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Abstract-In all our day to day activities we will be classifying things based on situations and on our needs. Human beings do 
classification of any kind by their natural perception. Classifying data is a common task in machine learning which requires 
artificial intelligence. Support vector Machine (SVM) is a new technique suitable for binary classification tasks. SVMs are a set 
of supervised learning methods used for classification, regression and outliers detection.  The SVM classifiers work for both 
linear and nonlinear class of data through Kernel tricks. A Support Vector Machine is a discriminative classifier formally defined 
by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which 
categorizes new samples. In this paper, use of SVM for data classification is presented in a simplified way.  Discussions are 
justified with illustrative practical examples. An effective algorithm is developed for data classification on python platform using 
sklearn tool kit. The results are exhibited both symbolically and graphically. This paper is expected to be an insight for desired 
readers and researchers in implementing their ideas of item classification using SVM.     

Keywords: Support vector machines, classification, support vectors, maximum margin, hyperplane, positive gutter, 
negative gutter. 

1 INTRODUCTION 

It is known that internet is a web of big data where data belongs to different classes.  Systematic storage of the data 
is very much essential to selectively access the required class of information which is in the form of text files, image 
files, audio files, video files etc. Each information type in turn belongs to different categories, for example text files 
may be related to sports, movies, medical imaging, genes, politics, history, geography etc.  Video file may be related 
to education, religious, music etc.  Building Machine learning models, to know, to which particular class the data 
belongs is interesting and challenging.  

Classification is the task of choosing the correct class label for a given data input. In basic classification tasks, 
each input is considered in isolation from all other inputs, and the set of labels is defined in advance. Some examples 
of classification tasks are like (i) deciding whether an email is spam or not. (ii) Deciding the topic of a news article, 
is it, from a fixed list of topic areas such as "sports," "technology," and "politics."?  The basic classification task has 
a number of interesting variants. For example, in multi-class classification, each instance may be assigned multiple 
labels, in open-class classification, the set of labels is not defined in advance, and in sequence classification, a list of 
inputs is jointly classified. A classifier is called supervised if it is built based on training corpora containing the 
correct label for each input. The framework used by supervised classification is shown in Figure1. 

 
Figure1 explains the Supervised Classification:  (a) during training, a feature extractor is used to convert each input 
value to a feature set. These feature sets, capture the basic information about each input which later is used to 
classify that input. Pairs of feature sets and labels are fed into the machine learning algorithm to generate a model. 
(b) During prediction, the same feature extractor is used to convert unseen inputs to feature sets. These feature sets 
are then fed into the model, which generates predicted labels. 
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Figure1. The framework used by supervised classification 

 
There are many algorithms which are used for classification. The most widely used classification algorithms are: 

(1) Rule based classification algorithms and (2) Machine Learning Classification algorithms. The Machine learning 
classification algorithms are of different types such as: (a) Support vector Machines (b) Artificial  Neural Networks 
(multi-layer perceptron) (c) K- nearest  neighbors (d) Gaussian mixture models namely: (i) Naive bayes classifier 
(ii) Decision trees (iii) RBF classifiers (iv) Hidden Markov Models. 

The main challenges in classifying data include: (1) the data to be classified is often of high dimension. (2) It is 
hard to put up simple rules. (3) Need automated ways to deal with the data.  (4) Use of computers in data processing, 
statistical analysis, and trying to learn patterns from the data (machine learning). 

2   SUPPORT VECTOR MACHINES (SVMs) 

Support vector machines (SVMs) are a set of new supervised learning methods used for binary classification, 
regression and outlier’s detection. Among all classification algorithms SVM is strong because of its simple structure 
and it requires less number of features. SVM is a structural risk minimization classifier algorithm derived from 
statistical learning theory by Vladimir Vapnik and his colleagues in 1992.  Support Vector Machines were first 
introduced to solve the pattern classification and regression problems.  

