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PREFACE

Since their introduction in 1995, support vector machines have become one of the
preeminent machine learning paradigms. Support vector machines are now employed
routinely in areas that range from handwriting recognition to bioinformatics to the
mining of very large databases. This book has been written to provide an introduction
to this important class of machine learning algorithms with a minimum of technical
background in order to make this material as widely accessible as possible. With
the exception of some basic notions in calculus and probability theory, the book
is completely self-contained. Important concepts in linear algebra and optimization
theory are carefully motivated and introduced. Specifically, we have excluded any
technical material that does not contribute directly to the understanding of support
vector machines. Many other excellent textbooks are available today that develop
support vector machines in much more technical detail than is provided here. These
books should be accessible to the reader after reading this book. It is worth mentioning
that we develop support vector machines from a computational perspective rather than
from the traditional statistical perspective.

The book is aimed at upper-level undergraduate as well as beginning graduate
students who want to learn more about support vector machines or who are pursuing
research in machine learning and related areas. It should also prove a gentle tutorial on
support vector machines for machine learning researchers and data analysts. The main
objective of this book is to provide the necessary background to work with existing
machine learning tool sets that include support vector machines as part of their suite
of components. Once the material in this book has been mastered, the reader will
be able to apply standard support vector machine learning algorithms to his or her
problems with concrete insights as to what is going on “under the hood.” To facilitate

xiii
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xiv PREFACE

this goal, most chapters have short tutorial sections that provide guidance on how the
learned material is applied in actual tool sets. In this book we chose two open-source
programs, WEKA and R, for this purpose. We chose WEKA because it represents a
prototypical, GUI-driven data analysis tool, and we chose R because it is the open-
source reimplementation of the popular S-Plus statistical computing environment.
The data analysis techniques used in WEKA and R are easily transferred to other tool
sets.

The content of this book is based on a one-semester course given over a num-
ber of years to beginning graduate computer science students at the University of
Rhode Island who want to conduct research in machine learning or to apply machine
intelligence to other areas, such as computational chemistry, molecular biology, and
forensic sciences. The book consist of three parts. Part I covers foundational issues
such as the definition of machine learning, concepts from linear algebra such as vec-
tor spaces and decision surfaces, and simple learning methods including perceptron
learning. Part II develops support vector machines are developed starting from the
primal, linear setting and then continuing to the dual, nonlinear setting. Here we also
cover implementation, model evaluation, and elements of statistical learning the-
ory. In Part III the basic support vector machine model is extended in various ways.
For instance, we develop approaches that extend the canonical binary support vec-
tor machine model to an arbitrary number of classes. We also investigate regression
problems using support vector machines. A typical course offering at the University
of Rhode Island would cover Part I and II with a selection of chapters from Part III
as time permits.
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CHAPTER 1

WHAT IS KNOWLEDGE DISCOVERY?

Knowledge discovery is a semiautomated process of extracting useful information
from collections of data that are too big to be investigated manually. By semiautomated
we mean that we use computer-based tools for the discovery process but that guidance
by an analyst is indispensable. The information retrieved by the discovery process
usually takes on the form of actionable or explanatory patterns often referred to as
models. There are many different types of models. For instance, we have models that
are represented as if–then–else rules as well as models that implement artificial neural
networks. All models have the desirable property that they tend to ignore unnecessary
detail and summarize the major trends in data. A model can represent or summarize
terabytes of data and therefore provides access to information or knowledge hidden
in large amounts of data. In this book we deal with one particular type of model called
a support vector machine. Support vector machines represent a powerful new class
of models invented by Vladimir Vapnik in the early 1990s. They have been shown to
be competitive with artificial neural networks and outperform them in many cases.

A term that is often associated with knowledge discovery is data mining. Data
mining can be considered a specific kind of knowledge discovery process that aims at
extracting information from databases. Data mining is often referred to as knowledge
discovery in databases (KDD).

Knowledge discovery is a highly interdisciplinary undertaking ranging from
domain analysis, data cleansing, and visualization to model evaluation and deploy-
ment (see Figure 1.1). However, at the core of the knowledge discovery process is
a discovery algorithm that performs some kind of pattern recognition and constructs
models of the data encountered. The discovery algorithms we are concerned with in

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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Data
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FIGURE 1.1 The knowledge discovery process: from data to information.

this book are based on machine learning. Let us start by defining what we mean by
machine learning.

1.1 MACHINE LEARNING

Phenomena whose behavior we can observe exist all around us. Consider, for example,
the orbits of the planets around the sun or the timing of the tides. The central question
in machine learning is: Can we use computers to discover and describe patterns based
on these behaviors? The answer to this question is a resounding “yes” and it is the
topic of the remainder of the book.

Perhaps the easiest way to describe phenomena is through classification. Here, a
particular object either belongs to a class of objects or it does not. When we see a
cat, we easily recognize that it belongs to the class of mammals, and when we see
a crow, we recognize that it belongs to the class of birds. Abstractly speaking, we
can imagine that there exists some process in connection with some phenomenon that
labels objects as true if they belong to the class in question or false if they do not belong
to the class. In our case, we have mammal(cat) = true and mammal(crow) = false,
as well as bird(cat) = false and bird(crow) = true. Here, mammal and bird are
processes that provide the labels for any object according to the class of mammals and
the class of birds, respectively. Typically, classifications are not as easy as mammals
and birds, and in general we do not have access to the processes that label the objects.
We can only observe the consequences of these processes: the observable labels for
each object. The goal of machine learning then is to compute a suitable model for
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a labeling process that approximates the original process as closely as possible. The
following definition states this more formally.

Definition 1.1 (Machine Learning)
Given:

• A data universe X

• A sample set S, where S ⊂ X

• Some target function (labeling process) f : X → {true, false}
• A labeled training set D, where D = {(x, y) | x ∈ S and y = f (x)}

Compute a function f̂ : X → {true, false} using D such that

f̂ (x) ∼= f (x) (1.1)

for all x ∈ X.

Let us take a look at this definition in more detail. The data universe X is the set
of objects of interest. For example, this might be a set of celestial objects viewable in
a photograph taken through a telescope; it could also be a set of persons who visited
a particular web page; or it could be a collection of proteins whose function in the
cell and three-dimensional structure are known. The sample set S is a subset of the
data universe. In general, the sample set is necessary since most collections of objects
we are interested in tend to be very large or perhaps infinite, and building models
can be very slow for large data universes and impossible for infinite data universes.
Therefore, the sample set S acts as a representative of the data universe in order to
make the process of building models tractable. The target function f is the process
that provides the observable labels. It is assumed that f is able to provide a suitable
value in {true, false} for any element in X when that element is observed. Thus, even
though we have no direct access to the process itself, we are always able to observe
the labels this process assigns to the elements in the data universe. For example, when
we interpret a photograph, a target function f might label celestial objects viewable
in the photograph according to whether or not they are stars. We use this property of
the target function to construct the training set D by observing the labels for objects
in the sample set S. As an aside, machine learning that makes use of labeled training
data is referred to as supervised learning. There are other types of machine learning,
referred to as unsupervised learning, that do not need labeled training data. Finally,
equation (1.1) in our definition of machine learning formally states that learning can
be viewed as computing the function f̂ as an approximation to or a model of the
original process f based on the training examples in D. That is, the result of machine
learning is a model of the original labeling function. However, out of convenience we
often say that f̂ is a model of the training data D. This is compatible with the formal
view expressed in (1.1) because the elements in the training set are input–output pairs
of the original labeling function, (x, y) ∈ f with x ∈ S and y = f (x), and this means
that modeling the function f and modeling the training data D are one and the same.
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The names of the labels in {true, false} are arbitrary; instead of true and false we
could have used T and F , 0 and 1, or blue and green. The important fact is that this set
contains two distinct labels: one for class membership and one for nonmembership.
We can also consider classification problems with more than two possibilities. The
only difference from our definition of machine learning above would be that the
codomain of the original labeling process f and its model f̂ is a set that includes an
appropriate number of distinct labels.

Once we have a model of the original labeling process, two interesting things can
be accomplished. First, we can use the model to compute or predict the label of an
element in the data universe X without having to observe this element. Second, the
model can provide some insight into the original labeling process. That is, a model
possesses some explanatory ability. Consider the following scenario, where the data
universe X represents all the customers of a bank. Now, assume that a model f̂

classifies the customers according to who is likely to default on a mortgage (true) and
who is not (false). The bank can now use this model to predict which of its customers
are likely to default on their mortgage payments before the event is observable, and is
able to take actions such as offering refinance or debt management options. The bank
can also use the model to discover which features of the data universe X are most
relevant to the prediction; that is, the model can tell the bank the characteristics of a
bank customer who is likely to default. These characteristics can take on the form of
multiple maxed-out credit cards or perhaps a large, high-interest home equity loan.

1.2 STRUCTURE OF THE UNIVERSE X

As varied as the objects in a data universe may be, they can usually be described by
a collection of features or attributes. The most common way to represent a set of
objects is as a table where each feature is given as a table column and each object is
a row in the table. Table 1.1 is a table representing a subset S of the data universe X

of all objects with legs. We have five objects in this set. Each object in S is described
by four features:

1. Legs: the number of legs the object has

2. Wings: yes if the object has wings; otherwise, no

3. Fur: yes if the object has fur; otherwise, no

4. Feathers: yes if the object has feathers; otherwise, no

When we apply a labeling process such as mammal to an object in S (e.g., Cat),
we actually apply the labeling process to the feature set of that object. The name of
the object does not carry any information; it is the description or representation of
that object that matters during classification. That is, mammal(Cat) is shorthand for
mammal(4, no, yes, no). If we had called our cat “Jup,” mammal(Jup) would still be
shorthand for mammal(4, no, yes, no) because the nature of the object did not change.
Therefore, we ignore the names of the objects and view our set S as a subset of the
cross-product of our features; that is, S is a subset of all possible object descriptions



“c01” — 2009/9/15 — 10:26 — page 7 — #7

1.2 STRUCTURE OF THE UNIVERSE X 7

TABLE 1.1 Simple Feature Table for a
Small Number of Objects

Legs Wings Fur Feathers

Cat 4 no yes no
Crow 2 yes no yes
Frog 4 no no no
Bat 4 yes yes no
Barstool 3 no no no

that we can generate given our four features. In our case we have

S ⊂ Legs × Wings × Fur × Feathers, (1.2)

and the description of Cat is a member of S according to Table 1.1, (4, no, yes, no) ∈
S. Since we view S as a subset of our data universe X, it follows that

X ⊆ Legs × Wings × Fur × Feathers. (1.3)

Each object in our data universe X is described by four features.
We construct the training data set D by applying the target function mammal to

each object in S:

mammal(4, no, yes, no) = true,

mammal(2, yes, no, yes) = false,

mammal(4, no, no, no) = false,

mammal(4, yes, yes, no) = true,

mammal(4, no, no, no) = false.

The training data can also be represented as a table and is shown in Table 1.2. Here
we dropped the names of the objects from the table altogether since they do not add
any information. It is typical that in this representation of the training data the class
label is made into an additional feature often called the dependent attribute.

Looking at the training data we see an interesting pattern emerging, in that being
a mammal seems to be highly correlated with having fur. So perhaps a reasonable
model f̂ for the labeling process mammal is

f̂ (legs, wings, fur, feathers) ≡ if fur = yes then true else false. (1.4)

In other words, given any object in our data universe the model tests the input value
fur, and if it is set to yes it will return true; otherwise, it will return false. If our training
set is representative, our model will approximate the original labeling process over
the entire data universe:

f̂ (x) ∼= mammal(x) (1.5)
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TABLE 1.2 Training Data as a Table

Legs Wings Fur Feathers Mammala

4 no yes no true
2 yes no yes false
4 no no no false
4 yes yes no true
3 no no no false

aThe label observed for each object in the table.

for all x ∈ X. Here we used a pattern found in the training set to construct a model
and inferred that this model will approximate the labeling process mammal over the
rest of the data universe. This type of reasoning is called inductive learning.

1.3 INDUCTIVE LEARNING

Our definition of machine learning (Definition 1.1) expresses an inductive process
where, given a limited amount of data in the form of a training set, we try to induce a
function that approximates the original labeling process over the entire data universe.
That is, we generalize from specific instances in the training set D to the entire data
universe X. We call this inductive learning. At the heart of inductive learning lies the
assumption that the training set is an accurate representation of the entire universe.
This assumption is formalized in the following hypothesis.

Inductive Learning Hypothesis Any function found to approximate the target func-
tion well over a sufficiently large set of training examples will also approximate the
target function well over unobserved examples.

The intricacies of inductive learning can be illustrated by the black swan problem.
Consider Figure 1.2. Here the set X denotes the universe of all possible swans (i.e.,
black and white swans) and the set D denotes the training set for a machine learning
algorithm. From this training set a learning algorithm might infer a model in which
all swans are white, or more formally,

f̂ (x) = white (1.6)

for all x ∈ X. This is clearly only an approximation to the original process,

f : X → {white, black}, (1.7)

which labels most of the swans white but also labels some swans black. Our model f̂

would be a poor choice for answering scientific questions on the color of swans. On
the other hand, if 99% of the swans in the world are white, our model has an accuracy
of 99% when evaluated over the entire data universe. This means that it is a pretty
good model if we want an approximation of the color of swans.
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X

D

FIGURE 1.2 Data universe X and training set D for the black swan problem.

The question of inductive learning and whether or not a training set is a good
representation of a data universe depends on the application of the ensuing models
and is not a clear-cut proposition. It is desirable, however, to construct a training set
as representative of the data universe as possible; that is, it is desirable to construct a
training set that is “sufficiently large.” In our case we should try to include at least one
black swan in the training data set. Sophisticated techniques from statistical sampling
theory can be used to ensure that the training data are “large enough.” However,
ultimately there will always be some uncertainty about the objects captured in our
training set. We will study techniques that help us to evaluate some of this uncertainty
and, with it, the generalization ability and expected accuracy of our models.

1.4 MODEL REPRESENTATIONS

Since we want the approximation f̂ of the target function f to be computable, we are
interested in appropriate representations of the models f̂ . Typically, we consider two
types of model representations:

1. Transparent representations (or transparent models)

a. If–then–else rules

b. Decision trees
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2. Nontransparent representations (or nontransparent models)

a. The weights on the connections between the elements in an artificial neural
network

b. The linear combination of vectors in support vector machines

Transparent models are representations that can be interpreted by human beings
unaided; nontransparent models cannot be interpreted unaided. For example, we can
interpret if–then–else rules very easily just by looking at the rule text. On the other
hand, we can examine the weights in an artificial neural network without ever fully
understanding exactly how the neural network stores its learned information in these
weights.

The representation of models is an important topic because it dictates how well
we can model certain target functions. In machine learning theory this is referred to
as language bias. Consider a data table as a model representation. In this case the
model representation simply mirrors the training set and therefore memorizes all the
objects in the training set. This means that this model will have perfect knowledge
of the objects in the training set, but it will fail to produce any meaningful results for
objects not in its table. Assume for a moment that our model is represented by the
training data for all objects with legs given in Table 1.2. This model can certainly
answer questions on objects, such as (4, yes, yes, no), that are in the table simply by
looking up the object that matches the features of the query and returning the value
stored in the dependent attribute as the answer:

(4, yes, yes, no) �→ true. (1.8)

But this model cannot answer questions on objects that are not in its table. Consider

(2, no, no, no) �→ ? (1.9)

This means that our model does not generalize beyond the objects found in its table
and therefore is a poor choice as an approximation of the original labeling process
over the data universe.

The limitations of this model are due to the fact that we chose the training data
table as our model implementation. Now, consider another type of representation:
The model consists of a constant. Regardless of what type of object the model is
handed, it will always generate the same constant response. We have seen this above
in the swan example, where the model always produces the response white. If we pick
the constant to be the majority label in the training set, in our case the label false, this
simple model will make mistakes on the training set. However, if the training set is an
accurate representation of the data universe as a whole, we can expect that the model
will have the same or similar accuracy on the data universe as for the training set.
Thus, we can say that the model does generalize to a certain extent; it at least encodes
the majority label in its simple structure and uses this single piece of information to
assign labels to unobserved objects.
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Model representations such as decision trees, neural networks, and support vec-
tor machines fall somewhere in between the two extremes above. The algorithms
that give rise to more sophisticated model representations discover regularities that
relate objects to their corresponding labels, and these regularities are then encoded in
appropriate model representations.

In the previous discussion we have seen a simple decision rule model for our
mammal target function that captured the regularity or pattern that being a mammal
and having fur seems to be highly correlated. It is interesting to observe that, in general,
transparent model representations lag in performance compared to nontransparent
model representations. The constraint that a model is interpretable by people unaided
seems to interfere with the modeling process, in that a transparent model is not able
to classify certain phenomena as effectively as are nontransparent models.

EXERCISES

1.1 Explain in your own words what is meant by the statement a model generalizes
well.

1.2 Briefly explain what inductive learning means.

1.3 Consider the training set given in Table 1.2. Write a program that will detect the
perfect correlation between the fur attribute and the mammal labels and outputs
this as a model along the lines of equation (1.4).

1.4 Write a program that can accept any training data set of the form given in
Table 1.2 and that computes a majority label model. You can assume that the
last attribute of the training table is always the dependent attribute.

1.5 Consider a large set of a variety of objects and make that your data universe X.
Now consider the labeling function bird : X → {true, false} that labels each
object in X as a bird (or not). Design a model f̂ : X → {true, false} that could
be implemented on a computer that approximates the original function bird.
What is your feature set? Now take a subset D of X as your training data.
Analyze where and how your model makes mistakes when it is applied to D

and/or to X.

1.6 Consider a naturally occurring phenomenon around you. Construct a classifica-
tion model for it using machine learning. What is the data universe? What is the
feature set? What are the labels? Can you estimate the accuracy of your model?

BIBLIOGRAPHIC NOTES

A readable introduction to machine learning from a computer science perspective is
Mitchell’s book [54]. Our definitions of machine learning and the inductive learning
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hypothesis closely follow Mitchell. A comprehensive and recent overview of the
field of machine learning and pattern recognition is [10]. A more statistical view of
machine learning can be found in books by Hastie et al. [36] and Gentle [34]. Quinlan’s
C4.5 and Breiman’s et al. CART decision tree algorithms are described in detail in
[62] and [16], respectively. An excellent description of neural networks is Bishop’s
book [9]. An older but interesting collection of papers dealing with the knowledge
discovery process is [31]. Aparticularly gentle introduction to data mining is [2]. Data
mining from the perspective of particular application areas such as customer support
is discussed in [8]. Data preparation and data warehousing are discussed in [61] and
[43], respectively. Perhaps the best known formalization of knowledge discovery
and data mining is the CRISP methodology (http://www.crisp-dm.org). The earliest
reference to the black swan problem we are aware of is [60].
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CHAPTER 2

KNOWLEDGE DISCOVERY
ENVIRONMENTS

A knowledge discovery environment or tool set must support the computational
aspects of the discovery process. Here we take a look at some of the most com-
monly supported computational aspects of the knowledge discovery process, such as
data manipulation and visualization as well as model construction and evaluation. We
demonstrate these using two open-source systems: WEKA and R. The philosophies
of each of these tool sets is very different, in that WEKA is GUI driven and R is based
on a scripting language. Both environments incorporate the components necessary
to accomplish sophisticated knowledge discovery tasks. We close the chapter with a
very brief survey of alternative knowledge discovery environments.

2.1 COMPUTATIONAL ASPECTS OF KNOWLEDGE DISCOVERY

We mentioned in Chapter 1 that knowledge discovery is a semiautomated process; that
is, it is a process that relies heavily on computational tools, but guidance by an analyst
is indispensable. The analyst provides domain expertise and formulates the discovery
task in such a way that it can be tackled using computational tools. Furthermore, the
analyst makes decisions about when a model is appropriate and when it fails to summa-
rize the data in any useful or insightful manner. The aspects that require analyst inter-
vention, especially the domain analysis, are very difficult to formalize and automate,
making cooperation between analyst and computer absolutely necessary for success-
ful knowledge discovery projects. On the other hand, only computational tools make
the analysis of large amounts of data possible. Here we take a brief look at these tools.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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To make the discussion more concrete, we demonstrate these aspects using WEKA
and R. It will probably help to have access to either WEKA or R, or both. See the
bibliographic notes at the end of the chapter on where and how to download these tools.

2.1.1 Data Access

Any knowledge discovery tool needs to provide an efficient way to access data. This
might take on the form of a data table import mechanism or a way to pose SQL queries
directly to a database or data warehouse. In some instances the knowledge discovery
tools are embedded in the database engine to minimize data access issues. Here we
concentrate on importing and exporting data tables.

A popular format for data tables is the comma-separated value (CSV) format . This
is a text file in which each line represents a row of the original table and the fields of
the table are separated by commas. For example, our training data from Table ?? can
be encoded in a CSV file as follows:

Legs, Wings, Fur, Feathers, Mammal
4, no, yes, no, true
2, yes, no, yes, false
4, no, no, no, false
4, yes, yes, no, true
3, no, no, no, false

Auseful convention in CSV files is that the first row is a list of the column names of the
original table separated by commas. Analysts sometimes refer to the rows in the data
table as observations. They often refer to the column that carries the mammal class
labels as the dependent attribute, and the remaining columns are referred to as inde-
pendent attributes. Go ahead and create a file called “mammals.csv” in your favorite
text editor, as you will need it to experiment with the knowledge discovery tools.

WEKA WEKA is a GUI-driven knowledge discovery tool written in Java that is
available for virtually every imaginable platform. When you start the WEKA tool
set, it presents you with a choice of GUIs. For our purposes here you should always
choose the explorer GUI. Choosing the explorer interface brings you to the explorer
data access and preprocessing screen. To access a file, press the Open file button and
in our case make sure that you select the CSV format option. Navigate to the file you
would like to access and then press Open. Figure 2.1 shows the state of the interface
after we have read in our CSV file containing the data for our mammal classification
problem. The attributes of the objects in our CSV file are displayed in the Attributes
panel. You can highlight each attribute in turn, and WEKA will display some basic
statistics about this attribute, such as missing values, the number of distinct labels if
it is a nominal attribute, or the mean if it is a numerical attribute. By default, WEKA
selects the last attribute in the table as the dependent attribute. You can change this
with the Class drop-down box, but for our purposes WEKA made the right selection.
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FIGURE 2.1 Accessing data files in WEKA.

WEKA offers alternative data access mechanisms besides reading CSV files. You
can access data resources on the Web via the Open URL button, or you can pose an
SQL query to a database via the Open DB button. WEKA also has an interactive data
editor accessed by clicking the Edit button. Finally, you can save modified data sets
by clicking Save.

R The R environment takes a very different approach from that of WEKA. Rather
than being GUI driven, R exposes a command line interpreter for the R script-
ing language. Figure 2.2 shows the console window on MAC OS X. Everything
you need to accomplish in your knowledge discovery project you can accomplish
by issuing commands at the prompt. An interesting side effect of this is that you
can write scripts for your discovery projects and execute these scripts on differ-
ent data sets or with slightly different parameters. In effect, the scripts become
an executable document of your discovery process. Let us assume that our “mam-
mals.csv” file is in a folder called data sets, then we can read in the CSV file as
follows:

> setwd("data sets")
> mammals.df <- read.csv("mammals.csv")
> mammals.df
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FIGURE 2.2 Command line console in R.

Legs Wings Fur Feathers Mammal
1 4 no yes no true
2 2 yes no yes false
3 4 no no no false
4 4 yes yes no true
5 3 no no no false
> summary(mammals.df)

Legs Wings Fur Feathers Mammal
Min. :2.0 no :3 no :3 no :4 false:3
1st Qu.:3.0 yes:2 yes:2 yes:1 true :2
Median :4.0
Mean :3.4
3rd Qu.:4.0
Max. :4.0

Here, we first set our working directory todata sets and then we use the function
read.csv to read our “mammals.csv” file into the R data frame mammals.df. Adata
frame is R’s representation of a data table, and we can see the contents of a data frame
simply by typing the name of the data frame at the command line prompt as shown in
the third line of the code snippet above. You can obtain basic statistics on the various
attributes in your data frame with the summary command. R provides the appropriate
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statistics for each type of attribute; these include the minimum, maximum, and mean
for numerical attributes and the frequency of the labels for nominal attributes. R also
provides an interactive data editor,

> mammals.df <- edit(mammals.df)

To save a modified data frame, you can use the write.csv function,

> write.csv(mammals.df, "mammals.csv")

We should also mention that additional data connectivity, such as SQL adapters for
various databases, is available as R packages. To install packages, you will need to
access the R package manager and use it to download and install the desired packages.
Pointers on how to accomplish this are given on the R Web page and in the help pages.
A brief tutorial on the R scripting language is given in Appendix B.

2.1.2 Visualization

Data visualization is a powerful way to get to know your data. Most analysts use data
visualization to “get a feel” for the data and also to establish the quality of the data. For
example, an analyst might want to establish if the data have a lot of missing values or
if perhaps some of the attribute values are skewed. Another interesting question that
is often important in model building is whether some of the independent attributes
are highly correlated, since in some cases, highly correlated independent attributes
can reduce the effectiveness of the discovery algorithms. Many of these questions are
easily answered using visualization.

WEKA WEKA provides a number of ways to visualize data. For example, scatter-
plots are available in the Visualize tab on the top of the explorer screen. Figure 2.3
shows the scatterplots for our mammals data set. (You should probably open WEKA
on your Computer for the following discussion since colors are not reproduced in
the figures.) To make the plot more readable, you might have to experiment with the
PointSize and Jitter (use the Update button after each alteration). The scatterplots are
arranged in a matrix where the attribute names are listed in the columns as well as in
the rows of the scatterplot matrix. This means that we can use the scatterplot matrix
to assess the relationship of any attribute to all other attributes. The points with the
color blue in the plots denote observations that belong to the class of mammals, and
the color red denotes observations that do not belong to the class of mammals. The
key is given in the Class Colour panel.

One way to use the scatterplots is to assess the relationship of the Mammal attribute
to all the other attributes. The first row of the plot matrix does just that; it compares the
Mammal attribute to all other attributes including the Mammal attribute itself. Working
from left to right, we see that the Mammal attribute is first compared to the Legs

attribute. There are a couple of things that we know about these two attributes. For
instance, the Mammal attribute can take on only two values, true and false. If we
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FIGURE 2.3 Scatterplots in WEKA.

project the observations onto the vertical axis, we see two groups, one for true (blue)
and one for false (red). This is perhaps easier to see in the interactive version of this
scatterplot, which is accessible by clicking on the scatterplot itself. Something a little
bit more interesting happens when we project the observations onto the horizontal
axis. We see that the observations fall into three groups: observations with two, three,
and four legs, respectively, going from left to right on the axis. More precisely, we
have one observation with two legs on the leftmost part of the axis. In the middle we
have an observation with three legs, and finally, we have a group of observations with
four legs. What is interesting is that the groups are no longer separated by mammal
class membership. For example, the group of observations with four legs includes
observations that are mammals and observations that are not mammals. It is exactly
these types of relationships that analysts look for in visualizations.

Moving one scatterplot to the right, we see that the Mammal attribute is being
compared to the Wings attribute. Again, projecting the observations onto the vertical
axis we see that the observations are grouped by class membership. This is to be
expected because we are still comparing the Mammal attribute to the other attributes.
When we project the observations onto the horizontal axis, we see that they fall into
two groups. One group denotes observations that have wings, and the other group
denotes observations that do not have wings. We can clearly see that each group is
heterogeneous in the sense that each group includes observations that are mammals
and observations that are not mammals.
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Considering the third plot, we compare the Mammal attribute to the attribute Fur.
Projecting on the vertical axis remains the same as in the previous plots. However,
something interesting happens when we project the observations onto the horizontal
axis; they also group according to the mammal class! This scatterplot shows that the
Fur attribute is perfectly correlated with the Mammal attribute. We already observed
this in Chapter ?? and took advantage of it in order to build a very simple model for
the mammal labeling process.

The fourth plot in the first row can be analyzed in a similar fashion. We leave this
as an exercise for the reader. The last plot in the first row is the Mammal attribute
again, and as we would expect, the Mammal attribute correlates perfectly with itself.

WEKA possesses another data visualization facility that is directly accessible from
the data preprocessing screen in Figure 2.1 by clicking the button Visualize All. Before
we do this, we have to overcome one difficulty with our data set. The Legs attribute
is recognized by WEKA as a numerical attribute. This is technically correct, since
the attribute only contains numbers, but we essentially use these numbers as labels.
One way to see this is that by changing the values of the attribute such as 4 to a label,
perhaps FOUR, does not change our classification problem. To force WEKA to rec-
ognize this attribute as a nominal attribute, we apply the discretize filter available in
the Filter panel (see Figure 2.1). See Section 2.1.3 on how to transform this attribute
from a numerical into a nominal attribute. Figure 2.4 shows the screen for the mam-
mals data set with the Legs attribute treated as a nominal attribute. The information

FIGURE 2.4 Attribute value visualization in WEKA.
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displayed is very similar to the information displayed in the scatterplots, albeit in a
more concise format. Here we see fields for all the attributes of the data set, and in
each of the fields we see bar graphs for the corresponding values of the attributes.
The class membership of the observations is also encoded to make it easy to spot cor-
relations. For example, in the first field, which is the field for the Legs attribute, we
see three bars, one for two legs, one for three legs, and one for four legs, respectively,
from left to right. We can observe that the bars for two and three legs only contain
observations that do not belong in the class of mammals (light gray). Conversely, we
see that the bar for four legs has observations that belong to the class of mammals
(dark gray) and has also observations that do not belong to the class of mammals
(light gray). As before we can observe that the attribute Fur is perfectly correlated
with class membership.

R The R scripting language in conjunction with its flexible graphics engine allows
an analyst to construct powerful visualizations. But the power comes at a price, in that
detailed understanding of the scripting language is necessary to harness this power.
An in-depth discussion of the scripting language and the graphics engine is beyond the
scope of this brief introduction. Entire books have been written about the graphical
capabilities of R. For more information refer to the bibliographic notes at the end
of the chapter. However, having said that, a scatterplot matrix very similar to the
scatterplot matrix in WEKA can be constructed with a single command,

> plot(mammals.df)

2.1.3 Data Manipulation

Of course, it is not enough to be able to read, write, and visualize data; we also
need tools to manipulate the data. Data manipulation approaches fall into one of two
categories. In the attribute-oriented approach we manipulate entire columns of a
respective data table. This is particularly useful when we aim to enrich the table with
additional information by adding data columns or for deleting columns representing
attributes deemed not useful for the discovery process. In the observation-oriented
approach we focus on the rows of data tables. This is useful for removing observations
that are faulty or are considered to be outliers.

Data manipulation is a rich subject, and a full treatment is beyond the scope of
this discussion. The bibliographic notes have some pointers to the existing literature.
Here we provide a brief introduction to the capabilities of both WEKA and R.

WEKA WEKA supports both attribute- and observation-oriented data manipula-
tion. The easiest data transformation that WEKA supports is the removal of attributes.
This is accomplished by selecting the unwanted attribute in the attribute panel in Fig-
ure 2.1 and then pressing the Remove button at the bottom of the screen. The attribute
is immediately removed from the data table. You can undo this change to the data
table by clicking the Undo button at the top of the screen.

More sophisticated data manipulations are available via filters. You can access fil-
ters via the Choose button, which provides you with a selection of both attribute- and
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observation-oriented filters. Note that WEKA calls observations instances. Filters are
grouped into two categories: supervised and unsupervised. Supervised filters are data
manipulations that need user intervention and guidance, whereas unsupervised filters
are applied to the attributes or observations, with minimal user guidance.

To illustrate this, let us apply an attribute-oriented filter to our mammals data table.
As pointed out above, in this data set we have the numerical attribute Legs. Although
it is a numerical attribute, we are treating it as if it were a nominal attribute where the
leg numbers 2, 3, and 4 are essentially labels. We can make our intentions clear by
discretizing this attribute. To do so, we choose the filter

weka → filters → unsupervised → attribute → Discretize.

At this point the Discretize filter appears in the filter box with some default parameters.
To change these parameters, click on the filter. This opens a dialog box that looks
something like Figure 2.5. In our case we adjust the attributeIndices to point to the
first attribute, Legs, and adjust the bins parameter to 3 (one bin for each number of
legs). Click OK and then press Apply on the main screen. Now the type of the Legs
attribute has changed from numerical to nominal and has three auto-generated labels.

R The scripting language in R is a full-fledged programming language that supports
scalar, vector, and matrix computations in addition to data frames. This makes data

FIGURE 2.5 Attribute-oriented filter in WEKA.
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manipulation in R infinitely more flexible and complex than the GUI-based data
manipulation in WEKA. Here we provide a brief overview on how to manipulate
attributes and observations in data frames. Recall that a data frame is a data table
representation in R:

> mammals.df
Legs Wings Fur Feathers Mammal

1 4 no yes no true
2 2 yes no yes false
3 4 no no no false
4 4 yes yes no true
5 3 no no no false

R provides a special notation that allows you to access individual attributes in a data
frame:

> mammals.df$Legs
[1] 4 2 4 4 3
> mammals.df$Mammal
[1] true false false true false
Levels: false true

We can access any attribute in the mammals data frame with the $ notation. The values
for the attribute selected are returned as a vector with one entry for each observation.
For nominal attributes, R also returns a summary of the labels occurring as values for
that attribute. In R the distinct labels for a nominal attribute are called levels. In the
example above we have two levels: true and false.

R allows us to select groups of attributes with the subset function:

> subset(mammals.df, select=Fur:Mammal)
Fur Feathers Mammal

1 yes no true
2 no yes false
3 no no false
4 yes no true
5 no no false
> subset(mammals.df, select=-Mammal)

Legs Wings Fur Feathers
1 4 no yes no
2 2 yes no yes
3 4 no no no
4 4 yes yes no
5 3 no no no

The subset function returns a new data frame with the appropriate attributes
selected. In the first example we select the attributes Fur through Mammal with the
Fur:Mammal notation, and in the second example we select all attributes except for
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the attribute Mammal. In the latter, notice the minus sign before the Mammal attribute,
indicating that it should be excluded from the resulting data frame.

We can also use the subset function for observation-oriented data manipulation.
Let’s assume that we want to construct a data frame that consists only of observations
that have four legs. The following R command will accomplish that:

> subset(mammals.df, Legs == 4)
Legs Wings Fur Feathers Mammal

1 4 no yes no true
3 4 no no no false
4 4 yes yes no true

Another, slightly more complicated example is the extraction of all observations
that are mammals:

> mammal.levels <- levels(mammals.df$Mammal)
> mammal.levels
[1] "false" "true"
> true.level <- mammal.levels[2]
> subset(mammals.df, Mammal == true.level)

Legs Wings Fur Feathers Mammal
1 4 no yes no true
4 4 yes yes no true

Here we first extract the levels used in the attribute Mammalwith the levels function.
We then extract the true level and use it in computing the observations that match
this level.

This brief discussion only scratched the surface of what is possible with R. In R,
vectors and matrices are very flexible objects to which vector- or matrix-based opera-
tions can be applied directly without having to execute any type of looping structure.
This makes data manipulation very efficient, even for large data tables. Many domain-
specific data manipulation routines are available as additional R packages. Therefore,
if you are faced with a complex knowledge discovery task, it is worthwhile to peruse
the R Web site for packages that might apply to your particular task.

2.1.4 Model Building and Evaluation

At the heart of the knowledge discovery process (Figure ??) we usually find
two classes of discovery algorithms: machine learning algorithms and statistical
techniques. Machine learning algorithms were developed in the field of artificial
intelligence dating back to the late 1950s and were designed originally to provide
intelligence to autonomous agents. Statistical techniques were developed in the con-
text of probability and measure theory at the end of the nineteenth century. However, it
was only in the late 1980s and early 1990s that researchers recognized that both areas
were trying to solve very similar problems. With the advent of computational statis-
tics, the borders between the two disciplines have all but disappeared and statistical
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techniques that are concerned with model building and inference are almost indis-
tinguishable from machine learning, and vice versa. But there is still a difference
between the two approaches that has to do mainly with the set of assumptions that
one admits during analysis and model building. Most statistical techniques rely on
the fact that there is some normal distribution of either the data or the modeling error.
Machine learning algorithms, in general, do not make these assumptions and therefore
are able to provide more accurate models in situations where normality assumptions
are not warranted. On the other hand, new computational statistical techniques such
as the bootstrap also dispense with many normality assumptions, again blurring the
difference between machine learning and statistics.

Given this blurring of the differences between machine learning and statistical
techniques, it is up to the user to pick the algorithm that works best for a particular
problem domain. On the other hand, sometimes one of the approaches is forced upon
the user by other, external constraints. For example, for the knowledge discovery
task at hand, it might be of utmost importance that the models be transparent, that
is, that the models can easily be read and understood by a human being, forcing the
analyst to use something like decision trees or rule lists as models. Conversely, a
detailed analysis of the modeling error and other statistics might be important in turn
favoring more statistical approaches. Given this, it is perhaps no surprise that both
WEKA and R support machine learning as well as statistical techniques. In this book
we concentrate on machine learning with support vector machines at the heart of the
knowledge discovery process.

WEKA In WEKA we use the Classify screen to build models. The first thing we
need to do is to select the type of model we would like to construct. To construct a
support vector machine model, for instance, we press the classifier Choose button
and select

weka → classifiers → functions → SMO.

SMO stands for sequential minimal optimization and is a particular implementation
of support vector machines. For now, we leave all model parameters at their default
values. For our simple mammals classification problem, the default parameters work
just fine. We need to make sure that we are constructing our model with the appropriate
dependent attribute. The drop-down box above the Start button indicates that the
dependent attribute of the model is the nominal attribute Mammal and that is exactly
what we want. We evaluate our model on the training data by selecting the first option
in the Test options panel. This means that we will test the quality of the predictions
of our model against the dependent attribute of the training set. We can now press the
Start button to build a support vector machine model. Once we do that, WEKA will
display model information in the Classifier output panel. Here WEKA tells us a little
bit about the model building process, but most important, it tells us about how the
model performed on the training data. It is reassuring to see that our model classified
all our observations correctly. Figure 2.6 shows the state of the classify screen after
the support vector machine model has been constructed.
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FIGURE 2.6 Model building and evaluation in WEKA.

R The R environment offers a host of different models that we could construct as part
of our knowledge discovery process. Here we demonstrate how to construct support
vector machines. To do this, you will have to download and install the package e1071.
You can easily accomplish this with the Package Installer. Once you have installed
the package, you will need to load it into the the current console environment with
the command

> library(e1071)

Now we can construct a support vector machine model of our mammals data with the
svm function:

> model<-svm(Mammal ˜ .,data=mammals.df,kernel="linear")

The first argument to the svm function, ‘Mammal ∼ .,’ is called a formula and tells the
model building function that the attribute Mammal is the dependent attribute and that
all other attributes are considered independent attributes. As in the case of WEKA,
we accept all the default parameters with the exception of the kernel function, which
we set to the linear kernel.
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At this point we can evaluate our model by checking how it performs on the training
set. The following statement compares the actual values of the Mammal attribute with
the values computed by the support vector model:

> mammals.df$Mammal == fitted(model)
[1] TRUE TRUE TRUE TRUE TRUE

Here the function fitted returns the value computed by the model for each training
observation. As we can see, the values predicted and the actual values for the Mammal
attribute coincide for all five observations.

2.1.5 Model Deployment

Model deployment is highly domain dependent. In some cases this means simply
predicting the value of the target attribute for a set of objects; in other cases it means
constructing an entire application around a model. For the latter, consider a credit-
scoring application at a mortgage bank which has a model embedded in it. In a typical
scenario a bank employee enters a client’s personal information, such as age, income,
and other outstanding loan amounts, and then pushes a button. At this point the
application uses the embedded model to predict whether or not a client qualifies for
a mortgage.

WEKA WEKA does not supply any model deployment tools in its GUI. However,
it does supply a Java version of its machine learning tools, and you are able to modify
this Java library to suit your model deployment needs. This is not for the faint of
heart, however.

R R takes a straightforward approach to model deployment via its predict func-
tion. Given a model and a data frame of objects for which the dependent attribute
value is not known, we can apply the predict function to compute these values. The
following is an example using our mammal model and the mammal data frame:

> independent.df <- subset(mammals.df, select=-Mammal)
> predict(model, independent.df)

1 2 3 4 5
true false false true false

Levels: false true

The first line deletes the target attribute Mammal from the mammals.df data frame
and stores the result in a new data frame called independent.df. We do this, since
we need a set of objects for which the Mammal attribute value is unknown. In the
next line, we apply our support vector machine model to this new data frame with the
predict function. Notice that the predict function returns a vector of computed
Mammal attribute values, one for each object in the independent.df data frame. If
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we wanted to, we could now check whether these predictions are correct with respect
to the original attribute values. This is left as an exercise for the reader.

2.2 OTHER TOOL SETS

A quick scan of the Web reveals many open-source knowledge discovery tools. Here
we mention two other open-source projects that stand out in their completeness, ease
of use, and support. The first one is RapidMiner (http://rapid-i.com), a GUI-driven
tool set written in Java and very similar to WEKA. However, RapidMiner offers
many more visualization tools and a much larger set of discovery algorithms than
WEKA. The other open-source tool set is Rattle (http://rattle.togaware.com), which
represents an interesting twist on R in that it implements a WEKA-like GUI for R
which provides the essentials to accomplish knowledge discovery tasks. The GUI
relieves the user from having to learn the intricacies of the R scripting language. On
the other hand, by adopting the GUI, the user relinquishes some of the flexibility that
the scripting language provides. The nice part about Rattle is that it does provide a
fast way to harness some of the power the R environment provides, especially with
respect to visualization.

On the commercial side, there are also many tool sets to choose from. Without
any claim to being complete, we mention a few of them here in no particular order.
Knowledge discovery tool sets that can be perceived as extensions of classical statis-
tical computing environments include Clementine from SPSS (http://www.spss.com/
clementine) and Enterprise Miner from SAS (http://www.sas.com/technologies/
analytics/datamining/miner). A knowledge discovery environment along the lines of
WEKA is the Insightful Miner (http://www.insightful.com/products/iminer), by
the company that also produces a commercial version of R called S-Plus. A
completely different approach to knowledge discovery tools is taken by Oracle
(http://www.oracle.com/technology/products/bi/odm) and Microsoft (http://www.
microsoft.com/sql/technologies/dm). Here, the discovery algorithms are imple-
mented directly in the database, minimizing data access and transfer times. This
is important for knowledge discovery projects that aim to extract information from
very large data collections.

One interesting observation is that with the exception of the Oracle tool set and
SAS, none of the commercial systems mentioned implement support vector machines
as of the writing of this book (late 2008).

EXERCISES

2.1 In WEKA, load the iris data set. This data set is available in WEKA’s data
folder and is given in WEKA’s native ARFF data format. Once loaded, try to
answer the following questions:
(a) How many attributes are there?

(b) How many observations are there?
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(c) What are the levels in the dependent attribute class?

(d) How many observations are there per level in the attribute class?

(e) Find and report the basic statistics on each attribute.

(f) Are any of the independent attributes highly correlated with each other?
Try to determine this using WEKA’s visualization screen.

2.2 Construct a support vector machine classifier for the iris data set using WEKA’s
SMO implementation. You can use all the default parameters. Does the model
misclassify any observations if the model is evaluated on the training data?

2.3 In R, load the iris data set. The data set is available in R via the data command

> data(iris)
> iris[1:5,]

Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4

Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa

The data set is now available as the data frame iris in R. Try to answer the
same questions as in Exercise 2.1 using the facilities that R provides. To build
a simple support vector machine model, use the svm function available in the
e1071 package using the parameter kernel="linear".

2.4 Go to the UCI machine learning repository (see the bibliographic notes for
details) and download a data set that deals with classification. Use WEKAand/or
R to explore the data set. Try to build a support vector machine model using
the SMO algorithm in WEKA and the svm function in R (use defaults). When
the model is evaluated against the training set, does it make misclassification
errors?

BIBLIOGRAPHIC NOTES

WEKA is available from the Web site http://www.cs.waikato.ac.nz/ml/weka, and R
is available from http://www.r-project.org. The standard reference for WEKA is the
book written by its developers, Witten and Frank [80]. The gentlest introduction
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to R that we know of is [24]. The de facto standard reference for R is the book by
Venables and Ripley [76]. An accessible introduction and overview of R’s graphics
and visualization capabilities is [55]. One of the most extensive collections of data
preparation techniques for knowledge discovery is [61]. An extensive review of the
state of the art of machine learning and statistical techniques with respect to knowledge
discovery is [36]. Computational statistics and the bootstrap are discussed in [34]
and [29], respectively. Finally, if you are looking for data to experiment with, a good
place to start is the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/).
The repository contains about 160 academic as well as real-world data sets.
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CHAPTER 3

DESCRIBING DATA MATHEMATICALLY

Our goal is to construct models of processes that label objects in a data universe accord-
ing to class membership. That is, we are interested in building classifiers. To accom-
plish this effectively, we need to take a more mathematical approach to the description
of objects beyond the notion that an object is an element of the cross product of its
attributes. In particular, we need a quantitative way to talk about the similarities and
differences of the objects in our data universe. We also need a way to characterize
relationships between groups of objects. For instance, can two groups of objects
be separated easily, or is it very difficult to describe the differences between these
groups? The similarity and dissimilarity of objects as well as the separability of groups
of objects are central themes in the development of classifiers in general and in the
development of support vector machines in particular. In this chapter we look at some
of the foundations of linear algebra, such as vector spaces, dot products, and planes
that allow us to describe objects mathematically and construct classifiers effectively.

3.1 FROM DATA SETS TO VECTOR SPACES

Objects in a data universe are described by a common set of attributes. Since our
data universes tend to be very large, we usually consider only a subset of objects for
knowledge discovery tasks. We refer to these subsets as training sets or data sets. To
facilitate our mathematical development, we assume that all attributes that describe
our objects range over the real numbers, R. We also assume that we are dealing
only with binary classification problems, that is, problems where each object can be

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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TABLE 3.1 Simple Data Set for a Binary Classification
Problema

Height Weight Age Gender

Jane 25.4 32.7 2.5 F
Amanda 65.2 132.0 36.5 F
Paul 71.7 175.1 25.5 M
Mary 62.6 126.0 31.0 F
Gary 68.2 182.0 42.5 M
Betty 58.5 118.5 21.0 F
John 72.0 195.2 45.2 M

aThe features of the objects are attributes that range over the real
numbers, and each object can be labeled by only one of two labels.

labeled by only one of two possible labels. Table 3.1 depicts a small data set where
the objects, a set of persons, are described by the attributes Height, Weight, and Age,
which range over the real numbers. Here we assume that Age is a real-rather than an
integer-valued attribute, in order to be able to express quantities such as an age of
2.5 years. In this data set the height is given in inches and the weight is given in pounds.
Each object is labeled by a gender label of F or M. The data set can be visualized with a
three-dimensional scatterplot as in Figure 3.1. We purposefully ignored the names of

Age

Weight

Height

FIGURE 3.1 Three-dimensional scatterplot of the data set in Table 3.1. The filled circles
represent the object labeled with F, and the open circles represent the objects labeled with M.



