t)− C∗L,η, η ∈ [0, 1]. (3.37)

Then the following statements are true:

i) L is classification calibrated if and only if H(η) > 0 for all η �= 1/2.
ii) If L is continuous, we have δmax(ε, η) = H(η) for all 0 < ε ≤ |2η − 1|.
iii) H is continuous and satisfies H(η) = H(1−η), η ∈ [0, 1], and H(1/2) = 0.

Proof. i). Let us first assume that L is classification calibrated. We fix an
η �= 1/2. Then Lemma 3.32 together with sign 0 = 1 shows CL,η(0) > C∗L,η if
η ∈ [0, 1/2). Moreover, if η ∈ (1/2, 1], we find the same inequality by

CL,η(0)− C∗L,η = CL,1−η(0)− C∗L,1−η > 0 .

Finally, Lemma 3.32 yields

inf
t∈R:(2η−1)t<0

CL,η(t)− C∗L,η ≥ δmax(ε, η) > 0 (3.38)

for 0 < ε ≤ |2η − 1|, and hence we find H(η) > 0. Conversely, Lemma 3.32
gives δmax(ε, η) ≥ H(η) for all 0 < ε ≤ |2η − 1|, and hence L is classification
calibrated if H(η) > 0 for all η �= 1/2.

ii). Since there is nothing to prove in the case η = 1/2, we assume η �= 1/2.
Now, if L is continuous, then CL,η( · ) is continuous at 0, and hence we have

δmax(ε, η) ≤ inf
t∈R:(2η−1)t<0

CL,η(t)− C∗L,η = inf
t∈R:(2η−1)t≤0

CL,η(t)− C∗L,η = H(η)

by (3.38). Moreover, for 0 < ε ≤ |2η − 1|, we always have δmax(ε, η) ≥ H(η).
iii). The equality H(1/2) = 0 is trivial, and H(η) = H(1 − η), η ∈ [0, 1],

immediately follows from symmetries mentioned at the beginning of this sec-
tion. In order to prove the continuity of H, we now define

h(η) = inf
t∈R:(2η−1)t≤0

CL,η(t) ,

g+(η) = inf
t≤0
CL,η(t) ,

g−(η) = inf
t≥0
CL,η(t) ,

for η ∈ [0, 1]. Then the functions g+ : [0, 1] → [0,∞) and g− : [0, 1] →
[0,∞) can be defined by suprema taken over affine linear functions in η ∈
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R, and since g+ and g− are also finite for η ∈ [0, 1], we find by Lemma
A.6.4 that g+ and g− are continuous at every η ∈ [0, 1]. Moreover, we have
C∗L,η = min{g+(η), g−(η)} for all η ∈ [0, 1], and hence η �→ C∗L,η is continuous.
Finally, we have h(η) = g−(η) for η ∈ [0, 1/2), h(η) = g+(η) for η ∈ (1/2, 1],
and h(1/2) = min{g+(1/2), g−(1/2)} = g−(1/2) = g+(1/2). This shows that
h : [0, 1] → [0,∞) is continuous, and by combining these results we then
obtain the continuity of H. ��

Now we can establish the main result of this section, which shows that
classification calibrated, margin-based losses are uniformly classification cal-
ibrated. In addition, it provides a lower bound of the Fenchel-Legendre bi-
conjugate (see Definition 3.20) of the uniform calibration function δmax( · ,QY ).

Theorem 3.34 (Classification calibration). Let L : Y ×R→ [0,∞) be a
margin-based loss. Then the following statements are equivalent:

i) L is classification calibrated.
ii) L is uniformly classification calibrated.

Furthermore, for H defined by (3.37) and δ : [0, 1]→ [0,∞) defined by

δ(ε) := H
(1 + ε

2

)
, ε ∈ [0, 1],

the Fenchel-Legendre bi-conjugates of δ and δmax( · ,QY ) satisfy

δ∗∗(ε) ≤ δ∗∗max,Lclass,L
(ε,QY ) , ε ∈ [0, 1], (3.39)

and both quantities are actually equal if L is continuous. Finally, if L is clas-
sification calibrated, we have δ∗∗(ε) > 0 for all ε ∈ (0, 1].

Proof. We begin with a preliminary consideration. To this end, let us fix an
ε ∈ (0, 1]. Then, by Lemma 3.32 and the symmetry of H around 1/2, we find

δmax(ε,QY ) = inf
|2η−1|≥ε

δmax(ε, η) ≥ inf
|2η−1|≥ε

H(η) = inf
η≥ ε+1

2

H(η) =: δ̃(ε) ,

and with δ̃(0) := 0 we also have δmax(0,QY ) = δ̃(0).
i)⇔ ii). Since ii)⇒ i) is trivial, it suffices to show i)⇒ ii). To this end,

recall that H is continuous and strictly positive on all intervals [ ε+1
2 , 1], ε ∈

(0, 1], by Lemma 3.33, and consequently we have δ̃(ε) > 0 for all ε > 0. From
this we find δmax(ε,QY ) > 0 for all ε > 0 by our preliminary consideration.

In order to show (3.39), recall that δ̃(ε) ≤ δmax(ε,QY ) holds for all
ε ∈ [0, 1], and hence we find δ̃∗∗(ε) ≤ δ∗∗max (ε,QY ) for all ε ∈ [0, 1]. Fur-
thermore, we obviously have δ̃(ε) = infε′≥ε δ(ε′), and hence Lemma A.6.21
gives δ∗∗ = δ̃∗∗. In addition, if L is continuous, then our preliminary consid-
eration together with Lemma 3.33 actually yields δ̃(ε) = δmax(ε,QY ) for all
ε ∈ [0, 1]. Repeating the arguments above thus shows δ∗∗(ε) = δ∗∗max (ε,QY )
for all ε ∈ [0, 1].
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Table 3.1. Some common margin-based losses and the corresponding values for
H(η), η ∈ [0, 1], and δ∗∗max (ε,QY ), ε ∈ [0, 1]. All results easily follow from Theorem
3.36. For the logistic loss, we used the abbreviation Λ(x) := x ln(x). Note that if one
wants to derive inequalities for the logistic loss using the above form of δ∗∗max (ε,QY ),
it is useful to know that ε2 ≤ Λ(1 + ε) + Λ(1 − ε) ≤ ε2 ln 4 for all ε ∈ [0, 1].

Loss function H(η) δ∗∗max (ε,QY )

Least squares (2η − 1)2 ε2

Hinge loss |2η − 1| ε

Squared hinge (2η − 1)2 ε2

Logistic loss ln 2 + Λ(η) + Λ(1 − η) 1
2

(
Λ(1 + ε) + Λ(1 − ε)

)

Finally, if L is classification calibrated, we have already seen δ̃(ε) > 0 for
all ε ∈ (0, 1], and hence δ̃∗∗(ε) > 0, ε ∈ (0, 1], by Lemma A.6.20. Since we
have also proved δ∗∗ = δ̃∗∗, we finally find δ∗∗(ε) > 0, ε ∈ (0, 1]. ��

For classification calibrated margin-based losses L, the preceding theo-
rem shows that using δ∗∗ in Theorem 3.22 always gives non-trivial inequali-
ties between the excess L-risk and the excess classification risk. Furthermore,
Theorem 3.34 shows that in order to establish such inequalities it suffices
to compute the function H( · ) defined by (3.37), and as we will see later
in Theorem 3.36, this computation is rather simple if L is convex. For the
margin-based losses considered in the examples of Section 2.3, the functions
H and δ∗∗max ( · ,QY ) are summarized in Table 3.1. Establishing the resulting
inequalities is left as an exercise (see Exercise 3.9). However, note that for
some losses these inequalities can be improved if the considered P satisfies
an additional assumption, as the following remark shows (see also Theorem
8.29).

Remark 3.35. It is important to note that (3.9) can be used to describe the
classification scenario by a detection loss. Indeed, if for a given distribution P
on X × Y with η(x) := P(y = 1|x), x ∈ X, we define

LP(x, t) := |2η(x)− 1| · 1(−∞,0]

(
(2η(x)− 1) sign t

)
, x ∈ X , t ∈ R,

then LP : X × R → [0,∞) is obviously a detection loss with respect to
A := {(x, t) ∈ X ×R : (2η(x)− 1) sign t ≤ 0} and h(x) = |2η(x)− 1|, x ∈ X.
Furthermore, (3.9) states that

CLclass,η(x)(t)− C∗Lclass,η(x) = CLP,x(t)− C∗LP,x

for all x ∈ X, t ∈ R, i.e., for the distribution P, both losses describe the same
learning goal. Now, condition (3.34) becomes
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PX

({
x ∈ X : 0 < |2η(x)− 1| < s

}) ≤ (c s)β , s > 0, (3.40)

which, in a slightly stronger form, will be very important condition on P when
establishing fast learning rates for SVMs in Section 8.3. For now, however,
we would only like to mention that, assuming (3.40), we can immediately
improve the inequalities that we would obtain by combining Theorem 3.34
with Theorem 3.22 for most of the margin-based losses considered in the
examples. For more details, we refer to Remark 3.30 and Exercise 3.9. �

Up to now, we only know that the few examples listed in Table 3.1 are
classification calibrated. The following theorem gives a powerful yet easy tool
to check whether a convex margin-based loss is classification calibrated or not.

Theorem 3.36 (Test for classification calibration). Let L be a convex,
margin-based loss represented by ϕ : R → [0,∞). Then the following state-
ments are equivalent:

i) L is classification calibrated.
ii) ϕ is differentiable at 0 and ϕ′(0) < 0.

Furthermore, if L is classification calibrated, then the Fenchel-Legendre bi-
conjugate of the uniform calibration function δmax( · ,QY ) satisfies

δ∗∗max (ε,QY ) = ϕ(0)− C∗
L, ε+1

2
, ε ∈ [0, 1]. (3.41)

Proof. ii) ⇒ i). Since ϕ is differentiable at 0, the map t→ CL,η(t) is differen-
tiable at 0 and its derivative is C′L,η(0) = (2η−1)ϕ′(0). Consequently, we have
C′L,η(0) < 0 for η ∈ (1/2, 1]. Now recall that the convexity of CL,η( · ) implies
that its derivative is almost everywhere defined and increasing by Theorem
A.6.6 and Proposition A.6.12. Therefore, CL,η( · ) is decreasing on (−∞, 0] and
for η ∈ (1/2, 1] we thus have

H(η) = inf
t∈R:

(2η−1)t≤0

CL,η(t)− C∗L,η = inf
t≤0
CL,η(t)− C∗L,η = CL,η(0)− C∗L,η . (3.42)

Furthermore, C′L,η(0) < 0 shows that CL,η( · ) does not have a minimum at 0
and thus we find H(η) > 0 for all η ∈ (1/2, 1]. Lemma 3.33 then gives the
classification calibration.

i) ⇒ ii). Recall the basic facts on subdifferentials listed in Section A.6.2.
Let us begin with assuming that ϕ is not differentiable at 0. Then there exist
w1, w2 ∈ ∂ϕ(0) with w1 < w2 and w1 �= −w2. Let us fix an η with

1
2
< η <

1
2

+
w2 − w1

2|w1 + w2| .

Obviously, this choice implies 1
2 (w2 − w1) > |w1 + w2|(η − 1

2 ), and by the
definition of the subdifferential, we further have ϕ(t) ≥ wit + ϕ(0) for t ∈ R

and i = 1, 2. For t > 0, we consequently find
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CL,η(t) = ηϕ(t) + (1−η)ϕ(−t) ≥ η(w2t+ ϕ(0)
)

+ (1− η)(−w1t+ ϕ(0)
)

=
(

1
2
(w2−w1) + (w1+w2)

(
η − 1

2

))
t+ ϕ(0)

>

((
|w1+w2|+ (w1+w2)

)(
η− 1

2

))
t+ CL,η(0)

≥ CL,η(0) . (3.43)

Furthermore, since L is classification calibrated, we have H(η) > 0, and thus
we find inft>0 CL,η(t) = C∗L,η. Together with (3.43), this shows C∗L,η ≥ CL,η(0).
However, the latter yields H(η) ≤ 0 by (3.42), and thus ϕ must be differen-
tiable at 0. Let us now assume that ϕ′(0) ≥ 0. We then obtain

CL,1(t) = ϕ(t) ≥ ϕ′(0)t+ ϕ(0) ≥ CL,1(0)

for all t > 0. Again this contradicts the classification calibration of L.
In order to show (3.41), we first observe C′L,1/2(0) = 1

2ϕ
′(0)− 1

2ϕ
′(0) = 0.

This immediately gives CL,1/2(0) = C∗L,1/2, and consequently we have

H(η) = ϕ(0)− C∗L,η , η ∈ [1/2, 1], (3.44)

by (3.42) and CL,η(0) = ϕ(0). Now recall that η → C∗L,η is defined by an
infimum taken over affine linear functions, and hence it is a concave func-
tion. Consequently, H is convex on [1/2, 1] and therefore (3.44) together with
Theorem 3.34 and the continuity of L shows (3.41). ��

3.5 Surrogates for Weighted Binary Classification

In this section, we investigate surrogate loss functions for the weighted binary
classification scenario introduced in Example 2.5. To this end, recall that this
scenario is characterized by the loss function

Lα-class(y, t) =

⎧⎪⎨
⎪⎩

1− α if y = 1 and t < 0
α if y = −1 and t ≥ 0
0 otherwise ,

where α ∈ (0, 1) was a fixed weighting parameter and Y := {−1, 1}. Adopting
the notations around (3.36), we begin by computing δmax(ε, η).

Lemma 3.37 (Calibration function). Let L : Y ×R→ [0,∞) be a super-
vised loss. Then, for all α ∈ (0, 1), η ∈ [0, 1], and ε ∈ (0,∞], we have

δmax,Lα-class,L(ε, η) =

{
∞ if ε > |η − α|
inft∈R:(η−α) sign t≤0

(CL,η(t)− C∗L,η

)
if ε ≤ |η − α|.
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Proof. For t ∈ R, we have CLα-class,η(t) = (1−α)η1(−∞,0)(t)+α(1−η)1[0,∞)(t)
and C∗Lα-class,η = min

{
(1− α)η, α(1− η)}. From this we easily deduce

CLα-class,η(t)− C∗Lα-class,η = |η − a| · 1(−∞,0]

(
(η − α) sign t

)
.

Now the assertion follows as in the proof of Lemma 3.32. ��
In the following, we investigate how margin-based losses must be modified

to make them Lα-class-calibrated. To this end, let L be a margin-based loss
represented by some ϕ : R→ [0,∞). For α ∈ (0, 1), we define the α-weighted
version Lα of L by

Lα(y, t) :=

{
(1− α)ϕ(t) if y = 1
αϕ(−t) if y = −1,

t ∈ R.

Our next goal is to translate the results from the previous section for the
unweighted classification scenario into results for the weighted case. To this
end, we will frequently use the quantities

wα(η) := (1− α)η + α(1− η) (3.45)

and

ϑα(η) :=
(1− α)η

(1− α)η + α(1− η) , (3.46)

which are defined for η ∈ [0, 1]. Moreover, we need the following lemma, which
describes the relation between the inner risks of Lα and L.

Lemma 3.38 (Weighted inner risks). Let L be a margin-based loss. Then
for α ∈ (0, 1) and η ∈ [0, 1] the following statements are true:

i) CLα,η(t) = wα(η) CL,ϑα(η)(t) for all t ∈ R, and C∗Lα,η = wα(η) C∗L,ϑα(η).
ii) min{α, 1− α} ≤ wα(η) ≤ max{α, 1− α}.
iii) If L is classification calibrated and η �= α, then CLα,η(0) > C∗Lα,η.

Proof. i). A straightforward calculation shows 1−ϑα(η) = α(1−η)
(1−α)η+α(1−η) , and

hence we obtain

CLα,η(t) = (1− α)ηϕ(t) + α(1− η)ϕ(−t)
=
(
(1− α)η + α(1− η))(ϑα(η)ϕ(t) + (1− ϑα(η))ϕ(−t))

= wα(η) CL,ϑα(η)(t) .

ii). This follows from wα(η) = (1− 2α)η + α.
iii). We have η �= α if and only if ϑα(η) �= 1/2. Furthermore, Lemma 3.33

showed H(η) > 0 for η �= 1/2, where H is defined by (3.37), and hence we
have CL,η(0) > C∗L,η for η �= 1/2. Therefore, the assertion follows from

CLα,η(0) = wα(η) CL,ϑα(η)(0) > wα(η) C∗L,ϑα(η) = C∗Lα,η . ��
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With the help of the preceding lemma, we can now characterize when
α-weighted versions of margin-based loss functions are Lα-class-calibrated.

Theorem 3.39 (Weighted classification calibration). Let L be a margin-
based loss function and α ∈ (0, 1). We define Hα : [0, 1]→ [0,∞) by

Hα(η) := inf
t∈R:(η−α)t≤0

CLα,η(t)− C∗Lα,η, η ∈ [0, 1]. (3.47)

Then the following statements are equivalent:

i) Lα is uniformly Lα-class-calibrated with respect to QY .
ii) Lα is Lα-class-calibrated with respect to QY .
iii) L is classification calibrated.
iv) Hα(η) > 0 for all η ∈ [0, 1] with η �= α.

Furthermore, if H is defined by (3.37) then, for all η ∈ [0, 1], we have

Hα(η) = wα(η)H
(
ϑα(η)
)
. (3.48)

Proof. ii) ⇔ iii). An easy calculation shows 2ϑα(η)− 1 = η−α
(1−α)η+α(1−η) , and

hence we find sign(η − α) = sign(2ϑα(η)− 1). For ε ≤ |η − α|, this gives

δmax,Lα-class,Lα
(ε, η) = inf

t∈R
(η−α) sign t≤0

CLα,η(t)− C∗Lα,η

= wα(η) inf
t∈R

(2ϑα(η)−1) sign t≤0

CL,ϑα(η)(t)− C∗L,ϑα(η)

= wα(η) δmax,Lclass,L(ε, ϑα(η)) . (3.49)

Since wα(η) > 0 and ϑα([0, 1]) = [0, 1], we then obtain the equivalence. The
proof of (3.48) is analogous to (3.49).

i) ⇒ ii). Trivial.
iii) ⇒ i). Recall that L is uniformly classification calibrated by Theorem

3.34. Then the implication follows from using wα(η) ≥ min{α, 1−α} in (3.49).
ii) ⇒ iv). Part iii) of Lemma 3.38 together with Lemma 3.37 implies

Hα(η) > 0 for all η �= α.
iv) ⇒ ii). By Lemma 3.37, we have δmax,α(ε, η) ≥ Hα(η) > 0 for η �= α

and 0 < ε ≤ |η − α|. This gives the assertion. ��
With the help of the results above we can now establish our main theo-

rem of this section, which describes an easy way to establish inequalities for
Lα-class-calibrated loss functions.

Theorem 3.40 (Weighted uniform calibration function). Let L be a
margin-based loss and α ∈ (0, 1). For αmax := max{α, 1− α}, we define

δα(ε) := inf
η∈[0,1]
|η−α|≥ε

Hα(η) , ε ∈ [0, αmax],
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Table 3.2. The functions H, Hα, and δ∗∗α for some common margin-based losses.
The values for δ∗∗α are only for α with 0 < α ≤ 1/2. Note that, for the hinge loss, the
function δ∗∗α is actually independent of α. Furthermore, the formulas for the logistic
loss for classification do not fit into the table but can be easily computed.

Loss function H(η) Hα(η) δ∗∗α (ε)

Least squares (2η − 1)2
(η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

Hinge loss |2η − 1| |η − α| ε

Squared hinge (2η − 1)2
(η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

where Hα( · ) is defined by (3.47). Then, for all ε ∈ [0, αmax], we have

δ∗∗α (ε) ≤ δ∗∗max,Lα-class,L(ε,QY ) ,

and if L is continuous, both quantities are actually equal.

Proof. Let ε ∈ [0, αmax]. Then Lemma 3.37 together with inf ∅ =∞ yields

inf
Q∈QY

δmax(ε,Q) = inf
η∈[0,1]
|η−α|≥ε

inf
t∈R

(η−α) sign t≤0

CLα,η(t)− C∗Lα,η ≥ inf
η∈[0,1]
|η−α|≥ε

Hα(η) .

��
Obviously, we can use the identity Hα(η) = wα(η)H

(
ϑα(η)
)

in order to
compute the function δα(ε) of the preceding theorem. Doing so, we see that
δα is a continuous function that is strictly positive on (0, αmax] if L is classi-
fication calibrated. Consequently, Theorem 3.40 together with Theorem 3.22
yields non-trivial inequalities. Furthermore, for some important loss functions,
we already know H(η), η ∈ [0, 1], and hence the computation of δ∗∗α (ε) is
straightforward. The corresponding results are summarized in Table 3.2.

Up to now, we have only investigated the Lα-class-calibration of α-weighted
versions of classification calibrated loss functions. We finally show that other
weighted versions are not Lα-class-calibrated.

Theorem 3.41 (Using the correct weights). Let α, β ∈ (0, 1), L be a
margin-based, classification calibrated loss, and Lβ be its β-weighted version.
Then Lβ is Lα-class-calibrated if and only if β = α.

Proof. We already know that Lα is Lα-class-calibrated, and hence we assume
α �= β. Without loss of generality, we only consider the case β > α. For a
fixed η ∈ (α, β), an easy computation then shows that ϑβ(η) defined in (3.46)
satisfies ϑβ(η) < 1/2 < ϑα(η), and hence for ε > 0 with ε ≤ |η−α| we obtain

δmax,Lα-class,Lβ
(ε, η) = inf

(n−α) sign t≤0
CLβ ,η(t)− C∗Lβ ,η

= wβ(η) inf
t<0
CL,ϑβ(η)(t)− C∗L,ϑβ(η) . (3.50)
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The classification calibration of L implies inft≥0 CL,ϑβ(η)(t)−C∗L,ϑβ(η) > 0, and
since inft∈R CL,ϑβ(η)(t)−C∗L,ϑβ(η) = 0, we find inft<0 CL,ϑβ(η)(t)−C∗L,ϑβ(η) = 0.
Together with (3.50), this shows that Lβ is not Lα-class-calibrated. ��

The preceding theorem in particular shows that an α-weighted version of a
classification calibrated margin-based loss function is classification calibrated
if and only if α = 1/2. In other words, using a weighted margin-based loss for
an unweighted classification problem may lead to methodical errors.

3.6 Template Loss Functions

Sometimes an unsupervised loss function explicitly depends on the data-
generating distribution. For example, if we have a distribution P on X × R

with |P|1 < ∞ and we wish to estimate the conditional mean function
x �→ EP(Y |x), we could describe this learning goal by the loss function

L(x, t) :=
∣∣EP(Y |x)− t∣∣ , x ∈ X, t ∈ R.

Now note that when we change the distribution we have to change the loss
function, though the learning goal remains the same. In view of our analysis
on surrogate losses, this fact is at least annoying. The goal of this section is
to resolve this issue by introducing a new type of “loss function” that may
depend on distributions Q. Let us begin with a precise definition.

Definition 3.42. Let Q be a set of distributions on a closed subset Y ⊂ R.
Then we call a function L : Q×R→ [0,∞) a template loss if, for all com-
plete measurable spaces X and all distributions P of type Q, the P-instance
LP of L defined by

LP : X ×R→ [0,∞)
(x, t) �→ L

(
P( · |x), t) (3.51)

is measurable.

Note that the key condition of this definition is the measurability, which
enables us to interpret P-instances as unsupervised losses. In particular, we
can define the risk of a template loss L by the risk of its P-instance, i.e., by

RL,P(f) := RLP,P(f) =
∫

X

L
(
P( · |x), f(x)

)
dPX(x) ,

where f : X → R is measurable. This motivates us to define the inner risks
of a template loss L : Q × R → [0,∞) analogously to the inner risks of
unsupervised losses, i.e., we write

CL,Q(t) := L(Q, t),
C∗L,Q := inf

t′∈R
L(Q, t′)
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for Q ∈ Q and t ∈ R. Note that the right-hand sides of these definitions have
the form we used for unsupervised losses in the sense that no integrals occur
while the left-hand sides have the form we obtained for supervised losses in
the sense that the inner risks are independent of x. Having defined the inner
risks, we write, as usual,

ML,Q(ε) :=
{
t ∈ R : CL,Q(t) < C∗L,Q + ε

}
, Q ∈ Q, ε ∈ [0,∞],

for the corresponding sets of approximate minimizers. Moreover, given a super-
vised surrogate loss Lsur : Y ×R→ [0,∞), we define the calibration function
δmax( · ,Q) : [0,∞]→ [0,∞] of (L,Lsur) by

δmax,L,Lsur(ε,Q) := inf
t∈R

t�∈ML,Q(ε)

CLsur,Q(t)− C∗Lsur,Q , ε ∈ [0,∞],

if C∗Lsur,Q
<∞ and by δmax,L,Lsur(ε,Q) :=∞ otherwise. Since in the proof of

Lemma 3.14 we did not use that the inner risks are defined by integrals, it is
then not hard to see that this lemma also holds for the calibration function
above. Consequently, we say that Lsur is L-calibrated with respect to Q if

δmax,L,Lsur(ε,Q) > 0

for all ε > 0 and Q ∈ Q. Analogously, we say that Lsur is uniformly L-
calibrated with respect to Q if

δmax,L,Lsur(ε,Q) := inf
Q∈Q

δmax,L,Lsur(ε,Q) > 0

for all ε > 0. If we now consider a P-instance LP of L, we immediately obtain

δmax,LP,Lsur(ε,P( · |x), x) = δmax,L,Lsur(ε,P( · |x)) (3.52)

for all ε ∈ [0,∞] and x ∈ X, where δmax,LP,Lsur( · , · , · ) denotes the calibration
function of (LP, Lsur). In other words, L-calibration of Lsur can be investigated
analogously to supervised losses, i.e., in terms ofQ and independent of x, while
the corresponding results can be used to determine the relation between the
excess Lsur-risk and the excess risk of the unsupervised loss LP. In the following
sections, we will extensively make use of template losses, mainly because of
this technical merit.

3.7 Surrogate Losses for Regression Problems

In regression, the goal is to predict a real-valued output y given an input x.
The discrepancy between the prediction f(x) and the observation y is often
measured by the least squares loss, but we have already seen in Section 2.4
that there are various alternatives. In this section, we investigate the relation
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of these alternatives to the least squares loss. These considerations will be
important for Chapters 9 and 10 on regression and robustness, respectively.

Let us begin by introducing some notation. To this end let, Q be a set of
distributions on R and L : R×R→ [0,∞] be a supervised loss. Since in our
general results on calibration the assumption C∗L,Q <∞ was crucial, we define

Q(L) :=
{
Q ∈ Q : C∗L,Q <∞} .

Recall that for distance-based losses we have investigated the condition C∗L,Q <
∞ in Lemma 2.36. In the following, QR denotes the set of distributions on
R, and more generally, QI denotes the set of all distributions whose support
is contained in the subset I ⊂ R. In addition, for p ∈ (0,∞], the set of
distributions on R with p-th finite moment is denoted by

Q(p)
R :=

{
Q : Q distribution on R with |Q|p <∞

}
,

whereas the set of all distributions with bounded support is denoted by

Qbounded := Q(∞)
R =

⋃
M>0

Q[−M,M ] .

Note that QI ⊂ Qbounded ⊂ Q(1)
R holds for all bounded intervals I, and if L is

a continuous, distance-based loss, we actually have Qbounded ⊂ Q(1)
R (L).

Now let Q be a distribution on R such that |Q|1 <∞. Then the mean of
Q is denoted by

EQ :=
∫
R

y dQ(y) .

We call Q symmetric around some c ∈ R if Q(c + A) = Q(c − A) for all
measurable A ⊂ [0,∞). Furthermore, we say that Q is symmetric if it is
symmetric around some c ∈ R. Obviously, Q is symmetric around c if and
only if its centered version Q(c) defined by Q(c)(A) := Q(c + A), A ⊂ R

measurable, is centered around 0. In the following, the set of all symmetric
distributions with p-finite moment is denoted by Q(p)

R,sym. Finally, the sets
QI,sym, for I ⊂ R, and Qbounded,sym are defined in the obvious way.

Let us now assume that Q is symmetric around c. For a measurable func-
tion h : R→ R, we then have∫

R

h(y − c)dQ(y) =
∫
R

h(y)dQ(c)(y) =
∫
R

h(−y)dQ(c)(y)

=
∫
R

h(c− y)dQ(y) (3.53)

whenever one (and then all) of the integrals exists. In particular, for h(y) :=
y + c, y ∈ R, and Q satisfying |Q|1 <∞, this equation yields

EQ =
∫
R

ydQ(y) =
∫
R

h(y − c)dQ(y) = c+
∫
R

ydQ(c)(y) = c ,
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i.e., the center c is unique and equals the mean EQ.
Let us get back to our main goal, which is identifying LLS-calibrated losses,

where LLS denotes the least squares loss. To this end, recall that for Q ∈
QR(LLS) = Q(2)

R we have already seen in Example 2.6 that

MLLS,Q(0+) = {EQ} .
Consequently, if L is a supervised, LLS-calibrated loss function, we must have
ML,Q(0+) ⊂ {EQ} for all Q ∈ Q(2)

R (L). This observation motivates the follow-
ing two propositions in which we investigate the setsML,Q(0+) for distance-
based losses.

Proposition 3.43 (Exact minimizers for distance-based losses I). Let
L be a distance-based loss whose representing function ψ : R→ [0,∞) satisfies
limr→±∞ ψ(r) =∞. Moreover, let Q ∈ QR be a distribution with CL,Q(t) <∞
for all t ∈ R. Then the following statements are true:

i) If ψ is convex, then t �→ CL,Q(t) is convex and continuous. Moreover, we
have limt→±∞ CL,Q(t) =∞ and ML,Q(0+) �= ∅.

ii) If ψ is strictly convex, then t �→ CL,Q(t) is strictly convex and ML,Q(0+)
contains exactly one element.

Proof. Our first goal is to show that limt→±∞ CL,Q(t) = ∞. To this end,
we fix a B > 0 and let (tn) ⊂ R be a sequence with tn → −∞. Since
limr→±∞ ψ(r) = ∞, there then exists an r0 > 0 such that ψ(r) ≥ 2B for
all r ∈ R with |r| ≥ r0. Since Q(R) = 1, there exists also an M > 0 with
Q([−M,M ]) ≥ 1/2. Finally, there exists an n0 ≥ 1 with tn ≤ −M − r0 for
all n ≥ n0. For y ∈ [−M,M ], this yields y − tn ≥ r0, and hence we find
ψ(y − tn) ≥ 2B for all n ≥ n0. From this we easily conclude

CL,Q(tn) ≥
∫

[−M,M ]

ψ(y − tn) dQ(y) ≥ 2BQ
(
[−M,M ]

)
= B ,

i.e., we have shown CL,Q(tn)→∞. Analogously we can show limt→∞ CL,Q(t) =
∞, and consequently we have limt→±∞ CL,Q(t) =∞. This shows that{

t ∈ R : CL,Q(t) ≤ CL,Q(0)
}

is a non-empty and bounded subset of R. Furthermore, the convexity of ψ
implies that t �→ CL,Q(t) is convex and hence this map is continuous by Lemma
A.6.2. Now the assertions follow from Theorem A.6.9. ��

Note that for distributions Q ∈ Qbounded we automatically have CL,Q(t) <
∞ for all t ∈ R and all distance-based losses L. Furthermore, if L is of some
growth type p ∈ (0,∞), then Lemma 2.36 shows CL,Q(t) < ∞ for all t ∈ R

and all distributions Q having finite p-th moment. Consequently, the preceding
proposition givesML,Q(0+) �= ∅ in both cases.

The following proposition comparesML,Q(0+) with the mean EQ.
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Proposition 3.44 (Exact minimizers for distance-based losses II). Let
L be a distance-based loss whose representing function ψ is locally Lipschitz
continuous, and let M > 0. Then the following statements are true:

i) If EQ ∈ML,Q(0+) for all Q ∈ Q[−M,M ],sym, then L is symmetric.
ii) If EQ ∈ ML,Q(0+) for all Q ∈ Qbounded, then there exists a constant
c ≥ 0 with ψ(t) = ct2 for all t ∈ R.

Proof. Recall that the fundamental theorem of calculus for Lebesgue integrals
(see Theorem A.6.6) shows that the derivative ψ′ is (Lebesgue)-almost surely
defined and integrable on every bounded interval.

i). Let us fix a y ∈ [−M,M ] such that ψ is differentiable at y and −y. We
define Q := 1

2δ{−y} + 1
2δ{y}. Then we have Q ∈ QR,sym with EQ = 0, and

CL,Q(t) = 1
2ψ(−y−t)+ 1

2ψ(y−t). Consequently, the derivative of CL,Q( · ) exists
at 0 and can be computed by C′L,Q(0) = − 1

2ψ
′(−y) − 1

2ψ
′(y). Furthermore,

our assumption shows that CL,Q( · ) has a minimum at 0, and hence we have
0 = C′L,Q(0), i.e., ψ′(−y) = −ψ′(y). According to our preliminary remark, the
latter relation holds for almost all y, and hence Theorem A.6.6 shows that,
for all y0 ∈ R, we have

ψ(y0) = ψ(0) +
∫ y0

0

ψ′(t)dt = ψ(0)−
∫ y0

0

ψ′(−t)dt = ψ(0)−
∫ 0

−y0

ψ′(t)dt

= ψ(−y0) .
ii). Let y �= 0 and α > 0 be real numbers such that ψ is differentiable at

y, −y, and αy. We define Q := α
1+αδ{0} + 1

1+αδ{(1+α)y}, so that we obtain
EQ = y and CL,Q(t) = α

1+αψ(−t)+ 1
1+αψ(y+αy− t) for all t ∈ R. This shows

that the derivative of CL,Q( · ) exists at y and can be computed by

C′L,Q(y) = − α

1 + α
ψ′(−y)− 1

1 + α
ψ′(αy) =

α

1 + α
ψ′(y)− 1

1 + α
ψ′(αy) ,

where in the last step we used i). Now, our assumption EQ ∈ ML,Q(0+)
gives C′L,Q(y) = 0, and hence we find αψ′(y) = ψ′(αy). Obviously, the latter
relation holds for almost all α > 0, and thus we obtain

ψ(ty) = ψ(0) +
∫ t

0

ψ′(sy)y ds =
∫ t

0

sψ′(y)y ds =
ψ′(y)
2y

(ty)2

for all t > 0. From this we easily obtain the assertion for c := ψ′(y)
2y . ��

Proposition 3.44 shows that there is basically no distance-based surrogate
for the least squares loss LLS if one is interested in the entire class

QR(LLS) = Q(2)
R =
{
Q ∈ QR : |Q|2 <∞

}
.

Furthermore, it shows that the least squares loss is essentially the only
distance-based loss function whose minimizer is the mean for all distributions
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in Q(2)
R . In other words, if we are actually interested in finding the regression

function x �→ EP(Y |x), and we just know |P|2 < ∞, then the least squares
loss is the only suitable distance-based loss for this task. However, if we cannot
ensure the tail assumption |P|2 < ∞ but know instead that the conditional
distributions P( · |x) are symmetric, then Proposition 3.44 suggests that we
may actually have alternatives to the least squares loss. In order to investigate
this conjecture systematically, we first need a target loss that describes the
goal of estimating the mean. To this end, let us consider the mean distance
template loss Lmean : Q(1)

R ×R→ [0,∞), which is defined by

Lmean(Q, t) := |EQ− t| , t ∈ R ,Q ∈ Q(1)
R .

Note that this indeed defines a template loss, since given a Q(1)
R -type distrib-

ution P on X ×R, it is easy to see that

(x, t) �→ Lmean(P( · |x), t) =
∣∣EP(Y |x)− t∣∣

is measurable. Moreover, we have

L2
mean(Q, t) =

(
EQ− t)2 = CLLS,Q(t)− C∗LLS,Q , Q ∈ Q(2)

R , t ∈ R,

and since the minimal Lmean-risks equal 0, we thus obtain MLmean,Q(
√
ε) =

MLLS,Q(ε) for all ε > 0. From this we immediately find

δmax,Lmean,L(
√
ε,Q) = δmax,LLS,L(ε,Q) , ε ∈ [0,∞], (3.54)

for all distance-based losses L and all Q ∈ Q(2)
R ∩ QR(L). In other words,

by considering Lmean-calibration, we simultaneously obtain results on LLS-
calibration.

We saw in Section 3.1 that the inner risks are the key quantities for com-
puting calibration functions. The following lemma presents a way to compute
the inner risks CL,Q( · ) when both L and Q are symmetric.

Lemma 3.45 (Inner risks of symmetric losses). Let L be a symmetric
loss with representing function ψ and Q ∈ Q(1)

R,sym(L). Then we have

CL,Q(EQ + t) = CL,Q(EQ− t) =
1
2

∫
R

ψ(y − EQ− t) + ψ(y − EQ + t) dQ(y)

for all t ∈ R. In addition, if L is convex, we have

CL,Q(EQ) = C∗L,Q ,

and if L is strictly convex, we also have CL,Q(EQ + t) > C∗L,Q for all t �= 0.

Proof. Let us write m := EQ. Recalling that the centered version Q(m) of Q
is symmetric around 0, the symmetry of ψ and (3.53) then yield
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CL,Q(m+ t) =
∫
R

ψ(y − t)dQ(m)(y) =
∫
R

ψ(−y − t)dQ(m)(y)

=
∫
R

ψ(y + t)dQ(m)(y)

= CL,Q(m− t) .
Since this yields CL,Q(m+ t) = 1

2 (CL,Q(m+ t) + CL,Q(m− t)), we also obtain
the second equation. Furthermore, if ψ is convex, we can easily conclude that

CL,Q(m+t) =
1
2

∫
R

ψ(y−t)+ψ(y+t)dQ(m)(y) ≥
∫
R

ψ(y)dQ(m)(y) = CL,Q(m)

for all t ∈ R. This shows the second assertion. The third assertion can be
shown analogously. ��

With the help of the preceding lemma, we can derive a simple formula for
the calibration function δmax,Lmean,L(ε,Q) if L is convex.

Lemma 3.46 (Calibration function for symmetric losses). Let L be a
symmetric, convex loss and Q ∈ Q(1)

R,sym(L). Then, for all ε ≥ 0, we have

δmax,Lmean,L(ε,Q) = CL,Q(EQ + ε)− CL,Q(EQ) . (3.55)

Consequently, ε �→ δmax,Lmean,L(ε,Q) is convex and the following statements
are equivalent:

i) δmax,Lmean,L(ε,Q) > 0 for all ε > 0.
ii) CL,Q(EQ + t) > CL,Q(EQ) for all t ∈ R with t �= 0.

Proof. Obviously, it suffices to prove (3.55). To this end, observe that t �→
CL,Q(EQ + t) is a convex function on R, and Lemma 3.45 shows that it is
also symmetric in the sense of CL,Q(EQ + t) = CL,Q(EQ− t) for all t ∈ R.
Therefore, t �→ CL,Q(EQ + t) is decreasing on (∞, 0] and increasing on [0,∞),
and hence we find

δmax,Lmean,L(ε,Q) = inf
t�∈(ε,ε)

CL,Q(EQ + t)− C∗L,Q = CL,Q(EQ + ε)− C∗L,Q .

Since we already know that C∗L,Q = CL,Q(EQ) by Lemma 3.45, we then obtain
the assertion. ��

Our next result is a technical lemma that will be used to establish upper
bounds on δmax,Lmean,L(ε,Q). For its formulation, we need the set

Q∗
R,sym :=

{
Q ∈ Q(1)

R,sym : Q
(
[EQ− ρ,EQ + ρ]

)
> 0 for all ρ > 0

}
,

which contains all symmetric distributions on R that do not vanish around
their means. Moreover, we also need the setsQ∗

I,sym := QI∩Q∗
R,sym, for I ⊂ R,

and Q∗
bounded,sym := Qbounded ∩Q∗

R,sym. Now the result reads as follows.
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Lemma 3.47 (Upper bound on excess risks). Let L be a symmetric,
continuous loss with representing function ψ. Assume that there exist a δ0 ∈
R, s1, s2 ∈ R with s1 �= s2, and an ε0 > 0 such that for all ε ∈ [0, ε0] we have

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε
)
≤ δ0 . (3.56)

Let us write M := | s1+s2
2 | + ε0 and t := s2−s1

2 . Then, for all δ > 0, there
exists a Lebesgue absolutely continuous Q ∈ Q∗

[−M,M ],sym with EQ = 0 and

CL,Q(EQ + t)− CL,Q(EQ) ≤ δ0 + δ .

Moreover, there exists a Lebesgue absolutely continuous Q ∈ Q[−M,M ],sym with
EQ = 0 and CL,Q(EQ + t)− CL,Q(EQ) ≤ δ0.
Proof. In the following, μ[a,b] denotes the uniform distribution on the interval
[a, b]. We write y0 := s1+s2

2 . Furthermore, if y0 = 0, we define Q := μ[−ε0,ε0],
and otherwise we define

Q := αμ[−| y0
2 |,| y0

2 |] +
1− α

2
μ[−y0−ε0,−y0] +

1− α
2

μ[y0,y0+ε0] ,

where α ∈ (0, 1) is a real number satisfying

sup
y∈[−| y0

2 |,| y0
2 |]

∣∣∣ψ(y − t) + ψ(y + t)
2

− ψ(y)
∣∣∣ ≤ δ

α
.

Now we obviously have EQ = 0 in both cases. Moreover, if y0 �= 0, the
construction together with Lemma 3.45 yields

CL,Q(t)− CL,Q(0)

=
∫
R

ψ(y − t) + ψ(y + t)
2

− ψ(y)dQ(y)

= α

∫
[−| y0

2 |,| y0
2 |]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dμ[−| y0
2 |,| y0

2 |](y)

+(1− α)
∫

[y0,y0+ε0]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dμ[y0,y0+ε0](y)

≤ δ + (1− α)
∫

[0,ε0]

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε
)
dμ[0,ε0](ε)

≤ δ0 + δ .

Furthermore, the case y0 = 0 can be shown analogously, since y0 = 0 implies
y − t = s1 + y and y + t = s2 + y. The last assertion follows if we repeat the
construction above with α = 0. ��

Let us now establish our first two main results, which characterize losses L
that are Lmean-calibrated with respect to Q∗

R,sym(L) and Q(1)
R,sym, respectively.
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Theorem 3.48 (Mean calibration I). Let L : R × R → [0,∞) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L is Lmean-calibrated with respect to Q∗
R,sym(L).

ii) L is Lmean-calibrated with respect to Q∗
bounded,sym.

iii) L is Lmean-calibrated with respect to Q∗
[−M,M ],sym for all M > 0.

iv) L is convex, and its representing function ψ has its only minimum at 0.

Proof. i)⇒ ii)⇒ iii). Trivial.
iv)⇒ i). Assume that L is not Lmean-calibrated with respect toQ∗

R,sym(L).
By Lemma 3.46, there then exist a Q ∈ Q∗

R,sym(L) and a t �= 0 with
CL,Q(m+ t) = C∗L,Q, where m := EQ. Using CL,Q(m) = C∗L,Q, which we know
from Lemma 3.45, then yields∫

R

ψ(y − t) + ψ(y + t)
2

− ψ(y) dQ(m)(y) = CL,Q(m+ t)− CL,Q(m) = 0 ,

and hence the convexity of ψ shows ψ(y−m−t)+ψ(y−m+t)
2 −ψ(y−m) = 0 for Q-

almost all y ∈ R. The continuity of ψ and the assumption Q(m+ [−ρ, ρ]) > 0
for all ρ > 0, then guarantee that ψ(y−m−t)+ψ(y−m+t)

2 − ψ(y −m) = 0 holds
for y := m. However, by the symmetry of ψ, this implies ψ(t) = ψ(0).

iii)⇒ iv). Assume that ψ is not convex. Then Lemma A.6.17 shows that
there exist s1, s2 ∈ R with s1 �= s2 and ψ(s1)+ψ(s2)

2 − ψ( s1+s2
2 ) < 0. By the

continuity of ψ, we then find (3.56) for some suitable δ0 < 0 and ε0 > 0, and
hence Lemma 3.47 gives an M > 0, a Q ∈ Q∗

[−M,M ],sym, and a t∗ �= 0 with
CL,Q(t∗) < CL,Q(0) and EQ = 0. Now observe that since ψ is continuous and
Q has bounded support, the map t �→ CL,Q(t) is continuous on R by Lemma
A.6.2. Let (tn) ⊂ R be a sequence with CL,Q(tn) → C∗L,Q for n → ∞. Since
our previous considerations showed CL,Q(0) �= C∗L,Q, there must exist an ε > 0
and an n0 ∈ N such that |tn| ≥ ε for all n ≥ n0. Since EQ = 0, this shows

δmax,Lmean,L(ε,Q) = inf
t�∈(−ε,ε)

CL,Q(t)− C∗L,Q ≤ CL,Q(tn)− C∗L,Q

for all n ≥ n0. For n→∞, we hence find δmax(ε,Q) = 0, and consequently L
is convex. Finally, assume that there exists a t �= 0 with ψ(t) = ψ(0). Then we
find CL,Q(t) = C∗L,Q for the distribution Q defined by Q({0}) = 1, and hence
we obtain δmax(|t|,Q) = 0. Therefore ψ has its only minimum at 0. ��
Theorem 3.49 (Mean calibration II). Let L : R×R→ [0,∞) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L is Lmean-calibrated with respect to Q(1)
R,sym(L).

ii) L is Lmean-calibrated with respect to Qbounded,sym.
iii) L is Lmean-calibrated with respect to Q[−M,M ],sym for all M > 0.
iv) L is strictly convex.
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Proof. i)⇒ ii)⇒ iii). Trivial.
iv)⇒ i). It immediately follows from Lemma 3.45 and Lemma 3.46.
iii) ⇒ iv). If L is Lmean-calibrated with respect to Q[−M,M ],sym for all

M > 0, then Theorem 3.48 shows that L is convex. Let us suppose that its
representing function ψ is not strictly convex. Then there are r1, r2 ∈ R with
r1 �= r2 and

ψ
(1

2
r1 +

1
2
r2

)
=

1
2
ψ(r1) +

1
2
ψ(r2) .

From this and Lemma A.6.17, we find (3.56) for δ0 = 0 and some suitable
s1 �= s2 and ε0 > 0. Lemma 3.47 then gives an M > 0, a Q ∈ Q[−M,M ],sym,
and a t0 �= 0, with CL,Q(EQ + t0) = CL,Q(EQ), and hence Lemma 3.46 shows
that L is not Lmean-calibrated with respect to Q ∈ Q[−M,M ],sym(L). ��

Our next aim is to estimate the function ε �→ δmax(ε,Q) for some classes of
distributions Q ⊂ QR,sym. To this end, we define the modulus of convexity
of a function f : I → R defined on some interval I by

δf (ε) := inf
{
f(x1) + f(x2)

2
− f
(x1 + x2

2

)
: x1, x2 ∈ I with |x1 − x2| ≥ ε

}
,

where ε > 0. In addition we say that f is uniformly convex if δf (ε) > 0
for all ε > 0. We refer to Section A.6.3 for some properties of the modulus of
convexity and uniformly convex functions.

With the help of the modulus of convexity, we can now formulate the
following theorem that estimates δmax,Lmean,L(ε,Q) and characterizes uniform
Lmean-calibration.

Theorem 3.50 (Uniform mean calibration). Let L be a symmetric, con-
vex loss with representing function ψ. Then the following statements are true:

i) For all M > 0, ε > 0, and Q∗
[−M,M ],sym ⊂ Q ⊂ Q[−M,M ],sym, we have

δψ|[−(2M+ε),2M+ε](2ε) ≤ δmax,Lmean,L(ε,Q) ≤ δψ|[−M/2,M/2](2ε) . (3.57)

Moreover, the following statements are equivalent:
a) L is uniformly Lmean-calibrated w.r.t. Q∗

[−M,M ],sym for all M > 0.
b) L is uniformly Lmean-calibrated w.r.t. Q[−M,M ],sym for all M > 0.
c) The function ψ is strictly convex.

ii) For all ε > 0, we have

δψ(2ε) = δmax,Lmean,L(ε,QR,sym(L)) = δmax(ε,Q∗
bounded,sym) . (3.58)

Moreover, the following statements are equivalent:
a) L is uniformly Lmean-calibrated with respect to Q(1)

R,sym(L).
b) L is uniformly Lmean-calibrated with respect to Q∗

bounded,sym.
c) The function ψ is uniformly convex.
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Proof. i). Let Q ∈ Q[−M,M ],sym. Then we have EQ ∈ [−M,M ], and hence
Lemmas 3.45 and 3.46 yield

δmax(ε,Q) =
∫

[−M,M ]

ψ
(
y − EQ− ε)+ ψ

(
y − EQ + ε

)
2

− ψ(y − EQ) dQ(y)

≥ δψ|[−(2M+ε),2M+ε](2ε).

This shows the first inequality of (3.57). To prove the second inequality, we
observe that it suffices to consider the case ε ≤ M/2 since for ε > M/2
we have δψ|[−M/2,M/2](2ε) = ∞. Let us now fix an n ≥ 1. Then there exist
s1, s2 ∈ [−M/2,M/2] with s1 − s2 ≥ 2ε and

ψ(s1) + ψ(s2)
2

− ψ
(
s1 + s2

2

)
< δψ|[−M/2,M/2](2ε) +

1
n

=: δ0 <∞ .

By the continuity of ψ, there thus exists an ε0 ∈ (0,M/2] such that (3.56) is
satisfied for δ0, and consequently Lemma 3.47 gives a Q ∈ Q∗

[−M,M ],sym with

CL,Q(EQ + t)− CL,Q(EQ) ≤ δψ|[−M/2,M/2](2ε) +
2
n
,

where t := s1−s2
2 . Using t ≥ ε and Lemma 3.46, we hence find

δmax(ε,Q∗
[−M,M ],sym) ≤ δmax(ε,Q) ≤ δψ|[−M/2,M/2](2ε) +

2
n
.

Since this holds for all n ≥ 1, the second inequality of (3.57) follows. Fi-
nally, from Lemma A.6.17, we know that ψ is strictly convex if and only if
δψ|[−B,B](ε) > 0 for all B and ε > 0, and hence the characterization follows.

ii). Analogously to the proof of the first inequality in (3.57), we find

δψ(2ε) ≤ δmax(ε,QR,sym(L)) , ε > 0.

Furthermore, analogously to the proof of the second inequality in (3.57), we
obtain

δmax(ε,Q∗
bounded,sym) ≤ δψ(2ε) , ε > 0,

and hence (3.58) is proved. Finally, the characterization is a trivial conse-
quence of (3.58). ��

The preceding theorem shows that the modulus of convexity completely
determines whether a symmetric loss is uniformly Lmean-calibrated with re-
spect to Q(1)

R,sym(L) or Q∗
bounded,sym. Unfortunately, Lemma A.6.19 shows that,

for all distance-based losses of upper growth type p < 2, we have δψ(ε) = 0
for all ε > 0. In particular, Lipschitz continuous, distance-based losses, which
are of special interest for robust regression methods (see Chapter 10), are not
uniformly calibrated with respect to Q(1)

R,sym(L) or Q∗
bounded,sym, and conse-

quently we cannot establish distribution independent relations between the
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Table 3.3. Some symmetric loss functions and corresponding upper and lower
bounds for the moduli of convexity δψ|[−B,B](2ε), 0 < ε ≤ B. The asymptotics for
the Lp-loss, 1 < p < 2, are computed in Exercise 3.12. For the Lp-loss, p ≥ 2, and
Huber’s loss, the lower bounds can be found by Clarkson’s inequality (see Lemma
A.5.24), and the upper bounds can be found by picking suitable t1, t2 ∈ [−B, B].
The calculations for the logistic loss can be found in Example 3.51.

Loss Function Lower Bound of δψ|[−B,B](2ε) Upper Bound of δψ|[−B,B](2ε)

L1-dist 0 0

Lp-dist, p ∈ (1, 2)
p(p−1)

2
Bp−2ε2

p
2(p−1)2

Bp−2ε2

Lp-dist, p ∈ [2,∞) εp εp

Lr-logist
1−e−ε

2
ln

eB+e2ε

eB+eε (1 − e−ε) ln
eB+e2ε

eB+eε

Lα-Huber, α>0
ε2

2
if B ≤ α

0 else

ε2

2
if B ≤ α

0 else

excess L-risks and RLmean,P( · ) in the sense of Question 3.2. On the other
hand, symmetric, strictly convex losses L are Lmean-calibrated with respect
to Q(1)

R,sym(L), and hence we can show analogously to Theorem 3.61 below
that fn → E(Y | · ) in probability PX whenever RL,P(fn)→ R∗

L,P and P is of

type Q(1)
R,sym(L). In addition, if we restrict our considerations to Q[−M,M ],sym

or Q∗
[−M,M ],sym, then every symmetric, strictly convex loss becomes uniformly

Lmean-calibrated, and in this case δψ|[−B,B]( · ), B > 0, can be used to describe
the corresponding calibration function. For some important losses, we have
listed the behavior of δψ|[−B,B]( · ) in Table 3.3. Furthermore, Lemma A.6.19
establishes a formula for the modulus of convexity that often helps to bound
the modulus. The following example illustrates this.

Example 3.51. Recall from Example 2.40 that the logistic loss for regres-
sion is the symmetric loss represented by ψ(t) := − ln 4et

(1+et)2 , t ∈ R. Let us
show, that for B > 0 and ε ∈ (0, B], we have

1− e−ε

2
ln
eB + e2ε

eB + eε
≤ δψ|[−B,B](2ε) ≤ (1− e−ε) ln

eB + e2ε

eB + eε
.

To see this, we first observe that ψ′(t) = et−1
et+1 for all t ∈ R, and hence we

obtain

ψ′(t)− ψ′(t− ε) =
et − 1
et + 1

− et − eε

et + eε
=

2et(eε − 1)
(et + 1)(et + eε)

for all t ∈ R and ε ≥ 0. Consequently, we have
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eε − 1
et + eε

≤ ψ′(t)− ψ′(t− ε) ≤ 2
eε − 1
et + eε

for all t ≥ 0 and ε ≥ 0. Furthermore, for ε > 0 an easy calculation gives

inf
x∈[0,B−ε]

∫ x+ε

x

eε − 1
et + eε

dt =
∫ B

B−ε

eε − 1
et + eε

dt = (1− e−ε)
(
t− ln
(
et+eε

))∣∣∣∣
B

t=B−ε

= (1− e−ε) ln
eB + e2ε

eB + eε
.

Using Lemma A.6.19 then yields the assertion. �

In Theorem 3.48, we have seen that for Q ∈ Q∗
R,sym(L) we may have

δmax(ε,Q) > 0, ε > 0, even if L is not strictly convex. The key reason for this
possibility was the assumption that Q has some mass around its center. Now
recall that in the proof of the upper bounds of Theorem 3.50 we used the fact
that for general Q ∈ Q∗

R,sym this mass can be arbitrarily small. However, if
we enforce lower bounds on this mass, the construction of this proof no longer
works. Instead, it turns out that we can establish lower bounds on δmax(ε,Q),
as the following example illustrates (see also Example 3.67).

Example 3.52. Recall that the absolute distance loss is the symmetric loss
represented by ψ(t) = |t|, t ∈ R. Then, for all Q ∈ Q(1)

R,sym and ε > 0, we have

δmax,Lmean,L1-dist(ε,Q) =
∫ ε

0

Q(EQ)
(
(−s, s)) ds . (3.59)

To see this, recall that for symmetric distributions the mean equals the me-
dian, i.e., the 1/2-quantile. Now (3.59) follows from Proposition 3.9. �

The results in this section showed that using symmetric surrogate losses for
regression problems requires some care: for example, let us suppose that the
primary goal of the regression problem is to estimate the conditional mean.
If we only know that the conditional distributions P( · |x), x ∈ X, have finite
variances (and expect these distributions to be rather asymmetric), then the
least squares loss is the only reasonable, distance-based choice by Proposition
3.44. However, if we know that these distributions are (almost) symmetric,
then symmetric, strictly convex, and Lipschitz continuous losses such as the
logistic loss can be reasonable alternatives. In addition, if we are confident
that these conditional distributions are also rather concentrated around their
mean, e.g., in the form of Q(EQ)((−s, s)) > cQs

q for small s > 0, then even
the absolute distance loss can be a good choice. Finally, if we additionally
expect that the data set contains extreme outliers, then the logistic loss or
the absolute distance loss may actually be a better choice than the least
squares loss. However, recall that such a decision only makes sense if the noise
distribution is (almost) symmetric.
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3.8 Surrogate Losses for the Density Level Problem

In this section, our goal is to find supervised loss functions that are calibrated
with respect to the density level detection loss LDLD introduced in Example
2.9. To this end, let us first recall that in the density level detection scenario
our learning goal was to identify the ρ-level set {g > ρ} of an unknown density
g : X → [0,∞) whose reference distribution μ on X is known. Unfortunately,
the loss LDLD formalizing this learning goal does depend on the unknown
density g, and thus we cannot compute its associated risks. Consequently,
our goal in this section is to find supervised surrogates for LDLD that do not
depend on g. At first glance, this goal seems to be rather impossible since
supervised losses require labels that do not exist in the description of the
DLD learning scenario. Therefore, our first goal is to resolve this issue by
introducing artificial labels. To this end, we need the following definition.

Definition 3.53. Let μ be a distribution on some X and Y := {−1, 1}. Fur-
thermore, let g : X → [0,∞) be measurable with ‖g‖L1(μ) = 1. Then, for
ρ > 0, we write gμ�ρ μ for the distribution P on X × Y that is defined by

PX :=
g + ρ

1 + ρ
μ ,

P(y = 1|x) :=
g(x)

g(x) + ρ
, x ∈ X.

An elementary calculation shows that for measurable A ⊂ X × Y we have

gμ�ρ μ (A) =
1

1 + ρ
Ex∼gμ1A(x, 1) +

ρ

1 + ρ
Ex∼μ1A(x,−1) , (3.60)

and hence P := gμ �ρ μ describes a binary classification problem in which
the negative samples are drawn from the distribution μ with probability ρ

1+ρ
and in which the positive samples are drawn from the distribution gμ with
probability 1

1+ρ .
We have already mentioned in Example 2.9 that we are primarily interested

in the quantity RLDLD,μ(f), which describes the discrepancy of the estimated
level set {f ≥ 0} to the true ρ-level set. Now observe that, for P := gμ �ρ μ
and measurable f : X → R, we have

RLDLD,μ(f) =
∫

X

LDLD(x, f(x)) dμ(x) =
∫

X

LDLD(x, f(x))
1 + ρ

g(x) + ρ
dPX(x) ,

and consequently we can describe the DLD learning scenario by P and the
detection loss L̄ : X ×R→ [0,∞) defined by

L̄(x, t) := LDLD(x, t)
1 + ρ

g(x) + ρ
, x ∈ X, t ∈ R. (3.61)

The first benefit of this reformulation is that our new target risk RL̄,P( · ) is
defined by a distribution P, which produces labels, and consequently it makes
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sense to look for supervised surrogates for L̄. Furthermore, we have access to
P via (3.60) in the sense that a) the distribution gμ can be estimated from
the unlabeled samples given in the DLD scenario, see Example 2.9, and b)
both μ and ρ are known. This makes it possible to construct an empirical
approximation of P that can then lead to learning algorithms based on this
approximation. For some literature in this direction, we refer to Section 2.5
and to the end of Section 8.6. The second benefit of considering the L̄-risk
is that P describes a classification problem, and hence it seems natural to a)
investigate L̄-calibration with the help of classification calibration and b) use
classification algorithms for the DLD learning scenario. In order to confirm
this intuition, let us consider the function L̄DLD : [0, 1]×R→ [0,∞) defined
by

L̄DLD(η, t) := (1− η)1(−∞,0)

(
(2η − 1) sign t

)
. (3.62)

Using the identification η = Q({1}) between η ∈ [0, 1] and Q ∈ QY , where
Y := {−1, 1}, we can regard the function L̄DLD as a template loss. For P =
gμ�ρ μ, the P-instance L̄DLD,P of L̄DLD then becomes

L̄DLD,P(x, t) = L̄DLD

(
P( · |x), t) = (1− η(x))1(−∞,0)

(
(2η(x)− 1) sign t

)
=

ρ

g(x) + ρ
1(−∞,0)

(
(g(x)− ρ) sign t

)
=

ρ

1 + ρ
L̄(x, t) ,

where we used η(x) := P(y = 1|x) = g(x)
g(x)+ρ . In other words, the P-instance

L̄DLD,P of L̄DLD equals our detection loss L̄ up to the constant ρ
1+ρ , and hence

we obtain
RLDLD,μ(f) = RL̄,P(f) =

1 + ρ

ρ
RL̄DLD,P,P(f) (3.63)

for P = gμ �ρ μ and all measurable functions f : X → R. Consequently,
suitable supervised surrogates for the DLD problem are exactly the losses
that are L̄DLD-calibrated in the following sense.

Definition 3.54. Let Y := {−1, 1} and L : Y × R → [0,∞) be a supervised
loss. We say that L is (uniformly) density level detection calibrated if
L is (uniformly) L̄DLD-calibrated with respect to QY .

In order to identify DLD-calibrated losses, we need to know the corre-
sponding calibration function. This function is computed in the next lemma.

Lemma 3.55 (Calibration function for DLD). Let L : Y × R → [0,∞)
be a supervised loss function. Then, for all η ∈ [0, 1] and ε ∈ (0,∞], we have

δmax,L̄DLD,L(ε, η) =

{
∞ if ε > 1− η
inft∈R:(2η−1) sign t<0 CL,η(t)− C∗L,η if ε ≤ 1− η.
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Proof. A simple calculation shows C∗̄
LDLD,η

= 0, and consequently we obtain
ML̄DLD,η(ε) = R if ε > 1− η, andML̄DLD,η(ε) = {t ∈ R : (2η − 1) sign t ≥ 0}
otherwise. From this we immediately find the assertion. ��

With the help of the preceding lemma, we now obtain the first main result,
which compares classification calibration with L̄DLD-calibration.

Theorem 3.56 (DLD-calibration). Let L : Y ×R→ [0,∞) be a supervised
loss and η ∈ [0, 1]. Then, for all 0 ≤ ε ≤ min{1− η, |2η − 1|}, we have

δmax,L̄DLD,L(ε, η) ≥ δmax,Lclass,L(ε, η) ,

and consequently L is DLD-calibrated if L is classification calibrated. More-
over, if L is continuous, then the inequality above becomes an equality and L
is classification calibrated if and only if L is DLD-calibrated.

Proof. Combining Lemma 3.55 with Lemma 3.32 yields

δmax,L̄DLD,L(ε, η) = inf
t∈R:

(2η−1) sign t<0

CL,η(t)− C∗L,η ≥ inf
t∈R:

(2η−1) sign t≤0

CL,η(t)− C∗L,η

= δmax,Lclass,L(ε, η) .

Now assume that L is continuous. Since there is nothing to prove for η = 1/2,
we additionally assume η �= 1/2. Then the assertion can be found by using
the continuity of t �→ CL,η(t) in the estimate above. ��

By the results on classification calibrated, margin-based losses from Section
3.4, we immediately obtain a variety of DLD-calibrated losses. Furthermore,
the P-instances of L̄DLD are bounded and hence Theorem 3.27 yields

RL,P(fn)→ R∗
L,P =⇒ RLDLD,μ(fn)→ 0

whenever P = gμ�ρ μ and L is classification calibrated. In addition, one can
show that for L := Lclass the converse implication is also true. For details, we
refer to Exercise 3.13.

Our next goal is to identify uniformly DLD-calibrated losses. The following
theorem gives a complete, though rather disappointing, solution.

Theorem 3.57 (No uniform DLD-calibration). There exists no super-
vised loss L : Y × R → [0,∞) that is uniformly L̄DLD-calibrated with respect
to both {Q ∈ QY : Q({1}) ∈ [0, 1/2)} and {Q ∈ QY : Q({1}) ∈ (1/2, 3/4]}. In
particular, there exists no uniform DLD-calibrated supervised loss.

Proof. Let L : Y ×R→ [0,∞) be a supervised loss. For η ∈ [0, 1], we define

g+(η) = inf
t<0
CL,η(t) and g−(η) = inf

t≥0
CL,η(t) .

Then the functions g+ : [0, 1]→ [0,∞) and g− : [0, 1]→ [0,∞) can be defined
by suprema taken over affine linear functions in η ∈ R, and since g+ and g−
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are also finite for η ∈ [0, 1], we find by Lemma A.6.4 that g+ and g− are
continuous at every η ∈ [0, 1]. Moreover, we have C∗L,η = min{g+(η), g−(η)}
for all η ∈ [0, 1], and hence C∗L,η is continuous in η. Let us first consider the case
C∗L,1/2 = g+(1/2). To this end, we first observe that there exists a sequence
(tn) ⊂ (−∞, 0) with

g+
(
1/2 + 1/n

) ≤ CL,1/2+1/n(tn) ≤ g+
(
1/2 + 1/n

)
+ 1/n (3.64)

for all n ≥ 1. Moreover, our assumption C∗L,1/2 = g+(1/2) yields∣∣CL,1/2+1/n(tn)− C∗L,1/2+1/n

∣∣ ≤ ∣∣CL,1/2+1/n(tn)− g+(1/2 + 1/n)
∣∣

+
∣∣g+
(
1/2 + 1/n

)− g+(1/2)
∣∣

+
∣∣C∗L,1/2 − C∗L,1/2+1/n

∣∣
for all n ≥ 1. By (3.64) and the continuity of g+ and η �→ C∗L,η, we hence find

lim
n→∞
∣∣CL,1/2+1/n(tn)− C∗L,1/2+1/n

∣∣ = 0 .

For Q :=
{
Q ∈ QY : Q({1}) ∈ (1/2, 3/4]

}
, Lemma 3.55, the definition g+,

and (3.64) then yield

δmax,L̄DLD,L(ε,Q) = inf
η∈( 1

2 , 3
4 ]
g+(η)− C∗L,η ≤ inf

n≥1
CL,1/2+1/n(tn)− C∗L,1/2+1/n

= 0 .

Consequently, L is not uniformly L̄DLD-calibrated with respect to Q. Finally,
in the case C∗L,1/2 = g−(1/2), we can analogously show that L is not uniformly
L̄DLD-calibrated with respect to {Q ∈ QY : Q({1}) ∈ [0, 1/2)}. ��

The preceding theorem shows that there exists no uniformly DLD-cali-
brated, supervised loss. Now recall that Theorem 3.24 showed that uniform
calibration is necessary to establish inequalities between excess risks if es-
sentially no assumptions on the data-generating distribution are imposed.1

Together with Theorem 3.57, we consequently see that it is impossible to
find a supervised loss L : Y × R → [0,∞) and an increasing function
δ : [0,∞]→ [0,∞] such that δ(0) = 0, δ(ε) > 0 for all ε > 0, and

δ
(RLDLD,μ(f)

) ≤ RL,P(f)−R∗
L,P (3.65)

for all μ, g, ρ, f , and P := gμ �ρ μ. However, in the DLD learning sce-
nario, we actually know μ and ρ, and hence the question remains whether for
certain fixed μ and ρ there exists a non-trivial function δ satisfying (3.65).
Unfortunately, Steinwart (2007) showed that the answer is again no.
1 Formally, the result only holds for loss functions and not template losses. However,

it is quite straightforward to see that the proof of Theorem 3.24 can be easily
modified to establish an analogous result for instances of template losses.
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3.9 Self-Calibrated Loss Functions

Given a loss L and a distribution P such that an exact minimizer f∗L,P of
RL,P( · ) exists, one may ask whether, and in which sense, approximate mini-
mizers f of RL,P( · ) approximate f∗L,P. For example, in binary classification,
one often wants to find a decision function f that not only has a small classi-
fication error but also estimates the conditional probability P(y = 1|x). Now
assume that we have found an f whose excess L-risk is small for a suitable
surrogate L of the classification loss (recall Section 3.4 for examples of such
surrogates). Assume further that the L-risk has a unique minimizer f∗L,P that,
in addition, has a one-to-one correspondence to the conditional probability.
If we have a positive answer to the question above, we can then use a suit-
able transformation of f(x) to estimate P(y = 1|x). An important example of
such a loss, namely the logistic loss for classification, is discussed in Example
3.66. Moreover, we will discuss how the pinball loss can be used to estimate
quantiles. The main goal of this section is, however, to provide some general
answers to the question above.

Let us begin by introducing some notation. To this end, let L : Y ×R→
[0,∞) be a supervised loss function for some Y ⊂ R closed. We write

Qmin(L) :=
{
Q : Q is a distribution on Y with ML,Q(0+) �= ∅} ,

Q1-min(L) :=
{
Q ∈ Qmin(L) : ∃ t∗L,Q ∈ R such thatML,Q(0+) = {t∗L,Q}

}
,

i.e., Qmin(L) contains the distributions on Y whose inner L-risks have an
exact minimizer, while Q1-min(L) contains the distributions on Y whose inner
L-risks have exactly one exact minimizer. Obviously, Q1-min(L) ⊂ Qmin(L)
holds, and for strictly convex losses L, both sets actually coincide. Moreover,
note that by Lemma 3.10 we have C∗L,Q < ∞ for all Q ∈ Qmin(L). For Q ∈
Qmin(L), we now define the self-calibration loss of L by

L̆(Q, t) := dist
(
t,ML,Q(0+)

)
:= inf

t′∈ML,Q(0+)
|t− t′| , t ∈ R, (3.66)

i.e., L̆(Q, t) measures the distance of t to the set of elements minimizing CL,Q.
The next lemma shows that the self-calibration loss is a template loss.

Lemma 3.58. Let Y ⊂ R be closed and L : Y ×R → [0,∞) be a supervised
loss. Then L̆ : Qmin(L)×R→ [0,∞) defined by (3.66) is a template loss.

Proof. Let X be a complete measurable space and P be a distribution on
X × Y with P( · |x) ∈ Qmin(L) for all x ∈ X. We write X̄ := X × R and
Z := R. Furthermore, for x̄ = (x, t) ∈ X̄ and t′ ∈ Z, we define

h(x̄, t′) := CL,P( · |x)(t′)− C∗L,P( · |x) ,

F (x̄) := {t∗ ∈ R : h(x̄, t∗) = 0} ,
and ϕ(x̄, t′) := |t− t′|. For the P-instance L̆P of L̆, we then have
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L̆P(x, t) = inf
t′∈ML,P( · |x)(0+)

|t− t′| = inf
t′∈F (x̄)

ϕ(x̄, t′) ,

and consequently we obtain the assertion by part iii) of Lemma A.3.18. ��
It is almost needless to say that the main statement of the preceding lemma

is the measurability of the instances of L̆. Now note that the definition of L̆
immediately gives C∗

L̆,Q
= 0, and therefore we have

ML̆,Q(ε) =
{
t ∈ R : L̆(Q, t) < ε

}
=
{
t ∈ R : ∃t′ ∈ML,Q(0+) with |t−t′| < ε

}
for all Q ∈ Qmin(L) and ε ∈ [0,∞]. Moreover, we have already mentioned in
Section 3.6 that the results of Lemma 3.14 remain true for template losses. By
(3.16), the self-calibration function δmax,L̆,L( · ,Q), which can be computed
by

δmax,L̆,L(ε,Q) = inf
t∈R

dist(t,ML,Q(0+))≥ε

CL,Q(t)− C∗L,Q (3.67)

for all ε ∈ [0,∞], thus satisfies

δmax,L̆,L

(
dist(t,ML,Q(0+)),Q

) ≤ CL,Q(t)− C∗L,Q , t ∈ R,

for all Q ∈ Qmin(L). Note that for Q ∈ Q1-min(L) this inequality becomes

δmax,L̆,L

(|t− t∗L,Q|,Q
) ≤ CL,Q(t)− C∗L,Q , t ∈ R,

whereML,Q(0+) = {t∗L,Q}. Consequently, the self-calibration function indeed
quantifies how well an approximate CL,Q-minimizer t approximates the exact
minimizer t∗L,Q. This motivates the following, main definition of this section.

Definition 3.59. Let L : Y × R → [0,∞) be a supervised loss function and
Q ⊂ Qmin(L). We say that L is (uniformly) self-calibrated with respect to
Q if L is (uniformly) L̆-calibrated with respect to Q.

Fortunately, convex loss functions are always self-calibrated, as the follow-
ing lemma shows.

Lemma 3.60 (Self-calibration of convex losses). Every convex loss func-
tion L : Y ×R→ [0,∞) is self-calibrated with respect to Qmin(L).

Proof. For a fixed distribution Q ∈ Qmin(L), we write tmin := infML,Q(0+)
and tmax := supML,Q(0+). Now the map t �→ CL,Q(t) − C∗L,Q is convex,
and thus it is decreasing on (−∞, tmin] and increasing on [tmax,∞). Further-
more, the convexity shows that ML,Q(0+) is an interval and hence we find
ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε} = (tmin − ε, tmax + ε), ε > 0. This gives

δmax,L̆,L(ε,Q) = inf
t�∈ML̆,Q(ε)

CL,Q(t)− C∗L,Q

= min
{
CL,Q(tmin − ε), CL,Q(tmax + ε)

}
− C∗L,Q (3.68)

> 0 ,

where we used the convention CL,Q(±∞) :=∞. ��
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It is easy to see by the results of Section 3.7 that in general convex losses
are not uniformly self-calibrated. Therefore, we usually cannot expect strong
inequalities in the sense of Theorem 3.22 for the self-calibration problem.
However, the following theorem shows that for general self-calibrated losses,
approximate risk minimizers approximate the Bayes decision functions in a
weak sense. Its consequences for convex losses are discussed in Corollary 3.62.

Theorem 3.61 (Asymptotic self-calibration). Let X be a complete mea-
surable space, L : Y × R → [0,∞) be a supervised loss that is self-calibrated
with respect to some Q ⊂ Qmin(L), and P be a distribution of type Q with
R∗

L,P < ∞. Then, for all ε > 0 and ρ > 0, there exists a δ > 0 such that for
all measurable f : X → R satisfying RL,P(f) < R∗

L,P + δ we have

PX

({
x ∈ X : dist

(
f(x),ML,P( · |x)(0+)

) ≥ ρ}) < ε .

Proof. For a fixed ρ > 0, we write Aρ = {(Q, t) ∈ Q × R : L̆(Q, t) ≥ ρ}.
By Lemma 3.58, we then see that L̄ := 1Aρ

defines a template loss function
whose P-instance L̄P is a detection loss with respect to h := 1X and A :=
{(x, t) ∈ X ×R : L̆(P( · |x), t) ≥ ρ}. Furthermore, we have

ML̄,Q(ε) =
{
t ∈ R : L̆(Q, t) < ρ

}
=ML̆,Q(ρ)

for all ε ∈ (0, 1] and Q ∈ Q, and thus we obtain

δmax,L̄,L(ε,Q) = δmax,L̆,L(ρ,Q) > 0 , ε ∈ (0, 1], Q ∈ Q.
Since calibration functions are increasing, we then find that L is L̄P-calibrated
with respect to Q. For ε > 0, Theorem 3.27 thus gives a δ > 0 such that for
f : X → R with RL,P(f) < R∗

L,P + δ we have

PX

({
x ∈ X : L̆P(x, f(x)) ≥ ρ}) = RL̄P,P(f)−R∗̄

LP,P < ε . ��
For convex losses L and distributions of Q1-min(L)-type, we obtain the

following consequence.

Corollary 3.62. Let X be a complete measurable space, L : Y ×R→ [0,∞)
be a convex, supervised loss, and P be a distribution of type Q1-min(L) with
R∗

L,P < ∞. Then there exists a PX-almost surely unique minimizer f∗L,P of
RL,P, and for all sequences (fn) of measurable fn : X → R, we have

RL,P(fn)−R∗
L,P → 0 =⇒ fn → f∗L,P in probability PX .

Proof. Lemma 3.12 together with the definition of Q1-min(L) shows that there
exists a PX -almost surely unique minimizer f∗L,P, and we thus find

L̆P(x, t) = |t− f∗L,P(x)| , x ∈ X, t ∈ R.

Theorem 3.61 together with Lemma 3.60 then yields fn → f∗L,P in probability
whenever the sequence (fn) satisfies RL,P(fn)→ R∗

L,P. ��
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Let us complete this discussion by describing situations in which we can
replace the convergence in probability by a stronger notion of convergence.

Theorem 3.63 (Self-calibration inequalities). Let X be a complete mea-
surable space, L : Y × R → [0,∞) be a supervised loss that is self-calibrated
with respect to some Q ⊂ Q1-min(L), and P be a distribution of type Q such
that R∗

L,P <∞. Moreover, assume that there exist a p ∈ (0,∞] and functions
b : X → [0,∞] and δ : [0,∞)→ [0,∞) such that

δmax,L̆,L(ε,P( · |x)) ≥ b(x) δ(ε) , ε > 0, x ∈ X,

and b−1 ∈ Lp(PX). For a fixed q ∈ (0,∞), we define δ̄ : [0,∞)→ [0,∞) by

δ̄(ε) := δ
p

p+1 (ε1/q) , ε ∈ [0,∞].

Then, for all measurable f : X → R and Bf := ‖f − f∗L,P‖q∞, we have

δ̄∗∗Bf

(‖f − f∗L,P‖qLq(PX)

) ≤ ‖b−1‖
p

p+1

Lp(PX)

(RL,P(f)−R∗
L,P

) p
p+1 ,

where δ̄∗∗Bf
: [0, Bf ]→ [0,∞] is the Fenchel-Legendre bi-conjugate of δ̄|[0,Bf ].

Proof. We write δ̂(ε) := δ(ε1/q) for ε ≥ 0, and L̄ := L̆q. Then L̄ is a template
loss by Lemma 3.58, and since ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε}, we find

δmax,L̄,L(ε,Q) = δmax,L̆,L(ε1/q,Q) ≥ b̂(x) δ(ε) ε > 0, Q ∈ Q.

Moreover, we have δ̂
p

p+1 = δ̄, and hence Theorem 3.25 applied to L̄ and δ̂
yields the assertion. ��

Note that if the function δ is of the form δ(ε) = εr for some r > 0 and we
consider q := pr

p+1 , then we obtain δ̄(ε) = ε. In this case, Theorem 3.63 yields

‖f − f∗L,P‖Lq(PX) ≤ ‖b−1‖1/r
Lp(PX)

(RL,P(f)−R∗
L,P

)1/r
. (3.69)

Moreover, if in this case we can only ensure b−1 ∈ Lp,∞(PX), then the norm
‖·‖Lq(PX) can be replaced by the Lorentz-norm ‖·‖Lq,∞(PX) defined in Section
A.5.5. For more details, we refer to Exercise 3.14.

The rest of this section applies the theory developed to some examples of
practical importance. We begin with the problem of estimating the conditional
probability P(y = 1|x) in classification, which has already been mentioned in
the introduction of this section and which will be revisited in Section 8.5.
To this end, we assume Y := {−1, 1} in the following. Our first goal is to
characterize situations when Qmin(L) = QY for margin-based losses L.

Lemma 3.64 (Minimizers of margin-based losses). Let L be a convex,
margin-based loss represented by ϕ : R → [0,∞). Then we have Qmin(L) =
QY if and only if ϕ has a global minimum.
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Proof. If ϕ does not have a minimum, CL,1( · ) = ϕ does not have a minimum,
i.e.,ML,1(0+) = ∅. Conversely, if ϕ has a minimum, the same argument shows
that ML,0(0+) = −ML,1(0+) �= ∅. Therefore, let us fix an η ∈ (0, 1). If ϕ is
constant, there is nothing to prove and hence we additionally assume that ϕ is
not constant. The convexity of ϕ then shows that we have limt→∞ ϕ(t) =∞ or
limt→−∞ ϕ(t) =∞. From this we immediately find CL,η(t)→∞ for t→ ±∞,
and since CL,η( · ) is continuous and convex, it thus has a global minimum. ��

Together with Lemma 3.60, the preceding lemma immediately gives the
following corollary that will be important when considering sparseness prop-
erties of support vector machines for classification in Section 8.5.

Corollary 3.65 (Self-calibration of margin-based losses). Let L be a
convex, margin-based loss whose representing function ϕ : R → [0,∞) has a
global minimum. Then L is self-calibrated with respect to QY .

With the help of Corollary 3.65, we see that the least squares loss and
the (squared) hinge loss are self-calibrated with respect to QY , whereas the
logistic loss is not. Furthermore, a simple calculation using Example 3.6 shows
that the least squares loss is actually uniformly self-calibrated with respect
to QY and that the corresponding uniform self-calibration function is

δmax,L̆lsquares,LLS
(ε,QY ) = ε2 , ε > 0 .

However, neither the truncated least squares loss nor the hinge loss are uni-
formly self-calibrated with respect to QY , as we discuss in Exercise 3.15.

Let us now return to the problem of estimating the conditional probability
η(x) = P(y = 1|x), x ∈ X. If we have a margin-based loss function L for
which there is a one-to-one transformation between the sets of minimizers
ML,η(0+) and η, then it seems natural to use self-calibration properties of
L to investigate whether suitably transformed approximate L-risk minimizers
approximate η. This approach is discussed in the following example.

Example 3.66. Exercise 3.2 shows that the logistic loss for classification
Lc-logist satisfies

MLc-logist,η(0+) =
{

ln
( η

1− η
)}

, η ∈ (0, 1).

In other words, if t∗η denotes the element contained in MLc-logist,η(0+), then
we have η = 1

1+e
−t∗η . Consequently, if t approximately minimizes CLc-logist,η( · ),

then it is close to t∗η by Lemma 3.60 and hence 1
1+e−t can serve as an estimate

of η. However, investigating the quality of this estimate by the self-calibration
function of Lc-logist causes some technical problems since Lc-logist is only self-
calibrated with respect to the distributions Q ∈ QY with Q({1}) �∈ {0, 1}.
Consequently, we now assess the quality of the estimate above directly. To
this end, we introduce a new loss L : QY ×R→ [0,∞), which we define by
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L(η, t) :=
∣∣∣η − 1

1 + e−t

∣∣∣ , η ∈ [0, 1], t ∈ R.

Then L is a template loss that measures the distance between η and its esti-
mate 1

1+e−t . Let us compute the calibration function of (L,Lc-logist). To this
end, we first observe that C∗L,η = 0 for all η ∈ [0, 1], and hence for ε > 0 an
elementary calculation shows that

ML,η(ε) = {t ∈ R : L(η, t) < ε}
=
{
t ∈ R : ln

(η − ε)+
1− η + ε

< t < ln
η + ε

(1− η − ε)+

}
,

where (x)+ := max{0, x} for x ∈ R and ln 0 := −∞. For Cη(∞) := Cη(−∞) :=
∞ and Cη(t) := CLc-logist,η(t)− C∗Lc-logist,η

, Lemma 3.15 thus shows that

δmax,L,Lc-logist(ε, η) = min
{
Cη
(
− ln
(1− η − ε

η + ε

)
+

)
, Cη
(

ln
( η − ε

1− η + ε

)
+

)}
.

From this we can conclude that δmax,L,Lc-logist(ε, η) = δmax,L,Lc-logist(ε, 1−η)
for all ε ≥ 0, η ∈ [0, 1]. Moreover, using the formulas of Exercise 3.2, we find

Cη
(

ln
( η − ε

1− η + ε

)
+

)
=

{
η ln η

η−ε + (1− η) ln 1−η
1−η+ε if ε < η

∞ otherwise

and

Cη
(
− ln
(1− η − ε

η + ε

)
+

)
=

{
η ln η

η+ε + (1− η) ln 1−η
1−η−ε if ε < 1− η

∞ otherwise.

In order to compare these expressions, let us write g(η) := η ln η
η−ε − η ln η

η+ε

for a fixed ε ∈ (0, 1/2) and all η with ε < η < 1− ε. Then we have

g(1− η) = (1− η) ln
1− η

1− η − ε − (1− η) ln
1− η

1− η + ε

and

g′(η) =
(η2 − ε2) ln η+ε

η−ε − 2εη

η2 − ε2 =:
gη(ε)
η2 − ε2 .

Now observe that gη(0) = 0 and g′η(ε) < 0 for all ε > 0, and hence we obtain
g′(η) < 0. Consequently, we have g(η) ≥ g(1− η), or in other words

η ln
η

η − ε + (1− η) ln
1− η

1− η + ε
≥ η ln

η

η + ε
+ (1− η) ln

1− η
1− η − ε ,

if and only if η ≤ 1
2 . Therefore, for η ∈ [0, 1/2], we find

δmax,L,Lc-logist(ε, η) =

{
η ln η

η+ε + (1− η) ln 1−η
1−η−ε if ε < 1− η

∞ otherwise.
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In order to investigate whether Lc-logist is L-calibrated with respect to QY ,
let us now find a simple lower bound of the calibration function above. To
this end, let hε(η) := η ln η

η+ε for η ∈ [0, 1/2] and ε ≥ 0. Then its derivative
satisfies

h′ε(η) = ln
η

η + ε
+

ε

η + ε
= ln
(
1− ε

η + ε

)
+

ε

η + ε
≤ − ε

η + ε
+

ε

η + ε
= 0 ,

and hence we find η ln η
η+ε ≥ 1

2 ln 1
1+2ε for all η ∈ [0, 1/2], ε ≥ 0. Analogously,

we obtain (1 − η) ln 1−η
1−η−ε ≥ ln 1

1−ε for η ∈ [0, 1/2], ε ∈ [0, 1 − η). Both
estimates together then yield

δmax,L,Lc-logist(ε, η) ≥
1
2

ln
1

1 + 2ε
+ ln

1
1− ε ≥ ε2

for all η ∈ [0, 1/2] and all ε ∈ [0, 1 − η). Consequently, Lc-logist is uni-
formly L-calibrated with respect to QY , and the calibration function satisfies
δmax(ε,QY ) ≥ ε2 for all ε ≥ 0. For the loss function L2, we thus obtain

δmax,L2,Lc-logist(ε,QY ) = δmax,L,Lc-logist(ε
1/2,QY ) ≥ ε , ε ≥ 0.

By Theorem 3.22, we then see that for all measurable f : X → R we have∫
X

∣∣∣η(x)− 1
1 + e−f(x)

∣∣∣2 dPX(x) ≤ RLc-logist,P(f)−R∗
Lc-logist,P

,

i.e., we can assess the quality of the estimate 1
1+e−f(x) in terms of ‖ · ‖2. �

Our last goal is to investigate the self-calibration properties of the τ -pinball
loss Lτ -pin. Proposition 3.9 showed that the minimizer of this convex super-
vised loss was the τ -quantile, and consequently Lτ -pin can be used to estimate
the conditional τ -quantile. However, so far we only have a rather weak justi-
fication in the sense of Theorem 3.61. The following example discusses some
conditions on the distribution P, which provides a stronger justification.

Example 3.67. For fixed τ ∈ (0, 1), let L := Lτ -pin be the τ-pinball loss
defined in Example 2.43. Furthermore, let Q be a distribution on R such that
|Q|1 <∞ and let t∗ be a τ -quantile of Q, i.e., we simultaneously have

Q
(
(−∞, t∗]) ≥ τ and Q

(
[t∗,∞)

) ≥ 1− τ . (3.70)

If t∗ is the only τ -quantile of Q, i.e., t∗ is uniquely defined by (3.70), then the
formulas of Proposition 3.9 show

δmax,L̆,L(ε,Q) = min
{
εq++
∫ ε

0

Q
(
(t∗, t∗+s)

)
ds, εq−+

∫ ε

0

Q
(
(t∗−s, t∗)) ds}

for all ε ≥ 0, where q+ and q− are the real numbers found in Proposition 3.9.
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Let us now denote the set of all distributions Q for which the inequalities
in (3.70) strictly hold by Q>0

τ . For Q ∈ Q>0
τ , we then have min{q+, q−} > 0

and hence t∗ is uniquely determined. Moreover, the self-calibration function
satisfies

δmax,L̆,L(ε,Q) ≥ cQ ε , ε ≥ 0, (3.71)

where cQ := min{q+, q−}. For a fixed distribution P of Q>0
τ -type, we now

define the function b : X → [0,∞) by b(x) := cP( · |x), x ∈ X, where cP( · |x)

denotes the constant in (3.71), which belongs to the conditional distribution
P( · |x). If we have b−1 ∈ Lp(PX), then Theorem 3.63, see also (3.69), shows

‖f − f∗τ,P‖Lq(PX) ≤ ‖b−1‖Lp(PX)

(RL,P(f)−R∗
L,P

)
(3.72)

for all measurable functions f : X → R, where f∗τ,P(x) denotes the τ -quantile
of P( · |x) and q := p

p+1 .
Although (3.72) provides a nice relationship between the excess pinball

risk and our goal of estimating the conditional quantile function f∗τ,P, the
distributions P of Q>0

τ -type seem a bit unrealistic for practical situations.
Therefore, let us finally consider a more realistic scenario. To this end, we fix
an α > 0 and say that a distribution Q with |Q|1 <∞ is of type Qα

τ if there
exists a τ -quantile t∗ of Q and a constant cQ > 0 such that

Q
(
(t∗, t∗ + s)

) ≥ cQ s and Q
(
(t∗ − s, t∗)) ≥ cQ s (3.73)

for all s ∈ [0, α]. Obviously, for such distributions, the τ -quantile t∗ is uniquely
determined. Moreover, if Q has a density hQ with respect to the Lebesgue
measure and this density satisfies hQ(t) ≥ cQ for all t ∈ [t∗ − α, t∗ + α], then
Q is of type Qα

τ . Let us now define δ : [0,∞)→ [0,∞) by

δ(ε) :=

{
ε2/2 if ε ∈ [0, α]
αε− α2/2 if ε > α .

Then a simple calculation yields

δmax,L̆,L(ε,Q) ≥ cQδ(ε) , ε ≥ 0,

for all Q ∈ Qα
τ , where cQ is the constant satisfying (3.73). For fixed p ∈ (0,∞],

we further define δ̄ : [0,∞) → [0,∞) by δ̄(ε) := δ
p

p+1 (ε
p+1

p ), ε ≥ 0. In view
of Theorem 3.63, we then need to find a convex function δ̂ : [0,∞) → [0,∞)
such that δ̂ ≤ δ̄. To this end, we define

δ̂(ε) :=

{
sp

pε
2 if ε ∈ [0, spap

]
ap

(
ε− sp+2

p ap

)
if ε > spap ,

where ap := αp/(p+1) and sp := 2−1/(p+1). An easy calculation shows that δ̂ :
[0,∞)→ [0,∞) is continuously differentiable with non-decreasing derivative.
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Consequently, δ̂ is convex. Moreover, since (ε
p+1

p − α/2)−
1

p+1 ε
1
p ≥ 1 we have

δ̂′ ≤ δ̄′ and hence we find δ̂ ≤ δ̄ by the fundamental theorem of calculus.
For a distribution P of Qα

τ -type, we now define the function b : X →
[0,∞) by b(x) := cP( · |x), x ∈ X, where cP( · |x) is determined by (3.73). If b
satisfies b−1 ∈ Lp(PX) for some p ∈ (0,∞], Theorem 3.63 together with our
considerations above shows

‖f − f∗τ,P‖Lq(PX) ≤
√

2 ‖b−1‖1/2
Lp(PX)

(RL,P(f)−R∗
L,P

)1/2 (3.74)

for q := p
p+1 and all f : X → R satisfying RL,P(f)−R∗

L,P ≤ 2−
p+2
p+1α

2p
p+1 . �

3.10 Further Reading and Advanced Topics

The idea of using a surrogate loss developed quite independently in statistics
and machine learning. Indeed, in statistics, its development was mainly mo-
tivated by the search for more robust estimation methods (see, e.g., Huber,
1964), in particular for regression problems. On the other hand, in machine
learning, surrogate losses were mainly considered as a trick to find faster clas-
sification algorithms. However, only very recently has the relation between
the risks of these surrogates and the classification risk been investigated. The
first observations on the set of minimizers were made by Lin (2002b). Later
he (see Lin, 2004, Theorem 3.1 and Lemma 4.1) established a result some-
what similar to Theorem 3.36 and a bound on the excess classification risk
that generalizes the widely known Theorem 2.2 from Devroye et al. (1996).
Independently of Lin, Zhang (2004b) established the first general inequalities
between the excess classification risk and the excess risks of margin-based sur-
rogate losses. Furthermore, he mentioned that some applications also require
estimating the conditional probability and concludes that some margin-based
losses, including the hinge loss, are not suited for this task. Another indepen-
dent result, established by Steinwart (2005), gives a sufficient condition for
continuous, supervised losses L that ensures an asymptotic relation (in the
sense of Question 3.1) between the excess classification risk and the excess L-
risk. However, the big breakthrough in understanding surrogate margin-based
losses was then made by Bartlett et al. (2006). In fact, all the main results
on classification calibrated, margin-based losses presented in Section 3.4 were
shown by these authors, though condition (3.40) was already investigated by
Mammen and Tsybakov (1999), and Tsybakov (2004) in the context of den-
sity level detection. We refer to Steinwart et al. (2005) and Steinwart (2007),
who translated their findings into the language of calibration inequalities.

Prior to Steinwart (2007), the only result for weighted classification (also
known as cost-sensitive classification) that deals with calibration issues was
presented by Lin et al. (2002), though weighted classification itself had been
considered earlier by, e.g., Elkan (2001). The presentation in Section 3.5 closely
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follows Steinwart’s work. Furthermore, there are recent results on surrogates
for multi-class classification that we have not presented here due to lack of
space. For more information, we refer to Lee et al. (2004), Zhang (2004a),
Tewari and Bartlett (2005), and the references therein.

Proposition 3.44, which shows the unique role of the least squares loss for
estimating the regression function, was independently found by Caponnetto
(2005) and Steinwart (2007). Besides the basic notions and examples, the rest
of Section 3.7 is based on the work of Steinwart (2007). Finally, it is worth
mentioning that the approach in Section 3.7 substantially differs from the
traditional maximum-likelihood motivation for the least squares loss already
used by Gauss. We refer to Schölkopf and Smola (2002) for a brief introduction
to the maximum-likelihood motivation and to Kardaun et al. (2003) for a
discussion on this motivation.

The asymptotic theory on surrogate losses developed in Section 3.2 is a
generalization of the results of Steinwart (2005). Moreover, the inequalities for
general surrogate losses established in Section 3.3 were deeply inspired by the
work of Bartlett et al. (2006). However, the key results of this section, namely
Theorem 3.22 and Theorem 3.25, can also be derived from Theorem 24 of
Zhang (2004a). Finally, a self-calibration result for classification calibrated
surrogates similar to Theorem 3.61 was already shown by Steinwart (2003).
In the presentation of all of these results, we closely followed Steinwart (2007).

3.11 Summary

In this chapter, we developed a general theory that allows us to a) identify
suitable surrogate loss functions and b) relate the excess risks of such surrogate
losses with the excess risks of the original (target) loss function. The main
concept of this theory was the calibration function, which compares the inner
excess risks of the losses involved. With the help of the calibration function,
we then introduced the notions of calibration and uniform calibration, which
(essentially) characterize how the excess risks involved can be compared. We
then applied the general theory to some important learning scenarios:

• Classification. Here we showed that, for margin-based losses, calibration
and uniform calibration are equivalent concepts. Furthermore, we devel-
oped a way to establish inequalities between the excess classification risk
and the excess risk of margin-based losses. We then established an easy
test to check whether a given convex , margin-based loss function is clas-
sification calibrated. Finally, we further simplified the computation of the
uniform calibration function for such losses.

• Weighted classification. We showed that a simple weighting method for
classification calibrated, margin-based loss functions produces loss func-
tions that are calibrated to the weighted classification scenario. With the
help of this weighting method, we then translated the major results on
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unweighted classification calibration into analogous results on weighted
classification calibration.

• Regression. Here we first showed that the least squares loss is essen-
tially the only distance-based loss that can be used to find the regression
function if one only knows that the average second moment of the noise
distributions is finite. For some large classes of symmetric noise distrib-
utions, we then characterized (uniformly) least squares calibrated losses.
Here it turned out that the convexity and related stronger notions play
a crucial role. In particular, we showed that for symmetric, unbounded
noise every uniformly least squares calibrated and symmetric loss must
grow at least as fast as the least squares loss, and consequently one cannot
avoid assuming the finiteness of the second moments for such distributions
and losses. Furthermore, we have seen that for slower-growing losses, such
as the absolute distance loss, the latter requirement can be replaced by
non-parametric assumptions on the concentration around the mean.

• Density level detection. We first showed that the DLD learning sce-
nario can be treated as a supervised learning problem that is similar to
a classification problem. It then turned out that every classification cal-
ibrated loss is DLD-calibrated. However, unlike for classification, there
exists no uniformly DLD-calibrated supervised loss, and consequently it is
impossible to establish inequalities between the DLD-risk and excess risks
of supervised surrogates without further assumptions on the density.

• Self-calibration. It is of both theoretical and practical interest whether
approximate risk minimizers approximate the true risk minimizer. In Sec-
tion 3.9, we developed a general framework to investigate this issue. In
particular, we showed that convex losses always guarantee a weak posi-
tive result. Finally, we applied the general theory to the logistic loss for
classification and the pinball loss.

The theory developed and its consequences for the learning scenarios above
will play an important role when we investigate the corresponding kernel-
based learning procedures in later chapters. However, it is worth mentioning
that the results of this chapter are algorithm independent, i.e., they can be
used for any algorithm whose surrogate risk performance is understood.

3.12 Exercises

3.1. Inner risks of the squared hinge loss (�)
Recall that in Example 2.28 we defined the squared hinge loss by L(y, t) :=
(max{0, 1− yt})2, y = ±1, t ∈ R. Using the definitions in (3.8), show that for
η ∈ [0, 1] we have C∗L,η = 4η(1− η) and

ML,η(0+) =

⎧⎪⎨
⎪⎩

(−∞,−1] if η = 0
{2η − 1} if 0 < η < 1
[1,∞) if η = 1 .
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Moreover, show that, for η ∈ [1/2, 1] and t ∈ R, the excess inner risk can be
computed by

CL,η(t)− C∗L,η =

⎧⎪⎨
⎪⎩

4η2 − 3η − 2ηt+ ηt2 if t ≤ −1
(t− 2η + 1)2 if t ∈ [−1, 1]
(1− η)(1 + 2t+ t2 − 4η) if t ≥ 1 .

3.2. Logistic loss for classification(�)
Recall that in Example 2.29 we defined the logistic loss for classification by
L(y, t) := ln(1+exp(−yt)), y = ±1, t ∈ R. Show the following formulas using
the notations in (3.8) and the convention 0 ln 0 := 0:

C∗L,η = −η ln(η)− (1− η) ln(1− η) ,
ML,η(0+) =

{
ln(η)− ln(1− η)} , if η �= 0, 1,

CL,η(t)− C∗L,η = η ln
(
η(1 + e−t)

)
+ (1− η) ln

(
(1− η)(1 + et)

)
.

3.3. Calibration function (�)
Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be loss functions,
Q be a distribution on Y , and x ∈ X with C∗Ltar,Q,x < ∞ and C∗Lsur,Q,x < ∞.
Assume that δ : [0,∞]→ [0,∞] is an increasing function with

δ
(CLtar,Q,x(t)− C∗Ltar,Q,x

) ≤ CLsur,Q,x(t)− C∗Lsur,Q,x , t ∈ R.

Show that δ(ε) ≤ δmax(ε,Q, x) for all ε ∈ [0,∞].
Hint: Assume the converse and use Lemma 3.14.

3.4. Characterization of calibration (���)
Prove Corollary 3.19.

Hint for ii) ⇒ i): Assume that Lsur is not Ltar-calibrated to construct a
“simple” distribution P that violates ii). Furthermore, use that the condition
R∗

Ltar,P
<∞ is automatically satisfied since Ltar is bounded.

3.5. Uniform calibration function (��)
Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be loss functions
and Q be a set of distributions on Y . Show that for all ε ∈ [0,∞] we have

δmax(ε,Q) = max
{
δ ≥ 0 :MLsur,Q,x(δ) ⊂MLtar,Q,x(ε) for all Q∈Q, x∈X} .

3.6. Uniformly calibrated supervised losses (����)
Let Ltar : Y × R → [0,∞) and Lsur : Y × R → [0,∞) be supervised loss
functions, X be a complete measurable space, and μ be a probability measure
on X. Assume that there exist mutually disjoint measurable subsets An ⊂ X
with μ(An) > 0 for all n ∈ N. Finally, let Q be a set of distributions on Y
such that C∗Ltar,Q

<∞ and C∗Lsur,Q
<∞ for all Q ∈ Q. Show that there exists

a distribution P on X × Y of type Q such that PX = μ and
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δmax(ε,Q) = inf
x∈X

δmax(ε,P( · |x), x) , ε ∈ [0,∞]. (3.75)

Hint: First show that U := {ε > 0 : δmax( · ,Q) not continuous at ε} is
at most countable. Then show equation (3.75) for an enumeration (εn)n∈N of
U ∪ {r ∈ Q : r ≥ 0}. Use this to conclude the general case.

3.7. Characterization of calibration for detection losses (���)
Prove Theorem 3.27 using the same idea as in Exercise 3.4.

3.8. Some more margin-based losses (��)
Determine the calibration function with respect to the classification loss for
the exponential loss given by ϕ(t) := exp(−t), t ∈ R, and the sigmoid loss
given by ϕ(t) := 1− tanh t, t ∈ R. Is the latter classification calibrated?

3.9. Inequalities for unweighted classification (��)
Use Theorems 3.34 and 3.22 to establish inequalities between the excess clas-
sification risk and the excess L-risk for L being the least squares loss, the
hinge loss, the squared hinge loss, and the logistic loss for classification. How
do these inequalities change when we additionally assume (3.40)?

3.10. Another weighted classification scenario (���)
Let h : X → [0,∞) be measurable. For the loss L : X × Y × R → [0,∞)
defined by L(x, y, t) := h(x)Lclass(y, t), perform the following tasks:

i) Investigate which margin-based losses are L-calibrated.
ii) When are L-calibrated margin-based losses uniformly L-calibrated?
iii) Given a margin-based loss represented by some ϕ, determine the calibra-

tion function for the loss (x, y, t) �→ h(x)ϕ(yt). Compare the results with
those for the unweighted version.

iv) Find some practical situations in which L may be of interest.

3.11. Asymptotic relation between excess risks revisited (��)
Show that in general a strictly positive calibration function is not sufficient
for the implication (3.18).

Hint: Assume that LLS is the target loss and that Lp-dist is the surrogate
loss for some p ∈ [1, 2). Furthermore, consider the distribution P on [0, 1)×R

with PX being the uniform distribution and P( · |x) = δ{0} for all x ∈ [0, 1].

3.12. Modulus of convexity for p-th power distance loss (���)
For p ∈ (1, 2), define ψ : R→ [0,∞) by ψ(t) := |t|p, t ∈ R. Show for all B > 0
and ε ∈ [0, B] that

p(p− 1)
2

Bp−2ε2 ≤ δψ|[−B,B](2ε) ≤
p

2(p− 1)2
Bp−2ε2 .

Hint: First show a sa−1 ≤ sa − (s − 1)a ≤ sa−1 for all 0 < a < 1 and all
s ≥ 1. Use this to estimate ψ′(t)− ψ′(t− ε), and then apply Lemma A.6.19.
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3.13. Reverse calibration for DLD (���)
Let μ be a probability measure on a measurable space X and Y := {−1, 1}.
Furthermore, let ρ > 0 and g : X → [0,∞) be a measurable function with
‖g‖L1(μ) = 1. Then, for P := gμ �ρ μ and all sequences (fn) of measurable
functions fn : X → R, we have

RLDLD,P(fn)→ 0 =⇒ RLclass,P(fn)→ R∗
Lclass,P

.

Hint: Compute the calibration function δmax,Lclass,L̄DLD
( · , · ) using Lemma

3.32. Then observe that μ({x ∈ X : η(x) = 1}) = 0 and use Corollary 3.19.

3.14. Another inequality for self-calibrated losses (���)
Let L : Y ×R→ [0,∞) be a supervised loss that is self-calibrated with respect
to some Q ⊂ Qmin(L) and P be a distribution on X × Y that is of type Q.
Assume further that there exist p > 0, q > 0, and a function b : X → [0,∞]
with b−1 ∈ Lp,∞(PX) and

δmax,L̆P,L(ε,P( · |x), x) ≥ εq b(x) , ε > 0, x ∈ X.
Show that for all measurable f : X → R we have

PX

({
x ∈ X : L̆P

(
x, f(x)

) ≥ ρ}) ≤ 2
(‖b−1‖p

(RL,P(f)−R∗
L,P

)
ρq

) p
p+1

.

If in addition RL,P( · ) has an almost surely unique minimizer f∗L,P, interpret
the result in terms of Lorentz norms and compare it with Theorem 3.63.

Hint: Use the set Aρ from the proof of Theorem 3.61 and apply Theorem
3.28.

3.15. Self-calibration of the (squared) hinge loss (���)
i) Show that the self-calibration function of the hinge loss is given by

δmax,L̆hinge,Lhinge
(ε, η) =

⎧⎪⎨
⎪⎩
ε min
{
η, 1− η, 2η − 1

}
if η �= 0, 1/2, 1

ε if η ∈ {0, 1}
∞ if η = 1/2

for all ε ∈ (0, 2], η ∈ [0, 1]. Is the hinge loss uniformly self-calibrated?
ii) Show that, for all distributions P on X × Y and all p ∈ (0,∞) and ε > 0,
there exists a δ > 0 such that for all measurable f : X → R we have

RLhinge,P(f)−R∗
Lhinge,P ≤ δ =⇒ ‖x �→ L̆hinge,P(x,

�
f(x))‖Lp(PX) ≤ ε,

where the clipping is at ±1. Compare this with Theorem 3.61. Find conditions
on P such that Theorem 3.25 gives inequalities for clipped functions.
iii) Use Exercise 3.1 and Equation (3.68) to show that the squared hinge loss
is not uniformly self-calibrated.

Hint: For the first implication in ii) use Theorem 3.17.
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Kernels and Reproducing Kernel Hilbert
Spaces

Overview. We saw in Section 1.3 that kernels and their feature spaces
are the devices by which the linear SVM approach produces non-linear
decision functions. However, so far we only have a vague notion of
kernels and hence we investigate them in more detail in this chapter.

Prerequisites. This chapter requires basic knowledge in functional
analysis, which is provided in Section A.5. Section 4.4 on Gaussian
kernels also needs some complex analysis from Section A.7.

Usage. Sections 4.1, 4.2, 4.3, and 4.6, which deal with the core mater-
ial on kernels, are essential for the rest of this book. Moreover, Section
4.4 is needed for binary classification discussed in Chapter 8.

As we have described in the introduction, one of the major steps in construct-
ing a support vector machine is mapping the input space X into a feature
space H that is equipped with an inner product. The benefit of this step is
that for non-linear feature maps Φ : X → H, support vector machines can
produce non-linear decision functions, although SVMs are only based on a lin-
ear discriminant approach. Furthermore, we have seen that SVMs only require
computing the inner products k(x, x′) := 〈Φ(x), Φ(x′)〉H rather than Φ itself.
Thus, instead of first constructing Φ and then computing the inner products,
one can use SVMs with efficiently computable functions k : X ×X → R that
realize inner products of (possibly unknown) feature maps. We called such
functions k kernels, and the approach described was called the kernel trick.
Of course, this trick immediately raises some questions:

• When is a function k : X ×X → R a kernel?
• How can we construct kernels?
• Given a kernel k, can we find a feature map and a feature space of k in a

constructive way?
• How much does the kernel trick increase the expressive power of support

vector machines?

The aim of this chapter is to answer these questions. To this end, we formal-
ize the definition of kernels in Section 4.1. Moreover, in this section we also
present some simple but useful examples of kernels. Then, in Section 4.2 we
describe a canonical form of feature spaces, the so-called reproducing kernel
Hilbert spaces. Basic properties of the functions contained in these spaces are
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presented in Section 4.3. Moreover, for an important type of kernel we deter-
mine these spaces explicitly in Section 4.4. In Section 4.5, we derive a specific
series representation for continuous kernels on compact spaces. Finally, in Sec-
tion 4.6 we describe a class of kernels for which SVMs have a large expressive
power.

4.1 Basic Properties and Examples of Kernels

In this section, we introduce the notions kernel, feature space, and feature map.
Then we show how to construct new kernels from given kernels and present
some important examples of kernels that will be used frequently in this book.
Finally, we establish a criterion that characterizes kernels with the help of
positive definite matrices related to these kernels.

Although in the context of machine learning one is originally only inter-
ested in real-valued kernels, we will develop the basic theory on kernels also
for complex-valued kernels. This more general approach does not require any
additional technical effort, but it will enable us in Section 4.4 to discover some
features of the Gaussian RBF kernels that are widely used in practice.

Before we begin with the basic definitions, let us recall that every complex
number z ∈ C can be represented in the form z = x+ iy, where x, y ∈ R and
i :=

√−1. Both x and y are uniquely determined, and in the following we
thus write Re z := x and Im z := y. Moreover, the conjugate of z is defined
by z̄ := x− iy and its absolute value is |z| := √zz̄ =

√
x2 + y2. In particular,

we have x̄ = x and |x| =
√
x2 for all x ∈ R. Furthermore, we use the symbol

K whenever we want to treat the real and the complex cases simultaneously.
For example, a K-Hilbert space H is a real Hilbert space when considering
K = R and a complex one when K = C. Recall from Definition A.5.8 that in
the latter case the inner product 〈 · , · 〉H : H × H → C is sesqui-linear, i.e.,
〈x, αx′〉H = ᾱ〈x, x′〉H , and anti-symmetric, i.e., 〈x, x′〉H = 〈x′, x〉H .

With the help of these preliminary considerations, we can now formalize
the notion of kernels.

Definition 4.1. Let X be a non-empty set. Then a function k : X×X → K is
called a kernel on X if there exists a K-Hilbert space H and a map Φ : X → H
such that for all x, x′ ∈ X we have

k(x, x′) = 〈Φ(x′), Φ(x)〉 . (4.1)

We call Φ a feature map and H a feature space of k.

Note that in the real case condition (4.1) can be replaced by the more
natural equation k(x, x′) = 〈Φ(x), Φ(x′)〉. In the complex case, however, 〈 · , · 〉
is anti-symmetric and hence (4.1) is equivalent to k(x, x′) = 〈Φ(x), Φ(x′)〉.

Given a kernel, neither the feature map nor the feature space are uniquely
determined. Let us illustrate this with a simple example. To this end, let
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X := R and k(x, x′) := xx′ for all x, x′ ∈ R. Then k is a kernel since obviously
the identity map idR on R is a feature map with feature space H := R.
However, the map Φ : X → R2 defined by Φ(x) := (x/

√
2, x/

√
2) for all

x ∈ X is also a feature map of k since we have

〈Φ(x′), Φ(x)〉 =
x′√
2
· x√

2
+
x′√
2
· x√

2
= xx′ = k(x, x′)

for all x, x′ ∈ X. Moreover, note that a similar construction can be made for
arbitrary kernels, and consequently every kernel has many different feature
spaces. Finally, a less trivial example for different feature maps and spaces is
discussed in Exercise 4.9.

Let us now present some commonly used kernels. To this end, we need
some methods to construct kernels from scratch. We begin with a simple but
instructive and fundamental observation.

Lemma 4.2. Let X be a non-empty set and fn : X → K, n ∈ N, be functions
such that (fn(x)) ∈ �2 for all x ∈ X. Then

k(x, x′) :=
∞∑

n=1

fn(x)fn(x′), x, x′ ∈ X, (4.2)

defines a kernel on X.

Proof. Using Hölder’s inequality for the sequence spaces �1 and �2, we obtain

∞∑
n=1

|fn(x)fn(x′)| ≤ ‖(fn(x))‖2 ‖(fn(x′))‖2 ,

and hence the series in (4.2) converges absolutely for all x, x′ ∈ X. Now, we
write H := �2 and define Φ : X → H by Φ(x) := (fn(x)), x ∈ X. Then (4.2)
immediately gives the assertion. ��

We will see in the following that almost all kernels we are interested in
have a series representation of the form (4.2). However, before we present some
examples of such kernels, we first need to establish some results that allow us
to construct new kernels from given ones. We begin with the following simple
lemma, whose proof is left as an exercise.

Lemma 4.3 (Restriction of kernels). Let k be a kernel on X, X̃ be a set,
and A : X̃ → X be a map. Then k̃ defined by k̃(x, x′) := k(A(x), A(x′)),
x, x′ ∈ X, is a kernel on X̃. In particular, if X̃ ⊂ X, then k|X̃×X̃ is a kernel.

For a kernel k : Cd × Cd → C, Lemma 4.3 shows that the restriction
k|Rd×Rd is a kernel in the complex sense. The following result shows that it is
also a kernel in the real sense if it satisfies k(x, x′) ∈ R for all x, x′ ∈ Rd.
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Lemma 4.4 (Real vs. complex kernels). Let k : X×X → C be a kernel,
H be a C-Hilbert space, and Φ : X → H be a feature map of k. Assume that
we have k(x, x′) ∈ R for all x, x′ ∈ X. Then H0 := H equipped with the inner
product

〈w,w′〉H0 := Re 〈w,w′〉H , w, w′ ∈ H0,

is an R-Hilbert space, and Φ : X → H0 is a feature map of k.

Proof. It is elementary to check that 〈 · , · 〉H0 is a real inner product. Further-
more, we obviously have

k(x, x′) =
〈
Φ(x′), Φ(x)

〉
H

= Re
〈
Φ(x′), Φ(x)

〉
H

+ i Im
〈
Φ(x′), Φ(x)

〉
H

for all x, x′ ∈ X. Consequently, k(x, x′) ∈ R shows Im 〈Φ(x′), Φ(x)〉H = 0 for
all x, x′ ∈ X, and hence we obtain the assertion. ��

Let us now establish some algebraic properties of the set of kernels on X.
We begin with a simple lemma, whose proof is again left as an exercise.

Lemma 4.5 (Sums of kernels). Let X be a set, α ≥ 0, and k, k1, and k2

be kernels on X. Then αk and k1 + k2 are also kernels on X.

The preceding lemma states that the set of kernels on X is a cone. It
is, however, not a vector space since in general differences of kernels are not
kernels. To see this, let k1 and k2 be two kernels on X such that k1(x, x) −
k2(x, x) < 0 for some x ∈ X. Then k1 − k2 is not a kernel since otherwise we
would have a feature map Φ : X → H of k1 − k2 with 0 ≤ 〈Φ(x), Φ(x)〉 =
k1(x, x)− k2(x, x) < 0. Let us now consider products of kernels.

Lemma 4.6 (Products of kernels). Let k1 be a kernel on X1 and k2 be a
kernel on X2. Then k1 · k2 is a kernel on X1×X2. In particular, if X1 = X2,
then k(x, x′) := k1(x, x′)k2(x, x′), x, x′ ∈ X, defines a kernel on X.

Proof. Let Hi be a feature space and Φi : Xi → Hi be a feature map of ki,
i = 1, 2. Using the definition of the inner product in the tensor product space
H1 ⊗H2 and its completion H1⊗̂H2, see Appendix A.5.2, we obtain

k1(x1, x
′
1) · k2(x2, x

′
2) =
〈
Φ1(x′1), Φ1(x1)

〉
H1
· 〈Φ2(x′2), Φ2(x2)

〉
H2

=
〈
Φ1(x′1)⊗ Φ2(x′2), Φ(x1)⊗ Φ2(x2)

〉
H1⊗̂H2

,

which shows that Φ1 ⊗ Φ2 : X1 × X2 → H1⊗̂H2 is a feature map of k1 · k2.
For the second assertion, we observe that k is a restriction of k1 · k2. ��

With the lemmas above, it is easy to construct non-trivial kernels. To
illustrate this, let us assume for simplicity that X := R. Then, for every
integer n ≥ 0, the map kn defined by kn(x, x′) := (xx′)n, x, x′ ∈ X, is a kernel
by Lemma 4.2. Consequently, if p : X → R is a polynomial of the form p(t) =
amt

m + · · ·+a1t+a0 with non-negative coefficients ai, then k(x, x′) := p(xx′),
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x, x′ ∈ X, defines a kernel on X by Lemma 4.5. In general, computing this
kernel needs its feature map Φ(x) := (

√
amx

m, . . . ,
√
a1x,
√
a0), x ∈ X, and

consequently the computational requirements are determined by the degree
m. However, for some polynomials, these requirements can be substantially
reduced. Indeed, if for example we have p(t) = (t+ c)m for some c > 0 and all
t ∈ R, then the time needed to compute k is independent of m. The following
lemma, whose proof is left as an exercise, generalizes this idea.

Lemma 4.7 (Polynomial kernels). Let m ≥ 0 and d ≥ 1 be integers and
c ≥ 0 be a real number. Then k defined by k(z, z′) := (〈z, z′〉+ c)m, z, z′ ∈ Cd,
is a kernel on Cd. Moreover, its restriction to Rd is an R-valued kernel.

Note that the polynomial kernels defined by m = 1 and c = 0 are called
linear kernels. Instead of using polynomials for constructing kernels, one
can use functions that can be represented by Taylor series. This is done in the
following lemma.

Lemma 4.8. Let B̊C and B̊Cd be the open unit balls of C and Cd, respectively.
Moreover, let r ∈ (0,∞] and f : rB̊C → C be holomorphic with Taylor series

f(z) =
∞∑

n=0

anz
n, z ∈ rB̊C . (4.3)

If an ≥ 0 for all n ≥ 0, then

k(z, z′) := f(〈z, z′〉)Cd =
∞∑

n=0

an〈z, z′〉nCd , z, z′ ∈ √rB̊Cd ,

defines a kernel on
√
rB̊Cd whose restriction to X := {x ∈ Rd : ‖x‖2 <

√
r}

is a real-valued kernel. We say that k is a kernel of Taylor type.

Proof. For z, z′ ∈ √rB̊Cd , we have |〈z, z′〉| ≤ ‖z‖2‖z′‖2 < r and thus k is well-
defined. Let zi denote the i-th component of z ∈ Cd. Since (4.3) is absolutely
convergent, the multinomial formula (see Lemma A.1.2) then yields

k(z, z′) =
∞∑

n=0

an

( d∑
j=1

zj z̄
′
j

)n
=

∞∑
n=0

an

∑
j1,...,jd≥0

j1+···+jd=n

cj1,...,jd

d∏
i=1

(ziz̄
′
i)

ji

=
∑

j1,...,jd≥0

aj1+···+jd
cj1,...,jd

d∏
i=1

(z̄′i)
ji

d∏
i=1

zji

i ,

where cj1,...,jd
:= n!∏d

i=1 ji!
. Let us define Φ : X → �2(Nd

0) by

Φ(z) :=
(√

aj1+···+jd
cj1,...,jd

d∏
i=1

z̄ji

i

)
j1,...,jd≥0

, z ∈ √rB̊Cd .

Then we have k(z, z′) = 〈Φ(z′), Φ(z)〉2(Nd
0) for all z, z′ ∈ √rB̊Cd , and hence k

is a kernel. The assertion for the restriction is obvious. ��
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With the help of Lemma 4.8 we can now present some more examples of
commonly used kernels.

Example 4.9. For d ∈ N and x, x′ ∈ Kd, we define k(x, x′) := exp(〈x, x′〉).
Then k is a K-valued kernel on Kd called the exponential kernel. �

Example 4.9 can be used to introduce the following kernel that is often
used in practice and will be considered in several parts of the book.

Proposition 4.10. For d ∈ N, γ > 0, z = (z1, . . . , zd) ∈ Cd, and z′ =
(z′1, . . . , z

′
d) ∈ Cd, we define

kγ,Cd(z, z′) := exp
(
−γ−2

d∑
j=1

(zj − z̄′j)2
)
.

Then kγ,Cd is a kernel on Cd, and its restriction kγ := (kγ,Cd)|Rd×Rd is an
R-valued kernel, which is called the Gaussian RBF kernel with width γ.
Moreover, kγ can be computed by

kγ(x, x′) = exp
(
−‖x− x

′‖22
γ2

)
, x, x′ ∈ Rd.

Proof. Let us fix z, z′ ∈ Cd. Decomposing kγ,Cd into

kγ,Cd(z, z′) =
exp(2γ−2〈z, z′〉)

exp
(
γ−2
∑d

j=1 z
2
j

)
exp
(
γ−2
∑d

j=1(z̄
′
j)2
)

and applying Lemmas 4.3 and 4.6, and Example 4.9 then yields the first
assertion. The second assertion is trivial. ��

Besides the Gaussian RBF kernel, many other R-valued kernels can be
constructed using Lemma 4.8. Here we only give one more example and refer
to Exercise 4.1 for some more examples.

Example 4.11. Let X := {x ∈ Rd : ‖x‖2 < 1} and α > 0. Then k(x, x′) :=
(1 − 〈x, x′〉)−α defines a kernel on X called a binomial kernel. Indeed, the
binomial series (1 − t)−α =

∑∞
n=0

(−α
n

)
(−1)ntn holds for all |t| < 1, where(

β
n

)
:=
∏n

i=1(β− i+1)/i. Now the assertion follows from
(−α

n

)
(−1)n > 0. �

The results above are based on Taylor series expansions. Instead of these
expansions, one can also employ Fourier series expansions for constructing
kernels. In the case K = R, the corresponding result reads as follows.

Lemma 4.12. Let f : [−2π, 2π] → R be a continuous function that can be
expanded in a pointwise convergent Fourier series of the form

f(t) =
∞∑

n=0

an cos(nt) . (4.4)

If an ≥ 0 holds for all n ≥ 0, then k(x, x′) :=
∏d

i=1 f(xi−x′i) defines a kernel
on [0, 2π)d. We say that k is a kernel of Fourier type.



4.1 Basic Properties and Examples of Kernels 117

Proof. By induction and Lemma 4.6, we may restrict ourselves to d = 1. Then,
letting t = 0 in (4.4), we get (an)n≥0 ∈ �1, and thus the definition of k yields

k(x, x′) = a0 +
∞∑

n=1

an sin(nx) sin(nx′) +
∞∑

n=1

an cos(nx) cos(nx′)

for all x, x′ ∈ [0, 2π). Now the assertion follows from Lemma 4.2. ��
The following two examples can be treated with the help of Lemma 4.12.

Example 4.13. For fixed 0 < q < 1 and all t ∈ [−2π, 2π], we define

f(t) :=
1− q2

2− 4q cos t+ 2q2
.

Then k(x, x′) :=
∏d

i=1 f(xi − x′i), x, x′ ∈ [0, 2π]d, is a kernel since we have
f(t) = 1/2 +

∑∞
n=1 q

n cos(nt) for all t ∈ [0, 2π]. �

Example 4.14. For fixed 1 < q <∞ and all t ∈ [−2π, 2π], we define

f(t) :=
πq cosh(πq − qt)

2 sinh(πq)
.

Then k(x, x′) :=
∏d

i=1 f(xi − x′i), x, x′ ∈ [0, 2π]d, is a kernel since we have
f(t) = 1/2 +

∑∞
n=1(1 + q−2n2)−1 cos(nt) for all t ∈ [0, 2π]. �

Although we have already seen several techniques to construct kernels, in
general we still have to find a feature space in order to decide whether a given
function k is a kernel. Since this can sometimes be a difficult task, we will now
present a criterion that characterizes R-valued kernels in terms of inequalities.
To this end, we need the following definition.

Definition 4.15. A function k : X ×X → R is called positive definite if,
for all n ∈ N, α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X, we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi) ≥ 0 . (4.5)

Furthermore, k is said to be strictly positive definite if, for mutually dis-
tinct x1, . . . , xn ∈ X, equality in (4.5) only holds for α1 = · · · = αn = 0.
Finally, k is called symmetric if k(x, x′) = k(x′, x) for all x, x′ ∈ X.

Unfortunately, there is no common use of the preceding definitions in
the literature. Indeed, some authors call positive definite functions positive
semi-definite, and strictly positive definite functions are sometimes called
positive definite. Moreover, for fixed x1, . . . , xn ∈ X, the n × n matrix
K := (k(xj , xi))i,j is often called the Gram matrix. Note that (4.5) is equi-
valent to saying that the Gram matrix is positive definite.
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Obviously, if k is an R-valued kernel with feature map Φ : X → H, then
k is symmetric since the inner product in H is symmetric. Moreover, k is also
positive definite since for n ∈ N, α1, . . . , αn ∈ R, and x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi) =
〈 n∑

i=1

αiΦ(xi),
n∑

j=1

αjΦ(xj)
〉

H

≥ 0 . (4.6)

Now the following theorem shows that symmetry and positive definiteness are
not only necessary for k to be a kernel but also sufficient.

Theorem 4.16 (Symmetric, positive definite functions are kernels).
A function k : X × X → R is a kernel if and only if it is symmetric and
positive definite.

Proof. In view of the discussion above, it suffices to show that a symmetric
and positive definite function k is a kernel. To this end, we write

Hpre :=
{ n∑

i=1

αik( · , xi) : n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X
}
,

and for f :=
∑n

i=1 αik( · , xi) ∈ Hpre and g :=
∑m

j=1 βjk( · , x′j) ∈ Hpre, we
define

〈f, g〉 :=
n∑

i=1

m∑
j=1

αiβjk(x′j , xi) .

Note that this definition is independent of the representation of f since we have
〈f, g〉 =

∑m
j=1 βjf(x′j). Furthermore, by the symmetry of k, we find 〈f, g〉 =∑n

i=1 αig(xi), i.e., the definition is also independent of the representation
of g. Moreover, the definition immediately shows that 〈 · , · 〉 is bilinear and
symmetric, and since k is positive definite, 〈 · , · 〉 is also positive, i.e., 〈f, f〉 ≥ 0
for all f ∈ Hpre. Conequently (see Exercise 4.3), 〈 · , · 〉 satisfies the Cauchy-
Schwarz inequality, i.e.,

|〈f, g〉|2 ≤ 〈f, f〉 · 〈g, g〉 , f, g ∈ Hpre .

Now let f :=
∑n

i=1 αik( · , xi) ∈ Hpre with 〈f, f〉 = 0. Then, for all x ∈ X, we
have

|f(x)|2 =
∣∣∣∣

n∑
i=1

αik(x, xi)
∣∣∣∣
2

=
∣∣〈f, k( · , x)〉∣∣2 ≤ 〈k( · , x), k( · , x)〉 · 〈f, f〉 = 0 ,

and hence we find f = 0. Therefore we have shown that 〈 · , · 〉 is an inner
product on Hpre. Let H be a completion of Hpre and I : Hpre → H be the
corresponding isometric embedding. Then H is a Hilbert space and we have

〈Ik( · , x′), Ik( · , x)〉H = 〈k( · , x′), k( · , x)〉Hpre = k(x, x′)

for all x, x′ ∈ X, i.e., x �→ Ik( · , x), x ∈ X, defines a feature map of k. ��
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The characterization above is often useful for checking whether a given
function is a kernel. Let us illustrate this with the following example.

Corollary 4.17 (Limits of kernels are kernels). Let (kn) be a sequence of
kernels on the set X that converges pointwise to a function k : X ×X → R,
i.e., limn→∞ kn(x, x′) = k(x, x′) for all x, x′ ∈ X. Then k is a kernel on X.

Proof. Every kn is symmetric and satisfies (4.5). Therefore, the same is true
for the pointwise limit k. ��

4.2 The Reproducing Kernel Hilbert Space of a Kernel

In this section, we will introduce reproducing kernel Hilbert spaces (RKHSs)
and describe their relation to kernels. In particular, it will turn out that the
RKHS of a kernel is in a certain sense the smallest feature space of this kernel
and consequently can serve as a canonical feature space.

Let us begin with the following fundamental definitions.

Definition 4.18. Let X �= ∅ and H be a K-Hilbert function space over X,
i.e., a K-Hilbert space that consists of functions mapping from X into K.

i) A function k : X × X → K is called a reproducing kernel of H if we
have k( · , x) ∈ H for all x ∈ X and the reproducing property

f(x) = 〈f, k( · , x)〉
holds for all f ∈ H and all x ∈ X.

ii) The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x ∈ X the Dirac functional δx : H → K defined by

δx(f) := f(x) , f ∈ H,
is continuous.

Note that L2(Rd) does not consist of functions and consequently it is not
an RKHS. For a generalization of this statement, we refer to Exercise 4.2.

Reproducing kernel Hilbert spaces have the remarkable and, as we will
see later, important property that norm convergence implies pointwise con-
vergence. More precisely, let H be an RKHS, f ∈ H, and (fn) ⊂ H be a
sequence with ‖fn − f‖H → 0 for n→∞. Then, for all x ∈ X, we have

lim
n→∞ fn(x) = lim

n→∞ δx(fn) = δx(f) = f(x) (4.7)

by the assumed continuity of the Dirac functionals. Furthermore, reproducing
kernels are actually kernels in the sense of Definition 4.1, as the following
lemma shows.
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Lemma 4.19 (Reproducing kernels are kernels). Let H be a Hilbert
function space over X that has a reproducing kernel k. Then H is an RKHS
and H is also a feature space of k, where the feature map Φ : X → H is given
by

Φ(x) = k( · , x) , x ∈ X.
We call Φ the canonical feature map.

Proof. The reproducing property says that each Dirac functional can be rep-
resented by the reproducing kernel, and consequently we obtain

|δx(f)| = |f(x)| = |〈f, k( · , x)〉| ≤ ‖k( · , x)‖H ‖f‖H (4.8)

for all x ∈ X, f ∈ H. This shows the continuity of the functionals δx, x ∈ X.
In order to show the second assertion, we fix an x′ ∈ X and write f :=

k( · , x′). Then, for x ∈ X, the reproducing property yields

〈Φ(x′), Φ(x)〉 = 〈k( · , x′), k( · , x)〉 = 〈f, k( · , x)〉 = f(x) = k(x, x′) . ��

We have just seen that every Hilbert function space with a reproducing
kernel is an RKHS. The following theorem now shows that, conversely, every
RKHS has a (unique) reproducing kernel, and that this kernel can be deter-
mined by the Dirac functionals.

Theorem 4.20 (Every RKHS has a unique reproducing kernel). Let
H be an RKHS over X. Then k : X ×X → K defined by

k(x, x′) := 〈δx, δx′〉H , x, x′ ∈ X,

is the only reproducing kernel of H. Furthermore, if (ei)i∈I is an orthonormal
basis of H, then for all x, x′ ∈ X we have

k(x, x′) =
∑
i∈I

ei(x)ei(x′) . (4.9)

Proof. We first show that k is a reproducing kernel. To this end, let I : H ′ →
H be the isometric anti-linear isomorphism derived from Theorem A.5.12
that assigns to every functional in H ′ the representing element in H, i.e.,
g′(f) = 〈f, Ig′〉 for all f ∈ H, g′ ∈ H ′. Then, for all x, x′ ∈ X, we have

k(x, x′) = 〈δx, δx′〉H′ = 〈Iδx′ , Iδx〉H = δx(Iδx′) = Iδx′(x) ,

which shows k( · , x′) = Iδx′ for all x′ ∈ X. From this we immediately obtain

f(x′) = δx′(f) = 〈f, Iδx′〉 = 〈f, k( · , x′)〉 ,

i.e., k has the reproducing property. Now let k̃ be an arbitrary reproducing
kernel of H. For x′ ∈ X, the basis representation of k̃( · , x′) then yields
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k̃( · , x′) =
∑
i∈I

〈k̃( · , x′), ei〉ei =
∑
i∈I

ei(x′)ei ,

where the convergence is with respect to ‖ · ‖H . Using (4.7), we thus obtain
(4.9) for k̃. Finally, since k̃ and (ei)i∈I were arbitrarily chosen, we find k̃ = k,
i.e., k is the only reproducing kernel of H. ��

Theorem 4.20 shows that an RKHS uniquely determines its reproducing
kernel, which is actually a kernel by Lemma 4.19. The following theorem
now shows that, conversely, every kernel has a unique RKHS. Consequently,
we have a one-to-one relation between kernels and RKHSs. In addition, the
following theorem shows that the RKHS of a kernel is in some sense the
smallest feature space, and hence it can be considered as the “natural” feature
space.

Theorem 4.21 (Every kernel has a unique RKHS). Let X �= ∅ and k be
a kernel over X with feature space H0 and feature map Φ0 : X → H0. Then

H :=
{
f :X → K

∣∣ ∃w ∈ H0 with f(x)=〈w,Φ0(x)〉H0 for all x ∈ X} (4.10)

equipped with the norm

‖f‖H := inf
{‖w‖H0 : w ∈ H0 with f = 〈w,Φ0( · )〉H0

}
(4.11)

is the only RKHS for which k is a reproducing kernel. Consequently, both
definitions are independent of the choice of H0 and Φ0. Moreover, the operator
V : H0 → H defined by

V w := 〈w,Φ0( · )〉H0 , w ∈ H0,

is a metric surjection, i.e. V B̊H0 = B̊H , where B̊H0 and B̊H are the open unit
balls of H0 and H, respectively. Finally, the set

Hpre :=
{ n∑

i=1

αik( · , xi) : n ∈ N, α1, . . . , αn ∈ K, x1, . . . , xn ∈ X
}

(4.12)

is dense in H, and for f :=
∑n

i=1 αik( · , xi) ∈ Hpre we have

‖f‖2H =
n∑

i=1

n∑
j=1

αiαjk(xj , xi) . (4.13)

Proof. Let us first show that H is a Hilbert function space over X. To this
end, observe that H is obviously a vector space of functions from X to K, and
V is a surjective linear operator. Furthermore, for all f ∈ H, we have

‖f‖H = inf
w∈V −1({f})

‖w‖H0 ,
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where V −1({f}) denotes the pre-image of f under V . Let us show that ‖ · ‖H
is a Hilbert space norm on H. To this end, let (wn) ⊂ kerV be a convergent
sequence in the null space kerV := {w ∈ H0 : V w = 0} of V and w ∈ H0

its limit. Then we have 〈w,Φ(x)〉 = limn→∞〈wn, Φ(x)〉 = 0 for all x ∈ X.
Since this shows w ∈ kerV , the null space kerV is a closed subspace of
H0. Let Ĥ denote its orthogonal complement so that we have the orthogonal
decomposition H0 = kerV ⊕ Ĥ. Then the restriction V|Ĥ : Ĥ → H of V to Ĥ
is injective by construction. Let us show that it is also surjective. To this end,
let f ∈ H and w ∈ H0 with f = V w. Since this w can be decomposed into
w = w0+ŵ for suitable w0 ∈ kerV and ŵ ∈ Ĥ, we get f = V (w0+ŵ) = V|Ĥŵ,
which shows the surjectivity of V|Ĥ . Furthermore, a similar reasoning gives

‖f‖2H = inf
w0∈ker V, ŵ∈Ĥ

w0+ŵ∈V −1({f})

‖w0 + ŵ‖2H0
= inf

w0∈ker V, ŵ∈Ĥ
w0+ŵ∈V −1({f})

‖w0‖2H0
+ ‖ŵ‖2H0

=
∥∥ (V|Ĥ)−1f

∥∥2
Ĥ
,

where (V|Ĥ)−1 denotes the inverse operator of V|Ĥ . From the equation above

and the fact that Ĥ is a Hilbert space, we can immediately deduce that
‖ · ‖H is a Hilbert space norm on H and that V|Ĥ : Ĥ → H is an isometric
isomorphism. Furthermore, from the definition of V and ‖ · ‖H , we can easily
conclude that V is a metric surjection.

Let us now show that k is a reproducing kernel of H. To this end, observe
that for x ∈ X we have k( · , x) = 〈Φ0(x), Φ0( · )〉 = V Φ0(x) ∈ H. Furthermore,
we have 〈w,Φ0(x)〉 = 0 for all w ∈ kerV , which shows Φ0(x) ∈ (kerV )⊥ = Ĥ.
Since V|Ĥ : Ĥ → H is isometric, we therefore obtain

f(x) =
〈
(V|Ĥ)−1f, Φ0(x)

〉
H0

=
〈
f, V|ĤΦ0(x)

〉
H

= 〈f, k( · , x)〉H
for all f ∈ H, x ∈ X, i.e., k has the reproducing property. By Lemma 4.19 we
conclude that H is an RKHS.

Let us now show that the assertions on Hpre are true for an arbitrary
RKHS H̃ for which k is a reproducing kernel. To this end, we first observe
that k( · , x) ∈ H̃ for all x ∈ X implies Hpre ⊂ H̃. Now let us suppose that
Hpre was not dense in H̃. This assumption yields (Hpre)⊥ �= {0}, and hence
there would exist an f ∈ (Hpre)⊥ and an x ∈ X with f(x) �= 0. Since this
would imply

0 = 〈f, k( · , x)〉 = f(x) �= 0 ,

we see that Hpre is dense in H̃. Finally, for f :=
∑n

i=1 αik( · , xi) ∈ Hpre, the
reproducing property implies

‖f‖2
H̃

=
n∑

i=1

n∑
j=1

αiαj

〈
k( · , xi), k( · , xj)

〉
H̃

=
n∑

i=1

n∑
j=1

αiαjk(xj , xi) .

Let us now prove that k has only one RKHS. To this end, let H1 and H2 be
two RKHSs of k. We have seen in the previous step that Hpre is dense in both
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H1 andH2 and that the norms ofH1 andH2 coincide onHpre. Let us choose an
f ∈ H1. Then there exists a sequence (fn) ⊂ Hpre with ‖fn−f‖H1 → 0. Since
Hpre ⊂ H2, the sequence (fn) is also contained in H2, and since the norms of
H1 and H2 coincide on Hpre, the sequence (fn) is a Cauchy sequence in H2.
Therefore, there exists a g ∈ H2 with ‖fn−g‖H2 → 0. Since convergence with
respect to an RKHS norm implies pointwise convergence, see (4.7), we then
find f(x) = g(x) for all x ∈ X, i.e., we have shown f ∈ H2. Furthermore,
‖fn − f‖H1 → 0 and ‖fn − f‖H2 → 0 imply

‖f‖H1 = lim
n→∞ ‖fn‖H1 = lim

n→∞ ‖fn‖Hpre = lim
n→∞ ‖fn‖H2 = ‖f‖H2 ,

i.e., H1 is isometrically included in H2. Since the converse inclusion H2 ⊂ H1

can be shown analogously, we obtain H1 = H2 with equal norms. ��
Theorem 4.21 describes the RKHS H of a given kernel k as the “smallest”

feature space of k in the sense that there is a canonical metric surjection V
from any other feature space H0 of k onto H. However, for kernelized algo-
rithms, it is more the specific form (4.10) that makes the RKHS important.
To illustrate this, recall from the introduction that the soft margin SVM pro-
duces decision functions of the form x �→ 〈w,Φ0(x)〉, where Φ0 : X → H0 is a
feature map of k and w ∈ H0 is a suitable weight vector. Now, (4.10) states
that the RKHS associated to k consists exactly of all possible functions of this
form. Moreover, (4.10) shows that this set of functions does not change if we
consider different feature spaces or feature maps of k.

Theorem 4.21 can often be used to determine the RKHS of a given kernel
and its modifications such as restrictions and normalization (see Exercise 4.4
for more details). To illustrate this, let us recall that every C-valued kernel
on X that is actually R-valued has an R-feature space by Lemma 4.4. The
following corollary of Theorem 4.21 describes the corresponding R-RKHS.

Corollary 4.22. Let k : X × X → C be a kernel and H its corresponding
C-RKHS. If we actually have k(x, x′) ∈ R for all x, x′ ∈ X, then

HR :=
{
f : X → R

∣∣ ∃ g ∈ H with Re g = f
}

equipped with the norm

‖f‖HR
:= inf
{‖g‖H : g ∈ H with Re g = f

}
, f ∈ HR,

is the R-RKHS of the R-valued kernel k.

Proof. We have already seen in Lemma 4.4 that H0 := H equipped with the
inner product

〈f, f ′〉H0 := Re 〈f, f ′〉H , f, f ′ ∈ H0,

is an R-feature space of the R-valued kernel k. Moreover, for f ∈ H0 and
x ∈ X, we have
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f(x) = 〈f, Φ(x)〉H = Re 〈f, Φ(x)〉H +i Im 〈f, Φ(x)〉H = 〈f, Φ(x)〉H0 +i Im f(x),

i.e., we have found 〈f, Φ(x)〉H0 = Re f(x). Now, the assertion follows from
Theorem 4.21. ��

Let us finally assume that we have an RKHSH with kernel k : Cd×Cd → C

whose restriction to Rd is R-valued, i.e., k|Rd×Rd : Rd × Rd → R. Then
combining the preceding corollary with Exercise 4.4 shows that

HR :=
{
f : Rd → R

∣∣ ∃ g : Cd → C with g ∈ H and Re g|Rd = f
}

equipped with the norm

‖f‖HR
:= inf
{‖g‖H : g ∈ H with Re g|Rd = f

}
, f ∈ HR,

is the R-RKHS of the restriction k|Rd×Rd .

4.3 Properties of RKHSs

Usually, a kernel has additional properties such as measurability, continuity,
or differentiability. In this section, we investigate whether the functions of its
associated RKHS share these properties.

Let us begin by observing that for a kernel k on X with RKHS H the
Cauchy-Schwarz inequality and the reproducing property imply

|k(x, x′)|2 =
∣∣〈k( · , x′), k( · , x)〉

H

∣∣2 ≤ ‖k( · , x′)‖2H · ‖k( · , x)‖2H
= k(x′, x′) · k(x, x) (4.14)

for all x, x′ ∈ X. This yields supx,x′∈X |k(x, x′)| = supx∈X k(x, x), and hence
k is bounded if and only if

‖k‖∞ := sup
x∈X

√
k(x, x) <∞ . (4.15)

Now, let Φ : X → H0 be a feature map of k. Then we find ‖Φ(x)‖H0 =√
k(x, x) for all x ∈ X, and hence Φ is bounded if and only if k is. The follow-

ing lemma provides another important characterization of bounded kernels.

Lemma 4.23 (RKHSs of bounded kernels). Let X be a set and k be a
kernel on X with RKHS H. Then k is bounded if and only if every f ∈ H is
bounded. Moreover, in this case the inclusion id : H → �∞(X) is continuous
and we have ‖ id : H → �∞(X)‖ = ‖k‖∞.

Proof. Let us first assume that k is bounded. Then the Cauchy-Schwarz in-
equality and the reproducing property imply

|f(x)| = |〈f, k( · , x)〉| ≤ ‖f‖H
√
k(x, x) ≤ ‖f‖H‖k‖∞
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for all f ∈ H, x ∈ X. Hence we obtain ‖f‖∞ ≤ ‖k‖∞‖f‖H for all f ∈ H, which
shows that id : H → �∞(X) is well-defined and ‖ id : H → �∞(X)‖ ≤ ‖k‖∞.

Conversely, let us now assume that every f ∈ H is bounded. Then the
inclusion id : H → �∞(X) is well-defined. Our first goal is to show that the
inclusion is continuous. To this end, we fix a sequence (fn) ⊂ H for which
there exist an f ∈ H and a g ∈ �∞(X) such that limn→∞ ‖fn − f‖H = 0 and
limn→∞ ‖ id fn − g‖∞ = 0. Then the first convergence implies fn(x) → f(x)
for all x ∈ X, while the second convergence implies fn(x) → g(x) for all
x ∈ X. We conclude f = g and hence id : H → �∞(X) is continuous by the
closed graph theorem, see Theorem A.5.4. For x ∈ X, we then have

|k(x, x)| ≤ ‖k( · , x)‖∞ ≤ ‖ id : H → �∞(X)‖ · ‖k( · , x)‖H = ‖ id ‖
√
k(x, x) ,

i.e.,
√
k(x, x) ≤ ‖ id ‖. This shows ‖k‖∞ ≤ ‖ id : H → �∞(X)‖. ��

Our next goal is to investigate measurable kernels and their integrability.
We begin with the following lemma.

Lemma 4.24 (RKHSs of measurable kernels). Let X be a measurable
space and k be a kernel on X with RKHS H. Then all f ∈ H are measurable
if and only if k( · , x) : X → R is measurable for all x ∈ X.

Proof. If all f ∈ H are measurable, then k( · , x) ∈ H is measurable for all
x ∈ X. Conversely, if k( · , x) is measurable for all x ∈ X, then all functions
f ∈ Hpre are measurable, where Hpre is defined by (4.12). Let us now fix
an f ∈ H. By Theorem 4.21, there then exists a sequence (fn) ⊂ Hpre with
limn→∞ ‖fn − f‖H = 0, and since all Dirac functionals are continuous, we
obtain limn→∞ fn(x) = f(x), x ∈ X. This gives the measurability of f . ��

The next lemma investigates the measurability of canonical feature maps.

Lemma 4.25 (Measurability of the canonical feature map). Let X be
a measurable space and k be a kernel on X such that k( · , x) : X → R is
measurable for all x ∈ X. If the RKHS H of k is separable, then both the
canonical feature map Φ : X → H and k : X ×X → R are measurable.

Proof. Let w ∈ H ′ be a bounded linear functional. By the Fréchet-Riesz
representation theorem (see Theorem A.5.12) there then exists an f ∈ H
with

〈w,Φ(x)〉H′,H = 〈f, Φ(x)〉H = f(x) , x ∈ X,
and hence 〈w,Φ( · )〉H′,H : X → R is measurable by Lemma 4.24. By Petti’s
measurability theorem (see Theorem A.5.19), we then obtain the measurabil-
ity of Φ. The second assertion now follows from k(x, x′) = 〈Φ(x′), Φ(x)〉 and
the fact that the inner product is continuous. ��

Our next goal is to investigate under which assumptions on the kernel k
the functions of its RKHS are integrable. To this end, recall that x �→ k(x, x)
is a non-negative function, and hence its integral is always defined, though in
general it may not be finite.
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Theorem 4.26 (Integral operators of kernels I). Let X be a measurable
space, μ be a σ-finite measure on X, and H be a separable RKHS over X with
measurable kernel k : X ×X → R. Assume that there exists a p ∈ [1,∞) such
that

‖k‖Lp(μ) :=
(∫

X

kp/2(x, x)dμ(x)
)1/p

<∞ . (4.16)

Then H consists of p-integrable functions and the inclusion id : H → Lp(μ) is
continuous with ‖ id : H → Lp(μ)‖ ≤ ‖k‖Lp(μ). Moreover, the adjoint of this
inclusion is the operator Sk : Lp′(μ)→ H defined by

Skg(x) :=
∫

X

k(x, x′)g(x′)dμ(x′) , g ∈ Lp′(μ), x ∈ X, (4.17)

where p′ is defined by 1
p + 1

p′ = 1. Finally, the following statements are true:

i) H is dense in Lp(μ) if and only if Sk : Lp′(μ)→ H is injective.
ii) Sk : Lp′(μ) → H has a dense image if and only if id : H → Lp(μ) is

injective.

Proof. Let us fix an f ∈ H. Using ‖k( · , x)‖H =
√
k(x, x), we then find∫

X

|f(x)|pdμ(x) =
∫

X

∣∣〈f, k( · , x)〉∣∣pdμ(x) ≤ ‖f‖pH
∫

X

kp/2(x, x)dμ(x) ,

which shows the first two assertions. Furthermore, for g ∈ Lp′(μ), inequality
(4.14) together with Hölder’s inequality yields∫

X

∣∣k(x, x′)g(x′)∣∣ dμ(x′) ≤
√
k(x, x)

∫
X

√
k(x′, x′) |g(x′)| dμ(x′)

≤
√
k(x, x) ‖k‖Lp(μ) ‖g‖Lp′ (μ) , (4.18)

and hence x′ �→ k(x, x′)g(x′) is integrable. In other words, the integral defining
Skg(x) exists for all x ∈ X. Moreover, since

√
k(x′, x′) = ‖Φ(x′)‖H , the second

inequality in (4.18) shows (x′ �→ ‖g(x′)Φ(x′)‖H) ∈ L1(μ), i.e., this function is
Bochner integrable and

ḡ :=
∫

X

g(x′)Φ(x′) dμ(x′) ∈ H .

Moreover, (A.32) applied to the bounded linear operator 〈 · , Φ(x)〉 : H → R

yields

Skg(x) =
∫

X

〈Φ(x′), Φ(x)〉H g(x′) dμ(x′) =
〈∫

X

g(x′)Φ(x′) dμ(x′), Φ(x)
〉

H

for all x ∈ X, and hence we conclude that Skg = ḡ ∈ H. For f ∈ H, another
application of (A.32) yields
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〈g, id f〉Lp′ (μ),Lp(μ) =
∫

X

g(x)
〈
f, k( · , x)〉

H
dμ(x) =

〈
f,

∫
X

g(x)k( · , x) dμ(x)
〉

H

= 〈f, Skg〉H
= 〈ιSkg, f〉H′,H ,

where ι : H → H ′ is the isometric isomorphism described in Theorem A.5.12.
By identifying H ′ with H via ι, we then find id′ = Sk. Finally, the last two
assertions follow from the fact that a bounded linear operator has a dense
image if and only if its adjoint is injective, as mentioned in Section A.5.1
around (A.19). ��

One may be tempted to think that the “inclusion” id : H → Lp(μ) is
always injective. However, since this map assigns every f to its equivalence
class [f ]∼ in Lp(μ), see (A.33), the opposite is true. To see this, consider for
example an infinite-dimensional RKHS (see Section 4.6 for examples of such
spaces) and an empirical measure μ. Then Lp(μ) is finite-dimensional and
hence the map id : H → Lp(μ) cannot be injective. For a simple condition
ensuring that id : H → Lp(μ) is injective, we refer to Exercise 4.6.

Let us now have a closer look at the case p = 2 in the preceding theorem.
The following theorem shows that in this case the Hilbert space structure of
L2(μ) provides some additional features of the operator Sk which will be of
particular interest in Chapter 7.

Theorem 4.27 (Integral operators of kernels II). Let X be a measurable
space with σ-finite measure μ and H be a separable RKHS over X with mea-
surable kernel k : X×X → R satisfying ‖k‖L2(μ) <∞. Then Sk : L2(μ)→ H
defined by (4.17) is a Hilbert-Schmidt operator with

‖Sk‖HS = ‖k‖L2(μ) . (4.19)

Moreover, the integral operator Tk = S∗
kSk : L2(μ) → L2(μ) is compact,

positive, self-adjoint, and nuclear with ‖Tk‖nuc = ‖Sk‖HS = ‖k‖L2(μ).

Proof. Let us first show that S∗
k : H → L2(μ) is a Hilbert-Schmidt operator.

To this end, let (ei)i≥1 be an ONB of H. By Theorem 4.20, we then find

∞∑
i=1

‖S∗
kei‖2L2(μ) =

∫
X

∞∑
i=1

|S∗
kei(x)|2 dμ(x) =

∫
X

∞∑
i=1

e2i (x) dμ(x) = ‖k‖2L2(μ) <∞,

i.e., S∗
k is indeed Hilbert-Schmidt with the desired norm. Consequently, Sk is

Hilbert-Schmidt, too. Now the remaining assertions follow from the spectral
theory recalled around Theorem A.5.13. ��

Since S∗
k = id : H → L2(μ), one may be tempted to think that the opera-

tors Tk and Sk are the same modulo their image space. However, recall that
in general L2(μ) does not consist of functions, and hence Skf(x) is defined,
while Tkf(x) is not .
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Our next goal is to investigate continuity properties of kernels. To this
end, we say that a kernel k on a topological space X is separately contin-
uous if k( · , x) : X → R is continuous for all x ∈ X. Now, our first lemma
characterizes RKHSs consisting of continuous functions.

Lemma 4.28 (RKHSs consisting of continuous functions). Let X be
topological space and k be a kernel on X with RKHS H. Then k is bounded and
separately continuous if and only if every f ∈ H is a bounded and continuous
function. In this case, the inclusion id : H → Cb(X) is continuous and we
have ‖ id : H → Cb(X)‖ = ‖k‖∞.

Proof. Let us first assume that k is bounded and separately continuous. Then
Hpre only contains continuous functions since k is separately continuous. Let
us fix an arbitrary f ∈ H. By Theorem 4.21, there then exists a sequence
(fn) ⊂ Hpre with limn→∞ ‖fn − f‖H = 0. Since k is bounded, this implies
limn→∞ ‖fn − f‖∞ = 0 by Lemma 4.23 and hence f , as a uniform limit of
continuous functions, is continuous. Finally, both the continuity of id : H →
Cb(X) and ‖ id : H → Cb(X)‖ = ‖k‖∞ follow from Lemma 4.23, too.

Conversely, let us now assume that H only contains continuous functions.
Then k( · , x) : X → K is continuous for all x ∈ X, i.e., k is separately con-
tinuous. Furthermore, the boundedness of k follows from Lemma 4.23. ��

Lemma 4.28 in particular applies to continuous kernels. Let us now discuss
these kernels in more detail. To this end, let k be a kernel on X with feature
map Φ : X → H. Then the kernel metric dk on X is defined by

dk(x, x′) := ‖Φ(x)− Φ(x′)‖H , x, x′ ∈ X. (4.20)

Obviously, dk is a pseudo-metric on X, and if Φ is injective it is even a metric.
Moreover, since

dk(x, x′) =
√
k(x, x)− 2k(x, x′) + k(x′, x′) , (4.21)

the definition of dk is actually independent of the choice of Φ. Furthermore,
the kernel metric can be used to characterize the continuity of k.

Lemma 4.29 (Characterization of continuous kernels). Let (X, τ) be a
topological space and k be a kernel on X with feature space H and feature map
Φ : X → H. Then the following statements are equivalent:

i) k is continuous.
ii) k is separately continuous and x �→ k(x, x) is continuous.
iii) Φ is continuous.
iv) id : (X, τ)→ (X, dk) is continuous.

Proof. i) ⇒ ii). Trivial.
ii)⇒ iv). By (4.21) and the assumptions, we see that dk( · , x) : (X, τ)→ R

is continuous for every x ∈ X. Consequently, {x′ ∈ X : dk(x′, x) < ε} is open
with respect to τ and therefore id : (X, τ)→ (X, dk) is continuous.
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iv) ⇒ iii). This implication follows from the fact that Φ : (X, dk)→ H is
continuous.

iii) ⇒ i). Let us fix x1, x
′
1 ∈ X and x2, x

′
2 ∈ X. Then we have

|k(x1, x
′
1)− k(x2, x

′
2)| ≤ |〈Φ(x′1), Φ(x1)− Φ(x2)〉|+ |〈Φ(x′1)− Φ(x′2), Φ(x2)〉|
≤ ‖Φ(x′1)‖·‖Φ(x1)−Φ(x2)‖+‖Φ(x2)‖·‖Φ(x′1)−Φ(x′2)‖,

and from this we can easily deduce the assertion. ��
As discovered by Lehto (1952), separately continuous, bounded kernels are

not necessarily continuous, even if one only considers X = [−1, 1]. However,
since his example is out of the scope of this book, we do not present it here.

We have seen in Lemma 4.23 that an RKHS over X is continuously in-
cluded in �∞(X) if its kernel is bounded. The next proposition gives a con-
dition that ensures that this inclusion is even compact. This compactness
will play an important role when we investigate the statistical properties of
support vector machines in Chapter 6.

Proposition 4.30 (RKHSs compactly included in �∞(X)). Let X be a
set and k be a kernel on X with RKHS H and canonical feature map Φ : X →
H. If Φ(X) is compact in H, then the inclusion id : H → �∞(X) is compact.

Proof. Since Φ(X) is compact, k is bounded and the space (X, dk) is compact,
where dk is the semi-metric defined in (4.20). We write C(X, dk) for the space
of functions from X to R that are continuous with respect to dk. Obviously,
C(X, dk) is a subspace of �∞(X). Moreover, for x, x′ ∈ X and f ∈ H, we
obtain

|f(x)− f(x′)| = |〈f, Φ(x)− Φ(x′)〉| ≤ ‖f‖H · dk(x, x′) ,

i.e., f is Lipschitz continuous on (X, dk) with Lipschitz constant not larger
than ‖f‖H . In particular, the unit ball BH of H is equicontinuous, and since
BH is also ‖ · ‖∞-bounded by the boundedness of k, the theorem of Arzelà-
Ascoli shows that BH is compact in C(X, dk) and thus in �∞(X). ��

Obviously, the proposition above remains true if one only assumes the
compactness of Φ(X) for an arbitrary feature map Φ. Furthermore, continu-
ous images of compact sets are compact, and hence Proposition 4.30 has the
following direct consequence.

