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Abstract

We compare support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in
information retrieval (IR) of text documents using relevancy feedback. It is assumed a preliminary search
finds a set of documents that the user marks as relevant or not and then feedback iterations commence.
Particular attention is paid to IR searches where the number of relevant documents in the database is low
and the preliminary set of documents used to start the search has few relevant documents. Experiments
show that if inverse document frequency (IDF) weighting is not used because one is unwilling to pay the
time penalty needed to obtain these features, then SVMs are better whether using term-frequency (TF) or
binary weighting. SVM performance is marginally better than Ide dec-hi if TF-IDF weighting is used and
there is a reasonable number of relevant documents found in the preliminary search. If the preliminary
search is so poor that one has to search through many documents to find at least one relevant document,
then SVM is preferred. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction
1.1. Statement of the problem

Our problem is that of relevancy feedback within the context of information retrieval (IR).
There 1s a set of documents that a user wants to retrieve within a database. Some of the articles are
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relevant, some not. It is important to understand that relevancy is relative to the perception of the
user, that is document D; may be relevant to user Uy but not user U,,.

The user is assumed to present a preliminary (or initial) query to the system, in which case the
system returns a set of ranked documents that the user examines. Although many documents may
be retrieved by the system, the system only presents one screen of documents at a time. In our
case, we assume that ten documents are returned on the initial screen with enough information for
the user to gauge whether a document is relevant or not. An optimal preliminary query would
only return relevant documents and all the user has to do is scroll through all the screens to find
all the relevant documents. In actuality, depending on the quality of the initial query, many
documents may be returned but few may be relevant. The initial query may be a Boolean query
such as conjunction or disjunctions of key words or the inquiry could be a sophisticated inquiry in
the form of a question.

In our case, we ignore the exact nature of the preliminary query and assume that the return of
the documents from this initial query is poor (three or less relevant documents from the full screen
of ten documents). However, our technique will work no matter how many documents are re-
turned from the initial query. We believe that a hard test of an IR system with relevancy feedback
occurs when the number of relevant documents returned in the initial query is low. We assume
that if the documents returned in the initial screen are all relevant, then the user will just scroll to
the next screen while if no relevant documents are returned, the user continues to scroll through
the screens until at least one relevant document is returned on a screen and then the first feedback
iteration begins. Thus if there are between one and nine relevant documents returned on the initial
screen, the user marks the relevant documents (unmarked documents are taken as non-relevant)
and the system goes though a first feedback iteration and another set of the top ten ranked
documents are returned. These feedback iterations continue until the user terminates the proce-
dure.

We first concentrate on the state when between one and nine (inclusive) relevant documents are
returned in the initial screen. Our method will be based on the use of support vector machines
(SVMs) (Drucker, Wu, & Vapnik, 1999; Joachims, 1998; Vapnik, 1998) with comparisons to other
IR relevancy feedback techniques: Rocchio (1971), Ide regular and Ide dec-hi (Salton & Buckley,
1990; Harman, 1992). These algorithms will be examined in detail later but suffice to say now that
all except Ide dec-hi use all the relevant and non-relevant documents on the first screen while Ide
dec-hi uses all the relevant documents and the top ranked non-relevant document.

Recall that we are paying particular attention to the case where the initial retrieval is poor. As
anyone who has done IR or web searches will attest, it is rather discouraging to get a return of a
search stating that the search has found thousands of documents when in fact most of the doc-
uments on the first screen (the highest ranked documents) are not relevant to the user. Our typical
user is hypothesized as preferring to mark the top ten returned documents as relevant or not and
going through a series of feedback iterations rather that examining many screens to mark all the
relevant documents.

Summarizing: In the initial preliminary search we obtain either (1) no relevant documents,
(2) one to nine relevant documents or (3) all relevant documents. In case (1), we will be forced to
go to succeeding screens until we get one screen with at least one relevant document. All the
documents on that last screen and previous screens will be used in the first feedback iteration. In
case (2) we mark the relevant documents on the first screen (unmarked on the first screen are
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non-relevant) and go through feedback iterations. In case (3) we go to the next screen. We will
concentrate on the situation when the number of relevant documents returned on the first screen is
low (three or less) and could be zero. Please distinguish between the preliminary query that returns
the first set of documents and the first feedback iteration which starts with that initial set of
documents marked by the user.

After the first feedback iteration and on all subsequent iterations we will examine only the first
screen no matter how many of the returned documents are relevant (even if none). We then track
performance as a function of feedback iteration.

In Section 1.2 we discuss SVMs, the Rocchio algorithm and Ide algorithms. Section 2 discusses
the various options for the terms in the documents vectors, namely binary term weights, term
frequency and inverse term frequency. We discuss the concepts of stemming and the use of stop
lists in Section 3. In Section 4 we describe the performance metrics of precision, recall and cov-
erage ratio and argue that coverage ratio is the best metric to compare performance. In Section 5
we describe the test set and in Section 6 we describe our experiments using a random set of rel-
evant and non-relevant documents. However, in Section 7, we describe a set of experiments where
the preliminary documents are determined from a keyword search. Finally, we reach our con-
clusions in Section 8.

1.2. Techniques investigated

One difference between our study and others is the simultaneous tracking of performance as a
function of feedback iteration and the use of SVMs. Although there have been many studies of the
use of SVMs in text retrieval (Drucker et al., 1999; Joachims, 1998; Vapnik, 1982, 1998), most
studies emphasize finding the method that optimizes performance after one feedback iteration.