“c03” — 2009/9/15 — 13:05 — page 33 — #3

3.1 FROM DATA SETS TO VECTOR SPACES 33

Age

Weight

Height

FIGURE 3.2 Position vector of the object Betty with Weight = 58.5, Height = 118.5, and
Age = 21.0.

the persons in the plot, since a name constitutes a unique object identifier and does not
give us any insights into the overall structure of the data. On the other hand, we use the
gender labels to identify our objects in the plot as follows: The filled circles represent
the objects labeled with F and the open circles represent the objects labeled with M.

An interesting observation is that by choosing to display our data set as a
three-dimensional scatterplot, we essentially made each attribute a dimension in a
coordinate system. That is, by treating each attribute as a dimension and by the fact
that all our attributes range over the real values, we can visualize each object as a point
in the three-dimensional coordinate system R × R × R. This view is consistent with
our previous view, where objects are members of the cross product of their attributes,
but now we have the nice property that we can interpret our objects geometrically
as points in a coordinate system. To achieve this, the only simplification we have
made is that we assumed that all attributes range over R. We often abbreviate the
three-dimensional coordinate system as R

3. For n-dimensional coordinate systems,
we write R

n.
Let us take this a little bit further by describing each point in our three-dimensional

space with a position vector. We can visualize position vectors as arrows that are rooted
in the origin (0, 0, 0) of our coordinate system and point to the location of the object
in our three-dimensional space. For example, the position vector for Betty starts at
(0, 0, 0) and ends at (58.5, 118.5, 21.0), as in Figure 3.2. Since position vectors are
always rooted at the origin, it is sufficient to just give simply the coordinates of their
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target, which is the location of the object in question, and for Betty we write

⎛
⎜⎝ 58.5

118.5

21.0

⎞
⎟⎠ .

Technically speaking, a position vector is given as a column matrix of the coordinate
values of the respective object.

The strength of this approach is that we can now use vector arithmetic to compute
new points in our coordinate system. We might be interested in a point that best
describes all the objects labeled M. The easiest way to accomplish this is by computing
a position vector for the average object of all the objects labeled M:

1

3

⎡
⎢⎣
⎛
⎜⎝ 71.7

175.1

25.5

⎞
⎟⎠+

⎛
⎜⎝ 68.2

182.0

42.5

⎞
⎟⎠+

⎛
⎜⎝ 72.0

195.2

45.2

⎞
⎟⎠
⎤
⎥⎦ = 1

3

⎛
⎜⎝ 71.7 + 68.2 + 72.0

175.1 + 182.0 + 195.2

25.5 + 42.5 + 45.2

⎞
⎟⎠

= 1

3

⎛
⎜⎝ 211.3

552.3

113.2

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

211.3

3
552.3

3
113.2

3

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎝ 70.4

184.1

37.7

⎞
⎟⎠ .

To compute the position vector of this average object, we first add the position vectors
of all the objects labeled M and then multiply this sum by the value 1/3 (since
there are only three such objects). Notice that addition and multiplication is done
componentwise: that is, the operation is done separately for each dimension.

By admitting such operations on our objects where the results of these operations
can be viewed as members of our data universe, we have effectively converted our
data universe into a vector space. Here, every object in our data universe can be
viewed as a vector and we are able to compute new objects in our data universe using
algebraic vector operations. Not only do vectors allow us to compute new points
but they give us a convenient way to measure similarity between objects using dot
products. In addition, the geometric interpretation of vectors is conceptually very
powerful, as we will see when we look at machine learning in this setting. Let us
formalize these vector concepts some more.
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3.1.1 Vectors

We start with the definition of a vector.

Definition 3.1 A directed line segment is called a vector. A vector has both a length
and a direction. A vector of length 1 is called a unit vector.

According to this definition, position vectors are clearly vectors that always start at
the origin of the respective coordinate system. Going back to our data set in Table 3.1,
consider the point describing Amanda with coordinates (65.2, 132.0, 36.5); then the
corresponding position vector, say a, is determined uniquely by the coordinates of
that point and the origin (0, 0, 0). We write

a =
⎛
⎜⎝ 65.2

132.0

36.5

⎞
⎟⎠ ,

where 65.2, 132.0, and 36.5 are called the components of vector a. In this example
we have considered only a three-dimensional coordinate system, but we can easily
generalize this to an arbitrary n-dimensional coordinate system. Assume that we have
such an n-dimensional coordinate system; then a point Q = (q1, q2, . . . , qn) will be
associated with a position vector, call it q, where

q =

⎛
⎜⎜⎜⎝

q1
q2
...

qn

⎞
⎟⎟⎟⎠ . (3.1)

We have exactly one component qi for each dimension in our coordinate system.
With respect to notation, rather than writing our vectors as column matrices as we
have done above, we write them as row matrices, q = (q1, q2, . . . , qn), when there is
no confusion. This makes for more compact text when discussing vectors. However,
when you see a vector given as a row matrix, you will need to bear in mind that what
is intended is the column matrix.

Given the components of some position vector in R
n, say p = (p1, p2, . . . , pn),

we can compute its length, written as |p| and defined formally as,

|p| =
√

p2
1 + p2

2 + . . . + p2
n. (3.2)

One of the reasons that we switched from a table representation to a vector repre-
sentation is so that we can apply mathematical operations to the objects in the data
set. Perhaps the easiest operation to formalize is equality. This operation allows us to
determine whether or not two objects are the same.
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Definition 3.2 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be position vec-
tors in R

n, then a and b are equal if and only if the corresponding components of
each vector are equal. Formally,

a = b iff a1 = b1, a2 = b2, . . . , an = bn. (3.3)

In other words, two position vectors are equal if and only if they point to the
same point in the coordinate system. From a data set perspective, this means that two
objects are equal if and only if they agree in all of their attribute values.

Next, let us take a look at vector addition. This is one of the operations we used
to compute the average object to represent all the objects labeled M earlier in this
section, and we already know that it is performed componentwise. Formally,

Definition 3.3 Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and c = (c1,

c2, . . . , cn) be position vectors in R
n, then we define vector addition as

c = a + b, (3.4)

such that c1 = a1 + b1, c2 = a2 + b2, . . . , cn = an + bn.

We can associate the set of algebraic identities shown in Table 3.2 with vector
addition. Here a, b, and c are position vectors in R

n. Furthermore, the vector

0 = (0, 0, . . . , 0︸ ︷︷ ︸
n

) (3.5)

is called the null vector. This vector has zero length and can be considered the position
vector of a point in the origin of an n-dimensional coordinate system. Finally, the
vector (−a) is the vector a with all of its components negated,

−a = −(a1, a2, . . . , an) = (−a1, −a2, . . . ,−an).

Given this, it is straightforward to show that the identities in Table 3.2 hold using the
algebraic properties of scalar addition. For instance, we can show that the identity

TABLE 3.2 Algebraic Properties of Vector
Addition

a + b = b + a commutativity
(a + b) + c = a + (b + c) associativity

a + 0 = a identity
a + (−a) = 0 reciprocity
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property holds as follows:

a + 0 = (a1, a2, . . . , an) + (0, 0, . . . , 0)

= (a1 + 0, a2 + 0, . . . , an + 0)

= (a1, a2, . . . , an)

= a.

To provide a geometric interpretation for vector addition, we need to introduce
vector translation. Vector translation is important because it allows us to construct
any arbitrary vector from an appropriate position vector simply by shifting the position
vector to the desired location in the coordinate system without changing its length or
orientation. It is clear that the resulting vector is parallel to and has the same length as
the original position vector. Furthermore, the resulting vector is considered equivalent
to the original position vector. Conversely, any vector can be turned into a position
vector by a translation that roots its starting point in the origin of the coordinate
system. Figure 3.3 illustrates vector translation. Note that we could interpret this
figure in one of two ways. The first interpretation is that we have a position vector
v that is translated into a vector, also called v, not rooted at the origin. The second
interpretation is that we have an arbitrary vector v that we translate into a position
vector, also called v.

We are now ready to tackle the geometric interpretation of vector addition. In
Figure 3.4 we see that the vector c = a + b can be computed geometrically by trans-
lating the position vector b in such a way that its starting point coincides with the
endpoint of position vector a. Connecting the starting point of a with the endpoint
of the translated vector b gives us our resulting sum vector c. It is interesting to note

FIGURE 3.3 Translating a position vector into another vector with the same orientation and
length.
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FIGURE 3.4 Vector addition.

that the algebraic entities in Table 3.2 can be shown to hold using purely geometric
arguments based on vector translation. In Figure 3.5 we show that the commutativ-
ity identity holds for vector addition using our geometric interpretation. That is, it
doesn’t matter which vector we translate—we always wind up with the same result
vector.

The last operation we discuss here is the multiplication of a vector by a scalar.
This operation was the other operation used in the computation of the position
vector of the average object of all the objects labeled M at the beginning of the
chapter.

FIGURE 3.5 Vector addition is commutative.
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TABLE 3.3 Algebraic Properties of Multiplying
a Vector by a Scalar

q(a + b) = qa + qb distributivity I
(p + q)a = pa + qa distributivity II

p(qa) = (pq)a associativity
1 a = a identity

Definition 3.4 Let a = (a1, a2, . . . , an) be a position vector in R
n and let p ∈ R;

then we define multiplication by a scalar as

pa = (pa1, pa2, . . . , pan). (3.6)

This operation is also performed componentwise, in that each component of the
vector is multiplied by the scalar of the multiplication. From the properties of scalar
multiplication as well as scalar and vector addition, it is straightforward to show that
the identities in Table 3.3 hold. Here p and q represent arbitrary scalars in R and a

and b are position vectors in R
n. Let us show that the distributivity II property holds:

(p + q)a = ((p + q)a1, (p + q)a2, . . . , (p + q)an)

= (pa1 + qa1, pa2 + qa2, . . . , pan + qan)

= pa + qa.

Similar proofs exist for the other identities.
Geometrically, we can interpret vector multiplication by a scalar as a scaling

operation; that is, the resulting vector will still have the same orientation and starting
point as the original vector, but its length will have been modified. Consider the vector
a = (a1, a2, . . . , an) multiplied by some scalar value x; then from our definition (3.6),
we have

x a = (xa1, xa2, . . . , xan).

The length of this new vector can be computed as

|xa| =
√

(xa1)2 + (xa2)2 + · · · + (xan)2

=
√

x2a2
1 + x2a2

2 + · · · + x2a2
n

= x

√
a2

1 + a2
2 + · · · + a2

n

= x|a|.

This shows that the length of some vector that is multiplied by a scalar is simply the
length of the original vector multiplied by that scalar.
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3.1.2 Vector Spaces

Earlier we mentioned that by viewing objects in a data universe as vectors and
admitting vector addition and scalar multiplication on these vectors, we essentially
converted our data universe into a vector space. We made the basic assumption that
when we apply vector addition and scalar multiplication to objects in our data set,
we obtain new objects within our data universe. In other words, we assumed that
the computed object is an object that can be represented in our coordinate system. In
our case, where all attributes are real-valued, it should be clear that this assumption
is valid, since any combination of real-valued coordinates gives rise to a position
vector within our coordinate system R

n. Another way of looking at this is that our
real-valued coordinate system defines an infinite set of vectors to which we can apply
vector addition and scalar multiplication and obtain vectors which themselves belong
to this infinite set of vectors. A set of vectors that has this property is called closed
under vector addition and scalar multiplication and is considered a vector space. We
now define this in a more rigorous way.

Definition 3.5 A nonempty set V of vectors in R
n is called a real vector space if

vector addition and scalar multiplication are defined and closed over this set and
satisfy the axioms given in Tables 3.2 and 3.3 with constants p, q ∈ R.

An interesting consequence of the closure property of vector spaces is that we can
represent elements of a vector space by linear combinations of other vectors in that
space. Formally:

Definition 3.6 Let a1, a2, . . . , am be vectors in some vector space V ; then an
expression of the form

v =
m∑

i=1

qiai = q1a1 + · · · + qmam, (3.7)

where qi ∈ R, is called a linear combination, and from the closure properties of
addition and multiplication, it follows that v ∈ V .

This leads to the following observations. A set of vectors a1, a2, . . . , am ∈ V for
some vector space V is called linearly dependent if at least one vector in this set
can be represented as a linear combination of the others. The set is called linearly
independent if none of the vectors in the set can be represented in terms of the others.

Consider the following: Let a = (1, 2, 3), b = (0, 0, 3), and c = (2, 4, 0) be a set
of vectors in a vector space V . This set is linearly dependent because

a = b + 1
2c.

An important example of linear independence is the following in three-dimensional
real vector space. Here the set i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) is called
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linearly independent because none of the vectors can be represented as a linear com-
bination of the others. The following expands the notion of linear independence and
allows us to define what we mean by the dimension of a vector space.

Definition 3.7 Let V be a real vector space and let B be a set of linearly independent
vectors such that B ⊆ V and any v ∈ V can be represented as a linear combination
of the vectors in B, Then the set B is called a basis of V and the cardinality of B

defines the dimension of the vector space.

A familiar and important example of dimensionality is the following. Here, the
unit vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) form the canonical basis of
a three-dimensional real vector space. Any vector in this space can be represented
uniquely as a linear combination of these three vectors. Since these three unit vectors
form the basis set of any three-dimensional real vector space, they also form the basis
of the vector space based on our data set in Table 3.1. This means that we can rewrite
any vector of our data set in terms of a linear combination of these basis vectors.
Consider the position vector for Amanda. We can rewrite it as

(65.2, 132.0, 36.5) = 65.2(1, 0, 0) + 132.0(0, 1, 0) + 36.5(0, 0, 1).

In our development of machine learning in general and support vector machines
specifically, we always let V be the set of all possible vectors in the coordinate
system R

n for n attributes. This means that the set V is infinite and closed under vector
addition and scalar multiplication and therefore is clearly a vector space. Furthermore,
the basis of this real vector space will have a cardinality of n. This is nice because it
makes the intuitive notion of our training data as an n-dimensional data set coincide
with the formal notion of the dimension of a vector space. Since our vector space V

and the cross product R
n are isomorphic, that is, every point in R

n gives rise to a
vector in V , and vice versa, we refer to the real vector space based on the n attributes
of our data universe as R

n when there is no confusion.

3.2 THE DOT PRODUCT AS A SIMILARITY SCORE

The perspective of a data universe as a vector space not only allows us to perform
arithmetic on objects but also gives us a convenient and quantitative way to measure
similarity between objects using the dot product of two vectors. The dot product of
two vectors computes a single scalar value, and this value can be interpreted as a
similarity score between the two vectors. We can define the dot product in one of two
ways: by an algebraic definition and by a geometric definition.

Definition 3.8 Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in an
n-dimensional real vector space R

n, we define the dot product a • b as

a • b = a1b1 + · · · + anbn (algebraic)

a • b = |a||b| cos γ (geometric),
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+1

-1

0° 180°90°

FIGURE 3.6 Values of the cosine function over the angles from 0◦ to 180◦.

where |a| and |b| is the length of vector a and b, respectively, and γ is the angle
between the two vectors.

In the algebraic definition we sum the products of the respective components,
which gives us a scalar value. In the geometric definition we compute the dot product
by multiplying the product of the lengths of the two vectors by the cosine of the
angle between them, which also gives us a scalar value. Using the law of cosines,
it is possible to show that the algebraic and geometric definitions coincide (see
Exercise 3.3).

That the dot product can be viewed as a similarity score between two vectors is
immediately clear from the geometric interpretation of the dot product. Let u and v

be unit vectors with |u| = 1 and |v| = 1; then the geometric interpretation of the dot
product allows us to compute their dot product as

u • v = |u||v| cos γ = cos γ.

The dot product of the two unit vectors is equal to the cosine of the angle between
them. If this angle is close to 0◦, the dot product is close to 1, indicating similarity; if
the angle between the two vectors is close to 180◦, the dot product is close to −1,
indicating similarity but with opposite orientation; and finally, if the angle is close
to 90◦, we obtain 0 for the dot product, indicating, dissimilarity (Figure 3.6). This
means that if two vectors have similar orientations or exactly opposite orientations,
we consider them similar, and if two vectors have an angle close to 90◦ between them,
we consider them dissimilar. The concept of dissimilar vectors is of such importance
that we call two vectors that have an angle of exactly 90◦ between them orthogonal
vectors. The following definition makes this precise.

Definition 3.9 Two non-zero-length vectors are orthogonal if and only if their dot
product is zero.
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Consider the following, given the unit vectors i = (1, 0, 0), j = (0, 1, 0), and
k = (0, 0, 1) that form the basis of our three-dimensional vector space, then we have

i • j = 1 × 0 + 0 × 1 + 0 × 0 = 0,

j • k = 0 × 0 + 1 × 0 + 0 × 1 = 0,

k • i = 0 × 1 + 0 × 0 + 1 × 0 = 0.

All the dot products result in the value zero; that is, the basis vectors are pair-
wise orthogonal. Because of this property, we often call vector spaces that have a
basis orthogonal spaces, and we call vector spaces that have a set of unit vectors as
their basis orthonormal or Euclidean spaces. In particular, our vector space R

n is a
Euclidean space.

To be able to utilize dot products as similarity measures in our vector spaces, we
extend our notion of vector space by equipping a vector space with the dot product
operation. This gives rise to the dot product space.

Definition 3.10 A dot product space is a vector space where dot products are
defined.

In real vector spaces the dot product is always defined; therefore, real vector spaces
can always be considered dot product spaces. This means that our real vector space R

n

is also a dot product space, and this implies that we can use dot products to measure
the similarity between objects in our data set.

Consider the data set in Table 3.1. We can compute the similarity score between
the persons in the data set. For example, we can compare Amanda and Jane:

(25.4, 32.7, 2.5) • (65.2, 132.0, 36.5)= 25.4 × 65.2 + 32.7 × 132.0 + 2.5 × 36.5

= 6063.6.

We continue by comparing Amanda and Mary:

(65.2, 132.0, 36.5) • (62.6, 126.0, 31.0)

= 65.2 × 62.6 + 132.0 × 126.0 + 36.5 × 31.0

= 21, 845.0.

As we can see, the similarity score between Amanda and Mary is much higher than
the similarity score between Amanda and Jane, indicating that Amanda and Mary
have much more in common than do Amanda and Jane. Looking at the data set, this
is not surprising, since Jane is a toddler, whereas Amanda and Mary are women of
similar height, weight, and age.

It is possible to show that the algebraic identities in Table 3.4 hold for the dot
product. Here a, b, c ∈ R

n and p, q ∈ R. Of the four identities given, perhaps the
linearity identity is the most nonintuitive. However, it becomes straightforward when
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TABLE 3.4 Algebraic Identities of the Dot Product

(pa + qb) • c = pa • c + qb • c linearity
a • b = b • a symmetry
a • a ≥ 0 nonnegativity
a • a = 0 iff a = 0 nondegeneracy

considering that a linear function over the vector space R
n, say f : R

n → R
n, has

to satisfy the following two axioms:

f (a + b) = f (a) + f (b), (3.8)

f (pa) = pf (a), (3.9)

with a, b ∈ R
n and p ∈ R. The linearity identity shown in Table 3.4 is simply a com-

bination of these two axioms, with the dot product taking the place of the function f .
The symmetry axiom states that the dot product operation is commutative. The last
two axioms are interesting, since they state that computing a dot product of a vector
with itself will always return a value greater or equal to zero, and if the dot product
returns the value zero, the vector in question is the null vector. The fact that a dot
product of a vector with itself will always return a positive value can easily be seen
by the geometric interpretation of the dot product; a vector is maximally similar to
itself. Also, from the geometric interpretation it can be seen that only the null vector
can be maximally similar to itself and still return a similarity score of zero. The last
two axioms together are often stated as positive definiteness.

In addition to the identities given in Table 3.4, we have the following identities,
which are perhaps not as fundamental but nonetheless useful. The first is the relation
between the length of a vector and the dot product of a vector with itself:

|a| = √
a • a. (3.10)

The next equation,

cos γ = a • b

|a||b| , (3.11)

states that the cosine of the angle between two vectors can be computed by dividing
the dot product of the two vectors by the product of their respective lengths.

3.3 LINES, PLANES, AND HYPERPLANES

One of our goals, as stated in the introduction to this chapter, is to describe the
separability of groups of objects with different labels. A simple way to show that two
groups of objects with respective different labels can be separated is to show that there
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exists a line, plane, or hyperplane (depending on the dimensionality of the data set)
that separates the two groups. Here we lay the mathematical groundwork for these
structures, and we will study them in more detail as decision surfaces in Chapter ??.

Assume that we are given a linear function in the familiar form

f (x) = y = −mx, (3.12)

with x, y, m ∈ R. We can interpret this function as a line with the set of points
(x, y) ∈ R

2 that satisfy the equation

mx + y = 0. (3.13)

Here we consider R
2 a two-dimensional dot product space. Generalizing this a bit

with respect to the coefficients gives us

w1x + w2y = 0, (3.14)

where w1 = m and w2 = 1. We can now interpret the left side of (3.14) as the dot
product of the two position vectors w = (w1, w2) and x = (x, y), such that

w • x = w1x + w2y. (3.15)

Plugging this equality back into (3.14), we obtain the identity

w • x = 0. (3.16)

The fact that the dot product between the two vectors is zero implies that w and x are
orthogonal by Definition 3.9.

Since (3.16) is an alternative formulation of the line w1x + w2y = mx + y = 0,
we should examine the components of this alternative formulation more closely. Here
we can interpret the vector x as the position vector for any point (x, y) that lies on the
line mx + y = 0. Furthermore, since this line goes through the origin of the coordinate
system, it follows that the position vector x for any point on the line is parallel to
the line. The vector w is orthogonal to the vector x, and since x is parallel to the
line mx + y = 0, it follows that w is also orthogonal to the line. Figure 3.7 illustrates
these relationships. The vector w is called the normal vector.

So far we have only considered functions that go through the origin of the coordi-
nate system. Let us consider a more general form that includes an offset term b ∈ R,

f (x) = y = −mx + b. (3.17)

By reasoning similar to that for a line through the origin, we may show that we can
define an analogous formulation for the function above based on the dot product

w • x = b, (3.18)
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FIGURE 3.7 Relationship between the canonical definition of a line mx + y = 0 and its dot
product equivalent, w • x = 0, where w is the normal vector and x1 and x2 are position vectors
of the points (x1, y1) (x2, y2) on the line, respectively.

where w = (m, 1) and x = (x, y). Figure 3.8 illustrates this construction. Note that
the normal vector w and the position vector x are no longer orthogonal, indicating
that the line does not run through the origin but crosses the y-coordinate at (0, b/w2).
However, the vector w is still orthogonal to the line.

Now that we have an alternative way of specifying a line in (3.18) that does
not depend explicitly on writing out linear combinations, we can easily extend our

FIGURE 3.8 Relationship between the dot product definition of a line w • x = b and its
constituent parts; w = (w1, w2) is the normal vector and x1 and x2 are position vectors of the
points (x1, y1) and (x2, y2) on the line, respectively. The y-intercept is b/w2.
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FIGURE 3.9 Relationship between the dot product definition of a plane w • x = b and its
constituent parts; w = (w1, w2, w3) is the normal vector and x1 and x2 are position vectors
of the points (x1, y1, z1) and (x2, y2, z2) on the plane, respectively. The z-intercept is b/w3.

notation to three-dimensional spaces. If we let w = (w1, w2, w3) and x = (x, y, z),
the equation

w • x = b (3.19)

describes a plane where w is the normal vector of that plane and x is the position
vector of points on the plane (see Figure 3.9).

We can consider even higher-dimensional cases with w = (w1, . . . , wn) and
x = (x1, . . . , xn), where

w • x = b. (3.20)

Here (3.20) defines a hyperplane in n-dimensional space, but notationally it does not
differ from (3.18) and (3.19). Therefore, equation (3.20) is a convenient notation for
planes in arbitrarily dimensioned spaces, including lines in two-dimensional spaces,
and we make use of this notation in the remainder of the book.

EXERCISES

3.1 Prove that the identities for vector addition (Definition 3.3) hold
(a) algebraically and,

(b) geometrically.
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3.2 Prove that the identities for vector multiplication by scalars (Definition 3.4) hold
(a) algebraically and,

(a) geometrically.

3.3 Derive equation (3.18).

3.4 Prove that w is orthogonal to the line (3.18). (Hint: Use a geometric argument.)

3.5 Given the vectors a = (1, 2, 3, 4), b = (−1, −2, −3, −4), c = (5, 6, 7, 8) ∈
R

4, and let p = 2 and q = 3 be constants in R, Use the R scripting language to
demonstrate that the vector space axioms (Definition 3.5) hold for the vectors
a, b, and c.

3.6 Prove the identity |a| = √
a • a.

3.7 Show that the following identities hold with a = (a1, a2, . . . , an) and q ∈ R:
(a) 0 a = 0

(b) q 0 = 0

(c) (−1)a = −a

3.8 [challenging] Show that the algebraic and geometric definitions of the dot
product (Definition 3.8) coincide. To do this, use the law of cosines,

|c|2 = |a|2 + |b|2 − 2|a||b| cos γ,

where the vectors a, b, and c form a triangle and γ is the angle between vectors
a and b. (Hint v • v = |v|2.)

BIBLIOGRAPHIC NOTES

Linear algebra is a large and mature field in mathematics with many excellent text
and reference books. Good places to start are Wikipedia (http://www.wikipedia.com)
and MathWorld (http://mathworld.wolfram.com) by searching for the keywords lin-
ear algebra. Our own development follows the linear algebra section of Kreyszig’s
book [48] fairly closely. A very accessible and well-written treatment of vector spaces
is [35]. A linear algebra textbook available online is [37]. A unique treatment of data
analysis from a geometric perspective is Michael Kirby’s book [44], which develops
more fully the ideas sketched here.
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CHAPTER 4

LINEAR DECISION SURFACES
AND FUNCTIONS

One of the fundamental questions in binary classification problems is the separability
of the two groups of objects. The most straightforward approach to answering this
question is to construct a line, plane, or hyperplane (depending on the dimensionality
of the data set) that separates the two groups as best as possible. In a binary classifica-
tion problem, a line, plane, or hyperplane that separates the two groups of objects is
called a linear decision surface. Constructing a linear decision surface for a particular
training data set and then using this decision surface to classify other points in the data
universe can be considered inductive learning, since we generalize from the separa-
bility of the instances in the training data to the separability of the entire data universe.

To make all this mathematically more convenient, we use decision functions rather
than decision surfaces to assign labels to unlabeled points in the data universe. How-
ever, as we will see, decision functions themselves use decision surfaces in computing
an appropriate label for the unlabeled objects. The decision functions can be seen
as models or approximations of the labeling functions of our original classification
problem.

4.1 FROM DATA SETS TO DECISION FUNCTIONS

Let us start with a binary classification problem where the objects of interest are
labeled with +1 and −1. We assume these labels because they are mathematically
convenient, and as we know from our discussion in Chapter ??, the names of labels
do not really matter as long as we have an appropriate number of distinct labels—one

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.

49
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label for each class in our classification problem. We also assume that all attributes
of our objects range over the real numbers; that is, we can view each object in our
data universe as a position vector in the n-dimensional dot product space R

n, where
n is the number of attributes.

Let us cast our classification problem into the machine learning framework
developed in Chapter ??:

• Let the dot product space R
n be our data universe with vectors x ∈ R

n as objects.

• Let S be a sample set such that S ⊂ R
n.

• Let f : R
n → {+1, −1} be the target function.

• Let D = {(x, y) | x ∈ S and y = f (x)} be the training set.

Compute a function f̂ : R
n → {+1, −1} using D such that

f̂ (x) ∼= f (x) (4.1)

for all x ∈ R
n. The framework above is virtually identical to Definition ?? except

that we replaced our general notion of a data universe with the dot product space R
n,

and we use the label set {+1, −1} instead of true and false. Our aim is to construct
a model f̂ that approximates the original labeling function f . To accomplish this,
we construct a line, plane, or hyperplane, depending on the value of n, that separates
the classes +1 and −1 as best as possible. We then use this linear decision surface
to construct our model f̂ . Notice that we have introduced a language bias into our
machine learning problem: If a training set cannot be separated by a line, plane, or
hyperplane, we are not able to construct a decision function for this machine learning
problem. That is, we are biased toward constructing linear decision surfaces.

4.1.1 Linear Decision Surfaces Through the Origin

For illustration purposes, assume that our data universe is the two-dimensional dot
product space R

2. Also assume that our training data set is linearly separable; that
is, we are guaranteed to find a line that separates the two classes in our training data
perfectly. Finally, we assume that this line goes through the origin of our dot product
space. Given these assumptions, we are guaranteed to be able to construct a line, say g,

g(x) = w • x = 0, (4.2)

with x, w ∈ R
2, that separates our training data perfectly. Since g separates the train-

ing data perfectly, we call it a decision surface. Figure 4.1a illustrates the decision
surface for our two-dimensional dot product space R

2, where the points shown as +
and − are objects in the training set with labels +1 and −1, respectively. Notice that
the normal vector w points into the direction of the points labeled with +1. We say
that these points are above the decision surface and we say that the points labeled
with −1 are below the decision surface.

Once we have a decision surface, we can use it to assign a label to any point in
our data universe according to whether it falls above the decision surface or below it.
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FIGURE 4.1 (a) Simple decision surface separating two classes; (b) classifying a point a

using the decision surface.

Consider some point a ∈ R
2, where a �∈ S; that is, the point is an element of our data

universe R
2 but is not part of our training data set. If a falls above the decision surface,

we assign it a +1 label, and if it falls below the surface, we assign it a −1 label. The
reason that we had the normal vector of the decision surface point in the direction of
the points labeled +1 is that this gives us a straightforward way to actually compute
the label of our point a. When we apply the decision surface g from (4.2) to the point a,

g(a) = w • a = |w||a| cos(γ ) = k, (4.3)

it will produce a positive value k if a lies above the surface with γ≤ 90◦ and a negative
value k if x lies below the decision surface with γ> 90◦. Here γ is the angle between
the normal vector of the decision surface w and the position vector a (see Figure 4.1b).
We can take advantage of this to construct the decision function f̂ as follows:

f̂ (x) =
{

+1 if g(x) ≥ 0

−1 if g(x) < 0
(4.4)

for all x ∈ R
2. Our decision function will compute the label +1 for any points in our

data universe that fall above the decision surface g, and it will compute the label −1
for any points below the decision surface. Since the decision function f̂ will assign
a label to any point in our data universe, we can view it as an approximation to the
original labeling function f . It is an approximation because we used the separability
of the training data as a way to infer the separability of the entire data universe. This
is inductive learning in the sense that we rely on the fact that the instances in training
data are an accurate representation of the entire data universe.

4.1.2 Decision Surfaces with an Offset Term

Let us relax our assumption that our decision surface has to go through the origin of
our dot product space R

2; that is, we now consider decision surfaces of the form

g(x) = w • x = b. (4.5)
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FIGURE 4.2 (a) Decision surface with an offset separating two classes; (b) classifying a
point a using the decision surface.

We still only consider binary classification problems with labels +1 and −1, and the
assumption that the training data set is linearly separable also still holds. Everything
we discussed in Section 4.1.1 continues to apply in this situation: We have a decision
surface such that training instances labeled +1 are considered to be above the surface,
and training instances labeled −1 are below the surface (see Figure 4.2a). The only
complication arises when we want to compute the label for some point, say a ∈ R

2,
that is not part of our training set. In the case when the decision surface ran through the
origin, the origin was a point on the decision surface and gave us a unique perspective
in that both the normal vector of the decision surface and the position vector a were
rooted here. Thus, taking the dot product w • a at the origin gave us an easy way to
determine whether a was located above or below the surface. Unfortunately, simply
assigning a label according to the value of the dot product no longer works when the
decision surface does not run through the origin, since the origin is not a point on the
decision surface and therefore lost its unique perspective. However, we can recreate
this unique perspective by picking some arbitrary point, say c, on the decision surface
itself, that is,

g(c) = w • c = b, (4.6)

and letting z be the vector such that a = c + z, or

z = a − c. (4.7)

Finally, we translate the normal vector w such that it is rooted in point c. This gives
us the setup illustrated in Figure 4.2b. If we consider the vector z to be the “position
vector” of point a with respect to point c, our point c offers almost the same perspective
as the origin did in the case when the decision surface ran through the origin: The
vectors w and z are both rooted here and the dot product

w • z = |w||z| cos(γ ) = k (4.8)
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produces a positive value k if the point a is above the decision surface with γ ≤ 90◦
and a negative value k if it is below the decision surface with γ > 90◦, with γ being
the angle between the normal vector w and the vector z.

By substituting (4.5), (4.6), and (4.7) into (4.8), we obtain a more convenient
formulation of that dot product in terms of the actual point a to be labeled and our
decision surface g:

w • z = w • (a − c) using (4.7)

= w • a −w • c by linearity

= w • a − b using (4.6)

= g(a) − b using (4.5)

That is, the necessary dot product for point a can be computed by applying our
decision surface g to a and then subtracting the offset term b. Notice that the point c

that we used for our perspective on the decision surface vanishes in this formulation.
Generalizing this to any arbitrary point in the dot product space, we can construct our
decision function as

f̂ (x) =
{

+1 if g(x) − b ≥ 0

−1 if g(x) − b < 0
(4.9)

for all x ∈ R
2. As required, our decision function will assign a +1 label to points

above the decision surface and a −1 label to points below the decision surface. When
we consider decision surfaces through the origin with b = 0, the decision function in
(4.9) degenerates to the decision function (4.4) and we can therefore view decision
surfaces that run through the origin as a special case of more general decision surfaces
that include an offset term.

Here we developed the structure of the decision surfaces and functions based on
the dot product space R

2. However, a closer look at the derivation reveals that there
is nothing that would prevent us from developing the same structure for decision
surfaces and functions in higher-dimensional spaces. Thus, for some decision surface
w • x = b in an n-dimensional dot product space R

n, we can always construct the
decision function

f̂ (x) = sgn(w • x − b), (4.10)

with w, x ∈ R
n, b ∈ R, and

sgn(k) =
{ +1 if k ≥ 0

−1 if k < 0
(4.11)

for all k ∈ R.
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4.2 SIMPLE LEARNING ALGORITHM

Let us look at an algorithm that actually constructs a decision function given an
appropriate training set. That is, given a linearly separable training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)}, (4.12)

with xi ∈ R
2 and yi ∈ {+1, −1}, we first construct a decision surface of the form

(4.5) by computing the normal vector w and the offset term b from the training set.
We then use this decision surface to construct a decision function of the form given
in equation (4.10).

Step 1 We start by computing the average objects or means of the two respective
classes in our training set D. We denote the mean for the class labeled +1 with c+
and the mean for the class labeled −1 with c−. We can compute these means as

c+ = 1

l+

∑
(xi ,+1)∈D

xi, (4.13)

c− = 1

l−

∑
(xi ,−1)∈D

xi, (4.14)

where

l+ = |{(x, y) | (x, y) ∈ D and y = +1}|, (4.15)

l− = |{(x, y) | (x, y) ∈ D and y = −1}|, (4.16)

where l+ denotes the number of elements in D labeled +1 and l− denotes the
number of elements in D labeled −1. The means are computed analogously to the
average object of all the objects labeled M (see Section ??). Figure 4.3a illustrates
the construction of the class means.

Step 2 Next, we construct the vector d such that c+ = c− + d, or

d = c+ − c−. (4.17)

See Figure 4.3b.

Step 3 In this step we compute the mean, call it c, between the two class means
c+ and c− as

c = 1
2 (c+ + c−). (4.18)

We can see this construction in Figure 4.3c.
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FIGURE 4.3 Geometric constructions for the simple learning algorithm: (a) the means c+
and c− of the two classes; (b) the difference vector d; (c) the midpoint c between the two
means; (d) the decision surface d • x = d • c.

Step 4 We translate the vector d so that it is rooted in the average object c, and we
construct a line perpendicular to d through c (see Figure 4.3d). We can now interpret
this line as a decision surface, and using equation (4.5) with

w = d, (4.19)

b = d • c, (4.20)

we obtain the following equation for this decision surface:

d • x = d • c. (4.21)
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FIGURE 4.4 Labeling of unseen point a.

Step 5 Finally, plugging equations (4.19) and (4.20) into the equation for a linear
decision function (4.10) gives us the decision function

f̂ (x) = sgn(d • x − d • c) (4.22)

for all x ∈ R
2. Applying the dot product linearity and symmetry properties from

Table ?? as well as the geometric interpretation of the dot product from Definition ??
to this equation gives us a new equation for the decision function,

f̂ (x) = sgn((x − c) • d) (4.23)

= sgn(|x − c||d| cos γ ), (4.24)

which has a nice geometric interpretation. The value of the decision function for some
point x is computed by taking the dot product between the vector x − c, the “position
vector” of the point x with respect to c, and the normal vector of the decision surface
d . If the angle γ between those two vectors is less than 90◦, the point x is above
the decision surface, and if γ is greater than 90◦, it is below the surface. Figure 4.4
illustrates this for the unlabeled point a.

We can take this one step further by deriving a purely algebraic expression for the
decision function in terms of the class means by plugging equations (4.17) and (4.18)
into (4.23):

f̂ (x) = sgn((x − c) • d)

= sgn
([

x − 1
2 (c+ + c−)

]
• (c+ − c−)

)
. (4.25)
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FIGURE 4.5 Outliers can distort the orientation of the decision surface, which leads to
misclassification errors.

We can see that the value of the decision function for any point x can be computed
directly from the class means.

4.3 DISCUSSION

We have developed a mathematical view of decision surfaces and functions and put
them to use in a simple learning algorithm. In this algorithm every point in the data
set contributes equally to computation of the respective class means. This can be
problematic if the training set contains outliers, points that are unlike any other points
in the data set. Outliers can distort the orientation of the decision surface, which can
lead to misclassifications of points not part of the training set. This can be seen in
Figure 4.5 for a single outlier in the class labeled +1. When this outlier is ignored,
the decision surface is given as the construction with the gray lines, and we see that
the point labeled with the circle is above the decision surface. However, when the
outlier is not ignored, the decision surface is distorted, as shown by the dark-lined
construction in Figure 4.5 and we see that in this case the point labeled with the circle
falls below the decision surface. Here, the point labeled with the circle represents a
point in our data universe that is not part of the training set.

One way to rectify this is to ignore outliers and only use points that truly represent
the classes for our construction. We will see that more sophisticated algorithms such
as perceptron learning and support vector machines solve this problem and that the
influence of outliers on decision surfaces is minimized.
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EXERCISES

4.1 Let the following table represent our training set D:

x1 x2 y

1 2 −1
1 4 −1
3 4 −1
3 1 +1
4 2 +1

where y is considered the target attribute.
(a) Copy this data table into a CSV file and use WEKA and/or R to visualize

the data. Is D linearly separable?

(b) Write a program in R that constructs the decision function f̂ using D

according to equation (4.25).

(c) Use the function f̂ to classify the point x = (x1, x2) = (2, 2).

4.2 Let the data set in Table ?? be our training set D.
(a) Write a program in R that constructs the decision function f̂ using D

according to equation (4.25).

(b) Apply your decision function f̂ to the objects in D and compare the labels
given in D with the labels computed by your decision function. Explain
your observations.

(c) If necessary, what steps would you take to construct a better decision
function?

4.3 Clinical data characterizing two types of cardiovascular diseases in terms of
systolic blood pressure and the count of white blood cells of patients are pre-
sented in the table below. If we can construct a decision function f̂ on these
data, then given the systolic blood pressure and the white blood cell count of any
patient with heart disease will enable us to predict which disease we need to treat
without further diagnostics. Let the following table represent our training set D:

Systolic White
Blood Pressure Blood Count Diagnosis

110 13,000 Myocardial infarction
90 12,000 Myocardial infarction
85 18,000 Myocardial infarction

120 8,000 Myocardial infarction
130 18,000 Myocardial infarction
180 5,000 Angina
200 7,500 Angina
165 6,000 Angina
190 6,500 Angina

where Diagnosis is considered the dependent attribute.
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(a) Copy this data table into a CSV file and use WEKA and/or R to visualize
the data. Is D linearly separable?

(b) Write a program in R that constructs the decision function f̂ using D

according to equation (4.25).

(c) How accurate is your decision function on the training data?

BIBLIOGRAPHIC NOTES

Decision surfaces are developed as decision boundaries in [36]. A more statisti-
cal point of view of decision functions is developed in virtually every elementary
statistics textbook in the context of estimation theory (e.g., [39, 78]). Our simple
learning algorithm was inspired by the development in [65, pp. 4, ff]. The data set in
Exercise 4.3 is based on data published in [21].
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CHAPTER 5

PERCEPTRON LEARNING

The perceptron can be thought of as the predecessor to the modern artificial neural
network. It consists of a single neuron that computes a binary decision function based
on a linear decision surface. Learning in the perceptron is accomplished by estimating
the normal vector and offset term for the decision surface from the training data via a
training algorithm. Once a perceptron has been trained, it can be used to classify any
instance of the associated data universe.

The standard training algorithm for perceptrons is a heuristic1 that searches the
space of all possible normal vectors and offset terms for a decision surface that
separates a linearly separable training set. An interesting property of the percep-
tron is that in addition to the standard training algorithm, we can also formulate a
dual training algorithm. This algorithm searches over a set of coefficients that rep-
resent the amount of influence that each training data point has on the position of
the decision surface. Together with the offset term, these influence coefficients char-
acterize the decision surface. This is in contrast to the original or primal approach,
where the decision surface is determined by the traditional normal vector and offset
term. It is remarkable that in the dual formulation of perceptron training it becomes
very explicit which training points are the constraints on the decision surface and
which are not. This foreshadows some of the structures we will see in support vector
machines.

1A heuristic is an algorithm that uses rules of thumb and approximations to find some solution to a given
problem rather than an optimal solution.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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FIGURE 5.1 Architecture of a perceptron.

5.1 PERCEPTRON ARCHITECTURE AND TRAINING

In Chapter 4 we saw that we can compute a decision surface together with the cor-
responding decision function based on the means of the two respective classes in a
binary classification problem. A completely different approach to finding a decision
function was proposed by Frank Rosenblatt in the 1950s. He proposed a machine—the
perceptron—whose architecture encodes the structure of a decision function directly
based on an underlying linear decision surface. Today we recognize this architecture
as an artificial neuron consisting of two computational components: an aggregation
function and a transfer function. The structure of a perceptron’s neuron is illustrated
in Figure 5.1. The perceptron collects n weighted input signals, denoted by x1, . . . , xn

with corresponding weights w1, . . . , wn, and sums them together in the aggregation
component. Note that the summation also has a bias term b with a constant weight
of −1. This sum is then passed to the transfer function, which is a step filter that
returns −1 if its input is negative and +1 if its input is positive. In other words, the
step filter implements the sgn function (??). If we view each input xk as a component
of some input vector x = (x1, . . . , xn) and each weight wk as a component of a vector
w = (w1, . . . , wn), it is not difficult to see that the perceptron computes the following
function:

y = sgn

([
n∑

k=1

wkxk

]
+ (−1)b

)
= sgn(w • x − b). (5.1)

Shifting our perspective slightly we can view the weight vector as the normal vector
and the bias term as the offset term of some decision surface. Furthermore, the sgn
function extracts the appropriate object label from this decision surface. This means
that the perceptron represents a decision function of the form

f̂ (x) = y = sgn(w • x − b), (5.2)
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Algorithm 5.1

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let 0 < η < 1
w ← 0
b ← 0
r ← max{|x| | (x, y) ∈ D}
repeat

for i = 1 to l

if sgn(w • xi − b) �= yi then
w ← w + ηyixi

b ← b − ηyir
2

end if
end for

until sgn(w • xj − b) = yj with j = 1, . . . , l

return (w, b)

based on a linear decision surface with normal vector w and offset term b. We call w

and b the free parameters of the decision function in the sense that w and b are the
parameters to be determined from the training data.

Rather than using a statistical approach to computing the free parameters of
the decision function, Rosenblatt used a search heuristic that computes appropriate
parameter values based on local refinements until a decision surface is found. Let us
assume that our linearly separable training data has the form

D = {(x1, y1), (x2, y2), . . . , (xl, yl)}, (5.3)

with xi ∈ R
n and yi ∈ {+1, −1}. Then the training algorithm with many of the details

left out can be given as follows:

Initialize w and b to random values.
repeat

for each (xi , yi) ∈ D do
if f̂ (xi) �= yi then

Update w and b incrementally.
end if

end for
until D is perfectly classified.
return w and b

Notice that the algorithm tests the perceptron decision function f̂ on each element
in the training set, and if a test fails, it adjusts the free parameters incrementally. This
process continues until all elements in the training set are perfectly classified. Our
assumption of linear separability is important in the context of training a perceptron,
since the algorithm is guaranteed to converge only if the training data set is linearly
separable. That is, when the training data are not linearly separable, the test of the
decision function will always fail for some subset of training points, regardless of the
adjustments we make to the free parameters, and the algorithm will loop forever.
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Technically speaking, the training algorithm constitutes a greedy search heuristic
through w-b-space, where the values of the weight vector and the offset term are
adjusted until a suitable decision surface is found. We call it a greedy search heuristic
because it never backtracks to an earlier solution to explore alternative values but
always uses the current state of the search to explore more of the search space. In
the same vein as the perceptron architecture foreshadowed modern neural networks,
the perceptron training algorithm foreshadowed the training algorithms of modern
multilayer neural networks, such as backpropagation, in that these training algorithms
are also greedy heuristic searches that use the errors produced by the network to guide
the search.

