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Preface

‘Subdivision’ is a way of representing smooth shapes in a computer. A curve
or surface (both of which contain an infinite number of points) is described in
terms of two objects. One object is a sequence of vertices, which we visualise
as a polygon, for curves, or a network of vertices, which we visualise by
drawing the edges or faces of the network, for surfaces.

The other object is a set of rules for making denser sequences or networks.
When applied repeatedly, the denser and denser sequences are claimed to
converge to a limit, which is the curve or surface that we want to represent.

This book focusses on curves, because the theory for that is complete
enough that a book claiming that our understanding is complete is exactly
what is needed to stimulate research proving that claim wrong. Also because
there are already a number of good books on subdivision surfaces.

The way in which the limit curve relates to the polygon, and a lot of
interesting properties of the limit curve, depend on the set of rules, and this
book is about how one can deduce those properties from the set of rules, and
how one can then use that understanding to construct rules which give the
properties that one wants.

This book therefore has four main parts. First are a set of ‘Prependices’
which are potted descriptions of little bits of mathematics which turn out to
be useful background. These can be skipped at first reading, or by those who
know the material anyway.

Then a chapter introducing the concepts for the reader who has not en-
countered subdivision curves and surfaces before; and how the rules are de-
scribed in ways that we can apply mathematical arguments to.

Third a set of chapters dealing with the ways that we can analyse prop-
erties of the limit curves in terms of the rules, followed by a shorter set of
chapters suggesting how we can work the analyses in reverse, to design rules
which will give the schemes that result from them desired properties.

Where a chapter introduces techniques worth trying out, it also includes
a few exercises to help the reader check that they have indeed been learned.

Finally come some ideas about efficient implementation and some appen-
dices tidying up material best kept out of the way of the main flow of ideas,
including some topics open for research, a short account of the development
of the subject so far, and a bibliography of research papers.
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6. Hölder Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Part I. Prependices

This section of the book provides brief introductions to a number of back-
ground pieces of mathematics which are relevant, directly or indirectly, to
the analysis of subdivision curves.

These are:
• Functions and curves
• Differences
• B-splines
• Eigenanalysis
• Enclosures
• The Hölder measure of derivative continuity
• Matrix norms
• The joint spectral radius of two matrices
• Radix notation
• z-transforms

The polymath-ematician and the impatient should turn directly to the
main body of the book, on page 49. Those who want or need to be better
prepared with a little revision of mathematical matters learnt early and easily
forgotten, should first skim through these introductory pages, noting what is
here, so that, when they find the need for a reminder, they will know where
to look for it.

These introductions are not, of course, full descriptions of their topics:
they are mainly lists of the results relevant to the main body of the book.





1. Functions and Curves

The idea of a function is a familiar one. The value of the function (the ordi-
nate) depends on the value of the argument (the abscissa) of the function.

Graphing a function plots the ordinate vertically against the abscissa
horizontally, which gives a visible curve.

The coefficients of the function can be given geometric meaning.

A graph of y = ax2 + bx+ c

c

a
b

-1 0 1

However, when we wish to describe shapes of objects, it is rather im-
portant that we should be able to express them in a way which reflects the
fact that shapes are invariant under solid body transforms, such as transla-
tions and rotations. This is usually done by having two or three ordinates, all
functions of the same abscissa. Each function is a sum of terms where each
term is the product of a coefficient and a basis function, taken from a set
common to all the coordinates.

x = Σixifi(t)

y = Σiyifi(t)

z = Σizifi(t)

We can then think of the coefficients corresponding to a given basis func-
tion as forming a vector coefficient.

P = ΣiCifi(t)

These vector coefficients then typically become interpretable as either
points, or displacements1 and applying the appropriate solid body (or even

1

useful in defensive coding. Points and displacements transform differently under
translations.
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The distinction between points and displacements seems pedantic, but is actually



6 1. Functions and Curves

affine) transformation to these coefficients has the effect of applying that
transformation to the entire curve.

A plot of P = At2 + Bt + C. C is
a point and A and B displacement
vectors.

A

B

C

For polynomials in monomial form, the constant coefficient is a point and
all the others are displacements.

For shape design purposes it is usually far more convenient to use a ba-
sis where the basis functions sum to 1. All the coefficients then transform
as points, and we call them control points. For polynomials this can be
achieved by using the Bézier basis, which is a special case of the B-spline
basis which will be encountered shortly.

For quadratics, the Bézier basis functions are

b0(t) = (1 − t)2

b1(t) = 2t(1− t)

b2(t) = t2

which maps the interval 0 ≤ t ≤ 1 into a piece of curve.

A plot of P (t) = ΣPi bi(t). P0, P1

and P2 are all points.
P

P

P 2

0

1

1.1 Summary

(i) When representing shapes of physical objects it is convenient to use
position-valued functions where each of three coordinates is a function
of a common abscissa, or parameter.

(ii) If this function is expressed as the weighted mean of a set of point
coefficients, each multiplied by a scalar-valued basis function, where
the set of basis functions sums to unity everywhere, the complete curve
can be transformed by transforming the points.

(iii) The way that the shape of the curve is related to the positions of its
defining points depends on properties of the basis functions.



2. Differences

Differences are a fundamental idea in approximation theory. They are en-
countered in tables of functions as a way of supporting the production, at
look-up time, by linear interpolation, of values in between the actually tab-
ulated values. Their theory was developed at a time when creation of tables
of functions was an important activity supporting navigation. The theory is
now more important than that particular application.

2.1 First Differences

Consider a sequence, V , of values, Vi, i ∈ Z

The sequence of differences, δV , is formed from exactly the differences
between each value and the next in sequence, Vi − Vi−1. There is only one
concept, but there are three ways of assigning a subscript to a particular
difference value.

In forward differencing we let δVi = Vi − Vi−1: in backward dif-
ferencing we let δVi−1 = Vi − Vi−1. In central differencing we say that a
particular difference is associated with the interval between two of the original
values, and that therefore δVi−1/2 = Vi − Vi−1. While this is less convenient
for computation (how many programming languages allow for half-integer
valued subscripts ?), it reflects the semantics of the sequence better, and we
will use it as our convention.