Corollary 4.31. Let X be a compact topological space and k be a continuous
kernel on X with RKHS H. Then the inclusion id : H → C(X) is compact.

We emphasize that in general one cannot expect compactness of the inclu-
sion id : H → Cb(X) if k is bounded and continuous but X is not compact.
The following example illustrates this.
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Example 4.32. Let kγ be the Gaussian RBF kernel on R with width γ > 0
and RKHS Hγ(R). Obviously, kγ is bounded and continuous, and hence the
inclusion id : Hγ(R)→ Cb(R) is well-defined and continuous. Moreover, since
‖kγ‖∞ = 1, we also have kγ( · , x) ∈ BHγ(R) for all x ∈ R. However, for all
n,m ∈ N with n �= m, we obtain

‖kγ( · , n)− kγ( · ,m)‖∞ ≥ |kγ(n, n)− kγ(n,m)| ≥ |1− exp(−γ−2)| ,
and thus BHγ(R) cannot be relatively compact in Cb(R).

Let us end the discussion on continuous kernels with the following lemma
that gives a sufficient condition for the separability of RKHSs.

Lemma 4.33 (Separable RKHSs). Let X be a separable topological space
and k be a continuous kernel on X. Then the RKHS of k is separable.

Proof. By Lemma 4.29, the canonical feature map Φ : X → H into the
RKHS H of k is continuous and hence Φ(X) is separable. Consequently, Hpre,
considered in Theorem 4.21, is also separable, and hence so is H by Theorem
4.21. ��

Our last goal in this section is to investigate how the differentiability of
a kernel is inherited by the functions of its RKHS. In order to formulate the
next lemma, which to some extent is of its own interest, we need to recall
Banach space valued differentiation from Section A.5.3. Moreover, note that
we can interpret a kernel k : Rd × Rd → R as a function k̃ : R2d → R.
Consequently, considering the mixed partial derivative of the kernel k(x, x′)
with respect to the i-th coordinates in x and x′ is the same as considering
the mixed partial derivative ∂i∂i+dk̃ at (x, x′). In the following, we make this
identification implicitly by writing ∂i∂i+dk := ∂i∂i+dk̃. Moreover, we extend
this notation to kernels defined on open subsets of Rd in the obvious way.

Lemma 4.34 (Differentiability of feature maps). Let X ⊂ Rd be an
open subset, k be a kernel on X, H be a feature space of k, and Φ : X → H be
a feature map of k. Let i ∈ {1, . . . , d} be an index such that the mixed partial
derivative ∂i∂i+dk of k with respect to the coordinates i and i + d exists and
is continuous. Then the partial derivative ∂iΦ of Φ : X → H with respect to
the i-th coordinate exists, is continuous, and for all x, x′ ∈ X we have〈

∂iΦ(x), ∂iΦ(x′)
〉

H
= ∂i∂i+dk(x, x′) = ∂i+d∂ik(x, x′) . (4.22)

Proof. Without loss of generality, we may assume X = Rd. For h ∈ R and
ei ∈ Rd being the i-th vector of the canonical basis of Rd, we then define
ΔhΦ(x) := Φ(x+ hei)− Φ(x), x ∈ X. In order to show that ∂iΦ(x) exists for
an arbitrary x ∈ X, it obviously suffices to show that h−1

n Δhn
Φ(x) converges

for all sequences (hn) ⊂ Rd \ {0} with hn → 0. Since a feature space is
complete, it thus suffices to show that (h−1

n Δhn
Φ(x)) is a Cauchy sequence.

To this end, we first observe that
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n Δhn

Φ(x)− h−1
m Δhm

Φ(x)
∥∥2

H
=
〈
h−1

n Δhn
Φ(x), h−1

n Δhn
Φ(x)
〉

H

+
〈
h−1

m Δhm
Φ(x), h−1

m Δhm
Φ(x)
〉

H

−2
〈
h−1

n Δhn
Φ(x), h−1

m Δhm
Φ(x)
〉

H

for all x ∈ X and n,m ∈ N. For the functionK(x′) := k(x+hnei, x
′)−k(x, x′),

x′ ∈ X, we further have 〈Δhn
Φ(x),Δhm

Φ(x′)〉H = K(x′ +hmei)−K(x′), and
hence the mean value theorem yields a ξm,n ∈ [−|hm|, |hm|] such that〈

Δhn
Φ(x), h−1

m Δhm
Φ(x′)
〉

H

= ∂iK(x′ + ξm,nei)
= ∂i+dk(x+hnei, x

′+ξm,nei)− ∂i+dk(x, x′+ξm,nei).

Another application of the mean value theorem yields an ηm,n ∈ [−|hn|, |hn|]
such that〈

h−1
n Δhn

Φ(x), h−1
m Δhm

Φ(x′)
〉

H
= ∂i∂i+dk(x+ηm,nei, x

′+ξm,nei) .

By the continuity of ∂i∂i+dk, we conclude that for a given ε > 0 there exists
an n0 ∈ N such that for all n,m ≥ n0 we have∣∣∣〈h−1

n Δhn
Φ(x), h−1

m Δhm
Φ(x′)
〉

H
− ∂i∂i+dk(x, x′)

∣∣∣ ≤ ε . (4.23)

Applying (4.23) for x = x′ to the three terms on the right-hand side of our
first equation, we see that (h−1

n Δhn
Φ(x)) is a Cauchy sequence. By definition,

its limit is ∂iΦ, and the first equality in (4.22) is then a direct consequence of
(4.23). The second equality follows from the symmetry of k. ��

A direct consequence of the result above is that ∂i∂i+dk is a kernel on
X × X with feature map ∂iΦ. Now assume that even ∂j∂j+d∂i∂i+dk ex-
ists and is continuous. Then an iterated application of the preceding lemma
shows that ∂j∂iΦ exists, is continuous, and is a feature map of the ker-
nel ∂j∂j+d∂i∂i+dk. Obviously, we can further iterate this procedure if even
higher-order derivatives exist. In order to describe such situations, we write
∂α,α := ∂α1

1 . . . ∂αd

d ∂α1
1+d . . . ∂

αd

2d , where α = (α1, . . . , αd) ∈ Nd
0 is a multi-index

and arbitrary reorderings of the partial derivatives are allowed.

Definition 4.35. Let k be a kernel on an open X ⊂ Rd. For m ≥ 0, we say
that k is m-times continuously differentiable if ∂α,αk : X×X → R exists
and is continuous for all multi-indexes α ∈ Nd

0 with |α| ≤ m.

Iteratively applying Lemma 4.34 to an m-times continuously differentiable
kernel yields the following result.

Corollary 4.36 (RKHSs of differentiable kernels). Let X ⊂ Rd be an
open subset, m ≥ 0, and k be an m-times continuously differentiable kernel on
X with RKHS H. Then every f ∈ H is m-times continuously differentiable,
and for α ∈ Nd

0 with |α| ≤ m and x ∈ X we have∣∣∂αf(x)
∣∣ ≤ ‖f‖H · (∂α,αk(x, x)

)1/2
. (4.24)
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Proof. Let us write Φ : X → H for the canonical feature map of k. By
iteratively applying Lemma 4.34, we see that ∂αΦ : X → H is a feature map
of the kernel ∂α,αk : X × X → R. By the continuity of 〈f, · 〉H : H → R,
we then conclude that 〈f, ∂αΦ(x)〉H = ∂α〈f, Φ(x)〉H = ∂αf(x), i.e, the latter
partial derivative exists and is continuous. Finally, (4.24) follows from∣∣∂αf(x)

∣∣ = ∣∣〈f, ∂αΦ(x)〉H
∣∣ ≤ ‖f‖H ·√〈∂αΦ(x), ∂αΦ(x)〉H (4.25)

and an iterated application of (4.22) to the right-hand side of (4.25). ��

4.4 Gaussian Kernels and Their RKHSs

The goal of this section is to use the developed theory on RKHSs to investi-
gate the Gaussian RBF kernels and their RKHSs in more detail. In particular,
we will present two representations of these RKHSs and discuss some conse-
quences. We begin, however, with a simple result that describes the effect of
the kernel parameter γ on the input domain.

Proposition 4.37. Let X ⊂ Rd be a non-empty subset and s, γ > 0 be real
numbers. Given a function f : sX → R, we define τsf(x) := f(sx) for x ∈ X.
Then, for all f ∈ Hsγ(sX), we have τsf ∈ Hγ(X), and the corresponding
linear operator τs : Hsγ(sX)→ Hγ(X) is an isometric isomorphism.

Proof. We define Φ : X → Hsγ(sX) by Φ(x) := Φsγ(sx), where x ∈ X and
Φsγ : sX → Hsγ(sX) is the canonical feature map of ksγ , i.e., Φsγ(y) =
ksγ( · , y) for all y ∈ sX. For x, x′ ∈ X, we then have

〈Φ(x′), Φ(x)〉Hsγ(sX) = 〈Φsγ(sx′), Φsγ(sx)〉Hsγ(sX) = ksγ(sx′, sx)

= exp
(−(sγ)−2‖sx−sx′‖22

)
= kγ(x, x′) ,

and hence Φ : X → Hsγ(sX) is a feature map of kγ : X×X → R. Let us now
fix an f ∈ Hsγ(sX). By Theorem 4.21, we then know that 〈f, Φ( · )〉Hsγ(sX) ∈
Hγ(X) and ∥∥ 〈f, Φ( · )〉Hsγ(sX)

∥∥
Hγ(sX)

≤ ‖f‖Hsγ(X) .

Moreover, for x ∈ X, the reproducing property in Hsγ(sX) yields

〈f, Φ(x)〉Hsγ(sX) = 〈f, Φsγ(sx)〉Hsγ(sX) = f(sx) = τsf(x) ,

and hence we have found τsf ∈ Hγ(X) with ‖τsf‖Hγ(X) ≤ ‖f‖Hsγ(sX). Fi-
nally, we obtain the converse inequality by applying the results above to the
dilation operator τ1/s. ��

Portions of Section 4.4 are based on material originally published in “I. Steinwart,
D. Hush, and C. Scovel (2006), ‘An explicit description of the reproducing kernel
Hilbert spaces of Gaussian RBF kernels.’ IEEE Trans. Inf. Theory, 52, 4635–
4643”
c© 2006 IEEE. Reprinted, with permission.
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Roughly speaking, the preceding proposition states that scaling the kernel
parameter has the same effect on the RKHSs as scaling the input space.
Considering the definition of the Gaussian RBF kernels, this is not really
surprising.

Our next goal is to determine an explicit formula for the RKHSs of
Gaussian RBF kernels. To this end, let us fix γ > 0 and d ∈ N. For a given
holomorphic function f : Cd → C, we define

‖f‖γ,Cd :=
( 2d

πdγ2d

∫
Cd

|f(z)|2eγ−2∑d
j=1(zj−z̄j)

2
dz
)1/2

, (4.26)

where zj is the j-th component of z ∈ Cd, z̄j its conjugate, and dz stands for
the complex Lebesgue measure on Cd. Furthermore, we write

Hγ,Cd :=
{
f : Cd → C | f holomorphic and ‖f‖γ,Cd <∞} . (4.27)

Obviously, Hγ,Cd is a C-vector space with pre-Hilbert norm ‖ · ‖γ,Cd . Now,
our first result shows that Hγ,Cd is the RKHS of the complex Gaussian RBF
kernel kγ,Cd defined in Proposition 4.10.

Theorem 4.38 (RKHS of the complex Gaussian RBF). Let γ > 0 and
d ∈ N. Then (Hγ,Cd , ‖·‖H

γ,Cd
) is an RKHS and kγ,Cd is its reproducing kernel.

Furthermore, for n ∈ N0, let en : C→ C be defined by

en(z) :=
√

2n

γ2nn!
zne−γ−2z2

, z ∈ C . (4.28)

Then the system (en1⊗· · ·⊗end
)n1,...,nd≥0 of functions en1⊗· · ·⊗end

: Cd → C

defined by

en1 ⊗ · · · ⊗ end
(z1, . . . , zd) :=

d∏
j=1

enj
(zj) , (z1, . . . , zd) ∈ Cd,

is an orthonormal basis of Hγ,Cd .

For the proof of Theorem 4.38, we need the following technical lemma.

Lemma 4.39. For all d ∈ N, all holomorphic functions f : Cd → C, all
r1, . . . , rd ∈ [0, 1), and all z ∈ Cd, we have

|f(z)|2 ≤ 1
(2π)d

2π∫
0

· · ·
2π∫
0

∣∣f(z1 + r1e
iθ1 , . . . , zd + rde

iθd)
∣∣2dθ1 · · · dθd , (4.29)

where i :=
√−1 denotes the imaginary unit.
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Proof. We proceed by induction over d. For d = 1, Hardy’s convexity theorem
(see Theorem A.7.3) states that the function

r �→ 1
2π

∫ 2π

0

∣∣f(z + reiθ)
∣∣2dθ

is non-decreasing on [0, 1), and hence we obtain the assertion in this case.
Now let us suppose that we have already shown the assertion for d ∈ N.

Let f : Cd+1 → C be a holomorphic function, and choose r1, . . . , rd+1 ∈ [0, 1).
Since for fixed (z1, . . . , zd) ∈ Cd the function zd+1 �→ f(z1, . . . , zd, zd+1) is
holomorphic, we already know that

|f(z1, . . . , zd+1)|2 ≤ 1
2π

∫ 2π

0

∣∣f(z1, . . . , zd, zd+1 + rd+1e
iθd+1)
∣∣2dθd+1 .

Now applying the induction hypothesis to the holomorphic functions

(z1, . . . , zd) �→ f(z1, . . . , zd, zd+1 + rd+1e
iθd+1)

on Cd gives the assertion for d+ 1. ��
Proof (of Theorem 4.38). We first prove that Hγ,C is an RKHS. To this end,
we begin by showing that for all compact subsets K ⊂ Cd there exists a
constant cK > 0 with

|f(z)| ≤ cK ‖f‖γ,Cd , z ∈ K, f ∈ Hγ,Cd . (4.30)

In order to establish (4.30), we define

c := max{e−γ−2∑d
j=1(zj−z̄j)

2
: (z1, . . . , zd) ∈ K + (BC)d} ,

where BC denotes the closed unit ball of C. Now, by Lemma 4.39, we have

2dr1 · · · rd|f(z)|2 ≤ r1 · · · rd
πd

2π∫
0

· · ·
2π∫
0

∣∣f(z1 + r1e
iθ1 , . . . , zd + rde

iθd)
∣∣2dθ1 · · · dθd,

and integrating this inequality with respect to r = (r1, . . . , rd) over [0, 1)d

then yields

|f(z)|2 ≤ 1
πd

∫
z+(BC)d

|f(z′)|2dz′ ≤ c

πd

∫
z+(BC)d

|f(z′)|2eγ−2∑d
j=1(z

′
j−z̄′

j)
2
dz′

≤ cγ2d

2d
‖f‖2γ,Cd , z ∈ K,

by the continuity of f . This means that we have established (4.30). Now,
(4.30) obviously shows that the Dirac functionals are bounded on Hγ,Cd . Fur-
thermore, (4.30) also shows that convergence in ‖ · ‖γ,C implies compact con-
vergence, i.e., uniform convergence on every compact subset. Using the fact
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that a compactly convergent sequence of holomorphic functions has a holo-
morphic limit (see, e.g., Theorem A.7.2), we then immediately find that Hγ,Cd

is complete. Therefore Hγ,Cd is an RKHS.
To show that the system (en1 ⊗ · · · ⊗ end

)n1,...,nd≥0 is an ONB of Hγ,Cd ,
we first consider the case d = 1. To this end, we observe that for n ∈ N0 we
have ∫

C

zn(z̄)ne−2γ−2zz̄dz =
∫ ∞

0

r

∫ 2π

0

r2ne−2γ−2r2
dθdr

= 2π
∫ ∞

0

r2n+1e−2γ−2r2
dr

=
πγ2(n+1)

2n+1

∫ ∞

0

tne−tdt

=
πγ2(n+1)n!

2n+1
, (4.31)

where in the last step we used the gamma function, see Section A.1. Further-
more, for n,m ∈ N0 with n �= m, a simple calculation gives∫

C

zn(z̄)me−2γ−2zz̄dz =
∫ ∞

0

r

∫ 2π

0

rn+mei(n−m)θe−2γ−2r2
dθdr = 0 . (4.32)

In addition, for z, z̄ ∈ C and n,m ≥ 0, we have

en(z)em(z)eγ−2(z−z̄)2 =

√
2n+m

n!m! γ2(n+m)
zn(z̄)me−γ−2z2−γ−2z̄2

eγ−2(z−z̄)2

=

√
2n+m

n!m! γ2(n+m)
zn(z̄)me−2γ−2zz̄ ,

and consequently we obtain

〈en, em〉 =
2
πγ2

∫
C

en(z)em(z)eγ−2(z−z̄)2dz =

{
1 if n = m

0 otherwise

by (4.31) and (4.32), i.e., (en)n≥0 is an ONS. Now, let us show that this system
is actually an ONB. To this end, let f ∈ Hγ,C. Then z �→ eγ−2z2

f(z) is an
entire function, and therefore there exists a sequence (an) ⊂ C such that

f(z) =
∞∑

n=0

anz
ne−γ−2z2

=
∞∑

n=0

an

√
γ2nn!

2n
en(z) (4.33)

for all z ∈ C. Obviously, it suffices to show that the convergence above also
holds with respect to ‖·‖γ,C. To prove this, we first recall from complex analysis
that the series in (4.33) converges absolutely and compactly. Therefore, for
n ≥ 0 equations (4.31), (4.32), and (4.33) yield
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〈f, en〉 =
2
πγ2

∫
C

f(z)en(z)eγ−2(z−z̄)2dz

=
2
πγ2

∞∑
m=0

am

∫
C

zme−γ−2z2
en(z)eγ−2(z−z̄)2dz

=
2
πγ2

√
2n

γ2nn!

∞∑
m=0

am

∫
C

zm(z̄)ne−2γ−2zz̄dz

= an

√
γ2nn!

2n
. (4.34)

Furthermore, since (en) is an ONS, there exists a function g ∈ Hγ,C with
g =
∑∞

n=0〈f, en〉en, where the convergence takes place in Hσ,C. Now, using
(4.33), (4.34), and the fact that norm convergence in RKHSs implies point-
wise convergence, we find g = f , i.e., the series in (4.33) converges with respect
to ‖ · ‖σ,C.

Now, let us briefly treat the general, d-dimensional case. In this case, a
simple calculation shows

〈en1 ⊗ · · · ⊗ end
, em1 ⊗ · · · ⊗ emd

〉H
γ,Cd

=
d∏

j=1

〈enj
, emj

〉Hγ,C
,

and hence we find the orthonormality of (en1 ⊗ · · · ⊗ end
)n1,...,nd≥0. In order

to check that this orthonormal system is an ONB, let us fix an f ∈ Hσ,Cd .
Then z �→ f(z) exp(σ2

∑d
i=1 z

2
i ) is an entire function, and hence there exist

an1,...,nd
∈ C, (n1, . . . , nd) ∈ Nd

0, such that

f(z) =
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

zni
i e

−σ2z2
i

=
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

√
ni!

(2σ2)ni
eni

(z)

for all z = (z1, . . . , zd) ∈ Cd. From this we easily derive

〈f, en1 ⊗ · · · ⊗ end
〉 = an1,...,nd

d∏
i=1

√
ni!

(2σ2)ni
.

Now we see that (en1⊗· · ·⊗end
)n1,...,nd≥0 is an ONB as in the one-dimensional

case.
Finally, let us show that kγ,Cd is the reproducing kernel of Hγ,Cd . To this

end, we write k for the reproducing kernel of Hγ,Cd . Then (4.9) and the Taylor
series expansion of the exponential function yield
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k(z, z′) =
∞∑

n1,...,nd=0

en1 ⊗ · · · ⊗ end
(z)en1 ⊗ · · · ⊗ end

(z′)

=
∞∑

n1,...,nd=0

d∏
j=1

2nj

γ2njnj !
(zj z̄

′
j)

nje−γ−2z2
j−γ−2(z̄′

j)
2

=
d∏

j=1

∞∑
nj=0

2nj

γ2njnj !
(zj z̄

′
j)

nje−γ−2z2
j−γ−2(z̄′

j)
2

=
d∏

j=1

e−γ−2z2
j−γ−2(z̄′

j)
2+2γ−2zj z̄′

j

= e−γ−2∑d
j=1(zj−z̄′

j)
2
. ��

With the help of Theorem 4.38, we can obtain some interesting information
on the RKHSs of the real-valued Gaussian RBF kernels kγ . Let us begin with
the following corollary that describes their RKHSs.

Corollary 4.40 (RKHS of Gaussian RBF). For X ⊂ Rd and γ > 0, the
RKHS Hγ(X) of the real-valued Gaussian RBF kernel kγ on X is

Hγ(X) =
{
f : X → R | ∃ g ∈ Hγ,Cd with Re g|X = f

}
,

and for f ∈ Hγ(X) the norm ‖ · ‖Hγ(X) in Hγ(X) can be computed by

‖f‖Hγ(X) = inf
{‖g‖γ,Cd : g ∈ Hγ,Cd with Re g|X = f

}
.

Proof. The assertion directly follows from Theorem 4.38, Proposition 4.10,
and the discussion following Corollary 4.22. ��

The preceding corollary shows that every f ∈ Hγ(X) of the Gaussian RBF
kernel kγ originates from the complex RKHS Hγ,Cd , which consists of entire
functions. Consequently, every f ∈ Hγ(X) can be represented by a power
series that converges on Rd. This observation suggests that there may be an
intimate relationship between Hγ(X) and Hγ(Rd) if X contains an open set.
In order to investigate this conjecture, we need some additional notation. For a
multi-index ν := (n1, . . . , nd) ∈ Nd

0, we write |v| := n1+· · ·+nd. Furthermore,
for X ⊂ R and n ∈ N0, we define eX

n : X → R by

eX
n (x) :=

√
2n

γ2nn!
xne−γ−2x2

, x ∈ X , (4.35)

i.e., we have eX
n = (en)|X = (Re en)|X , where en : C → C is an element

of the ONB of Hγ,C defined by (4.28). Furthermore, for a multi-index ν :=
(n1, . . . , nd) ∈ Nd

0, we write

eX
ν := eX

n1
⊗ · · · ⊗ eX

nd
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and eν := en1 ⊗ · · · ⊗ end
. Given an x := (x1, . . . , xd) ∈ Rd, we also adopt the

notation xν := xn1
1 · . . . ·xnd

d . Finally, recall that �2(Nd
0) denotes the set of all

real -valued square-summable families, i.e.,

�2(Nd
0) :=

{
(aν)ν∈Nd

0
: aν ∈ R for all ν ∈ Nd

0 and ‖(aν)‖22 :=
∑

ν∈Nd
0

a2
ν <∞

}
.

With the help of these notations, we can now show an intermediate result.

Proposition 4.41. Let γ > 0, X ⊂ Rd be a subset with non-empty interior,
i.e., X̊ �= ∅, and f ∈ Hγ(X). Then there exists a unique element (bν) ∈ �2(Nd

0)
such that

f(x) =
∑

ν∈Nd
0

bνe
X
ν (x) , x ∈ X, (4.36)

where the convergence is absolute. Furthermore, for all functions g : Cd → C,
the following two statements are equivalent:

i) We have g ∈ Hγ,Cd and Re g|X = f .
ii) There exists an element (cν) ∈ �2(Nd

0) with

g =
∑

ν∈Nd
0

(bν + icν)eν . (4.37)

Finally, we have the identity ‖f‖2Hγ(X) =
∑

ν∈Nd
0
b2ν .

Proof. i)⇒ ii). Let us fix a g ∈ Hγ,Cd with Re g|X = f . Since (eν) is an ONB
of Hγ,Cd , we then have

g =
∑

ν∈Nd
0

〈g, eν〉 eν ,

where the convergence is with respect to Hγ,Cd . In addition, recall that the
family of Fourier coefficients is square-summable and satisfies Parseval’s iden-
tity, see Lemma A.5.11,

‖g‖2H
γ,Cd

=
∑

ν∈Nd
0

∣∣〈g, eν〉
∣∣2 .

Since convergence in Hγ,Cd implies pointwise convergence, we then obtain

f(x) = Re g|X(x) = Re

( ∑
ν∈Nd

0

〈g, eν〉 eν(x)

)
=
∑

ν∈Nd
0

Re
(〈g, eν〉)eX

ν (x)

for all x ∈ X, where in the last step we used eν(x) ∈ R for x ∈ X. In
order to prove ii), it consequently remains to show that bν := Re 〈g, eν〉 only
depends on f but not on g. To this end, let g̃ ∈ Hγ,Cd be another function
with Re g̃|X = f . By repeating the argument above for g̃, we then find
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f(x) =
∑

ν∈Nd
0

Re
(〈g̃, eν〉)eX

ν (x) , x ∈ X.

Using the definition (4.35) of eX
n , we then obtain∑

ν∈Nd
0

Re
(〈g̃, eν〉

)
aν x

ν =
∑

ν∈Nd
0

Re
(〈g, eν〉) aν x

ν , x ∈ X,

where aν := an1 · · · and
and an :=

(
2n

γ2nn!

)1/2. Since X has a non-empty inte-
rior, the identity theorem for power series and aν �= 0 then give Re 〈g̃, eν〉 =
Re 〈g, eν〉 for all ν ∈ Nd

0. This shows both (4.36) and (4.37). Finally, Corollary
4.40 and Parseval’s identity give

‖f‖2Hγ(X) = inf
{‖g‖γ,Cd : g ∈ Hγ,Cd with Re g|X = f

}
= inf

{ ∑
ν∈Nd

0

b2ν + c2ν : (cν) ∈ �2(Nd
0)

}

=
∑

ν∈Nd
0

b2ν .

ii)⇒ i). Since (bν) ∈ �2(Nd
0) and (cν) ∈ �2(Nd

0) imply
(|bν+icν |

) ∈ �2(Nd
0),

we have g ∈ Hγ,Cd . Furthermore, Re g|X = f follows from

Re g(x) = Re
∑

ν∈Nd
0

(bν + icν)eν(x) =
∑

ν∈Nd
0

bνe
X
ν (x) = f(x) , x ∈ X.

��
With the help of the preceding proposition, we can now establish our main

result on Hγ(X) for input spaces X having a non-empty interior. Roughly
speaking, this result states that Hγ(X) is isometrically embedded into Hγ,Cd

via a canonical extension procedure based on a specific ONB of Hγ(X).

Theorem 4.42 (ONB of real Gaussian RKHS). Let γ > 0 and X ⊂ Rd

be a subset with a non-empty interior. Furthermore, for an f ∈ Hγ(X) repre-
sented by (4.36), we define

f̂ :=
∑

ν∈Nd
0

bνeν .

Then the extension operator ˆ: Hγ(X)→ Hγ,Cd defined by f �→ f̂ satisfies

Re f̂|X = f ,

‖f̂‖H
γ,Cd

= ‖f‖Hγ(X)

for all f ∈ Hγ(X). Moreover, (eX
ν ) is an ONB of Hγ(X), and for f ∈ Hγ(X)

having the representation (4.36), we have bν = 〈f, eXν 〉 for all ν ∈ Nd
0.
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Proof. By (4.36), the extension operator is well-defined. The identities then
follow from Proposition 4.41 and Parseval’s identity. Moreover, the extension
operator is obviously R-linear and satisfies êX

ν = eν for all ν ∈ Nd
0. Conse-

quently, we obtain

‖eX
ν1
± eX

ν2
‖Hγ(X) = ‖êX

ν1
± êX

ν2
‖H

γ,Cd
= ‖eν1 ± eν2‖Hγ,Cd

for ν1, ν2 ∈ Nd
0. Using the first polarization identity of Lemma A.5.9, we then

see that (eX
ν ) is an ONS in Hγ(X). To see that it actually is an ONB we fix

an f ∈ Hγ(X). Furthermore, let (bν) ∈ �2(Nd
0) be the family that satisfies

(4.36). Then
f̃ :=
∑

ν∈Nd
0

bνe
X
ν

converges in Hγ(X). Since convergence in Hγ(X) implies pointwise conver-
gence, (4.36) then yields f̃(x) = f(x) for all x ∈ X. Consequently, (eXν ) is an
ONB of Hγ(X). Finally, the identity bν = 〈f, eXν 〉, ν ∈ Nd

0, follows from the
fact that the representation of f by (eX

ν ) is unique. ��
In the following, we present some interesting consequences of the preceding

theorem.

Corollary 4.43. Let X ⊂ Rd be a subset with non-empty interior, γ > 0,
and ˆ : Hγ(X) → Hγ,Cd be the extension operator defined in Theorem 4.42.
Then the extension operator I : Hγ(X) → Hγ(Rd) defined by If := Re f̂|Rd ,
f ∈ Hγ(X), is an isometric isomorphism.

Proof. For f ∈ Hγ(X), we have (〈f, eXν 〉) ∈ �2(Nd
0), and hence

f̃ :=
∑

ν∈Nd
0

〈f, eXν 〉eR
d

ν

is an element of Hγ(Rd). Moreover, for ν ∈ Nd
0, we have (Re eν)|Rd = eR

d

ν and
〈f, eXν 〉 ∈ R, and hence we find If = f̃ . Furthermore, ‖f‖Hγ(X) = ‖If‖Hγ(Rd)

immediately follows from Parseval’s identity. Consequently, I is isometric,
linear, and injective. The surjectivity finally follows from the fact that, given
an f̃ ∈ Hγ(Rd), the function

f :=
∑

ν∈Nd
0

〈
f, eR

d

ν

〉
eX

ν

obviously satisfies f ∈ Hγ(X) and If = f̃ . ��
Roughly speaking, the preceding corollary means that Hγ(Rd) does not

contain “more” functions than Hγ(X) if X has a non-empty interior. More-
over, Corollary 4.43 in particular shows that Hγ(X1) and Hγ(X2) are isomet-
rically isomorphic via a simple extension-restriction mapping going through
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Hγ(Rd) whenever both input spaces X1, X2 ⊂ Rd have a non-empty in-
terior. Consequently, we sometimes use the notation Hγ := Hγ(X) and
‖ · ‖γ := ‖ · ‖Hγ(X) if X has a non-empty interior and no confusion can arise.

Besides the isometry above, Theorem 4.42 also yields the following inter-
esting observation.

Corollary 4.44 (Gaussian RKHSs do not contain constants). Let γ >
0, X ⊂ Rd be a subset with a non-empty interior, and f ∈ Hγ(X). If f is
constant on a non-empty open subset A of X, then f = 0.

Proof. Let c ∈ R be a constant with f(x) = c for all x ∈ A. Let us define an :=
( 2n

γ2nn! )
1/2 for all n ∈ N0. Furthermore, for a multi-index ν := (n1, . . . , nd) ∈

Nd
0, we write bν := 〈f, eX

ν 〉 and aν := an1 · . . . ·and
. For x := (x1, . . . , xd) ∈ A,

the definition (4.35) and the representation (4.36) then yield

c exp
(
γ−2

d∑
j=1

x2
j

)
= f(x) exp

(
γ−2

d∑
j=1

x2
j

)
=
∑

ν∈Nd
0

bνaνx
ν . (4.38)

Moreover, for x ∈ Rd, a simple calculation shows

exp
(
γ−2

d∑
j=1

x2
j

)
=

d∏
j=1

eγ−2x2
j =

d∏
j=1

( ∞∑
nj=0

x
2nj

j

nj ! γ2nj

)

=
∞∑

n1,...,nd=0

d∏
j=1

x
2nj

j

nj ! γ2nj
.

Using (4.38) and the identity theorem for power series, we hence obtain

bνaν =

⎧⎪⎨
⎪⎩
c γ−|ν| d∏

j=1

1
nj !

if ν = (2n1, . . . , 2nd) for some (n1, . . . , nd) ∈ Nd
0

0 otherwise ,

or in other words

bν =

⎧⎪⎨
⎪⎩
c

d∏
j=1

√
(2nj)!

nj !
2−nj if ν = (2n1, . . . , 2nd) for some (n1, . . . , nd) ∈ Nd

0

0 otherwise .

Consequently, Parseval’s identity yields

‖f‖2Hγ(X) =
∑

ν∈Nd
0

b2ν =
∞∑

n1,...,nd=0

c2
d∏

j=1

(2nj)!
(nj !)2

2−2nj

=
d∏

j=1

( ∞∑
nj=0

c2/d (2nj)!
(nj !)2

2−2nj

)

=
( ∞∑

n=0

c2/d (2n)!
(n!)2

2−2n

)d

.
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Let us write αn := (2n)!
(n!)2 2−2n for n ∈ N0. By an easy calculation, we then

obtain

αn+1

αn
=

(2(n+ 1))! (n!)2 2n

(2n)! ((n+ 1)! )2 22(n+1)
=

(2n+ 1)(2n+ 2)
4(n+ 1)2

=
2n+ 1
2n+ 2

≥ n

n+ 1

for all n ≥ 1. In other words, (nαn) is an increasing, positive sequence. Con-
sequently there exists an α > 0 with αn ≥ α

n for all n ≥ 1, and hence we find∑∞
n=0 αn = ∞. Therefore, ‖f‖2Hγ(X) < ∞ implies c = 0, and thus we have

f = 0. ��
The preceding corollary shows in particular that 1A �∈ Hγ(X) for all open

subsets A ⊂ X. Some interesting consequences of this observation with respect
to the hinge loss used in classification are discussed in Exercise 4.8.

Let us now compare the norms ‖ · ‖γ for different values of γ. To this end,
we first observe that the weight function in the definition of ‖ · ‖γ,Cd satisfies

eγ−2∑d
j=1(zj−z̄j)

2
= e−4γ−2∑d

j=1 y2
j ,

where yj := Im zj , j = 1, . . . , d. For γ1 ≤ γ2, we hence find Hγ2,Cd ⊂ Hγ1,Cd

and
‖f‖H

γ1,Cd
≤
(γ2

γ1

)d
‖f‖H

γ2,Cd
, f ∈ Hγ2,Cd .

This suggests that a similar relation holds for the RKHSs of the real Gaussian
kernels. In order to investigate this conjecture, let us now present another
feature space and feature map for kγ . To this end, recall that L2(Rd) denotes
the space of Lebesgue square-integrable functions Rd → R equipped with the
usual norm ‖ · ‖2. Our first result shows that L2(Rd) is a feature space of kγ .

Lemma 4.45. For 0 < γ <∞ and X ⊂ Rd, we define Φγ : X → L2(Rd) by

Φγ(x) :=
2

d
2

π
d
4 γ

d
2
e−2γ−2‖x− · ‖2

2 , x ∈ X.

Then Φγ : X → L2(Rd) is a feature map of kγ .

Proof. Let us first recall that, using the density of the normal distribution,
we have ∫

Rd

e−t−1‖z−x‖2
2dz = (πt)

d
2 (4.39)

for all t > 0 and x ∈ Rd. Moreover, for α ≥ 0, an elementary calculation
shows that

‖y − x‖22 + α‖y − x′‖22 =
α

1 + α
‖x− x′‖22 + (1 + α)

∥∥∥ y − x+ αx′

1 + α

∥∥∥2
2

(4.40)

for all y, x, x′ ∈ Rd. By using (4.39) and setting α := 1 in (4.40), we now
obtain
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〈Φγ(x), Φγ(x′)〉L2(Rd) =
2d

π
d
2 γd

∫
Rd

e−2γ−2‖x−z‖2
2e−2γ−2‖x′−z‖2

2dz

=
2d

π
d
2 γd

e−γ−2‖x−x′‖2
2

∫
Rd

e−4γ−2‖z− x+x′
2 ‖2

2dz

=
2d

π
d
2 γd
· e−γ−2‖x−x′‖2

2

(πγ2

4

) d
2

= kγ(x, x′) ,

and hence Φγ is a feature map and L2(Rd) is a feature space of kγ . ��
Having the feature map Φγ : X → L2(Rd) of kγ , we can now give another

description of the RKHS of kγ . To this end, we need the integral operators
Wt : L2(Rd)→ L2(Rd), t > 0, defined by

Wtg(x) := (πt)−
d
2

∫
Rd

e−t−1‖y−x‖2
2g(y)dy , g ∈ L2(Rd), x ∈ Rd. (4.41)

Note that Wt is actually a convolution operator, i.e., for g ∈ L2(Rd) we have
Wtg = k ∗ g, where k := (πt)−

d
2 e−t−1‖·‖2

2 . Moreover, we have ‖k‖1 = 1 by
(4.39), and hence Young’s inequality (see Theorem A.5.23) that shows

‖Wtg‖2 ≤ ‖g‖2 , g ∈ L2(Rd), t > 0. (4.42)

In other words, we have ‖Wt : L2(Rd)→ L2(Rd)‖ ≤ 1 for all t > 0.
With the help of the operator family (Wt)t>0, we can now give another

description of the spaces Hγ(X).

Proposition 4.46. For 0 < γ1 < γ2 < ∞, we define t := 1
2 (γ2

2 − γ2
1). Then,

for all non-empty X ⊂ Rd, we obtain a commutative diagram

Hγ2(X) Hγ1(X)

L2(Rd) L2(Rd)

�

�� ��

�

id

Vγ2 Vγ1

(γ2
γ1

)
d
2Wt

where the vertical maps Vγ1 and Vγ2 are the metric surjections of Theorem
4.21. Moreover, these metric surjections are of the form

Vγg(x) =
2

d
2

γ
d
2 π

d
4

∫
Rd

e−2γ−2‖x−y‖2
2g(y)dy , g ∈ L2(Rd), x ∈ X, (4.43)

where γ ∈ {γ1, γ2}. Finally, we have

‖ id : Hγ2(X)→ Hγ1(X)‖ ≤
(
γ2

γ1

) d
2

. (4.44)
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Proof. For γ > 0, let Vγ : L2(Rd) → Hγ(X) be the metric surjection of
Theorem 4.21. Furthermore, let Φγ be the feature map defined in Lemma
4.45. For g ∈ L2(Rd) and x ∈ X, we then have Vγg(x) = 〈g, Φγ(x)〉L2(Rd),
and hence we obtain (4.43). In order to establish the diagram, let us first
consider the case X = Rd. Then (4.41) together with (4.43) gives the relation

Vγg = (πγ2)
d
4W γ2

2
g , g ∈ L2(Rd). (4.45)

Let us now show that the operator family (Wt)t>0 is a semi-group, i.e., it
satisfies

Wt1+t2 = Wt1Wt2 , t1, t2 > 0. (4.46)

To this end, let us fix a g ∈ L2(Rd) and an x0 ∈ Rd. Then, for α := t1
t2

,
equations (4.40) and (4.39) yield

Wt1Wt2g(x0) = (πt1)−
d
2

∫
Rd

e−t−1
1 ‖x0−y‖2

2Wt2g(y)dy

= (π2t1t2)−
d
2

∫
Rd

∫
Rd

e−t−1
1 ‖x0−y‖2

2e−t−1
2 ‖x−y‖2

2g(x)dx dy

= (π2t1t2)−
d
2

∫
Rd

∫
Rd

e−
‖x0−x‖2

2
t1+t2

− t1+t2
t1t2

‖y− x0+αx
1+α ‖2

2g(x)dy dx

= Wt1+t2g(x0) ,

i.e., (4.46) is verified. Combining (4.45) and (4.46) then gives the diagram in
the case of X = Rd. The general case X ⊂ Rd follows from the fact that the
computation of Vγ in (4.43) is independent of X. Finally, since Vγ2 is a metric
surjection, we obtain

‖ id ◦Vγ2 : L2(Rd)→ Hγ1(X)‖ = ‖ id : Hγ2(X)→ Hγ1(X)‖ ,

and hence the commutativity of the diagram implies

‖ id : Hγ2(X)→ Hγ1(X)‖ =
(
γ2

γ1

) d
2

‖Vγ1 ◦Wt‖ ≤
(
γ2

γ1

) d
2

‖Wt‖ .

Moreover, we have ‖Wt‖ ≤ 1 by (4.42), and thus we find the assertion. ��
If the set X in the preceding proposition has a non-empty interior, then

the metric surjections Vγ1 and Vγ2 are actually isometric isomorphisms. This
is a direct consequence of the following theorem, (4.43), and the fact that the
restriction operator mapping Hγ(Rd) to Hγ(X) is an isometric isomorphism.

Theorem 4.47 (Injectivity of Gaussian integral operators). Let μ be
either a finite measure on Rd or the Lebesgue measure on Rd, and p ∈ (1,∞).
Moreover, let kγ be the Gaussian RBF kernel with width γ > 0. Then the
operator Skγ

: Lp(μ)→ Hγ(Rd) defined by (4.17) is injective.
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Proof. Let us write Sγ := Skγ
. We fix an f ∈ Lp(μ) with Sγf = 0. Obviously,

our goal is to show that f = 0. To this end, our first intermediate goal is to
prove that the map g : Rd × (0,∞)→ R defined by

g(x, t) :=
∫
Rd

e−t‖x−x′‖2
2 f(x′) dμ(x′) , x ∈ Rd, t ∈ (0,∞),

is real-analytic in t for all fixed x ∈ Rd. Here we note that e−t‖x−·‖2
2 ∈ Lp′(μ)

together with Hölder’s inequality ensures that the integral above is defined
and finite. To show the analyticity, we now fix a t0 ∈ (0,∞) and define

ai(x, x′, t) :=
(−‖x− x′‖22)ie−t0‖x−x′‖2

2

i!
(t− t0)i f(x′)

for all x, x′ ∈ Rd, t ∈ (0, t), and i ≥ 0. Obviously, we have

g(x, t) =
∫
Rd

∞∑
i=0

ai(x, x′, t) dμ(x′) (4.47)

for all x ∈ Rd and t ∈ (0,∞). Moreover, for t ∈ (0, t0], we find

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ = ∞∑

i=0

‖x− x′‖2i
2 e

−t0‖x−x′‖2
2

i!
(t0 − t)if(x′) = e−t‖x−x′‖2

2f(x′) ,

and hence Hölder’s inequality yields

∫
Rd

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ dμ(x′) <∞ . (4.48)

On the other hand, for t ∈ [t0,∞), we have

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ = ∞∑

i=0

‖x− x′‖2i
2 e

−t0‖x−x′‖2
2

i!
(t− t0)if(x′)

= e−(2t0−t)‖x−x′‖2
2f(x′) ,

and from this it is easy to conclude by Hölder’s inequality that (4.48) also
holds for t ∈ [t0, 2t0). By Fubini’s theorem, we can then change the order of
integration and summation in (4.47) to obtain

g(x, t) =
∞∑

i=0

(∫
Rd

(−‖x− x′‖22)ie−t0‖x−x′‖2
2

i!
f(x′) dμ(x′)

)
(t− t0)i

for all t ∈ (0, 2t0). In other words, g(x, · ) can be locally expressed by a power
series, i.e., it is real-analytic. Let us now define
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u(x, t) := t−
d
2 g
(
x,

1
4t

)
=
∫
Rd

t−
d
2 e−

‖x−x′‖2
2

4t f(x′) dμ(x′) , x ∈ Rd, t > 0 .

Obviously, u(x, · ) is again real-analytic for all x ∈ Rd. Moreover, for fixed
x′ := (x′1, . . . , x

′
d) ∈ Rd, the map

u0(x, t) := t−
d
2 e−

‖x−x′‖2
2

4t , x ∈ Rd, t > 0,

which appears in the integral above, satisfies

∂u0

∂t
(x, t) = t−

d
2−2e−

‖x−x′‖2
2

4t

(‖x− x′‖22
4t

− d t

2

)
,

∂2u0

∂2xi
(x, t) = t−

d
2−2e−

‖x−x′‖2
2

4t

(
(xi − x′i)2

4t
− t

2

)
,

for all t > 0 and all x = (x1, . . . , xd) ∈ Rd. Consequently, u0 satisfies the
partial differential equation

∂u0

∂t
= Δu0 :=

d∑
i=1

∂2u0

∂2xi
.

Moreover, as a function of x′, all derivatives of u0 are contained in Lp′(μ), and
these derivatives are continuous with respect to the variables x and t. Another
application of Hölder’s inequality, together with Corollary A.3.7, shows that
the function u satisfies the same partial differential equation. This leads to

∂2u

∂2t
=
∂

∂t

d∑
i=1

∂2u

∂2xi
=

d∑
i=1

∂3u

∂2xi∂t
=

d∑
i=1

d∑
j=1

∂4u

∂2xi∂2xj
= Δ2u ,

and by iterating this procedure we obtain ∂nu
∂nt = Δnu for all n ≥ 1. Let us

now recall that our f ∈ Lp(μ) satisfies Sγf = 0. For t0 := γ2/4, we then have
u(x, t0) = (2/γ)d Sγf(x) = 0 for all x ∈ Rd, and hence we obtain

∂nu

∂nt
(x, t0) = Δnu(x, t0) = 0 , x ∈ Rd.

By the analyticity of u(x, · ), we thus conclude that u(x, t) = 0 for all x ∈ Rd

and all t > 0. Now let h : Rd → R be a continuous function with compact
support. Then we obviously have ‖h‖∞ <∞, h ∈ Lp(μ), and

0 =
∫
Rd

h(x)u(x, t)dx = t−
d
2

∫
Rd

∫
Rd

h(x)e−
‖x−x′‖2

2
4t f(x′) dμ(x′)dx (4.49)

for all t > 0. Now note that if μ is finite, we easily find that

(x, x′) �→ h(x)e−
‖x−x′‖2

2
4t f(x′) (4.50)
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is integrable with respect to the product of μ and the Lebesgue measure on
Rd. Moreover, if μ is the Lebesgue measure, its translation invariance yields∫

Rd

∫
Rd

∣∣h(x)e− ‖x−x′‖2
2

4t f(x′)
∣∣ dμ(x′)dx

≤
∫
Rd

∣∣h(x)| · ‖f‖Lp(μ)

(∫
Rd

e−
p′‖x−x′‖2

2
4t dμ(x′)

)1/p′

dx

< ∞ ,

i.e., the function in (4.50) is integrable in this case, too. For

ht(x′) := t−
d
2

∫
Rd

h(x)e−
‖x−x′‖2

2
4t dx, x′ ∈ Rd, t > 0,

Fubini’s theorem and (4.49) then yield

0 = t−
d
2

∫
Rd

∫
Rd

h(x)e−
‖x−x′‖2

2
4t f(x′) dx dμ(x′) =

∫
Rd

f(x′)ht(x′)dμ(x′) . (4.51)

Now fix an x ∈ Rd and an ε > 0. Then there exists a δ > 0 such that, for all
x′ ∈ Rd with ‖x′ − x‖2 ≤ δ, we have |h(x′)− h(x)| ≤ (4π)−d/2ε. Since

(4πt)−
d
2

∫
Rd

e−
‖x−x′‖2

2
4t dx′ = 1 , t > 0,

we hence obtain

ht(x)− (4π)
d
2 h(x) = t−

d
2

∫
Rd

(
h(x′)− h(x))e− ‖x−x′‖2

2
4t dx′

≤ ε+ t−
d
2

∫
‖x′−x‖2>δ

(
h(x′)− h(x))e− ‖x−x′‖2

2
4t dx′

≤ ε+ 2‖h‖∞ t−
d
2

∫
‖x′‖2>δ

e−
‖x′‖2

2
4t dx′

≤ ε+ 8πd/2 max{1, d/2}
Γ (d/2)

‖h‖∞ δd−2t1−d/2e−
δ2
4t

for all 0 < t ≤ δ2/(2d), where in the last step we used (A.3) and (A.5).
Since the last term of this estimate tends to 0 for t → 0, we conclude that
limt→0 ht(x) = (4π)

d
2 h(x) for all x ∈ Rd. Therefore the dominated conver-

gence theorem and (4.51) yield

0 = lim
t→0

∫
Rd

f(x′)ht(x′)dμ(x′) =
∫
Rd

f(x′)h(x′)dμ(x′) = 〈f, h〉Lp′ (μ),Lp(μ).

Since for finite measures it follows from Theorem A.3.15 and Theorem A.5.25
that the continuous functions with compact support are dense in Lp(μ), we
find f = 0. Finally, the Lebesgue measure is also regular, and hence we find
the assertion in this case analogously. ��
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Our last goal is to compute Sobolev norms for functions in Hγ(X). This
is done in the following theorem.

Theorem 4.48 (Sobolev norms for Gaussian RKHSs). Let X ⊂ Rd be
a bounded non-empty open set, γ > 0, and m ≥ 1. Then there exists a constant
cm,d > 0 only depending on m and d such that for all f ∈ Hγ(X) we have

‖f‖W m(X) ≤ cm,d

√
vol(X)

( ∑
α∈Nd

0
|α|≤m

γ−2|α|
)1/2

‖f‖Hγ(X) .

Proof. Let us fix a multi-index α = (α1, . . . , αd) ∈ Nd
0 with |α| = m. Moreover,

let Vγ : L2(X)→ Hγ(X) be the metric surjection defined by (4.43). For a fixed
f ∈ Hγ(X) and ε > 0, there then exists a g ∈ L2(Rd) such that Vγg = f and
‖g‖L2(Rd) ≤ (1 + ε)‖f‖Hγ(X). By Hölder’s inequality, we then have

∥∥ ∂αf
∥∥2
L2(X)

=
2d

γdπ
d
2

∫
X

(
∂α

x

∫
Rd

e−2γ−2‖x−y‖2
2g(y)dy

)2

dx

≤ 2d

γdπ
d
2

∫
X

(∫
Rd

∂α
x e

−2γ−2‖x−y‖2
2 |g(y)| dy

)2

dx

≤ 2d

γdπ
d
2
‖g‖2L2(Rd)

∫
X

∫
Rd

∣∣∂α
x e

−2γ−2‖x−y‖2
2
∣∣2dy dx . (4.52)

Now recall that the Hermite polynomials hn, n ≥ 0, defined in (A.1) satisfy

∂n

∂tn
e−t2 = (−1)ne−t2hn(t) , t ∈ R ,

and hence we have

∂n

∂tn
e−2γ−2(t−s)2 =

(−√2 γ−1
)n
e−2γ−2(t−s)2hn

(√
2 γ−1(t− s))

for all s, t ∈ R. Using the translation invariance of the Lebesgue measure,
hn(−s) = (−1)nhn(s), a change of variables, and (A.2), we conclude that∫

R

∣∣∣ dn

dtn
e−2γ−2(t−s)2

∣∣∣2ds =
(
2γ−2
)n ∫

R

e−4γ−2(t−s)2h2
n

(√
2 γ−1(t− s))ds

=
(
2γ−2
)n ∫

R

e−4γ−2s2
h2

n

(√
2 γ−1s

)
ds

=
(√

2 γ−1
)2n−1

∫
R

e−2s2
h2

n(s)ds

≤ √π 22n−1/2n! γ1−2n .

Since e−2γ−2‖x−y‖2
2 =
∏d

i=1 e
−2γ−2(xi−yi)

2
, we hence find
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Rd

∣∣∂α
x e

−2γ−2‖x−y‖2
2
∣∣2dy ≤ πm/222m−d/2α! γd−2m ,

where α! := α1! · · ·αd!. Combining this estimate with (4.52), we obtain∥∥ ∂αf
∥∥2
L2(X)

≤ (1 + ε) 22m+d/2π(m−d)/2α! vol(X)γ−2m‖f‖2Hγ(X) .

Finally, since f is a restriction of an analytic function defined on Rd, see Corol-
lary 4.40, we have ∂(α)f = ∂αf , where ∂(α)f denotes the weak α-derivative
defined in Section A.5.5. From this we easily obtain the assertion. ��

4.5 Mercer’s Theorem (*)

In this section, we present Mercer’s theorem, which provides a series represen-
tation for continuous kernels on compact domains. This series representation
is then used to describe the corresponding RKHSs.

Let us begin with some preliminary considerations. To this end, let X be
a measurable space, μ be a σ-finite measure on X, and k be a measurable
kernel on X with ‖k‖L2(μ) < ∞. Moreover, recall the following factorization
of the operators defined in Theorem 4.26 and Theorem 4.27:

L2(μ) L2(μ)

H

�
�

�
�

�� �
�

�
��

Tk

Sk S∗
k

Theorem 4.27 showed that Tk = S∗
kSk is compact, positive, and self-adjoint,

and hence the Spectral Theorem A.5.13 shows that there exist an at most
countable ONS (ei)i∈I and a family (λi)i∈I ⊂ R converging to 0 such that
|λ1| ≥ |λ2| ≥ · · · > 0 and

Tkf =
∑
i∈I

λi〈f, ei〉ei, f ∈ L2(μ) .

Moreover, {λi : i ∈ I} is the set of non-zero eigenvalues of Tk. Let us write
ẽi := λ−1

i Skei ∈ H for i ∈ I. Then the diagram shows ẽi = λ−1
i Tkei almost

surely, and hence we have ei = λ−1
i Tkei = ẽi almost surely. Consequently, we

may assume without loss of generality that ei ∈ H and λiei = Skei for all
i ∈ I. From this we conclude that

λiλj〈ei, ej〉H = 〈Skei, Skej〉H = 〈ei, S
∗
kSkej〉L2(μ) = 〈ei, Tkej〉L2(μ)

= λj〈ei, ej〉L2(μ) .



150 4 Kernels and Reproducing Kernel Hilbert Spaces

In other words, (
√
λiei)i∈I is an ONS in H. The goal of this section is to show

that under certain circumstances this family is even an ONB. To this end, we
need the following theorem, whose proof can be found, for example, in Riesz
and Nagy (1990).

Theorem 4.49 (Mercer’s theorem). Let X be a compact metric space and
k : X ×X → R be a continuous kernel. Furthermore, let μ be a finite Borel
measure with suppμ = X. Then, for (ei)i∈I and (λi)i∈I as above, we have

k(x, x′) =
∑
i∈I

λiei(x)ei(x′) , x, x′ ∈ X, (4.53)

where the convergence is absolute and uniform.

Note that (4.53) together with the proof of Lemma 4.2 shows that Φ : X →
�2 defined by Φ(x) := (

√
λiei(x))i∈I , x ∈ X, is a feature map of k. In order to

show that (
√
λiei)i∈I is an ONB of H, we need the following corollary.

Corollary 4.50. With the assumptions and notations of Theorem 4.49, the
series

∑
i∈I ai

√
λiei(x) converges absolutely and uniformly for all (ai) ∈ �2(I).

Proof. For x ∈ X and J ⊂ I, Hölder’s inequality and Mercer’s theorem imply

∑
i∈J

|ai

√
λiei(x)| ≤

(∑
i∈J

a2
i

)1/2(∑
i∈J

λie
2
i (x)
)1/2

= ‖(ai)‖2(I) ·
√
k(x, x) .

From this the assertion easily follows. ��
With the help of the Corollary 4.50, we can now give an explicit represen-

tation of the RKHSs of continuous kernels on a compact metric space X.

Theorem 4.51 (Mercer representation of RKHSs). With the assump-
tions and notations of Theorem 4.49, we define

H :=
{∑

i∈I

ai

√
λiei : (ai) ∈ �2(I)

}
.

Moreover, for f :=
∑

i∈I ai

√
λiei ∈ H and g :=

∑
i∈I bi

√
λiei ∈ H, we write

〈f, g〉H :=
∑
i∈I

aibi .

Then H equipped with inner product 〈 · , · 〉H is the RKHS of the kernel k.
Furthermore, the operator T 1/2

k : L2(μ)→ H is an isometric isomorphism.
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Proof. Routine work shows that 〈 · , · 〉 is a well-defined inner product and
hence H is a Hilbert function space. Now, for fixed x ∈ X, Mercer’s theorem
implies

k( · , x) =
∑
i∈I

√
λiei(x)

√
λiei( · ) ,

and since Mercer’s theorem also yields

‖(
√
λiei(x))‖22(I) =

∑
i∈I

λie
2
i (x) = k(x, x) <∞ ,

we find k( · , x) ∈ H. Moreover, for f :=
∑

i∈I ai

√
λiei ∈ H, we have

〈f, k( · , x)〉H =
∑
i∈I

ai

√
λiei(x) = f(x) , x ∈ X,

i.e., k is the reproducing kernel of H.
Let us now consider the operator T 1/2

k . To this end, let us fix an f ∈
L2(μ). Since (ei) is an orthonormal basis in L2(μ), we then find f =∑

i∈I〈f, ei〉L2(μ)ei, where the convergence takes place in L2(μ). Consequently,
we have

T
1/2
k f =

∑
i∈I

〈f, ei〉L2(μ)

√
λiei , (4.54)

where the convergence is again with respect to the L2(μ)-norm. Now, Parse-
val’s identity gives (〈f, ei〉L2(μ)) ∈ �2(I), and hence we find T 1/2

k f ∈ H for all
f ∈ L2(μ). Moreover, this also shows by Corollary 4.50 that the convergence
in (4.54) is absolute and uniform and that

‖T 1/2
k f‖2H =

∑
i∈I

|〈f, ei〉L2(μ)|2 = ‖f‖2L2(μ) .

In other words, T 1/2
k : L2(μ) → H is isometric. Finally, to check that the

operator is surjective, we fix an f ∈ H. Then there exists an (ai) ∈ �2 such
that f(x) =

∑
i∈I ai

√
λiei(x) for all x ∈ X. Now we obviously have g :=∑

i∈I aiei ∈ L2(μ) with convergence in L2(μ), and thus 〈g, ei〉L2(μ) = ai.
Furthermore, we have already seen that the convergence in (4.54) is pointwise,
and hence for all x ∈ X we finally obtain

T
1/2
k g(x) =

∑
i∈I

〈g, ei〉L2(μ)

√
λiei(x) =

∑
i∈I

ai

√
λiei(x) = f(x) . ��

4.6 Large Reproducing Kernel Hilbert Spaces

We saw in Section 1.2 that SVMs are based on minimization problems over
RKHSs. Moreover, we will see in the following chapters that the size of the
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chosen RKHS has a twofold impact on the generalization ability of the SVM:
on the one hand, a “small size” inhibits the learning machine to produce highly
complex decision functions and hence can prevent the SVM from overfitting
in the presence of noise. On the other hand, for complex distributions, a
“small” RKHS may not be sufficient to provide an accurate decision function,
so the SVM underfits. In this section, we thus investigate RKHSs that are rich
enough to provide arbitrarily accurate decision functions for all distributions.
The reason for introducing these RKHSs is that their flexibility is necessary
to guarantee learning in the absence of assumptions on the data-generating
distribution. However, as we have indicated above, this flexibility also carries
the danger of overfitting. We will thus investigate in Chapters 6 and 7 how
regularized learning machines such as SVMs use the regularizer to avoid this
overfitting.

Let us now begin by introducing a class of particularly large RKHSs.

Definition 4.52. A continuous kernel k on a compact metric space X is called
universal if the RKHS H of k is dense in C(X), i.e., for every function
g ∈ C(X) and all ε > 0 there exists an f ∈ H such that

‖f − g‖∞ ≤ ε .
Instead of using the RKHS in the preceding definition, one can actually

consider an arbitrary feature space H0 of k. Indeed, if Φ0 : X → H0 is a
corresponding feature map, then the RKHS of k is given by (4.10) and hence
k is universal if and only if for all g ∈ C(X) and ε > 0 there exists a w ∈ H0

such that ‖〈w,Φ0( · )〉−g‖∞ ≤ ε. Although this is a rather trivial observation,
we will see below that it is very useful for finding universal kernels.

One may wonder whether the preceding definition also makes sense for
compact topological spaces. At first glance, this is indeed the case, but some
further analysis shows that there exists no universal kernel if the topology is
not generated by a metric (see Exercise 4.13).

Let us now discuss some of the surprising geometric properties of universal
kernels. To this end, we need the following definition.

Definition 4.53. Let k be a kernel on a metric space X with RKHS H. We
say that k separates the disjoint sets A,B ⊂ X if there exists an f ∈ H
with f(x) > 0 for all x ∈ A, and f(x) < 0 for all x ∈ B. Furthermore, we say
that k separates all finite (or compact) sets if k separates all finite (or
compact) disjoint sets A,B ⊂ X.

It can be shown (see Exercise 4.11) that strictly positive definite kernels
separate all finite sets. Furthermore, every kernel that separates all compact
sets obviously also separates all finite sets, but in general the converse is
not true (see Exercise 4.14). Moreover, every universal kernel separates all
compact sets, as the following proposition shows.

Proposition 4.54. Let X be a compact metric space and k be a universal
kernel on X. Then k separates all compact sets.
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Proof. Let A,B ⊂ X be disjoint compact subsets and d be the metric of X.
Then, for all x ∈ X, we define

g(x) :=
dist(x,B)

dist(x,A) + dist(x,B)
− dist(x,A)

dist(x,A) + dist(x,B)
,

where we used the distance function dist(x,C) := infx′∈C dist(x, x′) for x ∈
X and C ⊂ X. Since this distance function is continuous, we see that g is
a continuous function. Furthermore, we have g(x) = 1 for all x ∈ A and
g(x) = −1 for all x ∈ B. Now, let H be the RKHS of k. Then there exists an
f ∈ H with ‖f − g‖∞ ≤ 1/2, and by our previous considerations this f then
satisfies f(x) ≥ 1/2 for all x ∈ A and f(x) ≤ 1/2 for all x ∈ B. ��

Although Proposition 4.54 easily follows from the notion of universality, it
has surprising consequences for the geometric interpretation of the shape of
the feature maps of universal kernels. Indeed, let k be a universal kernel on
X with feature space H0 and feature map Φ0 : X → H0. Furthermore, let us
suppose that we have a finite subset {x1, . . . , xn} of X. Then Proposition 4.54
ensures that for every choice of signs y1, . . . , yn ∈ {−1, 1} we find a function f
in the RKHS H of k with yif(xi) > 0 for all i = 1, . . . , n. By (4.10), this f can
be represented by f = 〈w,Φ0( · )〉 for a suitable w ∈ H0. Consequently, the
mapped training set ((Φ0(x1), y1), . . . , (Φ0(xn), yn)) can be correctly separated
in H0 by the hyperplane defined by w. Moreover, a closer look at the proof
of Proposition 4.54 shows that this can even be done by a hyperplane that
has almost the same distance to every point of Φ(xi), i = 1, . . . , n . Obviously,
all these phenomena are impossible for general training sets in R2 or R3,
and hence every two- or three-dimensional illustration of the feature space of
universal kernels such as Figure 1.1 can be misleading. In particular, it seems
to be very difficult to geometrically understand the learning mechanisms of
both hard- and soft margin SVMs when these SVMs use universal kernels.

The geometric interpretation above raises the question of whether univer-
sal kernels can exist. As we will see below, the answer to this question is “yes”
and in addition, many standard kernels, including the Gaussian RBF kernels,
are universal. To establish these results, we need the following simple lemma.

Lemma 4.55 (Properties of universal kernels). Let X be a compact met-
ric space and k be a universal kernel on X. Then the following statements are
true:

i) Every feature map of k is injective.
ii) We have k(x, x) > 0 for all x ∈ X.
iii) Every restriction of k onto some compact X ′ ⊂ X is universal.
iv) The normalized kernel k∗ : X ×X → R defined by

k∗(x, x′) :=
k(x, x′)√

k(x, x)k(x′, x′)
, x, x′ ∈ X,

is universal.
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Proof. The first three assertions are direct consequences of Proposition 4.54
and the definition. To prove the fourth assertion, let Φ : X → H be the
canonical feature map of k into its RKHS H. Defining α(x) := k(x, x)−1/2 for
all x ∈ X, we see that αΦ : X → H is a feature map of k∗ and thus k∗ is a
kernel. To show that k∗ is universal, we fix a function g ∈ C(X) and an ε > 0.
For c := ‖α‖∞ <∞, we then get an f ∈ H with ‖f − g

α‖∞ ≤ ε
c . This yields∥∥ 〈f, α( · )Φ( · )〉− g ∥∥∞ ≤ ‖α‖∞ ∥∥ f − g

α

∥∥
∞ ≤ ε ,

and thus k∗ is universal by the observation following Definition 4.52. ��
Let us now investigate the existence of universal kernels. We begin by

presenting a simple sufficient condition for the universality of kernels.

Theorem 4.56 (A test for universality). Let X be a compact metric space
and k be a continuous kernel on X with k(x, x) > 0 for all x ∈ X. Suppose that
we have an injective feature map Φ : X → �2 of k. We write Φn : X → R for its
n-th component, i.e., Φ(x) = (Φn(x))n∈N, x ∈ X. If A := span {Φn : n ∈ N}
is an algebra, then k is universal.

Proof. We will apply Stone-Weierstraß’ theorem (see Theorem A.5.7). To this
end, we first observe that the algebra A does not vanish since ‖(Φn(x))‖22 =
k(x, x) > 0 for all x ∈ X. Moreover, k is continuous and thus every Φn : X →
R is continuous by Lemma 4.29. This shows that A ⊂ C(X). Moreover, the
injectivity of Φ implies that A separates points, and thus Stone-Weierstraß’
theorem shows that A is dense in C(X). Now we fix a g ∈ C(X) and an ε > 0.
Then there exists a function f ∈ A of the form

f =
m∑

j=1

αjΦnj

with ‖f − g‖∞ ≤ ε. For n ∈ N, we define wn := αj if there is an index
j with nj = n and wn := 0 otherwise. This yields w := (wn) ∈ �2 and
f = 〈w,Φ( · )〉2 , and thus k is universal by the observation following Definition
4.52. ��

With the help of the preceding theorem, we are now in a position to give
examples of universal kernels. Let us begin with kernels of Taylor type.

Corollary 4.57 (Universal Taylor kernels). Fix an r ∈ (0,∞] and a C∞-
function f : (−r, r) → R that can be expanded into its Taylor series at 0,
i.e.,

f(t) =
∞∑

n=0

ant
n , t ∈ (−r, r).

Let X := {x ∈ Rd : ‖x‖2 <
√
r}. If we have an > 0 for all n ≥ 0, then k given

by
k(x, x′) := f(〈x, x′〉) , x, x′ ∈ X,

is a universal kernel on every compact subset of X.



4.6 Large Reproducing Kernel Hilbert Spaces 155

Proof. We have already seen in Lemma 4.8 and its proof that k is a kernel
with feature space �2(Nd

0) and feature map Φ : X → �2(Nd
0) defined by

Φ(x) :=
(√

aj1+···+jd
cj1,...,jd

d∏
i=1

xji

i

)
j1,...,jd≥0

, x ∈ X.

Obviously, k is also continuous and a0 > 0 implies k(x, x) > 0 for all x ∈ X.
Furthermore, it is easy to see that Φ is injective. Finally, since polynomials
form an algebra, span {Φj1,...,jd

: j1, . . . , jd ≥ 0} is an algebra, and thus we
obtain by Theorem 4.56 that k is universal. ��

Recall that we presented some examples of Taylor kernels in Section 4.1.
The following corollary shows that all these kernels are universal.

Corollary 4.58 (Examples of universal kernels). Let X be a compact
subset of Rd, γ > 0, and α > 0. Then the following kernels on X are universal:

exponential kernel : k(x, x′) := exp(〈x, x′〉) ,
Gaussian RBF kernel : kγ(x, x′) := exp(−γ−2‖x− x′‖22) ,

binomial kernel : k(x, x′) := (1− 〈x, x′〉)−α ,

where for the last kernel we additionally assume X ⊂ {x ∈ Rd : ‖x‖2 < 1}.
Proof. The assertion follows from Examples 4.9 and 4.11, Proposition 4.10,
Corollary 4.57, and part iv) of Lemma 4.55. ��

Note that a result similar to Corollary 4.57 can be established for Fourier
type kernels (see Exercise 4.12 for details). Furthermore, it is obvious that
polynomial kernels cannot be universal whenever |X| = ∞. By Proposition
5.41, it will thus be easy to show that there do exist learning problems that
are extremely underfitted by these types of kernels.

We will see in Corollary 5.29 that the universality of a kernel with RKHS
H guarantees

inf
f∈H
RL,P(f) = R∗

L,P (4.55)

for all continuous P-integrable Nemitski losses. However, this result requires
the input space X to be a compact metric space, and hence many interesting
spaces, such as Rd and infinite discrete sets, are excluded. On the other hand,
Theorem 5.31 will show that, for almost all interesting loss functions, it suffices
to know that H is dense in Lp(PX) for some p ≥ 1 in order to establish
(4.55). In the rest of this section, we will therefore investigate RKHSs that
are dense in Lp(PX). To this end, our main tool will be Theorem 4.26, which
characterized this type of denseness by the injectivity of the associated integral
operator Sk : Lp′(PX)→ H defined by (4.17).

We begin by considering distributions PX that are absolutely continuous
with respect to a suitable reference measure μ.
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Lemma 4.59. Let X be a measurable space, μ be a measure on X, and k be a
measurable kernel on X with RKHS H and ‖k‖Lp(μ) <∞ for some p ∈ [1,∞).
Assume that the integral operator Sk : Lp′(μ) → H is injective. Then H is
dense in Lq(hμ) for all q ∈ [1, p] and all measurable h : X → [0,∞) with
h ∈ Ls(μ), where s := p

p−q .

Proof. Let us fix an f ∈ Lq′(hμ). Then we have f |h| 1q′ ∈ Lq′(μ) and, for r
defined by 1

q′ + 1
r = 1

p′ , Hölder’s inequality and r
q = s thus yield

‖fh‖Lp′ (μ) =
∥∥ f |h| 1q′ |h| 1q ∥∥

Lp′ (μ)
≤ ∥∥ f |h| 1q′ ∥∥

Lq′ (μ)

∥∥ |h| 1q ∥∥
Lr(μ)

< ∞ .

Moreover, if f �= 0 in Lq′(hμ), we have fh �= 0 in Lp′(μ), and hence we obtain

0 �= Sk(fh) =
∫

X

f(x)h(x)k( · , x) dμ(x) =
∫

X

f(x)k( · , x) d(hμ)(x) .

Since the latter integral describes the integral operator Lq′(hμ)→ H, we then
obtain the assertion by Theorem 4.26. ��

Let us now investigate denseness properties of RKHSs over discrete spaces
X. To this end, let us write �p(X) := Lp(ν), where p ∈ [1,∞] and ν is the
counting measure on X, which is defined by ν({x}) = 1, x ∈ X. Note that
these spaces obviously satisfy the inclusion �p(X) ⊂ �q(X) for p ≤ q, which is
used in the proof of the following result.

Proposition 4.60 (Large RKHSs on discrete spaces I). Let X be a
countable set and k be a kernel on X with ‖k‖p(X) <∞ for some p ∈ [1,∞).
If k satisfies ∑

x,x′∈X

k(x, x′)f(x)f(x′) > 0 (4.56)

for all f ∈ �p′(X) with f �= 0, then the RKHS of k is dense in Lq(μ) for all
q ∈ [1,∞) and all distributions μ on X.

Proof. Recall that the counting measure ν is σ-finite since X is countable. Let
us fix an f ∈ �p′(X) with f �= 0. For the operator Sk : �p′(X) → H defined
by (4.17), we then have Skf ∈ H ⊂ �p(X) and hence we obtain

〈Skf, f〉p(X),p′ (X) =
∑

x,x′∈X

k(x, x′)f(x)f(x′) > 0 .

This shows that Sk : �p′(X)→ H is injective. Now let μ be a distribution on
X. Then there exists a function h ∈ �1(X) with μ = hν. Since for q ∈ [1, p]
we have s := p

p−q ≥ 1, we then find h ∈ �s(X) and hence we obtain the
assertion by applying Lemma 4.59. In addition, for q > p, we have ‖k‖q(X) ≤
‖k‖p(X) < ∞ and �q′(X) ⊂ �p′(X), and consequently this case follows from
the case q = p already shown . ��
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Note that the case p =∞ is excluded in Proposition 4.60. The reason for
this is that the dual of �∞(X) is not �1(X). However, if instead we consider
the pre-dual of �1(X), namely the Banach space of functions vanishing at
infinity,

c0(X) :=
{
f : X → R

∣∣ ∀ε > 0∃ finite A ⊂ X ∀x ∈ X\A : |f(x)| ≤ ε} ,
which is equipped with the usual ‖ · ‖∞-norm, we obtain the following result.

Theorem 4.61 (Large RKHSs on discrete spaces II). Let X be a count-
able set and k be a bounded kernel on X that satisfies both k( · , x) ∈ c0(X)
for all x ∈ X and (4.56) for all f ∈ �1(X) with f �= 0. Then the RKHS of k
is dense in c0(X).

Proof. Since k( · , x) ∈ c0(X) for all x ∈ X, we see Hpre ⊂ c0(X), where Hpre

is the space defined in (4.12). Let us write H for the RKHS of k. Since k
is bounded, the inclusion I : H → �∞(X) is well-defined and continuous by
Lemma 4.23. Now let us fix an f ∈ H. By Theorem 4.21, there then exists
a sequence (fn) ⊂ Hpre with limn→∞ ‖f − fn‖H = 0, and the continuity of
I : H → �∞(X) then yields limn→∞ ‖f − fn‖∞ = 0. Now the completeness of
c0(X) shows that c0(X) is a closed subspace of �∞(X), and since we already
know fn ∈ c0(X) for all n ≥ 1, we can conclude that f ∈ c0(X). In other
words, the inclusion I : H → c0(X) is well-defined and continuous. Moreover,
a simple calculation analogous to the one in the proof of Theorem 4.26 shows
that its adjoint operator is the integral operator Sk : �1(X) → H. Since this
operator is injective by (4.56), we see that H is dense in c0(X) by Theorem
4.26. ��

One may be tempted to assume that condition (4.56) is already satisfied
if it holds for all functions f : X → R with 0 < |{x ∈ X : f(x) �= 0}| < ∞,
i.e., for strictly positive definite kernels. The following result shows that this
is not the case in a strong sense.

Theorem 4.62. There exists a bounded, strictly positive definite kernel k on
X := N0 with k( · , x) ∈ c0(X) for all x ∈ X such that for all finite measures
μ on X with μ({x}) > 0, x ∈ X, and all q ∈ [1,∞], the RKHS H of k is not
dense in Lq(μ).

Proof. Let us write pn := μ({n}), n ∈ N0. Moreover, let (bi)i≥1 ⊂ (0, 1) be a
strictly positive sequence with ‖(bi)‖2 = 1 and (bi) ∈ �1. Furthermore, let (en)
be the canonical ONB of �2. We write Φ(0) := (bi) and Φ(n) := en, n ≥ 1.
Then we have Φ(n) ∈ �2 for all n ∈ N0, and hence

k(n,m) :=
〈
Φ(n), Φ(m)

〉
2
, n,m ≥ 0,

defines a kernel. Moreover, an easy calculation shows k(0, 0) = 1, k(n,m) =
δn,m, and k(n, 0) = bn for n,m ≥ 1. Since bn → 0, we hence find k( · , n) ∈
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c0(X) for all n ∈ N0. Now let n ∈ N0 and α := (α0, . . . , αn) ∈ Rn+1 be a
vector with α �= 0. Then the definition of k yields

A :=
n∑

i=0

n∑
j=0

αiαjk(i, j) = α2
0k(0, 0) + 2

n∑
i=1

αiα0k(i, 0) +
n∑

i=1

n∑
j=1

αiαjk(i, j)

= α2
0 + 2α0

n∑
i=1

αibi +
n∑

i=1

α2
i

= α2
0 +

n∑
i=1

αi(2α0bi + αi) .

If α0 = 0, we hence find A =
∑n

i=1 α
2
i > 0 since we assumed α �= 0. Moreover,

if α0 �= 0, we find t(2α0bi + t) ≥ −α2
0b

2
i for all t ∈ R by simple calculus, and

hence our assumptions ‖(bi)‖2 = 1 and bi > 0, i ≥ 1, imply

A ≥ α2
0 −

n∑
i=1

α2
0b

2
i = α2

0

∞∑
i=n+1

b2i > 0 .

Consequently, we have A > 0 in any case, and from this it is easy to see that
k is strictly positive definite. Let us now define f : N0 → R by f(0) := 1 and
f(n) := − bn

pn
p0 for n ≥ 1. Then we have ‖f‖L1(μ) = p0 + p0‖(bn)‖1 <∞, and

a simple calculation yields

Skf(0) = k(0, 0)f(0)p0 +
∞∑

n=1

k(0, n)f(n)pn = p0 − p0
∞∑

n=1

b2n = 0 .

Furthermore, for m ≥ 1, our construction yields

Skf(m) = k(m, 0)f(0)p0 +
∞∑

n=1

k(m,n)f(n)pn = bmf(0)p0 − f(m)pm = 0 ,

and hence we have Skf = 0, i.e., Sk : L1(μ) → H is not injective. Moreover,
by (A.34), the space L1(μ) can be interpreted as a subspace of L′

∞(μ), and
we have S′′

kf = Skf for all f ∈ L1(μ) as we mention in (A.20). From this we
conclude that S′′

k : L′
∞(μ) → H is not injective, and hence S′

k : H → L∞(μ)
does not have a dense image. Repeating the proof of Theorem 4.26, we further
see that id : H → L∞(μ) equals S′

k, and thus H is not dense in L∞(μ). From
this we easily find the assertion for q ∈ [1,∞). ��

Finally, let us treat the Gaussian RBF kernels yet another time.

Theorem 4.63 (Gaussian RKHS is large). Let γ > 0, p ∈ [1,∞), and
μ be a finite measure on Rd. Then the RKHS Hγ(Rd) of the Gaussian RBF
kernel kγ is dense in Lp(μ).

Proof. Since Lp(μ) is dense in L1(μ), it suffices to consider the case p > 1.
Moreover, by Theorem 4.26, it suffices to show that the integral operator
Skγ

: Lp′(μ) → Hγ(Rd) of kγ is injective. However, the latter was already
established in Theorem 4.47. ��
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4.7 Further Reading and Advanced Topics

The idea of using kernels for pattern recognition algorithms dates back to the
1960s, when Aizerman et al. (1964) gave a feature space interpretation of the
potential function method. However, it took almost thirty years before Boser
et al. (1992) combined this idea with another old idea, namely the generalized
portrait algorithm of Vapnik and Lerner (1963), in the hard margin SVM.
Shortly thereafter, Cortes and Vapnik (1995) added slack variables to this
first type of SVM, which led to soft margin SVMs. In these papers on SVMs,
the feature space interpretation was based on an informal version of Mercer’s
theorem, which may cause some misunderstandings, as discussed in Exercise
4.10. The RKHS interpretation for SVMs was first found in 1996 and then
spread rapidly; see, e.g., the books by Schölkopf (1997) and Vapnik (1998).
For more information, we refer to G. Wahba’s talk on multi-class SVMs given
at IPAM in 2005 (see http://www.oid.ucla.edu/Webcast/ipam/). Since the
introduction of SVMs, many kernels for specific learning tasks have been de-
veloped; for an overview, we refer to Schölkopf and Smola (2002) and Shawe-
Taylor and Cristianini (2004). In addition, it was first observed by Schölkopf
et al. (1998) that the “kernel trick”, i.e., the idea of combining a linear algo-
rithm with a kernel to obtain a non-linear algorithm, works not only for SVMs
but actually for a variety of different algorithms. Many of these “kernelized”
algorithms can be found in the books by Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004).

As indicated above, the use of kernels for machine learning methods was
discovered relatively recently. However, the theory of kernels and their ap-
plications to various areas of mathematics are much older. Indeed, Mercer’s
theorem has been known for almost a century (see Mercer, 1909), and based
on older work by Moore (1935, 1939) and others, Aronszajn (1950) devel-
oped the theory of RKHSs in the 1940s. The latter article also provides a
good overview of the early history and the first applications of kernels. Since
then, many new applications have been discovered. We refer to the books by
Berlinet and Thomas-Agnan (2004), Ritter (2000), and Wahba (1990) for a
variety of examples.

We must admit that two important types of kernels have been almost
completely ignored in this chapter. The first of these are the translation-
invariant kernels, i.e., kernels k : Rd × Rd → K for which there exists a
function κ : Rd → K such that

k(x, x′) = κ(x− x′) , x, x′ ∈ Rd. (4.57)

Bochner (1932, 1959) showed that, given a continuous function κ : Rd → C,
equation (4.57) defines a kernel k if and only if there exists a unique finite
Borel measure μ on Rd such that

κ(x) =
∫
Rd

ei〈x,y〉 dμ(y) , x ∈ Rd. (4.58)
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From this and Exercise 4.5, it is easy to conclude that for continuous functions
κ : Rd → R, equation (4.57) defines a kernel if there exists a unique finite
Borel measure μ on Rd such that

κ(x) =
∫
Rd

cos〈x, y〉 dμ(y) , x ∈ Rd. (4.59)

Note that this sufficient condition is a generalization of the Fourier kernels
introduced in Lemma 4.12, and in fact one could prove this condition directly
along the lines of the proof of Lemma 4.12. Finally, Cucker and Zhou (2007)
showed in their Proposition 2.14 that k is a kernel if the Fourier transform of κ
is non-negative. The second type of kernel we did not systematically consider
are radial kernels, i.e., kernels k : Rd × Rd → R for which there exists a
function κ : Rd → R such that

k(x, x′) = κ(‖x− x′‖22) , x, x′ ∈ Rd. (4.60)

Schoenberg (1938), see also Section 5.2 in Berg et al. (1984), showed that,
given a continuous function κ : R→ R, equation (4.60) defines a kernel k for
all d ≥ 1, if and only if there exists a unique finite Borel measure μ on [0,∞)
such that

κ(t) =
∫
Rd

e−ty dμ(y) , t ∈ [0,∞). (4.61)

Finally, it is known that if κ is completely monotonic, then (4.60) defines a
kernel. For a proof, we refer to Proposition 2.18 of Cucker and Zhou (2007).

Most of the material presented in Sections 4.1, 4.2, and 4.3 is folklore and
can be found in many other introductions to RKHSs (see, e.g., Hille, 1972;
Meschkowski, 1962; Saitoh, 1988, 1997). Polynomial kernels were first used
in the machine literature by Poggio (1975). The exponential kernel and its
RKHS are closely related to the so-called Fock space considered in quantum
mechanics (see, e.g., Bargmann, 1961; Folland, 1989). Furthermore, the bi-
nomial kernel is a generalization of the Bergmann kernel (see, e.g., Duren,
1970; Duren and Schuster, 2004; Hedenmalm et al., 2000), and the examples
of Fourier type kernels were considered by Vapnik (1998), who also presents
some more examples of kernels of possible interest for machine learning. Fi-
nally, the notion of separately continuous kernels in Section 4.3 is taken from
Hein and Bousquet (2004).

The description of Hγ(X) follows Steinwart et al. (2006a), but some of
the results can also be found in the book by Saitoh (1997). The operator Wt

is known as the Gauss-Weierstraß integral operator and is used for the heat
equation (see, e.g., Hille and Phillips, 1957). Since this integral operator is
neither surjective nor compact, Theorem 4.47 can be used to show that the
inclusion id : Hγ2(X) → Hγ1(X) considered in Proposition 4.46 is neither
surjective nor compact if X has a non-empty interior. In addition, the bound
on its norm given in (4.44) turns out to be sharp for such X. We refer to
Steinwart et al. (2006a) for more information.
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The RKHS representation based on Mercer’s theorem closely follows the
presentation of Cucker and Smale (2002). This article also provides some other
useful insights into the theory of RKHSs. For a proof of Mercer’s theorem, we
refer to Werner (1995) and Riesz and Nagy (1990).

The first part of Section 4.6 is taken almost completely from Steinwart
(2001). It is not hard to see that Corollary 4.57 does not provide a necessary
condition for universality. Indeed, if, for example, one only assumes an > 0
for all indexes n but one n0 �= 0, then k is still a universal kernel. This
raises the question of how many non-vanishing coefficients are necessary for
the universality. Surprisingly, this question was answered by Dahmen and
Micchelli (1987) in a different context. Their result states that k is universal
if and only if a0 > 0 and∑

a2n>0

1
2n

=
∑

a2n+1>0

1
2n+ 1

=∞ .

Note that this condition implies that the sets Neven := {2n ∈ N : a2n > 0}
and Nodd := {2n + 1 ∈ N : a2n+1 > 0} are infinite. Interestingly, Pinkus
(2004) has recently shown that the latter characterize strictly positive defi-
nite kernels, i.e., he has shown that a kernel is strictly positive definite if and
only if a0 > 0 and |Nodd| = |Neven| =∞. In particular, both results together
show that not every strictly positive definite kernel is universal. An elemen-
tary proof of this latter observation can be found by combining Exercise 4.11
and Exercise 4.14. Moreover, it is interesting to note that this observation can
also be deduced from Theorem 4.62. Recently, Micchelli et al. (2006) investi-
gated under which conditions translation-invariant kernels and radial kernels
are universal. Besides other results, they showed that complex translation-
invariant kernels are universal if the support of the measure μ in (4.58) has
a strictly positive Lebesgue measure. Using a feature map similar to that of
the proof of Lemma 4.12, it is then easy to conclude that kernels represented
by (4.59) are universal if vol(suppμ) > 0. Moreover, Micchelli et al. (2006)
showed that radial kernels are universal if the measure μ in (4.61) satisfies
suppμ �= {0}. Finally, the second part of Section 4.6, describing denseness
results of H in Lp(μ), is taken from Steinwart et al. (2006b).

4.8 Summary

In this chapter, we gave an introduction to the mathematical theory of kernels.
We first defined kernels via the existence of a feature map, but it then turned
out that kernels can also be characterized by simple inequalities, namely the
positive definiteness condition. Furthermore, we saw that certain representa-
tions of kernel functions lead directly to feature maps. This observation helped
us to introduce several important kernels.

Although neither the feature map nor the feature space are uniquely deter-
mined for a given kernel, we saw in Section 4.2 that we can always construct
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a canonical feature space consisting of functions. We called this feature space
the reproducing kernel Hilbert space. One of our major results was that there
is a one-to-one relation between kernels and RKHSs. Moreover, we showed in
Section 4.3 that many properties of kernels such as measurability, continuity,
or differentiability are inherited by the functions in the RKHS.

We then determined the RKHSs of Gaussian RBF kernels and gained some
insight into their structure. In particular, we were able to compare the RKHS
norms for different widths and showed that these RKHSs do not contain con-
stant functions. We further investigated properties of their associated integral
operators, showing, e.g., that in many cases these operators are injective.

For continuous kernels on compact input spaces, Mercer’s theorem pro-
vided a series representation in terms of the eigenvalues and functions of the
associated integral operators. This series representation was then used in Sec-
tion 4.5 to give another characterization of the functions contained in the
corresponding RKHSs.

In Section 4.6, we then considered kernels whose RKHS H is large in
the sense that H is dense in either C(X) or a certain Lebesgue space of
p-integrable functions. In particular, we showed that, among others, the
Gaussian RBF kernels belong to this class. As we will see in later chapters, this
denseness is one of the key reasons for the universal learning ability of SVMs.

4.9 Exercises

4.1. Some more kernels of Taylor type (�)
Use Taylor expansions to show that the following functions can be used to
construct kernels by Lemma 4.8: x �→ coshx, x �→ arcothx−1, x �→ ln

(
1+x
1−x

)
,

and x �→ arctanhx. What are the corresponding (maximal) domains of these
kernels? Are these kernels universal?

4.2. Many standard Hilbert spaces are not RKHSs (�)
Let μ be a measure on the non-empty set X. Show that L2(μ) is an RKHS if
and only if for all non-empty A ⊂ X we have μ(A) > 0.

4.3. Cauchy-Schwarz inequality (��)
Let E be an R-vector space and 〈 · , · 〉 : E → R be a positive, symmetric
bilinear form, i.e., it satisfies

i) 〈x, x〉 ≥ 0
ii) 〈x, y〉 = 〈y, x〉
iii) 〈αx+ y, z〉 = α〈x, z〉+ 〈y, z〉
for all x, y, z ∈ E, α ∈ R. Show the Cauchy-Schwarz inequality

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 , x, y ∈ E.
Hint: Start with 0 ≤ 〈x + αy, x + αy〉 and consider the cases α = 1 and

α = −1 if 〈x, x〉 = 〈y, y〉 = 0. Otherwise, if, e.g., 〈y, y〉 �= 0, use α := − 〈x,y〉
〈y,y〉 .
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4.4. The RKHSs of restricted and normalized kernels (���)
Let k be a kernel on X with RKHS H. Using Theorem 4.21, show that:

i) For X ′ ⊂ X, the RKHS of the restricted kernel k|X′×X′ is

H|X′ :=
{
f : X ′ → R | ∃f̂ ∈ H with f̂|X′ = f

}
with norm ‖f‖H|X′ := inf{‖f̂‖H : f̂ ∈ H with f̂|X′ = f}.

ii) Suppose k(x, x) > 0 for all x ∈ X. Then the RKHS H∗ of the normalized
kernel k∗ considered in Lemma 4.55 is

H∗ =
{
f : X → R | (x �→ k(x, x)f(x)) ∈ H}

and has norm ‖f‖H∗ := ‖(x �→ k(x, x)f(x))‖H .
iii) Determine the RKHS of the exponential kernel with the help of Hγ,Cd .

4.5. Real part of complex kernels (��)
Let k : X ×X → C be a kernel. Show that Re k : X ×X → R is a kernel.

Hint: Show that Re k is symmetric and positive definite. For the latter,
use k(x, x′) + k(x′, x) = 2Re k(x, x′).

4.6. Injectivity of id : H → Lp(μ) (��)
LetX be a Polish space and μ be a Borel measure with suppμ = X. Moreover,
let k be a continuous kernel on X with ‖k‖Lp(μ) < ∞ for some p ∈ [1,∞].
Show that id : H → Lp(μ) is injective.

4.7. Properties of functions contained in the Gaussian RKHSs (��)
For γ > 0, show the following statements:

i) Every f ∈Hγ(Rd) is infinitely many times differentiable.
ii) Every f ∈Hγ(Rd) is 2-integrable, and the inclusion id : Hγ(Rd)→ L2(Rd)

is continuous.
iii) Every f ∈Hγ(Rd) is bounded, and the inclusion id : Hγ(Rd) → �∞(Rd)

is continuous.

Hint: For ii), use that the integral operator Sk : L2(Rd)→ Hγ(Rd) is contin-
uous. Then consider its adjoint.

4.8. Gaussian kernels and the hinge loss (���)
Let P be a distribution on X × Y , where X ⊂ Rd and Y := {−1, 1}. Further-
more, let Lhinge be the hinge loss defined in Example 2.27 and Hγ(X) be a
Gaussian RKHS. Show that no minimizer f∗Lhinge,P of the Lhinge-risk is con-
tained inHγ(X) if for η(x) := P(y = 1|x), x ∈ X, the set {x : η(x) �= 0, 1/2, 1}
has a non-empty interior. Give some (geometric) examples for such distribu-
tions. Does a similar observation hold for P satisfying R∗

Lhinge,P = 0?

4.9. Different feature spaces of the Gaussian kernels (��)
Compare the different feature spaces and maps of the Gaussian RBF kernels
we presented in Corollary 4.40 and Lemma 4.45.
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4.10. Discussion of Mercer’s theorem (���)
Using inadequate versions of Mercer’s theorem can lead to mistakes. Consider
the following two examples:

i) Sometimes a version of Mercer’s theorem is presented that holds not only
for continuous kernels but also for bounded and measurable kernels. For
these kernels, the relation (4.53) is only stated μ2-almost surely. Now,
one might think that by modifying the eigenfunctions on a zero set one
can actually obtain (4.53) for all x, x′ ∈ X. Show that in general such a
modification does not exist.

ii) Show that if the assumption suppμ = X of Theorem 4.49 is dropped,
(4.53) holds at least for all x, x′ ∈ suppμ. Furthermore, give an example
that demonstrates that in general (4.53) does not hold for all x, x′ ∈ X.

Hint: For for i) Use [0, 1] equipped with the Lebesgue measure and consider
the kernel k defined by k(x, x) := 1 for x ∈ X and k(x, x′) = 0 otherwise.

4.11. Strictly positive definite kernels separate all finite subsets (��)
Let k : X×X → R be a kernel. Show that k separates all finite subsets if and
only if it is strictly positive definite.

Hint: Recall from linear algebra that a symmetric matrix is (strictly) pos-
itive definite if and only if its eigenvalues are all real and (strictly) positive.
Then express the equations f(xi) = yi, i = 1, . . . , n, f ∈ H, in terms of the
Gram matrix (k(xj , xi))i,j .

4.12. Universality of Fourier type kernels (���)
Formulate and prove a condition for Fourier type kernels (see Lemma 4.12)
that ensures universality. Then show that the kernels in Examples 4.13 and
4.14 are universal.

Hint: Use a condition similar to that of Corollary 4.57.

4.13. Existence of universal kernels (����)
Let (X, τ) be a compact topological space. Show that the following statements
are equivalent:

i) (X, τ) is metrizable, i.e., there exists a metric d on X such that the col-
lection of the open subsets defined by d equals the topology τ .

ii) There exists a continuous kernel on X whose RKHS is dense in C(X).

Hint: Use that X is metrizable if and only if C(X) is separable (see, e.g.,
Theorem V.6.6 of Conway, 1990). Furthermore, for i) ⇒ ii), use a countable,
dense subset of C(X) to construct a universal kernel in the spirit of Lemma 4.2.
For the other direction, use that every compact topological space is separable.

4.14. A kernel separating all finite but not all compact sets (����)
Let X := {−1, 0}∪{1/n : n ∈ N} and (en) be the canonical ONB of �2. Define
the map Φ : X → �2 ⊕2 R by Φ(−1) := (

∑∞
n=1 2−nen, 1), Φ(0) := (0, 1), and

Φ(1/n) := (n−2en, 1) for n ∈ N. Then the kernel associated to the feature
map Φ separates all finite sets but does not separate the compact sets {−1}
and X\{−1}.
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Infinite-Sample Versions of Support Vector
Machines

Overview. In this chapter, we show that interesting structural prop-
erties of SVMs can be discovered by considering the SVM formulation
for “infinite” training sets. In particular, we will present a representa-
tion for the corresponding SVM solutions and discuss their dependence
on the underlying probability measure. Moreover, we will investigate
the behavior of SVMs for vanishing regularization parameter.

Prerequisites. Chapters 2 and 4 form the fundament of this chapter.
In addition, we need the subdifferential calculus for convex functions,
which is provided in Section A.6.2.

Usage. Section 5.1 is needed for computational aspects discussed in
Chapter 11, while Section 5.2 is mainly used in Section 5.3. The lat-
ter section is required for the statistical analysis of SVMs conducted in
Sections 6.4, 6.5, and 9.2. Finally, Sections 5.4 and 5.5 are important
for the generalization performance of SVMs analyzed in Sections 6.4
and 6.5 and Chapters 8 and 9.

We saw in the introduction that support vector machines obtain their decision
functions by finding a minimizer fD,λ of the regularized empirical risk

Rreg
L,D,λ(f) := λ‖f‖2H +RL,D(f) , f ∈ H . (5.1)

The first questions that then arise are whether such minimizers exist and, if
so, whether they are unique. Moreover, the data set D defining the empirical
measure D is usually an i.i.d. sample drawn from a distribution P. The law
of large numbers then shows that RL,D(f) is close to RL,P(f), and hence one
may think of Rreg

L,D,λ(f) as an estimate of the infinite-sample regularized risk

Rreg
L,P,λ(f) := λ‖f‖2H +RL,P(f) . (5.2)

In this chapter, we will thus investigate such regularized risks for arbitrary
distributions, so that we simultaneously obtain results for (5.1) and (5.2). In
particular, we will consider the following questions:
• When does (5.2) have exactly one minimizer fP,λ ∈ H?
• Is there a way to represent fP,λ in a suitable form?
• How does fP,λ change if P or λ changes?
• How close is RL,P(fP,λ) to the Bayes risk R∗

L,P?
Namely, we show in Section 5.1 that under rather general conditions there
exists a unique minimizer fP,λ, and in the following section we derive a
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representation for this minimizer. This representation is then used in Sec-
tion 5.3 to investigate the dependence of fP,λ on P. In Sections 5.4 and 5.5,
we finally consider the question of whether and how RL,P(fP,λ) converges to
the Bayes risk for λ→ 0.

5.1 Existence and Uniqueness of SVM Solutions

In this section, we first investigate under which conditions the general regu-
larized risk (5.2) possesses a unique minimizer. Furthermore, we establish a
representation of the finite sample solutions fD,λ of (5.1).

Let us begin by introducing some notions. To this end, let L : X×Y ×R→
[0,∞) be a loss, H be the RKHS of a measurable kernel on X, and P be a
distribution on X × Y . For λ > 0, we then call an fP,λ,H ∈ H that satisfies

λ‖fP,λ,H‖2H +RL,P(fP,λ,H) = inf
f∈H

λ‖f‖2H +RL,P(f) (5.3)

a general SVM solution or a general SVM decision function. Moreover,
in order to avoid notational overload, we usually use the shorthand fP,λ :=
fP,λ,H if no confusion can arise. Now note that for such a function fP,λ we
have

λ‖fP,λ‖2H ≤ λ‖fP,λ‖2H +RL,P(fP,λ) = inf
f∈H

λ‖f‖2H +RL,P(f) ≤ RL,P(0) ,

or in other words

‖fP,λ‖H ≤
√
RL,P(0)

λ
. (5.4)

Let us now investigate under which assumptions there exists exactly one fP,λ.
We begin with the following result showing uniqueness for convex losses.

Lemma 5.1 (Uniqueness of SVM solutions). Let L : X×Y ×R→ [0,∞)
be a convex loss, H be the RKHS of a measurable kernel over X, and P be a
distribution on X×Y with RL,P(f) <∞ for some f ∈ H. Then for all λ > 0
there exists at most one general SVM solution fP,λ.

Proof. Let us assume that the map f �→ λ‖f‖2H +RL,P(f) has two minimizers
f1, f2 ∈ H with f1 �= f2. By the last statement in Lemma A.5.9, we then find
‖ 1

2 (f1 + f2)‖2H < 1
2‖f1‖2H + 1

2‖f2‖2H . The convexity of f �→ RL,P(f) together
with λ‖f1‖2H +RL,P(f1) = λ‖f2‖2H +RL,P(f2) then shows for f∗ := 1

2 (f1+f2)
that

λ‖f∗‖2H +RL,P(f∗) < λ‖f1‖2H +RL,P(f1) ,

i.e., f1 is not a minimizer of f �→ λ‖f‖2H + RL,P(f). Consequently, the as-
sumption that there are two minimizers is false. ��

Our next result shows that for convex, integrable Nemitski loss functions
(see Definition 2.16) there always exists a general SVM solution.
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Theorem 5.2 (Existence of SVM solutions). Let L : X×Y ×R→ [0,∞)
be a convex loss and P be a distribution on X×Y such that L is a P-integrable
Nemitski loss. Furthermore, let H be the RKHS of a bounded measurable kernel
over X. Then, for all λ > 0, there exists a general SVM solution fP,λ.

Proof. Since the kernel k of H is measurable, H consists of measurable func-
tions by Lemma 4.24. Moreover, k is bounded, and thus Lemma 4.23 shows
that id : H → L∞(PX) is continuous. In addition, we have L(x, y, t) <∞ for
all (x, y, t) ∈ X×Y ×R, and hence L is a continuous loss by the convexity of L
and Lemma A.6.2. Therefore, Lemma 2.17 shows that RL,P : L∞(PX)→ R is
continuous, and hence RL,P : H → R is continuous. In addition, Lemma 2.13
provides the convexity of this map. Furthermore, f �→ λ‖f‖2H is also convex
and continuous, and hence so is f �→ λ‖f‖2H +RL,P(f). Now consider the set

A :=
{
f ∈ H : λ‖f‖2H +RL,P(f) ≤M} ,

where M := RL,P(0). Then we obviously have 0 ∈ A. In addition, f ∈ A
implies λ‖f‖2H ≤ M , and hence A ⊂ (M/λ)1/2BH , where BH is the closed
unit ball of H. In other words, A is a non-empty and bounded subset and
thus Theorem A.6.9 gives the existence of a minimizer fP,λ. ��

It is interesting to note that in Theorem 5.2 the convexity of L is not
necessary for the existence of a general SVM solution (see Exercise 5.7).

We have presented some important classes of Nemitski losses in Chapter
2. The following corollaries specify Theorem 5.2 for these types of losses.

Corollary 5.3. Let L : X × Y × R → [0,∞) be a convex, locally Lipschitz
continuous loss, P be a distribution on X × Y with RL,P(0) < ∞, and H be
the RKHS of a bounded measurable kernel over X. Then, for all λ > 0, there
exists a unique general SVM solution fP,λ ∈ H. Furthermore, if L is actually
a convex margin-based loss represented by ϕ : R→ [0,∞), we have

‖fP,λ‖H ≤
(ϕ(0)

λ

)1/2

.

Proof. The first assertion follows from Lemma 5.1, Theorem 5.2, and the
discussion around (2.11). Moreover, convex margin-based losses are locally
Lipschitz continuous by Lemma 2.25, and (5.4) together with RL,P(0) = ϕ(0)
shows the inequality for these losses. ��
Corollary 5.4. Let L : R × R → [0,∞) be a convex, distance-based loss of
upper growth type p ≥ 1, P be a distribution on X × Y with |P|p < ∞, and
H be the RKHS of a bounded measurable kernel over X. Then, for all λ > 0,
there exists a unique general SVM solution fP,λ ∈ H. Moreover, there exists
a constant cL,p > 0 only depending on L and p such that

‖fP,λ‖H ≤ cL,p

( |P|pp + 1
λ

)1/2

.
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Proof. Combine Lemma 2.38, Lemma 5.1, Theorem 5.2, and (5.4). ��
If H is the RKHS of a bounded measurable kernel on X and L is a convex,

distance-based loss of growth type p ≥ 1, then it is easy to see by Lemma 2.38
that, for distributions P on X ×R with |P|p =∞, we have RL,P(f) =∞ for
all f ∈ H. Consequently, the distributions P with |P|p <∞ are in general the
only distributions admitting a non-trivial SVM solution fP,λ.

Let us now discuss empirical SVM solutions in some more detail. To
this end, we denote, as usual, the empirical measure of a sequence of obser-
vations D := ((x1, y1), . . . , (xn, yn)) by D, i.e., D := 1

n

∑n
i=1 δ(xi,yi). The next

result shows that fD,λ exists under somewhat minimal assumptions on L.
Furthermore, it provides a simple representation of fD,λ in terms of the kernel.

Theorem 5.5 (Representer theorem). Let L : X × Y × R → [0,∞) be
a convex loss and D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n. Furthermore, let
H be an RKHS over X. Then, for all λ > 0, there exists a unique empirical
SVM solution, i.e., a unique fD,λ ∈ H satisfying

λ‖fD,λ‖2H +RL,D(fD,λ) = inf
f∈H

λ‖f‖2H +RL,D(f) . (5.5)

In addition, there exist α1, . . . , αn ∈ R such that

fD,λ(x) =
n∑

i=1

αik(x, xi) , x ∈ X. (5.6)

Proof. Uniqueness. It follows by repeating the proof of Lemma 5.1.
Existence. Since convergence in H implies pointwise convergence, we ob-

tain the continuity of RL,D : H → [0,∞) by the continuity of L. Now the
existence can be shown as in the proof of Theorem 5.2.

Representation (5.6). Let us write X ′ := {xi : i = 1, . . . , n} and

H|X′ := span
{
k( · , xi) : i = 1, . . . , n

}
.

Then H|X′ is the RKHS of k|X′×X′ by (4.12), and consequently we already
know that there exists an empirical SVM solution fD,λ,H|X′ ∈ H|X′ . Now let
H⊥

|X′ be the orthogonal complement of H|X′ in H. For f ∈ H⊥
|X′ , we then have

f(xi) = 〈f, k( · , xi)〉 = 0 , i = 1, . . . , n .

If PX′ : H → H denotes the orthogonal projection onto H|X′ we thus find

RL,D(PX′f) = RL,D(f)

and ‖PX′f‖H ≤ ‖f‖H for all f ∈ H. Since this yields

inf
f∈H

λ‖f‖2H +RL,D(f) ≤ inf
f∈H|X′

λ‖f‖2H +RL,D(f)

= inf
f∈H

λ‖PX′f‖2H +RL,D(PX′f)

≤ inf
f∈H

λ‖f‖2H +RL,D(f) ,
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we actually have equality in the above chain of inequalities. Therefore,
fD,λ,H|X′ minimizes λ �→ λ‖f‖2H +RL,D(f) in H, and the uniqueness of fD,λ,H

then shows fD,λ,H|X′ = fD,λ,H . In other words, we have fD,λ := fD,λ,H ∈ H|X′ ,
and hence (5.6) follows from the definition of H|X′ . ��

Our last theorem in this section shows that in most situations the general
SVM decision functions are non-trivial.

Theorem 5.6 (Non-trivial SVM solutions). Let L : X ×Y ×R→ [0,∞)
be a convex loss and P be a distribution on X×Y such that L is a P-integrable
Nemitski loss. Furthermore, let H be the RKHS of a bounded measurable kernel
over X such that R∗

L,P,H < RL,P(0). Then, for all λ > 0, we have fP,λ �= 0.

Proof. By our assumptions, there exists an f∗ ∈ H with RL,P(f∗) < RL,P(0).
For α ∈ [0, 1], we then have

λ‖αf∗‖2H +RL,P(αf∗) ≤ λα2‖f∗‖2H + αRL,P(f∗) + (1− α)RL,P(0) =: h(α)

by the convexity of RL,P. Now, RL,P(f∗) < RL,P(0) together with the qua-
dratic form of α �→ h(α) implies that h : [0, 1]→ [0,∞) is minimized at some
α∗ ∈ (0, 1]. Consequently, we have

λ‖α∗f∗‖2H +RL,P(α∗f∗) ≤ h(α∗) < h(0) = λ‖0‖2H +RL,P(0) . ��

5.2 A General Representer Theorem

We have seen in Theorem 5.5 that empirical SVM solutions can be represented
by linear combinations of the canonical feature map. However, this result does
not provide information about the values of the coefficients α1, . . . , αn, and,
in addition, it also remains unclear whether a somewhat similar result can
hold for general SVM solutions.

Let us begin with a simplified consideration. To this end, let X be a mea-
surable space, P be a distribution on X × Y , and L : X × Y × R → [0,∞)
be a convex, differentiable, and P-integrable Nemitski loss. Furthermore, as-
sume that |L′| : X × Y × R → [0,∞) is also a P-integrable Nemitski loss.
Then Lemma 2.21 shows that RL,P : L∞(PX) → [0,∞) is Fréchet differen-
tiable and that its derivative at f ∈ L∞(PX) is the bounded linear operator
R′

L,P(f) : L∞(PX)→ R given by

R′
L,P(f)g =

∫
X×Y

g(x)L′(x, y, f(x)
)
dP(x, y) , g ∈ L∞(PX).

Now let H be a separable RKHS with bounded and measurable kernel k and
Φ : X → H be the corresponding canonical feature map. Lemma 4.25 then
shows that Φ : X → H is measurable, and from Lemmas 4.23 and 4.24 we can
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infer that id : H → L∞(PX) is well-defined and continuous. For f0 ∈ H, the
chain rule (see Lemma A.5.15) thus yields

(RL,P ◦ id
)′(f0) = R′

L,P(id f0) ◦ id′(f0) = R′
L,P(f0) ◦ id ,

and hence we find for f ∈ H that

(RL,P ◦ id
)′(f0)f =

(R′
L,P(f0) ◦ id

)
f =
∫

X×Y

f(x)L′(x, y, f0(x)) dP(x, y)

= E(x,y)∼PL
′(x, y, f0(x))〈f, Φ(x)

〉
=
〈
f,E(x,y)∼PL

′(x, y, f0(x))Φ(x)
〉
.

Note that the last expectation is H-valued and hence a Bochner integral in
the sense of Section A.5.4. Using the Fréchet-Riesz isomorphism ι : H → H ′

described in Theorem A.5.12, we thus see that(RL,P ◦ id
)′(f0) = ιE(x,y)∼PL

′(x, y, f0(x))Φ(x) . (5.7)

Moreover, a straightforward calculation shows that the function G : H → R

defined by Gf := ‖f‖2H , f ∈ H, is Fréchet differentiable and its derivative at
f0 is G′(f0) = 2ιf0. Now recall that Rreg

L,P,λ( · ) = λG +RL,P ◦ id, and hence
fP,λ minimizes the function λG+RL,P ◦ id : H → R. Consequently, we obtain

0 =
(
λG+RL,P ◦ id

)′(fP,λ) = ι
(
2λfP,λ + E(x,y)∼PL

′(x, y, fP,λ(x)
)
Φ(x)
)
,

and hence we have 2λfP,λ = −E(x,y)∼PL
′(x, y, fP,λ(x))Φ(x) by the injectivity

of ι. The reproducing property then yields

fP,λ(x) = −
∫

X×Y

L′(x′, y, fP,λ(x′))
2λ

k(x, x′) dP(x′, y) , x ∈ X. (5.8)

This equation answers both questions we posed in the introduction of this
section. Indeed, for a data set D = ((x1, y1), . . . , (xn, yn)) with corresponding
empirical distribution D, equation (5.8) becomes

fD,λ(x) = − 1
2λn

n∑
i=1

L′(xi, yi, fD,λ(xi)
)
k(x, xi) , x ∈ X,

i.e., possible coefficients in (5.6) are

αi := −L
′(xi, yi, fD,λ(xi))

2λn
, i = 1, . . . , n.

Moreover, note that by writing h(x, y) := L′(x, y, fD,λ(x)), (x, y) ∈ X × Y ,
the representation in (5.6) becomes
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Fig. 5.1. Convex functions (bold lines) and some of their subdifferentials. Left: The
function f is not differentiable at x := 1, so that the subdifferential ∂f(x) contains
the slopes of all tangents of f at x. In particular, it contains the left and the right
derivatives of f at x (solid lines). Moreover, all slopes in between (dashed line) are
contained. A formal statement of this illustration can be found in Lemma A.6.15.
Right: The subdifferential at a minimum contains 0, i.e., the flat slope (dashed line).

fD,λ = − 1
2λn

n∑
i=1

h(xi, yi)k( · , xi) = − 1
2λ

EDhΦ .

On the other hand, (5.8) can be rewritten as

fP,λ = − 1
2λ

∫
X×Y

h(x, y)k( · , x) dP(x, y) = − 1
2λ

EPhΦ .

This makes it clear that (5.8) can be viewed as a “continuous” and “quanti-
fied” version of the representer theorem.

The approach above yielded a quantified version of the representer the-
orem for differentiable losses. However, some important losses, such as the
hinge loss and the pinball loss, are not differentiable, and since we are also
interested in distributions P having point masses, this non-differentiability
can cause problems even if it only occurs at one point. On the other hand, we
are particularly interested in convex losses since these promise an efficient al-
gorithmic treatment. Fortunately, for convex functions there exists a concept
weaker than the derivative, for which the basic rules of calculus still hold. The
following definition introduces this concept.

Definition 5.7. Let E be a Banach space, f : E → R ∪ {∞} be a convex
function and w ∈ E be an element with f(w) �=∞. Then the subdifferential
of f at w is defined by

∂f(w) :=
{
w′ ∈ E′ : 〈w′, v − w〉 ≤ f(v)− f(w) for all v ∈ E} .

Roughly speaking, the subdifferential ∂f(w) contains all functionals de-
scribing the affine hyperplanes that are dominated by f and that are equal to
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it at w. For an illustration of this interpretation, see Figure 5.1. In particular,
if f is Gâteaux differentiable at w, then ∂f(w) contains only the derivative of
f at w. This and some other important properties of the subdifferential can
be found in Section A.6.2.

If L : X×Y ×R→ [0,∞) is a convex loss, we usually write ∂L(x, y, t0) for
the subdifferential of the convex function t �→ L(x, y, t) at the point t0 ∈ R.
Moreover, we use analogous notation for supervised and unsupervised losses.

With these preparations, we can now state the main result of this sec-
tion, which generalizes our considerations above to convex but not necessarily
differentiable losses.

Theorem 5.8 (General representer theorem). Let p ∈ [1,∞), P be a
distribution on X ×Y , and L : X ×Y ×R→ [0,∞) be a convex, P-integrable
Nemitski loss of order p. Furthermore, let k be a bounded and measurable
kernel on X with separable RKHS H and canonical feature map Φ : X → H.
Then, for all λ > 0, there exists an h ∈ Lp′(P) such that

h(x, y) ∈ ∂L(x, y, fP,λ(x)
)
, (x, y) ∈ X × Y, (5.9)

fP,λ = − 1
2λ

EPhΦ , (5.10)

where p′ is the conjugate exponent of p defined by 1/p′ + 1/p = 1.

Proof. Recall that L is a continuous loss since it is convex and finite. Moreover,
L is a P-integrable Nemitski loss of order p, and hence we see by an almost
literal repetition of the proof of Lemma 2.17 that R : Lp(P)→ [0,∞) defined
by

R(f) :=
∫

X×Y

L
(
x, y, f(x, y)

)
dP(x, y) , f ∈ Lp(P),

is well-defined and continuous.1 Furthermore, Proposition A.6.13 shows that
the subdifferential of R can be computed by

∂R(f) =
{
h ∈ Lp′(P) : h(x, y) ∈ ∂L(x, y, f(x, y)) for P-almost all (x, y)

}
.

Now, we easily infer from Lemma 4.23 that the inclusion map I : H → Lp(P)
defined by (If)(x, y) := f(x), f ∈ H, (x, y) ∈ X × Y , is a bounded linear
operator. Moreover, for h ∈ Lp′(P) and f ∈ H, the reproducing property
yields

〈h, If〉Lp′ (P),Lp(P) = EPhIf = EPh〈f, Φ〉H = 〈f,EPhΦ〉H = 〈ιEPhΦ, f〉H′,H ,

where ι : H → H ′ is the Fréchet-Riesz isomorphism described in Theorem
A.5.12. Consequently, the adjoint operator I ′ of I is given by I ′h = ιEPhΦ,
1 If we write X̄ := X ×Y , this can also be seen by interpreting R as the risk of the

unsupervised, continuous loss L̄ : X̄×R → [0,∞), defined by L̄(x̄, t) := L(x, y, t),
(x, y) := x̄ ∈ X̄, t ∈ R.
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h ∈ Lp′(P). Moreover, the L-risk functional RL,P : H → [0,∞) restricted to
H satisfies RL,P = R ◦ I, and hence the chain rule for subdifferentials (see
Proposition A.6.12) yields ∂RL,P(f) = ∂(R ◦ I)(f) = I ′∂R(If) for all f ∈ H.
Applying the formula for ∂R(f) thus yields

∂RL,P(f)
=
{
ιEPhΦ : h ∈ Lp′(P) with h(x, y) ∈ ∂L(x, y, f(x)) P-almost surely

}
for all f ∈ H. In addition, f �→ ‖f‖2H is Fréchet differentiable and its derivative
at f is 2ιf for all f ∈ H. By picking suitable representations of h ∈ Lp′(P),
Proposition A.6.12 thus gives

∂Rreg
L,P,λ(f)

= 2λιf +
{
ιEPhΦ : h ∈ Lp′(P) with h(x, y) ∈ ∂L(x, y, f(x)) for all (x, y)

}
for all f ∈ H. Now recall that Rreg

L,P,λ( · ) has a minimum at fP,λ, and therefore
we have 0 ∈ ∂Rreg

L,P,λ(fP,λ) by another application of Proposition A.6.12. This
together with the injectivity of ι yields the assertion. ��

5.3 Stability of Infinite-Sample SVMs

Given a distribution P for which the general SVM solution fP,λ exists, one may
ask how this solution changes if the underlying distribution P changes. The
goal of this section is to answer this question with the help of the generalized
representer theorem established in Section 5.2. The results we derive in this
direction will be crucial for the stability-based statistical analysis in Sections
6.4 and 9.2. Moreover, it will be a key element in the robustness considerations
of Sections 10.3 and 10.4.

Let us begin with the following theorem that, roughly speaking, provides
the Lipschitz continuity of the map P �→ fP,λ.

Theorem 5.9. Let p ∈ [1,∞) be a real number and p′ ∈ (1,∞] be its conjugate
defined by 1

p + 1
p′ = 1. Furthermore, let L : X × Y ×R→ [0,∞) be a convex

loss function and P be a distribution on X × Y such that L is a P-integrable
Nemitski loss of order p. Furthermore, let k be a bounded and measurable
kernel on X with separable RKHS H and canonical feature map Φ : X → H.
Then, for all λ > 0, there exists an h ∈ Lp′(P) such that

h(x, y) ∈ ∂L(x, y, fP,λ(x)
)
, (x, y) ∈ X × Y, (5.11)

fP,λ = − 1
2λ

EP hΦ , (5.12)

h ∈ L1(P̄) , (5.13)∥∥ fP,λ − fP̄,λ

∥∥
H
≤ 1
λ

∥∥EPhΦ− EP̄hΦ
∥∥

H
, (5.14)

for all distributions P̄ on X × Y for which L is a P̄-integrable Nemitski loss.
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Proof. By Theorem 5.8, there exists an h ∈ Lp′(P) satisfying (5.11) and (5.12).
Let us first show that h is P̄-integrable, i.e., that (5.13) holds. To this end,
observe that, since k is a bounded kernel, we have

‖fP,λ‖∞ ≤ ‖k‖∞‖fP,λ‖H ≤ ‖k‖∞
√
RL,P(0)

λ
=: Bλ <∞ (5.15)

by Lemma 4.23 and (5.4). Moreover, since L is a P̄-integrable Nemitski loss,
there exist a b̄ ∈ L1(P̄) and an increasing function h̄ : [0,∞)→ [0,∞) with

L(x, y, t) ≤ b̄(x, y) + h̄(|t|) , (x, y, t) ∈ X × Y ×R .

Now (5.11) and Proposition A.6.11 with δ := 1 yield

|h(x, y)| ≤ sup
∣∣∂L(x, y, fP,λ(x))

∣∣ ≤ ∣∣L(x, y, · )|[−1+‖fP,λ‖∞,1+‖fP,λ‖∞]

∣∣
1
,

and hence Lemma A.6.5 together with (5.15) shows

|h(x, y)| ≤ ∣∣L(x, y, · )|[−1+Bλ,1+Bλ]

∣∣
1
≤ 1

1 +Bλ

∥∥L(x, y, · )|[−2+2Bλ,2+2Bλ]

∥∥
∞

≤ b̄(x, y) + h̄(2 + 2Bλ)
1 +Bλ

(5.16)

for all (x, y) ∈ X × Y . From this we deduce h ∈ L1(P̄).
Let us now establish (5.14). To this end, observe that by (5.11) and the

definition of the subdifferential, we have

h(x, y)
(
fP̄,λ(x)− fP,λ(x)

) ≤ L(x, y, fP̄,λ(x)
)− L(x, y, fP,λ(x)

)
for all (x, y) ∈ X × Y . By integrating with respect to P̄, we hence obtain

〈fP̄,λ − fP,λ , EP̄hΦ〉 ≤ RL,P̄(fP̄,λ)−RL,P̄(fP,λ) . (5.17)

Moreover, an easy calculation shows

2λ 〈fP̄,λ − fP,λ , fP,λ〉+ λ‖fP,λ − fP̄,λ‖2H = λ‖fP̄,λ‖2H − λ ‖fP,λ‖2H . (5.18)

By combining (5.17) and (5.18), we then find〈
fP̄,λ−fP,λ,EP̄hΦ+2λfP,λ

〉
+ λ‖fP,λ−fP̄,λ‖2H ≤ Rreg

L,P̄,λ
(fP̄,λ)−Rreg

L,P̄,λ
(fP,λ)

≤ 0 ,

and consequently the representation fP,λ = − 1
2λ EPhΦ yields

λ‖fP,λ − fP̄,λ‖2H ≤
〈
fP,λ − fP̄,λ , EP̄hΦ− EPhΦ

〉
≤ ‖fP,λ − fP̄,λ‖H ·

∥∥EP̄hΦ− EPhΦ
∥∥

H
.

From this we easily obtain (5.14). ��
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For the applications in later chapters, it is often necessary to have more
information on the representing function h in (5.12). For two important types
of losses, such additional information is presented in the following two corol-
laries.

Corollary 5.10. Let L : X × Y × R → [0,∞) be a convex, locally Lipschitz
continuous loss and P be a distribution on X×Y with RL,P(0) <∞. Further-
more, let k be a bounded and measurable kernel on X with separable RKHS
H and canonical feature map Φ : X → H. We write

Bλ := ‖k‖∞
(RL,P(0)

λ

)1/2

, λ > 0.

Then, for all λ > 0, there exists a bounded measurable function h : X×Y → R

such that, for all distributions P̄ on X × Y with RL,P̄(0) <∞, we have

h(x, y) ∈ ∂L(x, y, fP,λ(x)
)
, (x, y) ∈ X × Y, (5.19)

fP,λ = − 1
2λ

EP hΦ , (5.20)

‖h‖∞ ≤ |L|Bλ,1 , (5.21)∥∥ fP,λ − fP̄,λ

∥∥
H
≤ 1
λ

∥∥EPhΦ− EP̄hΦ
∥∥

H
. (5.22)

Proof. Let us fix a λ > 0 and write B := Bλ. By Lemma 4.23 and Corollary
5.3, we then know that

‖fP,λ‖∞ ≤ ‖k‖∞ ‖fP,λ‖H ≤ ‖k‖∞
(RL,P(0)

λ

)1/2

= B .

For (x, y) ∈ X × Y , we further know that L(x, y, · ) : R → [0,∞) is convex,
and hence Lemma A.6.16 shows that there exists a convex and Lipschitz
continuous function L̃(x, y, · ) : R→ [0,∞) with

L̃(x, y, · )|[−B,B] = L(x, y, · )|[−B,B]

|L̃(x, y, · )|1 =
∣∣L(x, y, · )|[−B,B]

∣∣
1

∂L̃(x, y, t) ⊂ ∂L(x, y, t) , t ∈ [−B,B].

Moreover, considering the proof of Lemma A.6.16, we see that L̃ : X × Y ×
R→ [0,∞) can also be assumed to be measurable. Therefore, L̃ is a convex,
Lipschitz continuous loss function with |L̃|1 = |L|B,1 and RL̃,P(0) = RL,P(0).
Consequently, Corollary 5.3 shows that the general SVM solution

f̃P,λ ∈ arg min
f∈H

λ‖f‖2H +RL̃,P(f)

exists and satisfies ‖f̃P,λ‖∞ ≤ B. Furthermore, we have RL̃,P(f) = RL,P(f)
for all measurable f : X → [−B,B], and hence f̃P,λ is also a minimizer of
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Rreg
L,P,λ( · ). By the uniqueness of fP,λ, we thus find fP,λ = f̃P,λ. Now recall

that the Lipschitz continuity of L̃ gives

L̃(x, y, t) ≤ L(x, y, 0) + |L̃|1 |t| , (x, y) ∈ X × Y, t ∈ R,

i.e., L̃ is a Nemitski loss of order p := 1. Therefore, Theorem 5.8 gives a
bounded measurable function h : X × Y → R such that

h(x, y) ∈ ∂L̃(x, y, f̃P,λ(x)
) ⊂ ∂L

(
x, y, fP,λ(x)

)
, (x, y) ∈ X × Y, (5.23)

and − 1
2λ EPhΦ = f̃P,λ = fP,λ. In other words, we have shown (5.19) and

(5.20). In addition, combining (5.23) with Proposition A.6.11 yields∣∣h(x, y)∣∣ ≤ sup
{|t| : t ∈ ∂L̃(x, y, f̃P,λ(x))

} ≤ |L̃|1 = |L|B,1

for all (x, y) ∈ X×Y , i.e., we have shown (5.21). Finally, (5.22) can be shown
as in the proof of Theorem 5.9. ��

Recall that convex, margin-based losses are locally Lipschitz continuous,
and hence Corollary 5.10 provides a generalized representer theorem together
with the Lipschitz continuity of P �→ fP,λ for this important class of loss
functions. Let us now consider distance-based losses.

Corollary 5.11. Let L : R × R → [0,∞) be a convex, distance-based loss of
upper growth type p ≥ 1 with representing function ψ : R → [0,∞). Further-
more, let P be a distribution on X×R with |P|p <∞ and k be a bounded and
measurable kernel on X with separable RKHS H and canonical feature map
Φ : X → H. Then there exists a constant cL > 0 depending only on L such
that for all λ > 0 there exists a measurable function h : X ×Y → R such that

h(x, y) ∈ −∂ψ(y − fP,λ(x)
)
, (x, y) ∈ X × Y, (5.24)

fP,λ = − 1
2λ

EP hΦ , (5.25)

‖h‖Ls(P̄) ≤ 8pcL

(
1 + |P̄|p−1

q + ‖fP,λ‖p−1
∞
)
, (5.26)

∥∥ fP,λ − fP̄,λ

∥∥
H
≤ 1
λ

∥∥EPhΦ− EP̄hΦ
∥∥

H
, (5.27)

for all q ∈ [p,∞], all distributions P̄ on X × Y with |P̄|q <∞, and s := q
p−1 .

Proof. Recall that L is a P-integrable Nemitski loss of order p by Lemma 2.38,
and by Theorem 5.9 there thus exists an h ∈ Lp′(P) satisfying (5.11), (5.12),
and (5.14). Since (5.12) equals (5.25) and (5.14) equals (5.27), it remains to
show (5.24) and (5.26). To this end, recall that ψ satisfies L(y, t) = ψ(y −
t), y, t ∈ R, and hence it is convex. By Proposition A.6.12, we then have
∂L(y, t) = −∂ψ(y− t) for y, t ∈ R, and hence (5.11) implies (5.24). Moreover,
for p = 1, the loss L is Lipschitz continuous by Lemma 2.36, and consequently
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(5.26) follows from Proposition A.6.11. Therefore let us now consider the case
p > 1. For (x, y) ∈ X×Y with r := |y−fP,λ(x)| ≥ 1, Proposition A.6.11 with
δ := r and Lemma 2.36 then yield

|h(x, y)| ≤ |ψ|[−2r,2r]|1 ≤ r−1 ‖ψ|[4r,4r]‖∞ ≤ cr−1
(
(4r)p + 1

) ≤ c 4p+1 rp−1 ,

where c > 0 is the constant arising in the upper growth type definition.
Moreover, for (x, y) ∈ X × Y with r := |y − fP,λ(x)| ≤ 1, Proposition A.6.11
gives

|h(x, y)| ≤ |ψ|[−2r,2r]|1 ≤ |ψ|[−2,2]|1 .
Together, these estimates show that for all (x, y) ∈ X × Y we have

|h(x, y)| ≤ 4p cL max
{
1, |y − fP,λ(x)|p−1

}
, (5.28)

where cL is a suitable constant depending only on the loss function L. For
q =∞, we then easily find the assertion, and hence let us assume q ∈ [p,∞).
In this case, the inequality above yields

|h(x, y)|s ≤ 4pscsL max
{
1, |y − fP,λ(x)|q} ≤ 4ps2q−1csL

(
1 + |y|q + |fP,λ(x)|q) ,

and using 4p2
q−1

s ≤ 8p we consequently find

‖h‖Ls(P̄) ≤ 8pcL
(
1 + |P̄|p−1

q + ‖fP,λ‖p−1
∞
)
. ��

Note that the larger we can choose the real number q in the preceding
corollary, the larger the corresponding s becomes, i.e., the stronger the inte-
grability condition on h becomes. In particular, the case q =∞ yields s =∞,
i.e., the representing function h is bounded.

The following corollary shows that Theorem 5.9 holds under weaker as-
sumptions if all distributions involved are empirical.

Corollary 5.12. Let L : X×Y ×R→ [0,∞) be a convex loss function, n ≥ 1,
and D ∈ (X × Y )n. Furthermore, let H be the RKHS of a kernel on X and
Φ : X → H be its canonical feature map. Moreover, let λ > 0 and

Bλ := ‖k‖∞
(RL,D(0)

λ

)1/2

. (5.29)

Then there exists a function h : X × Y → R such that, for all m ≥ 1 and all
D̄ ∈ (X × Y )m, we have

h(x, y) ∈ ∂L(x, y, fD,λ(x)
)
, (x, y) ∈ D ∪ D̄,

fD,λ = − 1
2λ

ED hΦ ,

‖h‖∞ ≤ |L|Bλ,1 ,

‖fD,λ − fD̄,λ‖H ≤
1
λ

∥∥EDhΦ− ED̄hΦ
∥∥

H
.
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Proof. We write D = ((x1, y1), . . . , (xn, yn)) and D̄ = ((x̄1, ȳ1), . . . , (x̄m, ȳm)).
Furthermore, we define

X ′ := {xi : i = 1, . . . , n} ∪ {x̄i : i = 1, . . . ,m} ,
Y ′ := {yi : i = 1, . . . , n} ∪ {ȳi : i = 1, . . . ,m} ,

and equip both sets with the discrete σ-algebra. Then k|X′×X′ is a bounded
measurable kernel with finite-dimensional, and hence separable, RKHS. In
addition, both D and D̄ are distributions on X ′×Y ′. Furthermore, L(x, y, · ) :
R→ [0,∞) is convex for all (x, y) ∈ X ′ × Y ′ and hence L is locally Lipschitz
continuous. Since X ′ and Y ′ are finite sets, we then see that L restricted to
X ′ × Y ′ is locally Lipschitz. Moreover, we obviously have both RL,D(0) <∞
and RL,D̄(0) <∞, and hence the assertion follows from Corollary 5.10. ��

Let us finally use the results above to show that, under some additional
conditions, the map D �→ fD,λ is continuous.

Lemma 5.13. Let X be a metric space and L : X × Y × R → [0,∞) be a
continuous function that is a convex and differentiable loss. Furthermore, let
H be the RKHS of a continuous kernel on X, n ≥ 1, and λ > 0. Then the
map (X × Y )n → H defined by D �→ fD,λ is continuous.

Proof. Let us fix two sample sets D := ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n and
D̄ := ((x̄1, ȳ1), . . . , (x̄m, ȳm)) ∈ (X × Y )n. By Corollary 5.12, we then obtain

∥∥ fD,λ−fD̄,λ

∥∥
H
≤ 1
λn

∥∥∥∥
n∑

i=1

L′(xi, yi, fD,λ(xi)
)
Φ(xi)−L′(x̄i, ȳi, fD,λ(x̄i)

)
Φ(x̄i)
∥∥∥∥.

Now Lemma 4.29 shows that both fD,λ and Φ : X → H are continuous.
Moreover, every convex differentiable function is continuously differentiable
by Proposition A.6.14, and hence we obtain the assertion. ��

5.4 Behavior for Small Regularization Parameters

In this section, we investigate how the general SVM solution fP,λ and its
associated riskRL,P(fP,λ) behaves for vanishing regularization parameter, i.e.,
for λ→ 0. In addition, we compare the behavior of the minimized regularized
risk with the approximation error of the scaled unit balls λ−1BH .

Let us begin by introducing a new quantity. To this end, let L : X × Y ×
R→ [0,∞) be a loss, k be a measurable kernel over X with RKHS H, and P
be a distribution on X × Y . Then we write

R∗
L,P,H := inf

f∈H
RL,P(f) (5.30)

for the smallest possible L-risk on H. Moreover, we say that an element f∗ ∈
H minimizes the L-risk in H if it satisfies RL,P(f∗) = R∗

L,P,H . Finally,
we need the following fundamental definition, which is closely related to the
minimization of the regularized risk (5.2).
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Definition 5.14. Let L : X ×Y ×R→ [0,∞) be a loss, H be the RKHS of a
measurable kernel on X, and P be a distribution on X×Y with R∗

L,P,H <∞.
Then we define the approximation error function A2 : [0,∞)→ [0,∞) by

A2(λ) := inf
f∈H

λ‖f‖2H +RL,P(f)−R∗
L,P,H , λ ≥ 0.

Our first lemma collects some simple properties of the function A2.

Lemma 5.15 (Properties of the approximation error function). Let
L : X×Y ×R→ [0,∞) be a loss, H be the RKHS of a measurable kernel on X,
and P be a distribution on X×Y with R∗

L,P,H <∞. Then A2 : [0,∞)→ [0,∞)
is increasing, concave, and continuous. Moreover, we have A2(0) = 0 and

A2(κ)
κ
≤ A2(λ)

λ
, 0 < λ ≤ κ, (5.31)

A2(λ) ≤ RL,P(0)−R∗
L,P,H , λ ≥ 0.

In addition, A2( · ) is subadditive in the sense of

A2(λ+ κ) ≤ A2(λ) +A2(κ) , λ, κ ≥ 0.

Finally, if there exists a function h : [0, 1] → [0,∞) with limλ→0+ h(λ) = 0
and A2(λ) ≤ λh(λ) for all λ ∈ [0, 1], then we have A2(λ) = 0 for all λ ≥ 0,
and 0 minimizes RL,P in H.

Proof. The definition of the approximation error function immediately gives
A2(0) = 0. Moreover, A2( · ) is an infimum over a family of affine linear and
increasing functions, and hence we see that A2 is concave, continuous, and
increasing by Lemma A.6.4. Furthermore, (5.31) follows from the concavity,
namely

A2(λ) = A2

(λ
κ
κ+
(
1− λ

κ

)
0
)
≥ λ

κ
A2(κ) +

(
1− λ

κ

)
A2(0) =

λ

κ
A2(κ) .

In addition, for λ ≥ 0, we obtain from the definition of A2 that

A2(λ) ≤ λ‖0‖2H +RL,P(0)−R∗
L,P,H = RL,P(0)−R∗

L,P,H .

In order to show the subadditivity, it suffices to consider λ, κ > 0. Without
loss of generality, we may additionally assume λ ≤ κ. Using the already proved
(5.31) twice, we then obtain

A2(λ+ κ) ≤ (λ+ κ)κ−1A2(κ) = λκ−1A2(κ) +A2(κ) ≤ A2(λ) +A2(κ) .

Finally, let us assume that we have A2(λ) ≤ λh(λ) for all λ ∈ [0, 1]. Using our
previous results, we then obtain

A2(1) ≤ λ−1A2(λ) ≤ h(λ) , λ ∈ (0, 1].

For λ → 0, we then find A2(1) = 0, and since A2 is a non-negative and
concave function with A2(0) = 0, we then find A2(λ) = 0 for all λ ≥ 0. The
last assertion is a trivial consequence of the latter. ��
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Now assume for a moment that the general SVM solution fP,λ exists for
all λ > 0. The continuity of A2 at 0 together with A2(0) = 0 then shows both

lim
λ→0

λ‖fP,λ‖2H +RL,P(fP,λ) = R∗
L,P,H (5.32)

and limλ→0RL,P(fP,λ) = R∗
L,P,H . In other words, the (regularized) risk of the

SVM solution fP,λ tends to the minimal risk in H for vanishing regularization
term λ. Since this suggests that the behavior of A2 becomes particularly
interesting for λ → 0, we will mainly focus on this limit behavior. To this
end, we need the following preparatory lemma.

Lemma 5.16. Let L : X × Y × R → [0,∞) be a convex loss, H be the
RKHS of a measurable kernel on X, and P be a distribution on X × Y with
R∗

L,P,H < ∞. Assume that there exists an f∗0 ∈ H with RL,P(f∗0 ) = R∗
L,P,H .

Then there exists exactly one element f∗L,P,H ∈ H such that both

RL,P(f∗L,P,H) = R∗
L,P,H

and ‖f∗L,P,H‖ ≤ ‖f∗‖ for all f∗ ∈ H satisfying RL,P(f∗) = R∗
L,P,H .

Proof. Let M denote the set of all elements f∗ minimizing RL,P in H, i.e.

M :=
{
f∗ ∈ H : RL,P(f∗) = R∗

L,P,H

}
.

Uniqueness. Assume that we have two different elements f∗1 , f
∗
2 ∈ M sat-

isfying ‖f∗1 ‖ ≤ ‖f‖ and ‖f∗2 ‖ ≤ ‖f‖ for all f ∈ M . Then we obviously have
‖f∗1 ‖ = ‖f∗2 ‖. Moreover, the convexity of RL,P implies 1

2 (f∗1 + f∗2 ) ∈ M , and
the last statement in Lemma A.5.9 shows∥∥∥ 1

2
(f∗1 + f∗2 )

∥∥∥2
H
<
‖f∗1 ‖2H + ‖f∗2 ‖2H

2
= ‖f∗1 ‖2H . (5.33)

Since this contradicts our assumptions on f∗1 , there is at most one f∗L,P,H .
Existence. Since L is a convex loss, it is continuous, and consequently the

risk functional RL,P : H → [0,∞] is lower semi-continuous by Lemma 2.15.
This shows that the set M of minimizing elements is closed. Using Lemma
A.2.8, we then see that the map N : H → [0,∞] defined by

N(f) :=

{
‖f‖ if f ∈M
∞ otherwise

is lower semi-continuous. In addition, M is convex by the convexity of L, and
hence so is N . Now observe that the set {f ∈ H : N(f) ≤ ‖f∗0 ‖} is non-empty
and bounded, and consequently N has a global minimum at some f0 ∈ H by
Theorem A.6.9. Obviously, this f0 is the desired f∗L,P,H . ��
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Let us now assume for a moment that we are in the situation of Lemma
5.16. If fP,λ exists for some λ > 0, it necessarily satisfies

‖fP,λ‖ ≤ ‖f∗L,P,H‖ (5.34)

since otherwise we would find a contradiction by

λ‖f∗L,P,H‖2H +RL,P(f∗L,P,H) < λ‖fP,λ‖2H +RL,P(fP,λ) .

Moreover, observe that for λ = 0 a simple calculation shows

λ‖f∗L,P,H‖2H +RL,P(f∗L,P,H) = inf
f∈H

λ‖f‖2H +RL,P(f) ,

and hence we write fP,0 := f∗L,P,H . With this notation, we can now formulate
our first main result describing the behavior of the function λ �→ fP,λ.

Theorem 5.17 (Continuity in the regularization parameter). Let P be
a distribution on X × Y , L : X × Y × R → [0,∞) be a convex P-integrable
Nemitski loss, and H be the RKHS of a bounded measurable kernel on X.
Furthermore, let (λn) ⊂ (0,∞) be a sequence that converges to a real number
λ ∈ [0,∞). If the sequence (fP,λn

) is bounded, then fP,λ exists and we have

lim
n→∞ ‖fP,λn

− fP,λ‖H = 0 .

Proof. Since (fP,λn
) is bounded, Theorem A.5.6 shows that there exist an

f∗ ∈ H and a subsequence (fP,λni
) such that

fP,λni
→ f∗ with respect to the weak topology in H.

Moreover, since this subsequence is bounded, we may additionally assume
that there exists a c ≥ 0 such that ‖fP,λni

‖ → c. Now recall that the Dirac
functionals are contained in the dual H ′, and therefore weak convergence in
H implies pointwise convergence. Lemma 2.17 thus shows RL,P(fP,λni

) →
RL,P(f∗). Furthermore, by (A.21), the weak convergence of (fP,λni

) implies

‖f∗‖ ≤ lim inf
i→∞

‖fP,λni
‖ = lim

i→∞
‖fP,λni

‖ = c , (5.35)

and hence the continuity of A2( · ) established in Lemma 5.15 yields

λ‖f∗‖2 +RL,P(f∗)−R∗
L,P,H ≤ λc2 +RL,P(f∗)−R∗

L,P,H

= lim
i→∞
(
λni
‖fP,λni

‖2 +RL,P(fP,λni
)−R∗

L,P,H

)
= lim

i→∞
A2(λni

)

= A2(λ) . (5.36)

Consequently, f∗ minimizes the regularized L-risk. If λ > 0, this implies
f∗ = fP,λ by Lemma 5.1. Furthermore, if λ = 0, this means that f∗ minimizes
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RL,P inH, and by combining (5.35) with (5.34), we thus find ‖f∗‖ ≤ ‖f∗L,P,H‖,
i.e., we have f∗ = f∗L,P,H = fP,0 by Lemma 5.16.

Now, using the equality f∗ = fP,λ in (5.36), we obtain

λ‖fP,λ‖2 +RL,P(fP,λ)−R∗
L,P,H = λc2 +RL,P(fP,λ)−R∗

L,P,H ,

i.e., we have c = ‖fP,λ‖. Therefore, we have both fP,λni
→ fP,λ weakly and

‖fP,λni
‖ → ‖fP,λ‖. Together these convergences imply

lim
i→∞

‖fP,λni
− fP,λ‖2 = lim

i→∞
(‖fP,λni

‖2 − 2〈fP,λni
, fP,λ〉+ ‖fP,λ‖2

)
= 0 ,

i.e., the subsequence (fP,λni
) converges to fP,λ with respect to ‖ · ‖H . Finally,

let us assume that (fP,λn
) does not converge to fP,λ in norm. Then there

exists a δ > 0 and a subsequence (fP,λnj
) with ‖fP,λnj

− fP,λ‖ > δ. However,
applying the reasoning above to this subsequence gives a sub-subsequence
converging to fP,λ and hence we find a contradiction. ��

The preceding theorem has some interesting consequences on the behavior
of both λ �→ fP,λ and λ �→ A2(λ). Let us begin with a result that characterizes
the existence of f∗L,P,H in terms of λ �→ ‖fP,λ‖ and A2.

Corollary 5.18. Let P be a distribution on X × Y , L : X × Y ×R→ [0,∞)
be a convex P-integrable Nemitski loss, and H be the RKHS of a bounded
measurable kernel on X. Then the following statements are equivalent:

i) There exists an f∗ ∈ H minimizing RL,P in H.
ii) The function λ �→ ‖fP,λ‖ is bounded on (0,∞).
iii) There exists a constant c > 0 with A2(λ) ≤ cλ for all λ ≥ 0.

In addition, if one of the statements is satisfied, we have A2(λ) ≤ λ ‖f∗L,P,H‖2H
for all λ ≥ 0 and

lim
λ→0+

‖fP,λ − f∗L,P,H‖H = 0 .

Proof. ii) ⇒ i). Let (λn) ⊂ (0,∞) be a sequence with λn → 0. Our assump-
tion then guarantees that the sequence (fP,λn

) is bounded, and hence Theorem
5.17 shows that fP,0 = f∗L,P,H exists and that we have fP,λn

→ f∗L,P,H .
i)⇒ iii). By Lemma 5.16, we know that f∗L,P,H exists. Now the implication

follows from the estimate

A2(λ) ≤ λ‖f∗L,P,H‖2 +RL,P(f∗L,P,H)−R∗
L,P,H = λ‖f∗L,P,H‖2 , λ ≥ 0.

iii)⇒ ii). This implication follows from the estimate

λ‖fP,λ‖2 ≤ λ‖fP,λ‖2 +RL,P(fP,λ)−R∗
L,P,H = A2(λ) ≤ cλ . ��

Let us now assume for a moment that L is the hinge loss and that H is the
RKHS of a universal (or just a strictly positive definite) kernel. For a training
set D without contradicting samples, i.e., xi = xj implies yi = yj , it is then
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straightforward to see that there is an f∗ ∈ H with RL,D(f∗) = 0. Obviously,
this f∗ minimizes RL,D in H and thus f∗L,D,H ∈ H does exist. Moreover,
since f∗L,D,H has zero error on D and minimal norm among such minimizers,
it coincides with the hard margin SVM solution. Consequently, Corollary 5.18
shows that the soft margin SVM solutions fD,λ converge to the hard margin
solution if D is fixed and λ → 0. Since the hard margin SVM solution does
not make training errors, this convergence indicates that the soft margin SVM
solutions may overfit if the regularization parameter is chosen too small.

Corollary 5.18 shows that a linear upper bound on A2 of the form A2(λ) ≤
cλ occurs if and only if RL,P has a global minimum in H. Now recall that
Lemma 5.15 showed that such an upper bound on A2 is optimal in the sense
that every stronger upper bound of the form A2(λ) ≤ λh(λ), λ ∈ [0, 1], for
some function h : [0, 1] → [0,∞) with limλ→0+ h(λ) = 0, implies A2(λ) = 0
for all λ ≥ 0. Since the latter implies that 0 minimizes RL,P in H, we see that
f∗L,P,H exists if and only if A2 has an “optimal” upper bound.

Now assume that fP,λ exists for all λ > 0. By Lemma 5.15, we then find

λ‖fP,λ‖2H ≤ A2(λ) ≤ RL,P(0)−R∗
L,P,H , λ > 0,

and hence we obtain limλ→∞ fP,λ = 0. This justifies the notation fP,∞ := 0.
The next corollary shows the continuity of the (extended) function λ �→ fP,λ.

Corollary 5.19. Let L : X × Y × R → [0,∞) be a convex loss, P be a
distribution on X × Y such that L is a P-integrable Nemitski loss, and H be
the RKHS of a bounded measurable kernel on X. Then

λ �→ fP,λ

is a continuous map from (0,∞] to H, and λ �→ RL,P(fP,λ) is a continuous
map from (0,∞] to [0,∞). Furthermore, if there exists an f∗ minimizing RL,P

in H, both maps are also defined and continuous at 0.

Proof. The first assertion is a direct consequence of Theorem 5.2 and Theorem
5.17, and the second assertion follows from combining the first assertion with
Lemma 2.17. The last assertion follows from Corollary 5.18 and the notational
convention fP,0 := f∗L,P,H . ��

Our next goal is to investigate whether the regularization term λ‖fP,λ‖2H
and A2(λ) behave similarly for λ → 0. To this end, we need some prepara-
tory notions and results. Let us begin with the following definition, which
introduces a differently regularized approximation error function.

Definition 5.20. Let L : X × Y × R → [0,∞) be a convex loss, H be the
RKHS of a measurable kernel on X, and P be a distribution on X × Y with
R∗

L,P,H < ∞. Then the ∞-approximation error function A∞ : [0,∞) →
[0,∞) is defined by
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A∞(λ) := inf
f∈λ−1BH

RL,P(f)−R∗
L,P,H , λ ≥ 0.

Moreover, an element f (∞)
P,λ ∈ λ−1BH satisfying

RL,P(f (∞)
P,λ ) = A∞(λ)

and ‖f (∞)
P,λ ‖ ≤ ‖f∗‖ for all f∗ ∈ λ−1BH with RL,P(f∗) = A∞(λ) is called a

minimal norm minimizer of RL,P in λ−1BH .

Note that, for RKHSs H satisfying R∗
L,P,H = R∗

L,P, the value A∞(λ) is
usually called the approximation error of the set λ−1BH .

We will see later that there is an intimate relation between the functions A2

and A∞ and their minimizers. Before we go into details, we first present two
results establishing the existence and uniqueness of minimal norm minimizers.

Lemma 5.21 (Uniqueness of minimal norm minimizers). Let H be the
RKHS of a measurable kernel on X, L : X×Y ×R→ [0,∞) be a convex loss,
and P be a distribution on X × Y with R∗

L,P,H < ∞. Then, for all λ > 0,
there exists at most one minimal norm minimizer of RL,P in λ−1BH .

Proof. Suppose that there are two different minimal norm minimizers f∗1 , f
∗
2 ∈

λ−1BH of RL,P in λ−1BH . By the convexity of RL,P, we then find that
1
2 (f∗1 + f∗2 ) ∈ λ−1BH also minimizes RL,P. Moreover, we have (5.33), which
contradicts our assumption that f∗ is a minimal norm minimizer. ��

The next lemma shows that the conditions ensuring the existence of general
SVM solutions fP,λ also ensure the existence of minimal norm minimizers.

Lemma 5.22 (Existence of minimal norm minimizers). Let P be a dis-
tribution on X×Y , L : X×Y ×R→ [0,∞) be a convex P-integrable Nemitski
loss, and H be the RKHS of a bounded measurable kernel on X. Then, for all
λ > 0, there exists exactly one minimal norm minimizer f (∞)

P,λ ∈ H.

Proof. We first show that there exists an f∗ ∈ λ−1BH that minimizes RL,P

on λ−1BH . To this end, observe that RL,P : H → [0,∞) is continuous by
Lemma 4.23 and Lemma 2.17. Therefore, the map R : H → [0,∞] defined by

R(f) :=

{
RL,P(f) if f ∈ λ−1BH

∞ otherwise

is lower semi-continuous by Lemma A.2.8 and, in addition, R is also convex.
Now recall that, since L is a P-integrable Nemitski loss, we haveRL,P(0) <∞,
and therefore every f ∈ H with R(f) ≤ RL,P(0) must satisfy ‖f‖ ≤ λ−1. This
shows that the set {f ∈ H : R(f) ≤ RL,P(0)} is non-empty and bounded,
and consequently R has a global minimum at some f∗ ∈ λ−1BH by Theorem
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A.6.9. Since R coincides with RL,P on λ−1BH , it is obvious that this f∗ also
minimizes RL,P on λ−1BH . In other words, the set

A :=
{
f ∈ λ−1BH : RL,P(f) ≤ RL,P(f̃) for all f̃ ∈ λ−1BH

}
is non-empty and, by the continuity of RL,P : H → [0,∞), we see that A is
also closed. Moreover, ‖ · ‖H : H → [0,∞) is continuous. By applying Lemma
A.2.8 and Theorem A.6.9 to the map N : H → [0,∞] defined by

N(f) :=

{
‖f‖ if f ∈ A
∞ otherwise,

we hence see that ‖ · ‖H restricted to A has a minimum. ��
Let us now compare the minimizers of A2 and A∞. We begin by showing

that the existence of fP,λ implies that f (∞)

P,γ exists for a suitable value γ.

Lemma 5.23. Let L : X × Y × R → [0,∞) be a loss, H be the RKHS of
a measurable kernel on X, and P be a distribution on X × Y . Furthermore,
assume that, for some λ > 0, there exists a unique fP,λ. If fP,λ �= 0, then
f (∞)

P,γ exists for γ := ‖fP,λ‖−1 and we have f (∞)

P,γ = fP,λ.

Proof. Let us first show that fP,λ minimizes RL,P on γ−1BH . To this end,
assume the converse, i.e., that there exists an f ∈ γ−1BH with

RL,P(f) < RL,P(fP,λ) .

The definition of γ then gives ‖f‖ ≤ γ−1 = ‖fP,λ‖, and hence we find

λ‖f‖2 +RL,P(f) < λ‖fP,λ‖2 +RL,P(fP,λ) . (5.37)

Since the latter contradicts the definition of fP,λ, we see that fP,λ minimizes
RL,P on γ−1BH . Now assume that fP,λ is not a minimal norm minimizer.
Then there exists an f ∈ H with RL,P(f) = RL,P(fP,λ) and ‖f‖ < ‖fP,λ‖.
Since this leads again to the false (5.37), we obtain the assertion. ��

If L is a convex, integrable Nemitski loss, we have already seen that the
corresponding general SVM solutions exist and depend continuously on the
regularization parameter. This leads to the following corollary.

Corollary 5.24. Let L : X × Y × R → [0,∞) be a convex loss, P be a
distribution on X × Y such that L is a P-integrable Nemitski loss, and H
be the RKHS of a bounded measurable kernel on X with R∗

L,P,H < RL,P(0).
Then γ : (0,∞)→ (0,∞) defined by γ(λ) := ‖fP,λ‖−1, λ > 0, is a continuous
map with

f
(∞)
P,γ(λ) = fP,λ , λ > 0.

Consequently, A∞ : (0,∞) → (0,∞) is an increasing and continuous map.
Moreover, if there exists an f∗ minimizing RL,P in H, we have f (∞)

P,λ = f∗L,P,H

and A∞(λ) = 0 for all 0 ≤ λ ≤ ‖f∗L,P,H‖−1.
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Proof. By Theorem 5.6 we know that fP,λ �= 0 for all λ > 0. The first asser-
tion is hence a consequence of Corollary 5.19 and Lemma 5.23. The second
assertion then follows from the first assertion and Lemma 2.17, and the third
assertion is a consequence of the definition of A∞. ��

In order to appreciate the preceding corollary, let us assume that there does
not exist an f∗ ∈ H minimizing RL,P in H. Then we know from Corollary
5.18 that λ �→ ‖fP,λ‖ is unbounded. Since limλ→∞ fP,λ = 0, the intermediate
value theorem then shows that for every γ ∈ (0,∞) there exists a λ ∈ (0,∞)
with ‖fP,λ‖−1 = γ. Consequently, we obtain{

fP,λ : λ ∈ (0,∞)
}

=
{
f

(∞)
P,λ : λ ∈ (0,∞)

}
,

i.e., both approximation error functions produce the same set of minimizers,
or regularization path, although they use a different form of regularization.

Let us finally compare the growth rates of the approximation error func-
tions.

Theorem 5.25 (Quantitative comparison of A2 and A∞). Let H be the
RKHS of a measurable kernel on X, L : X × Y ×R → [0,∞) be a loss, and
P be a distribution on X × Y with R∗

L,P,H < ∞. Then, for all λ > 0, the
following statements are true:

i) For every real number κ ≥ A∞(λ), we have

A2

(
λ2κ
) ≤ 2κ . (5.38)

ii) For every real number γ > A2(λ), we have

A∞
(
λ1/2γ−1/2

) ≤ γ . (5.39)

In addition, if fP,λ exists, then (5.39) also holds for γ := A2(λ).

Proof. i). For ε > 0 there exists an fε ∈ λ−1BH withRL,P(fε)−R∗
L,P,H ≤ κ+

ε. If fε �= 0, we have λ ≤ ‖fε‖−1, and hence we obtain λ2κ ≤ ‖fε‖−2κ =: λε.
By the monotonicity of A2( · ), the latter yields

A2

(
λ2κ
) ≤ A2(λε) ≤ λε‖fε‖2 +RL,P(fε)−R∗

L,P,H ≤ 2κ+ ε .

Letting ε → 0, we then obtain the assertion. The case fε = 0 can be shown
analogously by setting λε := λ2κ.

ii). Since γ > A2(λ), there exists an f ∈ H with

λ‖f‖2 +RL,P(f)−R∗
L,P,H ≤ γ,

and since RL,P(f)−R∗
L,P,H ≥ 0, this f satisfies λ‖f‖2 ≤ γ. The latter gives

‖f‖ ≤ (γ/λ)1/2 =: κ−1, and hence we find

A∞(κ) ≤ RL,P(f)−R∗
L,P,H ≤ λ‖f‖2 +RL,P(f)−R∗

L,P,H ≤ γ .

Finally, if fP,λ exists, we have λ‖fP,λ‖2 +RL,P(fP,λ)−R∗
L,P,H = A2(λ), and

hence repeating the reasoning above gives the second assertion. ��
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If λ �→ A∞(λ) behaves polynomially, then Theorem 5.25 can be used to
show that the asymptotic behavior of λ �→ A2(λ) is polynomial and completely
determined by that of λ �→ A∞(λ). We refer to Exercise 5.11 for details. For
non-polynomial behavior, however, this is no longer true. Indeed, if there
exists a function minimizing RL,P in H, then Lemma 5.15 and Corollary 5.18
showed that

λA2(1) ≤ A2(λ) ≤ λ‖f∗L,P,H‖2H , λ ∈ [0, 1],

whereas Corollary 5.24 showed that A∞(λ) = 0 for all 0 ≤ λ ≤ ‖f∗L,P,H‖−1
H .

Let us finally discuss how the behavior of A2(λ) for λ → 0 influences the
behavior of ‖fP,λ‖ for λ→ 0. To this end, let us recall that we found

‖fP,λ‖H ≤
√
RL,P(0)

λ
(5.40)

at the beginning of Section 5.1. Unfortunately, this bound is always sub-
optimal for λ → 0. Indeed, we have λ‖fP,λ‖2 ≤ A2(λ), and hence we obtain

‖fP,λ‖ ≤
√
A2(λ)
λ

, λ > 0. (5.41)

Since A2(λ) → 0 for λ → 0, the latter bound is strictly sharper than (5.40).
This observation will be of great importance when investigating the stochastic
properties of empirical SVM solutions in Chapter 7.

