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Abstract-in all our day to day activities we will be clagsifg things based on situations and on our needmat beings do
classification of any kind by their natural perdept Classifying data is a common task in machirenieg which requires
artificial intelligence. Support vector Machine (8Yis a new technique suitable for binary classifion tasks. SVMs are a set
of supervised learning methods used for classifinatregression and outliers detection. The SVhksifiers work for both
linear and nonlinear class of data through Kemieks. A Support Vector Machine is a discriminatotassifier formally defined
by a separating hyperplane. In other words, giabeled training data, the algorithm outputs annogitinyperplane which
categorizes new samples. In this paper, use of $MMiata classification is presented in a simpdifigay. Discussions are
justified with illustrative practical examples. Affective algorithm is developed for data classificn on python platform using
sklearn tool kit. The results are exhibited botmbglically and graphically. This paper is expectede an insight for desired
readers and researchers in implementing their ideism classification using SVM.

Keywords: Support vector machines, classification, suppedtars, maximum margin, hyperplane, positive gutter
negative gutter.

1 INTRODUCTION

It is known that internet is a web of big data véhdata belongs to different classes. Systematiagt of the data
is very much essential to selectively access thuaired class of information which is in the formtekt files, image
files, audio files, video files etc. Each infornmatitype in turn belongs to different categories,ewample text files
may be related to sports, movies, medical imagieges, politics, history, geography etc. Videe filay be related
to education, religious, music etc. Building Mawhilearning models, to know, to which particulaassl the data
belongs is interesting and challenging.

Classification is the task of choosing the cordass label for a given data input. In basic cfasdion tasks,
each input is considered in isolation from all otimputs, and the set of labels is defined in adea®ome examples
of classification tasks are like (i) deciding whatlan email is spam or not. (ii) Deciding the topi@ news article,
is it, from a fixed list of topic areas such asditp,” "technology,” and "politics."? The basiasdification task has
a number of interesting variants. For example, uitirclass classification, each instance may bégassl multiple
labels, in open-class classification, the set bélsiis not defined in advance, and in sequenasifization, a list of
inputs is jointly classified. A classifier is callesupervised if it is built based on training cagpeontaining the
correct label for each input. The framework usediyyervised classification is shown in Figurel.

Figurel explains the Supervised Classification). d{&ing training, a feature extractor is useddowert each input
value to a feature set. These feature sets, cafitardasic information about each input which laseused to

classify that input. Pairs of feature sets andlt&abee fed into the machine learning algorithm émerate a model.
(b) During prediction, the same feature extractoused to convert unseen inputs to feature setselfeature sets
are then fed into the model, which generates predi@abels.
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Figurel. The framework used by supervised classifation

There are many algorithms which are used for diaatibn. The most widely used classification aitfuns are:
(1) Rule based classification algorithms and (2cMae Learning Classification algorithms. The Maehlearning
classification algorithms are of different typelsas: (a) Support vector Machines (b) Artificideural Networks
(multi-layer perceptron) (c) K- nearest neighbi} Gaussian mixture models namely: (i) Naive baglessifier
(ii) Decision trees (iii) RBF classifiers (iv) Hidd Markov Models.

The main challenges in classifying data includé:te data to be classified is often of high dinems(2) It is
hard to put up simple rules. (3) Need automatedswiayleal with the data. (4) Use of computersaitagrocessing,
statistical analysis, and trying to learn pattdram the data (machine learning).

2 SUPPORT VECTOR MACHINES (SVMs)

Support vector machines (SVMs)are a set of new supervised learning methods fmelinary classification
regressiorandoutlier’s detectionAmong all classificatiomlgorithms SVM is strong because of its simplecitie
and it requires less number of features. SVM igracsiral risk minimization classifier algorithm rikeed from
statistical learning theory by Vladimir Vapnik amis colleagues in 1992. Support Vector Machinesewst
introduced to solve the pattern classification esgtession problems.