Given some data points, each belonging to one of two classes and the goal is to decide to which class a new data 
point belong. In support vector machines, a data point is viewed as an n-dimensional vector, in n-dimensional space 
Rn and we want to know whether we can separate such points with an (n − 1) dimensional hyper plane (Canonical 
plane). This is called a linear classifier. There are many hyperplanes that might classify the data. One reasonable 
choice as the best hyperplane is the one that represents the largest separation, or margin, between the two classes, 
since in general the larger the margin the lower the generalization error of the classifier. The hyper plane is found by 
using the support vectors and margins. To calculate the margin, two parallel supporting hyper planes are 
constructed, one on each side of the Canonical plane, which is “pushed up against" the two data sets. So we choose 
the hyperplane such that the distance from it to the nearest data point on each side is maximized. If such a 
hyperplane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines is known as a 
maximum margin classifier; or equivalently, the perceptron of optimal stability. 

An SVM training algorithm builds a model of data points in space so that the data points of the separate 
categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space 
and predicted to belong to a category based on which side of the gap they fall on. In addition to performing linear 
classification, SVMs can efficiently perform a non-linear classification using the kernel trick, which implicitly maps 
their inputs into high-dimensional feature spaces. More formally, an SVM constructs a hyperplane or set of 
hyperplanes in a high or infinite-dimensional space, which can be used for classification, regression, or other tasks.  
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A. MULTICLASS AND MULTILABEL SVM  
Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of 
fruits which may be mangoes, oranges, apples, or pears. Multiclass classification makes the assumption that each 
sample is assigned to one and only one label that is, a fruit can be either a mango or an apple but not both at the 
same time. Multiclass SVM aims to assign labels to instances, where the labels are drawn from a finite set of several 
elements. SVMs classification and decision function depends on some subset of the training data, called the support 
vectors. 

The dominant approach for multiclass classification is to reduce the single multiclass problem into multiple 
binary classification problems. Common approaches of reducing a multiclass problem into multiple binary 
classifiers include: (i) one-versus-the-rest also known as one-versus-all strategy aims at fitting one classifier per 
class. If there are n-classes of data points then for each classifier, the class is fitted against all the other n-1 classes 
and hence it requires n classifier models to be trained. If there are only two classes, only one model is trained.  Since 
each class is represented by one and one classifier only, it is possible to gain knowledge about the class by 
inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice. (ii) one-
versus-one approach (Knerr et al., 1990 constructs one classifier per pair of classes.  At prediction time, the class 
which received the most votes is selected. If n is the number of data classes, then n * (n - 1) / 2 classifiers are to be 
constructed and each one trains data from two classes. Since it requires to fit n * (n - 1) / 2 classifiers, this method is 
usually slower than one-vs-the-rest.   

There is also an alternative multi-class strategy, called as multi-class SVM formulated by Crammer and Singer 
which casts the multiclass classification problem into a single optimization problem, rather than decomposing it into 
multiple binary classification problems.  This method is consistent than one-vs-rest classification. In practice, on-vs-
rest classification is usually preferred, since the results are mostly similar, but the runtime is significantly less. 

Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting 
properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A text 
might be about any of religion, politics, finance or education at the same time or none of these. Multi output-
multiclass classification and multi-task classification means that estimators have to handle jointly several 
classification tasks. This is a generalization of the multi-label classification task, where the set of classification 
problem is restricted to binary classification, and of the multi-class classification task.  

B.   ADVANTAGES, DISADVANTAGES AND APPLICATIONS OF SVM 
Advantages of SVM are SVM is effective in high dimensional spaces. It is effective in cases where number of 
dimensions is greater than the number of samples. It uses a subset of training points in the decision function (called 
support vectors), so it is also memory efficient. Different Kernel function can be specified for the decision function 
i.e SVM is versatile. Versatile: different Kernel functions can be specified for the decision function. Common 
kernels are provided, but it is also possible to specify custom kernels. 

Disadvantages of SVM are if the number of features is much greater than the number of samples, the method is 
likely to give poor performances. SVMs do not directly provide probability estimates. 

Applications: SVMs find application in various fields like Handwritten digit  & character recognition, Object 
detection & recognition, Speaker identification, Benchmarking time, Series prediction tests, Text classification, 
Biometrics, Content-based image retrieval, Image classification. 

3 PERFORMANCE EVALUATION TECHNIQUES 

The system’s performance is measured in terms of Precision (P), Recall (R) and F-measure (F).  Precision can be 
seen as a measure of exactness or quality, whereas recall is a measure of completeness or quantity. In simple terms, 
high precision means that an algorithm returned substantially more relevant results than irrelevant, while high recall 
means that an algorithm returned most of the relevant results. F-measure is a measure that combines precision and 
recall and is the harmonic mean of precision and recall.  