5.5 Approximation Error of RKHSs

We saw in (5.32) that, for vanishing regularization parameter, the risk of the
general SVM solution tends to the minimal risk R∗

L,P,H of the used RKHS
H. However, our ultimate interest is to investigate whether the risk of the
empirical SVM tends to the Bayes risk R∗

L,P. Following the intuition that the
risk of the empirical SVM solution fD,λ is close to that of the corresponding
infinite-sample SVM solution fP,λ, we can conjecture that RL,P(fD,λ) is close
to R∗

L,P,H . Moreover, in Section 6.4 we will show that this conjecture is indeed
correct, and consequently we need to know that

R∗
L,P,H = R∗

L,P

in order to show that RL,P(fD,λ) is close to R∗
L,P. The goal of this section is

to establish necessary and sufficient conditions on H for this equality to hold.
Let us begin with a rather technical observation. In Chapter 3, we often

used complete measurable spaces X in order to ensure the measurability of
many considered functions such as Bayes decision functions. On the other
hand, we considered continuous kernels with “large” RKHSs over (compact)
metric spaces X in Section 4.6. However, in general, the Borel σ-algebra B(X)
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is not complete, and hence one may ask which σ-algebra we should use for
computing the Bayes risk. Fortunately, it turns out by (A.8) that we have

R∗
L,P = R∗

L,P̂
,

where P̂ is the extension of P to the P-completion BP(X) of B(X). In other
words, the Bayes risk does not change when using these different σ-algebras,
and hence we can always choose the σ-algebra that best fits our needs.

In the following, we will often use intermediate approximation results
where the space H in R∗

L,P,H is replaced by another set of measurable func-
tions. Let us formalize this idea by the following definition.

Definition 5.26. Let L : X×Y ×R→ [0,∞) be a loss, P be a distribution on
X × Y , and F ⊂ L0(X) be a set of measurable functions. Then the minimal
L-risk over F is

R∗
L,P,F := inf

{RL,P(f) : f ∈ F} .
Now our first result shows that, for integrable Nemitski losses, the Bayes

risk can be approximated by bounded measurable functions.

Proposition 5.27. Let L : X × Y ×R→ [0,∞) be a loss and P be a distrib-
ution on X × Y such that L is a P-integrable Nemitski loss. Then we have

R∗
L,P,L∞(PX) = R∗

L,P .

Proof. Let us fix a measurable f : X → R with RL,P(f) < ∞. Then the
functions fn := 1{|f |≤n}f , n ≥ 1, are bounded, and an easy calculation yields

∣∣RL,P(fn)−RL,P(f)
∣∣ ≤ ∫

{|f |>n}×Y

∣∣L(x, y, 0)− L(x, y, f(x))
∣∣ dP(x, y)

≤
∫
{|f |>n}×Y

b(x, y) + h(0) + L
(
x, y, f(x)

)
dP(x, y)

for all n ≥ 1. In addition, the integrand in the last integral is integrable since
RL,P(f) < ∞ and b ∈ L1(P), and consequently Lebesgue’s theorem yields
RL,P(fn)→ RL,P(f) for n→∞. From this, we easily get the assertion. ��

Using Proposition 5.27, we can now establish our first condition on F ,
which ensures R∗

L,P,F = R∗
L,P.

Theorem 5.28 (Approximation by pointwise dense sets). Let P be a
distribution on X × Y , L : X × Y ×R→ [0,∞) be a continuous P-integrable
Nemitski loss, and F ⊂ L∞(PX). Assume that for all g ∈ L∞(PX) there
exists a sequence (fn) ⊂ F such that supn≥1 ‖fn‖∞ <∞ and

lim
n→∞ fn(x) = g(x)

for PX-almost all x ∈ X. Then we have R∗
L,P,F = R∗

L,P.
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Proof. By Proposition 5.27, we know that R∗
L,P,L∞(PX) = R∗

L,P, and since
F ⊂ L∞(PX) we also have R∗

L,P,F ≥ R∗
L,P,L∞(PX). In order to show the

converse inequality, we fix a g ∈ L∞(PX). Let (fn) ⊂ H be a sequence of
functions according to the assumptions of the theorem. Lemma 2.17 then
yields RL,P(fn)→ RL,P(g), and hence we find R∗

L,P,F ≤ R∗
L,P,L∞(PX). ��

With the help of Theorem 5.28, we now show that the RKHSs of universal
kernels approximate the Bayes risk of continuous, integrable Nemitski losses.

Corollary 5.29. Let X be a compact metric space, H be the RKHS of a
universal kernel on X, P be a distribution on X × Y , and L : X × Y ×R→
[0,∞) be a continuous P-integrable Nemitski loss. Then we have

R∗
L,P,H = R∗

L,P .

Proof. Let us fix a g ∈ L∞(PX). By Theorem A.5.25, there then exists a
sequence (gn) ⊂ C(X) with ‖gn − g‖1 → 0 for n → ∞. By clipping gn at
±‖g‖∞ and considering a suitable subsequence, we see that we can assume
without loss of generality that ‖gn‖∞ ≤ ‖g‖∞ for all n ≥ 1 and gn(x)→ g(x)
for PX -almost all x ∈ X. Moreover, the universality of H gives a sequence
(fn) ⊂ H with ‖fn − gn‖∞ ≤ 1/n for all n ≥ 1. Since this yields both
‖fn‖∞ ≤ 1 + ‖g‖∞ for all n ≥ 1 and fn(x)→ g(x) for PX -almost all x ∈ X,
we obtain the assertion by Theorem 5.28. ��

The next theorem, which is a consequence of Theorem 4.61, provides a
result similar to Corollary 5.29 for discrete input spaces.

Theorem 5.30. Let X be a countable set and k be a bounded kernel on X
that satisfies k( · , x) ∈ c0(X) for all x ∈ X and∑

x,x′∈X

k(x, x′)f(x)f(x′) > 0 (5.42)

for all f ∈ �1(X) with f �= 0. Then the RKHS H of k satisfies

R∗
L,P,H = R∗

L,P

for all closed Y ⊂ R, all distributions P on X × Y , and all continuous,
P-integrable Nemitski losses L : X × Y ×R→ [0,∞).

Proof. We have already seen in Theorem 4.61 that H is dense in c0(X). By
Lemma 2.17, we hence find R∗

L,P,H = R∗
L,P,c0(X). Therefore it remains to

show
R∗

L,P,c0(X) = R∗
L,P . (5.43)

To this end, let ν be the counting measure on X and h : X → [0, 1] be the
map that satisfies PX = hν. In addition, recall that we have RL,P(0) < ∞
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since L is a P-integrable Nemitski loss. Given an ε > 0, there hence exists a
finite set A ⊂ X with

∑
x∈X\A

h(x)
∫

Y

L(x, y, 0)dP(y|x) ≤ ε .

In addition, there exists a g : X → R with RL,P(g) ≤ R∗
L,P + ε. Let us define

f := 1Ag. Then we have f ∈ c0(X) and

RL,P(f) =
∑
x∈A

h(x)
∫

Y

L
(
x, y, g(x)

)
dP(y|x) +

∑
x∈X\A

h(x)
∫

Y

L(x, y, 0)dP(y|x)

≤ RL,P(g) + ε .

From this we easily infer (5.43). ��
If L is actually a continuous, P-integrable Nemitski loss of some order

p ∈ [1,∞), we have already seen in Lemma 2.17 that the risk functional RL,P

is even continuous on Lp(PX). This leads to the following result.

Theorem 5.31 (Approximation by p-integrable functions). Let P be a
distribution on X×Y and L : X×Y ×R→ [0,∞) be a continuous P-integrable
Nemitski loss of order p ∈ [1,∞). Then, for every dense F ⊂ Lp(PX), we have

R∗
L,P,F = R∗

L,P .

Proof. Since L∞(PX) ⊂ Lp(PX), we haveR∗
L,P,Lp(PX) = R∗

L,P by Proposition
5.27. Now the assertion easily follows from the denseness of F in Lp(PX) and
the continuity of RL,P : Lp(PX)→ [0,∞) established in Lemma 2.17. ��

Recall that we have shown in Theorem 4.63 that the RKHSs Hγ of the
Gaussian RBF kernels are dense in Lp(μ) for all p ∈ [1,∞) and all distributions
μ on Rd. With the help of the preceding theorem, it is then easy to establish
R∗

L,P,Hγ
= R∗

L,P for almost all of the margin-based and distance-based loss
functions considered in Sections 2.3 and 2.4. The details are left to the reader
as an additional exercise.

Let us now derive some necessary conditions for R∗
L,P,F = R∗

L,P. To this
end, we need the following lemma.

Lemma 5.32. Let X be a measurable space and μ be a probability measure on
X. Assume that we have a subspace F ⊂ L∞(μ) such that for all measurable
A ⊂ X there exists a sequence (fn) ⊂ F with

lim
n→∞ fn(x) = 1A(x)

for μ-almost all x ∈ X. Then, for all g ∈ L∞(μ), there exists a sequence
(fn) ⊂ F with limn→∞ fn(x) = g(x) for μ-almost all x ∈ X.
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Proof. Observe that, for measurable step functions g ∈ L∞(μ), the assertion
immediately follows from the fact that F is a vector space. Let us now fix
an arbitrary g ∈ L∞(μ). For n ≥ 1, there then exists a measurable step
function gn ∈ L∞(μ) with ‖gn − g‖∞ ≤ 1/n. For this gn, there then exists
a sequence (fm,n)m≥1 ⊂ F with limm→∞ fm,n(x) = gn(x) for μ-almost all
x ∈ X. By Egorov’s Theorem A.3.8, we find a measurable An ⊂ X with
μ(X\An) ≤ 1/n and

lim
m→∞ ‖(fm,n − gn)|An

‖∞ = 0 .

Consequently, there is an index mn ≥ 1 with ‖(fmn,n − gn)|An
‖∞ ≤ 1/n. By

putting all estimates together, we now obtain

μ

({
x ∈ X :

∣∣fmn,n(x)− g(x)∣∣ ≤ 2
n

})
≥ 1− 1

n
, n ≥ 1.

Therefore the sequence (fmn,n)n≥1 converges to g in probability μ, and hence
there exists a subsequence of it that converges to g almost surely. ��

With the help of the preceding lemma, we can now formulate a necessary
condition for convex supervised loss functions. For its formulation, we need
to recall from Section 3.1 thatML,Q(0+) denotes the set of exact minimizers
of the inner L-risk of Q. Moreover, recall Definition 3.5, where we said that a
distribution P on X × Y is of type Q if Q is a set of distributions on Y and
P( · |x) ∈ Q for PX -almost all x ∈ X.

Theorem 5.33 (Pointwise denseness is necessary). Let L : Y × R →
[0,∞) be a convex supervised loss for which there exist two distributions Q1

and Q2 on Y and t∗1, t
∗
2 ∈ R such that t∗1 �= t∗2, ML,Q1(0

+) = {t∗1}, and
ML,Q2(0

+) = {t∗2}. Furthermore, let X be a measurable space and μ be a
distribution on X. Assume that F ⊂ L∞(μ) is a subspace with

R∗
L,P,F = R∗

L,P (5.44)

for all {Q1,Q2}-type distributions P on X × Y with PX = μ. Then, for all
g ∈ L∞(μ), there exists a sequence (fn) ⊂ F such that limn→∞ fn(x) = g(x)
for μ-almost all x ∈ X.

Proof. Let A be the σ-algebra of the measurable space X. We fix an A1 ∈ A
and write A2 := ∅. Let us define two distributions P1 and P2 on X × Y by

Pi( · |x) :=

{
Q1 if x ∈ Ai

Q2 if x ∈ X\Ai

and(Pi)X := μ for i = 1, 2.OurassumptionsonQ1 andQ2 guaranteeC∗L,Q1
<∞

and C∗L,Q2
< ∞ by Lemma 3.10, and hence we find R∗

L,Pi
< ∞ for i = 1, 2.

Moreover, every Bayes decision function ofRL,Pi
, i = 1, 2, has μ-almost surely

the form
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f∗L,Pi
:= t∗11Ai

+ t∗21X\Ai
, i = 1, 2.

Now, (5.44) yields R∗
L,Pi,F

= R∗
L,Pi

, i = 1, 2, and hence there are sequences

(f (1)
n ) ⊂ F and (f (2)

n ) ⊂ F with

lim
n→∞RL,Pi

(f (i)
n ) = R∗

L,Pi
, i = 1, 2. (5.45)

Recalling that convex supervised losses are self-calibrated, Corollary 3.62 then
shows for i = 1, 2 that

lim
n→∞ f (i)

n = f∗L,Pi
(5.46)

in probability μ̂, where μ̂ is the extension of μ to the μ-completed σ-
algebra Aμ, see Lemma A.3.3. Now observe that all functions in (5.46) are
A-measurable, and hence (5.46) actually holds in probability μ. Consequently,
there exist subsequences (f (1)

nj ) and (f (2)
nj ) for which (5.46) holds μ-almost

surely. For

fj :=
1

t∗1 − t∗2
(
f (1)

nj
− f (2)

nj

)
, j ≥ 1,

we then have fj ∈ F , and in addition our construction yields

lim
j→∞

fj =
1

t∗1 − t∗2
(
f∗L,P1

− f∗L,P2

)
=

1
t∗1 − t∗2

(
t∗11A1 + t∗21X\A1 − t∗21X

)
= 1A1

μ-almost surely. By Lemma 5.32, we thus obtain the assertion. ��
For RKHSs, Theorem 5.33 has an interesting implication, which is pre-

sented in the following corollary.

Corollary 5.34 (Kernels should be strictly positive definite). Let L
be a loss function satisfying the assumptions of Theorem 5.33. Furthermore,
let X be a measurable space and k be a measurable kernel on X whose RKHS
H satisfies R∗

L,P,H = R∗
L,P for all {Q1,Q2}-type distributions P on X × Y .

Then k is strictly positive definite.

Proof. Let x1, . . . , xn ∈ X be mutually different points and μ be the associated
empirical distribution. Obviously, it suffices to show that the kernel matrix
K := (k(xi, xj)) has full rank. Let us assume the converse, i.e., we assume
that there exists an y ∈ Rn with Kα �= y for all α ∈ Rn. Since KRn is closed,
there then exists an ε > 0 with ‖Kα−y‖∞ ≥ ε for all α ∈ Rn. Now note that
every f̄ ∈ H that is orthogonal to span{k( · , xi) : i = 1, . . . , n} satisfies

f̄(xj) = 〈f̄ , k( · , xj)〉H = 0 , j = 1, . . . , n.

By decomposing H into span{k( · , xi) : i = 1, . . . , n} and its orthogonal com-
plement, we consequently see that for every f ∈ H there is an α ∈ Rn with

f(xj) =
n∑

i=1

αik(xj , xi) , j = 1, . . . , n,
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and hence for all f ∈ H there is an index j ∈ {1, . . . , n} with |f(xj)− yj | > ε.
On the other hand, k is bounded on {1, . . . , n}, and hence Theorem 5.33 gives
a sequence (fn) ⊂ H with fn(xi) → yi for all i ∈ {1, . . . , n}. From this we
easily find a contradiction. ��

In order to illustrate the previous results, let us assume for a moment that
we have a distribution μ on X and a convex loss L : Y × R → [0,∞) that
satisfy the assumptions of both Theorem 5.28 and Theorem 5.33. In addition,
let F ⊂ L∞(μ) be a subspace. Now assume that we are interested in the
question of whether

R∗
L,P,F = R∗

L,P (5.47)

holds for a reasonably large class of distributions P with PX = μ. Theorem
5.33 then shows that a necessary condition for (5.47) to hold is that F be
“dense” in L∞(μ) with respect to the μ-almost sure convergence2, i.e., every
g ∈ L∞(μ) is the μ-almost sure limit of a suitable sequence (fn) ⊂ F . How-
ever, the sufficient condition of Theorem 5.28 for (5.47) to hold requires that
there actually be such a sequence (fn) that is uniformly bounded. In other
words, there is a gap between the necessary and the sufficient conditions. Now
recall that in Theorem 5.31 we have already weakened the sufficient condition
for a more restricted class of loss functions. In the following, we will present a
stronger necessary condition by making additional assumptions on the distri-
butions Q1 and Q2 of Theorem 5.33, so in the end we obtain characterizations
on F for (5.47) to hold for a variety of important loss functions. Let us begin
with the following simple lemma.

Lemma 5.35. Let X be a measurable space, μ be a probability measure on
X, and q > 0. Assume that we have a subspace F ⊂ Lq(μ) such that for all
measurable A ⊂ X there exists a sequence (fn) ⊂ F with

lim
n→∞ ‖fn − 1A‖Lq(μ) = 0 . (5.48)

Then F is dense in Lq(μ).

Proof. If g ∈ Lq(μ) is a measurable step function, there obviously exists a
sequence (fn) ⊂ F with limn→∞ ‖fn − g‖q = 0. Moreover, if g ∈ Lq(μ) is
bounded and n is an integer, there exists a measurable step function gn with
‖gn − g‖∞ ≤ 1/n. In addition, we have just seen that there exists an fn ∈ F
with ‖fn − gn‖q ≤ 1/n, and hence we find limn→∞ ‖fn − g‖q = 0. Finally, for
general g ∈ Lq(μ), we find an approximating sequence by first approximating
g with the bounded measurable functions gn := 1|g|≤ng, n ≥ 1, and then
approximating these gn with suitable functions fn ∈ F . ��
2 Note that in general there is no topology generating the almost sure convergence,

and thus “dense” is not really defined. However, the almost sure convergence in
Theorem 5.33 and Theorem 5.28 can be replaced by the convergence in probability
(see Exercise 5.12), and since this convergence originates from a metric, we then
have a precise meaning of “dense”.
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With the help of the preceding lemma, we can now establish a stronger
necessary condition on F for R∗

L,P,F = R∗
L,P to hold. For its formulation,

we need to recall the self-calibration function defined in (3.67).

Theorem 5.36 (Denseness in Lq(μ) is necessary). Let L : Y ×R→ [0,∞)
be a convex supervised loss such that there exist two distributions Q1 and Q2

on Y and t∗1, t
∗
2 ∈ R with t∗1 �= t∗2,ML,Q1(0

+) = {t∗1} andML,Q2(0
+) = {t∗2}.

In addition, assume that their self-calibration functions satisfy

δmax,L̆,L(ε,Qi) ≥ Bεq , ε > 0, i = 1, 2,

for some constants B > 0 and q > 0. Furthermore, let X be a measurable
space, μ be a distribution on X, and F ⊂ Lq(μ) be a subspace with

R∗
L,P,F = R∗

L,P

for all {Q1,Q2}-type distributions P on X×Y with PX = μ. Then F is dense
in Lq(μ).

Proof. Following the argument used in the proof of Theorem 5.33, we may
assume without loss of generality that X is a complete measurable space. Let
us now fix a measurable A1 ⊂ X and write A2 := ∅. Furthermore, we define the
distributions Pi, their Bayes decision functions f∗L,Pi

, and the approximating

sequences (f (i)
n ) ⊂ F , i = 1, 2, as in the proof of Theorem 5.33. Then (5.45)

together with (3.69) for p :=∞ yields

lim
n→∞ ‖f

(i)
n − f∗L,Pi

‖Lq(μ) = 0 .

Forfn := 1
t∗1−t∗2

(
f

(1)
n −f (2)

n

)
,n ≥ 1,wethenobtainlimn→∞ ‖fn − 1A1‖Lq(μ) = 0,

and hence we obtain the assertion by Lemma 5.35. ��
By combining Theorem 5.31 with Theorem 5.36, we now obtain the fol-

lowing characterization of subspaces F satisfying R∗
L,P,F = R∗

L,P.

Corollary 5.37 (Characterization). Let L : Y × R → [0,∞) be a convex
supervised Nemitski loss of order p ∈ [1,∞), i.e.

L(y, t) ≤ b(y) + c|t|p , (y, t) ∈ Y ×R, (5.49)

for a suitable constant c > 0 and a measurable function b : Y → [0,∞).
Furthermore, let Q1 and Q2 be distributions on Y with b ∈ L1(Q1) ∩ L1(Q2)
and t∗1, t

∗
2 ∈ R with t∗1 �= t∗2, ML,Q1(0

+) = {t∗1} and ML,Q2(0
+) = {t∗2}. In

addition, assume that their self-calibration functions satisfy

δmax,L̆,L(ε,Qi) ≥ B εp , ε > 0, i = 1, 2,

for some constant B > 0. Furthermore, let X be a measurable space, μ be a
distribution on X, and F ⊂ Lp(μ) be a subspace. Then the following state-
ments are equivalent:
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i) F is dense in Lp(μ).
ii) For all distributions P on X×Y with PX = μ for which L is a P-integrable

Nemitski loss of order p ∈ [1,∞), we have R∗
L,P,F = R∗

L,P.
iii) For all {Q1,Q2}-type distributions P on X×Y with PX = μ, we have
R∗

L,P,F = R∗
L,P.

Proof. i)⇒ ii). Use Theorem 5.31.
ii) ⇒ iii). By (5.49) and b ∈ L1(Q1) ∩ L1(Q2), we see that L is a P-

integrable Nemitski loss of order p ∈ [1,∞) for all {Q1,Q2}-type distributions
P on X × Y .

iii)⇒ i). Use Theorem 5.36. ��
Let us now illustrate that many important losses satisfy the assumptions

of Corollary 5.37. For some more examples, we refer to Exercise 5.13.

Example 5.38. For p ≥ 1, let L be the p-th power absolute distance loss
defined in Example 2.39. Moreover, let Q1 := δ{y1} and Q1 := δ{y2} be two
Dirac distributions on R with y1 �= y2. Then L, Q1, and Q2 satisfy the as-
sumptions of Corollary 5.37.

In order to see this, recall that L is a Nemitski loss of order p by Example
2.39 and Lemma 2.36. Furthermore, for the Dirac measure Q := δ{y} at an
arbitrary y ∈ R, we have CL,Q(t) = |t − y|p, t ∈ R. Consequently, we have
C∗L,Q = 0 andML,Q(0+) = {y}. With these equalities, it is easy to check that
the self-calibration function of L is

δmax,L̆,L(ε,Q) = εp , ε ≥ 0.

Since y1 �= y2, we then see that the assumptions of Corollary 5.37 are satisfied,
and hence we have R∗

L,P,F = R∗
L,P if and only if F is dense in Lp(PX).

Moreover, it also shows that restricting the class of distributions to noise-free
distributions P, i.e., to distributions with P( · |x) = δ{g(x)} for measurable
g : X → R, does not change this characterization. �

Example 5.39. Let ε > 0 and L be the ε-insensitive loss defined in Example
2.42. Moreover, for y1 �= y2, we define Qi := 1

2δ{yi−ε} + 1
2δ{yi+ε}, i = 1, 2.

Then L, Q1, and Q2 satisfy the assumptions of Corollary 5.37 for p = 1.
In order to see this, we first recall with Example 2.42 that L is a Nemitski

loss of order 1. Let us define ψ(r) := max{0, |r| − ε}, r ∈ R. Then we have

2CL,Qi
(t) = ψ(yi − ε− t) + ψ(yi + ε− t) , t ∈ R , i = 1, 2,

and thus we have CL,Qi
(yi) = 0 ≤ CL,Qi

(t) for all t ∈ R. For t ≥ 0, this yields

CL,Qi
(yi ± t)− C∗L,Qi

=
1
2
ψ(ε+ t) +

1
2
ψ(ε− t) ≥ 1

2
ψ(ε+ t) =

t

2
,

and hence we findML,Qi
(0+) = {yi} and δmax,L̆,L(ε,Q) ≥ ε/2 for ε ≥ 0. �
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The following example shows a similar result for the hinge loss, which is
used as a surrogate for the classification loss.

Example 5.40. Let L be the hinge loss defined in Example 2.27. Furthermore,
let Q1, Q2 be distributions on Y := {−1, 1} with η1 := Q1({1}) ∈ (0, 1/2)
and η2 := Q2({1}) ∈ (1/2, 1). Then L, Q1, and Q2 satisfy the assumptions of
Corollary 5.37 for p = 1.

In order to see this, recall that Lhinge is a Lipschitz continuous loss, and
hence it is a Nemitski loss of order 1 by (2.11). Moreover, Example 3.7 shows
that MLhinge,η(0+) = {sign(2η − 1)} for η �= 0, 1

2 , 1, and Exercise 3.15 shows
that

δmax,Lhinge(ε, η) = ε min{η, 1− η, 2η − 1} , ε ≥ 0. �

Note that, unlike the distributions in Example 5.38, the distributions in
Example 5.40 are noisy. This is due to the fact that only noise makes the hinge
loss minimizer unique (see Example 3.7 and Figure 3.1 on page 54). Moreover,
note that using, e.g., the least squares loss for a classification problem requires
L2(μ)-denseness, which in general is a strictly stronger condition than the
L1(μ)-denseness, which is sufficient for the hinge loss and the logistic loss for
classification. This is somewhat remarkable since the target functions for the
former two losses are bounded, whereas in general the target function for
the logistic loss for classification is not even integrable.

We saw in Theorem 5.30 that “strict positive definiteness of k for infinite
sequences” is sufficient forR∗

L,P,H = R∗
L,P. On the other hand, “strict positive

definiteness for finite sequences” is necessary for R∗
L,P,H = R∗

L,P by Corollary
5.34, and hence it seems natural to ask whether the latter, weaker condition is
also sufficient. However, with the developed theory, it is easy to check that in
general this is not the case. Indeed, recall that we saw in Theorem 4.62 that
there exists a strictly positive definite kernel whose RKHS H is not dense in
the spaces L1(μ). Consequently, this RKHS cannot satisfy R∗

L,P,H = R∗
L,P for

the loss functions considered in Examples 5.38 to 5.40.
Let us finally present an example of a set of bounded continuous functions

that drastically fails to have good universal approximation properties.

Proposition 5.41. Let Y := {−1, 1} and Pd
n be the set of all polynomials on

X := [0, 1]d whose degree is less than n + 1. Then, for all ε > 0, there exists
a distribution P on X × Y with R∗

Lclass,P
= 0 and

R∗
Lclass,P,Pd

n
≥ 1

2
− ε .

Moreover, P can be chosen such that the “classes” {x ∈ X : P(y = 1|x) = 0}
and {x ∈ X : P(y = 1|x) = 1} have strictly positive distance.

Proof. We first treat the case d = 1. To this end, we fix an integer m ≥
(3n+ 2)/ε and write
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Ii := [(i+ ε)/m, (i+ 1− ε)/m] , i = 0, . . . ,m− 1.

Moreover, let μIi
be the Lebesgue measure on Ii and let P be defined by

PX := (1− 2ε)−1
m−1∑
i=0

μIi
,

P
(
y = 1
∣∣x) :=

{
1 if x ∈ Ii for some even i ∈ {0, . . . ,m− 1}
0 otherwise.

For a fixed polynomial f ∈ P1
n, we now write x1 < . . . < xk, k ≤ n for its mu-

tually different and ordered zeros in (0, 1). In addition, we write x0 := 0 and
xk+1 := 1. Finally, we define aj := |{i : Ii ⊂ [xj , xj+1]}| for j = 0, . . . , k. Obvi-
ously, there are at most k intervals Ii that do not lie between two consecutive
zeros, and hence we get

k∑
j=0

aj ≥ m− k ≥ m− n .

Moreover, at most �(aj + 1)/2� intervals Ii are correctly classified on [xj , xj+1]
by the function sign ◦f , and consequently at least

k∑
j=0

⌊aj

2

⌋
≥

k∑
j=0

(aj

2
− 1
)
≥ m− n

2
− (k + 1) ≥ m− 3n− 2

2

intervals Ii are not correctly classified on [0, 1] by sign ◦f . Since PX(Ii) = 1/m,
we thus obtain

RLclass,P(f) ≥ 1
m

k∑
j=0

⌊aj

2

⌋
≥ 1

2
− 3n+ 2

m
≥ 1

2
− ε .

Finally, for the case d > 1, let I : [0, 1]→ [0, 1]d be the embedding defined by
t �→ (t, 0, . . . , 0), t ∈ R. Moreover, consider the above distribution P embedded
into [0, 1]d via I. Then observe that, given an f ∈ Pd

n, its restriction f|I([0,1])

can be interpreted as a polynomial in P1
n, and from this it is straightforward

to prove the assertion. ��

5.6 Further Reading and Advanced Topics

The first representer theorem for empirical distributions was established for
some specific losses, including the least squares loss, by Kimeldorf and Wahba
(1971). The version we presented in Theorem 5.5 is a simplified version of
a more general representer theorem for empirical distributions proved by
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Schölkopf et al. (2001b). For a brief discussion on some related results, we
refer to these authors as well as to the book by Schölkopf and Smola (2002).
Finally, Dinuzzo et al. (2007) recently established a refinement of Theorem
5.8 for empirical distributions.

The first considerations on general SVM solutions were made by Zhang
(2001). In particular, he showed that the general SVM solutions exist for the
hinge loss and that they converge to the hard margin SVM solution for λ→ 0
(see Exercise 5.10 for a precise statement). Moreover, he also mentions the
general representer theorem for the hinge loss, though he does not prove it.
The existence of general SVM solutions for a wide class of Lclass-surrogates
was then established by Steinwart (2005), and a corresponding representer
theorem was established by Steinwart (2003). The existence of general SVM
solutions for convex integrable Nemitski losses of some type p ≥ 1 as well as
the corresponding general representer theorem was then shown by De Vito
et al. (2004). The results presented in Section 5.2 are closely related to their
findings, although their representer theorem is stated for supervised losses and
for SVM optimization problems having an additional “offset”.

The Lipschitz continuity of general SVM solutions we presented in Section
5.3 was again found by Zhang (2001) for differentiable losses. Independently,
Bousquet and Elisseeff (2002) established a similar result for empirical SVM
solutions (see Exercise 5.6). The presentation given in Section 5.3 mainly
follows that of Christmann and Steinwart (2007).

The relation between the approximation error functions A2 and A∞ was
investigated by Steinwart and Scovel (2005a). The presentation of the corre-
sponding part of Section 5.4 closely follows their work, though it is fair to say
that some of the results, such as Lemma 5.23, are to some extent folklore.
Furthermore, it is interesting to note that the functions A2 and A∞ are often
closely related to concepts from approximation theory. To be more precise, let
E and F be Banach spaces such that E ⊂ F and id : E → F is continuous.
Then the K-functional is defined by

K(y, t) := inf
x∈E

t‖x‖E + ‖y − x‖F , y ∈ F, t > 0.

Moreover, for r ∈ (0, 1), the interpolation space (E,F )r is the set of ele-
ments y ∈ F for which

‖y‖(E,F )r
:= sup

t>0
K(y, t)t−r <∞.

One can show that ((E,F )r, ‖ · ‖(E,F )r
) is a Banach space, and for many

classical spaces E and F this interpolation space can actually be described
in closed form. We refer to the books by Bergh and Löfström (1976), Triebel
(1978), and Bennett and Sharpley (1988). In particular, for a Euclidean ball
X ⊂ Rd, Theorem 7.31 of Adams and Fournier (2003) shows that the Sobolev
space W k(X) is continuously embedded into (Wm(X), L2(X))k/m for all 0 <
k < m and that this embedding is almost sharp. Besides the K-functional,
one can also consider the functional
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A(y, t) := inf
x∈tBE

‖x− y‖F , y ∈ F, t > 0.

Not surprisingly, both functionals are closely related. Indeed, with techniques
similar to those of Theorem 5.25, Smale and Zhou (2003) showed that

y ∈ (E,F )r ⇐⇒ c := sup
t>0

A(y, t)t
r

1−r <∞ ,

and in this case we actually have c1−r ≤ ‖y‖(E,F )r
≤ 2c1−r. Let us now illus-

trate how these abstract results relate to the approximation error functions.
To this end, let us first assume that L is the least squares loss. Moreover, we
fix an RKHS H over X with bounded measurable kernel and a distribution P
on X ×R with |P|2 <∞. Then we have RL,P(f)−R∗

L,P = ‖f − f∗L,P‖2L2(PX),
and by setting E := H and F := L2(PX), we thus find A∞(t) = A2(f∗L,P, t

−1)
for all t > 0. Using the relation between A∞ and A2, we conclude that

f∗L,P ∈
(
H,L2(PX)

)
r

⇐⇒ ∃ c ≥ 0 ∀λ > 0 : A2(λ) ≤ cλr ,

and if f∗L,P ∈ (H,L2(PX))r we may actually choose c := ‖f∗L,P‖2(H,L2(PX))r
.

In particular, if H = Wm(X), f∗L,P ∈ W k(X) for some k < m, and PX is
the uniform distribution on X, then there exists a constant c > 0 that is
independent of f∗L,P such that

A2(λ) ≤ c ‖f∗L,P‖2W k(X)λ
k/m , λ > 0 .

In this direction, it is also interesting to note that Smale and Zhou (2003)
showed that, given a fixed width γ > 0, the approximation error function of
the corresponding Gaussian RBF kernel can only satisfy a non-trivial bound
of the form A2(λ) ≤ cλβ if f∗L,P is C∞. Furthermore, for the least squares
loss, the approximation error function is also related to the integral operator
of the kernel of H. To explain this, let X be a compact metric space and
Tk : L2(PX) → L2(PX) be the integral operator associated to the kernel k
and the measure PX . Then one can show (see, e.g., Theorem 4.1 in Cucker
and Zhou, 2007) that

f∗L,P ∈ T r/2
k (L2(PX)) =⇒ ∃ c ≥ 0 ∀λ > 0 : A2(λ) ≤ cλr .

In addition, this theorem also shows that if the latter estimate on A2 holds and
supp PX = X, then we have f∗L,P ∈ T (r−ε)/2

k (L2(PX)) for all ε > 0. Finally,
let us assume that L is a Lipschitz continuous loss for which a Bayes decision
function f∗L,P exists. Then we have RL,P(f)−R∗

L,P ≤ ‖f − f∗L,P‖L1(PX), and
by setting E := H and F := L1(PX) we thus find A∞(t) ≤ A(f∗L,P, t

−1) for
all t > 0. From this we conclude that

f∗L,P ∈
(
H,L1(PX)

)
r

=⇒ ∀λ > 0 : A2(λ) ≤ ‖f∗L,P‖
2

2−r

(H,L1(PX))r
λ

r
2−r .
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Qualitative approximation properties of function classes in terms of excess
risks have been investigated for quite a while. For example, certain neural net-
work architectures have been known for more than 15 years to be universal
approximators. For some information in this regard, we refer to p. 518f of the
book by Devroye et al. (1996). Moreover, the characterization for the least
squares loss given in Example 5.38 is, of course, trivial if we recall the formula
for the excess least squares risk given in Example 2.6. Moreover, Example
5.38 can also be shown without using the self-calibration function. Further-
more, the fact that L∞(μ)-denseness is sufficient for most commonly used loss
functions is also to some extent folklore. The more sophisticated sufficient con-
dition given in Theorem 5.31 together with the general necessary conditions
found in Section 5.5 are taken from Steinwart et al. (2006b). Finally, Corol-
lary 5.29 together with the universality of certain kernels was first shown by
Steinwart (2001, 2005) and independently by Hammer and Gersmann (2003).

5.7 Summary

In this chapter, we investigated general SVM solutions and their properties.
To this end, we showed in the first section that for a large class of convex
losses these solutions exist and are unique. Being motivated by the representer
theorem for empirical solutions, we then established a general representer
theorem, which additionally describes the form of the representing function,
in the second section. In the third section, we used this general representer
theorem to show that the general SVM solutions depend on the underlying
distribution in a Lipschitz continuous fashion.

In the fourth section, we investigated the behavior of the general SVM
solution and its associated (regularized) risk for vanishing regularization pa-
rameters. In particular, we showed that this risk tends to the best possible risk
obtainable in the RKHS. In addition, we compared the regularization scheme
of SVMs with a more classical notion of approximation error.

In the last section, we investigated under which assumptions the RKHS
is rich enough to achieve the Bayes risk. Here we first derived a sufficient
condition for universal kernels. We then obtained a characterization for a
large class of loss functions and illustrated these findings with some examples.

5.8 Exercises

5.1. Existence of general SVM solutions for pinball loss (�)
Formulate a condition on P that ensures the existence of a general SVM
solution when using the pinball loss. Does this condition change for different
values of τ?
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5.2. A representer theorem for the logistic loss (��)
Consider a strictly positive definite kernel and the logistic loss for classifica-
tion. Show that all coefficients in (5.6) do not vanish.

5.3. A representer theorem for some distance-based losses (��)
Formulate a generalized representer theorem for the loss functions Lp-dist,
p ≥ 1, and Lr-logist. Compare the different norm bounds for the representing
function h. What does (5.10) mean for the least squares loss?

5.4. Generalized representer theorem for margin-based losses (��)
Formulate a generalized representer theorem for convex, margin-based loss
functions. How can (5.19) and (5.21) be simplified?

5.5. Generalized representer theorem for the hinge loss (���)
Formulate a generalized representer theorem for the hinge loss. What is the
form of (5.19) and (5.21)? Then assume that P is an empirical distribution
with respect to a data set D = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n. Investigate
the form of the coefficients in (5.6) and describe when a specific coefficient van-
ishes. Finally, find a condition on the kernel that ensures that the coefficients
are uniquely determined.

5.6. Stability of empirical SVM solutions (��)
Let D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n be a sample set and D̄ :=
((x1, y1), . . . , (xn−1, yn−1)) ∈ (X × Y )n−1 be the sample set we obtain from
D by removing the last sample. Furthermore, let L : X × Y × R → [0,∞)
be a convex loss function, H be a RKHS over X with canonical feature map
Φ : X → H, and λ > 0. Show that

∥∥ fD,λ − fD̄,λ

∥∥
H
≤ 2‖k‖∞

λn
· |L|Bλ,1 ,

where Bλ is defined by (5.29).

5.7. Existence of general SVM solutions for non-convex losses (����)
Let L : X × Y × R → [0,∞) be a continuous loss function and P be a
distribution onX×Y such that L is a P-integrable Nemitski loss. Furthermore,
let H be the RKHS of a bounded measurable kernel over X. Show that for
all λ > 0 there exists a general SVM solution fP,λ.

Hint: Adapt the technique used in the proof of Theorem 5.17.

5.8. Approximation error function without RKHSs (���)
Investigate which results from Section 5.4 still hold if the RKHS H in the
definition of the approximation error functions is replaced by a general normed
space consisting of measurable functions f : X → R.

5.9. Approximation error function with general exponent (����)
Let L : X×Y ×R→ [0,∞) be a loss function,H be the RKHS of a measurable
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kernel over X, and P be a distribution on X×Y with R∗
L,P,H <∞. For p ≥ 1,

define the p-approximation error function Ap : [0,∞)→ [0,∞) by

Ap(λ) := inf
f∈H

λ‖f‖pH +RL,P(f)−R∗
L,P,H , λ ≥ 0.

Establish a (suitably modified) version of Lemma 5.15. Furthermore, show
the uniqueness and existence of a minimizer of Ap(λ) under the assumptions
of Lemma 5.1 and Theorem 5.2. Then establish (suitably modified) versions
of Theorem 5.17 and its Corollaries 5.18, 5.19, and 5.24. Finally, discuss the
consequences of the latter with respect to variable exponent p.

5.10. SVM behavior for classes with strictly positive distances (��)
Let X be a compact metric space, Y := {−1, 1}, and P be a distribution on
X × Y with R∗

Lclass,P
= 0. Let us write η(x) := P(y = 1|x), x ∈ X. Assume

that the “classes”
{x ∈ X : η = 0} ∩ supp PX

and
{x ∈ X : η = 1} ∩ supp PX

have strictly positive distance and that H is the RKHS of a universal kernel
on X. Show that f∗Lhinge,P,H exists and that the general SVM solutions with
respect to the hinge loss satisfy limλ→0+ fLhinge,P,H,λ = f∗Lhinge,P,H .

5.11. Same behavior of different approximation functions (���)
Let L : X×Y ×R→ [0,∞) be a loss function,H be the RKHS of a measurable
kernel over X, and P be a distribution on X×Y with R∗

L,P,H <∞. Moreover,
for p ≥ 1, define the p-approximation error function Ap : [0,∞) → [0,∞) as
in Exercise 5.9. Finally, let c > 0, λ0 > 0, and α > 0 be fixed constants. Show
the following statements:

i) Ap(λ) ≤ c
p

α+pλ
α

α+p for all λ > 0 implies A∞(λ) ≤ cλα for all λ > 0.
ii) A∞(λ) ≤ cλα for all λ > 0 implies Ap(λ) ≤ 2c

p
α+pλ

α
α+p for all λ > 0.

iii) Ap(λ) ≥ 2c
p

α+pλ
α

α+p for all λ ∈ [0, λ0] implies A∞(λ) ≥ cλα for all λ > 0
with λpA∞(λ) ≤ λ0.

iv) A∞(λ) ≥ cλα for all λ ∈ [0, λ0] implies Ap(λ) ≥ c
p

α+pλ
α

α+p for all λ > 0
with λ

Ap(λ) ≤ λp
0.

With the help of these estimates, discuss the optimality of (5.41) for p = 2.
Hint: First prove an analogue to Theorem 5.25.

5.12. Some other conditions for universal approximators (��)
Show that Theorem 5.28 still holds true if we only assume that for all g ∈
L∞(PX) there exists a sequence (fn) ⊂ F with supn≥1 ‖fn‖∞ < ∞ and
limn→∞ fn = g in probability PX .

5.13. Universal approximators for some margin-based losses (��)
Discuss the squared hinge loss and the least squares loss in the sense of
Example 5.40.
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Basic Statistical Analysis of SVMs

Overview. So far we have not considered the fact that SVMs typically
deal with observations from a random process. This chapter addresses
this issue by so-called oracle inequalities that relate the risk of an
empirical SVM solution to that of the corresponding infinite-sample
SVM. In particular, we will see that the analysis of the learning abil-
ity of SVMs can be split into a statistical part described by the oracle
inequalities and a deterministic part based on the approximation error
function investigated in the previous chapter.

Prerequisites. The first three sections require only basic knowledge
of probability theory as well as some notions from the introduction in
Chapter 1 and Sections 2.1 and 2.2 on loss functions. In the last two
sections, we additionally need Sections 4.2, 4.3, and 4.6 on kernels
and Chapter 5 on infinite-sample SVMs.

Usage. The oracle inequalities of this chapter are necessary for Chap-
ter 8 on classification. In addition, they are helpful in Chapter 11,
where practical strategies for selecting hyper parameters are discussed.

Let us recall from the introduction that the goal of learning from a training set
D is to find a decision function fD such that RL,P(fD) is close to the minimal
risk R∗

L,P. Since we typically assume that the empirical data set D consists
of i.i.d. observations from an unknown distribution P, the decision function
fD and its associated risk RL,P(fD) become random variables. Informally, the
“learning ability” of a learning method D �→ fD can hence be described by
an answer to the following question:

What is the probability that RL,P(fD) is close to R∗
L,P?

The main goal of this chapter is to present basic concepts and techniques for
addressing this question for SVMs. To this end, we introduce two key notions
of statistical learning in Section 6.1, namely consistency and learning rates,
that formalize possible answers to the question above. While consistency is
of purely asymptotic nature, learning rates provide a framework that is more
closely related to practical needs. On the other hand, we will see in Section 6.1
that consistency can often be ensured without assumptions on P, while learn-
ing with guaranteed rates almost always requires assumptions on the unknown
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distribution P. In the second section, we then establish some basic concen-
tration inequalities that will be the key tools for investigating the statistical
properties of SVMs in this chapter. Subsequently we will illustrate their use
in Section 6.3, where we investigate empirical risk minimization. The last two
sections are devoted to the actual statistical analysis of SVMs. In Section 6.4,
we establish two oracle inequalities that, for a fixed regularization parame-
ter, relate the risk of empirical SVM decision functions to the approximation
error function. These oracle inequalities will then be used to establish basic
forms of both consistency and learning rates for SVMs using a priori defined
regularization parameters. Thereby it turns out that the fastest learning rates
our analysis provides require some knowledge about the distribution P. Un-
fortunately, however, the required type of knowledge on P is rarely available
in practice, and hence these rates are in general not achievable with a priori
defined regularization parameters. Finally, in Section 6.5 we present and ana-
lyze a simple method for determining the regularization parameter for SVMs
in a data-dependent way. Here it will turn out that this method is adaptive
in the sense that it achieves the fastest learning rates of our previous analysis
without knowing any characteristics of P.

6.1 Notions of Statistical Learning

In this section, we introduce some basic notions that describe “learning” in a
more formal sense. Let us begin by defining learning methods.

Definition 6.1. Let X be a set and Y ⊂ R. A learning method L on X×Y
maps every data set D ∈ (X × Y )n, n ≥ 1, to a function fD : X → R.

By definition, any method that assigns to every training set D of arbitrary
but finite length a function fD is a learning method. In particular, the meaning
of “learning” is not specified in this definition. However, before we can define
what we actually mean by “learning”, we have to introduce a rather technical
assumption dealing with the measurability of learning methods. Fortunately,
we will see later that this measurability is usually fulfilled for SVMs and
related learning methods. Therefore, readers not interested in these technical,
yet mathematically important, details may jump directly to Definition 6.4.

Before we introduce the required measurability notion for learning meth-
ods, let us first recall (see Lemma A.3.3) that the P-completion AP of a
σ-algebra A is the smallest σ-algebra that contains A and all subsets of P-zero
sets in A. Moreover, the universal completion of A is defined as the intersec-
tion of all completions AP, where P runs through the set of all probability
measures defined on A. In order to avoid notational overload, we always as-
sume in this chapter that (X×Y )n is equipped with the universal completion
of the product σ-algebra on (X×Y )n, where the latter is usually defined from
the context. Moreover, the canonical extension of a product measure Pn to
this completion will also be denoted by Pn if no confusion can arise.
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Definition 6.2. Let X �= ∅ be a set equipped with some σ-algebra and Y ⊂ R

be a closed non-empty subset equipped with the Borel σ-algebra. We say that
the learning method L on X × Y is measurable if for all n ≥ 1 the map

(X × Y )n ×X → R

(D,x) �→ fD(x)

is measurable with respect to the universal completion of the product σ-algebra
on (X × Y )n ×X, where fD denotes the decision function produced by L.

In the following sections, we will see that both ERM and SVMs are mea-
surable learning methods under rather natural assumptions, and therefore we
omit presenting examples of measurable learning methods in this section.

Now note that for measurable learning methods the maps x �→ fD(x) are
measurable for all fixed D ∈ (X × Y )n. Consequently, the risks RL,P(fD) are
defined for all D ∈ (X × Y )n and all n ≥ 1. The following lemma ensures
that for measurable learning methods the “probability” for sets of the form
{D ∈ (X × Y )n : RL,P(fD) ≤ ε}, ε ≥ 0, is defined.

Lemma 6.3. Let L be a measurable learning method on X ×Y producing the
decision functions fD. Then, for all loss functions L : X × Y ×R → [0,∞),
all probability measures P on X × Y , and all n ≥ 1, the maps

(X × Y )n → [0,∞]
D �→ RL,P(fD)

are measurable with respect to the universal completion of the product σ-algebra
on (X × Y )n.

Proof. By the measurability of L and L, we obtain the measurability of the
map (D,x, y) �→ L(x, y, fD(x)). Now the assertion follows from the measura-
bility statement in Tonelli’s Theorem A.3.10. ��

With these preparations, we can now introduce our first notion of learning.

Definition 6.4. Let L : X ×Y ×R→ [0,∞) be a loss, P be a distribution on
X × Y , and L be a measurable learning method on X × Y . Then L is said to
be L-risk consistent for P if, for all ε > 0, we have

lim
n→∞Pn

(
D ∈ (X × Y )n : RL,P(fD) ≤ R∗

L,P + ε
)

= 0 . (6.1)

Moreover, L is called universally L-risk consistent if it is L-risk consistent
for all distributions P on X × Y .

When the training set is sufficiently large, consistent learning methods pro-
duce nearly optimal decision functions with high probability. In other words,
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in the long run, a consistent method is able to “learn” with high probabil-
ity decision functions that achieve nearly optimally the learning goal defined
by the loss function L. Moreover, universally consistent learning methods
accomplish this without knowing any specifics of the data-generating distrib-
ution P. From an orthodox machine learning point of view, which prohibits
assumptions on P, universal consistency is thus a minimal requirement for
any reasonable learning method. However, one might wonder whether this
point of view, though mathematically compelling, is, at least sometimes, too
unrealistic. To illustrate this suspicion, let us consider binary classification on
X := [0, 1]. Then every Bayes decision function is of the form 1X1 − 1X−1 ,
where X−1, X1 ⊂ [0, 1] are suitable sets. In addition, let us restrict our discus-
sion to nontrivial distributions P onX×{−1, 1}, i.e., to distributions satisfying
both PX(X1) > 0 and PX(X−1) > 0. For “elementary” classification prob-
lems, where X1 and X−1 are finite unions of intervals, consistency then seems
to be a natural minimal requirement for any reasonable learning methods.
On the other hand, “monster” distributions P, such as the one where X1 is
the Cantor set, X−1 is its complement, and PX is a mixture of the Hausdorff
measure on X1 and the Lebesgue measure on [−1, 1], seem to be less realistic
for practical applications, and hence it may be harder to argue that learning
methods should be able to learn for such P. In many situations, however, we
cannot a priori exclude elementary distributions that are disturbed by some
small yet not vanishing amount attributed to a malign or even monster dis-
tribution. Therefore, universal consistency can also be viewed as a notion of
robustness that prevents a learning method from asymptotically failing in the
presence of deviations from (implicitly) assumed features of P.

One of the drawbacks of the notion of (universal) consistency is that it
does not specify the speed of convergence in (6.1). In other words, consistency
is a truly asymptotic notion in the sense that it does not give us any confidence
about how well the method has learned for a given data set D of fixed length
n. Therefore, our next goal is to introduce a notion of learning that has a less
asymptotic nature. We begin by reformulating consistency.

Lemma 6.5 (Learning rate). Let L : X × Y ×R → [0,∞) be a loss, P be
a distribution on X × Y , and L be a measurable learning method satisfying

sup
D∈(X×Y )n

RL,P(fD) <∞ , n ≥ 1,

for its decision functions fD. Then the following statements are equivalent:

i) L is L-risk consistent for P.
ii) There exist a constant cP > 0 and a decreasing sequence (εn) ⊂ (0, 1] that

converges to 0 such that for all τ ∈ (0, 1] there exists a constant cτ ∈ [1,∞)
only depending on τ such that, for all n ≥ 1 and all τ ∈ (0, 1], we have

Pn
(
D ∈ (X × Y )n : RL,P(fD) ≤ R∗

L,P + cP cτ εn

)
≥ 1− τ . (6.2)

In this case, L is said to learn with rate (εn) and confidence (cτ )τ∈(0,1].
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Proof. The fact that (6.2) implies L-risk consistency is trivial, and hence it
remains to show the converse implication. To this end, we define the function
F : (0,∞)×N→ [0,∞) by

F (ε, n) := Pn
(
D ∈ (X×Y )n : RL,P(fD) > R∗

L,P +ε
)
, ε ∈ (0,∞), n ≥ 1.

The L-risk consistency then shows limn→∞ F (ε, n) = 0 for all ε > 0, and
hence Lemma A.1.4 yields a decreasing sequence (εn) ⊂ (0, 1] converging to
0 such that limn→∞ F (εn, n) = 0. For a fixed τ ∈ (0, 1], there consequently
exists an nτ ≥ 1 such that

Pn
(
D ∈ (X × Y )n : RL,P(fD) > R∗

L,P + εn

)
≤ τ , n > nτ . (6.3)

For n ≥ 1, we write bn := supD∈(X×Y )n RL,P(fD) −R∗
L,P. Then the bound-

edness of L shows bn < ∞ for all n ≥ 1 and, by the definition of bn, we also
have

Pn
(
D ∈ (X × Y )n : RL,P(fD) > R∗

L,P + bn

)
≤ τ , n = 1, . . . , nτ . (6.4)

Let us define cτ := ε−1
nτ

max{1, b1, . . . , bnτ
}. Then we have bn ≤ cτεn for all

n = 1, . . . , nτ and, since cτ ≥ 1, we also have εn ≤ cτεn for all n > nτ . Using
these estimates in (6.4) and (6.3), respectively, yields (6.2). ��

Note that in (6.2) the constant cP depends on the distribution P. There-
fore, if we do not know P, then in general we do not know cP. In other words,
even if we know that L learns with rate (εn) for all distributions P, this know-
ledge does not give us any confidence about how well the method has learned
in a specific application. Unfortunately, however, the following results show
that the situation is even worse in the sense that in general there exists no
method that learns with a fixed rate and confidence for all distributions P.
Before we state these results, we remind the reader that Lebesgue absolutely
continuous distributions on subsets of Rd are atom-free. A precise definition
of atom-free measures is given in Definition A.3.12.

Theorem 6.6 (No-free-lunch theorem). Let (an) ⊂ (0, 1/16] be a decreas-
ing sequence that converges to 0. Moreover, let (X,A, μ) be an atom-free prob-
ability space, Y := {−1, 1}, and Lclass be the binary classification loss. Then,
for every measurable learning method L on X × Y , there exists a distribution
P on X × Y with PX = μ such that R∗

Lclass,P
= 0 and

ED∼PnRLclass,P(fD) ≥ an , n ≥ 1.

Since the proof of this theorem is out of the scope of this book, we refer
the interested reader to Theorem 7.2 in the book by Devroye et al. (1996).
In this regard, we also note that Lyapunov’s Theorem A.3.13 can be easily
utilized to generalize their proof to a fixed atom-free distribution. The details
are discussed in Exercise 6.4.
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Informally speaking, the no-free-lunch theorem states that, for sufficiently
malign distributions, the average risk of any classification method may tend
arbitrarily slowly to zero. Our next goal is to use this theorem to show that
in general no learning method enjoys a uniform learning rate. The first result
in this direction deals with the classification loss.

Corollary 6.7 (No uniform rate for classification). Let (X,A, μ) be an
atom-free probability space, Y := {−1, 1}, and L be a measurable learning
method on X×Y . Then, for all decreasing sequences (εn) ⊂ (0, 1] that converge
to 0 and all families (cτ )t∈(0,1] ⊂ [1,∞), there exists a distribution P on X×Y
satisfying PX = μ and R∗

Lclass,P
= 0 such that L does not learn with rate (εn)

and confidence (cτ )τ∈(0,1].

Proof. For brevity’s sake, we write L := Lclass. Let us assume that the as-
sertion is false, i.e., that there exist a decreasing sequence (εn) ⊂ (0, 1] that
converges to 0 and constants cτ ∈ [1,∞), τ ∈ (0, 1], such that, for all distri-
butions P on X × Y satisfying PX = μ and R∗

L,P = 0, the method L learns
with rate (εn) and confidence (cτ )τ∈(0,1]. In other words, we assume

Pn
(
D ∈ (X × Y )n : RL,P(fD) > cP cτ εn

)
≤ τ (6.5)

for all n ≥ 1 and τ ∈ (0, 1], where cP is a constant independent of n and τ .
Let us define F : (0, 1] × N → [0,∞) by F (τ, n) := τ−1cτεn. Then we have
limn→∞ F (τ, n) = 0 for all τ ∈ (0, 1], and consequently an obvious modifi-
cation of Lemma A.1.4 yields a decreasing sequence (τn) ⊂ (0, 1] converging
to 0 such that limn→∞ F (τn, n) = 0. We define an := 1/16 if τn ≥ 1/32
and an := 2τn otherwise. By the no-free-lunch theorem, there then exists a
distribution P on X × Y such that PX = μ, R∗

L,P = 0, and

an ≤ ED∼PnRL,P(fD)

=
∫

RL,P(fD)≤cP cτ εn

RL,P(fD) dPn(D) +
∫

RL,P(fD)>cP cτ εn

RL,P(fD) dPn(D)

≤ cP cτ εn + τ

for all n ≥ 1 and τ ∈ (0, 1], where in the last estimate we used (6.5) together
with RL,P(fD) ≤ 1. Consequently, we find

an − τn
cτn
εn

≤ cP , n ≥ 1.

On the other hand, our construction yields

lim
n→∞

an − τn
cτn
εn

= lim
n→∞

τn
cτn
εn

= lim
n→∞

1
F (τn, n)

=∞ ,

and hence we have found a contradiction. ��
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In the following, we show that the result of Corollary 6.7 is true not only
for the classification loss but for basically all loss functions. The idea of this
generalization is that whenever we have a loss function L that describes a
learning goal where at least two different labels have to be distinguished, then
this learning problem is in some sense harder than binary classification and
hence cannot be learned with a uniform rate. Since the precise statement of
this idea is rather cumbersome and requires notations from Section 3.1, we
suggest that the first-time reader skips this part and simply remembers the
informal result described above. Moreover, for convex losses L, the conditions
below can be substantially simplified. We refer the reader to Exercise 6.5 for
a precise statement and examples.

Corollary 6.8 (No uniform learning rate). Let (X,A, μ) be an atom-free
probability space, Y ⊂ R be a closed subset, and L : X × Y × R → [0,∞) be
a loss. Assume that there exist two distributions Q1 and Q2 on Y such that
ML,Q1,x(0+) �= ∅, ML,Q2,x(0+) �= ∅, and

ML,Q1,x(0+) ∩ML,Q2,x(0+) = ∅

for all x ∈ X. For x ∈ X, we define

M1,x :=
{
t ∈ R : dist(t,ML,Q2,x(0+)) ≥ dist(t,ML,Q1,x(0+))

}
,

M2,x :=
{
t ∈ R : dist(t,ML,Q2,x(0+)) < dist(t,ML,Q1,x(0+))

}
.

If there exists a measurable h : X → (0, 1] such that for all x ∈ X we have

inf
t∈M1,x

CL,Q2,x(t)− C∗L,Q2,x ≥ h(x) ,
inf

t∈M2,x

CL,Q1,x(t)− C∗L,Q1,x ≥ h(x) ,

then the conclusion of Corollary 6.7 remains true if we replace Lclass by L.

Proof. Clearly, the distribution μ̄ := ‖h‖−1
L1(μ)hμ on X is atom-free. Moreover,

for a distribution P on X × Y that is of type {Q1,Q2} and satisfies PX = μ,
we associate the distribution P̄ on X×{−1, 1} that is defined by P̄X = μ̄ and

P̄(y = 1|x) :=

{
0 if P( · |x) = Q1

1 if P( · |x) = Q2 .

In other words, P̄( · |x) produces almost surely a negative label if P( · |x) = Q1

and almost surely a positive label if P( · |x) = Q2. From this it becomes obvious
that R∗

Lclass,P̄
= 0. For x ∈ X and t ∈ R, we further define

π(t, x) :=

{
−1 if t ∈M1,x

1 if t ∈M2,x .
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In other words, π(t, x) becomes negative if t is closer to the minimizing set
ML,Q1,x(0+) of the distribution Q1 than to that of Q2. Here the idea be-
hind this construction is that Q1 is identified with negative classification la-
bels in the definition of P̄. Moreover, note that this definition is independent
of P. In addition, since t �→ dist(t, A) is continuous for arbitrary A ⊂ R and
x �→ dist(t,ML,Qi,x(0+)), i ∈ {1, 2}, is measurable by Aumann’s measurable
selection principle stated in Lemma A.3.18, we see by Lemma A.3.17 that
π : R×X → R is measurable. Now a simple calculation shows

h(x)CLclass,P̄( · |x)(π(t, x)) ≤ CL,P( · |x),x(t)− C∗L,P( · |x),x , x ∈ X, t ∈ R,

and thus we find ‖h‖L1(μ)RLclass,P̄(π ◦ f) ≤ RL,P(f)−R∗
L,P for all measurable

f : X → R, where π ◦ f(x) := π(f(x), x), x ∈ X. Now let L be a measurable
learning method producing decision functions fD. Then π ◦L defined by D �→
π ◦ fD is also a measurable learning method since π is measurable. Moreover,
π ◦ L is independent of P. Assume that L learns all distributions P of type
{Q1,Q2} that satisfy PX = μ with a uniform rate. Then our considerations
above show that π ◦ L learns all associated classification problems P̄ with the
same uniform rate, but by Corollary 6.7 this is impossible. ��

The results above show that in general we cannot a priori guarantee with
a fixed confidence that a learning method finds a nearly optimal decision
function. This is a fundamental limitation for statistical learning methods
that we cannot elude by, e.g., cleverly combining different learning methods
since such a procedure itself constitutes a learning method. In other words,
the only way to resolve this issue is to make a priori assumptions on the
data generating distribution P. However, since in almost no case will we be
able to rigorously check whether P actually satisfies the imposed assumptions,
such an approach has only very limited utility for a priori guaranteeing good
generalization performance. On the other hand, by establishing learning rates
for different types of assumptions on P, we can understand for which kind
of distributions the learning method considered learns easily and for which it
does not. In turn, such knowledge can then be used in practice where one has
to decide which learning methods are likely to be appropriate for a specific
application.

6.2 Basic Concentration Inequalities

We will see in the following sections that our statistical analysis of both ERM
and SVMs relies heavily on bounds on the probabilities

Pn
({D ∈ (X × Y )n : |RL,D(f)−RL,P(f)| > ε}) .

In this section, we thus establish some basic bounds on such probabilities.
Let us begin with an elementary yet powerful inequality that will be the

key ingredient for all the more advanced results that follow (see also Exercise
6.2 for a slightly refined estimate).
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Theorem 6.9 (Markov’s inequality). Let (Ω,A,P) be a probability space.
Then, for all measurable functions f : Ω → R and all t > 0, we have

P
({ω ∈ Ω : f(ω) ≥ t}) ≤ EP|f |

t
.

Proof. For At := {ω ∈ Ω : f(ω) ≥ t}, we obviously have t1At
≤ f1At

≤ |f |,
and hence we obtain tP(At) = EP t1At

≤ EP|f |. ��
From Markov’s inequality, it is straightforward to derive Chebyshev’s in-

equality P({ω ∈ Ω : |f(ω)| ≥ t}) ≤ t−2EP|f |2. The following result also
follows from Markov’s inequality.

Theorem 6.10 (Hoeffding’s inequality). Let (Ω,A,P) be a probability
space, a < b be two real numbers, n ≥ 1 be an integer, and ξ1, . . . , ξn : Ω →
[a, b] be independent random variables. Then, for all τ > 0, we have

P

(
1
n

n∑
i=1

(
ξi − EPξi

) ≥ (b− a)
√

τ

2n

)
≤ e−τ .

Proof. We begin with a preliminary consideration. To this end, let ã < b̃ be
two real numbers and ξ : Ω → [ã, b̃] be a random variable with EPξ = 0.
Note that from this assumptions we can immediately conclude that ã ≤ 0 and
b̃ ≥ 0. Moreover, observe that for x ∈ [ã, b̃] we have

x =
b̃− x
b̃− ã ã+

x− ã
b̃− ã b̃ ,

and hence the convexity of the exponential function implies

etx ≤ b̃− x
b̃− ã e

tã +
x− ã
b̃− ã e

tb̃ , t > 0.

Since EPξ = 0, we then obtain

EPe
tξ ≤ EP

(
b̃− ξ
b̃− ã e

tã +
ξ − ã
b̃− ã e

tb̃

)
=

b̃

b̃− ã e
tã − ã

b̃− ã e
tb̃

= etã

(
1 +

ã

b̃− ã −
ã

b̃− ã e
t(b̃−ã)

)

for all t > 0. Let us now write p := −ã (b̃− ã)−1. Then we observe that
ã ≤ 0 implies p ≥ 0, and b̃ ≥ 0 implies p ≤ 1. For s ∈ R, we hence find
es > 0 ≥ 1− 1/p, from which we conclude that 1− p+ pes > 0. Consequently,
φp(s) := ln(1−p+pes)−ps is defined for all s ∈ R. Moreover, these definitions
together with our previous estimate yield

EPe
tξ ≤ e−tp(b̃−ã)

(
1− p+ pet(b̃−ã)

)
= eφp(t(b̃−ã)) .
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Now observe that we have φp(0) = 0 and φ′p(s) = pes

1−p+pes − p. From the
latter, we conclude that φ′p(0) = 0 and

φ′′p(s) =
(1− p+ pes)pes − pespes

(1− p+ pes)2
=

(1− p)pes

(1− p+ pes)2
≤ (1− p)pes

4(1− p)pes
=

1
4

for all s ∈ R. By Taylor’s formula with Lagrangian remainder, we hence find

φp(s) = φp(0) + φ′p(0)s+
1
2
φ′′p(s′)s2 ≤ s2

8
, s > 0,

where s′ ∈ [0, s] is a suitable real number. Consequently, we obtain

EPe
tξ ≤ eφp(t(b̃−ã)) ≤ exp

(
t2(b̃− ã)2

8

)
, t > 0 .

Applying this estimate to the random variables ξi−Eξi : Ω → [a−Eξi, b−Eξi],
where E := EP, we now find

EPe
t(ξi−Eξi) ≤ exp

(
t2(b− a)2

8

)
, t > 0, i = 1, . . . , n.

Using this estimate together with Markov’s inequality and the independence
assumption, we hence obtain with E := EP that

P
( n∑

i=1

(
ξi−Eξi

) ≥ εn) ≤ e−tεn E exp
(
t

n∑
i=1

(
ξi − Eξi

)) ≤ e−tεn
n∏

i=1

Eet(ξi−Eξi)

≤ e−tεn e
nt2(b−a)2

8

for all ε > 0 and t > 0. Now we obtain the assertion by considering ε :=
(b− a)( τ

2n )1/2 and t := 4ε
(b−a)2 . ��

Ournext goal is to present a concentration inequality that refinesHoeffding’s
inequality when we know not only the ‖ · ‖∞-norms of the random variables
involved but also their variances, i.e., their ‖ · ‖2-norms. To this end, we need
the following technical lemma.

Lemma 6.11. For all x > −1, we have (1 + x) ln(1 + x)− x ≥ 3
2

x2

x+3 .

Proof. For x > −1, we define f(x) := (1+x) ln(1+x)−x and g(x) := 3
2

x2

x+3 .
Then an easy calculation shows that, for all x > −1, we have

f ′(x) = ln(1 + x) , f ′′(x) =
1

1 + x
,

g′(x) =
3x2 + 18x
2(x+ 3)2

, g′′(x) =
27

(x+ 3)3
.
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Consequently, we have f(0) = g(0) = 0, f ′(0) = g′(0) = 0, and f ′′(x) ≥ g′′(x)
for all x > −1. For x ≥ 0, the fundamental theorem of calculus thus gives

f ′(x) =
∫ x

0

f ′′(t)dt ≥
∫ x

0

g′′(t)dt = g′(x) ,

and by repeating this reasoning, we obtain the assertion for x ≥ 0. For x ∈
(−1, 0], we can show the assertion analogously. ��

Now we can establish the announced refinement of Hoeffding’s inequality.

Theorem 6.12 (Bernstein’s inequality). Let (Ω,A,P) be a probability
space, B > 0 and σ > 0 be real numbers, and n ≥ 1 be an integer. Fur-
thermore, let ξ1, . . . , ξn : Ω → R be independent random variables satisfying
EPξi = 0, ‖ξi‖∞ ≤ B, and EPξ

2
i ≤ σ2 for all i = 1, . . . , n. Then we have

P

(
1
n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ
3n

)
≤ e−τ , τ > 0.

Proof. By Markov’s inequality and the independence of ξ1, . . . , ξn, we have

P
( n∑

i=1

ξi ≥ εn
)
≤ e−tεn EP exp

(
t

n∑
i=1

ξi

)
≤ e−tεn

n∏
i=1

EP e
tξi

for all t ≥ 0 and ε > 0. Furthermore, the properties of ξi imply

EP e
tξi =

∞∑
k=0

tk

k!
EPξ

k
i ≤ 1 +

∞∑
k=2

tk

k!
σ2Bk−2 = 1 +

σ2

B2

(
etB − tB − 1

)
.

Using the simple estimate 1 + x ≤ ex for x := σ2

B2 (etB − tB − 1), we hence
obtain

P
( n∑

i=1

ξi ≥ εn
)
≤ e−tεn

n∏
i=1

(
1 +

σ2

B2

(
etB − tB − 1

))

≤ exp
(
−tεn+

σ2n

B2

(
etB − tB − 1

))
for all t ≥ 0. Now elementary calculus shows that the right-hand side of the
inequality is minimized at

t∗ :=
1
B

ln
(
1 +

εB

σ2

)
.

Writing y := εB
σ2 and using Lemma 6.11, we furthermore obtain

−t∗εn+
σ2n

B2

(
et∗B − t∗B − 1

)
= −nσ

2

B2

(
(1 + y) ln(1 + y)− y) ≤ −3nσ2

2B2

y2

y + 3

= − 3ε2n
2εB + 6σ2

.
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Let us now define ε :=
√

2σ2τ
n + B2τ2

9n2 + Bτ
3n . Then we have τ = 3ε2n

2εB+6σ2 and

ε ≤
√

2σ2τ

n
+

2Bτ
3n

,

and thus we obtain the assertion. ��
It is important to keep in mind that in situations where we know upper

bounds σ2 and B for the variances and the suprema, respectively, Bernstein’s
inequality is often sharper than Hoeffding’s inequality. The details are dis-
cussed in Exercise 6.1.

Our next goal is to generalize Bernstein’s inequality to Hilbert space valued
random variables. To this end, we need the following more general result.

Theorem 6.13. Let (Ω,A,P) be a probability space, E be a separable Banach
space, and ξ1, . . . , ξn : Ω → E be independent E-valued P-integrable random
variables. Then, for all ε > 0 and all t ≥ 0, we have

P
(∥∥∥ n∑

i=1

ξi

∥∥∥ ≥ εn) ≤ exp
(
−tεn+ tEP

∥∥∥ n∑
i=1

ξi

∥∥∥+ n∑
i=1

EP(et‖ξi‖−1− t‖ξi‖)
)
.

Proof. Let us consider the σ-algebras F0 := {∅, Ω} and Fk := σ(ξ1, . . . , ξk),
k = 1, . . . , n. Furthermore, for k = 1, . . . , n, we define

Xk := EP

(∥∥∥ n∑
i=1

ξi

∥∥∥ ∣∣∣∣Fk

)
− EP

(∥∥∥ n∑
i=1

ξi

∥∥∥ ∣∣∣∣Fk−1

)
,

Yk := EP

(∥∥∥ n∑
i=1

ξi

∥∥∥− ∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk

)
.

By a simple telescope sum argument, we then have
n∑

i=1

Xi =
∥∥∥ n∑

i=1

ξi

∥∥∥− EP

∥∥∥ n∑
i=1

ξi

∥∥∥ . (6.6)

Moreover, note that
∑

i�=k ξi is independent of ξk, and hence we obtain

EP

(∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk

)
= EP

(∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk−1, ξk

)
= EP

(∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk−1

)
.

Since Fk−1 ⊂ Fk, we thus find

Xk = EP

(∥∥∥ n∑
i=1

ξi

∥∥∥ ∣∣∣∣Fk

)
− EP

(∥∥∥ n∑
i=1

ξi

∥∥∥ ∣∣∣∣Fk−1

)

= EP

(∥∥∥ n∑
i=1

ξi

∥∥∥− ∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk

)
− EP

(∥∥∥ n∑
i=1

ξi

∥∥∥− ∥∥∥∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk−1

)

= Yk − EP(Yk|Fk−1) (6.7)
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for all k = 1, . . . , n. Using x ≤ ex−1 for all x ∈ R, we hence obtain

EP

(
etXk | Fk−1

)
= e−tEP(Yk|Fk−1)EP

(
etYk | Fk−1

)
≤ e−tEP(Yk|Fk−1)eEP(etYk | Fk−1)−1

= exp
(
EP

(
etYk − 1− tYk | Fk−1

))
. (6.8)

Now, an easy calculation shows ex − e−x ≥ 2x for all x ≥ 0, which in turn
implies e−x− 1− (−x) ≤ ex− 1− x for all x ≥ 0. From this we conclude that
ex − 1 − x ≤ e|x| − 1 − |x| for all x ∈ R. Moreover, it is straightforward to
check that the function x �→ ex − 1 − x is increasing on [0,∞). In addition,
the triangle inequality in E gives

|Yk| ≤ EP

(∣∣∣∥∥ n∑
i=1

ξi
∥∥−∥∥∑

i�=k

ξi
∥∥∣∣∣ ∣∣∣∣Fk

)
≤ EP

(∥∥∥ n∑
i=1

ξi−
∑
i�=k

ξi

∥∥∥ ∣∣∣∣Fk

)
= ‖ξk‖ ,

where in the last step we used that ‖ξk‖ is Fk-measurable. Consequently, (6.8)
implies

EP

(
etXk | Fk−1

) ≤ exp
(
EP

(
et|Yk| − 1− t|Yk|

∣∣Fk−1

))
≤ exp

(
EP

(
et‖ξk‖ − 1− t‖ξk‖

∣∣Fk−1

))
= exp

(
EP

(
et‖ξk‖ − 1− t‖ξk‖

))
, (6.9)

where in the last step we used that ξk is independent of Fk−1. Moreover,∑k−1
i=1 Xi is Fk−1-measurable, and writing E := EP we hence have

E
(
et
∑k−1

i=1 XiE
(
etXk
∣∣Fk−1

))
= E
(
E
(
et
∑k−1

i=1 XietXk
∣∣Fk−1

))
= Eet

∑k
i=1 Xi .

Combining this last equation with (6.9) now yields

EPe
t
∑k

i=1 Xi = EP

(
et
∑k−1

i=1 Xi EP

(
etXk
∣∣Fk−1

))
≤ EP

(
et
∑k−1

i=1 Xi

)
· exp
(
EP

(
et‖ξk‖ − 1− t‖ξk‖

))
,

and by successively applying this inequality we hence obtain

EPe
t
∑n

i=1 Xi ≤
n∏

i=1

exp
(
EP

(
et‖ξi‖−1−t‖ξk‖

))
= exp

( n∑
i=1

EP

(
et‖ξi‖−1−t‖ξi‖

))

for all t ≥ 0. By Markov’s inequality and (6.6), we thus find
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P
(∥∥∥ n∑

i=1

ξi

∥∥∥ ≥ εn) ≤ e−tεn EP exp
(
t
∥∥∥ n∑

i=1

ξi

∥∥∥)

= e−tεn EP exp
(
t

n∑
i=1

Xi + tEP

∥∥∥ n∑
i=1

ξi

∥∥∥)

≤ exp
(
−tεn+ tEP

∥∥∥ n∑
i=1

ξi

∥∥∥+
n∑

i=1

EP

(
et‖ξi‖ − 1− t‖ξi‖

))

for all ε > 0 and all t ≥ 0. ��
With the help of the previous theorem we can now establish the following

Hilbert space version of Bernstein’s inequality.

Theorem 6.14 (Bernstein’s inequality in Hilbert spaces). Let (Ω,A,P)
be a probability space, H be a separable Hilbert space, B > 0, and σ > 0. Fur-
thermore, let ξ1, . . . , ξn : Ω → H be independent random variables satisfying
EPξi = 0, ‖ξi‖∞ ≤ B, and EP‖ξi‖2H ≤ σ2 for all i = 1, . . . , n. Then we have

P

(∥∥∥ 1
n

n∑
i=1

ξi

∥∥∥
H
≥
√

2σ2τ

n
+

√
σ2

n
+

2Bτ
3n

)
≤ e−τ , τ > 0.

Proof. We will prove the assertion by applying Theorem 6.13. To this end,
we first observe that the independence of ξ1, . . . , ξn yields E〈ξi, ξj〉H =
〈Eξi,Eξj〉H = 0 for all i �= j, where E := EP. Consequently, we obtain

E

∥∥∥ n∑
i=1

ξi

∥∥∥
H
≤
(

E

∥∥∥ n∑
i=1

ξi

∥∥∥2
H

)1/2

=
( n∑

i=1

E‖ξi‖2H
)1/2

≤
√
nσ2 . (6.10)

In addition, the series expansion of the exponential function yields

n∑
i=1

E
(
et‖ξi‖ − 1− t‖ξi‖

)
=

n∑
i=1

∞∑
j=2

tj

j!
E‖ξi‖jH ≤

n∑
i=1

∞∑
j=2

tj

j!
Bj−2E‖ξi‖2H

for all t ≥ 0, and therefore we find

n∑
i=1

E
(
et‖ξi‖ − 1− t‖ξi‖

) ≤ σ2

B2

n∑
i=1

∞∑
j=2

tj

j!
Bj =

nσ2

B2

(
etB − 1− tB)

for all t ≥ 0. By Theorem 6.13, we hence obtain

P
(∥∥∥ n∑

i=1

ξi

∥∥∥
H
≥ εn
)
≤ exp

(
−tεn+ tE

∥∥∥ n∑
i=1

ξi

∥∥∥+
n∑

i=1

E(et‖ξi‖ − 1− t‖ξi‖)
)

≤ exp
(
−tεn+ t

√
nσ2 +

nσ2

B2

(
etB − 1− tB)) (6.11)
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for all t ≥ 0. Let us now restrict our considerations to ε ≥ σn−1/2. Then we
have y := εB

σ2 − B√
nσ2 > 0, and consequently it is easy to see that the function

on the right-hand side of (6.11) is minimized at

t∗ :=
1
B

ln
(

1 +
εB

σ2
− B√

nσ2

)
.

Moreover, Lemma 6.11 yields

−t∗εn+ t∗
√
nσ2 +

nσ2

B2

(
et∗B − 1− t∗B) = −nσ

2

B2

(
(1 + y) ln(1 + y)− y

)
≤ −3nσ2

2B2

y2

y + 3
.

By combining this estimate with (6.11), we then find

P
(∥∥∥ n∑

i=1

ξi

∥∥∥
H
≥ εn
)
≤ exp

(
−3nσ2

2B2

y2

y + 3

)
.

Let us now define ε :=
√

2σ2τ
n + B2τ2

9n2 + Bτ
3n +
√

σ2

n . Then, an easy calculation
shows

y =
εB

σ2
− B√

nσ2
=

√
2B2τ

nσ2
+
B4τ2

9n2σ4
+
B2τ

3nσ2
,

and hence we find τ = − 3nσ2

2B2
y2

y+3 . Now the assertion follows from

ε =

√
2σ2τ

n
+
B2τ2

9n2
+
Bτ

3n
+

√
σ2

n
≤
√

2σ2τ

n
+

2Bτ
3n

+

√
σ2

n
. ��

The following Hilbert space version of Hoeffding’s inequality is an imme-
diate consequence of Theorem 6.14. We will use it in Section 6.4 to derive an
oracle inequality for SVMs.

Corollary 6.15 (Hoeffding’s inequality in Hilbert spaces). Let (Ω,A,P)
be a probability space, H be a separable Hilbert space H, and B > 0. Fur-
thermore, let ξ1, . . . , ξn : Ω → H be independent H-valued random variables
satisfying ‖ξi‖∞ ≤ B for all i = 1, . . . , n. Then, for all τ > 0, we have

P
(∥∥∥ 1

n

n∑
i=1

(
ξi − EPξi

) ∥∥∥
H
≥ B
√

2τ
n

+B

√
1
n

+
4Bτ
3n

)
≤ e−τ .

Proof. Let us define ηi := ξi − EPξi, i = 1, . . . , n. Then we have EPηi = 0,
‖ηi‖∞ ≤ 2B, and

EP‖ηi‖2H = EP〈ξi, ξi〉 − 2EP〈ξi,EPξi〉+ 〈EPξi,EPξi〉 ≤ EP〈ξi, ξi〉 ≤ B2

for all i = 1, . . . , n. Applying Theorem 6.14 to η1, . . . , ηn then yields the
assertion. ��
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6.3 Statistical Analysis of Empirical Risk Minimization

In this section, we investigate statistical properties for empirical risk mini-
mization. Although this learning method is not our primary object of interest,
there are two reasons why we consider it before investigating SVMs. First, the
method is so elementary that the basic ideas of its analysis are not hidden by
technical considerations. This will give us good preparation for the more in-
volved analysis of SVMs in Section 6.4. Second, the results we establish will be
utilized in Section 6.5, where we investigate how the regularization parameter
of SVMs can be chosen in a data-dependent and adaptive way.

Let us begin by formally introducing empirical risk minimization.

Definition 6.16. Let L : X × Y ×R→ [0,∞) be a loss and F ⊂ L0(X) be a
non-empty set. A learning method whose decision functions fD satisfy

RL,D(fD) = inf
f∈F
RL,D(f) (6.12)

for all n ≥ 1 and D ∈ (X × Y )n is called empirical risk minimization
(ERM) with respect to L and F .

By definition, empirical risk minimization produces decision functions that
minimize the empirical risk over F . The motivation for this approach is based
on the law of large numbers which says that for fixed f ∈ F we have

lim
n→∞RL,D(f) = RL,P(f)

if the training sets D of length n are identically and independently distributed
according to some probability measure P onX×Y . This limit relation suggests
that in order to find a minimizer of the true risk RL,P, it suffices to find
a minimizer of its empirical approximation RL,D. Unfortunately, however,
minimizing RL,D over F := L0(X) or F := L∞(X) can lead to “overfitted”
decision functions, as discussed in Exercise 6.7, and hence ERM typically
minimizes over a smaller set F of functions. Moreover, note that for general
losses L and sets of functions F there does not necessarily exist a function
fD satisfying (6.12). In addition, there are also situations in which multiple
minimizers exist, and consequently one should always be aware that ERM
usually is not a uniquely determined learning method. Let us now show that
there usually exists a measurable ERM if there exists an ERM.1

Lemma 6.17 (Measurability of ERM). Let L : X × Y ×R→ [0,∞) be a
loss and F ⊂ L0(X) be a subset that is equipped with a complete and separable
metric dominating the pointwise convergence. Then, if there exists an ERM,
there also exists a measurable ERM.

1 Since this is little more than a technical requirement for the following results, the
first-time reader may skip this lemma.
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Before we present the proof of this lemma, let us first note that finite
subsets F ⊂ L0(X) equipped with the discrete metric satisfy the assump-
tions above. In addition, the existence of an ERM is automatically guaranteed
in this case, and hence there always exists a measurable ERM for finite F .
Similarly, for closed, separable F ⊂ L∞(X), there exists a measurable ERM
whenever there exists an ERM.

Proof. Lemma 2.11 shows that the map (x, y, f) �→ L(x, y, f(x)) defined on
X × Y × F is measurable. From this it is easy to conclude that the map
ϕ : (X × Y )n ×F → [0,∞) defined by

ϕ(D, f) := RL,D(f) , D ∈ (X × Y )n, f ∈ F ,

is measurable with respect to the product topology of (X×Y )n×F . By taking
F (D) := F , D ∈ (X × Y )n, in Aumann’s measurable selection principle (see
Lemma A.3.18), we thus see that there exists an ERM such that D �→ fD is
measurable with respect to the universal completion of the product σ-algebra
of (X × Y )n. Consequently, the map (X × Y )n × X → F × X defined by
(D,x) �→ (fD, x) is measurable with respect to the universal completion of
the product σ-algebra of (X × Y )n ×X. In addition, Lemma 2.11 shows that
the map F ×X → R defined by (f, x) �→ f(x) is measurable. Combining both
maps, we then obtain the measurability of (D,x) �→ fD(x). ��

Let us now analyze the statistical properties of ERM. To this end, let us
assume that R∗

L,P,F <∞. Moreover, let us fix a δ > 0 and a function fδ ∈ F
such that RL,P(fδ) ≤ R∗

L,P,F + δ. Then a simple calculation shows

RL,P(fD)−R∗
L,P,F ≤ RL,P(fD)−RL,D(fD) +RL,D(fD)−RL,P(fδ) + δ

≤ RL,P(fD)−RL,D(fD) +RL,D(fδ)−RL,P(fδ) + δ

≤ 2 sup
f∈F

∣∣RL,P(f)−RL,D(f)
∣∣+ δ ,

and by letting δ → 0 we thus find

RL,P(fD)−R∗
L,P,F ≤ 2 sup

f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ . (6.13)

Let us now assume that F is a finite set with cardinality |F| and that B > 0
is a real number such that

L(x, y, f(x)) ≤ B , (x, y) ∈ X × Y, f ∈ F . (6.14)

Note that the latter assumption ensures the earlier imposed R∗
L,P,F <∞. For

a measurable ERM, (6.13) together with Hoeffding’s inequality then yields
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Pn

(
D ∈ (X × Y )n : RL,P(fD)−R∗

L,P,F ≥ B
√

2τ
n

)

≤ Pn

(
D ∈ (X × Y )n : sup

f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ ≥ B√ τ

2n

)

≤
∑
f∈F

Pn

(
D ∈ (X × Y )n :

∣∣RL,P(f)−RL,D(f)
∣∣ ≥ B√ τ

2n

)

≤ 2 |F|e−τ . (6.15)

By elementary algebraic transformations, we thus find the following result.

Proposition 6.18 (Oracle inequality for ERM). Let L : X × Y × R →
[0,∞) be a loss, F ⊂ L0(X) be a non-empty finite set, and B > 0 be a constant
such that (6.14) holds. Then, for all measurable ERMs, all distributions P on
X × Y , and all τ > 0, n ≥ 1, we have

Pn

(
D ∈ (X×Y )n : RL,P(fD) < R∗

L,P,F +B

√
2τ + 2 ln(2 |F|)

n

)
≥ 1−e−τ .

Inequalities like the one above are called oracle inequalities since they
compare the empirically obtained decision function with the one an omniscient
oracle, having an infinite amount of observation, would obtain when pursuing
the same goal, which in the case above is minimizing the L-risk over F .

Proposition 6.18 shows that with high probability the function fD ap-
proximately minimizes the risk RL,P in F . In other words, the heuristic of
replacing the unknown risk RL,P by the empirical risk RL,D is justified for
finite sets F . However, the assumption that F is finite is quite restrictive,
and hence our next goal is to remove it. To this end we first observe that we
cannot use a simple limit argument for |F| → ∞ in Proposition 6.18 since
the term B

√
2τ + 2 ln(2 |F|)n−1/2 is unbounded in |F|. To resolve this prob-

lem we introduce the following fundamental concept, which will enable us to
approximate infinite F by finite subsets.

Definition 6.19. Let (T, d) be a metric space and ε > 0. We call S ⊂ T an
ε-net of T if for all t ∈ T there exists an s ∈ S with d(s, t) ≤ ε. Moreover,
the ε-covering number of T is defined by

N (T, d, ε) := inf
{
n ≥ 1 : ∃ s1, . . . , sn ∈ T such that T ⊂

n⋃
i=1

Bd(si, ε)
}
,

where inf ∅ := ∞ and Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} denotes the closed ball
with center s ∈ T and radius ε.

Moreover, if (T, d) is a subspace of a normed space (E, ‖·‖) and the metric
is given by d(x, x′) = ‖x−x′‖, x, x′ ∈ T , we write N (T, ‖ · ‖, ε) := N (T, d, ε).
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In simple words, an ε-net approximates T up to ε. Moreover, the cov-
ering number N (T, d, ε) is the size of the smallest possible ε-net, i.e., it is
the smallest number of points that are needed to approximate the set T up
to ε. Note that if T is compact, then all covering numbers are finite, i.e.,
N (T, d, ε) <∞ for all ε > 0. Moreover, N (T, d, ε) is a decreasing function in
ε and supε>0N (T, d, ε) <∞ if and only if T is finite.

Besides covering numbers, we will also need the following “inverse” con-
cept.

Definition 6.20. Let (T, d) be a metric space and n ≥ 1 be an integer. Then
the n-th (dyadic) entropy number of (T, d) is defined by

en(T, d) := inf
{
ε > 0 : ∃ s1, . . . , s2n−1 ∈ T such that T ⊂

2n−1⋃
i=1

Bd(si, ε)
}
.

Moreover, if (T, d) is a subspace of a normed space (E, ‖ · ‖) and the metric d
is given by d(x, x′) = ‖x− x′‖, x, x′ ∈ T , we write

en(T, ‖ · ‖) := en(T,E) := en(T, d) .

Finally, if S : E → F is a bounded, linear operator between the normed spaces
E and F , we write en(S) := en(SBE , ‖ · ‖F ).

Note that the (dyadic) entropy numbers consider ε-nets of cardinality 2n−1

instead of ε-nets of cardinality n. The reason for this is that this choice ensures
that the entropy numbers share some basic properties with other s-numbers
such as the singular numbers introduced in Section A.5.2. Basic properties of
entropy numbers and their relation to singular numbers together with some
bounds for important function classes can be found in Section A.5.6.

The following lemma shows that bounds on entropy numbers imply bounds
on covering numbers (see Exercise 6.8 for the inverse implication).

Lemma 6.21 (Equivalence of covering and entropy numbers). Let
(T, d) be a metric space and a > 0 and q > 0 be constants such that

en(T, d) ≤ an−1/q , n ≥ 1.

Then, for all ε > 0, we have

lnN (T, d, ε) ≤ ln(4) ·
(a
ε

)q
.

Proof. Let us fix a δ > 0 and an ε ∈ (0, a]. Then there exists an integer n ≥ 1
such that

a(1 + δ)(n+ 1)−1/q ≤ ε ≤ a(1 + δ)n−1/q . (6.16)

Since en(T, d) < a(1 + δ)n−1/q, there then exists an a(1 + δ)n−1/q-net S of T
with |S| ≤ 2n−1, i.e., we have
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N (T, d, a(1 + δ)n−1/q
) ≤ 2n−1 .

Moreover, (6.16) implies 21/qε ≥ 21/qa(1 + δ)(n+ 1)−1/q ≥ a(1 + δ)n−1/q and
n ≤ ( (1+δ)a

ε

)q. Consequently, we obtain

lnN (T, d, 2
1
q ε) ≤ ln

(
2N (T, d, a(1 + δ)n−

1
q )
) ≤ n ln 2 ≤ ln(2) ·

(
(1 + δ)a

ε

)q

.

Since lnN (T, d, ε) = 0 for all ε > a, we then find the assertion. ��
With the help of covering numbers, we can now investigate the statistical

properties of ERM over certain infinite sets F .

Proposition 6.22 (Oracle inequality for ERM). Let L : X × Y × R →
[0,∞) be a locally Lipschitz continuous loss and P be a distribution on X×Y .
Moreover, let F ⊂ L∞(X) be non-empty and compact, and B > 0 and M > 0
be constants satisfying (6.14) and ‖f‖∞ ≤M , f ∈ F , respectively. Then, for
all measurable ERMs and all ε > 0, τ > 0, and n ≥ 1, we have

Pn

(
RL,P(fD) ≥ R∗

L,P,F +B

√
2τ+2 ln(2N (F , ‖ · ‖∞, ε))

n
+ 4ε|L|M,1

)
≤ e−τ .

Before we prove this proposition, let us first note that the compactness
of F together with the continuity of RL,D : L∞(X) → [0,∞) ensures the
existence of an empirical risk minimizer. Moreover, the compactness of F
implies that F is a closed and separable subset of L∞(X). The remarks after
Lemma 6.17 then show that there exists a measurable ERM. In addition,
Proposition 6.22 remains true if one replaces the compactness assumption by
N (F , ‖ · ‖∞, ε) < ∞ for all ε > 0. However, in this case the existence of
an ERM is no longer “automatically” guaranteed. Finally, if L is not locally
Lipschitz continuous, variants of Proposition 6.22 still hold if the covering
numbers are replaced by other notions measuring the “size” of F . For the
classification loss, corresponding results are briefly mentioned in Section 6.6.

Proof. For a fixed ε > 0, the compactness of F shows that there exists an
ε-net Fε of F with |Fε| = N (F , ‖ · ‖∞, ε) < ∞. For f ∈ F , there thus exists
a g ∈ Fε with ‖f − g‖∞ ≤ ε, and hence we find∣∣RL,P(f)−RL,D(f)

∣∣
≤ ∣∣RL,P(f)−RL,P(g)

∣∣+ ∣∣RL,P(g)−RL,D(g)
∣∣+ ∣∣RL,D(g)−RL,D(f)

∣∣
≤ 2 ε |L|M,1 +

∣∣RL,P(g)−RL,D(g)
∣∣ ,

where in the last step we used the local Lipschitz continuity of the L-risks
established in Lemma 2.19. By taking suprema on the right- and left-hand
sides we thus obtain

sup
f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ ≤ 2 ε |L|M,1 + sup

g∈Fε

∣∣RL,P(g)−RL,D(g)
∣∣ ,
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and combining this estimate with (6.13), the latter inequality leads to

Pn

(
D ∈ (X × Y )n : RL,P(fD)−R∗

L,P,F ≥ B
√

2τ
n

+ 4ε|L|M,1

)

≤ Pn

(
D ∈ (X × Y )n : sup

g∈Fε

∣∣RL,P(g)−RL,D(g)
∣∣ ≥ B√ τ

2n

)
≤ 2N (F , ‖ · ‖∞, ε) e−τ (6.17)

for all ε, τ > 0. Some algebraic transformations then yield the assertion. ��

6.4 Basic Oracle Inequalities for SVMs

In Section 6.3, we introduced some basic techniques to analyze the statistical
properties of empirical risk minimization. Since the only difference between
ERM and SVMs is the additional regularization term λ‖ · ‖2H , it seems plau-
sible that these techniques can be adapted to the analysis of SVMs. This will
be the idea of the second oracle inequality for SVMs we establish in this sec-
tion. Moreover, we will also provide some bounds on the covering numbers
for certain RKHSs. First, however, we will present another technique for es-
tablishing oracle inequalities for SVMs. This technique, which requires fewer
assumptions on the kernel and the input space, combines a stability argu-
ment with the Hilbert space valued version of Hoeffding’s inequality proved
in Section 6.2. Finally, we illustrate how the established oracle inequalities
can be used to establish both consistency and learning rates for SVMs.

Before we present the first oracle inequality, we have to ensure that SVMs
are measurable learning methods. This is done in the following lemma.

Lemma 6.23 (Measurability of SVMs). Let L : X × Y ×R → [0,∞) be
a convex loss and H be a separable RKHS over X with measurable kernel k.
Then, for all λ > 0, the corresponding SVM that produces the decision func-
tions fD,λ for D ∈ (X ×Y )n and n ≥ 1 is a measurable learning method, and
the maps D �→ fD,λ mapping (X × Y )n to H are measurable.

Proof. Obviously, H is a separable metric space and Lemma 4.24 ensures
H ⊂ L0(X). Moreover, the Dirac functionals are continuous on H by the
definition of RKHSs, and hence the metric of H dominates the pointwise
convergence. Finally, the norm ‖ · ‖H : H → R is continuous and hence
measurable. Analogously to the proof of Lemma 6.17, we hence conclude that
ϕ : (X × Y )n ×H → [0,∞) defined by

ϕ(D, f) := λ‖f‖2H +RL,D(f) , D ∈ (X × Y )n, f ∈ H,
is measurable. In addition, Lemma 5.1 shows that fD,λ is the only element in
H satisfying



224 6 Basic Statistical Analysis of SVMs

ϕ(D, fD,λ) = inf
f∈H

ϕ(D, f) , D ∈ (X × Y )n,

and consequently the measurability of D �→ fD,λ with respect to the universal
completion of the product σ-algebra of (X × Y )n follows from Aumann’s
measurable selection principle (see Lemma A.3.18). As in the proof of Lemma
6.17, we then obtain the first assertion. ��

Let us recall that in this chapter we always assume that (X × Y )n is
equipped with the universal completion of the product σ-algebra of (X×Y )n.
In addition, given a distribution P on X × Y , we always write Pn for the
canonical extension of the n-fold product measure of P to this completion.
Note that these conventions together with Lemmas 6.23 and 6.3 make it pos-
sible to ignore measurability questions for SVMs.

Let us now establish a first oracle inequality for SVMs.

Theorem 6.24 (Oracle inequality for SVMs). Let L : X×Y ×R→ [0,∞)
be a convex, locally Lipschitz continuous loss satisfying L(x, y, 0) ≤ 1 for all
(x, y) ∈ X × Y , H be a separable RKHS over X with measurable kernel k
satisfying ‖k‖∞ ≤ 1, and P be a distribution on X × Y . For fixed λ > 0,
n ≥ 1, and τ > 0, we then have with probability Pn not less than 1− e−τ that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H < A2(λ)+λ−1|L|2

λ− 1
2 ,1

(√
8τ
n

+

√
4
n

+
8τ
3n

)
,

where A2( · ) denotes the corresponding approximation error function.

Before we prove Theorem 6.24, we note that the condition L(x, y, 0) ≤ 1 is
satisfied for all margin-based losses L(y, t) = ϕ(yt) for which we have ϕ(0) ≤ 1.
In particular, all examples considered in Section 2.3, namely the (truncated)
least squares loss, the hinge loss, and the logistic loss for classification, fall
into this category. Furthermore, “restricted” distance-based losses i.e., losses
L : [−1, 1] × R → [0,∞) of the form L(y, t) = ψ(y − t), y ∈ [−1, 1], t ∈ R,
satisfy L(y, 0) ≤ 1, y ∈ [−1, 1], if and only if ψ(r) ≤ 1 for all r ∈ [−1, 1].
Note that the least squares loss, the logistic loss for regression, Huber’s loss
for α ≤ √2, the ε-insensitive loss, and the pinball loss satisfy this assumption.

Proof. Let Φ : X → H denote the canonical feature map of k. By Corollary
5.10, there exists a bounded measurable function h : X × Y → R such that

‖h‖∞ ≤ |L|λ−1/2,1 ,∥∥ fP,λ − fD,λ

∥∥
H
≤ 1
λ

∥∥EPhΦ− EDhΦ
∥∥

H
,

for all D ∈ (X × Y )n. Moreover, since ‖h(x, y)Φ(x)‖H ≤ ‖h‖∞ ≤ |L|λ−1/2,1

for all (x, y) ∈ X × Y , we find by Corollary 6.15 that

Pn

(
D∈(X×Y )n :

∥∥EPhΦ−EDhΦ
∥∥

H
≥ |L|λ−1/2,1

(√
2τ
n

+

√
1
n

+
4τ
3n

))
≤ e−τ .
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Combining these estimates yields

Pn

(
D∈(X×Y )n : ‖fD,λ−fP,λ‖H ≥ λ−1|L|

λ− 1
2 ,1

(√
2τ
n

+

√
1
n

+
4τ
3n

))
≤ e−τ .

Furthermore, λ‖fD,λ‖2H +RL,D(fD,λ) ≤ λ‖fP,λ‖2H +RL,D(fP,λ) implies

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H −A2(λ)

= λ‖fD,λ‖2H +RL,P(fD,λ)− λ‖fP,λ‖2H −RL,P(fP,λ)
= RL,P(fD,λ)−RL,D(fD,λ)

+λ‖fD,λ‖2H +RL,D(fD,λ)− λ‖fP,λ‖2H −RL,P(fP,λ)
≤ RL,P(fD,λ)−RL,P(fP,λ) +RL,D(fP,λ)−RL,D(fD,λ) . (6.18)

Moreover, ‖fQ,λ‖∞ ≤ ‖fQ,λ‖H ≤ λ−1/2 holds for all distributions Q on X×Y
by Lemma 4.23, (5.4), and RL,Q(0) ≤ 1. Consequently, for every distribution
Q on X × Y , we have

RL,Q(fD,λ)−RL,Q(fP,λ) ≤ |L|λ−1/2,1‖fD,λ − fP,λ‖H
by Lemma 2.19. Applying this estimate to (6.18) twice yields

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H −A2(λ) ≤ 2|L|λ−1/2,1‖fD,λ − fP,λ‖H ,

and by combining this inequality with the above concentration inequality we
obtain the assertion. ��

We will later see that a key feature of the oracle inequality above is the fact
that it holds under somewhat minimal assumptions. In addition, the technique
used in its proof is very flexible, as we will see, e.g., in Chapter 9 when dealing
with regression problems having unbounded noise. On the downside, however,
the oracle inequality above often leads to suboptimal learning rates. In order
to illustrate this, we first need the following oracle inequality.

Theorem 6.25 (Oracle inequality for SVMs using benign kernels).
Let X be a compact metric space and L : X × Y × R → [0,∞) be a convex,
locally Lipschitz continuous loss satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ X×Y .
Moreover, let H be the RKHS of a continuous kernel k on X with ‖k‖∞ ≤ 1
and P be a probability measure on X×Y . Then, for fixed λ > 0, n ≥ 1, ε > 0,
and τ > 0, we have with probability Pn not less than 1− e−τ that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H

< A2(λ) + 4ε|L|
λ− 1

2 ,1
+
(|L|

λ− 1
2 ,1
λ−

1
2 +1
)√2τ+2 ln

(
2N (BH , ‖ · ‖∞, λ 1

2 ε)
)

n
.
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Proof. By Corollary 4.31, id : H → C(X) is compact, i.e., the ‖ · ‖∞-closure
BH of the unit ball BH is a compact subset of C(X). From this we conclude
that N (BH , ‖ · ‖∞, ε) < ∞ for all ε > 0. In addition, the compactness of X
implies that X is separable, and hence Lemma 4.33 shows that H is separable.
Consequently, the SVM is measurable. Moreover, from (6.18) and ‖fQ,λ‖∞ ≤
‖fQ,λ‖H ≤ λ−1/2 for all distributions Q on X × Y , we conclude that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H−A2(λ) ≤ 2 sup

‖f‖H≤λ−1/2
|RL,P(f)−RL,D(f)| .

In addition, for f ∈ λ−1/2BH and B := |L|λ−1/2,1λ
−1/2 + 1, we have∣∣L(x, y, f(x))

∣∣ ≤ ∣∣L(x, y, f(x))− L(x, y, 0)
∣∣+ L(x, y, 0) ≤ B

for all (x, y) ∈ X × Y . Now let Fε be an ε-net of λ−1/2BH with cardinality

|Fε| = N
(
λ−1/2BH , ‖ · ‖∞, ε

)
= N (BH , ‖ · ‖∞, λ1/2ε

)
.

As in (6.17), we then conclude that for τ > 0 we have

Pn

(
λ‖fD,λ‖2H +RL,P(fD,λ)−R∗

L,P,H ≥ A2(λ) +B

√
2τ
n

+ 4ε|L|λ−1/2,1

)
≤ 2N (BH , ‖ · ‖∞, λ1/2ε) e−τ .

By simple algebraic calculations, we then obtain the assertion. ��
The right-hand side of the oracle inequality of Theorem 6.25 involves ‖·‖∞-

covering numbers of the unit ball BH of the RKHSH. By Corollary 4.31, these
covering numbers are finite, and hence the right-hand side is non-trivial for
certain values of ε, λ, and n. In order to derive consistency and learning rates
from Theorem 6.25, however, we need quantitative statements on the covering
numbers. This is the goal of the following two results, which for later purposes
are stated in terms of entropy numbers reviewed in Section A.5.6.

Theorem 6.26 (Entropy numbers for smooth kernels). Let Ω ⊂ Rd

be an open subset, m ≥ 1, and k be an m-times continuously differentiable
kernel on Ω. Moreover, let X ⊂ Ω be a closed Euclidean ball and let H|X
denote the RKHS of the restricted kernel k|X×X . Assume that we have an
r0 ∈ (1,∞] such that rX ⊂ Ω for all r ∈ [1, r0). Then there exists a constant
cm,d,k(X) > 0 such that

ei

(
id : H|rX → �∞(rX)

) ≤ cm,d,k(X) rm i−m/d , i ≥ 1, r ∈ [1, r0).

Proof. By the definition of the space C0(rX̊) given in Section A.5.5, there
exists a (unique) norm-preserving extension operator ˆ : C0(rX̊) → C(rX),
i.e., we have f̂|rX̊ = f and ‖f‖∞ = ‖f̂‖∞ for all f ∈ C0(rX̊). Moreover, recall
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that Corollary 4.36 showed that the RKHS H of k is embedded into Cm(Ω),
and using the compactness of X together with (4.24) we then conclude that
the restriction operator ·|rX̊ : H|rX → Cm(rX̊) is continuous. Since H|rX

consists of continuous functions, we thus obtain the commutative diagram

H|rX C(rX)

Cm(rX̊) C0(rX̊)

�

�

�

�

id

·|rX̊ ˆ

id

Now the multiplicity (A.38) together with (A.46), (A.47), (A.40), and the fact
that C(rX) is isometrically embedded into �∞(rX) yields the assertion. ��

Let us briefly translate the result above into the language of covering
numbers. To this end, we assume that X and k satisfy the assumptions of
Theorem 6.26. Lemma 6.21 then shows that

lnN (BH|rX
, ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0. (6.19)

for 2p := d/m and a := ln(4) · (cm,d(X))d/m rd. Now recall that Taylor and
Gaussian RBF kernels are infinitely often differentiable and hence (6.19) holds
for arbitrarily small p > 0. For Gaussian RBF kernels, however, the parameter
γ is usually not fixed (see Section 8.2), and hence it is important to know how
the constant a depends on γ. This is the goal of the next theorem.

Theorem 6.27 (Entropy numbers for Gaussian kernels). Let X ⊂ Rd

be a closed Euclidean ball and m ≥ 1 be an integer. Then there exists a
constant cm,d(X) > 0 such that, for all 0 < γ ≤ r and all i ≥ 1, we have

ei

(
id : Hγ(rX)→ �∞(rX)

) ≤ cm,d(X) rm γ−mi−
m
d .

Proof. For x ∈ rγ−1X and f ∈ Hγ(rX), we write τγf(x) := f(γx). Propo-
sition 4.37 applied to the dilation factor γ, the kernel parameter 1, and the
set rγ−1X then shows that τγ : Hγ(rX) → H1(rγ−1X) is an isometric iso-
morphism. Moreover, the dilation τ1/γ : �∞(rγ−1X) → �∞(rX) is clearly an
isometric isomorphism, too. In addition, we have the commutative diagram

Hγ(rX) �∞(rX)

H1(rγ−1X) �∞(rγ−1X)

�

�

�

�

id

τγ τ1/γ

id

and hence we obtain the assertion by Theorem 6.26 and (A.38). ��
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Our last goal in this section is to illustrate how the above oracle inequal-
ities can be used to establish both consistency and learning rates for SVMs.
For conceptional simplicity, we thereby restrict our considerations to Lipschitz
continuous losses L with |L|1 ≤ 1, but similar results can be easily derived
for locally Lipschitz continuous losses, too. Now recall that the Lipschitz con-
tinuity together with L(x, y, 0) ≤ 1 yields L(x, y, t) ≤ 1 + |t|, and hence L is
a P-integrable Nemitski loss of order 1 for all distributions P on X × Y . In
the following we further assume for simplicity that we use a fixed RKHS H
that in addition is assumed to be dense in L1(μ) for all distributions μ on X.
Here we recall that we have intensively investigated such RKHSs in Section
4.6. Moreover, Theorem 5.31 showed for such H that R∗

L,P,H = R∗
L,P, i.e., the

Bayes risk can be approximated by functions from H.
In the following, we only consider the situation of Theorem 6.25 since for

Theorem 6.24 the results are similar (see Exercise 6.9 for precise statements
and a comparison of the resulting learning rates). Since Theorem 6.25 involves
covering numbers, we assume for simplicity that there exist constants a ≥ 1
and p > 0 such that

lnN (BH , ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0. (6.20)

By Theorem 6.26 and Lemma 6.21, we see that both Taylor and Gaussian
kernels satisfy this assumption for all p > 0. Moreover, we saw in Section
4.6 that (a) Taylor kernels often have RKHSs that are dense in L1(μ) and
(b) Gaussian kernels always satisfy this denseness assumption. Consequently,
these kernels are ideal candidates for our discussion.

In order to illustrate the utility of the oracle inequalities obtained let us
now fix a λ ∈ (0, 1] and a τ ≥ 1. For

ε :=
(p

2

)1/(1+p)(2a
n

)1/(2+2p)

λ−1/2 .

Theorem 6.25 together with Lemma A.1.5 and (p + 1)(2/p)p/(1+p) ≤ 3 then
shows that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P < A2(λ)+

3
λ1/2

(
2
(2a
n

) 1
2+2p

+
(2τ
n

)1
2
)

(6.21)

holds with probability Pn not less than 1− e−τ .
Let us now assume that for sample size n we choose a λn ∈ (0, 1] such that

limn→∞ λn = 0 and
lim

n→∞λ1+p
n n =∞ . (6.22)

Lemma 5.15, see also (5.32), then shows that the right-hand side of (6.21)
converges to 0, and hence we have RL,P(fD,λn

) → R∗
L,P in probability. In

other words, we have shown that, for RKHSs satisfying both the denseness
assumption above and (6.20), the SVM is universally L-risk consistent when-
ever the regularization sequence tends to zero in a controlled way described
by (6.22).
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In order to establish learning rates, let us additionally assume that there
exist constants c > 0 and β ∈ (0, 1] such that

A2(λ) ≤ cλβ , λ ≥ 0. (6.23)

Then a straightforward calculation shows that the asymptotically best choice
for λn in (6.21) is a sequence that behaves like n−

1
(1+p)(2β+1) and that the

resulting learning rate is given by

Pn
(
D ∈ (X × Y )n : RL,P(fD,λn

)−R∗
L,P ≤ C

√
τ n−

β
(2β+1)(1+p)

)
≥ 1− e−τ ,

where C is a constant independent of τ and n. It is important to note that
the regularization sequence (λn) that achieves this rate depends on β. Unfor-
tunately, however, we will almost never know the value of β, and hence we
cannot choose the “optimal” regularization sequence suggested by Theorem
6.25. In the following section, we will therefore investigate how this problem
can be addressed by choosing λ in a data-dependent way.

6.5 Data-Dependent Parameter Selection for SVMs

In this section, we first present a simple method for choosing the regularization
parameter λ in a data-dependent way. We will then show that this method
is adaptive in the sense that it does not need to know characteristics of the
distribution such as (6.23) to achieve the learning rates we obtained in the
previous section by knowing these characteristics.

Let us begin by describing this parameter selection method, which in some
sense is a simplification of cross-validation considered in Section 11.3.

Definition 6.28. Let L : X × Y × R → [0,∞) be a convex loss that can be
clipped at 1, H be an RKHS over X, and Λ := (Λn) be a sequence of finite
subsets Λn ⊂ (0, 1]. Given a D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, we
define

D1 := ((x1, y1), . . . , (xm, ym)) ,
D2 := ((xm+1, ym+1), . . . , (xn, yn)) ,

where m := �n/2�+1 and n ≥ 3. Then use D1 as a training set by computing
the SVM decision functions

fD1,λ := arg min
f∈H

λ‖f‖2H +RL,D1(f) , λ ∈ Λn, (6.24)

and use D2 to determine λ by choosing a λD2 ∈ Λn such that

RL,D2(
�
fD1,λD2

) = min
λ∈Λn

RL,D2(
�
fD1,λ) , (6.25)

where
�
fD1,λ denotes the clipped version of fD1,λ. Every learning method that

produces the resulting decision functions fD1,λD2
is called a training valida-

tion support vector machine (TV-SVM) with respect to Λ.
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Informally speaking, the idea of TV-SVMs2 is to use the training set D1

to build a couple of SVM decision functions and then use the decision func-
tion that best performs on the independent validation set D2. Here we note
that Theorem 5.5 ensures that the SVM solutions fD1,λ, λ ∈ Λn, found in the
training step (6.24) exist, and hence there exists a TV-SVM. However, note
that in general the validation step (6.25) does not provide a unique regular-
ization parameter λD2 , and hence the TV-SVM, like ERM, is not a uniquely
defined learning method. The following lemma shows that for all interesting
cases there exists a measurable TV-SVM.

Lemma 6.29 (Measurability of TV-SVMs). Let L : X×Y ×R→ [0,∞)
be a convex loss that can be clipped at 1, and let H be a separable RKHS over
X having a measurable kernel. Then there exists a measurable TV-SVM.

Proof. Lemma 6.23 showed that (D,x) �→ fD1,λ(x) is measurable, and hence
ϕ : (X × Y )n × Λn → [0,∞) defined by

ϕ(D,λ) := RL,D2(
�
fD1,λ) , D ∈ (X × Y )n, λ ∈ Λn,

is measurable. The rest of the proof is analogous to the proofs of Lemmas 6.17
and 6.23. ��

Our next goal is to establish oracle inequalities for TV-SVMs. To this end,
we need the following lemma that describes how the term on the right-hand
side of our oracle inequalities for SVMs can be approximately minimized.

Lemma 6.30. Let L : X × Y × R → [0,∞) be a loss, H be the RKHS of a
measurable kernel over X, P be a distribution on X × Y with R∗

L,P,H < ∞,
and A2 : [0,∞) → [0,∞) be the corresponding approximation error function.
We fix a bounded interval I ⊂ (0,∞). In addition, let α, c ∈ (0,∞) be two
constants and Λ be a finite ε-net of I for some fixed ε > 0. Then we have

min
λ∈Λ

(
A2(λ) + cλ−α

) ≤ A2(2ε) + inf
λ∈I

(
A2(λ) + cλ−α

)
.

Proof. Let us assume that Λ is of the form Λ = {λ1, . . . , λm} with λi−1 < λi

for all i = 2, . . . ,m. We write λ0 := inf I. Our first goal is to show that

λi − λi−1 ≤ 2ε , i = 1, . . . ,m. (6.26)

To this end, we fix an i ∈ {1, . . . ,m} and write λ̄ := (λi +λi−1)/2 ∈ I ∪{λ0}.
Since Λ∪{λ0} is an ε-net of I∪{λ0}, we then have λi− λ̄ ≤ ε or λ̄−λi−1 ≤ ε.
Simple algebra shows that in both cases we find (6.26). For δ > 0, we now fix
a λ∗ ∈ I such that

A2(λ∗) + c(λ∗)−α ≤ inf
λ∈I

(
A2(λ) + cλ−α

)
+ δ . (6.27)

2 For simplicity, we only consider (almost) equally sized data sets D1 and D2, but
the following results and their proofs remain almost identical for different splits.
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Then there exists an index i ∈ {1, . . . ,m} such that λi−1 ≤ λ∗ ≤ λi, and
by (6.26) we conclude that λ∗ ≤ λi ≤ λ∗ + 2ε. By the monotonicity and
subadditivity of A2( · ) established in Lemma 5.15, we thus find

min
λ∈Λ

(
A2(λ) + cλ−α

) ≤ A2(λi) + cλ−α
i ≤ A2(λ∗ + 2ε) + c(λ∗)−α

≤ A2(λ∗) + c(λ∗)−α +A2(2ε) .

Combining this estimate with (6.27) then yields the assertion. ��
With the help of the Lemma 6.30, we can now establish our first oracle

inequality for TV-SVMs. For simplicity, it only considers the situation inves-
tigated at the end of Section 6.4, but generalizations are easy to establish.

Theorem 6.31 (Oracle inequality for TV-SVMs and benign kernels).
Let X be a compact metric space and L : X × Y × R → [0,∞) be a convex,
Lipschitz continuous loss with |L|1 ≤ 1. Assume that L can be clipped at 1
and that it satisfies L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y . Furthermore, let H
be the RKHS of a continuous kernel k on X satisfying ‖k‖∞ ≤ 1 and

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p , ε > 0, (6.28)

where a ≥ 1 and p > 0 are constants. Moreover, for n ≥ 4 and ε > 0, let
Λn ⊂ (0, 1] be a finite ε-net of (0, 1] of cardinality |Λn|. For fixed τ > 0 and
τn := 2 + τ + ln |Λn|, we then have with probability Pn not less than 1− e−τ

that

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈(0,1]

(
A2(λ)+

13√
λ

((a
n

) 1
2+2p

+
√
τn
n

))
+A2(2ε) .

Consequently, if we use εn-nets Λn with εn → 0 and n−1 ln |Λn| → 0, then the
resulting TV-SVM is consistent for all P satisfying R∗

L,P,H = R∗
L,P. Finally,

if εn ≤ 1/n and |Λn| grows polynomially in n, then the TV-SVM learns with
rate

n−
β

(2β+1)(1+p) (6.29)

for all distributions P that satisfy A2(λ) ≤ cλβ for some constants c > 0 and
β ∈ (0, 1] and all λ ≥ 0.

Proof. Let us define m := �n/2� + 1. Since m ≥ n/2, we obtain similarly to
(6.21) that with probability Pm not less than 1− |Λn|e−τ we have

RL,P(fD1,λ)−R∗
L,P,H < A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
)

for all λ ∈ Λn simultaneously. In addition, we have L(x, y,�t ) ≤ |L|1 +
L(x, y, 0) ≤ 2 =: B, and hence Proposition 6.18 yields
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Pn−m

(
D2 : RL,P(

�
fD1,λD2

)< inf
λ∈Λn

RL,P(
�
fD1,λ)+4

√
2τ+2 ln(2|Λn|)

n

)
≥ 1−e−τ ,

where we used n−m ≥ n/2− 1 ≥ n/4. Since RL,P(
�
fD1,λ) ≤ RL,P(fD1,λ), we

conclude that with probability Pn not less than 1− (|Λn|+ 1)e−τ we have

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈Λn

(
A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
))

+4

√
2τ+2 ln(2|Λn|)

n

≤ inf
λ∈(0,1]

(
A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
))

+A2(2ε) + 4

√
2τ+2 ln(2|Λn|)

n
,

where in the last step we used Lemma 6.30. From this we easily obtain the
first assertion. The second and third assertions then follow by the arguments
used at the end of Section 6.4. ��

Note that the preceding proof heavily relied on the assumption that L can
be clipped. Indeed, without this assumption, Proposition 6.18 only shows that

RL,P(fD1,λD2
) < inf

λ∈Λn

RL,P(fD1,λ) + 4 sup
λ∈Λn

λ−1/2

√
2τ+2 ln(2|Λn|)

n

holds with probability not less than 1−e−τ . Since for n−1-nets Λn of (0, 1] we
have supλ∈Λn

λ−1/2 ≥ n1/2, it becomes obvious that the preceding proof does
not provide consistency or the rates (6.29) if L cannot be clipped. In other
words, the fact that L is clippable ensures that the error of the parameter
selection step does not dominate the error of the SVM training step.

Let us now recall the end of Section 6.4, where we saw that SVMs satisfying
the covering number assumption (6.28) and the approximation error assump-
tion A2(λ) ≤ cλβ can learn with rate (6.29). Unfortunately, however, this
rate required a regularization sequence λn := n−

1
(1+p)(2β+1) , i.e., the rate was

only achievable if we had knowledge on the distribution P, the RKHS H, and
their interplay. Of course, we almost never know the exponent β that bounds
the approximation error function, and hence it remained unclear whether the
learning rate (6.29) was actually realizable. Theorem 6.31 now shows that the
TV-SVM does achieve this learning rate without knowing the exponent β.
Moreover, the theorem also shows that we do not even have to know the ex-
ponent p in the covering number assumption (6.28) to achieve this rate. Of
course, this p is independent of P and hence in principle a priori known. In
practice, however, covering number bounds are often extremely difficult to
establish for new RKHSs, and hence the independence of the TV-SVM from
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this exponent is an important feature. Furthermore, the following oracle in-
equality for TV-SVMs shows that this learning method achieves non-trivial
learning rates even if there is no exponent p satisfying (6.28).

Theorem 6.32 (Oracle inequality for TV-SVMs). Let L : X×Y ×R→
[0,∞) be a convex Lipschitz continuous loss that can be clipped at 1 and that
satisfies |L|1 ≤ 1 and L(x, y, 0) ≤ 1 for all (x, y) ∈ X×Y . Furthermore, let H
be a separable RKHS with measurable kernel k over X satisfying ‖k‖∞ ≤ 1.
Moreover, for n ≥ 4 and ε > 0, let Λn ⊂ (0, 1] be a finite ε-net of (0, 1]. For
fixed τ > 0, we then have with probability Pn not less than 1− e−τ that

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈(0,1]

(
A2(λ)+

14
λ

(√
τ+ln(2|Λn|)

n
+
τ+ln(2|Λn|)

n

))
+A2(2ε) .

In particular, if we use εn-nets Λn with εn → 0 and n−1 ln |Λn| → 0, then the
resulting TV-SVM is consistent for all P with R∗

L,P,H = R∗
L,P. Moreover, for

εn ≤ n−1/2 and |Λn| growing polynomially in n, the TV-SVM learns with rate

(
ln(n+ 1)

n

) β
2β+2

(6.30)

for all distributions P that satisfy A2(λ) ≤ cλβ for some constants c > 0 and
β ∈ (0, 1] and all λ ≥ 0.

Proof. Repeat the proof of Theorem 6.31, but use Theorem 6.24 instead of
Theorem 6.25. ��

Theorem 6.32 shows that the TV-SVM learns with a specific rate if an
approximation error assumption is satisfied. Moreover, this rate equals the
“optimal” rate we can derive from Theorem 6.24 up to a logarithmic factor
(see Exercise 6.9), i.e., the TV-SVM is again adaptive with respect to the
unknown exponent β bounding the approximation error function. Moreover,
by combining the two oracle inequalities for the TV-SVM, we see that the
TV-SVM is in some sense also adaptive to the size of the input domain. To
illustrate this, let us consider the space X := Rd. Moreover, assume that
we have an RKHS H over X such that the covering number bound (6.28) is
satisfied for some exponent p(X ′) whenever we consider the restriction of H
to some compact subset X ′ ⊂ Rd. By combining Theorem 6.31 with Theorem
6.32, we then see that the TV-SVM learns with rate (6.30) if the support of
PX is not compact and with rate

min

{(
ln(n+ 1)

n

) β
2β+2

, n
− β

(1+p(X′))(2β+1)

}

if X ′ := supp(PX) is compact. In this sense, the TV-SVM is adaptive not only
to the approximation error assumption (6.23) but also to the input domain
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of the data. Finally, note that these considerations can be refined using the
more advanced techniques of the next chapter. We refer to Section 8.3, where
this is worked out in detail for binary classification.

6.6 Further Reading and Advanced Topics

The first learning method that was shown to be universally consistent (see
Stone, 1977) was the so-called nearest-neighbor method. Since then, universal
consistency has been established for a variety of different methods. Many
examples of such methods for classification and regression can be found in
the books by Devroye et al. (1996) and Györfi et al. (2002), respectively.
Moreover, besides the no-free-lunch theorem, which was proved by Devroye
(1982), Devroye et al. (1996) also present some other fundamental limitations
in statistical learning theory. These limitations include the non-existence of an
overall best-performing classification method, the no-free-lunch theorem under
certain additional assumptions on P, and the non-existence of a method that
estimates the Bayes risk with a uniform rate. Moreover, learning rates (and
their optimality) for certain regression methods are presented in great detail
by Györfi et al. (2002).

The classical concentration inequalities presented in Section 6.2 were proven
by Hoeffding (1963) and Bernstein (1946). Sharper versions of Bernstein’s in-
equality were found by Bennett (1962) and Hoeffding (1963). For a more
detailed discussion on these inequalities, we refer to Hoeffding (1963) and
Bousquet (2003a). Finally, Theorem 6.13 and the Hilbert space valued ver-
sions of Bernstein’s and Hoeffding’s inequalities were taken from Chapter 3
of Yurinsky (1995). Note that the crucial step in deriving these Hilbert space
valued versions is the estimate (6.10), which by symmetrization holds (up to
some constant) in every Banach space of type 2. Moreover, weaker versions of
(6.10) can actually be established whenever the Banach space has some non-
trivial type. For more information on the type concept for Banach spaces, we
refer to Chapter 11 of Diestel et al. (1995).

The discussion in Section 6.3 is nowadays folklore in the machine learning
literature. The idea of estimating the excess risk of an empirical risk mini-
mizer by a supremum (6.13) goes back to Vapnik and Chervonenkis (1974).
Generalizations of this bound to infinite sets F require bounds on the “size”
or “complexity” of F . Probably the most classical such complexity measure is
the so-called Vapnik-Chervonenkis (VC) dimension, which can be applied if,
e.g., L is the binary classification loss. Furthermore, there are various exten-
sions and generalizations of the VC dimension that make it possible to deal
with other types of loss functions. We refer to the books by Vapnik (1998),
Anthony and Bartlett (1999), and Vidyasagar (2002).

Using covering numbers as a complexity measure is another idea that
frequently appears in the literature. Probably the easiest way to use these
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numbers is presented in (6.17), but there also exist more sophisticated con-
centration inequalities, such as Lemma 3.4 of Alon et al. (1997) and Theorem
9.1 of Györfi et al. (2002), where the latter goes back to Pollard (1984). Cov-
ering numbers themselves were first investigated by Kolmogorov (1956) and
Kolmogorov and Tikhomirov (1961). Since then various results for interest-
ing function classes have been established. We refer to the books of Pinkus
(1985), Carl and Stephani (1990), and Edmunds and Triebel (1996) for a
detailed account and to Section A.5.6 for a brief overview.

Results similar to Theorem 6.25 were first established by Cucker and Smale
(2002) and Steinwart (2005). Moreover, results in the spirit of Theorem 6.24
were found by Zhang (2001), Steinwart (2005), and in a different context by
Bousquet and Elisseeff (2002). Universal consistency of SVMs for binary clas-
sification was first shown by Steinwart (2002), Zhang (2004b), and Steinwart
(2005). Finally, consistency of SVMs for certain violations of the i.i.d. assump-
tion was recently shown by Steinwart et al. (2008) and Steinwart and Anghel
(2008) with techniques similar to the one used for Theorem 6.24.

In its simplistic form, the parameter selection method considered in
Section 6.5 is little more than an illustration of how oracle inequalities can be
used to analyze learning methods that include the parameter selection step.
Nonetheless, the TV-SVM procedure is related to commonly used methods
such as grid search and cross-validation, discussed in Section 11.3. A different
approach for the parameter selection problem is considered by Lecué (2007b),
who proposes to use the aggregated decision function∑

λ∈Λ

wλ
�
fD1,λ ,

where the weights wλ are computed in terms of RL,D2(
�
fD1,λ). More precisely,

he considers weights of the form

wλ :=
exp(−|D2|RL,D2(

�
fD1,λ))∑

λ′∈Λ exp(−|D2|RL,D2(
�
fD1,λ′))

and establishes, for example for the hinge loss, oracle inequalities for this
approach. These oracle inequalities imply that this aggregation procedure is
adaptive to characteristics of P considered in Chapter 8. Moreover, a similar
weighting approach was taken by Bunea and Nobel (2005) for the least squares
loss. For further methods and results, we refer to Bartlett (2008), Bunea et al.
(2007), Dalalyan and Tsybakov (2007), Lecué (2007a), Tsybakov (2003), and
the references therein.

6.7 Summary

In this chapter, we developed basic techniques for investigating the statistical
properties of SVMs. To this end, we first introduced two notions of statistical
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learning, namely the purely asymptotic notion of consistency and the more
practically oriented notion of learning rates. We further presented the no-
free-lunch theorem, which implied that uniform learning rates are impossible
without assumptions on P.

In Section 6.2, we then established concentration inequalities, which de-
scribed how close empirical averages of i.i.d. random variables are centered
around their mean. The main results in this direction were Hoeffding’s inequal-
ity , which gives an exponential tail for bounded real-valued random variables,
and Bernstein’s inequality , which improves this tail when the variance of the
random variables is substantially smaller than their supremum norm. Finally,
we generalized these inequalities to Hilbert space valued random variables.

In Section 6.3, we used these inequalities to analyze empirical risk mini-
mization. We began by considering empirical risk minimizers over finite func-
tion classes and introduced covering and entropy numbers to generalize the
basic idea to infinite function classes. The techniques developed for ERM were
then modified in Section 6.4 to establish oracle inequalities for SVMs. There
we also illustrated how these oracle inequalities can be used to establish both
consistency and learning rates for SVMs whose regularization parameter only
depends on the sample size. Unfortunately, however, the fastest learning rates
we obtained required knowledge about certain characteristics of the data-
generating distribution P. Since this knowledge is typically not available, we
finally introduced and analyzed a data-dependent choice of the regularization
parameter in Section 6.5. This selection method turned out to be consistent
and, more important, we also saw that this method is adaptive to some un-
known characteristics of P.

6.8 Exercises

6.1. Comparison of Hoeffding’s and Bernstein’s inequalities (�)
Let (Ω,A,P) be a probability space, B > 0, and σ > 0. Furthermore, let
ξ1, . . . , ξn : Ω → R be independent and bounded random variables with
‖ξi‖∞ ≤ B and Eξ2i ≤ σ2 for all i = 1, . . . , n. Finally, let τ > 0 be a real
number and n ≥ 1 be an integer satisfying n ≥ 8

9τ . Show that Bernstein’s
inequality is sharper than Hoeffding’s inequality if and only if

σ <

(
1−
√

8τ
9n

)
B .

What happens if we additionally assume Eξi = 0 for all i = 1, . . . , n?

6.2. A variant of Markov’s inequality (��)
Let (Ω,A,P) be a probability space and f : Ω → R be a measurable function.
Show that for all t > 0 the following inequalities hold:
∞∑

n=1

P
({ω ∈ Ω : |f(ω)| ≥ nt}) ≤ EP|f |

t
≤ 1+

∞∑
n=1

P
({ω ∈ Ω : |f(ω)| ≥ nt}).
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Hint: Apply Lemma A.3.11.

6.3. Chebyshev’s inequality for sums of i.i.d. random variables (��)
Let (Ω,A,P) be a probability space and ξ1, . . . , ξn : Ω → R be independent
random variables for which there exists a constant σ > 0 such that EPξ

2
i ≤ σ2

for all i = 1, . . . , n.
i). Show the following inequality:

P
(

1
n

n∑
i=1

(
ξi − Eξi

) ≥
√

2σ2eτ

n

)
≤ e−τ , τ > 0.

ii). Compare this inequality with Hoeffding’s and Bernstein’s inequalities.
iii). Generalize the inequality above to Hilbert space valued random variables.

6.4. Proof of the no-free-lunch theorem(����)
Prove Theorem 6.6 using the proof of Theorem 7.2 by Devroye et al. (1996).

Hint: Fix an arbitrary decreasing sequence (pi) ⊂ (0, 1] with
∑
pi = 1.

Using Lyapunov’s Theorem A.3.13, which in particular states that {μ(A) : A ∈
A} = [0, 1], construct a sequence (Ai) of mutually disjoint Ai ∈ A satisfying
μ(Ai) = pi for all i ≥ 1. Use this to suitably modify the construction at the
beginning of the proof of Theorem 7.2 by Devroye et al. (1996). Check that
the rest of the proof can be kept unchanged.

6.5. No uniform rate for convex losses (���)
Let L : X×Y ×R→ [0,∞) be a convex loss function for which there exist two
distributions Q1 and Q2 on Y that have mutually distinct L-risk minimizers,
i.e., for all x ∈ X, we have ML,Q1,x(0+) �= ∅,ML,Q2,x(0+) �= ∅, and

ML,Q1,x(0+) ∩ML,Q2,x(0+) = ∅ .

i). Show that L satisfies the assumptions of Corollary 6.8.
ii). Show that for margin-based and distance-based convex losses L �= 0 there
exist two distributions Q1 and Q2 on Y having mutually distinct L-risk min-
imizers.

Hint: For i) show that there exists a constant c > 0 such that for all x ∈ X
we have dist(t,ML,Q2,x(0+)) ≥ c if t ∈ M1,x and dist(t,ML,Q1,x(0+)) ≥ c if
t ∈M2,x. Then repeat the argument used in the proof of Lemma 3.15.

6.6. Simple analysis of approximate empirical risk minimizers (���)
Let L : X × Y × R → [0,∞) be a loss function, B > 0 be a real number,
and F ⊂ L0(X) be a finite set of bounded measurable functions such that
L(x, y, f(x)) ≤ B for all (x, y) ∈ X × Y and all f ∈ F . In addition, assume
that for some ε > 0 we have a measurable learning algorithm that produces
ε-approximate minimizers fD of RL,D( · ), i.e.,

RL,D(fD) ≤ inf
f∈F
RL,D(f) + ε , D ∈ (X × Y )n.
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Show that, for all τ > 0 and all n ≥ 1, the following inequality holds:

Pn

(
D ∈ (X×Y )n : RL,P(fD) < R∗

L,P,F+B

√
2τ + 2 ln(2|F|)

n
+ε
)
≥ 1−e−τ .

6.7. A simple example of overfitting ERM (���)
Let (X,A) be a measurable space such that {x} ∈ A for all x ∈ X. Fur-
thermore, let Y := {−1, 1}, Lclass be the binary classification loss, and
F := L∞(X). ForD := ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n, define the function
fD : X → R by

fD :=
1
n

n∑
i=1

yi1{xi} .

i). Show that D �→ fD is a measurable empirical risk minimizer with respect
to F and Lclass.
ii). Let P be a distribution on X × Y such that PX({x}) = 0 for all x ∈ X.
Show that RL,P(fD) = RL,P(0).
iii). Find distributions P on X ×Y such that R∗

L,P = 0 and RL,P(fD) = 1/2.

6.8. Entropy vs. covering numbers (���)
Let (T, d) be a metric space and a > 0 and q > 0 be constants such that

lnN (T, d, ε) <
(a
ε

)q
, ε > 0.

Show that en(T, d) ≤ 3
1
q an−

1
q for all n ≥ 1.

6.9. Consistency and rates for SVMs using their stability (��)
Let L : X × Y ×R→ [0,∞) be a convex, Lipschitz continuous loss satisfying
L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y , and |L|1 ≤ 1. Moreover, let H be a
separable RKHS with measurable kernel k over X satisfying ‖k‖∞ ≤ 1, and
let P be a distribution on X × Y such that H is dense in L1(PX).
i). Show that with probability Pn not less than 1− e−τ we have

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P < A2(λ) + λ−1

(√
8τ
n

+

√
4
n

+
8τ
3n

)
.

ii). Show that the SVM is consistent whenever we choose a sequence (λn) ⊂
(0, 1] such that limn→∞ λn = 0 and limn→∞ λ2

nn =∞.
iii). Assume that (6.23) holds, i.e., there exist constants c > 0 and β ∈ (0, 1]
such that A2(λ) ≤ cλβ for all λ > 0. Show that the asymptotically best choice
for λn is a sequence that behaves like n−

1
2β+2 and that the resulting learning

rate is given by

Pn
(
D ∈ (X × Y )n : RL,P(fD,λn

)−R∗
L,P ≤ C̃τn−

β
2β+2

)
≥ 1− e−τ ,

where C̃ is a constant independent of τ and n.
iv). Show that the learning rates established in iii) are faster than those of
Theorem 6.25 if p > 1/(2β + 1).
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Advanced Statistical Analysis of SVMs (*)

Overview. In the previous chapter, we established both consistency
and learning rates using relatively simple oracle inequalities. The first
goal of this chapter is to illustrate why these learning rates are too
loose. We then establish refined oracle inequalities that lead to learning
rates that are substantially faster than those of the previous chapter.

Prerequisites. The first two sections require only the statistical ana-
lysis from Chapter 6. The following two sections additionally need
aspects of empirical process theory provided in Sections A.8 and A.9.
The final section requires knowledge from Sections A.5.2 and A.5.6.

Usage. We will use the derived oracle inequalities in Chapters 8 and
9 when dealing with classification and regression, respectively.

In the previous chapter, we presented two techniques to establish oracle
inequalities for SVMs. We further showed how these oracle inequalities can
be used to establish learning rates if assumptions on the approximation er-
ror function are made. The first goal of this chapter is to demonstrate in
Section 7.1 that these learning rates are almost always suboptimal. We will
then present a new technique to establish sharper oracle inequalities. We begin
by considering ERM over finite sets of functions since this learning method
is, as in Chapter 6, a suitable raw model for studying the basic principles of
this technique. The resulting oracle inequality, which will later be used for pa-
rameter selection, is presented in Section 7.2. Unlike in the previous chapter,
however, there is no simple yet effective way to extend this technique to infi-
nite sets of functions. This forces us to introduce some heavy machinery from
empirical process theory, which is summarized in Section A.8. We also need a
new concentration inequality, known as Talagrand’s inequality, which, unlike
the concentration inequalities of the previous chapter, deals with suprema of
functions directly. Since the highly non-trivial proof of Talagrand’s inequality
is out of the scope of this chapter, it is deferred to Section A.9. In Section
7.3, we will carefully introduce these tools in the process of establishing an
oracle inequality for ERM over infinite sets of functions, so that the reader
immediately gets an idea, of how the different tools work together. We then
adapt this approach to SVMs and related modifications of ERM in Section
7.4. Finally, we revisit entropy numbers for RKHSs in Section 7.5.
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7.1 Why Do We Need a Refined Analysis?

In this section, we show that the oracle inequalities established in the previous
chapter almost always lead to suboptimal learning rates. This will give us the
motivation to look for more advanced techniques in the following sections.

Let us begin by recalling the situation of Theorem 6.25. To this end, we
assume for simplicity that the loss L is Lipschitz continuous with |L|1 ≤ 1. In
addition, we again assume that there are constants a ≥ 1 and p > 0 such that

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p , ε > 0.

Theorem 6.25 then implied the oracle inequality (6.21), i.e., for fixed n ≥ 1,
λ ∈ (0, 1], and τ ≥ 1, we have1

λ‖fD,λ‖2H+RL,P(fD,λ)−R∗
L,P < A2(λ)+

3
λ1/2

(
2
(2a
n

) 1
2+2p

+
(2τ
n

) 1
2
)

(7.1)

with probability Pn not less than 1 − e−τ . The positive aspect of this oracle
inequality is that it holds for all distributions P on X×Y . From the machine
learning perspective, this distribution independence is highly desirable since
one of its basic assumptions is that the data-generating distribution P is un-
known. However, this distribution independence is also the weakness of the
oracle inequality above since for most distributions it is overly pessimistic in
the sense that the resulting learning rates are suboptimal. To explain this, let
us assume for simplicity that for sample size n we have chosen a regularization
parameter λn ∈ (0, 1]. Now recall that in the proof of Theorem 6.25 we used
the trivial estimate

‖fD,λn
‖H ≤ λ−1/2

n (7.2)

to determine the function class over which the SVM actually minimizes.
However, (7.1) then shows that with high probability we have ‖fD,λn

‖H ≤
(εn/λn)1/2, where εn is a shorthand for the right-hand side of (7.1). Assum-
ing that we have chosen λn such that εn → 0 for n → ∞, we hence see that
with high probability we have an estimate on ‖fD,λn

‖H that is sharper than
(7.2) for large n. To refine the analysis of Theorem 6.25, we could now exclude
in the proof of Theorem 6.25 the set of samples D where this sharper estimate
is not satisfied. As a consequence, we would work with a smaller function class
and with a smaller bound B on the suprema. Now recall that both the size
of the function class and B have a significant impact on the oracle inequality
of Theorem 6.25 and hence on (7.1). To illustrate this, assume that we have
chosen λn := n−γ for some 0 < γ < 1/(1 + p) and all n ≥ 1. Moreover,

1 Here, as in the rest of this chapter, we assume that (X×Y )n is equipped with the
universal completion of the product σ-algebra of (X×Y )n. In addition, Pn denotes
the canonical extension of the n-fold product measure of P to this completion.
Recall that these conventions together with Lemmas 6.23 and 6.3 make it possible
to ignore measurability questions for SVMs.
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assume that A2(λ) ≤ cλβ for some constants c > 0, β ∈ (0, 1], and all λ > 0.
By following the path above, we would then obtain an improvement of (7.1)
by a factor of the form n−α for some α > 0. This discussion shows that the
original estimate (7.1) indeed leads to suboptimal learning rates. Moreover,
it shows another dilemma: the improved version of (7.1) leads directly to a
further improvement of (7.2), which in turn yields a further improvement of
(7.1), and so on. On the other hand, it is not hard to see that such an iteration
would increase the arising constants since we have to exclude more and more
sets of small probability, and hence it seems likely that an analysis following
this path would be rather technical. In addition, it would require choosing λn

a priori , and hence we would not obtain an oracle inequality that can be used
for the analysis of parameter selection procedures such as the TV-SVM.

Interestingly, the phenomenon above is not the only source for the general
suboptimality of Theorem 6.25. However, the second source is more involved,
and therefore we only illustrate it for ERM.2 To this end, let us fix a finite
set F ⊂ L∞(X) of functions and a loss function L : X × Y × R → [0,∞)
such that L(x, y, f(x)) ≤ B for some constant B > 0 and all (x, y) ∈ X × Y
and f ∈ F . In addition, we assume that P is a distribution for which there
exists an f∗ ∈ F with RL,P(f∗) = 0. This implies L(x, y, f∗(x)) = 0 for
P-almost all (x, y) ∈ X × Y , and hence we have RL,D(f∗) = 0 for Pn-almost
all D ∈ (X × Y )n. From this we conclude that RL,D(fD) = 0 almost surely.
For f ∈ F , we now define hf ∈ L∞(X × Y ) by

hf (x, y) := L(x, y, f(x)) , (x, y) ∈ X × Y .
Since L is non-negative, this definition immediately yields

EPh
2
f ≤ BEPhf . (7.3)

Furthermore, for r > 0 and f ∈ F , we define

gf,r :=
EPhf − hf

EPhf + r
.

For f ∈ F with EPhf = 0, we then have EPh
2
f = 0 by (7.3) and hence we

obtain EPg
2
f,r = 0 ≤ B

2r . Moreover, for f ∈ F with EPhf �= 0, we find

EPg
2
f,r ≤

EPh
2
f

(EPhf + r)2
≤ EPh

2
f

2rEPhf
≤ B

2r
,

where we used (7.3) and the trivial estimate 2ab ≤ (a + b)2 for a, b ≥ 0. In
addition, we have

‖gf,r‖∞ = sup
(x,y)∈X×Y

∣∣∣∣EPhf − hf (x, y)
EPhf + r

∣∣∣∣ = ‖EPhf − hf‖∞
EPhf + r

≤ B

r

2 At the end of Section 7.4, we see that this phenomenon indeed occurs for SVMs.
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and EPgf,r = 0. Applying Bernstein’s inequality and the union bound, we
hence obtain

Pn

(
D ∈ (X × Y )n : sup

f∈F
EDgf,r ≥

√
Bτ

nr
+

2Bτ
3nr

)
≤ |F|e−τ ,

and since fD ∈ F , the definition of gfD,r thus yields

Pn

(
D ∈ (X×Y )n : EPhfD

−EDhfD
≥ (EPhfD

+r
)(√Bτ

nr
+

2Bτ
3nr

))
≤ |F|e−τ .

Because EDhfD
= RL,D(fD) = 0 almost surely, we hence conclude that

Pn

(
D ∈ (X ×Y )n :

(
1−
√
Bτ

nr
− 2Bτ

3nr

)
EPhfD

≥
√
rBτ

n
+

2Bτ
3n

)
≤ |F|e−τ .

For r := 4Bτ
n , the relation EPhfD

= RL,P(fD) thus yields

Pn

(
D ∈ (X × Y )n : RL,P(fD) ≥ 8Bτ

n

)
≤ |F|e−τ . (7.4)

Compared with (6.15), the latter estimate replaces the square root term
B( 2τ

n )1/2 by the substantially faster decaying linear term 8Bτ
n . In other words,

for the specific type of distribution considered above, our analysis of ERM in
Chapter 6 is too loose by a factor of n−1/2.

The reason for this improvement is the variance bound (7.3), which guar-
antees a small variance whenever we have a small error RL,P(f) = EPhf .
Interestingly, such a variance bound can also easily be used in a brute-force
analysis that does not start with an initial small error. Indeed, let us assume
that we would begin our analysis by using Bernstein’s inequality together with
the trivial variance bound EPh

2
fD
≤ B2. We would then obtain a small upper

bound on EPhfD
that holds with high probability. Using (7.3), this would give

us a smaller bound on EPh
2
fD

, which in turn would improve our first bound
on EPhfD

by another application of Bernstein’s inequality. Obviously, this
brute-force analysis would be very similar to the iterative proof procedure we
discussed around (7.2). This observation suggests that Theorem 6.25 is also
suboptimal if P guarantees a variance bound in the sense of (7.3), and we
will see in Section 7.4 that this is indeed the case. Remarkably, however, the
argument that led to (7.4) avoided this iterative argument by considering the
function gf,r in Bernstein’s inequality. This trick, in a refined form, will be
the central idea for the refined analysis of this chapter.

7.2 A Refined Oracle Inequality for ERM

The goal of this section is to generalize the technique of using a variance
bound in conjunction with Bernstein’s inequality to derive oracle inequalities
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for ERM. Although these generalizations still will not be powerful enough
to deal with SVMs, they will already illustrate the key ideas. In addition,
the derived oracle inequality for ERM will later be used for investigating the
adaptivity of data-dependent parameter selection strategies such as the one
of TV-SVMs.

Let us begin with the following elementary and widely known lemma.

Lemma 7.1. For q ∈ (1,∞), define q′ ∈ (1,∞) by 1
q + 1

q′ = 1. Then we have

ab ≤ aq

q
+
bq

′

q′

and (qa)2/q(q′b)2/q′ ≤ (a+ b)2 for all a, b ≥ 0.

Proof. For a = 0, the first assertion is trivial, and hence it suffices to consider
the case a > 0. We define ha(b) := aq/q + bq

′
/q′ − ab, b ≥ 0. Obviously, the

derivative of this function is h′a(b) = bq
′−1 − a, and hence ha has a unique

global minimum at b∗ := a1/(q′−1). Using q′/(q′ − 1) = q, we find ha(b∗) = 0,
which then gives the desired first inequality. The second inequality then follows
from the first by a simple variable transformation and a2 + b2 ≤ (a+ b)2. ��

Before we present the improved oracle inequality for ERM, let us introduce
the shorthand L ◦ f for the function (x, y) �→ L(x, y, f(x)), where f : X → R

is an arbitrary function and L : X × Y ×R→ [0,∞) is a loss.

Theorem 7.2 (Improved oracle inequality for ERM). Consider a mea-
surable ERM with respect to the loss L : X × Y × R → [0,∞) and the finite
set F ⊂ L0(X). Moreover, let P be a distribution on X × Y that has a Bayes
decision function f∗L,P. Assume that there exist constants B > 0, ϑ ∈ [0, 1],
and V ≥ B2−ϑ such that for all f ∈ F we have

‖L ◦ f − L ◦ f∗L,P‖∞ ≤ B , (7.5)

EP

(
L ◦ f − L ◦ f∗L,P

)2 ≤ V · (EP(L ◦ f − L ◦ f∗L,P)
)ϑ
. (7.6)

Then, for all fixed τ > 0 and n ≥ 1, we have with probability Pn not less than
1− e−τ that

RL,P(fD)−R∗
L,P < 6

(R∗
L,P,F −R∗

L,P

)
+ 4
(

8V
(
τ + ln(1 + |F|))

n

) 1
2−ϑ

.

Proof. We first note that since RL,P(fD) − R∗
L,P ≤ B and V ≥ B2−ϑ, it

suffices to consider the case n ≥ 8τ . For f ∈ F we define hf := L◦f−L◦f∗L,P,
and in addition we fix an f0 ∈ F . Since RL,D(fD) ≤ RL,D(f0), we then have
EDhfD

≤ EDhf0 , and consequently we obtain

RL,P(fD)−RL,P(f0) = EPhfD
− EPhf0

≤ EPhfD
− EDhfD

+ EDhf0 − EPhf0 (7.7)
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for all D ∈ (X × Y )n. Let us first estimate EDhf0 −EPhf0 for the case ϑ > 0.
To this end, we observe that ‖hf0 − EPhf0‖∞ ≤ 2B and

EP(hf0 − EPhf0)
2 ≤ EPh

2
f0
≤ V (EPhf0)

ϑ .

In addition, for q := 2
2−ϑ , q′ := 2

ϑ , a :=
(

21−ϑϑϑV τ
n

)1/2, and b :=
(2EPhf0

ϑ

)ϑ/2,
Lemma 7.1 shows that√

2τV (EPhf0)ϑ

n
≤
(

1−ϑ
2

)(
21−ϑϑϑV τ

n

) 1
2−ϑ

+EPhf0 ≤
(

2V τ
n

) 1
2−ϑ

+EPhf0 ,

and hence Bernstein’s inequality shows that we have

EDhf0 − EPhf0 < EPhf0 +
(

2V τ
n

) 1
2−ϑ

+
4Bτ
3n

(7.8)

with probability Pn not less than 1− e−τ . Furthermore, note that, for ϑ = 0,
the same inequality holds by Hoeffding’s inequality and ‖hf0‖∞ ≤ B ≤

√
V .

To estimate the remaining term EPhfD
− EDhfD

, we define the functions

gf,r :=
EPhf − hf

EPhf + r
, f ∈ F , r > 0 .

Obviously, we have ‖gf,r‖∞ ≤ 2Br−1. Moreover, for ϑ > 0, b := EPhf �= 0,
q := 2

2−ϑ , q′ := 2
ϑ , and a := r, the second inequality of Lemma 7.1 yields

EPg
2
f,r ≤

EPh
2
f

(EPhf + r)2
≤ (2− ϑ)2−ϑϑϑ EPh

2
f

4r2−ϑ(EPhf )ϑ
≤ V rϑ−2 .

Furthermore, for ϑ > 0 and EPhf = 0, we have EPh
2
f = 0 by (7.6), which

in turn implies EPg
2
f,r ≤ V rϑ−2. Finally, in the case ϑ = 0, we easily obtain

EPg
2
f,r ≤ EPh

2
f r

−2 ≤ V rϑ−2, and hence we have EPg
2
f,r ≤ V rϑ−2 in all cases.

Consequently, Bernstein’s inequality yields

Pn

(
D ∈ (X × Y )n : sup

f∈F
EDgf,r <

√
2V τ
nr2−ϑ

+
4Bτ
3nr

)
≥ 1− |F|e−τ (7.9)

for all r > 0. Now observe that for D ∈ (X × Y )n satisfying

sup
f∈F

EDgf,r <

√
2V τ
nr2−ϑ

+
4Bτ
3nr

,

the definition of gfD,r and fD ∈ F imply

EPhfD
− EDhfD

< EPhfD

(√
2V τ
nr2−ϑ

+
4Bτ
3nr

)
+

√
2V τrϑ

n
+

4Bτ
3n

.
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By combining this estimate with (7.7), (7.8), and (7.9), we thus see that

EPhfD
< 2EPhf0 +EPhfD

(√
2V τ
nr2−ϑ

+
4Bτ
3nr

)
+

√
2V τrϑ

n
+
(2V τ
n

) 1
2−ϑ

+
8Bτ
3n

holds with probability Pn not less than 1 − (1 + |F|)e−τ . Let us now define
r :=
(

8V τ
n

)1/(2−ϑ). Then we obviously have√
2V τ
nr2−ϑ

=
1
2

and

√
2V τrϑ

n
=
r

2
,

and by using V ≥ B2−ϑ and n ≥ 8τ we also find

4Bτ
3nr

=
1
6
· 8τ
n
· B
r
≤ 1

6
·
(8τ
n

) 1
2−ϑ · V

1
2−ϑ

r
=

1
6

and 8Bτ
3n ≤ r

3 . In addition, 2 ≤ 4
1

2−ϑ and the definition of r yield (2V τ
n )

1
2−ϑ ≤ r

2 ,
and hence we have with probability Pn not less than 1− (1 + |F|)e−τ that

EPhfD
< 2EPhf0 +

2
3

EPhfD
+

4
3
r .

We now obtain the assertion by some simple algebraic transformations and
taking a function f0 ∈ F such that RL,P(f0) = min{RL,P(f) : f ∈ F}. ��

Note that in the proof of Theorem 7.2 we did not strive to obtain the
smallest possible constants. Instead we tried to keep both the proof and the
oracle inequality as simple as possible.

Obviously, the crucial assumption of Theorem 7.2 is the variance bound
(7.6). Unfortunately, for many loss functions it is a non-trivial task to establish
such a bound, as we will see in Sections 8.3 and 9.5, where we consider this
issue for the hinge loss and the pinball loss, respectively. On the other hand,
the following example shows that for the least squares loss and bounded Y , a
variance bound always holds.

Example 7.3. Let M > 0 and Y ⊂ [−M,M ] be a closed subset. Moreover,
let L be the least squares loss, X be a non-empty set equipped with some
σ-algebra, and P be a distribution on X × Y . By the non-negativity of L and
f∗L,P(x) = EP(Y |x) ∈ [−M,M ], x ∈ X, we first observe that∣∣L(y, f(x))− L(y, f∗L,P(x))

∣∣ ≤ sup
y′,t∈[−M,M ]

(y′ − t)2 = 4M2

for all measurable f : X → [−M,M ] and all (x, y) ∈ X × Y . Consequently,
(7.5) holds for B := 4M2. Moreover, we also have(
L(y, f(x))− L(y, f∗L,P(x))

)2 =
(
(f(x) + f∗L,P(x)− 2y)(f(x)− f∗L,P(x))

)2
≤ 16M2

(
f(x)− f∗L,P(x)

)2
,
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and hence we find

EP(L ◦ f − L ◦ f∗L,P)2 ≤ 16M2 EP(f − f∗L,P)2 (7.10)

= 16M2 EP(L ◦ f − L ◦ f∗L,P) (7.11)

In other words, (7.6) holds for V := 16M2 and ϑ = 1. �

Note that the variance bound established in the preceding example holds
for the optimal exponent ϑ = 1, which leads to a 1/n behavior of the oracle
inequality presented in Theorem 7.2. Besides this, however, the preceding
example also provides us with a “template approach” for establishing variance
bounds. Indeed, (7.10) only uses the local Lipschitz continuity of the least
squares loss when restricted to label domain Y , while (7.11) is a very special
case of self-calibration. Interestingly, all later established variance bounds will
essentially follow this pattern of combining Lipschitz continuity with self-
calibration. Unlike for the least squares loss, which is nicely self-calibrated
for all distributions having bounded label space Y , for most other interesting
losses, establishing non-trivial self-calibration properties requires identifying
suitable distributions. Unfortunately, in many cases this is a non-trivial task.

7.3 Some Advanced Machinery

One of the main ideas in the proof of Theorem 7.2 was to apply Bernstein’s
inequality to functions of the form

gf,r :=
EPhf − hf

EPhf + r
, f ∈ F , r > 0 , (7.12)

where hf := L ◦ f − L ◦ f∗L,P and F was a finite set of functions. How-
ever, we have already seen in Chapter 6 that the statistical analysis of SVMs
requires infinite sets of functions, namely balls of the RKHS used. Now
a straightforward generalization of Theorem 7.2 to such F would assume
N (F , ‖ · ‖∞, ε) < ∞ for all ε > 0 (see Exercise 7.3 for the details of such
an extension). However, we will see later in Section 7.4 (see also Exercise 7.5)
that the covering numbers with respect to the supremum norm often are too
large. This suboptimality motivates this section, whose goal is to present more
sophisticated tools for generalizing Theorem 7.2 to infinite function classes.
However, these tools require much more involved proofs than the ones seen
so far, and hence some of the more complicated results and their proofs are
presented in Sections A.8 and A.9. By postponing these parts, we hope to give
the reader a better understanding of how these tools work together.

Since most of the following results involve expectations of suprema over
uncountable sets, we first clarify measurability issues. To this end, we intro-
duce the following notion.
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Definition 7.4. Let (T, d) be a metric space and (Z,A) be a measurable space.
A family of maps (gt)t∈T ⊂ L0(Z) is called a Carathéodory family if t �→
gt(z) is continuous for all z ∈ Z. Moreover, if T is separable or complete, we
say that (gt)t∈T is separable or complete, respectively.

In the following we call a subset G ⊂ L0(Z) a (separable or complete)
Carathéodory set if there exists a (separable or complete) metric space
(T, d) and a Carathéodory family (gt)t∈T ⊂ L0(Z) such that G = {gt : t ∈ T}.
Note that, by the continuity of t �→ gt(z), Carathéodory sets satisfy

sup
g∈G

g(z) = sup
t∈T

gt(z) = sup
t∈S

gt(z) , z ∈ Z, (7.13)

for all dense S ⊂ T . In particular, for separable Carathéodory sets G, there
exists a countable and dense S ⊂ T , and hence the map z �→ supt∈T gt(z) is
measurable for such G. Finally, recall Lemma A.3.17, which shows that the
map (z, t) �→ gt(z) is measurable if T is separable and complete.