SVMs have been studied in the context of the IR filtering problem (Dumais, Platt, Heckerman,
& Sahami, 1998; Joachims, 1998). It is understood that both relevancy feedback and filtering
problems are both classification problems in that documents (in our case) are assigned to one of
two classes (relevant or not). However, in the filtering situation, we usually have a marked set of
documents termed the training set and use that set to train a classifier. Performance is then judged
on a separate test set. In a sense, filtering could be considered relevancy feedback with only one
feedback iteration. The problem with using filtering rather than many iterations of relevancy
feedback is that (1) one has to mark “many” documents in the training set to obtain reasonable
classification rates on the test set (2) how many is “many” depends on the problem and is not
known in advance (3) since what are to be considered relevant documents is user dependent, this
would mean that every user must construct a different training set. Multiple iterations of feedback
could be considered to be an attempt to maximize performance on a test set that includes all
documents except the ones already marked. In that sense, relevancy feedback is similar to what is
termed active learning (Schohn & Cohen, 2000; Tong & Koller, 2000) in that we try to maximize
test performance using the smallest number of documents in the training set. However the im-
portant difference between relevancy feedback and active learning is that active learning may force
the user to mark many more non-relevant documents than in IR feedback and our supposition is
that the user wants to see the maximum number of relevant documents at each feedback iteration.
Additionally, in active learning we are interested in maximizing performance on the entire test set.
In our case we are interested in maximizing performance on the next ten documents retrieved.
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IR and relevancy feedback has a long history. In the Rocchio (1971) algorithm formulation
we have a set of documents, each document represented by a vector D; whose size is the size of
the vocabulary of words in all the documents after pruning some words. An element of this
vector indicates some property of a particular word that occurs in the article — zero if it does
not appear, “1” if it appears and we are using binary features, and the number of occurrences
of that word in the article if we are using term-frequency (TF) weighting. The preliminary query
(not necessary returned by a Rocchio feedback iteration) contains N total documents. If the
preliminary search realizes between one and nine relevant documents (and the resultant number
of non-relevant documents), then N is ten. If there are no relevant documents on the first screen
then we search subsequent screens until there is at least one relevant document — in this case N
is a multiple of ten. We will ignore the case of ten relevant documents returned on the pre-
liminary search because then the preliminary query is very good and one just goes to subsequent
screens to retrieve more relevant documents.

The first feedback iteration using Rocchio after the initial (non-Rocchio) search forms the
following query:

p
lel_e ZD,‘—ﬁ Z D..

Relevant Non-relevant

f and y are constants used to assign the relative importance of the relevant and non-relevant
documents to the query. R is the number of relevant documents retrieved in the preliminary
query and N is the total number of documents retrieved in the preliminary query. Negative
elements of the vector are clipped to zero (Rocchio, 1971). To implement the first iteration we
form the dot product of this first query against all the documents (Q, - D;) where the documents
are those not yet marked as relevant and non-relevant and then we rank the dot products from
high to low, present the ten largest dot products for the user to mark as relevant and non-
relevant and then continue to the next iteration.
After the first feedback iteration, we form subsequent iterations:

Q =u j—1+§ Z Di_ﬁ Z D,

Relevant Non-relevant

where « represents the relative importance of the prior query. We have a number of concerns with
the Rocchio algorithm that we feel will make it problematic for use; mainly that it depends on
three constants (o, 3, 7). Most studies on the Rocchio algorithm vary the three constants to de-
termine the optimum choice of these constants. However, we feel that is unfair — a separate
validation set should have been used. Furthermore, even if one has a validation set, one does not
have time to search for that optimum set of constants. Thus, we will use the following choices of
o, 5,7 as 8, 16, and 4, respectively, a choice that seemed to work well elsewhere (Buckley, Salton,
& Auen, 1994). Since all the negative elements of the resultant query are set to zero and since we
are assuming that most of the documents returned in the first iteration will be non-relevant, there
may be many elements of the query set to zero making for very poor performance on the next
iteration.

Schapire, Singer, and Singhal (1998) investigate a modified Rocchio algorithm and boosting as
applied to text filtering. Although their investigation was not in the relevancy feedback domain,
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they did show that a modified Rocchio algorithm could do much better than the original Rocchio
algorithm. However, their algorithm requires multiple passes over documents and is problematic
for large databases. Joachims (1997) compared Rocchio and naive Bayes in text categorization
while Salton and Buckley (1990) examine Rocchio and probabilistic feedback but only for one
feedback iteration.

The Ide regular algorithm (Salton & Buckley, 1990; Harman, 1992) is of the following format:

Q=Qu.+ > D- > D,
Relevant Non-relevant
where for the first feedback iteration, the Q on the right-hand side is zero and as usual, all negative
elements of the resultant query are set to zero.

The Ide dec-hi has basically the same form as Ide regular except the last summation has only
one term, namely the highest ranked non-relevant document.

The final technique will be based on the use of SVMs. SVMs can best be understood in the
context of Fig. 1 where the black diamonds represents the relevant vectors D in high dimensional
space and the empty diamonds represent the non-relevant documents and it is assumed in this
figure that the document vectors are linearly separable.

When SVMs are constructed, two sets of hyperplanes are formed (the solid lines), one hy-
perplane going through one or more examples of the non-relevant vectors and one hyperplane
going through one or more examples of the relevant vectors. Vectors lying on the hyperplanes are
termed support vectors and in fact define the two hyperplanes. If we define the margin as the
orthogonal distance between the two hyperplanes, then a SVM maximizes this margin. Equiva-
lently, the optimal hyperplane (the dashed line half-way between the support hyperplanes) is such
that the distance to the nearest vector is maximum.