Given some data points, each belonging to one ofdasses and the goal is to decide to which clagsy data
point belong. In support vector machines, a datatps viewed as an-dimensional vector, in-dimensional space
R" and we want to know whether we can separate soicttspwith an § — 1) dimensional hyper plane (Canonical
plane). This is called a linear classifier. There many hyperplanes that might classify the datee @asonable
choice as the best hyperplane is the one thatsepi® the largest separation, or margin, betweervib classes,
since in general the larger the margin the lowergéneralization error of the classifier. The hyplane is found by
using the support vectors and margins. To calcuthte margin, two parallel supporting hyper planes a
constructed, one on each side of the Canonicakphahich is “pushed up against" the two data ssdswe choose
the hyperplane such that the distance from it ® nlearest data point on each side is maximizedud¢h a
hyperplane exists, it is known as timaximum-margin hyperplane and the linear classifier it defines is known as a
maximum margin classifier; or equivalently, th@erceptron of optimal stability.

An SVM training algorithm builds a model of dataims in space so that the data points of the sé&para
categories are divided by a clear gap that is de &s possible. New examples are then mappediateame space
and predicted to belong to a category based onhadide of the gap they fall on. In addition to penfing linear
classification, SVMs can efficiently perform a nlimear classification using the kernel trick, whichplicitly maps
their inputs into high-dimensional feature spaddsre formally, an SVM constructs a hyperplane ot ot
hyperplanes in a high or infinite-dimensional spadeaich can be used for classification, regressimmther tasks.
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A. MULTICLASS AND MULTILABEL SVvM

Multiclass classification means a classification task with more than twasgs; e.g., classify a set of images of
fruits which may be mangoes, oranges, apples, arspdulticlass classification makes the assumpti@t each
sample is assigned to one and only one label ¢hat fruit can be either a mango or an apple bubaoth at the
same time. Multiclass SVM aims to assign labelmstances, where the labels are drawn from a fsgteof several
elements. SVMs classification and decision functiepends on some subset of the training datadctilte support
vectors.

The dominant approach for multiclass classificatierto reduce the single multiclass problem intoltipie
binary classification problems. Common approachésreducing a multiclass problem into multiple bipar
classifiers include: (ipne-versus-the-restalso known a®ne-versus-allstrategy aims at fitting one classifier per
class. If there ara-classes of data points then for each classifier ctass is fitted against all the otlmet classes
and hence it requiresclassifier models to be trained. If there are dnly classes, only one model is trained. Since
each class is represented by one and one classifigr it is possible to gain knowledge about thass by
inspecting its corresponding classifier. This is thost commonly used strategy and is a fair detdice. (ii)one-
versus-oneapproach (Knerr et al., 1990 constructs one dlasgier pair of classes. At prediction time, tHass
which received the most votes is selected. i§ the number of data classes, then(n - 1) / 2 classifiers are to be
constructed and each one trains data from twoeda&ince it requires to fit* (n - 1) / 2classifiers, this method is
usually slower than one-vs-the-rest.

There is also an alternative multi-class strategyled as multi-class SVM formulated by Crammer &mger
which casts the multiclass classification probleo ia single optimization problem, rather than aagosing it into
multiple binary classification problems. This madhis consistent than one-vs-rest classificatiorprhctice, on-vs-
rest classification is usually preferred, sincerggults are mostly similar, but the runtime isgigantly less.

Multilabel classification assigns to each sample a set of target labels @dm be thought as predicting
properties of a data-point that are not mutuallglesive, such as topics that are relevant for audmnt. A text
might be about any of religion, politics, finance education at the same time or none of thésalti output-
multiclass classification and multi-task classification means that estimators have to handle jointly sdver
classification tasks. This is a generalization e multi-label classification task, where the sktlassification
problem is restricted to binary classification, arfidhe multi-class classification task.

B. ADVANTAGES, DISADVANTAGES AND APPLICATIONS OF SVM

Advantages of SVM areSVM is effective in high dimensional spaces. lefective in cases where number of
dimensions is greater than the number of samplesels a subset of training points in the decifimation (called
support vectors), so it is also memory efficieniffédent Kernel function can be specified for thecsion function
i.e SVM is versatile. Versatile: differemternel functions can be specified for the decision function. Common
kernels are provided, but it is also possible &wc#y custom kernels.