Now our first result generalizes Bernstein’s inequality to suprema of sep-
arable Carathéodory sets.

Theorem 7.5 (Simplified Talagrand’s inequality). Let (Z,A,P) be a
probability space and G ⊂ L0(Z) be a separable Carathéodory set. Further-
more, let B ≥ 0 and σ ≥ 0 be constants such that EPg = 0, EPg

2 ≤ σ2, and
‖g‖∞ ≤ B for all g ∈ G. For n ≥ 1, we define G : Zn → R by

G(z1, . . . , zn) := sup
g∈G

∣∣∣∣ 1n
n∑

j=1

g(zj)
∣∣∣∣ , z = (z1, . . . , zn) ∈ Zn.

Then, for all τ > 0 and all γ > 0, we have

Pn

({
z ∈ Zn : G(z) ≥ (1 + γ)EPnG+

√
2τσ2

n
+
(

2
3

+
1
γ

)
τB

n

})
≤ e−τ .

Proof. By (7.13), we may assume without loss of generality that G is count-
able. For fixed a, b > 0 we now define h : (0,∞)→ (0,∞) by h(γ) := γa+γ−1b,
γ > 0. Then elementary calculus shows that h has a global minimum at
γ∗ :=

√
b/a, and consequently we have 2

√
ab = h(γ∗) ≤ h(γ) = γa+ γ−1b for

all γ > 0. From this we conclude that√
2τ(σ2 + 2BEPnG)

n
≤
√

2τσ2

n
+ 2

√
τBEPnG

n
≤
√

2τσ2

n
+ γEPnG+

τB

γn
,

and hence we obtain the assertion by applying Talagrand’s inequality stated
in Theorem A.9.1. ��

Following the idea of the proof of Theorem 7.2, our first goal is to apply
the preceding theorem to the family of maps (gf,r)f∈F , where gf,r is defined
by (7.12). To this end, we first show that this is a separable Carathéodory
family.
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Lemma 7.6. Let L : X × Y × R → [0,∞) be a continuous loss, P be a
distribution on X × Y , and f∗L,P be a Bayes decision function. Moreover, let
F ⊂ L0(X) be equipped with a separable metric that dominates the pointwise
convergence in the sense of (2.8). If there exists a constant B > 0 such that
‖L ◦ f − L ◦ f∗L,P‖∞ ≤ B for all f ∈ F , then (gf,r)f∈F , where gf,r is defined
by (7.12) and r > 0 is fixed, is a separable Carathéodory family.

Proof. Since the metric of F dominates the pointwise convergence we see that
for fixed (x, y) ∈ X × Y the R-valued map f �→ f(x) defined on F is continu-
ous. Using the continuity of L, it is then easy to conclude that (hf )f∈F , where
hf := L◦f−L◦f∗L,P is a Carathéodory family. Moreover, we have ‖hf‖∞ ≤ B
for all f ∈ F , and hence Lebesgue’s dominated convergence theorem shows
that f �→ EPhf is continuous. From this we obtain the assertion. ��

To ensure that (gf,r)f∈F is a separable Carathéodory family, we assume
in the rest of this section that the assumptions of Lemma 7.6 are satisfied.

Let us now consider the other assumptions of Theorem 7.5. To this end,
recall that we have already seen in the proof of Theorem 7.2 that bounds
of the form (7.5) and (7.6) lead to the estimates ‖gf,r‖∞ ≤ Br−1 and
EPg

2
f,r ≤ V rϑ−2, respectively. Moreover, we obviously have EPgf,r = 0. Ap-

plying Theorem 7.5 for γ = 1, we hence see that for all τ > 0 we have

sup
f∈F

EPhf − EDhf

EPhf + r
< 2ED∼Pn sup

f∈F

EPhf − EDhf

EPhf + r
+

√
2V τ
nr2−ϑ

+
5Bτ
3nr

(7.14)

with probability Pn not less than 1 − e−τ . In other words, besides the ex-
pectation on the right-hand side, we have basically obtained the key estimate
(7.9) of the proof of Theorem 7.2 for general, not necessarily finite sets F . The
rest of this section is thus devoted to techniques for bounding the additional
expectation. We begin with a method that removes the denominator.

Theorem 7.7 (Peeling). Let (Z,A,P) be a probability space, (T, d) be a sep-
arable metric space, h : T → [0,∞) be a continuous function, and (gt)t∈T ⊂
L0(Z) be a Carathéodory family. We define r∗ := inf{h(t) : t ∈ T}. Moreover,
let ϕ : (r∗,∞)→ [0,∞) be a function such that ϕ(4r) ≤ 2ϕ(r) and

Ez∼P sup
t∈T

h(t)≤r

|gt(z)| ≤ ϕ(r)

for all r > r∗. Then, for all r > r∗, we have

Ez∼P sup
t∈T

gt(z)
h(t) + r

≤ 4ϕ(r)
r

.

Proof. For z ∈ Z and r > r∗, we have

sup
t∈T

gt(z)
h(t) + r

≤ sup
t∈T

h(t)≤r

|gt(z)|
r

+
∞∑

i=0

sup
t∈T

h(t)∈[r4i,r4i+1]

|gt(z)|
r4i + r

,
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where we used the convention sup ∅ := 0. Consequently, we obtain

Ez∼P sup
t∈T

gt(z)
h(t) + r

≤ ϕ(r)
r

+
1
r

∞∑
i=0

1
4i + 1

Ez∼P sup
t∈T

h(t)≤r4i+1

|gt(z)|

≤ 1
r

(
ϕ(r) +

∞∑
i=0

ϕ(r4i+1)
4i + 1

)
.

Moreover, induction yields ϕ(r4i+1) ≤ 2i+1ϕ(r), i ≥ 0, and hence we obtain

Ez∼P sup
t∈T

gt(z)
h(t) + r

≤ ϕ(r)
r

(
1 +

∞∑
i=0

2i+1

4i + 1

)
≤ ϕ(r)

r

(
1 +

2
1 + 1

+
∞∑

i=1

2−i+1

)
.

From this estimate, we easily obtain the assertion. ��
Note that the preceding proof actually yields a constant slightly smaller

than 4. Indeed, numerical evaluation suggests a value of approximately 3.77,
but since the goal of this section is to present the general picture and not
a path that leads to the smallest possible constants, we will work with the
slightly larger but simpler constant.

Let us now return to the concentration inequality (7.14) we derived from
Talagrand’s inequality. To apply the peeling argument, we write

Hr :=
{
hf : f ∈ F and EPhf ≤ r

}
, r > 0. (7.15)

Furthermore, for r∗ := inf{r > 0 : Hr �= ∅} = inf{EPhf : f ∈ F}, we assume
that we have a function ϕn : (r∗,∞)→ [0,∞) satisfying ϕn(4r) ≤ 2ϕn(r) and

ED∼Pn sup
h∈Hr

∣∣EPh− EDh
∣∣ ≤ ϕn(r) (7.16)

for all r > r∗. By Theorem 7.7 and (7.14), we then see that we have

sup
f∈F

EPhf − EDhf

EPhf + r
<

8ϕn(r)
r

+

√
2V τ
nr2−ϑ

+
5Bτ
3nr

(7.17)

with probability Pn not less than 1−e−τ . Consequently, our next goal is to find
functions ϕn satisfying (7.16). To do this, we need the following definitions.

Definition 7.8. Let (Θ, C, ν) be a probability space and εi : Θ → {−1, 1}, i =
1, . . . , n, be independent random variables with ν(εi = 1) = ν(εi = −1) = 1/2
for all i = 1, . . . , n. Then ε1, . . . , εn is called a Rademacher sequence with
respect to ν.

Statistically speaking, Rademacher sequences model repeated coin flips.
Besides this obvious interpretation, they are, however, also an important tool
in several branches of pure mathematics.

The following definition uses Rademacher sequences to introduce a new
type of expectation of suprema. This new type will then be used to find
functions ϕn satisfying (7.16).
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Definition 7.9. Let H ⊂ L0(Z) be a non-empty set and ε1, . . . , εn be a
Rademacher sequence with respect to some distribution ν. Then, for D :=
(z1, . . . , zn) ∈ Zn, the n-th empirical Rademacher average of H is de-
fined by

RadD(H, n) := Eν sup
h∈H

∣∣∣∣ 1n
n∑

i=1

εih(zi)
∣∣∣∣ . (7.18)

Note that in the preceding definition we do not need to ensure that the
supremum on the right-hand side of (7.18) is measurable since the expectation
Eν reduces to a finite sum over 2n summands.

Some simple structural properties of empirical Rademacher averages can
be found in Exercise 7.2, whereas more advanced properties are collected in
Section A.8. For now we need the following result, which follows directly from
Corollary A.8.2.

Proposition 7.10 (Symmetrization). Let H ⊂ L∞(Z) be a separable Ca-
rathéodory set with suph∈H ‖h‖∞ < ∞ and P be a distribution on Z. Then
for all n ≥ 1 we have

ED∼Pn sup
h∈H

∣∣EPh− EDh
∣∣ ≤ 2 ED∼PnRadD(H, n) . (7.19)

Combining the preceding proposition with (7.16), we see that it suffices to
bound ED∼PnRadD(Hr, n). To achieve this, we will first focus on bounding
empirical Rademacher averages. We begin with the following lemma, which
can be used to bound Rademacher averages of finite function classes.

Lemma 7.11. Let (Θ, C, ν) be a probability space and g1, . . . , gm ∈ L0(Θ) be
functions for which there exists a constant K > 0 satisfying Eνe

λgi ≤ eλ2K2

for all λ ∈ R and i = 1, . . . ,m. Then we have

Eν max
1≤i≤m

|gi| ≤ 2K
√

ln(2m) .

Proof. Writing max1≤j≤m±λgi := max{λg1, . . . , λgm,−λg1, . . . ,−λgm} for
λ > 0, we obtain

Eν max
1≤i≤m

|gi| = λ−1Eν max
1≤j≤m

±λgi ≤ λ−1 ln
(
Eνe

max1≤j≤m ±λgi
)

by Jensen’s inequality. Moreover, by the monotonicity of the exponential func-
tion, we have

Eνe
max1≤j≤m ±λgi ≤ Eν max

1≤j≤m
e±λgi ≤

m∑
j=1

Eν

(
eλgi + e−λgi

) ≤ 2meλ2K2
.

Combining both estimates, we thus find

Eν max
1≤i≤m

|gi| ≤ λ−1 ln
(
2meλ2K2)

= λ−1 ln(2m) + λK2

for all λ > 0. For λ := K−1
√

ln(2m), we then obtain the assertion. ��
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The preceding lemma only provides a bound for suprema over finitely many
functions. However, if we assume that we have a set of functions H that can
be suitably approximated by a finite set of functions, then it seems natural to
ask whether we can also bound the supremum over this possibly infinite set
H. The following theorem gives a positive answer to this question with the
help of entropy numbers.

Theorem 7.12 (Dudley’s chaining). Let (T, d) be a separable metric space,
(Θ, C, ν) be a probability space, and (gt)t∈T ⊂ L0(Θ) be a Carathéodory family.
Assume that there exist a t0 ∈ T and a constant K > 0 such that gt0 = 0 and

Eν e
λ(gs−gt) ≤ eλ2K2·d2(s,t) , s, t ∈ T, λ ∈ R. (7.20)

Then we have

Eν sup
t∈T
|gt| ≤ 2

√
ln 4K

( ∞∑
i=1

2i/2e2i(T, d) + sup
t∈T

d(t, t0)
)
.

Proof. Without loss of generality, we may assume that all entropy numbers
are finite, i.e., en(T, d) < ∞ for all n ≥ 1. We fix an ε > 0. For i ≥ 1, we
define s2i := (1 + ε)e2i(T, d), and in addition we write s1 := supt∈T d(t, t0).
For i ≥ 1, we further fix an s2i -net Ti of T such that |Ti| ≤ 22i−1. In addition,
we write T0 := {t0}. Then there exist maps πi : T → Ti, i ≥ 0, such that
d(t, πi(t)) ≤ s2i for all t ∈ T and πi(t) = t for all t ∈ Ti. Let us now fix a
j ≥ 0. We define maps γi : T → Ti, i = 0, . . . , j, recursively by γj := πj and
γi−1 := πi−1 ◦ γi, i = j, . . . , 1. Note that T0 = {t0} implies γ0(t) = t0 for all
t ∈ T . For k ≥ j and t ∈ Tj , we hence obtain

|gt| = |gt − gt0 | =
∣∣∣∣

j∑
i=1

(
gγi(t) − gγi−1(t)

)∣∣∣∣ ≤
k∑

i=1

max
t∈Ti

∣∣gt − gπi−1(t)

∣∣ ,
which for Sk := T0 ∪ · · · ∪ Tk implies

max
t∈Sk

|gt| ≤
k∑

i=1

max
t∈Ti

∣∣gt − gπi−1(t)

∣∣ .
Moreover, (7.20) yields

Eνe
λ(gt−gπi−1(t)) ≤ eλ2K2s2

2i−1

for all t ∈ Ti, i ≥ 1, and λ ∈ R. Consequently, Lemma 7.11 implies

Eν max
t∈Sk

|gt| ≤
k∑

i=1

Eν max
t∈Ti

∣∣gt − gπi−1(t)

∣∣ ≤ 2K
k∑

i=1

√
ln(2 · 22i−1) s2i−1 .

Let us write S :=
⋃∞

i=0 Ti. Then we have maxt∈Sk
|gt| ↗ supt∈S |gt| for k →

∞, and by Beppo Levi’s theorem we hence obtain
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Eν sup
t∈S
|gt| ≤ 2

√
ln 4K

∞∑
i=0

2i/2s2i .

Since S is dense in T , we then obtain the assertion by (7.13), the definition
of s2i , and taking the limit ε→ 0. ��

With the help of Dudley’s chaining, we can now establish our first bound
on empirical Rademacher averages.

Theorem 7.13. For every non-empty set H ⊂ L0(Z) and every finite se-
quence D := (z1, . . . , zn) ∈ Zn, we have

RadD(H, n) ≤
√

ln 16
n

( ∞∑
i=1

2i/2 e2i

(H ∪ {0}, L2(D)
)

+ sup
h∈H
‖h‖L2(D)

)
.

Proof. We consider T := H ∪ {0} as a subset of L2(D) and equip it with the
metric d defined by ‖ · ‖L2(D). Since L2(D) is finite-dimensional, (T, d) is a
separable metric space. Let us now fix a Rademacher sequence ε1, . . . , εn with
respect to a distribution ν on some Θ. Moreover, for h ∈ T , we define the
function gh : Θ → R by gh(θ) := 1

n

∑n
i=1 εi(θ)h(zi), θ ∈ Θ. Obviously, this

yields g0 = 0 and gh ∈ L0(Θ), h ∈ T . Moreover, the convergence with respect
to ‖ · ‖L2(D) implies pointwise convergence on z1, . . . , zn, and hence, for each
fixed θ ∈ Θ, the map h �→ gh(θ) is continuous with respect to the metric
d. In other words, (gh)h∈T is a separable Carathéodory family. Let us now
establish a bound of the form (7.20). To this end, we observe that for a ∈ R

and i = 1, . . . , n we have Eνe
aεi = 1

2 (ea + e−a) ≤ ea2/2. For h ∈ L2(D), the
independence of ε1, . . . , εn and ‖h‖2L2(D) = 1

n

∑n
i=1 h

2(zi) thus yields

Eν exp
(
λ

n

n∑
i=1

εih(zi)
)

=
n∏

i=1

Eνe
λh(zi)

n εi ≤
n∏

i=1

e
λ2h2(zi)

2n2 = exp
(
λ2‖h‖2L2(D)

2n

)

for all λ ∈ R. From this we conclude that

Eν exp
(
λ(gh1 − gh2)

) ≤ exp
(
λ2‖h1 − h2‖2L2(D)

2n

)

for all λ ∈ R and all h1, h2 ∈ T . Consequently, (7.20) is satisfied for K :=
(2n)−1/2, and hence we obtain the assertion by Theorem 7.12. ��

Before we return to our main goal, i.e., estimating ED∼PnRadD(Hr, n) for
Hr defined by (7.15), we need two simple lemmas. The first one compares the
entropy numbers of H ∪ {0} with those of H.

Lemma 7.14. For all H ⊂ L0(Z), all D ∈ Zn, and all i ≥ 2, we have

e1
(H ∪ {0}, L2(D)

) ≤ sup
h∈H
‖h‖L2(D) ,

ei

(H ∪ {0}, L2(D)
) ≤ ei−1(H, L2(D)) .
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Proof. The first inequality immediately follows from 0 ∈ H∪{0}. To show the
second inequality, we fix an ε-net T ⊂ H of H having cardinality |T | ≤ 2i−2.
Then T ∪{0} ⊂ H∪{0} is an ε-net of H∪{0} satisfying |T ∪{0}| ≤ 2i−2 +1.
Using 2i−2 + 1 ≤ 2i−1, i ≥ 2, we then find the second assertion. ��

The second technical lemma estimates sums of the form
∑∞

i=1 2i/2s2i for
positive sequences (si) of known decay.

Lemma 7.15. Let (si) ⊂ [0,∞) be a decreasing sequence for which there are
a > 0 and p ∈ (0, 1) such that s1 ≤ a 2−

1
2p and si ≤ a i− 1

2p for all i ≥ 2. Then
we have ∞∑

i=0

2i/2s2i ≤
√

2Cp
p

(
√

2− 1)(1− p) a
p s1−p

1 , (7.21)

where

Cp :=
√

2− 1√
2− 2

2p−1
2p

· 1− p
p

. (7.22)

Proof. Let us fix a t ≥ 0 and a natural number n ≥ 1 such that n−1 ≤ t < n.
Then a simple application of the geometric series yields

n−1∑
i=0

2i/2s2i ≤ s1
n−1∑
i=0

2i/2 = s1
2n/2 − 1√

2− 1
≤
√

2 s1√
2− 1

2t/2 ,

and a similar argument shows that

∞∑
i=n

2i/2s2i ≤ a
∞∑

i=n

2
i
2− i

2p = a

( ∞∑
i=0

2
i
2− i

2p −
n−1∑
i=0

2
i
2− i

2p

)
≤ a 2

t(p−1)
2p

1− 2
p−1
2p

.

Combining both estimates, we then obtain that for all t ≥ 0 we have

∞∑
i=0

2i/2s2i ≤ c1eα1t + c2e
α2t , (7.23)

where c1 :=
√

2√
2−1

s1, α1 := ln 2
2 , c2 := a

(
1− 2

p−1
2p
)−1, and α2 := (p−1) ln 2

2p .
Now it is easy to check that the function t �→ c1e

α1t + c2e
α2t is minimized at

t∗ :=
1

α2 − α1
ln
(
−α1c1
α2c2

)
=

2p
ln 2

ln
(
aCp

s1

)
≥ 2p

ln 2
ln
(
2

1
2pCp

)
.

In order to show t∗ ≥ 0, we write f(x) := (
√

2 − 1)2xx and g(x) = 2x/2 − 1
for x ≥ 0. Since for xp := 1

p − 1 we have

2
1
2pCp = (

√
2− 1) · 2( 1

p−1) 1
2

1− 2−( 1
p−1) 1

2
·
(

1
p
− 1
)

=
f(xp)
g(xp)

,
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it then suffices to show f(x) ≥ g(x) for all x > 0. However, the latter follows
from f(0) = g(0) = 0,

f ′(x) = (
√

2− 1)2x(x ln 2 + 1) ≥ 2x(
√

2− 1) > 2x/2 ln
√

2 = g′(x) , x ≥ 0,

and the fundamental theorem of calculus. Plugging t∗ into (7.23) together
with some simple but tedious calculations then yields the assertion. ��

With the help of the preceding lemmas, we can now establish an upper
bound for expectations of empirical Rademacher averages.

Theorem 7.16. Let H ⊂ L0(Z) be a separable Carathéodory set and P be a
distribution on Z. Suppose that there exist constants B ≥ 0 and σ ≥ 0 such
that ‖h‖∞ ≤ B and EPh

2 ≤ σ2 for all h ∈ H. Furthermore, assume that for
a fixed n ≥ 1 there exist constants p ∈ (0, 1) and a ≥ B such that

ED∼Pn ei(H, L2(D)) ≤ a i−
1
2p , i ≥ 1. (7.24)

Then there exist constants C1(p) > 0 and C2(p) > 0 depending only on p such
that

ED∼PnRadD(H, n) ≤ max
{
C1(p) apσ1−pn−

1
2 , C2(p) a

2p
1+pB

1−p
1+p n−

1
1+p

}
.

Proof. For si := ED∼Pn ei(H∪{0}, L2(D)), i ≥ 2, and ã := 2
1
2p a, Lemma 7.14

yields
si ≤ ED∼Pn ei−1(H, L2(D)) ≤ a(i− 1)−

1
2p ≤ ãi− 1

2p . (7.25)

Furthermore, for

δD := sup
h∈H
‖h‖L2(D) , D ∈ Zn ,

and s1 := ED∼PnδD, we have s1 ≤ B ≤ a = ã2−
1
2p . Moreover, the mono-

tonicity of the entropy numbers together with Lemma 7.14 shows that s2 ≤
ED∼Pn e1(H ∪ {0}, L2(D)) ≤ s1, and hence it is easy to conclude that (si) is
decreasing. By Theorem 7.13 and Lemma 7.15, we hence find

ED∼PnRadD(H, n) ≤
√

ln 16
n

∞∑
i=0

2i/2 s2i

≤ 1√
n
· 2

√
ln 16

(
√

2− 1)(1− p)C
p
p

(
ED∼PnδD

)1−p
ap .

Moreover, Corollary A.8.5 yields

ED∼PnδD ≤ (ED∼Pnδ2D)1/2 ≤ (σ2 + 8B ED∼PnRadD(H, n)
)1/2

,

and hence we obtain
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ED∼PnRadD(H, n) ≤ 2
√

ln 16Cp
p

(
√

2− 1)(1− p) ·
ap

√
n

(
σ2+8B ED∼PnRadD(H, n)

) 1−p
2 .

In the case σ2 ≥ 8B ED∼PnRadD(H, n), we conclude that

ED∼PnRadD(H, n) ≤ 2
√

ln 256Cp
p

(
√

2− 1)(1− p)2p/2
· a

p

√
n
· σ1−p ,

and in the case σ2 < 8B ED∼PnRadD(H, n) we have

ED∼PnRadD(H, n) ≤ 8
√

ln 16Cp
p

(
√

2− 1)(1− p)4p
· a

p

√
n
· (B ED∼PnRadD(H, n)

) 1−p
2 .

Simple algebraic transformations then yield the assertion. ��
Numerical calculations show that the constants obtained in the proof of

Theorem 7.16 satisfy (1− p)C1(p) ∈ [6.8, 12.25] and (1− p)C2(p) ∈ [5.68, 6.8].
Further calculations for C1(p) yield limp→0 C1(p) ≤ 11.38 and limp→1(1− p)
C1(p) ≈ 6.8. Finally, similar calculations for C2(p) give limp→0 C2(p) ≈ 5.68
and limp→1(1 − p)C2(p) ≤ 6.8. However, it is obvious from the proof above
that we can, e.g., obtain smaller values for C2(p) for the price of larger values
for C1(p), and hence the calculations above only illustrate how C1(p) and
C2(p) can be estimated.

Before we use these estimates on the Rademacher averages to bound the
term

ED∼Pn sup
h∈Hr

∣∣EPh− EDh
∣∣

on the left-hand side of (7.16), we present a simple lemma that estimates the
entropy numbers of a set H := {L ◦ f − L ◦ f∗L,P : f ∈ F} by the entropy
numbers of the “base” set F .

Lemma 7.17. Let L : X × Y ×R→ [0,∞) be a locally Lipschitz continuous
loss, P be a distribution on X × Y , and q ∈ [1,∞] and M > 0 be constants.
Assume that we have E(x,y)∼PL

q(x, y, 0) <∞. Furthermore, let F ⊂ Lq(PX)
be a non-empty set and f0 ∈ L0(PX) be an arbitrary function. We write

H :=
{
L ◦�

f − L ◦�
f0 : f ∈ F} ,

where �· is the clipping operation at M defined in (2.14). Then we have

en

(H, ‖ · ‖Lq(P)

) ≤ |L|M,1 · en

(F , ‖ · ‖Lq(PX)

)
, n ≥ 1.

Proof. For L ◦ �F := {L ◦ �
f : f ∈ F}, we have L ◦ �F ⊂ Lq(P) by (2.11) and

E(x,y)∼PL
q(x, y, 0) <∞. In addition, we obviously have

en

(H, ‖ · ‖Lq(P)

) ≤ en

(
L ◦�F , ‖ · ‖Lq(P)

)
, n ≥ 1.
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Now let f1, . . . , f2n−1 be an ε-net of F with respect to ‖ · ‖Lq(PX). For f ∈ F ,
there then exists an i ∈ {1, . . . , 2n−1} such that ‖f−fi‖Lq(PX) ≤ ε. Moreover,

the clipping operation obviously satisfies |�s −�t | ≤ |s− t| for all s, t ∈ R. For
q <∞, we thus obtain

‖L ◦�
f − L ◦�

fi ‖qLq(P) =
∫

X×Y

∣∣L(x, y,
�
f (x))− L(x, y,

�
fi(x))

∣∣q dP(x, y)

≤ |L|qM,1

∫
X

∣∣�f (x)−�
fi(x)
∣∣q dPX(x)

≤ |L|qM,1 · εq ,

and consequently, L◦�f1, . . . , L◦�f2n−1 is an |L|M,1 · ε-net of L◦�F with respect
to ‖ · ‖Lq(P). From this we easily find the assertion. The case q = ∞ can be
shown analogously. ��

Let us now return to our example at the beginning of this section, where
we applied Talagrand’s inequality to the set Gr := {gf,r : f ∈ F} defined by
(7.12). To this end, let us assume that L is a locally Lipschitz continuous loss
function3 and F ⊂ L0(X) is a non-empty subset. Assume that F is equipped
with a complete, separable metric dominating the pointwise convergence and
that all f ∈ F satisfy ‖f‖∞ ≤ M for a suitable constant M > 0. Moreover,
we assume that there exists a B > 0 such that

L(x, y, t) ≤ B , (x, y) ∈ X × Y, t ∈ [−M,M ].

In addition, let P be a distribution on X × Y and f∗L,P : X → [−M,M ] be a
Bayes decision function. Note that combining these assumptions, we see that
the supremum bound (7.5) of Theorem 7.2 holds for all f ∈ F . Furthermore,
these assumption match those of Proposition 6.22, which established our first
oracle inequality for ERM over infinite function classes. Assume further that
there exist constants ϑ ∈ [0, 1] and V ≥ B2−ϑ such that for all f ∈ F we have

EP

(
L ◦ f − L ◦ f∗L,P

)2 ≤ V · (EP(L ◦ f − L ◦ f∗L,P)
)ϑ
. (7.26)

Let us now define Hr by (7.15), i.e., Hr := {hf : f ∈ F and EPhf ≤ r}, where
hf := L ◦ f −L ◦ f∗L,P. Finally, let us assume that there exist constants a > 0
and p ∈ (0, 1) such that

ED∼Pnei(F , L2(D)) ≤ a i−
1
2p , i, n ≥ 1. (7.27)

Now note that ‖f‖∞ ≤ M implies
�
f = f for all f ∈ F , where �· denotes

the clipping operation at M . Applying Lemma 7.17 together with (A.36)
therefore yields ED∼Pnei(Hr, L2(D)) ≤ 2a|L|M,1i

− 1
2p for all i, n ≥ 1 and all

3 Loss functions that can be clipped will be considered in the following section.
Here we assume for the sake of simplicity that clipping is superfluous.
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r > r∗ := inf{EPhf : f ∈ F}. In addition, (7.26) implies EPh
2 ≤ V rϑ for all

h ∈ Hr, and thus we obtain

ED∼PnRadD(Hr, n) ≤ Cmax
{
r

ϑ(1−p)
2 n−

1
2 , n−

1
1+p

}
by Theorem 7.16, where the constant C depends on a, p, M , B, and V . By
(7.17) and Proposition 7.10, we thus find that

sup
f∈F

EPhf − EDhf

EPhf + r
<

16C√
nr2−ϑ(1−p)

+
16C

n1/(1+p)r
+

√
2V τ
nr2−ϑ

+
5Bτ
3nr

holds with probability Pn not less than 1 − e−τ . Let us now assume that
we consider a measurable ERM over the set F . By replacing (7.9) with the
inequality above, the proof of Theorem 7.2 then yields after some basic yet
exhausting calculations4 that for fixed τ ≥ 1 and n ≥ 1 we have

RL,P(fD)−R∗
L,P ≤ 6

(R∗
L,P,F −R∗

L,P

)
+ c
√
τn−

1
2−ϑ+ϑp (7.28)

with probability Pn not less than 1− e−τ , where c is a constant independent
of τ and n. To appreciate this oracle inequality, we briefly compare it with
our previous results for ERM. Our first approach using covering numbers led
to Proposition 6.22, which for classes F ⊂ L∞(X) satisfying the assumption

ei(F , ‖ · ‖∞) ≤ a i−
1
2p , i ≥ 1, (7.29)

showed that for fixed τ ≥ 1 and n ≥ 1 we have

RL,P(fD)−R∗
L,P ≤ (R∗

L,P,F −R∗
L,P) + c̃

√
τn−

1
2+2p (7.30)

with probability Pn not less than 1− e−τ , where c̃ is a constant independent
of τ and n. Now note that, for p ∈ (0, 1), condition (7.29) implies (7.27) and
hence the oracle inequality (7.28) derived by the more involved techniques also
holds. Moreover, we have 2+2p > 2−ϑ+ϑp by at least 2p, and consequently
(7.30) has worse behavior in the sample size n than (7.28). In this regard, it
is also interesting to note that a brute-force approach (see Exercise 7.3) for
generalizing Theorem 7.2 with the help of covering numbers does provide an
improvement compared with (7.30). However, this improved oracle inequality
is still not as sharp as (7.28).

Another difference between the oracle inequalities above is that (7.30) es-
timates against R∗

L,P,F −R∗
L,P, which at first glance seems to be more inter-

esting than 6(R∗
L,P,F −R∗

L,P) considered in (7.28). However, in the following,
we are mainly interested in situations where the sets F become larger with
the sample size, and hence this effect will be negligible for our purposes.

Finally, to compare (7.28) with the oracle inequality of Theorem 7.2, we
assume that F is a finite set. Then it is easy to see that the entropy assumption
(7.27) is satisfied for all p ∈ (0, 1), and hence (7.28) essentially recovers, i.e.,
modulo an arbitrarily small change in the exponent of n, Theorem 7.2.
4 Since we will establish a more general inequality in the next section we omit the

details of the estimation as well as an explicit upper bound on the constant c.
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7.4 Refined Oracle Inequalities for SVMs

The goal of this section is to establish improved oracle inequalities for SVMs
using the ideas of the previous section.

Let us begin by recalling Section 6.5, where we saw that oracle inequali-
ties for SVMs can be used to investigate data-dependent parameter selection
strategies if the loss can be clipped . In the following, we will therefore focus
solely on such loss functions. Moreover, we will first consider the following
modification of regularized empirical risk minimization.

Definition 7.18. Let L : X × Y × R → [0,∞) be a loss that can be clipped,
F ⊂ L0(X) be a subset, Υ : F → [0,∞) be a function, and ε ≥ 0. A learning
method whose decision functions fD satisfy

Υ (fD) +RL,D(
�
fD) ≤ inf

f∈F
Υ (f) +RL,D(f) + ε (7.31)

for all n ≥ 1 and D ∈ (X×Y )n is called ε-approximate clipped regularized
empirical risk minimization (ε-CR-ERM) with respect to L, F , and Υ .

Moreover, in the case ε = 0, we simply speak of clipped regularized
empirical risk minimization (CR-ERM).

Note that on the right-hand side of (7.31) the unclipped loss is considered,
and hence CR-ERM does not necessarily minimize the regularized clipped
empirical risk Υ ( · ) +RL,D(�· ). Moreover, in general CR-ERMs do not mini-
mize the regularized risk Υ ( · )+RL,D( · ) either, because on the left-hand side
of (7.31) the clipped function is considered. However, if we have a minimizer
of the unclipped regularized risk, then it automatically satisfies (7.31). In par-
ticular, SVM decision functions satisfy (7.31) for the regularizer Υ := λ‖ · ‖2H
and ε := 0. In other words, SVMs are CR-ERMs.

Before we establish an oracle inequality for CR-ERMs, let us first ensure
that there exist measurable versions. This is done in the following lemma.

Lemma 7.19 (Measurability of CR-ERMs). Let L : X×Y ×R→ [0,∞)
be a loss that can be clipped and F ⊂ L0(X) be a subset that is equipped with a
complete, separable metric dominating the pointwise convergence. Moreover,
let Υ : F → [0,∞) be a function that is measurable with respect to the corre-
sponding Borel σ-algebra on F . Then, for all ε > 0, there exists a measurable
ε-CR-ERM with respect to L, F , and Υ . Moreover, if there exists a CR-ERM,
then there also exists a measurable CR-ERM. Finally, in both cases, the map
D �→ Υ (fD) mapping (X × Y )n to [0,∞) is measurable for all n ≥ 1.

Proof. The maps (D, f) �→ Υ (f) + RL,D(
�
f ) and (D, f) �→ Υ (f) + RL,D(f)

are measurable by Lemma 2.11, where for the measurability of the first map
we consider the clipped version of L, i.e.,

�
L(x, y, t) := L(x, y,�t ) , (x, y) ∈ X × Y, t ∈ R.
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Consequently, the maps above are also measurable with respect to the univer-
sal completion of the σ-algebra on (X × Y )n. By part iii) of Lemma A.3.18,
the map h : (X × Y )n ×F → R defined by

h(D, f) := Υ (f) +RL,D(
�
f )− inf

f ′∈F
(
Υ (f ′) +RL,D(f ′)

)
,

D ∈ (X × Y )n, f ∈ F , is therefore measurable with respect to the universal
completion of the σ-algebra on (X × Y )n. For A := (−∞, ε], we now consider
the map F : (X × Y )n → 2F defined by

F (D) :=
{
f ∈ F : h(D, f) ∈ A} , D ∈ (X × Y )n.

Obviously, F (D) contains exactly the functions f satisfying (7.31). Moreover,
in the case ε > 0, we obviously have F (D) �= ∅ for all D ∈ (X × Y )n, while in
the case ε = 0 this follows from the existence of a CR-ERM. Therefore, part
ii) of Lemma A.3.18 shows that there exists a measurable map D �→ fD such
that fD ∈ F (D) for all D ∈ (X × Y )n. The first two assertions can then be
shown by a literal repetition of the proof of Lemma 6.17. The last assertion
follows from the measurability of Υ . ��

Before we present the first main result of this section, which establishes an
oracle inequality for general ε-CR-ERMs, we first need to introduce a few more
notations. To this end, we assume that L, F , and Υ satisfy the assumptions
of Lemma 7.19. Moreover, let P be a distribution on X × Y such that there
exists a Bayes decision function f∗L,P : X → [−M,M ], where M > 0 is the
constant at which L can be clipped. For

r∗ := inf
f∈F

Υ (f) +RL,P(
�
f )−R∗

L,P (7.32)

and r > r∗, we write

Fr := {f ∈ F : Υ (f) +RL,P(
�
f )−R∗

L,P ≤ r} , (7.33)

Hr := {L ◦�
f − L ◦ f∗L,P : f ∈ Fr} , (7.34)

where, as usual, L◦g denotes the function (x, y) �→ L(x, y, g(x)). Furthermore,
assume that there exist constants B > 0, ϑ ∈ [0, 1], and V ≥ B2−ϑ such that

L(x, y, t) ≤ B , (7.35)

EP

(
L ◦�

f − L ◦ f∗L,P

)2 ≤ V · (EP(L ◦�
f − L ◦ f∗L,P)

)ϑ
, (7.36)

for all (x, y) ∈ X × Y , t ∈ [−M,M ], and f ∈ F . In the following, (7.35) is
called a supremum bound and (7.36) is called a variance bound.

With the help of these notions, we can now formulate the first main result
of this section.
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Theorem 7.20 (Oracle inequality for CR-ERMs). Let L : X×Y ×R→
[0,∞) be a continuous loss that can be clipped at M > 0 and that satisfies
(7.35) for a constant B > 0. Moreover, let F ⊂ L0(X) be a subset that is
equipped with a complete, separable metric dominating the pointwise conver-
gence, and let Υ : F → [0,∞) be a continuous function. Given a distribution
P on X × Y that satisfies (7.36), we define r∗ and Hr by (7.32) and (7.34),
respectively. Assume that for fixed n ≥ 1 there exists a ϕn : [0,∞) → [0,∞)
such that ϕn(4r) ≤ 2ϕn(r) and

ED∼PnRadD(Hr, n) ≤ ϕn(r) (7.37)

for all r > r∗. Finally, fix an f0 ∈ F and a B0 ≥ B such that ‖L◦f0‖∞ ≤ B0.
Then, for all fixed ε ≥ 0, τ > 0, and r > 0 satisfying

r > max
{

30ϕn(r),
(

72V τ
n

) 1
2−ϑ

,
5B0τ

n
, r∗
}
, (7.38)

every measurable ε-CR-ERM satisfies

Υ (fD) +RL,P(
�
fD)−R∗

L,P ≤ 6
(
Υ (f0) +RL,P(f0)−R∗

L,P

)
+ 3r + 3ε

with probability Pn not less than 1− 3e−τ .

Note that the value of r in Theorem 7.20 is only implicitly determined by
the relation r > 30ϕn(r) appearing in (7.38). Of course, for particular types
of functions ϕn, this implicit definition can be made explicit, and we will see
in the following that for SVMs this is even a relatively easy task.

Proof. As usual, we define hf := L ◦ f − L ◦ f∗L,P for all f ∈ L0(X). By the
definition of fD, we then have

Υ (fD) + EDh�
fD
≤ Υ (f0) + EDhf0 + ε ,

and consequently we obtain

Υ (fD) +RL,P(
�
fD)−R∗

L,P

= Υ (fD) + EPh�
fD

≤ Υ (f0) + EDhf0 − EDh�
fD

+ EPh�
fD

+ ε

= (Υ (f0) + EPhf0) + (EDhf0 − EPhf0) + (EPh�
fD

− EDh�
fD

) + ε (7.39)

for all D ∈ (X × Y )n. Let us first bound the term EDhf0 − EPhf0 . To this
end, we further split this difference into

EDhf0−EPhf0 =
(
ED(hf0−h�

f0
)−EP(hf0−h�

f0
)
)
+
(
EDh�

f0
−EPh�

f0

)
. (7.40)

Now observe that L◦f0−L◦�f0 ≥ 0 implies hf0−h�
f0

= L◦f0−L◦�f0 ∈ [0, B0],
and hence we obtain
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EP

(
(hf0 − h�

f0
)− EP(hf0 − h�

f0
)
)2 ≤ EP(hf0 − h�

f0
)2 ≤ B0 EP(hf0 − h�

f0
) .

Consequently, Bernstein’s inequality stated in Theorem 6.12 and applied to
the function h := (hf0 − h�

f0
)− EP(hf0 − h�

f0
) shows that

ED(hf0 − h�
f0

)− EP(hf0 − h�
f0

) <

√
2τB0 EP(hf0 − h�

f0
)

n
+

2B0τ

3n

holds with probability Pn not less than 1−e−τ . Moreover, using
√
ab ≤ a

2 + b
2 ,

we find √
2τB0 EP(hf0 − h�

f0
)

n
≤ EP(hf0 − h�

f0
) +

B0τ

2n
,

and consequently we have

ED(hf0 − h�
f0

)− EP(hf0 − h�
f0

) < EP(hf0 − h�
f0

) +
7B0τ

6n
(7.41)

with probability Pn not less than 1− e−τ .
In order to bound the remaining term in (7.40), we now recall the proof

of Theorem 7.2, where we note that (7.35) implies (7.5). Consequently, (7.8)
shows that with probability Pn not less than 1− e−τ we have

EDh�
f0
− EPh�

f0
< EPh�

f0
+
(2V τ
n

) 1
2−ϑ

+
4Bτ
3n

.

By combining this estimate with (7.41) and (7.40), we now obtain that with
probability Pn not less than 1− 2e−τ we have

EDhf0 − EPhf0 < EPhf0 +
(2V τ
n

) 1
2−ϑ

+
4Bτ
3n

+
7B0τ

6n
, (7.42)

i.e., we have established a bound on the second term in (7.39).
Let us now consider the case n < 72τ . Then the assumption B2−ϑ ≤ V

implies B < r. Combining (7.42) with (7.39) and using both B ≤ B0 and
EPh�

fD

− EDh�
fD

≤ 2B we hence find

Υ (fD) +RL,P(
�
fD)−R∗

L,P

≤ Υ (f0) + 2EPhf0 +
(2V τ
n

) 1
2−ϑ

+
5B0τ

2n
+ (EPh�

fD

− EDh�
fD

) + ε

≤ 6
(
Υ (f0) +RL,P(f0)−R∗

L,P

)
+ 3r + ε

with probability Pn not less than 1− 2e−τ .
Consequently, it remains to consider the case n ≥ 72τ . In order to establish

a non-trivial bound on the term EPh�
fD
−EDh�

fD
in (7.39), we define functions
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gf,r :=
EPh�

f
− h�

f

Υ (f) + EPh�
f

+ r
, f ∈ F , r > r∗.

Obviously, for f ∈ F , we then have ‖gf,r‖∞ ≤ 2Br−1, and for ϑ > 0, q := 2
2−ϑ ,

q′ := 2
ϑ , a := r, and b := EPh�

f
�= 0, the second inequality of Lemma 7.1 yields

EPg
2
f,r ≤

EPh
2
�
f

(EPh�
f

+ r)2
≤

(2− ϑ)2−ϑϑϑ EPh
2
�
f

4r2−ϑ(EPh�
f

)ϑ
≤ V rϑ−2 . (7.43)

Moreover, for ϑ > 0 and EPh�
f

= 0, we have EPh
2
�
f

= 0 by the variance bound

(7.36), which in turn implies EPg
2
f,r ≤ V rϑ−2. Finally, it is not hard to see

that EPg
2
f,r ≤ V rϑ−2 also holds for ϑ = 0. By simple modifications of Lemma

7.6 and its proof, we further see that all families of maps considered below
are Carathéodory families. Symmetrization by Proposition 7.10 thus yields

ED∼Pn sup
f∈Fr

∣∣ED(EPh�
f
− h�

f
)
∣∣ ≤ 2ED∼PnRadD(Hr, n) ≤ 2ϕn(r) .

Peeling by Theorem 7.7 together with Fr = {f ∈ F : Υ (f)+EPh�
f
≤ r} hence

gives

ED∼Pn sup
f∈F

∣∣EDgf,r

∣∣ ≤ 8ϕn(r)
r

.

By Talagrand’s inequality in the form of Theorem 7.5 applied to γ := 1/4, we
therefore obtain

Pn

(
D ∈ (X × Y )n : sup

f∈F
EDgf,r <

10ϕn(r)
r

+

√
2V τ
nr2−ϑ

+
28Bτ
3nr

)
≥ 1− e−τ

for all r > r∗. Using the definition of gfD,r, we thus have with probability Pn

not less than 1− e−τ that

EPh�
fD
− EDh�

fD
<
(
Υ (fD) + EPh�

fD

)(10ϕn(r)
r

+

√
2V τ
nr2−ϑ

+
28Bτ
3nr

)

+10ϕn(r) +

√
2V τrϑ

n
+

28Bτ
3n

.

By combining this estimate with (7.39) and (7.42), we then obtain that

Υ (fD) + EPh�
fD

< Υ (f0) + 2EPhf0 +
(2V τ
n

) 1
2−ϑ

+
7B0τ

6n
+ ε

+
(
Υ (fD) + EPh�

fD

)(10ϕn(r)
r

+

√
2V τ
nr2−ϑ

+
28Bτ
3nr

)

+10ϕn(r) +

√
2V τrϑ

n
+

32Bτ
3n

(7.44)
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holds with probability Pn not less than 1 − 3e−τ . Consequently, it remains
to bound the various terms. To this end, we first observe that r ≥ 30ϕn(r)
implies 10ϕn(r)r−1 ≤ 1/3 and 10ϕn(r) ≤ r/3. Moreover, r ≥ ( 72V τ

n

)1/(2−ϑ)

yields ( 2V τ
nr2−ϑ

)1/2

≤ 1
6

and
(2V τrϑ

n

)1/2

≤ r

6
.

In addition, n ≥ 72τ , V ≥ B2−ϑ, and r ≥ ( 72V τ
n

)1/(2−ϑ) imply

28Bτ
3nr

=
7
54
· 72τ
n
· B
r
≤ 7

54
·
(72τ
n

) 1
2−ϑ · V

1
2−ϑ

r
≤ 7

54

and 32Bτ
3n ≤ 4r

27 . Finally, using 6 ≤ 361/(2−ϑ), we obtain
(

2V τ
n

)1/(2−ϑ) ≤ r
6 .

Using these elementary estimates in (7.44), we see that

Υ (fD) + EPh�
fD
< Υ (f0) + 2EPhf0 +

7B0τ

6n
+ ε+

17
27
(
Υ (fD) + EPh�

fD

)
+

22r
27

holds with probability Pn not less than 1−3e−τ . We now obtain the assertion
by some simple algebraic transformations together with r > 5B0τ

n . ��
Starting from Theorem 7.20, it is straightforward to recover the ERM

oracle inequality (7.28) obtained in the previous section. The details are left
to the interested reader.

Before we apply the general oracle inequality above to SVMs, we need the
following lemma, which estimates entropy numbers for RKHSs.

Lemma 7.21 (A general entropy bound for RKHSs). Let k be a kernel
on X with RKHS H. Moreover, let n ≥ 2, D := (x1, . . . , xn) ∈ Xn, and
D be the associated empirical measure. Then there exists a constant K ≥ 1
independent of X, H, D, and n such that

∞∑
i=1

2i/2e2i(id : H → L2(D)) ≤ K
√

lnn ‖k‖L2(D) .

Proof. We have rank(id : H → L2(D)) ≤ dimL2(D) ≤ n, and hence the
definition (A.29) of the approximation numbers yields ai(id : H → L2(D)) = 0
for all i > n. By Carl’s inequality in the form of (A.43), we thus find that

∞∑
i=0

2i/2e2i(id : H → L2(D)) ≤ c2,1

log2 n∑
i=0

2i/2a2i(id : H → L2(D))

≤ c2,1

√
1+log2 n

(
log2 n∑
i=0

2ia2
2i(id : H → L2(D))

)1
2

,

where in the last step we used Hölder’s inequality. Moreover, the sequence
(ai) defined by ai := ai(id : H → L2(D)), i ≥ 1, is decreasing, and hence we
have
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log2 n∑
i=0

2ia2
2i ≤ 2

∞∑
i=0

2i−1a2
2i ≤ 2

∞∑
i=1

2i−1∑
j=2i−1

a2
j = 2

∞∑
i=1

a2
i .

Now recall that we have seen in Theorems 4.26 and 4.27 that id : H → L2(D)
is the adjoint S∗

k of the Hilbert-Schmidt operator Sk : L2(D) → H defined
by (4.17), and hence S∗

k is Hilbert-Schmidt and in particular compact. More-
over, recall (A.29) and the subsequent paragraph, where we have seen that
the approximation numbers equal the singular numbers for compact opera-
tors acting between Hilbert spaces. With this information, (A.27), and the
estimates above, we now find that for K := 3c2,1 we have

∞∑
i=0

2i/2e2i(id : H → L2(D)) ≤ K
√

log2 n

( ∞∑
i=1

a2
i (id : H → L2(D))

)1/2

= K
√

log2 n

( ∞∑
i=1

s2i (S
∗
k : H → L2(D))

)1/2

= K
√

log2 n ‖S∗
k‖HS .

Finally, recall that an operator shares its Hilbert-Schmidt norm with its ad-
joint, and hence we find ‖S∗

k‖HS = ‖Sk‖HS = ‖k‖L2(D) by Theorem 4.27. ��
Let us now formulate our first improved oracle inequality for SVMs, which

holds under somewhat minimal assumptions.

Theorem 7.22 (Oracle inequality for SVMs). Let L : X×Y ×R→ [0,∞)
be a Lipschitz continuous loss with |L|1 ≤ 1 that can be clipped at M > 0 and
that satisfies the supremum bound (7.35) for a constant B ≥ 1. Furthermore,
let P be a distribution on X × Y and H be a separable RKHS of a bounded
measurable kernel k on X with ‖k‖∞ ≤ 1. Then there exists a constant K > 0
such that for all fixed τ ≥ 1, n ≥ 2, and λ > 0 the SVM associated with L
and H satisfies

λ‖fD,λ‖2 +RL,P(
�
fD,λ)−R∗

L,P ≤ 9A2(λ) +K
lnn
λn

+
15τ
n

√
A2(λ)
λ

+
300Bτ√

n

with probability Pn not less than 1− 3e−τ , where A2( · ) denotes the approxi-
mation error function associated with L and H.

Proof. We will use Theorem 7.20 for the regularizer Υ : H → [0,∞) defined
by Υ (f) := λ‖f‖2H . To this end, we write

Fr := {f ∈ H : λ‖f‖2H +RL,P(
�
f )−R∗

L,P ≤ r} , (7.45)

Hr := {L ◦�
f − L ◦ f∗L,P : f ∈ Fr} . (7.46)

From λ‖f‖2H ≤ λ‖f‖2H +RL,P(
�
f )−R∗

L,P, we conclude Fr ⊂ (r/λ)1/2BH , and
hence we have
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ei(Fr, L2(DX)) ≤ 2(r/λ)1/2ei(id : H → L2(DX))

by (A.36). Consequently, Lemmas 7.17 and 7.21 yield

∞∑
i=0

2
i
2 e2i(Hr, L2(D)) ≤

∞∑
i=0

2
i
2 e2i(Fr, L2(DX)) ≤ K1

( r
λ

)1/2√
lnn ,

where K1 > 0 is a universal constant. Therefore, Theorem 7.13 together with
Lemma 7.14 shows that

RadD(Hr, n) ≤
√

ln 16
n

( ∞∑
i=1

2
i
2 e2i

(Hr ∪ {0}, L2(D)
)

+ sup
h∈Hr

‖h‖L2(D)

)

≤
√

ln 16
n

(
2

∞∑
i=0

2
i
2 e2i(Hr, L2(D)) +B

)

≤ K2

( r
λn

)1/2√
lnn+B

√
ln 16
n

, (7.47)

where K2 > 0 is another universal constant. Let us denote the right-hand side
of (7.47) by ϕn(r). Some elementary calculations then show that the condition
r ≥ 30ϕn(r) is fulfilled for

r ≥ max
{
K3

lnn
λn

,
100B√
n

}
,

where K3 > 0 is another universal constant. Moreover, the variance bound
(7.36) is satisfied for ϑ := 0 and V := B2. In other words, the requirement
r ≥ (72V τ

n )1/(2−ϑ) is fullfilled for r ≥ 9B
√
τ/n. Consequently, it remains to

fix an f0 ∈ H and estimate the corresponding B0. Let us choose f0 := fP,λ.
Then we have

L(x, y, fP,λ(x)) ≤ L(x, y, 0) +
∣∣L(x, y, fP,λ(x))− L(x, y, 0)

∣∣ ≤ B + ‖fP,λ‖∞
for all (x, y) ∈ (X × Y ), and combining this estimate with ‖fP,λ‖∞ ≤
‖fP,λ‖H and

λ‖fP,λ‖2H ≤ λ‖fP,λ‖2H +RL,P(fP,λ)−R∗
L,P = A2(λ)

yields ‖L ◦ fP,λ‖∞ ≤ B +
√
λ−1A2(λ) =: B0. For

r := K3
lnn
λn

+
100Bτ√

n
+

5τ
n

√
A2(λ)
λ

+ r∗ ,

where r∗ is defined by (7.32), it is then easy to check that (7.38) is satis-
fied. Applying Theorem 7.20 together with r∗ ≤ A2(λ) and some elementary
calculations then yields the assertion. ��
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It is interesting to note that Theorem 7.22 as well as the following oracle
inequality also hold (in a suitably modified form) for “ε-approximate clipped
SVMs”. We refer to Exercise 7.4 for a precise statement.

Let us now show how we can improve Theorem 7.22 when additional know-
ledge on the RKHS in terms of entropy numbers is available.

Theorem 7.23 (Oracle inequality for SVMs using benign kernels).
Let L : X × Y × R → [0,∞) be a locally Lipschitz continuous loss that can
be clipped at M > 0 and satisfies the supremum bound (7.35) for a B > 0.
Moreover, let H be a separable RKHS of a measurable kernel over X and P
be a distribution on X×Y such that the variance bound (7.36) is satisfied for
constants ϑ ∈ [0, 1], V ≥ B2−ϑ, and all f ∈ H. Assume that for fixed n ≥ 1
there exist constants p ∈ (0, 1) and a ≥ B such that

EDX∼Pn
X
ei(id : H → L2(DX)) ≤ a i−

1
2p , i ≥ 1. (7.48)

Finally, fix an f0 ∈ H and a constant B0 ≥ B such that ‖L ◦ f0‖∞ ≤ B0.
Then, for all fixed τ > 0 and λ > 0, the SVM using H and L satisfies

λ‖fD,λ‖2H +RL,P(
�
fD,λ)−R∗

L,P ≤ 9
(
λ‖f0‖2H +RL,P(f0)−R∗

L,P

)
+K
( a2p

λpn

) 1
2−p−ϑ+ϑp

+3
(72V τ

n

) 1
2−ϑ

+
15B0τ

n

with probability Pn not less than 1 − 3e−τ , where K ≥ 1 is a constant only
depending on p, M , B, ϑ, and V .

Proof. We first note that it suffices to consider the case a2p ≤ λpn. Indeed,
for a2p > nλp, we have

λ‖fD,λ‖2H +RL,P(
�
fD,λ)−R∗

L,P ≤ λ‖fD,λ‖2H +RL,D(fD,λ) +B

≤ RL,D(0) +B

≤ 2B
( a2p

λpn

) 1
2−p−ϑ+ϑp

.

In other words, the assertion is trivially satisfied for a2p > nλp whenever
K ≥ 2B. Let us now define r∗ by (7.32), and for r > r∗ we define Fr and
Hr by (7.45) and (7.46), respectively. Since Fr ⊂ (r/λ)1/2BH , Lemma 7.17
together with (7.48) and (A.36) then yields

ED∼Pnei(Hr, L2(D)) ≤ |L|M,1EDX∼Pn
X
ei(Fr, L2(DX))

≤ 2|L|M,1

( r
λ

)1/2

a i−
1
2p .

Moreover, for f ∈ Fr, we have EP(L◦�f −L◦f∗L,P)2 ≤ V rϑ, and consequently
Theorem 7.16 applied to H := Hr shows that (7.37) is satisfied for
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ϕn(r) := max
{
C1(p)2p|L|pM,1a

p
( r
λ

) p
2
(V rϑ)

1−p
2 n−

1
2 ,

C2(p)
(
2p|L|pM,1a

p
) 2

1+p

( r
λ

) p
1+p

B
1−p
1+p n−

1
1+p

}
,

where C1(p) and C2(p) are the constants appearing in Theorem 7.16. Further-
more, some elementary calculations using 2 − p− ϑ + ϑp ≥ 1 and a2p ≤ λpn
show that the condition r ≥ 30ϕn(r) is satisfied if

r ≥ K̃
( a2p

λpn

) 1
2−p−ϑ+ϑp

,

where

K̃ := max
{(

30 · 2pC1(p)|L|pM,1V
1−p
2
) 2

2−p−ϑ+ϑp , 30 · 120pC1+p
2 (p)|L|2p

M,1B
1−p

}
.

Using r∗ ≤ A2(λ) ≤ λ‖f0‖2H + RL,P(f0) − R∗
L,P, the assertion thus follows

from Theorem 7.20 for K := max{3K̃, 2B}. ��
Let us now compare the oracle inequalities for SVMs obtained in this

section with the simple oracle inequalities derived in Theorems 6.25 and 6.24.
To this end, let us briefly recall the assumptions made at the end of Section
6.4, where we established the first consistency results and learning rates for
SVMs: in the following, L is a Lipschitz continuous loss with L(x, y, 0) ≤ 1
for all (x, y) ∈ X × Y , and |L|1 ≤ 1. Moreover, H is a fixed separable RKHS
over X having a bounded measurable kernel with ‖k‖∞ ≤ 1. We assume that
H is dense in L1(μ) for all distributions μ on X, so that by Theorem 5.31 we
have R∗

L,P,H = R∗
L,P for all probability measures P on X × Y . We will also

need the entropy number assumption

ei(id : H → �∞(X)) ≤ a i−
1
2p , i ≥ 1, (7.49)

where a ≥ 1 and p ∈ (0, 1) are fixed constants. Recall that by Lemma 6.21 and
Exercise 6.8 this assumption is essentially equivalent to the covering number
assumption (6.20). Finally, we assume in the following comparison that (λn) is
an a priori5 chosen sequence of strictly positive numbers converging to zero.

Our first goal is to consider conditions on (λn) ensuring universal L-risk
consistency. To this end, let us first recall (see Exercise 6.9) that the oracle in-
equality ofTheorem6.24 ensureduniversal consistency ifλ2

nn→∞,whereas the
inequality of Theorem 6.25 ensured this for the weaker condition λ1+p

n n→∞,
where p is the exponent appearing in (7.49). Remarkably, Theorem 7.22
guarantees universal consistency for the even milder condition λnn/ lnn→∞
without using an entropy number assumption. Finally, if such an assumption in
the form of (7.49) is satisfied, then Theorem 7.23 ensures universal consistency

5 Data-dependent choices for λ will be discussed after the comparison.
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whenever λmax{1/2,p}
n n → ∞. Obviously, this is the weakest condition of the

four listed. In addition, Theorem 7.23 actually allows us to replace the en-
tropy number condition (7.49) by (7.48), which in some cases is substantially
weaker, as we will see in Section 7.5.

Let us now compare the learning rates we can derive from the four oracle
inequalities. To this end, we assume, as usual, that there exist constants c > 0
and β ∈ (0, 1] such that A2(λ) ≤ cλβ for all λ ≥ 0. Under this assumption,
we have seen in Exercise 6.9 that Theorem 6.24 leads to the learning rate

n−
β

2β+2 . (7.50)

Moreover, at the end of Section 6.4, we derived the learning rate

n−
β

(2β+1)(1+p) (7.51)

from Theorem 6.25, where p is the exponent from (7.49). On the other hand,
optimizing the oracle inequality of Theorem 7.22 with the help of Lemma
A.1.7 yields the learning rate

n−
β

β+1 lnn , (7.52)

which is better than (7.50) by a factor of two in the exponent. Moreover, it is
even better than (7.51), which was derived under more restrictive assumptions
than (7.52). Finally, by assuming (7.49), or the potentially weaker condition
(7.48), Theorem 7.23 applied with f0 := fP,λ and B0 := B +

√
λ−1A2(λ)

together with Lemma A.1.7 provides the learning rate

n−min{ 2β
β+1 , β

β(2−p−ϑ+ϑp)+p
} , (7.53)

which reduces to n−min{ 2β
β+1 , β

β(2−p)+p
} if no variance bound assumption, i.e.,

ϑ = 0 is made. It is simple to check that the latter is even faster than (7.52).
So far, we have only considered Lipschitz continuous losses; however,

Theorem 7.23 also holds for losses that are only locally Lipschitz continu-
ous. Let us now briefly describe how the rates above change when considering
such losses. For the sake of simplicity we only consider the least squares loss,
Y ⊂ [−1, 1], and the choice f0 := fP,λ. Then, because of the growth behavior
of the least squares loss, we can only choose B0 := 2 + 2λ−1A2(λ), which, by
Theorem 7.23 and Example 7.3, leads to the rate

n−min{β, β
β+p} . (7.54)

It is easy to see that the learning rates (7.52) and (7.53) are achieved for
regularization sequences of the form λn := n−ρ/β , where ρ is the exponent
in the corresponding learning rate. To achieve these learning rates with an a
priori chosen sequence, we therefore need to know the value of β and for (7.53)
also the values of ϑ and p. Since this is unrealistic, we now demonstrate that



7.4 Refined Oracle Inequalities for SVMs 269

the TV-SVM defined in Definition 6.28 is adaptive to these parameters by
choosing the regularization parameter in a data-dependent way. For brevity’s
sake, we focus on the situation of Theorem 7.23; however, it is straightforward
to show a similar result for the more general situation of Theorem 7.22.

Theorem 7.24 (Oracle inequality for TV-SVMs and benign kernels).
Let L : X × Y × R → [0,∞) be a Lipschitz continuous loss with |L|1 ≤ 1
that can be clipped at M > 0 and satisfies the supremum bound (7.35) for a
B ≥ 1. Moreover, let H be a separable RKHS of a measurable kernel over X
with ‖k‖∞ ≤ 1 and let P be a distribution on X × Y such that the variance
bound (7.36) is satisfied for constants ϑ ∈ [0, 1], V ≥ B2−ϑ, and all f ∈ H.
We further assume that H is dense in L1(PX). In addition, let p ∈ (0, 1) and
a ≥ B be constants such that

EDX∼Pn
X
ei(id : H → L2(DX)) ≤ a i−

1
2p , n ≥ 1, i ≥ 1.

Moreover, for n ≥ 4 and ε > 0, let Λn ⊂ (0, 1] be a finite ε-net of (0, 1]
with cardinality |Λn|. For fixed τ ≥ 1, we then have for every corresponding,
measurable TV-SVM with probability Pn not less than, 1− e−τ that

RL,P(
�
fD1,λD2

)−R∗
L,P < 6 inf

λ∈(0,1]

(
9A2(λ)+K

(2a2p

λpn

) 1
2−p−ϑ+ϑp

+
30τn
n

√
A2(λ)
λ

)

+6A2(2ε) + 45
(64V τn

n

) 1
2−ϑ

+
180Bτn
n

,

where D1 and D2 are the training and validation set built from D ∈ (X×Y )n,
K is the constant appearing in Theorem 7.23, and τn := τ + ln(1 + 3|Λn|).

Consequently, if we use εn-nets Λn with εn → 0 and n−1 ln(|Λn|)→ 0, the
resulting TV-SVM is consistent. Moreover, for εn ≤ 1/n2 and |Λn| growing
polynomially in n, the TV-SVM learns with rate (7.53) if there exist constants
c > 0 and β ∈ (0, 1] such that A2(λ) ≤ cλβ for all λ ≥ 0.

Note that it is easy to derive modifications of Theorem 7.24 that consider
locally Lipschitz continuous loss functions. For example, for the least squares
loss we only have to replace the term

√
λ−1A2(λ) by 2λ−1A2(λ) in the oracle

inequality. Moreover, for this loss the conditions ensuring consistency remain
unchanged and the resulting learning rate becomes (7.54).

Proof. For f0 := fP,λ, we have already seen in the proof of Theorem 7.22 that
‖L◦f0‖∞ ≤ B+

√
λ−1A2(λ). Sincem := �n/2�+1 implies m ≥ n/2, we hence

see by Theorem 7.23 that with probability Pm not less than 1− 3|Λn|e−τ we
have

RL,P(
�
fD1,λ)−R∗

L,P ≤ 9A2(λ) +K
(2a2p

λpn

) 1
2−p−ϑ+ϑp

+
30τ
n

√
A2(λ)
λ

+3
(144V τ

n

) 1
2−ϑ

+
30Bτ
n
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for all λ ∈ Λn simultaneously. Moreover, n ≥ 4 implies n −m ≥ n/2 − 1 ≥
n/4, and therefore Theorem 7.2 shows that, for fixed D1 ∈ (X × Y )m and
τ̃n := τ + ln(1 + |Λn|), the probability Pn−m of having a D2 ∈ (X × Y )n−m

such that

RL,P(
�
fD1,λD2

)−R∗
L,P ≤ 6 inf

λ∈Λn

(RL,P(
�
fD1,λ)−R∗

L,P

)
+ 4
(

32V τ̃n
n

) 1
2−ϑ

is not less than 1 − e−τ . Combining both estimates, we conclude that with
probability Pn not less than (1− 3|Λn|e−τ )(1− e−τ ) we have

RL,P(
�
fD1,λD2

)−R∗
L,P ≤ 6 inf

λ∈Λn

(
9A2(λ)+K

(2a2p

λpn

) 1
2−p−ϑ+ϑp

+
30τ
n

√
A2(λ)
λ

)

+41
(64V τ

n

) 1
2−ϑ

+
180Bτ
n

+ 4
(

32V τ̃n
n

) 1
2−ϑ

.

Now recall that λ �→ λ−1A2(λ) is decreasing by Lemma 5.15, and hence an
almost literal repetition of the proof of Lemma 6.30 yields

inf
λ∈Λn

(
9A2(λ) +K

(2a2p

λpn

) 1
2−p−ϑ+ϑp

+
30τ
n

√
A2(λ)
λ

)

≤ A2(2ε) + inf
λ∈(0,1]

(
9A2(λ) +K

(2a2p

λpn

) 1
2−p−ϑ+ϑp

+
30τ
n

√
A2(λ)
λ

)
.

Using (1− 3|Λn|e−τ )(1− e−τ ) ≥ 1− (1 + 3|Λn|)e−τ together with a variable
transformation that adjusts the probability Pn to be not less than 1 − e−τ

and some simple estimates then yields the asserted oracle inequality. The other
assertions are direct consequences of this oracle inequality. ��

7.5 Some Bounds on Average Entropy Numbers

The goal of this section is to illustrate that the entropy assumption (7.48)
used in Theorems 7.23 and 7.24 is weaker than the entropy bound (7.49) used
in the simple analysis of Section 6.4. To this end, we first relate the average
entropy numbers in (7.48) to the eigenvalues of the integral operator defined
by the kernel of the RKHS used.

Let us begin by establishing some preparatory lemmas. To this end, we fix a
Hilbert spaceH. For v, w ∈ H, we define v⊗w : H → H by v⊗w(u) := 〈u, v〉w,
u ∈ H. Obviously, v⊗w is bounded and linear with rank v⊗w ≤ 1, and hence
it is a Hilbert-Schmidt operator, i.e., v ⊗ w ∈ HS(H). Since in the following
we need various facts on Hilbert-Schmidt operators, we encourage the reader
to review the corresponding material presented at the end of Section A.5.2.
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Lemma 7.25 (Feature maps of squared kernels). Let H be an RKHS
over X with kernel k and canonical feature map Φ : X → H. Then Ψ : X →
HS(H) defined by Ψ(x) := Φ(x)⊗Φ(x), x ∈ X, is a feature map of the squared
kernel k2 : X ×X → R, and we have ‖Ψ(x)‖HS = ‖Φ(x)‖2H for all x ∈ X.

Proof. For f ∈ H and x ∈ X, the reproducing property yields

Ψ(x)f := Ψ(x)(f) = 〈f, Φ(x)〉H Φ(x) = f(x)Φ(x) . (7.55)

Let (ei)i∈I be an ONB of H. By the definition (A.28) of the inner product of
HS(H) and (4.9), we then obtain

〈Ψ(x), Ψ(x′)〉HS(H) =
∑
i∈I

〈Ψ(x)ei, Ψ(x′)ei〉H =
∑
i∈I

〈ei(x)Φ(x), ei(x′)Φ(x′)〉H

= 〈Φ(x), Φ(x′)〉H
∑
i∈I

ei(x)ei(x′)

= k2(x, x′) (7.56)

for all x, x′ ∈ X, i.e., we have shown the first assertion. The second assertion
follows from (7.56) and ‖Ψ(x)‖HS =

√
k2(x, x) = k(x, x) = ‖Φ(x)‖2H . ��

Let us now assume that k is a measurable kernel on X with separable
RKHS H and μ is a probability measure on X with ‖k‖L2(μ) < ∞. In the
following, we write Sk,μ : L2(μ) → H for the integral operator defined in
(4.17) in order to emphasize that this operator depends not only on k but
also on μ. Analogously, we write Tk,μ := S∗

k,μ ◦ Sk,μ : L2(μ) → L2(μ) for
the integral operator considered in Theorem 4.27. Finally, we also need the
covariance operator Ck,μ := Sk,μ ◦ S∗

k,μ : H → H. The next lemma relates
Ck,μ to the feature map Ψ of k2.

Lemma 7.26. Let k be a measurable kernel on X with separable RKHS H
and ν be a probability measure on X such that ‖k‖L2(ν) <∞. Then Ψ : X →
HS(H) defined in Lemma 7.25 is Bochner ν-integrable and EνΨ = Ck,ν .

Proof. Obviously, Ψ is measurable, and since (7.56) implies

Ex∼ν‖Ψ(x)‖HS = Ex∼νk(x, x) = ‖k‖L2(ν) <∞ ,

we see that Ψ is Bochner integrable with respect to ν. Let us now fix an
f ∈ H. Since by Theorem 4.26 the operator S∗

k,ν equals id : H → L2(ν), we
then have Ck,νf = Sk,ν ◦S∗

k,νf = EνfΦ. In addition, considering the bounded
linear operator δf : HS(H)→ H defined by δf (S) := Sf , S ∈ HS(H), we find
by (A.32) and (7.55) that

(EνΨ)(f) = δf
(
Ex∼νΨ(x)

)
= Ex∼νδf (Ψ(x)) = Ex∼ν

(
Ψ(x)(f)

)
= EνfΦ .

By combining our considerations, we then obtain EνΨ = Ck,ν . ��
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Before we can state the first main result of this section, we finally need
the following two technical lemmas.

Lemma 7.27. Let (αi) ⊂ [0, 1] be a sequence such that
∑∞

i=1 αi = m for some
m ∈ N and (λi) ⊂ [0,∞) be a decreasing sequence. Then we have

∞∑
i=1

αiλi ≤
m∑

i=1

λi .

Proof. Let us define γi := λi − λm, i ≥ 1. Then we have γi ≥ 0 if i ≤ m and
γi ≤ 0 if i ≥ m, and consequently we obtain

∞∑
i=1

αiγi ≤
m∑

i=1

αiγi ≤
m∑

i=1

γi .

Moreover, we have

∞∑
i=1

αiλi −mλm =
∞∑

i=1

αiλi −
∞∑

i=1

αiλm =
∞∑

i=1

αiγi

and
m∑

i=1

γi =
m∑

i=1

λi −
m∑

i=1

λm =
m∑

i=1

λi −mλm ,

and by combining all formulas, we then obtain the assertion. ��
Given a compact and self-adjoint operator T ∈ L(H), we now investigate

the set of non-zero eigenvalues {λi(T ) : i ∈ I} considered in the Spectral
Theorem A.5.13. Following the notation of this theorem, we assume in the
following that either I = {1, 2, . . . , n} or I = N. In order to unify our con-
siderations, we further need the extended sequence of eigenvalues of T ,
which in the case of finite I is the sequence λ1(T ), λ2(T ), . . . , λ|I|(T ), 0, . . . ,
and in the case of infinite I is the sequence (λi(T ))i≥1. With these notations,
we can now establish the last preparatory lemma.

Lemma 7.28. Let T : H → H be a compact, positive, and self-adjoint opera-
tor on a separable Hilbert space H and (λi(T ))i≥1 be its extended sequence of
eigenvalues. Then, for all m ≥ 1 and m̄ := min{m,dimH}, we have

m∑
i=1

λi(T ) = max
V subspace of H

dim V =m̄

〈PV , T 〉HS .

Proof. Let (ei)i∈J be an ONB of H with I ⊂ J such that the subfamily
(ei)i∈I is the ONS provided by Theorem A.5.13. In addition, we assume for
notational convenience that J = {1, . . . ,dimH} if dimH < ∞ and J = N if
dimH = ∞ and |I| < ∞. Note that in both cases we have λi(T ) = 0 for all
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i ∈ J\I since we consider extended sequences of eigenvalues. Moreover, in the
case dimH = |I| = ∞, we define λi(T ) := 0 for i ∈ J \I. Let us now write
V0 := span{e1, . . . , em̄}, where we note that our notational assumptions ensure
{1, . . . , m̄} ⊂ J . Obviously, the orthogonal projection PV0 : H → H onto V0

satisfies PV0ei = ei if i ∈ {1, . . . , m̄} and PV0ei = 0 otherwise. Moreover, we
have Tei = λi(T )ei for all i ∈ I, and the spectral representation (A.23) shows
Tei = 0 for all i ∈ J\I. Since our notational assumptions ensured λi(T ) = 0 for
all i ∈ J \ I, we thus find Tei = λi(T )ei for all i ∈ J . The definition (A.28) of
the inner product in HS(H) together with λi(T ) = 0 for i ∈ N\{1, . . . ,dimH}
hence yields

m∑
i=1

λi(T ) =
m̄∑

i=1

λi(T ) =
∑
i∈J

〈PV0ei, T ei〉H = 〈PV0 , T 〉HS

≤ max
V subspace of H

dim V =m̄

〈PV , T 〉HS .

Conversely, if V is an arbitrary subspace of H with dimV = m̄, the self-
adjointness of the orthogonal projection PV onto V shows that for αi :=
〈PV ei, ei〉H = 〈P 2

V ei, ei〉H we have

αi = 〈P 2
V ei, ei〉H = 〈P ∗

V ◦ PV ei, ei〉H = 〈PV ei, PV ei〉H = ‖PV ei‖2H ∈ [0, 1]

for all i ∈ J . Let us write αi := 0 if dimH < ∞ and i > dimH. Then we
observe ∞∑

i=1

αi =
∑
i∈J

‖PV ei‖2H = ‖PV ‖2HS = m̄ .

From this, Lemma 7.27, and Tei = λi(T )ei for all i ∈ J , we conclude that

m∑
i=1

λi(T ) =
m̄∑

i=1

λi(T ) ≥
∞∑

i=1

αiλi(T ) =
∑
i∈J

〈PV ei, T ei〉H = 〈PV , T 〉HS ,

and hence we have shown the assertion. ��
Let us now formulate our first main result of this section, which relates the

average eigenvalues of the empirical integral operators Tk,D, D ∈ Xn, with
the eigenvalues of the infinite-sample integral operator Tk,μ.

Theorem 7.29 (Eigenvalues of empirical integral operators). Let k be
a measurable kernel on X with separable RKHS H and μ be a probability
measure on X such that ‖k‖L2(μ) <∞. Then we have

ED∼μn

∞∑
i=1

λi(Tk,D) =
∞∑

i=1

λi(Tk,μ) <∞ (7.57)

for the extended sequences of eigenvalues. Furthermore, for all m ≥ 1, these
extended sequences of eigenvalues satisfy
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ED∼μn

∞∑
i=m

λi(Tk,D) ≤
∞∑

i=m

λi(Tk,μ) (7.58)

and

ED∼μn

m∑
i=1

λi(Tk,D) ≥
m∑

i=1

λi(Tk,μ) . (7.59)

Proof. Let us begin with some preliminary considerations. To this end, let
(ej)j∈J be an ONB of H and ν be an arbitrary probability measure on X
with ‖k‖L2(ν) <∞. Recall that we have seen in front of the Spectral Theorem
A.5.13 that the integral operator Tk,ν = S∗

k,ν◦Sk,ν and the covariance operator
Ck,ν = Sk,ν ◦ S∗

k,ν have exactly the same non-zero eigenvalues with the same
geometric multiplicities. Consequently, their extended sequences of eigenvalues
coincide. Moreover, by (A.25), (A.27), (A.26), and Theorem 4.26, we find

∞∑
i=1

λi(Tk,ν) =
∞∑

i=1

s2i (S
∗
k,ν) = ‖S∗

k,ν‖2HS =
∑
j∈J

‖S∗
k,νej‖2L2(ν) =

∑
j∈J

Eνe
2
j ,

where we note that ‖S∗
k,ν‖HS = ‖Sk,ν‖HS <∞ by Theorem 4.27. Applying the

equality above twice, we now obtain

ED∼μn

∞∑
i=1

λi(Tk,D) =
∑
j∈J

ED∼μnEDe
2
j =
∑
j∈J

Eμe
2
j =

∞∑
i=1

λi(Tk,μ),

i.e., we have shown (7.57). In order to prove (7.59), we first observe that
Lemma 7.26 together with Lemma 7.28 and λi(Tk,ν) = λi(Ck,ν) for all i ≥ 1
implies

m∑
i=1

λi(Tk,ν) = max
V subspace of H

dim V =m̄

〈PV , Ck,ν〉HS = max
V subspace of H

dim V =m̄

Eν〈PV , Ψ〉HS ,

where again ν is an arbitrary probability measure on X with ‖k‖L2(ν) < ∞
and m̄ := min{m,dimH}. From this we conclude that

ED∼μn

m∑
i=1

λi(Tk,D) = ED∼μn max
V subspace of H

dim V =m̄

ED〈PV , Ψ〉HS

≥ max
V subspace of H

dim V =m̄

ED∼μnED〈PV , Ψ〉HS

= max
V subspace of H

dim V =m̄

Eμ〈PV , Ψ〉HS

=
m∑

i=1

λi(Tk,μ) .

Finally, (7.58) is a direct consequence of (7.57) and (7.59). ��
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Let us now recall that we have seen in Sections A.5.2 and A.5.6 that there
is an intimate relationship between eigenvalues, singular numbers, approxi-
mation numbers, and entropy numbers. This relationship together with the
preceding theorem leads to the second main result of this section.

Theorem 7.30 (Average entropy numbers of RKHSs). Let k be a mea-
surable kernel on X with separable RKHS H and μ be a probability measure
on X such that ‖k‖L2(μ) <∞. Then for all 0 < p < 1 there exists a constant
cp ≥ 1 only depending on p such that for all n ≥ 1 and m ≥ 1 we have

ED∼μnem(S∗
k,D) ≤ cpm−1/p

min{m,n}∑
i=1

i1/p−1

(
1
i

∞∑
j=i

e2j (S
∗
k,μ)
)1/2

.

Proof. For q := 1, Carl’s inequality (A.42) shows that there exists a constant
cp > 0 such that for m,n ≥ 1 and all D ∈ Xn we have

m∑
i=1

i1/p−1ei(S∗
k,D) ≤ cp

m∑
i=1

i1/p−1ai(S∗
k,D) = cp

min{m,n}∑
i=1

i1/p−1ai(S∗
k,D) ,

where in the last step we used that n ≥ rankS∗
k,D implies ai(S∗

k,D) = 0 for all
i > n. Moreover, for M := min{m,n} and M̃ := �(M + 1)/2�, we have

M∑
i=1

i1/p−1ai(S∗
k,D) ≤

M̃∑
i=1

(2i− 1)1/p−1a2i−1(S∗
k,D) +

M̃∑
i=1

(2i)1/p−1a2i(S∗
k,D)

≤ 21/p
M∑
i=1

i1/p−1a2i−1(S∗
k,D) .

Now recall from the end of Section A.5.2 that a2
i (S

∗
k,D) = s2i (S

∗
k,D) =

si(S∗
k,DSk,D) = λi(Tk,D) for all i ≥ 1 and D ∈ Xn, and hence we obtain

m∑
i=1

i1/p−1ED∼μnei(S∗
k,D) ≤ 21/pcp

M∑
i=1

i1/p−1ED∼μna2i−1(S∗
k,D)

≤ 21/pcp

M∑
i=1

i1/p−1
(
ED∼μnλ2i−1(Tk,D)

)1/2
.

Now for each D ∈ Xn the sequence (λi(Tk,D))i≥1 is monotonically decreasing
and hence so is (ED∼μnλi(Tk,D))i≥1. By Theorem 7.29, we hence find

iED∼μnλ2i−1(Tk,D) ≤
2i−1∑
j=i

ED∼μnλj(Tk,D) ≤
∞∑

j=i

λj(Tk,μ)

for all i ≥ 1, and consequently we obtain
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M∑
i=1

i1/p−1
(
ED∼μnλ2i−1(Tk,D)

)1/2 ≤
M∑
i=1

i1/p−1

(
1
i

∞∑
j=i

λj(Tk,μ)
)1/2

.

Moreover, we have λj(Tk,μ) = s2i (S
∗
k,μ) = a2

j (S
∗
k,μ) ≤ 4e2j (S

∗
k,μ), where in the

last step we used (A.44). Combining the estimates above, we hence obtain

m∑
i=1

i1/p−1ED∼μnei(S∗
k,D) ≤ 21/p+1cp

M∑
i=1

i1/p−1

(
1
i

∞∑
j=i

e2j (S
∗
k,μ)
)1/2

.

Finally, for m̃ := �(m+1)/2�, the monotonicity of the entropy numbers yields

m̃
1
p ED∼μnem(S∗

k,D) ≤
m∑

i=m̃

i
1
p−1 ED∼μnei(S∗

k,D) ≤
m∑

i=1

i
1
p−1 ED∼μnei(S∗

k,D) ,

and since m/2 ≤ �(m+ 1)/2� = m̃, we hence obtain the assertion. ��
With the help of Theorem 7.30, we can now formulate the following con-

dition, which ensures the average entropy number assumption (7.48).

Corollary 7.31. Let k be a measurable kernel on X with separable RKHS H
and μ be a probability measure on X such that ‖k‖L2(μ) < ∞. Assume that
there exist constants 0 < p < 1 and a ≥ 1 such that

ei(id : H → L2(μ)) ≤ a i− 1
2p , i ≥ 1. (7.60)

Then there exists a constant cp > 0 only depending on p such that

ED∼μnei(id : H → L2(D)) ≤ cp a
(
min{i, n}) 1

2p i−
1
p , i, n ≥ 1.

Proof. By Theorem 4.26, the operator S∗
k,ν coincides with id : H → L2(ν) for

all distributions ν with ‖k‖L2(μ) <∞. Since 0 < p < 1, it is then easy to see
that there exists a constant c̃p such that

1
i

∞∑
j=i

e2j (S
∗
k,μ) ≤ a2 · 1

i

∞∑
j=i

j−
1
p ≤ c̃2p a2 i−

1
p , i ≥ 1.

Using Theorem 7.30 and 1
2p − 1 > −1, we hence find a constant c′p > 0 such

that

ED∼μnem(S∗
k,D) ≤ cpc̃p am− 1

p

min{m,n}∑
i=1

i
1
2p−1 ≤ c′p a

(
min{m,n}) 1

2p m− 1
p . ��

Considering the proofs of Theorem 7.30 and Corollary 7.31, it is not hard to
see that we can replace the entropy bound (7.60) by a bound on the eigenvalues
of TK,μ. We refer to Exercise 7.7 for details.

Let us now return to the main goal of this section, which is to illustrate
that the average entropy assumption (7.48) is weaker than the uniform entropy
bound (7.49). To this end, we need the following definition.
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Definition 7.32. We say that a distribution μ on Rd has tail exponent
τ ∈ [0,∞] if

μ
(
Rd\rBd

2

) ≤ r−τ , r > 0. (7.61)

Obviously, every distribution has tail exponent τ = 0. On the other hand,
a distribution has tail exponent τ = ∞ if and only if the support of μ is
contained in the closed unit ball Bd

2
. Finally, the intermediate case τ ∈ (0,∞)

describes how much mass μ has outside the scaled Euclidean balls rBd
2
, r > 1.

Before we return to entropy numbers, we need another notation. To this
end, let μ be a distribution on Rd and X ⊂ Rd be a measurable set with
μ(X) > 0. Then we define the distribution μX on Rd by

μX(A) := μ(A ∩X)/μ(X) , A ⊂ Rd measurable.

With this notation, we can now formulate the following result.

Theorem 7.33 (Entropy numbers on unbounded domains). Let H be
an RKHS of a bounded kernel k on Rd with ‖k‖∞ = 1 and μ be a distribution
on Rd that has tail exponent τ ∈ (0,∞]. We write B := Bd

2
and assume that

there exist constants a ≥ 1, c ≥ 1, ς > 0, and p ∈ (0, 1) such that

ei(id : H → L2(μrB)) ≤ c aς rς i−
1
2p , i ≥ 1, r ≥ a−1. (7.62)

Then there exists a constant cς,τ ≥ 1 only depending on ς and τ such that

ei(id : H → L2(μ)) ≤ c cς,τ a
ςτ

2ς+τ i−
2pς+τ

4pς+2pτ , i ≥ 1 .

Proof. Obviously, for τ =∞, there is nothing to prove, and hence we assume
τ <∞. Let us now fix an ε > 0, an r ≥ a−1, and an integer i ≥ 1. Moreover,
let f1, . . . , f2i−1 be an (1 + ε)ei(BH , L2(μrB))-net of BH and f ′1, . . . , f

′
2i−1 be

an (1 + ε)ei(BH , L2(μRd\rB))-net of BH . For j, l ∈ {1, . . . , 2i−1}, we write

fj # f ′l := 1rBfj + 1Rd\rBf
′
l ,

i.e., fj # f ′l equals fj on the scaled Euclidean ball rB, while it equals f ′l on
the complement of this ball. Let us now investigate how well these functions
approximate BH in L2(μ). To this end, we fix a g ∈ BH . Then there exist two
indexes j, l ∈ {1, . . . , 2i−1} such that

‖g − fj‖L2(μrB) ≤ (1 + ε)ei(BH , L2(μrB)) ,
‖g − f ′l‖L2(μRd\rB

) ≤ (1 + ε)ei(BH , L2(μRd\rB)) .

With these estimates, we obtain

‖g − fj # f ′l‖2L2(μ) = μ(rB)‖g − fj‖2L2(μrB) + μ(Rd\rB)‖g − f ′l‖2L2(μRd\rB
)

≤ (1 + ε)2
(
e2i
(
BH , L2(μrB)

)
+ r−τe2i

(
BH , L2(μRd\rB)

))
.
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Moreover, Carl’s inequality (A.42) together with (A.27), (4.19), ‖k‖∞ = 1,
and am(S∗

k,ν) = sm(S∗
k,ν) for all m ≥ 1 and all distributions ν on Rd yields a

universal constant K ≥ 1 independent of all other occurring terms such that

ie2i (BH , L2(ν)) ≤
i∑

m=1

e2m(S∗
k,ν) ≤ K‖S∗

k,ν‖2HS ≤ K . (7.63)

Combining this estimate for ν := μRd\rB with
√
s+ t ≤ √s +

√
t and the

previous estimate, we then obtain

‖g − fj # f ′l‖L2(μ) ≤ (1 + ε)
(
ei(BH , L2(μrB)) +

√
Kr−τ/2i−1/2

)
.

Since there are 22i−2 functions fj #f ′l , the latter estimate together with (7.62)
and ε→ 0 implies

e2i−1(id : H → L2(μ)) ≤ 2c aς rς i−
1
2p + 2

√
Kr−

τ
2 i−

1
2 ,

where the factor 2 appears since in general we cannot guarantee fj # f ′l ∈ H
and hence (A.36) has to be applied. For r := a−

2ς
2ς+τ i

1−p
p(2ς+τ) ≥ a−1, we thus

arrive at

e2i−1(id : H → L2(μ)) ≤ 4c
√
K a

ςτ
2ς+τ i−

2pς+τ
2p(2ς+τ) , i ≥ 1,

and from this we easily obtain the assertion by the monotonicity of the entropy
numbers. ��

Let us now recall Example 4.32, where we saw that for all Gaussian RBF
kernels the embedding id : Hγ(R)→ Cb(Rd) is not compact. Consequently, no
entropy estimate of the form (7.49) is possible in this case. On the other hand,
the following theorem together with Corollary 7.31 establishes an entropy
assumption of the form (7.48), and hence the latter is indeed strictly weaker
than (7.49).

Theorem 7.34 (Entropy numbers for Gaussian kernels). Let μ be a
distribution on Rd having tail exponent τ ∈ (0,∞]. Then, for all ε > 0 and
d/(d+ τ) < p < 1, there exists a constant cε,p ≥ 1 such that

ei

(
id : Hγ(Rd)→ L2(μ)

) ≤ cε,p γ
− (1−p)(1+ε)d

2p i−
1
2p

for all i ≥ 1 and γ ∈ (0, 1].

Proof. Let B be the closed unit Euclidean ball centered at the origin and
r > 0 be a strictly positive real number. Since Rd\rB has measure zero with
respect to the distribution μrB , we obtain the commutative diagram
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Hγ(Rd) L2(μrB)

Hγ(rB) �∞(rB)

�

�

�

�

id

·|rB id

id

where ·|rB denotes the restriction operator. The latter is a metric surjection
(note that Corollary 4.43 implies that it is even an isometric isomorphism),
and, in addition, we obviously have ‖ id : �∞(rB) → L2(μrB)‖ ≤ 1. For an
integer m ≥ 1, Theorem 6.27 then yields a constant c̃m,d ≥ 1 only depending
on m and d such that

ei

(
id : Hγ(Rd)→ L2(μrB)

) ≤ ei

(
id : Hγ(rB)→ �∞(rB)

) ≤ c̃m,d r
m γ−mi−

m
d

for all 0 < γ ≤ r and all i ≥ 1. Let us now restrict our consideration to
integers m with m > d/2. Applying Theorem 7.33 to the previous estimate,
we then obtain

ei

(
id : Hγ(Rd)→ L2(μ)

) ≤ cm,d,τγ
− mτ

2m+τ i−
md+mτ
2md+dτ , (7.64)

where cm,d,τ ≥ 1 is a constant only depending onm, d, and τ . Moreover, using
(7.63) with ν := μ, we see that there exists a universal constant K ≥ 1 such
that

ei

(
id : Hγ(Rd)→ L2(μ)

) ≤ K i−1/2 , i ≥ 1. (7.65)

Interpolating (7.64) and (7.65) by Lemma A.1.3 with t := 2 and r := 2md+dτ
md+mτ

shows that for all s ∈ [r, 2] there exists a constant cm,d,τ,s ≥ 1 such that

ei

(
id : Hγ(Rd)→ L2(D)

) ≤ cm,d,τ,s γ
− (2−s)md

s(2m−d) i−
1
s (7.66)

for all i ≥ 1 and m ≥ 1. We now fix a p with d
d+τ < p < 1 and define s := 2p.

For ε > 0, there then exists an integer m such that both

r =
2md+ dτ

md+mτ
< s and

md

2m− d ≤
(1 + ε)d

2
.

Consequently, we can apply (7.66) to this s and m. ��

7.6 Further Reading and Advanced Topics

The first argument, presented in Section 7.1, for the suboptimality of the
approach of Chapter 6 was discovered by Steinwart and Scovel (2005a, 2007),
who also used the described iterative scheme to establish some learning rates
for SVMs. The second argument, based on the variance bound for distributions
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having zero Bayes risk, is well-known. For the case of binary classification, we
refer to Section 12.7 of Devroye et al. (1996) for a detailed account including
certain infinite sets of functions and some historical remarks.

In the machine learning literature, the idea of using a variance bound to
obtain improved oracle inequalities goes, to the best of our knowledge, back
to Lee et al. (1998). This idea was later refined by, e.g., Mendelson (2001a,
2001b), Bartlett et al. (2005), and Bartlett et al. (2006). In addition, similar
ideas were also developed in the statistical literature by, e.g., Mammen and
Tsybakov (1999) and Massart (2000b). For a brief historical survey, we refer
to the introduction of Bartlett et al. (2005). The improved oracle inequality
for ERM established in Theorem 7.2 is rooted in the ideas of the articles
above. Finally, oracle inequalities that do not have a constant in front of the
approximation error term have recently been established for ERM and some
aggregation procedures by Lecué (2007a).

The first version of Talagrand’s inequality was proved by Talagrand (1996),
who showed that there exist universal constants K, c1, and c2 such that

P
({z ∈ Z : g(z)− EPg ≥ ε}

) ≤ K exp
(
− ε2

2(c1v + c2Bε)

)
, (7.67)

where v := EP supf∈F
∑n

j=1 f(zj)2. Unfortunately, however, his constants are
rather large and, in addition, the variance condition expressed in v is more
complicated then the one in Theorem A.9.1. The first improvement of this
inequality was achieved by Ledoux (1996), who showed by developing the en-
tropy functional technique that (7.67) holds for K = 2, c1 = 42, and c2 = 8
if v is replaced by v + 4

21BEPg. The next improvement was established by
Massart (2000a) by proving (7.67) for K = 1, c1 = 8, and c2 = 2.5. In addi-
tion, he showed a version of Theorem 7.5 in which

√
2τnσ2 + (2/3 + γ−1)τB

is replaced by
√

8τnσ2 + (5/2 + 32γ−1)τB. The last improvements were then
achieved by Rio (2002) and Bousquet (2002a). We followed Bousquet’s ap-
proach, which gives optimal constants. Finally, Klein and Rio (2005) recently
established a version of Talagrand’s inequality for independent, not neces-
sarily identically distributed random variables and almost optimal constants.
More applications of the entropy technique are presented by Chafäı (2004),
and other applications of Talagrand’s inequality are discussed by Boucheron
et al. (2003).

The peeling argument of Theorem 7.7 for weighted empirical processes
is a standard tool to estimate complexity, measures of complicated function
classes by complexity measures of related “easier” function classes. More-
over, symmetrization is a standard tool in empirical process theory that goes
back to Kahane (1968) and Hoffmann-Jørgensen (1974, 1977). In the proof of
Theorem A.8.1, we followed Section 2.3 of van der Vaart and Wellner (1996).
The contraction principle stated in Theorem A.8.4 was taken from p. 112
of Ledoux and Talagrand (1991), and its Corollary A.8.5 was first shown
by Talagrand (1994). Finally, Dudley’s chaining (see Dudley, 1967, and the
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historical remarks on p. 269 of van der Vaart and Wellner, 1996) for deriving
the maximal inequality of Theorem 7.12 was taken from Section 2.2 of van
der Vaart and Wellner (1996) with the additional improvements reported by
Bousquet (2002b).

Empirical Rademacher averages were first used in learning theory by
Koltchinskii (2001) and Koltchinskii and Panchenko (2000, 2002) as a penal-
ization method for model selection. Some empirical findings for this approach
were first reported by Lozano (2000). This penalization method was later re-
fined, for example, by Lugosi and Wegkamp (2004). Furthermore, Rademacher
averages of localized function classes were used by Bartlett et al. (2002),
Mendelson (2002), and Bartlett et al. (2005) in a way similar to that of
Theorem 7.20 and in a refined way by Bartlett et al. (2004). An overview
of the ideas was described by Bousquet (2003b). Relations of Rademacher
averages to other complexity measures are described by Mendelson (2002,
2003a), and structural properties of Rademacher averages were investigated
by Bartlett and Mendelson (2002). Moreover, Mendelson (2003b) estimated
Rademacher averages of balls in RKHSs by the eigenvalues of the associated
integral operator. Finally, using covering numbers to bound Rademacher aver-
ages also goes back to Mendelson (2002). In Section 7.3, we essentially followed
his approach, though we decided to use entropy numbers instead of covering
numbers since a) this yields slightly smaller constants and b) entropy num-
bers have a conceptionally easier relation to eigenvalues and approximation
numbers.

To the best of our knowledge, the clipping idea was first used by Bartlett
(1998) for the analysis of neural networks. In the context of SVMs, it first ap-
peared in a paper by Bousquet and Elisseeff (2002). The approach for the ora-
cle inequalities presented in Section 7.4 was taken from Steinwart et al. (2007),
which in turn was inspired by the work of Wu et al. (2007). An oracle inequal-
ity for SVMs using losses that cannot be clipped was established by Steinwart
et al. (2006c). Their proof is based on a rather complicated refinement of a
technique developed by Bartlett et al. (2006). However, it is relatively easy to
modify the proof of the oracle inequality for CR-ERM presented in Theorem
7.20 to deal with regularized unclipped ERM. Such a modification would then
essentially reproduce the oracle inequality of Steinwart et al. (2006c). Finally,
an oracle inequality for unclipped SVMs using the hinge loss was proved by
Blanchard et al. (2008). It is interesting to compare their conjecture regarding
the optimal exponent in the regularization term with Exercise 7.6.

Unfortunately, little is known about the sharpness of the derived oracle
inequalities and their resulting best learning rates. In fact, to the best of our
knowledge, the only known results consider (essentially) the case where L is
the least squares loss, H = Wm(X) for some Euclidean ball X, PX is the
uniform distribution, and m > d/2. If the regression function f∗L,P is bounded
and contained in W k(X) for some 0 < k ≤ m, it is then easy to check by the
remarks made in Section 5.6, the entropy number bound (A.48), and Corollary



282 7 Advanced Statistical Analysis of SVMs (*)

7.31 that the best learning rate Theorem 7.23 provides is n−min{ k
m , 2k

2k+d}. For
m−d/2 ≤ k ≤ m, it is known that this rate is optimal in a minmax sense. We
refer to Györfi et al. (2002) and the references therein for such optimal rates.

Theorem 7.29, which compares the average eigenvalues of empirical inte-
gral operators with the eigenvalues of the corresponding infinite-sample in-
tegral operator, was first shown by Shawe-Taylor et al. (2002, 2005) in the
special case of continuous kernels over compact metric spaces. Zwald et al.
(2004) generalized this result to bounded measurable kernels with separable
RKHSs. We essentially followed their ideas for the proof of Theorem 7.29,
while to the best of our knowledge the rest of Section 7.5 has not been pub-
lished.

Exercise 7.7 allows us to replace the entropy number assumption (7.48)
by a bound on the eigenvalues of the integral operator. For the hinge loss and
unclipped SVM decision functions, a conceptionally similar oracle inequality
was shown by Blanchard et al. (2008). A key step in their proof is an estimate
in the spirit of Mendelson (2003b), i.e., a bound of the Rademacher averages
of balls of RKHSs by the eigenvalues of the associated integral operator. In the
polynomial regime (7.68), their resulting learning rates are, however, always
worse than the ones we obtained in the discussion after Theorem 7.23. This
is, of course, partly a result of the fact that these authors consider unclipped
decision functions. On the other hand, Steinwart and Scovel (2005b) pointed
out that the results of Blanchard et al. (2008) are suboptimal for SVMs under
the uniform entropy assumption (7.49), and by modifying the oracle inequality
of Steinwart et al. (2006c) we conjecture that this remains true under the
eigenvalue assumption (7.68). Finally, an oracle inequality for SVMs using
the least squares loss that involves the eigenvalues of the associated integral
operator was established by Caponnetto and De Vito (2005).

7.7 Summary

In this chapter, we developed advanced techniques for establishing oracle in-
equalities for ERM and SVMs. The main reason for this development was
the observation made in Section 7.1 that the oracle inequalities of Chapter 6
provide suboptimal learning rates. Here we identified two sources for the sub-
optimality, namely a supremum bound that is suboptimal in terms of the
regularization parameter and a possibly existing variance bound that can be
exploited using Bernstein’s inequality rather than Hoeffding’s inequality.

In Section 7.2, we then established an improved oracle inequality for ERM
over finite sets of functions that involves a variance bound. This oracle in-
equality proved to be useful for parameter selection purposes in Section 7.4.
Moreover, its proof presented the core idea for establishing similar oracle in-
equalities for SVMs. Unfortunately, however, it turned out that this core idea
could not be directly generalized to infinite sets of functions. This forced
us to introduce some advanced tools from empirical process theory such as
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Talagrand’s inequality, peeling, symmetrization, Rademacher averages, and
Dudley’s chaining in Section 7.3. At the end of this section, we then illus-
trated how to orchestrate these tools to derive an improved oracle inequality
for ERM over infinite sets of functions.

In Section 7.4, we used the tools from the previous section to establish an
oracle inequality for general, clipped regularized empirical risk minimizers. We
then derived two oracle inequalities for clipped SVMs, one involving bounds
on entropy numbers and one not. An extensive comparison to the oracle in-
equalities of Chapter 6 showed that the new oracle inequalities always provide
faster learning rates. Furthermore, we combined the improved oracle inequal-
ity for ERM over finite sets of functions with the new oracle inequalities for
clipped SVMs to derive some results for simple data-dependent choices of the
regularization parameter. Finally, we showed in Section 7.5 that the entropy
assumptions of the new oracle inequalities can be substantially weaker than
the ones from Chapter 6.

7.8 Exercises

7.1. Optimality of peeling (�)
Let T �= ∅ be a set, g, h : T → [0,∞) be functions, and r∗ := inf{h(t) : t ∈ T}.
Furthermore, let ϕ : (r∗,∞)→ [0,∞) be a function such that

sup
t∈T

h(t)≤r

g(t) ≥ ϕ(r)

for all r > r∗. Show the inequality

sup
t∈T

g(t)
h(t) + r

≥ ϕ(r)
2r

, r > r∗.

Generalize this result to expectations over suprema.

7.2. Simple properties of empirical Rademacher averages (�)
Let F ,G ⊂ L0(Z) be non-empty subsets, α ∈ R be a real number, n be
an integer, and D := (z1, . . . , zn) ∈ Zn be a finite sequence. Show that the
following relations hold:

RadD(F ∪ G, n) ≤ RadD(F , n) + RadD(G, n) ,
RadD(F ∪ {0}, n) = RadD(F , n) ,

RadD(αF , n) = |α|RadD(F , n) ,
RadD(F + G, n) ≤ RadD(F , n) + RadD(G, n) ,

RadD(coF , n) = RadD(F , n) ,

where in the last equation coF denotes the convex hull of F .
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7.3. Another oracle inequality (���)
Let L : X×Y ×R→ [0,∞) be a Lipschitz continuous loss with |L|1 ≤ 1, F ⊂
L∞(X) be a separable set satisfying ‖f‖∞ ≤M for a suitable constant M > 0
and all f ∈ F , and P be a distribution on X × Y that has a Bayes decision
function f∗L,P withRL,P(f∗L,P) <∞. Assume that there exist constants B > 0,
ϑ ∈ [0, 1], and V ≥ B2−ϑ such that for all f ∈ F we have

‖L ◦ f − L ◦ f∗L,P‖∞ ≤ B ,
EP

(
L ◦ f − L ◦ f∗L,P

)2 ≤ V · (EP(L ◦ f − L ◦ f∗L,P)
)ϑ
.

For f ∈ F , define hf := L ◦ f −L ◦ f∗L,P. For a measurable ERM with respect
to L and F , show the following assertions:

i) ‖hf − hf ′‖∞ ≤ ‖f − f ′‖∞ for all f, f ′ ∈ F .
ii) Let C be an ε-net of F with respect to ‖ · ‖∞. Then for all D ∈ (X × Y )n

there exists an f ∈ C such that EPhfD
− EDhfD

≤ EPhf − EDhf + 2ε.
iii) For all ε > 0, r > 0, and τ > 0, we have

EPhfD
−EDhfD

< 2ε+
(
EPhfD

+ε
)(√ 2V τ

nr2−ϑ
+

4Bτ
3nr

)
+

√
2V τrϑ

n
+

4Bτ
3n

with probability Pn not less than 1−N (F , ‖ · ‖∞, ε)e−τ .
iv) Given an ε > 0 and τ > 0, we have

RL,P(fD)−R∗
L,P ≤ 6

(R∗
L,P,F −R∗

L,P

)
+ 8ε

+4
(

8V
(
τ + 1 + lnN (F , ‖ · ‖∞, ε)

n

) 1
2−ϑ

with probability Pn not less than 1− e−τ .
v) Let a > 0 and p > 0 be constants such that lnN (F , ‖ · ‖∞, ε) ≤ aε−2p for

all ε > 0. Then, for all τ ≥ 1, we have

RL,P(fD)−R∗
L,P ≤ 6

(R∗
L,P,F−R∗

L,P

)
+4
(

16V τ
n

) 1
2−ϑ

+cp,ϑ

(
8V a
n

) 1
2+2p−ϑ

with probability Pn not less than 1−e−τ , where cp,ϑ ∈ (0, 12] is a constant
with limp→0+ cp,ϑ = 4.

vi) Compare this oracle inequality with (7.28) and (7.30).

Hint: To prove iii), fix an ε-net C of F with |C| = N (F , ‖ · ‖∞, ε). Then
apply (7.9) to C. Finally, follow the argument after (7.9) and apply ii). To
prove iv), repeat the last steps of the proof of Theorem 7.2 using iii) for
r := ( 16V τ

n )1/(2−ϑ).
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7.4. Oracle inequality for clipped approximate SVMs (���)
Under the assumptions of Theorem 7.23, show that any clipped ε-approximate
SVM satisfies

Pn
(
D : λ‖fD,λ‖2+RL,P(

�
fD,λ)−R∗

L,P > 6
(Rreg

L,P,λ(f0)−R∗
L,P

)
+3r+3ε

)
≤ 3e−τ .

7.5. Comparison of oracle inequalities (���)
Apply Theorem 7.20 to the assumptions of Exercise 7.3, and show that The-
orem 7.20 produces an oracle inequality that is sharper in n.

7.6. Different exponents in the regularization term of SVMs (����)
Assume that L, H, P, and f0 as well as M , B, V , ϑ, a, p, and B0 are as
in Theorem 7.23. Moreover, for q ∈ [0,∞) and λ > 0, consider the learning
method that assigns to every D ∈ (X × Y )n a function f (q)

D,λ ∈ H that solves

min
f∈H

λ‖f‖qH +RL,D(f) .

Show that for all fixed τ > 0, n ≥ 1, and λ > 0, this learning method satisfies

λ‖f (q)
D,λ‖qH +RL,P(

�
f

(q)
D,λ )−R∗

L,P ≤ 9
(
λ‖f0‖qH +RL,P(f0)−R∗

L,P

)
+

15B0τ

n

+K
( a2pq

λ2pnq

) 1
2q−2p−ϑq+ϑpq

+3
(72V τ

n

) 1
2−ϑ

with probability Pn not less than 1 − 3e−τ , where K ≥ 1 is a constant only
depending on p, M , B, ϑ, and V .

Furthermore, assume that there exist constants c > 0 and β ∈ (0, 1] such
that A2(λ) ≤ cλβ for all λ ≥ 0. In addition, suppose that L is Lipschitz con-
tinuous. Using Exercise 5.11 and Lemma A.1.7, show that (7.53) are the best
learning rates this oracle inequality can provide. Can we make a conclusion
regarding the “optimal” exponent q?

7.7. Eigenvalues vs. average entropy numbers (���)
Let k be a measurable kernel on X with separable RKHS H and μ be a
probability measure on X such that ‖k‖L2(μ) < ∞. Assume that there exist
constants 0 < p < 1 and a ≥ 1 such that the extended sequence of eigenvalues
of the integral operator Tk,μ satisfies

λi(Tk,μ) ≤ a i− 1
p , i ≥ 1. (7.68)

Show that there exists a constant cp > 0 only depending on p such that

ED∼μnei(BH , L2(D)) ≤ cp a
(
min{i, n}) 1

2p i−
1
p , i, n ≥ 1.
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Support Vector Machines for Classification

Overview. Classification is one of the main areas of application for
support vector machines. This chapter presents key results on the gen-
eralization performance of SVMs when applied to this learning prob-
lem. In addition, we investigate how the choice of the loss influences
both the number of support vectors we can typically expect and the
ability of SVMs to estimate posterior probabilities.

Prerequisites. For the basic results on the generalization perfor-
mance, we need Sections 2.1–2.3 on loss functions, Chapter 4 on ker-
nels, Chapter 5 on infinite-sample SVMs, and the oracle inequalities
from Chapter 6. The more advanced results in this direction also re-
quire Chapter 7. For estimating the number of support vectors and the
posterior probabilities, we further need Sections 3.1–3.6 and 3.9.

Usage. Parts of this chapter are helpful in Section 10.3 on robustness
of SVMs for classification and in Chapter 11, where practical aspects
of SVMs are discussed.

Binary classification is one of the central applications for machine learning
methods in general and for SVMs in particular. In this chapter, we investi-
gate features of SVMs when applied to binary classification. In particular, we
consider the following questions:

• For what types of distributions do SVMs learn fast?
• How many support vectors can we expect?
• Can SVMs be used to estimate posterior probabilities?
• Which loss functions are a reasonable alternative to the hinge loss?

Obviously, the first question is the main question since the primary goal in
almost every application dealing with classification is a good classification
performance. However, in many applications, other features are also highly
desired such as a) a low computational complexity in the training and/or the
employment phase and b) the ability to estimate the probability η(x) of a
positive label y at point x. Now it is obvious that the number of support
vectors has a direct influence on the time required to evaluate the SVM deci-
sion function, and therefore the second question addresses the computational
complexity during the employment phase. Moreover, we will see in Chapter 11
that the number of support vectors also has a substantial influence on the
time required to train the SVM, and therefore the second question actually
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addresses the overall computational complexity. Finally, though the hinge loss
is the loss function that is most often used in practice, it has some disadvan-
tages. First, it is not differentiable, and hence certain optimization procedures
cannot be applied to its SVM optimization problem. Second, we have seen in
Chapters 2 and 3 that the minimizer of the hinge loss is sign(2η(x)−1), x ∈ X.
However, this expression does not contain information about the size of η(x),
and therefore SVM decision functions obtained by using the hinge loss cannot
be used to estimate η(x). This discussion shows that a deliberative decision
on whether or which SVM is used for a particular application requires at least
answers to the questions above. Moreover, particular applications may require
taking into account further aspects of learning methods such as robustness,
considered in Section 10.3.

The rest of this chapter is organized as follows. In Section 8.1, we reformu-
late some basic oracle inequalities from Chapter 6. These oracle inequalities
estimate the excess classification risk of SVMs using the hinge loss and can be
used to develop data-dependent parameter selection strategies such as the one
considered in Section 6.5. In Section 8.2, we will then focus on SVMs that use
a Gaussian RBF kernel since these are the kernels that are most often used
in practice. For such SVMs, we present a rather general assumption on the
data-generating distribution P that describes the behavior of P in the vicinity
of the decision boundary and that enables us to estimate the approximation
error function. This is then used to analyze a training validation support vec-
tor machine (TV-SVM) that uses the validation set to determine both the
regularization parameter and the kernel parameter. Section 8.3 then uses the
more advanced oracle inequalities of Chapter 7 to improve the learning rates
obtained in Section 8.2. To this end, another assumption on P is introduced
that measures the amount of noise P has in the labeling process and that can
be used to establish a variance bound for the hinge loss. In Section 8.4, we
then investigate the sparseness of SVMs by presenting a lower bound on the
number of support vectors. Here it will turn out that the Bayes classification
risk is the key quantity that asymptotically controls the sparseness for SVMs
using the hinge loss. In the last section, we will then consider SVMs for binary
classification that use an alternative loss function. Here we first improve the
general calibration inequalities obtained in Section 3.4 for distributions satis-
fying the low-noise assumption introduced in Section 8.3. Furthermore, we will
establish a general lower bound on the sparseness of SVMs that use a margin-
based loss. Finally, this lower bound is used to describe some properties of
loss functions that prevent the decision functions from being sparse.

8.1 Basic Oracle Inequalities for Classifying with SVMs

The goal of this section is to illustrate how the basic oracle inequalities estab-
lished in Section 6.4 can be used to investigate the classification performance
of SVMs using the hinge loss.
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Given a distribution P on X × Y , we assume throughout this and the
following sections that Pn denotes the canonical extension of n-fold product
measure of P to the universal completion of the product σ-algebra on (X×Y )n.
As in Section 6.4, this assumption makes it possible to ignore measurability
questions.

Let us now begin with a reformulation of Theorem 6.24.

Theorem 8.1 (Oracle inequality for classification). Let L be the hinge
loss, Y := {−1, 1}, H be a separable RKHS with bounded measurable kernel k
over X satisfying ‖k‖∞ ≤ 1, and P be a distribution on X × Y such that H
is dense in L1(PX). Then, for all λ > 0, n ≥ 1, and τ > 0, we have with
probability Pn not less than 1− e−τ that

RLclass,P(fD,λ)−R∗
Lclass,P

< A2(λ) + λ−1

(√
8τ
n

+

√
4
n

+
8τ
3n

)
,

where A2( · ) is the approximation error function with respect to L, H, and P.

Proof. Obviously, L := Lhinge is a convex and Lipschitz continuous loss satis-
fying L(y, 0) = 1 for all y ∈ Y . Therefore, Theorem 6.24 shows that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H < A2(λ) + λ−1

(√
8τ
n

+

√
4
n

+
8τ
3n

)

holds with probability Pn not less than 1−e−τ . Moreover, the hinge loss is also
a P-integrable Nemitski loss of order 1 by Lemma 2.25, and hence Theorem
5.31 yields R∗

L,P,H = R∗
L,P. Consequently, we obtain by Theorem 2.31 that

RLclass,P(fD,λ)−R∗
Lclass,P

≤ RL,P(fD,λ)−R∗
L,P,H . ��

Note that the left-hand side of the oracle inequality above considers the
excess classification risk rather than the excess hinge risk, while the SVM is
assumed to use the hinge loss. Consequently, if we can ensure that the right-
hand side of the oracle inequality converges to 0, then the SVM is consistent
with respect to the classification risk, and this finally justifies the use of the
hinge loss as a surrogate for the classification loss.

We have seen in Section 6.4 that the oracle inequality above can sometimes
be improved if the unit ball of the RKHS used has finite ‖ · ‖∞-covering num-
bers. The following theorem reformulates this result for polynomially growing
covering numbers, i.e., polynomially decaying entropy numbers.

Theorem 8.2 (Classification with benign kernels). Let L be the hinge
loss, Y := {−1, 1}, X be a compact metric space, and H be the RKHS of a
continuous kernel k over X with ‖k‖∞ ≤ 1. Moreover, assume that there exist
constants a ≥ 1 and p ∈ (0, 1] such that the dyadic entropy numbers satisfy

ei

(
id : H → C(X)

) ≤ a i−
1
2p , i ≥ 1. (8.1)
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Then, for all distributions P on X×Y , for which H is dense in L1(PX), and
all λ ∈ (0, 1], n ≥ 1, τ > 0, we have

RLclass,P(fD,λ)−R∗
Lclass,P

< A2(λ) + 8
( a2p

λ1+p n

)1/(2+2p)

+

√
8τ + 8
λn

with probability Pn not less than 1− e−τ .

Proof. Let us fix an ε > 0. Using Theorem 6.25, we see analogously to the
proof of Theorem 8.1 that

RLclass,P(fD,λ)−R∗
Lclass,P

< A2(λ) + 4ε+

√
8τ+8 ln

(
2N (BH , ‖ · ‖∞, λ 1

2 ε)
)

λn

holds with probability Pn not less than 1− e−τ . Moreover, (8.1) implies

lnN (BH , ‖ · ‖∞, ε) ≤ ln(4) ·
(a
ε

)2p

, ε > 0 ,

by Lemma 6.21. Combining these estimates, optimizing the result with respect
to ε by Lemma A.1.5, and using (1 + p)(4/p)p/(1+p)(8 ln 4)1/(2+2p) ≤ 8 then
yields the assertion. ��

Since the hinge loss is Lipschitz continuous, it is straightforward to check
that the oracle inequalities above produce the learning rates we have discov-
ered at the end of Section 6.4 and in Exercise 6.9. However, in this case, the
learning rates are for the classification risk instead of the hinge risk. Moreover,
note that we can easily use the oracle inequalities above to derive learning rates
for data-dependent parameter selection strategies such as the TV-SVM. Since
the oracle inequalities above consider the classification risk, we can, however,
use either the clipped empirical hinge risk or the empirical classification risk
in the validation step. We come back to this observation at the end of the
following section, where we investigate a modified TV-SVM that also selects
a kernel parameter in a data-dependent fashion.

8.2 Classifying with SVMs Using Gaussian Kernels

The Gaussian RBF kernel is one of the most often used kernels in practice.
In this section, we derive learning rates for situations in which this kernel is
used with different parameter values. To this end, we introduce some con-
ditions on the data-generating distribution that describe their behavior near
the “decision boundary”. For such distributions, we then establish a bound on
the approximation error function, which in turn will yield the learning rates.
Finally, we discuss a method to select both the regularization parameter and
the kernel parameter in a data-dependent, adaptive way.

Let us begin by presenting an oracle inequality for SVMs using the hinge
loss and a Gaussian kernel.



8.2 Classifying with SVMs Using Gaussian Kernels 291

Theorem 8.3 (Oracle inequality for Gaussian kernels). Let L be the
hinge loss, Y := {−1, 1}, X ⊂ Rd be a compact subset, and m ∈ N. Then
there exists a constant cm,d(X) ≥ 1 such that, for all distributions P on X×Y
and all fixed γ, λ ∈ (0, 1], n ≥ 1, τ > 0, we have with probability Pn not less
than 1− e−τ that

RLclass,P(fD,λ,γ)−R∗
Lclass,P

< A
(γ)
2 (λ) + cm,d(X)λ−1/2

(
γd n
)− m

2m+d
√
τ + 1 .

Here A(γ)
2 denotes the approximation error function with respect to L, P, and

the Gaussian RBF kernel kγ , and fD,λ,γ denotes the decision function of an
SVM using L and kγ .

Proof. Since X is compact, we may assume without loss of generality that X
is a closed Euclidean ball. Then the assertion follows from combining Theorem
6.27 with Theorem 8.2. ��

With some extra effort one can, in principle, determine a value for the
constant cm,d(X). However, this requires us to find a constant in a bound on
entropy numbers and hence we omit the details. Besides the constant cm,d(X),
we also need to bound the approximation error function A

(γ)
2 in order to

obtain learning rates from Theorem 8.3. Unfortunately, this requires us to
impose assumptions on P since otherwise Theorem 8.3 would provide us with
a uniform learning rate for classification, which by Corollary 6.7 is impossible.

In order to formulate such a condition, let us recall that “the” regular con-
ditional probability P( · |x) of a probability measure P on X ×{−1, 1} is only
PX -almost surely defined by (A.11). In other words, if we have two measur-
able functions η1, η2 : X → [0, 1] for which the probability measures Pi( · |x)
defined by Pi(y = 1|x) := ηi(x), i = 1, 2, x ∈ X, satisfy (A.11), then η1 and
η2 coincide up to a PX -zero set. Conversely, any measurable modification of,
say, η1, on a PX -zero set yields a regular conditional probability of P. Since
in the following considerations we have to deal with this inherent ambiguity
very carefully, we introduce the following definition.

Definition 8.4. Let Y := {−1, 1}, X be a measurable space, and P be a
distribution on X × Y . We say that a measurable function η : X → [0, 1]
is a version of the posterior probability of P if the probability measures
P( · |x) defined by P(y = 1|x) := η(x), x ∈ X, form a regular conditional
probability of P, i.e.,

P(A×B) =
∫

A

P(B|x) dPX(x) ,

for all measurable sets A ⊂ X and B ⊂ Y .

If a distribution P on X × Y has a smooth version of the posterior proba-
bility, then intuitively the set {x ∈ X : η = 1/2} is the “decision boundary”
that separates the class {x ∈ X : η(x) < 1/2} of negatively labeled samples
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from the class {x ∈ X : η(x) > 1/2} of positively labeled samples. Intuitively,
any classification method that uses a notion of distance on X to build its de-
cision functions should learn well in regions that are not close to the decision
boundary. This suggests that learning should be relatively easy for distribu-
tions that do not have a lot of mass in the vicinity of the decision boundary.
Our next goal is to verify this intuition for SVMs using Gaussian kernels. To
this end, we begin with the following definition that introduces a “distance to
the decision boundary” without defining the decision boundary itself.

Definition 8.5. Let (X, d) be a metric space, P be a distribution on X ×
{−1, 1}, and η : X → [0, 1] be a version of its posterior probability. We write

X−1 :=
{
x ∈ X : η(x) < 1/2

}
,

X1 :=
{
x ∈ X : η(x) > 1/2

}
.

Then the associated version of the distance to the decision boundary
is the function Δ : X → [0,∞] defined by

Δ(x) :=

⎧⎪⎨
⎪⎩
d(x,X1) if x ∈ X−1,

d(x,X−1) if x ∈ X1,

0 otherwise ,
(8.2)

where, as usual, d(x,A) := infx′∈A d(x, x′).

In the following, we are mainly interested in the distance to the decision
boundary for distributions defined on X ×{−1, 1}, where X ⊂ Rd is measur-
able. In this case, we will always assume that these subsets are equipped with
the Euclidean metric.

One may be tempted to think that changing the posterior probability on
a PX -zero set has only marginal or even no influence on Δ. Unfortunately,
quite the opposite is true. To illustrate this, let us consider the probability
measure P on R × {−1, 1} whose marginal distribution PX is the uniform
distribution on [−1, 1] and for which η(x) := 1[0,∞)(x), x ∈ R, is a version of
its posterior probability. Obviously this definition gives X−1 = (−∞, 0) and
X1 = [0,∞), and from these equations we immediately conclude that Δ(x) =
|x|, x ∈ R, for the associated version of the distance to the decision boundary.
Let us now change the posterior probability on the PX -zero set Q by defining
η̃(x) := η(x) if x ∈ R\Q and η̃(x) := 1 − η(x) if x ∈ Q. Since PX(Q) = 0,
we easily see that η̃ is indeed another version of the posterior probability of
P. However, for this version, we have X−1 = ((−∞, 0)\Q) ∪ ([0,∞) ∩Q) and
X1 = ((−∞, 0) ∩ Q) ∪ ([0,∞)\Q), and therefore its associated distance to
the decision boundary is given by Δ(x) = 0 for all x ∈ R. This example1

1 Informally speaking, the example exploited the fact that sets that are “small”
in a measure theoretic sense can be “big” in a topological sense. From this it
becomes obvious that the described phenomenon can be observed for a variety of
distributions on Rd.
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demonstrates that it is absolutely necessary to fix a version of the posterior
probability when dealing with Δ.

Our next goal is to use the distance to the decision boundary Δ to describe
the behavior of distributions P near the decision boundary. This behavior
will be crucial when bounding the approximation error function for Gaussian
kernels below. Let us begin by measuring the concentration of PX near the
decision boundary. To this end, we first note that {x ∈ X : Δ(x) < t} contains
the set of points x that are either a) in X−1 ∪ X1 and geometrically close
to the opposite class or b) satisfy η(x) = 1/2. Consequently, in the case
PX({x ∈ X : η(x) = 1/2}) = 0, we see that {x ∈ X : Δ(x) < t} contains only
the points (modulo a PX -zero set) that are close to the opposite class. The
following definition describes the size of this set.

Definition 8.6. Let (X, d) be a metric space and P be a distribution on X ×
{−1, 1}. We say that P has margin exponent α ∈ [0,∞) for the version
η : X → [0, 1] of its posterior probability if there exists a constant c > 0 such
that the associated version Δ of the distance to the decision boundary satisfies

PX

({x ∈ X : Δ(x) < t}) ≤ c tα , t ≥ 0. (8.3)

In the following, we sometimes say that P has margin exponent α for
the version Δ of the distance to the decision boundary if (8.3) is satisfied.
Moreover, we say that P has margin exponent α if there exists a version Δ of
the distance to the decision boundary such that (8.3) is satisfied.

We will see later in this section that we are mainly interested in the be-
havior of PX ({x ∈ X : Δ(x) < t}) for t→ 0. In this case, an exponent α > 0
in (8.3) describes how fast PX({x ∈ X : Δ(x) < t}) converges to 0. Now note
that for α > 0 it is straightforward to check that PX({x ∈ X : Δ(x) = 0}) = 0
holds. Since η(x) = 1/2 implies Δ(x) = 0, we hence find

PX

({x ∈ X : η(x) = 1/2}) = 0 .

Informally speaking, (8.3) therefore measures the “size” of the set of points
that are close to the opposite class. We refer to Figure 8.1 for an illustration
of a distribution having a large margin exponent.

Obviously, every distribution has margin exponent α = 0. Moreover, the
margin exponent is monotone in the sense that every distribution P that has
some margin exponent α also has margin exponent α′ for all α′ ∈ [0, α]. The
following simple yet useful lemma shows that the margin exponent is invariant
with respect to inclusions of the input space X.

Lemma 8.7. Let (X̃, d) be a metric space, X ⊂ X̃ be a measurable subset,
and P be a distribution on X × Y , where Y := {−1, 1}. Then there exists
exactly one distribution P̃ on X̃ × Y , called the canonical extension of P,
that satisfies the following two conditions:

i) P̃X(A) = PX(A ∩X) for all measurable A ⊂ X̃.
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ii) P̃(y = 1|x) = P(y = 1|x) for PX-almost all x ∈ X.

Moreover, P has margin exponent α ∈ [0,∞) if and only if its canonical
extension P̃ has margin exponent α.

Proof. Obviously, i) can be used to define P̃X , and it is furthermore clear
that there is only one distribution on X̃ that satisfies i). Moreover, i) implies
that X̃ \X is a P̃X -zero set and hence the behavior of P̃(y = 1|x) on X̃ \X
does not matter for the definition of P̃. By using ii) as a definition for the
posterior probability of P̃, we then find the first assertion, where we use (A.11)
to define P̃. In order to prove the second assertion, we set P̃(y = 1|x) := 1/2
for x ∈ X̃ \X. Then P̃(y = 1|x) �= 1/2 implies x ∈ X, and hence the classes
X̃−1 and X̃1 of P̃ are contained in X. The associated distances to the decision
boundaries thus satisfy Δ̃(x) = Δ(x) for all x ∈ X, and hence we finally find

P̃X

({x ∈ X̃ : Δ̃(x) < t}) = PX

({x ∈ X : Δ(x) < t}) . ��

Let us now present some elementary examples of distributions having a
strictly positive margin exponent.

Example 8.8 (Classes with strictly positive distance). Let X be a metric space,
P be a distribution on X × Y , and η be a version of the posterior probability
for which the associated classes X−1 and X1 have strictly positive distance,
i.e., d(X−1, X1) > 0, and satisfy PX(X−1 ∪ X1) = 1. Then P has margin
exponent α for all α > 0.

To check this, let us write t0 := d(X−1, X1). Then we have t0 > 0 and
Δ(x) ≥ t0 for all x ∈ X−1 ∪X1. For t ∈ (0, t0], we thus find

PX

({x ∈ X : Δ(x) < t}) = PX

({x ∈ X−1 ∪X1 : Δ(x) < t}) = 0 .

Moreover, for t > t0, we obviously have PX({x ∈ X : Δ(x) < t}) ≤ 1 < t−α
0 tα,

and hence we obtain the assertion.
Finally, note that this example in particular includes distributions P on

discrete metric spaces for which P({x ∈ X : η(x) = 1/2}) = 0. �

Example 8.9 (Linear decision boundaries). Let X ⊂ Rd be a compact subset
with strictly positive volume and P be a distribution onX×Y whose marginal
distribution PX is the uniform distribution. Moreover, assume that there exist
a w ∈ Rd \ {0}, a constant b ∈ R, and a version η of the posterior probability
such that the corresponding classes are given byX−1 = {x ∈ X : 〈w, x〉+b < 0}
and X1 = {x ∈ X : 〈w, x〉+ b > 0}. Then P has margin exponent α = 1.

In order to check this, we first observe with the help of the rotation and
translation invariance of the Lebesgue measure that we may assume without
loss of generality that w = e1 is the first vector of the standard ONB and
b = 0. In addition, the compactness of X shows that there exists an a > 0
such that X ⊂ [−a, a]d. Then we have
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{x ∈ X : Δ(x) < t} =
{
x ∈ X : −t < 〈e1, x〉 < t

}
⊂ {x ∈ [−a, a]d : −t < 〈e1, x〉 < t

}
,

and since the volume of the last set is given by ad−1 min{a, t}, the assertion
becomes obvious.

Finally, note that P still has margin exponent α = 1 if we assume that
the classes X−1 and X1 are “stripes”, i.e., that they are described by finitely
many parallel affine hyperplanes. �

Example 8.10 (Circular decision boundaries). Let X ⊂ Rd be a compact sub-
set with a non-empty interior and P be a distribution onX×Y whose marginal
distribution PX is the uniform distribution. Moreover, assume that there exist
an x0 ∈ Rd, an r > 0, and a version η of the posterior probability such that
the corresponding classes are given by X−1 = {x ∈ X : ‖x − x0‖ < r} and
X1 = {x ∈ X : ‖x− x0‖ > r}. Then P has margin exponent α = 1.

To see this, we observe that we may assume without loss of generality that
x0 = 0. In addition, the compactness of X shows that there exists an r0 > 0
such that X ⊂ r0Bd

2
. Then we have

{x ∈ X : Δ(x) < t} =
{
x ∈ X : r − t < ‖x‖2 < r + t

}
⊂ {x ∈ r0Bd

2
: r − t < ‖x‖2 < r + t

}
.

Since a simple calculation shows (r+ t)d− (r− t)d ≤ ct for a suitable constant
c > 0 and all sufficiently small t > 0, we then obtain the assertion.

Finally note that P still has margin exponent α = 1 if we assume that the
classes X−1 and X1 are described by finitely many circles. �

The previous two examples have not considered the shape of the input
space X. However, this shape can have a substantial influence on the margin
exponent. We refer to Exercise 8.3 for an example in this direction.

Let us finally consider an example of a distribution that does not have a
strictly positive margin exponent.

Example 8.11 (Only trivial margin exponent). Assume that μ−1 is the uniform
distribution on [0, 1]2 and that μ1 is the uniform distribution on {0} × [0, 1].
Moreover, let η := 1{0}×[0,1] and PX := (μ−1+μ1)/2. Then the corresponding
distribution P on R2 × {−1, 1} has only margin exponent α = 0. Indeed, for
this version η of the posterior probability, we have Δ(x) = 0 for all x ∈
{0} × [0, 1], and it is easy to see that this cannot be changed by considering
another version of the posterior probability. �

So far, we have only seen elementary examples of distributions having a
non-trivial margin exponent. However, by combining these examples with the
following lemma and the subsequent example, it is easy to see that the set of
distributions having a non-trivial margin exponent is quite rich.
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Lemma 8.12 (Images of inverse Hölder maps). Let (X1, d1) and (X2, d2)
be metric spaces and Ψ : X1 → X2 be a measurable map whose image Ψ(X1)
is measurable. Assume that Ψ is inverse Hölder continuous, i.e., there exist
constants c > 0 and γ ∈ (0, 1] such that

d1(x1, x
′
1) ≤ c dγ

2(Ψ(x1), Ψ(x′1)) , x1, x
′
1 ∈ X1. (8.4)

Let Y := {−1, 1} and Q be a distribution on X1 × Y that has some margin
exponent α > 0 for the version ηQ of its posterior probability. Furthermore,
let P be a distribution on X2×Y for which there exists a constant C ≥ 1 such
that

PX(A) ≤ C QX

(
Ψ−1(A)

)
(8.5)

for all measurable A ⊂ X2. If P has a version ηP of its posterior probability
such that

ηP(Ψ(x1)) = ηQ(x1) , x1 ∈ X1, (8.6)

then P has margin exponent αγ.

Proof. Without loss of generality, we may assume that ηP(x2) = 1/2 for all
x2 ∈ X2 \Ψ(X1). This assumption immediately implies ΔP(x2) = 0 for all
x2 ∈ X2\Ψ(X1), but since (8.5) implies PX(X2\Ψ(X1)) = 0, we notice for
later use that the behavior of ΔP on X2\Ψ(X1) has no influence on the margin
exponent of P. Moreover, (8.4) implies that Ψ is injective and hence the inverse
Ψ−1 : Ψ(X1) → X1 of Ψ : X1 → Ψ(X1) exists. By (8.6), we conclude that
ηP(x2) = ηQ(Ψ−1(x2) for all x2 ∈ Ψ(X1). Let us now fix x2, x

′
2 ∈ X2 with

ηP(x2) < 1/2 and ηP(x′2) > 1/2. Then ηP ≡ 1/2 onX2\Ψ(X1) implies x2, x
′
2 ∈

Ψ(X1), and hence we have ηQ(Ψ−1(x2)) < 1/2 and ηQ(Ψ−1(x′2)) > 1/2. From
this we conclude that

c dγ
2(x2, x

′
2) ≥ d1(Ψ−1(x2), Ψ−1(x′2)) ≥ ΔQ(Ψ−1(x2)) ,

and hence cΔγ
P(x2) ≥ ΔQ(Ψ−1(x2)). Repeating the argument above, we fur-

ther see that this inequality hold not only for x2 satisfying ηP(x2) < 1/2 but
actually for all x2 ∈ Ψ(X1). Combining this with our previous considerations
and (8.5), we thus obtain

PX

({x2 ∈ X2 : ΔP(x2) < t}) = PX

({x2 ∈ Ψ(X1) : ΔP(x2) < t})
≤ C QX

({x1 ∈ X1 : ΔP(Ψ(x1)) < t})
≤ C QX

({x1 ∈ X1 : ΔQ(x1) < ctγ}) .
Using the margin exponent of Q, we then find the assertion. ��

Note that if the map Ψ in the lemma above is continuous and X1 is a
complete metric space, a simple Cauchy sequence argument combined with
(8.4) shows that Ψ(X1) is a closed of subset X2 and hence measurable.
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Fig. 8.1. Example of a distribution that has a large margin exponent.
The red and blue areas are the negative and positive classes, respectively, and the
decision boundary is located in the white area. The lighter colors indicate a low
concentration of PX , and hence only a few samples (indicated by yellow and black
dots for positive and negative labels, respectively) can be found in this region. The
black line shows an estimate of the decision boundary made by an SVM. Note that
the larger the light area is, the larger the noise exponent is, and hence the better
the SVM can estimate the true decision boundary. However, even in the absence of
a light area, the corresponding distribution would have margin exponent α = 1, if,
for example, PX had a bounded density.

If PX is the image measure Ψ(QX) of QX under Ψ , then (8.5) becomes an
equality with C = 1. However, this is by no means the only case where (8.5)
can hold. For example, assume that PX is only absolutely continuous with
respect to Ψ(QX). Then (8.5) is obviously satisfied if the density of PX with
respect to Ψ(QX) is bounded. The next example illustrates such a situation.

Example 8.13 (Smooth transformations). Let U, V ⊂ Rd be two open non-
empty sets and Ψ : U → V be a continuously differentiable map. Then recall
that Ψ(B) is measurable for all measurable B ⊂ U and that a version of Sard’s
inequality (see, e.g., p. 313 in Floret, 1981) states that
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Fig. 8.2. Example of a distribution that has a large amount of noise
around its decision boundary. The red and blue areas are the negative and
positive classes, respectively, and the mixture of these colors indicates the amount of
noise. Consequently, we see nearby samples with different labels (indicated by yellow
and black dots for positive and negative labels, respectively) in this region. The black
line shows an estimate of the decision boundary made by an SVM, whereas the true
decision boundary is located in the middle of the purple region. Note that the
larger the purple area around the decision boundary is, the larger the margin-noise
exponent is. However, even there was no purple area the corresponding distribution
would have margin-noise exponent α = 1, if, for example, PX had a bounded density.

vold(Ψ(B)) ≤
∫

B

|detΨ ′(x)|dx . (8.7)

Let us further assume that Q is a distribution on U ×Y , where Y := {−1, 1},
such that supp QX is bounded and vold(Ψ(supp QX)) > 0. Then (8.7) yields
vold(supp QX) > 0. Let us assume for the sake of simplicity that QX is the
uniform distribution on supp QX and that P is a distribution on V × Y such
that PX is the uniform distribution on the compact set Ψ(supp QX). Then
(8.7) yields
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PX(A) ≤ vold(supp QX)
vold(Ψ(supp QX))

∫
U

1A(Ψ(x)) |detΨ ′(x)|QX(x)

≤ vold(supp QX)
vold(Ψ(supp QX))

sup
x∈supp QX

|detΨ ′(x)| ·QX(Ψ−1(A))

for all measurable A ⊂ V . Since supp QX is compact and x �→ |detΨ ′(x)| is
continuous, we hence obtain (8.5).

Let us finally assume that Ψ is a diffeomorphism, i.e., Ψ is also bijective
and Ψ−1 : V → U is continuously differentiable. If V = Ψ(U) is convex, then
the mean value theorem states that∥∥Ψ−1(x)− Ψ−1(x′)

∥∥
2
≤ sup

t∈[0,1]

∥∥ (Ψ−1)′(tx+ (1− t)x′)∥∥
2
· ‖x− x′‖2

for all x, x′ ∈ V . Since coΨ(supp QX) ⊂ V is compact, we thus obtain (8.4)
for γ := 1, X1 := supp QX , and X2 := Ψ(supp QX). Consequently, P has
margin exponent α if Q has margin exponent α and (8.6) is satisfied. �

Our next goal is to show that small values of densities in the vicinity of the
decision boundary improve the margin exponent. To this end, we say that the
distributions P and Q on X×Y generate the same classes for the versions
ηP and ηQ of their posterior probabilities of P and Q if (2ηP − 1)(2ηQ − 1) > 0.
Obviously, in this case, the associated classes do coincide and hence the as-
sociated distances ΔP and ΔQ to the decision boundaries are equal. For such
distributions, we can now prove the following lemma.

Lemma 8.14 (Low densities near the decision boundary). Let (X, d)
be a metric space and Q and P be two distributions on X × Y that generate
the same classes for their posterior probabilities ηP and ηQ. We write ΔQ for
the associated distance to the decision boundary of Q. Furthermore, assume
that PX has a density h : X → [0,∞) with respect to QX such that there exist
constants c > 0 and γ ∈ [0,∞) satisfying

h(x) ≤ cΔγ
Q(x) , x ∈ X. (8.8)

If Q has margin exponent α ∈ [0,∞) for ΔQ, then P has margin exponent
α+ γ.

Proof. We have already seen before this lemma that there is a version ΔP of
the distance to the decision boundary of P that equals ΔQ. For t ≥ 0, we
consequently obtain

PX

({x ∈ X : ΔP(x) < t}) =
∫

ΔQ(x)<t

h(x) dQX(x)

≤ c tγ QX

({x ∈ X : ΔQ(x) < t}) .
From this we immediately obtain the assertion. ��
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For classifying with the hinge loss, we will see below that it is more suitable
to measure the size of {x ∈ X : Δ(x) < t} by |2η − 1|PX instead of PX . This
motivates the following definition.

Definition 8.15. Let (X, d) be a metric space and P be a distribution on
X×Y . We say that P has margin-noise exponent β ∈ [0,∞) for the version
η : X → [0, 1] of its posterior probability if there exists a constant c ≥ 1 such
that the distance to the decision boundary Δ associated to η satisfies∫

Δ(x)<t

|2η(x)− 1| dPX(x) ≤ c tβ , t ≥ 0. (8.9)

Let us now investigate the relation between the margin exponent and the
margin-noise exponent. Lemma 8.14 suggests that to this end we need to
describe how the distance to the decision boundary influences the amount of
noise. This is done in the following definition.

Definition 8.16. Let (X, d) be a metric space, P be a distribution on X ×Y ,
and η : X → [0, 1] be a version of its posterior probability. We say that the
associated distance to the decision boundary Δ controls the noise by
the exponent γ ∈ [0,∞) if there exists a constant c > 0 such that

|2η(x)− 1| ≤ cΔγ(x) (8.10)

for PX-almost all x ∈ X.

Note that since |2η(x) − 1| ≤ 1 for all x ∈ X, condition (8.10) becomes
trivial whenever Δ(x) ≥ c−1/γ . Consequently, (8.10) is a condition that only
considers points x ∈ X with sufficiently small distance to the opposite class.
In simple words, it states that η(x) is close to the level 1/2 of “complete
noise” if x approaches the decision boundary. The following lemma, whose
omitted proof is almost identical to that of Lemma 8.14, now relates the
margin exponent to the margin-noise exponent.

Lemma 8.17. Let X be a metric space and P be a distribution on X×Y that
has margin exponent α ∈ [0,∞) for the version η of its posterior probability.
Assume that the associated distance to the decision boundary Δ controls the
noise by the exponent γ ∈ [0,∞). Then P has margin-noise exponent α+ γ.

Note that for α = 0 the preceding lemma states that every distribution
whose distance to the decision boundary controls the noise by some expo-
nent γ > 0 has margin-noise exponent γ. In other words, distributions that
have a high amount of noise around their decision boundary have a non-
trivial margin-noise exponent. We refer to Figure 8.2 for an illustration of
this situation. In addition, note that in the case γ = 0 the lemma states that
distributions having some margin exponent α > 0 also have margin-noise ex-
ponent α. Consequently, all considerations on the margin exponent made so
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far have an immediate consequence for the margin-noise exponent. Finally,
the general message of Lemma 8.17 is that for distributions satisfying both
assumptions their exponents add up to become the margin-noise exponent.

With the help of the concepts above, we can now return to our initial goal
of estimating the approximation error function for Gaussian kernels.

Theorem 8.18 (Approximation error of Gaussian kernels). Let L be
the hinge loss and P be a distribution on Rd × {−1, 1} that has margin-noise
exponent β ∈ (0,∞) and whose marginal distribution PX has tail exponent
τ ∈ (0,∞]. Then there exist constants cd,τ > 0 and c̃d,β > 0 such that for
all γ > 0 and all λ > 0 there exists a function f∗ ∈ Hγ(Rd) in the RKHS
Hγ(Rd) of the Gaussian RBF kernel kγ such that ‖f∗‖∞ ≤ 1 and

λ‖f∗‖2Hγ(Rd) +RL,P(f∗)−R∗
L,P ≤ cd,τ λ

τ
d+τ γ−

dτ
d+τ + c̃d,β c γ

β ,

where c is the constant appearing in (8.9). In particular, we have

A
(γ)
2 (λ) ≤ max

{
cd,τ , c̃d,β c

} · (λ τ
d+τ γ−

dτ
d+τ + γβ

)
.

Proof. Obviously, it suffices to prove the first assertion. Let η : Rd → [0, 1]
be a version of the posterior probability of P such that its associated Δ(x),
x ∈ Rd, satisfies (8.9). We define X−1 and X1 as in Definition 8.5 and further
use the shorthand B := {x ∈ Rd : ‖x‖2 ≤ 1} for the closed unit ball of Rd.
Let us fix a ρ > 0 such that X−1 ∩ ρB �= ∅ and X1 ∩ ρB �= ∅. Then an
easy consideration shows that Δ(x) ≤ 2ρ for all x ∈ ρB. Finally, we define
fρ : Rd → [−1, 1] by

fρ(x) := 1(X−1∪X1)∩3ρB(x) · sign
(
2η(x)− 1

)
, x ∈ Rd,

and gρ : Rd → R by gρ := (πγ2)−d/4fρ. Obviously, we have gρ ∈ L2(Rd) with

‖gρ‖L2(Rd) ≤
(

9ρ2

πγ2

) d
4√

vold(B) , (8.11)

where vold(B) denotes the volume of B. Let us now recall Lemma 4.45 and
(4.43), which showed that L2(Rd) is a feature space of Hγ(Rd) with canonical
metric surjection Vγ : L2(Rd)→ Hγ(Rd) given by

Vγg(x) =
(

4
πγ2

) d
4
∫
Rd

e−2γ−2‖x−x′‖2
2 g(x′)dx′ , g ∈ L2(Rd), x ∈ Rd.

By Theorem 4.21 and (8.11), we then obtain

‖Vγgρ‖Hγ(Rd) ≤
(

9ρ2

πγ2

) d
4√

vold(B) . (8.12)

Moreover, gρ = (πγ2)−d/4fρ together with ‖fρ‖∞ ≤ 1 and (A.3) implies
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∣∣Vγgρ(x)
∣∣ ≤ ( 2

πγ2

) d
2
∫
Rd

e−2γ−2‖x−x′‖2
2dx′ = 1

for all x ∈ Rd. Therefore, Theorem 2.31 yields

RLhinge,P(Vγgρ)−R∗
Lhinge,P = EPX

( |Vγgρ − f∗Lclass,P
| · |2η − 1| ). (8.13)

In order to bound |Vγgρ − f∗Lclass,P
| we fix an x ∈ X1 ∩ ρB. Furthermore, we

write B(x, r) := {x′ ∈ Rd : ‖x−x′‖2 < r} for the open ball with radius r and
center x. For x′ ∈ B(x,Δ(x)), we then have ‖x − x′‖2 < Δ(x), and thus we
obtain x′ ∈ X1. Moreover, we also have ‖x′‖2 ≤ ‖x−x′‖2+‖x‖2 < Δ(x)+ρ ≤
3ρ, and therefore we conclude that

B(x,Δ(x)) ⊂ X1 ∩ 3ρB .

Similarly, for x′ ∈ X−1, we have Δ(x) ≤ ‖x− x′‖2, and hence we obtain

X−1 ∩ 3ρB ⊂ X−1 ⊂ Rd\B(x,Δ(x)) .

Combining the definition of f with these two inclusions and (A.3) now yields

Vγgρ(x) =
(

2
πγ2

) d
2
∫
Rd

e−2γ−2‖x−x′‖2
2fρ(x′)dx′

=
(

2
πγ2

) d
2
(∫

X1∩3ρB

e−2γ−2‖x−x′‖2
2dx′ −

∫
X−1∩3ρB

e−2γ−2‖x−x′‖2
2dx′
)

≥
(

2
πγ2

) d
2
( ∫

B(x,Δ(x))

e−2γ−2‖x−x′‖2
2dx′ −

∫
Rd\B(x,Δ(x))

e−2γ−2‖x−x′‖2
2dx′
)

= 2
(

2
πγ2

) d
2
∫

B(x,Δ(x))

e−2γ−2‖x−x′‖2
2dx′ − 1 .

Since Vγgρ(x) ≤ 1 and f∗Lclass,P
(x) = 1, we thus obtain

|Vγgρ(x)− f∗Lclass,P
(x)| = 1− Vγgρ(x)

≤ 2− 2
(

2
πγ2

) d
2
∫

B(x,Δ(x))

e−2γ−2‖x−x′‖2
2dx′

= 2− 2
(

2
πγ2

) d
2
∫

B(0,Δ(x))

e−2γ−2‖x′‖2
2dx′ .

Using the rotation invariance of x′ �→ e−2γ−2‖x′‖2
2 and Γ (1+ t) = tΓ (t), t > 0,

we further find
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(
2
πγ2

) d
2
∫

B(0,Δ(x))

e−2γ−2‖x′‖2
2dx′ =

d

Γ (1 + d/2)

(
2
γ2

) d
2
∫ Δ(x)

0

e−2γ−2r2
rd−1dr

=
2

Γ (d/2)

∫ √
2Δ(x)γ−1

0

e−r2
rd−1dr

=
1

Γ (d/2)

∫ 2Δ2(x)γ−2

0

e−rrd/2−1dr .

Combining this equation with the previous estimate yields

|Vγgρ(x)− f∗Lclass,P
(x)| ≤ 2− 2

Γ (d/2)

∫ 2Δ2(x)γ−2

0

e−rrd/2−1dr

=
2

Γ (d/2)

(∫ ∞

0

e−rrd/2−1dr −
∫ 2Δ2(x)γ−2

0

e−rrd/2−1dr

)

=
2

Γ (d/2)

∫ ∞

0

1(2Δ2(x)γ−2,∞)(r) e−rrd/2−1dr

for all x ∈ X1 ∩ ρB. Moreover, repeating the proof above for x ∈ X−1 ∩ ρB,
we see that this estimate actually holds for all x ∈ (X−1 ∪ X1) ∩ ρB. Since
|2η(x)− 1| = 0 for x �∈ X−1 ∪X1, we thus find∫

ρB

|Vγgρ(x)− f∗Lclass,P
(x)| · |2η(x)− 1| dPX(x)

≤ 2
Γ (d/2)

∫
X−1∪X1

∫ ∞

0

1(2Δ2(x)γ−2,∞)(r) e−rrd/2−1|2η(x)− 1| dr dPX(x)

=
2

Γ (d/2)

∫ ∞

0

e−rrd/2−1

∫
Rd

1[0,γ(r/2)1/2)(Δ(x)) · |2η(x)− 1| dPX(x) dr

≤ 21−β/2 c γβ

Γ (d/2)

∫ ∞

0

e−rr(β+d)/2−1dr

=
21−β/2 c Γ ((β + d)/2)

Γ (d/2)
γβ

by the definition of the margin-noise exponent. Using equation (8.13) together
with ‖Vγgρ‖∞ ≤ 1 and the tail exponent inequality (7.61) thus yields

RLhinge,P(Vγgρ)−R∗
Lhinge,P

≤
∫

ρB

|Vγgρ(x)− f∗Lclass,P
(x)| · |2η(x)− 1| dPX(x) + 2PX(Rd \ ρB)

≤ 21−β/2 c Γ ((β + d)/2)
Γ (d/2)

γβ + 2ρ−τ . (8.14)

By combining this estimate with (8.12), we therefore obtain
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λ‖Vγgρ‖2Hγ
+RLhinge,P(Vγgρ)−R∗

Lhinge,P

≤ λ
( 9ρ2

πγ2

) d
2

vold(B) +
21−β/2 c Γ ((β + d)/2)

Γ (d/2)
γβ + 2ρ−τ . (8.15)

So far, we have found a gρ satisfying (8.15) only if ρ satisfies bothX−1∩ρB �= ∅
and X1∩ρB �= ∅. Our next goal is to find such a gρ for the remaining ρ > 0. To
this end, let us first consider a ρ > 0 such that X−1∩ρB = ∅ and X1∩ρB = ∅.
For such ρ, we set fρ := gρ := 0, so that (8.12) and (8.13) are trivially satisfied.
Moreover, for x ∈ ρB, our assumption on ρ guarantees x �∈ X−1 ∪X1, which
in turn yields |2η(x)− 1| = 0. Consequently, we find

RLhinge,P(Vγgρ)−R∗
Lhinge,P

≤
∫

ρB

|Vγgρ(x)− f∗Lclass,P
(x)| · |2η(x)− 1| dPX(x) + 2PX(Rd\ρB)

≤ 2ρ−τ ,

and hence (8.15) turns out to be true for the ρ and gρ considered. Let us
now consider a ρ ≥ 1 such that X−1 ∩ ρB = ∅ and X1 ∩ ρB �= ∅. In this
case, we define fρ := 12ρB and gρ := (πγ2)−d/4fρ. Then (8.12) and (8.13) are
obviously satisfied. Moreover, for x ∈ ρB, we have B(x, ρ) ⊂ 2ρB, and hence
repeating our previous calculations yields

Vγgρ(x) =
(

2
πγ2

) d
2
∫

2ρB

e−2γ−2‖x−y‖2
2dy ≥

(
2
πγ2

) d
2
∫

B(0,ρ)

e−2γ−2‖y‖2
2dy

=
1

Γ (d/2)

∫ 2ρ2γ−2

0

e−rrd/2−1dr .

For x ∈ X1 ∩ ρB, it is then easy to conclude that

|Vγgρ(x)− f∗Lclass,P
(x)| ≤ 1− 1

Γ (d/2)

∫ 2ρ2γ−2

0

e−rrd/2−1dr

=
1

Γ (d/2)

∫ ∞

2ρ2γ−2
e−rrd/2−1dr

≤ 2−β/2 Γ ((β + d)/2)
Γ (d/2)

γβ ,

where in the last step we used the last estimate of Lemma A.1.1. Since the
constant c in (8.9) is assumed to be not smaller than 1, we then conclude that
(8.15) holds. Finally, if ρ ∈ (0, 1), the latter inequality is satisfied for gρ := 0,
and consequently we have found for all ρ > 0 a function gρ such that (8.15)
holds. Minimizing (8.15) with respect to ρ now yields the assertion. ��

Having a bound on the approximation error, we can now derive learning
rates for λn and γn chosen a priori with the help of Theorem 8.1 and The-
orem 8.3. However, it turns out that the optimal rates of such an approach
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require knowledge about the distribution, namely the margin-noise exponent
and the tail exponent. Since in practice such knowledge is not available, we
skip the derivation of these rates and focus directly on data-dependent adap-
tive parameter selection strategies. The strategy we will focus on is a simple
modification of the TV-SVM considered in Section 6.5. This modification de-
termines not only the regularization parameter λ by a grid but also the kernel
parameter γ. As in Section 6.5, we therefore need to know how much the
approximation error function is affected by small changes of λ and γ. This is
investigated in the following corollary.

Corollary 8.19. Let P be a distribution on Rd×{−1, 1} that has margin-noise
exponent β ∈ (0,∞) and whose PX has tail exponent τ ∈ (0,∞]. Moreover, for
ε > 0 and δ > 0, we fix a finite ε-net Λ ⊂ (0, 1] and a finite δ-net Γ ⊂ (0, 1],
respectively. Then, for all p > 0, q ≥ 0, and all x ∈ (0, 1], we have

min
λ∈Λ, γ∈Γ

(
A

(γ)
2 (λ) + xλ−pγ−q

)
≤ c (x βτ

βτ+dβp+βpτ+dpτ+qτ + ε
τ

d+τ + δβ
)
,

where c ≥ 1 is a constant independent of x, Λ, ε, Γ , and δ.

The proof of the preceding corollary actually yields a particular expression
for the constant c, but since this expression is extremely complicated, we
decided to omit the details.

Proof. Without loss of generality, we may assume that Λ and Γ are of the
form Λ = {λ1, . . . , λm} and Γ = {γ1, . . . , γ} with λi−1 < λi and γj−1 < γj for
all i = 2, . . . ,m and γ = 2, . . . , �, respectively. Moreover, we fix a minimizer
(λ∗, γ∗) of the function (λ, γ) �→ λ

τ
d+τ γ−

dτ
d+τ +γβ +xλ−pγ−q defined on [0, 1]2.

Analogously to the proof of Lemma 6.30, we then see that there exist indexes
i ∈ {1, . . . ,m} and j ∈ {1, . . . , �} such that λ∗ ≤ λi ≤ λ∗ + 2ε and γ∗ ≤ γj ≤
γ∗ + 2δ. By Theorem 8.18, we then obtain

min
λ∈Λ, γ∈Γ

(
A

(γ)
2 (λ) + xλ−pγ−q

)
≤ A(γj)

2 (λi) + xλ−p
i γ−q

j

≤ c1
(
λ

τ
d+τ

i γ
− dτ

d+τ

j + γβ
j

)
+ x (λ∗)−p(γ∗)−q

≤ c1
(
(λ∗ + 2ε)

τ
d+τ (γ∗)−

dτ
d+τ + (γ∗ + 2δ)β

)
+ x (λ∗)−p(γ∗)−q

≤ c2
(
(λ∗)

τ
d+τ (γ∗)−

dτ
d+τ + (γ∗)β + x (λ∗)−p(γ∗)−q + ε

τ
d+τ + δβ

)
= c2 min

λ,γ∈[0,1]

(
λ

τ
d+τ γ−

dτ
d+τ + γβ + xλ−pγ−q

)
+ c2ε

τ
d+τ + c2δ

β ,

where in the second to last step we used γ∗ ≤ 1, and where c1 and c2 are
suitable constants independent of x, Λ, ε, Γ , and δ. Now the assertion follows
from Lemma A.1.6. ��

Let us now introduce the announced modification of the TV-SVM.
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Definition 8.20. Let Λ := (Λn) and Γ := (Γn) be sequences of finite subsets
Λn, Γn ⊂ (0, 1]. For D := ((x1, y1), . . . , (xn, yn)) ∈ (Rd×{−1, 1})n, we define

D1 := ((x1, y1), . . . , (xm, ym))
D2 := ((xm+1, ym+1), . . . , (xn, yn)) ,

where m := �n/2� + 1 and n ≥ 3. Then we use D1 as a training set by
computing the SVM decision functions

fD1,λ,γ := arg min
f∈Hγ

λ‖f‖2Hγ
+RLhinge,D1(f) , (λ, γ) ∈ Λn × Γn,

and use D2 to determine (λ, γ) by choosing a (λD2 , γD2) ∈ Λn × Γn such that

RLclass,D2(fD1,λD2 ,γD2
) = min

(λ,γ)∈Λn×Γn

RLclass,D2(fD1,λ,γ) .

A learning method that produces such decision functions fD1,λD2 ,γD2
for all

D ∈ (X × Y )n is called a training validation support vector machine
(TV-SVM) with respect to Λ and Γ .

Note that in the parameter selection step we consider the classification
loss, although in principle we could have also used the hinge loss. Since the
classification risk only considers the sign of a decision function and not its
values, it is not necessary to clip fD1,λ,γ in this parameter selection step.
Finally note that in general the pair (λD2 , γD2), and thus also fD1,λD2 ,γD2

, is
not uniquely determined.