Before we introduce the key concepts it should be noted that if we followed typical convention
we should use lower case bold characters as vectors and upper case bold characters as matrices.
However, the common convention in IR seems to be to use upper case bold D as the document
vector. The key concepts we want to use are the following: There are two classes: y; € {—1,1}
where +1 is assigned to a document if it is relevant and —1 if the class is non-relevant and there are
N labeled training examples:

(Dlﬂyl)v"‘)(DN’yN) DERda

where d is the dimensionality of the vector.

Fig. 1. Support vectors and separating hyperplanes.



310 H. Drucker et al. | Information Processing and Management 38 (2002) 305-323

If the two classes are linearly separable, then one can find an optimal weight vector Q" that
describes an optimal separating hyperplane such that the distance from the separating hyperplane
to the closest vector of any class is maximum. These conditions are as follows:

or equivalently:
y(Q"-D; —b) > 1,

where b is the bias.

Training examples that satisfy the equality are termed support vectors. The support vectors
define two hyperplanes, one that goes through the support vectors of one class and one goes
through the support vectors of the other class. The orthogonal distance between the two hy-
perplanes defines the margin and this margin is maximized when the norm of the weight vector
|Q"|| is minimum. Vapnik (1998) has shown we may perform this minimization by maximizing
the following function with respect to the variables o;:

N N N
W) = Z o —0.5 Z Z ao;(D; - D;)yy;
py -1 =1

subject to the constraints that ZL o;y; = 0 and o; = 0 where it is assumed there are N training
examples, D; is one of the training vectors and - represents the dot product. If «; > 0 then it can be
shown that y;(Q" - D; — b) = 1 and the D; that corresponds to the nonzero o; is a support vector.
For an unknown vector D; classification then corresponds to finding:

F(D)) = sgn{Q"-D; — b},

where

Q* = Z o;yiD;
i=1

and the sum is over the r support vectors taken from the training set. The advantage of the linear
representation is that Q" can be calculated after training and classification amounts to computing
the dot product of this optimum weight vector with the input vector.

For the non-separable case, training errors are allowed and we now must minimize:
1Q*|I> + C 32V, & subject to the constraint:

yl(Q*Dl_b)>1_én éi>07

where ¢; is a slack variable and allows training examples to exist in the region (margin) between
the two hyperplanes that go through the support points of the two classes. We can equivalently
maximize W (o) but the constraint is now 0 < o; < C instead of 0 < o;. Maximizing W (o) is qua-
dratic in o subject to constraints and may be solved using quadratic programming techniques,
some of which are particular to SVMs (Joachims, 1998). Details for solving this problem also may
be obtained from Vapnik (1982, 1998), Cristianini and Shawe-Taylor (2000) and Cherkassky and
Mulier (1998).
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Linear SVMs execution speeds are very fast and there is only one parameter to tune (C), which
is a restriction on the largest value of «. In most learning algorithms, if there are many more
examples of one class than another, the algorithm will tend to correctly classify the class with the
larger number of examples, thereby driving down the error rate. Since SVMs minimize the error
rate by trying to separate the patterns in high dimensional space, the result is that SVMs are
relatively insensitive to the relative numbers of each class. For example, new training examples
that are ““behind” the support vectors of the same class will not change the optimum hyperplane
since their values of o are zero.

In our model of relevancy feedback, after construction of Q" and b, we calculate Q" - D; — b for
all documents not seen so far and rank them from high to low (assuming the relevant documents
are of class +1) and return the top ten to the user for marking. (Strictly speaking, the bias term b is
not needed since the rankings will remain the same whether the bias is subtracted from the dot
product or not). Q" -D; — b represents the proportional distance from the optimal separating
hyperplane to the vector D;. The documents not used in the training set may be inside or outside
the margin (since they were not used to generate the present support vectors). Those documents
on the class +1 side of the optimal hyperplane and furthest from the optimal hyperplane are the
top ranked documents. Some of these top-ten ranked documents may in fact be non-relevant and
in the next feedback iteration these newly marked vectors (in addition to those marked in previous
feedback iterations) are used to construct a new set of support vectors. We contrast this with
active learning (Schohn & Cohen, 2000; Tong & Koller, 2000) where the emphasis will be to take
vectors in the next feedback iteration from within the margin. We don’t want to do this in rel-
evancy feedback, as many of the points within the margin will be non-relevant and not useful to
the user. If the top-ten ranked documents are outside the margin and are all relevant, then in the
next feedback iteration the support vectors will not change. If any of the top ten documents are
within the margin, the next set of support vectors will be different from the present set.

Solving the previous set of equations is done using SVM"™" (see Acknowledgement section).
There are not many candidate vectors to consider as support points. In general the number of
potential support points is ten times the iteration number and the training time is usually under
three seconds although in some cases, it takes longer for the algorithm to converge (up to 30 s).

Joachims (1998) looked at SVMs in text categorization and compared this to naive Bayes, C4.5,
k-nearest neighbor, and Rocchio. Although not a relevancy feedback study, it discusses the issue
of whether all or just some of the features should be used (features are the elements of the vectors).
Although reducing the number of features does improve performance on some algorithms (k-
nearest neighbor, C4.5 and Rocchio), it does not for naive Bayes and SVM. It is our contention
that we cannot waste time searching for the best set of features and so we use the full set of
features in our study.