Differences are not necessarily just scalars. The first differences of the
vertices of a polygon are vectors along the directed edges. Clearly it is sensible
to associate these with abscissae halfway between the vertices.

2.2 Higher Differences

Differencing is an operation on a sequence which gives another sequence. We
can therefore apply it again to that result sequence. This gives the sequence
of second differences. δ(δV ) is naturally denoted by δ2V , and δ2 is called
the second difference operator. If we use the central difference convention
we get

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 
DOI 10.1007/978-3-642-13648-1_2, © Springer-Verlag Berlin Heidelberg 2010 
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8 2. Differences

δ2Vi = (δ2V )i = Vi+1 − 2Vi + Vi−1

Still higher differences are defined in exactly the same way.

2.3 Differences of Polynomials

Consider a polynomial of degree zero. If this is evaluated at integer values
we get a sequence of values all the same, and the difference sequence is all
zeroes. We say that the differencing operator δ annihilates polynomials of
degree zero.

If the polynomial is of degree 1, then the values in the sequence vary
linearly, and the first differences are all the same. These are in turn annihi-
lated by the application of a second differencing operator. Thus δ2 annihilates
polynomials of degree 1.

In general δd annihilates polynomials of degree d− 1.

x x2 δ(x2) δ2(x2) δ3(x2)
0 0

1
1 1 2

3 0
2 4 2

5 0
3 9 2

7 0
4 16 2

9 0
5 25 2

11
6 36

Central Differences of x2

2.4 Divided Differences

If we have an abscissa associated with the ordinate values in the sequence, it
is sensible to divide the first differences of the ordinates by the first differences
of the abscissae, to give the mean slope of the chords joining the data points
represented by the values in the two sequences. Such a ratio is called the
divided difference.

δyi−1/2 =
yi − yi−1

xi − xi−1
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The significance of this is that the derivative of a function is defined as
the limit of the divided difference of samples as the gaps in abscissa tend to
zero.

dy

dx
= lim

δx→0

δy

δx

If the data is indeed sampled at regular intervals from a polynomial of
degree d, then the dth divided difference, which is a constant sequence, has
as the value of each element the value of the dth derivative.

x x2 δ(x2) δ2(x2) δ3(x2)

0 0
1

1 1 2
3 0

2 4 2
5 0

3 9 2
7 0

4 16 2
9 0

5 25 2
11

6 36

x x2 δ(x2)
2

δ2(x2)
4

δ3(x2)
8

0 0
2

2 4 2
6 0

4 16 2
10 0

6 36 2
14 0

8 64 2
18 0

10 100 2
22

12 144

Central Divided Differences: (left) at unit intervals, (right) at intervals of 2.
The values of divided differences are no longer scaled by the sampling density.

The appropriate denominators are straightforward to see in the uniform
case, where we can say that the divided differences come half-way between
the original values, and so we have well-defined abscissae associated with
the difference values, and it is clear what is meant by saying that the second
divided differences are divided by the difference in abscissa of the first divided
differences. In the non-uniform context the convention often used is that the
second divided differences are the differences of the first divided differences
divided by half of the total width of the set of values taking part in the
divided difference. In the uniform subdivision context we do not need that
complication.



10 2. Differences

2.5 Summary

(i) Differences are determined by subtracting each entry in a sequence from
the next.

(ii) They can be expressed in terms of forward, central or backward differ-
ences, depending on which original entry a specific difference value is
associated with. For our purposes the central difference is most appro-
priate.

(iii) Higher differences (second, third, ...) are just differences of the differ-
ences.

(iv) If the values in the sequence are taken from a polynomial, a high enough
difference will become a sequence of zeroes.

(v) Divided differences are defined as the differences, divided by the differ-
ence in abscissa.

(vi) Higher divided differences are just divided differences of divided differ-
ences, with the abscissae of the lower differences chosen sensibly.

(vii) If these are of samples from a smooth curve they converge towards the
corresponding derivatives as the sampling interval reduces.



3. B-Splines

3.1 Definition

A spline is a piecewise polynomial2 whose pieces meet with continuity as
high as possible given the degree. The abscissa values at which consecutive
pieces meet are called the knots. A B-spline is a spline expressed with
respect to a particular basis, in which the basis functions are each non-zero
over as small a number of consecutive pieces as possible, given the degree and
the continuity, and the basis functions sum to unity.

If the pieces are all of equal length in abscissa, all the B-spline basis
functions are just translates of the same basic function, which is typically
called the basis function of the given degree. The resulting curves are then
called equal interval B-splines or uniform B-splines. We shall use the
shorter term ‘B-splines’ here, despite the fact that it is not strictly accurate.

The characterisation of B-splines that we shall use here is that the B-
spline basis function of degree n has the following properties
• It consists of pieces of polynomial of degree n.
• Its pieces meet (at integer values of abscissa) with continuity of (n−1)th

derivative.
• It is nonzero only within a sequence of n+ 1 consecutive intervals.
• Its integer translates sum to 1 identically.
• It is non-negative3.

There are well over a dozen ways in which the function with these prop-
erties can be described.

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 11 
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2 are useful generalizations to piecewise functions where the pieces are
smooth functions other than polynomials (for example, trigonometric or expo-
nential splines), but the polynomial definition is most relevant at this point.

3 This property can actually be derived from the first four, which are a sufficient
characterisation.

There
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One of the nicest is as the variation
of the cross-sectional ‘area’ of a unit
(n+1)-dimensional cube when cut by a
n-dimensional ‘plane’ perpendicular to
the diagonal, as a function of the dis-
tance along that diagonal at which the
plane is placed.

The five properties above are all
evident from the figure on the right,
which shows the case n = 2, taken
together with the fact that the cross-
sectional area around the leftmost point
of the box is given by the truncated nth

power.