The existence of a measurable TV-SVM with respect to Λ and Γ can
be shown by elementary modifications of the proof of Lemma 6.29, which
established the measurability of TV-SVMs with respect to Λ. We omit the
details and leave the proof to the interested reader. Moreover, the oracle in-
equalities established in Theorems 6.31 and 6.32 can easily be adapted to the
new TV-SVM, too. Again, we skip the details and only present the resulting
consistency and learning rates.

Theorem 8.21. Let Λ := (Λn) and Γ := (Γn) be sequences of finite subsets
Λn, Γn ⊂ (0, 1] such that Λn is an n−1/2-net of (0, 1] and Γn is an n−1/(2d)-
net of (0, 1], respectively. Furthermore, assume that the cardinalities |Λn| and
|Γn| grow polynomially in n. Then every measurable TV-SVM with respect to
Λ and Γ is universally consistent. Moreover, for distributions on Rd×{−1, 1}
that have margin-noise exponent β ∈ (0,∞) and whose PX have tail exponent
τ ∈ (0,∞], such TV-SVMs learn with rate n−γ where

γ :=

{
βτ

4βτ+2dβ+2dτ if τ <∞
β

3β+2d + ρ if τ =∞

and ρ > 0 is an arbitrarily small number.
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Proof. Since the proof closely follows the lines of the proofs of Theorem 6.31
and 6.32, we only mention the main steps. To show the consistency, we need
a simple modification of Theorem 6.32 to address the second set of parameter
candidates Γn and the fact that limλ→0A

(γ)
2 (λ) = 0 for any fixed γ. Moreover,

the first rate follows from combining such a modification of Theorem 6.32 with
Corollary 8.19. For the last rate, we first establish an oracle inequality for the
TV-SVM using Theorem 8.3 and a simple adaptation of the proof of Theorem
6.31. This oracle inequality is then combined with Corollary 8.19. ��

8.3 Advanced Concentration Results for SVMs (*)

In this section, we improve the learning rates obtained in the previous section
with the help of the advanced concentration results of Chapter 7. To this end,
let us first recall that one of the key ingredients of that chapter was a variance
bound. Consequently, our first goal is to establish such a bound for the hinge
loss. We begin with the following definition.

Definition 8.22. A distribution P on X ×{−1, 1} is said to have noise ex-
ponent q ∈ [0,∞] if there exists a constant c > 0 such that

PX

({x ∈ X : |2η(x)− 1| < t}) ≤ (c t)q , t ≥ 0. (8.16)

Note that we have a high amount of noise in the labeling process at x ∈ X
if η(x) is close to 1/2, i.e., if |2η(x)− 1| is close to 0. Consequently, the noise
exponent measures the size of the set of points that have a high noise in
the labeling process. Obviously, every distribution has noise exponent q = 0,
whereas noise exponent q =∞ means that η is bounded away from the criti-
cal level 1/2. In particular, noise-free distributions, i.e., distributions P with
R∗

Lclass,P
= 0, have noise exponent q =∞. Moreover, if P has noise exponent

q, then P also has noise exponent q′ for all q′ < q. In addition, note that the
noise exponent does not locate the points x having high noise, i.e., it does not
consider their closeness to the decision boundary. Finally, it is important to
note that, unlike the concepts we considered in Section 8.2, the noise exponent
does not depend on a specific version of the posterior probability. This makes
it technically easier to combine the noise exponent with the previously intro-
duced concepts such as the margin-noise exponent. The next lemma, which
relates the noise exponent to the margin-noise exponent, illustrates this.

Lemma 8.23 (Relation between noise exponents). Let (X, d) be a met-
ric space and P be a distribution on X×Y that has noise exponent q ∈ [0,∞).
Furthermore, assume that there exists a version η of its posterior probability
such that the associated distance to the decision boundary Δ controls the noise
by the exponent γ ∈ [0,∞) in the sense of Definition 8.16. Then P has margin
exponent α := γq and margin-noise exponent β := γ(q + 1).
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Proof. We have {x ∈ X : Δ(x) < t} ⊂ {x ∈ X : |2η(x) − 1| < ctγ}, where
the inclusion is only PX -almost surely and c > 0 is the constant appearing
in (8.10). From this it is easy to conclude that P has margin exponent γq.
Combining this with Lemma 8.17 yields the second assertion. ��
Theorem 8.24 (Variance bound for the hinge loss). Let P be a dis-
tribution on X × Y that has noise exponent q ∈ [0,∞]. Moreover, let
f∗L,P : X → [−1, 1] be a fixed Bayes decision function for the hinge loss L.
Then, for all measurable f : X → R, we have

EP(L ◦�
f − L ◦ f∗L,P)2 ≤ 6 cq/(q+1)

(
EP(L ◦�

f − L ◦ f∗L,P)
)q/(q+1)

,

where c is the constant appearing in (8.16).

Proof. Since the range of
�
f is contained in [−1, 1], we may restrict our con-

siderations to functions f : X → [−1, 1]. Now observe that for such f we have
L(y, f(x)) = 1− yf(x) for all x ∈ X, y = ±1, and hence we obtain(
L(y, f(x))− L(y, f∗L,P(x))

)2 =
(
yf∗L,P(x)− yf(x)

)2 =
(
f(x)− f∗L,P(x)

)2
for all x ∈ X, y = ±1. From this we conclude that

EP(L ◦ f − L ◦ f∗L,P)2 =
∫

X

|f − f∗L,P|2 dPX

≤ 2
∫
|2η−1|≥s

|f − f∗L,P| dPX + 2
∫
|2η−1|<s

|f − f∗L,P| dPX

≤ 2s−1

∫
X

|f − f∗L,P| · |2η − 1|dPX + 4PX(|2η − 1| < s)

≤ 2s−1EP(L ◦ f − L ◦ f∗L,P) + 4(c s)q

for all s > 0, where in the last step we used Theorem 2.31 and the margin-
exponent inequality. Optimizing over s by Lemma A.1.5 together with the
estimate (q + 1)21/(q+1)q−q/(q+1) ≤ 3 now yields the assertion. ��

By combining the variance bound above with the analysis of Chapter 7,
we can now formulate an oracle inequality for SVMs using Gaussian kernels.

Theorem 8.25 (Improved oracle inequality for Gaussian kernels). Let
P be a distribution on Rd×{−1, 1} that has margin-noise exponent β ∈ (0,∞)
and noise exponent q ∈ [0,∞] and whose PX has tail exponent τ ∈ (0,∞].
Then, for all ε > 0 and all d/(d+ τ) < p < 1, there exists a constant K ≥ 1
such that, for all fixed $ ≥ 1, n ≥ 1, λ ∈ (0, 1], and γ ∈ (0, 1], the SVM using
the hinge loss L and a Gaussian RBF kernel with parameter γ satisfies

RL,P(
�
fD,λ,γ)−R∗

L,P ≤ K
(
λ

τ
d+τ γ−

dτ
d+τ + γβ + $

(
nλpγ(1−p)(1+ε)d

)− q+1
q+2−p

)
with probability Pn not less than 1− 3e−�.
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Proof. By Theorem 8.24, we have a variance bound of the form (7.36) for
ϑ = q/(q+1), and the supremum bound (7.35) is obviously satisfied for B = 2.
In addition, Theorem 7.34 together with Corollary 7.31 yields a bound (7.48)
on the entropy numbers for the constant

a := cε,p γ
− (1−p)(1+ε)d

2p ,

where d/(d+τ) < p < 1, ε > 0, and cε,p is a constant only depending on ε and p.
Finally, we set f0 := f∗, where f∗ is the function Theorem 8.18 provides. For
B0 := 2, Theorem 7.23 then yields the assertion. ��

With the help of the oracle inequality above, we can now establish learning
rates for SVMs using Gaussian kernels. For brevity’s sake, we only mention
the learning rates for the TV-SVM, but it should be clear from our previous
considerations on this method that these learning rates match the fastest
learning rates one could derive from Theorem 8.25.

Theorem 8.26 (Learning rates using Gaussian kernels). Let Λ := (Λn)
and Γ := (Γn) be sequences of finite subsets Λn, Γn ⊂ (0, 1] such that Λn is an
n−1-net of (0, 1] and Γn is an n−1/d-net of (0, 1], respectively. Assume that the
cardinalities of Λn and Γn grow polynomially in n. Then the TV-SVM with
respect to Λ and Γ is universally consistent. Moreover, for distributions P on
Rd×{−1, 1} that have margin-noise exponent β ∈ (0,∞) and noise exponent
q ∈ [0,∞], and whose PX have tail exponent τ ∈ (0,∞], the TV-SVM learns
with rate

n
− βτ(d+τ)(q+1)

βτ2(q+2)+d(dτ+βd+2βτ+τ2)(q+1)
+ρ
,

where ρ > 0 is an arbitrarily small number.

Proof. The consistency was already established in Theorem 8.21. Moreover,
analogously to the proof of Theorem 6.31 and Theorem 7.24, we see that a
simple union bound together with Theorem 8.25 shows for m := �n/2� + 1
that

RL,P(
�
fD1,λ,γ)−R∗

L,P ≤ K
(
λ

τ
d+τ γ−

dτ
d+τ + γβ + $

(
mλpγ(1−p)(1+ε)d

)− q+1
q+2−p

)
holds with probability Pm not less than 1− 3|Λn| · |Γn|e−� for all λ ∈ Λn and
γ ∈ Γn simultaneously. As in the proof of Theorem 7.24, we then use Theorem
7.2 to deal with the parameter selection step, and combining both shows that
with probability Pn not less than 1− e−2� we have

RLclass,P(fD1,λD2 ,γD2
)−R∗

Lclass,P

≤ 12K inf
λ∈Λn,γ∈Γn

(
λ

τ
d+τ γ−

dτ
d+τ + γβ + $n

(
nλpγ(1−p)(1+ε)d

)− q+1
q+2−p

)

+K̃
((
$+ ln(1 + |Λn|·|Γn|)

)
n

) q+1
q+2

, (8.17)
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where $n :=
(
$ + ln(1 + 3|Λn| · |Γn|)

)
and K̃ is a suitable constant only de-

pending on q and the constant c appearing in (8.16). Moreover, for all λ ∈ Λn

and γ ∈ Γn, we have

((
$+ln(1+|Λn|·|Γn|)

)
n

)q+1
q+2

≤ $n

(
nλpγ(1−p)(1+ε)d

)− q+1
q+2−p ,

and hence we may omit the last term in (8.17) if we replace 12K by 12K+K̃.
Repeating the proof of Corollary 8.19 and choosing p and ε sufficiently close
to d/(d + τ) and 0, respectively, then yields the assertion after some simple
yet tedious calculations. ��

In order to illustrate the learning rates above, we assume in the following
that PX has tail exponent τ =∞. In this case, the learning rate reduces to

n−
β(q+1)

β(q+2)+d(q+1)+ρ , (8.18)

where ρ > 0 is an arbitrarily small number. Motivated by the examples in
Section 8.2, we first assume that P has margin exponent α := 1. Moreover,
we assume a moderate noise exponent q := 1, and by setting γ := 1 we
also assume a moderate control of the noise by the distance to the decision
boundary. By Lemma 8.17, these assumptions yield a margin-noise exponent
β = 2, and hence (8.18) reduces to

n−
2

3+d +ρ .

Obviously, this rate is never faster than n−1/2, and for high input dimensions
it is actually substantially worse.

Let us now consider a different scenario that is less dimension dependent.
To this end, we assume that there exists version η of the posterior probability
such that the associated distance to the decision boundary Δ controls the
noise by the exponent γ ∈ [0,∞). Lemma 8.23 then shows that β = γ(q + 1)
and hence (8.18) reduces to

n−
γ(q+1)

γ(q+2)+d
+ρ .

For large q or γ, this rate is obviously rather insensitive to the input dimension,
and in particular for q → ∞ we obtain rates that are close to the rate n−1.
Moreover, note that large q reflects both a small amount of noise and, by
Lemma 8.23, a low concentration of PX near the decision boundary.

8.4 Sparseness of SVMs Using the Hinge Loss

We have seen in Theorem 5.5 that using a convex loss function there exists a
unique SVM solution fD,λ, which, in addition, is of the form
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fD,λ =
n∑

i=1

αik( · , xi) , (8.19)

where α = (α1, . . . , αn) ∈ Rn is a suitable vector of coefficients, and
D = ((x1, y1), . . . , (xn, yn)). Obviously, only support vectors, i.e., samples
xi whose coefficients αi are non-zero, need to be considered when evaluat-
ing fD,λ(x) by (8.19), and hence the number of support vectors has a direct
influence on the time required to evaluate fD,λ(x). Moreover, we will see in
Section 11.2 that this number also has a substantial influence on the training
time. Consequently, it is important to know whether we can expect sparse
decision functions, i.e., decision functions for which not all samples are sup-
port vectors. The goal of this section is to present some results that estimate
the typical number of support vectors when using the hinge loss. In the fol-
lowing section, we will then extend these considerations to general convex,
classification calibrated, margin-based loss functions.

Let us begin by considering the (quadratic) optimization problem

minimize λ‖f‖2H + 1
n

n∑
i=1

ξi for f ∈ H, ξ ∈ Rn

subject to yif(xi) ≥ 1− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n .

(8.20)

It is obvious that a pair (f∗, ξ∗) ∈ H×Rn with ξ∗i = max{0, 1−yif
∗(xi)} is a

solution of (8.20) if and only if f∗ = fD,λ. Consequently, one can solve (8.20)
in order to find the SVM decision function. We will see in Chapter 11 that in
practice this quadratic optimization problem is usually solved by considering
the dual problem

maximize
n∑

i=1

αi − 1
4λ

n∑
i,j=1

yiyjαiαjk(xi, xj) for α ∈ Rn

subject to 0 ≤ αi ≤ 1
n , i = 1, . . . , n ,

(8.21)

where we note that in Example 11.3 the primal problem will first be rescaled.
Note that this rescaling results in the differently scaled but otherwise identical
dual problem (11.15), and hence we can consider (8.21) instead of the problem
(11.15). In order to establish a lower bound on the number of support vectors,
we now have to briefly discuss the relation between (8.20) and (8.21). To this
end, we write

f (α) :=
1
2λ

n∑
i=1

yiαik( · , xi) (8.22)

and ξ
(α)
i := max{0, 1 − yif

(α)(xi)}, where α ∈ Rn is an arbitrary vector.
Furthermore, we define
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gap(α) := λ‖f (α)‖2H +
1
n

n∑
i=1

ξ
(α)
i −

n∑
i=1

αi +
1
4λ

n∑
i,j=1

yiyjαiαjk(xi, xj)

= 2λ‖f (α)‖2H +
1
n

n∑
i=1

ξ
(α)
i −

n∑
i=1

αi (8.23)

for the difference between the value of the objective function of (8.20) and
(8.21). Theorem A.6.28 together with Example 11.3 shows that if α∗ ∈ Rn is
a solution of (8.21), then (f (α∗), ξ(α

∗)) is a solution of (8.20), i.e.,

fD,λ =
1
2λ

n∑
i=1

yiα
∗
i k( · , xi) , (8.24)

and we have gap(α∗) = 0. In other words, the SVM solution fD,λ can be ob-
tained by solving the dual problem (8.21) and substituting the corresponding
solution α∗ into (8.22). Unfortunately, however, it is almost always impossible
to find an exact solution α∗ of (8.21). Consequently, let us assume that we have
an α ∈ Rn that is feasible for (8.21), i.e., αi ∈ [0, 1/n] for all i = 1, . . . , n. From
the already mentioned fact that an exact solution α∗ satisfies gap(α∗) = 0,
we then conclude that

gap(α) ≥ λ‖f (α)‖2H +
1
n

n∑
i=1

ξ
(α)
i −

n∑
i=1

α∗
i +

1
4λ

n∑
i,j=1

yiyjα
∗
iα

∗
jk(xi, xj)

= λ‖f (α)‖2H +
1
n

n∑
i=1

ξ
(α)
i − λ‖f (α∗)‖2H −

1
n

n∑
i=1

ξ
(α∗)
i .

Using the definitions of f (α), ξ(α), and f (α∗) = fD,λ, we thus obtain

λ‖f (α)‖2H +RL,D(f (α)) ≤ inf
f∈H

λ‖f‖2H +RL,D(f) + gap(α)

for all α ∈ [0, 1/n]n. Consequently, if we have an α ∈ [0, 1/n]n with gap(α) ≤ ε,
where ε > 0 is some predefined accuracy, then f (α) is a decision function
satisfying the ε-CR-ERM inequality (7.31), and hence the statistical analysis
of Section 7.4 can be applied.

Our next goal is to estimate the number of non-zero coefficients of f (α)

when represented by (8.22). We begin with the following proposition.

Proposition 8.27 (Deterministic lower bound on the sparseness). Let
X be a non-empty set, k be a kernel on X, D ∈ (X × Y )n be an arbitrary
sample set, and α = (α1, . . . , αn) ∈ Rn. If α is feasible, i.e., 0 ≤ αi ≤ 1/n for
all i = 1, . . . , n, then we have

|{i : αi �= 0}|
n

≥ 2λ‖f (α)‖2H +RL,D(f (α))− gap(α) .
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Proof. By (8.23) and the definition of ξ(α), we obtain

|{i : αi �= 0}|
n

=
∑
αi �=0

1
n
≥

n∑
i=1

αi = 2λ‖f (α)‖2H +RL,D(f (α))− gap(α) .

��
Our next goal is to establish a probabilistic bound on the number of non-

zero coefficients. To this end, we simplify the presentation by considering only
exact solutions α∗ and fD,λ, though similar results also hold for approximate
solutions. Note that in this case we have gap(α∗) = 0, and hence Proposition
8.27 yields

|{i : α∗
i �= 0}|
n

≥ 2λ‖fD,λ‖2H +RL,D(fD,λ) .

Consequently, we need a lower bound on the right-hand side of this estimate.
A relatively simple lower bound is presented in the following proposition.

Proposition 8.28 (Probabilistic lower bound on the sparseness). Let
X be a compact metric space, H be the RKHS of a continuous kernel k on
X with ‖k‖∞ ≤ 1, and P be a probability measure on X × Y . Then, for fixed
λ ∈ (0, 1], n ≥ 1, ε > 0, and τ > 0, we have with probability Pn not less than
1− e−τ that

λ‖fD,λ‖2H +RL,D(fD,λ) > λ‖fP,λ‖2H +RL,P(fP,λ)− 2ε

−
√

2τ+2 lnN (BH , ‖ · ‖∞, λ1/2ε)
λn

.

Proof. We have λ‖fP,λ‖2H + RL,P(fP,λ) ≤ λ‖fD,λ‖2H + RL,P(fD,λ) by the
definition of fP,λ, and hence we obtain

λ‖fP,λ‖2H +RL,P(fP,λ)− λ‖fD,λ‖2H −RL,D(fD,λ)
≤ RL,P(fD,λ)−RL,D(fD,λ)
≤ sup

f∈λ−1/2BH

(RL,P(f)−RL,D(f)
)

≤ sup
g∈Fε

(RL,P(g)−RL,D(g)
)

+ 2ε ,

where Fε ⊂ λ−1/2BH is assumed to be an ε-net of λ−1/2BH having cardinality
N (λ−1/2BH , ‖ · ‖∞, ε) = N (BH , ‖ · ‖∞, λ1/2ε). Moreover, for g ∈ λ−1/2BH ,
we have ‖g‖∞ ≤ λ−1/2, and hence we find

L(y, g(x)) = max{0, 1− yg(x)} ≤ 1 + g(x) ≤ 2λ−1/2 , y = ±1, x ∈ X.
By a union bound and Hoeffding’s inequality, we thus obtain

Pn

(
D ∈ (X × Y )n : sup

g∈Fε

(RL,P(g)−RL,D(g)
)
<

√
2τ
λn

)
≥ 1− |Fε| e−τ .

Combining this estimate with the first one then yields the assertion. ��
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In order to illustrate how the results above can be combined, let us assume
for a moment that we use a fixed RKHS H whose covering numbers satisfy
the usual assumption

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p , ε > 0,

where a, p > 0 are some constants independent of ε. For λ ∈ (0, 1], τ > 0,
n ≥ 1, and ε := (p

2 )1/(1+p)( 2a
n )1/(2+2p)λ−1/2, Proposition 8.28 then shows that

λ‖fD,λ‖2H +RL,D(fD,λ) > R∗
L,P,H − 4

( a

λ1+pn

) 1
2+2p −

√
2τ
λn

holds with probability Pn not less than 1−e−τ . Combining this estimate with
Proposition 8.27, we find that

|{i : α∗
i (D) �= 0}|
n

≥ R∗
L,P,H − 4

( a

λ1+pn

) 1
2+2p −

√
2τ
λn

holds with probability Pn not less than 1 − e−τ , where (α∗
1(D), . . . , α∗

n(D))
is an exact solution of the dual problem (8.21) defined by the sample set
D = ((x1, y1), . . . , (xn, yn)). In particular, if we use an a priori chosen reg-
ularization sequence (λn) ⊂ (0, 1] satisfying both λn → 0 and λ1+p

n n → ∞
and an RKHS H such that R∗

L,P,H = R∗
L,P, then the SVM is (classification)

consistent as we have seen around (6.22), and for all ε > 0 we have

lim
n→∞Pn

(
D ∈ (X × Y )n :

|{i : α∗
i (D) �= 0}|
n

≥ R∗
L,P − ε

)
= 1 . (8.25)

In other words, the number of support vectors tends to be not smaller than
R∗

L,P. Moreover, recalling the calculations in Example 2.4 and the proof of
Theorem 2.31, we find R∗

L,P = 2R∗
Lclass,P

, i.e., asymptotically the number of
support vectors is not smaller than twice the Bayes classification risk. Finally,
one can generalize this result to data-dependent methods of choosing λ such
as the one considered in Section 6.5. The details can be found in Exercise 8.7.

Note that the results above describe the number of support vectors when
we use the dual problem (8.21) for finding fD,λ. However, we will see in the
next section that if the RKHS H is universal and PX is an atom-free dis-
tribution, then we almost surely have a unique representation (8.19), and
consequently the above lower bounds on the number of support vectors hold
for every algorithm producing fD,λ. On the other hand, for finite-dimensional
RKHSs H, the number of support vectors does depend on the algorithm. We
refer to Exercise 8.6 for details.

8.5 Classifying with other Margin-Based Losses (*)

Although the hinge loss is the most commonly used loss for binary classifica-
tion with SVMs, it is by no means the only choice. Indeed we have seen in
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Section 3.4 that there are various other (convex) margin-based loss functions
that are calibrated to the classification loss. Moreover, by Theorem 3.34, these
losses are automatically uniformly classification calibrated and hence they are
excellent alternatives if the sole objective is classification. However, some of
these losses possess nice additional features that are important for some ap-
plications. For example, the (truncated) least squares loss and the logistic loss
enable us to estimate posterior probabilities (see Example 3.66 for the latter),
and hence these losses can be interesting whenever such an estimate is relevant
for the application at hand. In addition, different loss functions lead to differ-
ent optimization problems, and it is possible that some of these optimization
problems promise algorithmic advantages over the one associated with the
hinge loss. Consequently, there are situations in which the hinge loss may not
be the first choice and alternatives are desired. In this section, we investigate
some features of such alternatives so that an informed decision can be made.
In particular, we will revisit calibration inequalities, establish a lower bound
on the number of support vectors, and describe a relation between sparseness
and the possibility of estimating the posterior probability.

Let us begin by recalling Theorem 3.36, which showed that a convex
margin-based loss L is classification calibrated if and only if its represent-
ing function ϕ : R → [0,∞) is differentiable at 0 with ϕ′(0) < 0. Moreover,
Theorem 3.34 showed that in this case L is actually uniformly classification
calibrated and that the uniform calibration function is given by (3.41). Now as-
sume for simplicity that this calibration function satisfies δ∗∗max (ε,QY ) ≥ cpεp

for some constants cp > 0, p ≥ 1, and all ε ∈ [0, 1]. Then Theorem 3.22 yields

RLclass,P(f)−R∗
Lclass,P

≤ c−1/p
p

(RL,P(f)−R∗
L,P

)1/p (8.26)

for all distributions P on X × Y and all f : X → R. The next result shows
that (8.26) can be improved if p > 1 and P has a non-trivial noise exponent.

Theorem 8.29 (Inequality for classification calibrated losses). Let L
be a convex, margin-based, and classification calibrated loss whose uniform
calibration function satisfies δ∗∗max (ε,QY ) ≥ cpε

p for some constants cp > 0,
p > 1, and all ε ∈ [0, 1]. Moreover, let P be a distribution on X × Y that has
some noise exponent q ∈ [0,∞]. Then, for all measurable f : X → R, we have

RLclass,P(f)−R∗
Lclass,P

≤ 2c
− q+1

q+p
p c

q(p−1)
q+p
(RL,P(f)−R∗

L,P

) q+1
q+p ,

where c is the constant appearing in the noise exponent inequality (8.16).

Proof. We have seen in Remark 3.35 that LP : X ×R→ [0,∞) defined by

LP(x, t) :=
∣∣2η(x)− 1

∣∣ · 1(−∞,0]

(
(2η(x)− 1) sign t

)
, x ∈ X , t ∈ R,

is a detection loss with respect to A := {(x, t) ∈ X×R : (2η(x)−1) sign t ≤ 0}
and h(x) = |2η(x) − 1|, x ∈ X, where η(x) := P(y = 1|x). Moreover, (3.9)
shows for the inner excess risks that
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CLP,x(t)− C∗LP,x = CLclass,η(x)(t)− C∗Lclass,η(x) , x ∈ X, t ∈ R,

i.e., LP describes the classification goal for the distribution P. In particular, we
have δmax,LP,L(ε,P( · |x), x) = δmax,Lclass,L(ε,P( · |x)) for all x ∈ X, ε ∈ [0,∞],
and hence we obtain

δmax,LP,L

(
ε,P( · |x), x) ≥ δ∗∗max,Lclass,L

(ε,QY ) ≥ cpε
p

for all x ∈ X and ε ∈ [0, 1]. Since ‖h‖∞ ≤ 1, we conclude that

B(s) :=
{
x ∈ X : δmax,LP,L

(
h(x),P( · |x), x) < sh(x)

}
⊂ {x ∈ X : |2η(x)− 1| < (s/cp)1/(p−1)

}
for all s > 0. Using the noise exponent, we thus obtain∫

X

1B(s)h dPX ≤ (s/cp)1/(p−1)PX

({
x ∈ X : |2η(x)− 1| < (s/cp)1/(p−1)

})
≤
(
c

q(p−1)
q+1 · s

cp

) q+1
p−1

for all s > 0. Now the assertion follows from Theorem 3.28. ��
In Table 3.1, we see that the (truncated) least squares L loss satisfies

δ∗∗max (ε,QY ) ≥ ε2, and hence the inequality above reduces to

RLclass,P(f)−R∗
Lclass,P

≤ 2c
q

q+2
(RL,P(f)−R∗

L,P

) q+1
q+2 . (8.27)

Moreover, for the logistic loss for classification, we have δ∗∗max (ε,QY ) ≥ ε2/2
and hence it satisfies (8.27) if we replace the factor 2 by 4. Finally, note
that both factors can be improved by a more careful analysis in the proof of
Theorem 3.28.

Let us now consider the number of support vectors we may expect using
different convex margin-based loss functions. To this end, recall again that
Theorem 5.5 showed that the unique SVM solution fD,λ is of the form

fD,λ =
n∑

i=1

αik( · , xi) , (8.28)

where α = (α1, . . . , αn) ∈ Rn is a suitable vector of coefficients and D =
((x1, y1), . . . , (xn, yn)). Let us assume for a moment that we have xi �= xj for
all i �= j, where we note that this is almost surely satisfied if D is sampled
from a distribution P with P({x}) = 0 for all x ∈ X. In addition, we assume
throughout this section that the kernel k is strictly positive definite, where
we recall that this assumption is necessary (but in general not sufficient) for
universal consistency by Corollary 5.34. From linear algebra, we then know
that the kernel matrix K := (k(xj , xi))n

i,j=1 has Pn-almost surely full rank,
and by considering the system of linear equations
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fD,λ(xj) =
n∑

i=1

αik(xj , xi) , j = 1, . . . , n ,

we see that the representation (8.28) is Pn-almost surely unique, i.e., there
exists exactly one α ∈ Rn satisfying (8.28). In the following, we thus write

#SV (fD,λ) := |{i : αi �= 0}| ,
where we note that this quantity is only Pn-almost surely defined.

Let us now assume that L is a convex margin-based loss with representing
function ϕ, i.e., L(y, t) = ϕ(yt), y = ±1, t ∈ R. Since the subdifferential of
L is given by ∂L(y, ·) = y∂ϕ(y · ) for y = ±1, Corollary 5.12 then shows that
the almost surely uniquely defined coefficients αi in (8.28) satisfy

αi ∈ − yi

2λn
∂ϕ
(
yifD,λ(xi)

)
, i = 1, . . . , n . (8.29)

In particular, if ϕ is differentiable, we have

αi = −ϕ
′(yifD,λ(xi))

2λnyi
, i = 1, . . . , n .

Now (8.29) shows that xi must be a support vector if 0 �∈ ∂ϕ(yifD,λ(xi)). This
immediately leads to the following preliminary result.

Proposition 8.30 (No sparseness without global minimum). Let L be
a convex, margin-based loss with representing function ϕ. Moreover, let k be
a strictly positive definite kernel on X and P be a distribution on X ×Y such
that P({x}) = 0 for all x ∈ X. If ϕ does not have a global minimum, then for
Pn-almost all D ∈ (X × Y )n we have #SV (fD,λ) = n for all λ > 0.

Proof. If ϕ does not have a global minimum, then 0 �∈ ∂ϕ(t) for all t ∈ R and
hence (8.29) yields the assertion. ��

Note that the logistic loss for classification satisfies the assumptions of the
preceding proposition and hence we can in general not expect to obtain sparse
decision functions when using this loss.

Because of Proposition 8.30, it remains to investigate convex margin-
based losses L whose representing functions ϕ do have at least one global
minimum. Note that by Lemma 2.23 the latter assumption is satisfied if
and only if L can be clipped, and hence these loss functions enjoy the ad-
vanced oracle inequalities of Section 7.4. Now recall that Lemma 3.64 to-
gether with Lemma 3.60 showed that such losses are also self-calibrated for
all distributions Q on {−1, 1}. Consequently, if D is a training set such that
RL,P(fD,λ) is close to R∗

L,P, then fD,λ is close to the set-valued function
x �→ ML,η(x)(0+) of exact minimizers, where, as usual, η(x) := P(y = 1|x).
This suggests that xi must be a support vector of the representation above
whenever 0 �∈ ∂ϕ(yiML,η(xi)(0

+)). Our next goal is to verify this intuition. We
begin with a simple lemma that collects some useful properties ofML,η(0+).
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Lemma 8.31. Let L be a convex, classification calibrated, and margin-based
loss that can be clipped. Then, for all t ∈ R and η ∈ [0, 1], the following
statements are true:

i) The set ML,η(0+) is a bounded, closed interval whenever η ∈ (0, 1).
ii) If ∂L(1, t) ∩ [0,∞) �= ∅, then we have t > 0.
iii) We have 0 �∈ ∂L(1, t) ∩ ∂L(−1, t).
iv) If t ∈ ML,η(0+), then there exist s+ ∈ ∂L(1, t) ∩ (−∞, 0] and s− ∈

∂L(−1, t) ∩ [0,∞) such that ηs+ + (1− η)s− = 0.
v) If t ∈ML,η(0+), we have min ∂CL,η′(t) < 0 for all η′ > η.
vi) The set-valued map η �→ ML,η(0+) is a monotone operator, i.e., we have

supML,η(0+) ≤ infML,η′(0+) for all η′ ∈ [0, 1] with η′ > η.

Proof. i). Let ϕ : R → [0,∞) be the function representing L. By Theorem
3.36, we know L′(1, 0) = ϕ′(0) < 0 and, since ϕ is convex, we conclude that
limt→−∞ ϕ(t) = ∞. For η ∈ (0, 1), the latter implies limt→±∞ CL,η(t) = ∞,
and hence ML,η(0+) is bounded. The remaining assertions follow from the
continuity and convexity of t �→ CL,η(t).

ii). Assume we had t ≤ 0. Then the monotonicity of subdifferentials to-
gether with Theorem 3.36 would yield s ≤ ϕ′(0) < 0 for all s ∈ ∂L(1, t).
iii). Assume that there exists a t ∈ R such that 0 ∈ ∂L(1, t) ∩ ∂L(−1, t).
By ii), we then see that 0 ∈ ∂L(1, t) implies t > 0, while 0 ∈ ∂L(−1, t) =
−∂L(1,−t) implies t < 0.

iv). For a given t ∈ ML,η(0+), there exist an s+ ∈ ∂L(1, t) and an s− ∈
∂L(−1, t) with 0 = ηs+ + (1 − η)s−. If η = 1, we find s+ = 0. By ii) this
implies t > 0, and, since s− ∈ ∂L(−1, t) = −∂L(1,−t), we thus have s− > 0
by ii). The case η = 0 can be treated analogously. Finally, if 0 < η < 1, we
have (1− η)s− = −ηs+, which leads to either s− ≤ 0 ≤ s+ or s+ ≤ 0 ≤ s−.
Moreover, ii) shows that s+ ≥ 0 implies t > 0 and that s− ≤ 0 implies t < 0,
and hence we conclude that s+ ≤ 0 ≤ s−.

v). Without loss of generality, we may assume η < 1. Let us fix s+ ∈
∂L(1, t) and s− ∈ ∂L(−1, t) according to iv). Then we find s+ − s− < 0 by
iii) and hence

s := η′s+ + (1− η′)s− < ηs+ + (1− η)s− = 0 .

Finally, the linearity of subdifferentials yields s ∈ ∂CL,η′(t).
vi). Let 0 ≤ η < η′ ≤ 1 as well as t ∈ ML,η(0+) and t′ ∈ ML,η′(0+). By

v), we find an s ∈ ∂CL,η′(t) with s < 0. Then we obtain t′ ≥ t since otherwise
the monotonicity of subdifferentials implies s′ ≤ s < 0 for all s′ ∈ ∂CL,η′(t′),
which in turn contradicts t′ ∈ML,η′(0+). ��

The next lemma shows that 0 �∈ ∂ϕ(t) implies 0 �∈ ∂ϕ(s) for all s that are
sufficiently close to t. This fact will be crucial for verifying our intuition since
in general we cannot guarantee fD,λ ∈ML,η(x)(0+).
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Lemma 8.32. Let L be a convex, classification calibrated, and margin-based
loss that can be clipped and P be a distribution on X×Y . For ε ≥ 0, we define

Sε :=
{

(x, y) ∈ X × Y : 0 �∈ ∂L(y,ML,η(x)(0+) + εBR

)}
.

Then we have Sε ⊂ Sε′ for all ε > ε′ ≥ 0. Moreover, we have⋃
ε>0

Sε =
{

(x, y) ∈ X × Y : 0 �∈ ∂L(y,ML,η(x)(0+)
)}
.

Proof. Since the first assertion is trivial, it suffices to prove S0 ⊂
⋃

ε>0 Sε.
Obviously, this follows once we have established⋂

ε>0

⋃
δ∈[−ε,ε]

⋃
t∈ML,η(0+)

∂L(y, t+ δ) ⊂
⋃

t∈ML,η(0+)

∂L(y, t) (8.30)

for all η ∈ [0, 1], y = ±1. Let us fix an element s from the set on the left-hand
side of (8.30). Then, for all n ∈ N, there exist δn ∈ [−1/n, 1/n] and tn ∈
ML,η(0+) with s ∈ ∂L(y, tn + δn). If (tn) is unbounded, we obtain η ∈ {0, 1}
by i) of Lemma 8.31. Furthermore, in this case we find tn + δn ∈ ML,η(0+)
for all sufficiently large n since ML,η(0+) is an interval by the convexity
of L. Hence we have shown (8.30) in this case. On the other hand, if (tn) is
bounded, there exists a subsequence (tnk

) of (tn) converging to a t0 ∈ R, and
sinceML,η(0+) is closed, we find t0 ∈ML,η(0+). Now let us fix an ε > 0. By
Proposition A.6.14, we find that

s ∈ ∂L(y, tnk
+ δnk

) ⊂ ∂L(y, t0) + εBR

for a sufficiently large k. This yields

s ∈
⋂
ε>0

(
∂L(y, t0) + εBR

)
,

and thus we finally obtain s ∈ ∂L(y, t0) by the compactness of ∂L(y, t0). ��
Before we establish a lower bound on the number of support vectors, we

need another elementary lemma.

Lemma 8.33. Let L be a convex, classification calibrated, and margin-based
loss that can be clipped and P be a distribution on X × Y . For a function
f : X → R and ε > 0, we write

A(f, ε) :=
{

(x, y) ∈ X × Y : dist
(
f(x),ML,η(x)(0+)

) ≥ ε} .
Then, for all ε > 0, all f, g ∈ L∞(X) satisfying ‖f − g‖∞ ≤ ε, and all
(x, y) ∈ S2ε\A(g, ε), we have

0 �∈ ∂ϕ(yf(x)) .
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Proof. We fix an element (x, y) ∈ S2ε such that (x, y) �∈ A(g, ε). Then we have
dist(g(x),ML,η(x)(0+)) < ε, and thus there exists a t ∈ML,η(x)(0+) such that
|g(x) − t| < ε. This implies dist(f(x),ML,η(x)(0+)) ≤ |f(x) − t| < 2ε by the
triangle inequality, i.e., we have f(x) ∈ ML,η(x)(0+) + 2εBR. The definition
of S2ε together with ∂L(y, t) = y∂ϕ(yt) then yields the assertion. ��

With these preparations, we can now establish the announced lower bound
on the number of support vectors.

Theorem 8.34 (Probabilistic lower bound on the sparseness). Let L
be a convex, classification calibrated, and margin-based loss whose represent-
ing function ϕ : R → [0,∞) has a global minimum. Moreover, let P be a
distribution on X × Y such that P({x}) = 0 for all x ∈ X. We define

SL,P := P
({

(x, y) ∈ X × Y : 0 �∈ ∂ϕ(yML,η(x)(0+))
})
.

Furthermore, let k be a bounded measurable and strictly positive definite kernel
on X whose RKHS H is separable and satisfies R∗

L,P,H = R∗
L,P. We define

h(λ) := λ−1|L|λ−1/2,1 for λ > 0. Then, for all ε > 0, there exists a δ > 0 and
a λ0 ∈ (0, 1] such that for all λ ∈ (0, λ0] and all n ≥ 1 the corresponding SVM
satisfies

Pn
(
D ∈ (X × Y )n : #SV (fD,λ) ≥ (SL,P − ε)n

)
≥ 1− 2e−

δ2n
18h2(λ) . (8.31)

Note that, roughly speaking, SL,P describes the probability of samples
(x, y) for which for no Bayes decision function f∗L,P is the value yf∗L,P(x) a
minimizer of the representing function ϕ. For example, for the squared hinge
loss L, we saw in Exercise 3.1 that

ML,η(0+) =

⎧⎪⎨
⎪⎩

(−∞,−1] if η = 0
{2η − 1} if 0 < η < 1
[1,∞) if η = 1 .

Moreover, we clearly have {t ∈ R : 0 �∈ ∂ϕ(t)} = (−∞, 1), and hence we
obtain 0 �∈ ∂ϕ(±ML,η(0+)) for all η ∈ (0, 1). Moreover, for η ∈ {0, 1}, we
have 0 ∈ ∂ϕ(±ML,η(0+)), and thus we find

SL,P = PX

({x ∈ X : 0 < η(x) < 1}) . (8.32)

Interestingly, we will see in Theorem 8.36 that for differentiable ϕ the right-
hand side of (8.32) is always a lower bound on SL,P.

Proof. Without loss of generality, we may assume ϕ(0) ≤ 1 and ‖k‖∞ ≤ 1.
Obviously, λ �→ h(λ) is a decreasing function on (0,∞), and hence we have
h(λ) ≥ h(1) for all λ ∈ (0, 1]. Furthermore, note that ∂L(y, t) = y∂ϕ(yt) yields
SL,P = P(S0), where S0 is defined in Lemma 8.32. Let us fix an ε ∈ (0, 1]. By
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Lemma 8.32, there then exists a δ > 0 such that δ ≤ 3h(1)ε and P(S2δ) ≥
P(S0)− ε. Moreover, limλ→0RL,P(fP,λ) = R∗

L,P together with Theorem 3.61
shows that there exists a λ0 ∈ (0, 1] such that P(A(fP,λ, δ)) ≤ ε for all λ ∈
(0, λ0]. Let us fix a λ ∈ (0, λ0] and an n ≥ 1. Without loss of generality, we
may additionally assume

n

h2(λ)
≥ 18
δ2

(8.33)

since otherwise the left-hand side of (8.31) is negative. For D ∈ (X ×Y )n, we
further write

ED,δ :=
∣∣{i : (xi, yi) ∈ S2δ\A(fP,λ, δ)

}∣∣ .
Hoeffding’s inequality and P(S2δ\A(fP,λ, δ)) ≥ SL,P − 2ε then yield

Pn
(
D ∈ (X × Y )n : ED,δ > (SL,P − 3ε)n

)
≥ 1− e−2ε2n ≥ 1− e− δ2n

18h2(λ) ,

where in the last step we used that δ ≤ 3h(1)ε implies δ ≤ 6h(λ)ε. Moreover,
as in the proof of Theorem 6.24, we have

Pn

(
D∈(X × Y )n : ‖fD,λ − fP,λ‖H < h(λ)

(√
2τ
n

+

√
1
n

+
4τ
3n

))
≥ 1− e−τ

for all τ > 0. We define τ by δ = 3h(λ)
√

2τ/n. Then δ ≤ 3h(1) together with
h(1) ≤ h(λ) implies 2τ/n ≤ 1, which in turn yields 4τ

3n ≤
√

2τ/n. In addition,
(8.33) implies τ ≥ 1, and hence we have

√
1/n ≤ √2τ/n. Combining these

estimates, we conclude that

Pn
(
D ∈ (X × Y )n : ‖fD,λ − fP,λ‖H < δ

) ≥ 1− e− δ2n
18h2(λ) ,

and hence we have

Pn
(
D : ‖fD,λ − fP,λ‖H < δ and ED,δ > (SL,P − 3ε)n

) ≥ 1− 2e−
δ2n

18h2(λ) .

Let us now fix such a D ∈ (X × Y )n. For an index i such that (xi, yi) ∈
S2δ \A(fP,λ, δ), Lemma 8.33 then shows that 0 �∈ ∂ϕ(yifD,λ(xi)), and hence
xi must be a support vector. Moreover, the estimate above shows that there
are at least (SL,P − 3ε)n such indexes. ��

In order to illustrate the preceding result assume for simplicity that we use
an a priori fixed sequence (λn) of regularization parameters. If this sequence
satisfies both λn → 0 and h2(λn)/n → 0, then the right-hand side of (8.31)
converges to 1 and hence the fraction of support vectors tends to be not
smaller than SL,P. Here we note that for the hinge loss, for example, the
latter condition on (λn) reduces to λ2

nn → ∞, whereas for the (truncated)
least squares loss the condition becomes λ3

nn→∞. Finally, it is obvious that
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the same result holds for data-dependent choices of λ that asymptotically
respect the constraints imposed on (λn).

The following proposition presents a general lower bound on SL,P. To-
gether with Theorem 8.34, it shows that the sparseness of general SVMs is
related to the Bayes classification risk.

Proposition 8.35. Let L be a convex, classification calibrated, and margin-
based loss whose representing function ϕ : R→ [0,∞) has a global minimum.
Then, for all distributions P with PX({x ∈ X : η(x) = 1/2}) = 0, we have

SL,P ≥ R∗
Lclass,P

.

Proof. We first show that 0 �∈ ∂ϕ(ML,η(0+)) ∩ ∂ϕ(−ML,η(0+)) for all η �=
1/2. To this end, let us fix an η ∈ [0, 1] such that 0 ∈ ∂ϕ(ML,η(0+)) ∩
∂ϕ(−ML,η(0+)). Then there exist t, t′ ∈ ML,η(0+) such that 0 ∈ ∂ϕ(t) and
0 ∈ ∂ϕ(−t′). From part ii) of Lemma 8.31, we conclude that t′ < 0 < t
and hence we find H(η) = 0, where H(η) is defined in (3.37). From this we
conclude that η = 1/2 by part i) of Lemma 3.33. Now the assertion follows
from

SL,P = P
({

(x, y) ∈ X × Y : 0 �∈ ∂ϕ(yML,η(x)(0+))
})

≥
∫

η �=1/2

min{η, 1− η} dPX

and the formula for R∗
Lclass,P

given in Example 2.4. ��
It is relatively straightforward to show that Proposition 8.35 is sharp for

the hinge loss. Combining this with (8.25), we conclude that in general The-
orem 8.34 is not sharp.

Our next goal is to illustrate the connection between certain desirable
properties of L and the asymptotic sparseness of the resulting SVM decision
functions. Our first result in this direction shows that differentiable losses L
do not , in general, lead to sparse decision functions.

Theorem 8.36 (No sparseness for differentiable losses). Let L be a con-
vex, classification calibrated, and margin-based loss whose representing func-
tion ϕ : R→ [0,∞) has a global minimum. If ϕ is differentiable, then for all
distributions P we have

SL,P ≥ PX

({x ∈ X : 0 < η(x) < 1}) .
Proof. In order to prove the assertion, it obviously suffices to show

0 �∈ ∂ϕ
(ML,η(0+)

) ∪ ∂ϕ(−ML,η(0+)
)
, η ∈ (0, 1).

Let us assume the converse, i.e., that there exists an η ∈ (0, 1), a y ∈ Y ,
and a t ∈ ML,η(0+) such that 0 ∈ ∂ϕ(yt). Without loss of generality, we
may assume y = 1. Since L is differentiable, we thus have ∂L(1, t) = {0}.
Therefore, 0 ∈ ∂CL,η(t) implies 0 ∈ ∂L(−1, t), which contradicts part iii) of
Lemma 8.31. ��
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Note that certain fast training algorithms (see, e.g., Chapelle, 2007, and
the references therein) require the differentiability of the loss. Unfortunately,
however, the preceding theorem in conjunction with Theorem 8.34 shows that
this possible advantage is paid for by non-sparse decision functions, i.e., by
a possible disadvantage during the application phase of the decision function
obtained.

At the beginning of this section, we mentioned that another reason for
using a loss other than the hinge is the desire to estimate the posterior proba-
bility. Our next goal is to show that producing such an estimate is in conflict
with the sparseness of the decision functions. We begin with two technical
lemmas.

Lemma 8.37. Let L be a convex, classification calibrated, and margin-based
loss whose representing function ϕ : R → [0,∞) has a global minimum. We
define t0 := inf{t ∈ R : 0 ∈ ∂ϕ(t)}. Then we have 0 < t0 <∞ and 0 ∈ ∂ϕ(t0).

Proof. By Theorem 3.36, we have t0 > 0, and since ϕ has a global minimum,
we further find t0 <∞. In order to show the third assertion, we observe that
by the definition of t0 there exists a sequence (sn) ⊂ [0,∞) such that sn → 0
and 0 ∈ ∂ϕ(t0 + sn) for all n ≥ 1. Let us fix an ε > 0. By Proposition A.6.14,
there then exists a δ > 0 such that ∂ϕ(t0 + δBRd) ⊂ ∂ϕ(t0) + εBRd and for
this δ there obviously exists an n0 ∈ N such that |sn| ≤ δ for all n ≥ n0. We
conclude that 0 ∈ ∂ϕ(t0 + sn) ⊂ ∂ϕ(t0) + εBRd , and since ∂ϕ(t0) is compact,
we find 0 ∈ ∂ϕ(t0) by letting ε→ 0. ��
Lemma 8.38. Let L be a convex, classification calibrated, and margin-based
loss function whose representing function ϕ : R → [0,∞) has a global mini-
mum. We define t0 as in Lemma 8.37 and the function γ : R→ R by

γ(t) :=
d+ϕ(−t)

d+ϕ(−t) + d−ϕ(t)
, t ∈ R ,

where d+ and d− denote the left and the right derivatives defined in front of
Lemma A.6.15. Then we have 1/2 ≤ γ(t) ≤ 1 for all t ∈ [0, t0]. Moreover, for
all η ∈ [0, 1] and all t ∈ [0, t0] we have

η ≥ γ(t) ⇐⇒ d−CL,η(t) ≤ 0 ,
η > γ(t) ⇐⇒ d−CL,η(t) < 0 .

Finally, d+CL,η(t0) ≥ 0 for all η ∈ [0, 1], and for η ∈ [0, 1) we actually have
d+CL,η(t0) > 0.

Proof. Let us fix a t ∈ [0, t0]. Then we have −t ≤ 0 < t0, and hence both
d+ϕ(−t) and d−ϕ(t) are negative by the definition of t0 and the monotonicity
of subdifferentials. A simple algebraic transformation thus shows that η ≥ γ(t)
if and only if 0 ≥ ηd−ϕ(t)− (1− η)d+ϕ(−t). In addition, we have
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d−CL,η(t) = ηd−ϕ(t) + (1− η)d−ϕ(− · )(t) = ηd−ϕ(t)− (1− η)d+ϕ(−t) ,
and hence we obtain the first equivalence. In addition, a straightforward
modification of the preceding proof shows that the equivalence also holds
with strict inequalities. For the proof of γ(t) ≤ 1, we first observe that
both d+ϕ(−t) and d−ϕ(t) are strictly negative for t ∈ [0, t0], and hence
we find γ(t) ≤ 1. Furthermore, we have d−ϕ(t) ≥ d+ϕ(−t) by the convex-
ity of ϕ, and since both derivatives are strictly negative we conclude that
γ(t) ≥ 1/2 for all t ∈ [0, t0]. In order to show the last assertion, we ob-
serve by Lemma 8.37 that 0 ∈ ∂ϕ(t0) = [d−ϕ(t0), d+(t0)], and hence we have
d−ϕ(−t0) ≤ d−(t0) ≤ 0 ≤ d+(t0). Since

d+CL,η(t0) = ηd+ϕ(t0)− (1− η)d−ϕ(−t0) ,
we then obtain d+CL,η(t0) ≥ 0. Finally, recall that Theorem 3.36 together
with t0 ≥ 0 shows that d−ϕ(−t0) < 0, and hence the argument above yields
d+CL,η(t0) > 0 whenever η �= 1. ��

With the help of these lemmas, we can now establish a theorem that
describes the conflict between the goals of having sparse decision functions
and estimating the posterior probability.

Theorem 8.39 (Sparseness vs. estimating posterior probabilities).
Let L be a convex, classification calibrated, and margin-based loss whose repre-
senting function ϕ : R→ [0,∞) has a global minimum. Let t0 and γ be defined
as in Lemma 8.37 and Lemma 8.38, respectively. Then, for all η ∈ [0, 1] and
y := sign(2η − 1), we have

1− γ(t0) < η < γ(t0) ⇐⇒ 0 �∈ ∂ϕ(yML,η(0+)) ,
η �∈ {0, 1} ∪ [1− γ(t0), γ(t0)] =⇒ yML,η(0+) = {t0} ,

η ∈ {0, 1} =⇒ t0 ∈ yML,η(0+) .

Moreover, if the restriction ϕ|(−t0,t0) is differentiable and strictly convex, then
for all 1−γ(t0) < η < γ(t0) there exists a t∗η ∈ (−t0, t0) with {t∗η} =ML,η(0+)
and γ(t∗η) = η. In addition, the restriction

γ|(−t0,t0) : (−t0, t0)→
(
1− γ(t0), γ(t0)

)
is bijective, continuous, and increasing.

Proof. SinceML,η(0+) = −ML,1−η(0+), we observe that we may restrict our
considerations to η ∈ [1/2, 1] for the proofs of the first three assertions.

Let us begin with the equivalence. For η ≥ γ(t0), we find d−CL,η(t0) ≤ 0 ≤
d+CL,η(t0) by Lemma 8.38. In other words, we have 0 ∈ ∂CL,η(t0) and hence
t0 ∈ML,η(0+). Combining this with 0 ∈ ∂(t0) from Lemma 8.37, we conclude
that 0 ∈ ∂ϕ(ML,η(0+)). Conversely, if η ∈ [1/2, γ(t0)), we find d−CL,η(t0) > 0
by Lemma 8.38 and hence 0 �∈ ∂CL,η(t0), i.e., t0 �∈ ML,η(0+). On the other
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hand, we have just seen that t0 ∈ML,γ(t0)(0
+), and since η′ �→ ML,η′(0+) is a

monotone operator by Lemma 8.31, we conclude thatML,η(0+) ⊂ (−∞, t0).
By the definition of t0, we further have 0 �∈ ∂ϕ(t) for all t < t0, and hence we
find 0 �∈ ∂ϕ(ML,η(0+)), i.e., we have shown the equivalence.

In order to show the next implication, recall that for η ≥ γ(t0) we
have already seen that t0 ∈ ML,η(0+), and hence it remains to show that
ML,η(0+) ⊂ {t0} whenever γ(t0) < η < 1. To show the latter, we first ob-
serve that d−CL,η(t0) < 0 < d+CL,η(t0) by Lemma 8.38. Now assume that
ML,η(0+) contains a t∗ �= t0. If t∗ < t0, the monotonicity of t �→ ∂CL,η(t)
implies s < 0 for all s ∈ ∂CL,η(t∗), which in turn contradicts t∗ ∈ ML,η(0+).
Analogously, we see that t∗ > t0 is impossible. The third implication is trivial.

In order to show the remaining assertions, we fix an η with 1−γ(t0) < η <
γ(t0). Then we saw in the first part of the proof that ML,η(0+) ⊂ (−t0, t0).
Let us begin by showing that ML,η(0+) is a singleton. To this end, we fix
t, t′ ∈ML,η(0+). Since ϕ|(−t0,t0) is differentiable, we then have

ηϕ′(t)− (1− η)ϕ′(−t) = 0 ,
ηϕ′(t′)− (1− η)ϕ′(−t′) = 0 ,

and by simple algebra we thus find η(ϕ′(t)−ϕ′(t′)) = (1−η)(ϕ′(−t)−ϕ′(−t′)).
Let us now assume that t > t′. Then the strict convexity of ϕ|(−t0,t0) shows
both ϕ′(t) > ϕ′(t′) and ϕ′(−t) < ϕ′(−t′), which clearly contradicts the equal-
ity above. Consequently, ML,η(0+) is indeed a singleton. Now 0 ∈ ∂CL,η(t∗η)
together with the definition of γ, the differentiability of ϕ|(−t0,t0), and some
simple transformations yields γ(t∗η) = η, i.e., γ|(−t0,t0) is surjective. Conversely,
assume that we have a t ∈ (−t0, t0) with γ(t) = η. Then the definition of γ
together with the differentiability of ϕ|(−t0,t0) and some simple transforma-
tions yields 0 ∈ ∂CL,η(t), i.e., t ∈ ML,η(0+) = {t∗η}. Consequently, γ|(−t0,t0)

is also injective. Finally, γ|(−t0,t0) is continuous since convex, differentiable
functions are continuously differentiable by Proposition A.6.14, and γ|(−t0,t0)

is increasing since η �→ ML,η(0+) = {t∗η} is a monotone operator by Lemma
8.31. ��

The preceding theorem is quite technical and merely illuminates the sit-
uation. Therefore let us finally illustrate its consequences. To this end, we
define

G(η) := η10�∈∂ϕ(ML,η(0+)) + (1− η)10�∈∂ϕ(ML,1−η(0+)) , η ∈ [0, 1].

The definition of SL,P together with −ML,η(0+) =ML,1−η(0+) then yields

SL,P =
∫

X

η(x)10�∈∂ϕ(ML,η(x)(0+)) + (1− η(x))10�∈∂ϕ(−ML,η(x)(0+)) dPX(x)

=
∫

X

G(η(x)) dPX(x) .

Now the equivalence presented in Theorem 8.39 shows that G(η) = 1 for all
η ∈ (1− γ(t0), γ(t0)), and consequently we cannot expect the set
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x ∈ X : |2η(x)− 1| < 2γ(t0)− 1

}
(8.34)

to contribute to the sparseness of the decision function. Let us now assume
for a moment that ϕ|(−t0,t0) is also differentiable and strictly convex. Then
the last part of Theorem 8.39 shows that γ(f∗L,P(x)) = η(x) for all x ∈ X with
−t0 < f∗L,P(x) < t0. By Corollary 3.62 and the continuity of γ|(−t0,t0), we thus
see that we can estimate η(x) whenever x is contained in the set in (8.34). In
other words, if we wish to estimate the posterior probability in regions with
high noise, we cannot expect the decision function to have a sparse repre-
sentation in those regions. Conversely, the second and third implications of
Theorem 8.39 show that on the complement of the set in (8.34), i.e., on the set{

x ∈ X : |2η(x)− 1| ≥ 2γ(t0)− 1
}
, (8.35)

it is impossible to estimate the posterior probability using the self-calibration
of L. However, Lemma 8.37 shows 0 ∈ ∂ϕ(t0), and hence we may at least
hope to get sparseness on the set in (8.35). In other words, in regions with
low noise, we cannot estimate the posterior probability if we also wish to have
sparse representations in these regions. Finally, note that we can only estimate
the posterior probability in regions where the noise is below a certain level,
i.e., if we wish to estimate posterior probability in regions with low noise, we
also have to estimate posterior probability in regions with high noise. We refer
to Exercise 8.8 for a loss that only estimates η for noise below a certain level.

8.6 Further Reading and Advanced Topics

Binary classification is one of the oldest problems in machine learning, and
consequently there exist a variety of different approaches. A rigorous math-
ematical treatment of many important methods developed up to the mid
1990s can be found in the book by Devroye et al. (1996). In particular, clas-
sical methods such as nearest neighbor, histogram rules, and kernel rules are
considered in great detail. Moreover, aspects of both classical algorithms and
new developments on classification are contained in almost every book on ma-
chine learning, so we only mention the recent books by Hastie et al. (2001)
and Bishop (2006), which give a broad overview of different techniques. Fi-
nally, a thorough survey on recent developments on the statistical analysis of
classification methods was compiled by Boucheron et al. (2005).

The bound on the approximation error function for Gaussian kernels was
shown by Steinwart and Scovel (2007) for a slightly more complicated version
of the margin-noise exponent. Since at first glance, their concept appears to
be closely tailored to the Gaussian kernel, we decided to revise their work.
Moreover, it appears that the margin or margin-noise exponent is a some-
what natural concept when dealing with the approximation error function for
the hinge loss and continuous kernels. Indeed, if we have some noise around
the decision boundary, then the minimizer of the hinge loss that we have to
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approximate is a step function. Since such functions cannot be uniformly ap-
proximated by continuous functions, we have to make some error. Intuitively,
this error is larger the closer one gets to the decision boundary. Clearly a low
concentration of PX (and a high noise if (8.13) is used to estimate the excess
hinge risk) in this region helps to control the overall error. Finally, Vert and
Vert (2006) presented another condition on P that makes it possible to bound
the approximation error function of Gaussian kernels.

The notion of the noise exponent goes back to Mammen and Tsybakov
(1999) and Tsybakov (2004). Its relation to (a slightly more complicated ver-
sion of) the margin-noise exponent was described by Steinwart and Scovel
(2007). The latter authors also proved the variance bound for the hinge loss;
however, the first results in this direction had been shown by Blanchard et al.
(2008), Massart and Nédélec (2006), and Tarigan and van de Geer (2006).
Finally, the resulting improved learning rates for the TV-SVM were found by
Steinwart et al. (2007) though their results required a substantially finer grid.

It is presently unknown whether the rates obtained are optimal in a min-
max sense, i.e., whether there cannot exist a classifier that learns faster than,
for example, (8.18) for all distributions on [0, 1]d × Y having a fixed margin-
noise exponent β and a fixed noise exponent q. However, learning rates that are
faster than those presented are possible under more restrictive assumptions
on the data-generating distribution. For example, Steinwart (2001) established
exponentially fast learning rates for SVMs using either the hinge or the trun-
cated least squares loss if the classes have strictly positive distance from each
other and the classification risk is zero. Koltchinskii and Beznosova (2005)
generalized this result to distributions having noise exponent q = ∞ and a
Lipschitz continuous version of the posterior probability. Finally, Audibert
and Tsybakov (2007) showed that under certain circumstances such fast rates
are also possible for so-called plug-in rules.

As in the previous chapters, the parameter selection method discussed is
only meant to be an illustration of how the tools work together. We refer to
Sections 6.6 and 11.3, where other methods are discussed and references to
the literature are given.

One can show that the lower bound (8.25) on the number of support vec-
tors is sometimes sharp for SVMs that use the hinge loss. Namely, Steinwart
(2004) proved that, using a Gaussian kernel with fixed width γ, there exists
a sequence (λn) of regularization parameters such that

lim
n→∞Pn

(
D ∈ (X × Y )n :

∣∣∣ |#SV (fD,λn
)

n
− 2R∗

Lclass,P

∣∣∣ < ε

)
= 1

for all ε > 0 and all distributions P on Bd
2
× Y whose marginal distributions

PX are absolutely continuous with respect to the Lebesgue measure. How-
ever, no particular properties of this sequence were specified, and it is unclear
whether this result remains true for certain data-dependent choices of λ (and
γ). Steinwart (2004) further showed that the lower bound (8.31) is sharp for
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the truncated least squares loss and a fixed Gaussian kernel in the sense that
there exists a sequence (λn) of regularization parameters such that

lim
n→∞Pn

(
D ∈ (X × Y )n :

∣∣∣#SV (fD,λn
)

n
− SL,P

∣∣∣ < ε

)
= 1 , ε > 0.

Here again, PX is assumed to be absolutely continuous with respect to the
Lebesgue measure. Finally, Steinwart (2004) showed in the same sense that
#SV (fD,λn )

n may converge to 1 for the least squares loss. These considerations
were extended by Bartlett and Tewari (2004, 2007) to convex, margin-based,
classification calibrated losses of the form ϕ(t) := h((t0 − t)+), where h is
assumed to be continuously differentiable and convex. Namely, they showed
under the above-mentioned assumptions of Steinwart (2004) that

lim
n→∞Pn

(
D ∈ (X × Y )n :

∣∣∣#SV (fD,λn
)

n
− Ex∼PX

G(η(x))
∣∣∣ < ε

)
= 1 ,

where G(η) := min{η, 1 − η}(1 − η0)−11[0,1−η0]∪[η0,1] + 1(1−η0,η0) and η0 :=
h′(2t0)/(h′(0)+h′(2t0)). Finally, in the presentation of Section 8.4, we followed
Steinwart (2004), whereas Section 8.5 is a simplified compilation from both
Steinwart (2003) and Bartlett and Tewari (2004, 2007).

There have been some attempts to make SVM decision functions sparser.
For example, Wu et al. (2005) added a constraint to the primal problem that
enforces sparseness. Since their resulting optimization problem is no longer
convex, the algorithmic approach is, however, more complicated. A different
approach is taken by Bakır et al. (2005), who edit the training set in order
to remove the samples that are identified as mislabeled. This idea is based
on the observation that mislabeled samples will (hopefully) be considered
as such by the SVM, and in this case they will be support vectors. Finally,
Keerthi et al. (2006) consider an SVM that uses the squared hinge loss. To
force the decision function to be sparse, they propose to optimize the primal
optimization problem over a subset of samples while greedily adding samples
to this subset. Finally, references to further approaches can be found in these
articles.

The density level detection (DLD) scenario introduced in Example 2.9 can
be used for anomaly detection purposes when no labeled data are given. We
saw in Section 3.8 that despite these missing labels the DLD learning scenario
can be viewed as a binary classification problem and that the classification
loss can be used as a surrogate loss. Since, for example, the hinge loss is in
turn a surrogate for the classification loss, we can then directly use the hinge
loss as a surrogate for the DLD loss function. The details of this approach
have been worked out by Steinwart et al. (2005) and Scovel et al. (2005). A
different approach to this problem is taken by the so-called one-class SVM
proposed by Schölkopf et al. (2001a). Remarkably, Vert and Vert (2006) es-
tablished both consistency and learning rates if this method uses Gaussian
kernels with widths depending on the sample size. A learning scenario closely



8.7 Summary 329

related to the DLD problem is that of learning minimal volume sets, which
was recently investigated by Scott and Nowak (2006). For further work on
these learning problems, we refer to the references in the above-mentioned
articles.

8.7 Summary

In this chapter, we applied the theory we developed in the previous chapters
to analyze the learning performance of SVMs for binary classification. We
mainly focused on SVMs using the hinge loss and a Gaussian kernel whose
width can change with either the data set size or the data set itself. The
key element in this analysis was the margin or margin-noise exponent that
described the behavior of the data-generating distribution near the decision
boundary. In particular, we saw that, for distributions that have a low con-
centration and a high noise level in the vicinity of the decision boundary,
the approximation error function for Gaussian kernels was relatively small,
which in turn resulted in favorable learning rates. We then analyzed a simple
strategy for selecting both the regularization parameter and the kernel para-
meter in a data-dependent way. As in the previous two chapters, it turned
out that this strategy is adaptive in the sense that without knowledge about
the distribution P it achieves the fastest learning rates that the underlying
oracle inequalities can provide. We then improved our analysis by introducing
the noise exponent that measures the amount of high noise in the labeling
process. This noise exponent implied a variance bound for the hinge loss that
in turn could be plugged into our advanced statistical analysis of Chapter 7.
The resulting learning rates for the data-dependent parameter selection strat-
egy were sometimes as fast as n−1; however, the exact rates depended heavily
on the properties of P.

We then analyzed the typical number of support vectors SVM decision
functions have. Here it turned out that, using the hinge loss, the fraction of
support vectors tends to be lower bounded by twice the Bayes classification
risk. We concluded that we cannot expect extremely sparse decision functions
when the underlying distribution has a large Bayes risk.

Since in some situations the hinge loss does not fit the needs of the ap-
plication, we finally considered alternative surrogate loss functions. Here it
turned out that convex margin-based surrogates that do not have a global
minimum never lead to sparse decision functions. A typical example of this
class of losses is the logistic loss for classification. Moreover, these loss func-
tions are not clippable either, and hence the advanced statistical analysis of
Chapter 7 does not apply. For margin-based losses that do have a global min-
imum, the message was more complicated. First, they do enjoy the advanced
statistical analysis of Chapter 7; and second, the established lower bound for
the fraction of support vectors is in general smaller than 1. However, we saw
examples where this lower bound is not sharp, and hence these results only
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suggest that there is a chance of obtaining sparse decision functions. More-
over, for differentiable losses, which are used in some algorithmic approaches,
the lower bound actually equals 1 under relatively realistic assumptions on
the distribution. Consequently, possible algorithmic advances in the training
phase are paid for by disadvantages in the employment phase of the deci-
sion function. Finally, we showed that noise levels that may contribute to the
sparseness of the decision function cannot be estimated by the decision func-
tion. In other words, the ability of estimating the posterior probability by the
decision function is paid for by higher costs for the evaluation of the decision
function.

8.8 Exercises

8.1. An intuitive illustration for the decision boundary (�)
Let (X, d) be a metric space and P be a distribution on X × Y that has a
continuous version of its posterior probability. Show that the corresponding
classes X−1 and X1 are open. Furthermore, give some examples where Δ
coincides with the intuitive notion of the distance to the decision boundary.

8.2. Checkerboard distributions (�)
Let m ≥ 2 be a fixed integer and P be the distribution on [0, 1]d × Y whose
marginal distribution PX is the uniform distribution. Assume that there exists
a version of the posterior probability such that every x = (x1, . . . , xd) ∈ [0, 1]d

belongs to the class Xj , where

j :=
d∏

i=1

(−1)�mxi�

and %t& := min{n ∈ N : n ≥ t}, t ∈ [0,∞). Show that P has margin exponent
α := 1. Modify PX so that P has margin exponent α for all α > 0.

8.3. Margin exponents and different shapes (�)
For fixed p > 0, define X := {(x1, x2) ∈ [−1, 1]2 : |x2| ≤ |x1|p}. Moreover,
let P be a distribution on X × Y whose marginal distribution PX is the uni-
form distribution on X. Assume that there exists a version η of the posterior
probability such that η(x) > 1/2 if x1 > 0 and η(x) < 1/2 if x1 < 0. Draw
a picture of the classes X−1 and X1 and show that P has margin exponent
α = 1 + p.

8.4. Effective classes (��)
Show that the margin exponent does not change if we consider the effective
classes X−1 ∩ supp PX and X1 ∩ supp PX in the definition of the distance to
the decision boundary.
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8.5. Another relation between margin and noise exponent (�)
Let (X, d) be a metric space and P be a distribution on X × Y that has
margin exponent α ∈ [0,∞). Furthermore, assume that there exist constants
c > 0 and γ ∈ [0,∞) and a version η of the posterior probability such that
the associated distance to the decision boundary satisfies

Δ(x) ≤ c |2η(x)− 1|γ

for PX -almost all x ∈ X. Show that P has noise exponent q := αγ.

8.6. Sparse decision functions for finite-dimensional RKHSs (�)
Let H be a finite-dimensional RKHS. Show that there always exists a repre-
sentation (8.19) such that |{i : αi �= 0}| ≤ dimH.

8.7. Sparsity for TV-SVMs (���)
Let X be a compact metric space, L be the hinge loss, H be the RKHS of
a universal kernel k over X with ‖k‖∞ ≤ 1, and a ≥ 1 and p ∈ (0, 1] be
constants with

ei

(
id : H → C(X)

) ≤ a i−
1
2p , i ≥ 1.

Moreover, let (εn) ⊂ (0, 1) be a sequence with εn → 0 and ε1+p
n n → ∞. In

addition, let Λ = (Λn) be a sequence of εn-nets having cardinality growing
polynomially in n.

i) Show that the corresponding TV-SVM satisfies the lower bound (8.25) on
the number of support vectors.

ii) Generalize this result to TV-SVM using Gaussian kernels with data-
dependent kernel parameters.

8.8. Partially estimating the posterior probability (���)
For a fixed a ∈ [0, 1), define ϕa : R → [0,∞) by ϕa(t) := (1 − t)2 − a2

if t ≤ 1 − a and ϕa(t) := 0 otherwise. Show that the margin-based loss
represented by ϕa can be used to estimate the posterior probability for noise
levels |2η− 1| < 1− a. Compare your findings with Theorem 8.39 and discuss
the possibility of sparseness.
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Support Vector Machines for Regression

Overview. Regression is, besides classification, one of the main ar-
eas where support vector machines are applied. This chapter presents
results on the learning properties of SVMs when applied to regression
problems such as estimating conditional means, medians, or quantiles.

Prerequisites. Knowledge of loss functions, kernels, and stability of
infinite-sample SVMs is needed from Chapters 2 and 4 and Section
5.3, respectively. Some results from measure theory, integration, and
functional analysis from the appendix are used.

In this chapter, we investigate under which conditions support vector machines
are able to learn in the sense of L-risk consistency in regression problems with
emphasis on the case of an unbounded output space. An introduction into
SVMs for regression problems is given in Section 9.1. Section 9.2 considers
the case of general loss functions. Section 9.3 covers the special case of SVMs
designed to estimate conditional quantile functions, and Section 9.4 contains
some numerical results for such SVMs.

9.1 Introduction

The goal in non-parametric regression is to estimate a functional relationship
between an input random variable X and an output random variable Y under
the assumption that the joint distribution P of (X,Y ) is (almost) completely
unknown. In order to solve this problem, we assume the existence of a set
of observations (xi, yi) from independent and identically distributed random
variables (Xi, Yi), i = 1, . . . , n, all of which have the distribution P on X × Y
with corresponding Borel σ-algebra, where Y ⊂ R is Polish and e.g. X = Rd.
Denote by D the corresponding empirical distribution. The aim is to build
a predictor f : X → R on the basis of these observations such that f(X)
is a “good” approximation of Y . In this chapter, we investigate SVMs for
regression problems, defined as minimizers of the regularized L-risk

fP,λ = arg inf
f∈H
RL,P(f) + λ‖f‖2H . (9.1)

Replacing P by D in (9.1) gives the corresponding empirical problem. Follow-
ing the interpretation that a small risk is desired, one tries to find a predictor
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whose risk is close to the optimal risk given by the Bayes risk R∗
L,P (see

Definition 2.3). This is a much stronger requirement than convergence in
probability of RL,P(fD,λn

) to RL,P,H := inff∈H RL,P(f), n → ∞, because
it is not obvious whether RL,P,H = R∗

L,P even for large Hilbert spaces H.
In this chapter, we will assume that the loss function L is chosen in

advance. If a suitable choice of L is not known for a specific application,
Chapter 3, on surrogate loss functions, may be helpful in choosing one. We
restrict attention in this chapter to convex loss functions because in this case
we are not faced with computationally NP-hard problems and we know that
fP,λ exists and is unique. We have to fix a reproducing kernel Hilbert space
H with corresponding kernel k and a regularization constant λ > 0. How-
ever, we are additionally faced with the question of how to specify the output
space Y . The obvious choice in Chapter 8, on binary classification problems,
was Y = {−1,+1}. In regression problems, the choice of Y is less obvious and
depends on the application. Two cases are important: the unbounded case,
where Y = R or Y is equal to an unbounded interval, and the bounded case,
where Y is a bounded interval, say [a, b] with −∞ < a < b < ∞. Although
in some regression problems the output variable can only take values in some
bounded interval, suitable numbers for a and b are often unknown. In this
situation, many practitioners prefer to choose the unbounded case.1

Of course, a natural question is whether the risk RL,P(fD,λn
) actually

tends to the Bayes risk R∗
L,P if n increases. If RL,P,H = R∗

L,P and the output
space Y is bounded, this can be assured by concentration inequalities, and the
techniques from Chapters 6 and 7 are applicable. However, these techniques
do not work for the unbounded case. Therefore, in this chapter attention is
restricted to the unbounded case and we will present some results on the
L-risk consistency of SVMs in regression problems for this more challenging
situation.

Traditionally, most research on non-parametric regression considered the
least squares loss L(y, t) := (y − t)2 mainly because of historical and com-
putational reasons. However, both from a theoretical and from a practical
point of view, there are situations in which a different loss function is more
appropriate. We mention three cases:

i) Regression problems not described by least squares loss. It is well-known
that the least squares risk is minimized by the conditional mean of Y
given x; see Example 2.6. However, in many situations one is actually not
interested in this mean but for example in the conditional median instead.
Now recall that the conditional median is the minimizer of R∗

L,P, where L
is the absolute value loss (i.e., L(y, t) := |y − t|), and the same statement
holds for conditional quantiles if one replaces the absolute value loss by

1 In many parametric regression models, the output variable is assumed to have
a Gaussian, Gamma, or log-Gaussian distribution; hence Y = R in the first
situation and Y = (0,∞) in the last two cases.
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an asymmetric variant known as the pinball loss treated in Example 2.43;
see also Proposition 3.9.

ii) Surrogate losses. If the conditional distributions of Y given x are known
to be symmetric, basically all distance-based loss functions of the form
L(y, t) = ψ(y − t), where ψ : R → [0,∞) is convex, symmetric, and has
its only minimum at 0, can be used to estimate the conditional mean of
Y given x; see Section 3.7. In this case, a less steep surrogate such as the
absolute value loss, Huber’s loss, or the logistic loss may be more suitable
if one expects outliers in the y-direction, as we will discuss in Chapter 10.

iii) Algorithmic aspects. If the goal is to estimate the conditional median of
Y given x, then the ε-insensitive loss given by Lε(y, t) = max{|y − t| −
ε, 0}, y, t ∈ R, ε ∈ (0,∞), promises algorithmic advantages in terms of
sparseness compared with the absolute loss; see Chapter 11 for details.

In Section 9.2, a general result on L-risk consistency of SVMs based on
a distance-based loss function L(y, t) = ψ(y − t) is given. Section 9.3 cov-
ers SVMs based on the pinball loss for quantile regression and Section 9.4
gives some numerical results for this particular case. In Section 9.5 median
regression based on the ε-insensitive loss is considered.

9.2 Consistency

In this section, we assume that L : Y ×R→ [0,∞) is a convex distance-based
loss in the sense of Definition 2.32. In other words, we have a representing
function ψ : R→ [0,∞) with ψ(0) = 0 and L(t, y) = ψ(y − t) for all y, t ∈ R.
Recall that L-risk consistency is defined as the convergence in probability of

RL,P(fD,λn
)→ R∗

L,P , n→∞,
where (λn) is a suitably chosen data-independent null sequence of regular-
ization parameters with λn > 0. For technical reasons, we will additionally
assume that the reproducing kernel Hilbert space H is separable and that its
kernel is measurable, so the canonical feature map Φ becomes measurable by
Lemma 4.25. We can now formulate our main result on the learnability of
SVMs under a natural tail assumption on P. Note that no symmetry assump-
tion on L is made.

Theorem 9.1. Let X be a complete measurable space, Y ⊂ R be closed, L be
a continuous, convex, distance-based loss function of growth type p ∈ [1,∞),
and H ⊂ Lp(PX) be a dense, separable RKHS with a bounded and measurable
kernel k and canonical feature map Φ : X → H. We write p∗ := max{2p, p2}
and fix a sequence (λn) of positive numbers with λn → 0 and λp∗

n n → ∞.
Then

RL,P(fD,λn
)→ R∗

L,P , n→∞, (9.2)

in probability for all |D| = n and for all distributions P ∈ M1(X × Y ) with
|P|p <∞.
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Recall that the RKHS of a Gaussian RBF kernel is dense in Lp(PX) by
Theorem 4.63. Hence this RKHS fulfills the assumption of Theorem 9.1 if
X = Rd.

In order to prove Theorem 9.1, we need the following lemma to bound the
probability of |RL,P(fD,λ)−RL,P(fP,λ)| ≤ ε for |D| → ∞.

Lemma 9.2. Let Z be a measurable space, P be a distribution on Z, H be a
separable Hilbert space, and g : Z → H be a measurable function with ‖g‖q :=
(EP‖g‖qH)1/q <∞ for some q ∈ (1,∞). We write q∗ := min{1/2, 1/q′}, where
q′ fulfills 1

q + 1
q′ = 1. Then there exists a universal constant cq > 0 such that,

for all ε > 0 and all n ≥ 1, we have

Pn

(
(z1, . . . , zn) ∈ Zn :

∥∥∥∥∥ 1n
n∑

i=1

g(zi)− EPg

∥∥∥∥∥
H

≥ ε
)
≤ cq
( ‖g‖q
ε nq∗

)q

.

For the proof of Lemma 9.2, we have to recall some basics from local
Banach space theory and Rademacher sequences. We refer to Section 7.3
and Section A.8 for details. A sequence of independent, symmetric {−1,+1}-
valued random variables (εi) is called a Rademacher sequence. Now let E
be a separable Banach space, (Xi) be an i.i.d. sequence of E-valued random
variables with expectation 0, and (εi) be a Rademacher sequence that is in-
dependent from the sequence (Xi). The distribution of εi is denoted by ν.
Using the symmetrization argument given in Theorem A.8.1, we have for all
1 ≤ p <∞ and all n ≥ 1 that

EPn

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p

≤ 2p EPnEνn

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥
p

, (9.3)

where the left expectation is with respect to the product distribution Pn of
(X1, . . . , Xn), whereas the right expectation is also with respect to the product
distribution νn of (ε1, . . . , εn). Furthermore, for n = 2, we obtain

Eν2 ‖ε1x1 + ε2x2‖2 =
1
2
(‖x1 + x2‖2 + ‖x1 − x2‖2

)
=

1
2
(‖x1‖2+2〈x1, x2〉+‖x2‖2+‖x1‖2−2〈x1, x2〉+‖x2‖2

)
= ‖x1‖2 + ‖x2‖2 .

An induction over n therefore shows that

Eνn

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
2

=
n∑

i=1

‖xi‖2 (9.4)

for all n ≥ 1 and all finite sequences x1, . . . , xn. Furthermore, Kahane’s in-
equality (see Theorem A.8.3) ensures that
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(
Eνn

∥∥ n∑
i=1

εixi

∥∥p)1/p

≤ cp,q

(
Eνn

∥∥ n∑
i=1

εixi

∥∥q)1/q

for all p, q ∈ (0,∞), n ≥ 1, all Banach spaces E, all x1, . . . , xn ∈ E, and
constants cp,q only depending on p and q. Now we can proceed with the
following proof.

Proof of Lemma 9.2. Define h : Zn → H,

h(z1, . . . , zn) :=
1
n

n∑
i=1

g(zi)− EPg , (z1, . . . , zn) ∈ Zn.

Markov’s inequality yields

Pn
(‖h‖H ≥ ε) ≤ ε−q EPn‖h‖qH .

Hence it remains to estimate EPn‖h‖qH . By (9.3), we have

EPn

∥∥∥∥∥
n∑

i=1

g(Zi)− EPg

∥∥∥∥∥
q

H

≤ 2q EPnEνn

∥∥∥∥∥
n∑

i=1

εi

(
g(Zi)− EPg

)∥∥∥∥∥
q

H

. (9.5)

If q ∈ (1, 2], we obtain with Kahane’s inequality, see Theorem A.8.3, that

EPn‖h‖qH ≤ 2qn−q EPnEνn

∥∥∥∥∥
n∑

i=1

εi

(
g(Zi)− EPg

)∥∥∥∥∥
q

H

≤ 2qn−q EPn

⎛
⎝Eνn

∥∥∥∥∥
n∑

i=1

εi

(
g(Zi)− EPg

)∥∥∥∥∥
2

H

⎞
⎠

q/2

= 2qn−q EPn

(
n∑

i=1

∥∥(g(Zi)− EPg
∥∥2

H

)q/2

≤ 2qn−q EPn

n∑
i=1

∥∥(g(Zi)− EPg
∥∥q

H

≤ 4qn1−q EP ‖g‖qH .

From this we obtain the assertion for q ∈ (1, 2]. Now assume that q ∈ (2,∞).
By (9.5) and Kahane’s inequality, there is a universal constant cq > 0 with
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EPn ‖h‖qH ≤ 2qn−qEPnEνn

∥∥∥∥∥
n∑

i=1

εi

(
g(Zi)− EPg

)∥∥∥∥∥
q

H

≤ cqn−qEPn

⎛
⎝Eνn

∥∥∥∥∥
n∑

i=1

εi

(
g(Zi)− EPg

)∥∥∥∥∥
2

H

⎞
⎠

q/2

≤ cqn−qEPn

(
n∑

i=1

∥∥∥g(Zi)− EPg
∥∥∥2

H

)q/2

≤ cqn−q

(
n∑

i=1

(
EP ‖g(Zi)− EPg‖qH

)2/q

)q/2

≤ 2qcqn
−q/2 EP ‖g‖qH ,

where (9.4) is used in the third step. The assertion follows for q ∈ (2,∞). ��
Proof of Theorem 9.1. BecauseH ⊂ Lp(PX) is dense, we obtain from Lemma
2.38 (i) and from the assumption |P|p <∞ that L is a P-integrable Nemitski
loss of order p ∈ [1,∞). Hence Theorem 5.31 gives

R∗
L,P,H = R∗

L,P . (9.6)

To avoid handling too many constants, let us assume ‖k‖∞ = 1, |P|p = 1, and
c := cL,p := 2−(p+2) for the upper order constant of L. This yields RL,P(0) ≤
1. Furthermore, we assume without loss of generality that λn ≤ 1 for all n ≥ 1.
Using (5.4), we obtain ‖fP,λn

‖∞ ≤ ‖fP,λn
‖H ≤ λ−1/2

n . It follows from Lemma
5.15 that

lim
λ→0
Rreg

L,P,λ(fP,λ) = R∗
L,P,H

because A2(λ) is continuous and A2(0) = 0. Combining this with (9.6) yields

lim
λn→0

RL,P(fP,λn
) = R∗

L,P .

Therefore, we obtain L-risk consistency if we can show that

|RL,P(fP,λn
)−RL,P(fD,λn

)| → 0

holds in probability for n→∞.
For n ∈ N and λn > 0, let hn : X × Y → R be the function obtained

by Corollary 5.11. Our assumptions give for p′ := p/(p − 1) that there is a
constant c(p, L) such that

‖hn‖Lp′ (P) ≤ c(p, L)λ−(p−1)/2
n . (9.7)

Moreover, for g ∈ H with ‖fP,λn
− g‖H ≤ 1, we have

‖g‖∞ ≤ ‖fP,λn
‖∞ + ‖fP,λn

− g‖∞ ≤ 2λ−1/2
n .
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First, we consider the case p > 1. By Lemma 2.38 (ii) with q := p − 1, there
exists a constant cp,L > 0 only depending on L and p such that∣∣RL,P(fP,λn

)−RL,P(g)
∣∣

≤ cp,L

(
|P|p−1

p−1 + ‖fP,λn
‖p−1
∞ + ‖g‖p−1

∞ + 1
)
‖fP,λn

− g‖∞
≤ c̃p,L λ

−(p−1)/2
n ‖fP,λn

− g‖H (9.8)

for all measurable g ∈ H with ‖fP,λn
− g‖H ≤ 1. Let ε ∈ (0, 1] and D ∈

(X×Y )n be a training set of length n with empirical distribution D such that

‖EPhnΦ− EDhnΦ‖H ≤ λ(p+1)/2
n ε/ c̃p,L . (9.9)

Then Corollary 5.11 gives ‖fP,λn
− fD,λn

‖H ≤ λ(p−1)/2
n ε/c̃p,L ≤ 1 for n large

enough, and hence (9.8) yields∣∣RL,P(fP,λn
)−RL,P(fD,λn

)
∣∣ ≤ ε . (9.10)

Second, we consider the special case p = 1. The loss function L is by
assumption convex and of upper growth type 1 and therefore Lipschitz con-
tinuous by Lemma 2.36 (iv). Hence we obtain∣∣RL,P(fP,λn

)−RL,P(g)
∣∣ ≤ |ψ|1 ‖fP,λn

− g‖∞ ≤ |ψ|1 ‖fP,λn
− g‖H (9.11)

for all g ∈ H with ‖fP,λn
− g‖H ≤ 1. As L is of growth type p ∈ [1,∞) we

have |ψ|1 > 0. Now let ε ∈ (0, |ψ|−1
1 ] and D ∈ (X × Y )n be a training set of

length n with corresponding empirical distribution D such that

‖EPhnΦ− EDhnΦ‖H ≤ λn ε / |ψ|1 . (9.12)

Corollary 5.11 and (9.12) give ‖fP,λn
−fD,λn

‖H ≤ ε/|ψ|1 ≤ 1 such that (9.11)
yields the validity of (9.10) also for the case p = 1.

Let us now estimate the probability of D satisfying (9.9). Define q :=
p/(p−1) if p > 1 and q := 2 if p = 1. Then we have q∗ := min{1/2, 1−1/q} =
min{1/2, 1/p} = p/p∗. Further define c := max{c(p, L), c̃p,L, |ψ|1}. Combining
Lemma 9.2 and (9.7) yields

Pn
(
D ∈ (X × Y )n : ‖EPhnΦ− EDhnΦ‖H ≤ c−1λ(p+1)/2

n ε
)

≥ 1− ĉp,L

( ‖hn‖q
ε λ

(p+1)/2
n nq∗

)q

≥ 1− ĉp,L

( c(p, L)
ε λp

n np/p∗

)q
, (9.13)

where ĉp,L is a constant only depending on p and L. Now using λp
nn

p/p∗
=

(λp∗
n n)p/p∗ → ∞, if n → ∞, we find that the probability of sample sets D

satisfying (9.9) converges to 1 if |D| = n → ∞. As we have seen above,
this implies that (9.10) holds true with probability tending to 1. Now, since
λn → 0, we additionally have |RL,P(fP,λn

) − R∗
L,P| ≤ ε for all sufficiently

large values of n, and hence we obtain the assertion of L-risk consistency. ��
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Remark 9.3. Note that Theorem 9.1 in particular shows that the SVM for re-
gression using the least squares loss function is weakly universally consistent
in the sense of Györfi et al. (2002, p.13). Furthermore, it is worthwhile to note
that under the assumptions above on L, H, and (λn) we can even character-
ize the distributions P for which SVMs based on (9.1) are L-risk consistent.
Indeed, if |P|p =∞, then SVMs are trivially L-risk consistent for P whenever
RL,P = ∞. Conversely, if |P|p = ∞ and RL,P < ∞, then SVMs cannot be
L-risk consistent for P since RL,P(f) =∞ for all f ∈ H. �

Remark 9.4. In some sense, it seems natural to consider only consistency for
distributions satisfying the tail condition |P|p <∞ as was done for example in
Györfi et al. (2002) for least squares methods. In this sense, Theorem 9.1 gives
consistency for all reasonable distributions. Note that the characterization
above shows that SVMs are in general not robust against small violations of
this tail assumption in regression problems. Indeed, let P be a distribution
with |P|p < ∞ and P̃ be a distribution with |P̃|p = ∞ and RL,P̃(f∗) < ∞
for some f∗ ∈ Lp(P) (see Problem 2.6). Then every mixture distribution
Qε := (1 − ε)P + εP̃, ε ∈ (0, 1), satisfies both |Qε|p = ∞ and RL,Qε

< ∞.
Thus an SVM for regression defined by (9.1) is not consistent for any of the
small perturbations Qε of P, while it is consistent for the distribution P.
Hence some integrability conditions for the robustness results in Section 10.3
and Section 10.4 seem to be necessary if Y is unbounded, see also Remark
10.19(iii). �

9.3 SVMs for Quantile Regression

This section gives a mathematical justification for using support vector ma-
chines based on the pinball loss function L := Lτ -pin for quantile regression.
The results can informally be described in the following manner.

i) SVMs based on the pinball loss allow the non-parametric estimation of
conditional quantiles.(i)

ii) Such SVMs are L-risk consistent under weak assumptions on P and k.
iii) If these SVMs are L-risk consistent, then the empirical decision function

fD,λ approximates the conditional quantile function.

Consider a random sample (xi, yi), 1 ≤ i ≤ n, from independent and
identically distributed random variables (Xi, Yi) each with unknown prob-
ability distribution P on some measurable space X × Y with corresponding
Borel σ-algebra. For technical reasons, we assume throughout this section that
Y ⊂ R is closed and is thus Polish. Recall that in this case P can be split
up into the marginal distribution PX and the regular conditional probability
P( · |x), x ∈ X, on Y , which exists by Ulam’s theorem (Theorem A.3.15); see
also Lemma A.3.16.

The goal of quantile regression is to estimate the (set-valued) τ -quantile
function
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F ∗
τ,P(x) :=

{
q ∈ R : P(Y ≤ q |x) ≥ τ and P(Y ≥ q |x) ≥ 1− τ}, x ∈ X,

(9.14)
where τ ∈ (0, 1) is a fixed constant. For conceptual simplicity, we assume
throughout this section that F ∗

τ,P(x) consists of singletons,2 so that there exists
a unique conditional quantile function f∗τ,P : X → R defined by F ∗

τ,P(x) =
{f∗τ,P(x)}, x ∈ X; see Proposition 3.9. Now recall that the distance-based
pinball loss function L : Y ×R→ [0,∞) is given by

L(y, t) = ψτ (r) =

{
(τ − 1)r if r < 0,
τr if r ≥ 0,

where r := y − t (see Example 2.43) has the property that f∗τ,P(x) is a τ -
quantile, τ ∈ (0, 1), of P(Y |x) for all x ∈ X if and only if f∗τ,P(x) minimizes
the inner L-risk of P(y|x),∫

Y

L(y, f∗τ,P(x)) dP(y|x) = inf
q(x)∈R

∫
Y

L(y, q(x)) dP(y|x) . (9.15)

It is easy to check that the pinball loss function has for each τ ∈ (0, 1)
the following properties (see Problem 9.1): ψτ is strictly convex, ψτ (0) = 0,
lim|r|→∞ ψτ (r) = ∞, and ψτ is Lipschitz continuous with Lipschitz constant
|ψτ |1 = max{τ, 1− τ} ≤ 1. Furthermore, we have

min{τ, 1− τ} |r| ≤ ψτ (r) ≤ |ψτ |1 |r| , r ∈ R. (9.16)

Koenker and Bassett (1978) proposed the estimator

f̂τ = arg inf
θ∈Rd

1
n

n∑
i=1

ψτ (yi − xT
i θ)

if f∗τ,P is assumed to be a linear function and X = Rd. Schölkopf et al. (2000,
p. 1216) and Takeuchi et al. (2006) proposed to relax the assumption of a
linear quantile function by using the kernel trick.

Definition 9.5. Let X be a measurable space, Y ⊂ R, and P ∈M1(X × Y ).
Furthermore, let L be the pinball loss function with τ ∈ (0, 1), H be a separable
RKHS of a measurable kernel k with canonical feature map Φ : X → H, and
λ > 0. A support vector machine for quantile regression is defined by

fP,λ := arg inf
f∈H

EP L(Y, f(X)) + λ‖f‖2H .

For any fixed data set D = {(xi, yi), 1 ≤ i ≤ n} ⊂ X × Y , we thus
obtain the estimator fD,λ. We obtain fD,λ = f̂τ if we choose the linear kernel
k(x, x′) := 〈x, x′〉 and λ := 0. We can now formulate our result on L-risk
consistency for SVMs for quantile regression.
2 This assumption can be relaxed; see Theorem 3.61 and Corollary 3.65.



342 9 Support Vector Machines for Regression

Theorem 9.6. Let X be a complete measurable space, Y ⊂ R be closed, L
be the pinball loss with τ ∈ (0, 1), and H be a separable RKHS of a bounded
measurable kernel k on X such that H is dense in L1(μ) for all distributions
μ on X. Let (λn) be a sequence of strictly positive numbers with λn → 0.

i) If λ2
nn→∞, then

RL,P(fD,λn
)→ R∗

L,P , n→∞, (9.17)

in probability for all |D| = n and for all P ∈M1(X × Y ) with |P|1 <∞.
ii) If λ2+δ

n n→∞ for some δ > 0, then (9.17) holds even almost surely.

We mention that Theorem 9.6(i) is a direct consequence of Theorem 9.1 for
p = 1, but the following proof uses a better concentration inequality because
the pinball loss function is Lipschitz continuous.

Proof. (i). To avoid handling too many constants, let us assume ‖k‖∞ = 1.
This implies ‖f‖∞ ≤ ‖k‖∞‖f‖H ≤ ‖f‖H for all f ∈ H. Now we use the
Lipschitz continuity of Lτ -pin, |ψτ |1 ≤ 1, and Lemma 2.19 to obtain∣∣RL,P(f)−RL,P(g)

∣∣ ≤ |ψτ |1 ‖fP,λn
− g‖H , g ∈ H. (9.18)

For n ∈ N and λn > 0, we now write hτ,n : X × Y → R for the function h
obtained by Corollary 5.11. Let Φ : X → H be the canonical feature map. We
have fP,λn

= −(2λn)−1EPhτ,nΦ, and for all distributions Q on X × Y with
|Q|1 <∞, we have

‖fP,λn
− fQ,λn

‖H ≤ λ−1
n ‖EPhτ,nΦ− EQhτ,nΦ‖H .

Note that ‖hτ,n‖∞ ≤ |ψτ |1. Moreover, let ε ∈ (0, 1) and D be a training set
of n data points and empirical distribution D such that

‖EPhτ,nΦ− EDhτ,nΦ‖H ≤ λnε. (9.19)

Then Corollary 5.11 gives ‖fP,λn
− fDn,λn

‖H ≤ ε and hence (9.18) yields∣∣RL,P(fP,λn
)−RL,P(fD,λn

)
∣∣ ≤ ‖fP,λn

− fD,λn
‖H ≤ ε. (9.20)

Let us now estimate the probability of D satisfying (9.19). To this end, we
first observe that λnn

1/2 → ∞ implies that for all sufficiently large n we
have λnε ≥ n−1/2. Moreover, Corollary 5.11 shows ‖hτ,n‖∞ ≤ 1, and our
assumption ‖k‖∞ = 1 thus yields ‖hτ,nΦ‖∞ ≤ 1. Consequently, Hoeffding’s
inequality in Hilbert spaces (see Theorem 6.15) yields for B = 1 and ξ =
3
8ε

2λ2
nn/(ελn + 3) the bound

Pn
(
D ∈ (X × Y )n : ‖EPhτ,nΦ− EDhτ,nΦ‖H ≤ λnε

)
≥ Pn
(
D ∈ (X × Y )n : ‖EPhτ,nΦ− EDhτ,nΦ‖H ≤

(√
2ξ + 1

)
n−1/2 +

4ξ
3n

)
≥ 1− exp

(
−3

8
· ε

2λ2
nn

ελn + 3

)
(9.21)
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for all sufficiently large values of n. Note that (9.21) is stronger than (9.13).
Using λnn

1/2 → ∞, λn → 0, and the same argumentation as in the proof of
Theorem 9.1, we obtain that (9.20) holds true with probability tending to 1
and that |RL,P(fP,λn

)−R∗
L,P| ≤ ε for all sufficiently large n, which gives the

assertion.
(ii). In order to show the second assertion, we define εn := (ln(n +

1))−1/2, and δn := RL,P(fP,λn
) − R∗

L,P + εn, n ≥ 1. Moreover, for an in-
finite sample D∞ := ((x1, y1), (x2, y2), . . .) ∈ (X × Y )∞, we write Dn :=
((x1, y1), . . . , (xn, yn)). With these notations, we define

An :=
{
D∞ ∈ (X × Y )∞ : RL,P(fDn,λn

)−R∗
L,P > δn

}
, n ∈ N.

Now, our estimates above together with λ2+δ
n n→∞ for some δ > 0 yield

∑
n∈N

P∞(An) ≤
∑
n∈N

exp
(
−3

8
· ε2nλ

2
nn

εnλn + 3

)
< ∞,

and hence we obtain by the Borel-Cantelli lemma (Lemma A.4.7) that

P∞({D∞ ∈ (X × Y )∞
∣∣ ∃n0 ∀n ≥ n0 : RL,P(fDn,λn

)−R∗
L,P ≤ δn

})
= 1.

The assertion follows because λn → 0 implies δn → 0. ��
In order to formulate our result on consistency of the estimated quantile

function itself, we need some additional notations. Let f, g : X → R be
measurable functions. We write

‖f‖L0(PX) := EPX
min{1, |f(X)|} (9.22)

and define d(f, g) := ‖f − g‖L0(PX). Note that d is a translation-invariant
metric on the space of all measurable functions defined on X and that d
describes the convergence in probability PX (see Problem 9.2).

The next result shows that fD,λn
approximates the conditional quantile

function in terms of ‖ · ‖L0(PX).

Theorem 9.7. Let X be a complete measurable space, Y ⊂ R be closed, L
be the pinball loss with τ ∈ (0, 1), H be a separable RKHS of a bounded
measurable kernel k on X such that H is dense in L1(μ) for all distributions
μ on X, and (λn) be a sequence of strictly positive numbers with λn → 0.

i) If λ2
nn→∞, then

‖fD,λn
− f∗τ,P‖L0(PX) → 0 (9.23)

in probability for n→∞ for all P ∈M1(X × Y ) with |P|1 <∞.
ii) If λ2+δ

n n→∞ for some δ > 0, then (9.23) holds even almost surely.

Proof. (i). We have already seen in Theorem 9.6(i) that fD,λn
satisfies

RL,P(fD,λn
) → R∗

L,P in probability for n → ∞. The existence of a unique
minimizer f∗τ,P is guaranteed by the general assumption of this section, and
Corollary 3.62 yields the assertion.

(ii). Combine Theorem 9.6(ii) with Corollary 3.62. ��
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It is interesting to note that the assumption F ∗
τ,P(x) = {f∗τ,P(x)} is only

needed to formulate Theorem 9.7 in terms of ‖ · ‖L0(PX). However, Theorem
3.63 provides a framework to replace ‖ · ‖L0(PX) by a more general notion
of closeness if the assumption F ∗

τ,P(x) = {f∗τ,P(x)} is violated. Note that
Theorem 9.6 established for τ = 1/2 the convergence in probability of

EP|Y − fDn,λn
(X)| − EP|Y − f∗τ,P(X)| → 0, n→∞, (9.24)

which naturally raises the question of whether we have the convergence of

EP|fDn,λn
(X)− f∗τ,P(X)| → 0, n→∞ (9.25)

in probability. Of course, the inverse triangle inequality
∣∣|a| − |b|∣∣ ≤ |a − b|

immediately shows that (9.25) implies (9.24), but since for general a, b, c ∈ R

the inequality |a − c| − |b − c| ≥ |a − c| is false, we conjecture that without
additional assumptions on P the convergence in (9.25) does not follow from
(9.24). However, Example 3.67 shows that we can actually replace ‖ · ‖L0(PX)

by some (quasi)-norm ‖ · ‖Lp(PX) for certain distributions P. By (3.74), we
have the following inequality for distributions P of Qα

τ -type. Assume the
function b : X → [0,∞) defined by b(x) := cP( · |x), x ∈ X, where cP( · |x)

is determined by (3.73). If b satisfies b−1 ∈ Lp(PX) for some p ∈ (0,∞], then

‖f − f∗τ,P‖Lq(PX) ≤
√

2 ‖b−1‖1/2
Lp(PX)

(RL,P(f)−R∗
L,P

)1/2

for all functions f : X → R such that RL,P(f) − R∗
L,P ≤ 2−

p+2
p+1α

2p
p+1 , where

f∗L,P(x) = f∗τ,P and q := p
p+1 .

Another interesting question is whether we can establish convergence rates
in Theorem 9.6 or Theorem 9.7. It is well-known in statistical learning theory
that such convergence rates require additional assumptions on the distribution
P due to the no-free-lunch theorem (see Corollary 6.8), for example in terms
of the approximation properties of H with respect to f∗τ,P. Moreover, the
techniques used in the proofs of Theorem 9.6 and Theorem 9.7 are tuned
to provide consistency under rather minimal assumptions on X, Y , P, and
H, but in general these techniques are too weak to obtain good convergence
results. Some results on learning rates of SVMs for quantile regression are
given by Steinwart and Christmann (2008).

9.4 Numerical Results for Quantile Regression

In this section, we will illustrate that SVMs for quantile regression with dif-
ferent values of the quantile level τ can offer valuable information that is not
obtainable by just considering one regression function for the center (condi-
tional mean or conditional median).3 It will also be shown by a small simu-
lation that the asymptotic results obtained in the previous section can offer
reasonable approximations for small to moderate sample sizes.
3 Portions of this section are based on material originally published in

“A. Christmann and I. Steinwart (2008), ‘Consistency of kernel based quantile
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Example: LIDAR Data Set

Let us start with a simple example for the application of SVMs for quan-
tile regression. We analyze data concerning the so-called LIDAR technique.
LIDAR is the abbreviation of LIght Detection And Ranging. This technique
uses the reflection of laser-emitted light to detect chemical compounds in the
atmosphere. We consider the logarithm of the ratio of light received from
two laser sources as the response variable Y = logratio, whereas the single
explanatory variable X = range is the distance traveled before the light is
reflected back to its source. We refer to Ruppert et al. (2003) for more details
on this data set.

A scatterplot of the data set consisting of n = 221 observations is shown
in Figure 9.1 together with the fitted curves based on SVMs using the pinball
loss function using the Gaussian RBF kernel for the median and the lower
and upper 5 percent quantiles. The KBQR clearly shows that the relationship
between both variables is non-linear, almost constant for values of range below
550 and decreasing for higher values of range. However, KBQR also shows
that the variability of logratio is non-constant and much greater for values
of range, say, above 600 than for values below this.
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Fig. 9.1. LIDAR data set (n = 221). SVMs for quantile regression based on the
Gaussian RBF kernel with γ2 = 0.5 and λ = 1

700
n−1/3 (resulting from a grid search).

Considered quantile levels: τ = 0.05, 0.50, and 0.95.

Simulation Results

Now we describe a small simulation and its results to investigate how well
the asymptotic results derived in Section 9.3 on the consistency of SVMs for

regression.’ Appl. Stoch. Models Bus. Ind., 24, 171–183.
c© 2008 John Wiley & Sons, Ltd. Reproduced with permission.”
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quantile regression work for small to moderate sample sizes. We consider n ∈
{221, 1000, 4000} and use the same parameter settings for the Gaussian RBF
kernel as in the previous subsection; i.e., γ2 = 0.5 and λn = 1

700n
−1/3. The

number of replications in the simulation was set to 1000. For each replication
� ∈ {1, . . . , 1000}, we independently generated n data points x()

i for range
from a continuous uniform distribution with support (390, 720). Furthermore,
for each replication, we generated n data points y()

i for logratio according
to independent normal distributions with conditional expectations

μ(x()
i ) := −0.05− 0.7

(
1 + exp(−(x()

i − 600)/10)
)−1

and conditional variances

σ2(x()
i ) :=

(
0.01 + 0.1

(
1 + exp(−(x()

i − 600)/50)
))2

,

respectively. The true conditional τ -quantile curves are thus given by f∗τ,P(x) =
μ(x) +uτσ(x), τ ∈ (0, 1), where uτ defines the τ -quantile of a normal distrib-
ution with mean 0 and variance 1. The curves for the conditional medians and
the conditional lower and upper 5 percent quantiles are shown in Figure 9.2
to illustrate that this model generates data sets similar to the LIDAR data
set; see Figure 9.1.

400 450 500 550 600 650 700

−
1.

2
−

0.
8

−
0.

4
0.

0

range

lo
gr

at
io

Fig. 9.2. True quantile regression curves for the simulation. Considered quantile
levels: τ = 0.05, 0.50, and 0.95.

We use two criteria to measure how well the KBQR estimates approximate
the true conditional quantiles. Our first criterion is

IMSEτ :=
1

1000

1000∑
=1

1
n

n∑
i=1

(
fDn,λn

(x()
i )− f∗τ,P(x()

i )
)2
,



9.4 Numerical Results for Quantile Regression 347

which is an empirical version of the integrated mean squared error. To measure
the worst-case behavior of the KBQR estimates, we use the criterion

mBiasτ :=
1

1000

1000∑
=1

max
1≤i≤n

∣∣∣fDn,λn
(x()

i )− f∗τ,P(x()
i )
∣∣∣ ,

which is an empirical version of the maximum bias. The random number
generation and the plots were made with the statistical software R (R Devel-
opment Core Team, 2006). The program mySVM (Rüping, 2000) was used for
the computation of the KBQR estimates.

The boxplots4 given in Figures 9.3 and 9.4 show that SVMs based on the
pinball loss function perform quite well with respect to both criteria under the
circumstances considered, because both criteria have relatively small values
and their values decrease with increasing sample sizes. A considerable im-
provement is obtained by increasing the sample size by a factor of around 4.
The boxplots also show that the variability of the estimated conditional me-
dian is considerably smaller than the variability of the estimated conditional
quantiles for τ ∈ {0.05, 0.95}. The simulations indicate that the consistency
results derived in Section 9.3 can be useful even for moderate sample sizes.
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Fig. 9.3. Simulation results for the criterion IMSEτ for SVMs for quantile regression
based on the Gaussian RBF kernel with γ2 = 0.5 and λn = 1

700
n−1/3. Considered

quantile levels: τ = 0.05, 0.50, and 0.95.

4 The box is defined by the 0.25 and 0.75 quantiles, and the median is the line
inside the box. The whiskers give additional information about the variability.
Values outside the whiskers are shown as small lines.
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Fig. 9.4. Simulation results for the criterion mBiasτ for SVMs for quantile regression
based on the Gaussian RBF kernel with γ2 = 0.5 and λn = 1

700
n−1/3. Considered

quantile levels: τ = 0.05, 0.50, and 0.95.

9.5 Median Regression with the eps-Insensitive Loss (*)

In this section, we give simple conditions for the distribution P that guarantee
that the set of exact minimizers of support vector machines based on the ε-
insensitive loss function contains only one function. This fact is at first glance
surprising because this loss function equals zero in the entire interval [−ε,+ε].

In this section, we will assume that P is a distribution on X × Y , where
X is an arbitrary set and Y ⊂ R is closed. Further, we assume that the σ-
algebra on X is complete with respect to the marginal distribution PX of P;
i.e., every subset of a PX -zero set is contained in the σ-algebra. Since the
latter can always be ensured by increasing the original σ-algebra in a suitable
manner, we note that the assumption of a complete σ-algebra on X is no
restriction at all. Recall from Section 3.7 that a distribution Q ∈M1(R,B(R))
is symmetric, if there exists some c ∈ R such that Q(c + A) = Q(c − A) for
all A ∈ B(R) with A ⊂ [0,∞).

Theorem 9.8. Let P be a distribution on X × R that has a unique median
f∗1/2,P. Further, assume that all conditional distributions P( · |x), x ∈ X, are
atom-free and symmetric. If for an ε > 0 the conditional distributions have a
positive mass for intervals around f∗1/2,P±ε, then f∗1/2,P is the only minimizer
of RL,P(·) where L is the ε-insensitive loss.

The proof of Theorem 9.8 follows immediately from the following lemma.

Lemma 9.9. Let Q be a symmetric, atom-free distribution on (R,B(R)) with
median q∗ = 0. Then, for ε > 0 and L the ε-insensitive loss, we have

CL,Q(0) = C∗L,Q = 2
∫ ∞

ε

Q([s,∞)),
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and if CL,Q(0) <∞, we further have

CL,Q(t)− CL,Q(0) =
∫ ε

ε−t

Q([s, ε]) ds+
∫ ε+t

ε

Q([ε, s]) ds, if t ∈ [0, ε],

CL,Q(t)− CL,Q(ε) =
∫ t−ε

0

Q([s,∞)) ds−
∫ ε+t

2ε

Q([s,∞)) ds

+2
∫ t−ε

0

Q([0, s]) ds ≥ 0, if t > ε.

In particular, if Q([ε− δ, ε+ δ]) = 0 for some δ > 0, then CL,Q(δ) = C∗L,Q.

Proof. Because L(y, t) = L(−y,−t) for all y, t ∈ R, we only have to consider
t ≥ 0. Recall that, given a distribution Q on R and a non-negative measurable
function g : X → [0,∞), we have∫

R

g dQ =
∫ ∞

0

Q(g ≥ s) ds ; (9.26)

see Lemma A.3.11. For later use, we note that for 0 ≤ a ≤ b ≤ ∞ equation
(9.26) yields ∫ b

a

y dQ(y) = aQ([a, b]) +
∫ b

a

Q([s, b]) ds . (9.27)

Moreover, the definition of L implies

CL,Q(t) =
∫ t−ε

−∞
t− y − ε dQ(y) +

∫ ∞

t+ε

y − ε− t dQ(y) .

Using the symmetry of Q yields

−
∫ t−ε

−∞
y dQ(y) =

∫ ∞

ε−t

y dQ(y),

and hence we obtain

CL,Q(t) =
∫ t−ε

0

Q((−∞, t− ε]) ds−
∫ t+ε

0

Q([t+ ε,∞)) ds (9.28)

+
∫ t+ε

ε−t

y dQ(y) + 2
∫ ∞

t+ε

y dQ(y) .

Let us first consider the case t ≥ ε. Then the symmetry of Q yields∫ t+ε

ε−t

y dQ(y) =
∫ t+ε

t−ε

y dQ(y),

and hence (9.27) implies
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CL,Q(t)=
∫ t−ε

0

Q([ε− t,∞))ds+
∫ t−ε

0

Q([t−ε, t+ε]) ds+
∫ t+ε

t−ε

Q([s, t+ε]) ds

+2
∫ ∞

t+ε

Q([s,∞)) ds+
∫ t+ε

0

Q([t+ε,∞)) ds.

Using∫ t+ε

t−ε

Q([s, t+ ε)) ds =
∫ t+ε

0

Q([s, t+ ε)) ds−
∫ t−ε

0

Q([s, t+ ε)) ds,

we further obtain∫ t+ε

t−ε

Q([s, t+ ε)) ds+
∫ t+ε

0

Q([t+ ε,∞)) ds+
∫ ∞

t+ε

Q([s,∞)) ds

=
∫ ∞

0

Q([s,∞)) ds−
∫ t−ε

0

Q([s, t+ ε)) ds.

From this and∫ t−ε

0

Q([t− ε, t+ ε]) ds−
∫ t−ε

0

Q([s, t+ ε]) ds = −
∫ t−ε

0

Q([s, t− ε]) ds,

it follows that CL,Q(t) equals

−
∫ t−ε

0

Q([s, t− ε]) ds+
∫ t−ε

0

Q([ε− t,∞)) ds+
∫ ∞

t+ε

Q([s,∞)) ds+
∫ ∞

0

Q([s,∞)) ds.

The symmetry of Q implies∫ t−ε

0

Q([ε− t, t− ε]) ds = 2
∫ t−ε

0

Q([0, t− ε]) ds,

such that

−
∫ t−ε

0

Q([s, t− ε]) ds+
∫ t−ε

0

Q([ε− t,∞)) ds

= 2
∫ t−ε

0

Q([0, s)) ds+
∫ t−ε

0

Q([s,∞)) ds.

This and∫ ∞

t+ε

Q([s,∞)) ds+
∫ ∞

0

Q([s,∞)) ds = 2
∫ ∞

t+ε

Q([s,∞)) ds+
∫ t+ε

0

Q([s,∞)) ds

shows that CL,Q(t) equals

2
∫ t−ε

0

Q([0, s)) ds+
∫ t−ε

0

Q([s,∞)) ds+ 2
∫ ∞

t+ε

Q([s,∞)) ds+
∫ t+ε

0

Q([s,∞)) ds.
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By∫ t−ε

0

Q([s,∞)) ds+
∫ t+ε

0

Q([s,∞)) ds = 2
∫ t−ε

0

Q([s,∞)) ds+
∫ t+ε

t−ε

Q([s,∞)) ds,

we obtain

CL,Q(t) = 2
∫ t−ε

0

Q([0,∞)) ds+ 2
∫ ∞

t+ε

Q([s,∞)) ds+
∫ t+ε

t−ε

Q([s,∞)) ds

if t ≥ ε. Let us now consider the case t ∈ [0, ε]. Analogously, we get from
(9.28) that CL,Q(t) equals

∫ ε−t

0

Q([ε− t, t+ ε]) ds+
∫ ε+t

ε−t

Q([s, t+ ε]) ds+ 2
∫ ∞

ε+t

Q([s,∞)) ds

+2
∫ ε+t

0

Q([ε+ t,∞)) ds−
∫ ε−t

0

Q([ε− t,∞)) ds−
∫ ε+t

0

Q([ε+ t,∞)) ds.

Combining this with∫ ε−t

0

Q([ε− t, t+ ε]) ds−
∫ ε−t

0

Q([ε− t,∞)) ds = −
∫ ε−t

0

Q([ε+ t,∞)) ds

and∫ ε+t

0

Q([ε+ t,∞)) ds−
∫ ε−t

0

Q([ε+ t,∞)) ds =
∫ ε+t

ε−t

Q([ε+ t,∞)) ds,

we get

CL,Q(t)=
∫ ε+t

ε−t

Q([ε+ t,∞)) ds+
∫ ε+t

ε−t

Q([s, t+ ε]) ds+ 2
∫ ∞

ε+t

Q([s,∞)) ds

=
∫ ε+t

ε−t

Q([s,∞)) ds+ 2
∫ ∞

ε+t

Q([s,∞)) ds

=
∫ ∞

ε−t

Q([s,∞)) ds+
∫ ∞

ε+t

Q([s,∞)) ds.

Hence
CL,Q(0) = 2

∫ ∞

ε

Q([s,∞)) ds.

The expressions for CL,Q(t)− CL,Q(0), t ∈ (0, ε], and CL,Q(t)− CL,Q(ε), t > ε,
given in Lemma 9.9 follow by using the same arguments. Hence one exact
minimizer of CL,Q(·) is the median t∗ = 0. The last assertion is a direct
consequence of the formula for CL,Q(t)− CL,Q(0) in the case t ∈ (0, ε]. ��
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9.6 Further Reading and Advanced Topics

For additional information, we refer to Poggio and Girosi (1990), Wahba
(1990), Vapnik (1995, 1998), Schölkopf and Smola (2002), and the references
cited by these authors. For ν-support vector regression, which is strongly re-
lated to support vector regression based on the ε-insensitive loss function but
allows the tube width to adapt automatically to the data, see Schölkopf et al.
(2000), Smola and Schölkopf (2004), and Chen et al. (2005). For a brief de-
scription of kernel ridge regression and Gaussian processes, see Cristianini and
Shawe-Taylor (2000, Section 6.2). We refer to Wahba (1999) for the relation-
ship between SVMs and Gaussian processes.

Section 9.2 on the L-risk consistency of SVMs for regression was based on
Christmann and Steinwart (2007). An unbounded output space Y instead of
a bounded one makes proofs of L-risk consistency of SVMs harder. This is
also true for investigating robustness properties; see Chapter 10. This was one
reason why we treated Nemitski loss functions in Chapters 2 and 5. Equation
(9.4) shows that the reproducing kernel Hilbert space H is a Banach space
with type and cotype two. For details, we refer to Diestel et al. (1995).

Quantile regression for linear models was proposed by Koenker and Bassett
(1978). A recent textbook on this topic is Koenker (2005). We refer to Koenker
(1986) for strong consistency of regression quantiles and related empirical
processes, He and Liang (2000) for quantile regression in errors-in-variables
models, Portnoy (2003) for censored regression quantiles, and Koenker and
Xiao (2006) for quantile autoregression. SVMs for quantile regression were
proposed by Schölkopf et al. (2000, p. 1216) and Takeuchi et al. (2006). The
latter article also describes algorithmic aspects for the efficient computation
of SVMs for quantile regression. It is possible that the estimated conditional
quantile functions intersect for different values of τ ∈ (0, 1). For a discussion of
this crossing problem and how to overcome this unfavorable property, we refer
to Example 11.9, He (1997), and Takeuchi et al. (2006). For non-parametric
generalizations of quantile regression based on splines, we refer to Koenker
et al. (1994) and He and Ng (1999).

Sections 9.3 and 9.4 on the L-risk consistency of SVMs for quantile regres-
sion are based on Christmann and Steinwart (2008). We conjecture5 that it is
possible to get rid of the assumption |P|1 <∞ if one changes the regularized
minimization problem to

fP,λ := arg inf
f∈H

EPL
∗(Y, f(X)) + λ‖f‖2H ,

where L∗(y, t) := L(y, t) − L(y, 0). However, loss functions that can take on
negative values are not treated in this textbook because many practitioners
do not accept negative losses.

Section 9.5 on the uniqueness of the SVM solution based on the ε-insensitive
loss function is based on Steinwart and Christmann (2008).
5 As a result of discussions with Ursula Gather and Xuming He



9.8 Exercises 353

For non-parametric regression with constraints such as monotonicity or
convexity, we refer to Smola and Schölkopf (1998), Takeuchi et al. (2006),
Hall and Huang (2001), and Dette et al. (2006).

9.7 Summary

This chapter gave a mathematical justification for the informal notion that
support vector machines are “able to learn” in non-parametric regression mod-
els. It was shown that SVMs are L-risk consistent for a broad class of convex
loss functions under weak assumptions even for the case of an unbounded out-
put space. Support vector machines based on the pinball loss function lead to
kernel-based quantile regression. SVMs based on this loss function are L-risk
consistent under weak assumptions on P and k. Furthermore, if this SVM is
L-risk consistent, we also obtained a consistent estimator for the conditional
quantile function. Finally, conditions were derived under which SVMs based
on the ε-insensitive loss function, which is equal to zero in the interval [−ε,+ε],
allow a unique estimation of the conditional median function.

9.8 Exercises

9.1. Pinball loss (�)
Prove that the pinball loss function Lτ -pin(y− t) = ψτ (y− t), y, t ∈ R, has for
each τ ∈ (0, 1) the following properties.

i) ψτ is strictly convex and satisfies both ψτ (0) = 0 and lim|r|→∞ ψτ (r) =∞.
ii) ψτ is Lipschitz continuous with Lipschitz constant |ψτ |1 = max{τ, 1− τ}.
iii) For all r ∈ R, we have min{τ, 1− τ} |r| ≤ ψτ (r) ≤ |ψτ |1 |r|.
9.2. Translation-invariant metric (��)
Let P be a distribution on X × Y with X ⊂ Rd and Y ⊂ R both closed sets.
Let f, g : X → R be measurable functions. Define

‖f‖L0(PX) := ‖f‖0 := EPX
min
{
1, |f(X)|}

and d(f, g) := ‖f − g‖0; see (9.22). Show that d is a translation-invariant
metric on the space of all measurable functions defined on X and d describes
the convergence in probability PX .

Hint: Use Chebyshev’s inequality.

9.3. Least squares loss (��)
Specialize Theorem 9.1 for the least squares loss function. Investigate in which
sense the conditional mean function is approximated.
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9.4. Comparison least squares loss and logistic loss (��)
Compare the results of the previous exercise concerning LLS with the results
for the logistic loss function for the special case of a symmetric conditional
distribution of Y given x. Consider the bounded and the unbounded cases.

9.5. Consistency for Lipschitz-continuous loss functions (��)
Generalize Theorem 9.6 based on the pinball loss function Lτ -pin to general
Lipschitz-continuous loss functions.

9.6. Quantile regression (����)
Generalize the results of Section 9.3 to the case of non-unique quantiles.

9.7. A variance bound for the pinball loss (���)
For fixed τ ∈ (0, 1), let L be the τ -pinball loss. Moreover, let Y := [−1, 1], X
be a measurable space, and P be a distribution on X × Y such that P( · |x) is
of type Qα

τ for some α > 0 and all x ∈ X. In other words, (3.73) is satisfied for
Q := P( · |x), x ∈ X. We write b(x) := cP( · |x), x ∈ X, for the corresponding
constants in (3.73) and assume that b ∈ Lq(PX) for some q ∈ (0,∞]. Show
that there exists a constant V ≥ 1 such that

EP(L ◦�
f − L ◦ f∗τ,P)2 ≤ V · (EP(L ◦�

f − L ◦ f∗τ,P)
)ϑ (9.29)

for all measurable f : X → R, where ϑ := q/(2q+2), �t := max{−1,min{1, t}}
denotes the clipping operation (2.14) at M := 1, and L◦f(x, y) := L(y, f(x)).

Hint: For clipped functions with “small” excess risk, use the Lipschitz-
continuity and (3.74), whereas for clipped functions with “large” excess risk,
use the fact that the left-hand side of (9.29) is never larger than 4.

9.8. Oracle inequality for quantile regression (���)
For fixed τ ∈ (0, 1), let L be the τ -pinball loss. Moreover, let Y := [−1, 1], X
be a measurable space, P be a distribution on X×Y , and H be the separable
RKHS of a measurable kernel. Assume that (9.29) holds and that there are
constants p ∈ (0, 1) and a ≥ 1 such that the entropy numbers satisfy

ei(id : H → L2(PX)) ≤ a i−1/(2p) , i ≥ 1.

Show that there is a constant K only depending on p, ϑ, and V such that for
all τ, λ > 0, and n ≥ 1 we have with probability not less than 1− 3e−τ that

RL,P(
�
fD,λ)−R∗

L,P ≤ 9A2(λ) +
15τ
n

√
A2(λ)
λ

+K
( a2p

λpn

)c(p,ϑ)

+Kτn−
1

2−ϑ ,

where c(p, ϑ) := 1/(2 − p − ϑ + ϑp) and A2(λ) denotes the approximation
error function from Definition 5.14. Use this oracle inequality to derive L-risk
learning rates for SVMs based on the pinball loss in the sense of the discussion
following Theorem 7.23. Moreover, interpret these rates with the help of (3.74)
if P satisfies the assumptions of Exercise 9.7, and discuss the adaptivity of a
TV-SVM. Finally, apply the discussion in Section 5.6 if H is a Sobolev space
and f∗τ,P is contained in another Sobolev space.

Hint: Use Theorem 7.23 together with Corollary 7.31.
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Robustness

Overview. So far, we have assumed that the pairs of input and output
variables are independently generated by the same probability distribu-
tion P. In this chapter, we investigate robustness properties of support
vector machines for classification and regression. Here we will deter-
mine the stability of SVMs if the distribution is not P but some other
distribution Q close to P. For example, Q can be the empirical distribu-
tion generated by a data set or a mixture distribution Q = (1−ε)P+εP̃,
where P̃ can be any distribution. Using methods from robust statistics,
we obtain conditions on the loss function and the kernel that guarantee
that SVMs are stable in a neighborhood around P.

Prerequisites. Knowledge of loss functions, kernels, and the stabil-
ity of infinite-sample SVMs is needed from Chapter 2, Section 3.9,
Chapter 4, and Section 5.3. Some results from measure and integra-
tion theory, statistics, and functional analysis from the appendix are
used.

In this chapter, we argue that robustness is an important aspect for statisti-
cal machine learning. This chapter can be seen as a continuation of Section
5.3, which investigated the stability of infinite-sample SVMs. It will be shown
that SVMs also have—besides other good properties—the advantage of being
robust if the loss function L and the kernel k are carefully chosen. Weak con-
ditions on L and k are derived that guarantee good robustness of SVM meth-
ods not only for some fixed parametric class of distributions—say Gaussian
distributions—but for large classes of probability distributions. In the sense
specified by Hadamard (1902), support vector machines are hence well-posed
problems. Hadamard believed that well-posed mathematical problems should
have the property that there exists a unique solution that additionally depends
on the data continuously.

In previous chapters of the book, statistical properties of SVMs were de-
rived such as existence, uniqueness, and L-risk consistency. These properties
were derived under the model assumption that the pairs (Xi, Yi), i = 1, . . . , n,
are independent and identically distributed random variables on some space
X × Y each with the (totally unknown) probability distribution P ∈ M1,
where M1 denotes the set of all probability distributions on X × Y . This
is surely a weak assumption if it is compared with parametric models that
assume that P is an element of a specified finite-dimensional subset of M1.
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From a theoretical and an applied point of view, it is nevertheless worthwhile
to investigate the possible impact of model violations on fP,λ, fD,λ, and the
corresponding L-risks. The results of this chapter can be used to choose the
loss function L and the kernel k such that the corresponding SVM is robust.

If not otherwise stated, we assume in this chapter that X = Rd, Y = R,
and d ∈ N.

The rest of the chapter is organized as follows. Section 10.1 gives a moti-
vation for investigating robustness properties of SVM methods. Section 10.2
describes general concepts of robust statistics: qualitative robustness, influ-
ence functions, the related notions of gross error sensitivity, the sensitivity
curve, and maxbias, and breakdown points. In the following two sections, we
investigate in detail robustness properties of SVMs for classification and re-
gression and clarify the role of the loss function and the kernel. Section 10.5
treats a simple but powerful strategy based on independent subsampling for
calculating SVMs from huge data sets for which current numerical algorithms
might be too slow. It will be shown that this strategy offers robust and con-
sistent estimations if the SVM used is itself robust and consistent.

10.1 Motivation

Why Is Robustness Important?

In almost all cases, statistical models are only approximations to the true
random process that generated a given data set.1 Hence it is necessary to
investigate how deviations may influence the results. J.W. Tukey, one of the
pioneers of robust statistics, mentioned already in 1960 (Hampel et al., 1986,
p. 21):

A tacit hope in ignoring deviations from ideal models was that they
would not matter; that statistical procedures which were optimal un-
der the strict model would still be approximately optimal under the
approximate model. Unfortunately, it turned out that this hope was
often drastically wrong; even mild deviations often have much larger
effects than were anticipated by most statisticians.

The main aims of robust statistics are the description of the structure best
fitting the bulk of the data and the identification for further treatment of
points deviating from this structure or deviating substructures, see Hampel
et al. (1986). An informal description of a good robust method is as follows.

i) A good robust method offers results with a reasonably high quality when
the data set was in fact generated by the assumed model.

1 This is especially true in data mining; see Chapter 12.
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ii) If the strict model assumptions are violated, then the results of a robust
method are only influenced in a bounded way by a few data points that
deviate grossly from the structure of the bulk of the data set or by many
data points that deviate only mildly from the structure of the bulk of the
data set.

Although these two considerations are for data sets (i.e., for the finite-sample
case), it will become clear that asymptotic considerations are also helpful for
investigating robustness properties.

Support vector machines are non-parametric methods and make no spe-
cific assumptions on the distribution P. Nevertheless, the robustness issue is
important also for SVMs because the two classical assumptions that all data
points are generated independently by the same distribution can be violated
in practice. One reason is that outliers often occur in real data sets. Outliers
can be described as data points that “are far away . . . from the pattern set by
the majority of the data”; see Hampel et al. (1986, p. 25). Let us consider a
simple two-dimensional example. Figure 10.1 shows a simulated data set from
a bivariate Gaussian distribution N(μ,Σ) with

μ =
(

1
1

)
, Σ =

(
1.0 1.2
1.2 2.0

)
,

and with four artificial outliers. Of course, μ and Σ will usually be unknown in
applications. The ellipses cover 95 percent (dashed) and 99.99 percent (dotted)
of the mass of this bivariate Gaussian distribution. The points a = (4, 5) and
d = (5,−5) are extreme in the x- and y-directions, b = (4, 0) is only extreme
in the x-direction, and c = (1.5,−2) is non-extreme in both directions but
deviates strongly from the pattern set by the majority of the data. It is often
relatively easy to detect outliers that are extreme in at least one component,
in this case the points a, b, and d. However, outliers are often very hard to
identify in high-dimensional data sets due to the curse of high dimensionality
and because it is not feasible to consider all one-dimensional projections. One
reason is that such outliers can be non-extreme in every component and in
many lower-dimensional subspaces but are extreme if all components and the
(unknown) pattern set by the majority of the data are taken into account at
the same time; see the point c in Figure 10.1. With respect to this bivariate
Gaussian distribution, c is even more extreme than a because c is not even an
element of the ellipse containing 99.99 percent of the distribution mass of the
specified bivariate Gaussian distribution. This can also be seen by computing
the so-called Mahalanobis distance, which is defined by√

(z − μ)TΣ−1(z − μ), z ∈ R2.

The Mahalanobis distance is 4.0 for a but equals 5.3 for c and 15.0 for d. In
contrast to that, the Euclidean distance is not helpful here. The Euclidean
distance of c to μ is only 2.5, which is smaller than the Euclidean distance



358 10 Robustness

of a to μ, which equals 6.4. Outliers like c and d usually have a large impact
on non-robust methods and can make the whole statistical analysis useless
if a non-robust method is used; see, e.g., Rousseeuw (1984), Rousseeuw and
van Zomeren (1990), and Davies and Gather (1993).
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Fig. 10.1. Types of outliers.

There are many reasons for the occurrence of outliers or extreme values.
Typing errors are often present if the data points are reported manually. Gross
errors are errors due to a source of deviation that acts only occasionally but is
quite powerful. Another reason might be that the whole data set or a part of it
was actually generated by another distribution, say a Student’s t-distribution
or a generalized Pareto distribution, under which extreme values are much
more likely than under the assumed model, say the class of Gaussian distrib-
utions. It can happen that outliers are even correlated, which contradicts the
classical assumption that the observations in the data set are generated in an
independent manner.

One might ask whether it is necessary to pay attention to outliers or gross
errors. This is definitely true, as the number of patents on methods claiming
reliable outlier detection shows. We would like to give three reasons for the
importance of outliers:

i) Outliers do occur in practice. There are often no or virtually no gross
errors in high-quality data, but 1 percent to 10 percent of gross errors in
routine data seem to be more the rule than the exception; see Hampel et al.
(1986, pp. 27ff.). The data quality is sometimes far from being optimal,
especially in data mining problems, as will be explained in Chapter 12.

ii) Outliers may unfortunately have a high impact on the results if methods
are used that do not bound the impact of outliers.
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iii) Outliers may be interesting in their own right because they show a different
behavior than the bulk of the data. This might even indicate some novelty
worth considering in a detailed subsequent analysis. It is well-known that
outlier identification based on robust methods is much safer than outlier
identification based on non-robust methods.

It is worth mentioning that, from a robustness point of view, the occurrence
of outliers is only one of several possible deviations from the assumed model.
Obviously, it is in general not the goal to model the occurrence of typing
errors or gross errors because it is unlikely that they will occur in the same
manner for other data sets that will be collected in the future.

Let us summarize. The classical assumptions made by SVMs of indepen-
dent random vectors (Xi, Yi), i = 1, . . . , n, each having the same distribution
P, are weak but nevertheless not always fulfilled. Hence the question arises
which impact small distortions of P may have on SVMs. Of course, the same
question arises for empirical SVMs, where the unknown distribution P is re-
placed by the empirical distribution D. We will later use neighborhoods of P
or D in the metric space of probability distributions to specify precisely what
is meant by small distortions.

What Are the Goals of Robust Statistics?

In a nutshell, robust statistics investigates the impact that violations of the
statistical model, outliers, and gross errors can have on the results of esti-
mation, testing, or prediction methods and develops methods such that the
impact is bounded.

Figure 10.2 sketches the idea of robustness from a somewhat more math-
ematical point of view. Assume that (Xi, Yi), i = 1, . . . , n, are independent
and identically distributed random variables on some space X × Y ⊂ Rd ×R

with unknown probability distribution P. Denote the empirical distribution
corresponding to a data set Dn =

(
(x1, y1), . . . , (xn, yn)

)
by D = Dn. The

sequence (Dn)n∈N converges almost surely by Theorem A.4.11 to the true
data-generating distribution P if the sample size n converges to infinity. As-
sume that the statistical method of interest can be written as S(Dn) for any
possible data set Dn and more general, as S(P) for any distribution P, where

S : P �→ S(P) (10.1)

is a measurable function specifying the statistical method. In this chapter, we
will assume that the functions considered are measurable. In our case, we will
have

S(P) := fP,λ = arg min
f∈H

RL,P(f) + λ‖f‖2H , (10.2)

where λ ≥ 0. A robust method S should be bounded and smooth in a neigh-
borhood of P. Let us assume for a moment that continuity or a bounded
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directional derivative is meant by smoothness. LetM1 be the set of all prob-
ability measures on X × Y and a corresponding σ-algebra, d1 be a metric on
M1, and d2 be a metric on the space of induced probability measures of S(P),
P ∈M1. Then we expect from a robust method that for all ε > 0 there exists
a δ > 0 such that

d1(Q,P) < δ ⇒ d2(S(Q), S(P)) < ε,

or that the derivative of S(P) in the direction of S(Q) is bounded. The smooth-
ness property should in particular be valid for any sequence (Pn)n∈N of prob-
ability distributions converging to P. A special case are sequences of empirical
distributions (Dn)n∈N converging to P. Recall that P is unknown. Hence it is
essential that the function S has this smoothness property not only for one
particular distribution P but for a large subclass ofM1.

Fig. 10.2. Sketch: reasoning of robustness of S(P). Left: P, a δ-neighborhood of P,
and M1. Right: S(P), an ε-neighborhood of S(P), and the space of all probability
measures of S(P) for P ∈ M1.

Let us consider two rather simple examples: the mean and the median.
Let y = (y1, . . . , yn) ∈ Rn, n ∈ N. The (empirical) mean is defined by

ȳ :=
1
n

n∑
i=1

yi , (10.3)

and the (empirical) median is given by

median(y) :=

{
y(:n) if n is odd
1
2 (y(:n) + y((+1):n)) if n is even ,

(10.4)

where � = �(n+ 1)/2�, and y(1:n) ≤ . . . ≤ y(n:n) denote the ordered values of
{yi, i = 1, . . . , n}. Here we use the usual way of making the median unique for
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n even. Now assume that the data points yi are the observations of indepen-
dent and identically distributed random variables Yi on (R,B), i = 1, . . . , n.
Clearly, Ȳ := 1

n

∑n
i=1 Yi is the solution of

Ȳ = arg min
θ∈R

1
n

n∑
i=1

(Yi − θ)2 , (10.5)

and the median is a solution of

median(Y ) = arg min
θ∈R

1
n

n∑
i=1

|Yi − θ| . (10.6)

The mean and median are also solutions of a special class of empirical risk
minimization problems. This can easily be seen if we use a reproducing kernel
Hilbert space H defined via a linear kernel k(x, x′) = 〈x, x′〉, the least squares
loss or the L1 loss function, which is identical to the pinball loss function for
τ = 1

2 , and a data set containing n data points zi = (xi, yi) ∈ R2 with xi ≡ 1,
i = 1, . . . , n. Assume that Zi = (Xi, Yi), i = 1, . . . , n, are independent and
identically distributed random variables on (R2,B2) with distribution P ∈M1

such that the marginal distribution PX of Xi is equal to the Dirac distribution
δ{1}. Under these assumptions, we obtain

S(D) := fD,0 = arg min
f∈H

1
n

n∑
i=1

L
(
yi, f(xi)

)
(10.7)

with the corresponding infinite-sample problem

S(P) := fP,0 = arg min
f∈H

EP L
(
Y, f(X)

)
. (10.8)

Therefore, we can consider the mean and median either as function values
Sn((z1, . . . , zn)) of a function

Sn :
(
R2n,B(R2n)

)→ (R,B) (10.9)

(see (10.3) and (10.4)) or as function values S(Dn) of a function S, where
Dn := 1

n

∑n
i=1 δzi

denotes the empirical distribution and

S :M1(R,B)→ (R,B) , (10.10)
S(P) = arg min

f∈H
RL,P(f) + λ‖f‖2H , (10.11)

where λ = 0 (see (10.7) and (10.8)). As far as we know, this functional ap-
proach was first used by von Mises (1937), and it is now a standard and
powerful tool for investigating robustness properties of statistical methods.
Robustness of an estimator Sn can then be defined via properties of the func-
tion S by requiring continuity, differentiability, or boundedness of S in P or
in neighborhoods of P. This will be described in the next section.
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10.2 Approaches to Robust Statistics

This section contains the necessary preliminaries to investigate robustness
properties of SVMs in Sections 10.3 to 10.5. A reader familiar with robust
statistics may skip this section and go directly to Section 10.3. A reader not
familiar with robust statistics can find additional information also in Appendix
A.4.

In the statistical literature, many different criteria have been proposed to
define robustness in a mathematical way. The definitions of qualitative robust-
ness and breakdown points are given, but we will mainly restrict attention to
influence functions together with the related notions of gross error sensitivity,
sensitivity curve, and maxbias in the subsequent sections.

Qualitative Robustness

As we explained in the previous section, neighborhoods and distances of prob-
ability measures are important in robust statistics. Let us therefore start with
the definition of the Prohorov metric, which is needed for the definition of
qualitative robustness. Let (Z, τZ) be a Polish space with complete metric
dZ . For any set A ⊂ Z, we define the closed δ-neighborhood of a set A by

Aδ :=
{
x ∈ Z : inf

y∈A
dZ(x, y) ≤ δ}. (10.12)

Definition 10.1. Let (Z, τZ) be a Polish space, P ∈ M1(Z) be a probability
measure on Z, and ε > 0, δ > 0. Then the set

NPro
ε,δ (P) :=

{
Q ∈M1(Z) : Q(A) ≤ P(Aδ) + ε for all A ∈ B(Z)

}
(10.13)

is called a Prohorov neighborhood of P. We write NPro
ε (P) instead of

NPro
ε,ε (P). The Prohorov metric between two probability distributions P1,

P2 ∈M1(Z) is defined by

dPro(P1,P2) := inf
{
ε > 0 : P1(A) ≤ P2(Aε) + ε for all A ∈ B(Z)

}
. (10.14)

The Prohorov neighborhood has the property that it has a component
reflecting statistical uncertainty (i.e.; the dimensionless term ε) and a compo-
nent reflecting the occurrence of rounding errors (i.e.; the term δ that, however,
is not dimensionless). The Prohorov metric defines a metric on M1(Z) and
metricizes the weak∗ topology in M1(Z); see Theorem A.4.19 and Theorem
A.4.20. The weak∗ topology of M1 can also be metricized by other metrics;
see Theorem A.4.22 for the bounded Lipschitz metric. For the special case
Z = R, the Lévy metric (see Problem 10.4) is often easier to use than the
Prohorov metric because the Lévy metric is based on cumulative distribution
functions.

Let (Z, τZ) and (W, τW ) be Polish spaces with complete metrics dZ and dW

that metricize the weak∗ topologies. Define a metric on Zn by dZn(z, z′) =
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max1≤i≤n dZ(zi, z
′
i), where z = (z1, . . . , zn) ∈ Zn and z′ = (z′1, . . . , z

′
n) ∈

Zn. A data set consisting of n data points zi ∈ Z, i = 1, . . . , n, will be
denoted by Dn, and the corresponding empirical measure will be denoted
by Dn. Let Z1, . . . , Zn be independent and identically distributed random
variables, each with probability distribution P ∈ M1(Z). We will denote the
empirical distribution of a random sample from P of size n by Pn because
it will often be important in this section to be precise which distribution
generated the data set. The set of all empirical distributions based on n points
is denoted byM1n(Z) =

{
1
n

∑n
i=1 δzi

: zi ∈ Z, i = 1, . . . , n
}
. Furthermore, let

Sn : Zn → W , n ∈ N, be a sequence of random functions. The distribution
of Sn will be denoted by PSn

if Zi has distribution P. Often there exists a
measurable function S : M1(Z) → W such that Sn = S(Pn) for all Pn ∈
M1n(Z) and all n ∈ N. The following definition goes back to Hampel (1968)
and was generalized by Cuevas (1988) for Polish spaces.

Definition 10.2. Let (Z, τZ) and (W, τW ) be Polish spaces and (Sn)n∈N be a
sequence of measurable functions, where Sn : Zn → W , Sn(Z1, . . . , Zn) ∈ W ,
and Z1, . . . , Zn are independent and identically distributed according to P ∈
M1(Z). The sequence (Sn)n∈N is called qualitatively robust at P if

∀ ε > 0 ∃ δ > 0 :
{
dPro(P,Q) < δ ⇒ dPro

(
PSn

,QSn

)
< ε,∀n ∈ N

}
. (10.15)

Qualitative robustness, which is defined as equicontinuity of the distrib-
utions of the statistic as the sample size changes, is hence closely related to
continuity of the statistic viewed as a function in the weak∗ topology; see
Theorems A.4.26 and A.4.27.

Remark 10.3. The arithmetic mean Sn(Y1, . . . , Yn) := 1
n

∑n
i=1 Yi of real-

valued random variables can be written as Sn(Y1, . . . , Yn) = EPn
(Y ), where

Pn = 1
n

∑n
i=1 δyi

. By the law of large numbers (see Theorems A.4.8 and
A.4.9), EPn

(Y ) converges in probability or almost surely to EP(Y ) if mild
assumptions are satisfied. Furthermore, the mean is the uniformly minimum
variance unbiased estimator of the expectation for Gaussian distributions.
However, the mean is neither continuous nor qualitatively robust at any dis-
tribution! This follows from the fact that in every Prohorov neighborhood of
every P ∈ M1(R) there are probability distributions that have an infinite
expectation or for which the expectation does not exist. Consider for example
the mixture distribution Q = (1− ε)P+ εP̃, where P̃ is a Cauchy distribution
and ε > 0 is positive but sufficiently small. Hence the mean is extremely sen-
sitive with respect to such violations of the distributional assumption. This
non-robustness property of the expectation operator has two consequences.

i) SVMs are in general not qualitatively robust if X × Y is unbounded.
ii) If X × Y is unbounded, certain P-integrability conditions for the loss

function will be necessary for our results on robustness properties of SVMs
given in Sections 10.3 and 10.4. �
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Qualitative robustness has the disadvantage that it does not offer argu-
ments on how to choose among different qualitative robust procedures. How-
ever, this can be done by the following approaches.

Influence Function and Related Measures

Let (Xi, Yi), i = 1, . . . , n, be independent and identically distributed random
variables on some measurable space (Z,B(Z)), for example Z = X×Y ⊂ Rd×
R. We will consider a function S that assigns to every probability distribution
P an element S(P) of a given Banach space E. In the case of SVMs, we have
E = H and S(P) = fP,λ or E = R and S(P) = inff∈H Rreg

L,P,λ(f).
Recall that qualitative robustness is related to equicontinuity of the se-

quence of estimators (Sn)n∈N with respect to the Prohorov distance of the
corresponding probability distributions. In contrast, the influence function
proposed by Hampel (1968, 1974) is related to differentiation of S. Denote
the Dirac distribution at z by δz.

Definition 10.4. The influence function IF : Z → E of S :M1(Z) → E
at a point z for a distribution P ∈M1(Z) is given by

IF(z;S,P) = lim
ε↓0

S
(
(1− ε)P + εδz

)− S(P)
ε

(10.16)

in those z ∈ Z where the limit exists.

If the influence function IF(z;S,P) exists and is continuous and linear,
then the function S : P �→ S(P) is Gâteaux differentiable in the direction
of the mixture distribution Q := (1 − ε)P + εδz; see also Figure 10.2. Note
that Gâteaux differentiation is weaker than Hadamard differentiation (or com-
pact differentiation) and Fréchet differentiation; see Averbukh and Smolyanov
(1967, 1968), Fernholz (1983), and Rieder (1994) for details.

The influence function has the interpretation that it measures the impact
of an (infinitesimal) small amount of contamination of the original distribu-
tion P in the direction of a Dirac distribution located in the point z on the
theoretical quantity of interest S(P). Therefore, it is desirable that a statis-
tical method has a bounded influence function. If different methods have a
bounded influence function, the one with a lower bound is considered to be
more robust.

If S fulfills some regularity conditions such as Fréchet differentiability (see
Clarke, 1983, 1986; Bednarski et al., 1991), it can be linearized near P in terms
of the influence function via

S(P∗) = S(P) +
∫

IF(z;S,P) d(P∗ − P)(z) + . . . ,

where P∗ is a probability measure in a neighborhood of P. According to Huber
(1981, p. 72), “it is not enough to look at the influence function at the model
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distribution only; we must also take into account its behavior in a neighborhood
of the model.” Therefore, we will investigate the influence function of fP,λ of
SVMs not only at a single fixed distribution P. We will show that the influence
function of SVMs can be bounded for large sets of distributions (see Sections
10.3 and 10.4).

Definition 10.5. The sensitivity curve SCn : Z → E of an estimator
Sn : Zn → E at a point z ∈ Z given a data set z1, . . . , zn−1 is defined by

SCn(z;Sn) = n
(
Sn(z1, . . . , zn−1, z)− Sn−1(z1, . . . , zn−1)

)
. (10.17)

The sensitivity curve was proposed by J.W. Tukey and its properties are
discussed by Hampel et al. (1986, p. 93). The sensitivity curve measures the
impact of just one additional data point z on the empirical quantity of interest
(i.e., on the estimate Sn).

Consider an estimator Sn defined via S(Dn), where Dn ∈M1(Z) denotes
the empirical distribution of the data points z1, . . . , zn. Denote the empirical
distribution of z1, . . . , zn−1 by Dn−1. Then we have for εn = 1

n that

SCn(z;Sn) =
S
(
(1− εn)Dn−1 + εnδz

)− S(Dn−1)
εn

. (10.18)

Therefore, the sensitivity curve can be interpreted as a finite-sample version
of the influence function. Let us consider for illustration purposes a univariate
parametric location problem and a data set zi = (xi, yi), where xi = 1 for
1 ≤ i ≤ n. Figure 10.3 shows the sensitivity curve of the mean and that of
the median for a univariate parametric location problem where P is set to the
standard Gaussian distribution with Lebesgue density f(y) = (2π)−1/2e−y2/2,
y ∈ R. It is obvious that the impact of a single extreme value yi on the
estimated location parameter increases linearly with |yi| → ∞ if the mean is
used but that the median has a bounded sensitivity curve. Hence the median
is more robust than the mean with respect to the sensitivity curve.

The following notion of (unstandardized) gross error sensitivity allows to
compare the robustness of different statistical methods.

Definition 10.6. Let E be a Banach space with norm ‖·‖E. The gross error
sensitivity of a function S : M1(Z) → E at a probability distribution P is
defined by

γ∗u(S,P) := sup
z∈Z
‖IF(z;S,P)‖E (10.19)

if the influence function exists.

Maxbias

Of theoretical as well as practical importance is the notion of maxbias, which
measures the maximum bias S(Q)−S(P) within a neighborhood of probability
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distributions Q near P. There are several ways to define a neighborhood of P
by using appropriate metrics onM1(Z). Besides the Prohorov metric, the so-
called contamination neighborhood, defined below, is quite common in robust
statistics, although such neighborhoods do not metricize the weak∗ topology
on M1(Z).

Definition 10.7. Let P ∈ M1(Z) and ε ∈ [0, 1/2). A contamination
neighborhood or gross error neighborhood of P is given by

Nε(P) =
{
(1− ε)P + εP̃ : P̃ ∈M1(Z)

}
.

Let S be a function mapping from M1(Z) into a Banach space E with norm
|| · ||E. The maxbias (or supremum bias) of S at the distribution P with
respect to the contamination neighborhood Nε(P) is defined by

maxbias(ε;S,P) = sup
Q∈Nε(P)

‖S(Q)− S(P)‖E .

A contamination neighborhood has several nice properties. (i) It allows a
good interpretation because it contains mixture distributions Q with respect
to P and some other distribution P̃ specifying the type of contamination. This
can be seen as follows. Fix ε ∈ [0, 1]. Define n i.i.d. Bernoulli distributed ran-
dom variables ξ1, . . . , ξn such that ε = P(ξi = 1) = 1−P(ξi = 0). Then define
n i.i.d. random functions ζ1, . . . , ζn, each with probability distribution P. De-
fine also n i.i.d. random functions ζ∗1 , . . . , ζ

∗
n each with probability distribution

P̃. It follows that the random functions

Zi :=

{
ζi, if ξi = 0,
ζ∗i , if ξi = 1, 1 ≤ i ≤ n,
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Fig. 10.3. Sensitivity curve of mean and median for a simulated data set with
n = 100 data points generated from the standard Gaussian distribution N(0, 1).
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are i.i.d. each with distribution Q = (1− ε)P+ εP̃. If ε ∈ [0, 0.5), we therefore
expect that the pattern described by the majority of n data points generated
by Q will follow P and the expected percentage of outliers with respect to P
is at most ε. (ii) The contamination neighborhood is related to the influence
function; see Definition 10.4. (iii) It is often easier to deal with this set of
distributions than with other neighborhoods.
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Fig. 10.4. Sketch of relationships between influence function, bias, and maxbias.
Define Qε = (1 − ε)P + εδz, ε ∈ [0, 0.5]. Dotted line: ε ‖IF(z; S, P)‖E ; solid line:
‖S(Qε)−S(P)‖E ; dashed line: maxbias(ε; S, P); dotdashed line: linear upper bound
for maxbias(ε; S, P).

Figure 10.4 illustrates the relationships between influence function, bias,
and maxbias. Consider a mixture distribution Qε = (1−ε)P+εδz, ε ∈ [0, 0.5].
The dotted line has the slope ‖IF(z;S,P)‖E and offers an approximation of
the bias ‖S(Qε) − S(P)‖E for small values of ε. The bias is of course below
the maxbias(ε;S,P). The gross error sensitivity γ∗u(S,P) offers—in contrast
to ‖IF(z;S,P)‖E—a uniform slope (i.e., the slope is valid for all points z ∈
X × Y ). The dotdashed line gives an upper bound for the maxbias where
the bound is linear in ε. In the following two sections such quantities will be
derived for SVMs for classification and regression.

Breakdown Points

Breakdown points measure the worst-case behavior of a statistical method.
The following definition was proposed by Donoho and Huber (1983).

Definition 10.8. Let E be a Banach space and Dn = {z1, . . . , zn} be a data
set with values in Z ⊂ Rd. The finite-sample breakdown point of an E-
valued statistic S(Dn) is defined by
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ε∗n(S,Dn) = max
{m
n

: Bias(m;S,Dn) is finite
}
,

where
Bias(m;S,Dn) = sup

D′
n

‖S(D′
n)− S(Dn)‖E

and the supremum is over all possible samples D′
n that can be obtained by

replacing any m of the original data points by arbitrary values in Z.

Remark 10.9. It is possible to define a variant of the breakdown point via the
maxbias by

ε∗(S,P) := sup{ε > 0 : maxbias(ε;S,P) <∞} . (10.20)

There are variants of the asymptotic breakdown point where the Prohorov
metric is replaced by other metrics (e.g., Lévy, bounded Lipschitz, Kol-
mogorov, total variation). One can also define an asymptotic breakdown point
based on gross error neighborhoods. �

10.3 Robustness of SVMs for Classification

In this section, we consider robustness properties of classifiers

S(P) := fP,λ = arg inf
f∈H

Rreg
L,P,λ(f),

where L is a margin-based loss function; see Definition 2.24. Throughout this
section, we define Y := {−1,+1}. First, we give sufficient conditions for the
existence of the influence function. Then we show that the influence function
is bounded under weak conditions. Most of our results in this section are
valid for any distribution P ∈M1(X ×Y ), where X = Rd, d ∈ N. Therefore,
they are also valid for the special case of empirical distributions D = Dn =
1
n

∑n
i=1 δ(xi,yi); i.e.; for any given data set consisting of n data points and for

the empirical regularized risks defined by

S(D) := fD,λ = arg inf
f∈H

Rreg
L,D,λ(f) .

The proofs given in this and the following section make use of some general
results from functional analysis and probability theory. Before we formulate
the robustness results, let us therefore recall some basic notions from calculus
in (infinite-dimensional) Banach spaces (see Lemma A.5.15). Let G : E → F
be a function between two Banach spaces E and F . Then G is (Fréchet)
differentiable in x0 ∈ E if there exists a bounded linear operator A : E → F
and a function ϕ : E → F with ϕ(x)/‖x‖ → 0 for x→ 0 such that

G(x0 + x)−G(x0) = Ax+ ϕ(x) (10.21)
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for all x ∈ E. It turns out that A is uniquely determined by (10.21). Hence
we write G′(x) := ∂G

∂E (x) := A. The function G is called continuously differ-
entiable if the function x �→ G′(x) exists on E and is continuous. Analogously
we define continuous differentiability on open subsets of E.

We also have to recall the notion of Bochner integrals; see Section A.5.4.
We restrict attention to the reproducing kernel Hilbert space H since this
is the only space we need in this section. Let H be a separable RKHS
of a bounded, measurable kernel k on X with canonical feature map Φ :
X → H; i.e.; Φ(x) = k(x, ·). Note that Φ is measurable due to Lemma
4.25. Furthermore, let P ∈ M1 and h : Y × X → R be a measurable
and P-integrable function. Then the Bochner integral EPh(Y,X)Φ(X) is
an element of H. In our special situation, we can also interpret this in-
tegral as an element of the dual space H ′ by the Fréchet-Riesz Theorem
A.5.12; i.e.; EPh(Y,X)Φ(X) acts as a bounded linear functional on H via
w �→ 〈EPh(Y,X)Φ(X), w〉. Finally, we will consider Bochner integrals of the
form EPh(Y,X)〈Φ(X), · 〉Φ(X) that define bounded linear operators on H
by the function w �→ EPh(Y,X)〈Φ(X), w〉Φ(X). We sometimes write L ◦ f
instead of L(Y, f(X)) and Φ instead of Φ(X) to shorten the notation if mis-
understandings are unlikely. We use this kind of notation also for derivatives
of L. The Dirac distribution in z is denoted by δz.

Existence of the Influence Function

We can now establish our first two results for smooth margin-based loss func-
tions and a bounded continuous kernel. The first theorem covers, for example,
the Gaussian RBF kernel.

Theorem 10.10. Let Y = {−1,+1} and L : Y ×R→ [0,∞) be a convex and
twice continuously differentiable margin-based loss function with representing
function ϕ. Furthermore, let X ⊂ Rd be a closed subset, H be an RKHS of a
bounded continuous kernel on X with canonical feature map Φ, and P ∈M1.
Then the influence function of S(P) := fP,λ exists for all z = (x, y) ∈ X × Y
and is given by

IF(z;S,P) = EP[ϕ′(Y fP,λ(X)
)
K−1Φ(X)]− ϕ′(yfP,λ(x)

)
K−1Φ(x) , (10.22)

where K : H → H defined by K = 2λ idH +EPϕ
′′(Y fP,λ(X)

)〈Φ(X), ·〉Φ(X)
denotes the Hessian of the regularized risk.