P = Number of correct answers - produced / Total number of answers - produced 
R = Number of correct answer - produced / Total number of possible- correct answers 
F -Measure = 2PR / (P + R).   The traditional F-measure or balanced F-score 

4 PRINCIPLES OF SVM 

A. HYPERPLANE 

In geometry, as a plane has one less dimension than space; a hyperplane is a subspace of one dimension less than 
its ambient space. A hyperplane of an n-dimensional space V is a flat subset with dimension n – 1 in V. By its 
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nature, it separates the space into two half spaces. As an example, a point is a hyper plane in 1-dimensional space, a 
line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-
dimensional space is not a hyperplane, and does not separate the space into two parts.  

SVM is a Machine Learning technique of classificaton and is a two-class classifier based on the use of Linear 
Discriminant Function g (�) = wT � + b, which represents a hyperplane in the feature space. A discriminant function 
represents a surface which separates the patterns so that the patterns from the two classes lie on the opposite sides of 
the surface. The challenge is to classify given data points using a linear discriminant function in order to minimize 
the error rate.  There are infinite numbers of answers possible, but which is optimal and best? 

The linear discriminant function with maximum margin is the optimal and best solution to the above question 
and is obtained by SVM by determining a separating hyperplane which is optimal according to a criterion as 
follows: Suppose Class labels are denoted by +1 and -1 and L  is a set of labeled training patterns then,  � = {(x i, yi), 
1 ≤  i  ≤  L},  �� € Rn,   �� € {-1, +1} and each  �� is an n-dimensional real vector. The SVM determine the optimal 
linear discriminant function with help of support vectors and is given by wT �� + b = 0 where  �� = 0 for all i. This is 
the equation of hyperplane. To find the maximum margin between two classes, two support planes are determined.  
Positive class support plane (positive gutter) is denoted by wT �� + b=+1 which lies in positive class(��= +1). 
Negative class support plane (negative gutter) is denoted by wT �� +b= -1  which lies  in negative class(��= -1).  
Here w € Rn represents the normal to the hyperplane and b € R is the offset to y-axis. To maximize the margin it 

should minimize 
�	  ‖�‖	 such that, for ��=+1, wT ��+b ≥ 1 and for ��= -1, wT �� + b ≤ -1. The geometrical 

representation of the linear discriminant function (hyperplane) and the support planes is shown in Figure2. 
 

 
Figure2.  Graphical representation of SVM principle 

The SVM parameters associated with the graph are: 

• n:  is a unit-length normal vector of the hyperplane given by n = 
�‖�‖ , (‖
‖ = 1) 

• w:  is the weight vector normal to the hyperplane, which is determined from alphas and support vectors. 
• ����� ��: Positive class support vector (SV) and negative class support vectors respectively.  The nearest 

points of the two classes which fall on the support panes are called as support vectors. 

• � = �  ��   �	 � 
• PSP, HP, NSP: Positive support plane, hyperplane and negative support panes respectively 
• Margin is defined as the width that the boundary (positive and negative gutters) could be increased (pushed 

apart) by before hitting a data point. 

The margin width is � = ��� − ���. 
 =  ��� − ���. �‖�‖  = 	‖�‖  
• ��� + � = �: for all points on hyperplane 
• ���� + � = �:  for all  � lying on positive gutter line (!"= +1) 
• ���� + � = −�: for all  � lying lies on negative gutter line (!"= -1) 
• ��� + � > 1: for all points in positive class (!"= +1) 
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• ��� + � < −1: for all points in negative class (!"= -1) 
• ��� + � ≥ �: for all points on positive gutter line or above (!"= +1) 
• ��� + � ≤ −� : for all points on negative gutter line or below (!"= -1) 

 
B. GEOMETRY OF SVM 

In geometry, the equation of a straight line is given by & = '� + �, which can also be written as: �−'�� + & + �−�� = �         ��� + �	& + � = �, where �� = −', �	 = �, � = �−��    ����	��  ��&� + � = �   )�� �	* ��&� + � = �    ��� + � = �, where � = ��&� =  ����	� ,  � = ����	� , �� = )�� �	* 
Here w, and w- are weights of x and y and b is the intercept to y-axis.   Here the weights  w,  and  w- may be 

positive or negative.  If weights are +1 or -1 then slope is 1, for other weights line is same with different slopes. Plot 
of the line  ��� + �	& + � = � is as shown in Figure3. 
 