We can use these functions to describe curves by using the translates as
basis functions for a point-valued parametric curve

P (t) =
∑
j

bnj (t)Pj

where the coefficients Pj are control points and bnj (t) = bn(t − j) are the
B-spline basis functions of degree n.

Because the basis functions sum to unity, the coefficients transform as
points, and are called control points and they are typically visualised by
drawing the polygon which joins them in sequence.

3.2 Derivative Properties

Clearly the first derivative of the B-spline basis function must have the prop-
erties that

• It consists of polynomial pieces of degree n − 1, because each piece is
the derivative of a polynomial of degree n .

• Its pieces meet with continuity of (n − 2)th derivative, because the
discontinuities of the original are of the (n− 1)th.

• It is non-zero only in a sequence of n+1 intervals because the function
of which it is a derivative is identically zero outside that range .

From these we see that it must be a linear combination of exactly two
B-spline basis functions of degree n−1, and in fact it is exactly the difference
of two consecutive basis functions of degree n− 1.

b′j
n
(t) = bn−1

j (t)− bn−1
j−1 (t)
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The first derivative of a B-spline curve is a vector-valued function given
by

P ′(t) =
∑
j

b′j
n
(t)Pj

=
∑
j

(bn−1
j (t)− bn−1

j−1 (t))Pj

=
∑
j

bn−1
j (t)[Pj − Pj−1].

This is exactly a B-spline of one degree lower, with the first differences of
the original control points in the rôle of control vectors.

The second derivative vector is a B-spline of two degrees lower, with the
second differences of the original control points in the rôle of control vectors,
and higher derivatives have analogous properties, as far as the degree of the
B-spline permits.

When we take the nth derivative of a degree n spline, we get a piecewise
constant. If we try to take the (n+1)th derivative we get zero within all of the
pieces, and, in order to be able to recover the nth derivative by integration,
there have to be Dirac delta-functions (infinite spikes of zero width) at all of
the knots where the pieces meet.

3.3 Construction

We can use this property of derivatives in reverse to construct B-splines of
arbitrary degree.

The B-spline b0 of degree zero is just
the function

b0(x) =

⎧⎨
⎩

0 x < 0
1 0 ≤ x < 1
0 x ≥ 0

0 1
0

1

If we subtract the unit translate of this
from the zero translate we get a function

0
2

-1

0

1

and this is the first derivative of the de-
gree 1 B-spline, which can be constructed
by integration.

0 1 2
0

1

Higher degree B-splines can be constructed explicitly (using, for example,
the Bézier basis for each span of the function) by recursion on degree, applying
the same simple recipe:
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• shift

0 1 2 3
0

1

• subtract 0 1
2 3

-1

0

1

• integrate

0 1 2 3
0

1

bn+1(t) =

∫ t

0

(bn(s)− bn(s− 1)) ds.

This process can also be viewed as convolution with the 0-degree box-
spline, expressed by integration by parts.

bn+1(t) =

∫
bn(s)b0(t− s) ds.

3.4 Refinement

A standard operation on piecewise polynomial curves is that of knot inser-
tion where we pretend that there are additional knots (junctions between
pieces) at which the discontinuity of nth derivative happens to be of zero
magnitude.

In the B-spline context we need the pieces after knot insertion all to be
of the same length, and so the knot insertion which maps B-splines into B-
splines inserts the new knots at the half-integers. The abscissa is then scaled
so that the pieces are again of unit length.

The refined curve has a refined basis, and needs a corresponding sequence
of control points. In fact it is the process of finding these new control points
which is actually called knot insertion or subdivision. If we ignore end-
conditions, which is a sensible way to start, there are twice as many of them.
We can determine them by looking at the way in which a coarse basis func-
tion can be expressed in terms of the refined ones. Let the coarse basis be
bnτ (t) and the finer one b̄nτ (t) where the subscripts τ indicate the position
in abscissa space of the central maximum4 of the particular basis function,
and the superscript n the degree of the functions. Consider first B-splines of
degree zero.

4 The central convention will be seen later to help in exploitation of the symmetry
properties of these functions.
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Clearly

b0τ (t) = b̄τ−1/4(t) + b̄τ+1/4(t).

Hence

P (t) =
∑
τ

b0τPτ

=
∑
τ

(
b̄τ−1/4(t) + b̄τ+1/4(t)

)
Pτ

=
∑
τ

b̄τ−1/4(t)Pτ + b̄τ+1/4(t)Pτ

τ

τ−1/4 τ+1/4

This will be equal to
∑

τ̄ b̄τ̄ P̄τ̄ if

P̄τ−1/4 = Pτ

P̄τ+1/4 = Pτ

Thus the refinement process for degree zero B-splines is merely the taking
of each original control point twice.

For degree one B-splines, we have the
relation between the new and old basis
functions that

b1τ (t) =
(
b̄τ−1/2 + 2b̄τ + b̄τ+1/2

)
/2

which leads to the relation between old
and new control points that

P̄τ−1/2 = (Pτ + Pτ−1) /2

P̄τ = Pτ

τ

ττ−1/2 τ+1/2

For higher degree B-splines, degree n say, we can determine the new con-
trol points by taking means of consecutive control points for degree n − 1.
This is called the Lane-Riesenfeld construction.

In fact the degree=1 refinement construction is exactly taking the de-
gree=0 construction (taking each control point twice) and taking means of
consecutive control points.

We can go further, by inventing a degree=−1 construction which doubles
the coordinates of all the control points and intersperses them with new
points with zero coordinates. The degree=0 construction is then recovered
by applying the Lane-Riesenfeld construction.
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3.5 Summary

(i) A spline of degree d is a piecewise function (or parametric curve) with
polynomial pieces of degree d meeting with continuity of d−1th deriva-
tive. These pieces can be called spans.

(ii) The places where pieces meet are called knots, and in the uniform case
these are equally spaced in abscissa.

(iii) A uniform B-spline is a spline defined in terms of theB-spline basis,
where the basis functions are all translates of the same function, which
is zero outside an abscissa interval d+1 pieces wide. The coefficients in
this basis are called control points.