Algorithm 5.1 shows the perceptron learning algorithm with more details filled in.
The quantity r is called the radius of the training data set and can be considered the
radius of the hypersphere centered at the origin of our coordinate system that encloses
all the points of the data set. In our case, where the data universe is R

n, this is simply
the position vector length of the training set point located farthest from the origin.
The quantity η, called the learning rate, controls the convergence speed of the search
heuristic. At the heart of the algorithm are two update rules,

w ← w + ηyixi, (5.4)

b ← b − ηyir
2. (5.5)

The intuition behind these two rules is that in case of a misclassified point, they
attempt to correct the position of the decision surface in such a way that the point is
no longer misclassified.

Consider a training data set point (xi, yi) with yi = +1. If this point is misclassified
by the current decision surface, it receives a label of −1 instead of the required
label +1. The first rule (5.4) attempts to correct this misclassification by rotating
the decision surface in the direction of xi . The rotation is accomplished by adding a
scaled version of the position vector xi to the normal vector. The scaling factor is the
learning rate η. This is easily seen by rewriting the update rule (5.4) as

w ← w + ηxi, (5.6)

with yi = +1. The updated normal vector is computed by adding a scaled version of
the position vector ηxi to the normal vector w. The effect of this update rule on a
decision surface in R

2 is shown in Figure 5.2. Here, the training point xi is below the
original decision surface (light gray) and above the rotated decision surface (black).
That is, the training point xi with label +1 is misclassified by the original decision
surface, but after the decision surface has been rotated it is no longer misclassified.
An analogous computation can be performed for a misclassified point with a label −1.
In this case the adjustment term will be subtracted from the normal vector, causing
rotation in the opposite direction.

The second rule (5.5) attempts to correct a misclassification by translating the
decision surface. Notice that this rule will translate the decision surface in the opposite
direction of the class indicated by the desired class label yi . This becomes obvious if
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FIGURE 5.2 Effect of the perceptron update rule, which changes the normal vector of a
decision surface.

we rewrite the rule as

b ← b + (−yi)ηr2. (5.7)

To see that this is appropriate, consider a decision surface that misclassifies the point
(xi, yi), with yi = +1. This means that the misclassified point is below the decision
surface. To correct this misclassification, we need to translate the decision surface in
the direction opposite to the normal vector; in other words, we need to translate it
away from the class with objects labeled +1. The amount of translation is governed
by the learning rate and the radius of the training data set. Figure 5.3 illustrates the
effects of this update rule on a decision surface in R

2. Here the training set point xi

with label yi = +1 is misclassified by the original decision surface (light gray), and
it is classified correctly by the translated decision surface (black).

The overall effect of the two update rules is illustrated in Figure 5.4 for a data
universe R

2. Here we have a decision surface at time step t that misclassifies one
point: the circled point with label −1. This misclassification forces the perceptron
learning algorithm to apply the update rules to this decision surface. The resulting
rotated and translated surface is shown as the decision surface at time step t + 1.
Notice that the update rules overcompensated, so this decision surface now misclas-
sifies the circled point with the +1 label. This misclassification in turn forces the
perceptron algorithm to apply the update rules in the opposite direction during the
next iteration, leading to the decision surface at time step t + 2. The decision surface
at time step t + 2 classifies all points correctly and the perceptron learning algorithm
terminates.

Some reflection on this brief discussion perhaps highlights that most of the applica-
tions of the update rules will occur to points at the boundary between the two classes,
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+

FIGURE 5.3 Effect of the perceptron update rule that changes the offset term of a decision
surface.

since these are the most difficult points to separate and classify. Another way of look-
ing at this is that the final decision surface has to be close to the boundary between
the two classes, and that points that are close to this boundary will be misclassified
much more often during perceptron training than points that lie far away from the
boundary. Therefore, points close to the boundary between the classes contribute to
the rotation and translation of the decision surface during the training phase much
more often than do points that lie far away from the boundary. This is very different

+-

+
+

-

-
-

FIGURE 5.4 Perceptron algorithm at work; decision surfaces at time steps t , t + 1, and t + 2.
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from the simple learning algorithm in Chapter 4, where each point in the training set
contributed equally to the location of the decision surface by being part of the respec-
tive class mean. Interestingly, this insight—that points close to the boundary between
the classes contribute more to the search for an appropriate decision surface than
the other points—gives rise to an alternative or dual formulation of the perceptron
training algorithm.

5.2 DUALITY

We know that the perceptron training algorithm (Algorithm 5.1) loops until no more
classification mistakes are made. If we consider the normal vector update rule (5.4),
then each time through the loop we add the term ηyixi to w if the training set point
xi is misclassified. From our earlier discussion and from Figure 5.2, we know that
the normal vector update rule effects a rotation of the decision surface. Now, if some
training point xi is a particularly difficult point to classify, we might have to apply
the normal vector update rule (5.4) multiple times until our decision surface is rotated
enough to classify the point xi correctly. The same holds for the translation rule (5.5),
where we might have to translate the decision surface multiple times until it classifies
the point xi correctly. This means that points that are particularly difficult to classify
typically contribute more to the computation of the final decision surface than points
that are easy to classify.

Now, suppose that we introduce a counter that keeps track of how many times each
point in the training set was misclassified. We would expect that points that are difficult
to classify receive a high counter value and points that are easy to classify receive
either a zero count or something close to zero. Let the vector α = (α1, . . . , αl) be our
counter variable where each component of this vector corresponds to a training set
data point. That is, component αi will keep track of the number of times that training
set point xi was misclassified. With this we modify our perceptron learning algorithm
as follows:

Initialize α and b to 0.
repeat

for each (xi , yi) ∈ D do
if f̂ (xi) �= yi then

Increment αi by 1.
Update b.

end if
end for

until D is perfectly classified
return α and b

Notice that in the innermost loop of the algorithm we replaced the normal vector
update rule with a rule that increments the component αi for the corresponding mis-
classified training set point xi . This looks reasonable, with the exception of the
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decision function f̂ . We no longer compute the normal vector necessary to specify
the decision function directly, i.e., our new algorithm does not compute one of the free
parameters necessary for our decision function. However, it is possible to recover the
normal vector from the counter vector α. Going back to the insight that the normal
vector w is a linear combination of the scaled versions of misclassified training set
points (see Figure 5.2) gives us the following:

w =
l∑

i=1

ηαiyixi

= η

l∑
i=1

αiyixi . (5.8)

Only misclassified points will have a nonzero α-value. Therefore, equation (5.8)
does express the linear combination of misclassified points only, as intended. In this
formulation the learning rate η is simply a scaling constant of the resulting normal
vector and since we are interested primarily in the orientation of the decision surface,
it is customary to drop this constant. This gives us the following identity for the
construction of the normal vector from the counterα and the labeled training set points:

w =
l∑

i=1

αiyixi, (5.9)

with

αi ≈ 0 for “easy” points,

αi � 1 for “difficult” points.

Based on this, we can construct our perceptron decision function f̂ as

f̂ (x) = sgn(w • x − b)

= sgn

⎛
⎝ l∑

j=1

αjyjxj • x − b

⎞
⎠ . (5.10)

This new decision function is a function with the free parameters α and b, and the
algorithm sketch above tries to find suitable values for these two free parameters.

With this new algorithm we have turned the problem of finding w and b into a
problem of estimating the values for α and b. Our search problem formulated in
terms of w is called the primal search problem with the primal variable w. Our
search problem formulated in terms of α is called the dual search problem with the
dual variable α. Since we can use the dual variable to reconstruct a solution to the
primal problem, it is clear that we can use either algorithm to find an appropriate
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Algorithm 5.2

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let 0 < η < 1
α ← 0
b ← 0
r ← max{|x| | (x, y) ∈ D}
repeat

for i = 1 to l

if sgn(
∑l

j=1 αj yj xj • xi − b) �= yi then
αi ← αi + 1
b ← b − ηyir

2

end if
end for

until sgn(
∑l

j=1 αj yj xj • xk − b) = yl with k = 1, . . . , l

return (α, b)

decision function. The dual algorithm with many of the details spelled out appears as
Algorithm 5.2. As expected, we find two update rules,

αi ← αi + 1, (5.11)

b ← b − ηyir
2, (5.12)

at the core of the algorithm. The first update rule increments the appropriate com-
ponent αi for each misclassification. The offset term update rule remains unchanged
from the previous version of the algorithm.

In summary, the primal approach to perceptron training searches through w-b-
space and finds a representation of the underlying decision surface in terms of a normal
vector and an offset term (Figure 5.5a). In the dual approach the training algorithm
searches through α-b-space and constructs decision surfaces using the training set

+
+

-
- -

-

+

-

+
+

-
- -

-

+

-

(a) (b)

FIGURE 5.5 Decision surface representation in perceptron learning: (a) primal representa-
tion; (b) dual representation.
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point coefficients α and the offset term b (Figure 5.5b). Notice that in the dual rep-
resentation it becomes very clear which training set points exert the most constraints
on the decision surface. These are the points that are most difficult to separate and
classify and typically have α-values � 1 and are indicated as points with circles
around them in the illustration.

Duality, or the dual approach to classification, has interesting implications for
algorithm design, since switching to the dual often brings to light hidden constraints
of the classification problem. In our case we found that the dual solution is dominated
by the constraints represented by the points close to the class boundaries. Therefore,
duality is a powerful algorithm design tool that allows one to explore different algo-
rithmic alternatives. This will prove extremely important during the development of
support vector machines.

5.3 DISCUSSION

It is clear that the perceptron solves the problem of outliers in the training set encoun-
tered in Chapter 4, since only points close to the class boundaries have an influence
on the decision surface. However, a consequence of the fact that both the primal
and the dual perceptron learning algorithms are heuristics is that the decision surface
search stops as soon as some decision surface is found that separates the training set.
This can lead to degenerate decision surfaces that are positioned unnecessarily close
to training set points. Considering that the training data set is only an approximate
representation of the rest of the data universe, such degenerate solutions can lead to
misclassifications of unseen points. Figure 5.6 illustrates a decision surface (gray)

+

+
+

-
-

-

-

-

FIGURE 5.6 Degenerate decision surface that is too close to one of the training set points
(gray), and an alternative decision surface placed midway between the training set points of
opposite classes with the highest α-values (black).
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that is placed very close to a training set point even though there is plenty of space
for alternative positioning. Intuitively, we would expect a decision surface (black)
that generalizes well to be placed midway between the training points from opposite
classes with the highest α-values. Maximum-margin classifiers solve this problem in
that the associated learning algorithm is guaranteed to find the decision surface that
lies midway between the two class boundaries. Maximum-margin classifiers are the
topic of Chapter 6.

EXERCISES

5.1 Use R to implement the primal and dual perceptron learning algorithms given
above: Algorithms 5.1 and 5.2, respectively. Train your perceptrons with the
data set from Exercise 4.1.
(a) Do the perceptrons converge? If so, do they converge on the same decision

surface?

(b) In the dual form, identify the “difficult” and “easy” points in the training
set by inspecting the α-values.

(c) For both the primal and dual forms, construct a decision function and
classify the point x = (2, 2).

5.2 Use R to implement the primal and dual perceptron learning algorithms given
above: Algorithms 5.1 and 5.2, respectively. Train your perceptrons with the
data set given in Table ??.
(a) Do the perceptrons converge? If so, do they converge on the same decision

surface?

(b) In the dual form, identify the “difficult” and “easy” points in the training
set by inspecting the α-values.

5.3 Implement the following learning algorithms in R:
1. Simple learning given in equation (??)

2. Perceptron learning, Algorithm 5.1.
and train them with the training set from Exercise 4.1.
(a) Plot the data set together with the induced decision surface for each

algorithm.

(b) What can you say about the differences in the respective induced decision
surfaces?

(c) For each of the learning algorithms above, use the respective decision
function f̂ and classify the point x = (2, 2).

5.4 [challenging] Install the “WEKA Classification Algorithm” plug-in (available
on Sourceforge). Use the perceptron classifier to train a perceptron on the data
given in Exercise ??. Evaluate your model.
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BIBLIOGRAPHIC NOTES

The perceptron was first published in Rosenblatt’s groundbreaking paper [64]. Dis-
cussions on perceptrons can also be found in neural network and machine learning
books (e.g., [9, 51, 54]). Primal and dual representations of perceptron learning are
developed in [23] and [38]. Minsky and Papert investigate the computational power
of perceptrons in [53]. The dual representation of the perceptron, often referred to as
the kernel-perceptron, was introduced by Freund and Schapire [32].
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CHAPTER 6

MAXIMUM-MARGIN CLASSIFIERS

The learning approaches to binary classification problems of the preceding chapters
can lead to decision surfaces that imply possible misclassification of data points that
are not part of the training set. For the simple learning algorithm of Chapter ??,
distortions of the decision surface can arise due to outliers. These distortions can lead
to misclassifications. In the perceptron learning of Chapter ??, the training algorithm
will terminate as soon as a decision surface is found for the training set. The underlying
heuristic provides no guarantees that the decision surface constructed generalizes well
from the training set to the data universe at large, implying possible misclassifications
of points not in the training set.

Here we introduce a new approach that tries to avoid such shortcomings. This
approach is based on searching for a decision surface that is equidistant to the class
boundaries where the two classes are closest to each other. It also maximizes the
distances to these class boundaries. By placing the decision surface right in the middle
between the two class boundaries and by maximizing the distances from the class
boundaries, this new approach reduces the probability of misclassification. We call
such models maximum-margin classifiers.

The fact that we are searching for a decision surface with an optimality criterion
such as the “maximum distance” implies an optimization problem, and as we will see,
constructing a maximum-margin classifier is indeed a convex optimization problem
that can be solved via quadratic programming techniques. The training set points
that represent the heaviest constraints on the position of such an optimal decision
surface, called support vectors, are related to the points with large α-values in the
dual representation of the perceptron.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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6.1 OPTIMIZATION PROBLEMS

Optimization problems are problems in which we want to select the best solution from
a number of possible or feasible solutions. Typically, the feasible solutions are ranked
by an objective function and the goal is to find the feasible solution that minimizes (or
maximizes) the value of this function. In most optimization problems we also have a
set of constraints that limit the solution space; that is, the constraints place limits on
what constitutes a feasible solution and what does not. We can express optimization
problems formally as

min
x

φ(x), (6.1)

such that

hi(x) ≥ ci, (6.2)

with i = 1, . . . , l and for all x ∈ R
n. Here the function φ : R

n → R is the objective
function, and each function hi : R

n → R is called a constraint with bound ci . Any
value x ∈ R

n that satisfies the constraints is called a feasible solution. The optimiza-
tion aims to find the feasible solution, x∗, that minimizes the objective function such
that for any other feasible solution q ∈ R

n, we have

φ(x∗) ≤ φ(q). (6.3)

If it is clear over which variable the optimization ranges, we often drop the subscript
of the optimization operator.

We have stated optimization problems only in terms of minimization. This is not a
limitation since we can turn any maximization problem into a minimization problem
using one of the following identities:

max φ(x) = min −φ(x), (6.4)

max φ(x) = min
1

φ(x)
(6.5)

as long as 1/φ(x̄) is well-defined. Optimization problems are classified according to
the properties of their corresponding objective functions and constraints. For exam-
ple, a linear optimization problem has both a linear objective function and linear
constraints. By this we mean that both the objective function and the constraints rep-
resents lines, planes, or hyperplanes in the appropriate dot product spaces.1 When
the objective function or the constraints are not linear, the optimization problem is
considered to be nonlinear.

1Alternatively, a function is linear if it satisfies equations (??) and (??) when its graph is translated so that
it goes through the origin of the dot product space.
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FIGURE 6.1 Convex function.

Here we are concerned with convex optimization problems. A convex optimization
problem has a convex objective function and linear constraints. Optimization prob-
lems that are convex are particularly well behaved in that the objective function has
a global minimum and the function surface is smooth in the sense that we can draw a
line from one point on the function surface to any other point on the surface without
crossing the surface itself. To illustrate this, consider the function f : R → R in
Figure 6.1. Let a, b ∈ R be any values with a < b, and let g : R → R be a linear
function such that g(a) = f (a) and g(b) = f (b). That is, g is a line that intersects
the graph of function f at points (a, f (a)) and (b, f (b)). We say that the function
f is convex if f (x) ≤ g(x) for all values x ∈ R such that a < x < b. For a convex
function f , the line g can touch the graph of the function for any interval [a, b] in R

but cannot cross it.
Simple examples of convex functions are functions that raise their argument to

some positive, even integer power [e.g., f (x) = x2]. Efficient algorithms exist that
take advantage of the convexity of an objective function in order to solve a con-
vex optimization problem. One such technique is quadratic programming, which we
discuss in Section 6.4.

6.2 MAXIMUM MARGINS

Given a linearly separable training set for a binary classification problem, it is perhaps
intuitive that the optimal decision surface is equidistant from the class boundaries.
Informally, we can justify this by arguing that the training set is only an approximate
representation of the data universe, and placing the decision surface equidistant from
the respective class boundaries will increase the probability of correctly classifying
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FIGURE 6.2 The dark line represents an optimal decision surface, and the light lines
represent suboptimal decision surfaces in a binary classification problem.

points not in the training set. Maximizing the distances from the decision surface
to the class boundaries will increase this probability even further.2 In Figure 6.2 we
illustrate this in R

2-space, where the dark line is considered a better decision surface
than either one of the light gray lines. To construct such optimal decision surfaces,
we need a couple of additional concepts.

Definition 6.1 A hyperplane supports a class if it is parallel to a (linear) decision
surface and all points of its respective class are either above or below. We call such
a hyperplane a supporting hyperplane.

One way to think of a supporting hyperplane is as the translation of a copy of the
decision surface to a point where it just touches the boundary of its respective class.
In binary classification problems we typically have two supporting hyperplanes: one
that is translated in the direction of the class with the +1 label and one that is translated
in the direction of the class with the −1 label.

The second concept we need is the margin, which is crucial in this approach to
constructing an optimal decision surface.

Definition 6.2 In a binary classification problem the distance between the two
supporting hyperplanes is called a margin.

With these two concepts we can state our optimality criterion for a decision surface
in more quantitative terms.

2We state this here without proof. Later we’ll see that this fact holds when we talk about VC-dimensions
in the context of statistical learning theory.
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FIGURE 6.3 Optimal separating plane with its two supporting planes.

Definition 6.3 A decision surface for a binary classification problem is optimal if
it is equidistant from the two supporting hyperplanes and maximizes their margin.

This means that our optimization problem involves finding a decision surface that
allows the supporting hyperplanes to be translated as far as possible, thereby maxi-
mizing the margin and keeping the decision surface equidistant to the two supporting
hyperplanes. Figure 6.3 puts all these concepts together. We have the two supporting
hyperplanes translated so they just touch their respective class boundaries. The dis-
tance between the hyperplanes is the margin, and the optimal decision surface is
located at the center of the margin. Notice that the size of the margin is constrained
by the circled points in each class, called support vectors. If a supporting hyperplane
were to cross a support vector of its respective class, it would no longer be considered
a supporting hyperplane because members of its respective class would appear on
both sides of the hyperplane. Also notice that the margin is at its maximum. Any
rotation or translation of the decision surface would result in a smaller margin. There-
fore, the goal in the maximum-margin classifier approach is to find the position of
the decision surface that maximizes the margin, as shown here.

6.3 OPTIMIZING THE MARGIN

Finding a decision surface that maximizes the margin between the two supporting
hyperplanes is an optimization problem where the feasible solutions are all possible
decision surfaces with their associated supporting hyperplanes. Given these feasible
solutions, the objective function for this optimization problem computes the size of
the margin for each decision surface, and we maximize the objective function to find



“c06” — 2009/9/15 — 13:06 — page 78 — #6

78 MAXIMUM-MARGIN CLASSIFIERS

{
FIGURE 6.4 The value pa is the projection of a in the direction of b.

the maximum margin. The constraints in this case are the positions of the supporting
hyperplanes, which are not allowed to cross their respective class boundaries. We can
state this formally as

m∗ = max φ(w, b), (6.6)

subject to the supporting hyperplane constraints. Here the objective function φ(w, b)

computes the margin of a given decision surface w • x = b. The maximum margin
m∗ is due to some optimal decision surface, call it w∗ • x = b∗.

To make this optimization problem computable, we need to derive a suitable
expression for the objective function φ. It is possible to derive our objective function,
with a geometric argument, and to construct our geometric derivation we need the
notion of a projection.

Definition 6.4 Let a and b be vectors in R
n that form an angle γ between them;

then we say that pa is the projection of a in the direction of b such that

pa = |a| cos γ = a • b

|b| . (6.7)

Figure 6.4 shows this projection construction. Here pa is a scalar that denotes the
magnitude of a projected in the direction of b.

We are now in a position to derive our objective function. Let us assume that we
have a linearly separable training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1}. (6.8)

Let us also assume that we have the optimal decision surface,

w∗ • x = b∗, (6.9)

for this training set. Since this decision surface is optimal, the following identities
hold:

m∗ = φ(w∗, b∗) = max φ(w, b). (6.10)

Our maximum margin m∗ is computed by the objective function φ given the param-
eters w∗ and b∗ of the optimal decision surface. Furthermore, finding the parameters
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FIGURE 6.5 Margin m∗ of the optimal decision surface w∗ • x = b∗.

for the optimal decision surface is an optimization problem, as we noted in equa-
tion (6.6). Now let us continue with our derivation of φ. Since the decision surface
in equation (6.9) is a maximum-margin decision surface, we have two supporting
hyperplanes equidistant from this surface: say,

w∗ • x = b∗ + k, (6.11)

w∗ • x = b∗ − k. (6.12)

The first hyperplane is the supporting hyperplane for the +1 class and is above the
decision surface, and the second hyperplane is the supporting hyperplane for the
−1 class and is below the decision surface (see Figure 6.5). In addition, since deci-
sion surface (6.9) is an optimal decision surface, the supporting hyperplanes are
constrained by respective support vectors. Let the point (xp, +1) ∈ D be a support
vector for the +1 class with

w∗ • xp = b∗ + k. (6.13)

That is, the support vector lies on the supporting hyperplane (6.11). Similarly, let
(xq, −1) ∈ D be a support vector for the −1 class with

w∗ • xq = b∗ − k. (6.14)

This support vector lies on the supporting hyperplane (6.12). See Figure 6.5 for an
illustration of this.

By definition, the distance between the two supporting planes is the margin m∗.
We can compute this distance as the projection of the vector xp − xq in the direction
of w∗. That is, we can compute the margin as the projection of the difference between
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FIGURE 6.6 Computing the margin m∗ between two supporting planes.

the two support vectors in the direction of the normal vector of the decision surface.
See Figure 6.6 for this construction. In algebraic terms,

m∗ = |xp − xq | cos γ by (6.7)

= w∗ • (xp − xq)

|w∗| by (6.7)

= w∗ • xp − w∗ • xq

|w∗| by linearity in Table ??

= (b∗ + k) − (b∗ − k)

|w∗| by (6.13) and (6.14)

= 2k

|w∗| . (6.15)

Here γ is the angle between the vectors w∗ and xp − xq . This gives us the optimization
expression,

m∗ = max
2k

|w| . (6.16)

However, we want to express our maximization problem as a minimization problem.
We do so by rewriting equation (6.16):

m∗ = max
2k

|w|
= min

|w|
2k
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= min
|w|2
2k

= min 1
2k

w •w

= min 1
2w •w. (6.17)

Here the first step is justified by the identity (6.5) which states that a maximization
problem can be viewed as a minimization of the reciprocal of the original objective
function. The second step is justified since optimization over the positive values |w|
is invariant under the transformation with the square function. The square function
preserves the order-theoretic properties of its domain; that is, x1 ≤ x2 if and only if
x2

1 ≤ x2
2 for x1, x2 ≥ 0. This is another way of saying that x2 is a monotonic function

for x ≥ 0 and that optimizing over x2 is therefore the same as optimizing over x.
The third step is the application of equation (??). The last step is justified since
optimization is invariant under scaling with a constant. This means that we are free
to pick a convenient value for k, and in our case we chose k = 1. This completes the
derivation of our objective function as

φ(w, b) = 1
2w •w. (6.18)

It is perhaps peculiar that the objective function itself does not have a term b to be
optimized. The offset term will, however, play a role in the constraints.

Now let us shift our focus to the constraints of the optimization problem. The notion
is that the supporting hyperplanes for the respective classes need to stay supporting
hyperplanes during the optimizations. That is, the supporting hyperplanes are not
allowed to cross their respective class boundaries. Formally, this means that for our
optimal supporting hyperplanes (6.11) and (6.12), the following identities have to
hold, respectively:

w∗ • xi ≥ b∗ + k for all (xi, yi) ∈ D s.t. yi = +1, (6.19)

w∗ • xi ≤ b∗ − k for all (xi, yi) ∈ D s.t. yi = −1. (6.20)

In other words, all the training points labeled +1 need to lie on or above the first
supporting hyperplane, and all the training points labeled −1 need to lie on or below
the second supporting hyperplane (see Figure 6.5). Thus, each point in the training data
set is a constraint on its respective supporting hyperplane—the supporting hyperplane
is not allowed to move beyond it. What needs to hold for the optimal supporting
hyperplanes also needs to hold for all supporting hyperplanes for any decision surface.
Generalizing and taking to our choice of k = 1 into account gives us

w • xi ≥ 1 + b for all (xi, yi) ∈ D s.t. yi = +1, (6.21)

w • (−xi) ≥ 1 − b for all (xi, yi) ∈ D s.t. yi = −1. (6.22)
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We can write these constraints in a more compact way,

w • (yixi) ≥ 1 + yib for all (xi, yi) ∈ D. (6.23)

In this formulation it is perhaps most obvious that all training set points give rise to
constraints. The constraints also define the feasible region in that only decision sur-
faces where the margin fulfills these constraints are considered during optimization.
The following proposition on computing an optimal decision surface with a maximum
margin summarizes all this, making use of (6.18) and (6.23).

Proposition 6.1 (Maximum-Margin Classifier) Given a linearly separable train-
ing set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1},

we can compute a maximum-margin decision surface w∗ • x = b∗ with an
optimization

min φ(w, b) = min
w,b

1
2w •w (6.24)

subject to the constraints

w • (yixi) ≥ 1 + yib for all (xi, yi) ∈ D. (6.25)

6.4 QUADRATIC PROGRAMMING

It is easy to see that our objective function in (6.24) is a convex function,

φ(w, b) = 1
2w •w = 1

2 (w2
1 + . . . + w2

n) (6.26)

for w = (w1, . . . , wn). The objective function is shown in Figure 6.7 for the two-
dimensional space R

2. Convexity implies that we are able to find the global minimum
of our objective function. In other words, given a set of feasible solutions, we will be
able to find the one that will produce the smallest value of our objective function.

An efficient way to solve convex optimization problems of the form given here is
via quadratic programming. Most quadratic program solvers are functions of the form

w∗ = solve(Q, q, X, c), (6.27)

which represent the general convex optimization problem, also referred to as a
quadratic program,

w∗ = argmin
w

(
1
2wTQ w − q •w

)
, (6.28)
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FIGURE 6.7 Objective function 1

2w •w in R
2-space.

subject to the constraints

XTw ≥ c. (6.29)

Here Q is an n × n matrix, X is an l × n matrix, the vectors w∗, w, q are n-dimensional
vectors, and the vector c is an l-dimensional vector. The operation aT denotes the
transpose of some vector a, and MT denotes the transpose of a matrix M. We can
transform this general optimization problem into a form that resembles our margin
optimization in Proposition 6.1 if we let Q be the identity matrix I and q = 0,

w∗ = argmin
w

(
1
2wTI w − 0 •w

)
= argmin

w

(
1
2w •w

)
, (6.30)

with wTI w = w •w. The big difference between our formulation of margin opti-
mization and the approach using a quadratic program solver is the fact that quadratic
program solvers return the argument that minimizes the objective function rather than
the minimized value of the objective function (whence the operator argmin rather than
min). This does not pose a problem, however, since we can always reconstruct the
optimal margin by plugging the optimized normal vector w∗ into equation (6.15).

Now that we have the objective function of the quadratic program in a suitable
form, let us turn our attention to the constraints. In contrast to our original margin
optimization problem, the constraints in quadratic program solvers are expressed
in matrix form [equation (6.29)]. However, by manipulating the constraints of our
original margin optimization problem slightly, we can bring them into a form suitable
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for quadratic program solvers. Consider the following form of our constraints obtained
by applying the symmetry property of dot products to equation (6.25):

(yixi) •w ≥ 1 + yib (6.31)

for all (xi, yi) ∈ D with i = 1, . . . , l and xi = (x1
i , . . . , xn

i ). Given this, we can
construct the matrix X as

X =
⎛
⎜⎝ y1x

1
1 · · · yix

1
i · · · ylx

1
l

...
...

...

y1x
n
1 · · · yix

n
i · · · ylx

n
l

⎞
⎟⎠ . (6.32)

In other words, the ith column of X is equal to the vector yixi = (yix
1
i , . . . , yix

n
i ).

We construct the vector c as

c =

⎛
⎜⎜⎜⎝

1 + y1b

1 + y2b
...

1 + ylb

⎞
⎟⎟⎟⎠ . (6.33)

With these two constructions, it is now straightforward to show that the matrix format
of the constraints in (6.29) is a compact representation of the constraint equations
(6.31).

Notice that our construction of the vector c introduced the free variable b into
the quadratic program, so we need to take this free variable into account in our
optimization problem. That is, our optimization has to minimize the objective func-
tion over both w and b. The following proposition summarizes these constructions
and expresses a maximum-margin optimization in terms of a optimization problem
solvable via quadratic programming,

Proposition 6.2 Given the linearly separable training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1},

we can compute a maximum-margin decision surface w∗ • x = b∗ with a quadratic
programming approach that solves the generalized optimization problem

(w∗, b∗) = argmin
w,b

(
1
2wTQ w − q •w

)
. (6.34)

subject to the constraints

XTw ≥ c, (6.35)

with Q = I, q = 0, and where X, and c are constructed according to (6.32) and
(6.33), respectively.
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Algorithm 6.1

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

r ← max{|x| | (x, y) ∈ D}
q ← 1000
let w∗ and b∗ be undefined
Construct X according to (6.32) using D.
for each b ∈ [−q, q] do

Construct c according to (6.33) using b.
w ← solve(I, 0, X, c)

if (w is defined and w∗ is undefined) or
(w is defined and |w| < |w∗|) then
w∗ ← w

b∗ ← b

end if
end for
if w∗ is undefined then

stop constraints not satisfiable
else if |w|∗ > q/r then

stop bounding assumption of |w| violated
end if
return (w∗, b∗)

Algorithm 6.1 illustrates how a decision surface with a maximum margin is com-
puted using a quadratic program solver. Here the function solve is assumed to be
of the form (6.27). Most quadratic program solvers will return an undefined value
for w if they cannot find a solution that satisfies all the constraints. Therefore, we
see repeated tests in the algorithm as to whether or not the solver was successful in
finding a solution. The quantity r represents the radius of the training set D. The
constant q defines the size of the search interval for offset term values, and we set it
to 1000. However, the precise value for q is highly data dependent and needs to be
determined experimentally. We discuss this further below. The optimal normal vector
w∗ and offset term b∗ are left undefined initially. Notice that w∗ and b∗ will remain
undefined until the algorithm finds a solution that satisfies all the constraints.

Since the offset term b is a free variable, we need to pick appropriate values for b

to be passed to the solver as part of the constraints. To determine a reasonable interval
of values for b during optimization, consider the representation of a decision surface
by the equation

b = w • x. (6.36)

This can be rewritten as

b = |w||x| cos γ, (6.37)

where γ is the angle between the vectors w and x. With 0 ≤ γ ≤ π we have

−|w||x| ≤ b ≤ |w||x|. (6.38)
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We only consider points that lie within a hypersphere of radius r; that is, we only
consider points with |x| ≤ r:

−|w|r ≤ b ≤ |w|r. (6.39)

Unfortunately, |w| is unbounded, making the bound on b as stated useless. We can
show this by considering that in a training set with radius r the largest possible margin
is 2r . Plugging this observation into equation (6.15), we obtain

2

|w| ≤ 2r. (6.40)

We assume a value of k = 1, as before. This gives us a lower bound for w:

1

r
≤ |w|. (6.41)

This means that |w| = 1/r for the largest possible margin and |w| > 1/r for mar-
gins smaller than that. In fact, we have |w| → ∞ for infinitesimally small margins.
However, we are interested in maximizing the margin; that is, decision surfaces with
margins smaller than a certain threshold are not interesting enough to be considered
part of the feasible solutions. To express this, we bound the values of |w| as follows:

1

r
≤ |w| ≤ q

r
, (6.42)

where q is a bounding constant that bounds the value of |w| to a multiple of the max-
imum margin 1/r . If we pick q = 1000 as it appears in the algorithm, the narrowest
margin we consider a solution is 1000 times narrower than the maximum margin
possible in a training set with radius r . Plugging (6.42) into (6.39) gives us

−q ≤ b ≤ q, (6.43)

the bound for b as it appears in the algorithm.
The algorithm can fail to compute a decision surface on two accounts. The first type

of failure arises when the solver cannot satisfy all the given constraints for any b in the
given interval. The second type of failure arises when our bounding assumption for
|w| is violated. Since we assumed a linearly separable training set, we are guaranteed
to find a solution, and the failures imply that our bounding assumptions on b are not
correct and the interval of values for b needs to be increased.

6.5 DISCUSSION

By defining the maximum margin as an optimality criterion for decision surfaces,
we have achieved our goal of preventing degenerate decision surfaces from being
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considered as models for binary classification problems. However, when actually
computing such maximum-margin classifiers using quadratic program solvers, we
found that our solutions depend heavily on how we pick the free offset term param-
eter. Even though we have given some guidelines on how to search for the value
of the offset term that leads to a maximum margin, the precise value can only be
determined through experimentation. Searching for an optimal value of a free model
parameter is not unusual in machine learning. Many complex learning algorithms
have free parameters that need to be estimated via experimentation with the train-
ing set. Consider the optimal topology in artificial neural networks or the optimal
pruning constant in decision tree learning algorithms. A marked exception is the
dual of the maximum-margin algorithm we considered here. This dual algorithm
also constructs a maximum-margin classifier but has no free parameters. We call this
dual algorithm a linear support vector machine, and we develop this algorithm in
Chapter 7.

EXERCISES

6.1 Write a program in R that implements the algorithm given in Algorithm 6.1 and
apply it to your favorite linearly separable data set that represents a binary clas-
sification problem. (Use the quadratic program solver provided in the package
quadprog.)

6.2 Implement the following learning algorithms in R:

1. Simple learning given in equation (??)

2. Perceptron learning, Algorithm ??
3. Maximum margin classifier, Algorithm 6.1

and train them with the training set from Exercise 4.1.

(a) Plot the data set together with the induced decision surface for each
algorithm.

(b) What can you say about the differences in the respective induced decision
surfaces?

(c) For each of the learning algorithms above, use the respective decision
function f̂ and classify the point x = 〈2, 2〉.

6.3 [challenging] Optimal decision surfaces can also be developed via convex hulls
of the respective classes in a linearly separable binary classification setting.
Briefly, the optimal decision surface bisects the minimum distance of the two
respective convex hulls at a right angle (see [5] and [6]).

(a) Write an algorithm that computes the optimal decision surface based on
convex hulls.

(b) Show graphically that the decision surfaces computed by the convex hull
algorithm and the maximum margin algorithm in Algorithm 6.1 coincide.
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(c) Show that the data points in the training set giving rise to the minimum dis-
tance between the respective hulls are the same points that are considered
support vectors in the maximum-margin algorithm.

BIBLIOGRAPHIC NOTES

Maximum-margin decision surfaces are discussed in [10] and [26]. Many books on
convex functions and optimization theory exist (e.g., [7, 56, 63]). One book that is
particularly accessible is [14]. This book also has detailed descriptions of a number of
algorithms that can be used to implement quadratic program solvers. Our geometric
derivation of the objective function was inspired by a discussion in [65, pp. 189 ff].
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CHAPTER 7

SUPPORT VECTOR MACHINES

Here we develop support vector machines. Fundamentally, support vector machines
can be viewed as the dual to the maximum-margin classifiers developed in Chap-
ter 6. The dual is obtained by applying Lagrangian optimization theory to the
maximum-margin classifier optimization problem. This dual view of maximum-
margin classifiers has interesting consequences. One such consequence is that linear
classifiers based on support vector machines can easily be extended to nonlinear clas-
sifiers, thereby broadening the applicability of support vector machines tremendously.
At the heart of this generalization from linear to nonlinear classifier is the notion of
kernel functions. By applying what is referred to as the kernel trick to a linear support
vector machine, we obtain a nonlinear classifier. What is remarkable is that nonlinear
support vector machines retain the efficiency of finding linear decision surfaces but
now allow us to apply these classifiers to training sets that are not linearly separable.

Toward the end of this chapter we generalize support vector machines even fur-
ther by allowing the underlying maximum-margin classifier to make mistakes on the
training set. This is accomplished through the introduction of slack variables. It might
seem counterintuitive that we allow a classifier to make mistakes, but consider the
fact that real-world training sets are not perfect and contain noise. Noise might give
rise to an extremely complicated boundary between the classes of a classification
problem. A classifier that is not allowed to make mistakes would have to model this
complicated boundary flawlessly, giving rise to an extremely complicated decision
surface. By assuming that the training set points that force the decision surface to be
complicated are due to noise, and by essentially allowing the classifier to ignore these
points, we can compute a much simpler decision surface. This is very attractive, since

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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simple decision surfaces have a much higher probability of classifying points correctly
that are not part of the training set than do complicated decision surfaces. In other
words, simple decision surfaces tend to generalize better. We call maximum-margin
classifiers that incorporate slack variables soft-margin classifiers. We often refer to
maximum-margin classifiers that do not incorporate slack variables as hard-margin
classifiers.

We begin the chapter by introducing Lagrangian optimization theory and the
Lagrangian dual in more general terms. We then apply this theory to derive sup-
port vector machines. We conclude the chapter by looking at actual support vector
machine implementations in both WEKA and R.

7.1 THE LAGRANGIAN DUAL

In optimization theory, deriving the dual of an optimization problem often yields
new insights into the optimization problem at hand. These new insights can lead to
new techniques for solving the optimization problem or, as we will see in the case of
support vector machines, can lead to entirely new classes of optimization algorithms.
A particularly convenient technique to derive the dual of an optimization problem is
the Lagrangian dual.

Assume that we have an optimization problem of the form

min
x

φ(x), (7.1)

such that

gi(x) ≥ 0 (7.2)

for all x ∈ R
n with i = 1, . . . , l. Here we assume that φ is a convex objective function

and we also assume that the constraints gi are linear. As before, linear constraints
are constraints that form lines, planes, or hyperplanes in R

n. This formulation of
an optimization problem is identical to our original formulation (??) if we take the
constraints to be gi(x) = hi(x) − ci . We often refer to this formulation as the primal
optimization problem.

We can now construct a new optimization problem, called the Lagrangian
optimization problem, based on our primal problem:

max
α

min
x

L(α, x) = max
α

min
x

(
φ(x) −

l∑
i=1

αigi(x)

)
, (7.3)

such that

αi ≥ 0 (7.4)
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for i = 1, . . . , l and x ∈ R
n. The new objective function L(α, x) is called the

Lagrangian and incorporates the original objective function φ together with a linear
combination of the constraints gi . The values α1, . . . , αl are called the Lagrangian
multipliers, and when convenient we write them as the vector

α = (α1, α2, . . . , αl). (7.5)

We have exactly one Lagrangian multiplier αi for each constraint gi . We call x the
primal variable and α the dual variable.

This newly derived optimization problem has the unusual feature of two nested
optimization operators with opposing optimization objectives. One way to view this is
that each optimization operator returns a partially evaluated function to be optimized
by the other optimization operator. Assume that we fix the vector x to the value x∗;
then the optimization problem becomes the maximization problem

max
α

L(α, x∗) = max
α

(
φ(x∗) −

l∑
i=1

αigi(x
∗)

)
. (7.6)

Conversely, if we fix α to the value α∗, we obtain the minimization problem

min
x

L(α∗, x) = min
x

(
φ(x) −

l∑
i=1

α∗
i gi(x)

)
. (7.7)

Solutions to the Lagrangian optimization (7.3) are points that both maximize the
function L(α, x) with respect to the dual variable α and minimize it with respect to
the primal variable x. This implies that the solutions are saddle points on the graph
of the function L(α, x). Since we assume that the primal objective function φ(x) is
convex and the constraints gi(x) are linear, we have a unique saddle point. Because
the saddle point represents a solution, L will be minimal with respect to x and the
partial derivative of L with respect to x at this point has to be zero:

∂L

∂x
= 0. (7.8)

Let x∗ be the value of x at the saddle point of L. Then evaluating the partial derivative
of L with respect to x at that point gives us the identity

∂L

∂x
(α, x∗) = 0. (7.9)

Here the point x∗ represents an optimum of L with respect to x.
One of the interesting, and for us crucial, properties of Lagrangian optimization

is that under certain conditions a solution to the Lagrangian is also a solution to
our primal optimization problem. To see this, let α∗ and x∗ be a solution to the
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Lagrangian such that

max
α

min
x

L(α, x) = L(α∗, x∗) = φ(x∗) −
l∑

i=1

α∗
i gi(x

∗). (7.10)

Then x∗ is a solution to the primal objective function if and only if the following
conditions hold:

∂L

∂x
(α∗, x∗) = 0, (7.11)

α∗
i gi(x

∗) = 0, (7.12)

gi(x
∗) ≥ 0, (7.13)

α∗
i ≥ 0 (7.14)

for i = 1, . . . , l. The most interesting of these conditions is perhaps equation (7.12),
which states that each constraint gi evaluated at x∗ and multiplied by its corresponding
Lagrangian multiplier α∗

i has to result in a value zero. That this is necessarily so can

easily be seen from equation (7.10). Here the term
∑l

i=1 α∗
i gi(x

∗) has to vanish
so that L(α∗, x∗) = φ(x∗). The remaining conditions are straightforward. Equation
(7.11) ensures that the value x∗ lies on the saddle point, and equations (7.13) and
(7.14) are the original constraints of the primal and Lagrangian optimization problems,
respectively, and ensure that the points α∗ and x∗ lie in the respective feasible regions.
These conditions are collectively referred to as the Karush–Kuhn–Tucker conditions
(KKTconditions). Because of its singular importance, equation (7.12) is often referred
to as the KKT complementarity condition.

Solving a Lagrangian optimization problem where the primal objective function is
convex can be simplified by taking advantage of the fact that the optimum x∗ has to
lie on the unique saddle point of the Lagrangian. Therefore, solving equation (7.9) for
x∗ allows us to construct an expression that will enable us to reformulate our original
optimization problem in terms of its dual variable only, L(α, x∗) = φ′(α), and we
can find the optimum with respect to the dual variable as the Lagrangian optimization,

max
α

φ′(α), (7.15)

subject to

αi ≥ 0 (7.16)

for i = 1, . . . , l. We call the function φ′ the Lagrangian dual (sometimes also called
the Wolfe dual). This means that we can solve our primal optimization problem using
the Lagrangian dual,

max
α

φ′(α) = φ′(α∗) = L(α∗, x∗) = φ(x∗), (7.17)

where x∗ and α∗ have to satisfy the KKT conditions.
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Before moving on, let us illustrate these concepts by working through an example
where we start with a primal optimization problem that we convert to its Lagrangian
and then solve via the Lagrangian dual. Consider the convex optimization problem

min φ(x) = min 1
2x2, (7.18)

subject to the linear constraint

g(x) = x − 2 ≥ 0, (7.19)

with x ∈ R. Here the standard technique of finding the minimum by taking the
derivative of φ with respect to x and setting it to zero,

dφ

dx
= 0, (7.20)

fails because the value x = 0 that gives rise to the minimum is not part of the feasible
region since it does not satisfy the constraint x − 2 ≥ 0. Therefore, we need to find a
value of x that lies in the feasible region and that minimizes the objective function.
In this simple optimization problem it is easy to see that the value of x that satisfies
the constraint and that minimizes the objective function is x = 2, as illustrated in
Figure 7.1. Here the gray region represents all points (x, y) that satisfy the constraint
x − 2 ≥ 0; therefore, only the part of the objective function φ that falls into this region
can be considered for optimization.

FIGURE 7.1 Plot of the objective function φ(x) = 1
2x2. The gray area represents all the

points (x, y) that satisfy the constraint x − 2 ≥ 0.
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0

0

FIGURE 7.2 Graph of the Lagrangian L(α, x) = 1/2 x2 − α(x − 2).

To solve this optimization problem using the Lagrangian dual, we first construct
the Lagrangian using equation (7.3):

L(α, x) = 1
2x2 − α(x − 2). (7.21)

As expected for a convex objective function, we have a unique saddle point in the
graph of the Lagrangian, as shown in Figure 7.2. Furthermore, we know that this
saddle point has to occur where the gradient of the Lagrangian with respect to the
variable x is equal to zero; more precisely,

∂L

∂x
(α, x∗) = x∗ − α = 0. (7.22)

Here x∗ represents the value that minimizes the Lagrangian with respect to x at the
saddle point. Solving for x∗ gives us

x∗ = α. (7.23)

Now, plugging (7.23) into (7.21) gives us

L(α, x∗) = 1
2α2 − α2 + 2α = 2α − 1

2α2. (7.24)
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This Lagrangian no longer has any dependencies on the variable x, and we can
therefore rewrite it as the Lagrangian dual optimization with φ′(α) = L(α, x∗),

max
α

φ′(α) = max
α

(
2α − 1

2α2
)

, (7.25)

subject to

α ≥ 0. (7.26)

Now, we know that L(α, x) has a unique saddle point, and this implies that the
function φ′(α) = L(α, x∗) has a unique maximum. This unique maximum has to
occur where the slope of the Lagrangian dual is equal to zero. We can compute the
value α∗ at that unique maximum as

dφ′

dα
(α∗) = 2 − α∗ = 0. (7.27)

Solving for α∗ gives us the solution to the Lagrangian dual α∗ = 2. Then, according
to (7.23), we have x∗ = α∗ = 2. This solution coincides with the solution that we
gleaned from Figure 7.1.

We can formally show that the solution to the primal optimization problem and
to the Lagrangian dual must coincide by showing that the KKT complementarity
condition (7.12) is satisfied:

α∗g(x∗) = α∗(x∗ − 2) = 2(2 − 2) = 0.