Disadvantages of SVM arefithe number of features is much greater than theber of samples, the method is
likely to give poor performances. SVMs do not dilgprovide probability estimates.

Applications: SVMs find application in various fields like Handwritten digit & character recognition, Object
detection & recognition, Speaker identification,nBemarking time, Series prediction tests, Text sifestion,
Biometrics, Content-based image retrieval, Imagssification.

3 PERFORMANCE EVALUATION TECHNIQUES

The system’s performance is measured in terms @fiston (P), Recall (R) and F-measure (F). Precisan be
seen as a measure of exactness or quality, wherealsis a measure of completenessj@antity. In simple terms,
high precision means that an algorithm returned substantiallyennelevant results than irrelevant, while higball
means that an algorithm returned most of the reliesesults. F-measure @smeasure that combines precision and
recall and is the harmonic mean of precision acdlte

P = Number of correct answers - produced / Total number of answers - produced
R = Number of correct answer - produced / Total number of possible- correct answers
F -Measure=2PR/ (P + R). The traditional F-measure or balanced F-score

4 PRINCIPLES OF SVM

A. HYPERPLANE

In geometry, as a plane has one less dimensionsitace; dyperplane is a subspace of one dimension less than
its ambient space. A hyperplane of milimensional spac¥ is a flat subset with dimensian—1in V. By its
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nature, it separates the space into two half sp@cean example, a point is a hyper plané-gimensional space, a
line is a hyperplane ir-dimensional space, and a plane is a hyperplar@dimensional space. A line i8-
dimensional space is not a hyperplane, and doesepeatrate the space into two parts.

SVM is a Machine Learning technique of classificatnd is a two-class classifier based on the udenefar
Discriminant Functiony (X) = w' X + b, which represents a hyperplane in the featureespadiscriminant function
represents a surface which separates the pattethatsthe patterns from the two classes lie orofigosite sides of
the surface. The challenge is to classify givera ghatints using a linear discriminant function ier to minimize
the error rate. There are infinite numbers of aswpossible, but which is optimal and best?

The linear discriminant function with maximum margds the optimal and best solution to the abovestijoe
and is obtained by SVM by determining a separatiggerplane which is optimal according to a criterias
follows: Suppose Class labels are denotedtbgnd-1 andL is a set of labeled training patterns th&hs= {(x;, ),
1< i< L}, X;€R", Y; €{-1, +1} and eachX; is ann-dimensional real vector. The SVM determine theéroat
linear discriminant function with help of suppogotors and is given by' X; + b = Owhere Y; = 0 for all i. This is
the equation of hyperplane. To find the maximumgimabetween two classes, two support planes aerrdeted.
Positive class support plane (positive gutter) énaled byw' X; + b=+1 which lies in positive clasg{= +1).
Negative class support plane (negative guttereisoted byw" X; +b= -1 which lies in negative claggf= -1).
Herew € R’ represents the normal to the hyperplane la€dR is the offset to y-axis. To maximize the margin it
should minimize % lw||? such that, for¥;=+1, W' X;+b > 1 and for ¥;= -1, W' X; + b < -1. The geometrical

representation of the linear discriminant functfbyperplane) and the support planes is shown iorERy

A HP NSP

. WiX+b >+1 Margin

. Denotes +1

O Denotes -1

WX+ b=-1
w'X+b=0
WX+ b=+1

wWiX+b<-1

Support Vectors
X

1
-

Figure2. Graphical representation of SVM principle

The SVM parameters associated with the graph are:
e n: is a unit-length normal vector of the hyperplaneg byn 'ﬂ (In]l =2)

* w: is the weight vector normal to the hyperplaneictlis determined from alphas and support vectors.
« X'and X~: Positive class support vector (SV) and negativesckaipport vectors respectively. The nearest
points of the two classes which fall on the supparies are called as support vectors.

- x=[3]

« PSP, HP, NSPPositive support plane, hyperplane and negativeatipanes respectively
e Margin is defined as the width that the boundasiiive and negative gutters) could be increasedhgd
apart) by before hitting a data point.