Proof. Our analysis relies heavily on the function G : R×H → H defined by

G(ε, f) := 2λf + E(1−ε)P+εδz
ϕ′(Y f(X)

)
Φ(X) (10.23)

and K = ∂G
∂H (0, fP,λ). Note that for ε �∈ [0, 1] the H-valued expectation is

with respect to a signed measure; see Definition A.3.2.
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Let us first recall that the solution fP,λ exists by Theorem 5.2 and Corol-
lary 5.3. Additionally, we have ‖fP,λ‖H ≤

(
ϕ(0)/λ

)1/2, where ϕ : R→ [0,∞)
is the function representing L by L(y, t) = ϕ(yt), y ∈ Y , t ∈ R. By using
Lemma 2.21 and (5.7), we obtain

G(ε, f) =
∂Rreg

L,(1−ε)P+εδz,λ(f)

∂H
, ε ∈ [0, 1]. (10.24)

Furthermore, the function f �→ Rreg
L,(1−ε)P+εδz,λ(f) is convex for all ε ∈ [0, 1],

and (10.24) shows that we have G(ε, f) = 0 if and only if f = f(1−ε)P+εδz,λ.
Our aim is to show the existence of a differentiable function ε �→ fε defined
on a small interval [−δ, δ] for some δ > 0 that satisfies G(ε, fε) = 0 for all
ε ∈ [−δ, δ]. Once we have shown the existence of this function, we immediately
obtain

IF(z;S,P) =
∂fε

∂ε
(0) .

For the existence of ε �→ fε, we have to check by the implicit function theorem
in Banach spaces (see Theorem A.5.17) that G is continuously differentiable
and that ∂G

∂H (0, fP,λ) is invertible. Let us start with the first: an easy compu-
tation shows

∂G

∂ε
(ε, f) = −EPϕ

′(Y f(X)
)
Φ(X) + Eδz

ϕ′(Y f(X)
)
Φ(X) . (10.25)

Note that ϕ′′ ◦ f is bounded because ϕ′′ is continuous and f ∈ H is bounded.
Similar to (10.24), we thus find

∂G

∂H
(ε, f) = 2λ idH +E(1−ε)P+εδz

ϕ′′(Y f(X)
)〈Φ(X), ·〉Φ(X) . (10.26)

Since H has a bounded kernel, it is a simple routine to check that both partial
derivatives are continuous. This together with the continuity of G ensures that
G is continuously differentiable; see Theorem A.5.16.

In order to show that ∂G
∂H (0, fP,λ) is invertible, it suffices to show by the

Fredholm Alternative (see Theorem A.5.5) that ∂G
∂H (0, fP,λ) is injective and

that A : H �→ H defined by

Ag := EPϕ
′′(Y fP,λ(X)

)
g(X)Φ(X) , g ∈ H,

is a compact operator. To show the compactness, we need some facts from
measure theory. Since X ⊂ Rd is assumed to be closed, it is a Polish space;
see the examples listed after Definition A.2.11. Furthermore, Borel probability
measures on Polish spaces are regular by Ulam’s theorem; see Theorem A.3.15.
Therefore, such probability measures can be approximated from inside by
compact sets; see Definition A.3.14. In our situation, this means that for all
n ≥ 1 there exists a compact measurable subset Xn ⊂ X with PX(Xn) ≥
1 − 1

n , where PX denotes the marginal distribution of P with respect to X.
Now define a sequence of operators An : H → H by
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Ang :=
∫

Xn×Y

ϕ′′(yfP,λ(x)
)
g(x)Φ(x) dP(x, y), g ∈ H.

Note that, if X is compact, we can of course choose Xn = X, which implies
An = A. Let us now show that all operators An are compact.

By the definition of An and Theorem A.5.22, there exists a constant c > 0
depending on λ, ϕ′′ and k such that for all g ∈ BH we have

Ang ∈ c · acoΦ(Xn) , (10.27)

where acoΦ(Xn) denotes the absolute convex hull of Φ(Xn) and the closure is
with respect to ‖ · ‖H . This shows that An is compact, n ∈ N. In order to see
that the operator A is compact, it therefore suffices to show ‖An −A‖H → 0
w.r.t. the operator norm for n→∞. However, the latter convergence can be
easily checked using PX(Xn) ≥ 1− 1

n .
It remains to prove that A is injective. For g �= 0, we find〈

(2λ idH +A)g, (2λ idH +A)g
〉

= 4λ2〈g, g〉+ 4λ〈g,Ag〉+ 〈Ag,Ag〉
> 4λ〈g,Ag〉
= 4λ
〈
g,EPϕ

′′(Y fP,λ(X)
)
g(X)Φ(X)

〉
= 4λEPϕ

′′(Y fP,λ(X)
)
g2(X)

≥ 0 .

Here the last equality is due to the fact that BEPh = EPBh for all E-
valued functions h and bounded linear operators B due to (A.32). The
last inequality is true since the second derivative of a convex and twice-
differentiable function is nonnegative. Obviously, the estimate above shows
that ∂G

∂H (0, fP,λ) = 2λ idH +A is injective.
Finally, we use the equality IF(z;S,P) = ∂fε

∂ε (0) to derive a formula for
the influence function, where ε �→ fε is the function implicitly defined by
G(ε, f) = 0 such that the implicit function theorem A.5.17 gives

IF(z;S,P) = −K−1 ◦ ∂G
∂ε

(0, fP,λ) , (10.28)

where K := ∂G
∂H (0, fP,λ). Now combine (10.28) with (10.25) and (10.26). ��

The next remark follows immediately from Theorem 10.10.

Remark 10.11. If the assumptions of Theorem 10.10 are fulfilled, then a convex
margin-based loss function with ϕ′ and ϕ′′ bounded in combination with a
bounded continuous kernel yields a bounded influence function of fP,λ. Hence,
the class of Lipschitz-continuous loss functions is of primary interest from the
viewpoint of robust statistics. SVMs based on the logistic loss yield a bounded
influence function, if k is bounded and continuous. SVMs based on the least
squares loss or the AdaBoost loss yield unbounded influence functions.
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Fig. 10.5. Plot of the function ϕ′(yfP,λ(x)
)
Φ(x) for L = Lc-logist, where the point

mass contamination is δz, z := (x, y) = (2,−2, y) and P(Y = +1 | X = x) = 0.982.
Left subplot: y = +1. Right subplot: y = −1.

Remark 10.12. The influence function derived in Theorem 10.10 depends on
the point z = (x, y), where the point mass contamination takes place only via
the term

ϕ′(yfP,λ(x)
)
Φ(x) . (10.29)

This function is illustrated in Figure 10.5 for the special case of kernel logistic
regression (i.e.; L = Lc-logist) in combination with a Gaussian RBF kernel
and P(Y = 1|X = x) = 1/

(
1 + e−f(x)

)
, f(x) := −x1 + x2, (x1, x2) ∈ R2.

The left subplot clearly shows that the quantity ϕ′(yfP,λ(x)
)
Φ(x) is approx-

imately zero for this combination of L and k if the highly probable value
z = (x, y) = (2,−2, 1) is considered. Of special interest is the right subplot,
which shows that the improbable value z = (x, y) = (2,−2,−1) affects the in-
fluence function via the quantity ϕ′(yfP,λ(x)

)
Φ(x) only in a smooth, bounded,

and local manner. Smoothness is achieved by choosing L and k continuous and
differentiable. Boundedness is achieved by using a bounded kernel in combina-
tion with a loss function having a bounded first derivative ϕ′. A local impact
instead of a more global impact due to a Dirac distribution is achieved by an
appropriate bounded and non-linear kernel such as the Gaussian RBF kernel.
Note that polynomial kernels with m ≥ 1 are unbounded if X = Rd. �

In practice, the set X is often a bounded and closed subset of Rd and hence
compact. In this case, the existence of the influence function can be shown
without the assumption that the kernel is bounded, and hence the following
result also covers polynomial kernels.

Corollary 10.13. Let L : Y × R → [0,∞) be a convex and twice continu-
ously differentiable margin-based loss function. Furthermore, let X ⊂ Rd be
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compact, H be an RKHS of a continuous kernel on X, and P ∈ M1. Then
the influence function of fP,λ exists for all z ∈ X × Y .

Proof. Every compact subset of Rd is closed, and continuous kernels on com-
pact subsets are bounded. Hence the assertion follows directly from Theorem
10.10. ��
Remark 10.14. By a straightforward modification of the proof of Corollary
10.13, we actually find that the special Gâteaux derivative of S : P �→ fP,λ

exists for every direction; i.e.,

lim
ε↓0

f(1−ε)P+εQ,λ − fP,λ

ε

exists for all P,Q ∈ M1 provided that the assumptions of Theorem 10.10
hold. This is interesting from the viewpoint of applied statistics because a
point mass contamination is just one kind of contamination that can occur in
practice. �

Bounds for the Bias and the Influence Function

As explained in Section 10.2, a desirable property of a robust statistical
method S(P) is that S has a bounded influence function. In this section,
we investigate whether it is possible to obtain an SVM S : P �→ fP,λ with a
bounded influence function where the bound is independent of z ∈ X×Y and
P ∈ M1. We will also consider the question of whether the sensitivity curve
or the maxbias can be bounded in a similar way.

For the formulation of our results, we need to recall that the norm of total
variation of a signed measure μ on a Banach space E is defined by

‖μ‖M := |μ|(E) := sup

{
n∑

i=1

|μ(Ei)| : E1, . . . , En is a partition of E

}
.

The following theorem bounds the difference quotient in the definition of
the influence function for classifiers based on fP,λ. For practical applications,
this result is especially important because it also gives an upper bound for the
bias in gross error neighborhoods. In particular, it states that the influence
function of such classifiers is uniformly bounded whenever it exists and that
the sensitivity curve is uniformly bounded, too.

Theorem 10.15. Let L : Y × R → [0,∞) be a convex margin-based loss
function. Furthermore, let X ⊂ Rd be closed and H be an RKHS of a bounded,
continuous kernel k with canonical feature map Φ : X → H.

i) For all λ > 0, there exists a constant c(L, k, λ) > 0 explicitly given by
(10.33) such that for all distributions P,Q ∈M1 we have∥∥∥∥f(1−ε)P+εQ,λ − fP,λ

ε

∥∥∥∥
H

≤ c(L, k, λ) ‖Q− P‖M , ε > 0 . (10.30)
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ii) An upper bound for the maxbias of fP,λ is given by

maxbias(ε; f,P) ≤ ε c(L, k, λ) sup
Q∈M1

‖Q− P‖M ≤ 2c(L, k, λ) · ε ,

where ε ∈ (0, 1/2).
iii) If the influence function of S(P) = fP,λ exists, then it is bounded by

‖IF(z;S,P)‖H ≤ 2c(L, k, λ) , z ∈ X × Y , (10.31)

and the gross error sensitivity is bounded by

γ∗u(S,P) ≤ 2c(L, k, λ) . (10.32)

Proof. i). Recall that every convex function onR is locally Lipschitz-continuous
(see Lemma A.6.5). Combining Lemma 2.25 with RL,P(0) = ϕ(0) <∞, where
ϕ satisfies L(y, t) = ϕ(yt) for all y ∈ Y and t ∈ R, shows that the assumptions
of Corollary 5.10 are fulfilled. Let us define Bλ := ‖k‖∞

√RL,P(0)/λ, where
‖k‖∞ := supx∈X

√
k(x, x) < ∞. Let us fix P ∈ M1. Then Corollary 5.10

guarantees the existence of a bounded measurable function h : X × Y → R

such that for all P̃ ∈M1 we have

‖fP,λ − fP̃,λ‖H ≤ λ−1‖EPhΦ− EP̄hΦ‖H .

Now define P̃ = (1 − ε)P + εQ, where Q ∈ M1. Let |L|Y ×[−c,c]|1 denote the
Lipschitz constant of L restricted to Y × [−c, c], c > 0. Hence, we have

ε−1‖f(1−ε)P+εQ − fP,λ‖H ≤ (ελ)−1‖E(1−ε)P+εQhΦ− EPhΦ‖H
= λ−1‖EQhΦ− EPhΦ‖H
≤ c(L, k, λ)‖Q− P‖M ,

where
c(L, k, λ) = λ−1 ‖k‖∞ |L|Y ×[−Bλ,Bλ]|1 . (10.33)

We obtain (10.30). The parts ii) and iii) follow from ‖Q− P‖M ≤ 2. ��
Note that Theorem 10.15 applies to almost all margin-based loss functions

of practical interest because differentiability of ϕ is not assumed. Special cases
are the loss functions hinge, kernel logistic, modified Huber, least squares,
truncated least squares, and AdaBoost.

Remark 10.16. The preceding theorem also gives uniform bounds for Tukey’s
sensitivity curve. Consider the special case where P is equal to the empirical
distribution of (n−1) data points (i.e.; Dn−1 = 1

n−1

∑n−1
i=1 δ(xi,yi)) and that Q

is equal to the Dirac measure δ(x,y) in some point (x, y) ∈ X × Y . Let ε = 1
n .

Combining (10.17) and (10.18), we obtain for ε > 0 under the assumptions of
Theorem 10.15 the inequality
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n‖f(1−ε)Dn−1+εδ(x,y),λ − fDn−1,λ‖H ≤ c(L, k, λ) ‖δ(x,y) −Dn−1‖M . (10.34)

Note that the bound of the bias presented in Corollary 5.10 relies on the
Hilbert norm

∥∥EPhΦ − EP̄hΦ
∥∥

H
, whereas the bounds of the bias given by

Theorem 10.15 and by (10.34) use the norm of total variation ‖Q− P‖M.
Furthermore, Theorem 10.15 shows for empirical distributions Dn that

the maxbias of fDn,λ in an ε-contamination neighborhood Nε(Dn) is at most
2c(L, k, λ)ε, where ε ∈ (0, 1/2). In other words, the upper bound for the
maxbias increases at most linearly with slope 2c(L, k, λ) with respect to the
mixing proportion ε; see also Figure 10.4. �

Remark 10.17. Consider P,Q ∈M1 having densities p, q with respect to some
σ-finite measure ν. Then, Theorem 10.15 also gives bounds of the influence
function and the sensitivity curve in terms of the Hellinger metric H(P,Q) =
(
∫

(p1/2−q1/2)2 dν)1/2 because we have ‖P−Q‖M ≤ 2H(P,Q) ≤ 2 ‖P−Q‖1/2
M ;

see Witting (1985). �

Note that the bounds for the difference quotient and the influence function
in Theorem 10.15 converge to infinity if λ converges to 0 and ‖Q−P‖M > 0.
However, λ converging to 0 has the interpretation that misclassifications are
penalized by constants proportional to 1

λ tending to ∞. Decreasing values of
λ therefore correspond to a decreasing amount of robustness, which is to be
expected. The regularizing quantity λ hence has two roles.

i) It controls the penalization of misclassification errors.
ii) It controls the robustness properties of fP,λ.

We would like to mention that for the robustness properties of fP,λ, the ra-
tio 1

λ plays a role similar to the tuning constant for Huber-type M-estimators.
Let us consider the Huber-type M-estimator (Huber, 1964) in a univariate
location model where all data points are realizations from n independent and
identically distributed random variables (Xi, Yi) with some cumulative dis-
tribution function P

(
Yi ≤ y |Xi = x

)
= F (y − θ), y ∈ R, where θ ∈ R is

unknown. Huber’s robust M-estimator with tuning constant M ∈ (0,∞) has
an influence function proportional to ϕM (z) = max

{−M,min {M, z}}; see
Hampel et al. (1986, pp. 104ff.). For all M ∈ (0,∞), the influence function
is bounded by ±M . However, the bound tends to ±∞ if M → ∞, and Hu-
ber’s M-estimator with M =∞ is equal to the non-robust mean, which has an
unbounded influence function for Gaussian distributions. Therefore, the quan-
tity 1

λ for SVMs plays a role similar to the tuning constant M for Huber-type
M-estimators. The same argumentation is true for Huber-type M-estimators
in classification and in regression.

Christmann and Steinwart (2004) derived some results for the influence
function for the more general case where not only fP,λ but also a real-valued
offset term bP,λ must be estimated.
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Empirical Results for SVMs

The question arises as to how the theoretical results for fP,λ given above are
related to empirical results for finite sample sizes.

Let us therefore complement the previous theoretical results by a few nu-
merical results for a training data set with a relatively small sample size. We
consider the slightly more general case where an offset term also must be
estimated (i.e.; S(P) = (fP,λ, bP,λ) ∈ H × R) because many software tools
for SVMs use an offset term and because the theoretical results given above
were for the case without an intercept term; see Christmann and Steinwart
(2004) for additional theoretical results. Let D = Dn be the empirical dis-
tribution of a training data set with n data points (xi, yi) ∈ R × {−1,+1},
i = 1, . . . , n. We will investigate the impact that an additional data point can
have on the support vector machine with an offset term b ∈ R for pattern
recognition. The replacement of one of the n data points can be treated in
the same manner. An analogous investigation for the case without offset gave
results similar to those described in this section. We generated a training data
set with n = 500 data points xi from a bivariate normal distribution with ex-
pectation μ = (0, 0) and covariance matrix Σ. The variances were set to 1,
whereas the covariances were set to 0.5. The responses yi were generated from
a classical logistic regression model with θ = (−1, 1) and b = 0.5 such that

P(Y = 1|x) =
1

1 + e−(〈x,θ〉+b)
, x ∈ R2.

We consider two popular kernels: a Gaussian RBF kernel with parameter γ > 0
and a linear kernel. Appropriate values for γ and for the constant C (or λ)
are important for the SVM and are often determined by cross-validation. The
computations were done using the software SVMlight developed by Joachims
(1999). A cross-validation based on the leave-one-out error for the training
data set was carried out by a two-dimensional grid search consisting of 13×10
grid points. As a result of the cross-validation, the tuning parameters for the
SVM with RBF kernel were set to γ = 2 and λ = 1

4n . The leave-one-out error
for the SVM with a linear kernel turned out to be stable over a broad range
of values for C. We used λ = 1

2n in the computations for the linear kernel. For
n = 500, this results in λ = 5×10−4 for the RBF kernel and λ = 0.001 for the
linear kernel. Please note that such small values of λ will result in relatively
large bounds.

Figure 10.6 shows the sensitivity curves of fD,λ + bD,λ if we add a single
point z = (x, y) to the original data set, where x := (x1, x2) = (6, 6) and
y = +1. The additional data point has a local and smooth impact on fD,λ +
bD,λ with a peak in a neighborhood of x if one uses the RBF kernel. For a
linear kernel, the impact is approximately linear. The reason for this different
behavior of the SVM with different kernels becomes clear from Figure 10.7,
where plots of fD,λ + bD,λ are given for the original data set and for the
modified data set, which contains the additional data point z. Please note
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Fig. 10.6. Sensitivity function of fD,λ +bD,λ if the additional data point z is located
at z = (x, y), where x = (6, 6) and y = +1. Left: RBF kernel. Right: linear kernel.

that the RBF kernel yields fD,λ + bD,λ approximately equal to zero outside
a central region, as almost all data points are lying inside the central region.
Comparing the plots of fD,λ + bD,λ based on the RBF kernel for the modified
data set with the corresponding plot for the original data set, it is obvious that
the additional smooth peak is due to the new data point located at x = (6, 6)
with y = +1. It is interesting to note that although the estimated functions
fD,λ +bD,λ for the original data set and for the modified data set based on the
SVM with the linear kernel look quite similar, the sensitivity curve is similar
to an affine hyperplane that is affected by the value of z. This allows the
interpretation that just a single data point can have an impact on fD,λ + bD,λ

estimated by an SVM with a linear kernel over a broader region than for an
SVM with an RBF kernel.

Now we study the impact of an additional data point z = (x, y), where
y = +1, on the percentage of classification errors and on the fitted y-value
for z. We vary z over a grid in the x-coordinates. Figure 10.8 shows that
the percentage of classification errors is approximately constant outside the
central region, which contains almost all data points if a Gaussian RBF kernel
was used. For the SVM with a linear kernel, the percentage of classification
errors tends to be approximately constant in one affine half-space but changes
in the other half-space. The response of the additional data point was correctly
estimated by ŷ = +1 outside the central region if a Gaussian RBF kernel is
used; see Figure 10.9. In contrast, using a linear kernel results in estimated
responses ŷ = +1 or ŷ = −1 of the additional data point depending on the
affine half-space in which the x-value of z is lying.

Finally, let us study the impact of an additional data point located at
z = (x, y), where y = +1, on the estimated parameters b̂ and θ̂ of the para-
metric logistic regression model; see Figure 10.10. We vary z over a grid in the
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Fig. 10.7. Plot of fD,λ + bD,λ. Upper left: RBF kernel, original data set. Upper
right: linear kernel, original data set. Lower left: RBF kernel, modified data set.
Lower right: linear kernel, modified data set. The modified data set contains the
additional data point z = (x, y), where x = (6, 6) and y = +1.

x-coordinates in the same manner as before. As the plots for θ̂1 and θ̂2 look
very similar, we only show the latter. Note that the axes are not identical
in Figure 10.10 due to the kernels. The sensitivity curves for the slopes esti-
mated by the SVM with an RBF kernel are similar to a hyperplane outside
the central region, which contains almost all data points. In the central region,
there is a smooth transition between regions with higher sensitivity values and
regions with lower sensitivity values. The sensitivity curves for the slopes of
the SVM with a linear kernel are flat in one affine half-space but change ap-
proximately linearly in the other affine half-space. This behavior also occurs
for the sensitivity curve of the offset by using a linear kernel. In contrast, the
sensitivity curve of the offset based on an SVM with an RBF kernel shows a
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Fig. 10.8. Percentage of classification errors if one data point z = (x, 1) is added to
the original data set, where x varies over the grid. Left: RBF kernel. Right: linear
kernel.
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smooth but curved shape outside the region containing the majority of the
data points.

10.4 Robustness of SVMs for Regression (*)

In this section, we will investigate the existence and boundedness of the in-
fluence function of the mapping S : P �→ fP,λ for the regression case. Some
results for the related robustness measures sensitivity curve, gross error sen-
sitivity, and maxbias will also be given. This section has relationships with
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θ̂2, RBF kernel. Upper right: sensitivity function for θ̂2, linear kernel. Lower left:
sensitivity function for β̂, RBF kernel. Lower right: sensitivity function for β̂, linear
kernel. Note that the axes differ in the four subplots due to improved visibility.

Section 5.3 on the stability of infinite sample versions of SVMs. We assume
in this section that X ⊂ Rd and Y ⊂ R.

Existence of the Influence Function

The first result shows that the influence function of S(P) = fP,λ exists if the
loss function is convex and twice continuously differentiable and if the kernel
is bounded and continuous. The proof of this result is based on the application
of the implicit function theorem A.5.17. In contrast to the proof of Theorem
10.10 for the classification case, we are now usually faced with unbounded
label sets Y such that we need some additional arguments. In particular, the
relationship between the growth type of the loss function and the tail behavior
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of the distribution P will turn out to be important. This was one reason why
we investigated Nemitski losses in Chapter 2.

Theorem 10.18. Let X ⊂ Rd and Y ⊂ R be closed, P ∈ M1, H be an
RKHS of a bounded continuous kernel k on X with canonical feature map
Φ : X → H, and L : Y × R → [0,∞) be a convex P-integrable Nemitski loss
function that has partial derivatives L′ = ∂2L and L′′ = ∂22L such that |L′|
and L′′ are P-integrable Nemitski loss functions. Then the influence function
of fP,λ exists for all z := (x, y) ∈ X × Y and we have

IF(z;S,P) = EPL
′(Y, fP,λ(X)

)
K−1Φ(X)− L′(y, fP,λ(x)

)
K−1Φ(x), (10.35)

where K : H → H, K = 2λ idH +EPL
′′(Y, fP,λ(X)

)〈Φ(X), ·〉Φ(X) denotes
the Hessian of the regularized risk.

Proof. Define the function G : R×H → H by

G(ε, f) := 2λf + E(1−ε)P+εδz
L′(Y, f(X)

)
Φ(X)

for all ε ∈ R, f ∈ H. Let us first check that G is well-defined. Since ‖k‖∞ <∞,
we have ‖f‖H < ∞ for all f ∈ H. As in the proof of Lemma 2.17, we get
EP|L′(Y, f(X))| <∞ for all f ∈ H. Note that supx∈X ‖Φ(x)‖H = ‖k‖∞ <∞.
Therefore, the H-valued integral used in the definition of G is defined for all
ε ∈ R and all f ∈ H. Note that for ε �∈ [0, 1] the H-valued integral is with
respect to a signed measure. Now we obtain

G(ε, f) =
∂Rreg

L,(1−ε)P+εδz,λ

∂H
(f) , ε ∈ [0, 1] ; (10.36)

see Lemma 2.21 and the discussion at the beginning of Section 5.2. Since the
mapping f �→ Rreg

L,(1−ε)P+εδz,λ(f) is convex and continuous for all ε ∈ [0, 1],
equation (10.36) shows that we have

G(ε, f) = 0 ⇐⇒ f = f(1−ε)P+εδz,λ

for such values of ε. Our aim is to show the existence of a differentiable
function ε �→ fε defined on a small interval (−δ, δ) for some δ > 0 that
satisfies G(ε, fε) = 0 for all ε ∈ (−δ, δ) because the existence of such a function
guarantees

IF(z;S,P) =
∂fε

∂ε
(0) .

To this end, recall that the implicit function theorem A.5.17 for Banach spaces
guarantees the existence of this function provided that (i) G is continuously
differentiable and that (ii) ∂G

∂H (0, fP,λ) is invertible.
Let us start with part (i). A straightforward calculation shows that

∂G

∂ε
(ε, f) = −EPL

′(Y, f(X)
)
Φ(X) + L′(y, f(x)

)
Φ(x), (10.37)
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and a computation slightly more involved than in the proof of Lemma 2.21
gives

∂G

∂H
(ε, f) = 2λ idH +E(1−ε)P+εδz

L′′(Y, f(X)
)〈Φ(X), ·〉Φ(X) =: K. (10.38)

In order to prove that ∂G
∂ε is continuous, we fix ε ∈ R and a sequence (fn)n∈N

such that fn ∈ H, n ∈ N, and limn→∞ fn = f ∈ H. Since ‖k‖∞ < ∞, the
sequence (fn)n∈N is uniformly bounded. By the continuity of L′ and because
|L′| is a P-integrable Nemitski loss function, there exists a bounded measurable
function g : Y → R with L′(y, fn(x)) ≤ L′(y, g(y)) for all n ≥ 1 and all
(x, y) ∈ X ×Y . For the mapping v(y) := L(y, g(y)), y ∈ Y , we get v ∈ L1(P),
and therefore an application of the dominated convergence theorem A.5.21
for Bochner integrals gives the continuity of ∂G

∂ε . The continuity of G and
∂G
∂H can be shown analogously. Using Theorem A.5.16, we conclude that G is
continuously differentiable, and (i) is shown.

Now let us prove (ii). In order to show that ∂G
∂H (0, fP,λ) is invertible it

suffices to show by the Fredholm Alternative A.5.5 that ∂G
∂H (0, fP,λ) is injective

and that
Ag := EPL

′′(Y, fP,λ(X)
)
g(X)Φ(X), g ∈ H,

defines a compact operator on H.
To show the compactness of the operator A, recall that X and Y are

Polish spaces since we assumed that X and Y are closed subsets of Rd and
R, respectively; see the examples listed after Definition A.2.11. Furthermore,
Borel probability measures on Polish spaces are regular by Ulam’s Theorem
A.3.15. Therefore, they can be approximated from inside by compact sets; see
Definition A.3.14. Hence there exists a sequence of compact subsets Xn×Yn ⊂
X × Y with P(Xn × Yn) ≥ 1 − 1

n , n ∈ N. Let us also define a sequence of
operators An : H → H by

Ang :=
∫

Xn

∫
Yn

L′′(y, fP,λ(x)
)
P(dy|x) g(x)Φ(x) dPX(x), g ∈ H. (10.39)

Note that if X × Y is compact, we can choose Xn × Yn := X × Y , which
implies A = An. Let us now show that all An are compact operators. To this
end, we first observe for g in the unit ball BH and x ∈ X that

hg(x) :=
∫

Yn

L′′(y, fP,λ(x)
)|g(x)|P(dy|x)

≤ ‖k‖∞
∫

Yn

|L′′(y, fP,λ(x)
)|P(dy|x) =: h(x), n ∈ N,

because L′′ is a P-integrable Nemitski loss function. Therefore, we have
h ∈ L1(PX), which implies hg ∈ L1(PX) with ‖hg‖1 ≤ ‖h‖1 for all g ∈ BH .
Consequently, dμg := hgdPX and dμ := hdPX are finite measures. By Theo-
rem A.5.22, we hence obtain
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Ang =
∫

Xn

sign g(x)Φ(x)hg(x) dPX(x) =
∫

Xn

sign g(x)Φ(x) dμg(x)

∈ μg(Xn) acoΦ(Xn) ⊂ μg(Xn) acoΦ(Xn) , g ∈ H,

where acoΦ(Xn) denotes the absolute convex hull of Φ(Xn), and the closure
is with respect to ‖ · ‖H . Now, using the continuity of Φ, we see that Φ(Xn)
is compact and hence so is the closure of acoΦ(Xn). This shows that An is
a compact operator. In order to see that A is compact, it therefore suffices
to show that ‖An − A‖ → 0 with respect to the operator norm for n → ∞.
Recalling that the convexity of L implies L′′ ≥ 0, the desired convergence
follows from P(Xn × Yn) ≥ 1− 1

n , L′′ ◦ fP,λ ∈ L1(P), and

‖Ang −Ag‖H =
∥∥∥∫

(X×Y )\(Xn×Yn)

L′′(y, fP,λ(x)
)
g(x)Φ(x) dP(x, y)

∥∥∥
H

≤
∫

(X×Y )\(Xn×Yn)

L′′(y, fP,λ(x)
) |g(x)| ‖Φ(x)‖H dP(x, y)

≤ ‖k‖2∞ ‖g‖H
∫

(X×Y )\(Xn×Yn)

L′′(y, fP,λ(x)
)
dP(x, y) .

Let us now show that ∂G
∂H (0, fP,λ) = 2λ idH +A is injective. For g ∈ H\{0},

we obtain〈
(2λ idH +A)g, (2λ idH +A)g

〉
= 4λ2〈g, g〉+ 4λ〈g,Ag〉+ 〈Ag,Ag〉
> 4λ〈g,Ag〉
= 4λ
〈
g,EPL

′′(Y, fP,λ(X)
)
g(X)Φ(X)

〉
= 4λEPL

′′(Y, fP,λ(X)
)
g2(X)

≥ 0,

which shows the injectivity and hence (ii).
The implicit function theorem A.5.17 guarantees that the function ε �→ fε

is differentiable on (−δ, δ) if δ > 0 is small enough. Furthermore, (10.37) and
(10.38) yield for z = (x, y) ∈ X × Y that

IF(z;S,P) =
∂fε

∂ε
(0) = −K−1 ◦ ∂G

∂ε
(0, fP,λ)

= K−1
(
EP

(
L′(Y, fP,λ(X))Φ(X)

))− L′(y, fP,λ(x)
)
K−1Φ(x). ��

Remark 10.19. Theorem 10.18 contains a tail assumption on P to ensure that
RL,P(fP,λ) <∞. Recall that RL,P : Lp(PX)→ [0,∞) is well-defined and con-
tinuous if L is a P-integrable Nemitski loss function of order p ∈ [1,∞), see
Lemma 2.17. Taking Remark 10.3 into account, a tail assumption on P seems
to be quite natural for unbounded sets Y . We see three ways to avoid this
tail assumption on P, but all of them seem to be unsatisfactory. (i) One can
restrict attention to bounded sets Y , but this is often unrealistic for regression
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problems and does not make sense from the viewpoint of robust statistics. (ii)
One can replace the convex loss function by a bounded non-convex loss func-
tion, but in general this yields non-convex risk functions and hence problems
with respect to the existence and uniqueness of fP,λ. Further, the advantage
of computational efficiency often vanishes because the numerical problems can
turn from convex problems into NP-hard ones. (iii) The redefinition of the
minimization problem inff∈H RL,P(f) + λ‖f‖2H into

inf
f∈H

EPL
∗(X,Y, f(X)) + λ‖f‖2H ,

where L∗ : X×Y ×R, L∗(x, y, t) := L(x, y, t)−L(x, y, 0), seems to be helpful
for Hölder-continuous loss functions, which includes of course the important
class of Lipschitz-continuous loss functions, but L∗(x, y, f(x)) can be negative
for some values of (x, y, f(x)). �

Remark 10.20. The proof of Theorem 10.18 can be modified in order to replace
point mass contaminations δz by arbitrary contaminations Q ∈M1 if L, |L′|,
and L′′ are Q-integrable Nemitski loss functions. �

Remark 10.21. From a robustness point of view, one is mainly interested in
statistical methods with bounded influence functions. It is worth mention-
ing that Theorem 10.18 not only ensures the existence of the influence func-
tion IF(z;S,P) but also indicates how to guarantee its boundedness. Indeed,
(10.35) shows that the only term of the influence function that depends on
the point mass contamination δz is

−L′(y, fP,λ(x)
)
K−1Φ(x) . (10.40)

Hence a combination of a bounded continuous kernel with a convex loss func-
tion with L′ being bounded assures a bounded influence function. Hence,
we have, analogous to the results obtained in Section 10.3, that the class of
Lipschitz-continuous loss functions are of primary interest from the viewpoint
of robust statistics. �

The next result gives influence functions for distance-based loss functions.

Corollary 10.22. Let X = Rd, Y = R, and H be an RKHS of a bounded
continuous kernel k on X with canonical feature map Φ : X → H. Further, let
L : Y ×R→ [0,∞) be a convex distance-based loss function with representing
function ψ : R → [0,∞) having partial derivatives L′ = ∂2L and L′′ =
∂22L such that L, |L′|, and L′′ are P-integrable Nemitski loss functions and
‖b‖L1(P) <∞. Then the following statements hold.

i) The influence function of fP,λ exists for all z := (x, y) ∈ X × Y and

IF(z;S,P) = −EPψ
′(Y − fP,λ(X)

)
K−1Φ(X) + ψ′(y − fP,λ(x)

)
K−1Φ(x),

(10.41)
where K : H → H, K = 2λ idH +EPψ

′′(Y − fP,λ(X)
)〈Φ(X), ·〉Φ(X).
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ii) The influence function IF(z;S,P) is bounded in z if L is Lipschitz-
continuous.

Proof. Theorem 10.18 yields that IF(z;S,P) exists and is bounded provided
L′(·, fP,λ(x)) : R → R is bounded for all x ∈ X. For distance-based loss
functions, we hence immediately obtain the assertions. ��
Remark 10.23.

i) Let us emphasize that it is not sufficient to choose a bounded continuous
kernel alone to obtain a bounded influence function: the loss function also
must be chosen appropriately.

ii) Corollary 10.22 shows that the SVM based on the least squares loss, which
has some nice computational properties, as will be shown in Chapter 11,
is a method with an unbounded influence function. Therefore, an ad hoc
one-step reweighted version of the SVM based on the least squares loss can
be interesting from a robustness point of view, see Suykens et al. (2002)
and Debruyne et al. (2007).

iii) In contrast, the logistic loss function provides a robust method with a
bounded influence function if we use it in combination with a Gaussian
RBF kernel. �

Example 10.24. For illustration purposes, let us consider a Gaussian RBF ker-
nel and the loss functions Lr-logist and LLS. Note that the partial derivative
with respect to the last argument of Lr-logist is bounded, whereas the corre-
sponding partial derivative of LLS is unbounded. We expect by (10.40) and
(10.41) that SVMs based on Lr-logist will give more robust results than SVMs
using LLS. Figure 10.11 shows that this is indeed true. The small data set
listed in Table 10.1 contains 100 data points (xi, yi) ∈ R2 of a baby’s daily
milk consumption.2 The upper subplot shows that both SVMs offer similar
fits to the original data set. Now let us assume that the tired father made a
typing error when he reported the daily measurement during the night for day
number 40: he reported y40 = 7.4 instead of y40 = .74, which is an obvious
mistake. This single typing error has a strong impact on fD,λ based on LLS

in a broad interval. On the other hand, the impact of this extreme y-value on
fD,λ based on Lr-logist is much smaller due to the boundedness of L′. �

Bounds for the Influence Function

Unfortunately, Theorem 10.18 and Corollary 10.22 require a twice continu-
ously differentiable loss function and therefore they cannot be used to inves-
tigate SVMs based on, for example, the ε-insensitive loss, Huber’s loss, or
the pinball loss function, which are not Fréchet differentiable in one or two

2 From one of the authors
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Fig. 10.11. Daily milk consumption. The upper subplot displays the fitted regres-
sion curves fD,λ(x) for the original data set. The lower subplot displays the fitted
regression curves fD,λ(x) for the data set containing one extreme value. The curves
were fitted using the loss functions Lr-logist (solid) and LLS (dashed), respectively.

points.3 The next three theorems give bounds for the difference quotient used
in the definition of the influence function and apply to convex Nemitski loss
functions of some order p. Hence these results partially resolve the problem
above for non-Fréchet differentiable loss functions. For practical purposes, the
following results may even be more interesting than the results for the influ-
ence function because they give bounds for the bias and do not consider an
infinitesimally small amount of contamination. Note that the following three
results show that upper bounds for the bias under gross error contamination
models increase at most linearly with respect to the mixing proportion ε be-
cause the constants c used in the bounds do not depend on ε.

3 Christmann and Van Messem (2008) derived an analogon to Theorem 10.18 using
Bouligand derivatives for SVMs based on non-smooth Lipschitz-continuous losses.
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Table 10.1. Data set: daily milk consumption of a baby. The measurements are
listed in liters.

Day Milk Day Milk Day Milk Day Milk Day Milk

1 0.745 2 0.770 3 0.860 4 0.900 5 0.915
6 0.860 7 0.985 8 0.790 9 0.680 10 0.785

11 0.760 12 0.715 13 0.830 14 0.800 15 0.860
16 0.840 17 0.600 18 0.835 19 0.690 20 0.810
21 0.855 22 0.870 23 0.660 24 0.840 25 0.540
26 0.785 27 0.795 28 0.770 29 0.870 30 0.815
31 0.810 32 0.845 33 0.760 34 0.620 35 0.700
36 0.600 37 0.380 38 0.540 39 0.720 40 0.740
41 0.580 42 0.650 43 0.795 44 0.650 45 0.740
46 0.695 47 0.740 48 0.700 49 0.530 50 0.735
51 0.780 52 0.600 53 0.780 54 0.780 55 0.650
56 0.640 57 0.580 58 0.780 59 0.750 60 0.530
61 0.750 62 0.750 63 0.750 64 0.730 65 0.640
66 0.750 67 0.760 68 0.590 69 0.630 70 0.750
71 0.650 72 0.570 73 0.770 74 0.730 75 0.640
76 0.690 77 0.710 78 0.590 79 0.610 80 0.550
81 0.490 82 0.730 83 0.720 84 0.755 85 0.640
86 0.640 87 0.780 88 0.730 89 0.730 90 0.750
91 0.825 92 0.830 93 0.780 94 0.785 95 0.790
96 0.880 97 0.750 98 0.600 99 0.600 100 0.780

Theorem 10.25. Let P,Q ∈ M1 and L : Y × R → [0,∞) be a convex P-
integrable and Q-integrable Nemitski loss function of order p ∈ [1,∞). Fur-
thermore, let k be a bounded, measurable kernel on X with separable RKHS
H and canonical feature map Φ : X → H. Then, for all λ > 0 and ε ∈ [0, 1],
we have ∥∥f(1−ε)P+εQ,λ − fP,λ

∥∥
H
≤ cP,Q ε , (10.42)

where

cP,Q :=
‖b‖L1(P) + ‖b‖L1(Q) + 22p+1cBp

λ

(λRL,P(0))1/2
,

Bλ := ‖k‖∞(RL,P(0)/λ)1/2, and b : X × Y → [0,∞) is a function satisfying
the Nemitski condition (2.9). If Q = δ(x,y) and if IF((x, y);S,P) exists, then

‖IF((x, y);S,P)‖H ≤ cP,δ(x,y) , (x, y) ∈ X × Y (10.43)

and

γ∗u(S,P) ≤ ‖b‖L1(P) + sup(x,y)∈X×Y b(x, y) + 22p+1cBp
λ

(λRL,P(0))1/2
.

Proof. Fix ε ∈ [0, 1] and define P̃ := (1 − ε)P + εQ. By Theorem 5.9, there
exists a bounded, measurable function h : X × Y → R independent of ε and
Q such that
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‖fP,λ − fP̃,λ‖H ≤ λ−1 ‖EPhΦ− E(1−ε)P+εQhΦ‖H
= ε λ−1 ‖EPhΦ− EQhΦ‖H
≤ ε λ−1 ‖k‖∞

(‖h‖L1(P) + ‖h‖L1(Q)

)
≤ ε λ−1 ‖k‖∞

(‖b‖L1(P) + ‖b‖L1(Q) + 2c|4Bλ|p
)
/Bλ ,

where (5.16) is used in the last inequality. This gives the assertion (10.42).
The inequality (10.43) follows from the definition of the influence function and
the fact that the constant cP,Q does not depend on the mixture proportion
ε. For the special case Q = δ(x,y) we have ‖b‖L1(Q) = b(x, y) and hence we
obtain bounds for the difference quotient used in the definition of the influence
function if we divide the bound by ε. ��

If we restrict our attention to distance-based loss functions of growth type
p ≥ 1, and many loss functions used in practice are distance-based, we are
able to obtain stronger results.

Theorem 10.26. Let L : Y × R → [0,∞) be a convex, distance-based loss
function of upper growth type p > 1 with representing function ψ : R→ [0,∞)
and P, Q ∈M1 such that L is P-integrable and Q-integrable. Furthermore, let
k be a bounded, measurable kernel on X with separable RKHS H and canonical
feature map Φ : X → H. Then, for all λ > 0 and for ε ∈ [0, 1], we have

‖f(1−ε)P+εQ,λ − fP,λ‖H ≤ cP,Q ε , (10.44)

where

cP,Q = c̃3 λ
−1‖k‖∞

(|P−Q|p−1
p−1 + ‖P−Q‖M

(
1 + λ(1−p)/2‖k‖p−1

∞ |P|p(p−1)/2
p

))
and the constant c̃3 = c̃3(L, p, k, λ) ≥ 0. If Q = δ(x,y) and if the influence
function exists, then

‖IF((x, y);S,P)‖H ≤ cP,δ(x,y) , (x, y) ∈ X × Y, (10.45)

and the gross error sensitivity fulfills

γ∗u(S,P) ≤ sup
(x,y)∈X×Y

cP,δ(x,y) . (10.46)

Proof. Corollary 5.11 gives the existence of a measurable function h : X×Y →
R with

‖fP,λ − f(1−ε)P+εQ,λ‖H ≤ ε

λ
‖EPhΦ− EQhΦ‖H .

As L is a loss function of upper growth type p > 1, there exists c > 0 such
that

λ‖fP,λ‖2H ≤ Rreg
L,P,λ(fP,λ) ≤ Rreg

L,P,λ(0) ≤ c(|P|pp + 1) .

This yields for some c̃1 > 0 the inequalities
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‖fP,λ‖∞ ≤ ‖k‖∞ ‖fP,λ‖H ≤ (c̃1/λ)1/2‖k‖∞|P|p/2
p .

Using Corollary 5.11 and (5.28) from its proof, we obtain for some c̃2 > 0 that

|h(x, y)| ≤ 4pcL max
{
1, |y − fP,λ(x)|p−1

}
≤ 4pcL

(
1 + |y|p−1 + |fP,λ(x)|p−1

)
≤ c̃2
(
1 + |y|p−1 + λ(1−p)/2‖k‖p−1

∞ |P|p(p−1)/2
p

)
, (x, y) ∈ X × Y.

It follows that

‖f(1−ε)P+εQ,λ − fP,λ‖H ≤ ε λ−1 ‖k‖∞ E|P−Q||h|
≤ ε c̃3 λ−1‖k‖∞

(|P−Q|p−1
p−1 + ‖P−Q‖M

(
1 + λ(1−p)/2‖k‖p−1

∞ |P|p(p−1)/2
p

))
,

where c̃3 depends on L but not on ε. This gives the assertion in (10.44). The
inequalities (10.45) and (10.46) follow immediately from the fact that cP,Q

does not depend on ε. ��
Recall that Lipschitz-continuous, distance-based, convex loss functions are

of upper growth type p = 1 due to Lemma 2.36ii). Such loss functions are
therefore not covered by the previous theorem, but by the next one. Important
special cases of the next theorem are the ε-insensitive loss and the pinball loss.

Theorem 10.27. Let L : Y ×R→ [0,∞) be a Lipschitz-continuous, convex,
distance-based loss function with representing function ψ : R → [0,∞), and
P, Q ∈ M1 with |P|1 < ∞ and |Q|1 < ∞. Furthermore, let k be a bounded
and measurable kernel on X with separable RKHS H and canonical feature
map Φ : X → H. Then, for all λ > 0 and ε ∈ [0, 1], we have∥∥f(1−ε)P+εQ,λ − fP,λ

∥∥
H
≤ cP,Q ε ,

where
cP,Q = λ−1 ‖k‖∞ |ψ|1 ‖P−Q‖M.

If Q = δ(x,y) and if the influence function of S(P) = fP,λ exists, then

‖IF((x, y);S,P)‖H ≤ cP,δ(x,y) , (x, y) ∈ X × Y,

and the gross error sensitivity fulfills

γ∗u(S,P) ≤ λ−1 ‖k‖∞ |ψ|1 sup
(x,y)∈X×Y

‖P− δ(x,y)‖M ≤ 2λ−1 ‖k‖∞ |ψ|1 .

In particular, the H-norm of the sensitivity curve is bounded by a uniform
constant independent of the sample size n, independent of (x, y), and valid for
any empirical distribution Dn ∈M1:

‖SCn((x, y); fDn,λ)‖H ≤ 2λ−1 ‖k‖∞ |ψ|1 , (x, y) ∈ X × Y. (10.47)
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Proof. Corollary 5.10 guarantees that there exists a bounded measurable func-
tion h : X × Y → R such that ‖h‖∞ ≤ |L|Bλ,1 ≤ |ψ|1 and

‖fP,λ − f(1−ε)P+εQ,λ‖H ≤ ελ−1‖EPhΦ− EQhΦ‖H .
It follows that

‖fP,λ − f(1−ε)P+εQ,λ‖H ≤ ελ−1‖k‖∞E|P−Q||h| ≤ ελ−1‖k‖∞|ψ|1 ‖P−Q‖M .

This gives the assertion. ��
Remark 10.28.

i) The combination of a Lipschitz-continuous loss function with |ψ|1 = 1 and
a Gaussian RBF kernel with ‖k‖∞ = 1 is of particular interest for appli-
cations. The H-norm of the sensitivity curve is then uniformly bounded
by 2

λ for all data sets and for all points (x, y) by Theorem 10.27.
ii) The previous three theorems also offer bounds for maxbias(ε;S,P) over

contamination neighborhoods provided attention is restricted to distrib-
utions Q ∈ Nε(P) satisfying the tail conditions given in those theorems;
see Problem 10.7. �

Comparison of SVMs with M-Estimation (*)

Let us now compare the influence function of SVMs with the influence function
of M-estimators in linear regression models. A linear regression model assumes
that (Xi, Yi) are independent and identically distributed random variables
according to P ∈ M1(X × Y ), X = Rd, Y = R, with regular conditional
distribution such that

EP(Y |x) :=
∫

Y

y dP(y|x) = xTθ ,

where θ ∈ Θ := Rd is unknown. Such linear models are quite popular in many
areas of applied statistics and in data mining. Obviously, linear regression is
a special case of SVMs: we use λ = 0 in combination with a linear kernel
k(x, x′) := 〈x, x′〉, x, x′ ∈ Rd. Let us assume for reasons of simplicity that
the scale parameter σ ∈ (0,∞) of the linear regression model is known, say
σ = 1. Note that σ2 = VarP(Y |x) for Gaussian distributions. The function
S :M1 → Rd corresponding to an M-estimator is the solution of

EP η(X,Y −XTS(P))X = 0 , (10.48)

where the odd function η(x, ·) is continuous for x ∈ Rd and η(x, u) ≥ 0
for all x ∈ Rd, u ∈ [0,∞). Almost all M-estimators for linear regression
proposed in the literature may be written in the form η(x, u) = ψ

(
v(x)u
)
w(x),

where ψ : R → R is usually continuous, bounded, and increasing and w :
Rd → [0,∞), v : Rd → [0,∞) are weight functions. The functions ψ, w,
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and v are chosen in advance by the user or may result as solutions to certain
robust optimization problems. An important subclass of M-estimators are
those of Mallows type, where η is of the form η(x, u) = ψ(u)w(x). Note that
defining M-estimators as solutions of (10.48) is more general than defining
M-estimators via optimization problems. The influence function of S(P) = θ
in the point z = (x, y) at a distribution P ∈M1 is given by

IF(z;S,P) = K−1(η,P) η(x, y − xTS(P))x ∈ Rd , (10.49)

where K(η,P) := EP η
′(X,Y − XTS(P))XXT. An important difference be-

tween SVMs and M-estimators in linear regression is that IF(z;S,P) ∈ Rd in
(10.49), but IF(z;S,P) ∈ H in (10.35). In other words, the influence function
of an M-estimator is only a function if z varies, whereas the influence function
of SVMs is an H-valued function already for any fixed value of z. For linear
kernels, there exists an isomorphism between the RKHS H and Rd, but this
is not true for many other kernels (e.g., for Gaussian RBF kernels).

A comparison of the influence functions for SVMs (see (10.35) and (10.41))
with the influence function of M-estimators given by (10.49) yields that both
influence functions nevertheless have a similar structure. The function K =
K(L′′, k,P) for SVMs and the matrix K(η,P) for M-estimation do not depend
on z. The terms in the influence functions depending on z = (x, y), where the
point mass contamination δz occurs, are a product of two factors. The first
factors, measuring the outlyingness in the y-direction, are

−L′(y, fP,λ(x)) for SVMs,
ψ(v(x)(y − xTθ)) for general M-estimation,
ψ′(y − fP,λ(x)) for SVMs with distance-based loss, and
ψ(y − xTθ) for Mallows type M-estimation.

SVMs based on a distance-based loss function and Mallows type M-estimators
use first factors that only depend on the residuals. The second factors are

K−1Φ(x) for SVMs, and
w(x)x for M-estimation.

Therefore, the second factors do not depend on y and measure the outlyingness
in the x-direction. Note that K−1Φ(x) takes values in the RKHS H in the
case of SVMs, whereas w(x)x ∈ Rd for M-estimation.

Concluding, one can say that there is a natural connection between SVMs
and M-estimators for linear regression, although M-estimators have no penalty
term (i.e., λ = 0) and are estimating a vector in Rd, whereas SVMs with non-
linear kernels estimate a function in a reproducing kernel Hilbert space that
can have an infinite dimension.

10.5 Robust Learning from Bites (*)

In this section, we investigate a simple method called robust learning from
bites (RLB) based on independent subsampling. The main goal of the method
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is to broaden the applicability of robust SVMs for huge data sets where clas-
sical algorithms to compute fD,λ for the whole data set might be too slow.

The idea of RLB is quite simple. Consider a huge data set D = Dn con-
taining data points (xi, yi) ∈ X × Y , i = 1, . . . , n. First split the huge data
set D randomly into disjoint subsets Sb with |Sb| = nb, where 1 ≤ b ≤ B
and B ∈ N much smaller than n. Then use robust SVMs for each subset and
aggregate the SVM results in a robust manner.

In this section, we will assume that X ⊂ Rd, d ∈ N, Y ⊂ R, and n is
large. We will further assume that min1≤b≤B nb →∞ as n→∞.

Definition 10.29. Let D =
(
(x1, y1), . . . , (xn, yn)

) ∈ X × Y n, n ∈ N. Con-
sider a random partition of D into B non-empty and disjoint subsets, i.e.,

D = S1 ' . . . ' SB ,

where Sb ⊂ D, nb := |Sb|, n =
∑B

b=1 nb, b ∈ {1, . . . , B}, B ∈ {1, . . . , n},
B ( n. Let fSb,λ be the SVM decision functions based on the subsamples Sb,
b = 1, . . . , B, and let g : HB → H and g∗ : RB → R be measurable functions.

i) An RLB estimator of type I is defined by

fRLB,I
D,λ,B = g(fS1,λ, . . . , fSB ,λ) .

ii) An RLB estimator of type II is given by

fRLB,II
D,λ,B (x) = g∗(fS1,λ(x), . . . , fSB ,λ(x)) , ∀x ∈ X.

Remark 10.30.

i) Obviously, RLB estimates can be defined not only based on SVMs.
ii) An RLB estimator of type I can obviously be used to define an RLB

estimator of type II.
iii) An RLB estimator of type II does not necessarily define an RLB estimator

of type I because the related function g∗ does not necessarily correspond
to a measurable and H-valued function g.

iv) The class of RLB estimators of type I and, due to ii), the class of RLB
estimators of type II are non-empty because for g equal to the mean we
have g(fS1,λ, . . . , fSB ,λ) = 1

B

∑B
b=1 fSb,λ ∈ H. �

From our point of view, RLB is mainly a numerical algorithm to allow the
computation of fD,λ or the predictions fD,λ(x) for huge data sets. Neverthe-
less, it will turn out that RLB estimators have some nice properties. Clearly,
an RLB estimator of type II is of interest if only predictions are necessary.

Table 10.2 summarizes the three main steps of RLB. Let us now restrict
attention to location estimators in the aggregation step belonging to the flex-
ible class of L-estimators that use non-negative weights aB,b ∈ [0, 1] with∑B

b=1 aB,b = 1; see Huber (1981, Section 3.3) for the general case. L-estimators
are linear combinations of order statistics (hence their name has nothing to
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Table 10.2. Principle of RLB.

Step 1: Construct bites.
Split data set D randomly into B disjoint subsets Sb of sample sizes
nb ≈ �n/B�, nb > 1, b = 1, . . . , B, B  n.

Step 2: Fit bites.
for (b = 1, . . . , B)
{ Compute the (robust) estimator fSb,λ based on bite Sb. }

Step 3: Aggregate predictions.

Fix weights aB,b ∈ [0, 1] with
∑B

b=1 aB,b = 1.

RLB type I: compute fRLB,I
D,λ,B =

∑B
b=1 aB,bfSb,λ.

RLB type II: compute fRLB,II
D,λ,B (xi) =

∑B
b=1 aB,bfSb,λ(xi), xi ∈ X.

If RLB type II and g∗ is the median:

(i) Compute fRLB,II
D,λ,B (xi) = median1≤b≤BfSb,λ(xi), xi ∈ X.

(ii) Compute distribution-free (1 − α) confidence intervals for

fRLB,II
P,λ,B (xi) based on the pair (r, s) of order statistics; i.e.

[fS(r:B),λ(x), fS(s:B),λ(x)].

do with the loss function L). L-estimators in the aggregation step are defined
by

fRLB,II
D,λ,B (x) =

B∑
b=1

aB,bfS(b:B),λ(x) , (10.50)

where
{fS(b:B),λ(x) : b = 1, . . . , B} = {fSb,λ(x) : b = 1, . . . , B}

and

fS(1:B),λ(x) ≤ fS(2:B),λ(x) ≤ . . . ≤ fS(B:B),λ(x) , x ∈ X, (10.51)

denote the order statistics of fSb,λ(x), b = 1, . . . , B. Such L-estimators are
obviously convex combinations of the B estimators computed for the bites.
Important L-estimators for location are given in the following example.

Example 10.31.

i) The α-trimmed means, α ∈ [0, 1/2), use

aB,b =

{
1

B−2�αB� if b ∈ {�αB�+ 1, . . . , B − �αB�},
0 otherwise.

ii) The mean is obtained for α = 0 (i.e., aB,b = 1
B ) and we obtain an RLB

estimator of type I.
iii) The median uses
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aB,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if B is even and b ∈ {B

2 ,
B
2 + 1
}

0 if B is even and b /∈ {B
2 ,

B
2 + 1
}

1 if B is odd and b = B+1
2

0 if B is odd and b �= B+1
2 ,

which is the limiting case as α→ 1/2. �

Our leading examples will be convex combinations of fSb,λ and the median.
Of course, other robust estimators can be used instead (e.g., M-estimators,
S-estimators, or Hodges-Lehmann-type R-estimators); see Huber (1981, p. 63).

IfB is large, precision estimates can additionally be obtained by computing
standard deviations of the predictions fRLB

D,λ,B(x) using the central limit theo-
rem (see Theorem A.4.10) or by applying versions of the law of the iterated
logarithm (see, e.g., Einmahl and Li, 2008). However, in general we favor an
alternative distribution-free method based on the median. If B is small or
if it is unknown whether fRLB

D,λ,B(x) has a finite variance, one can construct
distribution-free confidence intervals for the median of fRLB

D,λ,B(x) based on
special order statistics, as the following well-known result shows.

Theorem 10.32. Let B ∈ N, 0 ≤ r < s ≤ B, and τ ∈ (0, 1). Let Z1, . . . , ZB

be independent and identically distributed real-valued random variables and
denote the τ -quantile by qτ := inf{z ∈ R : P(Z1 ≤ z) ≥ τ}. Then the corre-
sponding order statistics Z(1:B) ≤ . . . ≤ Z(B:B) satisfy

P(Z(r:B) ≤ qτ ≤ Z(s:B)) ≥
s−1∑
i=r

(
B

i

)
τ i(1− τ)B−i ≥ P(Z(r:B) < qτ < Z(s:B)) .

Proof. Let b ∈ {0, . . . , B}, z ∈ R, and define pz := P(Z1 ≤ z). We have

P(Z(b:B) ≤ z) = P
( B∑

i=1

1(−∞,z](Zi) ≥ b
)

=
B∑

i=b

(
B

i

)
pi

z(1− pz)B−i .

Recall that the incomplete beta function is given by

Iτ (a, c) :=
∫ τ

0

ta−1(1− t)c−1 dt
/∫ 1

0

ta−1(1− t)c−1 dt, a, c ∈ [0,∞).

Using partial integration we obtain for b ∈ {0, . . . , B} that Iτ (b,B − b+ 1) =∑B
i=b

(
B
i

)
τ i(1 − τ)B−i. Using P(Z(r:B) ≤ qτ ≤ Z(s:B)) = P(Z(r:B) ≤ qτ ) −

P(Z(s:B) < qτ ) and the definition of qτ , we obtain

P(Z(r:B) ≤ qτ ≤ Z(s:B)) ≥ Iτ (r,B − r + 1)− Iτ (s, n− s+ 1) .

The second inequality follows by similar arguments. ��
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Table 10.3 lists some values of B and the corresponding pair (r, s) of order
statistics determining the confidence interval [fS(r:B),λ(x), fS(s:B),λ(x)]. The
lower bound of the actual confidence level which is 0.5B

∑s
j=r(

B
j ) is also

listed. The actual level of the confidence intervals can differ from 1 − α for
small values of B, see Table 10.3. The last column in Table 10.3 lists the
value of min{r − 1, B − s}/B, which is the finite-sample breakdown point
for the distribution-free confidence interval for the median. For example, if
B = 17, the fifth and the thirteenth order statistics yield a distribution-free
confidence interval at the 95 percent level for the median without any further
distributional assumption. Because the results of the four lowest and the four
highest predictions are not considered, the breakdown point of this confidence
interval is 4/17 = 0.235.

Table 10.3. Selected pairs (r, s) of order statistics for non-parametric confidence
intervals for the median.

Confidence B r s Lower Bound min{r − 1, B − s}/B
Level of Actual
1 − α Confidence Level

0.90 8 2 7 0.930 0.125
10 2 9 0.979 0.100
18 6 13 0.904 0.278
30 11 20 0.901 0.333
53 21 33 0.902 0.377
71 29 43 0.904 0.394

104 44 61 0.905 0.413

0.95 9 2 8 0.961 0.111
10 2 9 0.979 0.100
17 5 13 0.951 0.235
37 13 25 0.953 0.324
51 19 33 0.951 0.353
74 29 46 0.953 0.378

101 41 61 0.954 0.396

0.99 10 1 10 0.998 0.000
12 2 11 0.994 0.083
26 7 20 0.991 0.231
39 12 28 0.991 0.282
49 16 34 0.991 0.306
73 26 48 0.990 0.342

101 38 64 0.991 0.366

If the robust estimator is based on hyperparameters (e.g., kernel parame-
ters or the constant ε for SVMs based on the ε-insensitive loss) and if their
values must be determined from the data set itself, a common approach is
to split huge data sets into three parts for training, validation, and testing.
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The training data set is used to estimate the quantity of interest for a given
set of hyperparameters. The validation data set is used to determine good
values for the hyperparameters by optimizing an appropriate goodness-of-fit
criterion or by minimizing the generalization error. Finally, the test data set
is used to estimate the goodness-of-fit criterion or the generalization error for
new data points.

General Properties of RLB

The estimators fSb,λ from the B bites are stochastically independent because
they are computed from disjoint parts of the data set. Denote the number of
available CPUs by c and let kB be the smallest integer that is not smaller than
B/c. The computation time and the memory space for RLB can be obviously
approximated in the following way.

i) Computation time, c CPUs. Assume that the computation time of the
estimator fD,λ for a data set with n observations and d explanatory vari-
ables is of order O(g(n, d)), where g is some positive function. Then the
computation time of RLB with B bites of subsample size nb ≈ n/B is
approximately of order O(kBg(n/B, d)).

ii) Memory space, c CPUs. Assume that the estimator fD,λ for a data set
with n observations and d explanatory variables needs memory space and
hard disk space of order O(g1(n, d)) and O(g2(n, d)), respectively, where
g1 and g2 are positive functions. Then the computation of RLB with B
bites of subsample size nb ≈ n/B needs memory space and hard disk space
approximately of order O(cg1(n/B, d)) and O(cg2(n/B, d)), respectively.

The next result shows that RLB estimators inherit the usual consistency
properties from the original estimators.

Lemma 10.33 (Convergence). Consider an RLB estimator fRLB,I
D,λ,B of type

I based on a convex combination with aB,b ∈ [0, 1] and
∑B

b=1 aB,b = 1.

i) If EP(fSb,λ) = EP(fDn,λ), b ∈ {1, . . . , B}, then EP(fRLB,I
D,λ,B ) = EP(fDn,λ).

ii) Assume that fDn,λ converges in probability (or almost surely) to fP,λ if
n → ∞, B is fixed, and min1≤b≤B nb → ∞. If g is continuous, then
fRLB,I
Dn,λ,B converges in probability (or almost surely) to fP,λ if n→∞.

iii) Assume that n1/2
b (fSb,λ − fP,λ) converges in distribution to a multivari-

ate Gaussian distribution N(0, Σ) if min1≤b≤B nb → ∞, where Σ ∈
Rd×d is positive definite, and that B is fixed. If g is continuous, then
n1/2(fRLB,I

Dn,λ,B − fP,λ) converges in distribution to a multivariate Gaussian
distribution N(0, Σ), n→∞.

Proof. i) follows from the linearity of the expectation operator. The parts ii)
and iii) follow immediately from the continuity of g. ��
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The next result shows that an RLB estimator based on SVMs is a kernel-
based estimator, too.

Theorem 10.34. Consider the estimators fDn,λ(x) =
∑n

i=1 αik(x, xi) and
fSb,λ(x) =

∑
(xi,yi)∈Sb

αi,bk(x, xi), x ∈ X, b = 1, . . . , B. Then the RLB esti-

mator fRLB,II
Dn,λ,B (x) with weights aB,b ∈ [0, 1],

∑B
b=1 aB,b = 1, and B fixed, is a

kernel-based estimator and satisfies

fRLB,II
Dn,λ,B (x) =

n∑
i=1

αi,RLB k(x, xi) (10.52)

=
∑

i∈SV (S1)∪ ...∪SV (SB)

αi,RLB k(x, xi), x ∈ X, (10.53)

where SV (Sb) denotes the indexes of support vectors in fSb,λ and αi,RLB =∑B
b=1 aB,b αi,b , (xi, yi) ∈ Dn.

Proof. By assumption, each bite Sb is fitted with an SVM having the decision
function

fSb,λ(x) =
∑
i∈Sb

αi,bk(x, xi), x ∈ X.

Because the bites Sb, b = 1, . . . , B, are disjoint and B is fixed, the RLB
estimator with weights aB,b has the representation

fRLB,II
Dn,λ,B (x) =

B∑
b=1

aB,b

∑
i∈Sb

αi,b k(x, xi) (10.54)

=
n∑

i=1

B∑
b=1

aB,b αi,b k(x, xi) , x ∈ X, (10.55)

which gives the assertion. ��
If all support vectors in S1, . . . , SB are different, we have αi,RLB = aB,b αi,b in
(10.53). Now, we investigate the number of support vectors of RLB estimators
based on SVMs.

Theorem 10.35. Under the assumptions of Theorem 10.34, an RLB estima-
tor fRLB,I

Dn,λ,B has the following properties.

i) The number of support vectors (i.e., αi,RLB �= 0) of fRLB,I
Dn,λ,B is given by

#SV(fRLB,I
Dn,λ,B) =

∣∣∣ ⋃
b∈{1,...,B: aB,b>0}

SV (Sb)
∣∣∣ . (10.56)
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ii) Let Y = {−1,+1}, B ∈ N be fixed, min{n1, . . . , nB} → ∞, and con-
sider weights aB,b ∈ (0, 1) with

∑B
b=1 aB,b = 1. Under the assumptions of

Theorem 8.34, we have the probabilistic lower bound on the sparseness:

Pn

(
Dn ∈ (X × Y )n : #SV(fRLB,I

Dn,λ,B) ≥ SL,P − ε
n

)
≥

B∏
b=1

(
1−e−

δ2nb
18h2(λ)B

)
.

(10.57)

Proof. i) follows immediately from (10.53). Now let us consider ii). Using the
probabilistic lower bound on the sparseness given in Theorem 8.34, we see
that fDn,λ satisfies

Pn
(
Dn ∈ (X×Y )n : #SV (fDn,λ) ≥ (SL,P− ε)n

)
≥ 1− e− δ2n

18h2(λ) . (10.58)

The bites Sb, b = 1, . . . , B, are independent and identically distributed by the
construction of RLB and we have n = Bnb. Hence

Pn
(
Dn ∈ (X × Y )n : #SV

(
fRLB,I
Dn,λ,B

) ≥ (SL,P − ε)n
)

= Pn
(
(S1, . . . , SB) ∈ (X × Y )n : #SV

(
fRLB,I
Dn,λ,B

) ≥ B∑
b=1

(SL,P − ε)nb

)

≥ Pn
(
∀Sb ∈ (X × Y )nb , b = 1, . . . , B : #SV

(
fSb,λnb

) ≥ (SL,P − ε)nb

)

=
B∏

b=1

Pnb

(
Sb ∈ (X × Y )nb : #SV

(
fSb,λnb

) ≥ (SL,P − ε)nb

)

≥
B∏

b=1

(
1− e−

δ2nb
18h2(λ)B

)
→ 1, n→∞ ,

which completes the proof. ��
The result given in (10.57) has the following interpretation: with prob-

ability exponentially fast tending to one if the total sample size n = Bnb

converges to ∞ but B is fixed, the fraction of support vectors of the kernel
based RLB estimator fRLB,I

Dn,λ,B in a binary classification problem is essentially
greater than the average of the Bayes risks for the bites. If we compare the
rates of convergence in (10.57) and (10.58), we obtain the expected result that
the probabilistic lower bound in both results is the same, but that the rate of
convergence is better in (10.58) than in its counterpart in (10.57) for B > 1.
This can be interpreted as the price we have to pay if we use RLB because of
its computational advantages for huge data sets instead of fDn,λ.

Let us now investigate conditions to guarantee that RLB estimators using
SVMs are L-risk consistent; i.e.,

RL,P

(
fRLB,I
Dn,λ,B

)→ RL,P

in probability for n→∞.
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Theorem 10.36. Let fD,λ,b be an L-risk consistent support vector machine
with a convex loss function. Consider an RLB estimator fRLB,I

D,λ,B with weights
aB,b ∈ (0, 1),

∑B
b=1 aB,b = 1, B ≥ 1 fixed, and min1≤b≤B nb → ∞. Then

fRLB,I
D,λ,B is L-risk consistent.

Proof. The RLB estimator fRLB,I
D,λ,B is a convex combination of fSb,λ, b =

1, . . . , B, because aB,b ∈ (0, 1) and
∑B

b=1 aB,b = 1. Therefore,

0 ≤
∫
L
(
Y, fRLB,I

D,λ,B (X)
)
dP−R∗

L,P

=
∫
L
(
Y,

B∑
b=1

aB,bfSb,λ(X)
)
dP−R∗

L,P

≤
∫ B∑

b=1

aB,b L
(
Y, fSb,λ(X)

)
dP−R∗

L,P (10.59)

=
B∑

b=1

aB,b

(∫
L
(
Y, fSb,λ(X)

)
dP−R∗

L,P

)
, (10.60)

which converges in probability to zero if min1≤b≤B nb → ∞, n → ∞. Here
we used the convexity of L in (10.59) and the L-risk consistency of fDn,λ in
(10.60). ��

From the no-free-lunch theorem (see Theorem 6.6), the proof given above
cannot be modified in a simple way to cover the case where the number of
bites B = B(n) depends on the sample size because we have no uniform rate
of consistency without restricting the class of probability measures.

Robustness Properties of RLB

Now we derive some results that show that certain robustness properties are
inherited from the original estimator fDn,λ to the RLB estimator. Let us start
with an investigation of the influence function of the RLB estimator fRLB,I

P,λ,B .

Theorem 10.37 (Influence function of RLB). Assume that the influence
function of fP,λ exists for the distribution P ∈ M1. Further assume that
the weights satisfy aB,b ∈ [0, 1] with

∑B
b=1 aB,b = 1 and B fixed. Then the

influence function of fRLB,I
P,λ,B using these weights exists and equals the influence

function of fP,λ.

Proof. Let z ∈ X×Y and define S1(P) := fRLB,I
P,λ,B and S2(P) := fP,λ, P ∈M1.

It follows that
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IF(z;S1,P) = lim
ε↓0

fRLB,I
(1−ε)P+εδz,λ,B − fRLB,I

P,λ,B

ε

= lim
ε↓0

∑B
b=1 aB,b f(1−ε)P+εδz,λ −

∑B
b=1 aB,b fP,λ

ε

=
B∑

b=1

aB,b lim
ε↓0

f(1−ε)P+εδz,λ − fP,λ

ε

= IF(z;S2,P) ,

which gives the assertion. ��
Hence, if fP,λ has a bounded influence function, the same is true for an

RLB estimator of type I using a convex combination of weights as specified
above. Recall that the existence and boundedness of the influence function of
fP,λ were proven in Sections 10.3 and 10.4 under weak conditions on the loss
function and on the kernel for classification problems and regression problems.

We have not considered breakdown points for fP,λ or fD,λ. However, if
we specify λ = 0 in combination with a linear kernel, then SVMs are just M-
estimators in linear regression for which the breakdown points of M-estimators
are well-known.

Theorem 10.38 (Finite-sample breakdown point of RLB). Let nb ≡
n/B, b = 1, . . . , B. Assume that the finite-sample breakdown points ε∗nb

(fSb,λ)
of the estimators fSb,λ are all identical. Denote the finite-sample breakdown
point of the estimator μ̂ = μ̂(fS1,λ, . . . , fSB ,λ) in the aggregation step by ε∗B(μ̂).
Then the finite-sample breakdown point of an RLB estimator is given by

ε∗RLB,n,B = ε∗nb
(fSb,λ)

(
ε∗B(μ̂) +

1
B

)
+
B

n
ε∗B(μ̂) . (10.61)

Proof. The minimum number of points needed to modify fSb,λ in bite Sb such
that a breakdown occurs is given by nbε

∗
nb

(fSb,λ) + 1, b = 1, . . . , B. The RLB
estimator breaks down if at least Bε∗B(μ̂)+1 of the estimators fS1,λ, . . ., fSB ,λ

break down. This gives the assertion. ��
Remark 10.39.

i) If B and nb = B/n are large, we obtain from (10.61) the lower bound

ε∗RLB,n,B ≥ ε∗nb
(fSb,λ) ε∗B(μ̂) . (10.62)

ii) For the median, we obtain ε∗B(μ̂) = 1
2 − 1

B if B is even and ε∗B(μ̂) = 1
2 if

B is odd.
iii) For α-trimmed means, α ∈ (0, 1

2 ), we obtain ε∗B(μ̂) = �αB�/B.
iv) If the mean or any other estimator with ε∗B(μ̂) = 0 is used in the aggrega-

tion step, RLB has a finite-sample breakdown point of ε∗nb
(fSb,λ)/B → 0

if B →∞. �
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Example 10.40 (Univariate location model). Consider the univariate location
problem, where xi ≡ 1 and yi ∈ R, i = 1, . . . , n, n = 55. Assume that all
output values are different. The finite-sample breakdown point of the median
is �n/2�/n = 0.49. The mean has a finite-sample breakdown point of 0. Now
let us investigate the robustness of the RLB approach with B = 5 and nb = 11,
b = 1, . . . , B. (i) If the median is used as the location estimator in each bite
and if the median is used in the aggregation step, the finite-sample breakdown
point of the RLB estimator is ε∗RLB,n,B = 0.309. This value is reasonably
high but lower than the finite-sample breakdown point of the median for the
whole data set, which is 0.49. Note that in a fortunate situation the impact
of up to (2 · 11 + 5 · 3)/55 = 0.672 extremely large data points (say equal to
+∞) is still bounded for the RLB estimator in this setup: modify all data
points in Bε∗B(μ̂) = 2 bites and up to nb ε

∗
nb

(fSb,λ) = 5 data points in the
remaining B(1− ε∗B(μ̂)) = 3 bites. This is no contradiction to (10.61) because
the breakdown point measures the worst-case behavior. (ii) If the median is
used as the location estimator in each bite and if the mean is used in the
aggregation step, the finite-sample breakdown point of the RLB estimator
is ε∗RLB,n,B = (1/B)ε∗nb

(f̂) = 0.09. (iii) If the mean is used as the location
estimator in each bite and also in the aggregation step, we of course obtain
ε∗RLB,n,B = 0. �

Determination of the Number of Bites

The number of bites obviously has some impact on the statistical behavior
of the RLB estimator and also on the computation time and the necessary
computer memory. An optimal choice of the number of bites B will in general
depend on the unknown distribution P. But some general arguments are given
on how to determine B in an appropriate manner.

One should take the sample size n, the computer resources (number of
CPUs, RAM, hard disk), and the acceptable computation time into account.
The quantity B should be much lower than n because otherwise there is not
much hope of obtaining useful estimators from the bites. Further, B should
depend on the dimensionality d of the input values. For example, a rule of
thumb for linear regression is that n/d should be at least 5. Because the
function f is completely unknown in non-parametric regression, assumptions
on the complexity of f are crucial. The sample size nb for each bite should
converge to infinity if n→∞ to obtain consistency of RLB. The results from
some numerical experiments not given here can be summarized as follows.

i) If B is too large, the computational overhead increases and the danger of
bad fits increases because nb is too small to provide reasonable estimators.

ii) A major decrease in computation time and memory saving is often already
present if B is chosen in a way such that the numerical algorithms to fit
each bite fit nicely into the computer (CPU, RAM, hard disk). Nowadays,
robust estimators can often be computed for sample sizes up to nb = 104

or nb = 105. In this case, B = �n/nb� can be a reasonable choice.
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iii) If distribution-free confidence intervals at the (1−α) level for the median
of the predictions (i.e., fRLB,II

Dn,λ,B (x) = median1≤b≤B fSb,λ(x), x ∈ X) are
needed, one should take into account that the actual confidence level of
such confidence intervals based on order statistics can be conservative (i.e.,
higher than the specified level) for some pairs (r, s) of order statistics due
to the discreteness of order statistics.

Numerical Example

Now we apply the RLB approach to kernel logistic regression (i.e., L =
Lc-logist). All computations were done with the program myKLR (Rüping, 2003),
which is an implementation of the algorithm proposed by Keerthi et al. (2005)
to solve the dual problem. We choose KLR for two reasons. First, the com-
putation of KLR needs much more time than SVMs based on the hinge loss
because the latter solves a quadratic instead of a convex program in dual
space and because for the hinge loss, the number of support vectors is usually
much smaller than n. Therefore, the need for computational improvements is
greater for Lc-logist than for Lhinge and the potential gains of RLB can be more
important. Second, the number of support vectors of KLR is approximately
equal to n, which slows down the computation of predictions.

The simulated data sets contain n data points (xi, yi) ∈ R8 × {−1,+1}
simulated in the following way. All eight components of xi = (xi,1, . . . , xi,8) are
simulated independently from a uniform distribution on (0, 1). The responses
yi are simulated independently from a logistic regression model according to
P(Yi = +1|Xi = xi) = 1/

(
1 + e−f(xi)

)
and P(Yi = −1|Xi = xi) = 1− P(Yi =

+1|Xi = xi). We set

f(xi) =
8∑

j=1

xi,j − xi,1xi,2 − xi,2xi,3 − xi,4xi,5 − xi,1xi,6xi,7 .

The data points were saved as ASCII files, where xi,j is stored with four
decimal places. The numerical results of fitting kernel logistic regression to
such data sets are given in Table 10.4. It is obvious that in this situation
RLB can save a lot of computation time. If the whole data set has n = 105

observations, approximately 10 hours is needed to compute KLR on a PC.
If RLB with B = 10 bits are used, each with a subsample size of nb = 104,
one needs approximately 16 minutes if there is 1 GB of kernel cache available.
This is a reduction by a factor of 38. If there are five CPUs available and each
processor can use up to 200 MB kernel cache, RLB with B = 10 will need
approximately 11 minutes, which is a reduction by a factor of 55.

When RLB was applied to a data set from a union of German insurance
companies (n ≈ 4.5 × 106), the computation time decreased from months to
days, see Christmann (2005) and Christmann et al. (2007) for details.
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Table 10.4. Computation times for kernel logistic regression using myKLR.

Sample Size CPU Time Used Cache Available Cache
n in MB in MB

2000 4 sec 33 200
5000 25 sec 198 200

10000 5 min, 21 sec 200 200
10000 1 min, 33 sec 787 1000
20000 24 min, 11 sec 1000 1000
20000 14 min, 35 sec 1000 1000

100000 9 h, 56 min, 46 sec 1000 1000

10.6 Further Reading and Advanced Topics

Many different criteria have been proposed to define robustness or stability in
a mathematical way, such as the minimax approach (Huber, 1964), qualita-
tive robustness (Hampel, 1968, 1971), the sensitivity curve (Tukey, 1977), the
approach based on least favorable local alternatives (Huber, 1981; Rieder,
1994), the approach based on influence functions (Hampel, 1974; Hampel
et al., 1986), the maxbias curve (Hampel et al., 1986; Huber, 1964), the global
concept of min-max bias robust estimation (He and Simpson, 1993; Martin
et al., 1989), the breakdown point (Donoho and Huber, 1983; Hampel, 1968),
depth-based methods (Tukey, 1975), and configural polysampling (Morgen-
thaler and Tukey, 1991).

Section 10.2 described the main approaches of robust statistics. It is mainly
based on Huber (1981), Hampel et al. (1986), Rousseeuw and Leroy (1987),
Jurečková and Sen (1996), Davies and Gather (2004), and Maronna et al.
(2006). For qualitative robustness, we refer also to Hampel (1968, 1971) and
Cuevas (1988). The robustness results of SVMs for classification and regression
treated in Sections 10.3 and 10.4 are based on Christmann (2002, 2004, 2005)
and Christmann and Steinwart (2004, 2007). The robust learning from bites
approach discussed in Section 10.5 was proposed by Christmann et al. (2007).
Using Bouligand derivatives instead of Gâteaux derivatives, it was shown that
SVMs based on Lipschitz-continuous loss functions have under weak assump-
tions a bounded Bouligand influence function provided that a bounded kernel
is used; see Christmann and Van Messem (2008). Special cases are SVMs
based on the ε-insensitive loss, Huber’s loss, logistic loss for regression, and
pinball loss for quantile regression. Debruyne et al. (2007) gave robustness
results for a reweighted form of the SVM based on the least squares loss and
Debruyne (2007) and proposed tools for model selection.

For a detailed description of outliers and approaches to detect, iden-
tify or test for outliers, we refer to Beckmann and Cook (1983), Barnett
and Lewis (1994), Gather (1984, 1990), Davies and Gather (1993), Becker
and Gather (1999), Gather and Pawlitschko (2004), Hampel et al. (1986),



404 10 Robustness

and Christmann (1992). Steinwart et al. (2005) and Scott and Nowak (2006),
among many others, used SVMs for anomaly detection and for learning min-
imum volume sets that are related to outlier regions proposed by Davies and
Gather (1993).

Choice of a Metric

Neighborhoods around a probability distribution play an important role in
robust statistics. Such neighborhoods are usually constructed by specifying a
metric on the space of probability measures. However, the robustness prop-
erties of a statistical procedure can depend on the metric. The choice of a
suitable metric is not always a simple task; see Hampel (1968), Huber (1981,
Chapter 2), and Davies (1993, pp. 1851ff.) for nice treatments of this topic.
For a recent controversial discussion of the question of which metrics are es-
pecially suitable for robust statistics, see Davies and Gather (2005, 2006) and
Hampel (2005).

Sometimes one restricts attention to investigating robustness properties of
statistical methods only in gross-error neighborhoods because such problems
are often easier to solve. At first glance-neighborhoods defined via the norm
of total variation seem to be an attractive alternative to gross-error neigh-
borhoods. However, Hampel (1968, p. 43) showed the interesting fact that
neighborhoods defined by the norm of total variation do not perform much
better than gross-error neighborhoods. Consider two probability measures P
and Q defined on the same measurable space, and let ε ∈ (0, 1). Then Q is an
element of a neighborhood of radius ε around P with respect to the metric de-
fined by the norm of total variation if and only if Q = (1−ε)P+ε(P+Q1−Q2),
where Q1 := ε−1(Q−min{P,Q}) and Q2 := ε−1(P−min{P,Q}). Note that
Q1 and Q2 are not necessarily probability measures but Q is a mixture of P
and P + Q1 −Q2 with mixing proportion ε.

Qualitative Robustness

Hampel (1968, 1971) proposed not only qualitative robustness but also the
notion of Π-robustness. Informally, a sequence of estimators (Sn)n∈N is called
Π-robust if it is qualitatively robust but also insensitive to “small” deviations
from the assumption of independence. Hampel (1971, Theorem 3) proved that
Π-robustness at some distribution P implies qualitative robustness but not
vice versa. Boente et al. (1987) generalized Hampel’s concept of Π-robustness
for a sequence of estimators (Sn)n∈N in Euclidean spaces to Polish spaces.
Cuevas (1988) showed that qualitative robustness is incompatible with con-
sistency of multivariate density estimates if the L1-metric is used. Cuevas also
investigated the case of qualitative robustness for certain stochastic processes
with continuous trajectories on [0, 1] and proved that the simple mean function
is not robust in this sense, but robust estimation is possible by generalizing
M-estimators and α-trimmed means.
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Robustness of SVMs

The boundedness of the sensitivity curve of SVMs for classification was es-
sentially already established by Bousquet and Elisseeff (2002). The results
given in Sections 10.3 and 10.4 and also some results for the more general
case, where not only fP,λ but also an offset term bP,λ must be estimated, were
derived by Christmann and Steinwart (2004, 2007, 2008). If attention is re-
stricted to SVMs based on a Lipschitz-continuous loss function for regression
and a bounded kernel, Christmann and Van Messem (2008) showed that fP,λ

has even a bounded Bouligand influence function.

Robust Learning from Bites

The RLB approach proposed by Christmann (2005) and Christmann et al.
(2007) has connections to the remedian proposed by Rousseeuw and Bassett
(1990) for univariate location estimation, Rvote proposed by Breiman (1999a),
DRvote with classification trees using majority voting (Chawla et al., 2004),
and subsampling (Politis et al., 1999). Bootstrapping computer-intensive
robust methods for huge data sets is often impossible due to computation
time and memory limitations of the computer, but see Salibian-Barrera et al.
(2008). RLB has some similarity to the algorithms FAST-LTS and FAST-
MCD proposed by Rousseeuw and Van Driessen (1999, 2000) for robust es-
timation in linear regression or multivariate location and scatter models for
large data sets. FAST-LTS and FAST-MCD split the data set into subsamples,
optimize the objective function in each subsample, and use these solutions as
starting values to optimize the objective function for the whole data set. This
is in contrast to RLB, which aggregates estimation results from the bites to
obtain robust confidence intervals.

Stability and Learnability

There is currently some interest in proving connections between stability,
learnability, and predictivity for broad classes of ERM methods. We would
like to cite Bousquet and Elisseeff (2002), Poggio et al. (2004), Mukherjee
et al. (2006), and Elisseeff et al. (2005). Although different notions of stability
are used in these papers, their notions of stability have a meaning similar
to robustness. Several of these notions of stability only measure the impact
of just one data point such that the connection to Tukey’s sensitivity curve
is obvious. Caponnetto and Rakhlin (2006) consider stability properties of
empirical risk minimization over Donsker classes.

Robustness in Parametric and Non-parametric Models

There is a large body of literature on robust estimators and tests for outliers
in parametric models, especially for linear regression, binary regression, and
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multivariate location and scatter problems. From the viewpoint of robustness,
the relationships between SVMs based on a convex loss function and classical
M-estimation, say of Huber type, are strong. However, there are three impor-
tant differences between the two approaches. First, classical M-estimation for
linear regression or binary classification has no penalty term in its optimiza-
tion problem (i.e., λ = 0). Second, SVMs often use non-linear kernels such as
the Gaussian RBF kernel, which already can improve robustness properties
(see, e.g., Theorems 10.10 and 10.18) whereas classical M-estimation uses only
the unbounded linear kernel. Third, non-convex loss functions are sometimes
used in classical M-estimation in linear models to improve robustness prop-
erties of such methods, although one is then often faced with the problem
of non-uniqueness of the estimates and with algorithmic problems to find a
global optimum and not only a local one.

Downweighting extreme points in the design space X is automatically
done by SVMs using, for example, the Gaussian RBF kernel. Generalized
M-estimators for regression are able to downweight not only data points ex-
treme in the residual y − f(x) but also extreme points x, so-called leverage
points. For additional information on M-estimation and related methods in
linear models, we refer to Huber (1964, 1981), Hampel et al. (1986), Fernholz
and Morgenthaler (2005), Gather and Hilker (1997), Kent and Tyler (1991,
1996, 2001), and Maronna and Yohai (1981). Mendes and Tyler (1996) inves-
tigated constrained M-estimation for linear regression. Simpson et al. (1987)
gave theoretical arguments in favor of M-estimators based on a twice Fréchet
differentiable loss function. Rieder (1994) and Ruckdeschel and Rieder (2004)
investigated robust asymptotic statistics based on shrinking neighborhoods.
Rieder et al. (2008) proposed the radius-minimaxity concept.

Many robust alternatives to M-estimators were proposed in the literature.
We did not describe such methods here because the connection between SVMs
and M-estimation is much closer. However, we would like to mention the
following alternatives to M-estimation in parametric models.

For L-estimators, which are linear combinations of order statistics, we
refer to Serfling (1980) and Huber (1981). Regression quantiles are general-
izations of L-estimators to the regression context and are treated, for example,
by Koenker and Bassett (1978), Portnoy and Koenker (1997), and Koenker
(2005). Schölkopf et al. (2000, p. 1216) and Takeuchi et al. (2006) investigated
SVMs based on the Lipschitz-continuous pinball loss function to estimate
quantile functions in a nonparametric way. Some results on L-risk consis-
tency, rates of convergence, and various robustness properties of such SVMs
were derived by Christmann and Steinwart (2007, 2008) and Steinwart and
Christmann (2008).

Statistical properties of R-estimators were investigated, for example, by
Serfling (1980), Coakley and Hettmansperger (1993), Hettmansperger et al.
(1997), Ollila et al. (2002, 2003), and Hallin and Paindaveine (2004, 2005).

Of special interest in robust estimation in parametric models are meth-
ods with a positive or high-breakdown point to overcome the lack of a low
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breakdown point of M-, L-, and R-estimators in high dimensions d. Probably
the most important and most often used high-breakdown estimators for linear
regression are the estimators least median of squares (LMS) and least trimmed
squares (LTS), which were investigated in detail by Rousseeuw (1984, 1994,
1997a,b) and Rousseeuw and Leroy (1987). Both estimators were also used in
many recent proposals to construct two-step estimators, which inherit from
the starting estimators LMS or LTS a high-breakdown point and from the sec-
ond step improved asymptotic behavior. LMS and LTS belong to the class of
S-estimators and their generalizations. These estimators were investigated by
Rousseeuw and Yohai (1984), Rousseeuw and Van Driessen (2000), Rousseeuw
and van Zomeren (1990, 1991), Davies (1990, 1993, 1994), and Croux et al.
(1994). Yohai (1987) proposed high-breakdown-point and high-efficiency ro-
bust estimates for linear regression; see also Yohai et al. (1991). Yohai and
Zamar (1988) investigated high-breakdown point estimates of regression by
means of the minimization of an efficient scale.

For recent advances of robust methods for online monitoring data we refer
to Gather et al. (2002), Gather and Fried (2004), and Gather and Schettlinger
(2007).

For robust estimation in generalized linear models, we refer to Pregibon
(1982) for resistant estimation and Stefanski et al. (1986), Künsch et al. (1989),
Morgenthaler (1992), Carroll and Pederson (1993), Bianco and Yohai (1996),
and Cantoni and Ronchetti (2001) for M-estimation. Christmann (1992, 1994,
1998) proposed high-breakdown point estimators in generalized linear mod-
els. Rousseeuw and Christmann (2003) proposed robust estimates for logistic
regression and other binary regression problems and solved the problem of
non-existence of the classical non-robust maximum likelihood estimates and
almost all robust estimates proposed earlier. The mathematical reason why
many estimators do not have a solution for all possible data sets turned out
to be the complete or quasi-complete separation of data points with positive
weights; see Albert and Anderson (1984) and Santner and Duffy (1986).

For depth-related methods, see Tukey (1975) for the halfspace depth, Oja
(1983) for Oja’s median, Liu (1990, 1999) for the simplicial depth, Rousseeuw
and Hubert (1999) for regression depth, Mizera (2002) for tangent depth,
He and Wang (1997) for depth contours for multivariate data sets, and Zuo
and Serfling (2000) and Mosler (2002) for various variants of statistical depth
functions. For a numerical comparison between the support vector machine
and the regression depth method proposed by Rousseeuw and Hubert (1999),
see Christmann and Rousseeuw (2001) and Christmann et al. (2002).

Projection pursuit and its relation to robust estimation were investigated
by Huber (1985, 1993) and Donoho and Johnstone (1989).
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10.7 Summary

This chapter showed that support vector machines have—besides many other
nice mathematical and algorithmic properties—good robustness properties if
the loss function and the kernel are appropriately chosen. There is a natural
connection between SVMs and M-estimation.

Robust statistics investigates how small violations of the model assump-
tions influence the results of the methods used. Many researchers still ignore
deviations from ideal models because they hope that such deviations will not
matter. However, J. W. Tukey, one of the pioneers of robust statistics, men-
tioned already in 1960 that: “Unfortunately, it turned out that this hope was
often drastically wrong; even mild deviations often have much larger effects
than were anticipated by most statisticians”; see Hampel et al. (1986, p. 21).

Small model violations are unavoidable in almost all practical applications
because statistical models are usually simplifications of the true process that
generated a data set and because typing errors, outliers, and many types of
contamination occur in practice. In particular, this is true for data mining
projects in which huge data sets with moderate data quality often must be
analyzed; see Chapter 12.

It is therefore important to study the robustness properties of SVMs, al-
though the model assumption of independent and identically distributed pairs
of random variables without further restriction of the probability distribution
is weak. Many approaches of robust statistics were developed for estimators
of an unknown vector θ ∈ Rd in parametric models. From a mathematical
point of view, it is also interesting to investigate how these approaches can be
used for SVMs where a function f in a (usually) infinite-dimensional Hilbert
space H must be estimated.

A motivation of robust statistics was given in Section 10.1. Different ap-
proaches of robustness were described in Section 10.2, including topological
neighborhoods in the space of probability distributions, qualitative robust-
ness, influence functions with the related notions of gross error sensitivity,
maxbias and sensitivity curve, and breakdown points.

Robustness properties of support vector machines for binary classification
and regression were investigated in Sections 10.3 and 10.4. It was shown that
the influence function of SVMs exists and is bounded if the loss function
has a bounded first derivative and if the kernel is bounded and continuous,
e.g., the Gaussian RBF kernel. This shows that SVMs based on a logistic
loss function have nice robustness properties for classification and regression
problems. In contrast, SVMs based on the least squares loss yield less robust
results than SVMs based on the classical hinge loss or the ε-insensitive loss.
Bounds for the maxbias, gross error sensitivity, and the sensitivity curve were
derived; some of the bounds even turned out to be uniform. For the regression
case with unbounded output space Y , it turned out that good robustness
properties of SVMs are only available if the tail behavior of the probability
distribution P and the growth type of the loss function L are appropriately
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related to each other. Especially Lipschitz-continuous loss functions of growth
type 1 offer good robustness properties. There are relationships between these
results on robustness and stability results obtained by Poggio et al. (2004) and
Mukherjee et al. (2006).

In Section 10.5, a simple but powerful subsampling strategy called robust
learning from bites (RLB) was described to make SVMs usable for huge data
sets (e.g., in data mining projects). RLB is designed for situations under which
the original robust method cannot be applied due to excessive computation
time or memory space problems. In these situations, RLB offers robust esti-
mates and additionally robust confidence intervals. Although RLB estimators
will in general not fulfill certain optimality criteria, the method has the advan-
tages of scalability (the number of bites can be chosen according to the data
set and the available hardware), performance (the computational steps for dif-
ferent bites can easily be distributed on several processors), robustness (RLB
inherits robustness properties from the SVMs used by this strategy), and con-
fidence intervals (no complex formulas are needed to obtain distribution-free
(componentwise) confidence intervals for the estimates or the predictions).

10.8 Exercises

10.1. Mean and median (�)
Prove that the mean and median are solutions of the optimization problems
(10.5) and (10.6).

10.2. Property of Prohorov metric (�)
Let P,Q ∈ M1(Z). Define Pδ := (1− δ)P + δQ and Pε := (1− ε)P + εQ for
δ, ε ∈ [0, 1]. Show that dPro(Pδ,Pε) ≤ |δ − ε| if δ → ε.

Hint: Dudley (2002).

10.3. Bounded Lipschitz metric (���)
Prove Theorem A.4.22iii).

Hint: The direction (b)⇒ (a) follows easily. One can use the Lagrange ap-
proach, the Kuhn and Tucker (1951) theorem, and Strassen’s Theorem A.4.16
to prove the converse direction. See Huber (1981, pp. 30ff.) for details.

10.4. Lévy metric (��)
The Lévy distance dLévy(P1,P2) of two probability measures P and Q on R

is defined by

inf
{
ε > 0 : P1((−∞, x− ε])− ε ≤ P2((−∞, x]) ≤ P1((−∞, x+ ε] + ε

}
.

i) Show that dLévy is a metric that metricizes the weak∗ topology.
ii) Define Pδ := (1 − δ)P + δQ and Pε := (1 − ε)P + εQ, δ, ε ∈ [0, 1]. Show

that the Lévy metric shares with the Prohorov metric and the bounded
Lipschitz metric the property dLévy(Pδ,Pε) = O(|δ − ε|), δ → ε.

Hint: See Huber (1981, pp. 25ff.).



410 10 Robustness

10.5. Kolmogorov metric and total variation distance (��)

i) Prove that the Kolmogorov distance defined by

dKol(P,Q) := sup
x∈R

|P((−∞, x])−Q((−∞, x])|, P,Q ∈M1(R),

is a metric.
ii) Prove that the total variation distance defined by

dtv(P,Q) := sup
A∈B(Rn)

|P(A)−Q(A)|, P,Q ∈M1(Rn),

is a metric.
iii) Clarify the connections between dPro, dLévy, dKol, and dtv.
iv) Do dtv and dKol generate the weak∗ topology?

Hints: See Huber (1981, pp. 34ff.). iii). We have dLévy(P,Q) ≤ dPro(P,Q) ≤
dtv(P,Q) and dLévy(P,Q) ≤ dKol(P,Q) ≤ dtv(P,Q). iv). No.

10.6. Asymmetric logistic loss (�)
Consider the asymmetric logistic loss L : Y ×R→ [0,∞),

L(x, y, t) =
(c2

2
− c1
)
r − c2

2
ln
(
4Λ(r − c3)

(
1− Λ(r − c3)

))
+ c4 ,

where r = y − t, 0 < c1 < c2 < ∞, Λ(r) := 1/(1 + e−r), c3 = −Λ−1(c1/c2),
and c4 = (c2/2) ln(4 c1

c2
(1− c1

c2
)).

i) Show that (c1, c2) = (1, 2) gives L = Lr-logist.
ii) Show that L′ = ∂3L and L′′ = ∂33L are continuous and bounded.
iii) Is L a Nemitski loss function of some order p ∈ (0,∞)?

Hint: iii). Yes.

10.7. Maxbias (��)
Derive bounds for the maxbias(ε;S,P) of SVMs over contamination neighbor-
hoods Nε(P).

Hint: Use Theorems 10.25, 10.26, and 10.27.

10.8. Kernel-based LMS (��)
Consider a non-parametric regression problem treated in Section 10.4. Define
an estimator for f ∈ H by f∗P,λ := arg minf∈H MedianPL(Y, f(X)) + λ‖f‖2H .

i) Explain why this estimator does not fit into the framework of SVMs for
regression treated in Section 10.4.

ii) Show that this estimator corresponds to the least median of squares es-
timator for the special case of a linear kernel and λ = 0. Summarize the
statistical properties of LMS from the literature.

Hint: See, e.g., Hampel (1975), Rousseeuw (1984), Rousseeuw and Leroy
(1987), and Davies (1990, 1993).

10.9. Robustness properties of kernel-based LMS (����)
Derive the robustness properties of f∗P,λ defined in Exercise (10.8).

Hint: Research.
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Computational Aspects

Overview. This chapter presents techniques to compute decision
functions fD,λ of SVMs and mentions some software tools. In ad-
dition, we discuss how to choose suitable hyperparameters used by the
regularization term, the kernel, and the loss.

Prerequisites. We need Chapter 2 on loss functions, Chapter 4 on
kernels, Chapter 8 on SVMs for classification, and Chapter 9 on SVMs
for regression problems. Some results from convex analysis, in partic-
ular from Section A.6.5 on convex programs and Section 6.5 on oracle
inequalities for the purpose of parameter selection, are used.

This chapter is concerned with the question of how to compute a decision
function fD,λ of support vector machines for a given data set D. No attempt
is made to describe in detail all relevant computational aspects regarding
SVMs. From our point of view, there exists such a large body of literature
on this topic that even the main research approaches published during the
last decade would probably fill a textbook of their own. Here we only show
some facets regarding computational aspects of SVMs. More precisely, we will
concentrate in this chapter on addressing the following questions.

i) How can we compute the empirical SVM decision function fD,λ?
ii) Are there algorithms to compute fD,λ that work well even for large sample

sizes?
iii) Are there loss functions L such that the numerical problem of computing

fD,λ can be solved especially fast?
iv) Are there loss functions such that fD,λ can efficiently be computed and

have good robustness properties in the sense of Chapter 10?

After a short introduction, we show in Section 11.1 that empirical SVM
solutions fD,λ are solutions of specific convex programs. SVMs based on the
hinge loss and the logistic loss for classification purposes, ε-insensitive loss
and least squares loss for regression, and pinball loss function for kernel-based
quantile regression are treated as special cases. Some computational aspects
of computing fD,λ efficiently for large sample sizes n are considered in Section
11.2, where special consideration is given to the hinge loss. SVMs depend
in general not only on the loss function L and the kernel k but also on the
determination of hyperparameters such as λ > 0, kernel parameters such as
γ2 for the Gaussian RBF kernel, or the parameter ε for the ε-insensitive loss
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function. These hyperparameters can have a substantial impact on the quality
of fD,λ and RL,D(fD,λ) in applications. Section 11.3 lists some techniques to
determine suitable choices of these hyperparameters. Section 11.4 mentions a
few software tools available to compute empirical SVMs.

11.1 SVMs, Convex Programs, and Duality

In this section, it will be shown that the decision function fD,λ of SVMs for a
given data setD with n data points is a solution of a certain finite-dimensional
convex program. Throughout this section, we make the following assumptions
if not otherwise stated.

Assumption 11.1 Let L : X × Y × R → [0,∞) be a convex loss function,
H a reproducing kernel Hilbert space over a non-empty convex set X with
positive definite kernel k and canonical feature map Φ(x) := k(·, x), x ∈ X.
Furthermore, let λ > 0 be the regularization parameter and D = {(xi, yi), i =
1, . . . , n} ⊂ X × Y be a fixed data set with corresponding empirical measure
D = 1

n

∑n
i=1 δ(xi,yi).

We know by the representer theorem (see Theorem 5.5) that there exists
a unique empirical SVM solution fD,λ ∈ H satisfying

Rreg
L,D,λ(fD,λ) = inf

f∈H
RL,D(f) + λ‖f‖2H . (11.1)

In addition, there exists a vector ᾱ = (ᾱ1, . . . , ᾱn) ∈ Rn, which in general
is not uniquely determined, such that the empirical SVM solution has the
representation

fD,λ =
n∑

j=1

ᾱjΦ(xj) ∈ H|X′ , (11.2)

where H|X′ := span{Φ(xj) : j = 1, . . . , n}. For notational convenience, let us
denote for each α ∈ Rn the corresponding function in H|X′ by w(α),

w(α) =
n∑

j=1

αjΦ(xj).

Note that we have

‖w(α)‖2H =
n∑

i=1

n∑
j=1

αiαjk(xi, xj) = αTKα, (11.3)

where K ∈ Rn×n is the symmetric kernel matrix (or Gram matrix) with
coefficients Ki,j := k(xi, xj) and αT denotes the transpose of the vector α.
Furthermore, we obtain
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fD,λ(x) = 〈w(ᾱ), Φ(x)〉H =
n∑

j=1

ᾱjk(x, xj), x ∈ X, (11.4)

and
fD,λ(xi) = ᾱT

i Kei = eTi Kᾱi, i = 1, . . . , n. (11.5)

Note that fD,λ ∈ H|X′ . Hence it is sufficient to optimize over H|X′ . Therefore,
if we plug (11.3) and (11.4) into (11.1), we obtain

Rreg
L,D,λ(fD,λ) = inf

f∈H

1
n

n∑
i=1

L
(
xi, yi, f(xi)

)
+ λ‖f‖2H

= min
w∈H|X′

1
n

n∑
i=1

L
(
xi, yi, 〈w,Φ(xi)〉H

)
+ λ‖w‖2H|X′

= min
α∈Rn

1
n

n∑
i=1

L
(
xi, yi,

n∑
j=1

αjk(xi, xj)
)

+ λαTKα . (11.6)

A finite sum of convex functions all defined on the same convex set is of
course also a convex function. Therefore, the convexity of the loss function
yields the convexity of the first term in (11.6). Furthermore, the kernel k
is by Assumption 11.1 positive definite in the sense of Definition 4.15. This
shows that the quadratic form ‖w(α)‖2H = αTKα is convex with respect to
α ∈ Rn whenever the symmetric matrixK is positive semi-definite; see (A.51).
Combining these results, we conclude that the decision function fD,λ is the
solution of a finite-dimensional convex program (see Definition A.6.22) if the
Assumption 11.1 is valid. This is somewhat astonishing because the dimension
of the reproducing kernel Hilbert space H is not assumed to be finite. Now
recall that L is non-negative. Thus we can rewrite (11.6) in the form

min
α, ξ∈Rn

1
n

n∑
i=1

ξi + λ ‖w(α)‖2H (11.7)

s.t. ξi ≥ L
(
xi, yi, 〈w(α), Φ(xi)〉H

)
, i = 1, . . . , n. (11.8)

Hence many classical results about convex programs with constraints such as
Lagrange multipliers, determination of saddle points, and algorithms to solve
convex programs are applicable for empirical SVMs and will be used in the
following considerations; see Section A.6.5 for details on convex programs.

Now we consider the convex programs for fD,λ corresponding to several
loss functions often used for classification and regression purposes.

Example 11.2 (Margin-based loss). Assume that L is a margin-based loss func-
tion in the sense of Definition 2.24; i.e., L(x, y, t) = ϕ(yt) for y ∈ {−1,+1}
and t ∈ R. Hence the convex program (11.7) and (11.8) for fD,λ simplifies to
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min
α, ξ∈Rn

1
n

n∑
i=1

ξi + λ ‖w(α)‖2H (11.9)

s.t. ξi ≥ ϕ
(
yi 〈w(α), Φ(xi)〉H

)
, i = 1, . . . , n. (11.10)

The decision function is fD,λ =
∑n

i=1 ᾱiΦ(xi), where ᾱ = (ᾱ1, . . . , ᾱn) solves
(11.9) and (11.10). �

Example 11.3 (Classification based on hinge loss). The hinge loss for classifi-
cation is given by Lhinge(y, t) := max{0, 1 − yt} for y ∈ {−1,+1} and t ∈ R;
see Example 2.27. The convex program for fD,λ is therefore given by

min
α, ξ∈Rn

C
n∑

i=1

ξi +
1
2
‖w(α)‖2H (11.11)

s.t. ξi ≥ 0, ξi ≥ 1− yi 〈w(α), Φ(xi)〉H , i = 1, . . . , n, (11.12)

where C := 1/(2nλ) and w(α) =
∑n

j=1 αjyjΦ(xj). The corresponding
Lagrangian L∗ is given by

C
n∑

i=1

ξi +
1
2
‖w(α)‖2H +

n∑
i=1

αi

(
1− yi 〈w(α), Φ(xi)〉H − ξi

)− n∑
i=1

ηiξi ,

where α := (α1, . . . , αn) ∈ [0,∞)n and η := (η1, . . . , ηn) ∈ [0,∞)n. The
corresponding dual program is found by differentiating L∗ with respect to α
and ξ = (ξ1, . . . , ξn) imposing stationarity,

∇αL
∗(α, ξ) = w(α)−

n∑
i=1

αiyiΦ(xi) = 0, (11.13)

∂L∗

∂ξi
= C − αi − ηi = 0, (11.14)

and resubstituting these relations into the primal problem. We obtain the dual
program

max
α∈[0,C]n

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj), (11.15)

where the box constraint α ∈ [0, C]n results from αi ∈ [0,∞), ηi ∈ [0,∞),
and αi = C − ηi due to (11.14). Therefore, fD,λ is the unique solution of even
a quadratic program with box constraints if the hinge loss is used. We will see
later on that this fact allows us to construct fast algorithms because quadratic
problems can often be solved faster than general convex problems. For the case
of an additional offset term b (i.e., we are computing (fD,λ, bD,λ) ∈ H×R) we
have to replace 〈w(α), Φ(xi)〉H by 〈w(α), Φ(xi)〉H + b and add the additional
constraint

∑n
i=1 αiyi = 0 in (11.15); see Exercise 11.2. �
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Example 11.4 (Classification based on logistic loss). The logistic loss for clas-
sification is given by Lc-logist(y, t) = ϕ(yt) = ln

(
1 + exp(−yt)), y ∈ {−1,+1},

t ∈ R; see Example 2.29. Let us define the function g : R → R, g(r) :=
ϕ(−r) = ln(1+er), r ∈ R, and C := 1/(2nλ). The empirical decision function
based on this loss is thus given by

fD,λ = arg min
α∈Rn

C

n∑
i=1

g
(−yi 〈w(α), Φ(xi)〉H

)
+

1
2
‖w(α)‖2H . (11.16)

Note that w(α) =
∑n

j=1 αjyjΦ(xj). With ξi := −∑n
j=1 αjyiyjk(xi, xj) for

i, j ∈ {1, . . . , n}, it follows that

fD,λ = arg min
α∈Rn

C

n∑
i=1

g(ξi) +
1
2
‖w(α)‖2H (11.17)

and ‖w(α)‖2H =
∑n

i=1

∑n
j=1 αiαjyiyjk(xi, xj). The Lagrangian for this prob-

lem is given by

L∗(α, ξ) = C
n∑

i=1

g(ξi) +
1
2
‖w(α)‖2H −

n∑
i=1

αi

(
ξi + yi 〈w(α), Φ(xi)〉H

)
.

Note that g′(r) = er/(1 + er) = 1/
(
1 + e−r

)
, r ∈ R, equals the cumulative

distribution function of the logistic distribution and that its inverse is the
logit function (g′)−1(u) = ln(u/(1 − u)), u ∈ (0, 1). Computing the partial
derivatives of the Lagrangian, we obtain the optimality conditions

∇αL
∗ = w(α)−

n∑
i=1

αiyiΦ(xi) = 0, (11.18)

∂L∗

∂ξi
= Cg′(ξi)− αi = 0, i = 1, . . . , n. (11.19)

Define the function G(u) = u ln(u)+(1−u) ln(1−u), u ∈ (0, 1). Hence G′(u) =
(g′)−1(u). It follows from (11.19) that g′(ξi) = αi/C and ξi = (g′)−1(αi/C) =
G′(αi/C). We obtain the dual program for kernel-based logistic regression:

min
α∈(0,C)n

C
n∑

i=1

G
(αi

C

)
+

1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj), (11.20)

which is a finite-dimensional convex program; see also Exercise 11.3. �

Example 11.5 (Classification based on least squares loss). The least squares
loss function for classification is given by LLS(y, t) = (1 − yt)2 = (y − t)2,
y ∈ {−1,+1}, t ∈ R, considered in Example 2.26. The decision function fD,λ

based on this loss function solves the convex programming problem
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min
α, r ∈Rn

C

2

n∑
i=1

r2i +
1
2
‖w(α)‖2H

s.t. ri = 1− yi 〈w(α), Φ(xi)〉H , i = 1, . . . , n,

where r = (r1, . . . , rn) and C := 1/(λn). The Lagrangian is given by

L∗(α, r) =
C

2

n∑
i=1

r2i +
1
2
‖w(α)‖2H +

n∑
i=1

αi

(
1− yi 〈w(α), Φ(xi)〉H − ri

)
.

After computing the partial derivatives of L∗, we get the following conditions
for optimality:

w(α) =
n∑

j=1

αjyjΦ(xj),

αi = Cri , i = 1, . . . , n,

ri = 1− yi 〈w(α), Φ(xi)〉H , i = 1, . . . , n;

(11.21)

see Exercise 11.4. This is a system of linear equations with respect to α. Note
that sparseness of fD,λ is lost due to αi = Cri in (11.21). �

Example 11.6 (Distance-based loss). Assume that L is a distance-based loss
function in the sense of Definition 2.32 (i.e., L(x, y, t) = ψ(y − t), y, t ∈ R)
with ψ : R→ R some suitable function. The convex program (11.7) and (11.8)
for fD,λ simplifies to

min
α, ξ∈Rn

1
n

n∑
i=1

ξi + λαTKα (11.22)

s.t. ξi ≥ ψ
(
yi −

n∑
j=1

αjk(xi, xj)
)
, i = 1, . . . , n. (11.23)

Let us now consider for the sake of simplicity a convex distance-based loss
function of the type

L(x, y, t) = ψ(y − t) = ψ̃
(
max
{
0, |y − t| − ε}),

where ψ̃ : [0,∞) → [0,∞) and ε ≥ 0. We additionally assume that ψ has a
continuous first derivative on R\{−ε,+ε}. We obtain

ψ(y − t) = ψ̃
(
max{0, y − t− ε})+ ψ̃

(
max{0, t− y − ε}), y, t ∈ R.

The convex program for fD,λ can then be rewritten as
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min
α, ξ+, ξ−∈Rn

1
n

n∑
i=1

(
ξ+i + ξ−i

)
+ λαTKα

s.t. ξ+i ≥ ψ̃
(
max
{

0, yi −
n∑

j=1

αjk(xi, xj)− ε
})
, i = 1, . . . , n,

ξ−i ≥ ψ̃
(
max
{

0,
n∑

j=1

αjk(xi, xj)− yi − ε
})
, i = 1, . . . , n;

see also Exercise 11.5. �

Example 11.7 (Regression based on ε-insensitive loss). Let ε > 0. The ε-
insensitive loss for regression uses ψ(y − t) = max

{
0, |y − t| − ε} for y, t ∈ R,

considered in Example 2.42. This loss function is obviously an example of
the distance-based symmetric loss functions considered in Example 11.6. The
convex program for fD,λ can be rewritten as

min
α, ξ+, ξ−∈Rn

C

n∑
i=1

(
ξ+i + ξ−i

)
+

1
2
αTKα

s.t. ξ+i ≥ 0, ξ+i ≥ yi −
n∑

j=1

αjk(xi, xj)− ε, i = 1, . . . , n,

ξ−i ≥ 0, ξ−i ≥
n∑

j=1

αjk(xi, xj)− yi − ε, i = 1, . . . , n,

where C := 1/(2nλ). The Lagrangian is thus given by

L∗(α, ξ+, ξ−) = C

n∑
i=1

(
ξ+i + ξ−i

)
+

1
2
αTKα

+
n∑

i=1

α+
i

(
yi −

n∑
j=1

αjk(xi, xj)− ε− ξ+i
)
−

n∑
i=1

η+
i ξ

+
i

+
n∑

i=1

α−
i

( n∑
j=1

αjk(xi, xj)− yi − ε− ξ−i
)
−

n∑
i=1

η−i ξ
−
i ,

where the Lagrange multipliers α+
i , α−

i , η+
i , and η−i , i = 1, . . . , n, have to be

non-negative. It follows from the saddle point condition of convex programs
(see Theorem A.6.26) that the partial derivatives of L∗ with respect to the
primal variables w(α), ξ+, and ξ− have to vanish for optimality; i.e.,
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∇αL
∗ = w(α)−

n∑
i=1

(α+
i − α−

i )Φ(xi) = 0, (11.24)

∂L∗

∂ξ+i
= C − α+

i − η+
i = 0 , i = 1, . . . , n,

∂L∗

∂ξ−i
= C − α−

i − η−i = 0 , i = 1, . . . , n.

Note that we can easily eliminate η+
i and η−i from L∗ because η+

i = C − α+
i

due to (11.25) and η−i = C − α−
i due to (11.25), i = 1, . . . , n. Substituting

(11.24) and (11.25) into the formula for the Lagrangian L∗ yields the dual
program (see Exercise 11.6)

max
α+, α−∈Rn

n∑
i=1

(α+
i − α−

i )yi − ε
n∑

i=1

(α+
i + α−

i )− 1
2
(α+

i − α−
i )TK(α+

i − α−
i )

s.t. α+
i , α

−
i ∈ [0, C], i = 1, . . . , n . (11.25)

Due to (11.24), we thus obtain fD,λ =
∑n

i=1 αiΦ(xi) with αi = α+
i − α−

i ,
i = 1, . . . , n. The ε-insensitive loss and the hinge loss hence share the nice
property that fD,λ is the unique solution of a quadratic program with box
constraints .

For the case of an additional offset term b (i.e., we compute
(
fD,λ, bD,λ

) ∈
H ×R) we have to replace 〈w(α), Φ(xi)〉H by 〈w(α), Φ(xi)〉H + b and to add
the constraint

∑n
i=1(α

+
i − α−

i ) = 0 in (11.25) of the dual program. �

Example 11.8 (Regression based on least squares loss). The least squares loss
function for regression is given by LLS(y, t) = (y − t)2, y, t ∈ R. The deci-
sion function fD,λ based on this loss function solves the convex programming
problem

min
α, r ∈Rn

C

2

n∑
i=1

r2i +
1
2
αTKα

s.t. ri = yi −
n∑

j=1

αjk(xi, xj) , i = 1, . . . , n,

where r = (r1, . . . , rn) and C := 1/(λn). The Lagrangian is given by

L∗(α, r) =
C

2

n∑
i=1

r2i +
1
2
αTKα+

n∑
i=1

αi

(
yi −

n∑
j=1

αjk(xi, xj)− ri
)
.

After computing the partial derivatives of L∗, we get the following conditions
for optimality:
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w(α) =
n∑

i=1

αiΦ(xi),

αi = Cri , i = 1, . . . , n,

ri = yi − 〈w(α), Φ(xi)〉H , i = 1, . . . , n,

see Exercise 11.7. This is a system of linear equations with respect to α. Note
that one loses the sparseness property due to the conditions αi = Cri for
i = 1, . . . , n. �

Example 11.9 (Quantile regression based on the pinball loss). As our final ex-
ample in this section, we consider the pinball loss function, which is suitable
for kernel based quantile regression (see Example 2.43). This distance-based
loss function uses ψτ (y−t) = (τ−1)(y−t) for y−t < 0 and ψτ (y−t) = τ(y−t)
for y − t ≥ 0, where τ ∈ (0, 1) specifies the desired quantile level. The convex
programming problem to determine fD,λ can be rewritten as

min
α, ξ+, ξ−∈Rn

C

n∑
i=1

(
τξ+i + (1− τ)ξ−i

)
+

1
2
αTKα (11.26)

s.t. ξ+i ≥ 0, ξ+i ≥ yi −
n∑

j=1

αjk(xi, xj), i = 1, . . . , n, (11.27)

ξ−i ≥ 0, ξ−i ≥
n∑

j=1

αjk(xi, xj)− yi , i = 1, . . . , n, (11.28)

where C = 1/(2nλ). Using the Lagrangian approach in a way similar to Ex-
ample 11.7, we obtain the dual program

max
α∈Rn

αTy − αTKα (11.29)

s.t. C(τ − 1) ≤ αi ≤ Cτ, i = 1, . . . , n , (11.30)

where y := (y1, . . . , yn) and C := 1/(2nλ) (see Exercise 11.8). Note that the
box constraints in (11.30) are only symmetric around 0 for τ = 1

2 ; i.e., for
median regression. It follows from (11.29) and (11.30) that fD,λ based on
the pinball loss is the unique solution of even a quadratic program with box
constraints .

For the case of an additional offset term b (i.e., we compute
(
fD,λ, bD,λ

) ∈
H ×R), we have to replace

∑n
j=1 αjk(xi, xj) by

∑n
j=1 αjk(xi, xj) + b and to

add the constraint
∑n

i=1 αi = 0 in (11.30).
Suppose that we want to estimate m ≥ 2 conditional quantile functions

with quantile levels 0 < τ1 < . . . < τm < 1 on the same data set D. Let us
denote the corresponding empirical SVM solutions by fD,λ,τh

, h = 1, . . . ,m.
Then it can occur that for some x ∈ X and some pair (h1, h2) with 1 ≤ h1 <
h2 ≤ m, the conditional quantile estimates are in reversed order; i.e.,
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fD,λ,τh1
(x) > fD,λ,τh2

(x).

This undesired phenomenon is called the crossing problem and is not specific
to SVMs based on the pinball loss but can also occur in classical parametric
quantile regression. The reason why this phenomenon can occur is that the
conditional quantile functions are independently estimated. One technique
to overcome this problem is to fit all m conditional quantile functions si-
multaneously and to add constraints that enforce that the crossing problem
cannot occur at � points {xj ∈ X : j = 1, . . . , �}. Let us write the empirical
SVM solution for the quantile level τh as fD,λ,τh

(x) = 〈w(αh), Φ(x)〉H , where
w(αh) ∈ H|X′ for j = 1, . . . ,m, x ∈ X. The non-crossing constraints can be
specified as linear constraints,

〈w(αh), Φ(xj)〉H ≤ 〈w(αh+1), Φ(xj)〉H , 1 ≤ h ≤ m− 1, 1 ≤ j ≤ �,
in H|X′ . The primal optimization problem becomes

min
w(αh), ξ+

h , ξ−
h ,1≤h≤m−1

m∑
h=1

(
C

n∑
i=1

(
τhξ

+
h,i + (1− τh)ξ−h,i

)
+

1
2
‖w(αh)‖2H

)

s.t. ξ+h,i − ξ−h,i = yi − 〈w(αh), Φ(xi)〉H ,
1 ≤ h ≤ m, 1 ≤ i ≤ n,

〈w(αh+1), Φ(xj)〉H − 〈w(αh), Φ(xj)〉H ≥ 0, (11.31)
1 ≤ h ≤ m− 1, 1 ≤ j ≤ �.

Using the Lagrangian approach, we obtain the corresponding dual problem,

max
αh, βh∈Rn,1≤h≤m−1

m∑
h=1

(
αT

hy −
1
2
αT

hKαh − αT
hK̃(βh−1 − βh)

− 1
2
(βh−1 − βh)TK̄(βh−1 − βh)

)
s.t. C(τh − 1) ≤ αh,i ≤ Cτh, 1 ≤ h ≤ m, 1 ≤ i ≤ n,

βh,j ≥ 0, 1 ≤ h ≤ m, 1 ≤ j ≤ �,

where βh,j is the Lagrange multiplier from (11.31), K̃ ∈ Rn× with en-
tries K̃i,j = k(xi, xj), K̄ ∈ R× with entries K̄i,j = k(xi, xj), and βh =
(βh,1, . . . , βh,) ∈ R for h = 1, . . . ,m. The empirical SVM solution for the
conditional quantile function for quantile level τh is given by

fD,λ,τh
=

n∑
i=1

αh,iΦ(xi)+
∑

j=1

(βh−1,i−βh,i)Φ(xj) . �

11.2 Implementation Techniques

We saw in the previous section that SVM decision functions fD,λ are de-
termined via the solution of convex programs. Hence classical results about
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convex programs such as Lagrange multipliers, saddle points, and algorithms
to solve convex programs can be used to compute fD,λ. For details on convex
programs and related topics, we refer to Section A.6.5.

There are several standard numerical methods to solve convex programs.
The Nelder-Mead search (Nelder and Mead, 1965) is a versatile optimization
algorithm that can even be used to minimize continuous but non-differentiable
functions from Rn to R.1 The Nelder-Mead algorithm does not compute or
approximate gradients or Hessian matrices. It is based on the iterative con-
struction of a simplex with (n + 1) points, and the function values at the
points of this simplex are computed. Then the points of the simplex are iter-
atively changed by contraction, reflection, or expansion in an adaptive way.
The Nelder-Mead search is in general not fast because many function values
have to be evaluated before the simplex contracts to a point (i.e., before the
algorithm converges) but it is numerically stable and easy to use.

The idea of gradient descent algorithms is to start with an initial vector
α(0) for α. Then a sequence of vectors α(), � ∈ N, is iteratively computed
such that α(+1) is evaluated on the basis of α() and α(+1) is in the direction
where the gradient of g

(
α()
)

has steepest descent.
From a numerical point of view, algorithms such as Newton-Raphson are

inefficient to solve convex programs for large sample sizes n that need to store
the kernel matrix K into the RAM of the computer or use matrix inversions
of K. The main reason is that K is an n×n matrix and in general not sparse.
Hence, even if one takes the symmetry of K into account, one has to store
approximately n(n + 1)/2 coefficients. If 8 bytes are needed to store a single
coefficient in double precision, one needs approximately 4n(n+1) bytes to store
K on a computer. Table 11.1 clearly shows that the storage space needed to
store K increases substantially if n increases. For large data sets, say with at
least a million data points (xi, yi), it is not possible to store K in the RAM
of current standard PCs or on a small cluster of workstations. Data sets with
more than a million data points are now not unusual in bioinformatics or data
mining projects (see also Chapter 12). This is one reason why subsampling
strategies such as robust learning from bites (see Section 10.5) can be useful
for data sets of this size.

If the sample size n is small to moderate, interior point algorithms belong
to the most reliable and accurate optimization techniques. The main idea of
interior point algorithms when used to compute an empirical SVM solution
fD,λ is to solve the primal and the dual programs simultaneously. This is done
by gradually enforcing the Karush-Kuhn-Tucker conditions to iteratively find
a feasible solution. A vector α is called a feasible solution of a convex program
if α is an element of the set over which the optimization is carried out and if α
satisfies the constraints of the convex program. The duality gap between the
objective functions of the primal and the dual programs is used to determine
the quality of the current set of variables and to check whether the stopping

1 There are variants of the Nelder-Mead algorithm that can deal with constraints.
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Table 11.1. Relationship between sample size and space needed to store K.

Sample Size Storage Space
n 4n(n + 1)

100 40 KB
1000 4 MB

10000 400 MB
100000 40 GB

1000000 4 TB

criteria are fulfilled. For large-sized optimization problems, it is sometimes
necessary to use approximations of interior point algorithms.

If the sample size n is rather large, decomposition methods are often helpful
to compute fD,λ. As explained before, the kernel matrix K =

(
k(xi, xj)

) ∈
Rn×n is often fully dense and may be too large to be stored in the RAM
of a computer for large values of n. Decomposition methods are designed
to handle this difficulty by breaking the optimization problem into smaller
and manageable subproblems and solving these in an iterative manner. This
technique to tackle the numerical problem is commonly referred to as chunking
(Vapnik, 1982) or as subset selection. In other words, in contrast to many
optimization methods for convex problems, where the whole vector α ∈ Rn of
the dual problem is iteratively updated in each step, decomposition methods
modify only a subset of α in each iteration step. This subset, which is generally
denoted as the working set

B := {αj : j ∈ J ⊂ {1, . . . , n}, |J | = q},
leads to a relatively small subproblem to be minimized in each iteration step.

The idea of sequential minimal optimization proposed by Platt (1999) is
to use the decomposition method in an extreme manner: the optimization
step is done for only q = 2 points at each iteration step. At first sight, this
approach might look too simple to be useful, but the opposite is true. SMO
can be very effective for SVMs because the optimization problem for only two
points can often be calculated analytically. This eliminates calling an iterative
convex program optimizer at each iteration step, which can therefore save a
lot of computation time. To describe this method, let us consider the convex
problem

min
α∈(0,C)n

C

n∑
i=1

G
(αi

C

)
+

1
2
αTKα (11.32)

s.t.
n∑

i=1

αiyi = 0, (11.33)

where α = (α1, . . . , αn), G is some real-valued convex function, and K =(
k(xi, xj)

) ∈ Rn×n denotes a positive definite kernel matrix. This problem
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is typical for SVMs; see Example 11.4 and Exercise 11.3 on SVMs based on
the logistic loss for classification problems. The basic algorithm for an SMO-
type decomposition with |B| = q = 2 is then given by the following four steps.

Sequential Minimal Optimization Algorithm (SMO)

i) Find an initial feasible solution α(1) ∈ Rn fulfilling the constraints and
set � = 1.

ii) If α() solves the dual program with the desired numerical precision, then
stop. Otherwise, find a working set B() ⊂ {1, . . . , n} with |B()| = 2.

iii) Define A() := {α = (α1, . . . , αn) ∈ Rn : αj = α
()
j for j /∈ B()}. Solve

the following subproblem with respect to the two variables αj , j ∈ B():

min
α∈A(�)

C

n∑
i=1

G
(αi

C

)
+

1
2
αTKα

s.t.
n∑

i=1

αiyi = 0.

This optimization problem is equivalent to

min
α∈A(�)

C
∑

i∈B(�)

G(αi/C) +
1
2

∑
i∈B(�)

∑
j∈B(�)

αiαjk(xi, xj) + c
()
∗ +

∑
i∈B(�)

αic
()
i

s.t.
∑

i∈B(�)
αiyi = c

()
∗∗ ,

where

c
()
∗ = C

∑
i/∈B(�)

G(αi/C) +
1
2

∑
i/∈B(�)

∑
j /∈B(�)

αiαjk(xi, xj), (11.34)

c
()
i =

∑
j /∈B(�)

αjk(xi, xj), i ∈ B(), (11.35)

c
()
∗∗ =

∑
j /∈B(�)

αjyj . (11.36)

iv) Set α(+1) to be an optimal solution of the optimization problem given in
step iii). If the stopping rules of the algorithm are not yet met, increase �
to �+ 1 and go to step ii).

Of course, two problems are left open in this SMO-type decomposition al-
gorithm: how to select the working sets and how to specify stopping rules.
However, before we address these questions, let us first give an example for
the SMO-type decomposition for the special case of the hinge loss. Let us
further assume that there is a bias term b ∈ R to be estimated. The dual
problem is thus
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max
α∈Rn

αT1− 1
2
αTK̃α (11.37)

s.t. α ∈ [0, C]n and αTy = 0, (11.38)

where C is the upper bound, 1 := (1, . . . , 1) ∈ Rn, y = (y1, . . . , yn) ∈
{−1,+1}n, and K̃ :=

(
yiyjk(xi, xj)

) ∈ Rn×n (see Exercise 11.2). Let B ⊂
{1, . . . , n} and denote by 1B and 1Bc vectors with |B| and |Bc| coefficients,
respectively, all being equal to one. The first algorithm for an SMO-type de-
composition is then given by the following algorithm.

Sequential Minimal Optimization Algorithm 1 (ALG1)

i) Find α(1) ∈ Rn as an initial feasible solution. Set � = 1.
ii) If α() solves the dual program up to the desired numerical precision, stop.

Otherwise, find a working set B := {i, j} ⊂ {1, . . . , n} with |B| = 2. Define
the complement of B by Bc = {1, . . . , n}\B and α()

B and α()
Bc being the

subvectors of α() with index sets B and Bc, respectively.
iii) Solve the following subproblem with the dual variable αB , where we use

obvious matrix notation:

max
αB∈R2

[
αT

B (α()
Bc)T
] [1B

1Bc

]
− 1

2
[
αT

B (α()
Bc)T
] [ K̃B,B K̃B,Bc

K̃Bc,B K̃Bc,Bc

] [
αB

α
()
Bc

]

=
(
1B − K̃B,Bcα

()
Bc

)
αB − 1

2
αT

B K̃B,B αB + c

=
(
1B − K̃B,Bcα

()
Bc

) [αi

αj

]
− 1

2
[αi αj ]

[
K̃i,i K̃i,j

K̃j,i K̃j,j

] [
αi

αj

]
+ c

s.t. αB ∈ [0, C]2, αiyi + αjyj = −
∑

i∈Bc
α

()
i yi ,

where c is some constant independent of αB and[
K̃B,B K̃B,Bc

K̃Bc,B K̃Bc,Bc

]

is a permutation of K where rows and columns of K are permuted such
that K̃B,B ∈ R2×2 contains the elements of K with indexes (i, j) ∈ B×B.
The submatrices K̃B,Bc , K̃Bc,B , and K̃Bc,Bc are analogously constructed.

iv) Set α(+1)
B to be an optimal solution of the optimization problem given in

step iii) and set α(+1)
Bc := α

()
Bc . If the stopping rules of the algorithm are

not yet met, then increase � to �+ 1 and go to step ii).

Note that we denoted the working set by B instead of B() at every iteration
step because misunderstandings are unlikely, although the working set changes
from one iteration to another.

Now some results concerning the working set selection will be given. The
decomposition method clearly has the advantage compared to some other
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techniques to solve convex programs that this method can be used for data
sets with large sample sizes n without storing the kernel matrix K ∈ Rn×n or
K̃ ∈ Rn×n into the RAM of the computer. However, since only q components
of α ∈ Rn with q ( n are updated per iteration, the decomposition method
can suffer from slow convergence if n is large. In other words, even if any single
iteration step can be done fast, the overall computation time can be long if
many iteration steps are necessary. Hence it is essential to choose the working
sets in a suitable way to reduce the number of iterations and the computation
time. Some methods rely on a violation of the optimality condition for the
subproblems. Several gradient-based methods belong to this class of methods.
Recent research indicates that using a second-order approximation of the ob-
jective function to be optimized in the subproblems generally leads to faster
overall convergence.

We will now describe an algorithm for SVMs based on the hinge loss. The
dual program given in (11.37) and (11.38) is a quadratic program. Therefore,
a second-order approximation

g : Rn → R, g(α) :=
1
2
αTK̃α− αT1, α ∈ Rn, (11.39)

of the convex objective function to be minimized in the subproblems directly
relates to a decrease of the objective function. Let us denote the gradient of
g(α) by ∇g(α) = K̃α−1. To shorten the notation, we will often write ∇g(α)i

instead of
(∇g(α)

)
i
, i = 1, . . . , n.

One way to select the working set B is via a maximal violating pair that
will formally be defined in Definition 11.10. Often we will write B instead of
B() if misunderstandings are unlikely. The maximal violating pair algorithm
(Keerthi et al., 2001) can be described as follows.

Maximal Violating Pair Algorithm (ALG2)

i) Select two indexes i, j ∈ {1, . . . , n} such that

i ∈ arg max
{−yh∇g(α())h : h ∈ Iup(α())

}
,

j ∈ arg min
{−yh∇g(α())h : h ∈ Ilow(α())

}
,

where

Iup(α) :=
{
h ∈ {1, . . . , n} : αh > 0, yh = −1 or αh < C, yh = +1

}
,

Ilow(α) :=
{
h ∈ {1, . . . , n} : αh > 0, yh = +1 or αh < C, yh = −1

}
.

ii) Choose the working set B := {i, j}.
This technique to choose B is motivated by the Karush-Kuhn-Tucker con-

ditions (see Section A.6.5): a vector α ∈ Rn is a stationary point of the dual
program (11.37) and (11.38) if and only if there exists a number b ∈ R and
two vectors η = (η1, . . . , ηn) ∈ [0,∞)n and μ = (μ1, . . . , μn) ∈ [0,∞)n such
that
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∇g(α) + by = η − μ ,
ηiαi = 0,

μi(C − αi) = 0, i = 1, . . . , n.

Note that we can rewrite this condition as

∇g(α)i + byi ≥ 0, if αi < C,

∇g(α)i + byi ≤ 0, if αi > 0,

which is equivalent to

−yi∇g(α)i ≤ b, if i ∈ Iup(α),
−yi∇g(α)i ≥ b, if i ∈ Ilow(α).

Using these relations together with Y = {−1,+1}, we see that a feasible
vector a ∈ Rn is a stationary point of (11.37) and (11.38) if and only if

m(α) := max
i∈Iup(α)

−yi∇g(α)i ≤ min
i∈Ilow(α)

−yi∇g(α)i =: M(α) . (11.40)

Note that the maximum and the minimum in (11.40) are well-defined except
for the case where

∑n
i=1 yi ∈ {−n,+n}. For these special cases, the vector

(0, . . . , 0) ∈ Rn is the only feasible solution, and the iterative decomposition
method already stops at the first step, provided we initialize with (0, . . . , 0).

Definition 11.10. Consider a support vector machine based on the hinge loss
with dual problem (11.37) and (11.38).

i) A pair of indexes {i, j} ⊂ {1, . . . , n} with i �= j is called a violating pair
if i ∈ Iup(α), j ∈ Ilow(α), and yi∇g(α)i < yj∇g(α)j.

ii) A maximal violating pair is a violating pair such that the difference
yj∇g(α)j − yi∇g(α)i is maximized over all violating pairs.

A maximal violating pair is clearly a plausible choice of the working set B.
Hush and Scovel (2003) showed for K̃ positive semi-definite that the sequence(
g(α())

)
∈N

strictly decreases for SMO-type methods if and only if the work-
ing set B() is a violating pair in each iteration. Unfortunately, having a vi-
olating pair even a strict decrease of

(
g(α())

)
∈N

does not guarantee the
convergence to a stationary point for �→∞. There exist counterexamples2 if
the working set B is a violating pair but not a maximal violating pair.

In the following we will show that the maximal violating pair is related to a
first-order approximation of the objective function g(α) for an empirical SVM
solution for classification based on the hinge loss having the dual problem
(11.37) and (11.38). More precisely, the pair {i, j} selected by the maximal
violating pair algorithm satisfies
2 See, e.g., Chen et al. (2006, pp. 895ff.).
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{i, j} = arg min
B

Sub(B), (11.41)

where the subproblem Sub(B) is defined by

Sub(B) := min
dB

(∇g(α())
)T
B
dB (11.42)

s.t. dT
ByB = 0, (11.43)

dh ≥ 0, if α()
h = 0, h ∈ B, (11.44)

dh ≤ 0, if α()
h = C, h ∈ B, (11.45)

dh ∈ [−1,+1], h ∈ B, (11.46)

the minimization of Sub(B) is over all subsets B ⊂ {1, . . . , n} with |B| = 2,
and α()

B , dB , yB ∈ R2 are the subvectors of α(), d, y ∈ Rn, respectively, where
only coefficients with indexes in B are considered.

Now we will show that a maximal violating pair solves (11.41), provided
that there exists at least one violating pair. Let us define d := [dB , 0Bc ] ∈ Rn.
Then the objective function in (11.42) is obtained as a first-order approxima-
tion of g(α() + d) because

g(α() + d) ≈ g(α()) +
(∇g(α())

)T
d = g(α()) +

(∇g(α())
)T
B
dB . (11.47)

The constraint in (11.43) is from (α() + d)Ty = 0 and (α())Ty = 0. The
condition α ∈ [0, C]n leads to the inequalities (11.44) and (11.45), and (11.46)
avoids that the value of the objective function approaches −∞ because the
function in (11.42) is linear. It is not necessary to consider all n(n − 1)/2
possible subsets of {1, . . . , n} having two elements to find the optimal subset
because the maximal violating pair algorithm solves (11.41) in O(n) steps,
as can be seen as follows. For any set {i, j} ⊂ {1, . . . , n} with i �= j, define
d̂i := yidi and d̂j := yjdj in (11.42)–(11.46). The objective function becomes

(−yi∇g(α())i + yj∇g(α())j

)
d̂j . (11.48)

As di = dj = 0 is feasible for (11.42)–(11.46), the minimum of (11.48) is less
than or equal to zero. If yi∇g(α())i < yj∇g(α())j , then the term in (11.48)
is negative if and only if d̂j < 0 and d̂i > 0 because d̂i + d̂j = 0. From the
definition of Ilow(α) and Iup(α) and (11.44) and (11.45), this corresponds
to i ∈ Iup(α()) and j ∈ Ilow(α()). Furthermore, the minimum occurs at
d̂i = −d̂j = 1. Similar relations hold for yi∇g(α())i > yj∇g(α())j . Hence,
solving (11.41) is essentially the same as solving

min
{

min
{
0, yi∇g(α())i − yj∇g(α())j

}
: i ∈ Iup(α()), j ∈ Ilow(α())

}
= min

{
0,− max

i∈Iup(α(�))

(−yi∇g(α())i

)
+ min

i∈Ilow(α(�))

(−yi∇g(α())i

)}
.
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If we take (11.40) into account, we obtain that a maximal violating pair solves
(11.41), provided that there exists at least one violating pair.

We continue with considering the dual program (11.37) and (11.38) for
fD,λ based on the hinge loss. The objective function g in (11.39) is quadratic,
and

g(α() + d)− g(α()) =
(∇g(α())

)T
d+

1
2
dT∇2g(α())d

=
(∇g(α())

)T
B
dB +

1
2
dT

B

(∇2g(α())
)
B,B

dB (11.49)

equals the reduction of the value of the objective function. Therefore, we ob-
tain a selection method for the working set, taking the result of a second-order
approximation into account if we replace the objective function in (11.42) by
(11.49). We obtain the following second-order approximation algorithm

{i, j} = arg min
B

Sub(B), (11.50)

where the subproblem Sub(B) is given by

Sub(B) := min
dB

1
2
dT

B

(∇2g(α())
)
B,B

dB +
(∇g(α())

)T
B
dB (11.51)

s.t. dT
B yB = 0, (11.52)

dh ≥ 0, if α()
h = 0, h ∈ B, (11.53)

dh ≤ 0, if α()
h = C, h ∈ B, (11.54)

the minimum is taken over all sets B ⊂ {1, . . . , n} with |B| = 2, and
α

()
B , dB , yB ∈ R2 are the subvectors of α(), d, y ∈ Rn, respectively, where

only coefficients with indexes in B are considered. The box constraints from
(11.46) are removed because it will later be shown that the optimal value does
not converge to −∞. One hopes that (11.51)–(11.54) outperforms (11.42)–
(11.46), but there seems to be no way that avoids considering all working
sets having two elements to apply the second-order approximation algorithm.
Hence the following heuristic method (Fan et al., 2005) for an implementation
of a second-order approximation is promising because not all possible working
sets are considered.

Working Set Selection Algorithm (ALG3)

i) Select i ∈ arg maxh

{−yh∇g(α())h : h ∈ Iup(α())
}
.

ii) Consider Sub(B) as defined in (11.51)–(11.54) and select

j ∈ arg min
h

{
Sub({i, h}) : h ∈ Ilow(α()), yh∇g(α())h > yi∇g(α())i

}
.

(11.55)
iii) Choose B := {i, j} as the working set.



11.2 Implementation Techniques 429

If we use the same index i as in ALG2, we only have to check O(n) possible
candidates for the working set B to choose the index j. An alternative is to
choose j ∈ argM(α()) and search for the index i by a way similar to (11.55).

The following theorem shows that one can analytically solve (11.51)–
(11.54) such that the working set selection method ALG3 does not cost much
more than the algorithm ALG2. Recall that K =

(
k(xi, xj)

) ∈ Rn×n denotes
the kernel matrix and that K̃ :=

(
yiyjk(xi, xj)

) ∈ Rn×n. We denote the
(i, j)-elements of these matrices by Ki,j and K̃i,j , respectively.

Theorem 11.11. If L is the hinge loss, B = {i, j} is a violating pair, and
bi,j := Ki,i +Kj,j − 2Ki,j > 0, then (11.51)–(11.54) have the optimal value

−
(
yj∇g(α())j − yi∇g(α())i

)2
2 bi,j

of the objective function.

Proof. Define d̂i := yidi and d̂j := yjdj . From (11.52), we obtain d̂i = −d̂j ,
and the objective function in (11.51) becomes

1
2

[di dj ]
[
K̃i,i K̃i,j

K̃j,i K̃j,j

] [
di

dj

]
+
[
∇g(α())i ∇g(α())j

] [di

dj

]

=
1
2
(Ki,i +Kj,j − 2Ki,j)d̂2

j +
(
yj∇g(α())j − yi∇g(α())i

)
d̂j . (11.56)

Since Ki,i +Kj,j − 2Ki,j > 0 and B is a violating pair, we define the positive
constants

bi,j := Ki,i +Kj,j − 2Ki,j and ci,j := yj∇g(α())j − yi∇g(α())i . (11.57)

Thus, the function in (11.56) has a minimum at

d̂j = −d̂i = −ci,j
bi,j

< 0, (11.58)

and the value of the objective function Sub(B) in (11.51) equals −c2i,j/(2bi,j).
Moreover, d̂i and d̂j fulfill the constraints (11.53) and (11.54). Indeed, we
obtain for the case j ∈ Ilow(α()) that α()

j = 0 implies yj = −1 and hence
dj = yj d̂j > 0. This condition is required by (11.53). The other cases can
be treated in a similar way. Thus, d̂i and d̂j from (11.58) are optimal for
(11.51)–(11.54). ��

If the kernel matrixK is strictly positive definite, then the conditionKi,i+
Kj,j − 2Ki,j > 0 of Theorem 11.11 is valid for any pair {i, j} with i �= j. Note
that Theorem 11.11 enables us to write (11.55) as

j ∈ arg min
h

{
−c

2
i,h

bi,h
: h ∈ Ilow(α()), yh∇g(α())h > yi∇g(α())i

}
,
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where bi,h and ci,h are the constants defined in (11.57). If K is not strictly
positive definite, bi,j = 0 can occur. The following algorithm will address this
situation.

Note that (11.42)–(11.46) and (11.51)–(11.54) are only used to select the
working set B. Hence they do not have to fulfill the feasibility condition α()

i +
di ∈ [0, C] for all i ∈ B. However, feasibility must hold for the subproblem in
step iii) of ALG1 used to compute α(+1) after the working set is determined.

Now we will consider a general working set algorithm (Chen et al., 2006).

Working Set Selection Algorithm (ALG4)

i) Let h∗ : R → R be a measurable function that is strictly increasing on
the interval [0,∞) and fulfills h∗(0) = 0 and h∗(z) ≤ z for z ∈ [0,∞).

ii) Select B = {i, j} as the working set if i ∈ Iup(α()), j ∈ Ilow(α()), and

yj∇g(α())j − yi∇g(α())i ≥ h∗
(
m(α())−M(α())

)
> 0. (11.59)

A special case of ALG4 is obtained by choosing h(z) := σz, z ∈ R, where
σ ∈ (0, 1] is fixed. In other words, ALG4 uses in this case a “constant-factor”
violating pair as the working set.

Let us now consider the case where the kernel matrixK may not be strictly
positive definite; e.g., bi,j = 0 can happen for a linear kernel. The following
algorithm (Chen et al., 2006) for an SMO-type decomposition for the case of
classification based on the hinge loss consists of four steps. The main idea of
this approach is to slightly modify the subproblems if necessary (see (11.61))
to obtain an algorithm with nice properties.

Working Set Selection Algorithm (ALG5)
The steps i), ii), and iv) are the same as those in ALG1, but step iii) is
replaced by the following:

iii′) Let τ be a small positive number being constant for all iteration steps,
and define

b̃i,j := K̃i,i + K̃j,j − 2yiyjK̃i,j . (11.60)

If b̃i,j > 0, then solve the subproblem from step iii) of the algorithm ALG1
and set α(+1)

B to be the optimal point of this subproblem. If b̃i,j ≤ 0, then
solve the modified subproblem

max
(αi,αj)∈R2

(
1B − K̃B,Bcα

()
Bc

)T [αi

αj

]
− 1

2
[αi αj ]

[
K̃i,i K̃i,j

K̃j,i K̃j,j

] [
αi

αj

]

−τ − b̃i,j
4

(
(αi − α()

i )2 + (αj − α()
j )2
)

(11.61)

s.t. (αi, αj) ∈ [0, C]2, αiyi + αjyj = −
∑

i∈Bc
α

()
i yi ,

and set α(+1)
B to be the optimal point of this subproblem.
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Let us first show how the subproblem from step iii′) of ALG2 can be solved.
Using di = −dj , we obtain

τ − b̃i,j
4

∥∥αB − α()
B

∥∥2 =
τ − b̃i,j

2
d2

j . (11.62)

Define

b̃∗i,j :=

{
b̃i,j if b̃i,j > 0
τ otherwise,

(11.63)

and
c̃∗i,j := yj∇g(α())j − yi∇g(α())i > 0. (11.64)

Hence (11.61) is essentially a strictly convex optimization problem of the form

min
dj

1
2
b̃∗i,jd

2
j + c̃∗i,jdj

s.t. clow ≤ dj ≤ cup , (11.65)

where b̃∗i,j , c̃
∗
i,j > 0, clow < 0, and cup ≥ 0. The optimum of the quadratic

objective function is

d̄j = max
{
clow,−c̃∗i,j/b̃∗i,j

}
< 0. (11.66)

Therefore, once b̃∗i,j is defined in (11.63), both subproblems can easily be solved
no matter whether b̃∗i,j is positive or not.

Let us now check whether the value of the objective function actually
decreases if � increases. Some calculations using d̄j < 0, b̃∗i,j d̄j + c̃∗i,j ≥ 0 due
to (11.66) and ‖α(+1) − α()‖22 = 2d̄ 2

j yield that g(α)− g(α()) equals

d̄ 2
j

2
(
K̃i,i + K̃j,j − 2yiyjK̃i,j

)2 +
(
yj∇g(α())j − yi∇g(α())i

)
dj (11.67)

and

g(α(+1))− g(α()) = g(d̄j) =
1
2
b̃∗i,j d̄

2
j + c̃∗i,j d̄j = (b̃∗i,j d̄j + c̃∗i,j)d̄j −

b̃∗i,j
2
d̄ 2

j

≤ − b̃
∗
i,j

2
d̄ 2

j = − b̃
∗
i,j

4

∥∥α(+1) − α()
∥∥2

2
, � ∈ N.

We thus obtain the following result.

Lemma 11.12. Suppose that L is the hinge loss and that the working set B()

in algorithm ALG5 is a violating pair for all � ∈ N, and let
(
α())∈N be the

sequence generated by this algorithm. Then

g(α(+1)) < g(α())− δ∥∥α(+1) − α()
∥∥2

2
, � ∈ N, (11.68)

holds with
δ :=

1
4

min
{
τ,min{b̃i,j : b̃i,j > 0}}. (11.69)
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Theorem 11.13. Let L = Lhinge, and assume that K̃ ∈ Rn×n is positive
semi-definite, the working set of algorithm ALG5 is a violating pair, and τ ≤
2
C . If b̃i,j = 0, then the optimal solution of the subproblem in step iii′) from
ALG5 is the same as the optimal solution of the subproblem in step iii) from
ALG1.

Proof. Suppose b̃i,j = 0. From (11.67) and c̃∗i,j > 0, it follows that the sub-
problem from step iii) has the optimum at d̄j = clow. For the subproblem from
step iii′) and the problem in (11.65), it follows from b̃i,j = 0 that b̃∗i,j = τ .
Since K̃ is positive definite by assumption, we obtain

0 = b̃i,j = K̃i,i + K̃j,j − 2yiyjK̃i,j = ‖Φ(xi)− Φ(xj)‖2H ,

which gives Φ(xi) = Φ(xj). Hence k(xi, xh) = k(xj , xh) for all h = 1, . . . , n
implies

yj∇g(α())j − yi∇g(α())i

=
n∑

h=1

yhk(xj , xh)α()
h − yj −

n∑
h=1

yhk(xi, xh)α()
h + yi = yi − yj .

Now {i, j} is a violating pair. Hence yi − yj > 0 implies c̃∗i,j = yi − yj = 2. As
τ ≤ 2

C by assumption, (11.66) implies that d̄j = clow is the solution for the
step iii′). Hence both subproblems have the same optimal point. ��

Before we can state a result concerning the asymptotic convergence of
ALG5, we need the following result.

Lemma 11.14. Let L be the hinge loss, and assume that the working set in
each iteration of ALG5 is a violating pair. If a subsequence

(
α()
)
∈J

, J ⊂ N,
converges to ᾱ, then for any given s ∈ N, the sequence

(
α(+s)

)
∈J

converges
to ᾱ as well.

Proof. For the subsequence
(
α(+1)

)
∈J

from
(
α()
)
∈N

of Lemma 11.12 and
the fact that the sequence

(
g(α())

)
∈N

is bounded and decreasing, we obtain

lim
∈J, →∞

‖α(+1) − ᾱ‖ ≤ lim
∈J, →∞

(‖α(+1) − α()‖+ ‖α() − ᾱ‖)
≤ lim

∈J, →∞

(
δ−1/2
(
g(α())− g(α(+1))

)1/2 + ‖α() − ᾱ‖
)

= 0.

This yields α(+1) → ᾱ for � → ∞ and � ∈ J . By induction, we obtain the
convergence α(+s) → ᾱ, �→∞, and � ∈ J for any s ∈ N. ��

Note that the feasible region of (11.37) and (11.38) is compact due to
Heine-Borel’s Theorem A.2.4. Hence there exists a convergent subsequence of(
α()
)
. The limit point of any convergent subsequence is a stationary point

of (11.37) and (11.38), as the following result by Lin (2001) and Chen et al.
(2006) shows.
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Theorem 11.15. Let L be the hinge loss and
(
α()
)
∈N

be the infinite se-
quence generated by the SMO-type algorithm ALG5 using ALG4. Then any
limit point of

(
α()
)
∈N

is a stationary point of (11.37) and (11.38).

Proof. Assume that ᾱ is the limit point of a convergent subsequence
(
α()
)
∈J

,
J ⊂ N. If ᾱ is not a stationary point of (11.37) and (11.38), then it can not
satisfy the optimality condition (11.40). Hence a maximal violating pair (̄i, j̄)
exists such that

ī ∈ arg max
i∈Iup(α)

−yi∇g(α)i , j̄ ∈ arg min
i∈Ilow(α)

−yi∇g(α)i (11.70)

and
Δ := yj̄∇g(ᾱ)j̄ − yī∇g(ᾱ)̄i > 0. (11.71)

Let us further define the positive constant

Δ′ = min
{
Δ,

1
2

min
{∣∣ys∇g(ᾱ)s − yt∇g(ᾱ)t

∣∣ : ys∇g(ᾱ)s �=yt∇g(ᾱ)t

}}
.

(11.72)
Lemma 11.14, the continuity of ∇g(α), and h∗(Δ′/2) > 0 imply that, for any
given positive integer r, there exists an index �̄ ∈ J such that, for all � ∈ J
with � ≥ �̄, the following relationships are valid (we will only give details for
the derivation of (11.73) and (11.79), because the proofs to show the validity
of (11.74)–(11.78) are somewhat similar):

yj̄∇g(α(+u))j̄ − yī∇g(α(+u))̄i > Δ′ if u = 0, . . . , r, (11.73)

i ∈ Iup(α()), . . . , i ∈ Iup(α(+r)) if i ∈ Iup(ᾱ), (11.74)

i ∈ Ilow(α()), . . . , i ∈ Ilow(α(+r)) if i ∈ Ilow(ᾱ), (11.75)

yj∇g(α(+u))j − Δ′√
2
> yi∇g(α(+u))i for u = 0, . . . , r,

if yj∇g(ᾱ)j > yi∇g(ᾱ)i ,
(11.76)

∣∣yj∇g(α(+u))j − yi∇g(α(+u))i

∣∣ < h(Δ′) for u = 0, . . . , r,
if yj∇g(ᾱ)j = yi∇g(ᾱ)i ,

(11.77)

(τ − b̂i,j)‖α(+u+1) − α(+u)‖ ≤ Δ′ for u = 0, . . . , r − 1, where
b̂i,j := min{K̃i,i + K̃j,j − 2yiyjK̃i,j : K̃i,i + K̃j,j − 2yiyjK̃i,j < 0}, (11.78)

i /∈ Iup(α(+u+1)) or j /∈ Ilow(α(+u+1)),
if yj∇g(ᾱ)j > yi∇g(ᾱ)i and {i, j} is the working set at the

(�+ u)-iteration for u = 0, . . . , r − 1.
(11.79)

We will now derive (11.73). Lemma 11.14 shows that the sequences
(
α(+u)

)
∈J

for u = 0, . . . , r all converge to ᾱ. Now we use the continuity of ∇g(α) and
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(11.72) to obtain for any fixed u ∈ {0, . . . , r} and the corresponding subse-
quence

(
α(+u)

)
∈J

the existence of a constant ku ∈ N such that (11.73) is
satisfied for all values k ∈ J with k ≥ ku. Define �̄ := max{ku : u ∈ {0, . . . , r}}.
As r is finite, the validity of (11.73) follows.

Let us now consider (11.79). Similar to (11.40) for the problem (11.37) and
(11.38), we obtain for the subproblem at the (� + u)-th iteration, if the dual
subproblem (11.61) is considered and αB is a stationary point, that

max
t∈Iup(αB)

−yt

(
∇g
([

αB

α
(+u)
Bc

]))
t

− yt(τ − b̃i,j)
2

(
αt − α()

t

)

≤ min
t∈Ilow(αB)

−yt

(
∇g
([

αB

α
(+u)
Bc

]))
t

− yt(τ − b̃i,j)
2

(
αt − α()

t

)
.

Now B = {i, j} and α
(+u+1)
B is a stationary point of the subproblem that

fulfills the inequality above. Suppose that

i ∈ Iup(α(+u+1)) and j ∈ Ilow(α(+u+1)).