7.2 DUAL MAXIMUM-MARGIN OPTIMIZATION

As we noted in the introduction to this chapter, support vector machines can be seen
as the dual to maximum-margin classifiers. Here we derive this dual by applying the
technique of the Lagrangian dual to maximum-margin classifiers. Assume that we are
given a linearly separable training set of the form

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1}. (7.28)

Recall our maximum-margin optimization problem from Proposition ??, with the
constraints rewritten in a form appropriate for Lagrangian optimization,

min
w,b

φ(w, b) = min
w,b

1
2w •w, (7.29)

subject to the constraints

gi(w, b) = yi(w • xi − b) − 1 ≥ 0 (7.30)
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for i = 1, . . . , l. We construct the corresponding Lagrangian as

L(α, w, b) = φ(w, b)−
l∑

i=1

αigi(w, b)

= 1

2
w •w −

l∑
i=1

αi(yi(w • xi − b) − 1)

= 1

2
w •w −

l∑
i=1

αiyiw • xi + b

l∑
i=1

αiyi +
l∑

i=1

αi. (7.31)

This gives us the Lagrangian optimization problem for maximum-margin classifiers,

max
α

min
w,b

L(α, w, b), (7.32)

subject to

αi ≥ 0 (7.33)

for i = 1, . . . , l. Now, let α∗, w∗, and b∗ be a solution to the Lagrangian optimization
problem such that

max
α

min
w,b

L(α, w, b) = L(α∗, w∗, b∗). (7.34)

Then, since φ is convex and the constraints gi are linear, the solution α∗, w∗, and b∗
will satisfy the following KKT conditions:

∂L

∂w
(α∗, w∗, b∗) = 0, (7.35)

∂L

∂b
(α∗, w∗, b∗) = 0, (7.36)

α∗
i (yi(w

∗ • xi − b∗) − 1) = 0, (7.37)

yi(w
∗ • xi − b∗) − 1 ≥ 0, (7.38)

α∗
i ≥ 0 (7.39)

for i = 1, . . . , l. Equations (7.35) and (7.36) assure that w∗ and b∗ lie on the saddle
point of the Lagrangian. The complementarity condition (7.37) implies that w∗ and
b∗ are also solutions for our primal optimization problem,

max
α

min
w,b

L(α, w, b) = L(α∗, w∗, b∗) = φ(w∗, b∗). (7.40)
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That is, we can use Lagrangian optimization to compute our maximum margin. And
finally, equations (7.38) and (7.39) make sure that the solution falls into the respective
feasible regions.

To solve the Lagrangian optimization, we construct the Lagrangian dual. As a first
step we construct the points w∗ and b∗. We know that these points have to lie on the
saddle point of the Lagrangian. Applying the first KKT condition (7.35), we take the
partial derivative of our Lagrangian L with respect to the primal variable w, evaluate
it at the saddle point w∗, and set it to zero:

∂L

∂w
(α, w∗, b) = w∗ −

l∑
i=1

αiyixi = 0. (7.41)

It follows that

w∗ =
l∑

i=1

αiyixi . (7.42)

Then, using the second KKT condition (7.36), we take the partial derivative of L with
respect to the primal variable b, evaluate it at the saddle point b∗, and set it to zero:

∂L

∂b
(α, w, b∗) =

l∑
i=1

αiyi = 0. (7.43)

Interestingly, the partial derivative of L with respect to b does not yield an expression
for b∗ but instead, provides us with the constraint that at the saddle point b∗ the
expression

∑l
i=1 αiyi = 0 has to hold. However, we can recover a value for b∗ from

the structure of our training data D and the fact that we know the optimal rotation w∗
of our decision surface. Consider that in a maximum-margin classifier the supporting
hyperplane for the +1 class has to go through some point xp, +1 closest to the class
boundary (see Figure ??). This allows us to compute the offset b+ of the supporting
hyperplane for class +1 as

b+ = w∗ • xp. (7.44)

We can be even more specific by recognizing that for a given rotation w∗, the point xp

closest to the class boundary will produce the smallest offset; that is, we can compute
b+ as an optimization as follows:

b+ = min{w∗ • x | (x, y) ∈ D with y = +1}. (7.45)

Applying similar reasoning to the class −1 gives us the equation

b− = max{w∗ • x | (x, y) ∈ D with y = −1}. (7.46)
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Now, in maximum-margin classifiers the decision surface is located right between
the two supporting hyperplanes. This insight allows us to compute b∗ as

b∗ = b+ + b−

2
. (7.47)

It is noteworthy that both w∗ and b∗ can be expressed in terms of the dual variable
α by repeated use of equation (7.42). This means that our optimal decision surface
w∗ • x = b∗ is completely determined by the value of α, and finding a solution α∗ will
give us our decision surface. We find the solution α∗ by solving the Lagrangian dual.

We are now ready to construct our Lagrangian dual. Substituting (7.42) into (7.31)
and applying the constraint (7.43) gives us

φ′(α) = L(α, w∗, b∗) =
l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj xi • xj . (7.48)

This gives rise to the Lagrangian dual optimization for maximum-margin classifiers
stated in the following proposition.

Proposition 7.1 (Maximum-Margin Lagrangian Dual) Given the maximum-
margin optimization as in Proposition ??, the Lagrangian dual optimization for
maximum-margin classifiers is

max
α

φ′(α) = max
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj xi • xj

⎞
⎠, (7.49)

subject to the constraints

l∑
i=1

αiyi = 0, (7.50)

αi ≥ 0 (7.51)

with i = 1, . . . , l.

Given a solution α∗ to the Lagrangian dual optimization, it is interesting to look
at the KKT complementarity condition (7.37) in more detail. This equation can be
satisfied for each i = 1, . . . , l only if either α∗

i = 0 or yi(w
∗ • xi − b∗) − 1 = 0. Con-

sider the case where we have α∗
j > 0 for some point (xj , yj ) ∈ D. This means that

to satisfy the complementarity condition we have yj (w
∗ • xj − b∗) − 1 = 0, or

w∗ • xj = b∗ + 1 if yj = +1, (7.52)

w∗ • xj = b∗ − 1 if yj = −1. (7.53)

But these two equations are the equations of the supporting hyperplanes for the optimal
decision surface w∗ • x = b∗ [see equations (??) and (??) with k = 1]. That means
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that the training set point (xj , yj ) with a nonzero Lagrangian multiplier α∗
j > 0 lies

on one of the two supporting hyperplanes, depending on its label yj . This point
represents a constraint on the margin in that the supporting hyperplanes cannot be
moved beyond it. We call points with nonzero Lagrangian multipliers support vectors,
and a close inspection of equations (7.42) and (7.47) reveals that only support vectors
contribute to the solution of the dual maximum-margin optimization. Now let α∗

j = 0
for some point (xj , yj ) ∈ D. That is, the point xj is a point that does not lie in the
vicinity of the class boundary because we have yj (w

∗ • xj − b∗) − 1 > 0, or

w∗ • xj > b∗ + 1 if yj = +1, (7.54)

w∗ • xj < b∗ − 1 if yj = −1. (7.55)

This implies that points with zero-valued Lagrangian multipliers do not constrain the
size of the margin.

We can relate this to our primal maximum-margin algorithm. Recall that the primal
maximum-margin optimization problem finds the respective supporting hyperplanes
that are farthest apart, that is, that create the maximum margin between them. Also
recall that the points in the training set that limit the size of the margin were called
support vectors. We can now make the following statement:

The primal maximum-margin optimization computes the supporting hyperplanes whose
margin is limited by support vectors. The dual maximum-margin optimization computes
the support vectors that limit the size of the margin of the supporting hyperplanes.

This is illustrated in Figure ??. Here the primal optimization computes the two sup-
porting hyperplanes that are limited by the support vectors, and the dual optimization
computes the support vectors that limit the margin of the supporting hyperplanes.

The insight that only support vectors contribute to our dual solution allows us to
express the value for b∗ in a more elegant way. Rather than searching for the points
from each class that lie closest to the decision surface as we did above, we already
know which training set points constitute the constraints on the supporting hyper-
planes: the points with nonzero Lagrangian multipliers. If we pick a support vector
from our training set, say (xsv+ , ysv+ ) with ysv+ = +1, then according to (7.52) we
can compute b∗ as

b∗ = w∗ • xsv+ − 1 =
l∑

i=1

α∗
i yixi • xsv+ − 1, (7.56)

where the second identity is due to the expansion of w∗ using (7.42).

7.2.1 The Dual Decision Function

Recall that decision functions in linear classifiers are based on linear decision surfaces,
and the decision function itself returns a +1 label for a point that lies above the decision
surface and a −1 label for a point that lies below the decision surface. Let α∗, w∗,
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and b∗ be a solution to our Lagrangian optimization; then the optimal decision surface
is defined as

w∗ • x = b∗. (7.57)

This gives us the following maximum-margin decision function:

f̂ (x) = sgn(w∗ • x − b∗). (7.58)

If we expand w∗ and b∗ using equations (7.42) and (7.56), respectively, our decision
function becomes

f̂ (x) = sgn

(
l∑

i=1

α∗
i yixi • x −

l∑
i=1

α∗
i yixi • xsv+ + 1

)
. (7.59)

That is, the dual maximum-margin classifier is determined completely by the support
vectors, or given our discussion above, the dual maximum-margin classifier is deter-
mined completely by the points that are the constraints on the margin of the supporting
hyperplanes. Because of this characteristic, we also call the decision function of a dual
maximum-margin classifier a support vector machine. Furthermore, it is considered
a linear support vector machine since it is based on a linear decision surface.

7.3 LINEAR SUPPORT VECTOR MACHINES

To see what we have accomplished up to this point, let us set the stage by restating
our classification problem from Chapter ?? and then put support vector machines into
this context. Given:

• A dot product space R
n as our data universe with points x ∈ R

n

• Some target function f : R
n → {+1, −1}

• A labeled, linearly separable training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1},

where yi = f (xi)

compute a model f̂ : R
n → {+1, −1} using D such that

f̂ (x) ∼= f (x) (7.60)
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for all x ∈ R
n. Here we take as our model the linear support vector machine from

equation (7.59),

f̂ (x) = sgn

(
l∑

i=1

α∗
i yixi • x −

l∑
i=1

α∗
i yixi • xsv+ + 1

)
, (7.61)

where points (xi, yi) ∈ D are support vectors if their corresponding Lagrangian mul-
tipliers are nonzero, α∗

i > 0. We pick one support vector from the set of available
support vectors,

(xsv+ , +1) ∈ {(xi, +1) | (xi, +1) ∈ D and α∗
i > 0}, (7.62)

in order to calculate the dual offset term. We train our support vector models
with the Lagrangian dual optimization for maximum-margin classifiers given in
Proposition 7.1,

α∗ = argmax
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj xi • xj

⎞
⎠ , (7.63)

subject to the constraints

l∑
i=1

αiyi = 0, (7.64)

αi ≥ 0, (7.65)

where i = 1, . . . , l. This means that we can solve our classification problem using
linear support vector machines as long as the training data are linearly separable.

7.4 NONLINEAR SUPPORT VECTOR MACHINES

Very few data sets in the real world are linearly separable. What makes support vector
machines so remarkable is that the basic linear framework is easily extended to the
case where the data set is not linearly separable. The fundamental idea behind this
extension is to transform the input space where the data set is not linearly separable
into a higher-dimensional space called a feature space, where the data are linearly
separable. Remarkably, if we choose these transformations carefully, all the compu-
tations associated with the feature space can be performed in the input space. That
is, even though we are transforming our input space so that the data become linearly
separable, we do not have to pay the computational cost for these transformations.
The functions associated with these transformations are called kernel functions, and
the process of using these functions to move from a linear to a nonlinear support
vector machine is called the kernel trick.
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FIGURE 7.3 Mapping a nonlinear data set (a) with x = (x1, x2) ∈ R
2 into a feature space

(b) with z = (z1, z2, z3) ∈ R
3, using the transform � : R

2 → R
3 defined in the text.

Consider the following example. Here our data set in Figure 7.3a is embedded in
the two-dimensional dot product space R

2. Clearly, there is no linear decision surface
of the form

w • x = b (7.66)

that would separate the two classes without any errors. In contrast, the nonlinear
decision surface

x • x = 1 (7.67)

with x ∈ R
2 does separate the data set, as shown in Figure 7.3a. Now, instead of

constructing a decision function that relies on a decision surface in the input space,
consider a decision function that first maps our points x ∈ R

2 into some higher-
dimensional dot product space, say R

3, and then uses a decision surface in this
higher-dimensional space to compute the labels,

f̂ (x) = sgn(w • �(x) − b) , (7.68)

where the mapping from input space to feature space � : R
2 → R

3 is defined as

�(x) = �(x1, x2) = (x2
1 , x2

2 ,
√

2x1x2) = (z1, z2, z3) = z, (7.69)

with x ∈ R
2 and z ∈ R

3. Notice that � maps points from a two-dimensional space
into a three-dimensional space. With this mapping any point on the nonlinear decision



“c07” — 2009/9/15 — 13:06 — page 105 — #17

7.4 NONLINEAR SUPPORT VECTOR MACHINES 105

surface (7.67) in input space is mapped onto a plane in feature space of the form

w∗ • �(x) = b∗, (7.70)

with w∗ = (w∗
1, w∗

2, w∗
3) = (1, 1, 0) and b∗ = 1. Consider the point q = (1, 0) in

input space. The point clearly lies on the nonlinear decision surface (7.67), q • q =
(1, 0) • (1, 0) = 12 + 02 = 1. We now show that this point also lies on the plane in
feature space:

w∗ • �(q) = (1, 1, 0) • (12, 02,
√

2 × 1 × 0)

= (1, 1, 0) • (1, 0, 0)

= 12 + 1 × 0 + 0 × 0

= 1

= b∗.

In addition, any points in the input space labeled +1 will be mapped to points above
this plane in feature space, and any points labeled −1 in input space will be mapped
to points below the plane. The fact that the plane (7.70) separates the classes in
feature space implies that the plane is a linear decision surface. This is illustrated
in Figure 7.3b. This means that the mapping � transforms our nonlinear decision
problem in the input space into a linear decision problem in the feature space.1

Given our decision surface (7.70) in feature space, we can construct our decision
function as

f̂ (x) = sgn
(
w∗ • �(x) − b∗) . (7.71)

As desired, given any point in our input space x ∈ R
2, this decision function first

maps this to a point in feature space z = �(x) ∈ R
3 and then uses the linear decision

surface in feature space to compute the label.
It is revealing to study the structure of this decision function in more detail. We

do this by expanding the function using the identities in equation (7.69):

f̂ (x) = sgn
(
w∗ • �(x) − b∗)

= sgn
(
w∗

1x2
1 + w∗

2x2
2 + w∗

3

√
2x1x2 − b∗)

= sgn
(
w∗ • z − b∗)

= sgn

(
3∑

i=1

w∗
i zi − b∗

)
. (7.72)

1Astute readers might discover that at this level of discussion the third dimension is strictly not necessary.
However, it is necessary from a more technical point of view because to construct kernels you must have
the third dimension.
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This shows that the complexity of the decision function is directly related to the
number of dimensions in the feature space. As we consider more complex nonlinear
decision surfaces in the input space, we would expect that we need higher-and higher-
dimensional feature spaces to be able to continue to construct linear decision surfaces.
As a consequence, the expression for the corresponding decision functions,

f̂ (x) = sgn

(
d∑

i=1

wizi − b

)
, (7.73)

will increase in complexity proportional to the number of dimensions d in the feature
space.

7.4.1 The Kernel Trick

Now, consider using the dual representation of the normal vector w∗ of our decision
function in (7.71),

w∗ =
l∑

i=1

α∗
i yi�(xi) (7.74)

with � : R
2 → R

3 as defined in (7.69) and where l denotes the number of training
points in our input space. We assume that the values α∗

i represent the appropriate
Lagrangian multipliers for this dual representation. Notice that the transformation of
the training points �(xi) is necessary since w∗ is a normal vector in the feature space.
Plugging this dual representation into our decision function gives us

f̂ (x) = sgn
(
w∗ • �(x) − b∗)

= sgn

(
l∑

i=1

α∗
i yi�(xi) • �(x) − b∗

)
. (7.75)

Now something remarkable happens. If we simplify equation (7.75), we would expect
to see something complex, akin to equation (7.72); however, what we obtain using
the calculations in Table 7.1 is

f̂ (x) = sgn

(
l∑

i=1

α∗
i yi�(xi) • �(x) − b∗

)

= sgn

(
l∑

i=1

α∗
i yi(xi • x)2 − b∗

)
. (7.76)

That is, instead of obtaining a function whose complexity is proportional to the dimen-
sions of the feature space, we obtain an expression whose complexity is proportional
to the number of support vectors. Furthermore, we have an expression that computes
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TABLE 7.1 Calculation of the Dot Product

Given the mapping � : R
2 → R

3 defined as �(x) = (x2
1 , x2

2 ,
√

2 x1x2), the value of the dot

product �(x) • �(y) with x, y ∈ R
2 can be computed in the input space R

2:

�(x) • �(y) = (x2
1 , x2

2 ,
√

2x1x2) • (y2
1 , y2

2 ,
√

2y1y2)

= x2
1y2

1 + x2
2y2

2 + 2x1x2y1y2

= (x1y1 + x2y2)(x1y1 + x2y2)

= (x • y)(x • y)

= (x • y)2.

the value of the feature space dot product in the input space, making it unnecessary to
fully evaluate the transformation �. This is possible precisely because we happened
to pick the transform � in a very clever way.2

Let us take a closer look at these transforms. Given an appropriate mapping
� : R

n → R
m with m ≥ n, functions of the form

k(x, y) = �(x) • �(y), (7.77)

where x, y ∈ R
n, are called kernels or kernel functions. Kernel functions evaluate

a dot product in feature space, and the defining characteristic of a kernel is that the
value of this dot product is actually computed in the input space.

We can now rewrite our decision function given in equation (7.75) in terms of
kernel functions,

f̂ (x) = sgn

(
n∑

i=1

α∗
i yik(xi, x) − b∗

)
. (7.78)

This is known as the kernel trick; that is, using any appropriate kernel function we
can take advantage of mappings into feature spaces without having to pay the price
of actually having to compute the explicit mappings, since the computations in the
feature space always simplify to computations in the input space. By selecting the
kernel function judiciously, we can control the complexity of this model. The trick lies
in finding the appropriate kernel in order to construct a model for a particular data set.

We have already encountered two kernels. For the first kernel let � : R
n → R

n

be the identity function on R
n; then

k(x, y) = �(x) • �(y) = x • y, (7.79)

where x, y ∈ R
n. This is called the linear kernel, and here the feature space is simply

the same as the input space. You might wonder why this is useful, but we will see

2The astute reader might now see why the third dimension in � was necessary.
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TABLE 7.2 Standard Kernels with Their Free Parameters

Kernel Name Kernel Functiona Free Parameters

Linear kernel k(x, y) = x • y none
Homogeneous polynomial kernel k(x, y) = (x • y)d d ≥ 2
Nonhomogeneous polynomial kernel k(x, y) = (x • y + c)d d ≥ 2, c > 0

Gaussian kernel k(x, y) = e−(|x−y|2/2σ 2) σ > 0

a x, y ∈ R
n.

later that this kernel is useful for high-dimensional data sets in conjunction with
soft-margin classifiers.

The other kernel, of course, is based on our mapping � : R
2 → R

3 such that
�(x1, x2) = (x2

1 , x2
2 ,

√
2 x1x2), where

k(x, y) = �(x) • �(y) = (x • y)2. (7.80)

Here x, y ∈ R
2. Called a homogeneous polynomial kernel of degree 2, this can easily

be extended to input spaces with arbitrary dimensions where x, y ∈ R
n. Table 7.2

provides a list of other popular kernel functions.
In our preceding discussions we have focused solely on the dual representation of

the normal vector w∗ of the decision surface. The dual structure of the offset term b∗
can also be represented with a kernel,

b∗ = w∗ • �(xsv+) − 1

=
l∑

i=1

α∗
i yi�(xi) • �(xsv+) − 1

=
l∑

i=1

α∗
i yik(xi, xsv+) − 1,

and therefore all the aforementioned observations hold for the offset term of the
decision surface in feature space as well.

To actually find the support vectors in feature space, we must also apply the kernel
trick to our training algorithm for support vector machine models:

α∗ = argmax
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj k(xi, xj )

⎞
⎠ , (7.81)

subject to the constraints

l∑
i=1

αiyi = 0, (7.82)

αi ≥ 0, i = 1, . . . , l. (7.83)
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To find our optimal Lagrangian multipliers α∗, we can now replace the expression
k(xi, xj ) with any appropriate kernel. Of course, for this to make sense, the kernel
used in the training algorithm and the kernel used in the model must be the same.
Note that the constraints

∑n
i=1 yiαi = 0 and αi ≥ 0 for i = 1, . . . , l are not affected

by the kernel trick. These constraints simply have to hold in whatever feature space
we are working.

7.4.2 Feature Search

In Section 7.4.1 we saw that we can rewrite our support vector machine model in
terms of a kernel function k(x, y) = �(x) • �(y) with x, y ∈ R

n:

f̂ (x) = sgn

(
l∑

i=1

α∗
i yik(xi, x) − b∗

)
. (7.84)

Similarly, we can write our training algorithm in terms of a kernel function

α∗ = argmax
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj k(xi, xj )

⎞
⎠ , (7.85)

subject to the appropriate constraints. We also saw that we are free to change kernels
according to the requirements of the classification problem. For example, if our
classification problem involves a linearly separable training set, we might consider
the linear kernel k(x, y) = x • y because a support vector machine algorithm with a
linear kernel induces a linear decision surface in input space. We also saw that if our
classification problem involves quadratic decision surfaces in input space, we are free
to chose a polynomial kernel of degree 2, k(x, y) = (x • y)2, since it maps quadratic
decision surfaces in the input space to linear decision surfaces in the feature space.
For more complex decision surfaces in the input space, we might try polynomial
kernels of higher degrees or even more complex kernels, such as the Gaussian kernel,
to induce linear decision surfaces in some appropriate feature space. The process of
selecting a kernel and the associated values of its free parameters, such as the degree
d for the polynomial kernel, is called a feature search. A feature search is, in general,
not trivial and requires some trade-offs in model complexity and model accuracy.
Many packages provide tools that automate some aspects of the feature search, and
this search is often referred to as a grid search. Most support vector machine packages
include a set of fairly standard kernels from which to choose. Table 7.2 lists some
kernels that appear frequently in support vector machine packages.

7.4.3 A Closer Look at Kernels

In the case of the homogeneous polynomial kernel of degree 2, we saw that if we are
clever, we can define a mapping and a feature space so that the identity �(x) • �(y) =
(x • y)2 holds. That is, because we picked � in a particular way, we were able to
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evaluate the feature space dot product in the input space. But what about the more
complex kernels such as the Gaussian kernel function? What are the mappings and the
feature spaces associated with these types of kernels? Here we show that every kernel
has an associated canonical or standard mapping and feature space. The existence of
these canonical structures is guaranteed by a set of assumptions on the kernel. One
interesting corollary of this is that the mappings and feature spaces associated with
kernels are not unique. But this is of no consequence to us, since due to the kernels,
we never need explicitly to evaluate the mappings.

The following property for kernels is important because it guarantees that the dot
product is defined in feature space. This also characterizes the class of kernels at the
core of support vector machines.

Definition 7.1 (Positive-Definite Kernel) A function k : R
n × R

n → R such that

l∑
i=1

l∑
j=1

θiθj k(xi, xj ) ≥ 0 (7.86)

holds is called a positive-definite kernel. Here, θi, θj ∈ R and x1, . . . , xl is a set of
points in R

n.

We need another property of kernels in order to construct our canonical feature
spaces. For this we define some new notation: Let k : R

n × R
n → R be a kernel; then

k(·, x) is a partially evaluated kernel with x ∈ R
n and represents a function R

n → R.

Theorem 7.1 (Reproducing Kernel Property) Let k : R
n × R

n → R
n be a

positive-definite kernel; then the following property holds:

k(x, y) = k(x, ·) • k(·, y), (7.87)

with x, y ∈ R
n.

In other words, a kernel can be evaluated at points x and y by taking the dot
product of the two partially evaluated kernels at these points. Finally, we need one
more identity which will help us in the investigation of the structure of our canonical
feature spaces.

Theorem 7.2 (Cauchy–Schwarz Inequality) Let x, y ∈ R
n; then the Cauchy–

Schwarz inequality states that

(x • y)2 ≤ (x • x)(y • y). (7.88)

We can now show that for every kernel there exists a canonical feature space. That
is, for every positive-definite kernel k : R

n × R
n → R we can construct a canonical
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feature space Z with an associated mapping � : R
n → Z such that the condition

k(x, y) = �(x) • �(y) (7.89)

for all x, y ∈ R
n holds. At a very high level we construct our canonical feature space

as follows:

• Define a feature space and construct the mapping �.

• Turn our feature space into a vector space.

• Define the dot product in this vector space.

• Show that the dot product satisfies the condition in equation (7.89).

Assume that we are given a positive-definite kernel k : R
n × R

n → R and a set
of points in input space x1, . . . , xl ∈ R

n. Then we define our feature space Z as the
set of all functions mapping points in input space R

n to the real numbers,

Z = {Rn → R}. (7.90)

Notice that our feature space consists of functions rather than vectors. We define the
mapping from the input space to the feature space � : R

n → Z as

�(x) = k(·, x) (7.91)

for all x ∈ R
n. Notice that � takes a point x to the partially evaluated kernel

k(·, x) : R
n → R; that is, � takes a point x ∈ R

n to the function k(·, x) ∈ Z.
Now we need to turn our feature space into a vector space. We do this by allowing

arbitrary functions to be represented by linear combinations of our partially evaluated
kernels over the given set of points. That is, some function h : R

n → R can be
represented as

h =
l∑

i=1

θik(·, xi), (7.92)

where θi ∈ R. Another way to think about this is that the partially evaluated kernels on
the given set of points in input space represent the “dimensions” of our feature space,3

and just as in any other vector space where we are able to construct new vectors from
linear combinations of the basis vectors, here we construct new functions from linear
combinations of the functions due to the partially evaluated kernels.

We continue by defining the dot product in our vector space. For this we let
g = ∑l

j=1 γj k(·, xj ), where γj ∈ R, be another function in our feature space. Then

3We put “dimensions” in quotations for if these were true dimensions, we would have to prove linear
independence.
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we define the dot product as

h • g =
l∑

i=1

l∑
j=1

θiγj k(·, xi) • k(·, xj ) =
l∑

i=1

l∑
j=1

θiγj k(xi, xj ). (7.93)

We need to show that for any functions f, g, h ∈ Z and constants p, q ∈ R, the
following identities hold (see Table ??):

1. f • g = g • f .

2. (pf + qg) • h = pf • h + qg • h.

3. f • f ≥ 0.

4. f • f = 0 if and only if f = 0.

Identity (1) follows directly from the symmetry of kernel k [see (7.93)]. We now show
identity (2) and let h = ∑l

i=1 θik(·, xi) as before. Then

(pf + qg) • h = (pf + qg) •
l∑

i=1

θik(·, xi)

=
l∑

i=1

θi(pf + qg) • k(·, xi)

=
l∑

i=1

θi(pf • k(·, xi) + qg • k(·, xi))

=
l∑

i=1

θipf • k(·, xi) +
l∑

i=1

θiqg • k(·, xi)

= pf •
l∑

i=1

θik(·, xi) + qg •
l∑

i=1

θik(·, xi)

= pf • h + qg • h.

To show identities (3) and (4), assume that f = ∑l
i=1 θik(·, xi). Identity (3) follows

directly from the positive definiteness (7.86) of the kernel k:

f • f =
l∑

i=1

l∑
j=1

θiθj k(xi, xj ) ≥ 0. (7.94)

In identity (4), if f = 0, then f • f = 0 is straightforward. To show the converse,
we use

f (x) =
l∑

i=1

θik(x, xi) =
l∑

i=1

θik(·, x) • k(·, xi) = k(·, x) • f, (7.95)
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which is a direct consequence of the reproducing kernel property (Theorem 7.1).
Now, combining the Cauchy–Schwarz inequality and this identity,

(k(·, x) • f )2 ≤ (k(·, x) • k(·, x))(f • f ), (7.96)

gives us

(f (x))2 ≤ k(x, x)(f • f ) (7.97)

for all x ∈ R
n. It follows that f • f = 0 implies that f = 0. This shows that our dot

product is well defined.
Finally, we need to show that our construction preserves the kernel condition

(7.89). From the definition of our feature space mapping and the reproducing kernel
property, we see that

�(x) • �(y) = k(·, x) • k(·, y) = k(x, y). (7.98)

Therefore, our construction does preserve the kernel conditions.
A direct consequence of our construction is that feature spaces for kernels are not

unique. We illustrate this using our homogeneous polynomial kernel to the power
of 2; that is, k(x, y) = (x • y)2 with x, y ∈ R

2. Let � : R
2 → R

3 and 
 : R
2 →

{R2 → R} be two mappings from our input space to two different feature spaces such
that

�(x) = �(x1, x2) = (x2
1 , x2

2 ,
√

2 x2
1x2

2) (7.99)

and


(x) = k(·, x) = ((·) • x)2. (7.100)

Then

�(x) • �(y) = (x2
1, x

2
2,

√
2 x2

1x
2
2) • (y2

1, y
2
2,

√
2 y2

1y
2
2)

= (x • y)2

= k(x, y)

= k(·, x) • k(·, y)

= ((·) • x)2 • ((·) • y)2

= 
(x) • 
(y).

This shows that feature spaces are not unique, but the dot product values they compute
are unique in the sense that given a pair of input space elements, the dot products in
the various spaces will evaluate to the same value for this pair.



“c07” — 2009/9/15 — 13:06 — page 114 — #26

114 SUPPORT VECTOR MACHINES

7.5 SOFT-MARGIN CLASSIFIERS

Real-world training data are not perfect and usually contain noise due to measurement
or data entry errors. Here we generalize our maximum-margin classifiers to deal
with noisy training data by allowing the classifiers to make mistakes. By essentially
allowing the training algorithm to ignore certain training points which are thought
to be due to noise gives rise to much simpler decision surfaces in noisy data than
would otherwise be possible. This is desirable because simpler decision surfaces tend
to generalize better.

Recall that our maximum-margin classifiers are models of the form

f̂ (x) = sgn(w • x − b) , (7.101)

where the normal vector w and the offset term b of the decision surface are computed
via the primal optimization problem,

min φ(w, b) = min
1

2
w •w, (7.102)

subject to the constraints

yi(w • xi − b) − 1 ≥ 0, (7.103)

with i = 1, . . . , l, given the training set (x1, y1), . . . , (xl, yl) ∈ R
n × {+1, −1}.

The optimization constructs a maximum-margin classifier by positioning the sup-
porting hyperplanes as far away from the decision surface as possible so that they just
touch their respective class boundaries. This construction is only partially successful
in the case of noisy training data where the size of the margin is limited by a few noisy
training points. However, we can reduce the impact that these points have on the size
of the margin by allowing them to lie on the “wrong” side of their respective support-
ing hyperplanes with the introduction of slack variables, error terms that measure how
far a particular point lies on the wrong side of its respective supporting hyperplane.
That is, a slack variable measures how much of an error is committed by allowing
the supporting hyperplane to be unconstrained by that point. Figure 7.4 illustrates
this. In part (a) we see a maximum-margin classifier with its margin limited by the
(perhaps noisy) point (xj , +1). In part (b) the supporting hyperplane w • x = b + 1
is unconstrained by the training point (xj , +1). Here the training point is allowed
to lie on the wrong side of the supporting hyperplane and the amount of the error is
measured by the corresponding slack variable ξj .

Notice that in this case the constraint w • xj − b − 1 ≥ 0 of our optimization prob-
lem is violated. However, we can recover a sensible constraint by taking the slack
variable into account, w • xj − b + ξj − 1 ≥ 0. That is, the slack variable ξj of the
point (xj , +1) creates the illusion that the point appears to be located right on the
supporting hyperplane and therefore appears to satisfy the original constraint. Note
that ξj ≥ 0; that is, the error is always measured as a positive quantity. Now, if we
introduce a slack variable for each training point (xi, yi), the corresponding modified
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FIGURE 7.4 Soft-margin classifier: (a) the margin is constrained by the point (xj , +1); (b)
the supporting hyperplane w • x = b + 1 is unconstrained by the training point (xj , +1), and
the resulting error is measured by the corresponding slack variable ξj .

constraints are

yi(w • xi − b) + ξi − 1 ≥ 0, (7.104)

with ξi ≥ 0. It is straightforward to see that if some point xi does not represent a
constraint on its respective supporting hyperplane, the corresponding slack variable
ξi = 0 since there is nothing to correct. In this case we obtain our original constraint
for that point, yi(w • xi − b) − 1 ≥ 0. If, on the other hand, the point xi lies on the
wrong side of its respective supporting hyperplane, equation (7.104) represents a new
constraint with ξi > 0.

Putting all this together, we can rewrite our maximum-margin objective function
that takes slack variables into account as in the following proposition.

Proposition 7.2 (Soft-Margin Optimization) Given a training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1},

we can compute a soft-margin decision surface w∗ • x = b∗ with an optimization

min
w,ξ,b

φ(w, ξ, b) = min
w,ξ,b

(
1

2
w •w + C

l∑
i=1

ξi

)
, (7.105)

subject to the constraints

yi(w • xi − b) + ξi − 1 ≥ 0, (7.106)

ξi ≥ 0, (7.107)

with i = 1, . . . , l, ξ = (ξ1, . . . , ξl), and C > 0.
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Because all the error terms are constrained to be positive values, this is still a
convex optimization problem: an important fact when we continue and look at the
Lagrangian dual of this optimization.

To prevent the construction of trivial solutions where all training points are con-
sidered noise during margin optimization, we added the slack variables in the form
of the penalty term C

∑l
i=1 ξi to the objective function. In this way, optimizing the

function φ(w, ξ, b) becomes a trade-off between the size of the margin and the size of
the error, where the error is the sum of the values of the slack variables. The larger we
make the margin, the more training points will be on the wrong side of their respec-
tive supporting hyperplanes, and therefore the larger the error, and vice versa. More
precisely, if we make the margin large, this will probably introduce a large number
of nonzero slack variables. If we make the margin small, we can reduce the number
of nonzero slack variables, but we are also back to where we started in the sense that
noisy points will dictate the position of the decision surface. The constant C, called
the cost, allows us to control the trade-off between margin size and error. Notice that
C is positive and cannot be zero; that is, we cannot simply ignore the slack variables
by setting C = 0. With a large value for C, the optimization will try to find a solution
with as small a number of nonzero slack variables as possible because errors are
costly, due to the large C. More precisely, a large value for C forces the optimization
to consider solutions with small margins. If we specify a small value for C, the intro-
duction of nonzero slack variables is much more forgiving and we can find solutions
with a larger margin, ignoring some of the noisier points near the decision surface.
This gives us the following relation between the cost and margin size:

large C ∼ small margin,

small C ∼ large margin.
(7.108)

In concrete terms, a solution w∗, ξ
∗
, and b∗ to the optimization problem

min
w,ξ,b

φ(w, ξ, b) = 1

2
w∗ • w∗ + C

l∑
i=1

ξ∗
i = m∗

is then a trade-off between the size of the margin m∗ and the size of the error,
∑l

i=1 ξ∗
i ,

for a given cost C.
Since the slack variables only appear as part of the training algorithm, our

maximum-margin classifier model itself remains unchanged:

f̂ (x) = sgn(w∗ • x − b∗). (7.109)

The only difference here between the model in a hard-margin setting and in a
soft-margin setting is that we now allow our model to make a certain number of
classification errors governed by the cost constant C. To quantify these possible
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misclassification errors, we examine a bit closer the error terms due to slack vari-
ables. If a particular point (xj , yj ) has a slack variable with value less than 1, ξj ≤ 1,
that point will be classified correctly by the decision function even though the point
lies in the margin. If, on the other hand, the point has a slack variable such that ξj > 1,
this point will be misclassified by the decision function. To see this, recall that the
difference in terms of offset between a supporting hyperplane and the decision surface
is 1, and as long as the error of ignoring the point xj as a constraint is less or equal
to 1, the point xj will be on the correct side of or directly on the decision surface and
will be classified correctly. However, as soon as the error term is larger than 1, the
point xj will be on the wrong side of the decision surface and will be misclassified.
More precisely, if we assume the point to be (xj , +1) and we rewrite the constraint
(7.106) accordingly as

w • xj = b + (1 − ξj ), (7.110)

the point xj lies above the decision surface w • x = b as long as the quantity 1 −
ξj ≥ 0, which implies that the point lies above or on the decision surface if ξj ≤ 1.
Otherwise, the point xj lies below the decision surface. Figure 7.5 illustrates this.
In part (a) we have an error term ξj ≤ 1 and we can see that the point (xj , +1) will
still be classified according to its label. In part (b), however, we see that an error
term ξj > 1 leads to a misclassification of the point xj . Instead of assigning a +1
label to this point, the decision function will assign a label −1 to this point. This
means that the introduction of slack variables can introduce misclassification errors
into our support vector model. However, since we assume that the points that violate
the constraints are due to noise and therefore unreliable, misclassifying such a point
does not do as much damage to our model as perhaps assumed.

+
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-
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FIGURE 7.5 Soft-margin misclassifications: (a) a point (xj , +1) with an error term ξj ≤ 1
lies above the decision surface; (b) the error term ξj > 1 leads to a misclassification of the
point (xj , +1) since it now lies below the decision surface.
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7.5.1 The Dual Setting for Soft-Margin Classifiers

We know from our previous work that the primal setting for maximum-margin clas-
sifiers is limited, since it does not allow us to apply the kernel trick in order to extend
linear classifiers to the nonlinear case. Therefore, to generalize the soft-margin clas-
sifier to the nonlinear case, we develop its Lagrangian dual here. We start with the
primal objective function (7.105) together with the constraints (7.106) and (7.107)
and rewrite it as the Lagrangian using (7.3):

L(α, β, w, ξ, b) = 1

2
w •w + C

l∑
i=1

ξi

−
l∑

i=1

αi(yi(w • xi − b) + ξi − 1)

−
l∑

i=1

βiξi . (7.111)

This Lagrangian has an additional primal variable ξ due to the slack variables
and an additional dual variable β = (β1, . . . , βl) which constitutes the Lagrangian
multipliers for the constraints ξi ≥ 0. The Lagrangian optimization problem is then

max
α,β

min
w,ξ,b

L(α, β, w, ξ, b), (7.112)

subject to the constraints,

αi ≥ 0, (7.113)

βi ≥ 0 (7.114)

for i = 1, . . . , l. Since the primal objective function is convex, this Lagrangian has
a unique saddle point, and therefore a solution α∗, β∗

, w∗, ξ∗
, b∗ has to satisfy the

KKT conditions

∂L

∂w
(α, β, w∗, ξ , b) = 0, (7.115)

∂L

∂ξi

(α, β, w, ξ∗
i , b) = 0, (7.116)

∂L

∂b
(α, β, w, ξ, b∗) = 0, (7.117)

α∗
i (yi(w

∗ • xi − b∗) + ξ∗
i − 1) = 0, (7.118)

β∗
i ξ∗

i = 0, (7.119)
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yi(w
∗ • xi − b∗) + ξ∗

i − 1 ≥ 0, (7.120)

α∗
i ≥ 0, (7.121)

β∗
i ≥ 0, (7.122)

ξ∗
i ≥ 0 (7.123)

for i = 1, . . . , l. The first three conditions ensure that the solutions to the primal
variables lie on the saddle point of the Lagrangian. Equations (7.118) and (7.119) are
the complementarity conditions. In particular, equation (7.119) represents the com-
plementarity condition due to the new constraints ξi ≥ 0. The last four conditions are
the constraints of the respective primal and Lagrangian optimization problems. Since
all these conditions will be satisfied by any solution to the Lagrangian optimization
problem, it follows that

max
α,β

min
w,ξ,b

L(α, β, w, ξ, b) = L(α∗, β∗
, w∗, ξ∗

, b∗)

= 1

2
w∗ • w∗ + C

l∑
i=1

ξ∗
i .

That is, we can use Lagrangian optimization to solve our primal optimization problem.
As in the hard-margin case, we can solve this optimization problem much more

readily by computing the Lagrangian dual. To accomplish this we apply the KKT
conditions and differentiate the Lagrangian with respect to the primal variables and
then evaluate the derivatives at the saddle point. Differentiating the Lagrangian with
respect to w and evaluating the derivative at w∗,

∂L

∂w
(α, β, w∗, ξ , b) = w∗ −

l∑
i=1

αiyixi = 0, (7.124)

gives us

w∗ =
l∑

i=1

αiyixi . (7.125)

Not unexpectedly, the optimal normal vector of the decision surface for soft-margin
classifiers is a linear combination of the training points. Now, differentiating the
Lagrangian with respect to b and evaluating the derivative at the point b∗,

∂L

∂b
(α, β, w, ξ, b∗) =

l∑
i=1

αiyi = 0, (7.126)
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gives us the same constraint as in the hard-margin case:

l∑
i=1

αiyi = 0. (7.127)

Finally, differentiating the Lagrangian with respect to each of the slack variables ξi

and evaluating the derivatives at ξ∗
i ,

∂L

∂ξi

(α, β, w, ξ∗
i , b) = C − αi − βi = 0, (7.128)

gives us the new constraints

αi = C − βi (7.129)

for i = 1, . . . , l. Plugging the terms obtained from the partial differentiations back
into the Lagrangian and applying the constraints, we obtain our Lagrangian dual,

φ′(α) =
l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj xi • xj . (7.130)

Interestingly, this objective function has the same structure as the dual objective
function of the hard-margin classifier given in (7.49). Therefore, the basic nature of
the optimization problem has not changed—what has changed are the constraints.
We have picked up the additional constraints (7.129) due to the additional primal
variable ξ . We can write these constraints in a more convenient way by considering
that the Lagrangian multipliers αi and βi for some point xi cannot be negative, αi ≥ 0
and βi ≥ 0. This implies that we can rewrite the constraints (7.129) as

0 ≤ αi ≤ C (7.131)

and

0 ≤ βi ≤ C. (7.132)

This gives us the following Lagrangian dual optimization for soft-margin classifiers.

Proposition 7.3 (Soft-Margin Lagrangian Dual) Given a soft-margin optimiza-
tion as in Proposition 7.2, the Lagrangian dual optimization for a soft-margin
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classifier is

max
α

φ′(α) = max
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj xi • xj

⎞
⎠ , (7.133)

subject to the constraints

l∑
i=1

αiyi = 0, (7.134)

C ≥ αi ≥ 0, (7.135)

with i = 1, . . . , l. Here C is the cost constant.

It is remarkable that the only difference between the maximum-margin optimiza-
tion problem given in Proposition 7.1 and the soft-margin optimization problem given
here is that for the soft-margin classifier the value of the Lagrangian multipliers is
limited by the cost constant C.

To interpret this result we can go back to the complementarity condition (7.119)
and the constraints (7.129). The complementarity condition asserts that if we are given
a point xi with a nonzero slack variable ξi > 0, the associated Lagrangian multiplier
has to be zero, βi = 0. From the constraint (7.129) it follows that αi = C. That is,
for any point that lies on the wrong side of its respective supporting hyperplane, the
corresponding Lagrangian multiplier is bound to the value C. This means that, the
influence of this point on the decision surface is limited by the cost constant C. If, on
the other hand, the point xi is associated with a zero-valued slack variable, ξi = 0, βi

can assume any value such that 0 < βi ≤ C. The value of βi cannot be greater than C,
since this would violate our constraints (7.129). It follows from (7.129) that for points
with zero-valued slack variables, the range of the corresponding Lagrangian multipli-
ers αi is 0 ≤ αi < C. This means that for points xi with zero-valued slack variables
that are support vectors, the range of the corresponding Lagrangian multipliers is
0 < αi < C.

It is clear that the larger we make the value of C, the larger the influence of the
points on the wrong side of their respective supporting hyperplanes on the position
of the decision surface, and vice versa. It is nice to see that both the primal and dual
forms of the optimization problem agree on the the behavior of the constant C: Large
values of C constrain the decision surface; small values of C allow a much more
liberal positioning of the decision surface.

We have to be cautious when computing the optimal offset term b∗ for a soft-
margin classifier. In the hard-margin case we were free to pick an arbitrary support
vector and use it to compute the offset term. In the soft-margin case we can still pick
a support vector for our computation, but we need to avoid support vectors whose
Lagrangian multiplier is equal to the cost constant C, since this indicates that this
support vector is associated with a nonzero slack variable and therefore lies on the
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wrong side of its respective supporting hyperplane, giving us an incorrect value for b∗.
This means that we can pick a training set point (xsv+ , +1) with a zero-valued slack
variable ξ∗

sv+ = 0 whose corresponding Lagrangian multiplier α∗
sv+ therefore lies in

the range 0 < α∗
sv+ < C. From the complementarity condition (7.118) we have

l∑
i=1

α∗
i yixi • xsv+ − b∗ − 1 = 0. (7.136)

That is, the point xsv+ lies on the supporting hyperplane because its corresponding
Lagrangian multiplier is larger than zero but less than the cost constant and ξ∗

sv+ = 0.
Solving for b∗ gives us

b∗ =
l∑

i=1

α∗
i yixj • xsv+ − 1. (7.137)

If we select our support vector carefully, the calculation for b∗ is identical to the case
of the hard-margin classifiers [see (7.56)].

The actual model is not affected by the introduction of slack variables and is the
same as the model for hard-margin classifiers [see (7.59)]. From the perspective of
the model, the introduction of slack variables simply means that certain Lagrangian
multipliers α∗

i are limited by the cost constant C but has no other effect on the
structure of the model itself. This also means that the only difference between support
vector machines that represent hard-margin classifiers and those that represent soft-
margin classifiers is that the latter has an additional free parameter during training:
the user-defined cost constant C.

Finally, notice that both the training algorithm for soft-margin classifiers given as
the Lagrangian dual in Proposition 7.3 and the model given in (7.59) are expressed in
terms of a dot product of points in the input space R

n. This means that we can apply
the kernel trick to the dual soft-margin classifier and obtain nonlinear soft-margin
classifiers. It is perhaps interesting to note that certain data sets which are not linearly
separable can be separated by a linear soft-margin classifier where the points that
make the data nonlinear are considered noise.