Others studies in IR that are relevant are that of Buckley, Salton, and Allen (1993) who ex-
amined IR within the context of a routing problem. They use the Rocchio algorithm modified so
that the last term in the equation defining the new query includes not only the non-relevant
documents marked on the present screen but assumes that all unseen documents are non-relevant
and included in the last term. The same three authors (1994) also examined the use of locality
information to improve performance. We mention the study of incremental feedback (Aalbers-
berg, 1992) where only the top ranked document is retuned to the user and marked as relevant or
not and is another example of text categorization. Finally, it should be pointed out that all the
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techniques discussed here are vector techniques. Harman (1992) compares many models including
probabilistic models (as opposed to vector space models) and is the only paper we could find that
tracks performance as a function of iteration.

2. Term weighting issues

We discuss the issue of the term ¢ in the document vector D;. In the IR field, this term is called
the term weighting while in the machine learning field, this term is called the feature and in linear
algebra it is the ith element of the vector D;. #; states something about word 7 in document D;. If
this word is absent, ¢ is zero. If the word is present, then there are several options. One option is
that the term weight is a count of the number of times this word occurs in this document (called
the TF). The next option is that this term just indicates whether this word is present or not (binary
term weighting). In the original Rocchio algorithm, each term TF is multiplied by a term
log(N/n;), where N is the total number of documents in the collection and »; is the number of
documents in which this term occurs. This last term is called the inverse document frequency
(IDF). Usually D; is normalized to unit length.

A popular combination for feature 7 is the multiplication of the TF by the IDF (TF-IDF).
Salton and Buckley (1988) discuss in detail various term weighting options. Schapire et al. (1998)
also look at different term weighting options. However, using TF-IDF requires two passes over
the data because IDF cannot be determined until all the words and the number of articles in which
that word is present is calculated. A compensating fact is that the IDF determination need only be
done once for any static collection of documents. However, if we add (or eliminate) articles from a
database, then IDF must be updated periodically (as must be the dictionary). Although we will
evaluate algorithms using TF-IDF we would prefer not to use it in practice. The question will be
whether using TF-IDF is much better than using just TF. Buckley et al. (1994) use TF-IDF for the
preliminary query but not for the documents themselves since the determination of IDF is quickly
done for the small numbers of queries as opposed to the large number of documents.

3. Stemming and stop lists

Full stemming is the removal of all suffixes of a word. For example, “builder”, “building”, and
“builds” will all be reduced to their common root “build”. There could also be partial stemming
such as changing plural forms to their singular. Stemming reduces the size of the document
vectors. One performance issue will be the effect of stemming on retrieval accuracy. But there are
other performance issues such as retrieval speed and size of the inverted index. Buckley et al.
(1993, p. 68), discuss these options in detail.

Another technique to reduce the dimensionality is the removal of “stop” words, that is, a list of
words that will not be used in constructing the document vector. The use of a stop list may or may
not improve performance. Words like “a”, “an”, and “‘the” probably do not help in determining
relevancy. If the stop list consists of an a priori list of words, then only one pass over the doc-
uments is needed. However, if the stop list is based on the proportion of documents that has
certain words, then two passes are required over the documents — once to count the number of all
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words and the second pass to eliminate either very common words or very rare words. One
version of this is to remove words that do not occur in at least three documents (Drucker et al.,
1999). This eliminates rare or misspelled words.

We tried the following combinations of pre-processing techniques and algorithms
. Stemming using the Porter (1980) stemmer or not.

. Eliminating words that do not occur in at least three documents or not.
. TF, TF-IDF, or binary features.
. Four algorithms: Rocchio, Ide regular, Ide deci-hi and SVMs.

Number 1 can be done “on the fly”” but number 2 and TF-IDF of number 3 requires two passes
over the document. In all cases, all one or two letter words were eliminated, words reduced to
lower case, and the words “and” and ‘“the”” were eliminated.

Although Drucker et al. (1999) had shown that TF-IDF is not necessary for SVMs in a clas-
sification task, we investigate that option for relevancy feedback. Salton and Buckley (1988)
showed that using binary features gives the worst performance in comparison to TF or TF-IDF
and we do not consider that option. Recall that we would prefer not to use TF-IDF because it
requires two passes to calculate IDF.

AW N -

4. Performance metrics

There are too many ways to assess the effectiveness of the feedback process to discuss here in
detail. References are Lewis (1995), Tauge-Sutcliffe (1992), Saracevic (1975), Mizzaro (1997),
and Korfhage (1997). However, traditionally recall and precision are used. Let R be the number
of relevant documents in the collection, ng, be the number of relevant documents actually
retrieved in a feedback iteration and N be the total number of documents returned in the
feedback iteration (typically, N is 10 here). Precision (p) and recall () are then defined as

p =nra/N, r=nga/R.

Although we assume N is ten if one through nine relevant documents are returned on the initial
preliminary search, if we did change N, both the recall and precision will change (because g
does) and at some point both the recall and precision will be approximately equal and this is
termed the recall-precision break-even point and is a popular measure of performance. Schapire
et al. (1998) give very reasonable arguments why conventional metrics such as the precision—
recall break-even point are not very informative to the user. In particular, we concur with their
contention that since recall cannot be calculated by the user until all relevant documents are
seen by the user (if this is even possible except in an exhaustive search), the user cannot know
(in terms of recall) how well the IR search is going.

For these reasons, we will emphasize the coverage ratio as the performance metric. Coverage
ratio is a cumulative metric and is the ratio of the cumulative total number of relevant documents
retrieved so far to the cumulative number of relevant documents that would have been retrieved in
an ideal search. The coverage ratio is ideally unity at each iteration.