 
Figure3. Plot of the line  ��� + �	& + � = � for different values of w1, w2 and b 

The line  ��� + �	& + � = � or   ��� + � = �, is used as a hyperplane in two class classification problems. 
The hyperplane parameters w and b should be such that the line should pass through exactly in the middle of the 
space between two classes and the perpendicular distance of nearest points (support vectors) of two classes to the 
hyperplane must be same. In SVMs we are trying to find a decision boundary (hyperplane) that maximizes the 
"margin" or the "width of the road" separating the positives from the negative training data points and adding or 

deleting non-support vector points will not change the solution. To find this we minimize:
�	  ‖.‖	 subject to the 

constraints �� � ./ � + 0� ≥ �. The resulting Lagrange multiplier equation we try to optimize is:  

Minimize 12�., 0, 3�  � =  �	  ‖.‖	 −  ∑ 3� ���5� �� � ./  �� +  0� −  �� such that  3�  ≥ �      
Solving the above Lagrangian optimization problem will give us w, b, and alphas. These parameters determine a 
unique maximal margin solution.  
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Useful Equations for solving SVM problems 

A. Equations derived from optimizing the Lagrangian:  

1. Partial of the Lagrangian wrt to b:  From  
<1=<0 = �  ∑ 3���5� �� = �       Note that �� € {-1, +1} and 3� = � for non-support vectors. 

 
Sum of all alphas (support vector weights) with their signs should add to 0. 

 
2. Partial of the Lagrangian wrt to w: From  

<1=<. = � 

. =  > 3�
�

�5�  �� �� For when using a linear kernel. The summation only contains support vectors. 
Support vectors are training data points with 3� > 0 

B. Equations from the boundaries and constraints:  

3. The Decision boundary:  

@�A� =  > 3� 
�

�5� �� B� ��, �� + 0 ≥ �    General form, for any kernel. To classify an unknown x, we 
compute the kernel function K(xi , x) against each of the 
support vectors x. Support vectors are training data points 
with 3� > �      

@�A� =  >)�3� 
�

�5� �� ���. �* + 0 ≥ �   @�A� =   � ./ .  � + 0� ≥ �    
 
For when using a linear kernel  
 
K (Xi , X) = Xi . X 

4. Positive gutter: 

@�A� =   > 3� 
�

�5� �� B���, �� + 0 = �     
General form, for any kernel. 
 

@�A� =   >)�3� 
�

�5� �� ���. �* + 0 = �    
 @�A� =   � ./ .  � + 0� = �    

 
For use when the Kernel is linear. 
 
 

5.  Negative gutter: 

@�A� =   > 3� 
�

�5� �� B� ��, �� + 0 = −�              @�A� =   � ./ .  � + 0� = −�                        
6. The width of the margin (or road): 

CDEFℎ HI FℎJ KHLE ≡  N = 	‖.‖     .@OPO,   ‖.‖ = Q> .�	
�
�  

Alternate formula for two support vector case: .��R@ ST R@O PS�� ≡  N =  .‖.‖ . ��� − ��� 

This is useful when solving SVM problems in 
1D or 2D, where the width of the road can be 
visually determined.  
 

 

7. Common SVM kernels: 
a Linear kernel  K(u,v) = u.v 
b Decomposable Kernels 
c Polynomial Kernel 
d Radial Basis Function (RBF) or Gaussian Kernel 
e Sigmoidal (tanh) Kernel: Allows for combination of linear decision boundaries 
f Linear combination of Kernels Idea: Kernel functions are closed under addition and scaling (by a 
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positive number). 

Solving for alpha, b, and w by computing Kernels and solving Constraint equations  

Example1: Let A = [0, 0] belong to class � = +1 and B = [4, 4]   belong to class �  = -1 

Step1. Determine the support vector points from the given data by finding the distance between each pair of data 
points from both classes. Since only two data points are given one in each class, they themselves are the support 
vectors. That is A = [0, 0] Support vector in positive class and B = [4, 4] Support vector in negative class. 