7.6 TOOL SUPPORT

We have developed support vector machines to a point where we can take a look at
actual implementations. Support vector machines that encode soft-margin classifiers
are often called C-classification support vector machines, due to the additional free
parameter, and are available in many tool sets. In particular, C-classification support
vector machines are available in both WEKA and R. Here we illustrate these imple-
mentations through examples using the linearly separable biomedical data set given
in Exercise ?? and the nonlinear data set given in Table 7.3. Before working through
the next sections, be sure to create CSV files for the two data sets so that you can load
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TABLE 7.3 Simple Data Set That
Is Not Linearly Separable

x1 x2 y

0 0.7 One
0.7 0 One
0 −0.7 One

−0.7 0 One
0.5 0.5 One

−0.5 0.5 One
−0.5 −0.5 One

0.5 −0.5 One
0 2.8 Two

−2.8 0 Two
0 −2.8 Two
2.8 0 Two
2.0 2.0 Two

−2.0 2.0 Two
−2.0 −2.0 Two

2.0 −2.0 Two

them conveniently into WEKA and R. Also, before proceeding, it might be a good
idea to visualize these data sets in order to get a feel for the structure of the data.

7.6.1 WEKA

Let us start with the linearly separable biomedical data set. Load this data set into
WEKA using the explorer interface. You should see a window as in Figure 7.6 once
the data are loaded. The data set consists of nine instances labeled either Angina
or Myocardial Infarction (MI). Now we want to build support vector machines. To
do this you will need to open the Classify tab. Use the Choose button to navigate
to the support vector machine models called SMO in WEKA after the particular
implementation strategy used:

weka → classifiers → functions → SMO.

Clicking on the resulting SMO box brings up a parameter dialog box. There are
many parameters which allow the user to tune the training algorithm. At this point
we should be able to recognize a fair number of parameters from our support vector
machine development above. For example, there is the cost constant C (in WEKA it is
a lowercase ‘c’). There is also the exponent parameter, which represents the degree d

for a homogeneous polynomial kernel. Finally, the useRBF parameter together with
the gamma parameter enables Gaussian kernels (Gaussian kernels are sometimes also
called radial basis functions—therefore the parameter name). This means that WEKA
supports three kernels, the homogeneous polynomial kernel together with the linear
kernel, by setting the polynomial exponent to 1, and the Gaussian kernel.
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FIGURE 7.6 Loaded biomedical data set from Exercise ?? in WEKA.

Linear Support Vector Machines For our first experiment we will use a linear
kernel (a polynomial kernel with exponent 1.0). We leave the cost constant at 1.0 for
now. Make sure that that the useRBF parameter is set to false and that the filterType
parameter is set to No normalization or standardization. We want to evaluate our
support vector machine on the training data; therefore, we will need to set the Test
options to the value Use training set. Once we have set the parameters and test
options we are ready to build a model by pressing the Start button. When the training
has completed you should see a window as shown in Figure 7.7. Notice that in the
Classifier output panel we have a summary where the number of correctly classified
instances is reported as nine, with zero instances incorrectly classified. This means
that a support vector machine with a linear kernel and a default cost of C = 1.0 is an
appropriate model for this training set.

In our discussion on soft-margin classifiers we stated that large values for the cost
constant C implies small margins and, conversely, that small values for C imply large
margins [see (7.108)]. Let us test this theory by making our cost constant in WEKA
smaller. We would expect the margin to grow and with it the possibility of misclassifi-
cation of training points. For our next experiment we leave all the parameters as they
were from the previous experiment with the exception of C, which we set to the value
1.0 × 10−6. Now we build a new model by pressing the Start button. Notice that this
model no longer classifies correctly all instances in the training set. The margin has
grown to such an extent that one of the training instances is now located on the wrong
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FIGURE 7.7 WEKA report for a linear support vector machine.

side of the decision surface of the soft-margin classifier and therefore is misclassified
by the support vector machine. Figure 7.8 shows the window after the support vector
machine has been trained. If we make the cost even smaller, say 1.0 × 10−9, we see
that the resulting support vector machine will commit even more errors; that is, the
margin is even larger.

On the other hand, increasing the value of C beyond the default of 1.0 has no
visible effect on our model. This is easily explained by again referring to equation
(7.108): A large value for C results in a small margin. Since the classifier with a
margin at C = 1.0 already separates the data perfectly, certainly any classifier with a
smaller margin will separate the data equally well. However, increasing the cost C to
a value beyond the default 1.0 can have a negative impact on the generalizability of
the model. The decision surface of a classifier with an artificially small margin can
be very close to one of the class boundaries introducing possible classification errors
for unseen data points (refer to Figure ??).

Nonlinear Support Vector Machines We now turn our attention to data sets
that are not linearly separable. For the next set of experiments we use the data set
given in Table 7.3. Go back to the Preprocess tab in the WEKA explorer window and
load the CSV file for this data set. Now return to the Classify tab. Let us first try to
build a linear support vector machine model and see if we can fit it to the data by
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FIGURE 7.8 WEKA report for a linear support vector machine with a small value for the
cost constant C.

selecting C in a clever way. Set C = 1.0 and make sure that the filterType parameter
is set to No normalization or standardization and that the useRBF parameter is set
to false. Again we use the training set in the test options. After building the model,
we see in the classifier summary that the model commits a large number of errors, in
this case 50%. It does not matter how large or small we make C; that is, it does not
matter how much we change the size of the margin—the model continues to commit
large numbers of misclassification errors. This implies that the linear kernel is not the
appropriate kernel to construct a model for this data set. Let us try a homogeneous
polynomial kernel of degree 2. To select this kernel we set the exponent parameter to
the value 2.0. We also need to reset the value of the cost constant, C = 1.0. When we
build the model now, the model summary shows that a support vector machine with
a homogeneous polynomial kernel of degree 2 and the default margin size separates
the data set perfectly. We have just performed a simple feature search to determine a
kernel that will allow the support vector machine to classify all the instances correctly.

7.6.2 R

Let us take a look at a set of similar model construction experiments in R. To perform
the following set of experiments, make sure that you have installed and loaded the
e1071 package using R’s package installer and loader.
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Linear Support Vector Machines Assume that the biomedical data are stored
in a file called “biomed.csv”; then the following code loads the data set, builds a
linear support vector model, and evaluates the model against the training set:

> biomed.df <- read.csv("biomed.csv")
> svm.model <- svm(Diagnosis˜.,

data=biomed.df,
type="C-classification",
cost=1.0,
kernel="linear")

> svm.model

Parameters:
SVM-Type: C-classification

SVM-Kernel: linear
cost: 1

Number of Support Vectors: 2

> pred <- fitted(svm.model)
> pred == biomed.df$Diagnosis
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

With a cost of 1.0, the model classifies all training points correctly.
If we experiment with the value of the cost constant, we can observe that the cost

C has the same effect on the model as it did in WEKA: A small C (large margin)
entails many classification errors; conversely, a large C (small margin) entails no
classification errors. R allows us to visualize the decision surface. We can plot the
linear support vector machine that we constructed above with C = 1.0 using the
command

> plot(svm.model,biomed.df,grid=100)

Part (a) of Figure 7.9 shows this plot. Notice that the decision surface is equidistant
from the two classes. Also notice that we have two support vectors, one for each
class (data points represented as crosses). Part (b) shows a support vector model for
the same data set with C = 0.045. That is, the model shown is a model with a large
margin. Here all data points are support vectors; that is, all data points are either
on or in the margin. Also notice that this model misclassifies one of the angina data
points.

Nonlinear SupportVector Machines Let us turn to data sets that are not linearly
separable. Here we assume that the data set from Table 7.3 is stored in the file “simple-
non-linear.csv”. The following R code loads the data set, builds a support vector
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FIGURE 7.9 Visualization of the linear decision surface of the support vector machine
constructed for the biomedical data set: (a) C = 1.0; (b) C = 0.045.

machine with a homogeneous polynomial kernel of degree 2, evaluates the accuracy
of the model, and then plots the decision surface:

> non.linear.df <- read.csv("simple-non-linear.csv")
> svm.model <- svm(y˜.,

data=non.linear.df,
type="C-classification",
cost=1,
kernel="polynomial",
degree=2,
coef0=0)

> pred <- fitted(svm.model)
> pred == non.linear.df$y
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> plot(svm.model,non.linear.df,grid=100)

The decision surface for this model can be seen in Figure 7.10. As expected, the
decision surface is nonlinear and it classifies all training points correctly.

7.7 DISCUSSION

By considering the Lagrangian dual of maximum-margin classifiers we were able
to extend the classification algorithms from the linear case to the case where the
training data are not linearly separable. The key insight here is that in the Lagrangian
dual all data points in the input space appear in the context of dot products. By taking
advantage of the kernel trick we are able to replace these dot products with appropriate
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FIGURE 7.10 Visualization of the nonlinear decision surface of a support vector machine
constructed for the data set in Table 7.3.

kernel functions with implicit mappings into higher-dimensional feature spaces where
decision surfaces that appear to be nonlinear in the input space are again linear.

One of the interesting implications of kernel functions is that the kernel trick can be
applied to any linear classification algorithm whose data points appear in dot products.
This means that any linear classification algorithm with dot products can be extended
to the nonlinear case using the kernel trick. Consider, for example, the dual perceptron
learning algorithm depicted in Algorithm ??. Notice that all training data points
appear only in the dot product xj • xi . Applying our kernel trick would make this
dot product appear as k(xj , xi), where k is some appropriate kernel (see Table 7.2).
The only difficulty that remains before we can consider this algorithm a training
algorithm for a nonlinear classifier is the radius r . InAlgorithm ?? it is computed as the
maximum size of all training point vectors, |xi |. However, when we apply the kernel
trick, this should be computed as |�(xi)|, where � is the implicit transformation
due to the kernel function. This is a problem because in general we don’t know
exactly what � is. Here we compromise with respect to the original dual perceptron
algorithm and let r = 1. We also let the learning rate η be a user-defined constant
with a larger range than the original learning rate in order to compensate for the fact
that r = 1. The resulting kernel-perceptron algorithm is shown in Algorithm 7.1. A
variant of the kernel-perceptron algorithm is shown in Algorithm 7.2. Here the offset
term computation has been eliminated, b = 0, which means that decision surfaces in
feature space will have to go through the origin of the feature space.

It is assumed that we can always find kernel functions that have sufficiently com-
plex implicit transformations to allow decision surfaces in feature space to go through
the origin. It turns out that in many cases such a kernel can be found, and therefore
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Algorithm 7.1

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let η > 0
α ← 0
b ← 0
repeat

for i = 1 to l do
if sgn(

∑l
j=1 αj yj k(xj , xi ) − b) �= yi then

αi ← αi + 1
b ← b − ηyi

end if
end for

until sgn(
∑l

j=1 αj yj k(xj , xk) − b) = yk with k = 1, . . . , k

return (α, b)

Algorithm 7.2

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let b = 0
α ← 0
repeat

for i = 1 to l do
if sgn

∑l
j=1 αj yj k(xj , xi ) �= yi then

αi ← αi + 1
end if

end for
until sgn

∑l
j=1 αj yj k(xj , xk) = yk with k = 1, . . . , k

return (α, b)

this restriction does not pose a serious limitation on our ability to find appropriate
models. Furthermore, just because the decision surface goes through the origin of the
feature space does not necessarily imply that the decision surface goes through the
origin of the input space. Note that even though these perceptron training algorithms
will find decision surfaces in nonlinear data, the algorithms do not guarantee to find
optimal decision surfaces, since they will stop iterating as soon as they find a surface
that separates the training data.

EXERCISES

7.1 Given the objective function φ(x) = x2 − x and the constraint g(x) = x −
3 ≥ 0, solve the optimization min φ(x) subject to the constraint g(x) ≥ 0 using
the Lagrangian dual.

7.2 Show that given the Lagrangian

L(α, w, b) = φ(w, b)−
l∑

i=1

αigi(w, b),
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then

max
α

min
w,b

L(α, w, b) = L(α∗, w∗, b∗) = φ(w∗, b∗)

if the KKT conditions are satisfied.

7.3 Compute the derivatives given in equations (7.41) and (7.43).

7.4 Express the offset term b∗ given in equation (7.47) only in terms of the dual
variable α∗.

7.5 Formally derive the dual given in equation (7.48).

7.6 Construct an offset term b∗ similar to equation (7.56), but instead of using a
support vector from the +1 class, use a support vector from the −1 class.

7.7 Prove that in Figure 7.3 every point on the decision surface x • x = 1 in input
space lies on the decision surface w∗ • z = b∗ in feature space with w∗ =
(1, 1, 0) and b∗ = 1. Use the transformation � defined in equation (7.69).

7.8 Compute the derivatives given in equations (7.124), (7.126), and (7.128).

7.9 Justify that the constraint (7.129) can be rewritten as equations (7.131) and
(7.132).

7.10 Derive the Lagrangian dual in (7.130).

7.11 [challenging] Construct a formula for the offset term b∗ for soft-margin dual
classifiers similar to equation (7.137). But instead of considering only a single
support vector in the calculation, compute b∗ as the average of all offset terms
due to support vectors with Lagrangian multipliers in the range 0 < α∗

i < C.

7.12 Find a data set that represents a binary classification problem and construct a
C-classification support vector machine using either the WEKA or R imple-
mentation. Which kernel did you use to achieve reasonable accuracy? What
value of the cost constant C did you use? What were the effects of changing
the value of C?

7.13 [challenging] Implement the kernel-perceptron algorithm given in Algo-
rithm 7.1 in R and then train your perceptron with the training set given in
Table 7.3 using a kernel from Table 7.2. Does the kernel-perceptron construct
a decision surface that separates the two classes?

BIBLIOGRAPHIC NOTES

Joseph Lagrange created the Lagrangian multipliers to deal with constrained opti-
mization problems in the late eighteenth century. Karush in the 1930s [41] and later,
Kuhn and Tucker [49] extended this theory to inequality constraints. Anice tutorial on
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Lagrangian functionals and multipliers is [45]. Boyd and Vandenberghe [14] discuss
the Lagrangian dual in some detail.

Kernel methods were first introduced to the machine learning community by Aiz-
ermann et al. in 1964 [3]. However, these methods were not truly appreciated until
the seminal paper published by Boser et al. in 1992 [12]. Support vector machines
themselves in the formulation given here were introduced by Cortes and Vapnik in
1995 [22]. Our construction of canonical feature spaces follows closely a proof given
in [65]. Cortes and Vapnik introduced soft-margin classifiers in the context of support
vector machines in [22]. A nice overview of support vector machines with a more
geometric slant is [6]. This geometric interpretation is discussed even further in [5].

Kernel-perceptrons are discussed by Freund and Schapire [32] and Herbrich [38].
General kernel methods in the area of pattern recognition are discussed in [67].



“c08” — 2009/9/15 — 13:06 — page 133 — #1

CHAPTER 8

IMPLEMENTATION

In this chapter we discuss implementation of support vector machines. When we refer
to the implementation of support vector machines, we usually mean the implementa-
tion of the training algorithm that produces the necessary values for the Lagrangian
multipliers and the offset term for a support vector machine model. This is due to
the fact that beyond the values of the Lagrangian multipliers and the offset term,
the structure of the support vector machine model itself is otherwise fixed, with the
exception that the kernel function is a free parameter for both the model and the
training algorithm.

We start our implementation discussion by taking a look at a simple gradient ascent
optimization algorithm, also known as the kernel-adatron algorithm. This straight-
forward optimization technique solves the Lagrangian dual optimization problem for
support vector machines with some simplifying assumptions. We then take a look at
the use of quadratic programming solvers. The fact that data matrices associated with a
quadratic program for support vector machines grow quadratically with the size of the
training data limits the straightforward use of quadratic programming solvers in many
knowledge discovery projects. However, a technique called chunking which takes
advantage of the sparseness of the optimization problem associated with support vec-
tor machines (only a few training instances are actual support vectors) remedies this
situation and allows us to apply quadratic programming solvers to fairly large knowl-
edge discovery projects. We conclude the chapter with a discussion of sequential min-
imal optimization which has become the defacto standard implementation technique
of the Lagrangian dual optimization associated with support vector machines.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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8.1 GRADIENT ASCENT

Assume that we are given the training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1, −1}. (8.1)

We are interested in computing a classifier in the form of a support vector machine
model,

f̂ (x) = sgn

(
l∑

i=1

yiα
∗
i k(xi, x) − b∗

)
, (8.2)

using a training algorithm based on the Lagrangian dual

α∗ = argmax
α

φ′(α) = argmax
α

⎛
⎝ l∑

i=1

αi − 1

2

l∑
i=1

l∑
j=1

yiyjαiαj k(xi, xj )

⎞
⎠ , (8.3)

subject to the constraints,

l∑
i=1

yiαi = 0, (8.4)

C ≥ αi ≥ 0, (8.5)

with i = 1, . . . , l. The values C and k are free parameters and represent the cost
and the kernel function, respectively. The values α∗ and b∗ in the model are the
optima computed by the training algorithm. Even though the offset term b∗ does
not appear in the training algorithm directly, it can be computed from the support
vectors according to equation (??). We constrain the Lagrangian multipliers by the
cost constant C; this implies that the models we are interested in are soft-margin
classifiers (see Proposition ??).

Perhaps the most straightforward implementation of the Lagrangian dual optimiza-
tion problem (8.3) is by gradient ascent. The gradient of a differentiable function is a
vector composed of the partial derivatives of that function with respect to the dimen-
sions of the underlying vector space. Formally, let h(x) be a differentiable function
with x ∈ R

n; then the gradient of h is defined as

∇h =
(

∂h

∂x1
, . . . ,

∂h

∂xn

)
. (8.6)

We often write

∇ih = ∂h

∂xi

(8.7)
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for the ith component of ∇h with i = 1, . . . , n. When we evaluate the gradient at
some point y ∈ R

n, we obtain a vector in R
n that points in the direction of the largest

increase in the function at that point. The length of the vector represents the increase
of the function at that point. Formally, we have

∇h(y) =
(

∂h

∂x1
, . . . ,

∂h

∂xn

)
(y) =

(
∂h

∂x1
(y), . . . ,

∂h

∂xn

(y)

)
. (8.8)

We can also write this definition in our gradient component notation as

∇h(y) = (∇1h, . . . , ∇nh) (y) = (∇1h(y), . . . , ∇nh(y)) . (8.9)

The gradient is evaluated componentwise at the point y where each component is
computed as ∇ih(y).

In gradient ascent we take advantage of the gradient and use it to point the way
toward the maximum value of the function. Should the gradient become zero at a
particular point, we know that we are at a maximum because there is no further increase
in the value of the function at that point. To use gradient ascent as an optimization
procedure for some objective function, we pick a random starting point on the surface
of the objective function and then iteratively move along the surface of the function in
the direction of the gradient until the gradient evaluated at some point becomes zero.
Following is a sketch of the gradient ascent algorithm for our Lagrangian optimization
problem:

let η > 0
α ← 0
repeat

αold ← α

for i = 1 to l do
αi ← αi + η∇iφ

′(α)

end for
until α −αold ≈ 0
return α

We start our optimization with a vector α whose components have been set to zero,
αi = 0. That is, we initially assume that none of the training points are support
vectors. We then iterate over the training points, and at each iteration we update
the Lagrangian multipliers proportional to the gradient of the Lagrangian dual φ′
evaluated at the current point α,

αi ← αi + η∇iφ
′(α). (8.10)

Here η is the learning rate and ∇iφ
′(α) computes the ith component of the gradient

∇φ′ evaluated at point α. The algorithm continues to iterate until we have converged
on the maximum value. The maximum value is reached when the gradient is zero,
or in our case, the difference between the new and old values of α is approximately
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zero. Because the Lagrangian dual φ′ has a unique maximum (see Section ??) we are
guaranteed to find a solution for α provided that we pick the learning rate η small
enough.1 Typical values for η are in the interval [0, 1]. The version of gradient ascent
described here is called stochastic gradient ascent, since we use the components of the
gradient as soon as they become available during the iteration over the training points.

Algorithm 8.1

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let η > 0
let C > 0
let b = 0
α ← 0
repeat

αold ← α

for i = 1 to l do
αi ← min

{
C, max

{
0, αi + η − ηyi

∑l
j=1 yjαj k(xj , xi )

}}
end for

until α −αold ≈ 0
return (α, b)

8.1.1 The Kernel-Adatron Algorithm

There are two problems with the simple gradient ascent algorithm sketched above.
One is that we have treated our optimization problem as an unconstrained optimiza-
tion. That is, we ignored the constraints given in (8.4) and (8.5). The second is that
we have not addressed the computation of the optimal offset term b∗. By addressing
these two problems in the simple gradient ascent algorithm above, we obtain the
kernel-adatron algorithm.

Recall that the constraint (8.4) is due to optimization of the offset term [see equa-
tion (??)]. This constraint restricts the values of the components of α in such a way
that their linear combination has to be equal to zero. This constraint is impossible to
satisfy at each optimization step in an algorithm that updates only one Lagrangian
multiplier at a time. Consider that initially this constraint is satisfied trivially in our
algorithm by the fact that αi = 0 for i = 1, . . . , l. However, as soon as we modify the
first Lagrangian multiplier, this constraint is no longer satisfied. In fact, to maintain
constraint satisfaction at each step of the algorithm, we would need to modify at
least two Lagrangian multipliers simultaneously at each update. This insight is the
cornerstone of the sequential minimal optimization algorithm discussed below. Here
we take a different approach; rather than trying to optimize the offset term, we set it
to zero (i.e., we let b∗ = 0). Once we fix the value for the offset term the constraint
(8.4) disappears, since the offset term no longer needs to be optimized. This takes
care of the constraint (8.4) and the offset term.

1Specific theoretical bounds on η that guarantee convergence have been established (see [18]). Here we
treat η as a free parameter that needs to be set by the user.
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We are now left with the constraints (8.5), which limit the values of the Lagrangian
multipliers to values between zero and the cost constant C. These constraints are easily
implemented, however. We simply do not let the values of the components αi fall
below zero or grow larger than the constant C. We accomplish this by rewriting our
update rule for the gradient ascent (8.10) as follows:

αi ← min
{
C, max

{
0, αi + η∇iφ

′(α)
}}

. (8.11)

Here the max operator only admits values that are greater than or equal to zero, and
the min operator only admits values less than or equal to the constant C.

Now, to make our update rule more concrete, we differentiate the Lagrangian
dual φ′ with respect to αi , which gives us the following:

∇iφ
′(α) = ∂φ′

∂αi

(α) = 1 − yi

l∑
j=1

yjαj k(xj , xi). (8.12)

Plugging (8.12) into (8.11) gives us our rule:

αi ← min

⎧⎨
⎩C, max

⎧⎨
⎩0, αi + η − ηyi

l∑
j=1

yjαj k(xj , xi)

⎫⎬
⎭
⎫⎬
⎭ . (8.13)

The complete kernel-adatron training algorithm for a soft-margin classifier is given
in Algorithm 8.1. As expected, the algorithm is virtually identical to the original
gradient ascent algorithm, with the difference that the update rule clips the values of
the Lagrangian multipliers, and the algorithm returns a pair of values representing
the optimal values α∗ and b∗, with b∗ = 0 always.

It is interesting to note the similarities between the kernel-perceptron algorithm
given in Algorithm ?? and the kernel-adatron algorithm here. Both algorithms iterate
over the training data and use an incremental approach to update the component
values of the vector α. The big difference is that the kernel-perceptron algorithm stops
iterating as soon as it has found some decision surface, whereas the kernel-adatron
algorithm terminates when it has found the optimal decision surface.

Algorithm 8.2

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let C > 0
let Q be a l × l matrix with components Qij = yiyj k(xi , xj )

let Y be a 1 × l matrix with components Y1j = yj

let q be a constant vector with qi = 1
let u be a constant vector with ui = 0
let v be a constant vector with vi = C

α ← solve(Q, q, Y, u, v)

b ← compute according to equation (??)
return (α, b)
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8.2 QUADRATIC PROGRAMMING

Off-the-shelf optimization packages that handle quadratic optimization problems can
be used to implement support vector machines. In most cases these packages represent
optimization problems in the generalized form

α∗ = argmin
α

(
1
2αTQα − q •α

)
, (8.14)

subject to the constraints

Yα = 0, (8.15)

u ≤ α ≤ v. (8.16)

This generalized form of quadratic programming problems is very similar to the form
we considered in Section ?? for the solution of primal maximum-margin classifiers.
However, for the implementation of support vector machines it is important that the
optimization package supports both the equality constraints (8.15) and inequality
constraints (8.16).

The shape of the generalized objective function optimization (8.14) is very close to
the form we need to implement our Lagrangian dual optimization (8.3). The biggest
difference is that the generalized form is expressed as a minimization, whereas the
optimization of the Lagrangian dual is a maximization. However, applying iden-
tity (??) to optimization of the Lagrangian dual (8.3) gives us our Lagrangian dual
optimization in the necessary minimization format,

argmax
α

φ′(α) = argmin
α

(−φ′(α)
)

= argmin
α

⎛
⎝1

2

l∑
i=1

l∑
j=1

yiyjαiαj k(xi, xj ) −
l∑

i=1

αi

⎞
⎠ . (8.17)

If we assume that we have a training set with l observations as in (8.1), it is easy to
show that

1

2
αTQα − q •α = 1

2

l∑
i=1

l∑
j=1

yiyjαiαj k(xi, xj ) −
l∑

i=1

αi, (8.18)

where the matrix Q is an l × l matrix with components

Qij = yiyj k(xi, xj ) (8.19)

and the vector q has l components initialized to 1:

q = 1. (8.20)
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We often refer to the matrix Q as the kernel matrix since it consists of all possible
kernel values for a training set with l observations. Furthermore, if we let Y be a 1 × l

matrix with components

Y1i = yi, (8.21)

where (xi, yi) ∈ D, we can show that the generalized constraint (8.15) is equal to the
equality constraint (8.4) of our:

Yα =
l∑

i=1

yiαi . (8.22)

Recall that by default vectors are represented as a single column matrix. Finally, if we
let u = 0 and let vector v be a constant vector with vi = C, the generalized inequality
constraint (8.16) is equal to the inequality constraint (8.5),

ui ≤ αi ≤ vi, (8.23)

with i = 1, . . . , l. This shows that the generalized optimization problem can be
instantiated as our Lagrangian dual optimization problem.

We summarize this construction in Algorithm 8.2. Here the function solve is
assumed to be a quadratic programming solver that operates on the generalized repre-
sentation of an optimization problem according to (8.14), (8.15), and (8.16). Because
the solver satisfies the equality constraint, we can use the vector α to determine the
offset term [see equation (??)].

8.2.1 Chunking

The size of the kernel matrix Q above is a problem for the straightforward application
of quadratic programming solvers to the implementation of support vector models.
This matrix grows quadratically with the size of the training set. This poses problems
even for moderately sized knowledge discovery projects. Consider a training set with
50,000 instances. To implement a training algorithm for a support vector model using
a quadratic programming solver we would have to construct a kernel matrix with
2.5 billion elements. Not only will the memory requirements for a matrix of this
size exceed the capabilities of many machines, but the size of this kernel matrix also
implies that solution of the optimization problem will be very slow.

We can take advantage of the sparseness of the support vector model to reduce
the memory requirements of the kernel matrix. That is, we can take advantage of
the fact that typically very few instances in a training set are support vectors that
constrain the position of the decision surface. This sparseness allows us to view the
overall Lagrangian dual optimization problem as a succession of smaller optimization
problems, each tailored to find support vectors in a chunk of training data. The key
to this approach is that the position of the decision surface is determined completely
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Algorithm 8.3

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

let k > 0
α ← 0
Select a subset W of size k from D.
repeat forever

Solve the Lagrangian dual for W (update α accordingly).
Delete observations from W that are not support vectors.
b ← compute according to equation (??)
if all d ∈ D satisfy the KKT conditions [see equation (8.29)] then

return (α, b)

end if
Dk ← the k worst offenders in D of the KKT conditions
W ← W ∪ Dk

end repeat

by the support vectors, and all other observations in the training set can be removed
without changing this. We will see that the chunking algorithm makes repeated use
of this property.

The training algorithm based on chunking is shown in Algorithm 8.3. Here, the
constant k is the chunk size and the set W is often referred to as the working set. The
algorithm iterates over a succession of smaller optimization problems characterized
by the training observations in W . At each iteration the solution to the Lagrangian dual
optimization of W is used to estimate how far the overall optimization has progressed.
To accomplish this we discard points that are not support vectors in W , and the
remaining support vectors are used to construct a model. This model is then applied
to all observations in the training set. The algorithm terminates when the support
vectors in W define a model such that the KKT conditions are fulfilled for all training
observations. That is, we have converged on a global solution if all observations in
the training set satisfy the KKT conditions. Otherwise, the model is used to find the
training observations in D that violate the KKT conditions. As can be seen in the
algorithm, in the last step of the loop we identify the k worst offenders of the KKT
conditions. This is done by measuring how far away each training observation is from
satisfying the KKT conditions. This allows us to sort the offenders and extract the k

top offenders from this list. These top offenders are then added to the working set W ,
which now constitutes a new optimization problem for the next iteration.

The algorithm monitors the two complementarity conditions (??) and (??) for soft-
margin classifiers in order to detect global convergence. Rewriting these constraints
slightly gives us

αi

⎛
⎝yi

⎛
⎝ l∑

j=1

yjαj k(xj , xi) − b

⎞
⎠− 1 + ξi

⎞
⎠ = 0 (8.24)

and

(C − αi)ξi = 0 (8.25)



“c08” — 2009/9/15 — 13:06 — page 141 — #9

8.2 QUADRATIC PROGRAMMING 141

for all (xi, yi) ∈ D with i = 1, . . . , l. We don’t have direct access to the values of
the slack variables ξi in order to monitor the conditions as given. However, through a
case analysis of the Lagrangian multipliers αi for each training observation (xi, yi),
we can derive a set of rules that are implied by these conditions and that we can use
directly as convergence criteria.

1. Let αi = 0; then by (8.25) we have ξi = 0. From condition (8.24) we then
obtain

yi

⎛
⎝ l∑

j=1

yjαj k(xj , xi) − b

⎞
⎠ ≥ 1. (8.26)

That is, since αi = 0 and ξi = 0, the condition (8.24) is fulfilled as long as the
observation (xi, yi) lies on or above its corresponding supporting hyperplane.

2. Let 0 < αi < C. Again, condition (8.25) implies that ξi = 0. By condition
(8.24) we have

yi

⎛
⎝ l∑

j=1

yjαj k(xj , xi) − b

⎞
⎠ = 1. (8.27)

Since αi �= 0 and αi �= C as well as ξi = 0, the observation (xi, yi) is a support
vector positioned directly on its corresponding supporting hyperplane.

3. Let αi = C. Constraint (8.25) then implies that ξi > 0. Using equation (8.24)
gives us the following condition for bound support vectors:

yi

⎛
⎝ l∑

j=1

yjαj k(xj , xi) − b

⎞
⎠ ≤ 1. (8.28)

Since αi = C and ξi > 0, the instance (xi, yi) is a support vector below its
corresponding supporting hyperplane.

Putting this all together gives us the following conditions that we need to monitor in
Algorithm 8.3 to detect global convergence:

yi

⎛
⎝ l∑

j=1

yjαj k(xj , xi) − b

⎞
⎠

⎧⎪⎨
⎪⎩

≥ 1 if αi = 0

= 1 if 0 < αi < C

≤ 1 if αi = C

(8.29)

for all (xi, yi) ∈ D with i = 1, . . . , l. One way to view these conditions is as a
consistency test: If the values of the Lagrangian multipliers are consistent with the
locations of the corresponding training points vis-à-vis a decision surface, we have
found a global solution.
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Algorithm 8.4

let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n × {+1, −1}

α ← 0
repeat

1. Pick two points, xj and xk in D together with their
respective Lagrangian multipliers, αj and αk , where j �= k.

2. Optimize the subproblem max φ′(αj , αk) (keeping the other Lagrangian
multipliers constant).

3. Compute b.
until the KKT conditions hold for all d ∈ D

return (α, b)

To see that chunking reduces the size of sparse optimization problems, consider
that the algorithm breaks the overall problem into successive smaller optimization
problems based on the working set W of size k. If we pick k large enough, the size
of W will stay roughly constant,

|W ∪ Dk| ≈ k. (8.30)

That is, the size of W after removing all the training observations that are not support
vectors is negligible compared to the value of k. A typical value for k is 500, which
implies that each optimization subproblem uses a kernel matrix on the order of 250,000
elements. This is significantly smaller than the 2.5 billion elements in our knowledge
discovery project with 50,000 training observations from the beginning of this section.
It is interesting to observe that if our sparseness assumption does not hold, that
is, almost all training points are considered to be support vectors, the algorithm
degenerates into the original overall optimization problem. This is due to the fact that
for a solution that is not sparse, very few nonsupport vectors can be removed from
W at each iteration, and therefore

|W ∪ Dk| � k. (8.31)

This means that the working set W will grow to the size of D after a sufficient number
of iterations. However, most real-world data sets give rise to sparse solutions, and
therefore the latter is not of great concern. Furthermore, the chunking algorithm has
been shown to converge in a robust fashion in real-world situations.

8.3 SEQUENTIAL MINIMAL OPTIMIZATION

Sequential minimal optimization (SMO) is a fast and elegant optimization algorithm
that computes a solution to the Lagrangian dual optimization problem in (8.3) with
constraints (8.4) and (8.5). This algorithm works similar to the chunking algorithm
of Section 8.2 in that it breaks the global optimization problem down into several
smaller optimization problems, taking advantage of the fact that the smallest possible
working set for the Lagrangian dual optimization problem is a set of two training
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points. As mentioned before, updating a single Lagrangian multiplier does not work
since it is not guaranteed that the constraint (8.4) is satisfied at every step.

Algorithm 8.4 outlines the optimization. As can be seen from the algorithm sketch,
the computation first picks two training points, optimizes this working set of two
points, and then checks if the KKT conditions given in (8.29) hold for all training
points. If so, the algorithm terminates. Otherwise, it will continue to iterate. During
the computation, if possible, the first training point is always picked such that it
does satisfy the KKT conditions, and the second point is always picked in such a
way that it is the most serious violator of the KKT conditions at that point of the
optimization. That is, a viable Lagrangian multiplier is always optimized against
a nonviable Lagrangian multiplier. With this it can be shown that the algorithm is
guaranteed to converge.

What is remarkable and sets this algorithm apart from previous implementations
is the fact that the optimization subproblem over the two training instances can be
solved analytically, and therefore a call to a computationally expensive optimization
library is not necessary. Consider the subproblem of our Lagrangian dual optimization
using the Lagrangian multipliers αj and αk:

max
αj ,αk

φ′(αj , αk), (8.32)

subject to the constraints:

yjαj + ykαk = δ, (8.33)

C ≥ αj , αk ≥ 0, (8.34)

with j, k = 1, . . . , l and j �= k. We can compute the constant δ of the equality
constraint as

δ = −
l∑

i=1,i �=j,i �=k

yiαi . (8.35)

That is, the values of αj and αk are constrained by all the other Lagrangian multipliers
of the global optimization problem. We can simplify this optimization problem even
further by rewriting constraint (8.33) as,2

αk = yk(δ − yjαj ). (8.36)

Plugging equation (8.36) into equation (8.32) results in

max
αj ,αk

φ′(αj , αk) = max
αj

φ′ (αj , yk(δ − yjαj )
) = max

αj

ψ(αj ). (8.37)

21/yj = yj for yj ∈ {+1, −1}.
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That is, our two-variable optimization problem becomes an optimization problem
over the single variable αj . We represent the objective function of this single-variable
optimization problem as ψ(αj ). Furthermore, φ′(αj , αk) is a function with a unique
global maximum where αi and αk lie on the unique saddle point of the original
Lagrangian optimization problem. This means that ψ(αj ) also has a unique maximum
and we can find it by differentiating ψ with respect to αj ,

dψ

dαj

= 0, (8.38)

and solving for αj . Once we have a value αj we can use equation (8.36) to find a
value for αk . Some care needs to be taken that this optimization respects the inequality
constraints (8.34). There are many more details to this algorithm that make it as
efficient and effective as it is, but these details are beyond the scope of the discussion
here. Refer to the bibliographic notes for pointers to the relevant literature.

8.4 DISCUSSION

We have discussed three increasingly difficult implementation strategies for support
vector machine training algorithms. All three strategies share the characteristic that
they represent incremental improvements of the global optimization problem until
the global maximum is reached. Of the three strategies discussed, the quadratic pro-
gramming solution lends itself to a straightforward implementation of support vector
machines, and SMO is the most popular. SMO is the foundation of many support vec-
tor machine packages available on the Web. It is also the foundation of the support
vector machine implementation in WEKAand in the R package that we use. Today, the
implementation of support vector machines remains an active area of research. With
respect to SMO, much of the research concentrates on the selection of appropriate
Lagrangian multipliers to optimize.

Algorithm 8.5

let η > 0
x ← 0
repeat

xold ← x

x ← x + η∇h(x)

until x − xold ≈ 0
return x

EXERCISES

8.1 Let the function h(x) = 6 − (x1 − 2)2 − (x2 + 1)2 with x = (x1, x2) ∈ R
2 be

the objective function in the unconstrained optimization problem

x∗ = argmax
x

h(x).
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(a) Compute the gradient ∇h.

(b) Compute the value ∇h(0).

(c) Implement the gradient ascent algorithm given in Algorithm 8.5 in R and
use it to compute the optimum x∗.

(d) Convert the gradient ascent algorithm (Algorithm 8.5) into a stochastic
gradient ascent algorithm. Implement it in R and compare the results to
the simple gradient ascent in part (c).

8.2 Derive equation (8.12).

8.3 Show that equation (8.18) holds for the values of Q and q given in the text.

8.4 Implement Algorithm 8.1 in R. Test the implementation on your favorite data
set using an appropriate kernel from Table ??.

8.5 Implement Algorithm 8.2 in R using the quadratic programming solver ipop
available in the package kernlab. Test the implementation on your favorite data
set using an appropriate kernel from Table ??.

8.6 [challenging] Implement Algorithm 8.3 in R using the quadratic programming
solveripop available in the package kernlab. Test the implementation on a data
set that has at least 5000 instances, using an appropriate kernel from Table ??.

8.7 [challenging] Research and fill out the details for SMO given in Algorithm 8.4.
Then implement the algorithm in R.

BIBLIOGRAPHIC NOTES

Any college-level calculus book will have a discussion of the gradient of a function.
We based our discussion here on a book by Kreyszig [48]. Gradient ascent opti-
mization methods are discussed in [14] and [69]. Again, any introductory book on
mathematical optimization will have a discussion on gradient ascent methods. The
kernel-adatron was introduced by Friess et al. in [33]. Here we present a simpler
version of this algorithm as given in [67]. Our chunking algorithm was first sug-
gested by Vapnik in [74]. Another, more sophisticated chunking algorithm is given
by Osuna et al. in [57]. There are many industrial-strength optimization packages
available that can be used to solve the convex optimization problem due to support
vector machines. Two packages that have been used routinely in this context are
LOQO (http://www.princeton.edu/∼rvdb/loqo) and MINOS (http://www.sbsi-sol-
optimize.com/asp/sol_product_minos.htm). Platt proposed his sequential minimal
optimization algorithm in [58]. There is a lot of information with respect to SMO on
his Website (http://research.microsoft.com/∼jplatt/smo.html). Our own presentation
of SMO was inspired by the machine learning class notes of Andrew Ng at Stan-
ford (http://www.stanford.edu/class/cs229) and Mak’s thesis [50]. LIBSVM [20] is a
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very popular C++ implementation of the SMO algorithm. More recently, advanced
selection heuristics for the Lagrangian multipliers have been proposed for SMO (e.g.,
[30]). Anice summary of different implementations of support vector machines in R is
a paper by Karatzoglou et al. [40]. A recent collection of papers dealing with support
vector machine implementations for very large knowledge discovery projects is [13].
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CHAPTER 9

EVALUATING WHAT HAS
BEEN LEARNED

The data universes associated with most knowledge discovery projects are too large
to be considered as training sets for support vector machines. It is therefore necessary
to use subsets of the data universes as training sets. As soon as we use only a subset
of a data universe as a training set, we are faced with the question: How does our
model perform on instances of the data universe that are not part of the training set?
In this chapter we introduce techniques that will allow us to quantify the performance
of our models in the context of this uncertainty.

We begin this chapter with an introduction to simple performance metrics for
classification models. We then introduce the confusion matrix, which gives us a
more detailed insight into model performance. In particular, the confusion matrix
characterizes the types of errors that models make. Based on the confusion matrix, we
define some additional performance metrics that are commonly used when evaluating
classification models.

With these metrics and tools in hand, we discuss formal model evaluation. In
particular, we discuss the difference between training and test error. We show that
we can use test error as a way to estimate model parameters which promise the best
model performance on instances of the data universe that are not part of the training
set. The testing techniques we discuss include the hold-out method and N -fold cross-
validation. Model evaluation is not complete without a discussion of the uncertainty
of the estimated model performance. We show how to construct confidence intervals
that characterize this performance uncertainty using the bootstrap. Confidence inter-
vals also allow us to draw conclusions with respect to the statistical significance of
performance differences between models. We conclude the chapter with a discussion
of these techniques applied to models within WEKA and R.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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9.1 PERFORMANCE METRICS

Given a model and an appropriate labeled data set, perhaps the most intuitive metric
for model performance is the error of a model. The error is defined as the number of
mistakes that the model makes on the data set divided by the number of observations
in the data set:

err = number of mistakes

total number of observations
. (9.1)

To define the model error formally, we introduce the 0–1 loss function. This function
compares the output of a model for a particular observation with the label of this
observation. If the model commits a prediction error on this observation, the loss
function returns a 1; otherwise, it returns a 0. Formally, let (x, y) ∈ D be an observa-
tion where D ⊆ R

n × {+1, −1} and let f̂ : R
n → {+1, −1} be a model. Then we

define the 0–1 loss function L : {+1, −1} × {+1, −1} → {0, 1} as

L
(
y, f̂ (x)

)
=

{
0 if y = f̂ (x),

1 if y �= f̂ (x).
(9.2)

The loss function accepts a pair of labels and returns 0 if the labels agree and 1 if the
labels are not the same. With this we can rewrite the expression of the model error
in a formal fashion. Let D = {(x1, y1), . . . , (xl, yl)} ⊂ R

n × {+1, −1}, and let the
model f̂ and the loss function L be as defined above. Then the model error is

errD[f̂ ] = 1

l

l∑
i=1

L
(
yi, f̂ (xi)

)
, (9.3)

where (xi, yi) ∈ D. The model error is computed by summing the number of errors
committed by the model on the data set D and dividing by the size of the data set D.
In other words, the model error is the average loss over the data set D. Notice that
here we are more specific with naming the model error. The subscript D indicates that
we use the data set D to compute the error. We have also parameterized the error with
respect to the model. The notation errD[f̂ ] reads as “the error of model f̂ computed
on data set D.”

We can also characterize the performance of a model in terms of its accuracy,

acc = number of correct predictions

total number of observations
. (9.4)

Again, we can use the 0–1 loss function to define this metric more concisely,

accD[f̂ ] = 1

l

(
l −

l∑
i=1

L
(
yi, f̂ (xi)

))
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= 1 − 1

l

l∑
i=1

L
(
yi, f̂ (xi)

)
= 1 − errD[f̂ ]. (9.5)

Since the accuracy and the error of a model are related by the simple identity above,
we can always compute one from the other given either the model accuracy or the
model error.

As an example of the metrics above, consider a model ĝ that commits five pre-
diction errors when applied to a data set Q of length 100. We can compute the error
using (9.3),

errQ[ĝ] = 1

100
(5) = 0.05.

We can compute the accuracy of the model using (9.5),

accQ[ĝ] = 1 − 0.05 = 0.95.

It is customary to express the error and the accuracy as percentages. Therefore, here
we have a model error of 5% and an accuracy of 95%, respectively.

9.1.1 The Confusion Matrix

When dealing with a binary classification problem, there are four possible outcomes
when a model is applied to an observation. Let (x, y) ∈ R

n × {+1, −1} be an obser-
vation and let f̂ : R

n → {+1, −1} be a model. Then we have the following four
possibilities when the model is applied to the observation:

f̂ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if y = +1, called the true positive,

−1 if y = +1, called the false negative,

+1 if y = −1, called the false positive,

−1 if y = −1, called the true negative.

(9.6)

If the model output f̂ (x) matches the label y of the observation, we have either a
true positive or a true negative outcome. If the model output does not match the label
observed, we have either a false positive or a false negative outcome, both of which
are error outcomes.

In many situations it is important to distinguish these two error outcomes when
evaluating model performance. Consider the following clinical example. Suppose
you are developing a model that, given the parameters of a tissue biopsy, will predict
whether or not this tissue is cancerous. Now, from the discussion above, your model
can commit two types of errors. It can commit a false positive error; that is, it predicts
that the tissue sample is cancerous when it is not. It can also commit a false negative
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TABLE 9.1 Layout of a Confusion Matrix

Predicted (ŷ)

Observed (y) +1 −1

+1 True positive (TP) False negative (FN)
−1 False positive (FP) True negative (TP)

error. Here the model predicts that the tissue sample is not cancerous when in reality
it is. In a clinical setting the latter is a much more serious error than the former since a
false negative implies that the patient will remain untreated, whereas a false positive
usually results in more tests until the false positive error is detected and the patient is
discharged appropriately.

When analyzing model performance in these types of situations we would like
to understand the different types of errors that our model commits. Unfortunately,
the simple performance metrics that we just discussed, based on the 0–1 loss func-
tion, do not allow us to distinguish these errors. However, a representation of model
performance called the confusion matrix does distinguish between the two types of
errors and is therefore the tool of choice when analyzing model performance where
one or the other type of error can have serious implications.

A confusion matrix for a binary classification model is a 2 × 2 table that displays
the labels observed against the labels predicted for a data set. One way to visualize the
confusion matrix is to consider that applying a model f̂ to an observation (x, y) will
give us two labels. The first label, y, is due to the observation, and the second label,
ŷ = f̂ (x), is due to the prediction of the model. That is, for each observation we
obtain the pair of labels (y, ŷ). This pair of labels specifies the coordinates of each
observation within the confusion matrix: The first label specifies the row of the matrix
and the second label specifies the column of the matrix. Therefore, an observation
with the label pair (y, ŷ) will be mapped onto a confusion matrix as given in Table 9.1
as follows:

(+1, +1) �→ TP,
(−1, +1) �→ FP,
(+1, −1) �→ FN,
(−1, −1) �→ TN.