Then it follows from (11.78) and (11.62) that

yi∇g(α(+u+1))i

≥ yj∇g(α(+u+1))j − yi(τ − b̃i,j)
2

(
α

(+u+1)
i − α(+u)

i

)
+
yj(τ − b̃i,j)

2
(
α

(+u+1)
j − α(+u)

j

)
≥ yi∇g(α())i − τ − b̃i,j√

2

∥∥α(+u+1) − α(+u)
∥∥

≥ yj∇g(α())j − Δ′
√

2
. (11.80)

However, this is a contradiction to (11.76) because yj∇g(ᾱ)j > yi∇g(ᾱ)i

implies (11.76) for α(+u+1). If b̃i,j > 0 and the subproblem of step iii) of the
algorithm ALG1 is considered, then (11.80) has no term Δ′/

√
2 > 0 which

immediately gives the desired contradiction.
For notational convenience, let us now reorder the indexes of ᾱ such that

y1∇g(ᾱ)1 ≥ . . . ≥ yn∇g(ᾱ)n . (11.81)

Further, we define

Sup(�) :=
∑

i∈Iup(α(�))

i and Slow(�) :=
∑

i∈Ilow(α(�))

(n− i), (11.82)

which gives
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n ≤ Slow(�) + Sup(�) ≤ n(n− 1). (11.83)

Fix u ∈ {0, . . . , r}. If the pair {i, j} is selected at the (�+u)-th iteration, then
it will be shown that

yj∇g(ᾱ)j > yi∇g(ᾱ)i . (11.84)

Note that yj∇g(ᾱ)j < yi∇g(ᾱ)i is impossible because yj∇g(α(+u))j <
yi∇g(α(+u))i from (11.76) then violates (11.59). Equality in (11.84) would
give

yj∇g(α(+u))j − yi∇g(α(+u))i (11.85)

< h∗(Δ′) < h∗
(
yj̄∇g(α(+u))j̄ − yī∇g(α(+u))̄i

)
≤ h∗(m(α(+u))−M(α(+u))

)
. (11.86)

Here we used that h∗ is strictly increasing and (11.73) and (11.77) to obtain
the first two inequalities, and the last inequality in (11.86) results from ī ∈
Iup(ᾱ), j̄ ∈ Ilow(ᾱ), (11.74), and (11.75). However, (11.86) is a contradiction
to (11.59), which shows that (11.84) is valid.

Now we will use a counting procedure that gives a contradiction to (11.70)
and (11.71). Combining (11.84) and (11.79) shows that i /∈ Iup(α(+1)) or j /∈
Ilow(α(+1)) if we consider the iteration step from � to �+1. If i /∈ Iup(α(+1)),
then (11.74) implies i /∈ Iup(ᾱ) and hence i ∈ Ilow(ᾱ). From (11.75) and the
rule (11.59) to select the working set, it follows that i ∈ Ilow(α())∩ Iup(α()).
Thus we have

i ∈ Ilow(α()) ∩ Iup(α()) and i /∈ Iup(α(+1)).

Note that j − i ≤ −1 due to (11.81). Therefore, we obtain with j ∈ Ilow(α())
the inequalities

Sup(�+ 1) ≤ Sup(�) + j− i ≤ Sup(�)− 1 and Slow(�+ 1) ≤ Slow(�). (11.87)

In a similar manner, we get for the case j /∈ Ilow(α(+1)) that

j ∈ Ilow(α()) ∩ Iup(α()) and j /∈ Ilow(α(+1)).

For i ∈ Iup(α()), we have that

Sup(�+1) ≤ Sup(�) and Slow(�+1) ≤ Slow(�)+ (�− i)− (�− j) ≤ Slow(�)−1.
(11.88)

The same arguments can be used to go from iteration step (�+ 1) to (�+ 2)
because (11.79) can be used, as (11.84) holds for working sets selected during
the iteration steps � to � + r. Now (11.87) and (11.88) show that the term
Slow(�) + Sup(�) can be reduced to zero in r := n(n − 1) iterations, which
gives the desired contradiction to (11.83). Hence, the assumptions (11.70)
and (11.71) were wrong, which gives the assertion. ��

The next result (Chen et al., 2006) shows that the sequence
(
α()
)

is even
globally convergent under mild conditions.
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Corollary 11.16. Let L be the hinge loss function. If the matrix K̃ is strictly
positive definite, then

(
α()
)
∈N

globally converges to the unique maximum of
the dual problem (11.37) and (11.38).

Proof. Since K̃ is strictly positive definite, there exists a unique solution, say
ᾱ, of the dual problem (11.37)-(11.38). Suppose that the sequence

(
α()
)
∈N

does not globally converge to ᾱ. Then there exists a constant ε > 0 and an
infinite subset J ⊂ N such that ‖α()−ᾱ‖ ≥ ε for all � ∈ J . Since {α() : � ∈ J}
is in a compact set, there exists a further subsequence that converges to some
point, say α∗, with ‖α∗ − ᾱ‖ ≥ ε. We know by Theorem 11.15 that α∗ is
an optimal solution of (11.37)-(11.38). This gives the desired contradiction
because ᾱ is the unique global maximum. ��

The preceding corollary is quite useful for practical purposes, and we would
like to give an example. Suppose that we consider a data set with xi �= xj for
all 1 ≤ i < j ≤ n. Further, let us assume that a Gaussian RBF kernel is used.
Then the matrix K̃ is strictly positive definite and the sequence

(
α()
)
∈N

converges globally to the unique maximum of the dual problem.
The following result (Chen et al., 2006) shows that one can improve

Theorem 11.15 if the matrix K̃ is positive definite.

Theorem 11.17. Let L be the hinge loss, and K̃ be positive definite.

i) If ᾱ �= α̂ are any two optimal solutions of (11.37) and (11.38), then

yi

(∇g(ᾱ)
)
i
= yi

(∇g(α̂)
)
i
, i = 1, . . . , n, (11.89)

and
m(ᾱ) = M(ᾱ) = m(α̂) = M(α̂). (11.90)

ii) If there is an optimal solution ᾱ satisfying m(ᾱ) < M(ᾱ), then ᾱ is the
unique optimal solution of (11.37) and (11.38).

iii) The following set is independent of any optimal solution ᾱ:

I := {i ∈ {1, . . . , n} : −yi

(∇g(ᾱ)
)
i
> M(ᾱ) or − yi

(∇g(ᾱ)
)
i
< m(ᾱ)}.

(11.91)
Moreover, the problem (11.37) and (11.38) has a unique and bounded
optimal solution at αi, i ∈ I.

Proof. Since K̃ ∈ Rn×n is positive definite, the problem (11.37) and (11.38)
is a convex programming problem and ᾱ and α̂ are both global optima. Then

g(ᾱ) = g(α̂) = g(δᾱ+ (1− δ)α̂), for all δ ∈ [0, 1],

implies
(ᾱ− α̂)TK̃(ᾱ− α̂) = 0.

Now let us factorize K̃ = UUT, which is possible because K̃ is positive definite.
We obtain ‖UT(ᾱ−α̂)‖ = 0 and hence K̃ᾱ = K̃α̂. From this we obtain (11.89).
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To prove (11.90), we will show that

m(α̂) ≥M(ᾱ) and m(ᾱ) ≥M(α̂). (11.92)

With the optimality conditions M(ᾱ) ≥ m(ᾱ) and M(α̂) ≥ m(α̂), the equali-
ties in (11.90) hold. Due to symmetry, it is sufficient to prove the first case of
(11.92). If it is false, thenm(α̂) < M(ᾱ). We then investigate different cases by
comparing −yi∇g(ᾱ)i with M(ᾱ) and m(α̂). If m(α̂) < M(ᾱ) ≤ −yi∇g(ᾱ)i,
then i /∈ Iup(α̂) and

α̂i =

{
0 if yi = −1
C if yi = +1.

(11.93)

With 0 ≤ ᾱi ≤ C, we obtain

yi(α̂i − ᾱi) ≥ 0. (11.94)

If M(ᾱ) > m(α̂) ≥ −yi∇g(ᾱ)i, then i /∈ Ilow(ᾱ) and

ᾱi =

{
C if yi = −1
0 if yi = +1,

(11.95)

and (11.94) still holds.
The other indexes are in the set

S :=
{
i : m(α̂) < −yi∇g(α̂)i = −yi∇g(ᾱ)i < M(ᾱ)

}
.

If i ∈ S, then i /∈ Iup(α̂) and i /∈ Ilow(ᾱ). Hence (11.93) and (11.95) yield

yi(α̂i − ᾱi) = C, (11.96)

and thus

0 =
n∑

i=1

yiα̂i −
n∑

i=1

yiᾱi =
∑
i/∈S

yi(α̂i − ᾱi) + C|S|.

As C > 0 and (11.94) implies that each term in the sum above is non-negative,
we obtain |S| = 0 and α̂i = ᾱi for all i /∈ S. Thus, ᾱ = α̂. However, this is a
contradiction to the assumption that ᾱ and α̂ are different optimal solutions.
Therefore, m(α̂) < M(ᾱ) is wrong and we obtain m(α̂) ≥ M(ᾱ) in (11.92),
which completes the proof of (11.90).

The second result of the theorem and the validity of the set I follow from
(11.90). Moreover, the set I is independent of any optimal solution.

Assume that α is an optimal vector. If i ∈ I and m(α) ≤ M(α) <
−yi∇g(α)i , then i /∈ Iup(α) and αi is the same as α̂i in (11.93). Hence, the
optimal coefficient αi is unique and bounded. The case m(α) > −yi∇g(α)i

can be treated in a similar manner. ��
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Since in general the decomposition method approaches an optimum only
after an infinite number of iteration steps, there is a need to specify stopping
criteria to stop the iteration procedure after a finite number of steps. In gen-
eral, it is not wise to specify in advance the number of steps to be carried out
by the decomposition method because it is unknown how well the approxima-
tion of the optimum will be. In general, however, it can be useful to define an
upper bound for the number of iteration steps or for the computation time
and print an error message if the stopping criteria were not satisfied.

One possible stopping criterion is to specify in advance a small tolerance
value, say ε > 0, and stop the iteration process if

m(α())−M(α()) ≤ ε.
This stopping condition is quite plausible and commonly used due to its close-
ness to the optimality condition (11.40). The following result (Chen et al.,
2006) shows that this stopping condition can actually be achieved in a finite
number of iteration steps.

Theorem 11.18. Let L be the hinge loss, K̃ ∈ Rn×n be positive definite, and
suppose that the SMO-type decomposition method ALG5 using ALG4 gener-
ates an infinite sequence

(
α()
)
∈N

. Then

lim
→∞

m(α())−M(α()) = 0. (11.97)

Proof. Let us assume that the convergence in (11.97) is wrong. Then there
exists an infinite set J̄ and a constant Δ > 0 such that∣∣m(α())−M(α())

∣∣ ≥ Δ, k ∈ J̄ . (11.98)

In the SMO-decomposition method we have m(α()) > M(α()) for all � ∈ N,
and hence (11.98) can be rewritten as

m(α())−M(α()) ≥ Δ, k ∈ J̄ . (11.99)

In the set J̄ , there exists an infinite subset J such that

lim
∈J, →∞

α() = ᾱ.

Using the assumption that K̃ is positive definite, we obtain the global con-
vergence of ∇g(α()) by Theorem 11.17

lim
→∞

∇g(α())i = ∇g(ᾱ)i i = 1, . . . , n. (11.100)

Now we will use a counting approach similar to that of Theorem 11.15. First,
rewrite (11.99) as

m(α()) ≥M(α()) +Δ′, k ∈ J̄ , (11.101)
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where

Δ′ := min
{
Δ,

1
2

min
{|ys∇g(ᾱ)s − yt∇g(ᾱ)t| : ys∇g(ᾱ)s �= yt∇g(ᾱ)t

}}
> 0.

(11.102)
We still require (11.73)–(11.79) but use (11.100) and the definition of Δ′ in
(11.102) to extend (11.76) and (11.77) for all � ≥ �̄ (i.e., not only for � ∈ J):

yt∇g(α())t < ys∇g(α())s if yt∇g(ᾱ)t < ys∇g(ᾱ)s , (11.103)
|ys∇g(α())s − yt∇g(α())t| > Δ′ if yt∇g(ᾱ)t �= ys∇g(ᾱ)s , (11.104)

|ys∇g(α())s − yt∇g(α())t| < h∗(Δ′) if yt∇g(ᾱ)t = ys∇g(ᾱ)s . (11.105)

Then the proof follows Theorem 11.15 except (11.86), in which we need
m(α(+u)) −M(α(+u)) ≥ Δ′ for all u ∈ {0, . . . , r}. This condition does not
follow from (11.101), which holds only for a subsequence. Therefore, our goal
is to prove

m(α())−M(α()) ≥ Δ′, � ≥ �̄. (11.106)

Assume that there is a positive integer �′ ≥ �̄ such that m(α(′))−M(α(′)) ∈
(0,Δ′) and that {i, j} is the working set at this iteration step. Because i ∈
Iup(α(′)) and j ∈ Ilow(α(′)) from the selection rule, we have

M(α(′)) ≤ −yj∇g(α(′))j < −yi∇g(α(′))i ≤ m(α(′)). (11.107)

Using (11.104), we obtain that the set {i, j} and indexes achieving m(α(′))
and M(α(′)) have the same value of yt∇g(ᾱ)t and are all from the set{

t : yt∇g(ᾱ)t = yi∇g(ᾱ)i = yj∇g(ᾱ)j

}
. (11.108)

Note that for elements not in this set, (11.103), (11.104), and (11.107) yield

yt∇g(ᾱ)t < yi∇g(ᾱ)i implies (11.109)
−yt∇g(α(′))t > −yi∇g(α(′))i +Δ′ > m(α(′)) and t /∈ Iup(α(′)).

In a similar way, we obtain that

yt∇g(ᾱ)t > yi∇g(ᾱ)i implies t /∈ Ilow(α(′)). (11.110)

Because we have shown that the working set is from the set given in
(11.108), other coefficients remain the same from iteration step �′ to �′ + 1.
Hence, indexes satisfying (11.109) and (11.110) fulfill t /∈ Iup(α(′+1)) and
t /∈ Ilow(α(′+1)), respectively. Furthermore, indexes in (11.109) have larger
values of −yt∇g(α(′+1))t than others due to (11.103). Hence their values
of −yt∇g(α(′+1))t are greater than m(α(′+1)). Similarly, components in
(11.110) are smaller than M(α(′+1)). Using m(α(′+1)) > M(α(′+1)), we see
that indexes that achieve m(α(′+1)) and M(α(′+1)) are again from the set in
(11.108), and this is true for all � ≥ �′. Now, by (11.105) and the conditions
on h∗, we obtain
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m(α())−M(α()) < h∗(Δ′) ≤ Δ′, � ≥ �′.

This is the desired contradiction to (11.101), and thus (11.106) holds. ��
One can argue that a main advantage of decomposition methods is to

allow the computation of fD,λ even for large sample sizes n. However, the
actual computation time and the number of necessary iteration steps until the
stopping conditions are fulfilled can be quite large. Therefore, computational
techniques to speed up the computation time or to decrease the number of
iteration steps are desirable. Among such techniques, shrinking and caching
have been shown to be successful for SVMs.

Shrinking is based on the idea that if an index α()
i remains equal to 0 or

to C for many iteration steps then it may stay at this value. The size of the
optimization problem is reduced in shrinking algorithms without considering
some bounded Lagrange multipliers. This has the advantage that the decom-
position method then works on a smaller problem and hence a considerable
reduction of CPU time is sometimes possible. In addition, less memory is
used. Afterward, we have to add shrunken components back and must check
whether an optimal solution of the original problem is obtained.

Besides shrinking, a caching strategy can also be helpful to speed up the
computation of fD,λ for large sample sizes. Since K̃ ∈ Rn×n may then be
too large to be stored into the RAM of the computer, the elements of K̃
are calculated when they are needed. The idea is to use the cache and the
RAM of the computer (which allows relatively fast access to objects in it) to
store recently used elements K̃i,j . If in the final iterations only a small subset
of columns of K̃ are actually needed and if the cache contains them, the
computation of many kernel terms k(xi, xj) becomes superfluous. Of course,
this is especially interesting for SVMs having sparse solutions (i.e., if many
Lagrange multipliers are equal to 0). This is often true for SVMs based on
the hinge loss or on the ε-insensitive loss function.

The following result was shown by Chen et al. (2006).

Theorem 11.19. Let L be the hinge loss and K̃ ∈ Rn×n be positive definite,
and assume the SMO-type decomposition method ALG5 using ALG4. Let I be
the set of indexes defined in (11.91).

i) There exists an �̄ ∈ N such that, after � > �̄ iteration steps, every Lagrange
multiplier α()

i , i ∈ I, has reached the unique and bounded optimal solution.
It remains the same in all subsequent iterations, and i ∈ I is not an
element of the set{

t ∈ {1, . . . , n} : M(α()) ≤ −yt∇g(α())t ≤ m(α())
}
. (11.111)

ii) If (i) has an optimal solution ᾱ satisfying m(ᾱ) < M(ᾱ), then ᾱ is the
unique solution and the decomposition method reaches it in a finite number
of iterations.
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iii) If
(
α()
)
∈N

is an infinite sequence, then the following two limits exist and
are equal:

lim
→∞

m(α()) = m(ᾱ) = lim
→∞

M(α()) = M(ᾱ), (11.112)

where ᾱ is any optimal solution.

Proof. i). Suppose that the assertion is wrong. Then there exist an index ī ∈ I
and an infinite set Ĵ ⊂ N such that

α
()

ī
�= α̂ī , � ∈ Ĵ , (11.113)

where α̂ī is the i-th coefficient of the unique optimal solution according to
Theorem 11.17. Using Theorem 11.15, there is a set J ⊂ Ĵ such that

lim
∈J, →∞

α() = ᾱ (11.114)

is a stationary point. Furthermore, Theorem 11.17 implies that ᾱī = α̂ī for
i ∈ I; i.e., these coefficients are optimal and unique.

As ī ∈ I, let us first consider the case

M(ᾱ) < −yī∇g(ᾱ)̄i . (11.115)

In this situation, we have ī ∈ Iup(ᾱ), and (11.113) implies

ī ∈ Iup(α()) , � ∈ J. (11.116)

For each index j ∈ argM(ᾱ), we have j ∈ Ilow(ᾱ). It follows from (11.114)
that there an integer �̄ ∈ N such that

j ∈ Ilow(α()) , � ∈ J, � ≥ �̄. (11.117)

Thus, (11.116) and (11.117) imply

m(α())−M(α()) ≥ yj∇g(α())j − yī∇g(α())̄i , � ∈ J, � ≥ �̄. (11.118)

Now, by (11.114), the continuity of ∇g(α), and (11.97), and computing the
limit on both sides of (11.118), we obtain

0 ≥ yj∇g(ᾱ)j − yī∇g(ᾱ)̄i = −M(ᾱ)− yī∇g(ᾱ)̄i .

However, this inequality violates the inequality in (11.115) which gives the
desired contradiction. The proof for the case m(ᾱ) > −yī∇g(ᾱ)̄i is similar.

ii). Let us again assume that the assertion is false. Then
(
α()
)
∈N

is an
infinite sequence. It follows from Theorems 11.15 and 11.17 that ᾱ is the
unique optimal solution and α() globally converges to ᾱ if �→∞. Define the
index sets
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I1 :=
{
i ∈ {1, . . . , n} : M(ᾱ) = −yi∇g(ᾱ)i

}
,

I2 :=
{
i ∈ {1, . . . , n} : m(ᾱ) = −yi∇g(ᾱ)i

}
.

Using part i) of the theorem, we see that argm(α()) ⊂ I1∪I2 and argM(α())
⊂ I1 ∪ I2 provided � is sufficiently large. Now, by (11.97), the continuity of
∇g(α), and the convergence lim→∞ α() = ᾱ, there exists an integer �̄ ∈ N

such that for all � ≥ �̄
argm(α()) ∪ argM(α()) ⊂ I1 or argm(α()) ∪ argM(α()) ⊂ I2 . (11.119)

Suppose that argm(α())∪ argM(α()) ⊂ I1 at the �-th iteration. Then we can
use the same argument as in (11.107) and (11.108) to obtain that the working
set B is a subset of I1. The decomposition method maintains feasibility, thus∑

i∈B

yiα
()
i =
∑
i∈B

yiα
(+1)
i . (11.120)

From B ⊂ I1 and the assumption thatm(ᾱ) < M(ᾱ), every ᾱi, i ∈ B, satisfies
i /∈ Iup(α). Hence ᾱi = α̂i = 0, if yi = −1 and i ∈ B, and ᾱi = α̂i = C, if
yi = +1 and i ∈ B. If we combine this with (11.120), we obtain

‖α(+1) − ᾱ‖1
=
∑
i/∈B

|α(+1)
i − ᾱi|+

∑
i∈B, yi=+1

(C − α(+1)
i ) +

∑
i∈B, yi=−1

(α(+1)
i − 0)

=
∑
i/∈B

|α()
i − ᾱi|+

∑
i∈B, yi=+1

(C − α()
i ) +

∑
i∈B, yi=−1

(α()
i − 0)

= ‖α() − ᾱ‖1 . (11.121)

If argm(α()) and argM(α()) are both subsets of I2, the equation (11.121)
is still valid. Therefore, 0 �= ‖α() − ᾱ‖1 = ‖α(+r) − ᾱ‖1, r ∈ N, which gives
the desired contradiction to the fact that

(
α()
)

converges to ᾱ. Hence the
decomposition method stops after a finite number of iteration steps.

iii). Since
(
α()
)
∈N

is an infinite sequence, using the result of part ii) of
the theorem, we see that the dual problem (11.37) and (11.38) has no optimal
solution ᾱ with the property M(ᾱ) > m(ᾱ). Using Theorem 11.17, this yields

M(ᾱ) = m(ᾱ) = −yt∇g(ᾱ)t , t /∈ I. (11.122)

Note that this result is valid for any optimal solution ᾱ. Now, part i) of the
theorem guarantees the existence of �̄ ∈ N such that, for all � ≥ �̄, the index
i ∈ I is not an element of the set in (11.111). Therefore, the set in (11.111) is
contained in the index set I ′ := {1, . . . , n}\I and

min
i∈I′
−yi∇g(α())i ≤M(α()) < m(α()) ≤ max

i∈I′
−yi∇g(α())i . (11.123)

Although the sequence
(
α()
)
∈N

may not be globally convergent, the se-
quences

(−yi∇g(α())i

)
∈N

, i = 1, . . . , n, are according to (11.89). The limits
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of both sides of (11.123) are equal due to (11.122). Hence (11.112) follows and
the assertion of part iii) is shown, which completes the proof. ��

The preceding theorem shows, for SVMs based on the hinge loss, that
the SMO-type decomposition method involves only indexes from I ′ in many
iteration steps, which makes caching successful for this loss function. Recall
that we know from Chapter 8 that the property of the hinge loss function
being equal to zero in a whole interval implies that fD,λ =

∑n
i=1 αiΦ(xi) is

usually sparse (i.e., many coefficients αi are equal to 0) and this implies that
caching can be effective. This theorem also illustrates two possible shrinking
implementations for SVMs based on the hinge loss function. (i) Elements not
in the set (11.111) are removed. This is done by the software LIBSVM (Chang
and Lin, 2004). (ii) Any αi that has stayed at the same bound for a certain
number of iterations is removed. This strategy is implemented in SVMlight

(Joachims, 1999). We also refer to Section 11.4 for additional information
regarding these software products. Caching and shrinking can probably offer
such a big gain in computing fD,λ only for loss functions that allow a sparse
representation of fD,λ.

11.3 Determination of Hyperparameters

In this section, we consider some techniques for determining suitable combina-
tions of the hyperparameters for SVMs. There exists a vast body of literature
regarding the choice of hyperparameters for SVMs. Here we will only con-
sider a few facets of how to choose such hyperparameters for classification
and regression problems.

The quality of the estimator RL,D(fD,λ) for the unknown risk RL,P(fP,λ)
and the precision of predictions fD,λ(x) for the unknown values fP,λ(x) for
unseen x ∈ X critically depend not only on the data set D used for train-
ing purposes, the loss function, and the kernel but also on the choice of the
hyperparameters such as the regularizing parameter λ > 0, kernel parame-
ters, and parameters of the loss function. Examples are thus the value of γ
for the Gaussian RBF kernel and ε used by the ε-insensitive loss function in
regression. Unfortunately, choosing these hyperparameters in an optimal way
usually requires computing fD,λ for many combinations of the hyperparame-
ters. In other words, it is necessary to solve not just one convex problem but
a series of them. This increases the computational effort for the use of SVMs
in practice.

Let us first consider SVMs for regression based on the ε-insensitive
loss function. There exists a linear relationship between the noise level
of P(y|x) and the optimal value of ε for support vector regression using
L = Lε-insens (Smola et al., 1998). Of course, P is unknown; otherwise we
would probably not use Lε-insens, but, for example, the maximum likelihood
loss L
(
x, y, f(x)

)
= − ln p

(
y−f(x)

)
if P has a density function p. There exists
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a modification of the SVM based on Lε-insens called ν-support vector regres-
sion exploiting this relationship. The idea is to modify (11.1) such that the
hyperparameter ε becomes a variable of the optimization problem including
a specific additional term in the primal objective function that attempts to
minimize ε. For Lε-insens and the case with an additional offset term b ∈ R,
the problem (11.1) is thus modified to

inf
f∈H, b∈R, ε>0

EDL
(
Y, f(X) + b

)
+ λ‖f‖2H + νε (11.124)

for some ν > 0. Define C = 1/(2nλ). Then we obtain the equivalent problem

min
α, ξ+, ξ−∈Rn, b∈R, ε>0

C

n∑
i=1

(
ξ+i + ξ−i

)
+

1
2
‖w(α)‖2H + Cnνε

s.t. ξ+i ≥ 0, ξ+i ≥ yi − 〈w(α), Φ(xi)〉H − b− ε,
ξ−i ≥ 0, ξ−i ≥ 〈w(α), Φ(xi)〉H + b− yi − ε, ∀i.

The dual program becomes

max
α+, α−∈Rn

n∑
i=1

(α+
i − α−

i )yi − 1
2

n∑
i=1

n∑
j=1

(α+
i − α−

i )(α+
j − α−

j )k(xi, xj)

s.t. α+
i , α

−
i ∈ [0, C],

n∑
i=1

(α+
i − α−

i ) = 0,
n∑

i=1

(α+
i + α−

i ) ≤ Cnν, ∀i.

A pendant to ν-support vector regression exists for classification problems.
We will now consider the determination of a suitable combination of hy-

perparameters as an optimization problem and will summarize empirical re-
sults when we compare different numerical methods to solve this optimization
problem. We will concentrate on classification and regression problems. A rea-
sonable choice of the hyperparameters depends on the criteria used to measure
their quality. One useful criterion is the accuracy . In classification problems,
the accuracy is often measured by the empirical misclassification rate. One
can also use the modification of TV-SVM described in Definition 8.20. In
regression problems, the empirical L-risk or the empirical L-risk based on a
suitable calibrated loss function are often used as accuracy criteria in regres-
sion problems.

Note that fD,λ ∈ H and the predictions ŷ = fD,λ(x) ∈ R depend on
the hyperparameters. As the derivative of both target functions on the hy-
perparameters is usually unknown, the optimal parameters have to be found
numerically. The following six methods are often used to determine suitable
hyperparameters and will be briefly described: random search, grid search,
Nelder-Mead search, cross-validation, a heuristic search, and pattern search.

The simplest version of a random search can be described as follows. A
random point of the parameter space is chosen, and the value of the objective
function is evaluated. This is repeated N times, and the best point is taken
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as the result (i.e., this point is considered as a suitable choice of the hyperpa-
rameters). Of course, the result of this search strongly depends on the chosen
random points and on the number of random points. The random points for
which the objective function is evaluated can be drawn, for example, from a
multivariate normal distribution with the center of the search space as the
mean.

Optimization by the grid search is also very simple. After the search space
(i.e.; the set of all possible combinations of the hyperparameters) is specified,
each search dimension is split into ni parts. Often these splits are equidistant
or geometrically distributed. The intersections of the splits—which form a
(multi-)dimensional grid—are the trial points for which the objective function
is evaluated. The best point is taken as the result. It is possible to use a two-
stage grid search. The first grid covers a broad region of the space of possible
hyperparameters, but this grid is relatively rough. The best point of the first
grid is used as the center of a second and finer grid, and the best point of
the second grid is taken as the result. Properties of grid searches are now
relatively well investigated. The danger that the algorithm will only find a
local optimum far away from the optimum is relatively small, provided the
grid covers a broad region and that the grid is fine enough. Of course, searches
with a fine grid for large data sets are very time-consuming, if at all possible.

The Nelder-Mead algorithm proposed by Nelder and Mead (1965) con-
structs a simplex of m+1 points for an m-dimensional optimization problem.
There are variants of the Nelder-Mead algorithm that allow for constraints.
For the determination of hyperparameters for SVMs, we typically have 1 ≤
m ≤ 4 for classification and regression problems. The functional values are cal-
culated for the vertices of the simplex, and the worst point is reflected through
the opposite side of the simplex. If this trial point is best, the new simplex
is expanded further out. If the function value is worse, then the second-worst
point of the simplex is contracted. If no improvement at all is found, the
simplex is shrunken toward the best point. The iteration terminates if the dif-
ferences in the function values between the best and worst points are smaller
than a pre-specified tolerance value. There is the danger that the algorithm
will only find a local optimum.

Cross-validation is also a standard technique for finding a suitable set of
hyperparameters, especially for small- to moderate-sized data sets. The data
set is randomly divided into � (e.g.; � = 10) disjoint subsets of equal size,
and each subset is used once as a validation set, whereas the other � − 1
sets are put together to form a training set. In the simplest case, the average
accuracy of the � validation sets is used as an estimator for the accuracy of the
method. The combination of the hyperparameters with the best performance
is chosen. As Schölkopf and Smola (2002), among others, explain, there are
some possible disadvantages regarding cross-validation, although it is quite
often used in practice. One reason is the obvious danger of overfitting because
the training data sets and the validation data sets are related to each other.
Another point is that a suitable set of hyperparameters obtained for a data
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set of size n may differ from a suitable set of hyperparameters obtained for
subsets of this data set of size (1− 1/�)n. Often, the smaller data set used for
training purposes needs a slightly stronger regularization (e.g., a larger value
of λ) and suitable parameters for the kernel and the loss function also may be
slightly different.

Many heuristic choices have been proposed for the hyperparameters of
SVMs. One approach was proposed by Cherkassky and Ma (2004). Their
proposal is based on both theoretical considerations and empirical results.
The following suggestions for the regularization parameter C, the width of
the ε-insensitive loss, and the bandwidth parameter γ of the Gaussian RBF
kernel are suited for the case where all input variables are scaled to the in-
terval [0, 1]. They can easily be adjusted to non-scaled data. Regarding the
regularization parameter C, Cherkassky and Ma (2004) agree with the find-
ings of Mattera and Haykin (1999) that C should be chosen according to
the range of the values of the response variable in the training data. Since
the range is not robust against outliers, Cherkassky and Ma (2004) propose
ε := 3σ

√
(lnn)/n and C := max {|ȳ − 3σy|, |ȳ + 3σy|}, where ȳ and σy denote

the mean and the standard deviation of the responses yi in the training data,
respectively. Note that this choice of C does not result in a null sequence (λn)
if n→∞. In practice, σy will be unknown and must be estimated. To accom-
plish this, Cherkassky and Ma (2004) proposed a nearest-neighbor regression
where the number of neighbors is chosen between 3 and 7. The noise will then
be estimated using the residuals of this regression. As Cherkassky and Ma
(2004) base all their considerations on the RBF kernel, the kernel parameter
γ must also be determined. It is chosen depending on the number of input
variables of the regression problem, its dimension d, as γ =

√
2c1/d, where

c is a some constant between 0.1 and 0.5, for which good SVM performance
can be achieved. This heuristic method has the advantage that the choice
of the hyperparameters can be accessed directly from the data, which allows
relativly fast computation. The authors give several numerical examples that
show the power of their approach when used on artificial data. It seems to be
unknown, however, whether their heuristic choice of (C, ε, γ) is always suitable
when applied to real-life data.

Momma and Bennett (2002) proposed the pattern search algorithm as
a directed search method to determine the hyperparameters for SVMs. It
examines points in the parameter space that are arranged in a pattern around
the actual optimal point. The pattern depends on the number of parameters
in the SVM. For SVMs based on the hinge loss and a Gaussian RBF kernel
using the logarithms of the parameter value, the pattern with four elements

M =
(

1 0 −1 0
0 1 0 −1

)

can be used to construct a pattern in the parameter space (C, γ). For the
three hyperparameters C, ε, and γ for an SVM based on the ε-insensitive loss
and the Gaussian RBF kernel, this pattern can be expanded to
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M∗ =

⎛
⎝ 1 0 0 −1 0 0

0 1 0 0 −1 0
0 0 1 0 0 −1

⎞
⎠ .

The columns of M and M∗ describe the change applied to a given parameter
vector q = (C, γ)T or q∗ = (C, ε, γ)T. This means that only one parameter is
changed at a time. The pattern search algorithm itself works as follows.

i) Initialization. Choose a start pattern center q(0) and compute the value of
the function to be minimized g(q(0)). Furthermore, choose a factor Δ(0)

that denotes the expansion of the pattern and τ , the expansion at which
the algorithm should stop.

ii) Optimization step. Compute q
(k+1)
i := q(k) + Δ(k)mi for all columns

mi of M and the corresponding g(q(k+1)
i ). If min g(q(k+1)

i ) < g(q(k)),
set q(k+1) := arg min g(q(k+1)

i ) and Δ(k+1) := Δ(k). Otherwise, set
q(k+1) := q(k) and Δ(k+1) := Δ(k)/2 and proceed to the stopping rule.

iii) Stopping rule. IfΔ(k) < τ , stop the algorithm. Otherwise, perform another
optimization step.

The algorithm searches the parameter space pattern-wise and memorizes the
best hyperparameter combination it comes across. If the center of the pattern
is optimal, the pattern will be made smaller, which corresponds to a finer grid
search. If the pattern is small enough, the algorithm will stop. In principle, the
pattern search works similar to a grid search, but it only makes calculations
for a subset of the grid points. By choosing the direction of the steepest
descent among pattern points, it will omit a lot of grid points, which may
lead to unsatisfactory results when their respective parameter combinations
are applied to the data. Furthermore, a more exhaustive search will be done
automatically in the region of interest. This can lead to computational savings,
but there is the danger that the algorithm will only find a local optimum.

Besides the accuracy, the number of evaluations (i.e., the number of com-
binations of the hyperparameters which are tested in order to find the best
combination of the hyperparameters) is also important for practical purposes
when several methods are compared.

To the best of our knowledge, there is currently no practical method known
that chooses the hyperparameters of SVMs in an optimal manner for all data
sets and is applicable for sample sizes of any size. Nevertheless, a few general
results concerning how to find suitable hyperparameters for SVMs based on
numerical research3 for benchmark data sets and simulated data sets may be
in order. Although for every fixed combination of hyperparameters we have
a convex optimization problem to determine an empirical SVM solution, we
are in general faced with a non-convex problem when we optimize over the
hyperparameters. Typically, there is no single optimal choice of the hyper-
parameters but a connected region of close to optimal values. The change in

3 See Christmann et al. (2005).
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the level of the target function is sometimes approximately parallel to the
input parameters, which seems to be one explanation why a pattern search
often performs well. If computationally feasible, a fine grid covering a broad
range of the parameter space or a two-stage grid often gives a suitable set of
hyperparameters, but at a high computational cost. The Nelder-Mead search
sometimes performs very poorly if the parameters for inflation or deflation of
this algorithm are inappropriately chosen. Some practitioners do not care too
much about possible disadvantages of cross-validation because this method of-
ten gives good results even if the resulting hyperparameters are not adjusted.

11.4 Software Packages

There exist well-established numerical packages (e.g., NAG and IMSLTM) that
can be used to solve convex or quadratic programs. An advantage of these
software products is that they are in general numerically very stable. Some
of these packages contain routines that are designed for large sparse systems,
but this property is usually not needed to compute fD,λ as the kernel matrix
K is dense (i.e., most coefficients Ki,j = k(xi, xj) do not equal zero). One can
argue that some commercial packages for general use have the disadvantages
of a high price and a relatively large computation time for the determination
of fD,λ because these programs are not specifically designed for SVMs.

Now we will mention a few implementations that were designed for solving
the numerical problems of SVMs. A much longer list of programs to compute
SVMs can be found, for example, on the websites www.kernel-machines.org4

and www.support-vector-machines.org. Note that it is often helpful to scale
all input variables to increase numerical stability, provided the implementation
does not automatically scale the data.

LIBSVM

Chang and Lin (2004) developed a user-friendly library called LIBSVM for
the computation of SVMs. This software is able to fit SVMs for classifica-
tion, regression, and distribution estimation problems, is programmed in C++
and Java, and belongs to the state-of-the-art software tools that are currently
available for SVMs. In particular, the use of the hinge loss and the ε-insensitive
loss is possible, as well as using ν-support vector machines. Updates are reg-
ularly available. This software is partially based on Fan et al. (2005). LIBSVM
has the advantage that there are interfaces to several other software tools; e.g.,
to R, MATLAB R©, Python, Perl, and the data mining software Weka. There exists
a bundle of related programs called LIBSVM Tools and a graphical interface
that is very suitable for demonstrating SVM classification and regression to
4 In March 2008, there were around 45 software tools for SVMs mentioned on this

website.
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students. Additionally, there is a useful practical guide for SVM classification
available written mainly for beginners.

SVMlight

Joachims (1999) developed SVMlight, which was one of the first implementa-
tions to make SVMs applicable in classification and regression problems for
large data sets. It is written in C. In particular, one can use the hinge loss
and the ε-insensitive loss function. Currently, SVMlight is one part of the soft-
ware SVMstruct developed by the same author, which is a collection of SVM
algorithms for predicting multivariate or structured outputs. It performs su-
pervised learning by approximating a mapping from the input space X to
the output space Y using labeled training examples (x1, y1), . . . , (xn, yn). Un-
like regular SVMs, however, which consider only univariate predictions as in
classification and regression, SVMstruct can predict complex objects y such as
trees, sequences, or sets. Examples of problems with complex outputs are nat-
ural language parsing, sequence alignment in protein homology detection, and
Markov models for part-of-speech tagging. The SVMstruct algorithm can also
be used for linear-time training of binary and multi-class SVMs using a linear
kernel. SVMstruct can be thought of as an API for implementing different kinds
of complex prediction algorithms. SVMmulticlass is for multi-class classification
problems, SVMmap has the goal of learning rankings, and SVMperf is useful for
learning a binary classification rule that directly optimizes the area under the
receiver operating characteristic (ROC) curve or other criteria.

R

The statistical software package R (R Development Core Team, 2006) can be
used to compute SVMs for classification and regression problems provided the
function svm developed by D. Meyer from the add-on package e1071 is used.
This function is based on LIBSVM and uses methods developed by Fan et al.
(2005). Together with the graphical routines provided by R, this implemen-
tation for SVMs is from our point of view especially appropriate for small to
moderate sized data sets, for running simulation studies for small data sets,
and can easily be used by students. We also like to mention two other R pack-
ages. klarR developed at the Department of Statistics of the University of
Dortmund contains an interface to SVMlight and the package svmpath devel-
oped by T. Hastie from the Stanford University can be used to compute the
entire regularization path for an SVM based on the hinge for small data sets.

mySVM

Rüping (2000) developed the implementation mySVM for SVMs for classifica-
tion, regression, and distribution estimation problems. This implementation
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is based on SVMlight. The software can also be used for SVMs based on the
pinball loss for quantile regression if the options epsilon=0, L+= 1 − τ , and
L-= τ are specified for the pinball loss function Lτ -pin. There exists a Java
implementation of mySVM designed to run inside of a database.

myKLR

Keerthi et al. (2005) developed a fast SMO-type algorithm for SVMs based on
the logistic loss function for classification purposes. The algorithm uses many
technical tricks and special properties of this particular loss function to solve
the dual problem efficiently. The software myKLR is an implementation of this
algorithm and was written by Rüping (2003). This implementation is much
faster than quasi-Newton algorithms such as the Broyden-Fletcher-Goldfarb-
Shanno algorithm with bound constraints applied to the primal problem for
large data sets. Nevertheless, myKLR needs considerably more computation
time than comparable SMO algorithms for SVMs based on the hinge loss. This
is due to the fact that the empirical solution of SVMs based on the logistic
loss is not sparse and that a convex and not (only) a quadratic optimization
problem as for the case of the hinge loss must be solved.

LS-SVMlab

LS-SVMlab is a toolbox for SVMs based on the least squares loss function
and uses methods described in the textbook by Suykens et al. (2002). This
software is written in MATLAB R© and C and contains besides implementations to
solve SVMs in classification and regression problems routines for kernel-based
principal component analysis.

11.5 Further Reading and Advanced Topics

Section 11.1, which showed that empirical SVM decision functions fD,λ are
solutions of special convex or even quadratic programs with constraints, is
mainly based on Schölkopf and Smola (2002), Cristianini and Shawe-Taylor
(2000), and Smola and Schölkopf (2004). More details on kernel logistic re-
gression can be found in Keerthi et al. (2005). We refer to Schölkopf et al.
(2000) and Smola and Schölkopf (2004) for additional information regarding
ν-support vector regression and related topics and to the textbook by Suykens
et al. (2002) for SVMs based on the least squares loss. For quantile regres-
sion, we refer to Koenker and Bassett (1978), He (1997), Koenker (2005), and
Takeuchi et al. (2006). For problems with monotonicity constraints, we refer
to Takeuchi et al. (2006).

Section 11.2, on implementation techniques to compute SVMs, is mainly
based on Keerthi et al. (2001), Fan et al. (2005), and Chen et al. (2006).
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These papers also investigate generalizations of the algorithms given here.
Chen et al. (2006) also offer results that show that we “only” have linear
convergence for decomposition methods based on the algorithm WSS2 for
SVMs based on the hinge loss. Many of these results are valid for SVMs based
on the ε-insensitive loss function and for one-class SVMs, too. We conjecture
that this is also true for SVMs based on the pinball loss, but as far as we know,
this has not yet been proven. For additional details on decomposition methods,
we refer to Osuna et al. (1997), Joachims (1999), and Platt (1999). Some
improvements for Platt’s SMO algorithm for SVM classifiers were proposed by
Keerthi et al. (2001). The optimization problem (11.41) related to the maximal
violating pair algorithm was probably first considered by Joachims (1999). List
and Simon (2004) give a general convergence theorem for the decomposition
method. Hush and Scovel (2003) propose a polynomial-time decomposition
algorithm for SVMs and prove necessary and sufficient conditions for stepwise
improvement of their algorithm. For general polynomial time decomposition
algorithms, we refer to List and Simon (2007). As far as we know, it is not
yet known whether existing SVM algorithms satisfy the conditions, but the
authors also provide an algorithm that fulfills the conditions. Let c(K̃) denote
the maximum of the norms of the (2×2) submatrices determined by restricting
K̃ from the dual program to two indices. If the constant C = 1/(2nλ) satisfies√

1/2 ≤ C ≤ nc(K̃), then this algorithm for the computation of an empirical
SVM solution based on the hinge loss needs at most 4c(K̃)C2n4/ε iterations
with a guaranteed precision of ε. For a formal analysis of stopping criteria of
decomposition methods for SVMs, we refer also to Lin (2002a), Chen et al.
(2006), and List et al. (2007).

For leave-one-out estimates, we refer to Schölkopf and Smola (2002,
Chapter 12), Joachims (2002), and Mukherjee et al. (2006). Seeger (2007)
proposed cross-validation optimization for large-scale hierarchical classifica-
tion kernel methods, and the kernel hyperparameters are chosen automati-
cally by maximizing the cross-validation log likelihood in a gradient-based
way. Keerthi et al. (2007) proposed an efficient method for gradient-based
adaptation of the hyperparameters. Davies et al. (2008) discussed general
nonparametric regression as an example of model choice.

There is a large and rapidly increasing body of literature on implemen-
tion techniques for SVMs. Much more information than in Section 11.2 can
be found for example in Schölkopf and Smola (2002, Chapter 10) and Cris-
tianini and Shawe-Taylor (2000, Chapter 7). Keerthi et al. (2005) proposed
a fast dual algorithm for SVMs based on the logistic loss for classification
based on an SMO decomposition. This algorithm is implemented in the
software myKLR (Rüping, 2003). An overview of SVM solvers is given by
Bottou and Lin (2006). Joachims (1999), Osuna and Girosi (1999), Platt
(1999), Huang et al. (2006), and Bottou et al. (2007) describe techniques
especially designed for making SVMs applicable for large data sets. Joachims
(2002) considers fast algorithms for SVMs in the context of text classification.
Smola and Schölkopf (2004) describe methods for the numerical computation



452 11 Computational Aspects

of SVMs, with special emphasis on regression problems. For data sets with
millions of data points, a subsampling strategy such as robust learning from
bites may be useful, too.

Most literature on computational aspects of SVMs currently concen-
trates on solving the dual optimization problem, but there is increasing
interest also in algorithms that solve the primal problem of SVMs. Man-
gasarian (2002) proposed a finite Newton method for classificaton purposes.
Keerthi and DeCoste (2005) proposed an algorithm to solve the primal prob-
lem of linear SVMs based on the least squares loss function; see also Suykens
et al. (2002) for such SVMs. Joachims (2006) developed an algorithm and
software to train linear SVMs in linear time. Chapelle (2007) argued that
the primal problem can often be solved efficiently both for linear and non-
linear SVMs. This also offers the opportunity to investigate new families of
algorithms for large-scale SVMs.

Corresponding to the large number of implementation techniques that were
proposed for the numerical computation of fD,λ, there exist many software
implementations. A longer list of implementations than the one we gave for the
computation of SVMs and related methods can again be found on the websites
www.kernel-machines.org and www.support-vector-machines.org.

If the number of input variables d is very large, feature selection can be
helpful to increase the precision and to decrease the computational burden of
SVMs. Many researchers proposed feature selection methods or compared such
methods. A general framework for feature selection is described by Schölkopf
and Smola (2002, Chapter 14). We refer to Guyon et al. (2002) for recursive
feature elimination in the context of gene selection for cancer classification us-
ing SVMs. Krishnapuram et al. (2004) considered joint feature selection and
classifier design in the context of gene expression analysis, and Hochreiter
and Obermayer (2004) applied SVMs in the context of gene selection for mi-
croarray data. Neumann et al. (2005) considered combined SVM-based fea-
ture selection and pattern recognition. Their approach is based on additional
regularization and embedded nonlinear feature selection and uses difference
of convex functions programming from the general framework of non-convex
continuous optimization. Cai et al. (2007) compared several feature selection
and classification algorithms to identify malicious executables and found SVM
classifiers to be superior in terms of good prediction accuracy, short training
time, and low danger of overfitting. Song et al. (2007) investigated supervised
feature selection via dependence estimation.

11.6 Summary

The empirical SVM decision function fD,λ is defined as the solution of a
minimization problem over an infinite-dimensional reproducing kernel Hilbert
space H that can have an infinite dimension. Nevertheless, fD,λ can be eval-
uated numerically by solving a finite-dimensional convex program.
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Many classical numerical algorithms for solving such convex programs are
not well-suited to compute fD,λ for large sample sizes n. However, there are
algorithms to compute fD,λ efficiently even for large values of n. Some of these
algorithms are based on sequential minimal optimization (SMO). One main
advantage of such algorithms is that it is not necessary to store the (n × n)
matrix K = (k(xj , xi)) in the memory of the computer.

There are loss functions L such that the numerical problem of computing
fD,λ can be solved relatively quickly. Among those loss functions are the hinge
loss and the least squares loss for classification, the ε-insensitive loss function
and the least squares loss function for regression, and the pinball loss function
for kernel-based quantile regression.

There exist loss functions such that not only fD,λ can be computed rel-
atively quickly but it also has good robustness properties in the sense of
Chapter 10. Examples are the hinge loss, the ε-insensitive loss, and the pin-
ball loss. The least squares loss is not Lipschitz-continuous and yields usually
non-robust estimates.

It is not always suitable to use a loss function fulfilling the above-mentioned
properties of fast computation and robustness. One counterexample is the
hinge loss, which does not allow estimation of the conditional probabilities
P(Y |x). In contrast, it is possible to estimate these conditional probabilities
based on the Lipschitz-continuous logistic loss function for classification prob-
lems. The empirical SVM decision function fD,λ based on this loss function
offers good robustness properties if used in combination with a bounded uni-
versal kernel (e.g., the Gaussian RBF kernel) but has the disadvantage of a
substantially higher computation time for large sample sizes compared with
the hinge loss.

The SVM decision function fD,λ and the corresponding empirical risk
RL,D(fD,λ) depend critically on hyperparameters such as λ and parameters
used by the loss function and the kernel. Currently, there seems to be no easy
and computationally fast way to determine these hyperparameters for all data
sets in an optimal manner, although different computationally intensive meth-
ods can offer a suitable choice.

11.7 Exercises

11.1. Numerical exercise (�)
Compute fD,λ and make plots similar to those in Figure 10.11 for the daily
milk consumption data set given in Table 10.1 using the ε-insensitive loss
function and a Gaussian RBF kernel and a polynomial kernel. Use different
values of the hyperparameters and study their effect.

Hint: Use, for example, one of the software products LIBSVM, SVMlight, or
mySVM, or the function svm of the R-package e1071.

11.2. SVM based on hinge loss (�)
Derive the Lagrangian and the dual problem for the computation of fD,λ



454 11 Computational Aspects

based on the hinge loss function. Furthermore, consider an SVM based on
Lhinge and the classification problem with an additional offset term b ∈ R.
Derive the primal convex program, the Lagrangian L∗, and the dual program
for the computation of (fD,λ, bD,λ).

Hint : Schölkopf and Smola (2002).

11.3. SVM based on logistic classification loss (�)
Derive the Lagrangian and the dual problem for the computation of fD,λ based
on the logistic loss for classification. Furthermore, consider an SVM based on
Lc-logist and the classification problem with an additional offset term b ∈ R.
Derive the primal convex program, the Lagrangian L∗, and the dual program
for the computation of (fD,λ, bD,λ).

Hint : Keerthi et al. (2005).

11.4. SVM based on least squares loss for classification(�)
Work out the details for Example 11.5. Compute the Lagrangian and its par-
tial derivatives. Show that fD,λ is the solution of a set of linear equations.
Repeat the calculations for the case of an additional offset term b ∈ R.

Hint : Suykens et al. (2002).

11.5. SVM based on distance-based loss (�)
Work out the details for Example 11.6. Derive L∗ and the dual program.

Hint : Smola and Schölkopf (1998) and Schölkopf and Smola (2002).

11.6. SVM based on ε-insensitive loss (�)
Derive the Lagrangian and the dual problem for the computation of fD,λ

based on the ε-insensitive loss function. Furthermore, consider an SVM based
on Lε-insens and the regression problem with an additional offset term b ∈ R.
Derive the primal convex program, the Lagrangian L∗, and the dual program
for the computation of (fD,λ, bD,λ).

Hint : Smola and Schölkopf (1998).

11.7. SVM based on least squares loss for regression (�)
Consider a regression problem with X = Rd and Y = R. Derive the primal
program, the Lagrangian L∗, and the dual program for the computation of
fD,λ based on LLS(y, t) = (y−t)2, y, t ∈ R. Explain why fD,λ can be computed
relatively quickly even for large sample sizes n. Furthermore, consider an SVM
based on this loss function and a regression problem with an additional offset
term b ∈ R. Derive the primal convex program, the Lagrangian L∗, and the
dual program for the computation of (fD,λ, bD,λ).

Hint : Suykens et al. (2002).

11.8. SVMs based on the pinball loss for quantile regression (�)
Work out the details for Example 11.9. Compute also the Lagrangian and the
dual program.

Hint : Schölkopf and Smola (2002) and Takeuchi et al. (2006).
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Data Mining

Overview. Support vector machines are often used in data mining. In
this case, SVMs are only one part of a complex process. This chapter
describes a general data mining strategy and explains which role SVMs
can play within this process. Some competitors of SVMs and software
tools for data mining are briefly described.

Prerequisites. Basic knowledge on SVMs from Chapter 1.

Support vector machines and other kernel-based techniques treated in this
monograph have two main areas of application: risk minimization in machine
learning and data mining. In this chapter, we describe the data mining process
and explain the role of SVMs in this process.

The goal in standard areas of statistical machine learning is to minimize
the empirical risk. Here it is not of primary importance to extract knowledge
about the internal structure of the data set as long as the empirical risk
is minimized. A typical example is the automatic classification of incoming
emails as “no spam” or “spam”. Other examples are detection of credit card
fraud and the automatic recognition of hand-written digits. SVMs are often
successfully applied in these cases, although the data analyst usually has no
or only vague prior information about the probability distribution P that
generated the data set. In the former chapters of this monograph, we gave a
theoretical foundation of why SVMs based on appropriate choices of the loss
function and the kernel and using suitable hyperparameters are able to learn,
which makes SVMs especially valuable for these standard areas.

Another field where SVMs and related kernel methods are successfully ap-
plied is data mining projects, where these methods are one—but only one—
cornerstone of the whole process. The main goal of data mining projects is
generally to extract and model formerly unknown information contained usu-
ally in large and complex data sets. It seems unrealistic to hope that the
application of SVMs can really be successful in data mining without some
knowledge about the general data mining process. Therefore, this chapter
gives a short overview of data mining and describes the main phases in such
projects.

In Section 12.1, we give a definition of data mining and explain why
data mining is important. In Section 12.2, we describe a general data mining
strategy called CRISP-DM, which was proposed by Chapman et al. (2000).
CRISP-DM is the abbreviation of CRoss-Industry Standard Process for Data
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Mining. In Section 12.3, we explain the role of SVMs as one part in the whole
data mining process. Section 12.4 mentions a few software tools for data min-
ing. Section 12.5 contains information about further literature, and Section
12.6 gives a summary of this chapter.

12.1 Introduction

Hand et al. (2001, p. 1) define data mining in the following way.

Data mining is the analysis of (often large) observational data sets
to find unsuspected relationships and to summarize the data in novel
ways that are both understandable and useful to the data owner.

This definition contains several keywords. Data mining deals with observa-
tional data sets, which means that the data set is generally not collected only
for the purpose of the data mining project. Furthermore, observational data
are generally not random samples but often quite large and a number of cases
between 105 and 107 is not unusual. The owner of such a data set sometimes
has prior information about the data or the data-generating process such that
the goal is to extract new information from the data. The kind of information
desired grossly differs between data mining projects. Examples are a model
with low prediction error, the identification, of high-risk subgroups or the
detection of dependencies between attributes. The result of a data mining
project is not only the extraction of new information but also to make the
result applicable in practice. The information obtained should therefore be
summarized in a way that offers high interpretability both from a business
and a mathematical point of view. Thus, one can argue that data mining
is more than the application of modeling techniques either from parametric
statistics, semi-parametric statistics, or non-parametric statistical machine
learning theory to large data sets. Some examples of data mining projects
are:

• customer relationship management (CRM): customer acquisition, cus-
tomer assessment, and customer churn analysis

• eCommerce: prediction of sales and detection of associations between cus-
tomers and products

• text mining and web mining
• credit risk scoring: banking
• insurance tariffs and identification of high-risk subgroups
• analysis of gene expression data: microarray experiments

In the next section, we describe one particular strategy for data mining.
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12.2 CRISP-DM Strategy

The CRISP-DM project (Chapman et al., 2000) has developed an industry-
and tool-neutral data mining process model. CRISP-DM is the abbreviation
of CRoss-Industry Standard Process for Data Mining and was developed by
DaimlerChrysler AG (Germany), Teradata being a subdivision of NCR Sys-
tems Engineering Copenhagen (USA and Denmark), OHRA Verzekeringen
en Bank Groep B.V. (The Netherlands), and the statistical software company
SPSS R©(USA). The project was partially funded by the European Commission
under the ESPRIT program. Starting from the knowledge discovery processes
used in industry today and responding directly to user requirements, this
project defined and validated a data mining process that is applicable in di-
verse business sectors. The goal of CRISP-DM is to make large data mining
projects faster, cheaper, more reliable, and more manageable.

The CRISP-DM strategy consists of the six main phases shown in Figure
12.1 and described in the rest of this section.

Business ←→ Data Understanding

Understanding ↓
↖ Data Data Preparation

-
Deployment ←→ Evaluation ←− Modeling

Fig. 12.1. Main phases of data mining according to the CRISP-DM strategy.

Phase 1: Business Understanding

The aim in this phase is the determination of the objectives from a busi-
ness perspective. Often the customer has several competing objectives and
constraints that must be balanced. The analyst has the goal of uncovering
important but unknown factors that can influence the final outcome. A de-
scription is usually given of any solution currently in use for the problem
together with a list of their advantages and disadvantages. Further, the busi-
ness success criteria for a successful or at least useful outcome to the project
are determined from an applied point of view. Some examples for such criteria
are the following:

• Estimate the probability of an event (e.g., a genomic defect) given a list
of inputs.

• Determine an insurance tariff that minimizes the risk (i.e., the expectation
of the losses).
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• Give useful insights as to which customers produce the most expensive
claims for an insurance company.

• Improve the response rate in a direct marketing campaign by at least 5
percent.

• Identify the subgroup of patients having a certain type of cancer who will
have the highest benefit from a new drug.

At this early stage of a data mining project, one assesses the current situa-
tion by considering all resources, constraints, and assumptions that should be
considered in the determination of the data analysis goal and by the project
plan. One should take into account the available or necessary personnel, type
of data files, computing resources, available data mining software tools, and
other relevant software. All requirements of the project, including scheduled
date of completion, comprehensibility, and quality or precision of the results
are listed. Of course, one should make sure that access to the data files is
allowed and possible from a technical point of view. All the project-specific
assumptions should be listed, no matter whether they can be checked dur-
ing the data mining process or not. Assumptions are made for the precision
of the estimates. The constraints made on the project are listed (e.g., lack
of resources to carry out some tasks within the timescale or legal or ethical
constraints). An additional aspect is the determination of lower bounds on
the required sample size such that the conclusions can be made with a desired
precision. All assumptions on external factors such as competitive products or
technical advances should be listed. A decision should be made whether the
final model should be interpretable in business terminology or not because
this can easily influence the choice of the modeling technique. The results of
SVMs for example are often harder to interpret from a business point of view
than for parametric models such as generalized linear models; see Table 12.2.
Additionally, the starting point and the endpoint of the project are listed
together with possible risks depending on the size of the data or the data
quality.

A cost versus benefit analysis for the data mining project is prepared that
compares the cost of the data mining project with the potential benefit to the
business. Of course, a data mining project will in general only be done if the
potential benefit dominates the cost.

Then the data mining success criteria are determined in statistical terms.
All business questions are translated into data mining goals. For example, a
direct-marketing campaign requires segmentation of customers in order to de-
cide who to approach in the campaign, and one should also specify the size of
the segments. During this phase, one specifies the type of data mining prob-
lem; e.g., classification (see Chapters 5 and 8) or regression (see Chapter 9).
Additional criteria for model assessment are specified such as model accuracy,
performance, and complexity. Furthermore, benchmarks for the evaluation
criteria are determined. An example is the level of the predictive accuracy.
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Then a project plan is made that lists all stages of the data mining project.
The project plan should include duration, required resources, inputs, outputs,
and dependencies. Dependencies between the time schedule and risks are de-
scribed. Recommendations for actions are also given for the case where risks
appear. The project plan also contains a list of people, specifying who is re-
sponsible for which steps. From our point of view, it is essential for a successful
data mining project to take the following rule of thumb into account during
the construction of the project plan:

50%–70% of the time and effort for the data preparation phase;
15%–25% for the data understanding phase;
10%–20% for the business understanding phase, modeling, and evaluation;
5%–10% for the deployment phase.

Phase 2: Data Understanding

The first task in this phase is the collection of initial data listed in the project
resources. Therefore, a list of necessary data sets or databases and their types
is constructed. Further, the software tools and the methods to acquire them
are listed. If problems are encountered, they should also be listed.

A data description report is made that describes the main properties of
the data, including

• quantity of data (d : number of variables or attributes, n : number of cases
or records);

• format of the data;
• coding, percentage, and patterns of missing values;
• identifier variables needed for merging data from different databases or

tables;
• time period when the data were collected.

Then a data exploration report is made that describes the distribution of
the key attribute(s); e.g., the main response variables (or target attribute) of
a prediction problem. A list of possible values and a contingency table are
given for categorical variables. For continuous variables, some descriptive sta-
tistics are listed; e.g., minimum and maximum values, mean and standard
deviation, or their robust pendants, such as median and median absolute de-
viation (MAD). Furthermore, low-dimensional relationships and dependencies
between pairs or a small number of attributes are computed taking the scales
(nominal, ordinal, continuous) of the attributes into account. This report also
describes properties of interesting subpopulations for further examination;
e.g., stratification by gender, age, or geographical region.

Additionally, the data quality report lists the results of the data quality
verification. It also mentions possible solutions for the case of quality prob-
lems. Such solutions often depend on deep knowledge of the business and
of the data itself. Many authors argue that the data quality is essential for
success in data mining projects; see, e.g., Hipp et al. (2001).
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Phase 3: Data Preparation

The goal of this phase is to obtain clean data sets or databases that can be
used in the modeling phase. First, data selection is done by deciding which at-
tributes will be included or excluded in the next phases. The selection covers
the selection of attributes (columns) and the choice of cases (rows). Possi-
ble criteria for the decisions are the relevance to the data mining goals, the
percentage of missing values, and the data quality.

Then a data cleaning report is made that describes the actions to increase
the data quality. The report describes which actions were taken to overcome
the data quality problems. If missing values are replaced by imputation meth-
ods or other strategies (see Rubin, 1987), the report should describe which
methods were used and how many data points were modified.

The construction of the clean data sets includes data preparation opera-
tions such as correction of typing errors and the transformation of existing
attributes (by using logarithms, square roots, Box-Cox transformations, in-
dicator variables, etc.) and by defining derived attributes. As an example,
we mention the definition of the body mass index (BMI) for adults, which is
calculated by the following metric formula:

BMI =
height (in meters)

weight2(in kilograms)
.

These BMI values are usually classified into groups such as “underweight”:
BMI below 18.5; “normal”: BMI between 18.5 and 24.9; etc. There exist mod-
ified formulas to compute the BMI for children and teens, taking gender and
age into account. The goals of derived attributes such as the body mass index
are twofold: a reduction of dimensionality and ease of interpretation.

The next step of the data preparation phase is the integration of data.
This is generally needed because data from multiple tables or data sets have
to be merged together or new cases must be created about the same object or
person. Sometimes merged data also cover aggregations that are operations
to summarize information from multiple cases or tables. As an example, we
mention a data mining project for analyzing insurance data. Assume that
there are three tables partially due to data security:

• Table A, with a unique index variable, say ID, and personal and demo-
graphic information about the customers;

• Table B, containing the ID variable, the number of claims, the claim
amount for the current year, and possible explanatory variables (inputs);

• Table C, containing the ID variable and the claim history covering the last
decade.

Here the ID variable is needed to merge the data belonging to a single customer
together into one large table. A useful aggregation step in this example is the
construction of new variables for the sum of years without a claim, the total
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number of claims per year, and the average claim amount per year for each
customer.

The final step in this phase is formatting the data, which is generally
required by the modeling tool and to increase the readability of the results.
It is often useful to format the values of categorical attributes such that the
preferred reference class is the first class or the last class. It can be helpful to
convert text attributes into uppercase after trimming blanks.

Phase 4: Modeling

First, one has to select the modeling technique(s), taking the data mining
goals, the properties of the data, and the plausibility of model assumptions
into account. One advantage of kernel methods including SVMs is that these
non-parametric methods only need rather weak assumptions in comparison
with parametric methods. Support vector machines are of course only one
class of modeling techniques used in data mining projects, and we would like
to mention three strong competitors: generalized linear models, generalized
additive models, and tree-based methods. These methods are implemented in
several data mining tools.

Generalized Linear Models

A generalized linear model (GLIM) is a parametric regression model having
three components: a stochastic component, a linear predictor, and a link func-
tion; see Nelder and Wedderburn (1972), McCullagh and Nelder (1989), and
Fahrmeir and Kaufmann (1985). The stochastic component assumes that the
(d+ 1)-dimensional random variables (Xi, Yi), i = 1, . . . , n, are stochastically
independent and that the conditional distribution of Yi given Xi = xi is an
element of an exponential family (see (A.17)). The linear predictor describes
the assumption that the vector x influences Y only via the linear combina-
tion η = xTθ. The bijective link function g connects the linear predictor to
the conditional expectation μ(θ) := EPθ

(Y |x) via g(μ(θ)) = η. GLIMs make
implicitly a hard additional assumption, namely that there is a functional
relationship specified by some fixed variance function v : R → [0,∞) be-
tween the conditional expectation and the conditional variance of Y given x.
Table 12.1 lists the conditional distribution of Y given x, the link function,
and the variance function of special GLIMs. Note that the variance function
is a polynomial in these cases. This simple relationship between expectation
and variance of the response variable can be grossly violated in practice, see
Christmann (2005) for a data set from insurance companies.

The classical estimator of θ ∈ Rd is the maximum likelihood (ML) esti-
mator, which has nice properties (consistency in probability or almost sure,
convergence rate of n−1/2, asymptotic efficiency, and asymptotic normality)
if the assumptions of the generalized linear model are satisfied; see Fahrmeir
and Kaufmann (1985, 1986). These asymptotic properties of the ML estimator
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Table 12.1. Important special cases of GLIMs. Here Λ and Φ denote the cumulative
distribution functions of the standard logistic and standard Gaussian distributions,
respectively.

Model Distribution Link Variance
of Y |x Function Function

Linear regression Normal identity: η = μ v(μ) = 1

Logistic regression Binomial logit: η = Λ−1(μ) v(μ) = μ(1 − μ)

Probit regression Binomial probit: η = Φ−1(μ) v(μ) = μ(1 − μ)

Poisson regression Poisson η = ln(μ) v(μ) = μ

Gamma regression Gamma η = 1/μ v(μ) = μ2

Gamma regression Gamma η = ln(μ) v(μ) = μ2

Inverse Gaussian Inverse
regression Gaussian η = μ−2 v(μ) = μ3

Negative Binomial Negative
regression Binomial η = ln(μ) v(μ) = μ + kμ2

allow the construction of asymptotically optimal hypothesis tests and confi-
dence regions for β. However, this estimator can have two serious drawbacks.
It may not exist for some data sets; see Albert and Anderson (1984) and
Santner and Duffy (1986). Furthermore, the maximum likelihood estimator
is non-robust in several special cases, including linear regression and logistic
regression. In a rather informal way, one can describe robust methods by the
property that small violations of the model assumptions should have only a
small and bounded impact on the result; see Chapter 10 for details. Robust
alternatives to the maximum likelihood estimator were proposed for example
by Rousseeuw (1984) and Rousseeuw and Yohai (1984) for linear regression,
and Künsch et al. (1989) and Christmann (1994, 1998) for generalized linear
models; see Chapter 10.

Generalized Additive Models

A generalized additive model (GAM) is a semi-parametric regression model
having three components: a stochastic component, an additive predictor, and
a link function; see Hastie and Tibshirani (1990). In contrast to the linear
predictor η = xTβ used by GLIMs, a GAM allows the explanatory variables
x = (x1, . . . , x, . . . , xd) ∈ Rd to influence the conditional distribution Y |x via
the more flexible way

η = α+ (x1, . . . , x)Tβ +
d∑

j=+1

fj(xj) , (12.1)

where the intercept term α ∈ R, the slope parameters β ∈ R, and the func-
tions fj : R→ R, j = �+ 1, . . . , d, 0 ≤ � ≤ d, are unknown and must be esti-
mated from the data. Linear regression methods, including parametric splines
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and Fourier fits or univariate regression smoothers such as local polynomial
regression, are used to estimate the unknown functions fj , j = � + 1, . . . , d.
The backfitting algorithm is often used to fit the unknown functions in an
iterative manner; see Hastie et al. (2001, p. 260). Second-order interactions
(i.e., fj1,j2(xj1 , xj2) with � < j1 < j2 ≤ d) can be included by using sur-
face smoothers, but such smoothers increase the computational effort. It can
be quite hard to model higher-order interactions using such smoothers in a
nonparametric way with generalized additive models due to the curse of high
dimensionality. SVMs can be useful here to fit the non-parametric part of
GAMs, including higher-order interactions.

Tree-Based Methods

Finally, we mention tree-based methods as important alternatives to support
vector machines; see Breiman et al. (1984) and Hastie et al. (2001). Spe-
cial cases are classification trees and regression trees. The basic principle of
tree-based methods is quite different from those of GLIMs and GAMs. Trees
partition the space X defined by the input variables in a recursive manner to
maximize a score of class purity, which means that the majority of the data
points in each cell of the partition belong to one class for the case of classifi-
cation trees. The construction of the tree begins with the whole data set (i.e.,
all data points are in the same cell). A tree-based method then computes the
best split or partition consisting of � cells of the whole data set such that the
data points in each cell are significantly more homogeneous than data points
of different cells. The cells are called nodes. A binary splitting rule (� = 2)
is often preferred to a multi-way splitting rule (� > 2), which may fragment
the data too quickly, leaving insufficient data at the next stage. Then the
procedure is repeated: each node is again split into � subnodes. This recursive
technique is repeated until a user-defined stopping rule is satisfied. Finally, a
tree constructed in this way is usually truncated to the most important splits
and the corresponding nodes. This step is called pruning. Tree-based methods
differ with respect to the splitting, stopping, and pruning rules. Trees often
perform well for low-dimensional data sets and the computation time is often
short, but trees can have problems in modeling complex high-dimensional de-
pendency structures.

In phase 4 of CRISP-DM, one has to decide which modeling techniques are
appropriate for the project. This decision is often non-trivial, because many
aspects should be taken into account. A—partially subjective—comparison of
advantages and disadvantages of GLIMs, GAMs, trees, and SVMs is given in
Table 12.2. Data quality can play a major role in data mining projects, as
was explained above. Furthermore, poor data quality makes it hard to justify
hard parametric model assumptions, and large databases often contain a small
amount of typing errors, different types of outliers, and data points measured
in an imprecise manner. Hence, knowledge from the first three data mining
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phases is also useful to decide whether robustness aspects are important for
the specific data mining project.

Table 12.2. Properties of several modeling techniques (mod.: moderate; ML: max-
imum likelihood estimation; robust: robust estimation).

Characteristic GLIM GAM Trees SVMs
(ML/robust)

semi- non- non-
Type of model parametric

parametric parametric parametric

Predictive power bad/mod. mod. bad good

Ability to extract linear
combinations of features

good good bad good

Ability to detect
complex dependencies

bad mod. good good

Natural handling of
data of mixed type∗

mod. mod. good mod.

Handling of missing
values

bad bad good mod.

Interpretability good good mod. low–mod.

Dependency on hyper-
parameters

no/yes yes yes yes

Robustness w.r.t. outliers
in inputs

bad/good bad mod.–good mod.–good

Robustness w.r.t. outliers
in outputs

bad/good bad mod.–good mod.–good

Insensitive to monotone
transformations of inputs

bad mod. mod.–good mod.

Computation time good mod. mod. mod.

Computational scalability
(large n)

good mod. mod. mod.

Availability in data mod.
mining tools

good mod. good
(increasing)

∗ Nominal, ordinal, continuous.

Generating a test design is the next step in phase 4 of CRISP-DM. A
description of the intended plan should be given to ensure that the criteria to
measure the empirical risk or the goodness of the predictions are fair and that
the data set was not overfitted. A common practice in data mining projects
is to split the data set randomly into three parts called the training data set,
validation data set, and test data set. The training data set is usually modeled
several times with the same modeling technique but with different sets of
so-called hyperparameters. As an example, we mention the support vector
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regression: the hyperparameters are (ε, γ, λ) ∈ (0,∞)3 if the ε-insensitive loss
function Lε-insens, the Gaussian RBF kernel kRBF(x, x′) = exp(−γ−2‖x−x′‖22),
x, x′ ∈ Rd, and the regularizing constant λ are used; see Chapters 4 and 9.
The validation data set is used for fine-tuning purposes. The models learned
from the training data set are applied to the validation data set to obtain
an optimal setting of the hyperparameters yielding the best properties of the
modeling technique for the validation data set. The test data set is necessary
to obtain a fair measure of how well the modeling technique actually works
for unseen data points never used before.

Additionally, the procedure should be described as how to divide the whole
data into these disjoint parts (e.g., by simple random sampling without re-
placement or proportional stratified random sampling based on a certain strat-
ification attribute). Proportional stratified random sampling involves dividing
the whole data set into homogeneous and disjoint subgroups defined by the
values of the stratification attribute and then taking a simple random sample
in each subgroup. Which attribute is appropriate for stratification purposes
depends on the data mining project. A common rule in stratified random
sampling is that data points in the same stratum should be more similar to
each other with respect to the response variable than data points of different
strata. Often a stratification by gender, age group, geographical region, or a
combination of these variables is useful.

There are several reasons why a stratified sampling may be preferable over
simple random sampling; see Cochran (1977) or Levy and Lemeshow (1999).
It assures that results can be obtained not only for the overall data set but
also for interesting subgroups of the data set. This can be quite important,
for example, to assure that the training, validation, and the test data sets
all contain a reasonable number of people for interesting minority groups. If
one data mining goal is to obtain new knowledge about subgroups, this may
be the only way to effectively assure that this goal can be achieved. Finally,
if one of the subgroups is extremely small, one can use different sampling
fractions within the different strata to randomly oversample the small group,
which results in non-proportional stratified random sampling. It is of course
necessary in this situation to weight the within-strata estimates depending on
the sampling fraction whenever overall population estimates are needed.

Cross-validation can be an alternative to the splitting approach described
above especially for data sets of only moderate size.

In the model building step, the modeling methods are run on the prepared
and carefully cleaned data sets to obtain the following outputs:

• The best choice of the hyperparameters that was detected for the validation
data set is listed. This is done for each modeling method that depends on
such parameters.

• The fitted models are given using these hyperparameters together with
predictions ŷi for all data points in the test data set.
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• A model description of the fitted models is also given. The description
contains, for example, the risk evaluated for the test data set and a corre-
sponding list of significant explanatory variables.

The final step within this CRISP-DM phase is the model assessment. The
statistician has to interpret the models, taking into account the data mining
success criteria, domain knowledge, and the desired test design. A ranking
of the models is useful according to the formerly specified evaluation criteria
such as accuracy or generality of the model if different models were fitted.

It is not unusual for the hyperparameters to be revised several times due
to fine-tuning of the model. This results in an iteration of the model building
step and the model assessment step until no essential improvement can be
made. It is recommended to document all such revisions and assessments for
future phases and for future data mining projects of similar type.

Phase 5: Evaluation

This phase starts with the evaluation of the results. The statistician gener-
ally discusses the results with business analysts and domain experts to ensure
that not only the narrower technical success criteria treated in phase 4 are
(hopefully) met but also the business success criteria. One goal is to determine
whether there exists a business-relevant reason why the “optimal” model ob-
tained during the former phase is deficient. Furthermore, the model can be
evaluated to check whether the test application meets all budgets or time
constraints.

The review process summarizes the whole data mining process so far and
describes the unexpected findings, missed activities, and overlooked potential
risk factors and lists actions that should be repeated.

Finally a decision is made as how to proceed. Are the data mining results
sufficiently worthwhile to move to the deployment phase, or should the project
stop?

Phase 6: Deployment

If the data mining results were strong enough to justify deployment into the
business, a deployment plan is made. It describes a strategy for how the rel-
evant findings of the data mining project can become part of the business
solution used in practice. A monitoring plan and a maintenance plan can
help to avoid unnecessarily long periods of wrong or suboptimal usage of the
data mining results. Of course, final reports and a final presentation are made
at the end of the data mining project. A final project review is also useful to
document experience that can be important for further data mining projects,
such as pitfalls, misleading or encouraging approaches, and problems with
certain software tools.
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12.3 Role of SVMs in Data Mining

It is obvious from the description of the typical phases in the data mining
process given in Section 12.2 that SVMs and related kernel methods are of
interest mostly in the modeling phase (i.e., in phase 4 of CRISP-DM). We
refer to Chapter 8 for classification, and Chapter 9 for regression problems.
However, there is ongoing research on how to use SVMs in other phases, too.

In the data preparation phase (phase 3), kernel feature extraction by
kernel PCA can be quite useful to reduce the dimensionality of the inputs
and to construct derived attributes. We refer to Schölkopf and Smola (2002),
Shawe-Taylor and Cristianini (2004), and the references cited in these books
for details on kernel PCA.

Pelckmans et al. (2005) proposed kernel-based classifiers using a worst-
case analysis of a finite set of observations, including missing values of the
inputs. The approach is based on a component-wise SVM and an empirical
measure of maximal variation of the components to bound the influence of
the components that cannot be evaluated due to missing values.

12.4 Software Tools for Data Mining

There are many commercial and non-commercial software tools for data min-
ing. No attempt is made to mention all of them.

CART R© and TreeNet R©

The commercial software tools CART R© and TreeNet are distributed by Salford
Systems. CART R© is a well-known classification and regression tree package.
TreeNet R© is based on boosted decision trees. It is an accurate model builder
and can also serve as a powerful initial data exploration tool. Both software
tools are more specialized to only a few methods than the other software prod-
ucts listed below but have proven to give good results in several competitions
on knowledge discovery and data mining.

IBM R© DB2 Intelligent Miner for Data

The IBM R© DB2 Intelligent Miner is based on a client-server architecture.
The server executes mining and processing functions and can host mining re-
sults. The client is powered with administrative and visualization tools. Hence,
the client can be used to visually build a data mining operation, execute it
on the server, and have the results returned for visualization and further
analysis. In addition, the application programming interface (API) provides
C++ classes and methods as well as C structures and functions for application
programmers. This allows the user to define and use new methods. The Intel-
ligent Miner can read data stored by Oracle, SAS R©, and SPSS R© and contains
scalable algorithms.
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SAS R© Enterprise MinerTM

The SAS Enterprise Miner is one of the leading commercial software tools
for data mining. SAS propagates the so-called SEMMA strategy which is simi-
lar to the CRISP-DM strategy described in Section 12.2. SEMMA is the abbre-
viation of Sample, Explore, Modify, Model, and Assess. The SAS R© Enterprise
MinerTM has a user-friendly graphical user interface (GUI) and contains tools
for all necessary steps such as data pre-processing, sampling, classification,
regression, trees, clustering, association rules, visualization, assessment, and
scoring. Additionally, this software allows user-defined models and ensem-
ble techniques, making it a flexible data mining tool. The SAS R© Enterprise
MinerTM runs stably and is capable of handling huge data sets efficiently be-
cause it is delivered as a distributed client-server system. To our knowledge
there (currently) exists only a non-productive version of an SVM implemen-
tation in the SAS Enterprise MinerTM.

SPSS R© Clementine

The commercial data mining tool SPSS R©Clementine has a structure similar
to the SAS R©Enterprise MinerTM and has a user-friendly GUI. New versions
of Clementine also use a client-server architecture. However, Clementine is—
from our point of view— less flexible and offers fewer analytical methods than
SAS R© Enterprise MinerTM.

Weka

Weka is a collection of machine learning algorithms for data mining tasks;
see Witten and Frank (2005). The algorithms can either be applied directly
to a data set or called from user-defined code. Weka contains tools for data
pre-processing, classification, regression, clustering, association rules, and vi-
sualization. It is also well-suited for developing new machine learning schemes.
Weka is open source software issued under the GNU General Public License.
There exists an interface from the statistical software system R to Weka.

12.5 Further Reading and Advanced Topics

There are a lot of well-written textbooks on data mining. Besides the CRISP-
DM approach developed by Chapman et al. (2000), we would like to mention
the following books for a detailed description of data mining. Hand et al.
(2001) treat data mining from a broad view covering all fundamental topics.
The textbook by Berry and Linoff (1997) is aimed especially for business users,
and Mitchell (1997) and Witten and Frank (2005) emphasize the machine
learning viewpoint of data mining. An overview and a description of modeling
techniques from a more statistical point of view is given by Hastie et al. (2001).
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McCullagh and Nelder (1989), Cox and Snell (1989), and Agresti (1996)
treat generalized linear models, maximum likelihood estimation and hypoth-
esis testing in detail. Robust parameter estimation is treated, for example, by
Hampel et al. (1986), Rousseeuw (1984), Künsch et al. (1989), Bickel et al.
(1993), Christmann (1994, 1998), and Bianco and Yohai (1996) for the case
of a generalized linear model.

Cochran (1977) and Levy and Lemeshow (1999) investigate sampling tech-
niques. Methods for the determination of sample sizes for simple random
sampling, stratified random sampling, and other sampling plans are treated
in detail by Desu and Raghavarao (1990) and Lemeshow et al. (1990).

Methods dealing with missing values are treated by Rubin (1987) and
Little and Rubin (1987). The statistical software package SAS R© contains the
procedures PROC MI and PROC MIANALYZE, which can be used to detect pat-
terns of missing values and for the imputation for such values. These proce-
dures are based on the EM algorithm or on the Markov Chain Monte Carlo
(MCMC) method. The statistical software package SPSS R© offers the module
“missing value analysis” for the same task.

12.6 Summary

This chapter briefly described data mining, the main phases of data mining
projects, and the role of kernel methods treated in this book within the whole
data mining process. Data mining is the analysis of usually large observational
data sets to detect and model unsuspected relationships and summarize the
data in ways that are both understandable and useful to the data owner; see
Hand et al. (2001, p. 1). The CRISP-DM project (Chapman et al., 2000) has
developed an industry- and tool-neutral data mining process strategy. This
data mining strategy consists of six main phases: business understanding,
data understanding, data preparation, modeling, evaluation, and deployment.
Support vector machines treated in this monograph are mainly used in the
modeling phase, but there is ongoing research to use SVMs in other phases
also.

12.7 Exercises

12.1. CRISP-DM versus SEMMA (�)
Compare the data mining strategies CRISP-DM proposed by Chapman et al.
(2000) and SEMMA used by the SAS R© Enterprise MinerTM.

12.2. Importance of data preparation and data quality (�)
Explain why data preparation and methods to improve the data quality can
be quite time-consuming. Explain why these steps are important even for
non-parametric methods that make only minor model assumptions.



Appendix

In this appendix, we summarize several results and notions from different
mathematical disciplines that are used in the book. We decided to present
these results in a form that is useful for the purposes of the book, and hence
some of these results can actually be formulated in a more general form.

A.1 Basic Equations, Inequalities, and Functions

In this section, we recall various conceptionally simple facts from mathematics
that do not fit into the more focused sections that follow.

Let us begin by recalling that for n ≥ 0 the n-th Hermite polynomial
is defined by

hn(x) = (−1)nex2 dn

dxn
e−x2

, x ∈ R. (A.1)

It is simple to check that hn(−x) = (−1)nhn(x) for all all n ≥ 0, x ∈ R.
Furthermore, the Hermite polynomials are “orthogonal” in the sense of∫ ∞

−∞
hn(x)hm(x) e−x2

dx = 2nn!
√
π δn,m , (A.2)

where δn,m is the Kronecker symbol, i.e., δn,m = 1 if n = m and δn,m = 0
otherwise. Moreover, one can show that they form an orthogonal basis of the
Hilbert space of measurable functions f : X → R satisfying∫ ∞

−∞
|f(x)|2 e−x2

dx <∞ .

We refer to p. 91–93 of Courant and Hilbert (1953) for these calculations and
to Section A.5.2 for Hilbert spaces and their bases.

Let us now recall that for a ∈ R the incomplete gamma function is
defined by
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Γ (a, x) :=
∫ ∞

x

e−t ta−1dt , x ≥ 0.

Note that Γ (a, x) < ∞ for all x > 0, and for a > 0 the gamma function
Γ (a) := Γ (a, 0) is also finite. Moreover, for σ, r > 0 and d ≥ 1, we have

( 1
2σ2π

)d/2
∫
‖x‖2≥r

e
− ‖y‖2

2

2σ2 =
1

Γ (d/2)
Γ

(
d

2
,
r2

2σ2

)
, (A.3)

where ‖ · ‖2 denotes the Euclidean norm on Rd. Consequently, Γ (a, x) can
be used to compute tails for multivariate normal distributions. The following
lemma collects some useful estimates of the incomplete gamma function.

Lemma A.1.1 (Properties of the incomplete gamma function). For
all a ∈ R and x > 0, we have Γ (a+ 1, x) = aΓ (a, x) + e−xxa, and for n ∈ N

this yields Γ (n + 1) = n!. Moreover, for a > 0 and x ≥ a, the following
estimates hold:

aΓ (a− 1, x) ≤ Γ (a, x) (A.4)
min{1, a} e−xxa−1 ≤ Γ (a, x) ≤ max{1, a} e−xxa−1 . (A.5)

Finally, for x ≥ 0 and a, b > 0, we have Γ (a, x) ≤ Γ (a+ b)x−b.

Proof. For all a ∈ R and x > 0, integration by parts yields

Γ (a+1, x) =
∫ ∞

x

e−ttadt = −e−tta
∣∣∣∞
x

+a
∫ ∞

x

e−tta−1dt = xae−x +aΓ (a, x).

Moreover, for a > 0 and x ≥ a, we have

aΓ (a− 1, x) = a

∫ ∞

x

e−tta−2dt ≤
∫ ∞

x

e−tta−1dt = Γ (a, x) ,

i.e., we have shown (A.4). Let us now show (A.5) for a ≥ 1. In this case, the
left inequality follows from

e−xxa−1 =
∫ ∞

x

e−txa−1dt ≤
∫ ∞

x

e−tta−1dt = Γ (a, x),

while the right inequality follows from

Γ (a, x) = aΓ (a, x)−(a−1)Γ (a, x) ≤ aΓ (a, x)−a(a−1)Γ (a−1, x) = ae−xxa−1.

The case 0 < a < 1 can be shown analogously. Finally, for t ≥ x, we have
1 ≤ x−btb, and hence we find Γ (a, x) ≤ x−bΓ (a+ b, x) ≤ Γ (a+ b)x−b. ��

The next lemma recalls the multinomial formula that generalizes the bi-
nomial formula to more than two addends.
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Lemma A.1.2 (Multinomial formula). For n ∈ N and z1, . . . , zn ∈ C,
we have

(z1 + · · ·+ zn)n =
∑

j1,...,jd≥0
j1+···+jd=n

n!
d∏

i=1

zji

i

ji!
.

The following lemma shows how to “interpolate” two upper bounds of a
non-negative sequence.

Lemma A.1.3. Let (an) ⊂ [0,∞) be a sequence for which there exist con-
stants r, t ∈ (0,∞) and cr, ct ∈ (0,∞) such that r ≤ t and both

an ≤ cr n−1/r and an ≤ ct n−1/t

for all n ≥ 1. Then, for all s ∈ [r, t] and all n ≥ 1, we have

an ≤ c
r(t−s)
s(t−r)
r c

t(s−r)
s(t−r)
t n−1/s .

Proof. Let us write a := (cr/ct)
rt

t−r . For n ≥ a, we then have

an ≤ cr n− 1
r = cr n

1
s− 1

r n−
1
s ≤ cr a 1

s− 1
r n−

1
s = c

r(t−s)
s(t−r)
r c

t(s−r)
s(t−r)
t n−

1
s .

Analogously, for n ≤ a, we obtain

an ≤ ct n− 1
t = ct n

1
s− 1

t n−
1
s ≤ ct a 1

s− 1
t n−

1
s = c

r(t−s)
s(t−r)
r c

t(s−r)
s(t−r)
t n−

1
s . ��

The next lemma describes a simple yet powerful technique to achieve con-
vergence to zero in certain situations.

Lemma A.1.4 (Selection lemma). Let F : (0,∞)×N→ [0,∞) be a func-
tion such that limn→∞ F (λ, n) = 0 for all λ > 0. Then there exists a decreasing
sequence (λn) ⊂ (0, 1] such that limn→∞ λn = 0 and limn→∞ F (λn, n) = 0.

Proof. For k ≥ 1, there exists an nk > 1 such that for all n ≥ nk we have

F (k−1, n) < k−1 . (A.6)

We may assume without loss of generality that nk < nk+1 for all k ≥ 1. For
n ≥ 1, we write

λn :=

{
1 if 1 ≤ n < n1

k−1 if nk ≤ n < nk+1 .

Obviously, the sequence (λn) is decreasing. Now let ε > 0. Then there exists
an integer k ≥ 1 with k−1 ≤ ε. Let us fix an n ≥ nk. Then there exists an
i ≥ k with ni ≤ n < ni+1, and consequently we have λn = i−1. This gives

λn = i−1 ≤ k−1 ≤ ε ,
and since (A.6) together with ni ≤ n yields F (i−1, n) ≤ i−1, we also find

F (λn, n) = F (i−1, n) ≤ i−1 ≤ ε . ��
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The following lemmas compute extrema for various functions. Since these
calculations are often used in the book we decided to collect them in the ap-
pendix. The proof of the first lemma is elementary calculus and hence omitted.

Lemma A.1.5. Let c1, c2 > 0 and a, b > 0. Then we have

min
t>0

c1t
a + c2t

−b =
a+ b

b

( b
a

) a
a+b

c
b

a+b

1 c
a

a+b

2 ,

and the minimum is attained at t∗ := ( bc2
ac1

)1/(a+b).

Lemma A.1.6. For α, β, γ > 0 and p > 0, q ≥ 0, there exists a constant
c1 > 0 such that for all x > 0 we have

min
s,t∈[0,∞)

(
sαt−γ + tβ + xs−pt−q

)
= c1 x

αβ
αβ+βp+γp+αq .

Moreover, there exist constants c2 > 0 and c3 > 0 independent of x such that
the minimum above is attained at

s∗ := c2 x
β+γ

αβ+βp+γp+αq ,

t∗ = c3 x
α

αβ+βp+γp+αq .

In particular, there exists another constant c4 > 0 independent of x such that

min
s,t∈[0,1]

(
sαt−γ + tβ + xs−pt−q

) ≤ c4 x αβ
αβ+βp+γp+αq , x ∈ (0, 1].

Proof. First minimize the function s �→ sαt−γ + tβ +xs−pt−q with the help of
Lemma A.1.5. This gives the minimizer s∗ := (p/α)1/(α+p)x1/(α+p)t(γ−q)/(α+p)

and the expression

min
s>0
t>0

(
sαt−γ + tβ + xs−pt−q

)
= min

t>0

(
tβ + cα,p x

α
α+p t−

γp+αq
α+p

)
,

where cα,p = α+p
p ( p

α )
α

α+p . Another application of Lemma A.1.5 then yields the
first three assertions. The fourth assertion follows from inserting the values
s∗/c2 and t∗/c3 into the objective function. ��
Lemma A.1.7. For all α, β, γ ∈ (0, 1] and r ≥ 1, there exists a constant c
such that, for

ρ := min
{ rβ

1 + (r − 1)β
,

γβ

β + αγ

}
and all t ∈ (0, 1], we have

c tρ ≤ min
s∈(0,1]

(
sβ + tγs−αγ + ts(β−1)/r

)
≤ 3 tρ .
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Proof. Let us first consider the case rβ
1+(r−1)β < γβ

β+αγ . In this case, we have
β ∈ (0, 1), and, by Lemma A.1.5, we thus obtain

min
s∈(0,1]

(
sβ + tγs−αγ + ts(β−1)/r

)
≥ min

s>0

(
sβ + ts(β−1)/r

)
≥ c t β

β+(1−β)/r = c tρ

for a suitable constant c > 0. Moreover, for s∗ := t
r

1+(r−1)β , we obtain

min
s∈(0,1]

(
sβ + tγs−αγ + ts(β−1)/r

)
≤ (s∗)β + tγ(s∗)−αγ + t(s∗)(β−1)/r

= 2t
rβ

1+(r−1)β + t
rβ

1+(r−1)β t
γ+β(r−1)γ−rβ−rαγ

1+(r−1)β ,

and using that rβ
1+(r−1)β <

γβ
β+αγ is equivalent to γ+β(r−1)γ−rβ−rαγ > 0,

we then find the assertion.
Let us now consider the opposite case rβ

1+(r−1)β ≥ γβ
β+αγ . Then Lemma

A.1.5 yields

min
s∈(0,1]

(
sβ + tγs−αγ + ts(β−1)/r

)
≥ min

s>0

(
sβ + tγs−αγ

)
≥ c t βγ

β+αγ = c tρ .

Moreover, for s∗ := t
γ

β+αγ , we obtain

min
s∈(0,1]

(
sβ + tγs−αγ + ts(β−1)/r

)
≤ (s∗)β + tγ(s∗)−αγ + t(s∗)(β−1)/r

= 2t
βγ

β+αγ + t
βγ

β+αγ t
rβ+rαγ−γ−(r−1)βγ

r(β+αγ) ,

and using that rβ
1+(r−1)β ≥ γβ

β+αγ is equivalent to rβ+rαγ−γ− (r−1)βγ ≥ 0,
we then find the assertion. ��

A.2 Topology

In various chapters of the book, we need results about metric spaces, or more
generally topological spaces. Roughly speaking, both topological spaces and
metric spaces describe “neighborhoods” of their points, so basic concepts, such
as convergence and continuity, can be defined. The following definitions and
facts can be found in various textbooks on topology or functional analysis,
such as Kelley (1955), Willard (1970), or Rudin (1976).

Definition A.2.1. Given a set X, a subset τ of the power set 2X of X is
called a topology on X if it satisfies:

i) ∅ ∈ τ , X ∈ τ .
ii) If O1 ∈ τ and O2 ∈ τ , then O1 ∩O2 ∈ τ .
iii) If I is any index set and Oi ∈ τ for all i ∈ I, then

⋃
i∈I Oi ∈ τ .

In this case, the pair (X, τ) is called a topological space. Moreover, each
O ∈ τ is called an open set.
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Let X be any non-empty set. Then τ := {∅, X} is the smallest topology
on X and is called the indiscrete topology on X. Obviously, every topology
on X contains the indiscrete topology. Moreover, the power set 2X of X is
the largest topology on X and is called the discrete topology on X. Again,
it is obvious that every topology on X is contained in the discrete topology.
Given a topological space (X, τ) and a subset A ⊂ X, the set

τA :=
{
O ∩A : O ∈ τ}

defines a topology on A, called the trace or relative topology of τon A.
A topological space is said to be a Hausdorff space if for any pair of

distinct points x, y ∈ X, there exist Ox, Oy ∈ τ such that x ∈ Ox, y ∈ Oy,
and Ox ∩ Oy = ∅. For our purposes, the most important examples of topo-
logical Hausdorff spaces are metric spaces, which we introduce now.

Definition A.2.2. A map d : X×X → [0,∞) on a non-empty set X is called
a metric if it satisfies:

i) d(x, y) = 0 if and only if x = y.
ii) d(x, y) = d(y, x) for all x, y ∈ X.
iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

In this case, the pair (X, d) is called a metric space, and if d is clear from
the context, we usually omit it by calling X a metric space. Moreover, if only
ii) and iii) together with d(x, x) = 0 for all x ∈ X are satisfied, then d is
called a pseudo-metric

An example of a metric space is the Euclidean space Rd, d ∈ N, with
the Euclidean distance

d(x, y) = ||x− y||2 :=
( d∑

i=1

|xi − yi|2
)1/2

, x, y ∈ Rd .

More generally, every normed space (see Section A.5) is a metric space. More-
over, the discrete metric d on a set X �= ∅ is defined by d(x, x) := 0 and
d(x, y) := 1 if x �= y. Finally, given a (pseudo-)metric space (X, d), the pair
(A, d|A×A) is a (pseudo-)metric space for all non-empty A ⊂ X.

For a pseudo-metric space (X, d), we define the open ball with radius
ε > 0 and center x ∈ X by

Bd(x, ε) :=
{
y ∈ X : d(x, y) < ε

}
, (A.7)

and the corresponding closed ball is defined by replacing “<” with “≤” in
(A.7). Moreover, we call a subset O ⊂ X open if for all x ∈ O there exists
an ε > 0 such that Bε(x) ⊂ O. Using the triangle inequality, it is easy to see
that every open ball is an open subset. Moreover, the set τ of open subsets of
(X, d), i.e.,
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τ :=
{
O ⊂ X : O is an open subset of X

}
,

is a topology on X that is called the topology of the pseudo-metric d. Note
that this topology is Hausdorff if d is a metric.

A basis of a topology τ is any subset τ1 of τ such that every open set is
a union of sets in τ1. For example, it is easy to check that the set of open
balls of a pseudo-metric space is a basis of its topology. In particular, the open
balls in Rd form a basis of the topology of its metric.

Let us now introduce some more concepts for topological spaces.

Definition A.2.3 (Closed and compact subsets). Let (X, τ) be a topo-
logical space. We say that A ⊂ X is:

i) closed if its complement X\A is open, i.e., X\A ∈ τ .
ii) compact if, for every family (Oi)i∈I of open sets with A ⊂ ⋃i∈I Oi, there

exist finitely many indexes i1, . . . , in ∈ I with A ⊂ ⋃n
j=1Oij

.

Note that open and closed are not mutually exclusive concepts. Indeed,
X and ∅ are open and closed subsets with respect to every topology on X.
Moreover, every compact subset of a Hausdorff space is closed, but in general
the converse is not true, as for example R as a subset of R shows. However,
every closed subset of a compact subset is again compact. Finally, the following
theorem (see, e.g., Rudin, 1976, Theorem 2.41) characterizes compact subsets
of Rd. Note, that it is false in every infinite-dimensional normed space.

Theorem A.2.4. A set A ⊂ Rd is compact if and only if A is closed and
bounded.

Given a topological space (X, τ) and a subset A ⊂ X, we define the inte-
rior of A by

Å :=
⋃

O⊂A open

O

and the closure of A by
A :=

⋂
A⊂C closed

C .

It is elementary to see that Å is open and A is closed. Moreover, A is called
dense if A = X. Finally, (X, τ) is called separable if there exists a countable
and dense subset of X.

Definition A.2.5. Let (X1, τ1) and (X2, τ2) be topological spaces and x0 ∈
X. A map f : X1 → X2 is called continuous at x0 if for all O2 ∈ τ2 with
f(x0) ∈ O2 there exists an O1 ∈ τ1 such that x0 ∈ O1 and f(O1) ⊂ O2.
Moreover, f is called continuous if f is continuous at every x ∈ X.

It is easy to see that the function f : X1 → X2 is continuous if and only if
f−1(O) ∈ τ1 for all O ∈ τ2. Morover, using complements, it is not hard to see
that the continuity is also equivalent to the condition that f−1(A) is closed
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for all closed subsets A ⊂ X2. In general, similar statements are not true if
one considers the images instead of the pre-images. However, every continuous
image of a compact set is compact, and consequently, if X1 is compact and
X2 is Hausdorff, then f(A) is compact (and thus closed) for all closed subsets
A of X1.

Let (X, τ) be a topological space and f : X → R be a function. Then the
support of f is defined by

supp f := {x ∈ X : f(x) �= 0} .

Given two topological spaces (X1, τ1) and (X2, τ2) the product topology
τ1 ⊗ τ2 is the smallest topology on X1 ×X2 ensuring that both projections
πi : X1 ×X2 → Xi, i = 1, 2, are continuous.

For real-valued functions, we often need the following, weaker concept of
continuity.

Definition A.2.6. Let X be a topological space and f : X → R∪{∞}. Then f
is called lower semi-continuous (l.s.c.) if the level sets {x ∈ X : f(x) ≤ a}
are closed for all a ∈ R.

The following lemma immediately follows from the definition and the fact
that arbitrary intersections of closed sets are closed.

Lemma A.2.7 (Supremum of l.s.c. functions). Let X be a topological
space, I �= ∅, and (fi)i∈I be a family of l.s.c. functions fi : X → R. Then
f : X → R ∪ {∞} defined by f(x) := supi∈I fi(x) is lower semi-continuous.

The lower semi-continuity is often used in minimization problems. In this
regard, the following elementary lemma that allows us to “ignore” the behavior
of l.s.c. functions outside a closed set is of special importance.

Lemma A.2.8. Let X be a topological space, A ⊂ X be a closed subset, and
f : A → R be a function that is lower semi-continuous with respect to the
trace topology on A. Then f̄ : X → R∪{∞}, defined by f̄(x) := f(x) if x ∈ A
and f̄(x) :=∞ otherwise, is lower semi-continuous.

In the rest of this section, we present some further concepts and results for
metric spaces. Let us begin by recalling that a sequence (xn) in a metric space
(X, d) is said to converge if there exists an element x ∈ X such that for all
ε > 0 there exists an n0 ≥ 1 such that for all n ≥ n0 we have d(x, xn) ≤ ε.
In this case, the limit x is unique and denoted by limn→∞ xn. We sometimes
also write xn → x if (xn) converges to x and call a sequence (an) ⊂ R with
an → 0 a null sequence. Moreover, (xn) is called a Cauchy sequence if
for every ε > 0 there is an n0 ≥ 1 such that d(xn, xm) < ε for all n ≥ n0 and
m ≥ n0. Obviously, every convergent sequence is a Cauchy sequence, but in
general the converse is false. This leads to the following definition.
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Definition A.2.9. A metric space is called complete if every Cauchy se-
quence converges.

In metric spaces, many topological concepts introduced earlier can be char-
acterized by sequences. The following lemma illustrates this.

Lemma A.2.10. Let (X, d) and (X ′, d′) be metric spaces, f : X → X ′ and
g : X → R be maps, and A ⊂ X. Then the following statements are true:

i) A is closed if and only if, for all sequences (xn) ⊂ A that are convergent
to some x ∈ X, we have x ∈ A.

ii) A is compact if and only if every sequence (xn) ⊂ A has a subsequence
that converges to some x ∈ A.

iii) f is continuous at x ∈ X if and only if, for all sequences (xn) ⊂ X
satisfying limn→∞ xn = x, we have limn→∞ f(xn) = f(x).

iv) g is l.s.c. if and only if g(x0) ≤ lim infx→x0 g(x) for all x0 ∈ X.

Let us finally introduce two classes of topological spaces that are very
useful when considering measures on topological spaces.

Definition A.2.11. A topological space (X, τ) is called a Polish space if τ
has a countable basis and there exists a complete metric defining τ .

The Euclidean spaces Rd are Polish. Moreover, both compact Hausdorff
spaces with countable basis and complete separable metric spaces are Polish.
In addition, the topological product of two Polish spaces is Polish. Finally, all
open and closed subsets of a Polish space become Polish when equipped with
the trace topology.

To introduce the second type of topological spaces (X, τ), we say that a
subset V ⊂ X is a neighborhood of a point x ∈ X if there exists an O ∈ τ
such that x ∈ O ⊂ V . Note that the neighborhood V need not be open.

Definition A.2.12. A topological space (X, τ) is called locally compact if
for every x ∈ X there exists a compact neighborhood of x.

Every compact topological space is locally compact, and the Euclidean
spaces are the standard examples of locally compact but not compact spaces.

A.3 Measure and Integration Theory

Measure and integration theory is used throughout this book, and hence this
section provides some necessary background from this discipline.
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A.3.1 Some Basic Facts

In this subsection, we briefly recall elementary notions and results from mea-
sure and integration theory. A more detailed treatment can be found in the
books by Bauer (2001) and Dudley (2002).

Definition A.3.1. Given a non-empty set X, a subset A of the power set 2X

of X is called a σ-algebra on X if it satisfies:

i) X ∈ A.
ii) Ac := X\A ∈ A for all A ∈ A.
iii)
⋃

n∈NAn ∈ A for all sequences (An)n∈N of sets in A.

In this case, (X,A) is called a measurable space and the elements of A are
called measurable sets. Finally, if A is clear from the context or its specific
form is irrelevant, we often omit it by calling X a measurable space.

Obviously, both A := {∅, X} and A := 2X are σ-algebras called the in-
discrete and discrete σ-algebra, respectively. If A is a σ-algebra on X and
X̃ ⊂ X, then X̃ ∩A := {X̃ ∩A : A ∈ A} is a σ-algebra on X̃ called the trace
σ-algebra of A in X̃.

It is easy to show that the intersection
⋂

i∈I Ai of arbitrary σ-algebras Ai

on X is again a σ-algebra on X. For any C ⊂ 2X , there hence exists a smallest
σ-algebra containing C, i.e., a σ-algebra σ(C) such that both C ⊂ σ(C) and
σ(C) ⊂ A for all σ-algebras A on X with C ⊂ A. Obviously, σ(C) is uniquely
determined, and we say that σ(C) is the σ-algebra generated by C.

Let us give a few examples of generated σ-algebras. To this end, we first
consider a sequence (Xn,An)n∈N of measurable spaces. Then the product
σ-algebra

⊗
n∈NAn on the product space Xn∈NXn is the σ-algebra that is

generated by all cylinder sets An × Xm�=nXm, An ∈ An, n ∈ N. Moreover,
a topological (X, τ) is endowed with its Borel σ-algebra B(τ) := B(X) :=
σ(τ), and the elements of B(τ) are called Borel sets. Note that if Xn, n ≥ 1,
are separable metric spaces, we have B(Xn∈NXn) =

⊗
n∈N B(Xn).

Given measurable spaces (X1,A1) and (X2,A2) and a map f : X1 → X2,
it is easy to show that f−1A2 := {f−1(A) : A ∈ A2} is a σ-algebra on X1.
Moreover, f is said to be (A1,A2)-measurable, or simply measurable, if
f−1A2 ⊂ A1.

Given a sequence (Xn,An)n∈N of measurable spaces, the coordinate pro-
jections πm : Xn∈NXn → Xm are (

⊗
n∈NAn,Am)-measurable. In addition, if

f is a continuous map between two topological spaces (X1, τ1) and (X2, τ2),
then f is (B(τ1),B(τ2))-measurable. Moreover, the composition f := f1◦f2 of
arbitrary measurable functions f1 and f2 is measurable. Combining these re-
sults, one sees that sums and products of measurable functions are measurable.
In particular, simple functions, i.e., functions of the form f :=

∑n
i=1 ci1Ai

,
where ci ∈ R and Ai ⊂ X are measurable if and only if Ai ∈ A for all
i = 1, . . . , n. Furthermore, if (fn)n∈N is a sequence of measurable functions
from (X,A) to R̄ := [−∞,∞], then supn∈N fn, infn∈N fn, lim supn→∞ fn, and
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lim infn→∞ fn are also measurable. In addition, one can show that for any
measurable function f : X → [0,∞] there exists a sequence (fn)n∈N of simple
non-negative measurable functions with fn ↑ f pointwise, i.e., fn(x) → f(x)
for all x ∈ X and fn(x) ≤ fn+1(x) for all x ∈ X and n ≥ 1. Finally, if f is
bounded, then we can actually pick an increasing sequence (fn) such that the
convergence is uniform, i.e., ‖f − fn‖∞ → 0.

Definition A.3.2. Given a measurable space (X,A), we say that a function
μ : A → [−∞,+∞] is a signed measure if both μ(∅) = 0 and

μ

( ⋃
n∈N

An

)
=
∑
n∈N

μ(An)

for every sequence (An)n∈N of mutually disjoint sets in A.
A signed measure μ is a measure if μ(A) ≥ 0 for all A ∈ A, and a finite

measure if in addition μ(X) <∞. Moreover, a measure μ with μ(X) = 1 is
called a probability measure or a distribution. Finally, a measure is called
σ-finite if X =

⋃
n∈NAn for some sets An ∈ A satisfying μ(An) <∞, n ∈ N.

The triple (X,A, μ) is called a (σ-finite, finite) measure space or a
probability space if (X,A) is a measurable space and μ is a (σ-finite, finite)
measure or a probability measure on A, respectively. In the latter case, we
often use the letter P instead of μ.

Examples of σ-finite measures are the counting measure μ on (Z, 2Z),
where μ(A) equals the number of points in A ∈ 2Z, and the Lebesgue mea-
sure on (Rd,B(Rd)), which is specified by the requirement

μ
({x ∈ Rd : ai < xi ≤ bi, i = 1, . . . , d }) =

d∏
i=1

(bi − ai) ,

for all ai < bi, i = 1, . . . , d. In other words, for bounded rectangles, the
Lebesgue measure equals the ordinary volume. Finally, given a measurable
space (X,A) and an x ∈ X, the Dirac measure δx is defined by δx(A) := 1
if x ∈ A and δx(A) := 0 otherwise.

Given a measure space (X,A, μ), we say that N ∈ A is a μ-zero set
or μ-null set if μ(N) = 0. Moreover, we say that a property P(x) holds μ-
almost surely or μ-almost everywhere if μ({x ∈ X : P(x) false}) = 0. For
example, a sequence (fn) of measurable functions converges μ-almost surely to
a measurable function f if μ{x ∈ X : fn(x) does not converge to f(x)} = 0.

Let us now consider a probability space (X,A,P). Then in general the
subsets of P-zero sets are not P-zero sets since they may not be measurable.
However, the following lemma shows that we can always add such sets to A.

Lemma A.3.3. Let (X,A,P) be a probability space. Then

AP :=
{
A ∪B : A ∈ A, ∃N ∈ A with P(N) = 0 and B ⊂ N}
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is a σ-algebra, called the P-completion of A, and P̂ : AP → [0, 1] defined by
P̂(A ∪ B) := P(A), A ∪ B ∈ AP, is a probability measure with P̂|A = P. We
call P̃ the extension of P to AP.

Given a measurable space (X,A) and a probability measure P : A → [0, 1],
we say that (X,A) is P-complete if A = AP. Moreover, the σ-algebra

Â :=
⋂

P:A→[0,1]

AP ,

where P runs over all probability measures on A, is called the universal com-
pletion of A. In addition, (X,A) is called a complete measurable space if
A = Â. Note that we always have A ⊂ Â ⊂ AP, and consequently A is com-
plete if it is P-complete for some P. Moreover, using standard arguments, one
can easily show that for every AP-measurable function f : X → R there exists
an A-measurable function f̄ : X → R and a set N ∈ A with P(N) = 0 and{

x ∈ X : f̄(x) �= f(x)
} ⊂ N . (A.8)

In other words, AP-measurable functions only differ from A-measurable func-
tions on AP-sets of measure zero.

Let (X,A,P) be a probability space. A sequence (fn) of measurable func-
tions fn : X → R is said to converge to a measurable function f : X → R

in probability P if for all ε > 0 and δ > 0 there exists an n0 ∈ N such that,
for all n ≥ n0, we have P({x ∈ X : |f(x) − fn(x)| ≥ δ}) ≤ ε. Moreover, as
mentioned above, the sequence converges P-almost surely if fn(x)→ f(x)
for P-almost all x ∈ X. It is easy to show that the latter convergence implies
convergence in probability P. Conversely, if (fn) converges to f in probability
P then every subsequence of (fn) has a subsequence that converges P-almost
surely to f . Finally, Markov’s inequality shows that convergence with respect
to ‖ · ‖Lp(P) for some p > 0, implies convergence in probability P.

Let us now recall the definition of the integral for measurable f : X → R,
where (X,A, μ) is some measure space. To this end, we begin with simple
non-negative measurable functions f =

∑n
i=1 ci1Ai

, for which we define the
integral by ∫

X

f dμ :=
n∑

i=1

ciμ(Ai) ,

where as usual in measure theory we define 0 · ∞ := 0. It is a simple routine
to show that the integral above is independent of the representation of f .
Now let f : X → [0,∞] be a non-negative measurable function. Then, as we
have mentioned earlier, there exists a sequence (fn) of simple non-negative
measurable functions with fn ↑ f pointwise. We define∫

X

f dμ := sup
∫

X

fn dμ ,
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where again this definition turns out to be independent of the chosen se-
quence (fn). Finally, a measurable function f : X → [−∞,∞] is said to be
μ-integrable if ∫

X

|f | dμ <∞ .

Note that every f : X → [−∞,∞] can be written as f = f+ − f−, where
f+ := max(f, 0) and f− := max(−f, 0). For a μ-integrable function f , we thus
define its integral by the difference of the integrals of f+ and f−. We write
L1(μ) for the set of all μ-integrable functions. It turns out that the integral
is linear on L1(μ), and, in addition, it is monotone, i.e. the integral of non-
negative functions is non-negative. Moreover, it enjoys the following limit
theorems.

Theorem A.3.4 (Fatou’s lemma). Let (X,A, μ) be a measure space and
fn : X → [0,∞], n ≥ 1, be measurable functions. Then we have∫

X

lim inf
n→∞ fn dμ ≤ lim inf

n→∞

∫
X

fn dμ .

Roughly speaking, Fatou’s lemma shows that the integral is l.s.c. with
respect to almost sure convergence. The next theorem states that the integral
is continuous with respect to monotone convergence.

Theorem A.3.5 (Monotone convergence, Beppo Levi). Let (X,A, μ)
be a measure space and fn : X → [0,∞], n ≥ 1, be measurable functions with
fn ≤ fn+1 for all n ≥ 1. Then we have∫

X

sup
n∈N

fn dμ = sup
n∈N

∫
X

fn dμ .

The last convergence theorem shows the continuity of the integral with
respect to almost sure convergence provided that the functions of the sequence
considered have an integrable envelope function.

Theorem A.3.6 (Dominated convergence, Lebesgue). Let (X,A, μ) be
a measure space and fn : X → [−∞,∞], n ≥ 1, be measurable functions that
converge μ-almost surely to an f : X → [−∞,∞]. If there exists a g ∈ L1(μ)
such that |fn| ≤ g for all n ≥ 1, then f ∈ L1(μ) and

lim
n→∞

∫
X

fn dμ =
∫

X

lim
n→∞ fn dμ =

∫
X

f dμ .

With the help of Lebesgue’s theorem we can now describe a simple con-
dition that ensures that we can interchange the order of differentiation and
integration.
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Corollary A.3.7. Let (X,A, μ) be a measure space, I ⊂ R be an open inter-
val, and f : X×I → R be a function such that f(x, · ) : I → R is differentiable
for all x ∈ X and f( · , t) ∈ L1(μ) for all t ∈ I. Assume that there exists a
g ∈ L1(μ) such that |∂f

∂t (x, t)| ≤ g(x) for all (x, t) ∈ X × I. Then the function
t �→ ∫

X
f(x, t)μ(dx) is differentiable and we have

∂

∂t

∫
X

f(x, t) dμ(x) =
∫

X

∂f

∂t
f(x, t) dμ(x) .

The following theorem, which can be found, for example, on p. 98 of the
book by Ash and Doléans-Dade (2000), shows that almost sure convergence
implies uniform convergence up to some “small” set.

Theorem A.3.8 (Egorov’s theorem). Let (X,A, μ) be a finite measure
space. Furthermore, let (fn) be a sequence of measurable functions fn : X → R

that μ-almost surely converges to a measurable function f : X → R. Then,
for all ε > 0, there exists a measurable set A ⊂ X such that μ(X\A) ≤ ε and

lim
n→∞ ‖(fn − f)|A‖∞ = 0 .

If (X,A, μ) is a measure space and f : X → R is a non-negative and
measurable function, then

ν(A) :=
∫

A

fdμ , A ∈ A,

defines a new measure over (X,A) and we write dν = fdμ or f = dν
dμ . Such a

function f is called a Radon-Nikodym derivative of ν with respect to μ,
and if ν is even a probability measure, the function f is called a probability
density of ν with respect to μ.

Now let μ and ν be arbitrary measures on (X,A). Then ν is called ab-
solutely continuous with respect to μ if μ(A) = 0 implies ν(A) = 0, A ∈ A.
The next theorem shows that in this case ν has a density with respect to μ.

Theorem A.3.9 (Radon-Nikodym theorem). Let μ and ν be σ-finite
measures on some measurable space (X,A). Then there exists a measurable
function f = dν

dμ if and only if ν is absolutely continuous with respect to μ.

Given two σ-finite measure spaces (X,A, μ) and (Y, C, ν) one can show
that there exists a uniquely determined measure μ⊗ ν on A⊗ C such that

μ⊗ ν(A× C) = μ(A) ν(C) , A ∈ A, C ∈ C.

The following result, whose proof can be found, for example, on p. 137 of
Dudley (2002), shows how to integrate with respect to the product measure
μ⊗ ν.



A.3 Measure and Integration Theory 485

Theorem A.3.10 (Tonelli-Fubini). Let (X,A, μ) and (Y, C, ν) be σ-finite
measure spaces and f : X × Y → [0,∞] be measurable. Then we have∫

X×Y

f d(μ⊗ ν) =
∫

Y

∫
X

f(x, y) dμ(x) dν(y) =
∫

X

∫
Y

f(x, y) dν(y) dμ(x) ,

where the inner integrals are measurable in the remaining argument. In ad-
dition, the same formula holds for f ∈ L1(μ ⊗ ν), but in this case the inner
integrals are only almost surely defined.

Of course, products of more than two measures can be defined by induc-
tion, and it is straightforward to see that a suitable modification of Theorem
A.3.10 still holds for such finite products of measures. Moreover, one can show
that, for probability measures, even countable products can be defined. We
refer to p. 113ff of Ash and Doléans-Dade (2000) for details.

The following lemma, which can be found, for example, on p. 141 of the
book by Bauer (2001), provides a very handy formula for computing expec-
tations by tail bounds.

Lemma A.3.11. Let (X,A, μ) be a finite measure space and f : X → [0,∞)
be a measurable function. Furthermore, let ϕ : [0,∞)→ [0,∞) be a continuous
function that is continuously differentiable on (0,∞) and satisfies ϕ(0) = 0.
Then we have ∫

X

ϕ ◦ fdμ =
∫ ∞

0

ϕ′(t)μ
(
f ≥ t) dt .

The following definition will be used to describe measures that can be cut
in arbitrary pieces.

Definition A.3.12. Let (X,A, μ) be a measure space. An A ∈ A is called an
atom if for all measurable B ⊂ A we either have μ(A\B) = 0 or μ(B) = 0.
Moreover, (X,A, μ) is called atom-free if no A ∈ A is an atom.

Obviously, the Lebesgue measure on subsets of Rd is atom free, and in
addition every measure that has a density with respect to some atom-free
measure is itself atom-free. On the other hand, for a measure μ on N, each
singleton {n} with μ({n}) > 0 is an atom. The following theorem shows that
atom-free probability measures can be cut arbitrarily.

Theorem A.3.13 (Lyapunov). Let (X,A, μ) be an atom-free probability
space and let f1, . . . , fn ∈ L1(μ). Then{(∫

X

1Af1dμ , . . . ,

∫
X

1Afndμ

)
: A ∈ A

}

is a compact and convex set in Rn. In particular, {μ(A) : A ∈ A} = [0, 1].
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For any signed measure μ on a measurable space (X,A) there exists a
Bμ ∈ A such that for all A ∈ A we have μ+(A) := μ(A ∩ Bμ) ≥ 0 and
μ−(A) := −μ(A\Bμ) ≥ 0. It is easy to check that μ+ and μ− are measures.
Moreover, at least one of these measures is finite and we have μ = μ+ − μ−.
In addition, μ+ and μ− are singular, i.e. there exists a C ∈ A with μ+(C) =
μ−(X \C) = 0. These properties uniquely determine μ+, μ−, and Bμ, and
(μ+, μ−, Bμ) is called the Hahn-Jordan decomposition of μ. Moreover,
the measure |μ| := μ+ +μ− is called the total variation measure for μ. For
a function g : X → R that is μ+- and μ−-integrable, we define∫

X

g dμ :=
∫

X

g dμ+ −
∫

X

g dμ− .

Finally, the Radon-Nikodym Theorem A.3.9 can be extended to finite signed
measures μ, see, e.g., Corollary 5.6.2 by Dudley (2002).

A.3.2 Measures on Topological Spaces

In this subsection, we briefly recall σ-algebras and corresponding measures
that are defined by a topology. To this end let us recall from the previous
subsection that for topological spaces (X, τ) the Borel σ-algebra was defined
by B(X) := σ(τ). In the following, we call a measure μ : B(X) → [0,∞] a
Borel measure. It is often useful if one can approximate Borel measures
by their behavior on sets associated to the underlying topology. This idea is
formally expressed in the following definition.

Definition A.3.14. Let (X, τ) be a topological space and μ be a Borel mea-
sure on X. Then μ is called regular if for each A ∈ B(X) we have outer
regularity, i.e.,

μ(A) = inf
{
μ(O) : A ⊂ O, O open

}
, (A.9)

and inner regularity, i.e.,

μ(A) = sup
{
μ(C) : C ⊂ A, C compact

}
. (A.10)

The next theorem shows that regular measures naturally occur on benign
topological spaces. Its proof can be found on p. 225 of Dudley (2002).

Theorem A.3.15 (Ulam’s theorem). Every finite Borel measure on a Pol-
ish space is regular.

Let us now assume that μ is a Borel measure on a locally compact space
(X, τ). Furthermore, assume that μ is inner regular, i.e., it satisfies (A.10), and
that for all x ∈ X there exists an O ∈ τ such that x ∈ O and μ(O) < ∞. In
the literature such measures are called Radon measures. One can show that
for Radon measures μ there exists a largest open μ-zero set G, i.e., the union
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G of all open μ-zero sets is again a μ-zero set. In this case, the support of μ is
defined to be suppμ := X\G, and μ is called strictly positive if suppμ = X.
Note that the same construction can be made for Polish spaces.

Polish spaces also play an important role when “disintegrating” probability
measures on product spaces, as the following result (see, e.g., Section 10.2 of
Dudley, 2002) shows.

Lemma A.3.16. Let (X,A) be a measurable space and Y be a Polish space
with Borel σ-algebra B(Y ). Furthermore, let P be a probability measure on
A⊗ B(Y ). Then there exists a map P( · | · ) : B(Y )×X → [0, 1] such that

i) P( · |x) is a probability measure on B(Y ) for all x ∈ X.
ii) x �→ P(B|x) is measurable for all B ∈ B(Y ).
iii) For all A ∈ A, B ∈ B(Y ), we have

P(A×B) =
∫

A

P(B|x) dPX(x) . (A.11)

The map P( · | · ) is called a regular conditional probability or regular
conditional distribution of P.

Finally, the following lemma is often useful to guarantee the measurability
of functions defined on a product space. Its proof can be found on p. 70 of
Castaing and Valadier (1977).

Lemma A.3.17 (Carathéodory). Let (X,A) be a measurable space, Z be a
Polish space equipped with its Borel σ-algebra, and h : X × Z → R be a map.
Then h is measurable if the following two conditions are satisfied:

i) h(x, · ) : Z → R is continuous for all x ∈ X.
ii) h( · , z) : X → R is measurable for all z ∈ Z.

A.3.3 Aumann’s Measurable Selection Principle

In various parts of the book, we need measurable selections. In this subsection,
we will present a general result on the existence of measurable selections that
goes back to Aumann.

We begin with some basic preparations. To this end, let X, Y , and Z be
measurable spaces, where for notational convenience we omit the correspond-
ing σ-algebras. Moreover, let h : X × Z → Y and A ⊂ Y be measurable, and

F : X → 2Z

x �→ {z ∈ Z : h(x, z) ∈ A} , (A.12)

where 2Z denotes the set of all subsets of Z. Note that, given a measurable
Z0 ⊂ Z, the constant function F : X → 2Z defined by F (x) := Z0 is of the
form (A.12) since Z0 = {z ∈ Z : 1X×Z0(x, z) ∈ {1}}. Furthermore, we write
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DomF :=
{
x ∈ X : F (x) �= ∅} ,

GrF :=
{
(x, z) ∈ X × Z : z ∈ F (x)

}
,

F−1(B) :=
{
x ∈ X : F (x) ∩B �= ∅} B ⊂ Z.

Then we have DomF = F−1(Z) and GrF = {(x, z) ∈ X × Z : h(x, z) ∈ A},
and consequently GrF is measurable. Furthermore, if πX : X × Z → X
denotes the projection onto X, then we have

DomF =
{
x ∈ X : ∃z ∈ Z with h(x, z) ∈ A}

= πX

({
(x, z) ∈ X × Z : h(x, z) ∈ A})

= πX

(
GrF
)
.

Now the following result provides a sufficient condition under which DomF
is measurable and F admits measurable selections.

Lemma A.3.18 (Aumann’s measurable selection principle). Let (X,A)
be a complete measurable space, Z be a Polish space equipped with its Borel
σ-algebra, and Y be a measurable space. Furthermore, let h : X×Z → Y be a
measurable map, A ⊂ Y be measurable, and F : X → 2Z be defined by (A.12).
Then the following statements are true:

i) DomF is measurable.
ii) There exists a sequence of measurable functions fn : X → Z such that for

all x ∈ DomF the set {fn(x) : n ∈ N} is dense in F (x).
iii) Let ϕ : X × Z → [0,∞] be measurable and ψ : X → [0,∞] be defined by

ψ(x) := inf
z∈F (x)

ϕ(x, z) , x ∈ X. (A.13)

Then ψ is measurable. Furthermore, for all n ≥ 1, there exists a measur-
able fn : X → Z such that for all x ∈ DomF we have fn(x) ∈ F (x) and
ϕ(x, fn(x)) ≤ ψ(x) + 1/n, and consequently

ψ(x) = inf
n∈N

ϕ
(
x, fn(x)

)
, x ∈ DomF .

In addition, if the infimum in (A.13) is attained for all x ∈ DomF , then
there exists a measurable function f∗ : X → Z with ψ(x) = ϕ(x, f∗(x))
for all x ∈ DomF .

Since the complete proof is out of the scope of this book, we only show
how the above lemma follows from Aumann’s original result. We closely follow
the presentation of Castaing and Valadier (1977).

Proof. i). Let us first recall that the projection theorem (see Theorem III.23 on
p. 75 of Castaing and Valadier, 1977) ensures πX(B) ∈ A for all B ∈ A⊗B(Z).
Now the assertion follows directly from DomF = πX(GrF ).
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ii). Let A ∩DomF denote the trace σ-algebra of A in DomF . Then it is
easy to see that A ∩ DomF is a complete σ-algebra. Furthermore, F|Dom F :
DomF → 2Z obviously maps DomF to non-empty subsets of Z. In addition,
we have

Gr(F|Dom F ) =
{
(x, z) ∈ DomF × Z : z ∈ F (x)

}
= GrF ∩ (DomF × Z) ,

and hence Gr(F|Dom F ) is measurable by part i). Now Aumann’s selection
theorem (see Theorem III.22 on p. 74 of Castaing and Valadier, 1977) gives
a sequence (fn) of (A ∩ DomF )-measurable functions fn : DomF → Z such
that the set {fn(x) : n ∈ N} is dense in F (x) for all x ∈ DomF . Extending
these functions to measurable functions f̃n : X → Z gives the assertion.

iii) The measurability of ψ follows from (Castaing and Valadier, 1977,
Lemma III.39 on p. 86). Moreover, on the measurable set {x ∈ X : ψ(x) =∞},
there is nothing to prove, and hence we may restrict our considerations to
DomF ∩ {x ∈ X : ψ(x) <∞} equipped with the trace σ-algebra of A. Then
the existence of fn is shown on p. 87 of Castaing and Valadier (1977). Finally,
the existence of the measurable function f∗ : X → Z is shown on p. 86 of the
same book. ��

A.4 Probability Theory and Statistics

A.4.1 Some Basic Facts

In this section, we briefly collect the basic notions from probability theory.
To this end, let (X,A) be a measurable space. Recall that a measure P on
A is called a probability measure or distribution if P(X) = 1, and the
triple (X,A,P) is called probability space. Moreover, the σ-algebra A is
typically known from the context, and in this case we usually do not mention
it explicitly. Moreover, for a function f ∈ L1(P), we often use one of the
notations

EPf := Ef := Ex∼Pf(x) :=
∫

X

fdP

and call the value of the integral above the expectation of f . If f ∈ L2(P),
we often write

VarPf := EP(f − EPf)2

and call the value of this integral the variance of f . Let us now introduce
some fundamental objects from probability theory.

Definition A.4.1. Let (X,A) and (Y,B) be measurable spaces. A mapping
ξ : X → Y is called a random variable if ξ is (A,B)-measurable.

If there is a probability measure P on the σ-algebra A above, then the
random variable induces a probability measure on B. This is made precise in
the following definition.
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Definition A.4.2. Let (X,A,P) be a probability space, (Y,B) be a measurable
space, and ξ : X → Y be a random variable. Then

Pξ(B) := P(ξ ∈ B) := P(ξ−1(B)) , B ∈ B,
defines a probability measure on B. This measure is called the image measure
of P under ξ and often also called the distribution of ξ.

We are typically interested in integrals for functions of the form f ◦ ξ. The
following theorem relates such integrals with the distribution of ξ.

Theorem A.4.3 (Transformation formula). Let (X,A,P) be a probability
space, (Y,B) be a measurable space, and ξ : X → Y be a random variable.
Furthermore, let E be a separable Banach space and f : Y → E be a measur-
able function. Then we have f ◦ ξ ∈ L1(P) if and only if f ∈ L1(Pξ), and in
this case we have the identity EPf ◦ ξ = EPξ

f .

Let us now assume that we have two random variables ξ : X → Y and
ξ′ : X ′ → Y defined on the probability spaces (X,A,P) and (X ′,A′,P′),
respectively. We say that ξ and ξ′ are equal in distribution or identically
distributed if Pξ = P′

ξ′ . In this case, the transformation formula yields

EPf ◦ ξ = EPξ
f = EP′

ξ′
f = EP′f ◦ ξ′ ;

i.e., the expectations of f ◦ ξ and f ◦ ξ′ coincide if they exist. Consequently, if
we are only interested in statements involving expectations of the form EPf◦ξ,
we can exchange ξ by an equally distributed random variable ξ′. Remarkably,
there are important situations introduced below in which we can find such an
alternative ξ′, which is easier to analyze than the original random variable ξ.

Givenmeasurablespaces(X,A)and(Y,B)andarandomvariableξ : X → Y ,
the set

σ(ξ) :=
{
ξ−1(B) : B ∈ B}

is called the σ-algebra induced or generated by ξ. Obviously, σ(ξ) is a
sub-σ-algebra of A.

Let us now recall independence for σ-algebras and random variables. To
this end, let (X,A,P) be a probability space, I be an index set, and (Ai)i∈I

be a family of sets with Ai ∈ A for all i ∈ I. Then the events Ai, i ∈ I, are
called (stochastically) independent if for all distinct indexes i1, . . . , in ∈ I
and all n ∈ N we have

P
( n⋂

j=1

Aij

)
=

n∏
i=1

P(Aij
) . (A.14)

Now let (Ai)i∈I be a family of σ-algebras with Ai ⊂ A for all i ∈ I. Then
the σ-algebra’s Ai, i ∈ I, are called independent if all families (Ai)i∈I of
events with Ai ∈ Ai, i ∈ I, are independent. Finally, let (Yi,Bi), i ∈ I, be
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measurable spaces. Then the random variables ξi : X → Yi, i ∈ I, are called
independent if their induced σ-algebras σ(ξi), i ∈ I, are independent. In this
case, it is easy to check that, for a given partition (Ij)j∈J of I, the grouped
random variables ηj := (ξi)i∈Ij

, j ∈ J , are again independent. Moreover, for
random variables fi : Yi → Y ′

i mapping into measurable spaces (Y ′
i ,B′i), i ∈ I,

it immediately follows from the definition that the random variables fi ◦ ξi,
i ∈ I, are independent if the (ξi) are independent.

The following lemma gives a useful characterization of finite sequences of
independent random variables.

Lemma A.4.4. Let (X,A,P) be a probability space, (Yi,Bi), i = 1, . . . , n, be
measurable spaces, and ξi : X → Yi, i = 1, . . . , n, be random variables. Then
ξ1, . . . , ξn are independent if and only if the image measure of the random
variable ξ := (ξ1, . . . , ξn) : X → Y1×· · ·×Yn is given by Pξ = Pξ1⊗· · ·⊗Pξn

.

The preceding lemma in particular shows that the projections πi : Y1 ×
· · · × Yn → Yi, i = 1, . . . , n, are independent with respect to every product
measure P = P1⊗· · ·⊗Pn on Y1×· · ·×Yn. Moreover, if P = P(ξ1,...,ξn), these
projections have the same joint distribution as the finite sequence ξ1, . . . , ξn,
and hence they can serve as a canonical representation of the independent
random variables ξ1, . . . , ξn whenever we are only interested in properties that
can be expressed in terms of Pξ.

Now let (X,A,P) be a probability space and ξi : X → R, i = 1, . . . , n, be
independent R-valued random variables. Then it is easy to derive from (A.14) that

E

n∏
i=1

ξi =
n∏

i=1

Eξi . (A.15)

Moreover, a similar result holds for Hilbert space valued independent random
variables. Namely, if H is a separable Hilbert space and ξ1, ξ2 : X → H are
independent random variables, then we have

EP〈ξ1, ξ2〉H = 〈EPξ1,EPξ2〉H . (A.16)

A generalization to longer products is possible, but since we do not need such
generalizations, we omit the details.

Theorem A.4.5. Let (X,A,P) be a probability space, ξ : X → R be a random
variable that is P-integrable or non-negative, and B ⊂ A be a σ-algebra. Then
there exists a B-measurable function η : X → R such that EP1Bη = EP1Bξ
for all B ∈ B. Any two such functions coincide P-almost surely. Finally, η
is called the conditional expectation of ξ and is denoted by EP(ξ | B) or
E(ξ | B).

Note that in general we do not have E(ξ | B) = ξ since E(ξ | B) is required
to be B-measurable, whereas ξ is only assumed to be A-measurable. The
following lemma collects some useful properties of conditional expectations.
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Lemma A.4.6. Let (X,A,P) be a probability space, ξ, η : X → R be random
variables, B, C ⊂ A be σ-algebras, and ψ : R→ R be a convex function. Then
the following statements are true provided that the occurring (conditional)
expectations exist:

i) E( · | B) : L1(P)→ L1(P) is a linear projection onto the space L1(B,P) of
all B-measurable and P-integrable functions. Moreover, it is a 1-projection;
i.e., it satisfies E|E(ξ | B)| ≤ E|ξ|.

ii) ξ ≥ 0 implies E(ξ | B) ≥ 0.
iii) E(ηξ | B) = η E(ξ | B) if η is B-measurable.
iv) E
(
η · E(ξ | B)

)
= E
(
E(η | B) · ξ) = E

(
E(η | B) · E(ξ | B)

)
.

v) E
(
E(ξ | B)

∣∣ C) = E(ξ | C) if C ⊂ B.
vi) E(ξ | B) = Eξ if σ(ξ) and B are independent.
vii) Jensen’s inequality: ψ

(
E(ξ | B)

) ≤ E
(
ψ(ξ) | B).

We now recall the definition of exponential families that is used in Chapter
12. Let q ∈ N and Θ ⊂ Rq. A set of probability distributions P := {Pθ :
θ ∈ Θ} on some measurable space (X,A) is called dominated by a σ-finite
measure ν if all Pθ are absolutely continuous with respect to ν. Hence, the
Radon-Nikodym Theorem A.3.9 yields the existence of ν-densities dPθ

dν . A
dominated set of probability distributions P := {Pθ : θ ∈ Θ} is called a
q-parameter exponential family in η and T with parameter θ if all Pθ ∈ P
have ν-densities of the form

dPθ

dν
(x) = c(θ) exp

(〈η(θ), T (x)〉), x ∈ X, (A.17)

where (i) 1 and ηj : Θ → R for j = 1, . . . , q are linearly independent
real-valued functions, (ii) 1, Tj : Θ → R for j = 1, . . . , q are on the
complement of every ν-null set linearly independent Borel measurable func-
tions, and (iii) 〈η(θ), T (x)〉 :=

∑q
j=1 ηj(θ)Tj(x). The set of all η ∈ Rq with

0 <
∫

X
exp
(〈η, T (x)〉) dν(x) < ∞ is called canonical parameter space. All

moments of order p ∈ N of the distribution of (T1, . . . , Tq) exist. We refer to
Witting (1985) and Lehmann and Romano (2005) for further details.

A.4.2 Some Limit Theorems

In this section, we collect some useful limit theorems for sequences of random
variables and empirical measures.

The following result is often useful to show almost sure convergence. Recall
that lim supAn =

⋂
n∈N

⋃
i≥nAi for a sequence of sets An, n ∈ N.

Theorem A.4.7 (Borel-Cantelli lemma). Let (X,A,P) be a probability
space and (An)n∈N a sequence of sets An ∈ A. Then the following statements
are true:

i) If
∑

n∈N P(An) <∞, then P(lim supAn) = 0.
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ii) If
∑

n∈N P(An) =∞ and if A1, A2, . . . are stochastically independent, then
P(lim supAn) = 1.

Let (X,A,P) be a probability space. A sequence (Xn)n∈N of real ran-
dom variables on X is said to satisfy the strong law of large numbers
if and only if 1

n

∑n
i=1Xi converges P-almost surely to some constant c; i.e.,

P
(
limn→∞ 1

n

∑n
i=1Xi = c

)
= 1. A sequence (Xn)n∈N of real random vari-

ables on X is said to satisfy the weak law of large numbers if and only
if 1

n

∑n
i=1Xi converges to some constant c in probability P; i.e.; there exists

some constant c such that, for all ε > 0, limn→∞ P
(∣∣ 1

n

∑n
i=1Xi− c

∣∣ > ε
)

= 0.

Theorem A.4.8 (Weak law of large numbers).

i) If (Xn)n∈N is a sequence of real random variables on (X,A) with EXi = 0,
EX2

i = 1, and EXiXj = 0 for all i �= j, then the weak law of large
numbers holds for (Xn)n∈N.

ii) If (Xn)n∈N is a sequence of independent, identically distributed real ran-
dom variables on (X,A) with EXi = μ ∈ R and VarXi = σ2 ∈ (0,∞),
then the weak law of large numbers holds for

(
Xn−μ

σ

)
n∈N

and 1
n

∑n
i=1Xn

converges to EX1 in probability.

Proof. See Dudley (2002, pp. 261ff.). Note that the hypothesis in part i) means
that the random variables are orthonormal in the Hilbert space L2(P). ��
Theorem A.4.9 (Strong law of large numbers). If (Xn)n∈N is a sequence
of independent, identically distributed real random variables on (X,A) with
E |X1| < ∞, then the strong law of large numbers holds for (Xn)n∈N and
1
n

∑n
i=1Xi converges to EX1 with probability one. If E |X1| =∞, then almost

surely 1
n

∑n
i=1Xi does not converge to any finite limit.

Proof. See Dudley (2002, p. 263). ��
Theorem A.4.10 (Central limit theorem). Assume that for each fixed
n ∈ N the real-valued random variables Xn,j, j = 1, . . . , k(n), are independent
with EXn,j = 0, σ2

n,j := EX2
n,j, and

∑
1≤j≤k(n) σ

2
n,j = 1. Define

Sn :=
k(n)∑
j=1

Xn,j and Ln,j(ε) :=
∫
|x|>ε

x2dPXn,j
(x) , ε > 0.

If limn→∞
∑

1≤j≤k(n) Ln,j(ε) = 0 for all ε > 0, then dPro

(
PSn

, N(0, 1)
) → 0

for n→∞, where dPro denotes the Prohorov metric from Definition 10.1.

Proof. See Dudley (2002, p. 316). ��
Theorem A.4.11 (Varadarajan). Let (X, d) be a separable metric space
and P be any Borel probability measure on X. Then the empirical measures
Pn converge to P almost surely; i.e., P

({ω : Pn(·)(ω)→ P}) = 1.



494 Appendix

Proof. See Dudley (2002, p. 399). ��
Theorem A.4.12 (Glivenko-Cantelli theorem). Let P be any probability
measure on (R,B) with distribution function F (x) = P((−∞, x]), x ∈ R. De-
fine the empirical distribution function of Pn by Fn(x)(ω) := Pn((−∞, x])(ω).
Then almost surely Fn(·)(ω)→ F uniformly on R as n→∞.

Proof. See Dudley (2002, p. 400). ��

A.4.3 The Weak* Topology and Its Metrization

We now mention some results useful for Chapter 10 on robustness. To this
end, let us now assume that Z is a Polish space. We write M1(Z), or simply
M1, for the set of all Borel probability measures on Z. Furthermore, recall
that Ulam’s Theorem A.3.15 shows that every finite Borel measure μ on a
Polish space is regular in the sense that the value of μ(A), A ∈ B(Z), can be
approximated by compact sets from below and by open sets from above.

Theorem A.4.13. Let (Z, τ) be a Polish space with Borel σ-algebra B(Z).
The following statements are equivalent:

i) A sequence of probability distributions Pn, n ∈ N, converges weakly to a
probability distribution P if n→∞.

ii) lim inf Pn(A) ≥ P(A) for all open sets A ∈ B(Z).
iii) lim sup Pn(A) ≤ P(A) for all closed sets A ∈ B(Z).
iv) lim Pn(A) = P(A) for all Borel sets A ∈ B(Z) with P(∂A) = 0, where ∂A

denotes the boundary of A.

Proof. See Huber (1981, p. 22). ��
Definition A.4.14. Suppose that (Z, τ) is a Polish space. A set P ⊂M1(Z)
is called tight if for every ε > 0 there exists a compact set K ⊂ Z such that
P(K) ≥ 1− ε for all P ∈ P. A set P ⊂M1(Z) is called relatively compact
if every sequence of elements of P contains a weakly convergent subsequence.

Theorem A.4.15 (Prohorov’s theorem). Suppose that (Z, τ) is a Polish
space. Then P ⊂M1(Z) is tight if and only if P is relatively compact.

Proof. See Prohorov (1956). ��
Theorem A.4.16 (Strassen’s theorem). Let (Z, τ) be a Polish space with
complete metric dZ , P1 and P2 be probability measures on Z, and denote the
closed δ-neighborhood of a set A by Aδ := {x ∈ Z : infy∈A dZ(x, y) ≤ δ}. Then
the following two statements are equivalent:

(i) P1(A) ≤ P2(Aδ) + ε for all A ∈ B(Z).
(ii) There are (dependent) Z-valued random variables Zi such that Pi is the

probability distribution of Zi, i = 1, 2, and P(dZ(Z1, Z2) ≤ δ) ≥ 1− ε.
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Proof. See Strassen (1965, pp. 436ff). ��
Definition A.4.17. Let (Z, τ) be a Polish space. The weak∗ topology in the
set of probability measures M1(Z) is the weakest topology such that for every
continuous f : X → R the map gf :M1(Z)→ R, gf (P) = EPf is continuous.

Theorem A.4.18. Let (Z, τ) be a Polish space. Then the set M1(Z) of all
probability measures on Z endowed with the weak* topology is a Polish space.

Proof. See Huber (1981, p. 29). ��
Denote by M′

1 the set of finite signed measures (see Definition A.3.2) on
(Z, τ). Let h be the restriction to M1 of a linear functional on M′

1. Then
a linear functional h is weakly continuous on M1 if and only if it has the
representation h(μ) =

∫
f dμ for some bounded and continuous function f .

Now we will consider certain metrics onM1 that describe the weak∗ topol-
ogy and that are useful for robust statistics. This list of metrics is, however,
by no means complete. We begin with the Prohorov metric introduced in
Definition 10.1.

Theorem A.4.19. The Prohorov metric dPro defines a metric on M1(Z).

Proof. See Prohorov (1956) or Dudley (2002, p. 394). ��
Theorem A.4.20. Let (Z, τ) be a Polish space. The Prohorov metric metrizes
the weak∗ topology in M1(Z).

Proof. See Prohorov (1956) or Dudley (2002, p. 395). ��
Definition A.4.21. Let M1 be the set of probability measures on Z, where
(Z, τ) is a Polish space. Consider a complete metric dZ on Z that is bounded
by one.1 The bounded Lipschitz metric is defined by dbL(P1,P2) :=
supf |EP1f − EP2f |, where the supremum is taken over all functions f sat-
isfying the Lipschitz condition |f(x)− f(y)| ≤ dZ(x, y).

This metric has some nice properties summarized in the next theorem.
Note that part iii) can be viewed as an analogue to Theorem A.4.16.

Theorem A.4.22. Let (Z, τ) be a Polish space.

i) The bounded Lipschitz metric dbL is a metric.
ii) If P1,P2 ∈M1(Z), then d 2

Pro(P1,P2) ≤ dbL(P1,P2) ≤ 2dPro(P1,P2).
iii) The following two statements are equivalent:

(a) dbL(P1,P2) ≤ ε, where P1,P2 ∈M1(Z).
(b) There are (dependent) Z-valued random variables Zi with probability

distributions Pi, i = 1, 2, and E dZ(Z1, Z2) ≤ ε.

1 Otherwise replace dZ(x, y) by d∗
Z(x, y) := dZ(x, y)/(1 + dZ(x, y)).
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Proof. See Huber (1981, pp. 29ff). ��
Definition A.4.23. Let (X,A,P) be a probability space, (Z, τ) a Polish space
with complete metric dZ , and Z1, Z2 measurable functions from X to Z. The
Ky Fan metric dKyFan is defined by

dKyFan(Z1, Z2) = inf{ε ≥ 0 : P(dZ(Z1, Z2) > ε) ≤ ε}.
Theorem A.4.24. Let (X,A,P) be a probability space, (Z, τ) a Polish space
with complete metric dZ , and L0(X,Z) the space of equivalence classes of mea-
surable functions from X to Z. Then dKyFan metrizes convergence in proba-
bility such that limn→∞ dKyFan(Zn, Z0) = 0 if and only if, for all ε > 0,
limn→∞ P

(
dZ(Zn, Z0) > ε

)
= 0.

Proof. See Dudley (2002, p. 289). ��
The next result gives a relationship between the Prohorov metric and the

Ky Fan metric. We denote the probability measure of Z1 by PZ1 .

Theorem A.4.25. Let (X,A,P) be a probability space, (Z, τ) a Polish space
with complete metric dZ , and Z1, Z2 measurable functions from X to Z. Then
dPro(PZ1 ,PZ2) ≤ dKyFan(Z1, Z2).

Proof. See Dudley (2002, p. 397). ��
The next two theorems provide useful necessary and sufficient conditions

for qualitative robustness in the sense of Definition 10.2.

Theorem A.4.26. Let (Z, τZ), (W, τW ) be Polish spaces and Z1, . . . , Zn in-
dependent and identically distributed Z-valued random functions. Further-
more, let (Sn)n∈N be a sequence of measurable functions where Sn : Zn →W ,
Sn(Z1, . . . , Zn) ∈W . Assume:

i) The sequence (Sn)n∈N is qualitatively robust at P ∈ P ⊂M1(Z).
ii) The probability measure Q ∈ N(P) ⊂ P, where N(P) is a neighborhood of

P ∈M1(Z) in the relative topology of P.
iii) There exists a measurable function S∞ : N(P)→W such that

lim
n→∞ dKyFan

(
Sn(Z1, . . . , Zn), S∞(Q)

)
= 0, ∀Q ∈ N(P).

Then, S∞ is continuous at P.

Proof. See Hampel (1968) and Cuevas (1988). ��
Theorem A.4.27. Let (Z, τZ), (W, τW ) be Polish spaces and Z1, . . . , Zn in-
dependent and identically distributed Z-valued random functions. Further-
more, let (Sn)n∈N be a sequence of measurable functions, where Sn : Zn →W ,
Sn(Z1, . . . , Zn) ∈ W , such that there exists a measurable function S :
M1(Z) → W with Sn(Z1, . . . , Zn) = S(Pn), where Pn = 1

n

∑n
i=1 δZi

. If S
is continuous onM1(Z), then the sequence (Sn)n∈N is qualitatively robust at
P for all P ∈M1(Z).

Proof. See Hampel (1968) and Cuevas (1988). ��
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A.5 Functional Analysis

In this section, we provide various concepts and results from functional analy-
sis. We strongly advise the reader unfamiliar with this subject to consult addi-
tional textbooks such as Rudin (1973), Conway (1990), Riesz and Nagy (1990),
Dudley (2002), Lax (2002), and the unfortunately not translated Werner
(1995) for a more thorough introduction. Most of the results and concepts
we will present can be found in any of these textbooks, and thus we omit pro-
viding a reference for them. However, some more advanced results are more
difficult to find, and thus we do provide corresponding references.

A.5.1 Essentials on Banach Spaces and Linear Operators

In this subsection, we introduce Banach spaces, bounded linear operators,
and related notions. In addition, we present various results for these concepts.
Examples of important Banach spaces can be found in Section A.5.5.

Throughout this and the following subsections, K stands for either R or C
if not stated otherwise. Let us now begin by recalling the definition of vector
and Banach spaces.

Definition A.5.1. A K-vector space is a triple (E,+, · ), where E is a non-
empty set and + : E × E → E and · : K× E → E are maps satisfying:

i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ E.
ii) x+ y = y + x for all x, y ∈ E.
iii) There exists an element 0 ∈ E with x+ 0 = x for all x ∈ E.
iv) For all x ∈ X there exists an element −x ∈ E with x+ (−x) = 0.
v) (αβ) · x = α · (β · x) for all α, β ∈ K, x ∈ E.
vi) 1 · x = x for all x ∈ E.
vii) (α+ β) · x = α · x+ β · x for all α, β ∈ K and x ∈ E.
viii) α · (x+ y) = α · x+ α · y for all α ∈ K and x, y ∈ E.

Moreover, the · denoting the scalar multiplication is usually omitted.

A subset F ⊂ E is called a (linear) subspace of E if for all x, y ∈ F and
α ∈ R we have x + y ∈ F and αx ∈ F . The linear span of a subset A ⊂ E
is the smallest linear subspace of E containing A. We write spanA for this
space. A family (xi)i∈I ⊂ E is called linearly independent if for all n ≥ 1,
i1 . . . , in ∈ I, and α1, . . . , αn ∈ K with

α1xi1 + · · ·+ αnxin
= 0 ,

we have α1 = · · · = αn = 0. Moreover, the family is an algebraic basis if it
is linearly independent and span{xi : i ∈ I} = E. In this case, the dimension
is defined by

dimE := |I| .
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Definition A.5.2. Let E be a K-vector space. A map ‖ · ‖ : E → [0,∞) is
called a quasi-norm if there exists a constant c ∈ [1,∞) such that:

i) ‖x‖ = 0 if and only if x = 0.
ii) ‖αx‖ = |α| ‖x‖ for all α ∈ K and x ∈ X.
iii) ‖x+ x̃‖ ≤ c (‖x‖+ ‖x̃‖) for all x, x̃ ∈ X.

In this case the pair (E, ‖ · ‖) is called a quasi-normed space, and if c = 1
we simply speak of a norm and a normed space, respectively.

Given a norm ‖ · ‖ on E, the map (x, x̃) �→ ‖x − x̃‖ is a metric on E. If
this metric is complete, i.e., every Cauchy sequence with respect to ‖ · − · ‖
has a limit in E, then (E, ‖ · ‖) is called a Banach space. Analogously we
define quasi-Banach spaces, though we note that, in general, quasi-norms do
not define metrics but only translation-invariant topologies.

A routine exercise shows that the addition and the scalar multiplication are
continuous in normed spaces. Furthermore, the norm itself is also continuous
by the so-called inverse triangle inequality | ‖x‖ − ‖x̃‖ | ≤ ‖x− x̃‖, which
follows from the triangle inequality ‖x+ x̃‖ ≤ ‖x‖+ ‖x̃‖.

If no confusion can arise, we often write E rather than (E, ‖ · ‖). Fur-
thermore, in order to distinguish between different (quasi)-norms, we often
use the notation ‖ · ‖E for the (quasi)-norm of the (quasi)-normed space E.
We further write BE := {x ∈ E : ‖x‖ ≤ 1} for the closed unit ball and
B̊E := {x ∈ E : ‖x‖ < 1} for the open unit ball. A set A ⊂ E is called
bounded if A ⊂ cBE for some c ∈ [0,∞). Moreover, A is called convex if for
all x, x̃ ∈ A and all λ ∈ [0, 1] we have λx+ (1− λ)x̃ ∈ A. Finally, the convex
hull coA of an arbitrary A ⊂ E is the smallest convex set containing A.

Besides Banach spaces, the most fundamental concept of functional analy-
sis is that of continuous linear operators. In order to introduce this concept,
let us recall that given two K-vector spaces E and F , a map S : E → F is
called a (linear) operator if it satisfies S(αx) = αSx and S(x+x̃) = Sx+Sx̃
for all α ∈ K and x, x̃ ∈ E, where we used the standard notational convention
Sx := S(x). By the linearity, it is not hard to see that a linear operator is
continuous if and only if it is continuous at 0. Moreover, the following easy
yet important characterization holds.

Lemma A.5.3 (Bounded operator). Let E and F be normed spaces and
S : E → F be a linear operator. Then the following statements are equivalent:

i) S is continuous.
ii) S is bounded, i.e., the image SBE of BE under S is bounded.
iii) There exists a constant c ∈ [0,∞) such that for all x ∈ E we have

‖Sx‖F ≤ c‖x‖E (A.18)

In this case, ‖S‖ := supx∈BE
‖Sx‖F is the smallest c ≥ 0 satisfying (A.18).
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We often write L(E,F ) for the space of all bounded operators mapping
from E to F . Note that S �→ ‖S‖ defined in Lemma A.5.3 is a norm on
L(E,F ), usually called the operator norm, and this norm is complete if
F is complete. We sometimes use the notation ‖S : E → F‖ in order to
distinguish between different norms, and we often write L(E) := L(E,E). In
addition, the rank of an operator S ∈ S(E,F ) is defined to be the dimension
of its image, i.e., rankS := dimS(E). Finally, the next result usually makes
it easier to check whether a linear operator is bounded.

Theorem A.5.4 (Closed graph theorem). Let E and F be Banach spaces
and S : E → F be a linear operator. Then S is bounded if and only if it has a
closed graph, i.e., for all sequences (xn) ⊂ E for which there exist an x ∈ E
and a y ∈ F satisfying xn → x and Sxn → y, we have Sx = y.

If a bounded linear operator S : E → F satisfies ‖Sx‖F = ‖x‖E for all
x ∈ E, then S is called an isometric embedding and E is said to be iso-
metrically embedded into F . It is obvious that in this case S is injective.
If S, in addition, is surjective, then S is called an isometric isomorphism
and E and F are said to be isometrically isomorphic. Finally, S is called
a metric surjection if SB̊E = B̊F , where B̊E and B̊F denote the open unit
balls of E and F , respectively. Obviously, metric surjections are surjective,
and injective metric surjections are isometric isomorphisms.

Given a normed space E, there exists a Banach space Ẽ and an isometric
embedding I : E → Ẽ such that I(E) is dense in Ẽ. It turns out that the
space Ẽ is uniquely (up to isometric isomorpy) determined by this property,
and hence Ẽ is called the completion of E.

A bounded linear operator S : E → F is said to be compact if SBE is a
compact subset in F . We write K(E,F ) for the set of all compact linear oper-
ators. Note that every bounded linear operator with rankS <∞ is compact,
but the converse is in general not true. Moreover, an isometric embedding is
compact if and only if its domain is finite-dimensional. Finally, the following
classical theorem, which we only state in a simplified version, holds.

Theorem A.5.5 (Fredholm alternative). Let E be a Banach space and
S ∈ L(E) be compact. Then idE +S is surjective if and only if it is injective.

An important special case of linear operators are the bounded linear func-
tionals, i.e., the elements of the dual space E′ := L(E,R). Note that, by
the completeness of R, dual spaces are always Banach spaces. In addition, the
Hahn-Banach theorem ensures {0} � E′ whenever {0} � E, i.e., on every
non-trivial normed space, there exists a non-trivial bounded linear functional.
Given a normed space E and elements x ∈ E and x′ ∈ E′, we often write the
evaluation of x′ at x as a dual pairing, i.e., we write 〈x′, x〉E′,E := x′(x).
Moreover, we omit the subscript E′, E whenever is it clear from the context.

Every Banach space E is isometrically embedded into its bi-dual space
E′′ := (E′)′ via the canonical embedding ιE : E → E′′ that is defined by
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x �→ (x′ �→ 〈x′, x〉E′,E). The space E is called reflexive if this embedding
is surjective, i.e., if E is isometrically isomorphic to E′′. Finite dimensional
spaces as well as Hilbert spaces and the spaces Lp(μ), p ∈ (1,∞) (see the fol-
lowing subsections for definitions) are reflexive. Finally, the smallest topology
on E′ for which the maps x′ �→ 〈x′, x〉E′,E are continuous on E′ for all x ∈ E
is called the weak∗ topology.