(iv) This sequence of control points is typically visualised by joining them
by straight lines, and so it is called the control polygon.

(v) This basis has the nice property that derivatives are also representable
as B-splines.

(vi) The refinement by knot insertion at the midpoints of the spans is given
by a particularly simple geometric construction on the control polygon.



4. Eigenfactorisation

4.1 Definition

Eigenfactorisation is the splitting of a square matrix, M , into three factors

M = C LR

such that RC = I and L has as few as possible off-diagonal non-zero entries.
The purpose of this factorisation is to help understand what happens

when a vector is multiplied by the same matrix repeatedly, as happens in
subdivision.

If L is diagonal, with no off-diagonal non-zeroes at all, then the columns
of C are called eigenvectors and the diagonal values in L are called eigen-
values. In the more general case, when L is not completely diagonal, they
are supposed to be called generalised eigenvectors, but we shall use the
shorter phrase.

In fact in conventional eigenanalysis the focus is on the columns rather
than the rows. (The row eigenvectors, R, are the column eigenvectors of
the transpose of the matrix M .) The distinction is made between right-
eigenvectors and left-eigenvectors depending on whether the object in
question is multiplied by a matrix on the left or on the right. In subdivision
they each have distinct rôles, and we shall use the more evocative terms
eigencolumns and eigenrows.

We consider first the “normal” case, when there are no off-diagonal non-
zero entries in L, and then the more general case.

4.2 Uniqueness

The factorisation is not unique, for three reasons.
(i) Permutation

Suppose that we have any permutation matrix, P . Then P−1P = I and
we can rewrite the defining equation as

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 
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M = CILIR

= C(P−1P )L(P−1P )R

= CP−1 PLP−1 PR

= C′ L′ R′

C′ is a matrix containing a permutation of the columns of C, R′ is a
matrix containing the same permutation of the rows of R, and L′ is
a matrix whose diagonal elements are permuted in the same way, and
whose non-diagonal elements are moved to different places.
The correspondence between a particular diagonal element and the as-
sociated column and row is not affected, and so we are free to take the
triples of eigenvalue, column and row in whatever sequence we like. In
this book we call such a triple an eigencomponent.
There is a widely adopted convention that the largest eigenvalue should
be at the top left hand corner of L and the remainder should be in
decreasing sequence of magnitude. In part of the analysis in the body
of the book we have a good reason for using a different convention, but
we remain conventional until that good reason appears.
The eigenvalue with the largest magnitude is called the dominant
eigenvalue, the next the subdominant, and so on.

(ii) Scaling
Let each column Cj in C be scaled by an independent non-zero scalar
sj . Then provided that each row Rj is scaled inversely by the factor,
the product CLR remains unchanged.
There is a widely adopted convention that the columns should be scaled
so that the sum of the squares of the elements of a column should be
unity.
Again, we have a good reason for sometimes using a different convention,
that if the sum of the elements of a row is not zero, the row should be
scaled so that that sum is unity, the column being scaled inversely.

(iii) Rotation
In the particular case where two diagonal entries of L have the same
value, and there is no off-diagonal linking them, then any independent
pair of linear combinations of the two columns may be used instead of
the originals.
There is no standard convention here; neither do we need anything
special, but this property will be used later.

In fact these are just particular instances of a similarity transform,
in which the matrix is pre-multiplied by a non-singular matrix and post-
multiplied by its inverse

TMT−1 = TCLRT−1

= TCT−1TLT−1TRT−1.
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If L is diagonal, TLT−1 is also diagonal, containing the same values. We
can think of this process as expressing the matrix with respect to a different
coordinate system.

4.3 Properties of Eigenvectors

What happens when an eigenvector is multiplied by a matrix ?

We consider first the case where L is a diagonal matrix, so that there are
no off-diagonal entries. The more general case will be considered on page 22
below.

MCj = CLRCj

= CLΔj where Δj is a column vector with a 1 in the jth place

and zeroes elsewhere.

= CλjΔj where λj is the jth diagonal element

= λjCj

Thus the effect of multiplication by the matrix on an eigenvector is to
multiply that vector by the corresponding eigenvalue.

MCj = λjCj

4.3.1 What happens when a general vector is multiplied by a
matrix?

Assuming that the matrix C is of full rank (which is a safe assumption because
it has an inverse, R), we can write a general vector, V , as a weighted sum of
the columns of C

V = ΣjαjCj

In fact the weights αj , which can be thought of as a column vector A, can
be computed by premultiplying V by R

RV = RCA

= A

but actually computing them is not important at this point of the argument.

MV = ΣjαjMCj

= ΣjαjλjCj

= Σjα
′
jCj
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so that the product is also a weighted sum of the eigenvectors, but with the
weights multiplied by the eigenvalues.

α′
j = αjλj

Thus the new vector is again a weighted mean of the eigenvectors, but
with the weights each multiplied by the corresponding eigenvalue.

4.3.2 What happens when a general vector is multiplied by a
matrix repeatedly?

At every multiplication the weights get multiplied by the eigenvalues. Thus as
the number of multiplications increases, the contribution of the eigenvector
with the largest eigenvalue gets to be more and more dominant. This is why
that eigencomponent is called the dominant one.

If, however, the original vector happened to be orthogonal to the dominant
eigenrow, then there would be nothing of that component to grow relative
to the others, and in those circumstances the second eigencomponent will
dominate.

4.4 Calculating Eigencomponents

This is non-trivial. We can see this by noting that the property MCj = λjCj

can be rewritten as

[M − λjI]Cj = 0

The matrix [M −λjI] must be of reduced rank to give a zero result when
it multiplies a non-zero vector, and it therefore has a zero determinant.

Thus λj is a root of the equation, polynomial in λ, det(M − λI) = 0 and
computing the eigenvalues is equivalent to finding the roots of that polyno-
mial, which is called the characteristic polynomial.