To take into account of the fact that at some point an ideal IR relevancy feedback system will
run out of relevant documents to retrieve, we define the coverage ratio as
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> ng,/10i when 10i <R,

coverage ratio = .
verag { > ng, /R otherwise,

where R is the total number of relevant documents in the entire collection excluding those found
in the preliminary search and ng, is the number of relevant documents at iteration i. Do not
confuse this definition of R with that used in the Rocchio algorithm where R there is the number
of relevant documents returned at the present iteration. The user can only calculate the top ratio
because the user has no way of knowing if a decreasing coverage ratio is due to poor performance
of the algorithm or if the system is running out of relevant documents. Basically the user probably
does not care — to the user, a declining precision and coverage ratio means that no more relevant
topics are being retrieved. Precision and coverage ratio are a measure of user satisfaction because
the user would like to see all relevant documents returned per feedback iteration (precision) and
cumulatively (coverage ratio). Until the ideal search would run out of documents to retrieve,
coverage is the precision averaged over prior iterations and thus makes the coverage ratio a much
smoother function than the (instantaneous) precision that we have observed to be quite erratic.
From a system perspective an alternative definition of coverage ratio could be:

coverage ratio = Z ng./R.

However once again the user has no way of knowing the number of relevant documents R in the
entire collection.

5. A test set

A set of documents labeled by topic can be used to simulate the relevance feedback environ-
ment. For a test set we use the Reuters corpus of news articles (www.reseach.att.com/~lewis). This
is a database of over 11,000 articles. Each article is delimited by SGML tags to indicate (among
other items) the beginning and end of the article and the topic(s) assigned to that article. Some
articles have multiple topics. Processing of the database proceeded as follows:

1. Eliminate articles that have no topics to give us a total of 11,367 articles and 120 unique topics.

2. Eliminate the words “the” and “and”, all punctuation and all all-number words.

3. Eliminate all one and two letter words.

4. Change all words to lower case.

We then generated a vocabulary for the database in four different versions

1. Full stemming.

2. Full stemming and removal of words that did not occur in at least three articles. This tends to
eliminate misspelled words from the vocabulary. It could also remove rare words that are use-
ful in locating certain topics. This tradeoff will be evaluated. Elimination of these words re-
quires two passes over the database and would not be used unless the performance improves
significantly over the no-removal case.

. No stemming.

4. No stemming and removal of words that did not occur in at least three articles.

The sizes of the vocabularies for these four cases are indicated in Table 1.

(98]
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Table 1

Number of unique words after processing

Feature processing type Number of unique words
Stemming 27,478

No stemming 31,487

Stemming and elimination of words that do not occur in at least three articles 10,410

No stemming and elimination of words that do not occur in at least three articles 12,764

For each of the four cases above, vectors were formed for each article whose size is that of the
vocabulary size in Table 1. The element i for a vector corresponding to a particular article in-
dicates whether the word i is present or not (binary features), or how many times that word occurs
(TF features) or IDF normalized (TF-IDF). In all cases, the magnitudes of the vectors were unity.

We define the visibility of a topic as the percent of total documents that have that topic. We will
track both precision and coverage ratio as a function of iteration parameterized in the following
way: (1) visibility of the topic and (2) the number of documents returned in the preliminary search.
The number of returned documents in the preliminary search will be restricted to one or three.
Later, we will discuss the issue of no returned documents in the preliminary search. Although we
decline to report averages because we believe averages conceal the poor performance of algo-
rithms on low-visibility documents, we do not have the space to report the metrics for all topics
(nor would that be especially illuminating) and therefore we report the metrics for a sample of
topics ranging from common to rare (Table 2). In other words, we will first assume that topic
number one is the relevant topic and all others are non-relevant. Then we will assume topic
number five is the most relevant topic and all others non-relevant, etc.

Examining Table 2, since all ““‘corn” and ‘“‘soybean’ topics are also ‘““‘grain’ topics, all soybean
and corn articles will have at least two topics. Thus, when we consider “corn’ as the relevant
topic, we consider all “grain” articles that are also “corn” articles as relevant while ““grain” ar-
ticles that are not “corn’ articles are non-relevant. gnp, earn, lei topics are short for “gross na-

2 13

tional product”, “earnings” and ‘“‘leading economic indicators”.

Table 2
Some of the topics in the database
Rank Topic name Number Visibility (%)
1 Earn 3987 33
5 Grain 628 5.5
10 Corn 254 2.2
15 Gnp 120 1.4
20 Soybean 78 0.68
30 Iron-steel 67 0.58
40 Palm oil 43 0.43
50 Fuel 28 0.24
60 Lei 17 0.15

70 Rapeoil 8 0.07
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Metrics reported are the results of averaging ten experiments (and twenty experiments for the
rarer cases) with the same initial number of preliminary documents, the same visibility, the same
preprocessing and the same algorithm. Preprocessing includes the choice of vocabulary (Table 1)
and whether using binary, TF, or TF-IDF weighting. The only difference between each experi-
ment is that the specific preliminary documents for the preliminary search are different and picked
at random. Picking a set of preliminary documents may not quite mimic what happens in a re-
alistic setting. For instance, if a Boolean query is run to get the initial set of documents, these
documents are more similar than just picking documents at random with the same topic as-
signment.