The margin width iM = (X* - X ).n= Xt - X7). =~ ==

[lwll IIWII
« wTX + b = 0: for all points on hyperplane
«  wTX* +b=1: forall X* lying on positive gutter lineY{(= +1)
« wT'X™ +b=—1:forall X~ lying lies on negative gutter lin&;€ -1)
«  w'X +b > 1: for all points in positive clas¥;E +1)
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«  wTX +b < —1: for all points in negative clas¥ € -1)
« wTX + b > 1: for all points on positive gutter line or aboug=(+1)
«  wT'X+b < —1:for all points on negative gutter line or below~-1)

B. GEOMETRY OF SVM
In geometry, the equation of a straight line isegivoyy = mx + b, which can also be written as:
(—m)x+y+(—)b=0
wiX +wyy +b =0, wherew; = —m, w, =1, b=(-)b
w1l X b=o
" ] +»-
[W1 Wwg] [y] +b=0

wTX +b =0, whereX = [;] = [iﬂ W= mﬂ wh =[w; W]

Herew; andw, are weights of x and y and b is the intercept-txig. Here the weightsv; and w, may be
positive or negative. If weights are +1 or -1 tistope is 1, for other weights line is same witffiedlent slopes. Plot
of the linew;x +w,y + b = 0is as shown in Figure3.

w,x+w,y+b=0 A
-x+y+b=0 or +x-y+b=0
here

wi1=-1, w2=+1, b=0

or

wi=+1,w2= -1, b=0

0
«*
*

.
>

X

A

-X-y+b=0 or +x+y+b=0
here

wi=-1, w2= -1, b=0

or

wi=+1,w2=+1, b=0

Figure3. Plot of the line wy;x + w,y + b = 0 for different values of wi, w, and b

The line wyx +wpy +b=0o0r w'X +b =0, is used as a hyperplane in two class classificgiioblems.
The hyperplane parameters w and b should be sathtth line should pass through exactly in the teidd the
space between two classes and the perpendicutandésof nearest points (support vectors) of tvess#s to the
hyperplane must be same. In SVMs we are tryingind & decision boundary (hyperplane) that maximithes
"margin” or the "width of the road" separating thesitives from the negative training data pointd adding or

deleting non-support vector points will not charige solution. To find this wminimize:% llw]|? subject to the
constraint¥; (w’ X + b) > 1. The resulting Lagrange multiplier equation we troptimize is:

Minimize Lp(w,b,a; ) = % lwl|? — ", a; (Y; (W' X; + b) — 1)suchthat a; =0

Solving the above Lagrangian optimization probleith give usw, b, andalphas These parameters determine a
unique maximal margin solution.
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Useful Equations for solving SVM problems

A. Equations derived from optimizing the Lagrangian:
Lp
=0

1. Partial of the Lagrangian wrt to b: From —- 2
Yl Y; =0 Note that¥; € {-1, +1} andal = 0 for non-support vectors.

Sum of all alphas (support vector weights) withitb&ns should add to 0.

2. Partial of the Lagrangian wrt to w: From %f =0

L For when using a linear kernel. The summation ablytains support vectors.
w = Z a; Y X; Support vectors are training data points vath> 0
i=1

B. Equationsfrom the boundaries and constraints:
3. The Decision boundary

L General form, for any kernel. To classify an unknowwe
h(x) = z a; Y;K(X,X)+b >0 compute the kernel functidfi(x; , x) against each of the
i=1 support vectorg. Support vectors are training data points
with a; > 0
n
h(x) = Z[(“i Y;X)).X]+b 20 For when using a linear kernel
i=1
h(x)= (wl'.X+b)=0 K (X, X) = X;. X
4. Positive gutter:
n
h(x) = z a; Y, KX, X)+b=1 General form, for any kernel.
i=1
h(x) = Z[(ai Y;X).X]+b=1 For use when the Kernel is linear.
h(x)= (w'.X+b)=1

5. Negative gutter:
n

h(x) = ZaiY,-K(X,-,X)+b=—1 h(x)= (W'.X+b)=-1
i=1

6. The width of the margin (or road):

2
width of the road = m = —— where, ||w| =

lIwll

Alternate formula for two support vector case: This is useful when solving SVM problems in
width of the road = (Xt = X0) 1D or 2D, wherg the width of the road can be
~ wll visually determined.