Galois proved that this is non-trivial. If the size of M is greater than 4×4,
then there is no algebraic closed form, and if the size of M is greater than
2× 2 there is no practical closed form.

Any algorithm for computing eigenvalues must therefore be iterative. The
iteration might be hidden inside a polynomial solver or explicit (as in the QR
algorithm) but it will always be there, unless some other information about
the matrix can be exploited.

Once an eigenvector is known, computing the corresponding eigenvalue
can be done by just multiplying the vector by the matrix and seeing what
the scaling factor is. Also, once an eigenvalue is known, determining the
corresponding eigenvector is just a question of solving a linear system.
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Block structure

A particular example of information which can be exploited is when the
matrix M is of block triangular structure.

Let M be formed from the three sub-matrices

M =

[
D
E F

]

where D and F are square.

Then the vector V =

[
0
Y

]
where Y is an eigenvector of F with eigenvalue

λ, will be an eigenvector of M with the same eigenvalue.

MV =

[
D 0
E F

] [
0
Y

]

=

[
D0 + 0Y
E0 + FY

]

=

[
0

FY

]

=

[
0
λY

]

= λ

[
0
Y

]
= λV

Thus the matrix C of eigencolumns has the same block-triangular struc-
ture as M .

Similarly, the vector V = [X 0 ], where X is a row eigenvector of D, will
be a row eigenvector of M with the same eigenvalue.

VM = [X 0 ]

[
D 0
E F

]
= [XD + 0E X0 + 0F ]

= [λX 0 ]

= λ [X 0 ]

= λV

Thus the matrix R of eigenrows also has the same block triangular struc-
ture as the original matrix M .
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4.5 The Effect of Non-zero Off-diagonal Elements

So far we have assumed that the matrix L is completely diagonal, with no
off-diagonal non-zero elements. This is not always true.

4.5.1 Jordan blocks

When the matrix has non-zero off-diagonal entries, we can localise the prob-
lem by permuting the matrix in such a way as to bring those entries as close
as possible to the diagonal. Two diagonal entries are coupled if there is a
non-zero where their row and column intersect. Each group of coupled entries
is called a Jordan block.

Suppose that there is a single off-diagonal non-zero element. Then we can

use permutation to transform the matrix L to the structure

⎡
⎣ d
e f
0 0 D

⎤
⎦

where d, e and f are all 1×1, andD is diagonal. Then, by using the arguments
on block structure, we can focus in on the top 2× 2.

It is easily confirmed that provided that d �= f , we can factorise

[
d
e f

]
into

L =

[
d
e f

]

=

[
d− f
e 1

] [
d

f

] [
1
−e d− f

]
/(d− f)

= C′L′R′

The nonzero denominator (d − f) can be taken in to either C ′ or R′.
Now we can combine C′ with the previous C in M = CLR and R′ with
the previous R, thus giving M = [CC′]L′[R′R], a factorisation without off-
diagonals in L′.

Thus where off-diagonals appear, they link equal values on the diagonal.
In general such a block can be larger than 2× 2, but all the diagonal values
will be equal.

4.5.2 Effect of a Jordan block on the multiplication of a
(generalised) eigenvector by the matrix.

We can focus on the 2×2 case, because eigenvectors which are not associated
with the block have a zero inner product with the block’s rows.

Let the 2× 2 matrix be M = [C1 C2 ]

[
d
e d

] [
R1

R2

]
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Then MC2 = C1dR1 · C2 + C2(eR1 · C2 + dR2 · C2)

= C2d in the expected way,

but MC1 = C1dR1 · C1 + C2(eR1 · C1 + dR2 · C1)

= C1dR1 · C1 + C2eR1 · C1

= C1d+ C2e

which is of the form λ(C1 + μC2)

Thus C1 is not an eigenvector in the sense that multiplication by M
merely scales it. Every time C1 is multiplied by M it gets a fraction e of
C2 added to it. It gets sheared within the subspace spanned by C1 and C2.
Clearly any vector originally a linear combination of C1 and C2 also remains
in this subspace, and is sheared in a similar way. We call the subspace an
invariant subspace because any vector originally within it remains within
it when multiplied by M .

Equally, R2 is not an eigenvector in the strict sense, but R1 is.
Note that the pair C1, R2 is not uniquely defined, because if

C = (C1 + αC2)

then MC = M [C1 + αC2]

= MC1 + αMC2

= λC1 + λμC2 + αλC2

= λ(C1 + αC2) + λμC2

= λ(C + μC2)

and there is a similar result for R2. Note, however, that we do still require
that RC = I.

Effect of a Jordan block on the repeated multiplication of a
(generalised) eigenvector by the matrix.

Consider the matrix M =

[
d
de d

]
= d

[
1
e 1

]
.

When we raise this to a high power, n, we get

Mn = dn
[
1
ne 1

]

Thus the shearing effect increases arithmetically, while the overall scaling
effect applies exponentially.
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4.5.3 Complex eigenvalues

The set of roots of a polynomial with real coefficients can include conjugate
pairs of complex numbers. Thus eigenvalues can be complex, appearing in
conjugate pairs. When this happens the corresponding column eigenvectors
also form a conjugate pair, as do the rows.

If we wish to remain in the real domain, this can be done by observing
that the product

[A+ iB A− iB ]

[
a+ ib

a− ib

] [
S + iT
S − iT

]
= 2(a(AS −BT )− b(BS +AT ))

= [A−B A+B ]

[
a b
−b a

] [
S + T
S − T

]
.

Although the first form has fewer off-diagonal non-zeroes, the second form
has only real elements, in both eigenvalues and eigenvectors. It also leads
to some intuitive understanding, that if we multiply both eigencolumns by
M the result is a pair of vectors rotated in the space spanned by the two
eigencolumns, as well as scaled.

So again we have an invariant subspace.

4.6 Summary

Eigenfactorisation of a matrix helps us to understand what happens when
vectors are multiplied by the matrix repeatedly.
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5.1 Definition

An enclosure is a point set which contains all of the points of a given set:
in our case, all the points of the limit curve or of some specific piece of it.