True positive predictions are mapped into the top left corner of the confusion matrix,
and true negative predictions are mapped into the bottom right corner of the matrix.
False positives and false negatives are mapped into the bottom left and top right cor-
ners of the matrix, respectively. For a model that does not commit any errors, we
see that all predictions will be mapped onto the top left and bottom right fields. For
models that do commit errors, we see that the errors will be mapped into the confusion
matrix according to the type of error the model commits.

Table 9.2 shows a confusion matrix of a model applied to a set of 200 observations.
On this set of observations the model commits 7 false negative errors and 4 false
positive errors in addition to the 95 true positive and 94 true negative predictions.
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TABLE 9.2 Typical Confusion Matrix for a Model
Applied to a Particular Set of Observations

Predicted

Observed +1 −1

+1 95 7
−1 4 94

If this were a model for the clinical example above, the fact that the model commits
almost twice as many false negative errors than false positive errors would be cause for
concern. Here it would be advisable to build a new model with more balanced errors.
Only the confusion matrix is able to provide this type of insight. The simple model
error metric discussed above would give us the overall error the model commits as

err = 1

200
(4 + 7) = 0.055.

A model that commits a 5.5% prediction error seems like a reasonable model. How-
ever, in the context where model errors can have serious consequences, we will have
to look more closely at the types of errors that a model commits.

Given a confusion matrix of a model as in Table 9.1, we can compute our model
error and accuracy directly from the matrix as

err = FP+ FN

TP+ TN + FP+ FN
(9.7)

and

acc = TP+ TN

TP+ TN + FP+ FN
, (9.8)

respectively. In addition to these metrics we have two other metrics that are commonly
used to characterize model performance: sensitivity and specificity. The sensitivity of
a model is defined as the true positive predictions divided by the sum of all positive
observations,

sensitivity = TP

TP+ FN
. (9.9)

The specificity of a model is defined as the true negative predictions divided by the
sum of all negative observations,

specificity = TN

TN + FP
. (9.10)

Asensitivity of 1.0 for a model means that the model predicts all positive observations
correctly: in other words, the model does not commit any false negative predictions.
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Aspecificity of 1.0 for a model means that the model predicts all negative observations
correctly; in other words, the model does not commit any false positive predictions.

Going back to the confusion matrix of our model given in Table 9.2, we can
compute the metrics as follows:

err = 4 + 7

95 + 94 + 4 + 7
= 0.055,

acc = 95 + 94

95 + 94 + 4 + 7
= 0.945,

sensitivity = 95

95 + 7
= 0.93,

specificity = 94

94 + 4
= 0.96.

9.2 MODEL EVALUATION

One way to construct a model is to select the model parameters such that the model
classifies as many training set observations correctly as possible. Typically, this pro-
cess takes several iterations as we refine the parameters in order to obtain the best
possible model performance. This iterative model evaluation process stops when we
obtain a model with a satisfactory performance. We touched upon this topic briefly
in Section ?? in the context of feature search. To make our discussion more concrete,
we assume that

D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1, −1} (9.11)

represents our training set for the remainder of the chapter.
We need to introduce some additional notation to formalize our model evaluation

process. Recall that soft-margin support vector machine models have several free
parameters that need to be set by the user. These free parameters include the cost
constant and the kernel function, with its corresponding parameters (for details on
various kernels, see Table ??). Therefore, we formally represent a support vector
machine model with its free parameters and its training set D as

f̂D[k, λ, C](x) = sgn

(
l∑

i=1

αC,iyik[λ](xi, x) − b

)
, (9.12)

where (xi, yi) ∈ D. The notation f̂D[k, λ, C] denotes a model f̂ that is parameterized
over the kernel function k with its corresponding parameters λ and the cost constant C.
In addition, the subscript D indicates that the model was trained on set D. Notice that
this parameterized model still takes an element of the data universe as an argument,
f̂ [k, λ, C](x), and returns a +1 or −1 label. On the right side of the identity (9.12),
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we see how the free parameters are employed within the model. As expected, we see
the kernel function k parameterized over its own parameters λ. The notation αC,i is
intended to show that the values of the Lagrangian multipliers are dependent on the
precise value of the user-defined cost constant C. Recall that the training algorithm
has to obey the constraints 0 ≤ αi ≤ C. Therefore, the values of the Lagrangian
multipliers depend on the cost constant. For convenience we make this dependence
explicit with our notation.

With this notation we can formally define the model error as follows: The error of
model f̂D[k, λ, C] computed on the training set D according to equation (9.3) is

errD
[
f̂D[k, λ, C]

]
= 1

l

l∑
i=1

L
(
yi, f̂D[k, λ, C](xi)

)
, (9.13)

where (xi, yi) ∈ D. That is, the model error errD[f̂D[k, λ, C]] is the average loss
of model f̂D[k, λ, C] over the data set D. Since we use the training set D for both
the construction of the model f̂D[k, λ, C] and the computation of the model error,
we refer to this as the training error. As mentioned above, when performing model
evaluation we try to find a set of model parameters that minimize the training error.
That is, we express the model evaluation process as the optimization

min
k,λ,C

errD
[
f̂D[k, λ, C]

]
= min

k,λ,C

1

l

l∑
i=1

L
(
yi, f̂D[k, λ, C](xi)

)
. (9.14)

This equation states that we optimize over the model parameters such that the training
error is minimized. Figure 9.1 illustrates the relationship between the training error

Model complexity

low

low

Error

high

high

FIGURE 9.1 Typical training error curve for support vector machines.
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and the possible models for a typical training set. The horizontal axis represents sup-
port vector models governed by the three model parameters k, λ, and C. These three
model parameters control the complexity of the models. For example, we consider
a model with a linear kernel a low complexity model because of its limited ability
to model complex class boundaries. On the other hand, we consider a model with a
high-degree polynomial kernel or a model based on a Gaussian kernel to be a com-
plex model because of its ability to model complex class boundaries. Low-complexity
models appear on the left side of the horizontal axis; high-complexity models appear
on the right. The training error is mapped onto the vertical axis. Notice that the train-
ing error decreases with the growing complexity of the models. That is, the more
complex a model is, the better it can model individual observations in the training
data, and the fewer mistakes it makes. Here the error curve is depicted in an idealized
fashion. In real knowledge discovery projects the curve would exhibit many local
maxima and minima.

For most training sets it is possible to find optimal model parameters k•, λ•, and C•
such that the training error is close to zero:

min
k,λ,C

errD
[
f̂D[k, λ, C]

]
= errD

[
f̂D[k•, λ•, C•]

]
≈ 0. (9.15)

This would represent an ideal situation if our training set D were a perfect represen-
tation of the corresponding data universe. But unfortunately, training data sets are
never perfect representations of the corresponding data universes since they typically
consist of only a small fraction of a data universe. Therefore, the fact that we can
reduce the training error to zero is meaningless since it does not allow us to draw any
conclusions with respect to the performance of the model over the remaining data
universe.

Besides the fact that training sets represent only a small fraction of the overall
underlying data universes, there are a number of other errors that can pollute the
construction of training data. The first source of errors is due to a sampling bias in the
sense that when we construct a subset of the data universe for our training set, it is
possible that we will miss some telling examples. A second source of errors is due to
noise when observing the labels for the training set. Here the target function produces
an erroneous label for an instance while constructing our training set. Consider a
customer credit rating database where the field that indicates whether or not a customer
is creditworthy might be corrupted due to a clerical or a software error. A third source
of errors are accidental misrepresentations of the sample points in the training set. For
example, in a database you might have an age of a person represented as a negative
number due to a data entry problem. Obvious errors like this can be fixed by diligent
data quality inspections; however, more subtle representation errors are much more
difficult, if not impossible, to find and correct and therefore show up as noise in the
final training set.

Given that training sets are imperfect representations of the underlying data
universes, the phenomenon of being able to minimize the training error is called over-
fitting. An overfitted model is a perfect model of the training set; that is, it is a model
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with a small or zero training error. In an overfitted model, much of the complexity is
due to possible sampling biases and noise in the training data. This additional model
complexity can lead to classification errors when the model is applied to instances in
the data universe that are not part of the training set. This means that overfitted models
have a limited generalization capability. In the following sections we look at some
testing techniques that allow us to quantify the performance of a model more pre-
cisely. Most important, these testing techniques allow us to draw conclusions about
the performance of a model with respect to the overall data universe by limiting the
effects that training data noise and sampling bias have on the model evaluation pro-
cess. Furthermore, these techniques allow us to quantify the uncertainty with which
a training set acts as a representation of the underlying data universe.

9.2.1 The Hold-Out Method

Perhaps the simplest testing technique that avoids overfitting is the hold-out method.
Here we assume that the training data is the data universe. We then split the training
data into two parts: one that we actually use for training and one that we reserve
(“hold-out”) for additional testing. In this way we still have a training set that is a
subset of the data universe but we now also have a set of instances that are reserved for
testing purposes only, and we can view these as representatives of the data universe
at large. The importance of these reserved test observations is that they allow us to
quantify the generalization ability of our model by measuring the model error on
these test observations. In other words, by having a separate test set we can measure
whether overfitting is limiting a model’s generalization abilities. We call the model
error computed on the test set the test error.

Let us formalize these ideas. We let D be our original training set as defined in
(9.11). According to what we said above, we split this data set into two parts: a training
set P and a test set Q such that

D = P ∪ Q and P ∩ Q = ∅. (9.16)

The training error on P given some model f̂P [k, λ, C] is computed using (9.3) as

errP
[
f̂P [k, λ, C]

]
= 1

|P |
∑

(xi ,yi )∈P

L
(
yi, f̂P [k, λ, C](xi)

)
, (9.17)

where |P | denotes the size of set P . As before, the training error is the model error
computed on the training set of the model, and we indicate this by giving both the
model and the error the same subscript, P . The optimal training error is computed as
the optimization problem

min
k,λ,C

errP
[
f̂P [k, λ, C]

]
= errP

[
f̂P [k•, λ•, C•]

]
. (9.18)
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Here the optimal training error is obtained with the model f̂P [k•, λ•, C•]. Conversely,
the test error on Q given some model f̂P [k, λ, C] is computed using (9.3) as

errQ
[
f̂P [k, λ, C]

]
= 1

|Q|
∑

(xi ,yi )∈Q

L
(
yi, f̂P [k, λ, C](xi)

)
. (9.19)

The error is indexed by the test set Q and the model is indexed by the training set
P . More precisely, to obtain the test error we use a model trained on P to predict the
observations in Q and compute the fraction of errors the model commits on Q. The
optimal test error is computed as an optimization using Q as the test set,

min
k,λ,C

errQ
[
f̂P [k, λ, C]

]
= errQ

[
f̂P [k∗, λ∗, C∗]

]
. (9.20)

The optimal test error is achieved by some model f̂P [k∗, λ∗, C∗].
As noted above, the model f̂P [k•, λ•, C•] gives the smallest training error, and

the model f̂P [k∗, λ∗, C∗] gives the smallest test error. In general, it holds that the
parameters k• �= k∗, λ• �= λ∗, and C• �= C∗. This implies that the model that min-
imizes the training error is different from the model that minimizes the test error.
This can be seen in Figure 9.2, which displays the characteristic error curves associ-
ated with the training and test errors. As before, we see that the training error grows
smaller with the rising complexity of the models. However, the test error exhibits very
different trends. Starting with low-complexity models on the left, the test error will
typically first drop with an increase in model complexity and then at a certain point
it will start to increase with the complexity of the model. We mark the turnaround

Model complexity

E
rr

or

high

high

Test error
Training error

FIGURE 9.2 Error curves typical for support vector machines.
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point with the optimal test error model f̂P [k∗, λ∗, C∗] in the graph. This is also pre-
cisely the point where the models that minimize the training error start to overfit.
That is, models with a complexity greater than the optimal model f̂P [k∗, λ∗, C∗] will
do poorly on the test set but will do increasingly better on the training set. Notice
that our optimal training error model f̂P [k•, λ•, C•] is far to the right of the test
error minimum, indicating that it overfit the training data. This overfitting mani-
fests itself in the poor test error performance of this model. This poor performance
is due to the fact that the greater complexity of overfitting models allows them to
model structure in the training data that is not present in the test set. This added
complexity, however, prevents these models from generalizing well to instances in
the test set.

Because the separate test set can be considered a representation of instances in the
data universe at large, the performance of the model on the test set allows us to draw
conclusions about the model performance on the overall data universe. That is, the
test set allows us to quantify the generalization ability of a model in the presence of
the error sources discussed in Section 9.1. In summary, rather than trying to minimize
the training error when evaluating model performance, we want to minimize the test
error. Minimizing the test error gives us a more realistic assessment as to how the
model will perform on the underlying data universe.

9.2.2 The Leave-One-Out Method

It is interesting to observe that the quality of the test error estimate errQ of
Section 9.2.1 depends greatly on the random split of the data set D into a training
set and a test set. A poorly executed split can introduce biases such as the extreme
case where all positive examples are in the training set and all negative examples are
in the test set.

One way to mitigate the bias of the random split of D is to perform the split-train
test cycle multiple times. A straightforward way to accomplish this is by splitting the
data set D of size l into l partitions of size 1 such that

D = Q1 ∪ Q2 ∪ · · · ∪Ql−1 ∪ Ql (9.21)

and

Qi ∩ Qj = ∅, (9.22)

where Qi = {(xi, yi)} and Qj = {(xj , yj )} for i, j = 1, . . . , l and i �= j . Each par-
tition Qi is used systematically for testing exactly once, whereas the remaining
partitions are used for training. Let Pi = D − Qi be the training set with respect
to the test partition Qi with i = 1, . . . , l; then we can compute the error for each test
partition as

errQi

[
f̂Pi

[k, λ, C]
]

= L
(
yi, f̂Pi

[k, λ, C](xi)
)

, (9.23)
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where f̂Pi
[k, λ, C] is the model trained on data set Pi with parameters k, λ, and C.

The test error errQi
is computed as the loss over the single element in the test partition

Qi . As you might have guessed, the leave-one-out method got its name from the fact
that we train l models on training sets of size l − 1.

Once each of the l partitions has been used for testing, we can compute the leave-
one-out error (LOOE) as the average error over all partitions,

LOOED[k, λ, C] = 1

l

l∑
i=1

errQi

[
f̂Pi

[k, λ, C]
]
. (9.24)

Note that the leave-one-out error, LOOED[k, λ, C], is now an error estimate only in
terms of the model parameters, not the models themselves, since in general we have
f̂Pi

[k, λ, C] �= f̂Pj
[k, λ, C] for any i, j = 1, . . . , l and i �= j . That is, models with

the same parameters but trained on different data sets are rarely the same. However,
the set of parameters that minimizes the leave-one-out error over all partitions,

(k∗, λ∗, C∗) = argmin
k,λ,C

LOOED[k, λ, C] , (9.25)

can be considered to be an optimal parameter set giving rise to the optimal model
f̂D[k∗, λ∗, C∗]. This model is constructed by training it on the entire data set D using
the optimal leave-one-out parameter set. It might be surprising that we use the original
training data D in order to construct the optimal model. However, we do not use D to
compute the model parameters. The model parameters were computed using separate
training and test sets, and therefore there is no danger of overfitting.

We have achieved our goal of minimizing the bias of the single split in the hold-out
method by splitting the data in all possible ways. This limits the effects of the bias
due to any particular split of the data. We also minimized the possibility of a bias by
maximizing the amount of training data available at any particular split: We remove
only one element at a time for testing. Unfortunately, a closer look at (9.24) reveals
that to calculate the leave-one-out error for any particular set of parameters, we will
have to construct l models. This means that for real-world data sets containing several
thousand to several million observations, we would have to build as many models as
there are observations in the data set. Considering that in a typical model evaluation
cycle we would evaluate tens to hundreds of different sets of parameters, it is clear
that this approach is impractical for all but the smallest knowledge discovery projects.

9.2.3 N-Fold Cross-Validation

A good compromise between the potential bias of the hold-out method and the com-
putational complexity of the leave-one-out method is N -fold cross-validation. Here
we split the data set D into N partitions or folds with N� l such that

D = Q1 ∪ Q2 ∪ · · · ∪QN−1 ∪ QN (9.26)
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and

Qi ∩ Qj = ∅, (9.27)

with |Qi | = |Qj | = l/N for i, j = 1, . . . , N and i �= j . Similar to the leave-one-out
method, we will use each fold for testing exactly once, with the remaining folds used
to train the models. Let Qi be a fold of the data set D; then we can construct our
corresponding training set as

Pi = D − Qi (9.28)

for i = 1, . . . , N . We can compute the error of some fold Qi as

errQi

[
f̂Pi

[k, λ, C]
]

= 1

|Qi |
∑

(xj ,yj )∈Qi

L
(
yj , f̂Pi

[k, λ, C](xj )
)

, (9.29)

where f̂Pi
[k, λ, C] is the model trained on data set Pi with parameters k, λ, and C. In

cross-validation each fold has more than one element; therefore, the error is computed
as the average loss over this fold.

We compute the cross-validated error (CVE) of the parameter set k, λ, and C as
the average over the individual fold errors:

CVED[k, λ, C] = 1

N

N∑
i=1

errQi

[
f̂Pi

[k, λ, C]
]
. (9.30)

Similar to the leave-one-out error, the cross-validated error is computed over the
parameter set, and the models themselves are part of the individual fold error
computations. We find the optimal parameter set by minimizing the cross-validated
error,

(k∗, λ∗, C∗) = argmin
k,λ,C

CVED[k, λ, C] , (9.31)

and the optimal model f̂D[k∗, λ∗, C∗] can then be constructed using the full data
set D.

Note that in N -fold cross-validation we only need to construct N models for the
evaluation of a single parameter set, in contrast to |D| models in the leave-one-out
method. This makes this approach computationally tractable even for large data sets.
It has been shown that cross-validation with values for N of 3, 5, and 10 factors out
biases very effectively.
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9.3 ERROR CONFIDENCE INTERVALS

In general, it does not matter how carefully we construct our training set D from the
data universe—there will always remain some uncertainty in terms of how effectively
D represents the overall data universe. This implies that there will always be some
uncertainty in terms of the model error computations based on the data set D. Here
we construct error confidence intervals that characterize this uncertainty. Given a
certain probability or confidence value, confidence intervals provide us with a range
of values that our model error can assume with this confidence value.

In more formal terms, let errD be a model error computed on data set D. Then the
error confidence interval is defined as the probability p that our model error errD lies
between some lower bound lb and some upper bound ub:

Pr(lb ≤ errD ≤ ub) = p. (9.32)

With p = 95%, the interval [lb, ub] is called the 95% confidence interval. Paraphras-
ing equation (9.32) with p = 95%: We are 95% percent sure that our error errD is not
worse than lb and not better than ub. For practical confidence interval computations,
we typically fix the probability p to a desired value such as 90% or 95% and then
solve equation (9.32) for the lower and upper bounds.

A particular effective and computationally straightforward way to estimate the
lower and upper bounds of confidence intervals is the bootstrap. What is remarkable
about the bootstrap is that we use the data set D itself to capture the uncertainty with
which it represents the data universe at large. In the bootstrap we create b copies of
our data set D using sampling with replacement. In sampling with replacement we
use elements of D without deleting them from D in order to construct the copies
of D. This means that each copy Bi of D called a bootstrap sample, where i =
1, . . . , b, is probably not identical to D, due to the nature of the random sampling.
Furthermore, since we don’t delete any elements from D during the sampling process,
some elements of D might be repeated in certain bootstrap samples. This implies that
other elements of D will be missing from these bootstrap samples since each bootstrap
sample is the same size as the original data set D. One way to look at this is that each
bootstrap sample represents an alternative way of constructing a training set from the
data universe, and the variation among the bootstrap samples captures the uncertainty
of a single training set appropriately representing the data universe at large. We can
use this variation among the bootstrap samples to compute the variation in respective
model errors. Figure 9.3 illustrates this process. As the figure shows, we start with
our data set D, create a set of bootstrap samples, and then compute the model error on
each sample. During this process the model parameter set k, λ, and C is held constant
for all bootstrap samples. Usually, this is the optimal parameter set found by one of
the testing techniques discussed in Section 9.2. Now, to compute the error confidence
interval, we sort the model errors obtained from the bootstrap samples into a list and
then extract the lower and upper bounds of the model error from this list according to
the percentiles specified by the confidence value. If we are given a confidence value
of 90%, we extract the lower bound at the 5th percentile and the upper bound at the
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FIGURE 9.3 Computing bootstrap samples and their respective model errors.

95th percentile of the sorted list. If we are given a confidence value of 95%, we extract
the lower bound at the 2.5th percentile and the upper bound at the 97.5th percentile
of the sorted list.

Let us make this discussion more concrete with an example. Assume that we have
a data set D and we computed a cross-validated error for the optimal parameter set
k∗, λ∗, and C∗ as

CVED[k∗, λ∗, C∗] = 0.14.

That is, the model f̂D[k∗, λ∗, C∗] is expected to have an error rate of 14% when
applied to the data universe at large. At this point we would like to compute the 95%
confidence interval of our cross-validated error in order to quantify the effect of the
uncertainty that D has on the error rate. Assume that we generate 200 bootstrap sam-
ples Bi from D with i = 1, . . . , 200. For each bootstrap sample Bi we can compute
a cross-validated error,

CVEBi
[k∗, λ∗, C∗].

We proceed by sorting the values of the cross-validated errors. This gives us a vector
of 200 numbers sorted from the best performance to the worst: say,

(0.07, 0.08, 0.09, 0.11, 0.11, 0.12, . . . , 0.17, 0.18, 0.19, 0.21, 0.21, 0.22).

Algorithm 9.1
given data set D

for i = 1 to 200 do
B[i] ← sample D with replacement, note |B[i]| = |D|.
err[i] ← compute model error using parameter set (k∗, λ∗, C∗) and B[i].

end for
Sort err in ascending fashion.
ub ← err[195]
lb ← err[5]
return (lb,ub)



“c09” — 2009/9/15 — 13:06 — page 162 — #16

162 EVALUATING WHAT HAS BEEN LEARNED

Since we have 200 samples, the 2.5th percentile of this list is the fifth value from the
bottom, in this case 0.11, and the 97.5th percentile is the fifth value from the top, in this
case 0.18. Given this we can now say that our cross-validated error CVED[k∗, λ∗, C∗]
lies with 95% probability in the interval [0.11, 0.18], or

Pr
(
0.11 ≤ CVED[k∗, λ∗, C∗] ≤ 0.18

) ≈ 95%. (9.33)

Notice that our previously computed cross-validated error of 0.14 lies in this range.
It is an interesting observation that if we lower our confidence, the interval between
the lower and upper bounds becomes smaller, and vice versa.

At this point we have achieved our goals: We have limited overfitting of the model
by using the cross-validated error, and we have a characterization of the uncertainty
of the model error due to the data set D.

In this example we have shown the calculations involved in the computation of
the bootstrapped confidence interval for the cross-validated error. However, the boot-
strap can be used to compute the confidence interval for any model error computation,
including the hold-out method and the leave-one-out method. Algorithm 9.1 shows
the outline of an algorithm computing the upper and lower bounds of the 95% confi-
dence interval for some model error using 200 bootstrap samples. The algorithm first
generates the bootstrap samples and computes the model error on each sample. Once
the model errors for all the samples have been computed, the array holding the error
values is sorted in ascending fashion. Given that we are using 200 bootstrap samples,
the extraction of the upper and lower bounds is trivial with the appropriate indices.

Here we have consistently used 200 bootstrap samples as a convenient number
in order to easily extract the upper and lower bounds. As a general rule, the larger
the number of bootstrap samples, the more accurate the approximation of the true
confidence interval. That is, a large number of bootstrap samples would bring the
approximation in (9.33) closer to a true identity. The actual number of bootstrap
samples that we construct depends on available computer power and on how critical
an exact estimate of the confidence interval is.

9.3.1 Comparison of Models

In practice, it is often the case that we have two or more reasonable models for a
particular knowledge discovery project, and we are faced with selecting one of them
to deploy. We might have a choice between a less complex model with a larger model
error and a more complex model with a smaller model error. This is often a nontrivial
decision because less complex models are often more attractive. The question we
might ask is: Are the two model performances significantly different? We can use
confidence intervals to answer this question. Suppose that we construct the 95% error
confidence interval for both models. If the confidence intervals do not overlap, the
model performances are considered to be significantly different, and the best per-
forming model should be used. If, on the other hand, the two confidence intervals do
overlap, the model performances are considered not significantly different and other
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criteria, such as model complexity, can be taken into consideration when selecting a
model. In general, when comparing or reporting model performances it is always a
good idea to state the model performances together with a confidence interval. Most
often, the 95% confidence interval is used for these purposes.

As an example, consider the model f̂D[k∗, λ∗, C∗] with a cross-validated error,

CVED[k∗, λ∗, C∗] = 0.1,

and a 95% confidence interval [0.08, 0.12]. Consider another model f̂D[k•, λ•, C•]
with a cross-validated error,

CVED[k•, λ•, C•] = 0.05,

and a 95% confidence interval [0.01, 0.09]. Even though the model performance of
the second model seems superior, a look at the confidence intervals reveals that in fact
the model performances are not significantly different because the intervals overlap
and we need to use other criteria to decide which of the models to deploy.

9.4 MODEL EVALUATION IN PRACTICE

Let us put these techniques into practice by investigating how they work in WEKA
and R. For this purpose we use the Wisconsin Diagnostic Breast Cancer data set.1

This data set consists of about 600 observations, where each observation describes
the physical aspects of a tumor. The 31 independent real-valued attributes include
characteristics such as radius, texture, and smoothness. The dependent attribute clas-
sifies each observation as either a malignant (M) or a benign (B) tumor. Once you
download the data from the UCI Web site, you will have to transform the data into a
CSV file so that you can load it into WEKA and R. You can accomplish this easily
with your favorite text editor. Below we assume that the data set is stored in the file
“wdbc.csv”.

9.4.1 WEKA

Let us begin with WEKA. We first look at the model performance metrics as reported
by WEKA. We then perform model evaluation using the training and cross-validated
errors. To perform these experiments you will have to start WEKA and load the
“wdbc.csv” file using the Preprocess tab. Once the data are loaded, make sure that
the Class field is set to ‘Diagnosis’. In the following we assume that you have the
WEKA system running and that the data set is loaded.

1This data set is available from the UCI Machine Learning Repository: http://archive.ics.uci.edu/ml.
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Performance Metrics To look at performance metrics as they are reported by
WEKA, we will first have to build a model and then test the model. We construct a
support vector model by selecting the SMO classifier with the Choose button in the
Classify tab:

weka → classifiers → functions → SMO.

The SMO default parameters specify a linear kernel with a cost constant of 1, which
is fine for our purposes here. For testing we will use the training set; that is, we use the
training error as our model error estimate. To do this, select the Use training set radio
button in the Test option panel. We are now ready to build our model. A quick check
that the appropriate dependent attribute ‘Diagnosis’ is selected is probably prudent at
this point. We now hit the Start button; WEKA responds with the model construction
output in the Classifier output panel. There is quite a bit of information on the model
and the model construction process in this text panel. If you scroll down, you will see
the test information under the heading

=== Evaluation on training set ===

The first set of numbers we see reported are

Correctly Classified Instances 559 98.2425 %
Incorrectly Classified Instances 10 1.7575 %

The first number corresponds to our accuracy; that is, the model we just constructed
has an accuracy of 98.24%. Conversely, the second number is the error the model
committed on the data set. Since the data set we tested with is the training set, this
number is the training error reported as 1.76%. Following these numbers we have
a number of other error metrics. For the time being, we ignore these since in a
classification setting they are not often used. At the bottom of the generated output,
WEKA reports the confusion matrix for this model:

a b <-- classified as
203 9 | a = M

1 356 | b = B

If we let the malignant tumors (M) be represented by the +1 label and the benign
tumors (B) by the −1 label, the top left corner of the confusion matrix represents
the true positive predictions, and the bottom right, the true negative predictions.
The top right corner displays the false negative predictions, and the bottom left cor-
ner displays the false positives. With this definition of the labels, a false negative
prediction means that a cancerous tumor was wrongly predicted to be benign, and
a false positive prediction means that a noncancerous tumor was predicted to be
cancerous. In this case our model commits nine times more false negative errors
than false positive errors. This is also reflected in the sensitivity and specificity
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TABLE 9.3 Support Vector Model Complexity and the Associated Training
and Cross-Validated Errorsa

Training Cross-Validated
ID Kernel Cost Constant Error (%) Error (%)

1 Linear 0.01 11.95 12.65
2 Linear 0.10 3.87 4.39
3 Linear 1.00 1.76 2.28
4 Linear 10.00 1.76 2.28
5 Linear 100.00 1.05 3.16
6 Linear 1000.00 0.88 3.34
7 Polynomial, degree = 3 10.00 0.70 3.16
8 Polynomial, degree = 3 100.00 0.00 5.45

aAs reported by WEKA on the Wisconsin Diagnostic Breast Cancer data set.

of the model:

sensitivity = 203

203 + 9
= 0.958,

specificity = 356

356 + 1
= 0.997.

Model Evaluation Table 9.3 lists eight models of the Wisconsin Diagnostic Breast
Cancer data set in increasing complexity, together with their training error and their
cross-validated error as computed by WEKA. Let us first investigate the relationship
between training error and model complexity. The first entry in the table with ID 1
is a model with a linear kernel and a cost constant of 0.01. WEKA reports a training
error of 11.95% for this model. The next model that is shown with ID 2 is a linear
model with cost constant 0.1. Recall that an increase in the cost constant implies a
decrease in the size of the margin. We consider a support vector machine with a small
margin more complex than a support vector machine with a large margin because a
model with a small margin can fit data more readily than a model with a large margin.
We have more to say about this in Chapter 10. In this case, making the model more
complex by increasing the cost constant drops the training error to 3.87%. As we
go down the table the complexity of the models increases, and we can observe that
the training error decreases steadily until it reaches zero. The last two entries in the
table are models with polynomial kernels of degree 3 and are therefore clearly more
complex than linear models. In addition, we consider model 8 more complex than
model 7 because it has a smaller margin.

The dark curve in Figure 9.4 displays the relationship between training error and
model complexity. Here the models are plotted along the horizontal axis by their IDs
from lowest complexity to highest complexity, and we can observe that the training
error decreases and eventually drops to zero with increasing complexity.

Let us turn our attention to the cross-validated error. The cross-validated error for a
set of parameters is obtained in WEKA by selecting the Cross-validation option in the
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FIGURE 9.4 Training and cross-validated errors for the models given in Table 9.3.

Test options panel. The default is 10-fold cross-validation. Going back to Table 9.3, we
see that the cross-validated error for the eight model parameter sets behaves differently
from the training error. We can observe that for the first couple of parameter sets the
cross-validated error drops rapidly with increasing complexity. Then for sets 3 and
4 it stays constant at 2.28%. For the remaining model parameters it then grows with
increasing model complexity. The light gray curve in Figure 9.4 displays the cross-
validated error against model complexity. As discussed in Section 9.2.1, we see the
typical test error curve, where initially the test error falls with increasing model
complexity and then after a certain point in model complexity it starts to grow. From
this graph it is clear that parameter sets 3 and 4 specify the interesting models because
they minimize the test error.

We now have two models to choose from, and since they both have the same
cross-validated error we need to use some other performance metric to make our
final choice. In this case we can use the confusion matrix of the cross-validated error.
For model 3 with a linear kernel and cost constant 1.0, WEKA reports the following
cross-validated confusion matrix:

a b <-- classified as
201 11 | a = M

2 355 | b = B

This model commits 11 false negatives and two false positives. For model 4
with a linear kernel and a cost constant of 10.0, WEKA reports the cross-validated
confusion matrix:

a b <-- classified as
202 10 | a = M

3 354 | b = B
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This model commits 10 false negatives and three false positives. Even though both
models report the same cross-validated error, a look at their confusion matrices reveals
that model 4 is slightly more balanced and in a clinical setting is perhaps the preferred
model.

9.4.2 R

Let us perform similar computations in R. As in Section 9.4.1, we will be using the
“wdbc.csv” file. Recall that to use support vector machine models in R, you will have
to load the e1071 package.

Performance Metrics The following R script loads the data set, computes a
support vector machine model, and prints out the confusion matrix.

> library(e1071)
> wdbc.df <- read.csv("wdbc.csv")
> svm.model <- svm(Diagnosis ˜ .,

data=wdbc.df,
type="C-classification",
kernel="linear",
cost=1)

> predict <- fitted(svm.model)
> cm <- table(wdbc.df$Diagnosis,predict)
> cm

predict
B M

B 355 2
M 5 207

> err <- (cm[1,2] + cm[2,1])/length(predict) * 100
> err
[1] 1.230228

The argument C-classification to the function that builds the support vector
model specifies that models be used that include the cost constant C. The function
fitted reports the labels as predicted by the model on the training set. We can plot
the confusion matrix by comparing the wdbc.df$Diagnosis labels observed in
the original data set with the labels computed by the model and stored in the vector
predict. The function table does just that in the usual confusion table format.
When interpreting this table we have to be a bit careful, in that R reports the labels
in the reverse order from WEKA. If we let malignant tumors (M) represent the +1
class and benign tumors (B) represent the −1 class, the bottom right field of the table
represents the true positive classifications and the bottom left field represents the false
negatives. The top left represents the true negatives and the top right represents the
false positives. Therefore, this model commits two false positive errors and five false
negative errors. From the confusion matrix we can immediately compute the training
error as given in the last two lines in the script above. The training error reported
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TABLE 9.4 Support Vector Model Complexity and the Associated Training
and Cross-Validated Errorsa

Training Cross-Validated
ID Kernel Cost Constant Error (%) Error (%)

1 Linear 0.01 2.46 3.51
2 Linear 0.10 1.41 2.46
3 Linear 1.00 1.23 2.81
4 Linear 10.00 0.88 3.34
5 Linear 100.00 0.35 3.34
6 Linear 1000.00 0.35 3.87
7 Polynomial, degree = 3 10.00 2.81 4.39
8 Polynomial, degree = 3 100.00 0.53 3.34
9 Polynomial, degree = 3 1000.00 0.00 5.45

aAs reported by R on the Wisconsin Diagnostic Breast Cancer data set.

here is 1.23%. We leave computing the sensitivity and specificity of this model as an
exercise for the reader.

Model Evaluation Table 9.4 lists nine models of the Wisconsin Diagnostic Breast
Cancer data set in increasing complexity together with their training and cross-
validated errors. We see the by-now familiar relation between training error and
model complexity: With a complex enough model the training error becomes zero.
We have one anomaly here, in that model 7 reports a large training error even though
it is on the more complex side. However, the overall trend is clear. The dark curve
in Figure 9.5 displays this relationship graphically. See above for the R code that
computes the training error for a model.

In R the function that computes the support vector model can also perform cross-
validation. Following is an example of how one would compute the cross-validated
accuracy for a set of parameters.

> svm.model <- svm(Diagnosis ˜ .,
data=wdbc.df,
type="C-classification",
kernel="polynomial",
degree=3,
cost=1000,
cross=10)

> summary(svm.model)

10-fold cross-validation on training data:

Total Accuracy: 94.55185
Single Accuracies:
91.07143 94.73684 98.24561 96.49123 100
87.7193 94.73684 94.73684 94.73684 92.98246
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FIGURE 9.5 Training and cross-validated errors for the models given in Table 9.4.

Here we compute the cross-validated accuracy of a model with a polynomial kernel
of degree 3 and a cost constant of 1000. The last argument to thesvm function specifies
that we want to perform 10-fold cross-validation. The accuracies reported are given
in percent, and we can easily convert them to cross-validated errors by subtracting the
given accuracies from 100%. This is what we report in the last column of Table 9.4
for the nine model parameter sets. Again, we see the by now familiar trend that the
test error first drops with increasing model complexity and then grows after a certain
complexity level. The light gray curve in Figure 9.5 shows this graphically. In this
case there is only a single parameter set that minimizes the cross-validated error:
namely, the linear kernel with a cost constant of 0.1. It is also clear from Figure 9.5
that the error curves are not always as clean as depicted in the idealized setting in
Figure 9.2. However, the overall trends of the errors are clearly preserved.

EXERCISES

9.1 Given the confusion matrix compute the following performance metrics:

Predicted

Observed +1 −1

+1 275 31
−1 28 310

(a) Model error

(b) Model accuracy

(c) Sensitivity

(d) Specificity
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9.2 Use the Wisconsin Diagnostic Breast Cancer data set in WEKA and plot the
hold-out and cross-validated error against model complexity. (Hint: The hold-
out error can be computed using the Percentage split testing option.) Explain
your findings.

9.3 Use the Wisconsin Diagnostic Breast Cancer data set in R and plot the hold-
out and cross-validated error against support vector machine model complexity.
Explain your findings.

9.4 In R build a support vector machine model of the Wisconsin Diagnostic Breast
Cancer data set (or your favorite data set) and estimate the 95% error confidence
interval using the bootstrap.

9.5 In R build two support vector machine models with different model complexities
of your favorite data set and determine if their performance is significantly
different using the bootstrap.

BIBLIOGRAPHIC NOTES

Any book on classification theory or data mining will have definitions and expla-
nations of the most common model performance metrics (e.g., [8, 26, 36]). Kohavi
discusses and compares the hold-out, leave-one-out, and cross-validation methods in
[46]. The bootstrap was introduced by Efron in his seminal paper [27] and was devel-
oped further in [29]. A readable introduction to computational statistics is the paper
by Efron and Tibshirani in Science [28]. A more recent treatment of computational
statistics is a book by Gentle [34]. A practical tutorial for the bootstrap based on the
SAS scripting language is [52].
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CHAPTER 10

ELEMENTS OF STATISTICAL
LEARNING THEORY

Up to this point we have developed support vector machines based almost exclusively
on computational considerations. The key concept we used was the intuitive notion
that a linear decision surface with the largest possible margin gives rise to an optimal
decision function. By optimal decision function we mean a function that generalizes
well beyond the training data or, in terms of model evaluation, a function that min-
imizes the test error. In this chapter we formalize the notion of maximum-margin
classifier in the context of statistical learning theory and show that a linear decision
surface with the largest possible margin does indeed represent the optimal classifier.

We begin the chapter by defining model complexity in terms of the VC-dimension.
We will see that decision surfaces with small margins have a high VC-dimension and
therefore are considered more complex than decision surfaces with large margins
that possess a low VC-dimension. We continue the chapter by defining the theoret-
ical setting for machine learning in terms of expected risk minimization over some
appropriate data universe. However, since the probability distributions for the data
universes of interest are generally unknown, we have to rely on empirical risk mini-
mization, which is the risk minimization over a subset of the data universe. We will
see that, similar to minimizing the training error, minimizing the empirical risk is
overly optimistic in the sense that we can always construct a model that will reduce
the empirical risk to zero. A key contribution of statistical learning theory is that the
VC-confidence captures the generalization error of a model. The key insight is that
the sum of the empirical risk and the VC-confidence denotes an upper bound on the
expected risk for a model.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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}
}

FIGURE 10.1 Model f̂ can be mapped into model ĝ with an appropriate translation τ

followed by an appropriate rotation ρ.

10.1 THE VC-DIMENSION AND MODEL COMPLEXITY

Informally, the VC-dimension is a measure of the complexity of a classifier. By that
we mean that it is a measure of how well a binary classifier can model the boundary
between the two classes: The larger the VC-dimension, the more complex the classifier
and the better it can separate the observations belonging to their respective classes.
This is in line with our findings in Chapter 9, where we found that complex classifiers
can model complicated class boundaries better than can less complex models. More
precisely, we found that the more complex a model, the better it can separate the
observations in a training set.

Let us formalize the VC-dimension as a way to measure model complexity. Con-
sider a class of linear classifiers all with a margin of the same size γ . We let F̂ [γ ]
denote that class. We also assume that the model class F̂ [γ ] is closed under rotation
and translation; that is, it contains all possible models with margin γ . Formally, for all
models f̂ ∈ F̂ [γ ], all rotations ρ, and all translations τ , we have ρ(f̂ ) ∈ F̂ [γ ] and
τ(f̂ ) ∈ F̂ [γ ]. Figure 10.1 demonstrates this in R

2 for some model class F̂ [γ ]. For
any two models, f̂ , ĝ ∈ F̂ [γ ], we can always construct a translation τ and a rotation
ρ such that ρ(τ(f̂ )) = ĝ. Here, a linear decision surface with its supporting hyper-
planes and margin of size γ is stylized as a rectangle with width γ . One could also
imagine a line bisecting the rectangle lengthwise that represents the actual decision
surface.

With the notion of a model class with a fixed margin width, we can define the
VC-dimension more rigorously. Consider a data set D; then the VC-dimension of
the classifiers in a model class is the number of instances in D that can be separated
by the classifiers in this model class for all possible binary label assignments to the
instances in D. If all instances in D can be separated for all possible label assignments,
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}

}

}

}

}

}

FIGURE 10.2 VC-dimension of a class of classifiers with margin γ1.

we say that the model class shatters the data set D. This gives rise to the following
definition of the VC-dimension:

Definition 10.1 The VC-dimension of a model class F̂ [γ ] defined over some data
set D is the size of the largest finite subset of D shattered by F̂ [γ ].

As an example let us consider a data set with three instances in two-dimensional
real space (i.e., D ⊂ R

2 and |D| = 3). Let the class of classifiers F̂ [γ1] be defined
over D. We also pick the margin γ1 in such a way that we can separate all three
instances for all possible binary label assignments. In this case we say that the VC-
dimension of F̂ [γ1] is 3 and we write h1 = 3. Since the VC-dimension is equal to
the size of the data set, h1 = |D|, we say that F̂ [γ1] shatters D. This is shown in
Figure 10.2. The full and empty balls denote the different binary label assignments
to the instances in D. We have not shown the trivial assignments where all points are
labeled with the same label, since there is nothing to separate.

Let us consider a second class of classifiers F̂ [γ2] over the same data set with
γ2 > γ1. In particular, the size of γ2 is such that the classifiers in F̂ [γ2] cannot
separate all instances perfectly, as seen in Figure 10.3. However, if we delete one
of the instances in D, the classifiers in F̂ [γ2] can shatter this subset of D. This is
demonstrated in Figure 10.4. Here the light gray point represents the deleted instance.
The graphs in the leftmost column now represent trivial separations because the
remaining instances in D are labeled with the same label. Since F̂ [γ2] can separate
the subset of D with two elements, we say that for the model class F̂ [γ2] the VC-
dimension is 2; h2 = 2.
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}

}}

}
}}

FIGURE 10.3 Classifiers with margin γ2 cannot shatter the given data set.

Large VC-dimensions represent classes of models with high complexity, and vice
versa. In our case, since h1 > h2 we say that the classifiers in F̂ [γ1] are more com-
plex than the classifiers in F̂ [γ2] and we write F̂ [γ1] ⊃ F̂ [γ2]. Since γ1 < γ2, this
implies that classifiers with small margins are more complex than classifiers with

}

}}

}

}}

FIGURE 10.4 Classifiers with margin γ2 can shatter a subset of the data set. Here the light
gray point represents the deleted instance.
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FIGURE 10.5 Data set that cannot be shattered by the classifiers of any model class regardless
of how small we make the margin.

large margins. Furthermore, the examples demonstrated that complex models can fit
data better than can less complex models, corroborating the results of Chapter 9. The
set notation F̂ [γ1] ⊃ F̂ [γ2] is suggestive of the fact that anything that can be modeled
with less complex classifiers can also be modeled with more complex classifiers. The
VC-dimension of a model class is data dependent. Figure 10.5 illustrates an arrange-
ment of the instances in D that cannot be shattered by the classifiers of any model
class regardless of how small we make the margin of the model class.

In our theoretical development here, we have assumed that all classifiers use the
linear kernel and are considered hard-margin classifiers. It is straightforward to extend
the constructions above to include classifiers with polynomial and Gaussian kernels
as well as soft margins. This would imply that the instances in some data set would
be shattered by nonlinear decision surfaces rather than the linear decision surfaces
we showed above. This implies that the complexity of the individual model classes
is governed not only by the size of the margin but also by the cost constant and by
the type of kernel being used in the models of the individual model classes.

10.2 A THEORETICAL SETTING FOR MACHINE LEARNING

Central to our theoretical setting of machine learning is the notion of mathematical
expectation, defined as

E[g] =
∫

g(x) dP(x), (10.1)
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where g(x) is a function over some domain X with x ∈ X and P(x) is a probability
distribution over X. Intuitively, E[g] represents the sum of function evaluations over
the domain X weighted by their probabilities. If the domain X is discrete with k

elements x1, . . . , xk , the expectation is expressed as

E[g] = 1

k

k∑
i=1

g(xi). (10.2)

Typically, we call the expected value E[g] the average or mean over all function
evaluations on the domain X.

We now apply mathematical expectation to our classification context. Assume that
P(x, y) is the joint probability of the data instances x ∈ R

n and their corresponding
labels y ∈ {+1, −1}; also assume that L is the 0–1 loss function as defined in (??);
then the expected loss for some model f̂ ∈ F̂ [γ ] defined over the data universe is

E[L(y, f̂ (x))] =
∫

L(y, f̂ (x)) dP (x, y). (10.3)

In other words, the expected loss is the expected number of mistakes a model will
commit over the underlying data universe. We often write

R[f̂ ] = E[L(y, f̂ (x))], (10.4)

where R[f̂ ] is called the expected risk. With this we can define machine learning as
the minimization of the expected risk,

f̂ ∗ = argmin
f̂ ∈F̂

R[f̂ ], (10.5)

where F̂ represents the class of all model classes such that F̂ [γ ] ⊂ F̂ for all margins
γ . During optimization we draw our models f̂ from this class in order to find the
optimal model f̂ ∗ ∈ F̂ [γ ∗] that minimizes the expected risk.

10.3 EMPIRICAL RISK MINIMIZATION

Unfortunately, machine learning in the formulation given in (10.5) is impossible
because we do not know the joint probability distribution P(x, y). If we did, there
would be nothing to learn. However, we do have some information on the joint
probability distribution in the form of the observations in our training data D,

D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1, −1}. (10.6)
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We can use these observations to estimate the risk. We call this the empirical risk
Remp[f̂ ] of some model f̂ and define it as

Remp[f̂ ] = E[L(y, f̂ (x))] = 1

l

l∑
i=1

L(yi, f̂ (xi)), (10.7)

where (xi, yi) ∈ D. Here we apply our discrete definition of mathematical expectation
(10.2) since training sets are usually finite and contain discrete instances. Analogous
to the expected risk, we find our best model by minimizing the empirical risk:

f̂ ∗ = argmin
f̂ ∈F̂

Remp[f̂ ] (10.8)

= argmin
f̂ ∈F̂

(
1

l

l∑
i=1

L(yi, f̂ (xi))

)
. (10.9)

Now, since we are allowed to pick a model from the class of all possible models F̂

in order to minimize the empirical risk, it is clear that we can always find a model that
reduces the empirical risk to zero or close to zero. That is, minimizing the empirical
risk is likely to be overly optimistic. This can also be seen by comparing equation
(10.9) to equation (??), which is the minimization of the training error. These two
equations are virtually identical. This again implies that minimizing the empirical
risk is overly optimistic.