7. Common SVM kernels:

Linear kernelK(u,v) = u.v

Decomposable Kernels

Polynomial Kernel

Radial Basis Function (RBF) or Gaussian Kernel

Sigmoidal (tanh) Kernel: Allows for combination lofear decision boundaries

0D |0 |T|D
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| positive number).

Solving for alpha, b, and w by computing Kernels ad solving Constraint equations
Examplel Let A = [0, 0] belong to clase = +1and B = [4, 4] belong to cla¥s = -1

Stepl. Determine the support vector points from the gidarta by finding the distance between each padaté
points from both classes. Since only two data goare given one in each class, they themselvetharsupport
vectors. That is A = [0, 0] Support vector in pogtclass and B = [4, 4] Support vector in negatilass.

Step2. Using linear kernel K (u, v) = u. v (dot produatpympute all kernel values as follows:
KA A=AA=0;K(A,B)=A.B=0; K(B,A)=B.A=0; K(B,B)=A.B=32

Step3. System of equations using SVM Constraints

1. Yt a;Y; =0 ; Algebraic sum of all alphas =0
2. Yhia; Y, K(X;,X)+b=+1: +ve gutter
3. Yu1a; Y K(X;,X) + b= —1: —ve gutter

For support vectors A and B the above three egustieduce to:
1. Y apty ag = 0
A B

2. Yy *K(A A)* ap+ y *KB,A)* ag +b=+1
A B

3. y *K(A,B)* apn+y *K(B,B)* ag +b=-1
A B

The numerical calculations are given in Tablel.

Tablel: Numerical calculations of step3 equations

Kernel value * class | Alpha Kernel value * class | Alpha | co-eff | inter | Class |Equations

sign of A sign of B of b cept | label
1 +1 a + -1 a + 0 b= Of(*+1pa+(-D)ag +(0)b=0
. A B
5 Y * KA A) =+0 a + Y *KB,A)=-0 a + 1 b= +1 [(+0)aa + (-0)ag +(1)b = 1
. A A B B
3 Y * K(A B) =+0 a + Y *K(B,B)=-32 a + 1 b= -1 (+0pa + (-32)ag+ ()b =-1
. A A B B

Step4: Solving for a’s, b andw using linear algebra and augmented matrix reduatie get
FromR2wége b=1

Rt 1 -1 0 O
R2 0 0 1

R3 0 -32 1 -1

Step5:To findw.

From R3 wé ge

From Rlwége op= og = —

We have the formula forwasw = Y- a; Y; X;
w=yA*(xA*A + yg *x ag * B

—0.25x — 0.25y +1 = 0:
—0.25x— 0.25y +1 = 1:
—0.25x— 0.25y +1 = —1:

Note:

= 0= (55 )« [g] + D (55 )« [i] tatis w= -

Step6: Now the hyperplane equat|0|w1x + w,y +b =0 becomes

Hyper plane
Positive support plane

3Xg+b=-lorg = —

1
16

Negative support plane

16

* wg, W, and b are the trained parameters, and suppourgegte [0, O] and [4, 4]
« If we interchange the class of points A and B wetlge same equation
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The experimental plot of these planes is givegraph of Figure4 belowhich gives maximui margin.

SVM optimum Hyperplane, +ve and -ve suppart planes

— wx+b=0 !
- W+b=41|
-~ Wth=-1

e 02564025y +1=-1(NSP)

1‘,\

0.25x+-0.25y+1=0(HP)

L -:0.25x4-0.25y+1=+1(PSP)

Figure4: Plot of Hyper plane, Positive and Negasivpport planes for Examp

Step7:Max Width (margin) =— = ——2>— = 442

R Ee

Maximum margin minimizes% [lwl]|* thatis % lwl|> = 2 (T)

z2 412 1
+(5) = %

Step8: Now take any test point and find to which cladselkongs: sa[5, 6]

Ans: Substitute this point inyperplan equation we get—0.25(5) — 0.25(6) + 1 = —1.75
so the point belongs wegativi class.