This allows us to test cheaply whether there are any points of the piece
of curve within some test region. For example, if the enclosures of two pieces
of curve have no points in common, then the two curves cannot intersect.

To be useful in this rôle, an enclosure needs three properties
(i) It must be cheap to determine from the available data, in our case the

control points of the curve or a piece of it.
(ii) It must be cheap to determine whether a test point lies in it.
(iii) It must be as small as possible, so that false positives – the result that

there might be a point of the curve at a particular place within it when
in fact there isn’t – are minimized.

5.2 Examples of Enclosures

These three are, of course, in conflict, and there are a number of possible
trade-offs between them. Condition (ii) effectively demands that the enclosure
should be a convex point-set, and combined with condition (iii) this leads to
the use of the convex hull, which is defined to be the convex point set of
smallest volume which contains the original set.

In this example the point set is the dark curve, and the enclosure is the
shaded region.
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Unfortunately, although the convex hull can be computed reasonably ef-
ficiently for 2-dimensional configurations, it becomes extremely complex for
3-dimensional ones.

We trade away from this in two ways.
(1) We limit ourselves to plane-faced enclosures. This also helps to satisfy

condition (ii). In 3D the convex hull of a finite set of discrete points
is plane-faced, whereas the convex hull of a curve can have much more
complex shapes. Thus the challenge becomes finding, from the represen-
tation of a curve, a finite set of planar half-spaces whose intersection is
guaranteed to contain the true convex hull of the curve and thence the
curve itself. One way of doing this is to use the convex hull of control
points defining the curve.

This may still be expensive in 3D.
(2) We limit the number of orientations of those plane faces, and we choose

the orientations used to be a fixed set. This makes comparison of a test
point with the enclosure really fast and simple, and also the comparison
of two enclosures for overlap. The best known of these, because it is the
simplest, is the bounding box, which uses as the set of orientations
those of the coordinate planes.
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The trade-off here is that the fewer5 the number of orientations the
cheaper the setting up and the interrogation become, but the slacker the
test is, giving more potential false positives.

If a tighter enclosure than the bounding box is required, then more ori-
entations can be used.

5.3 Representations

If the full convex hull is used, then it is necessary for the representation to
hold both the face normal directions and the (signed) support distances from
the origin to the faces.

If a fixed set of orientations is used, then the normals can be implicit, and
the support distances can be held in a simple array.

Let the set of points whose enclosure is to be determined be Pi,⊂∈ 1..m
and the set of normal directions Nj , j ∈ 1..n, and the support distances hj .
Then setting up the support distances is done by

∀j, hj = maxi(Nj , Pi)

A point Q is outside the enclosure if for any j

Nj .Q > hj .

If the set of orientations is chosen so that

Nj = −Nn+1−j,

then checking if two enclosures represented by support height vectors g and
h overlap is just testing

maxj(gj + hn+1−j) > 0.

5

some fixed regular tetrahedron, but the six (plus and minus X, Y and Z) of the
bounding box is a little simpler to determine and test.

Pedantically it would be possible to use just four orientations, of the faces of
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Note that the normal vectors do not need to be unit vectors. Scaling does
not alter the result of a sign check. Thus the set of 2D vectors

1 0
1 1
0 1
−1 1
1 −1
0 −1
−1 −1
−1 0

would be appropriate for the figure above. The inner products can be built
by just summing coordinates, rather than taking inner products with normal
vectors.

5.4 Summary

(i) An enclosure is a region of space containing some point set of interest.
It is used to check quickly whether or not the point set needs to be
taken into account in some computation.

(ii) There are various widely used enclosures with different trade-offs be-
tween simplicity, cheapness of set-up and enquiries, and minimality.
The minimal convex enclosure is the convex hull, but the bounding box
is much simpler and is therefore most often used.



6. Hölder Continuity

One of the first questions asked by a mathematician about a function which
is defined in some complicated way, which makes it clear that there isn’t a
nice simple closed form expression, is the level of continuity.

The first form of this question is ‘Is the function continuous ?’ and if the
answer is ‘yes’, it is rapidly followed up by ‘How many continuous derivatives
does it have ?’. In fact for really interesting definitions it is possible to ask
also, ‘Just how continuous is the highest continuous derivative ?’, and that
is expressed in terms of the Hölder continuity exponent.

6.1 Continuity

A function g(x) is said to be continuous at x if

lim
δx→0

g(x+ δx) − g(x) = 0

i.e. if for any ε > 0 we can always choose a φ small enough that for all
|δx| < φ, |g(x+ δx) − g(x)| < ε.

We have to be very careful about this definition because we are dealing
with fractals. Nasty things like the Dedekind function (0 at all rationals, 1
at all irrationals) can easily slip through a less pedantic definition.

6.2 Derivatives

The derivative of g(x) at x is defined to be

lim
δx→0+

g(x+ δx)− g(x)

δx

Strictly this is the right derivative. We can also define a left derivative
as

lim
δx→0+

g(x)− g(x− δx)

δx
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There are associated concepts of left-continuity and right-continuity.
The value of the derivative exists at x provided that we can choose some

finite value c such that for all δx small enough

|g(x+ δx)− g(x)| < c|δx|
Note the difference between this and the definition of continuity, above.

It is quite possible for a continuous function not to have a derivative. f(x) =
x1/3 is a good example.

The first differences on both left and right of x = 0 tend to zero, but the
first divided differences on both sides diverge.

The second derivative is just the derivative of the derivative, and the nth

derivative is defined by recursion on n.
Continuity is defined above at a specific point (x), but we can extend this

to intervals along a curve or function and to the complete curve or function
by just saying that if the nth derivative of a function g(x) exists everywhere
in an interval (or everywhere) and it is continuous, then g is said to be Cn

in that interval (or everywhere).

6.3 Hölder Continuity

It is possible to be a little more precise, telling us not just how many deriva-
tives are continuous, but also how continuous the highest one is, on the basis
of how rapidly the limit converges to zero.