10.4 VC-CONFIDENCE

From a theoretical point of view, this leaves us in a bind. We cannot use the expected
risk to find the optimal model for a data universe because the joint probability dis-
tribution is unknown. We cannot use the empirical risk to find an optimal model,
because minimizing it is too optimistic. Vapnik suggested a way out of this conun-
drum by introducing a measure of the generalization error of a model based on its
VC-dimension. This measure is called the VC-confidence,

υ(l, h, η) =
√

h(log(2l/h) + 1) − log(η/4)

l
, (10.10)

where l is the size of the training data, h is the VC-dimension of the model class
under consideration, and η is some small number such that 0 < η < 1. Notice that
the VC-confidence υ is directly proportional to the VC-dimension h. The intuition
is that a large VC-dimension implies a complex model, and this in turn implies
a large generalization error. Recall that overly complex models tend to overfit
their training data and therefore do not generalize well. This is precisely what the
VC-confidence tries to capture. Also notice that the VC-confidence is inversely
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Model complexity

Error

high

low

highlow

generalization bound

FIGURE 10.6 Relationship between the empirical risk Remp[f̂ ] and the VC-confidence
υ(l, h, η). The sum of the two gives rise to the generalization bound.

proportional to the size l of the data set. This means that the larger the training data, the
more we know about the data universe, and therefore the smaller the generalization
error.

The fundamental insight is that together with the empirical risk, the VC-confidence
can be considered an upper bound on the expected risk for some model f̂ ,

R[f̂ ] ≤ Remp[f̂ ] + υ(l, h
f̂
, η), (10.11)

where h
f̂

is the VC-dimension of f̂ and l the size of the training data. That is, given
the empirical risk and the VC-confidence of a model, we can estimate an upper bound
on the expected loss of the model over the entire underlying data universe. Vapnik
has shown that this upper bound holds with a probability of 1 − η.

Figure 10.6 illustrates the relationship between the empirical risk Remp[f̂ ] and the
VC-confidence υ(l, h

f̂
, η). Observe that as the complexity of the models increases,

the empirical risk decreases. That is, complex models allow us to model the training
data well. On the other hand, as model complexity increases, so does the VC-
confidence. Here, complex models will commit more errors on data not contained
in the training data than will less complex models. The sum of the empirical risk
and the VC-confidence represents an envelope of these two curves. This envelope is
often referred to as the generalization bound. The shape of this generalization bound
looks very similar to the curve of the idealized test error in Figure ??, and just as
minimizing the test error gives us our optimal model, minimizing the generalization
bound is equivalent to making just the right trade-off between model complexity
and generalization error and will also give us our optimal model. This gives us the
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following optimization problem for finding the optimal model f̂ ∗:

f̂ ∗ = argmin
f̂ ∈F̂

(
Remp[f̂ ] + υ(l, h

f̂
, η)

)
, (10.12)

where F̂ is the superclass of all model classes. Visually we can see the solution to
this optimization problem in Figure 10.6 as the model that gives rise to the minimum
of the generalization bound.

10.5 STRUCTURAL RISK MINIMIZATION

Given an appropriate data set, equation (10.12) allows us to find a model in F̂

that makes just the right trade-off between complexity and generalization error.
The question remains: How exactly do we find this model given the stated opti-
mization problem? Typically, the model class F̂ is infinite and traversing it blindly
without additional guidance to find the optimal model f̂ ∗ is probably not a fruitful
endeavor. Vapnik suggested that instead of traversing the model class F̂ blindly, the
VC-dimensions of the individual model subclasses of F̂ can serve as a guide to finding
the optimal model. Vapnik called this procedure structural risk minimization.

More precisely, suppose that we have a class of linear models F̂ with

F̂ [γ1], . . . , F̂ [γk] ⊂ F̂ , (10.13)

where

F̂ [γ1] ⊂ F̂ [γ2] ⊂ · · · ⊂ F̂ [γk] if h1 < h2 < · · · < hk, (10.14)

where hi is the VC-dimension of model class F̂ [γi]. Given that we assume linear
models, equation (10.14) implies that the margins of the various model classes are
also partially ordered,

γk < · · · < γ2 < γ1. (10.15)

We now have an effective procedure to find the optimal model. We start with the
least complex model class F̂ [γ1] and minimize the generalization bound according to
equation (10.12). One way to think of this is as picking an arbitrary model f̂1 ∈ F̂ [γ1]
and then computing an appropriate rotation ρ and translation τ such that

f̂ ∗
1 = ρ(τ(f̂1)) = argmin

f̂ ∈F̂ [γ1]

(
Remp[f̂ ] + υ(l, h

f̂
, η)

)
. (10.16)

We then move on to the next model class, in this case F̂ [γ2], and compute the optimal
model f̂ ∗

2 in a similar fashion. We terminate our search if we find that the general-
ization bound of some model f̂ ∗

i+1 ∈ F̂ [γi+1] is larger than the generalization bound
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FIGURE 10.7 Using structural risk minimization to find the optimal model f ∗
2 .

of the model f̂ ∗
i ∈ F̂ [γi]. In this case, f̂ ∗

i is the optimal model according to (10.12).
Furthermore, the margin γi is the maximum margin that guarantees optimal model
performance over the data universe at large. We call this process structural risk min-
imization because we use the structure of the model classes to guide our search.
Figure 10.7 shows this structural risk minimization. Here we show four increas-
ingly complex model classes F̂ [γ1] ⊂ · · · ⊂ F̂ [γ4] and we see that model f̂ ∗

2 ∈ F̂ [γ2]
minimizes the generalization bound and is therefore considered the optimal model.

10.6 DISCUSSION

The theory of structural risk minimization provides the mathematical underpinnings
for two important concepts that we have encountered a number of times previously.
First, structural risk minimization shows that there is a trade-off between complexity
and generalization error. We can paraphrase this as: The least complex model that fits
the data well will also generalize well. Second, structural risk minimization formalizes
our idea of maximum-margin classifiers. Our search procedure above finds the model
class with the largest margin that generalizes well.

EXERCISES

10.1 Given the data set in Figure 10.8, what is the maximum possible VC-dimension
for any linear model class? Justify your answer.
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FIGURE 10.8 Data set in R
2 with a particular binary labeling.

10.2 Given the data set D and the model class F̂ [γ2] in Figure 10.3, show that it
does not matter which point we remove from D—F̂ [γ2] will always shatter
the resulting subset.

10.3 Assume that some model f̂ has a training error of 0.17 on a data set with 1000
observations. Also assume that this model has a VC-dimension h

f̂
= 925.

Compute the generalization bound of this model with 0.9 probability.

10.4 [challenging] Assume that a linear model class can shatter a data set D ⊂ R
n.

Show that the VC-dimension h ≥ n + 1 for this model class for all n (Hint:
Use the n unit basis vectors as part of your data set.)

BIBLIOGRAPHIC NOTES

A discussion on mathematical expectation may be found in any elementary statistics
text (e.g., [78]). Vapnik and Chervonenkis formalized the notion of VC-dimension in
the early 1970s [75]. Here we only touched on the major points of the learning theory
developed by Vapnik and his collaborators. A full account of the theory is given in
[71]. An account of the theory that is slightly less mathematically demanding may
be found in [73]. A paper by Vapnik provides a high-level overview of statistical
learning [72]. A nice description of support vector machines that deals with some
of the theoretical underpinnings is a tutorial by Burges [17]. Another mathematical
treatment of learning along lines similar to those of Vapnik is [59].
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CHAPTER 11

MULTICLASS CLASSIFICATION

The standard theory of support vector machines supports only binary classification
problems. However, many real-world problems deal with classifying objects into
more than two classes. Here we show how we can use binary support vector machines
to classify objects into an arbitrary number of classes.

We start the chapter with a discussion of the one-versus-the-rest classification
scheme that requires the construction of as many support vector machines as there
are classes in the classification problem. We continue our discussion with a pairwise
classification scheme where we construct a binary classifier for each possible pair of
classes. We close the chapter by mentioning alternative methods such as the error-
correcting-output-codes scheme and the direct support of multiple classes within the
objective function for support vector machines.

11.1 ONE-VERSUS-THE-REST CLASSIFICATION

By far the most popular technique for multiclass classification using binary support
vector machines is called one-versus-the-rest classification. Consider the training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {1, 2, . . . , M}, (11.1)

where the label yi for each observation can take on any value in {1, 2, . . . , M} with
M > 2. The precise nature of the label set is not important as long as there exists one

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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unique label for each class in the classification problem. For convenience we define
the label set here as {1, 2, . . . , M}.

In the one-versus-the-rest technique, given M classes, we construct M binary,
support vector–based decision surfaces, say g1, . . . , gM . Each decision surface is
trained to separate one class from the rest. That is, the decision surface g1 is trained
to separate the class labeled 1 from all other classes, the decision surface g2 is trained
to separate the class labeled 2 from all other classes, and so on. To classify an unknown
point we use a voting scheme based on which of the M decision surfaces returns the
largest value for this unknown point. We then use the decision surface that returns
the largest value for the unknown point to assign this point to a class.

Let us examine this construction in more detail. To train M decision surfaces we
construct M binary training sets,

Dp = D
p
+ ∪ D

p
−, (11.2)

where

D
p
+ = {(x, +1) | (x, y) ∈ D ∧ y = p} (11.3)

and

D
p
− = {(x, −1) | (x, y) ∈ D ∧ y �= p}, (11.4)

with p = 1, . . . , M . The set Dp
+ contains all the observations in D that are members of

the class p, and the set D
p
− contains all the remaining observations. For convenience

we relabeled the training set Dp with labels in {+1, −1}. The label +1 is used for
observations in class p, and the label −1 is used for observations that are not in
class p. We train each decision surface gp on the corresponding data set Dp, which
gives rise to a decision surface of the form

gp(x) =
|Dp |∑
i=1

yiα
p
i k(xi, x) − bp, (11.5)

with (xi, yi) ∈ Dp. During the training of the M decision surfaces we use the same
model parameters, such as the cost constant and kernel function for all the decision
surfaces.

We know from Chapter ?? that the decision surface gp : R
n → R returns a signed

real value that can be interpreted as the distance of some point x ∈ R
n to the decision

surface. If the value returned is positive, the point x is above the decision surface and
is considered to be a member of the class +1 with respect to the decision surface,
and if the value returned is negative, the point is below the decision surface and
is considered to be a member of the class −1 with respect to the decision surface.
We can also interpret the value returned as a confidence value: The larger the value
returned by a decision surface for some point, the more confident we are that this
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point belongs to the class +1 with respect to this decision surface. This means that if
our decision surface returns a large negative value for some point, we are minimally
confident that this point belongs to the class +1 (in fact, this implies that we are
very confident that the point belongs to class −1). If, on the other hand, our decision
surface returns a large positive value, we are very confident that the point belongs to
the class +1. Now, since we laid out our training set Dp for the decision surface gp

in such a way that all observations in class p are considered positive examples [i.e.,
(xi, p) ∈ D implies that (x, +1) ∈ D

p
+], it follows that a decision surface gm that

returns the largest value for some point x among all other decision surfaces g1 · · · gM

assigns this point to class m with m ∈ {1, . . . , M}.
Given this, we can construct a decision function f̂ : R

n → {1, . . . , M} for our
multiclass classification problem as follows:

f̂ (x) = argmax
p

gp(x), (11.6)

where p ∈ {1, 2, . . . , M}. The decision function returns the label of the decision
surface that assigns some point x ∈ R

n to its +1 class with the highest confidence.
To see how this technique works, let us look at a classification problem with three

classes where the training set D is defined as

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
2 × {1, 2, 3},

with l = 9. Figure 11.1 is a graphical representation of this data set where each
observation is represented by its corresponding label. There are three clearly distinct
classes of observations, each labeled with the appropriate label. In the figure we also
see a point z that we would like to classify.

1

2

3

1

1

22

33

FIGURE 11.1 Multiclass classification problem with three classes. The question is: What
should point z be classified as?
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We proceed with the construction of the three training sets:

D1 = D1+ ∪ D1−,

D2 = D2+ ∪ D2−,

D3 = D3+ ∪ D3−,

where

D1+ = {(x, +1) | (x, y) ∈ D ∧ y = 1},
D1− = {(x, −1) | (x, y) ∈ D ∧ y �= 1},
D2+ = {(x, +1) | (x, y) ∈ D ∧ y = 2},
D2− = {(x, −1) | (x, y) ∈ D ∧ y �= 2},
D3+ = {(x, +1) | (x, y) ∈ D ∧ y = 3},
D3− = {(x, −1) | (x, y) ∈ D ∧ y �= 3}.

We then train the decision surfaces, g1, g2, and g3, on the corresponding data sets.
Figure 11.2 illustrates these constructions. Part (a) shows the case for p = 1, part (b)
for p = 2, and part (c) for p = 3. Notice that the normal vector for each decision sur-
face always points to the class the decision surface gp separates from the rest; that is,
points that belong to that class are always considered to be above the decision surface.
We are now in the position to construct the decision function f̂ : R

2 → {1, 2, 3},
f̂ (x) = argmax

p
gp(x), (11.7)

with p = 1, 2, 3 and x ∈ R
2. If we apply this decision function to point z in

Figure 11.2, we see that f̂ (z) �→ 1 because the decision surface g1 returns the largest

1

2

3

1

1
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33
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(a) (b) (c)

FIGURE 11.2 Three training data sets, D
p
+ ∪ D

p
−, and the corresponding decision surfaces

gp: (a) p = 1; (b) p = 2; (c) p = 3. Notice that the normal vector for each decision surface
always points to the class each gp separates from the rest; that is, points that belong to that
class are always considered to be above the decision surface. Here point z belongs to class 1
because the decision surface g1 returns the largest value for this point.
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value for this point. This is easily verified by inspecting Figure 11.2 carefully. This
seems intuitive, since point z lies closest to the points of class 1 and therefore should
be assigned to that class.

11.2 PAIRWISE CLASSIFICATION

Although the one-versus-the-rest classification technique has shown to be robust in
real-world applications, the fact that the individual training sets for each decision
surface are highly unbalanced could be a potential source of problems. Consider a
classification problem with 10 classes, each with 1000 observations. Here the training
set for each decision surface has 1000 observations labeled +1 and 9000 observations
labeled −1. If we happen to train decision surfaces with extremely soft margins (i.e.,
decision surfaces with very small cost constants), it could happen that all observations
labeled +1 fall into the margin and are potentially misclassified due to the unbalanced
nature of the training set. The pairwise classification technique avoids this situation by
constructing decision surfaces for each pair of classes. Classification of an unknown
point is again achieved by a voting scheme.

Let us take a closer look at pairwise classification. Given a classification problem
with the training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {1, 2, . . . , M}, (11.8)

in pairwise classification we have to construct M(M − 1)/2 decision surfaces: one
decision surface for each possible pair of classes. We let gp,q : R

n → {p, q} denote
the decision surface that separates the pair of classes p and q with p �= q and {p, q}
⊂ {1, 2, . . . , M}. We train each decision surface,

gp,q(x) =
|Dp,q |∑
i=1

yiα
p,q
i k(xi, x) − bp,q, (11.9)

on the data set

Dp,q = Dp ∪ Dq, (11.10)

where

Dp = {(x, y) | (x, y) ∈ D ∧ y = p} (11.11)

and

Dq = {(x, y) | (x, y) ∈ D ∧ y = q}. (11.12)
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The set Dp consists of all the observations in D with the label p and the set Dq

consists of all the observations in D with the label q. The training set Dp,q for the
pair of classes p and q is simply the union of these two sets.

Once we have constructed all the pairwise decision surfaces gp,q using the cor-
responding training sets Dp,q , we can classify an unknown point by applying each
of the M(M − 1)/2 decision surfaces to this point, keeping track of how many times
the point was assigned to what class label. The class label with the highest count is
then considered the label for the unknown point.

Algorithm 11.1 summarizes these constructions. Here we are given a multiclass
data set D together with a point z whose label is unknown. After initializing the label
counter array cnt to zero for all labels, the algorithm proceeds with the construction
of all possible pairwise training sets Dp,q and the corresponding decision surfaces
gp,q . As soon as the decision surface gp,q is available, we apply it to the point z. If
this decision surface classifies this point as p [implied by the notation gp,q(z) == p],
we increment the counter for class p; otherwise, we increment the counter for class
q. Finally, once we have looped through all possible pairs of labels, we return the
label with the highest count.

To demonstrate how this algorithm works, let us take a look at the data set from
Section 11.1,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
2 × {1, 2, 3},

with l = 9, as shown in Figure 11.1 with point z, which we want to classify. In
Figure 11.3 we demonstrate the construction and application of the three pairwise

Algorithm 11.1

// multiclass training set
let D = {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R

n × {1, 2, . . . , M}
// point to be classified
let z ∈ R

n

// initialize the counter for the labels to zero
let cnt[1 . . . M] = 0
// loop through all possible pairs of labels
for p = 1 to M − 1 do

for q = p + 1 to M do
// construct the decision surface for this pair of labels
let Dp,q = Dp ∪ Dq // see (11.11) and (11.12)
train gp,q on Dp,q

// classify the unknown point with the current decision surface
// and increment the appropriate counter
if gp,q (z) == p then

cnt[p] + +
else

cnt[q] + +
end if

end for
end for
// return the label with the largest count
return argmaxi=1,...,M (cnt[i])
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FIGURE 11.3 The three training data sets Dp ∪ Dq and the corresponding decision surfaces
gp,q with {p, q} ⊂ {1, 2, 3}: (a) for p = 1 and q = 2; (b) for p = 2 and q = 3; (c) p = 3 and
q = 1. Here point z belongs to class 1 because it is the largest score.

decision surfaces. In part (a) we show the decision surface g1,2. When this decision
surface is applied to point z it is clear that the decision surface will assign it to class 1.
In part (b) we construct decision surface g2,3 and then apply it to point z. In this case
z is assigned to class 3. Finally, in part (c) we construct decision surface g3,1. When
we apply this decision surface to point z it is assigned the label 1. Tallying up the
scores for the individual classes gives us

Class 1 Class 2 Class 3

2 0 1

Therefore, we assign the label 1 to point z. As before, this seems intuitive, since point
z lies closest to the points of class 1 (see Figure 11.1) and therefore should be assigned
to this class. It is nice to see that our one-versus-the-rest and pairwise classification
agree here.

In the voting scheme of pairwise classification there is a possibility of a tie. We
can break the tie by interpreting the actual values returned by the decision surfaces
as confidence values. When we add up the absolute values of the confidence values
assigned to each of the tied labels, we consider the winner to be the tied label with
the largest sum of confidence values.

It seems that pairwise classification solves our problem of unbalanced data sets.
However, it solves this problem at the expense of introducing a new complication:
the fact that for M classes we have to construct M(M − 1)/2 decision surfaces.
For classification problems with a small number of classes the difference between
the number of decision surfaces we have to build for the one-versus-the-rest and
the pairwise classification is not that drastic. Consider a classification problem with
M = 4. Here we have to construct four decision surfaces for the one-versus-the-
rest classification and six decision surfaces in the pairwise classification. However,
when considering classification problems with a large number of different classes,
the difference can be quite drastic. In the case of M = 10, we need to construct 10
decision surfaces for one-versus-the-rest classification but 45 decision surfaces for
pairwise classification.
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11.3 DISCUSSION

Here we have taken a look at two methods that allow us to apply the inherently
binary support vector machine to classification problems with more than two classes.
Two other methods are frequently mentioned in the literature: the error-correcting-
output-codes classification and the multiobjective support vector machine. The former
extends the one-versus-the-rest classification method by allowing finer control of how
decision surfaces are constructed and then used in the classification of unknown points.
The latter extends the theory of support vector machines directly from binary models
to multiclass models, resulting in a multiobjective optimization problem as a training
algorithm. Both of these approaches have nice theoretical properties but are not often
used in practice, due to their increased computational complexity.

We should mention that the WEKA GUI does not support multiclass classification
for its SMO classifier. However, multiclass classification can be implemented using
the Java SDK version of WEKA. On the other hand, the package we are using in R
directly supports pairwise multiclass classification.

EXERCISES

11.1 Pick a support vector machine implementation from Chapter ??.
(a) Extend this implementation to a multiclass setting using one-versus-

the-rest classification (use R for your implementation).

(b) Compare your implementation to the multiclass classification in the
e1071 package in R using the iris data set [available in R using the
data(iris) command].

11.2 Pick a support vector machine implementation from Chapter ??.
(a) Extend this implementation to a multiclass setting using pairwise

classification (use R for your implementation).

(b) Compare your implementation with the implementation in the e1071
package in R using the iris data set [available in R using the data(iris)
command].

11.3 Extend Algorithm 11.1 to include tie breaking.

11.4 [challenging] Implement a multiclass classification scheme for SMO using the
WEKA Java SDK.

BIBLIOGRAPHIC NOTES

One-versus-the-rest classification is discussed in [1] and [65]. Pairwise classification
for support vector machines is introduced in [47]. Dietterich and Bakiri introduced
error-correcting output codes for support vector classifiers in [25]. The notion of a
multiobjective support vector machine was suggested by a number of researchers
(e.g., [11, 15, 71, 79]).
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CHAPTER 12

REGRESSION WITH SUPPORT
VECTOR MACHINES

Historically, support vector machines were developed in the context of classifica-
tion problems. However, there exist another important class of problems: regression
problems. Regression problems differ from classification problems in that the obser-
vations in a training set are not labeled with a label from a set of discrete labels but,
instead, are associated with a number. Typically, that number is drawn from the set of
real numbers. In this chapter we show how support vector machines can be adapted
to deal with regression problems.

We begin the chapter with a definition of regression as a machine learning problem.
We continue by taking a brief look at simple and multiple regression and how these
problems are usually tackled in statistics. In the sections that follow we turn our
attention to regression with support vector machines: first by developing linear support
vector machines for regression in the primal setting, and then by deriving the dual
formulation that will allow us to address nonlinear regression problems. We also take
a brief look at model evaluation in the context of support vector regression models.
We close the chapter by looking at some regression examples in both WEKA and R.

12.1 REGRESSION AS MACHINE LEARNING

In regression problems observations are associated with a numerical value rather
than a label from a set of discrete labels. With this in mind, we can easily adapt our
definition of machine learning (see Definition ??) to an instance of machine learning
that deals with numerical training observations.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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Definition 12.1 (Machine Learning, Regression)
Given:

• A data universe X

• A sample set S, where S ⊂ X

• Some target function f : X → R

• A training set D, where D = {(x, y) | x ∈ S and y = f (x)}

Compute a model f̂ : X → R using D such that

f̂ (x) ∼= f (x) (12.1)

for all x ∈ X.

This definition differs from our original definition of machine learning only in the
codomains of the target function and the model. That is, the original aim of machine
learning persists, in that we are interested in computing a model that matches the
output of the target function as best as possible over the entire data universe X. As
in the case of classification, we typically choose X to be multidimensional, real data;
that is, we choose X to be the set R

n with n ≥ 1. Given this definition, the question
remains: How does one compute the regression model f̂ ?

12.2 SIMPLE AND MULTIPLE LINEAR REGRESSION

From a statistical perspective we can think of linear regression as fitting a hyper-
plane through a set of training points with a minimum error. This regression error
is characterized by residual terms, which are defined as the difference between the
output of the model and the actual value of the training observations. The goal in
linear regression is to minimize these residuals.

To make this more concrete, assume a regression training set of the form

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × R. (12.2)

Let us assume that f̂ (x) is a regression model on D; then the quantity

ρi = yi − f̂ (xi) (12.3)

for (xi, yi) ∈ D, called a residual, measures the difference between model output and
the actual observation. For a perfect model the residuals are all zero, that is, the output
of the model matches exactly the values observed in the training set. However, it is
overly optimistic to assume that we can construct such perfect models for real-world
data sets. Therefore, we have to contend ourselves with constructing models where
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the residuals are minimized; that is, we construct models where the error between
the model output and the values observed is minimized. In linear regression this is
accomplished by computing the minimum sum of squared errors,

min
l∑

i=1

ρ2
i = min

f̂

l∑
i=1

(
yi − f̂ (xi)

)2
, (12.4)

with (xi, yi) ∈ D. Notice that the error depends on the model f̂ we select to compute
the residuals. This gives us an optimization problem that allows us to compute the
optimal linear regression model f̂ ∗ as

f̂ ∗ = argmin
f̂

l∑
i=1

(
yi − f̂ (xi)

)2
. (12.5)

By taking advantage of the fact that we are constructing linear models, we can rewrite
this equation as

(w∗, b∗) = argmin
w,b

l∑
i=1

(yi − w • xi + b)2 , (12.6)

where the optimal regression model is

f̂ ∗(x) = w∗ • x − b∗. (12.7)

In simple linear regression, that is, regression problems where the observations in the
training set have the form (x, y) ∈ R × R, equation (12.6) can be solved analytically,
yielding a slope w∗ and an offset term b∗ for a line that represents the linear model for
the regression problem. Figure 12.1 illustrates a linear regression model for simple
linear regression. Each point in the graph represents an observation (x, y) ∈ R × R,
and the vertical lines represent the residuals. The optimal model is constructed such
that the residuals are minimized.

In multiple linear regression, that is, regression problems where the observations
in the training set have the form (x, y) ∈ R

n × R, equation (12.6) can typically not be
solved analytically unless the data fulfill certain collinearity conditions. Therefore,
multiple linear regression problems are often solved using heuristics that guarantee
that the collinearity conditions hold before applying an analytical approach.

Next we look at an example of simple linear regression in R. We use the built-in data
set ‘cars’. This data set gives measurements of the speed of a car (mph) as the inde-
pendent variable versus the stopping distance (ft) as the dependent variable. The aim
is to construct a linear model of this relationship. The following R code loads the data
set, computes a linear model, plots the data set, and then plots the model over the
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x

y

FIGURE 12.1 Linear regression with residuals. Here the point xp is an observation and ρp

is the residual at that observation given the model w • x = b.

data set.

> data(cars)
> model <- lm(cars$dist ˜ ., data = cars)
> plot(cars)
> abline(model)

Figure 12.2 shows the resulting plot.
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FIGURE 12.2 Simple linear regression model for the ‘cars’ data set.
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12.3 REGRESSION WITH MAXIMUM-MARGIN MACHINES

A strong motivation for the development of support vector regression models is the
straightforward extension from linear regression to nonlinear regression using the
kernel trick. To develop support vector machines in the context of regression, we start
with the primal setting of maximum-margin machines. In this case the underlying
ideas are virtually the same as in the case of classification with maximum-margin
machines: We are given a hyperplane and we would like to maximize the distances
of the observations to that hyperplane.

Suppose that we have a regression problem where all the observations of the
regression training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R

fit into a (hyper-) tube of width 2ε with ε > 0 (see Figure 12.3a). We can interpret
this hypertube as a regression model by imagining that there is a hyperplane posi-
tioned right in the center of the tube that models the observations. Now, typically
there are many different ways to position the hypertube of width 2ε and still have all
the training observations contained within the tube. However, there exists an optimal
hypertube alignment such that as many observations are pushed as close to the outer
boundaries of the hypertube as possible. In other words, the optimal hypertube align-
ment is achieved when the distances of the observations from the center hyperplane
are maximized. This is illustrated in Figure 12.3b, where the filled circles represent
the observations that act as constraints to the optimization.

This is very similar to the problem of maximizing the margin of a decision surface
(see Chapter ??) and it turns out that we can use the same optimization problem for
finding the optimal hypertube alignment that we used for finding the maximum-margin

(a) (b)

FIGURE 12.3 Solving regression problems with linear models using a ε hypertube:
(a) regression model where all observations are within the hypertube depicted by the light
gray lines; (b) optimal regression model with a maximum margin.



“c12” — 2009/9/15 — 13:06 — page 198 — #6

198 REGRESSION WITH SUPPORT VECTOR MACHINES

decision surface given in Proposition ?? by adjusting the constraints appropriately.
We optimize the primal objective function,

min φ(w, b) = min
w,b

1
2w •w (12.8)

such that the constraints

yi − f̂ (xi) ≤ ε, (12.9)

f̂ (xi) − yi ≤ ε, (12.10)

are satisfied for i = 1, . . . , l and where f̂ (x) = w • x − b. The two constraint inequal-
ities can also be captured with the single inequality, |yi − f̂ (xi)| ≤ ε. It is perhaps in
this form that it becomes most apparent that the constraints ensure that all observa-
tions have to be within the hypertube. This allows us to interpret the optimization as a
computation where we adjust the rotation and offset term of the model until we max-
imize the distances of the observations to the central hyperplane with the constraint
of keeping all the observations within the hypertube.

In the preceding development we made the assumption that it is possible to fit
all observations into a hypertube of width 2ε. Of course, in real-world data sets this
will hardly be the case. This can be seen in the cars data set of Section 12.2, where
the ε value would need to be enormous to fit all the observations into a hypertube of
width 2ε. For observations that fall outside the hypertube with a fixed value of ε, we
introduce correction terms or slack variables that tell us how much of a correction is
needed for these observations to be moved into the hypertube. Figure 12.4 illustrates
this. For any observation (xi, yi) we use a pair of slack variables, ξi and ξ ′

i , that

x

y

FIGURE 12.4 Linear maximum margin regression with slack variables.
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capture the correction necessary for that observation. If no correction for the obser-
vation is necessary, both slack variables are set to zero. If the observation is above
the hypertube, we set the slack variable ξi to the absolute value necessary to move
the observation into the hypertube, and we set the other slack variable ξ ′

i to zero.
Conversely, if the observation is below the hypertube, we set the slack variable ξ ′

i to
the absolute value necessary to move the observation into the hypertube and we let
the other slack variable ξi be zero. More precisely, we define the slack variables as

ξi =
{

0 if yi − f̂ (xi) ≤ ε,

|yi − f̂ (xi)| − ε otherwise,
(12.11)

ξ ′
i =

{
0 if f̂ (xi) − yi ≤ ε,

|yi − f̂ (xi)| − ε otherwise
(12.12)

for i = 1, . . . , l with (xi, yi) ∈ D. Here the slack variables ξi are zero except for
observations that lie above the hypertube. Conversely, the slack variables ξ ′

i are zero
except for observations that lie below the hypertube. Given this, finding the opti-
mal hyperplane then becomes a trade-off between maximizing the margin within the
hypertube and minimizing the value of the slack variables. To express this as an
optimization problem, we add the slack variables as a penalty term to our objective
function in (12.8). We can now state regression with maximum-margin machines as
follows:

Proposition 12.1 Given a regression training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

we can compute the optimal regression model f̂ ∗(x) = w∗ • x − b∗ as the optimiza-
tion

min φ(w, b, ξ, ξ
′
) = min

w,b,ξ,ξ
′
1

2
w •w + C

l∑
i=1

(ξi + ξ ′
i ), (12.13)

such that the constraints

yi − f̂ (xi) ≤ ξi + ε, (12.14)

f̂ (xi) − yi ≤ ξ ′
i + ε, (12.15)

0 ≤ ξi, ξ
′
i , (12.16)

for i = 1, . . . , l hold with f̂ (x) = w • x − b.

In Proposition 12.1 the penalty constant C modulates the trade-off between margin
maximization and the minimization of the slack variables.
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12.4 REGRESSION WITH SUPPORT VECTOR MACHINES

Recall from Chapter ?? that we can derive the dual to maximum-margin optimization
by constructing the Lagrangian optimization

max
α

min
x

L(α, x) = max
α

min
x

(
φ(x) −

l∑
i=1

αigi(x)

)
, (12.17)

subject to the constraints

αi ≥ 0 (12.18)

for i = 1, . . . , l. Here gi(x) ≥ 0 are inequality constraints and the variables α and x

are called the dual and primal variables of the optimization problem, respectively.
As a first step in constructing the Lagrangian optimization we derive our inequality

constraints. This is easily done by slightly rewriting the constraints appearing in the
primal optimization problem in Proposition 12.1:

ξi + ε − yi + f̂ (xi) ≥ 0, (12.19)

ξ ′
i + ε − f̂ (xi) + yi ≥ 0, (12.20)

ξi ≥ 0, (12.21)

ξ ′
i ≥ 0. (12.22)

The four sets of inequality constraints imply that we have to introduce four sets of
dual variables into our Lagrangian optimization. Substituting our objective function
and the inequality constraints into the Lagrangian optimization above gives us the
following:

max
α,α′,β,β

′ min
w,b,ξ,ξ

′ L(α, α′, β, β
′
, w, b, ξ, ξ

′
)

= max
α,α′,β,β

′ min
w,b,ξ,ξ

′

(
1

2
w •w + C

l∑
i=1

(ξi + ξ ′
i ) −

l∑
i=1

αi

(
ξi + ε − yi + f̂ (xi)

)

−
l∑

i=1

α′
i

(
ξ ′
i + ε − f̂ (xi) + yi

)
−

l∑
i=1

βiξi −
l∑

i=1

β ′
iξ

′
i

)
,

(12.23)

subject to the constraints

αi, α
′
i , βi, β

′
i ≥ 0 (12.24)

for i = 1, . . . , l and where f̂ (x) = w • x − b. Given a solution to the Lagrangian
optimization
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max
α,α′,β,β

′ min
w,b,ξ,ξ

′ L(α, α′, β, β
′
, w, b, ξ, ξ

′
) = L(α∗, α′∗, β∗

, β
′∗
, w∗, b∗, ξ∗

, ξ
′∗
),

(12.25)
we know that it will satisfy the KKT conditions

∂L(α∗, α′∗, β∗
, β

′∗
, w∗, b∗, ξ∗

, ξ
′∗
)

∂w
= 0, (12.26)

∂L(α∗, α′∗, β∗
, β

′∗
, w∗, b∗, ξ∗

, ξ
′∗
)

∂b
= 0, (12.27)

∂L(α∗, α′∗, β∗
, β

′∗
, w∗, b∗, ξ∗

, ξ
′∗
)

∂ξi

= 0, (12.28)

∂L(α∗, α′∗, β∗
, β

′∗
, w∗, b∗, ξ∗

, ξ
′∗
)

∂ξ ′
i

= 0, (12.29)

α∗
i

(
ξ∗
i + ε − yi + f̂ ∗(xi)

)
= 0, (12.30)

α′∗
i

(
ξ ′∗
i + ε − f̂ ∗(xi) + yi

)
= 0, (12.31)

β∗
i ξ∗

i = 0, (12.32)

β ′∗
i ξ ′∗

i = 0, (12.33)

ξ∗
i + ε − yi + f̂ ∗(xi) ≥ 0, (12.34)

ξ ′∗
i + ε − f̂ ∗(xi) + yi ≥ 0, (12.35)

ξ∗
i , ξ ′∗

i ≥ 0, (12.36)

αi, α
′
i ≥ 0, (12.37)

β∗
i , β ′∗

i ≥ 0, (12.38)

where i = 1, . . . , l and f̂ ∗(x) = w∗ • x − b∗ is the optimal regression function. Using
the KKT conditions, it is not difficult to show that the following proposition holds.

Proposition 12.2 Given a regression training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

we can compute the optimal support vector regression model f̂ ∗(x) = w∗ • x − b∗
with the dual optimization problem

max
α,α′ φ′(α, α′) = max

α,α′

⎛
⎝−1

2

l∑
i=1

l∑
j=1

(αi − α′
i )(αj − α′

j )xi • xj

+
l∑

i=1

yi(αi − α′
i ) − ε

l∑
i=1

(αi + α′
i )

)
, (12.39)



“c12” — 2009/9/15 — 13:06 — page 202 — #10

202 REGRESSION WITH SUPPORT VECTOR MACHINES

subject to the constraints

l∑
i=1

(αi − α′
i ) = 0, (12.40)

C ≥ αi, α
′
i ≥ 0 (12.41)

for i = 1, . . . , l, where

w∗ =
l∑

i=1

(α∗
i − α′∗

i )xi, (12.42)

b∗ = 1

l

l∑
i=1

w∗ • xi − yi. (12.43)

In support vector regression models we can interpret an observation (xi, yi) for
which the coefficient (αi − α′

i ) is nonzero as a support vector. Notice that the solution
to the optimal regression model

f̂ ∗(x) = w∗ • x − b∗

=
l∑

i=1

(α∗
i − α′∗

i )xi • x − 1

l

l∑
i=1

l∑
j=1

(α∗
i − α′∗

i )xi • xj − yj

(12.44)

depends only on the support vectors. Therefore, we can refer to this model as a support
vector regression machine.

As a last observation, consider the fact that linear regression with support vector
machines can be extended to nonlinear regression by applying the kernel trick to
both the optimization and the model. That is, we can replace the dot product in the
optimization and in the model with an appropriate kernel function to extend support
vector regression to the nonlinear setting.

12.5 MODEL EVALUATION

Similar to support vector classification models, support vector regression models also
have a number of free parameters that need to be tuned. These are the kernel k with its
corresponding parameters λ, the ε parameter, and the cost constant C. Our techniques
of hold-out and cross-validation testing as well as bootstrapping carry over to support
vector regression models, with the difference that the 0–1 loss function is replaced by
a loss function that computes how well the model fits the observations. That is, rather
than measuring misclassification, we measure how different the predicted value is
from the observed value.

The most common error estimate for regression functions is the mean-squared
error. We define a loss function called L2 that computes the squared residual at an
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observation (x, y) given a model f̂ ,

L2(y, f̂ (x)) =
(
y − f̂ (x)

)2
. (12.45)

Now, given a regression training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

we define the mean-squared error computed on D as

mseD

[
f̂D[k, λ, ε, C]

]
= 1

l

l∑
i=1

L2

(
yi, f̂D[k, λ, ε, C](xi)

)
, (12.46)

with (xi, yi) ∈ D. Here we use the model f̂D , where the subscript indicates that it
was constructed using set D. In this case we can interpret the mean-squared error as
the average loss L2 of model f̂D over the data set D.

We can generalize this to the hold-out testing technique by splitting the set D into
two nonoverlapping partitions P and Q such that

D = P ∪ Q, (12.47)

where we use P as a training set and Q as a test set. The hold-out error can then be
computed as

mseQ

[
f̂P [k, λ, ε, C]

]
= 1

|Q|
∑

(xi ,yi )∈Q

L2

(
yi, f̂P [k, λ, ε, C](xi)

)
. (12.48)

For the hold-out error we compute the average loss over the set Q of a model trained
on P . An optimal model will minimize the mean-squared error over the test set Q.

Given the L2 loss function, it is straightforward to derive the corresponding expres-
sion for the cross-validated error (see the exercises). It should also not be any problem
to generalize the computation of the confidence interval based on the bootstrap from
classification to regression (see the exercises).

As a final note we should mention that another popular method of determining the
error of a regression model is the root-mean-squared error derived from the mean-
squared error simply by taking its square root. This is one of the error metrics reported
in WEKA.

12.6 TOOL SUPPORT

Regression with support vector machines is available in both WEKA and R. Here we
demonstrate regression in both systems using the cars data set used at the beginning
of this chapter. We assume that this data set is available as the file “cars.csv”.
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12.6.1 WEKA

As usual, we load the data file into WEKAfrom the Preprocess tab. Notice that both the
independent attribute ‘speed’and the dependent attribute ‘dist’are numeric attributes,
and WEKA displays the appropriate data summaries in its Selected Attribute panel.
Once the data set is loaded, we switch to the Classify tab (in WEKAregression models
are grouped together with the classification models). To construct a support vector
regression model, we press the Choose button and navigate to the SMOreg model,

weka → classifiers → functions → SMOreg.

For our first regression model we select the training set as the test option and make sure
that the dist attribute is the target attribute. We use the default linear kernel for our
regression model. However, to compare the model to the linear model constructed in
Section 12.2 we need to change the filterType to no normalization and standardization.
Now you can press the Start button in order to train the model. WEKA constructs the
linear regression model

f̂ (x) = 3.4x − 11.6, (12.49)

with a root-mean-squared error of 15.48. We can compare this model to the model
constructed using simple linear regression by plotting the models side by side (see
Figure 12.5). Here we plotted the simple linear regression model as a dashed line
and the model computed by WEKA as a solid line. Although the support vector
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FIGURE 12.5 Comparing the simple linear regression model (dashed line) for the ‘cars’data
set with the support vector regression model (solid line) computed by WEKA.
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regression model seems pretty good, recall that we used the training set as the test
set. This means that there might be some overfitting. We leave it as an exercise for
the reader to apply the hold-out or cross-validation technique to construct an optimal
regression model.

12.6.2 R

In contrast to WEKA, R provides a substantial amount information about the underly-
ing support vector model. In this case the function svm returns an object that contains
the support vector model. The model is given in the standard support vector machine
format,

f̂ (x) = w • x − b. (12.50)

In the case of regression the normal vector w is given as

w =
l∑

i=1

(αi − α′
i )xi . (12.51)

Concretely, the object returned holds an index vector that points to all observations
in the training set that represent support vectors. It also holds a vector with the
coefficient αi − α′

i for each support vector. In addition, it holds the offset term −b of
the regression model.

To demonstrate the capabilities of R, we use the following R program.

# load our svm library
library(e1071)

# get the epsilon svm parameter from the user
e <- as.integer(readline(prompt="Enter epsilon value: "))

# plot cars data set on new canvas
# data points are plotted as circles
quartz(height=4,width=4,pointsize=8)
data(cars)
plot(cars,pch=22,cex=.5)

# build svm regression model
svm.model <- svm(cars$dist ˜.,

data=cars,
type="eps-regression",
kernel="linear",
scale=FALSE,
cost=1,
epsilon=e)
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# plot the regression line with the epsilon tube
w <- sum(cars$speed[svm.model$index]*svm.model$coefs)
offset <- (- svm.model$rho)
abline(a=offset,b=w)
abline(a=offset+e,b=w,lty=2)
abline(a=offset-e,b=w,lty=2)

# plot the support vectors as solid squares
x <- cars$speed[svm.model$index]
y <- cars$dist[svm.model$index]
points(x,y,type="p",pch=22,cex=.5,bg="black")

This program prompts the user for an ε value, plots the cars data set, and builds
a linear support vector regression model. Once the model is constructed, the pro-
gram continues to extract the slope and the offset term from the object returned. The
slope is easily calculated with equation (12.51). With this it is possible to plot the
regression line together with its ε tube. The last set of computations in the program
highlight as solid squares precisely those observations in the data set that are support
vectors.

We use this R program to compute two support vector regression models. The first
model we train with ε = 5, as shown in Figure 12.6. In this case the tube is very
narrow, which implies that not all observations can fit into it. As we would expect,
the observations outside the hypertube are considered support vectors, indicated by
the solid squares. If we were to investigate the coefficient αi − α′

i for each of these
observations, we would find that the value would be bound by the cost constant C.
Also notice that there are a number of support vectors right on the ε boundaries.
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FIGURE 12.6 Linear support vector regression model of the cars data set with ε = 5.
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FIGURE 12.7 Linear support vector regression model of the cars data set with ε = 50.

Those support vectors are due to the maximum-margin optimization. This aspect of
the optimization becomes clear if we make ε big enough so that all observations
fall within the hypertube. To see this, we let ε = 50. The resulting regression model
is shown in Figure 12.7. Here we do not have any support vectors due to slack
variables, but we have two support vectors that are due to the maximum margin
optimization. The alignment of the regression line has been optimized such that it
maximizes the distance of the observations to the regression line under the constraint
that all observations stay within the tube.

EXERCISES

12.1 Find a regression data set and build a regression model in R using the statistical
linear regression models available through the function lm.
(a) If your training set is of type R

2 × R or R × R, use R to plot the regression
model.

(b) Determine the average of the residuals of the model.

12.2 Construct a linear regression model for the cars data set in WEKAand compare
it to the linear model constructed with R in Section 12.2.

12.3 Derive equation (12.42).

12.4 Derive equation (12.39).

12.5 Explain equation (12.43) informally.

12.6 Derive an expression for the cross-validated mean-squared error [see equation
(??)].
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12.7 Use the cross-validated mean-squared error and the bootstrap to compute the
model confidence interval of a regression problem of your choosing.

BIBLIOGRAPHIC NOTES

Support vector regression models were introduced by Vapnik in the context of
ε-insensitive loss functions [73]. These loss functions are a formalization of the
ε-hypertube we discussed here. Our own exposition of support vector regression
models was inspired by the work of Abe [1]. Kecman [42] also develops regression
models in a fair amount of detail. A book by Schölkopf and Smola [65] has substan-
tial background information on regression models. A nice tutorial on support vector
regression is [68].
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CHAPTER 13

NOVELTY DETECTION

An interesting application of support vector machines is in the area of data description.
What is different about the application of support vector machines in data description
compared to classification is that we are considering unlabeled data and our goal is
to construct models that give us some insight into the nature of this unlabeled data.
For instance, we might be interested in finding out if the data are evenly distributed
throughout the space spanned by the attributes or if there are data points that can be
considered outliers. This particular view of data description, where a data point that
does not conform to the distribution pattern of the other data points in the data set is
considered an outlier or novelty, is usually referred to as novelty detection.

An important aspect of novelty detection is that the models we construct can be
used for both the description of the training data and for data points not in the training
data. Consider an application of such data description models on a factory floor where
some sort of widget is being produced. Suppose that we train a model on a factory
run of a couple of thousand widgets in such a way that it detects defective widgets as
outliers. We can then deploy the model with a suitable set of sensors on the factory
floor to reject defective widgets automatically. That is, we can deploy the model to
reject widgets that do not conform to the characteristics of the majority of widgets in
the training set.

We begin this chapter by developing the theoretical underpinnings of novelty
detection with maximum-margin machines. We then discuss the dual setting for these
machines together with the implication of nonlinearity due to kernel functions. We
close the chapter by looking at some examples in R.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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FIGURE 13.1 Novelty detection with maximum-margin machines.

13.1 MAXIMUM-MARGIN MACHINES

The central idea in novelty detection with maximum-margin machines is to construct a
hyperplane through the origin of the input space whose margin separates the unlabeled
training points from the origin in some optimal way. Figure 13.1 demonstrates this.
Notice here that we rotated the hyperplane in such a way that the margin ρ/|w| is
maximized and is limited by the point xq .