Now take other test point and find to which clddseilongs: sa[l, -4]

Ans: Substitute this point in hyperplane equatienget—0.25(1) — 0.25(—4) + 1 = +1.75
so the point belongs to positive cl.

Example2 Let A = [2, 0] belongo clas<Y = +1 and

Let B =[O0, 0], €[1, 1] belong to clas¥ =-1

Stepl: Find the distance between two vectors by the foan /(x — x¢)? + (y — yo)?
Distance between points A & B\#2 — 0)2 + (0 — 0)2 =4

Distance between points A & C{H2 — 1)2 + (0 — 1)2 =2
Distance between A and C is least and therefi C are the support vectors.

Step2. Using linear kerneK (u, v) = u. v(dot product), compute all kernel values support vectors as follov
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K(A, A) = 2*2+0%0 = 4 K(A, C) = 2*1+0*1 = 2

K(C,A) = 1*2+1*0 = 2 K(C,C) = 1*1+1*1 = 2

Step3. System of equations using SVM Constraints

1. Y a;Y; =0 ; Algebraic sum of all alphas =0
2.3Ma; Y, K(X;,X)+b=+1: +ve gutter
3. Yh1a; Y K(X;,X) + b= —1: —ve gutter

For support vector A and C the above three equatieduce to:
1. yAaA+yBac =0

2. y *KA A *aat+y *K(C,A)* ac +b=1

3. yA*K(A, C)* aA+yC*K(C, C)*ac +bh=-1
TheAnumericaI calculatio%s are given in Table2.

Table2: Numerical calculations of step3 equations

Kernel value * class | Alpha | Kernel value * class | Alpha | co-eff | inter | Class |Equations
sign of A sign of B of b cept | label
1 +1 a + -1 a + 0 b= 0 [(+D)ap + (-)ac +(O)b=0
A C
2 Y * KA A) =+4 a + Y *K(C,A)=-2 a + 1 b= +1 [(+4)aa + (-2)ac + ()b = 1
A A C C
3 Y *KAC)=+2 | o + Y*K(C,C)=-2 a + 1 b= -1 [(#2)aa + (-2)act ()b =-1
: A A C C

Step4: Solving for a’s, b andw using linear algebra and augmented matrix reduatie get

RL 1 -1 0 0
R2Z 4 -2 1 1
R3 0 2 1 -1 aap=o0c= 1,b=-

Step5:We have the formulaforwasv = YL  «a; Y; X;
=X*(1A*A i yc*(lc*c

=) @] + 0 []]

=N

Step6: Now the hyperplane equatiow;x +w,y + b =0 becomes

x—y—1= 0: Or —x+y+1= 0: hyper plane
x—y—1=1: Or —x+y+1=1: Positive support plane
x—y—1=-1: Oor —x+y+1=-1: Negative support plane
Note:

* Wi, W, and b are the trained parameters, and suppoureeate [2, 0] and [1, 1].

* If we interchange the class of points A and C wethge same equation. The point B = [0, 0] falls on
negative gutter and hence it is a support vectorfifid w; andw, andb at least two SVs are required.
Treating B also as SV in negative class in therr@gg we could have solved for the HP equation. But
observation it is difficult to know the SVs. Henge for minimum distance concept for finding the SVs
This is a more general way to solve SVM parametsithout the help of geometry. This method can be
applied to problems where "margin” width or bourydequation can not be derived by inspection.
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Example of SVMs with a Non-Linear Kernel

Example3: We are given theositively labeled datapoints at: [2, 2], [2, -2], [-2, -2], [-2, 2] in®R We are given
thenegatively labeled data pointsat: [1, 1], [1, -1], [-1, -1], [-1, 1] in Rand we are asked to solve for equation for
the decision boundary.