In comparing two different algorithms, we use the same random seed for the same experiment
number. For example, in comparing experiment number 1 using Rocchio vs. experiment number 1
using Ide regular, we start with the identical relevant and non-relevant preliminary documents.
Thus if there is a difference between the averages using the two algorithms, it can only be attributed
to the algorithm since we start with the same initial set of documents, the same assignment of term
weighting (whether TF, TF-IDF, or binary), same choice of stemming or non-stemming and the
same visibility. For visibility corresponding to the 1st, 5th, 10th, and 15th most visible documents,
we will go through ten feedback iterations. Starting at the 15th most visible document, we will go
through twenty feedback iterations because by this point, in an ideal algorithm, all the documents
with that topic should have been retrieved (Table 2). Whether one algorithm is better than another
will be based on the coverage ratio after the last feedback iteration.

6. Experimental results

In Fig. 2, we assume one document retrieved on the initial search for two cases: one case where
the topic has a high visibility (33%) and the other case with low visibility (1.4%). For each case, we
show the results of two algorithms: SVM using binary features and Rocchio using TF-IDF av-
eraged over ten experiments.

100

90

80
v=1.4% SVM (binary)

70

60

coverage ratio (percent)

50
v=1.4% Rocchio (TF-IDF)
40
iteration

30

1 2 3 4 5 6 7 8 9 10

Fig. 2. Coverage ratio versus number of iterations for two different visibilities. The dashed line is for Rocchio using
TF-IDF features. One document retrieved in preliminary search.
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Let us discuss the high visibility case first (v=33%). Since the two algorithms have almost
identical performance, we have used one label to identify the top two graphs. Recall that precision
is identical to the coverage ratio in the first feedback iteration. Both algorithms do very well on the
first iteration returning on the average approximately 9.5 relevant documents on a screen of ten
documents. At the final iteration, the coverage ratio is approximately 95% for both algorithms
indicating that by the tenth iteration an ideal case would return one hundred documents and both
these algorithms return cumulatively about 95 documents by the tenth iteration. Therefore both
these algorithms do approximately equally well.

Now let us examine the case where the visibility is low. At the first iteration the precision is
about 50% indicating, that on the average, five of ten relevant documents would be returned for
both these algorithms when one has only one relevant document returned on the preliminary
search. However, by the tenth iteration, SVM will have returned approximately eighty-five of the
hundred that possibly could be returned in the ideal case while Rocchio will have returned only
thirty of hundred relevant documents. Since, for both the high and low visibility cases, there are
more than a hundred relevant documents in the database, the coverage at the last iteration is the
precision averaged over the ten experiments. That is, on the average, for the high visibility case
using either of the two techniques, the average number of relevant documents returned on each of
the ten iterations is 9.5. However, for the low visibility case, on the average only three relevant
documents out of ten documents will be returned at every iteration using Rocchio while for SVM,
on the average 8.5 relevant documents will be returned.

Tables 3 and 4 indicate the coverage ratio at the end of the tenth iteration using stemmed and
non-stemmed vocabularies, respectively, and assuming one relevant document returned in the
initial search. Ide regular is not even reported since its performance is abysmal (zero at the end of
ten iterations) probably due to the fact that there are many non-relevant documents used in the
initial iteration which forces negative term weights in the query that are then clipped to zero. In
Rocchio this effect is reduced because the non-relevant summation term is divided by the number
of non-relevant documents while in Ide dec-hi only one non-relevant document is used.

There is not enough evidence here to recommend any particular weighting scheme for the SVM
algorithm, at least on a performance issue. Ide dec-hi (with TF-IDF) does slightly better than the
other two Rocchio-type algorithms except for the high visibility case. Based on these tables, SVM
is much better and it does not matter whether one stems or not. In using non-TF-IDF features
(because of the one-pass requirement to obtain them), since there is no difference in SVMs
whether one uses binary or TF features, one might as well use binary features as they are easier to
obtain and use stemming as this reduces the vocabulary size.

Table 3
Coverage ratio at the tenth iteration using stemmed data. One relevant and nine non-relevant documents assumed
returned at the initial search. Values are in percent

Visibility SVM binary SVM TF  SVM TF-IDF Ide hi TF-IDF  Ide hi TF Rocchio TF-IDF

33 99 100 100 95 95 95
5.5 86 87 95 57 44 51
2.2 75 74 81 37 27 29

1.4 85 85 86 34 32 32
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Table 4
Coverage ratio at the tenth iteration using non-stemmed data. One relevant and nine non-relevant documents assumed
returned at the initial search. Values are in percent

Visibility SVM binary SVM TF  SVM TF-IDF  Ide hi TF-IDF Ide hi TF Rocchio TF-IDF

33 99 100 99 95 95 96
5.5 88 88 94 57 45 50
22 74 75 76 38 28 29
1.4 83 86 87 36 33 33

We also did experiments that created tables similar to those of Tables 3 and 4 where we
assumed three relevant articles returned in the initial search. The relative performance among
algorithms remained the same although absolute performance increased slightly except for the
highest visibility case.

Although we would prefer not to remove words from a dictionary that do not occur at least
three times (because it requires two passes over the data), it may be worthwhile if performance
is enhanced or the performance is about the same since this reduces the size of the vocabulary
(Table 1). Table 5 gives the performance for this type of preprocessing and should be compared
to Table 3. SVM (binary and TF-IDF weighting) and the two best non-SVM algorithms were
used. This table shows that the SVM performance is degraded so that one should not remove
words that do not occur in at least three articles. Rocchio gives better performance except for
the highest visibility case when words that do not occur in at least three documents are re-
moved.