Now let E and F be two normed spaces and S : E → F be a bounded
linear operator. Then the adjoint operator S′ : F ′ → E′ is defined by

〈S′y′, x〉E′,E := 〈y′, Sx〉F ′,F for all x ∈ E, y′ ∈ F ′. (A.19)

The adjoint operator is again a bounded linear operator with ‖S′‖ = ‖S‖.
Moreover, by Schauder’s theorem, S is compact if and only if S′ is compact. In
addition, S has a dense image, i.e., S(E) = F , if and only if S′ is injective, see,
e.g., Conway (1990), p. 168, Proposition 1.8. Finally, the bi-adjoint operator
S′′ : E′′ → F ′′ satisfies

S′′x = Sx , x ∈ E, (A.20)

where E and F are interpreted as subspaces of E′′ and F ′′ via the canonical
embeddings ιE and ιF .

The smallest topology on E for which all x′ ∈ E′ are continuous is called
the weak topology. Consequently, a sequence (xn) ⊂ E is called weakly
convergent if there exists an x ∈ E with limn→∞〈x′, xn〉 = 〈x′, x〉 for all
x′ ∈ E′. Note that norm-convergent sequences are weakly convergent, but
in general the converse is not true. Moreover, the following theorem (see
Theorem II.3.28 of Dunford and Schwartz, 1988) states that every bounded
subset of a reflexive space is sequentially weakly compact. Interestingly,
the analogous statement for norm convergence is in general false.

Theorem A.5.6. Let E be a reflexive Banach space and A ⊂ E be a bounded
subset. Then, for all sequences (xn) ⊂ A, there exists a subsequence (xnk

) ⊂ A
and an x ∈ E such that limk→∞〈x′, xnk

〉 → 〈x′, x〉 for all x′ ∈ E′.

For a sequence (xn) ⊂ E converging weakly to some x ∈ X, we have
|〈x′, x〉| = limn→∞ |〈x′, xn〉| ≤ lim infn→∞ ‖xn‖ for all x′ ∈ BE′ . In addition,
the canonical embedding ιE : E → E′′ is isometric and hence we have ‖x‖ =
supx′∈BE′ |〈x′, x〉|. This leads to

‖x‖ ≤ lim inf
n→∞ ‖xn‖ . (A.21)

An algebra A is a vector space equipped with an additional associative
and commutative multiplication · : A×A → A such that

x · (y + z) = x · y + x · z ,
λ(x · y) = (λx) · y ,
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holds for all x, y, z ∈ A and λ ∈ R. A classical example of an algebra is
the space C(X) of all continuous functions f : X → R on the compact
metric space (X, d) endowed with the usual supremum norm ‖ . ‖∞. The fol-
lowing approximation theorem of Stone-Weierstraß (see, e.g., Corollary 4.3.5
of Pedersen, 1988, or Theorem 18.5 of Brown and Pearcy, 1977) states that
certain subalgebras of C(X) are dense.

Theorem A.5.7 (Stone-Weierstraß). Let (X, d) be a compact metric space
and A ⊂ C(X) be an algebra. Then A is dense in C(X) if both A does not
vanish, i.e., for all x ∈ X, there exists an f ∈ A with f(x) �= 0, and A se-
parates points, i.e., for all x, y ∈ X with x �= y, there exists an f ∈ A with
f(x) �= f(y).

A.5.2 Hilbert Spaces

One of the most important examples of Banach spaces are Hilbert spaces,
which in some sense are natural generalizations of the finite-dimensional
Euclidian spaces. This subsection reviews some properties of these spaces.
Let us begin with the following basic definition.

Definition A.5.8. A map 〈 · , · 〉 : H × H → K on a K-vector space H is
called an inner product if it satisfies:

i) 〈x1 + x2, x〉 = 〈x1, x〉+ 〈x2, x〉 for all x1, x2, x ∈ H.
ii) 〈αx, x′〉 = α〈x, x′〉 for all α ∈ K and x, x′ ∈ H.
iii) 〈x, x′〉 = 〈x′, x〉 for all x, x′ ∈ H.
iv) 〈x, x〉 ≥ 0 for all x ∈ H, and 〈x, x〉 = 0 if and only if x = 0.

Note that in the case K = R condition iii) reduces to 〈x, x′〉 = 〈x′, x〉. In
this case, an inner product is thus linear in both arguments.

If 〈 · , · 〉 is an inner product on H, the pair (H, 〈 · , · 〉) is called a pre-
Hilbert space. In order to distinguish between different inner products, we
sometimes write 〈 · , · 〉H . Moreover, if the inner product is clear from the
context, we often call H a pre-Hilbert space.

It is well-known that for inner products the Cauchy-Schwarz inequality∣∣〈x, x′〉∣∣2 ≤ 〈x, x〉 〈x′, x′〉 , x, x′ ∈ H,
holds. This inequality plays a central role in many considerations on inner
products. For example, it can be used to show that

‖x‖H :=
√
〈x, x〉 , x ∈ H,

defines a norm on H. If this norm is complete, the pair (H, 〈 · , · 〉) is called
a Hilbert space. The following lemma shows that we can retrieve the inner
product from this norm. In particular, it shows, that the completion of a
pre-Hilbert space is a Hilbert space.
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Lemma A.5.9 (Polarization and parallelogram identity). Let us fix a
K-pre-Hilbert space (H, 〈 · , · 〉). Then the following equations are true for all
x, x′ ∈ H:

4〈x, x′〉 = ‖x+ x′‖2H − ‖x− x′‖2H if K=R,

4〈x, x′〉 = ‖x+ x′‖2H − ‖x− x′‖2H + i‖x+ ix′‖2H − i‖x− ix′‖2H if K=C.

In addition, we have ‖x+x′‖2H +‖x−x′‖2H = 2‖x‖2H +2‖x′‖2H for all x, x′ ∈ H.

Given two Hilbert spaces H1 and H2, their sum H1 ⊕ H2 is the Hilbert
space that consists of all pairs (x1, x2) ∈ H1×H2, and whose norm is defined
by ‖(x1, x2)‖2H1⊕H2

:= ‖x1‖2H1
+ ‖x2‖2H2

. In order to define the tensor prod-
uct H1 ⊗H2 of H1 and H2 we need to recall that, given a vector space E, a
map f : H1 ×H2 → E is called bilinear if f(x1, · ) : H2 → E and f( · , x2) :
H1 → E are linear maps for all x1 ∈ H1 and x2 ∈ H2. Given two Hilbert
spaces H1 and H2, or more generally, two vector spaces, one can show that
there exists a vector space E and a bilinear map π : H1×H2 → E such that for
all vector spaces F and all bilinear maps f : H1×H2 → F there exists exactly
one linear map ϕ : E → F such that f = ϕ◦π. We write x1⊗x2 := π(x1, x2),
(x1, x2) ∈ H1 ×H2. It turns out that the space E is uniquely determined up
to isomorphy and E = span{x1 ⊗ x2 : (x1, x2) ∈ H1 ×H2}. This justifies the
notation H1 ⊗ H2 := E for the tensor product of H1 and H2. Moreover, if
H1 and H2 are Hilbert spaces, it is straightforward to show that there exists
a unique inner product 〈 · , · 〉H1⊗H2 on H1 ⊗ H2 whose corresponding norm
‖ · ‖H1⊗H2 satisfies

‖x1 ⊗ x2‖H1⊗H2 = ‖x1‖H1 · ‖x2‖H2 , (x1, x2) ∈ H1 ×H2.

In general, this norm is not complete, and hence we write H1⊗̂H2 for the
corresponding completion of H1 ⊗H2.

In Euclidian spaces, orthogonal elements can be used to find nice alge-
braic bases, namely orthonormal bases. In the following, we recall how these
concepts can be generalized to arbitrary Hilbert spaces.

Definition A.5.10. Let H be a pre-Hilbert space. Then we call x, x′ ∈ H
orthogonal if they satisfy 〈x, x′〉H = 0. In this case, we write x ⊥ x′. In
addition, we call two subsets A,B ⊂ H orthogonal if x ⊥ x′ for all x ∈ A
and x′ ∈ B. Finally, the orthogonal complement of a subset A ⊂ H is
defined by

A⊥ :=
{
x′ ∈ H : x ⊥ x′ for all x ∈ A} .

Given a closed subspace H1 of a Hilbert space H, every element x ∈ H can
be represented by a sum x = x1+x2, where x1 ∈ H1 and x2 ∈ H⊥

1 are uniquely
determined elements. The bounded linear operator PH1 : H → H defined by
PH1x := x1 is called the orthogonal projection onto H1. It is a projection,
i.e., it satisfies P 2

H1
= PH1 , and it is also known that ‖PH1‖ = 1. Finally, note

that from these properties we can deduce the formula H = H1 ⊕H⊥
1 .
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Before we give a definition of an orthogonal basis, we need to recall the
notion of unconditionally convergent series. To this end, let I be an arbi-
trary index set, E be a Banach space, and xi ∈ E, i ∈ I, be arbitrary elements.
Given an x ∈ E, we say that the sum

∑
i∈I xi converges unconditionally to x if

I0 := {i : xi �= 0} is at most countable and for every enumeration {i1, i2, . . . }
of I0 the equation

∑∞
i=1 xi = x holds. In this case, the element x is, of course,

uniquely determined, and hence the notation x =
∑

i∈I xi is justified.
A family (ei)i∈I in a Hilbert space H is called an orthonormal system

(ONS) if for all i, j ∈ I we have

〈ei, ej〉 =

{
1 if i = j

0 otherwise.

If, in addition, the closure of span{ei : i ∈ I} equals H, the family (ei)i∈I is
called an orthonormal basis (ONB). One can show that every ONS can
be extended to an ONB, i.e., given an ONS (ei)i∈I , there exists a set J with
I ⊂ J and an ONB (ẽi)i∈J such that ẽi = ei for all i ∈ I. In particular, every
Hilbert space has an ONB. Moreover, it turns out that a Hilbert space H has
a countable ONB if and only if H is separable.

Given an ONS (ei)i∈I of a Hilbert space H and an element x ∈ H, the
Fourier coefficients (〈x, ei〉)i∈I satisfy Bessel’s inequality∑

i∈I

∣∣〈x, ei〉∣∣2 ≤ ‖x‖2H ,

where the sum converges unconditionally. Moreover, denoting the orthogonal
projection of H onto the closure of span{ei : i ∈ I} by P , we have

Px =
∑
i∈I

〈x, ei〉x , x ∈ H,

where the sum converges unconditionally. In fact, the Fourier coefficients are
the only coefficients (ai)i∈I for which Px =

∑
i∈I aiei. The following propo-

sition shows that for ONBs even more can be said.

Lemma A.5.11 (Parseval’s identity). Let H be a Hilbert space and (ei)i∈I

be an ONS. Then (ei)i∈I is an ONB if and only if for all x ∈ H we have

‖x‖2H =
∑
i∈I

∣∣〈x, ei〉∣∣2 .
Moreover, in this case, we have

x =
∑
i∈I

〈x, ei〉 ei , x ∈ H. (A.22)

Finally, an ONS is an ONB if and only if (A.22) holds.
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Let us now consider the dualH ′ of a Hilbert spaceH. To this end, note that
given an x ∈ H the map 〈 · , x〉 : H → K defined by y �→ 〈y, x〉 is a bounded
linear functional on H, i.e., an element of H ′. The following theorem states
that all bounded linear functionals on H are of this form. As a consequence
of this theorem, we easily see that every Hilbert space is reflexive.

Theorem A.5.12 (Fréchet-Riesz representation). Let H be a K-Hilbert
space and H ′ its dual. Then the map ι : H → H ′ defined by ιx := 〈 · , x〉 for
all x ∈ H is isometric and surjective. Moreover, in the case K = R it is even
an isometric isomorphism.

Let us now consider bounded linear operators S : H1 → H2 acting between
R-Hilbert spaces H1 and H2. To this end, let S′ : H ′

2 → H ′
1 be the adjoint

of S and ιi : Hi → H ′
i be the isometric isomorphism of the Fréchet-Riesz

representation. Then we call the operator S∗ := ι−1
1 S′ι2 : H2 → H1 the

adjoint of S in the Hilbert space sense, or simply the adjoint if no confusion
can arise. It is easy to check that this operator is characterized by the relation

〈Sx, y〉H2 = 〈x, S∗y〉H1 , x ∈ H1, y ∈ H2.

Moreover, ∗ : L(H1,H2) → L(H2,H1) is an isometric isomorphism that in
addition is self-inverse, i.e., S∗∗ = S for all S ∈ L(H1,H2). Furthermore, we
have (RS)∗ = S∗R∗ for all S ∈ L(H1,H2) and R ∈ L(H2,H3). An operator
T ∈ L(H) is called self-adjoint if T ∗ = T , and it is called positive if
〈Tx, x〉 ≥ 0. Moreover, if the latter inequality is strict for all x �= 0, we
say that T is strictly positive. Given an S ∈ L(H1,H2), it is elementary
to see that S∗S and SS∗ are self-adjoint and positive. Furthermore, if S is
injective, then S∗S is strictly positive, and conversely, if S∗ is injective, then
SS∗ is strictly positive. Finally, every orthogonal projection is self-adjoint and
positive.

Our next goal is to show that compact self-adjoint operators can be diag-
onalized similarly to symmetric matrices. To this end, recall that a λ ∈ R is
called an eigenvalue of T ∈ L(H) if there exists an x �= 0 such that Tx = λx.
Every such x is called an eigenvector of T and λ. Note that for every eigen-
vector there exists a unique eigenvalue, but the converse is obviously not true.
For an eigenvalue λ, we thus write E(λ) := ker(λ idH −T ) for the correspond-
ing eigenspace and call dimE(λ) the geometric multiplicity of λ. It is
easy to see that for λ1 �= λ2 the eigenspaces E(λ1) and E(λ2) are orthogonal
whenever T is self-adjoint. Moreover, for (strictly) positive operators, every
eigenvalue is obviously (strictly) positive.

For an operator S ∈ L(H1,H2), we now consider the positive and self-
adjoint operators T1 := S∗S : H1 → H1 and T2 := SS∗ : H2 → H2. To
this end, we write E1(λ) := ker(λ idH −T1) and E2(λ) := ker(λ idH −T2) for
λ �= 0. Let us assume that λ �= 0 is an eigenvalue of T1. Then it is easy to
check that S : E1(λ)→ E2(λ) is well-defined and injective and consequently λ
is an eigenvalue of T2. In addition, we have (S∗S)|E1(λ) = λ idE1(λ). Moreover,
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by symmetry, we can obviously interchange the roles of T1 and T2, and hence
we see that S∗S and SS∗ have exactly the same non-zero eigenvalues with
the same geometric multiplicities.

In the following, we wish to consider the eigenvalues of compact self-adjoint
operators. In order to deal with the cases of finitely many and infinitely many
eigenvalues simultaneously, we say that a family (λi)i∈I ⊂ R converges to zero
if either I = {1, 2, . . . , n} or I = N and limi→∞ λi = 0.

Theorem A.5.13 (Spectral theorem). Let H be an R-Hilbert space and
T ∈ L(H) be compact and self-adjoint. Then there exist an at most countable
ONS (ei)i∈I and a family (λi(T ))i∈I converging to 0 such that |λ1| ≥ |λ2| ≥
· · · > 0 and

Tx =
∑
i∈I

λi(T )〈x, ei〉ei, x ∈ H. (A.23)

Moreover, {λi(T ) : i ∈ I} is the set of non-zero eigenvalues of T .

For compact, positive, and self-adjoint T ∈ L(H), the eigenvalues in (A.23)
are non-negative and hence we can define operators T r : H → H, r ≥ 0, by

T rx =
∑
i∈I

λr
i 〈x, ei〉ei, x ∈ H. (A.24)

It is easy to check that T r+s = T rT s for r, s ≥ 0, T 1 = T , and T 2 = TT .
For this reason, T r is called a fractional power of T . Moreover, in the case
r = 1/2, we have T 1/2T 1/2 = T , and thus we call T 1/2 the square root of T
and write

√
T := T 1/2. Obviously, we have λi(T r) = λr

i (T ), i ∈ I, r ≥ 0.
Let us now consider a compact S ∈ L(H1,H2). Then S∗S : H1 → H1 is

compact, positive, and self-adjoint, and hence it enjoys a representation of the
form (A.23) with non-negative eigenvalues. We write

si(S) :=

{√
λi(S∗S) = λi(

√
S∗S) if i ∈ I

0 if i ∈ N\I (A.25)

for the singular numbers of S. Recall that S∗S and SS∗ have exactly the
same non-zero eigenvalues with the same geometric multiplicities and hence
we find si(S∗) = si(S) for all i ≥ 1. Finally, if T ∈ L(H) is compact, positive,
and self-adjoint, we have si(T ) =

√
λi(T ∗T ) =

√
λi(T 2) = λi(T ), i ∈ I.

So far, we have seen that the singular numbers of compact operators con-
verge to zero. Let us finally refine this analysis by considering operators whose
singular numbers converge with a certain speed. To this end, let T ∈ L(H)
be a compact operator. We say that T is nuclear or of trace class if

‖T‖nuc :=
∞∑

i=1

si(T ) <∞.
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Using the representations above, it is then easy to check that a self-adjoint
and compact T ∈ L(H) is nuclear if and only if

∑
i∈I |λi(T )| <∞, and in this

case the latter sum equals ‖T‖nuc.
It turns out that besides summable singular numbers, square summable

singular numbers are of particular interest. To this end, we say that an oper-
ator S ∈ L(H1,H2) is Hilbert-Schmidt if

‖S‖HS :=
(∑

j∈J

‖Sej‖2H2

)1/2

< ∞ , (A.26)

where (ej)j∈J is an arbitrary ONB of H1. One can show that Hilbert-Schmidt
operators are compact and that the Hilbert-Schmidt norm ‖S‖HS is inde-
pendent of the choice of the ONB. As a matter of fact, we have

‖S‖HS =
( ∞∑

i=1

s2i (S)
)1/2

, (A.27)

and using s2i (S) = λi(S∗S) = si(S∗S) we hence see ‖S‖2HS = ‖S∗S‖nuc. Con-
sequently, S is a Hilbert-Schmidt operator if and only if S∗S is nuclear. More-
over, one can show in a similar fashion that ‖S‖HS = ‖S∗‖HS. If S ∈ L(H1,H2)
has finite rank, i.e., rankS <∞, then it is automatically Hilbert-Schmidt, and
for orthogonal projections P : H → H with rankP <∞, the definition of the
Hilbert-Schmidt norm immediately yields ‖P‖2HS = rankP . Finally, given a
Hilbert space H, the set HS(H) of all Hilbert-Schmidt operators acting on H
becomes a Hilbert space itself if we equip it with the Hilbert-Schmidt norm
‖ · ‖HS. In this case, the corresponding inner product is given by

〈T1, T2〉HS(H) =
∑
j∈J

〈T1ej , T2ej〉H , T1, T2 ∈ HS(H) , (A.28)

where (ej)j∈J is an arbitrary ONB of H. Finally, HS(H) is separable if and
only if H is separable.

Let us now consider another interesting property of the singular numbers.
To this end, let S ∈ L(E,F ) be an operator acting between arbitrary Banach
spaces E and F . For i ≥ 1, its i-th approximation number is defined by

ai(S) := inf
{‖S −A‖ : A ∈ L(E,F ) with rankA < i

}
. (A.29)

Obviously, (ai(S))i≥1 is decreasing, and if rankS <∞, we also have ai(S) = 0
for all i > rankS. Moreover, if F is a Hilbert space H, then it suffices (see,
e.g., Proposition 2.4.5 of Carl and Stephani, 1990) to consider operators of
the form A = PS in (A.29), where P ∈ L(H) is an orthogonal projection with
rankP < i. Moreover, by diagonalization (see, e.g., Section 2.11 of Pietsch,
1987), one can show that si(S) = ai(S) for all compact S ∈ L(H1,H2) acting
between Hilbert spaces and all i ≥ 1. Consequently, we have λi(T ) = ai(T )
for all compact, self-adjoint, and positive T ∈ L(H) and all i ∈ I.
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A.5.3 The Calculus in Normed Spaces

In one-dimensional calculus, differentiability of a map f at a point means that
f can be well-approximated in terms of a linear map. This idea is used in the
following general definition.

Definition A.5.14. Let E and F be normed spaces, U ⊂ E and V ⊂ F be
open sets, and G : U → V be a map. We say that G is Gâteaux differ-
entiable at x0 ∈ U if there exists a bounded linear operator A : E → F
such that

lim
t→0
t�=0

‖G(x0 + tx)−G(x0)− tAx‖F
t

= 0 , x ∈ E.

In this case, A is called the derivative of G at x0, and since A is uniquely
determined, we write

G′(x0) :=
∂G

∂E
(x0) := A .

Moreover, we say G that Fréchet differentiable at x0 if A actually satisfies

lim
x→0
x�=0

‖G(x0 + x)−G(x0)−Ax‖F
‖x‖E = 0 .

Furthermore, we say that G is (Gâteaux, Fréchet) differentiable if it is
(Gâteaux, Fréchet) differentiable at every x0 ∈ U .

Finally, G is said to be continuously differentiable if it is Fréchet dif-
ferentiable and the derivative G′ : U → L(E,F ) is continuous.

It is obvious that Fréchet differentiability implies Gâteaux differentiability,
but in general the converse is not true. However, if E = F = R, both notions
actually fall together and coincide with the “standard” notion of differentia-
bility. It is also obvious that every bounded linear operator S : E → F is
Fréchet differentiable with derivative

S′(x0) = S , x0 ∈ E.
Furthermore, if a function G : E → R has a local extremum at x0 ∈ E and
is also Gâteaux differentiable at x0, then we have G′(x0) = 0. The latter fact
can be shown as in the one-dimensional case.

The following lemma presents the calculus for the concepts of differentia-
bility. For a proof, we refer to Chapter 4 of Zeidler (1986).

Lemma A.5.15 (Calculus in normed spaces). Let E,F, F̃ be normed
spaces, U ⊂ E, V ⊂ F , and Ṽ ⊂ F̃ be open sets, G1, G2 : U → V , G̃ : V → Ṽ
be maps, and α1, α2 ∈ R. Then the following statements are true:

i) If G1 and G2 are (Gâteaux, Fréchet) differentiable at some x0 ∈ U , then
α1G1 + α2G2 is (Gâteaux, Fréchet) differentiable at x0 and we have

(α1G1 + α2G2)′(x0) = α1G
′
1(x0) + α2G

′
2(x0).
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ii) If G1 is (Gâteaux, Fréchet) differentiable at some x0 ∈ U and G̃ is Fréchet
differentiable at G1(x0), then G̃ ◦ G1 is (Gâteaux, Fréchet) differentiable
at x0 ∈ E and we have(

G̃ ◦G1

)′(x0) = G̃′(G1(x0)
) ◦G′

1(x0) .

The following theorem provides a useful tool for establishing Fréchet dif-
ferentiability of functions defined on product spaces. Its proof can be found,
for example, in Akerkar (1999, Theorem 2.6 on p. 37).

Theorem A.5.16 (Partial Fréchet differentiability). Let E1, E2, and F
be Banach spaces, U1 ⊂ E1 and U2 ⊂ E2 be open subsets, and G : U1×U2 → F
be a continuous map. Then G is continuously differentiable if and only if G
is partially Fréchet differentiable and the partial derivatives ∂G

∂E1
and ∂G

∂E2
are

continuous. In this case, the derivative of G at (x1, x2) ∈ U1 ×U2 is given by

G′(x1, x2)(y1, y2) =
∂G

∂E1
(x1, x2)y1 +

∂G

∂E2
(x1, x2)y2 , (y1, y2) ∈ E1 × E2 .

Finally, we need the following (simplified) version of the implicit function
theorem, whose proof can be found in Chapter 4 of Zeidler (1986) and in
Chapter 4 of Akerkar (1999).

Theorem A.5.17 (Implicit function theorem). Let E and F be Banach
spaces and G : E×F → F be a continuously differentiable map. Suppose that
we have a pair (x0, y0) ∈ E × F such that G(x0, y0) = 0 and ∂G

∂F (x0, y0) is an
invertible operator. Then there exists a δ > 0 and a continuously differentiable
map f : x0 + δBE → y0 + δBF such that for all x ∈ x0 + δBE, y ∈ y0 + δBF ,
we have

G(x, y) = 0 if and only if y = f(x) .

Moreover, the derivative of f is given by

f ′(x) = −
(
∂G

∂F

(
x, f(x)

))−1
∂G

∂E

(
x, f(x)

)
.

A.5.4 Banach Space Valued Integration

In this subsection, we briefly present the very basics of Banach space valued
integration. For a thorough treatment and proofs of the results mentioned
below, we refer to Chapter II of the book by Diestel and Uhl (1977) and to
Chapter 1 of the book by Dinculeanu (2000).

Let us begin by introducing a suitable concept of measurability. To this
end, let (Ω,A) be a measurable space and E be a Banach space. A function
f : Ω → E is called a measurable step function if there exists x1, . . . , xn ∈
E and A1, . . . , An ∈ A with
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f =
n∑

i=1

1Ai
xi . (A.30)

Moreover, we say that f : Ω → E is an E-valued measurable function
if there exists a sequence (fn) of measurable step functions fn : Ω → E
such that limn→∞ ‖f(ω) − fn(ω)‖E = 0 holds for all ω ∈ Ω. The following
lemma (see Theorem 8 on p. 5 in the book by Dinculeanu, 2000) relates this
measurability notion to standard measurability.

Lemma A.5.18. Let E be a Banach space, (Ω,A) be a measurable space, and
f : Ω → E. Then the following statements are equivalent:

i) f is an E-valued measurable function.
ii) f(Ω) is separable and f−1(B) is measurable for all Borel sets B ⊂ E.

In almost all situations, we deal with separable Banach spaces E. It is thus
good to remember that in such cases the preceding lemma shows that both
notions of measurability coincide.

It is not hard to see that the E-valued measurability is preserved by
standard operations such as addition, multiplication, and limits. Moreover,
if f : Ω → E is an E-valued measurable function and S : E → F is a bounded
linear operator, then it is easy to see that S ◦ f : Ω → F is an F -valued mea-
surable function. In particular, the functions 〈x′, f〉 : Ω → R are measurable
for all x′ ∈ E′. The following theorem, which can be found, for example, on
p. 9 of the book by Dinculeanu (2000) and on p. 42 of the book by Diestel
and Uhl (1977), gives the converse implication, provided that E is separable.

Theorem A.5.19 (Petti’s measurability theorem). Let E be a Banach
space and (Ω,A) be a measurable space. Then f : Ω → E is an E-valued
measurable function if and only if the following two conditions are satisfied:

i) f is weakly measurable, i.e., 〈x′, f〉 : Ω → R is measurable for all x′ ∈ E′.
ii) f(Ω) is a separable subset of E.

In order to illustrate the utility of the preceding theorem, let us assume
that (Z, d) is a separable metric space (equipped with the Borel σ-algebra)
and that f : Z → E is a continuous function. Then f is obviously weakly
measurable, and by the separability of Z and the continuity of f , the image
f(Z) is separable. Consequently, f is an E-valued measurable function.

Given a measurable step function f : Ω → E with representation (A.30)
and a σ-finite measure μ on Ω, we define the integral of f by∫

Ω

f dμ :=
n∑

i=1

μ(Ai)xi .

It is a simple exercise to check that this definition is independent of the repre-
sentation (A.30), and another such exercise shows that the following definition
is correct.
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Definition A.5.20. Let E be a Banach space and (Ω,A, μ) be a σ-finite mea-
sure space. An E-valued measurable function f : Ω → E is called Bochner
μ-integrable if there exists a sequence (fn) of E-valued measurable step func-
tions fn : Ω → E such that

lim
n→∞

∫
Ω

‖fn − f‖E dμ = 0 .

In this case, the limit ∫
Ω

f dμ := lim
n→∞

∫
Ω

fn dμ

exists and is called the Bochner integral of f. Finally, if μ is a probability
measure, we sometimes write Eμf for this integral.

It can be easily shown that the Bochner integral is linear. Moreover, an
E-valued measurable function f : Ω → E is Bochner μ-integrable if and only
if ω �→ ‖f(ω)‖E is μ-integrable, and in this case we also have∥∥∥ ∫

Ω

f dμ
∥∥∥

E
≤
∫

Ω

‖f‖E dμ . (A.31)

In particular, if S : E → F is a bounded linear operator and f : Ω → E is
Bochner μ-integrable, then S ◦ f : Ω → F is Bochner μ-integrable. Moreover,
in this case, the integral commutes with S, i.e., we have

S
(∫

Ω

f dμ
)

=
∫

Ω

Sf dμ . (A.32)

In addition, a straightforward application of the scalar dominated convergence
theorem yields (see, e.g., Theorem 3 on p. 45 in Diestel and Uhl, 1977).

Theorem A.5.21 (Dominated convergence theorem). Let E be a Ba-
nach space, (Ω,A, μ) be a σ-finite measure space, and (fn) be a sequence of
Bochner μ-integrable functions fn : Ω → E. If limn→∞ fn(ω) = f(ω) for μ-
almost all ω ∈ Ω and if there exists a μ-integrable function g : Ω → R with
‖fn‖ ≤ g, then f is Bochner μ-integrable and

lim
n→∞

∫
Ω

fn dμ =
∫

Ω

f dμ .

Finally, the next result (see, e.g., Corollary 8 on p. 48 in Diestel and Uhl,
1977) shows that the Bochner integral is in some sense a convex combination.

Theorem A.5.22. Let (Ω,A, μ) be a finite measure space, E be a Banach
space, and f : Ω → E be Bochner μ-integrable. Then, for each A ∈ A with
μ(A) > 0, we have

1
μ(A)

∫
A

fdμ ∈ co(f(A)).
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A.5.5 Some Important Banach Spaces

In this subsection, we will briefly introduce some important Banach spaces
frequently used in this book.

Let us begin by defining ‖f‖∞ := supx∈X |f(x)| for an arbitrary function
f : X → R. Then the set B(X) := {f : X → R | ‖f‖∞ < ∞} equipped with
‖ · ‖∞ is a Banach space.

Given a measurable space (X,A), we write L0(X) for the set of all real-
valued measurable functions onX, i.e., L0(X) := {f : X → R | f measurable}.
Obviously, this set is a vector space when considering the usual addition and
multiplication. Moreover, the subspace L∞(X) := {f ∈ L0(X) : ‖f‖∞ < ∞}
of all bounded measurable functions on X becomes a Banach space when
equipped with the norm ‖ · ‖∞. Let us now assume that we have a measure μ
on A. For p ∈ (0,∞) and f ∈ L0(X), we then write

‖f‖Lp(μ) :=
(∫

X

|f |pdμ
)1/p

.

To treat the case p =∞, we say thatN ∈ A is a local μ-zero set, if μ(N ∩A) = 0
for all A ∈ A with μ(A) <∞. Now we define

‖f‖L∞(μ) := ess- sup
x∈X
|f(x)|

:= inf
{
a ≥ 0 : {x ∈ X : |f(x)| > a} is a local μ-zero set

}
.

In both cases, the sets2

Lp(μ) := {f ∈ L0(X) : ‖f‖Lp(μ) <∞}
are vector spaces of functions, and for p ∈ [1,∞] the map ‖ · ‖Lp(μ) enjoys all
properties of a norm on Lp(μ) besides definiteness, i.e., in general ‖f‖Lp(μ) = 0
does not imply f = 0. To address the latter, we say that f, f ′ ∈ Lp(μ) are
equivalent, written as f ∼ f ′, if ‖f − f ′‖Lp(μ) = 0. In other words, f ∼ f ′

if and only if f(x) = f ′(x) for μ-almost all x ∈ X. Now consider the set of
equivalence classes

Lp(μ) :=
{
[f ]∼ : f ∈ Lp(μ)

}
, (A.33)

where [f ]∼ := {f ′ ∈ Lp(μ) : f ∼ f ′} denotes the equivalence class of f . It
is straightforward to show that Lp(μ) becomes a vector space with addition
and scalar multiplication defined by [f ]∼ + [g]∼ := [f + g]∼ and α[f ]∼ :=
[αf ]∼, f, g ∈ Lp(μ), α ∈ R. Moreover, ‖[f ]∼‖Lp(μ) := ‖f‖Lp(μ) defines a
complete norm on Lp(μ) for p ∈ [1,∞], i.e., (Lp(μ), ‖ · ‖Lp(μ)) is a Banach

2 Note that in Section A.3.1 we allowed L1(μ) to contain [−∞,∞]-valued functions,
whereas here we only consider R-valued functions. However, it is easy to show
that a μ-integrable function is μ-almost surely finite, and hence this notational
conflict can be ignored in essentially all situations.
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space. Furthermore, for p ∈ (0, 1), ‖ · ‖Lp(μ) is a complete quasi-norm, which,
however, is almost never a norm. In addition, Lp(μ) is a Hilbert space if
and only if p = 2. It is common practice to identify the Lebesgue spaces
Lp(μ) and Lp(μ), and in many situations such an identification can actually
be made rigorous. However, one should always be aware that strictly speaking
Lp(μ) does not consist of functions. In particular, evaluations f(x) of elements
f ∈ Lp(μ) are usually not defined, whereas for f ∈ Lp(μ) such evaluations
always make perfect sense.

We often use the standard abbreviations ‖ · ‖p := ‖ · ‖Lp(μ) and ‖ · ‖p :=
‖ · ‖Lp(μ), respectively. In addition, we usually write Lp(X) := Lp(μ) and
Lp(X) := Lp(μ) ifX ⊂ Rd and μ is the Lebesgue measure on X. Furthermore,
if μ is the counting measure on some set X, we write �p(X) instead of Lp(μ).
Note that for counting measures the equivalence classes [ · ]∼ are singletons,
and hence it does not make sense to distinguish between Lp(μ) and Lp(μ).
Moreover, for the particular cases X = N and X = {1, . . . , d}, we write �p and
�dp, respectively. In particular, �d2 denotes the d-dimensional Euclidean space.

Given a p ∈ [1,∞], there exists a unique p′ ∈ [1,∞], called the conjugate
exponent, such that 1/p+1/p′ = 1. For f ∈ Lp(μ) and g ∈ Lp′(μ), Hölder’s
inequality then states fg ∈ L1(μ) and ‖fg‖1 ≤ ‖f‖p ‖g‖p′ . Moreover, one
can show that the map ι : Lp′(μ) → (Lp(μ))′ that maps every g ∈ Lp′(μ) to
the bounded linear functional ιg : Lp(μ)→ R defined by

ιg(f) :=
∫

X

fg dμ , f ∈ Lp(μ) , (A.34)

is isometric, and for p ∈ [1,∞) it is even an isometric isomorphism. Informally
speaking, the latter justifies the identification of (Lp(μ))′ with Lp′(μ) for p ∈
[1,∞). Let us end this discussion with two other inequalities. For the first, we
refer to Proposition 6.6.20 by Pedersen (1988), and for the second, we refer
to Theorem 2.38 by Adams and Fournier (2003).

Theorem A.5.23 (Young’s inequality). Let p ∈ [1,∞], f ∈ L1(Rd), and
g ∈ Lp(Rd). Then

f ∗ g (x) :=
∫
Rd

f(x− y)g(y)dy

exists for Lebesgue-almost all x ∈ Rd. Moreover, the convolution f ∗ g of f
and g is contained in Lp(Rd) and satisfies

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p .

Lemma A.5.24 (Clarkson’s inequality). Let (X,A, μ) be a measure space
and p ∈ [2,∞). Then for all f, g ∈ Lp(μ), we have

∥∥∥ f + g

2

∥∥∥p
p

+
∥∥∥ f − g

2

∥∥∥p
p
≤ ‖f‖

p
p + ‖g‖pp

2
.



A.5 Functional Analysis 513

Let us now introduce a few more spaces defined by measures. To this end,
let (X,A, μ) be a σ-finite measure space. For f ∈ L0(X) and 0 < p <∞, we
write

‖f‖Lp,∞(μ) := inf
{
c > 0 : μ

({x ∈ X : |f(x)| ≥ t}) ≤ (c/t)p for all t > 0
}

and Lp,∞(μ) := {f ∈ L0(X) : ‖f‖Lp,∞(μ) <∞}. One can show that ‖·‖Lp,∞(μ)

is a quasi-norm on Lp,∞(μ). Moreover, a simple modification of Markov’s
inequality yields ‖f‖Lp,∞(μ) ≤ ‖f‖Lp(μ) for all f ∈ Lp(μ). Conversely, one can
show that if μ is a finite measure, then for all sufficiently small ε > 0 there
exists a constant cp,ε ∈ [0,∞) such that ‖f‖Lp−ε(μ) ≤ cp,ε‖f‖Lp,∞(μ) for all
f ∈ Lp,∞(μ). Finally, note that Lp,∞(μ) is a so-called Lorentz space, though
usually these spaces are introduced in a slightly different (see, e.g., Bennett
and Sharpley, 1988) yet equivalent way. We decided to use the definition above
since it provides an obvious way to quantify tail bounds.

Let us finally introduce the space Lp(μ) for p = 0, where for simplicity
we additionally assume that μ is a finite measure. In this case, we simply
define L0(μ) := L0(X), i.e., L0(μ) consists of all measurable functions on X.
Furthermore, we define a metric on L0(μ) by

dμ(f, g) :=
∫

X

min{1, |f − g|}dμ .

It is easy to show that this metric defines the convergence in measure μ.
Moreover, addition and scalar multiplication in L0(μ) are continuous with
respect to dμ, and dμ is translation-invariant in the sense of dμ(f+h, g+h) =
dμ(f, g), f, g, h ∈ L0(μ). This motivates the intuitive notation ‖f‖L0(μ) :=
dμ(f, 0), which implies ‖f − g‖L0(μ) = dμ(f − g, 0) = dμ(f, g).

Let us now introduce some spaces of continuous functions. To this
end, we fix a topological Hausdorff space (X, τ) and write

C(X) :=
{
f : X → R | f is continuous

}
.

Furthermore, we write Cb(X) := {f ∈ C(X) : f is bounded} for the set of
bounded continuous functions and

Cc(X) :=
{
f ∈ C(X) : supp f is compact

}
for the set of continuous functions with compact support. For later use, we
note that the pair (Cb(X), ‖ · ‖∞) is a Banach space, and if X is compact
we further have C(X) = Cb(X) = Cc(X). The next result, which is Theorem
29.14 in the book by Bauer (2001), shows that in many cases Cc(X) is dense
in the Lebesgue spaces.

Theorem A.5.25. If X is a locally compact space, then Cc(X) is dense in
Lp(μ) for all regular Borel measures μ on X and all p ∈ [1,∞).
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To introduce spaces of differentiable functions, we use for a given
multi-index α = (α1, . . . , αd) ∈ Nd

0 the standard notation |α| := α1 + · · ·+αd.
Moreover, we write ∂α := ∂α1

1 . . . ∂αd

d , where ∂αi
i denotes the αi-th partial

derivative operator in direction i, i.e., ∂αi
i f := ∂αif/∂αixi and arbitrary re-

orderings of the partial derivative operators are allowed. Note that for the
multi-index α = 0 we have ∂αf = f . Now, for m ∈ N0 and a non-empty open
X ⊂ Rd, the set

Cm(X) :=
{
f : X → R

∣∣ ∂αf ∈ C(X) for all α ∈ Nd
0 with |α| ≤ m}

of m-times continuously differentiable functions is obviously a vector space.
Furthermore, its subspace

Cm
b (X) :=

{
f ∈ Cm(X) : ‖∂αf‖∞ <∞ for all α ∈ Nd

0 with |α| ≤ m}
equipped with ‖f‖Cm

b (X) := max|α|≤m ‖∂αf‖∞ becomes a Banach space. Note
that C0

b (X) = Cb(X) and ‖ · ‖C0
b (X) = ‖ · ‖∞. We further write C∞(X) :=⋂

m≥0 C
m(X). Moreover, C∞

b (X) denotes the subspace of
⋂

m≥0 C
m
b (X) that

consists of the functions f satisfying ‖f‖C∞
b (X) := max|α|<∞ ‖∂αf‖∞ < ∞.

Note that ‖ · ‖C∞
b (X) is a complete norm on C∞

b (X). Let us now assume that
X ⊂ Rd is a bounded open subset. We write

Cm(X) :=
{
f ∈ Cm(X) : ∀α ∈ Nd

0 with |α| ≤ m∃g ∈ C(X) s.t. g|X = ∂αf
}

and equip this subspace of Cm
b (X) with ‖ · ‖Cm

b (X). It is not hard to see
that Cm(X) is the set of m-times continuously differentiable functions whose
partial derivatives up to the order m are bounded and uniformly continuous.
Moreover, for f ∈ Cm(X), there exists a unique function f̂ ∈ C(X) such that
f̂|X = f , and it is easy to check that ‖f‖∞ = ‖f̂‖∞.

Our next goal is to introduce a generalization of the (partial) derivative.
To this end, we define the set of test functions over an open non-empty
subset X ⊂ Rd by

D(X) :=
{
ϕ ∈ C∞(X) : suppϕ is compact

}
.

Let us now fix a multi-index α ∈ Nd
0 and an f ∈ L2(X). We say that f is

weakly α-differentiable if there exists a g ∈ L2(X) such that

〈g, ϕ〉L2(X) = (−1)|α|〈f, ∂αϕ〉L2(X)

for all ϕ ∈ D(X). It can be shown that in this case g is uniquely determined,
which motivates the notation ∂(α)f := g. Moreover, we have ∂(α)f = ∂αf
for all f ∈ Cm(X), where, for an open interval X, the latter is an immediate
consequence of the integration-by-parts formula. For m ≥ 0, we now write

Wm(X) :=
{
f ∈ L2(X) : ∂(α)f exists for all α ∈ Nd

0 with |α| ≤ m}
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for the space of all m-times weakly differentiable functions. Moreover, for
f ∈Wm(X), we define the so-called Sobolev norm by

‖f‖W m(X) :=

( ∑
|α|≤m

‖∂(α)f‖2L2(X)

)1/2

.

The pair (Wm(X), ‖ ·‖W m(X)) is called Sobolev space of order m. It is well-
known that Sobolev spaces are Hilbert spaces and that Cm(X) ∩Wm(X) is
a dense subspace of Wm(X), where the latter can be found, for example, on
p. 67 of Adams and Fournier (2003) and p. 54 of Ziemer (1989). To discuss
some further properties of these spaces, we assume for simplicity that X is
an open Euclidean ball in Rd. In this case, Cm(X) ∩Wm(X) is a dense sub-
space of Wm(X), see Theorem 3.22 of Adams and Fournier (2003). Moreover,
Sobolev’s embedding theorem, see Theorem 4.12 of Adams and Fournier
(2003) for this and related results, states that for j ≥ 0 and m > d/2 there
exists a constant c > 0 such that for every f ∈ Wm+j(X) there exists a
g ∈ Cj

b (X) such that f = g almost everywhere and

‖g‖Cj
b (X) ≤ c ‖f‖W m+j(X) .

In other words, Wm+j(X) can be identified with a subspace of Cj
b (X) when-

ever m > d/2. In particular, Wm(X) “consists” of continuous functions for
such m. Given an f ∈ Wm(Rd), one can easily show that the restriction f|X
to X satisfies f|X ∈ Wm(X) with ‖f|X‖W m(X) ≤ ‖f‖W m(Rd). Interestingly,
for Euclidean balls X, a form of inverse inequality also holds. More precisely,
the Calderón-Stein extension theorem shows that there exists a linear
operator ˜ : W 0(X)→W 0(Rd) such that

f̃ = f almost everywhere on X

for all f ∈W 0(X) and f̃ ∈Wm(Rd) with

‖f̃‖W m(Rd) ≤ cm(X)‖f‖W m(X)

for all f ∈ Wm(X), where cm(X) > 0 is a constant depending only on m
and X. We refer to p. 154 of Adams and Fournier (2003) and Chapter 6 of
Stein (1970) for a proof. Note that an immediate consequence of this theorem
is that

‖f‖ := inf
{‖g‖W m(Rd) : g ∈Wm(Rd) with g|X = f

}
, (A.35)

f ∈ Wm(X), defines an equivalent norm on Wm(X). Finally, we refer to the
books by Adams and Fournier (2003) and Ziemer (1989) for more information
on Sobolev spaces.
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A.5.6 Entropy Numbers

In this subsection, we present some properties of (dyadic) entropy numbers
introduced in Section 6.3. Let us begin by recalling their definition.

Definition A.5.26. Let (T, d) be a metric space and n ≥ 1 be an integer.
Then the n-th (dyadic) entropy number of (T, d) is defined by

en(T, d) := inf
{
ε > 0 : ∃ t1, . . . , t2n−1 ∈ T such that T ⊂

2n−1⋃
i=1

Bd(ti, ε)
}
,

where we use the convention inf ∅ :=∞.
Moreover, if (T, d) is a subspace of a normed space (E, ‖ · ‖) we write

en(T, ‖ · ‖) := en(T,E) := en(T, d).
Finally, if S : E → F is a bounded, linear operator between the normed

spaces E and F , we write en(S) := en(SBE , ‖ · ‖F ).

Entropy numbers have been extensively studied in the literature. For
a gentle introduction on their basics, we refer to Chapter 1 of Carl and
Stephani (1990), from which the following properties are taken if not stated
otherwise. To present these properties, we assume that we have a met-
ric space (T, d). Then the entropy numbers are obviously monotone, i.e.,
en(T, d) ≥ en+1(T, d) for all n ≥ 1. Now let us fix a subset A ⊂ T . Then A
equipped with the trace metric dA := d|A×A of d is a metric space and hence
the n-th entropy number of (A, dA) is given by

en(A, dA) = inf
{
ε > 0 : ∃ t1, . . . , t2n−1 ∈ A such that A ⊂

2n−1⋃
i=1

Bd(ti, ε)
}
.

However, one could also consider the quantity

ẽn(A, d) := inf
{
ε > 0 : ∃ t1, . . . , t2n−1 ∈ T such that A ⊂

2n−1⋃
i=1

Bd(ti, ε) ,
}

which allows the ε-net to be taken from T instead of A. Fortunately, both
quantities are closely related; namely we have

ẽn(A, d) ≤ en(A, dA) ≤ 2ẽn(A, d) , (A.36)

where the first inequality follows from A ⊂ T and the second inequality can
be derived from (1.1.3) and (1.1.4) in the book by Carl and Stephani (1990).

Now let E and F be normed spaces and S1 : E → F and S2 : E → F be
bounded linear operators. Then the dyadic entropy numbers are additive in
the sense of

em+n−1(S1 + S2) ≤ em(S1) + en(S2) , n,m ≥ 1 . (A.37)
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Moreover, if Z is another normed space and R : E → Z and S : Z → F are
bounded linear operators, then the dyadic entropy numbers are also multi-
plicative in the sense of

em+n−1(SR) ≤ em(S)en(R) , n,m ≥ 1 . (A.38)

In particular, we have en(SR) ≤ ‖S‖en(R) and en(SR) ≤ ‖R‖en(S) for all
n ≥ 1, where we used the equation

e1(S) = ‖S‖ . (A.39)

Let us now assume that we have Banach spaces Ẽ, E, F , and F̃ , a bounded
linear operator S : E → F , a metric surjection Q : Ẽ → E, and an isometric
embedding I : F → F̃ . Then the (dyadic) entropy numbers are surjective
and injective, i.e., for n ≥ 1, we have

en(SQ) = en(S) and en(IS) ≤ en(S) ≤ 2en(IS), (A.40)

respectively. In addition, if I happens to be bijective, i.e., to be an isometric
isomorphism, we actually have en(IS) = en(S).

An operator S : E → F between R-Banach spaces E and F is of finite
rank, i.e., d := rankS <∞, if and only if there exists a constant C > 0 such
that

C2−(n−1)/d ≤ en(S) ≤ 4‖S‖ 2−(n−1)/d , n ≥ 1. (A.41)

In particular, there exists no operator S �= 0 whose dyadic entropy numbers
decrease faster than 2−n.

Entropy numbers are closely related to the approximation numbers intro-
duced in (A.29). Namely, Carl’s inequality states that for all 0 < p ≤ ∞ and
0 < q <∞ there exists a constant cp,q > 0 such that

m∑
i=1

iq/p−1eq
i (S) ≤ cp,q

m∑
i=1

iq/p−1aq
i (S) (A.42)

for all bounded operators S : E → F acting between Banach spaces and all
m ≥ 1. For a proof, we refer to Theorem 3.1.2 of Carl and Stephani (1990).
Moreover, Lemma 1.5.1 by Carl and Stephani (1990) shows that (A.42) is
equivalent to

m∑
i=1

2iq/peq
2i(S) ≤ c̃p,q

m∑
i=1

2iq/paq
2i(S) , (A.43)

where c̃p,q is another constant independent of S, E, F , and m. Finally, Carl
and Stephani (1990) show on p. 120 that, for Hilbert spaces H and T ∈ K(H),
we have the following strong inverse of the inequalities above:

ai(T ) ≤ 2ei(T ) , i ≥ 1 . (A.44)
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Let us finally collect some well-established bounds on entropy numbers for
certain embeddings. To this end, let us fix a bounded, convex, and open subset
X ⊂ Rd and an integer m ≥ 0. Then Kolmogorov and Tikhomirov (1961), see
also Theorem 2.7.1 of van der Vaart and Wellner (1996) for the upper bound,
showed that there exist constants c̃m,d(X), cm,d(X) > 0 such that

c̃m,d(X)n−m/d ≤ en

(
id : Cm

b (X)→ �∞(X)
) ≤ cm,d(X)n−m/d (A.45)

for all n ≥ 1. Since Cm(X) is a subspace of Cm
b (X), the multiplicativity (A.38)

shows that the upper bound also holds for id : Cm(X) → �∞(X). Moreover,
id : C0(X)→ �∞(X) is an isometric embedding and hence (A.40) yields

en

(
id : Cm(X)→ C0(X)

) ≤ 2cm,d(X)n−m/d , n ≥ 1. (A.46)

In order to have a closer look at the constant cm,d(X), we fix an r > 0
and write τrf(x) := f(rx) for functions f : rX → R and x ∈ X. It is
straightforward to check that ‖τrf‖Cm

b (X) ≤ rm‖f‖Cm
b (rX) for all f ∈ Cm

b (rX)
and r ≥ 1. In addition, we obviously have ‖τ1/rf‖∞ = ‖f‖∞ for all f ∈ �∞(X)
and r > 0. Moreover, we have the commutative diagram

Cm
b (rX) �∞(rX)

Cm
b (X) �∞(X)

�

�

�

�

id

τr τ1/r

id

which yields en(id : Cm
b (rX) → �∞(rX)) ≤ rmen(id : Cm

b (X) → �∞(X)) for
all r ≥ 1 and n ≥ 1 by the multiplicativity (A.38). Consequently, for r ≥ 1,
the constant cm,d(rX) can be assumed to be of the form

cm,d(rX) = rmcm,d(X) . (A.47)

Our next goal is to present bounds similar to (A.45) for Sobolev spaces. To
this end, we assume that X is an open Euclidean ball in Rd. Then the first
bound, originally proved by Birman and Solomyak (1967), states that for all
m ≥ 0 there exist constants c̃m(X), cm(X) > 0 such that

c̃m(X)n−m/d ≤ en

(
id : Wm(X)→ L2(X)

) ≤ cm(X)n−m/d (A.48)

for all n ≥ 1. Moreover, Birman and Solomyak also proved that for m > d/2
there exist (different) constants c̃m(X), cm(X) > 0 such that

c̃m(X)n−m/d ≤ en

(
id : Wm(X)→ L∞(X)

) ≤ cm(X)n−m/d (A.49)

for all n ≥ 1. These bounds are special cases of more general results on
embeddings thoroughly presented by Edmunds and Triebel (1996). Since the
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original paper by Birman and Solomyak is in Russian, we now briefly describe
how the bounds above can be recovered from the general theory. To this end,
we first mention that on p. 24f, Edmunds and Triebel introduce two scales
of quasi-Banach spaces, denoted by Bs

p,q(R
d) and F s

p,q(R
d), where s ∈ R,

q ∈ (0,∞], and p ∈ (0,∞] for theB-scale but only p ∈ (0,∞) for the F -scale. It
turns out that Bm

2,2(R
d) = Fm

2,2(R
d) = Wm(Rd) in the sense of isomorphisms

for all m ≥ 0, see p. 44 and p. 25. Moreover, they also show on p. 44 that
B0

∞,1(R
d) is continuously embedded into L∞(Rd). Let us write As

p,q(R
d) if

we mean either Bs
p,q(R

d) or F s
p,q(R

d). For an open Euclidean ball X ⊂ Rd,
Edmunds and Triebel then define As

p,q(X) := {g|X : g ∈ As
p,q(R

d)} and

‖f‖As
p,q(X) := inf

{‖g‖As
p,q(Rd) : g ∈ As

p,q(R
d) with g|X = f

}
.

Using (A.35), we conclude that Bm
2,2(X) = Fm

2,2(X) = Wm(X) in the sense
of isomorphisms for all m ≥ 0, as well as B0

∞,1(X) ⊂ L∞(X) in the sense
of a continuous embedding. Let us now fix s2 < s1 and p1, p2, q1, q2 ∈ (0,∞]
such that

s1 − s2 − d
(
p−1
1 − p−1

2

)
+
> 0 ,

where for the F -scale, we addionally assume p1, p2 < ∞. Then Theorem 2
on p. 118 of Edmunds and Triebel (1996) shows that there exist constants
c̃, c > 0 such that

c̃ n−(s1−s2)/d ≤ en

(
id : As1

p1,q1
(X)→ As2

p2,q2
(X)
) ≤ c n−(s1−s2)/d (A.50)

for all n ≥ 1. From this, (A.48) follows by taking s1 := m, s2 := 0,
pi := qi := 2. In addition, the lower bound of (A.49) follows from (A.48) since
L∞(X) is continuously embedded into L2(X). Finally, the upper bound can
be derived from (A.50) by considering the B-scale and s1 := m, p1 := q1 := 2,
s2 := 0, p2 :=∞, and q2 := 1.

A.6 Convex Analysis

In this section, we discuss some properties of convex functions. To this end,
recall that a subset A ⊂ E of a Banach space E is called convex if, for all
x1, x2 ∈ A and all α ∈ [0, 1], we have αx1 + (1 − α)x2 ∈ A. In this case, a
function f : A → R ∪ {∞} is called convex if, for all x1, x2 ∈ A and all
α ∈ [0, 1], we have

f
(
αx1 + (1− α)x2

) ≤ αf(x1) + (1− α)f(x2) .

In addition, f is called concave if −f is convex.
In the following subsection, we recall some continuity properties of convex

functions, and in Subsection A.6.2 we review the subdifferential calculus for
convex functions. Then, in Subsection A.6.3, we discuss some stronger notions
of convexity and their relations to each other. In Subsection A.6.4, we present
some important properties of the Fenchel-Legendre bi-conjugate operation.
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A.6.1 Basic Properties of Convex Functions

In this section, we provide some elementary facts on convex functions. We
begin with the following result, which can be found, for example, on p. 27 of
Rockafellar (1970).

Lemma A.6.1 (Hessian matrix of convex functions). Let O ⊂ Rn be an
open convex set and g : O → R be a twice continuously differentiable function.
Then g is convex if and only if its Hessian matrix Qx = (qi,j(x))i,j defined by

qi,j(x) :=
∂2g

∂xi ∂xj

(
x1, . . . , xn

)
is positive semi-definite for every x ∈ O.

An immediate consequence of this result is the following example for a
convex function from Rn to R. Let K ∈ Rn×n be a symmetric matrix, b ∈ Rn,
and c ∈ R. The quadratic function

g(a) := aTKa+ aT b+ c, a ∈ Rn, (A.51)

is convex on Rn if and only if K is positive semi-definite, i.e., if aTKa ≥ 0 for
every a ∈ Rn.

We now give a continuity result for convex functions.

Lemma A.6.2 (Continuity of convex functions). Let f : R→ R ∪ {∞}
be a convex function and Dom f := {t ∈ R : f(t) <∞}. Then we have:

i) f is continuous at all t ∈ Int Dom f .
ii) If f is lower semi-continuous, then f|Dom f is continuous.

Proof. See Theorem 2.35 and Corollary 2.37 of Rockafellar and Wets (1998)
or Theorem 2.1.6 of Zălinescu (2002). ��

Note that the preceding lemma is not true in general Banach spaces. In-
deed, every infinite-dimensional Banach space E has a linear, and thus convex,
functional x′ : E → R that is nowhere continuous.

The following result is shown in, e.g., Theorem 2.1.3 of Zălinescu (2002).

Lemma A.6.3 (Supremum of convex functions). Let E be a Banach
space, I �= ∅ and (fi)i∈I be a family of convex functions fi : E → R. Then
f : E → R ∪ {∞} defined by f(x) := supi∈I fi(x), x ∈ E, is convex.

Since affine linear functions on R are continuous and convex, we obtain
the following result by combining the preceding lemmas with Lemma A.2.7.

Lemma A.6.4. Let I �= ∅ and (fi)i∈I be a family of affine linear functions
fi : R → R. Then f(x) := supi∈I fi(x) defines a convex and l.s.c. function
f : R→ R ∪ {∞} whose restriction f|Dom f is continuous.
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Given two Banach spaces E and F and a subset A ⊂ E, we call a function
f : A → F Lipschitz continuous if there exists a constant c ≥ 0 such that
‖f(x) − f(x′)‖F ≤ c‖x − x′‖E for all x, x′ ∈ A. In this case, the smallest
such constant c is denoted by |f |1. Moreover, a function f : R → R is called
locally Lipschitz continuous if for all t > 0 the restriction f|[−t,t] of f to
the interval [−t, t] is Lipschitz continuous.

Lemma A.6.5 (Local Lipschitz continuity and convexity). Every con-
vex f : R→ R is locally Lipschitz continuous, and for t > 0 we have

∣∣f|[−t,t]

∣∣
1
≤ 2

t
‖f|[−2t,2t]‖∞ .

If in addition f(0) = 0, then s �→ f(s)
s is increasing on (0,∞) and we have

‖f|[−t,t]‖∞ ≤ t · ∣∣f|[−t,t]

∣∣
1
, t > 0.

Proof. The first inequality follows from the proof of Proposition 1.6 of Phelps
(1993). In addition, for 0 < s < s′ and α := s/s′ ∈ [0, 1], we have f(s) =
f(αs′ + (1− a)0) ≤ αf(s′), which shows the monotonicity assertion. Finally,
the second inequality follows from |f(r)| = |f(r)− f(0)| ≤ ∣∣f|[−r,r]

∣∣
1
· r. ��

Let us now recall the fundamental theorem of calculus for Lipschitz contin-
uous functions. Note that it actually holds for absolutely continuous functions;
however, we do not need this full generality, and hence we omit the details.

Theorem A.6.6 (Fundamental theorem of calculus). Let f : [a, b]→ R

be a Lipschitz continuous function. Then f is differentiable at Lebesgue-almost
all t ∈ [a, b]. Furthermore, the almost everywhere defined derivative f ′ of f is
Lebesgue integrable and satisfies

f(x) = f(a) +
∫ x

a

f ′(t)dt , x ∈ [a, b]. (A.52)

Proof. The proof of this classical result from Lebesgue’s integration theory
can be found in many textbooks on real analysis. Here we only mention the
Theorems 26–28 in Chapter X of Graves (1956) and the Theorems 271, 269,
and 274 by Kestelman (1960). ��

Note that for restrictions f|[a,b] of convex functions f : R → R, the Lip-
schitz condition in the preceding theorem is automatically satisfied by Lemma
A.6.5. Consequently, convex functions on R are almost everywhere differen-
tiable and satisfy (A.52).

Theorem A.6.6 can be used to establish a convexity test and a formula for
computing the (local) Lipschitz constants. These results are provided by the
following two lemmas.
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Lemma A.6.7 (Convexity test). Let f : [a, b]→ R be a Lipschitz continu-
ous function and N ⊂ [a, b] be a Lebesgue null set such that f is differentiable
at all t ∈ [a, b] \ N . Assume that, for all s, t ∈ [a, b]\N with s ≤ t, we have
f ′(s) ≤ f ′(t). Then f is convex.

Proof. Let us fix x1, x2 ∈ [a, b] with x1 < x2 and a real number λ ∈ (0, 1). We
define x := λx1 + (1− λ)x2. With the help of Theorem A.6.6, we then obtain

f(x)− f(x1)
x− x1

=
1

x− x1

∫ x

x1

f ′(t)dt ≤ sup
t∈[x1,x]\N

f ′(t)

and
f(x2)− f(x)
x2 − x =

1
x2 − x

∫ x2

x

f ′(t)dt ≥ inf
t∈[x,x2]\N

f ′(t) .

Combining both inequalities, by our monotonicity assumption on f ′, we then
easily find the assertion. ��
Lemma A.6.8 (Computation of Lipschitz constant). Let f : [a, b]→ R

be a Lipschitz continuous function and N ⊂ [a, b] be a Lebesgue null set such
that f is differentiable at all t ∈ [a, b]\N . Then we have

|f |1 = sup
t∈[a,b]\N

|f ′(t)| .

Proof. With the help of Theorem A.6.6, we obtain

|f |1 = sup
x1,x2∈[a,b]

x1 �=x2

∣∣∣∣f(x2)− f(x1)
x2 − x1

∣∣∣∣ ≤ sup
x1,x2∈[a,b]

x1<x2

1
x2 − x1

∫ x2

x1

|f ′(t)|dt

≤ sup
t∈[a,b]\N

|f ′(t)| .

Conversely, for t ∈ [a, b]\N , an easy estimate shows

|f ′(t)| =
∣∣∣∣lims→t
s �=t

f(s)− f(t)
s− t

∣∣∣∣ ≤ sup
s∈[a,b]

s �=t

∣∣∣∣f(s)− f(t)
s− t

∣∣∣∣ = |f |1 . ��

Again note that, for a convex function f : R→ R, the Lipschitz continuity
of its restrictions f|[−a,a], a > 0, is guaranteed by Lemma A.6.5. Consequently,
Lemma A.6.8 provides a simple way to calculate the local Lipschitz constants
for convex f .

The following theorem provides a simple-to-use criterion for the existence
of a global minimizer.

Theorem A.6.9 (Existence of minimizers). Let E be a reflexive Banach
space and f : E → R ∪ {∞} be a convex and lower semi-continuous map.
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If there exists an M > 0 such that {x ∈ E : f(x) ≤ M} is non-empty and
bounded, then f has a global minimum, i.e., there exists an x0 ∈ E with

f(x0) ≤ f(x) , x ∈ E.
Moreover, if f is strictly convex, then x0 is the only element minimizing f .

Proof. Proposition 6 on p. 75 of Ekeland and Turnbull (1983) shows the ex-
istence, and the uniqueness is a consequence of the strict convexity. ��

A.6.2 Subdifferential Calculus for Convex Functions

In this subsection, we collect some important properties of subdifferentials.
Throughout this subsection, E and F denote R-Banach spaces. Let us begin
by recalling the definition of subdifferentials.

Definition A.6.10. Let E be a Banach space, f : E → R ∪ {∞} be a convex
function, and w ∈ E with f(w) <∞. Then the subdifferential of f at w is
defined by

∂f(w) :=
{
w′ ∈ E′ : 〈w′, v − w〉 ≤ f(v)− f(w) for all v ∈ E} .

We begin with a proposition that provides some elementary facts of the
subdifferential (see Phelps, 1993, Proposition 1.11).

Proposition A.6.11. Let f : E → R∪ {∞} be a convex function and w ∈ E
such that f(w) < ∞. If f is continuous at w, then the subdifferential ∂f(w)
is a non-empty, convex, and weak*-compact subset of E′. In addition, if c ≥ 0
and δ > 0 are constants satisfying∣∣f(v)− f(w)

∣∣ ≤ c ‖v − w‖ , v ∈ w + δBE ,

then we have ‖w′‖ ≤ c for all w′ ∈ ∂f(w).

The following proposition shows the extent to which the known rules of
calculus carry over to subdifferentials. For the proofs of these rules, we refer
to, e.g., Castaing and Valadier (1977), Ekeland and Turnbull (1983), Phelps
(1993), and Zălinescu (2002).

Proposition A.6.12 (Subdifferential calculus). Let f, g : E → R∪ {∞}
be convex functions, λ ≥ 0, and A : F → E be a bounded linear operator.
Then the following rules are true:

Homogeneity. For all w ∈ E with f(x) <∞, we have ∂(λf)(w) = λ∂f(w).
Additivity. If there exists a w0 ∈ E at which f is continuous, then, for all

w ∈ E satisfying both f(w) <∞ and g(w) <∞, we have

∂(f + g)(w) = ∂f(w) + ∂g(w) .
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Chain rule. If there exists an v0 ∈ F such that f is finite and continuous at
Av0, then, for all v ∈ F satisfying f(Av) <∞, we have

∂(f ◦A)(v) = A′∂f(Av),

where A′ : E′ → F ′ denotes the adjoint operator of A.
Minima. The function f has a global minimum at w ∈ E if and only if

0 ∈ ∂f(w).
Differentiability. If f is finite and continuous at w ∈ E, then f is Gâteaux

differentiable at w if and only if ∂f(w) is a singleton, and in this case we
have ∂f(w) = {f ′(w)}.

Monotonicity. If f is finite and continuous at all w ∈ E, then ∂f is a
monotone operator, i.e., for all v, w ∈ E and v′ ∈ ∂f(v), w′ ∈ ∂f(w),
we have

〈v′ − w′, v − w〉 ≥ 0 .

The following proposition shows how the subdifferential of a function de-
fined by an integral can be computed.

Proposition A.6.13. Let L : X ×Y ×R→ [0,∞) be a convex loss function,
P be a distribution on X×Y , and p ∈ [1,∞). We define R : Lp(P)→ [0,∞] by

R(f) :=
∫

X×Y

L
(
x, y, f(x, y)

)
dP(x, y) , f ∈ Lp(P).

If we have R(f) <∞ for all f ∈ Lp(P), then, for all f ∈ Lp(P), we have

∂R(f) =
{
h ∈ Lp′(P) : h(x, y) ∈ ∂L(x, y, f(x, y)

)
for P-almost all (x, y)

}
,

where ∂L(x, y, t) denotes the subdifferential of L(x, y, · ) at the point t.

Proof. Since L is convex and finite, it is a continuous loss. Consequently, it
is a normal convex integrand by Proposition 2C of Rockafellar (1976). Then
Corollary 3E of Rockafellar (1976) gives the assertion. ��

The next proposition shows that the subdifferential is in some sense semi-
continuous (for a proof see, e.g., Proposition 2.5 of Phelps, 1993).

Proposition A.6.14. If f : Rd → R is continuous and convex, then the sub-
differential map is upper semi-continuous in the sense that, for all w ∈ Rd

and ε > 0, there exists a δ > 0 with

∂f(w + δBRd) ⊂ ∂f(w) + εBRd .

Here we used the notation ∂f(M) :=
⋃

v∈M ∂f(v) for a set M ⊂ Rd.
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Let us now present a simple description of the subdifferential for functions
defined on R. To this end, recall (see, e.g., Lemma 1.2 of Phelps, 1993) that,
for a convex function f : R→ R, both the left and the right derivatives

d−f(x) := lim
t↘0

f(x)− f(x− t)
t

, d+f(x) := lim
t↘0

f(x+ t)− f(x)
t

,

exist for all x ∈ R. This leads to the following lemma.

Lemma A.6.15. For every convex function f : R → R and all x ∈ R, we
have

∂f(x) =
[
d−f(x), d+f(x)

]
.

Proof. By Theorem 3.1.8 of Borwein and Lewis (2000), we find d−f(x) =
min ∂f(x) and d+f(x) = max ∂f(x). Now the assertion follows from the fact
that ∂f(x) is a convex set by Proposition A.6.11. ��

The preceding lemma can be used to establish the next lemma, which
sometimes makes it possible to substitute a convex function by a Lipschitz
continuous convex function.

Lemma A.6.16. Let f : R→ [0,∞) be a convex function and a, b ∈ R be real
numbers with a < b. Then there exists a convex, Lipschitz continuous function
f̃ : R→ [0,∞) with the following properties:

f̃|[a,b] = f|[a,b] , (A.53)

|f̃ |1 =
∣∣f|[a,b]

∣∣
1
, (A.54)

∂f̃(x) ⊂ ∂f(x) , x ∈ [a, b]. (A.55)

Proof. Let us first assume that d+f(a) ≤ 0 and d−f(b) ≥ 0. Then we define
f̃ by

f̃(x) :=

⎧⎪⎨
⎪⎩
d+f(a) · (x− a) + f(a) if x < a

f(x) if x ∈ [a, b]
d−f(b) · (x− b) + f(b) if x > b .

It is obvious that f̃ is a non-negative function satisfying (A.53). In order to
show the other assertions, recall that by Lemma A.6.5 and Theorem A.6.6
there exists a Lebesgue null set N ⊂ [a, b] such that f|[a,b] is differentiable
at all x ∈ [a, b]\N . Consequently, f̃ is differentiable at all x ∈ [a, b]\N ,
and its derivative at these points is given by f̃ ′(x) = f ′(x). Moreover, for
x ≤ a, we clearly have f̃ ′(x) = d+f(a) and, analogously, for x ≥ b, we have
f̃ ′(x) = d−f(b). In addition, Lemma A.6.15 together with the monotonicity
of ∂f yields

d+f(a) ≤ f ′(x1) ≤ f ′(x2) ≤ d−f(b) (A.56)

for all x1, x2 ∈ [a, b]\N with x1 ≤ x2. Using Lemma A.6.7, we then see that
f̃ is convex. Moreover, from (A.56), we can also conclude that
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sup
x∈[a,b]\N

|f ′(x)| ≤ max
{∣∣d+f(a)

∣∣, ∣∣d−f(b)
∣∣} (A.57)

To show the converse inequality, we fix an ε > 0. By Lemma A.6.14, there
then exists a δ > 0 such that

∂f
(
b+ [−δ, δ]) ⊂ ∂f(b) + [−ε, ε] =

[
d−f(b)− ε, d+f(b) + ε

]
,

where for the last equality we used Lemma A.6.15. Moreover, since N is
a null set there exists a x ∈ [b − δ, b] \ N , and since for this x we have
f ′(x) ∈ ∂f(b+ [−δ, δ]), we find f ′(x) ≥ d−f(b)− ε. This together with (A.56)
shows

lim
x→b

x∈[a,b]\N

f ′(x) = d−f(b) .

Since we can make an analogous consideration for d+f(a), we find that we
actually have equality in (A.57). Using Lemma A.6.8, we then find

|f̃ |1 = max
{∣∣d+f(a)

∣∣, ∣∣d−f(b)
∣∣, sup

x∈[a,b]\N

|f ′(x)|
}

= sup
x∈[a,b]\N

|f ′(x)| = ∣∣f|[a,b]

∣∣
1
.

Finally, (A.55) is obvious for x ∈ (a, b), and for, say, x = b, it follows from
f̃ ′(b) = d−f(b) ∈ ∂f(b).

Let us now consider the case d+f(a) ≤ 0 and d−f(b) < 0. If f has no
minimum, we modify f on (−∞, a) analogously to the first case and keep it
unchanged on [a,∞). Repeating the reasoning above, then gives the assertion.
Moreover, if f has a minimum at, say, b′, we modify f on (−∞, a) analogously
to the first case and keep it unchanged on [a, b′]. Moreover, for x ∈ [b′,∞),
we define f̃(x) := f(b′). Again, repeating the arguments of the first case gives
the assertion. The remaining cases can be treated in a symmetric way. ��

A.6.3 Some Further Notions of Convexity

In this section, we introduce some stronger notions of convexity and dis-
cuss their relations to each other. Let us begin by recalling that a function
f : A→ R on a convex subset A ⊂ E of a Banach space E is called strictly
convex if, for all x1, x2 ∈ A with x1 �= x2 and all α ∈ (0, 1), we have

f
(
αx1 + (1− α)x2

)
< αf(x1) + (1− α)f(x2) .

Furthermore, the modulus of convexity of f is defined by

δf (ε) := inf
{
f(x1) + f(x2)

2
− f
(x1 + x2

2

)
: x1, x2 ∈ A with |x1 − x2| ≥ ε

}
,

ε > 0, and we say that f is uniformly convex if δf (ε) > 0 for all ε > 0.
Obviously, every strictly convex function is also convex. The following lemma
describes some less trivial relations between the different notions of convexity.
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Lemma A.6.17. Given an interval I and a function f : I → R, we have:

i) If f is convex and satisfies f(α0x1+(1−α0)x2) = α0f(x1)+(1−α0)f(x2)
for some x1, x2 ∈ I, α0 ∈ [0, 1], then, for all α ∈ [0, 1], we have

f
(
αx1 + (1− α)x2

)
= αf(x1) + (1− α)f(x2) . (A.58)

ii) If f is continuous, then f is convex if and only if, for all x1, x2 ∈ I,
we have

f
(x1 + x2

2

)
≤ 1

2
f(x1) +

1
2
f(x2) . (A.59)

iii) If f is continuous, then f is strictly convex if and only if, for all x1, x2 ∈ I
with x1 �= x2, we have

f
(x1 + x2

2

)
<

1
2
f(x1) +

1
2
f(x2) . (A.60)

iv) If f is uniformly convex and continuous, then it is strictly convex. Con-
versely, if I is compact and f is strictly convex and continuous, then it is
actually uniformly convex.

Proof. i). This assertion can be shown using elementary calculations.
ii). This follows from Theorems 8 and 10 of Behringer (1992).
iii). If (A.60) holds, then we have already seen that f is convex. Conse-

quently, if f was not strictly convex, we would have (A.58). However, by i),
we could then assume α0 = 1

2 , which would give a contradiction.
iv) The first assertion follows from iii), and the second one is trivial. ��
Our next aim is to investigate the modulus of convexity. Although this con-

cept, in an equivalent formulation, has already been investigated by Polyak
(1966) and Levitin and Polyak (1966), almost nothing that is useful for
our purposes seems to be known (however, see Butnariu and Iusem, 2000;
Zălinescu, 2002; and the references therein for some general information on
the modulus). Therefore, we present the following two lemmas, which provide
some ways to simplify the computation of δf (ε).

Lemma A.6.18. Let I ⊂ R be a non-empty interval, f : I → R be strictly
convex, and ε > 0. Then we have

δf (2ε) = inf
{
f(x− ε) + f(x+ ε)

2
− f(x) : x satisfies x−ε ∈ I and x+ε ∈ I

}
.

Proof. For fixed x1 ∈ I, we define hx1 : I → [0,∞) by hx1(x2) := f(x1)+f(x2)
2 −

f(x1+x2
2 ), x2 ∈ I. Theorem A.6.6 then shows that the derivative h′x1

(x2) exists
for almost all x2, and an easy calculation shows h′x1

(x2) = f ′(x2)
2 − 1

2f
′(x1+x2

2 )
for such x2. Furthermore, f is strictly convex and thus hx1 has a unique
minimum at x1. This yields h′x1

(x2) < 0 if x2 < x1, and h′x1
(x2) > 0 if x2 > x1.
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Theorem A.6.6 then shows that hx1 is strictly decreasing on (−∞, x1)∩ I and
strictly increasing on (x1,∞) ∩ I, and thus we have

δf (2ε) = inf
x1∈I

x1±2ε∈I

hx1(x1 ± 2ε) = inf
x1+ε∈I
x1−ε∈I

hx1−ε(x1 + ε) ,

where in the last step we used hx1−ε(x1 + ε) = hx1+ε(x1 − ε). ��
With the help of the following lemma, we can often estimate the modulus

of convexity.

Lemma A.6.19. Let I ⊂ R be a symmetric interval, i.e., x ∈ I implies
−x ∈ I. Then, for all strictly convex, symmetric f : I → [0,∞) and all ε > 0,
we have

δf (2ε) = inf
x≥0

x+ε∈I

f(x− ε) + f(x+ ε)
2

−f(x) =
1
2

inf
x≥0

x+ε∈I

∫ x+ε

x

(
f ′(t)−f ′(t−ε))dt .

Furthermore, if I = R, then, for all x ≥ 12ε, we have

f(x) ≥ δf (2ε)x2

8ε2
.

Proof. The first equation follows from Lemma A.6.18 and the symmetry as-
sumptions. Furthermore, by Theorem A.6.6, we obtain

f(x+ ε) + f(x− ε) = 2f(x) +
∫ x+ε

x

(
f ′(t)− f ′(t− ε))dt , (A.61)

and hence the second equation follows. Finally, in order to show the last
assertion, we first observe that f has a minimum at 0, and hence we have
f ′(t) ≥ 0 for all t ≥ 0 for which the derivative exists. We write b := 2δf (2ε),
and xn := 2εn for n ≥ 1. These definitions together with (A.61) yield real
numbers tn ∈ [xn, xn + ε], n ≥ 1, that satisfy

b ≤
∫ xn+ε

xn

(
f ′(t)− f ′(t− ε))dt ≤ ε

(
f ′(tn)− f ′(tn − ε)

)
.

Therefore we obtain f ′(tn) ≥ f ′(tn − ε) + b
ε for all n ≥ 1. Furthermore, we

have tn − ε ≥ xn − ε = xn−1 + ε ≥ tn−1 and hence f ′(tn − ε) ≥ f ′(tn−1),
n ≥ 2. By induction, we thus find f ′(tn+1) ≥ f ′(t1) + bn

ε ≥ bn
ε for all n ≥ 1.

Now let t ≥ 6ε be a real number at which f ′(t) exists. Then there is an n ≥ 3
with 2εn ≤ t < 2ε(n+ 1), and hence we get

f ′(t) ≥ f ′(tn−1) ≥ b(n− 2)
ε

>
b(t− 6ε)

2ε2
.

Consequently, for x ≥ 12ε, Theorem A.6.6 gives

f(x) = f(6ε) +
∫ x

6ε

f ′(t)dt ≥ b

2ε2

∫ x

6ε

(t− 6ε)dt =
b(x− 6ε)2

4ε2
≥ bx2

16ε2
. ��
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A.6.4 The Fenchel-Legendre Bi-conjugate

In this subsection, we establish some important properties of the Fenchel-
Legendre bi-conjugate operation ∗∗ defined in Definition 3.20. To this end,
we first note that the Fenchel-Legendre bi-conjugate g∗∗ : I → [0,∞) of a
function g : I → [0,∞) is determined by (see, e.g., p. 474 of Rockafellar and
Wets, 1998)

Epi g∗∗ = co Epi g ,

where Epi g := {(t, y) ∈ I × [0,∞) : g(t) ≤ y} denotes the epigraph of g and
coA denotes the convex hull of a set A. Now our first result reads as follows.

Lemma A.6.20. Let B > 0 and g : [0, B]→ [0,∞) be an increasing function
with g(0) = 0 and g(t) > 0 for all t ∈ (0, B]. Then the Fenchel-Legendre
bi-conjugate g∗∗ : [0, B]→ [0,∞) of g satisfies g∗∗(t) > 0 for all t ∈ [0, B].

Proof. Let us assume that there exists an 0 < t ≤ B with g∗∗(t) = 0. Then we
have (t, 0) ∈ Epi g∗∗ = co Epi g, and hence there exists a sequence (tn, yn) ∈
co Epi g with tn → t and yn → 0. Furthermore, we have co Epi g ⊂ R2, and
hence Carathéodory’s theorem (see, e.g., Rockafellar and Wets, 1998, p. 55)
guarantees that for all n ≥ 1 there exist tn,1, tn,2, tn,3 ∈ [0, B], yn,1, yn,2, yn,3 ∈
[0,∞), and αn,1, αn,2, αn,3 ∈ [0, 1] with

tn = αn,1tn,1 + αn,2tn,2 + αn,3tn,3 ,

yn = αn,1yn,1 + αn,2yn,2 + αn,3yn,3 ,

1 = αn,1 + αn,2 + αn,3 ,

yn,i ≥ g(tn,i) , i = 1, . . . , 3.

In addition, we may assume tn,1 ≤ tn,2 ≤ tn,3 without loss of generality. Since
this yields tn = αn,1tn,1 + αn,2tn,2 + αn,3tn,3 ≤ tn,3 we find yn,3 ≥ g(tn,3) ≥
g(tn) ≥ g( t

2 ) > 0 for large n. Recalling yn → 0, we thus obtain αn,3 → 0, which
implies both αn,1 +αn,2 → 1 and αn,1tn,1 +αn,2tn,2 → t. However, the latter
convergence gives t

2 ≤ αn,1tn,1 + αn,2tn,2 ≤ (αn,1 + αn,2)tn,2 for large n, and
hence we have tn,2 ≥ t

4 for large n. Again this shows yn,2 ≥ g(tn,2) ≥ g( t
4 ) > 0

for large n, and thus we find αn,2 → 0. Obviously, this yields both αn,1 → 1
and αn,1tn,1 → t, and hence we obtain tn,1 ≥ t

4 for large n. Finally, this gives
yn,1 ≥ g(tn,1) ≥ g( t

4 ) > 0 for large n, and therefore we find αn,1 → 0, which
contradicts the convergence αn,1 → 1 already found. ��
Lemma A.6.21. Let B > 0 and g : [0, B]→ [0,∞) be a continuous function
with g(0) = 0. We define g̃ : [0, B]→ [0,∞) by g̃(t) := inft′≥t g(t), t ∈ [0, B].
Then g̃ is increasing, and, for all t ∈ [0, B], we have

g∗∗(t) = g̃∗∗(t) .

In addition, if g(t) > 0 for all t ∈ (0, B], then g̃(t) > 0 for all t ∈ (0, B].
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Proof. The first assertion is trivial and the third assertion directly follows
from the continuity of g. Therefore, it remains to show

co Epi g = co Epi g̃ (A.62)

since this equation immediately yields g∗∗ = g̃∗∗. To establish (A.62), we first
observe that g̃(t) ≤ g(t) for all t ∈ [0, B] and hence we have co Epi g ⊂ co Epi g̃.
To prove the converse inclusion, observe that it suffices to show (t, g̃(t)) ∈
co Epi g for all t ∈ [0, B]. Furthermore, we have g̃(0) = 0 = g(0), and g̃(B) =
g(B), and hence we can restrict our considerations to pairs (t, g(t)) for t ∈
(0, B). Therefore let us fix an t ∈ (0, B). By the definition of g̃, we then find
an t+ ∈ [t, B] with g(t+) = g̃(t). Furthermore, we have g(0) ≤ g̃(t) ≤ g(t),
and hence the intermediate value theorem applied to the continuous function
g gives us an t− ∈ [0, t] with g(t−) = g̃(t). Now, there exists an α ∈ [0, 1] with
t = αt+ + (1− α)t−, and since our previous considerations showed

g̃(t) = αg̃(t) + (1− α)g̃(t) = αg(t+) + (1− α)g(t−) ,

we obtain (t, g̃(t)) ∈ co Epi g. ��

A.6.5 Convex Programs and Lagrange Multipliers

The following results on convex programs and Lagrange multipliers are needed
in Chapter 11, where we investigate methods to compute the decision func-
tions fD,λ of general support vector machines. This subsection is based on
Rockafellar (1970, Chapter 28).

Let S ⊂ Rn and g : S → R̄ be a function. Then g is convex if the epigraph
Epi g is convex as a subset of Rn+1. The effective domain of a convex
function g on S is the projection on Rn of the epigraph of g; i.e.,

dom g =
{
z ∈ S : ∃μ ∈ R, (z, μ) ∈ Epi g

}
=
{
z ∈ S : g(x) < +∞} .

A convex function g : Rn → R is called proper if its epigraph is non-empty
and contains no vertical lines; i.e., if g(z) < +∞ for at least one z ∈ Rn and
g(z) > −∞ for all z ∈ Rn. The relative interior of a convex set C ⊂ Rn is
defined as the interior that results when C is regarded as a subset of its affine
hull affC; i.e.,

riC :=
{
z ∈ aff C : ∃ ε > 0, (z + εB) ∩ (aff C) ⊂ C} .

A set A ⊂ Rn is called affine, if αx + (1 − α)y ∈ A for all x, y ∈ A and all
α ∈ R. The affine hull aff C of C ⊂ Rn is the smallest affine set that includes
C. Let A ⊂ Rn. A function g : A → R is called affine if it is finite, convex,
and concave; i.e., if there exists a vector a ∈ Rn and a constant b ∈ R such
that g(x) = aTx+ b for all x ∈ A.
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Definition A.6.22. Let n ∈ N and m, r ∈ N0, r ≤ m. A convex program
(P) is an (m + 3) tuple (C, g0, g1, . . . , gm, r), where C ⊂ Rn is a non-empty
convex set, g0, g1, . . . , gr : C → R are finite convex functions, gr+1, . . . , gm :
C → R are affine functions, and the optimization problem is given by

min
z∈C

g0(z)

subject to the constraints

g1(z) ≤ 0, . . . , gr(z) ≤ 0, gr+1(z) = 0, . . . , gm(z) = 0. (A.63)

We will assume that each function gi, i ∈ {0, . . . ,m}, is defined on Rn

in such a way that (i) g0 is a proper convex function with dom g0 = C, (ii)
g1, . . . , gr are proper convex functions with ri(dom gi) ⊃ riC and dom gi ⊃ C,
and (iii) g1, . . . , gm are affine functions throughout Rn such that g1, . . . , gm

are affine on C.
A vector z is called a feasible solution of the convex program (P) if

z ∈ C and z satisfies the constraints (A.63). The set of feasible solutions of
(P) is denoted by C0. Note that C0 is a (possibly empty) convex set. The
convex function g : Rn → R defined by

g(z) = g0(z)1C0(z) +∞1Cc
0
(z)

will be called the objective function for (P). Thus, minimizing g over Rn is
equivalent to minimizing g0(x) over all feasible solutions z ∈ C0. The infimum
of g will be called the optimal value in (P). The points where the infimum
of g is attained will be called the optimal solutions to (P) if C0 �= ∅. The
set of all optimal solutions of (P) is thus a possibly empty convex subset of
the set of all feasible solutions.

We call ξ = (ξ1, . . . , ξm) ∈ Rm a Karush-Kuhn-Tucker (KKT) vector
for (P) if ξi ≥ 0 for i = 1, . . . , r and the infimum of the proper convex function

g := g0 +
m∑

i=1

ξigi

is finite and equal to the optimal value in (P).

Theorem A.6.23. Let (P) be a convex program and let ξ ∈ Rm be a KKT
vector for (P). Define g := g0 +

∑m
i=1 ξigi and B = arg infz∈Rn g(z). Let

I := {i : 1 ≤ i ≤ r and ξi = 0} and J := {1, . . . ,m} \ I. Then

B0 :=
{
z̄ ∈ B : gi(z̄) = 0 for i ∈ J, gi(z̄) ≤ 0 for i ∈ I}

is the set of all optimal solutions of (P).

Proof. See Rockafellar (1970, Theorem 28.1). ��
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A function g : Rn → Rm is called closed if for any closed set A ⊂ Rn the
image g(A) ⊂ Rm is closed.

Corollary A.6.24. Let (P) be a convex program, and let ξ ∈ Rm be a KKT
vector for (P). Assume that the functions gi are all closed. If the infimum of
g := g0+

∑m
i=1 ξigi is attained at a unique point z̄, this z̄ is the unique optimal

solution to (P).

Proof. See Rockafellar (1970, Corollary 28.1.1). ��
The next result shows that a KKT vector exists under mild conditions.

Theorem A.6.25. Let (P) be a convex program, and let I be the set of indices
i �= 0 such that gi is not affine. Assume that the optimal value in (P) is not
−∞ and that (P) has at least one feasible solution in riC that satisfies with
strict inequality all the inequality constraints for i ∈ I. Then a KKT vector
(not necessarily unique) exists for (P).

Proof. See Rockafellar (1970, Theorem 28.2). ��
KKT vectors and optimal solutions in a convex program (P) can be

characterized in terms of the saddle point extrema of the Lagrangian3

L∗ : Rm ×Rn → R of (P), where

L∗(α, z) =

⎧⎪⎨
⎪⎩
g0(z) +

∑m
i=1 αigi(z) if α ∈ Er , z ∈ C

−∞ if α /∈ Er , z ∈ C
+∞ if z /∈ C

(A.64)

and Er :=
{
α = (α1, . . . , αm) ∈ Rm : αi ≥ 0, i = 1, . . . , r

}
. The coefficient

αi is called the Lagrange multiplier associated with the i-th constraint in
(P). The function L∗ is concave in α for each z and convex in z for each
α. The Lagrangian obviously contains all the structure of (P) because the
(m+ 3)-tuple of (P) can be recovered completely from L∗.

A vector (ᾱ, z̄) is said to be a saddle point of L∗ with respect to maxi-
mizing in α and minimizing in z if for all α ∈ Rm and all z ∈ C

L∗(α, z̄) ≤ L∗(ᾱ, z̄) ≤ L∗(ᾱ, z).

The next result shows how the optimal solutions to (P) and KKT vectors
for (P) can be characterized in terms of the Lagrangian L∗.

Theorem A.6.26. Let (P) be a convex program, ᾱ ∈ Rm, and z̄ ∈ Rn. In
order that ᾱ be a KKT vector for (P) and z̄ be an optimal solution to (P), it
is necessary and sufficient that (ᾱ, z̄) be a saddle point of the Lagrangian L∗

of (P). Furthermore, this condition holds if and only if z̄ and the components
αi of ᾱ satisfy
3 We denote the Lagrangian by L∗ instead of by the usual symbol L, because we

denote loss functions by L.



A.6 Convex Analysis 533

i) αi ≥ 0, gi(z̄) ≤ 0, and αigi(z̄) = 0, i = 1, . . . , r,
ii) gi(z̄) = 0 for i ∈ {r + 1, . . . ,m},
iii) 0 ∈ [∂g0(z̄) +

∑m
i=1 αi∂gi(z̄)

]
. (Omit terms with αi = 0.)

Proof. See Rockafellar (1970, Theorem 28.3). ��
It follows that, provided the KKT vectors are known to exist, solving the

constrained minimization problem in (P) is equivalent to finding a saddle point
of L∗. The so-called Karush-Kuhn-Tucker (KKT) conditions state that,
at the point of the solution of the convex program, the product between the
dual variables and the constraints has to vanish.

Corollary A.6.27 (Karush-Kuhn-Tucker theorem). Let (P) be a convex
program satisfying the assumptions of Theorem A.6.25. In order that a given
vector z̄ be an optimal solution to (P), it is necessary and sufficient that there
exists a vector ᾱ such that (ᾱ, z̄) is a saddle point of the Lagrangian L∗ of
(P). Equivalently, z̄ is an optimal solution if and only if there exist Lagrange
multiplier values αi that, together with z̄, satisfy the KKT conditions for (P).

Proof. See Rockafellar (1970, Corollary 28.3.1). ��
We mention that the KKT conditions of a convex program can also be

derived from the theory of subdifferentiation. The next theorem shows how
the optimal value in (P) can be characterized in terms of the Lagrangian L∗.

Theorem A.6.28. Let (P) be a convex program with Lagrangian L∗. If ᾱ is
a KKT vector for (P) and z̄ is an optimal solution, the saddle value L∗(ᾱ, z̄)
is the optimal value in (P). More generally, ᾱ is a KKT vector for (P) if and
only if

−∞ < inf
z∈Rn

L∗(ᾱ, z) = sup
α∈Rm

inf
z∈Rn

L∗(α, z) = inf
z∈Rn

sup
α∈Rm

L∗(α, z),

in which case the common extremum value in the latter equation is the optimal
value in (P).

Proof. See Rockafellar (1970, Theorem 28.4). ��
The following result shows that the problem of determining a KKT vec-

tor for a convex problem (P) can be reduced to the numerical problem of
maximizing a certain concave function g on Rm.

Corollary A.6.29. Let (P) be a convex program with Lagrangian L∗ having
at least one KKT vector. Let h : Rm → R be the concave function defined by

h(α) = inf
z∈Rm

L∗(α, z),

where L∗ is the Lagrangian of (P). The KKT vectors for (P) are then the
points ᾱ where h attains its supremum over Rm.

Proof. See Rockafellar (1970, Corollary 28.4.1). ��
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A.7 Complex Analysis

In this section, we briefly recall some facts from complex analysis. We begin
with the basic definition.

Definition A.7.1. Let D ⊂ Cd be an open subset and f : D → C be a
function. We say that f is holomorphic at the point z0 ∈ D if

f ′(z0) := lim
z→z0

f(z0)− f(z)
z0 − z

exists. Moreover, f is called holomorphic if it is holomorphic at every z0 ∈
D. Finally, f is called an entire function if f is holomorphic and D = Cd.

The following result shows that the set of holomorphic functions over D
is closed under compact convergence.

Theorem A.7.2. Let D ⊂ Cd be an open subset and fn : D → C, n ≥ 1, be
holomorphic functions. Furthermore, let f : D → C be a function such that

lim
n→0

sup
z∈K
|fn(z)− f(z)| = 0

for all compact subsets K ⊂ D. Then f is holomorphic.

Proof. See p. 10 of the book by Range (1986). ��
Finally, we recall a simple version of Hardy’s convexity theorem, which

can be found on p. 9 of the book by Duren (1970).

Theorem A.7.3 (Hardy’s convexity theorem). Let B̊Cd be the open unit
ball of Cd and f : B̊Cd → C be a holomorphic function. Then

r �→ 1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2dθ

is non-decreasing on [0, 1).

A.8 Inequalities Involving Rademacher Sequences

In this section, we present some results on Rademacher sequences and empir-
ical Rademacher averages.

In the following, Z always denotes a non-empty set equipped with some
σ-algebra. Moreover, whenever we consider a distribution on Z, it is supposed
to live on this σ-algebra. Furthermore, given a metric space (T, d), we call
(ht)t∈T ⊂ L0(Z) a Carathéodory family if t �→ ht(z) is continuous for
all z ∈ Z. Moreover, if T is separable or complete, we say that (ht)t∈T is a
separable or complete Carathéodory family, respectively. In addition,
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we call a subset H ⊂ L0(Z) a (separable or complete) Carathéodory set if
there exists a (separable or complete) metric space (T, d) and a Carathéodory
family (ht)t∈T ⊂ L0(Z) such that H = {ht : t ∈ T}.

Furthermore, a sequence ε1, . . . , εn of independent random variables de-
fined on some probability space (Θ, C, ν) is called a Rademacher sequence
with respect to ν if ν(εi = 1) = ν(εi = −1) = 1/2 for all i = 1, . . . , n.

The first result, whose proof (besides different measurability notions) is
essentially a copy of the proof of Lemma 2.3.1 of van der Vaart and Wellner
(1996), recalls the so-called symmetrization procedure.

Theorem A.8.1 (Symmetrization). Let Ψ : [0,∞) → [0,∞) be a convex
and non-decreasing function. Furthermore, let E be a separable Banach space,
(Ω,A,P) be a probability space, and ξ1, . . . , ξn : Ω → E be i.i.d. P-integrable
random variables. Finally, let ε1, . . . , εn be a Rademacher sequence with re-
spect to some distribution ν. Then we have

EP Ψ

(∥∥∥ 1
n

n∑
i=1

(
ξi − EPξi

) ∥∥∥) ≤ EPEνΨ

(
2
∥∥∥ 1
n

n∑
i=1

εiξi

∥∥∥) .
Proof. For fixed ω ∈ Ω, we have

∥∥∥ 1
n

n∑
i=1

(
ξi(ω)− EPξi

) ∥∥∥ ≤ ∫
Ω

∥∥∥ 1
n

n∑
i=1

(
ξi(ω)− ξi(ω′)

) ∥∥∥ dP(ω′) .

The monotonicity and convexity of Ψ together with Jensen’s inequality hence
imply

EP Ψ

(∥∥∥ 1
n

n∑
i=1

(
ξi(ω)− EPξi

) ∥∥∥)

≤
∫

Ω

Ψ

(∫
Ω

∥∥∥ 1
n

n∑
i=1

(
ξi(ω)− ξi(ω′)

) ∥∥∥ dP(ω′)
)
dP(ω)

≤ EP⊗PΨ

(∥∥∥ 1
n

n∑
i=1

(
ξi ◦ π1 − ξi ◦ π2

) ∥∥∥) ,
where πj : Ω × Ω → Ω, j = 1, 2, denotes the j-th-coordinate projection.
Moreover, the independence of ξ1 ◦π1, . . . , ξn ◦π1, ξ1 ◦π2, . . . , ξn ◦π2 together
with ε1, . . . , εn ∈ {−1, 1} yields

EP⊗PΨ

(∥∥∥ 1
n

n∑
i=1

(
ξi ◦π1−ξi ◦π2

) ∥∥∥) = EP⊗PΨ

(∥∥∥ 1
n

n∑
i=1

εi

(
ξi ◦π1−ξi ◦π2

) ∥∥∥) .
Using the monotonicity and convexity of Ψ , we hence obtain
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EP⊗PΨ

(∥∥∥ 1
n

n∑
i=1

(
ξi ◦ π1 − ξi ◦ π2

) ∥∥∥)

≤ EP⊗PΨ

(∥∥∥ 1
n

n∑
i=1

εi · (ξi ◦ π1)
∥∥∥+
∥∥∥ 1
n

n∑
i=1

εi · (ξi ◦ π2)
∥∥∥)

≤ 1
2

EP⊗PΨ

(
2
∥∥∥ 1
n

n∑
i=1

εi · (ξi ◦ π1)
∥∥∥)+

1
2

EP⊗PΨ

(
2
∥∥∥ 1
n

n∑
i=1

εi · (ξi ◦ π2)
∥∥∥)

= EPΨ

(
2
∥∥∥ 1
n

n∑
i=1

εiξi

∥∥∥) .
By averaging over ε1, . . . , εn and changing the integration order, we then ob-
tain the assertion. ��
Corollary A.8.2. Let (Ω,A,P) be a probability space, Z be a measurable
space, and ξ1, . . . , ξn : Ω → Z be i.i.d. random variables. Moreover, let H ⊂
L∞(Z) be a separable Carathéodory set with suph∈H ‖h‖∞ < ∞. Finally, let
ε1, . . . , εn be a Rademacher sequence with respect to some distribution ν. Then
we have

EP sup
h∈H

∣∣∣∣ 1n
n∑

j=1

(
h(ξi)− EPh(ξi)

)∣∣∣∣ ≤ 2EPEν sup
h∈H

∣∣∣∣ 1n
n∑

i=1

εih(ξi)
∣∣∣∣ . (A.65)

Proof. By a simple limit argument, we can obviously assume without loss of
generality that H is finite. We write E := �∞(H), i.e., E is the vector space
of functions g : H → R equipped with the supremum norm

‖g‖∞ := sup
h∈H
|g(h)| , g ∈ E .

Then E is a finite-dimensional Banach space and hence separable. For ω ∈ Ω
and i = 1, . . . , n, we further define ηi(ω) ∈ E by ηi(ω)(h) := h(ξi(ω)), h ∈ H.
Then η1, . . . , ηn : Ω → E are i.i.d. P-integrable random variables. Moreover,
we obviously have∥∥∥∥ 1n

n∑
i=1

(ηi − EPηi)
∥∥∥∥

E

= sup
h∈H

∣∣∣∣ 1n
n∑

j=1

(
h(ξi)− EPh(ξi)

)∣∣∣∣ ,
and hence we obtain the assertion by Theorem A.8.1. ��

The following inequality, whose proof can be found in Chapter 11 of Diestel
et al. (1995), shows that we can replace the L1(ν)-norm on the right-hand side
of the symmetrization inequality by any other Lp(ν)-norm.

Theorem A.8.3 (Kahane’s inequality). Let ε1, . . . , εn be a Rademacher
sequence with respect to some distribution ν. Then, for all p, q ∈ (0,∞), there
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exists a constant Kp,q > 0 independent of n such that, for all Banach spaces
E and all x1, . . . , xn ∈ E, we have

(
Eν

∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p

≤ Kp,q

(
Eν

∥∥∥ n∑
i=1

εixi

∥∥∥q)1/q

.

The following result compares the Rademacher average of a composed
function class with the Rademacher average of the original function class.

Theorem A.8.4 (Contraction principle). Let ϕ : R → R be a Lipschitz
continuous function with |ϕ|1 ≤ 1 and ϕ(0) = 0, and let Ψ : [0,∞)→ [0,∞) be
a convex and non-decreasing function. Furthermore, let H ⊂ L0(Z) be a sepa-
rable Carathéodory set satisfying suph∈H |h(z)| <∞ for all z ∈ Z. Moreover,
let ε1, . . . , εn be a Rademacher sequence with respect to some distribution ν,
and D := (z1, . . . , zn) ∈ Zn. Then we have

EνΨ

(
1
2

sup
h∈H

∣∣∣ 1
n

n∑
i=1

εiϕ
(
h(zi)
)∣∣∣) ≤ EνΨ

(
sup
h∈H

∣∣∣ 1
n

n∑
i=1

εih(zi)
∣∣∣) .

In particular, for Ψ = id[0,∞), we obtain RadD(ϕ ◦ H, n) ≤ 2RadD(H, n).

Proof. Apply Theorem 4.12 of Ledoux and Talagrand (1991) to the set T :=
{(h(z1), . . . , h(zn)) : h ∈ H}. ��

With the contraction principle, we can show the following corollary, which
will be useful when bounding Rademacher averages from above.

Corollary A.8.5. Let H ⊂ L0(Z) be a separable Carathéodory set and P be
a distribution on Z. Suppose that there exist constants B ≥ 0 and σ ≥ 0 such
that ‖h‖∞ ≤ B and EPh

2 ≤ σ2 for all h ∈ H. Then we have

E(z1,...,zn)∼Pn sup
h∈H

1
n

n∑
i=1

h2(zi) ≤ σ2 + 8B ED∼PnRadD(H, n) .

Proof. For h0 ∈ H, we have

1
n

n∑
i=1

h2
0(zi) ≤

∣∣∣∣ 1n
n∑

i=1

h2
0(zi)−EPh

2
0

∣∣∣∣+EPh
2
0 ≤ sup

h∈H

∣∣∣∣ 1n
n∑

i=1

h2(zi)−EPh
2

∣∣∣∣+σ2 .

Taking the supremum over all h0 ∈ H on the left-hand side of this inequality
and applying Corollary A.8.2, we hence find

E(z1,...,zn)∼Pn sup
h∈H

1
n

n∑
i=1

h2(zi) ≤ E(z1,...,zn)∼Pn sup
h∈H

∣∣∣∣ 1n
n∑

i=1

h2(zi)− EPh
2

∣∣∣∣+ σ2

≤ 2E(z1,...,zn)∼PnEν sup
h∈H

∣∣∣∣ 1n
n∑

i=1

εih
2(zi)
∣∣∣∣+ σ2 .
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Let us define ϕ : R→ R by

ϕ(t) :=

⎧⎪⎨
⎪⎩
−t− B

2 if t < −B
t2

2B if t ∈ [−B,B]
t− B

2 if t > B .

Obviously, ϕ is a convex function and hence Lemma A.6.8 shows that ϕ is
Lipschitz continuous with |ϕ|1 = 1. Applying Theorem A.8.4 now yields

E(z1,...,zn)∼PnEν sup
h∈H

∣∣∣∣ 1n
n∑

i=1

εih
2(zi)
∣∣∣∣ = 2BED∼PnRadD(ϕ ◦ H, n)

≤ 4BED∼PnRadD(H, n),

and combining this estimate with the previous one, we find the assertion. ��

A.9 Talagrand’s Inequality

In this section, we prove the following concentration inequality, which is due
to Talagrand.

Theorem A.9.1 (Talagrand’s inequality). Let B ≥ 0, σ ≥ 0, and n ≥ 1.
Moreover, let (Ω,A, μ) be a probability space and F ⊂ L0(Ω) be a countable
subset such that Eμf = 0, Eμf

2 ≤ σ2, and ‖f‖∞ ≤ B for all f ∈ F . We write
Z := Ωn and P := μn. Furthermore, we define g : Z → R by

g(ω1, . . . , ωn) := sup
f∈F

∣∣∣∣
n∑

j=1

f(ωj)
∣∣∣∣ , z = (ω1, . . . , ωn) ∈ Z.

Then, for all τ > 0, we have

P

({
z ∈ Z : g(z) ≥ EPg +

√
2τ(nσ2 + 2BEPg) +

2τB
3

})
≤ e−τ .

The proof of this inequality requires quite a few preparations, which mainly
deal with estimating EPe

λg. Let us begin by introducing some basic concepts.

Definition A.9.2. A function Ψ : [0,∞) → R is called an entropy func-
tion if it is strictly convex, continuous, and bounded from below. Moreover,
for k ≥ 1, it is said to be a k-times continuously differentiable entropy
function if it is an entropy function and Ψ|(0,∞) is k-times continuously dif-
ferentiable.

For our purposes, the most important entropy function is the function Ψ :
[0,∞)→ R defined by Ψ(0) := 0 and Ψ(t) := t ln t for t > 0. Recall that this
function is used to define the Shannon entropy, which is a central concept
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in information theory (see also the definition in (A.66), which is related to
this concept). In addition to this classical entropy function, we will also need
the entropy function Ψ : [0,∞)→ R defined by Ψ(t) := t2, t ≥ 0.

With the help of an entropy function, we can define a functional on the
set of all non-negative, P-integrable functions.

Definition A.9.3. For a given probability space (Ω,A,P), we write L+
1 (P) :=

{f : Ω → [0,∞) | f ∈ L1(P)}. Then, for an entropy function Ψ , we define the
Ψ-entropy functional by

HΨ,P(f) := EP Ψ ◦f − Ψ(EPf) .

Note that the (not necessarily finite) expectation EP Ψ◦f in the definition
of HΨ,P is actually well-defined since Ψ is assumed to be bounded from below.
Moreover, Ψ(EPf) is always finite, and hence the difference in the definition
of the entropy functional is well-defined. Finally, the convexity of Ψ together
with Jensen’s inequality gives HΨ,P(f) ≥ 0 for all f ∈ L+

1 (P).
Obviously, the function Ψ : [0,∞) → R defined by Ψ(t) := t ln t for t > 0

and Ψ(0) := 0 gives the entropy functional

HΨ,P(f) = EP(f ln f)− (EPf) · ln(EPf) , f ∈ L+
1 (P) , (A.66)

which equals Shannon’s entropy up to the term (EPf) · ln(EPf). Moreover,
the function Ψ : [0,∞)→ R defined by Ψ(t) := t2, t ≥ 0, gives the variance

HΨ,P(f) = EPf
2 − (EPf)2 , f ∈ L+

1 (P).

The following theorem presents a sufficient condition for ensuring the convex-
ity of certain entropy functionals. It shows in particular that both (A.66) and
the variance are convex functionals.

Lemma A.9.4 (Convexity of the entropy functional). Let (Ω,A,P) be
a probability space and Ψ : [0,∞) → R be a twice continuously differen-
tiable entropy function such that 1/Ψ ′′ : (0,∞)→ (0,∞) is concave. Then the
Ψ -entropy functional HΨ,P : L+

1 (P)→ [0,∞] is convex.

Proof. We first show the assertion for bounded functions. To this end, let
us fix two bounded functions f, g ∈ L+

1 (P). For t ∈ (0, 1), we define αt :=
tf + (1− t)g and

h(t) := HΨ,P

(
αt

)
= EPΨ ◦αt − Ψ(EPαt) .

For later use, note that f ≥ 0 and g ≥ 0 imply αt ≥ 0 and EPαt ≥ 0 for
all t ∈ (0, 1). Moreover, using the concavity of 1/Ψ ′′ : (0,∞) → (0,∞), it is
easy to check that Ψ ′′(0) := lims→0 Ψ

′′(s) exists and satisfies Ψ ′′(0) �= 0. By a
simple limit argument, it is then trivial to prove that the extended function
1/Ψ ′′ : [0,∞)→ [0,∞) is concave.

Since f and g were taken arbitrarily, it is now straightforward to see that
it suffices to show the convexity of h : (0, 1) → [0,∞). To this end, let us fix
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an ω ∈ Ω and write β(t) := Ψ(tf(ω)+(1−t)g(ω)), t ∈ (0, 1). Then elementary
calculus shows

β′(t) = Ψ ′(tf(ω) + (1− t)g(ω)
)(
f(ω)− g(ω)

)
= Ψ ′ ◦ αt(ω) · (f(ω)− g(ω)

)
and

β′′(t) = Ψ ′′(tf(ω) + (1− t)g(ω)
)(
f(ω)− g(ω)

)2 = Ψ ′ ◦ αt(ω) · (f(ω)− g(ω)
)2

for all t ∈ (0, 1). Since f and g were assumed to be bounded, we hence find
h′(t) = EP(Ψ ′◦αt · (f − g))− Ψ ′(EPαt) · E(f − g) and

h′′(t) = EP

(
Ψ ′′◦αt · (f − g)2

)− Ψ ′′(EPαt

) · (E(f − g))2 (A.67)

for all t ∈ (0, 1). Moreover, using the concavity of the extended function
1/Ψ ′′ : [0,∞)→ [0,∞) and Jensen’s inequality, we get

EP

( 1
Ψ ′′◦αt

)
≤ 1

Ψ ′′(EPαt)
, t ∈ (0, 1),

and the latter is equivalent to Ψ ′′(EPαt) ≤ (EP(Ψ ′′ ◦ αt)−1)−1. Consequently,
we obtain

Ψ ′′(EPαt

) · (E(f − g))2 ≤ (E(f − g))2
EP(Ψ ′′ ◦ αt)−1

≤ EP

(
Ψ ′′◦αt · (f − g)2

)
,

where we used EP(f − g) ≤ (E(Ψ ′′ ◦ αt)−1)1/2 · (EP(f − g)2 · Ψ ′′ ◦ αt)1/2 and
Ψ ′′ ≥ 0. By (A.67), we then find h′′(t) ≥ 0 for all t ∈ (0, 1), and since this
implies the convexity of h : (0, 1) → [0,∞), we have shown the assertion for
bounded functions, i.e., we have

EPΨ
(
tf + (1− t)g)− Ψ(E(tf + (1− t)g))

≤ tEP(Ψ ◦f)− t Ψ(EPf) + (1− t) · EP(Ψ ◦g)− (1− t) · Ψ(EPg) (A.68)

for all bounded f, g ∈ L+
1 (P) and all t ∈ (0, 1).

In order to prove the general case, we fix arbitrary f, g ∈ L+
1 (P). If Ψ ◦f �∈

L1(P) or Ψ ◦ g �∈ L1(P), the inequality (A.68) is trivially satisfied. Therefore
we can additionally assume Ψ ◦f, Ψ ◦g ∈ L1(P). Moreover, since Ψ is bounded
from below, there exists a real number a ≥ 0 such that Ψ + a ≥ 0, and
because of HΨ+a,P = HΨ,P, we may assume without loss of generality that
Ψ ≥ 0. Together with the convexity of Ψ , the latter assumption implies Ψ(s) ≤
Ψ(0) + Ψ(r) for all 0 ≤ s ≤ r. Let us now fix two sequences of bounded
functions (fn), (gn) ⊂ L+

1 (P) such that fn ≤ f , gn ≤ g for all n ≥ 1, and
limn→∞ fn(ω) = f(ω), limn→∞ gn(ω) = g(ω) for P-almost all ω ∈ Ω. Since
fn and gn are bounded, we have already established (A.68) for these functions.
Moreover, we have Ψ ◦ fn ≤ Ψ(0) +Ψ ◦ f and Ψ ◦ gn ≤ Ψ(0) +Ψ ◦ g, and since
we assumed Ψ ◦ f, Ψ ◦ g ∈ L1(P), a simple application of Lebesgue’s theorem
now shows that (A.68) holds for f and g. ��
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The following lemma provides an alternative and often useful way to com-
pute the entropy functional.

Lemma A.9.5 (Variational formula for the entropy functional). Let
Ψ : [0,∞)→ R be a continuously differentiable entropy function and (Ω,A,P)
be a probability space. Then, for all f ∈ L+

1 (P), we have

HΨ,P(f) = inf
a>0

EP

(
Ψ ◦ f − Ψ(a)− Ψ ′(a) · (f − a)) . (A.69)

Before we prove this lemma, we note that we only consider a > 0 in (A.69)
since formally we have not defined Ψ ′(0).

Proof. For Ψ ◦ f �∈ L1(P), the assertion is trivially satisfied, and hence we
may assume without loss of generality that Ψ ◦ f ∈ L1(P). Now recall (see
Definition A.6.10 and Proposition A.6.12) that Ψ ′(a) satisfies the subdiffer-
ential inequality Ψ ′(a)(t− a) ≤ Ψ(t)− Ψ(a), a > 0, t ≥ 0, and hence we have
Ψ ′(a)(EPf − a) ≤ Ψ(EPf)− Ψ(a). This yields

HΨ,P(f) = EPΨ ◦ f − Ψ(EPf) ≤ EPΨ ◦ f − Ψ ′(a)(EPf − a)− Ψ(a) ,

i.e., we have shown that the infimum in (A.69) is not smaller than HΨ,P(f).
The converse inequality follows from considering an := EPf+1/n, n ≥ 1. ��

Our next goal is to investigate entropy functionals that are defined on prod-
uct spaces. In order to make these considerations as transparent as possible,
we need some additional notations. To this end, let Ω1, . . . , Ωn be non-empty
sets. We write Z := Ω1 × · · · ×Ωn and

Z ′
i := Ω1 × · · · ×Ωi−1 ×Ωi+1 × · · · ×Ωn , i = 1, . . . , n,

i.e., Z ′
i is the space we obtain by omitting the i-th coordinate from Z. More-

over, π′i : Z → Z ′
i denotes the projection of Z onto Z ′

i. Finally, for fixed
i ∈ {1, . . . , n} and z := (ω1, . . . , ωn) ∈ Z, the replacement operator
Ii,z : Ωi → Z is defined by

Ii,z(ω) := (ω1, . . . , ωi−1, ω, ωi+1, . . . , ωn) , ω ∈ Ωi .

With the help of these notations, we can now formulate the following lemma,
which bounds the entropy functional of a function g : Z → R by entropy
functionals on the single coordinates.

Lemma A.9.6. Let Ψ : [0,∞) → R be a twice continuously differentiable
entropy function such that 1/Ψ ′′ : (0,∞) → (0,∞) is concave. Moreover, let
(Ωi,Ai, μi), i = 1, . . . , n, be probability spaces and P := μ1 ⊗ · · · ⊗ μn be the
product measure on Z := Ω1 × · · · ×Ωn. Then we have

HΨ,P(g) ≤
n∑

i=1

∫
Z

HΨ,μi
(g ◦ Ii,z) dP(z) , g ∈ L+

1 (P).
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Proof. The proof is based on induction over n. For n = 1, there is obviously
nothing to prove. For the induction step from n to n + 1, we write Zn :=
Ω1×· · ·×Ωn and Zn+1 := Ω1×· · ·×Ωn+1, as well as Pn := μ1⊗· · ·⊗μn and
Pn+1 := μ1⊗· · ·⊗μn+1. Note that, unlike in the rest of this book, in this proof
Pn and Pn+1 do not denote empirical distributions. Furthermore, elements of
Zn are denoted by zn = (ω1, . . . , ωn), and for elements of Zn+1 we write
zn+1 = (ω1, . . . , ωn+1). Note that these conventions give the identification
zn+1 = (zn, ωn+1), which we will heavily employ. Moreover, for a function
g ∈ L+

1 (Pn+1) and fixed i = 1, . . . , n and zn := (ω1, . . . , ωn) ∈ Zn, we define
gi,zn

: Ωi ×Ωn+1 → [0,∞) by

gi,zn
(ω, ωn+1) := g(ω1, . . . , ωi−1, ω, ωi+1, . . . , ωn+1)

for all ω ∈ Ωi and ωn+1 ∈ Ωn+1. Note that this definition gives the identities
g ◦ Ii,zn+1 = gi,zn

( · , ωn+1) for i = 1, . . . , n and g ◦ In+1,zn+1 = g(zn, · ). Now
observe that g ∈ L+

1 (Pn+1) implies that g( · , ωn+1) ∈ L+
1 (Pn) for μn+1-almost

all ωn+1 ∈ Ωn+1, and consequently the induction hypothesis gives

HΨ,Pn

(
g( · , ωn+1)

) ≤ n∑
i=1

∫
Zn

HΨ,μi

(
gi,zn

( · , ωn+1)
)
dPn(zn)

for μn+1-almost all ωn+1 ∈ Ωn+1. In other words, we have

∫
Zn

Ψ
(
g(zn, ωn+1)

)
dPn(zn) ≤

n∑
i=1

∫
Zn

HΨ,μi

(
gi,zn

( · , ωn+1)
)
dPn(zn)

+Ψ
(∫

Zn

g(zn, ωn+1) dPn(zn)
)

for μn+1-almost all ωn+1 ∈ Ωn+1, and hence we obtain∫
Zn+1

Ψ ◦ g dPn+1 =
∫

Ωn+1

∫
Zn

Ψ
(
g(zn, ωn+1)

)
dPn(zn) dμn+1(ωn+1)

≤
n∑

i=1

∫
Zn+1

HΨ,μi

(
g ◦ Ii,zn+1

)
dPn+1(zn+1)

+
∫

Ωn+1

Ψ

(∫
Zn

g(zn, ωn+1) dPn(zn)
)
dμn+1(ωn+1). (A.70)

Moreover, Lemma A.9.4 shows that HΨ,μn+1 : L+
1 (μn+1)→ [0,∞] is a convex

functional, and hence we have∫
Zn+1

HΨ,μn+1

(
g ◦ In+1,zn+1

)
dPn+1(zn+1) ≥ HΨ,μn+1

(∫
Zn

g(zn, · ) dPn(zn)
)
.

Now the definition of HΨ,μn+1 gives
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HΨ,μn+1

(∫
Zn

g(zn, · ) dPn(zn)
)

=
∫

Ωn+1

Ψ

(∫
Zn

g(zn, ωn+1) dPn(zn)
)
dμn+1(ωn+1)

−Ψ
(∫

Zn+1

g(zn+1) dPn+1(zn+1)
)
,

and consequently, combining the last two equations, we obtain∫
Ωn+1

Ψ

(∫
Zn

g(zn, ωn+1) dPn(zn)
)
dμn+1(ωn+1)

≤
∫

Zn+1

HΨ,μn+1

(
g◦In+1,zn+1

)
dPn+1(zn+1) + Ψ

(∫
Zn+1

g(zn+1) dPn+1(zn+1)
)
.

Combining this estimate with (A.70), then yields the assertion. ��
With these preparations, we can now prove the main result on the entropy

functional.

Theorem A.9.7 (Tensorization of the entropy functional). For n ∈ N,
let (Ωi,Ai, μi), i = 1, . . . , n, be probability spaces and Ψ : [0,∞) → R be a
twice continuously differentiable entropy function such that 1/Ψ ′′ : (0,∞) →
(0,∞) is concave. Then, for P := μ1⊗· · ·⊗μn on Z := Ω1×· · ·×Ωn, we have

HΨ,P(g) ≤
n∑

i=1

∫
Z

Ψ ◦ g − Ψ(gi ◦ π′i
)− Ψ ′(gi ◦ π′i

) · (g − gi ◦ π′i
)
dP

for all g ∈ L+
1 (P) and all measurable gi : Z ′

i → (0,∞) with Ψ
(
gi ◦π′i
) ∈ L1(P)

and Ψ ′(gi ◦ π′i
) · (g − gi ◦ π′i

) ∈ L1(P).

Proof. By Lemma A.9.6, we have

HΨ,P(g) ≤
n∑

i=1

∫
Z

HΨ,μi
(g ◦ Ii,z) dP(z) .

Moreover, for a := gi ◦ π′i(z), the variational formula in Lemma A.9.5 yields

HΨ,μi
(g ◦ Ii,z) ≤

∫
Ωi

Ψ
(
g ◦ Ii,z(ω)

)− Ψ ′(gi ◦ π′i(z)
) · (g ◦ Ii,z(ω)

)
dμi(ω)

−Ψ(gi ◦ π′i(z)
)

+ Ψ ′(gi ◦ π′i(z)
) · (gi ◦ π′i(z)

)
for all i = 1, . . . , n and all z ∈ Z. By combining both estimates, we then
obtain the assertion. ��

Applying Theorem A.9.7 to the two entropy functions considered at the
beginning of this section, we obtain the following two corollaries.
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Corollary A.9.8. Let (Ωi,Ai, μi), i = 1, . . . , n, be probability spaces and P :=
μ1 ⊗ · · · ⊗ μn be the product measure on Z := Ω1 × · · · ×Ωn. Then we have

EP(geg)− EP(eg) · ln(EPe
g) ≤

n∑
i=1

∫
Z

geg − eg + egi◦π′
i − eg · (gi ◦ π′i) dP

for all bounded measurable functions g : Z → R and gi : Z ′
i → R, i = 1, . . . , n.

Proof. Let us define Ψ : [0,∞) → R by Ψ(0) := 0 and Ψ(t) := t ln t for
t > 0. Then Ψ is a twice continuously differentiable entropy function with
Ψ ′′(t) = 1/t for t > 0. Consequently, Ψ satisfies the assumptions of Theorem
A.9.7. Moreover, we have HΨ,P(eg) = EP(geg)− EP(eg) · ln(EPe

g) and

Ψ(eg)−Ψ(egi◦π′
i
)−Ψ ′(egi◦π′

i
) · (eg−egi◦π′

i
)

= geg − eg + egi◦π′
i − eg · (gi ◦ π′i) .

Applying Theorem A.9.7, then yields the assertion. ��
Corollary A.9.9 (Efron-Stein inequality). Let (Ωi,Ai, μi), i = 1, . . . , n,
be probability spaces and P := μ1 ⊗ · · · ⊗ μn be the product measure on Z :=
Ω1 × · · · ×Ωn. Then we have

EPg
2 − (EPg)2 ≤

n∑
i=1

∫
Z

(
g − gi ◦ π′i

)2
dP

for all 2-integrable functions g : Z → R and gi : Z ′
i → R, i = 1, . . . , n.

For the last corollary of Theorem A.9.7, we need the following simple
lemma.

Lemma A.9.10. Let (Ω,A,P) be a probability space and V, g : Ω → R be
two bounded measurable functions. Then we have

EP

(
V eg
)− EPe

g ln
(
EPe

V
) ≤ EP

(
geg
)− EPe

g ln
(
EPe

g
)
.

Proof. Since EPe
g > 0 exists, we immediately see that Q = eg

EPegP is a prob-
ability measure on Ω. Moreover, the definition of Q, the concavity of the
logarithm, and Jensen’s inequality yield

EPV e
g

EPeg
− EPge

g

EPeg
= EQ(V − g) ≤ ln

(
EQe

V −g
)

= ln
(
EPe

V
)− ln
(
EPe

g
)
. ��

Now we can establish the last corollary of Theorem A.9.7, which establishes
an estimate similar to that of Corollary A.9.8.

Corollary A.9.11. Let (Ωi,Ai, μi), i = 1, . . . , n, be probability spaces and
P := μ1 ⊗ · · · ⊗ μn be the product measure on Z := Ω1 × · · · × Ωn. Then
we have
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n∑
i=1

EP

(
eg − egi◦π′

i
) ≤ EP(eg) · ln(EPe

g)

for all g : Z → R with eg ∈ L1(P) and all gi : Z ′
i → (0,∞) satisfying

n∑
i=1

(
g − gi ◦ π′i

) ≤ g . (A.71)

Proof. Let us first assume that g and gi, i = 1, . . . , n, are bounded. Writing
V :=
∑n

i=1 g − gi ◦ π′i and fi := gi ◦ π′i + 1
n ln EPe

V , i = 1, . . . , n, we get

geg− eg + efi − egfi = geg− eg + egi◦π′
i · (EPe

V )
1
n − eg(gi◦π′i)− eg ln(EPe

V )
1
n .

By applying Corollary A.9.8 to g and gi + 1
n ln EPe

V , we then obtain

EPge
g − EPe

g ln(EPe
g)

≤
n∑

i=1

∫
Z

geg − eg + egi◦π′
i · (EPe

V )1/n − eg · (gi ◦ π′i)− eg(ln(EPe
V )1/n) dP

= EPV e
g − nEPe

g − EPe
g ln(EPe

V ) +
n∑

i=1

EPe
gi◦π′

i · (EPe
V )1/n

≤ EPge
g − EPe

g ln(EPe
g)− nEPe

g +
n∑

i=1

EPe
gi◦π′

i · (EPe
V )1/n ,

where in the last step we used Lemma A.9.10. Using
∑n

i=1 EPe
g = nEPe

g, we
then find

n∑
i=1

EP

(
eg−egi◦π′

i
)≤nEPe

g
(
1−(EPe

V )−
1
n

)≤EPe
g ln(EPe

V )≤EPe
g ln(EPe

g),

where in the second step we used 1−t ≤ − ln t for t := (EPe
V )−1/n, and in the

last step we used (A.71) and the definition of V . Consequently, we have shown
the assertion for bounded g and gi. Finally, observe that egi◦π′

i , i = 1, . . . , n,
are positive functions, and hence applying a simple limit argument for g and
then for gi, i = 1, . . . , n, shows that the assertion is still valid if we only
assume eg ∈ L1(P). ��

Besides the results on entropy functionals, we also need some technical yet
elementary results for the proof of Talagrand’s inequality.

Lemma A.9.12. Let ψ(x) := e−x − 1 + x and ϕ(x) := 1 − (1 + x)e−x for
x ∈ R. Moreover, let α ≥ 0, f(0) := 0, and f(t) := ϕ(−t)

ψ(−t)+αt , t ∈ R\{0}.
Then, for all x ∈ (−∞, 1] and t ≥ 0, we have

ψ(tx) ≤ f(t)
(
ϕ(tx) + αtx2e−tx

)
.
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Proof. Since ψ(0) = ϕ(0) = 0, the assertion is obviously satisfied for t = 0.
Consequently, we fix a t > 0 and define ht : R→ R by

ht(x) := ψ(tx)− f(t)
(
ϕ(tx) + αtx2e−tx

)
, x ∈ R.

Clearly, our goal is to show ht(x) ≤ 0 for all x ∈ (−∞, 1]. To this end, we
first observe that ψ(0) = ϕ(0) = 0 implies ht(0) = 0. Moreover, a simple
calculation shows ht(1) = 0. In addition, we have

h′t(x) =
(
αt2x2 − t2x− 2αtx

)
f(t)e−tx − te−tx + t ,

h′′t (x) = −(αt3x2 − t3x− 4αt2x+ t2 + 2αt)f(t)e−tx + t2e−tx .

From this it is easy to check that limx→−∞ h′t(x) =∞ and limx→∞ h′t(x) = t.
Moreover, the second derivative h′′t is of the form h′′t (x) = pt(x)e−tx, where
pt( · ) is a second-degree polynomial whose leading term has a non-positive
coefficient since f(t) > 0. Consequently, there exist at most two solutions of
h′′t (x) = 0. If there was no such solution, then we would have pt(x) < 0 for
all x ∈ R, and hence h′t would be decreasing. However, since h′t(0) = 0, this
contradicts the behavior of h′t for x→∞. Let us now denote the solutions of
h′′t (x) = 0 by x1 and x2, where we additionally assume x1 ≤ x2. By the shape
of pt( · ), we then see that h′t is decreasing on (−∞, x1]∪[x2,∞) and increasing
on (x1, x2). Recalling limx→±∞ h′t(x) > 0, there can therefore be at most two
x with h′t(x) = 0. We have already seen that x = 0 is such a solution. Let x∗

denote the other solution. Then we have x∗ > 0 since otherwise h′t(0) = 0 and
limx→∞ h′t(x) = t would imply h′t(x) > 0 for all x > 0. Obviously, the latter
contradicts ht(0) = ht(1) = 0. Now x∗ > 0 together with limx→±∞ h′t(x) > 0
shows that ht is increasing on (−∞, 0] ∪ [x∗,∞). Moreover, we have already
seen that h′t(x) > 0 for all x > 0 contradicts ht(0) = ht(1) = 0, and hence ht

is decreasing on (0, x∗). This shows ht(x) ≤ 0 for all x ∈ [0, 1]. ��
We also need the following lemma, which shows that solutions of certain

differential inequalities are non-positive functions.

Lemma A.9.13. Let G : R → R be a twice continuously differentiable func-
tion that satisfies G(0) = G′(0) = 0 and G′′(0) < 0. Moreover, let h : R→ R

be a continuous function such that

xG′(x)− h(x)G(x) ≤ 0 , x ≥ 0. (A.72)

Then we have G(x) ≤ 0 for all x ≥ 0.

Proof. Let us assume that there exists an x0 > 0 with G(x0) > 0. We define

x∗ := sup
{
x ∈ [0, x0) : G(x) = 0

}
.

Note that x∗ actually exists since G(0) = 0. By the continuity of G, we
immediately see that G(x∗) = 0, and hence we have x∗ < x0. Moreover, the
continuity of G together with the definition of x∗ also yields
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G(x) > 0 , x ∈ (x∗, x0]. (A.73)

Let us first show that x∗ > 0. To this end, observe that there exists a δ > 0
with G′′(x) < 0 for all x ∈ [0, δ] by the continuity of G′′ and G′′(0) < 0. Using
G′(0) = 0 and the fundamental theorem of calculus, we then see G′(x) < 0 for
all x ∈ (0, δ]. Another application of the fundamental theorem together with
G(0) = 0 then shows G(x) < 0 for all x ∈ (0, δ]. By the continuity of G and
the definition of x∗, we then find x∗ > 0. Now, combining (A.72) with (A.73),
we find

G′(x)
G(x)

≤ h(x)
x

, x ∈ (x∗, x0].

Integrating both sides, then yields

G(x0) ≤ G(x) · exp
(∫ x0

x

h(t)
t
dt

)
, x ∈ (x∗, x0]. (A.74)

Now observe that x∗ > 0 ensures that t �→ h(t)
t is integrable on [x∗, x0] and

consequently we obtain G(x0) ≤ 0 by letting x→ x∗ in (A.74). ��
With the help of these preparations, we can finally establish upper bounds

for certain expectations of the form EPe
g.

Theorem A.9.14. Let n ≥ 1 and (Ωi,Ai, μi), i = 1, . . . , n, be probability
spaces. We adopt the notations introduced earlier and assume that we have
bounded measurable functions g : Z → R, gi : Z ′

i → R, and ui : Z → R

such that

ui(z) ≤ g(z)− gi ◦ π′i(z) ≤ 1 , (A.75)
n∑

i=1

(
g(z)− gi ◦ π′i(z)

) ≤ g(z) , (A.76)

∫
Ωi

ui ◦ Ii,z(ω) dμi(ω) ≥ 0 , (A.77)∫
Ωi

∣∣ui ◦ Ii,z(ω)
∣∣2 dμi(ω) ≤ σ2 , (A.78)

for some constant σ > 0 and all i = 1, . . . , n, z ∈ Z. Then we have

EPg
2 − (EPg)2 ≤ nσ2 + 2EPg (A.79)

and

ln
(
EPe

λ(g−EPg)
) ≤ (nσ2 + 2EPg)

(
eλ − 1− λ) , λ ≥ 0. (A.80)

Proof. We first show (A.79). To this end, observe that t �→ t2−2t is decreasing
on [0, 1], and consequently (A.75), (A.77), and (A.78) yield
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Z

(g − gi ◦ π′i)2 − 2(g − gi ◦ π′i) dP ≤
∫

Z′
i

(∫
Ωi

u2
i − 2ui dμi

)
dP′

i ≤ σ2

for i = 1, . . . , n. By Corollary A.9.9, we thus find

EPg
2 − (EPg)2 ≤

n∑
i=1

∫
Z

(
g − gi ◦ π′i

)2
dP ≤ nσ2 + 2

n∑
i=1

∫
Z

(g − gi ◦ π′i) dP

≤ nσ2 + 2EPg ,

where in the last step we used (A.76).
In order to show (A.80), we write ϕ(t) := 1 − (1 + t)e−t and ψ(t) :=

e−t − 1 + t for t ∈ R. Moreover, we define f(0) := 0 and

f(t) :=
ϕ(−t)

ψ(−t) + t/2
=

tet − et + 1
et − 1− t/2 , t ∈ R\{0} .

For t := λ ≥ 0, α := 1/2, and x := g − gi ◦ π′i, Lemma A.9.12 then yields

ψ
(
λ(g − gi ◦ π′i)

)
eλg

≤ f(λ)
(
ϕ
(
λ(g − gi ◦ π′i)

)
+αλ(g − gi ◦ π′i)2e−λ(g−gi◦π′

i)
)
eλg

= f(λ)
(
eλg − eλgi◦π′

i
)

+ λf(λ)eλgi◦π′
i
(
α(g − gi ◦ π′i)2 − (g − gi ◦ π′i)

)
≤ f(λ)

(
eλg − eλgi◦π′

i
)

+ λf(λ)eλgi◦π′
i
(
αu2

i − ui

)
, (A.81)

where in the last step we used (A.75) together with the fact that t �→ αt2 − t
is decreasing on [0, 1]. Now observe that combining (A.75) and (A.77) yields

gi ◦ π′i =
∫

Ωi

gi ◦ π′i dμi ≤
∫

Ωi

g − ui dμi ≤
∫

Ωi

g dμi ,

from which we conclude EPe
λgi◦π′

i ≤ EPe
λg, λ ≥ 0, by Jensen’s inequality.

Using this estimate together with (A.77), (A.78), and α = 1/2, we then obtain∫
Z

eλgi◦π′
i
(
αu2

i − ui

)
dP =

∫
Z′

i

eλgi

( ∫
Ωi

αu2
i − ui dμi

)
dP′

i

≤ σ2

2
·
∫

Z

eλg dP .

Combining this inequality with (A.81), we now find∫
Z

λgeλg − eλg + eλgi◦π′
i − λeλggi ◦ π′i dP ≤

f(λ)
2

∫
Z

2
(
eλg−eλgi

)
+ λσ2eλg dP.

Summing over i = 1, . . . , n and applying both Corollary A.9.8 and Corollary
A.9.11, we thus obtain
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λEPge
λg − EPe

λg ln(EPe
λg) ≤

n∑
i=1

∫
Z

λgeλg − eλg + eλgi◦π′
i − λeλggi ◦ π′i dP

≤ f(λ)
2

( n∑
i=1

∫
Z

2
(
eλg − eλgi

)
dP + nλσ2EPe

λg

)

=
f(λ) EPe

λg

2

(
2 ln(EPe

λg) + nλσ2
)
. (A.82)

Let us now define F (λ) := ln
(
EPe

λ(g−EPg)
)
, λ ∈ R. Then we obviously have

F (λ) = ln
(
EPe

λg
)− λEPg, and hence we obtain F ′(λ) = EPgeλg

EPeλg −EPg for all
λ ∈ R. Consequently, (A.82) translates into

λF ′(λ)− F (λ) =
λEPge

λg − EPe
λg ln(EPe

λg)
EPeλg

≤ f(λ)
2

(
2 ln(EPe

λg) + nλσ2
)

i.e., we have derived

λF ′(λ)− (1 + f(λ)
)
F (λ) ≤ λf(λ)

2
(
2EPg + nσ2

)
, λ ≥ 0. (A.83)

Let us now define F0(λ) := (2EPg + nσ2)(eλ − 1 − λ), λ ∈ R. Then, using
λf(λ)/2 + f(λ)(eλ − 1− λ) = λeλ − eλ + 1, we obtain

λF ′
0(λ)−

(
1 + f(λ)

)
F0(λ) =

λf(λ)
2
(
2EPg + nσ2

)
, λ ∈ R.

For G(λ) := F (λ)−F0(λ), λ ∈ R, the last equation together with (A.83) then
yields λG′(λ) − (1 + f(λ)

)
G(λ) ≤ 0 for λ ≥ 0. Moreover, we have G(0) =

G′(0) = 0. Let us now assume that (A.78) is actually a strict inequality. Then
it is trivial to see that (A.79) becomes a strict inequality, and hence we have

G′′(0) = EPg
2 − (EPg)2 − (2EPg + nσ2) < 0 .

Applying Lemma A.9.13, we then see that F (λ) ≤ F0(λ) for all λ ≥ 0, i.e., we
have shown (A.80) in the case where (A.78) is a strict inequality. The general
case follows from a simple limit argument. ��
Proof (of Talagrand’s inequality). By a simple limit argument, we may assume
without loss of generality that F is finite. Moreover, we first consider the case
B = 1. For i = 1, . . . , n, we then define Z ′

i, π
′
i, and Ii,z : Ωi → Z as we did

before Lemma A.9.6. In addition, we write μi := μ and define gi : Z ′
i → R by

gi(z′i) := max
f∈F

∣∣∣∣∣
n∑

j=1
j �=i

f(ωj)

∣∣∣∣∣ (A.84)
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for z′i := (ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ Z ′
i. Moreover, it is elementary to find

mutually disjoint, measurable sets Af ⊂ Z ′
i, f ∈ F , such that

⋃
f∈F Af =

Z ′
i and ∣∣∣∣∣

n∑
j=1
j �=i

f(ωj)

∣∣∣∣∣ = gi(z′i) (A.85)

for all z′i := (ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ Af and f ∈ F . In other words,
the function f realizes the maximum in (A.84) for all z′i ∈ Af . Let us define
functions mi : Z ′

i ×Ω → R by

mi(z′i, ω) :=
∑
f∈F

1Af
(z′i) · f(ω) , z′i ∈ Z ′

i, ω ∈ Ω

for all i = 1, . . . , n. Note that by (A.85) this construction immediately shows∣∣∣∣∣
n∑

j=1
j �=i

mi(z′i, ωj)

∣∣∣∣∣ = gi(z′i) (A.86)

for all z′i := (ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ Z ′
i and i = 1, . . . , n, i.e., the func-

tion mi(z′i, · ) realizes the maximum in (A.84). With the help of these func-
tions, we finally define the functions ui : Z → R by

ui(z) :=
∣∣∣∣

n∑
j=1

mi

(
π′i(z), ωj

)∣∣∣∣− gi ◦ π′i(z) (A.87)

for all i = 1, . . . , n and all z = (ω1, . . . , ωn) ∈ Z. Our first goal is to show that
the functions g, gi, and ui satisfy the conditions (A.75)–(A.78).

In order to check (A.75), we first observe that mi(π′i(z), · ) ∈ F implies

ui(z) ≤ max
f∈F

∣∣∣∣
n∑

j=1

f(ωj)
∣∣∣∣− gi ◦ π′i(z) = g(z)− gi ◦ π′i(z)

for all z = (ω1, . . . , ωn) ∈ Z. Moreover, the inverse triangle inequality and
‖f‖∞ ≤ 1 yields

g(z)− gi ◦ π′i(z) = max
f∈F

∣∣∣∣
n∑

j=1

f(ωj)
∣∣∣∣−max

f∈F

∣∣∣∣∣
n∑

j=1
j �=i

f(ωj)

∣∣∣∣∣ ≤ max
f∈F
∣∣f(ωi)

∣∣ ≤ 1,

and hence we also have the right-hand side of (A.75).
Let us now show (A.76). Analogously to the construction of the functions

mi, we first construct a measurable function m : Z × Ω → R such that
m(z, · ) ∈ F and
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n∑

i=1

m(z, ωi)
∣∣∣∣ = g(z) , z = (ω1, . . . , ωn) ∈ Z.

With the help of this function and m(z, · ) ∈ F , we then obtain

(n− 1)g(z) =

∣∣∣∣∣
n∑

i=1

n∑
j=1
j �=i

m(z, ωj)

∣∣∣∣∣ ≤
n∑

i=1

max
f∈F

∣∣∣∣∣
n∑

j=1
j �=i

f(ωj)

∣∣∣∣∣ =
n∑

i=1

gi ◦ π′i(z)

for all z = (ω1, . . . , ωn) ∈ Z. From this we easily deduce (A.76).
In order to check (A.77), we first observe π′i ◦ Ii,z(ω) = π′i(z), and hence

we obtain∫
Ωi

ui◦Ii,z(ω) dμi(ω) ≥
∣∣∣∣∣
∫
Ωi

n∑
j=1
j �=i

mi

(
π′i(z), ωj

)
+mi

(
π′i(z), ω

)
dμi(ω)

∣∣∣∣∣− gi◦π′i(z)

=

∣∣∣∣∣
n∑

j=1
j �=i

mi

(
π′i(z), ωj

)
+
∫
Ωi

mi

(
π′i(z), ω

)
dμi(ω)

∣∣∣∣∣− gi◦π′i(z)

= 0 ,

where in the last step we used Eμi
f = 0, f ∈ F , together with the fact that

mi(π′i(z), · ) ∈ F is a fixed element.
Finally, inequality (A.78) follows from∫

Ωi

∣∣ui ◦ Ii,z(ω)
∣∣2 dμi(ω) ≤

∫
Ωi

∣∣∣mi

(
π′i(z), ω

)∣∣∣2dμi(ω) ≤ σ ,

where in the first step we used (A.86), (A.87), and |a + b| − |b| ≤ |a|, and
in the last step we used Eμi

f2 ≤ σ, f ∈ F , together with the fact that
mi(π′i(z), · ) ∈ F is a fixed element.

Consequently, we have checked (A.75)–(A.78), and thus Theorem A.9.14
yields

ln
(
EPe

λ(g−EPg)
) ≤ (nσ2 + 2EPg)

(
eλ − 1− λ) , λ ≥ 0.

Applying Markov’s inequality, we hence obtain

P
({z ∈ Z : g(z)− EPg ≥ ε}

) ≤ exp
(
(nσ2 + 2EPg)

(
eλ − 1− λ)− λε)

for all λ ≥ 0 and ε > 0. Let us write a := nσ2 + 2EPg. Simple calculus
then shows that the right-hand side of the estimate above is minimized for
λ∗ := ln(1 + ε

a ), and hence we conclude

P
({z ∈ Z : g(z)−EPg ≥ ε}

) ≤ exp

(
−a
((

1+
ε

a

)
ln
(
1+

ε

a

)
− ε
a

))
≤ e− 3

2 · ε2
3a+ε ,
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where in the last step we used Lemma 6.11. Now we fix a τ > 0 and define
ε :=
√

2aτ + τ2/9+τ/3. Elementary calculations then show τ = 3
2 · ε2

3a+ε , and
since
√

2aτ + τ2/9 + τ/3 ≤ √2aτ + 2τ/3 we hence obtain

P
({

z ∈ Z : g(z) ≥ EPg +
√

2aτ +
2τ
3

})
≤ e−τ .

Consequently, we have shown the assertion for B = 1. The general case finally
follows from this specific case by a simple rescaling argument. ��
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49–58. Birkhäuser, Basel.

Christmann, A. (2005). On a Strategy to Develop Robust and Simple Tariffs
from Motor Vehicle Insurance Data. Acta Math. Appl. Sinica (English
Ser.), 21, 193–208.

Christmann, A. and Rousseeuw, P. (2001). Measuring overlap in logistic re-
gression. Comput. Statist. Data Anal., 37, 65–75.

Christmann, A. and Steinwart, I. (2004). On robust properties of convex risk
minimization methods for pattern recognition. J. Mach. Learn. Res., 5,
1007–1034.

Christmann, A. and Steinwart, I. (2007). Consistency and robustness of kernel
based regression. Bernoulli , 13, 799–819.

Christmann, A. and Steinwart, I. (2008). Consistency of kernel based quantile
regression. Appl. Stoch. Models Bus. Ind. DOI:10.1002/asmb.700.

Christmann, A. and Van Messem, A. (2008). Bouligand derivatives and ro-
bustness of support vector machines. J. Mach. Learn. Res. (tentatively
accepted).

Christmann, A., Fischer, P., and Joachims, T. (2002). Comparison between
various regression depth methods and the support vector machine to ap-
proximate the minimum number of misclassifications. Comput. Statist., 17,
273–287.
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Massart, P. and Nédélec, É. (2006). Risk bounds for statistical learning. Ann.
Statist., 34, 2326–2366.

Mattera, D. and Haykin, S. (1999). Support Vector Machines for Dynamic
Reconstruction of a Chaotic System. In B. Schölkopf, J. Burger, and
A. Smola, editors, Advances in Kernel Methods: Support Vector Machine,
pages 211–241. MIT Press, Cambridge, MA.



568 References

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman
and Hall, London, 2nd edition.

McCullogh, W. and Pitts, W. (1943). A logical calculus of the ideas immenent
in nervous activity. Bull. Math. Biophys., 5, 115–133.

Mendelson, S. (2001a). Geometric methods in the analysis of Glivenko-
Cantelli classes. In D. Helmbold and B. Williamson, editors, Proceedings
of the 14th Annual Conference on Computational Learning Theory , pages
256–272. Springer, New York.

Mendelson, S. (2001b). Learning relatively small classes. In D. Helmbold
and B. Williamson, editors, Proceedings of the 14th Annual Conference on
Computational Learning Theory , pages 273–288. Springer, New York.

Mendelson, S. (2002). Improving the sample complexity using global data.
IEEE Trans. Inform. Theory , 48, 1977–1991.

Mendelson, S. (2003a). A few notes on statistical learning theory. In
S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learn-
ing: Machine Learning Summer School 2002, Canberra, Australia, pages
1–40. Springer, Berlin.

Mendelson, S. (2003b). On the performance of kernel classes. J. Mach. Learn.
Res., 4, 759–771.

Mendes, B. and Tyler, D. E. (1996). Constrained M-estimation for regression.
In H. Rieder, editor, Robust Statistics, Data Analysis, and Computer Inten-
sive Methods: In Honor of Peter J. Huber’s 60th Birthday , pages 299–320,
Lecture Notes in Statistics, Springer, New York.

Mercer, J. (1909). Functions of positive and negative type and their connection
with theory of integral equations. Philos. Trans. R. Soc. London, Ser. A,
209, 415–446.

Meschkowski, H. (1962). Hilbertsche Räume mit Kernfunktion. Springer,
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piriques. Ann. Inst. Henri Poincaré Probab. Statist., 38, 1053–1057.
Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge

University Press, Cambridge.
Ritter, K. (2000). Average-Case Analysis of Numerical Problems. Lecture

Notes in Math. 1733. Springer, Berlin.
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press,

Princeton, NJ.
Rockafellar, R. T. (1976). Integral functionals, normal integrands and mea-

surable selections. In Nonlinear Operators and the Calculus of Variations,
Lecture Notes in Math. 543, pages 157–207. Springer, Berlin.

Rockafellar, R. T. and Wets, R. J.-B. (1998). Variational Analysis. Springer,
Berlin.

Rosenblatt, F. (1956). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review , 65, 386–408.



References 571

Rosenblatt, R. (1962). Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan, Washington, DC.

Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist.
Assoc., 79, 871–880.

Rousseeuw, P. J. (1994). Unconventional features of positive-breakdown esti-
mators. Statist. Probab. Lett., 19, 417–431.

Rousseeuw, P. J. (1997a). Introduction to positive-breakdown methods. In
G. S. Maddala and C. R. Rao, editors, Handbook of Statistics , volume 15,
pages 101–121. North-Holland.

Rousseeuw, P. J. (1997b). Least median of squares regression. In S. Kotz
and N. L. Johnson, editors, Breakthroughs in Statistics, volume 3, pages
440–462, Springer, New York.

Rousseeuw, P. J. and Bassett, G. W. (1990). The remedian: a robust averaging
method for large data sets. J. Amer. Statist. Assoc., 85, 97–104.

Rousseeuw, P. J. and Christmann, A. (2003). Robustness against separation
and outliers in logistic regression. Comput. Statist. Data Anal., 43, 315–332.

Rousseeuw, P. J. and Hubert, M. (1999). Regression depth. J. Amer. Statist.
Assoc., 94, 388–402.

Rousseeuw, P. J. and Leroy, A. (1987). Robust Regression and Outlier Detec-
tion. John Wiley & Sons, New York.

Rousseeuw, P. J. and Van Driessen, K. (1999). A fast algorithm for the
minimum covariance determinant estimator. Technometrics, 41, 212–223.

Rousseeuw, P. J. and Van Driessen, K. (2000). An algorithm for positive-
breakdown regression based on concentration steps. In W. Gaul, O. Opitz,
and M. Schader, editors, Data Analysis: Scientific Modeling and Practical
Application, pages 335–346. Springer, New York.

Rousseeuw, P. J. and van Zomeren, B. C. (1990). Unmasking multivariate
outliers and leverage points. J. Amer. Statist. Assoc., 85, 633–651.

Rousseeuw, P. J. and van Zomeren, B. C. (1991). Robust distances: simula-
tions and cutoff values. In W. Stahel and S. Weisberg, editors, Directions
in robust statistics and diagnostics, Part II , pages 195–204. Springer, New
York.

Rousseeuw, P. J. and Yohai, V. (1984). Robust regression by means of S-
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Notation and Symbols

Miscellaneous
a := b, b =: a a is defined by b
c, c1, c2 unspecified constants
d dimension of the vector of explanatory variables X
γ width of the Gaussian RBF kernel
λ regularizing constant
n sample size
(ai) shortform for the sequence (ai)i≥1

Sets
∅ empty set
N, N0 set of positive integers, N0 = N ∪ {0}
Z set of positive or negative integers including 0
Q set of rational numbers
R, [0,∞) set of real numbers, set of non-negative real numbers
R̄ R ∪ {−∞,+∞}
Rn×d set of n× p matrices with coefficients in Rd

∂Rd R̄d\Rd

C set of complex numbers
K template for either R or C

(a, b), [a, b] open or closed intervals in R or Rd

Ac, Å, A complement, interior, and closure of a set A
∂A boundary of A, i.e., ∂A = Ā\Å
A1 'A2 disjoint union of sets A1 and A2

|A| number of elements of a set A
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Functions
1A(x) indicator function, 1A(x) = 1, if x ∈ A, 1A(x) = 0, else
f|A restriction of the function f to the set A
f ≤ g the functions f and g satisfy f(x) ≤ g(x) for all x
f−1(A) pre-image, i.e., f−1(A) := {x ∈ X : f(x) ∈ A}
�·� �x� = max{y ∈ Z : y ≤ x}, x ∈ R
�t clipping operation �t := min{−M,max{M, t}}
A2 approximation error function
id identity map x �→ x
IF influence function
SCn sensitivity curve

Spaces
X space of input values (sometimes a closed subset of Rd)
Y space of output values (a closed subset of R)
H RKHS or generic Hilbert space
Hγ , Hγ(X) RKHS of Gaussian kernel with width γ
HS(H) space of Hilbert-Schmidt operators on H
H1 ⊕H2 sum of Hilbert spaces H1 and H2

E, F usually Banach spaces
C(X) space of continuous functions f : X → R

Cb(X), Cc(X) subspaces of C(X), see Section A.5.5
Cm(X), Cm

b (X) spaces of differentiable functions, see Section A.5.5
c0(X) space of functions f : X → R vanishing at infinity
L(E,F ), L(E) spaces of bounded linear S : E → F or S : E → E
K(E,F ), K(E) spaces of compact operators S : E → F or S : E → E
�p(X), �p space of p-summable functions or sequences
�dp Rd equipped with the p-norm
Lp(μ) set of p-integrable functions (w.r.t. μ)
Lp(μ) space of equivalence classes of p-integrable functions
L0(X) set of measurable functions on X
L0(μ) space of measurable functions equipped with the con-

vergence in measure μ
L0(μ) space of equivalence classes of measurable functions

equipped with the convergence in measure μ

Norms
‖ · ‖2 Euclidean norm
‖ · ‖p p-norm
‖ · ‖Lp

Lp-norm
‖ · ‖∞ supremum norm
‖ · ‖E norm of (generic) Banach space E
‖ · ‖H norm of RKHS H
‖ · ‖HS Hilbert-Schmidt norm
‖ · ‖M norm of total variation
‖ · ‖nuc nuclear norm
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Other symbols related to Banach and metric spaces
〈 · , · 〉, 〈 · , · 〉H inner product (in Hilbert space H)
BE closed unit ball in (Banach) space E
dimE dimension of the space E
ei(A) entropy number of A
kerS kernel of operator S, i.e., kerS := {x ∈ E : Sx = 0}
N (A, d, ε) covering number
rankS rank of operator S
spanA linear span of A
S∗ adjoint of operator S

Measures, probability distributions, and distribution functions
(Ω,A) generic measurable space with σ-algebra A
(Ω,A,P) probability space with distribution P
(Ω,A,P) statistical space with family of distributions P
σ(X) generic σ-algebra on non-empty set X
B, Bd, B(τ) Borel σ-algebra on R, Rd, or w.r.t. topology τ
μ unspecified measure, sometimes signed measure
μ⊗ ν product measure of the measures μ and ν
suppμ support of the measure μ (also defined for functions)
λ, λd, vold Lebesgue measure on (R,B), (Rd,Bd)
# counting measure
P, P̃, Q, Q̃ probability distributions
PX marginal distribution
|P|p (average) p-moment of a distribution
P( · |x), P( · |X=x) regular conditional distribution
D, Dn empirical distribution associated to the data set D
δx, δ{x} Dirac measure at the point x
M1, M1(Z) set of all probability distributions on a measurable space
P, Q set of probability distributions
Nε(P) contamination neighborhood
Qε mixture distribution in Nε(P), i.e., Qε = (1− ε)P + εQ
Bi(m,π) binomial distribution, m ∈ N, π ∈ (0, 1)
Nμ,σ2 Gaussian distribution, μ ∈ R, σ ∈ (0,∞)
Poi(β) Poisson distribution, β ∈ (0,∞)
Λ Λ(z) = 1/(1 + e−z), z ∈ R, c.d.f. of logistic distribution

Random variables, random vectors, and related quantities
X, Xi inputs, explanatory variables
Y , Yi outputs, response variables
Z, Zi Zi = (Xi, Yi)
E(X), EP(X) expectation of X w.r.t. P
Ex∼Pf(x), EPf expectation of f w.r.t. P
ED(X) empirical average of X w.r.t. data set D
Var(X) variance of X
Cov(X) covariance matrix of X
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Estimators
fP,λ general SVM decision function w.r.t. P
fP,λ,γ general SVM decision function in Gaussian RKHS
fD,λ, fD,λ empirical SVM decision function w.r.t. data set D
fD,λ,γ , fD,λ,γ empirical SVM decision function in Gaussian RKHS
f̂P,λ estimator for fP,λ

bP,λ bias or offset of solution of regularized empirical risk
bD,λ bias or offset of solution of regularized empirical risk
S(P) value of statistic S at distribution P, often S(P) = fP,λ

Kernels and related functions
k kernel
klinear linear kernel, klinear(x, x′) := 〈x, x′〉
kRBF, kγ Gaussian RBF kernel
Φ (canonical) feature map of RKHS H
Sk, Tk integral operators associated with k

Loss functions
L generic loss function
L ◦ f loss composed with f , i.e., (x, y) �→ L(x, y, f(x))
L̆ loss function used for self-calibration
Lclass, Lα-class (weighted) classification loss function
Lhinge hinge loss function
Lc-logist logistic loss function for classification
LLS least squares loss function
Ltrunc-ls truncated least squares for classification
LDLD density level loss function
Lε-insens ε-insensitive loss function for regression
Lr-logist logistic loss function for regression
Lα-Huber Huber’s loss function for regression, α > 0
Lτ -pin pinball loss function for quantile regression, τ ∈ (0, 1)

Risks
RL,P(·) L-risk w.r.t. P
R∗

L,P L-Bayes risk w.r.t. distribution P
RL,D(·) empirical L-risk w.r.t. data set D
Rreg

L,P,λ(·) regularized L-risk w.r.t. P
Rreg

L,D,λ(·) regularized empirical L-risk w.r.t. D



Abbreviations

Abbreviation Explanation
ε-CR-ERM ε-approximate CR-ERM
CR-ERM clipped regularized empirical risk minimization
DLD density level detection
ERM empirical risk minimization
GLIM generalized linear model
IF influence function
i.i.d. independent and identically distributed
l.s.c. lower semi-continuous
KBQR kernel based quantile regression
KLR kernel logistic regression
ONB orthonormal basis
ONS orthonormal system
RBF radial basis function
RKHS reproducing kernel Hilbert space
RLB robust learning from bites
SMO sequential minimal optimization
s.t. subject to
SVM support vector machine
TV-SVM training validation support vector machine
w.r.t. with respect to
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