Because taking the derivative drops the degree of a polynomial (or each
term of a Taylor series) by 1, we do this by looking at the behaviour of
fractional powers.

Consider the function

h(x) =

{
0, x ≤ 0
xk, x > 0

where k, which is a positive real number, has an integer part i and a fractional
part f .
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k = 0.67 k = 1.5

If k > 0 then at x = 0

h(x+ δx) − h(x) = h(δx) − h(0)

= δxk − 0

= δxk

lim
δx→0

h(x+ δx) − h(x) = lim
δx→0

δxk

= 0

and so h(x) is continuous at x = 0
The first derivative of h(x) is

h′(x) =
{

0, x < 0
kxk−1, x > 0

If k > 1 then at x = 0 h′(x) exists and is zero on both sides, so h′ is
continuous and so h is C1.

If 0 < k < 1 however, the function h is continuous at 0, but on the right
of 0 its first derivative does not exist.

In general we can see that however high the value of k is, if it is finite
then there will be some derivative which has this kind of behaviour.

The Hölder continuity is a pair of values, i, f . The first of these, i is
integral, and is the number of derivatives which exist, the second, f , in the
closed interval (0 . . . 1) which is essentially the value such that the ith deriva-
tive behaves like xf as x approaches zero from above. These two numbers
are sometimes written as i+ f , sometimes as i, f but both indicate the same
level of continuity. This leads to the notation Ci+f where the ‘+’ is explicit.

A piecewise polynomial will typically have f = 1 at the places where the
pieces meet, so that the cubic B-spline is C2+1 at its knots. It is, of course
C∞ over the open intervals between the knots.

The above defines the Hölder continuity at a point. The Hölder continuity
of a complete curve is the lowest pointwise continuity.
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6.4 Summary

(i) The Hölder continuity of a function (and thence of a curve) is a measure
of how many derivatives are continuous, and of how continuous the
highest continuous derivative is.

(ii) The notation is not totally transparent. It might have been better to
have defined the Hölder discontinuity level as being just a real number,
so that 3 would have been the discontinuity level of the cubic B-spline.
C2+1 is sometimes evocatively written as C3−ε. Yes, the third derivative
is the first to be discontinuous. But there is no point in trying to alter
established conventions.



7. Matrix Norms

A norm is a measure of the size of an object. It is a function of some object,
X , with the properties
(a) norm(X) ≥ 0
(b) norm(X + Y ) ≤ norm(X) + norm(Y )
(c) norm(λX) = |λ| ∗ norm(X), ∀λ ∈ R

In this book we use norms of matrices, but the definition of these is based
on the norms of vectors (finite sequences of values).

The norm of a scalar, v, is just its absolute value |v|.

7.1 Vector Norms

The size of a vector, V , can be measured in a number of ways. Let the number
of elements be n and the elements Vi∈1..n.

The important ones, called the p-norms6, are
i The l1 norm, denoted by |V |1, defined as

|V |1 =
∑

i∈1...n

|Vi|

ii The l2 norm, denoted by |V |2 or ||V ||, defined as

|V |2 =

√ ∑
i∈1...n

V 2
i

iii The l∞ norm, denoted by |V |∞, defined as

|V |∞ = max
i∈1...n

|Vi|

When we make statements which are true of any norm, then the notation
|V | can be used. It is no coincidence that this notation is also used for the
absolute magnitude of a scalar, because that satisfies the axioms for norms.

6 So-called because the generic definition is |V |p = p
√∑n

i=1 |Vi|p.
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7.2 Matrix Norms

Each of the above vector norms induces a corresponding norm on matrices,
through the definition

norm(A) = max
V ∈Rn\0

( |AV |
|V |

)

which has the implication that

|AV | ≤ |A||V |
with equality for some vector V which we can call the support vector.

It is possible to deduce from this definition the three properties (a),(b)
and (c) above, and also a fourth property, (d), that |AB| ≤ |A||B|.

7.2.1 Proofs of matrix norm properties

(a) |A| is the ratio of a non-negative to a positive quantity which must be
non-negative.

(b) There exists a vector V such that

|A+B| = |[A+B]V |/|V |
= |AV +BV |/|V |
≤ (|AV |+ |BV |)/|V |
= |A|+ |B|

Equality occurs when A and B share a support vector.
(c)

|λA| = max
V ∈Rn\0

( |λAV |
|V |

)

= max
V ∈Rn\0

(
|λ| |AV |

|V |
)

= max
V ∈Rn\0

|λ|
( |AV |

|V |
)

= |λ| max
V ∈Rn\0

( |AV |
|V |

)
= |λ||A|

(d)
|ABV | ≤ |A| |BV | ≤ |A| |B| |V |
|AB| = max

V
(|ABV |/|V |) ≤ max

V
(|A| |B| |V |/|V |) = |A| |B|
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It is also possible for other measures of matrix size to be defined, and they
are also called norms provided that they satisfy this additional property as
well as the three above.

All the above applies to matrices which are not square, but if a matrix A
is square, then because, if V is an eigencolumn of the matrix, we know that
AV = λV , any eigenvalue gives a lower bound for any of the norms.( |AV |

|V |
)

=

( |λV |
|V |

)
=

( |λ||V |
|V |

)
= |λ|.

Clearly the magnitude of the largest eigenvalue is a tighter lower bound
than smaller ones.

It is equally true that any norm is an upper bound for the largest eigen-
value.

However, the largest eigenvalue is not itself a norm because the largest
eigenvalue of the product of two matrices can be larger than the product of

their two largest eigenvalues. For example, the matrices

[
3 3
0 2

]
and

[
2 0
3 3

]
both have largest eigenvalue 3, while their product[

3 3
0 2

] [
2 0
3 3

]
=

[
15 9
6 6

]

has eigenvalues (21 ± √
297)/2 of which the larger is approximately 17.1,

significantly larger than 3*3.