Step2.  Using linear kernel K (u, v) = u. v (dot product), compute all kernel values as follows: 
K (A, A) = A.A = 0; K (A, B) = A. B = 0; K (B, A) = B.A = 0; K (B, B) = A.B = 32 

Step3.  System of equations using SVM Constraints �.  ∑ 3���5� �� = �   ;     Algebraic sum of all alphas = 0     	.   ∑ 3� ��5� �� B���, �� + 0 = +� ∶   +VW XYZZW[      \.   ∑ 3� ��5� �� B���, �� + 0 = −� ∶  −VW XYZZW[        
For support vectors A and B the above three equations reduce to:  
1.   y

A
 α A  + y

B
 α B    = 0 

2.   y
A
 * K (A,  A) * αA  +  y

B
 * K(B, A) * α B    + b  = +1 

3.   y
A
 * K (A, B) * αA  + y

B
 * K(B, B) * α B   + b  = -1 

The numerical calculations are given in Table1. 
 

Table1: Numerical calculations of step3 equations 

 
Kernel value *  class 
sign 

Alpha 
of A 

Kernel value *  class 
sign 

Alpha 
of B 

co-eff 
of  b 

inter
cept 

Class 
label 

 Equations  

1. +1  α
 A 

+
 
 -1  α

 B 
+

 
 0  b =  0  (+1) α A  + (-1) α B    + (0)b =  0 

 

2. 
Y

A
 * K(A, A) = +0  α

 A 
+ Y

B
 * K(B, A) = - 0  α

 B 
+

 
 1  b =  +1  (+0) α A  + (-0) α B    + (1)b  =  1  

 

3. Y
A
 * K(A, B) = +0  α

 A 
+

 
 Y

B
 * K(B, B) = - 32  α

 B 
+

 
 1  b =  -1  (+0) α A  + (-32) α B + (1)b = -1 

Step4: Solving for   3’s, b and w using linear algebra and augmented matrix reduction we get 
 R1     1     -1     0      0         From R2 we get           b = 1  

 R2     0       0      1       1      From R3 we get            -32 α B + b = -1 or α B   =  
��]     

 R3     0    -32     1     - 1      From   R1 we get          α A =   α B   =   
��] 

Step5: To find w.  
We have the formula for w as:    . =  ∑ 3���5�  �� ��     
                                                     . =  &^  ∗  ` ^  ∗  ^   +   &a  ∗  `a  ∗  a     
                                                     . = �+�� ∗ b ��] c ∗  ����  + �−�� b ��]  c ∗  �dd�    that is   . = ���.	e��.	e� 
Step6: Now the hyperplane equation   ��� + �	& + � = �  becomes  −�. 	e� − �. 	e& + � = �:            Hyper plane −�. 	e� − �. 	e& + � = �:     Positive support plane  −�. 	e� − �. 	e& + � = −�:           Negative support plane 

 

Note:  
• w1, w2 and b are the trained parameters, and support vectors are [0, 0] and [4, 4] 
• If we interchange the class of points A and B we get the same equation 
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The experimental plot of these planes is given in 

Figure4: Plot of Hyper plane, Positive and Negative support planes for Example1

 
Step7: Max Width (margin) =  

-‖g‖  
Maximum margin minimizes   

,- 	‖w
Step8: Now take any test point and find to which class it belongs:  say 
Ans: Substitute this point in hyperplane
         so the point belongs to negative
Now take other test point and find to which class it belongs:  say 
Ans: Substitute this point in hyperplane equation we get 
         so the point belongs to positive class
Example2: Let A = [2, 0] belong to class 
                   Let B = [0, 0], C = [1, 1] 
 
Step1:  Find the distance between two vectors by the formula  

Distance between points A & B =	h
Distance between points A & C =	h
Distance between A and C is least and therefore A

Step2.  Using linear kernel K (u, v) = u. v 
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The experimental plot of these planes is given in graph of Figure4 below which gives maximum

Figure4: Plot of Hyper plane, Positive and Negative support planes for Example1

  =  
-

ibjkl c
m�bnkl c

m  =   4√2  

w‖-  that is   
�
	 	‖�‖	     = 	�	 	ib��d c

	 � b��d c
			=    

�
�] 

Now take any test point and find to which class it belongs:  say [5, 6] 
hyperplane equation we get   �0.25�5� � 0.25�6� � 1 � �1
negative class.  