Precision can be calculated directly by the user. However, because the precision may vary
dramatically from one iteration to the next, it is not a good measure of system performance.
Coverage ratio is a smoother function. In addition, if the precision starts to decline, the user still
does not know whether the decline is due to the algorithm or absence of relevant documents. As
an example (Table 6) of this, we show the precision at the tenth iteration assuming one initial
document returned in the preliminary search with stemming. The SVMs are superior to all the
other algorithms. For SVM-TF and a visibility of 2.2%, we get a precision of 55% that seems out
of place compared to the cell immediately to the left. However, examining the data one iteration
before, the precision is there 75%. The precision may become erratic and therefore the coverage
ratio is preferred as a metric as it is smoother.

Table 5
Coverage ratio at the tenth iteration using stemmed data and removing all words that did not occur in at least three
articles. One relevant document assumed returned at the initial search. Values are in percent

Visibility SVM binary SVM TF-IDF Ide dec-hi TF-IDF Rocchio TF-IDF
33 99 95 95 95

5.5 86 95 57 55

22 71 78 37 42

1.4 84 85 33 34
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Table 6
Precision at the tenth iteration using stemmed data. One relevant document assumed returned at the initial search.
Values are in percent

Visibility SVM binary SVM TF  SVM TF-IDF Ide hi TF-IDF  Ide hi TF Rocchio TF-IDF

33 100 100 100 96 93 91
5.5 94 97 100 34 33 35
2.2 73 55 79 26 15 23
1.4 75 79 86 33 23 26

Table 7

Coverage ratio after twenty feedback iterations using stemmed data. The inverse of the visibility documents are
retrieved before one obtains one relevant document. Values are in percent

Visibility SVM binary SVM TF SVM TF-IDF
1.4 86 86 87
0.68 72 71 73
0.58 85 84 87
0.37 100 95 100
0.24 41 40 43
0.15 100 100 100
0.07 100 94 100

The procedures discussed up to now assumed that there was at least one relevant document
returned on the first screen. None of these procedures would work if there were no relevant
documents returned in the preliminary search — in that case one has to go to subsequent screens to
find a relevant document. How many screens one has to search will depend on the sophistication
of the preliminary query. Our assumption is that one has to examine a number of documents
equal to the inverse of the visibility to find one relevant document. In Table 7, we show the
coverage ratio for documents that have very low visibility. We show the results after twenty
feedback iterations. By that time (Table 1), one should have retrieved all documents. The non-
SVM algorithms are not shown because they performed badly, approximately zero at the end of
twenty iterations. The reason for that poor performance of the non-SVM algorithms can be di-
rectly attributed to the assumption that one has to search through many non-relevant documents
in the preliminary search to find one relevant document. In the case of Rocchio, the presence of so
many non-relevant vectors causes many terms of the resultant query to be zero. In the case of Ide
dec-hi, use is not made of all the non-relevant documents (since only the top-ranked one is
maintained) while the SVM algorithms use all the non-relevant documents to achieve a good
optimum hyperplane.

All can be seen, binary features are as good as TF or TF-IDF features. By the twentieth
iteration one should have retrieved the 120 documents with a visibility of 1.4% and the 78
documents with a visibility of 0.68% but one has only found approximately 86% and 72% of
those. However, these are very rare documents in a database with over 11,000 documents. On
the other hand, sometimes we were able to retrieve all the documents in the lowest visibility
topics.
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7. Preliminary search based on keywords

The results reported above used a random set of relevant and non-relevant documents in the
preliminary search. This has the advantage of then being able to average over multiple experi-
ments but has the disadvantage in that the preliminary set of documents are not retrieved in a
realistic manner, as perhaps in a keyword search. Thus, if a good keyword search finds a relevant
document in the first screen, even if the topic has low visibility, the resultant performance may be
better than using the randomized set of preliminary documents assumed in the prior section. The
rule in finding the preliminary set of documents here is to order articles by the number of oc-
currences of a keyword in the document. This is a sort on the TF of a keyword. In a keyword
search of a high-visibility subject, many (if not all) of the documents retrieved on the initial screen
will be relevant. Thus, if all the documents in the preliminary search are relevant, our procedure is
to continue to successive screens until there was at least one non-relevant document and then start
the first iteration. We maintain the rule that if the first screen has no relevant documents then we
continue until we find a relevant document.

In Table 8, we show the coverage ratio after ten iterations. In the prior tables, coverage ratio
was the number of relevant documents left in the database after the preliminary search divided the
number obtained by an ideal search. In comparing the performance of two algorithms on the
same topic, this was reasonable since the preliminary searches started out with the same number
of relevant documents. However, we are about to use different sets of initial conditions and

Table 8
Coverage ratio (in percent) after ten iterations using stemmed data
Topic Keyword Preliminary search Coverage ratio (percent)
SVM SVM TF Ide dec-hi SVM Ide dec-hi
Binary TF TF-IDF TF-IDF
Earn Earn 7 relevant, 3 non-relevant 100 100 97 97 97
Earnings 9 relevant, 1 non-relevant 100 100 100 100 82
Grain Grain 19 relevant, 1 non-relevant 95 93 59 99 95
Corn Corn 38 relevant, 2 non-relevant 85 85 51 88 86
Gnp Gnp 8 relevant, 2 non-relevant 82 90 59 90 90
Soybean Soy 7 relevant, 3 non-relevant 49 64 39 69 67
Iron-steel Iron 7 relevant, 3 non-relevant 67 70 49 79 81
Steel 8 relevant, 2 non-relevant 64 59 53 76 76
Palm oil Palm 18 relevant, 2 non-relevant 94 87 68 98 95
Oil 2 relevant, 8 non-relevant 93 86 78 95 95
Fuel Fuel 4 relevant, 6 non-relevant 50 39 39 63 75
Lei Indicator 5 relevant, 5 non-relevant 100 100 75 100 100
Leading 6 relevant, 4 non-relevant 100 100 77 100 100