Assume that we have an unlabeled training set,

D = {x1, x2, . . . , xl} ⊂ R
n, (13.1)

whose elements are located only in the first hyperoctant (the components of all vectors
are positive) and can be linearly separated from the origin. In this case maximizing
the margin of a hyperplane going through the origin gives rise to the following convex
optimization problem:

min φ(w, ρ) = min
w,ρ

1
2w •w − ρ, (13.2)

subject to the constraints

w • xi ≥ ρ, (13.3)
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FIGURE 13.2 Novelty detection with soft-margin machines.

where xi ∈ D. The optimization specifies that we rotate the hyperplane w • x = 0
until we have maximized the margin ρ/|w| under the constraint that all data points
lie on or outside the margin.

The key insight to novelty detection is the introduction of slack variables into
our optimization problem. Consider the case above, where we computed the optimal
hyperplane but now we continue to push the margin beyond the points that constrain
it. Figure 13.2 illustrates this and as in the case of soft-margin classifiers, we introduce
slack variables ξi which are nonzero for any data points that fall into the margin. We
are now faced with the by now familiar optimization problem that needs to trade off
the size of the slack variables against the size of the margin,

min φ(w, ρ) = min
w,ρ

1

2
w •w − ρ + 1

ν l

l∑
i=1

ξi, (13.4)

subject to the constraints

w • xi ≥ ρ − ξi, (13.5)

ξi ≥ 0 (13.6)

for i = 1, . . . , l. Here we introduced a new penalty constant 0 < ν ≤ 1 that modulates
the trade-off between the size of the slack variables and the size of the margin. In this
formulation the penalty constant ν acts as an upper bound on the number of support
vectors with nonzero slack variables. For instance, if we let ν = 0.2, a maximum
of 20% of the training points are allowed to have nonzero slack variables. In the case
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of novelty detection, if we set ν = 0.05, this means that a maximum of 5% of the
training data can be considered outliers.

So far we have considered only the description of training data. We can perform a
simple trick that allows us to construct a decision surface that will classify any point
not in the training data as a novelty or not: We translate the hyperplane that runs
through the origin such that it coincides with the supporting hyperplane of the margin
and consider it a decision surface that separates outliers from the rest of the data:

f̂ (x) = w∗ • x − ρ∗, (13.7)

where w∗ and ρ∗ are solutions to the optimization (13.4). Given a point z ∈ R
n, if

that point lies below the decision surface, f̂ (z) < 0, we consider the point an outlier.

13.2 THE DUAL SETTING

In Section 13.1 we made some strong assumptions on the structure of the training
data D; we assumed that all the training points are located in the first hyperoctant of
the space R

n, and furthermore, we assumed that the training points can be linearly
separated from the origin. By constructing the dual optimization problem we can
relax these restrictions because the introduction of appropriate kernel functions will
allow us to consider training points located in arbitrary hyperoctants and we are not
restricted to linear decision surfaces.

We begin by constructing the Lagrangian from our primal optimization problem
(13.4) and its constraints (13.5) and (13.6):

L(α, β, w, ρ, ξ) = 1

2
w •w − ρ + 1

ν l

l∑
i=1

ξi

−
l∑

i=1

αi (w • xi − ρ + ξi)−
l∑

i=1

βiξi . (13.8)

It is straightforward to construct the KKT conditions for the optimization problem

max
α,β

min
w,ρ,ξ

L(α, β, w, ρ, ξ) (13.9)

subject to the constraints

αi ≥ 0, (13.10)

βi ≥ 0 (13.11)
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for i = 1, . . . , l. We leave this as an exercise for the reader. From the KKT condi-
tions and the Lagrangian optimization (13.9) we can derive the dual to our primal
optimization problem (13.4),

max φ′(α) = max
α

⎛
⎝−1

2

l∑
i=1

l∑
j=1

αiαjxi • xj

⎞
⎠ , (13.12)

subject to the constraints

1

ν l
≥ αi ≥ 0, (13.13)

l∑
i=1

αi = 1 (13.14)

for i = 1, . . . , l. From our work on soft-margin classifiers we know that training
points with coefficients αi = 1/ν l are training points inside the margin; that is, these
training points are considered outliers. Thus, in the dual formulation, any training
point whose coefficient is bounded by the constant 1/ν l can be considered an outlier.

The model that allows us to classify data points that are not in the training set as
outliers is the decision surface running through the origin translated to coincide with
the supporting hyperplane of the margin:

f̂ (x) = w∗ • x − ρ∗

=
l∑

i=1

α∗
i xi • x − ρ∗, (13.15)

where α∗ is the solution to the optimization (13.12). We can compute ρ∗ from any
support vector not in the margin, that is, we can compute ρ∗ from any training point
xi whose coefficient is 0 < α∗

i < 1/ν l and therefore lies on the margin:

ρ∗ =
l∑

j=1

α∗
j xj • xi. (13.16)

As in our previous approaches to dual maximum-margin machines, data points
appear only in the context of dot products in (13.12) and (13.15). This implies that
we can perform the kernel trick and replace the dot products by an appropriate kernel
function. The kernel trick lifts the restrictions that we imposed on the training data in
Section 13.1 because we can always select a kernel function that maps the training
data into the first hyperoctant in the feature space. From our previous work with
kernel functions, we know that the transformation from input space into a feature
space allows us to consider nonlinear decision surfaces in the input space.
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13.3 NOVELTY DETECTION IN R

Let us look at novelty detection in R using the e1071 package. The first exercise is
an illustration of the linear separation of the training points from the origin. Here
we construct a hyperplane through the origin and then maximize the margin of this
hyperplane given some penalty constant ν. The following R code accomplishes this:

library(e1071)
# set up our output device
quartz(height=4,width=4,pointsize=8)

# create a 2D data set and plot as squares
x1 <- rnorm(10,mean=4)
x2 <- rnorm(10,mean=4)
x <- data.frame(x1,x2)
plot(x,pch=22,cex=.5,xlim=c(-2,8),ylim=c(-2,8))

# build the novelty detection model
model <- svm(x,

type="one-classification",
kernel="linear",
nu=0.1,
scale=FALSE)

# plot the support vector outliers as filled squares
ix <- model$index[model$coefs == 1.0]
x1 <- x$x1[ix]
x2 <- x$x2[ix]
sv <- data.frame(x1,x2)
points(sv,type="p",pch=22, col=2)

# plot the hyperplane together with the
# margin that constitutes the novelty decision surface
w1 <- sum(x$x1[model$index]*model$coefs)
w2 <- sum(x$x2[model$index]*model$coefs)
slope <- -(w1/w2)
offset <- (model$rho/w2)
abline(a=offset,b=slope,lty=2)
abline(a=0,b=slope)

Running the code will plot the outliers as large black squares, the hyperplane as a
solid line, and the margin as a dashed line. The resulting plot is shown in Figure 13.3.
Notice how the margin separates the outlier from the rest of the training set.

As a second example we apply a nonlinear support vector machine with a Gaussian
kernel to a randomly generated data set in R

2. Here we let ν = 5%. The R code that



“c13” — 2009/9/15 — 13:07 — page 215 — #7

13.3 NOVELTY DETECTION IN R 215

-2 0 2 4 6 8

-2

0

2

4

6

8

x1

x2

FIGURE 13.3 Demonstrating novelty detection with a linear kernel.

accomplishes this is

library(e1071)
# set up our output device
quartz(height=4,width=4,pointsize=8)

# create a 2D data set and plot as squares
x1 <- rnorm(100)
x2 <- rnorm(100)
x <- data.frame(x1,x2)
plot(x,pch=22,cex=.5,xlim=c(-4,4),ylim=c(-4,4))

# build the novelty detection model
model <- svm(x,

type="one-classification",
kernel="radial",
gamma=0.1,
nu=0.05)

# plot the support vectors as filled squares
ix <- model$index[model$coefs == 1.0]
x1 <- x$x1[ix]
x2 <- x$x2[ix]
sv <- data.frame(x1,x2)
points(sv,type="p",pch=22, col=2)
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FIGURE 13.4 Demonstrating novelty detection with a nonlinear kernel.

This R code generates the plot given in Figure 13.4. The solid black squares are
the support vectors, which we consider outliers. This data set is nonlinear and has
points in all four quadrants and therefore illustrates very nicely that through the use of
appropriate kernels, we are no longer restricted to linear separability from the origin,
nor are we restricted to data points only in the first hyperoctant.

As the final experiment we take a look at the ‘cars’ data set. Here we treat each
training point as an unlabeled point in R

2. We construct a novelty detection model
with the penalty constant ν = 10%. The R code is given as

library(e1071)
data(cars)
# set up our output device
quartz(height=4,width=4,pointsize=8)

# build model
m <- svm(cars,gamma=.1,nu=0.10,kernel="radial")

# visualize - black training point, solid outliers
ix <- m$index[m$coefs == 1.0]
plot(cars,col = (1:50 %in% ix) + 1,pch=22,cex=.5)

The plot generated by the R code is given in Figure 13.5. We see three outliers
identified. The top right outlier is perhaps intuitive. However, the other two outliers
seem kind of odd. This is due to the fact that novelty detection using support vector
machines does not take the underlying linear relationship of the training points into
account.
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FIGURE 13.5 Novelty detection on the ‘cars’ data set.

EXERCISES

13.1 Give the KKT conditions for the optimization problem (13.9).

13.2 Derive expression (13.12) together with its constraints.

13.3 Construct a three-dimensional unlabeled data set and find the ν = 5% outliers.
Plot the results. (Do this work using R.)

BIBLIOGRAPHIC NOTES

Our development of novelty detection using support vector machines is based largely
on the material published in [66]. An alternative approach to novelty detection using
hyperspheres instead of hyperplanes is given in [70] and is also discussed in [65].
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APPENDIX A

NOTATION

X Sets are denoted by capital letters in italic type.
A × B The cross product of sets A and B. Let A = {a, b} and B = {c, d}; then A × B =

{(a, c), (a, d), (b, c), (b, d)}.
v A vector in R

n where v = (v1, v2, . . . , vn) and vi is called a component.

|v| The length of v, defined as
√

v2
1 + v2

2 + · · · + v2
n.

iff Shorthand for “if and only if.”
a • b The dot product of two vectors defined as a • b = a1b1 + · · · + anbn =

|a||b| cos γ .
|A| The cardinality of set A.
min Optimization operator; f (x∗) = min f (x), where x∗ is considered an optimal

solution that minimizes the objective function f .
argmin Optimization operator that returns the solution that minimizes the objective

function, x∗ = argmin f (x).
M Matrices are denoted by uppercase symbols written in bold face type.
XT, vT The transpose of a matrix and vector, respectively.
φ(x) Primal objective function.
φ′(α) Dual objective function.
L(α, x) The Lagrangian, with the primal variable x and the dual variable α.
k(x, y) Kernel function, defined as k(x, y) = �(x) • �(y).
k(·, x) Partially evaluated kernel at point x.
sgn(k) The sign function, defined as +1 if k ≥ 0, otherwise, −1.
ξj Slack variable for point xj .
errD[f̂D] Training error of model f̂D .
R[f̂ ] Expected risk of model f̂ .
L Loss function.
ε Tolerance band for support vector regression.
C Cost constant.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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APPENDIX B

TUTORIAL INTRODUCTION TO R

R is a programming language designed to support data analysis and model build-
ing. It is an open-source reimplementation of the commercial statistical computing
environment S-Plus.1 R supports all traditional programming constructs, such as
expressions, assignments, conditionals, loops, and functions. In addition to scalar
arithmetic, R also supports vector arithmetic. This is a very powerful extension to the
standard scalar programming paradigm, and using vector arithmetic is the preferred
way of accomplishing things in R. R possesses a straightforward object system that
supports high-level concepts such as statistical models very nicely. Object instan-
tiation and inheritance are based on a prototyping mechanism. In addition to the
programming language constructs, R incorporates a powerful graphics engine that
supports many built-in graphical techniques, such as scatterplots, histograms, and
simple linear regression plots, among many others. Because R is an open-source
project, many extension modules have been written for it, implementing everything
from basic statistics to microarray analysis and in our case, support vector machines.

R is an interactive environment that allows the user to type in a program or expres-
sion at the command line prompt and have R evaluate the program or expression
immediately. Figure B.1 shows perhaps the simplest interactive session possible with
R. In this case the user typed in the expression 2+2 at the prompt, then hit the return
key, and the system responded with the result 4.

1R is available on the Web site http://www.r-project.org, and information on S-Plus may be found on the
Web site of the Insightful Corporation, http://www.insightful.com.

Knowledge Discovery with Support Vector Machines, by Lutz Hamel
Copyright © 2009 John Wiley & Sons, Inc.
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FIGURE B.1 Simple session in the command line console of R.

B.1 PROGRAMMING CONSTRUCTS

The fundamental programming construct in R is the assignment of a value to a variable
using the <- operator, and as can be expected in a programming language, variables
can then appear in expressions:

> x <- 2
> 2 * x
[1] 4

As part of its vector arithmetic facility, R allows the user to construct vectors using
the constructor function c:

> v <- c(1,2,3)
> v
[1] 1 2 3
> v[2]
[1] 2
> v[2:3]
[1] 2 3
> v[v >= 2]
[1] 2 3

Here the function call c(1,2,3) constructs a vector with the components 1,2, and 3,
and then assigns this vector to the variable v. Just typing a variable name at the
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command line prompt displays the contents of that variable, which in this case is the
vector. Components of a vector can be accessed with the standard bracket operator,
where the value in the bracket is the component index. R differs from many other
programming languages in that it allows for fairly complex index expressions. For
example, we can extract components two through three of vector v with the index
expression 2:3. We can extract all components whose value is greater or equal to 2
with the index expression v >= 2.

R allows the user to perform vector arithmetic on vector variables such as

> v + 1
[1] 2 3 4

or in a more complicated example,

> v
[1] 1 2 3
> w <- v + 1
> q <- w + v
> q
[1] 3 5 7

We can also define functions in R:

> add1 <- function(x) { x + 1 }
> add1
function(x) { x + 1 }
> add1(2)
[1] 3

Here we define a function using the function constructor that increments its argu-
ment by one and returns this incremented value. Returning a value from a R function
is accomplished simply by stating the value as the last statement of the function itself.
In this case it is the expression x + 1. We give our function a name by assigning it
to the variable add1. We can then use the variable name as the function name to call
the function.

There is an interesting observation with respect to the vector constructor: Nested
calls to the constructor will still construct a single vector:

> c(c(1,2),3)
[1] 1 2 3
> v <- c(1,2)
> v
[1] 1 2
> w <- c(v,3)
> w
[1] 1 2 3
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We make use of this property in the following function, which accepts a vector
of values and returns a vector whose components are the values of the input vector
incremented by one:

> addv1 <- function(v)
{

y <- c()
for (x in v) {

x1 <- x + 1
y <- c(y,x1)

}
y

}
> w
[1] 2 3 4
> addv1(w)
[1] 3 4 5

The function first constructs an empty vector in y; then it loops through all compo-
nents of the input vector v, incrementing each by one and adding the newly calculated
value to the end of the vector y. Once the function has iterated over all the input com-
ponents, it returns the newly constructed vector y. In the code above we also show
a simple example of the use of the function. This function performs the same oper-
ation as the vector operation w + 1. From a performance point of view it is always
desirable to use the built-in vector operations; explicit iteration over vector elements
is extremely slow.

B.2 DATA CONSTRUCTS

R is about programming with data; therefore, it is not unexpected that R provides
many different ways to represent data. We have already seen scalar and vector values.
R supports a special type of vector called a list, which acts just like a vector but
allows for the addition of metadata such as field names. Consider

> lp <- list(name="joe",
profession="cook",
marital.status="married")

> lp
$name
[1] "joe"

$profession
[1] "cook"
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$marital.status
[1] "married"

> lp[1]
$name
[1] "joe"
> lp$name
[1] "joe"

Here we construct a list of attributes for a person called joe. The list acts as a
vector in the sense that we can extract information with the standard indexing operator
but we can also extract information from the list via the names of the elements in the
list using the $ operator.

In addition to one-dimensional vectors, R also provides a facility to build
multidimensional arrays:

> aa <- array(0,dim=c(3,3))
> aa[2,2] <- 1
> aa

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 0
> aa[,2]
[1] 0 1 0

An example of a three-dimensional array is

> aaa <- array(0,dim=c(3,3,3))
> aaa[2,2,] <- 1
> aaa
, , 1

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 0

, , 2

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 0
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, , 3

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 0

The matrix constructor allows the user to construct two-dimensional arrays that
incorporate metadata in the form of row and column names:

> ma <- matrix(0,nrow=3,ncol=3,
dimnames=list(c("row1","row2","row3"),

c("col1","col2","col3")))
> ma[2,2] <- 1
> ma

col1 col2 col3
row1 0 0 0
row2 0 1 0
row3 0 0 0
> ma[,2]
row1 row2 row3

0 1 0

One of the most often used data structures in R is the data frame. This is a two-
dimensional array that assigns names to the columns. What distinguishes data frames
from the other multidimensional structures is the fact that we can access the columns
in a data frame by their names using the $ operator. This makes programs written
with data frames much more transparent and easier to understand. Here is a small
snippet of R code using a data frame:

> x <- rnorm(5)
> y <- rnorm(5)
> df <- data.frame(x,y)
> df

x y
1 -1.32671927 -0.8523517
2 -0.01688355 0.7543477
3 1.53489098 0.4770785
4 -2.01491992 -0.4205267
5 -0.37707736 0.1549296
> dist <- sqrt(df$xˆ2 + df$yˆ2)
> dist
[1] 1.5769234 0.7545366 1.6073252 2.0583355 0.4076647
> plot(df,xlim=c(-3,3),ylim=c(-1,1))

The last line in the code above plots the data frame as shown in Figure B.2.
Furthermore, data frames are structures that many facilities in R, such as the plot
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FIGURE B.2 Plot of a data frame with the columns x and y.

and write.csv functions, can interpret directly . The read.csv function returns a
data frame constructed from a given CSV file.

B.3 BASIC DATA ANALYSIS

R’s basic data analysis capabilities are best demonstrated with an example. Here we
use the built-in data frame for the iris data set:

> data(iris)
> summary(iris)

Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Max. :7.900 Max. :4.400 Max. :6.900
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500
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FIGURE B.3 Histogram of Sepal.Length.
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FIGURE B.4 Histogram of Petal.Length.

Examining the summary data, we find that we have four independent numerical
attributes and one dependent categorical attribute, Species, with three labels.

We might wish to inspect the data distribution of some of the independent variables:

> hist(iris$Sepal.Length)
> hist(iris$Petal.Length)
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FIGURE B.5 Scatterplots for the iris data set.

The resulting plots are shown in Figures B.3 and B.4, respectively.
We can also obtain scatterplots for the iris data set:

> plot(iris)

The plots are shown in Figure B.5.
To illustrate model construction in R, we build a simple linear regression model

for the Petal.Length and Petal.Width of the iris data set:

> attach(iris)
> model <- lm(Petal.Length ˜ Petal.Width)
> plot(Petal.Width,Petal.Length)
> abline(model)



“bapp02” — 2009/9/11 — 10:57 — page 230 — #10

230 TUTORIAL INTRODUCTION TO R

0.5 1.0 1.5 2.0 2.5

1

2

3

4

5

6

7

Petal.width

P
et
al
.le

ng
th

FIGURE B.6 Simple linear regression model of two of the independent variables of the iris
data set.

We use the attach command so that we do not have to repeat the iris$ name
qualifier for each iris variable name. The resulting plot is shown in Figure B.6.

BIBLIOGRAPHIC NOTES

Perhaps the gentlest introduction to R is the book by Dalgaard [24]. Another nice
introduction to R is [77]. A more comprehensive treatment of data analysis and statis-
tics using R is [76]. The two de facto standard references for the R language are [4]
and [19]. The graphics capabilities of R are described in [55].
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Accuracy, model performance analysis, 151,
168–169

Aggregation component, 62
Algorithms, see specific types of algorithms

discovery, see Discovery algorithms
Kernel-Adatron algorithm, 133, 136–137
simple learning, 54–57, 67

α-values, 70–71, 73
Analyst, functions of, 13, 24
Artificial intelligence, 23
Artificial neural networks, 10, 61, 87.

See also Neural networks
Associativity, 36, 39
Attribute-oriented data manipulation, 20
Attributes, significance of:

data visualization, 17–19
dependent, 7–8, 10, 14, 24
independent, 14, 17
universe X, 6

Backpropagation, 63
Basis set, defined, 41
Binary classification problem, 31–32, 49–50,

75–77, 87, 149
Binary decision function, 61

Binary label assignments, 172–173
Black swan problem, 8–10
Bootstrap:

defined, 160
model performance analysis, 24, 147, 162
sample, 160–162
support vector regression machine, 202–203

Cauchy-Schwartz inequality theorem, 110–113
C-classification support vector machines, 122
Chunking, 133, 139–142
Chunk size, 140
Classification:

errors, 155
in machine learning, 5–6
multiclass, 185–193
universe X structure, 6, 31

Classifiers, see Maximum-margin classifiers;
Soft-margin classifiers

Clementine (SPSS), 27
Clerical errors, 154
Closed under vector addition and scalar

multiplication, 40
Collinearity, 195
Color, in scatterplot matrices, 17
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Column matrix, 34–35
Comma-separated value (CSV) files, in data

tables, 14–15
Commutative identity, 38, 44
Commutativity, in vector addition, 36, 38
Component-wise mathematical operations, 34
Computational statistical techniques, 23–24
Computations:

constraints, generally, 24
data access, 14–17
data manipulations, 20–23
model building and evaluation, 23–26
model deployment, 26–27
visualization, 17–20

Confidence intervals:
construction of, 147
error, 160–163
overlapping, 162

Confidence value, 160–161, 186, 191
Confusion matrix:

characteristics of, 147, 149
clinical example of, 151–152
defined, 150
model performance evaluation, 166–168
visualization of, 150

Constraint with bound ci, 74
Constraints:

model performance analysis, 152–153, 167
model representations, 10–11
multiclass classification, 186
novelty detection, 209–217
soft-margin optimization, 116, 121–122
statistical learning theory, 175
support vector machines, 124–125, 137

Convergence, support vector machines,
140–141

Coordinate system:
data sets, 32–35
data universe conversions, 40
dot product spaces and, 45

Correlations, in WEKA visualization, 20
Cost (C) constant:

linear support vector machines, 124–125
model performance analysis, 152–153, 167
multiclass classification, 186
soft-margin optimization, 116, 121–122
statistical learning theory, 175
support vector machines, 137

Cross products, 6, 31, 33, 41
Cross-validated error (CVE), 159, 161–163,

165–167, 169, 203
Cross-validation, model performance analysis,

147, 158–159, 168, 205

Data, generally:
access, 14–17
cleansing, 3
manipulations, 13, 20–23
mathematical description, see Mathematical

description of data
mining, 3
sets, see Data sets
universe, see Data universe
visualization, see Visualization
warehouse, 14

Data sets:
for binary classification problem, 32–33
defined, 31
dimensionality of, 45
linearly separable, 50
shattered, 173–175
three-dimensional scatterplots, 33
WEKA visualization, 19–20

Data universe:
conversion into vector space, 39–40
linear decision surfaces, 49–50
model performance analysis, 154
probability distribution of, 171

Decision function:
algebraic expression, 56–57
binary, 61
complexity of, 106
construction of, 51, 53
dual, 101–102
geometric interpretation, 56
maximum-margin, 102
one-versus-the-rest classification, 188, 191
perceptron learning algorithm, 63–64, 68–69
rewriting, 107
soft-margin classifiers, 117

Decision rule model, 11
Decisions, dual decision function, 101–102
Decision surface, see Linear decision surface

applications, 51
complicated, 91–92
constraints, 61, 69
defined, 50
degenerate, 70, 86
linear, 104, 109, 172
maximum margin, 73–87, 114, 197–198
nonlinear, 104–106, 213
nonlinear support vector machines, 104–106,

130
with offset term, 51–53, 62, 66, 69, 108, 121
one-versus-the-rest classification, 186–187
optimal, 75–78, 100, 137
pairwise classification, 191
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perceptron learning, 63–64
rotation of, 64, 66–67, 76, 99
simple learning algorithm, 55, 92
soft-margin, 115, 119, 125
translation of, 64–67, 77

Decision trees, 9, 11, 24
Dependent attributes, 7–8, 10, 14, 24
Deployment, 3
Dimensionality, vector spaces, 41
Discovery algorithms:

classification of, 23
effectiveness of, 17

Dissimilar vectors, 42–43
Distributivity I, 39
Distributivity II, 39
Domain analysis, 3, 13
Domain-specific data manipulation, 23
Dot products:

applications, 31
algebraic definition, 41–42
algebraic identities, 44
Cauchy-Schwartz inequality theorem,

111–113
decision surfaces, 52–53
feature space, calculation of, 107, 110
geometric interpretation, 41–42, 44, 56
linearity, 56
as similarity score, 41–44
space, 43–44
support vector regression machine, 202
symmetry, 56
two-dimensional, 104
vector similarity/dissimilarity, 41–47

Duality, 67–70
Dual maximum-margin optimization, 97–102
Dual optimization problem, 93–94, 201
Dual representation, perceptron learning

algorithm, 69–70
Dual setting, 212–214
Dual training algorithm, perceptron

learning, 61
Dual variables, 68, 93–94, 200

Enterprise Miner (SAS), 27
Environments, types of:

computational aspects, 13–27
tool sets, 27

e1071 package, 25, 126
Equality, see Inequality

mathematical operations, 35–37
vector addition, 37

Error-correcting-output-codes classification,
192

Error curves:
idealized test, 178
model performance analysis, 153–154, 156

Errors, types of:
classification, 154
confidence intervals, 160–163
generalization, 178–180
hold-out, 203
mean-squared, 202–203
misclassification, 57
model/modeling, 24, 148, 160
prediction, 148–150
representation, 154
root-mean-squared, 203–204
software, 154
sum of squared, 195
test, 155–158, 166
training, 153–156, 165

Euclidean spaces, 43
Evaluation methods, see Model evaluation

methods
Expected loss, 176
Expected risk, 176–177
Explorer GUI, 14
Exporting data tables, 14

Feasible solution, optimization problems, 74
Features, in universe X, 6–7
Feature search:

model evaluation process, 152
support vector machines, 103, 105–106

Feature space:
Cauchy-Schwartz inequality theorem, 111, 113
novelty detection, 213
support vector machines, 107

Filters:
attribute-oriented, 21
WEKA applications, 19–21

Folds, N-fold cross-validation, 158
Free parameters:

maximum-margin classifiers, 87
perceptron learning algorithm, 63, 68
standard kernels, 108
support vector machines, 134

Gaussian kernel, 108, 110, 123, 175, 214
Generalization/generalization ability, 8–10, 49,

53, 73, 81, 91, 118, 125, 139, 155, 157
Generalization bound, 178–180
Generalization error, 178–180
Global convergence, 140–141
Global optimization problem, 143–144
Gradient ascent algorithm, 134–137
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Graphical user interface (GUI), 13–14, 21, 27, 193
Greedy search heuristic, 64
Grid search, 109

Hard-margin classifiers:
characteristics of, 120
defined, 92
optimization problem, 116, 121–122
statistical learning theory, 175

High-complexity models:
performance evaluation, 154
statistical learning theory, 174

High-degree polynomials, 154
Histograms, 221
Hold-out error, 203
Hold-out testing technique, 147, 155–157, 162,

203, 205
Homogeneous polynomial kernel, 123
Homogeneous polynomial kernel of degree 2,

108–110, 113, 128
Hyperplanes:

characteristics of, 44–47
dot product spaces, 47
linear decision surfaces, 50
novelty detection, 211–213
optimization problems, 74, 92
supporting, 76–79, 81, 99–101, 114–116,

121–122, 141

Identity:
linearity, dot spaces and, 43–44
property, 36–37
in vector addition, 36
in vector multiplication, 39

If-then-else rules, 3, 9–10
Implementation of support vector machines:

gradient ascent algorithm, 134–137
overview, 133, 144
quadratic programming, 133, 138–142
sequential minimal optimization, 136,

142–144
Importing data tables, 14
Independent attributes, 14, 17
Independent variable, 229
Inductive learning, 8–9, 49, 51
Inequality, 110–113, 198, 200
Inference, 24
Insightful Miner (S-Plus), 27
Installation, e1071 package, 25
Instances:

defined, 20
training, 52

Iterative model evaluation, 152

Java library, WEKA machine learning tools, 26
Joint probability distribution, 176

Karush-Kuhn-Tucker conditions (KKT con-
ditions), see KKT complementarity condition

Kernel-Adatron algorithm, 133, 136–137
Kernel function:

model building and, 25
model performance analysis, 153–154
novelty detection, 213
support vector machines, 103, 107
support vector regression machine, 202

Kernel matrix, 139
Kernel-perceptron algorithm, 137
Kernels:

defined, 107
free parameters, 108
support vector machines, 109–113, 129–130

Kernel trick, support vector machine:
linear, 91, 103–104, 106–109, 128–129
regression, 202, 213

KKT complementarity conditions, 94, 97–100,
118–119, 140, 143, 201, 212–213

Knowledge discovery, generally:
characterized, 3–4
inductive learning, 8–9
machine learning, 4–6, 8, 10, 26
model representations, 9–11
universe X structure, 6–8

Knowledge discovery in databases (KDD), 3

Label assignments, 172–173
Labeling process:

data visualization, 19
decision surfaces, 49–52
in machine learning, 4–6
simple learning algorithms, 54–56
universe X structure, 6, 10

Lagrangian dual:
characteristics of, 92–97, 128
gradient ascent, 136
maximum-margin classifiers, 128
nonlinear support vector machines, 110
optimization, see Lagrangian dual optimization
soft-margin classifiers, 116, 118, 120–122
support vector machines, 137–138

Lagrangian dual optimization:
characteristics of, 93–97
nonlinear support vector machines, 103
quadratic programming applications, 139
SMO compared with, 142–143
soft-margin classifiers, 121
support vector machines, 133–134, 140
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Lagrangian multipliers:
implementation of support vector machines,

136–137, 141, 143
model performance analysis, 153
support vector machines, 93–94, 101, 106, 109,

118, 120–122, 133
Lagrangian optimization:

linear support vector machines, 102
novelty detection, 213
problem, 118–119, 135
support vector regression, 200
theory, 91

Language bias, 10, 50
Law of cosines, 42
Learning:

algorithms, 54–57
inductive,8–9
machine, 4–6, 8
perceptron, 57, 62–70
supervised, 5
unsupervised, 5

Learning rate (η):
perceptron learning algorithm, 64–65, 68
support vector machines, 136

Leave-one-out method (LOOM), 147, 157–159,
162

Length, of position vectors, 35–36, 39, 44
Levels, data manipulation in R, 22–23
Limitations, in model representations, 10.

See also Constraints
Linear algebra, 31
Linear combination, in vector spaces, 40–41
Linear decision functions:

data sets to, 49–50
learning algorithm, 51–54, 56

Linear decision surface:
construction of, 49
defined, 49
novelty detection, 212
offset terms, 51–53
outliers, 57
perceptron learning, 61, 63
simple learning algorithm, 54–57
statistical learning theory, 172
support vector machines, 101, 104, 109
through the origin, 50–51, 130

Linearity, dot products, 43–44, 56
Linear kernel, 25, 107–108, 124, 154, 169,

214–215
Linearly dependent vector space, 40
Linearly independent vector space, 40–41
Linear optimization problem, 74
Linear regression, 194–195

Linear support vector machines:
characteristics of, 102–103, 124–125, 128
defined, 10, 87
kernel functions, 129–130
kernel trick, 91
R applications, 127
regression, 206–207
WEKA applications, 124

Lines:
dot product spaces, 44–47
linear decision surfaces, 50
optimization problems, 74, 92

Loops, perceptron learning algorithm, 67
Loss function, 148, 176, 203
Low-complexity models, performance

evaluation, 156, 162
Lower bounds, confidence intervals, 160–162

Machine learning:
algorithms, 23–24
characteristics of, 4–6, 8, 10, 26
free model parameters, 87
linear decision surfaces, 50–51
model building, 24
statistical techniques distinguished

from, 24
theoretical setting for, 175–176
vectors spaces, 41

Mapping:
feature space, 111, 113
kernel functions, 111, 113
model performance analysis, 150
nonlinear support vector machines, 103–105,

107–108
Margin, maximum-margin classifiers:

defined, 76–77
optimization problem, 82–4
optimizing, 77–83, 86

Margin optimization, 77–82, 116
Mathematical description of data, generally:

data sets, 35–40, 49–50
dot product, as similarity score, 41–44
hyperplanes, 44–47
lines, 44–47
planes, 44–47
vector spaces, 40–41

Mathematical expectation, 175–177
Mathematical operations, data sets, 34–36
Maximization problem, 74, 80–81, 93
Maximum-margin classifiers/classifications:

defined, 73
dual, 102
Lagrangian dual, 97–101
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Maximum-margin classifiers/classifications:
(Continued)

Lagrangian optimization problem, 98–99
maximum margins, 75–77
models of, 114
objective function, rewriting, 115
optimization problems, 73–75, 80–82, 101
optimizing the margin, 77–82
overview, 73
primal, 138
quadratic programming, 73, 82–86
samples of, 71

Maximum-margin machines:
novelty detection, 209–212
regression with, 197–199

Maximum-margin optimization, 207
Mean:

decision function construction, 57
perceptron learning algorithm, 67
simple learning algorithm, 54–55

Mean-squared error, 202–203
Measurement theory, 23
Microsoft, knowledge discovery tools, 27
Midpoint, simple learning algorithm, 55
Minimization problem, 74, 80–81, 93
Misclassification:

errors, 57
impact of, 73, 116–117, 125
perceptron learning algorithm, 64–65, 67,

69–70
Misrepresentations, model performance

analysis, 154
Model:

building and evaluation, 23–26
complexity, see Model complexity
deployment, 26–27
error computations, 148, 160
evaluation methods, see Model evaluation

methods
performance analysis, 149–150
representations, types of, 9–11

Model complexity:
performance evaluation, 154–156, 163,

165–166, 168
VC-dimension, 172–175

Model evaluation methods:
confidence interval construction, 147
error confidence intervals, 160–163
metrics, 148–152
model evaluation, 152–159
samples of, 163–169

Modeling errors, 24
Multiclass classification:

one-versus-the-rest classification, 185–189,
191–193

pairwise classification, 189–193
Multilayer neural networks, 63
Multiple linear regression, 195
Multiplication by a scalar, defined, 39

Neural networks, 10–11, 63
N-fold cross-validation, 147, 158–159, 166, 169
Noise, 91, 114, 116, 122, 155
Nominal attributes, data manipulation in R, 22
Nondegeneracy, dot products, 44
Nonhomogeneous polynomial kernel, 108
Nonlinear kernel, novelty detection, 216
Nonlinear optimization problem, 74
Nonlinear support vector machines:

characteristics of, 103
decision function, 104–106, 130
defined, 102
feature search, 106–109
kernel functions, 109–114, 129–130
kernel trick, 103–109, 128–129
mapping, 104–105
R applications, 127–128
WEKA applications, 125–126

Nonnegativity, dot products, 44
Nontransparent representations/models, 10–11
Nonzero slack variables, 116, 121, 211
Normal distribution, 24
Normal vector:

dual representations, 108
linear decision surface, 50–51
mathematic description, 45–47
maximum-margin classifiers, 80, 85, 114
one-versus-the-rest classification, 188
perceptron learning algorithm, 61–69
regression, 205
soft-margin classifiers, 119
support vector machines, 106

Notations, listing of, 219
Novelty detection:

characteristics of, 209
defined, 209
dual setting, 212–214
maximum-margin machines, 209–212
in R, 209, 214–216

Null vector, 36

Objective function:
convex, 96
Langrangian dual optimization problem,

93, 95
maximum-margin classifiers, 74–75, 77–84



“bindex” — 2009/9/11 — 10:57 — page 243 — #7

INDEX 243

optimization procedure, 135
primal, 94, 118, 198
rewriting, 115
soft-margin classifiers, 118
support vector machines, 144
support vector regression, 200

Observation-oriented data manipulation, 20, 23
Observations, significance of, 14, 18, 158
Offset terms, 51–53, 62, 66, 69, 81, 108, 121,

133, 136, 198
Off-the-shelf optimization packages, 138
One-versus-the-rest classification, 185–189,

191–193
Open-source knowledge discovery systems:

RapidMiner, 27
Rattle, 27
types of, 13

Optimal decision function, 171
Optimization:

dual maximum-margin, 92–102
Lagrangian, 139
maximum-margin classifiers, see Optimization,

maximum-margin classifiers
model performance analysis, 153–154
problem, implications of, see Optimization

problem
soft-margin, 115–117

Optimization, maximum-margin classifiers:
constraints, 82
optimizing the margin, 77–82
problems, 74–75
support vector machines, 207

Optimization problems:
convex, 75, 82, 95, 210
hold-out testing method, 155–156
Lagrangian dual, 92–97, 120–122, 128
maximum margin, 77–81
multiobjective, 193
novelty detection, 212
primal, 92, 94–95, 98, 101, 114, 119, 121
regression and, 195, 199–200
soft-margin classifiers, 119, 121
support vector machines, 141–142
types of, 74–75

Oracle, knowledge discovery tools, 27
Orthogonal vectors, 42–43, 45–46
Orthonormal spaces, 43
Outliers:

decision surface orientation, 57
novelty detection, 209, 213–214, 216
perceptron learning, 70

Overfitting/overfitted models, 154–155,
157–158

Pairwise classification, 189–193
Partitions, support vector regression machines,

203
Perceptrons:

architecture and training, 62–67
defined, 61
duality, 67–70
standard training algorithm, 61

Perceptron learning, see Perceptrons
Performance metrics:

accuracy, 148–149
confusion matrix, 149–152
model error, 148, 160
sample applications, 164–168
sensitivity analysis, 151, 164–165, 168
specificity analysis, 151–152, 164–165, 168

Planes:
dot product spaces, 31, 44–47
linear decision surfaces, 50
optimization problems, 74, 92, 105
supporting, 77, 80

Polynomial kernels, 109, 175
Position vector:

decision surfaces, 51–52
mathematical operations, 33–34, 36–37, 39
perceptron learning algorithm, 64

Positive-definite kernel, 110
Positive definiteness, 44, 112
Prediction:

errors, 148–150
in labeling process, 6

Primal representation, perceptron learning
algorithm, 69

Primal search problem, 68–69
Primal variables, 68, 70, 93, 99, 118–119, 200
Probability, applications of, 23
Probability distribution, 171, 176
Programming languages, R scripting language,

13, 15, 20–21, 27, 221–230
Projection, maximum-margin classifiers, 78

Quadratic optimization problems, 138
Quadratic programming, applications of:

maximum-margin classifiers, 73, 82–86
support vector machines, 133, 138–142

Quality inspections, 154

R:
characterized, 13–14, 126–128
commercial version, 27
data access, 15–17
data analysis, basic, 227–230
data constructs, 224–227
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R: (Continued)
data manipulation, 21–24
formula, defined, 25
graphical capabilities, 20
interactive data editor, 17
metadata, 224
model building and evaluation, 25–26
model deployment, 26–27
model performance evaluation, 167–169
multidimensional arrays, 225–226
novelty detection, 209, 214–216
one-dimensional vectors, 225
programming constructs, 222–224
regression models, 195
support vector machines, 126–128
support vector regression, 205–207
three-dimensional arrays, 225
tutorial introduction to, 221–230
two-dimensional arrays, 226
visualization, 20

R
3, 104, 106

R
n, 33, 36, 39–41, 43–44, 50, 53, 64, 92, 102–103,

107, 110–111, 113, 134–135, 149, 186
R

2:
linear decision surface, 50–53
maximum-margin classifiers, 76, 78, 82
novelty detection, 216
perceptron learning algorithm, 65
support vector machines, 104, 106

Radial basis functions, 123
Radius (r):

maximum-margin classifiers, 86
perceptron learning algorithm, 64
soft-margin classifiers, 129

RapidMiner, 27
Rattle, 27
Real numbers (R), 31, 39–40, 43–45, 75, 110–111,

189. See also R
n

Real vector space:
defined, 40
dot product, 43
three-dimensional, 40–41

Reciprocity, in vector addition, 36
Regression:

as machine learning, 193–194
with maximum-margin machines, 197–199
model evaluation, 202–203
multiple linear, 194–196
simple linear, 194–196, 204
with support vector machines, 200–207

Representation errors, model performance
analysis, 154

Reproducing kernel property theorem, 110, 113

Residual terms, regression and, 194–196
Rewriting:

objective function, 115
update rules, 64
vectors, 41

Risk minimization:
defined, 171
empirical, 176–177
expected, 171
structural, 179–180

Root-mean-squared error, 203–204
Rosenblatt, Frank, 62–63
Rotations, 64, 66–67, 76, 99, 172, 179
Row matrices, 35
Rule lists, 24

Saddle points, 93–94, 96–98, 119, 144
Sample sets, in machine learning, 5
Sampling bias, 154–155
Sampling process, model performance analysis,

160
SAS, knowledge discovery tools, 27
Scalar addition, 36
Scalar multiplication, 39–41
Scalar programming paradigm, 221
Scatterplots, 17–20, 32–33, 221
Scripting language, R, 13, 15, 20–21, 27
Sensitivity, model performance analysis, 151,

164–165, 168
Sequential minimal optimization (SMO),

see SMO (sequential minimal optimization)
sgn function, perceptron learning, 62–63
Similarity score, 41–44. See also Dot products,

as similarity score
Simple learning algorithm:

applications, 57, 67
construction of, 54–55
dot products, 54–55
decision surfaces, 55–57

Simple linear regression, 195–196, 204, 221,
229–230

Slack variables, 91–92, 114, 116–118, 120–122,
198–199, 207, 211

SMO (sequential minimal optimization), 24,
142–144, 164, 192

Soft margins, 175. See also Soft-margin
classifiers

Soft-margin classifiers:
characteristics of, 114–115
constraints, 115
defined, 92
dual setting, 118–120
high-dimensional data sets, 108
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Lagrangian dual, 116, 118, 120–122
maximum-margin optimization compared

with, 121
novelty detection, 211
optimization, 115–117
overview, 114–115

Software errors, 154
Specificity, model performance analysis, 151–152,

164–165, 168
Split-train test cycle, 157
S-Plus, 27
SQL queries, 14
Square function, maximum-margin classifiers, 81
Statistical learning theory:

characteristics of, 76
empirical risk minimization, 176–177
machine learning, theoretical setting for,

175–176
maximum-margin classifier, 171
VC-confidence, 177–179
VC-dimension and model complexity,

172–175
Statistical techniques:

classical environments, 27
model building, 23–24

Stochastic gradient ascent, 136
Subsets, significance of:

in data manipulation, 22–23
in model performance analysis, 154
as training set, 147
in universe X structure, 6–7

Sum of squared errors, 195
Supervised filters, 21
Supervised learning, 5
Support vector machines:

binary, 192
defined, 3
dual maximum-margin optimization, 92–97
implementation of, see Implementation of

support vector machines
Lagrangian dual, 92–97, 120–122, 128
linear, see Linear support vector machines
maximum-margin optimization, dual, 97–102
model construction, 24–25
model representations, 11
model rewriting, 109
multiobjective, 192
nonlinear, see Nonlinear support vector

machines
outliers and, 57
overview of, 91–92
regression with, see Support vector regression
soft-margin classifiers, 92, 114–122

tool support, 122–128
training error curve, 153–154, 156
vector spaces, 41

Support vector regression:
characteristics of, 197, 200–202
model evaluation, 202–203
tool support, 203–207

Support vectors:
in feature space, 108
Lagrangian multipliers, 101
maximum-margin classifiers, 73, 77, 79–80

Symmetry:
Cauch-Schwartz inequality theorem, 112
dot products, 44, 56, 84
quadratic programming and, 84

Test error:
model performance evaluation, 166
performance, 155–158

Test partition, 157–158
Training data:

linear decision surface, 49–50
real-world, 91, 114, 142, 158, 194
support vector machines, 24
universe X structure, 7–8
vector spaces, 41

Training error:
hold-out testing method, 155–156
model performance analysis, 153–154, 165

Training set:
defined, 31
inductive learning, 8–9
regression, 199–203
simple learning algorithm, 54–57
universe X, 10

Transfer function, 62
Translations, 37–38, 64–67, 77, 172, 179
Transparent representation/models, 9–11, 24
Two-variable optimization problem, 144

Uncertainty, model performance analysis, 147,
160, 162

Unit vectors, 35, 41
Universe X, structure of, 6–8, 31
Unsupervised filters, 21
Unsupervised learning, 5
Update rules:

perceptron learning algorithm, 64–67, 69
support vector machines, 137

Upper bound:
confidence intervals, 160, 162
novelty detection, 211
VC-confidence, 161, 178
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Vapnik, Vladimir, 3, 178–179
VC-confidence, 161, 177–179
VC-dimension:

defined, 172
as subset, 173

Vector(s):
characteristics of, 35–39
dissimilar, 43–44
matchematic descriptions, 34, 36–40
normal, 45–47, 50–51, 61–69, 80, 85, 106, 108,

114, 119, 188, 205
null, 36
one-dimensional, 225
orthogonal, 42–43, 45–46
position, 33–34, 37, 39, 51–52, 64
spaces, see Vector spaces
translation, 37–38
unit, 35, 41

Vector addition:
algebraic properties of, 36
closure properties, 40
commutative identity of, 38
coordinate system and, 40
geometric interpretation, 37–38

Vector arithmetic, 34
Vector multiplication:

algebraic properties, 39–40
closure properties, 40
geometric interpretation, 39

Vector spaces:
defined, 34
dimensions of, 41
implications of, 31
kernel functions, 111
orthogonal, 43, 45–46
types of, 40–41

Visualization, 3, 13, 17–20, 26, 128, 150

WEKA:
characterized,13–14, 123–126
data access, 14–15
data manipulation, 20–22
GUI, 193
instances, 20
Java SDK version, 192
model building and evaluation, 24–25
model deployment, 26
model performance evaluation, 163–167
multiclass classification, 193
support vector machines, 123–126
support vector regression, 204–205
visualization, 17–20

Wisconsin Diagnostic Breast Cancer data set,
model performance analysis, 163–169

Working set, 140, 142

0–1 loss function, 148, 176
Zero-valued slack variables, 121
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