Now take other test point and find to which class it belongs:  say [1, -4] 
Ans: Substitute this point in hyperplane equation we get �0.25�1� � 0.25��4� � 1 � �1

so the point belongs to positive class.  
to class � = +1 and 

= [1, 1] belong to class �  = -1 

Find the distance between two vectors by the formula  	h�� � ���	 � �& � &��	 

h�2 � 0�- � �0 � 0�- � √4		 
h�2 � 1�- � �0 � 1�- � √2 

Distance between A and C is least and therefore A, C are the support vectors.  

K (u, v) = u. v (dot product), compute all kernel values for support vectors as follows:

IJECSE, Volume 3, Number 4  
S Amarappa  and Dr. S V Sathyanarayana 

442 

 

which gives maximum margin. 

 
Figure4: Plot of Hyper plane, Positive and Negative support planes for Example1 

1.75 

1.75 

�  

for support vectors as follows: 
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K(A, A) = 2*2+0*0 = 4 K(A, C) = 2*1+0*1 = 2 
K(C, A) = 1*2+1*0 = 2 K(C, C) = 1*1+1*1 = 2 

Step3.  System of equations using SVM Constraints �.  ∑ 3���5� �� = �   ;     Algebraic sum of all alphas = 0   	.  ∑ 3� ��5� �� B���, �� + 0 = +� ∶   +VW XYZZW[      \.  ∑ 3� ��5� �� B���, �� + 0 = −� ∶  −VW XYZZW[      
For support vector A and C the above three equations reduce to: 

1.   y
A
 α A  + y

B
 α C    = 0 

2.   y
A
 * K (A, A) * α A  + y

C
 * K(C, A) * α C    + b  = 1 

3.  y
A
 * K (A, C) * α A  + y

C
 * K(C, C) * α C    + b  = -1 

The numerical calculations are given in Table2. 
 

Table2: Numerical calculations of step3 equations 

 
Kernel value *  class 
sign 

Alpha 
of A 

Kernel value *  class 
sign 

Alpha 
of B 

co-eff 
of  b 

inter
cept 

Class 
label 

 Equations  

1. 
+1  α

 A 
+

 
 -1  α

 C
+

 
 0  b =  0  (+1) α A  + (-1) α C    + (0)b =  0 

 

2. 
Y

A
 * K(A, A) = +4  α

 A 
+ Y

C
 * K(C, A) = - 2  α

 C 
+

 
 1  b =  +1  (+4) α A  + (-2) α C    + (1)b  =  1  

 

3. Y
A
 * K(A, C) = +2 α

 A 
+

 
 Y

C
* K(C, C) = - 2  α

 C 
+

 
 1  b =  -1  (+2) α A  + (-2) α C + (1)b = -1 

Step4: Solving for   3’s, b and w using linear algebra and augmented matrix reduction we get 

 R1     1     -1      0    0           
 R2     4     -2      1    1               
 R3     0     -2      1   -1          α A =   α C   =   1, b = -1 

 

Step5: We have the formula for w as:  . =  ∑ 3���5�  �� ��   
                                                                   = yA *  α A * A    +   yC * α C * C    

                                                                   = (+1) * (1)  �20�  + (-1) * (1)  �11�                                                  
                                                                  =  �   1−1   � 
Step6: Now the hyperplane equation   ��� + �	& + � = �  becomes x − y − 1 =  0:         Or     −x + y + 1 =  0:             hyper plane x − y − 1 =  1:         Or      −x + y + 1 = 1:            Positive support plane    x − y − 1 = −1:       Or      −x + y + 1 =  −1:        Negative support plane 

Note:  
• w1, w2 and b are the trained parameters, and support vectors are [2, 0] and [1, 1]. 
• If we interchange the class of points A and C we get the same equation. The point B = [0, 0] falls on 

negative gutter and hence it is a support vector. To find w1 and w2 and b at least two SVs are required. 
Treating B also as SV in negative class in the beginning we could have solved for the HP equation. But by 
observation it is difficult to know the SVs. Hence go for minimum distance concept for finding the SVs. 
This is a more general way to solve SVM parameters, without the help of geometry. This method can be 
applied to problems where "margin" width or boundary equation can not be derived by inspection.  
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Example of SVMs with a Non-Linear Kernel  

Example3: We are given the positively labeled data points at: [2, 2], [2, -2], [-2, -2], [-2, 2] in R2.  We are given 
the negatively labeled data points at: [1, 1], [1, -1], [-1, -1], [-1, 1] in R2 and we are asked to solve for equation for 
the decision boundary.  