Rapeoil Rapeseed 1 relevant, 9 non-relevant 100 100 89 100 63




H. Drucker et al. | Information Processing and Management 38 (2002) 305-323 321

therefore coverage here will be redefined as the total number of documents retrieved, including
those in the keyword search divided by the number returned in an ideal performance. The second
column of Table 8 indicates the keyword used to order the preliminary search and the third
column indicates the number of relevant and non-relevant documents in the preliminary set of
documents. Note that there is always at least one relevant document in the first screen, but in
some cases we went to multiple screens to find at least one non-relevant document. We group the
algorithms together as those requiring TF-IDF (and hence requiring two passes over the dat-
abase) and those that do not.

In this table, there is little difference between using SVM using TF or binary weighting, binary
being better in five searches, worse in three searches and the same in the remaining six (of the
fourteen total) searches. However the use of TF-IDF weighting usually improves the performance
of SVM over the other two weighting techniques. If one decides not to use TF-IDF weighting then
SVMs are invariably better than Ide dec-hi. However, if one proposes to use TF-IDF weighting,
then the performance of SVM is better than Ide dec-hi in six searches, worse in two searches, and
the same in the remaining six searches. TF-IDF features dramatically increase the performance of
Ide dec-hi over its TF counterpart.

We tried another set of experiments where we thought the problem would be harder. In the
preliminary search we used the top-ranked (using TF of the keyword) relevant document and the
nine top-ranked (again using TF) non-relevant documents. Conceptually, this should give us a
lower performance than that of Table 8 because there are less relevant documents in the first
screen. The values are shown in Table 9.

Table 9
Coverage ratio in ten iterations using stemmed data. One top-ranked relevant document and nine top-ranked
non-relevant document in the preliminary search

Topic Keyword Coverage ratio (percent)
SVM Binary SVM TF Ide dec-hi TF  SVM TF-IDF Ide dec-hi TF-IDF
Earn Earn 100 98 97 98 96
Earnings 100 100 97 96 82
Grain Grain 82 95 59 98 92
Corn Corn 77 89 58 90 93
Gnp Gnp 86 87 61 67 88
Soybean Soy 46 61 44 74 65
Iron-steel Iron 52 65 52 73 76
Steel 61 69 55 95 73
Palm oil Palm 88 86 86 95 98
Oil 84 86 86 95 95
Fuel Fuel 42 39 36 43 59
Lei Indicator 100 100 95 100 100
Leading 100 100 100 100 100

Rapeoil Rapeseed 100 100 89 100 63




322 H. Drucker et al. | Information Processing and Management 38 (2002) 305-323

A cell-by-cell comparison of this table with Table 8 shows that the performance is sometimes
better, sometimes worse. Thus, placing many non-relevant documents in the preliminary search
does not seem to guarantee a harder problem. However, we can draw the same general obser-
vations: using TF-IDF weighing improves the performance of Ide dec-hi; that with non-TF-IDF
weighting schemes, SVM is to be preferred and that with TF-IDF features, SVM is better than Ide
dec-hi in six cases, worse in five cases, and tied in the remaining three searches. It should be re-
membered that the results of Tables 8 and 9 are those of one experiment — we did not have the
liberty of averaging over multiple experiments.

8. Conclusions

We have analyzed the performance of SVM-based algorithms and compared them to Rocchio, Ide
regular, and Ide dec-hi. In the first set of experiments we picked a random set of preliminary doc-
uments with a small, sometimes zero, number of relevant documents presented in the first screen.
Based on these experiments, we can generally state that if the initial search is very poor and the
visibility of the topic is low, then SVMs are superior to the other techniques investigated. In the
second set of experiments, we did a keyword search to return the first set of preliminary documents.
These keyword searches were invariably successful in that they would return a non-zero number of
relevant documents in the preliminary search. In those cases, if one is allowed to use TF-IDF
weighting (and suffer the time-penalty of two passes over the database), then SVM is marginally
better than Ide dec-hi. However, if one decides not to use TF-IDF, then SVM using either binary or
TF weighting is invariably better. There is not enough difference in performance between using bi-
nary or TF features in SVMs to recommend either weighting technique based on performance alone.
However, constructing and manipulating binary vectors takes less time than TF-based vectors.

In a comparison of using stemmed data or not, using stemmed data is to be preferred because
it reduces the size of the dictionary and does not affect performance. The elimination of words
that do not occur in at least three documents does not improve SVM performance but does
improve performance for the non-SVM techniques if one is willing to pay time penalty of two
passes over the database.

We therefore have the following recommendations:

1. If one is using TF-IDF weighting and can be confident that the preliminary search returns
many relevant documents, then SVM is marginally better than Ide dec-hi. However, the Ide
dec-hi algorithm is simpler, runs faster, and one does not have worry about convergence of
the SVM algorithm. We never had any problems with convergence but it can happen.

2. If one prefers not to use TF-IDF features, use SVM with binary feature weighting.

3. Use SVM if one is unsure of how successful the preliminary search will be since if the prelim-
inary search is poor, the non-SVM algorithms will have poor performance.
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