Our goal, again, is to discover a separating hypaguthat accurately discriminates the two clasdésourse, it
is obvious that no such hyperplane exists in tipatirspace (that is, in the space in which the oaiginput data
live). Therefore, we must use a nonlinear SVM (thabne whose mapping functi@nis a nonlinear mapping from
input space into some feature space).

Define:
4—-—x, + |x1 —x
2 + 1% = x| if |[x3+ x5 >2
Q)(xl): 4— xq+ |31 — x35]

X2 X
L( 1) otherwise
X2

We can see ho@ transforms our data before the dot products arfopned. Therefore, we can rewrite the data
in feature space as [2, 2], [10, 6], [6, 6], [6] i@ the positive examples and [1, 1], [1, -1]1,[-1], [-1, 1] for the
negative examples. Now we can once again easitifgehe support vectors.

Let X; =[2, 2], X =[10, 6], X% =[6, 6], X4 = [6, 10] belong to clask = +1 and

Yi=1[1,1], Y.=1[1, -1], Yz =[-1, -1], Y, =[-1, 1] belong to clasi = -1. In general X [X, Y], Y= [Xo, Yol

Stepl: Determine the support vector points fromimim distance between each point of cliss +1 and each
point of clas¥ = -1, by the formula/(x — x¢)2 + (y — yo)? .

Distance between points & Y ; :\/(2 - 12+ (2 -1)2=+2,similarly

Distance between points; % Y, =+/10 , Distance between points % Y3 =+/18

Distance between points; X Y, =+/10 , Distance between points % Y, =v106

Distance between points,X Y, =+/130 , Distance between points % Y; =170

Distance between points,X Y, =+/146, Distance between points;X Y ; =+/50

Distance between points;X. Y, =+/74 , Distance between points % Y; =98

Distance between points;X. Y, =+/74 , Distance between points; % Y, =v106

Distance between points, X Y, =+/146 , Distance between points, & Y; =170

Distance between points, XY , =v130

Distance between pand Y; is minimum and therefore ;XY are the support vectors, X [2, 2] is positive class
support vector and Y= [1, 1] is negative class support vector. Oneesipport vectors are got rest of the procedure
is same as in Examplel.

SVM as data classifier experimental setup

Figure5 shows the block diagram of SVM classifmrdata classification.

Test data points

= Model
Training data —pe-| L.earning machine - (Hypothesis/
X. Data points SVM Features)

Y. Class Labels

A 4

Predicted label

v

Output:
test data points
with predicted

labels

Figure5. SVM Model for Data classification

Algorithm:
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Data classification using Support vector Machine (M), a simplified approach

Stepl: Define a set of n data points in an arrgty sa
X=array([[X, X1, [X12, X2, ... Déns Xan])
Step2: Define class of each data point in a vesftdist type say Y =[-1, -1, -1 .....1, 1, 1]
Step3:Fit the SVM model using the statements
clf = svm.SVC(kernel='linear") and clftX, Y)
Step4: Get the separating hyperplane xx;aorrdinates anf yy as xoordinates
w = clf.coef_[0]
a = -w[0]/w[1]
xx = np.linspace(-1, 8, 10, 1)
yy = a*xx - (clf.intercept_[0])/w[1]
Step5: Get the parallels to the separating hypeepthat pass through the support vectors
b = clf.support_vectors_[0]
yy_down = a*xx + (b[1] - a*b[0]) (positive suppgptane)
b = clf.support_vectors_[-1]
yy_up = a*xx + (b[1] - a*b[0])  (negative supp@lane)
Step6: Plot the line, the points, and the nearestiovs to the plane using appropriate python
Commands.

Conclusion

In this paper an overview of SVM is presented. Thifl an eyeopener for researchers in the area aih d
classification. SVM is basically a two class cléissi It is very encouraging as a data classifiecduse of its simple
structure and less feature space. It can classifgenical data as well non numerical data such =S images,
patterns etc. It does multiclass classificationdbyding classes into two classes one v/s all atladra time. It is to
be noted that, one-versus-the-rest approach isrfdstn one-versus-one approach. In this papes twamples have
been discussed, which will help the readers toepate the concept of SVM.
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