Our goal, again, is to discover a separating hyperplane that accurately discriminates the two classes. Of course, it 
is obvious that no such hyperplane exists in the input space (that is, in the space in which the original input data 
live). Therefore, we must use a nonlinear SVM (that is, one whose mapping function ∅ is a nonlinear mapping from 
input space into some feature space). 
Define: 

∅ bA�A	c =  
xyz
y{|d − A	  +  |A� − A	|d − A� + |A� − A	|~    �T  iA�	 + A		    > 2      

�A�A	�                                                          SR@OP.��O � 
We can see how ∅  transforms our data before the dot products are performed. Therefore, we can rewrite the data 

in feature space as [2, 2], [10, 6], [6, 6], [6, 10] for the positive examples and [1, 1], [1, -1], [-1, -1], [-1, 1] for the 
negative examples. Now we can once again easily identify the support vectors.   

Let X1 = [2, 2], X2 = [10, 6], X3 = [6, 6], X4 = [6, 10] belong to class � = +1 and  
Y1 = [1, 1], Y2 = [1, -1], Y3 = [-1, -1], Y4 = [-1, 1] belong to class � = -1. In general Xi = [x, y], Yi = [x0, y0] 
Step1: Determine the support vector points from minimum distance between each point of class � = +1 and each 

point of class � = -1, by the formula h�� − ���	 + �& − &��	 . 
Distance between points X1 & Y 1 = h�2 − 1�- + �2 − 1�- = √2  , similarly 
Distance between points X1 & Y 2 = √10  , Distance between points X1 & Y 3 = √18   
Distance between points X1 & Y 4 = √10  , Distance between points X2 & Y 1 = √106   
Distance between points X2 & Y 2 = √130  , Distance between points X2 & Y 3 = √170   
Distance between points X2 & Y 4 = √146 , Distance between points X3 & Y 1 = √50   
Distance between points X3 & Y 2 = √74  , Distance between points X3 & Y 3 = √98   
Distance between points X3 & Y 4 = √74  , Distance between points X4 & Y 1 = √106   
Distance between points X4 & Y 2 = √146  , Distance between points X4 & Y 3 = √170   
Distance between points X4 &Y 4 = √130   
Distance between X1 and Y1 is minimum and therefore X1, Y1 are the support vectors. X1 = [2, 2] is positive class 
support vector and Y1 = [1, 1] is negative class support vector. Once the support vectors are got rest of the procedure 
is same as in Example1. 

SVM as data classifier experimental setup 
Figure5 shows the block diagram of SVM classifier for data classification. 

 
Figure5. SVM Model for Data classification  

Algorithm: 
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Step1: Define a set of n data points in an array say  
          X= array([[x11, x21],   [x12, x22], ....... [x1n, x2n]]) 
Step2: Define class of each data point in a vector of list type say Y = [-1, -1, -1 .....1, 1, 1] 
Step3: Fit the SVM model using the statements  
          clf = svm.SVC(kernel='linear') and clf.fit(X, Y) 
Step4: Get the separating hyperplane xx as x1 coordinates anf yy as x2 coordinates 

w =  clf.coef_[0] 
a = -w[0]/w[1] 
xx = np.linspace(-1, 8, 10, 1) 
yy = a*xx - (clf.intercept_[0])/w[1] 

Step5: Get the parallels to the separating hyperplane that pass through the support vectors 
b = clf.support_vectors_[0] 
yy_down = a*xx + (b[1] - a*b[0]) (positive support plane) 
b = clf.support_vectors_[-1] 
yy_up = a*xx + (b[1] - a*b[0])      (negative support plane) 

Step6: Plot the line, the points, and the nearest vectors to the plane using appropriate python  
          Commands. 

Conclusion 

In this paper an overview of SVM is presented. This will an eyeopener for researchers in the area of data 
classification. SVM is basically a two class classifier. It is very encouraging as a data classifier because of its simple 
structure and less feature space. It can classify numerical data as well non numerical data such as text, images, 
patterns etc. It does multiclass classification by dividing classes into two classes one v/s all others at a time. It is to 
be noted that, one-versus-the-rest approach is faster than one-versus-one approach. In this paper three examples have 
been discussed, which will help the readers to appreciate the concept of SVM. 
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