7.2.2 Evaluating matrix norms

The definition above of a matrix norm is not directly evaluable in finite time.
However, it is possible to determine the value of each of the norms from the
elements of a matrix without working through all possible vectors.

We do this by choosing vectors of unit norm which can be support vectors.
In particular, |.|∞ can be evaluated by considering just n vectors, each

containing a pattern of 1s and -1s matching the pattern of signs in just one
row of the matrix. Thus each |V |∞ = 1.

The corresponding element in AV then has a value equal to the sum of
the magnitudes of the entries in that row. The largest of these determines
the value of |AV | and thence |A|∞. If Aij denotes the i

th entry in the jth row
of the matrix A

|A|∞ = max
j

∑
i

|Aij |.

The l∞ norm of a matrix is the largest value, taken over the rows of the
matrix, of the sum of the absolute values of the entries in that row.

By taking a support vector with a 1 in the entry corresponding to the
maximal column and zeroes elsewhere we can see that
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|A|1 = max
i

∑
j

|Aij |.

The l1 norm of a matrix is the largest value, taken over the columns of the
matrix, of the sum of the absolute values of the entries in that column.

Finally, by taking as support vector the corresponding eigenvector we see
that

|A|2 =
√
largest eigenvalue of ATA.

7.3 Summary

(i) A norm is a way of measuring the size of the entries in a vector or
matrix.

(ii) There are several different useful norms.
(iii) For a square matrix, all matrix norms have value at least as large as

the largest eigenvalue of the matrix.



8. Joint Spectral Radius

The spectral radius of a square matrix is the absolute value of its largest
eigenvalue.

The joint spectral radius of two square matrices A and B of the same
size, is defined by the following steps:
(i) Let J1 be the larger spectral radius of A and B.
(ii) Let Jn be the nth root of the largest spectral radius of all possible

product sequences consisting of n matrices each being either an A or a
B, taken in any sequence. There are 2n such sequences.

(iii) Let Rm be the maximum value of Jn taken over all values of n between
1 and m.

(iv) The joint spectral radius J(A,B) is the limit of Rm as m tends to ∞.

We can get some handle on this value by noting that any norm is an upper
bound on the spectral radius of a matrix. If, during the tending of m to ∞,
it is found that the matrix given by one of the product sequences has a norm
equal to its spectral radius, then that will be the joint spectral radius of the
A and B.

The l∞ norm of such a matrix is much cheaper to compute than the
eigenvalues, and as m increases the nth root of the lowest norm so far of
the product sequences converges to the joint spectral radius, as does (by
definition) the nth root of the largest eigenvalue so far.

Other useful properties are that if A and B share an eigenvector, then
both AB and BA will also share that eigenvector, and the corresponding
eigenvalue of the product will just be the product of the eigenvalues of A and
B. The square root cannot be larger than the larger of these factors.

In particular, the joint spectral radius of any matrix with itself is just the
spectral radius of that matrix.

There is also a more general result, that if two matrices share a nested se-
quence of invariant subspaces, all of their products also share these subspaces,
and the nth roots of the eigenvalues associated with the components within
it will not exceed the eigenvalues of the originals. The proof is technical and
can be found in Appendix 1 Theorem 4.

It is also true that the bounds on Jm2 are never looser than those on Jm,
because the set of product sequences considered in Jm2 includes the squares of
all product sequences considered in Jm. The largest eigenvalue of the square
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38 8. Joint Spectral Radius

of a matrix is just the square of the corresponding eigenvalue of the original,
and the norm of the square of a matrix is never larger than the square of
the norm of the original. Other products can have smaller norms or larger
eigenvalues.

8.1 Summary

(i) The joint spectral radius is an upper bound on what can happen when
a vector is multiplied by a sequence of square matrices, each one being
selected from some given set of matrices of the same size.

(ii) For our purposes the number of matrices in that set is two, and that is
interesting enough.

(iii) The calculation of the joint spectral radius from the matrices is not at
all trivial, but it can be eased if the two matrices share a set of nested
invariant subspaces.



9. Radix Notation

Decimal notation for both integers and fractions is an everyday familiarity. It
is, however a specific case of a more general notation in which digits are used
in a way where their positions carry information as well as their typography.

In the more general, radix-r notation, a number is denoted by a sequence
of digits7 dl . . . d−k, each digit in the range 0 . . . r − 1 to have the meaning

dlr
l + dl−1r

l−1 + . . .+ d1r
1 + d0r

0 + d−1r
−1 + . . .+ d−kr

−k

There are certain useful checks for divisibility of integers, well known in
radix 10. For example, divisibility by 9 is checked by recursively checking the
divisibility of the sum of the digits, and divisibility by 11 by taking the sum
of the digits in even places and subtracting from it the sum of those in odd
places, and checking the result for divisibility by 11.

These are just special cases of relationships which work equally well in
this extension of the system where r �= 10.

(i) Divisibility by r − 1

Because r gives a remainder of 1 when divided by r − 1, rd gives the same
remainder as d when so divided. Because r2 − 1 is algebraically divisible by
r − 1, so do r2d and indeed any terms of the form rnd. Thus the expression
dlr

l + dl−1r
l−1 + . . .+ d1r

1 + d0r
0 gives an initial remainder of Σl

0dl. If this
is itself divisible by r − 1, then the original expression also was.

Thus to test if a decimal integer is divisible by 9, add the digits and then
test to see whether the sum of the digits is divisible by 9. You can do this
recursively, and the process will always terminate because the sum of the
digits is less than the original number whenever the number of digits is more
than one. When there is only one digit left, it is divisible by 9 if it is equal
to 9. It is also divisible by 9 if it is equal to zero, but this will not occur in a
sum of the digits of a non-zero number.

If r− 1 is composite, then we can test for divisibility by one of its factors
by initially multiplying the candidate by the cofactor and then testing for
divisibility by r− 1. The remainder when the recursion finishes will either be

7 With a ‘point’ between d0 and d−1.
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40 9. Radix Notation

r − 1 or something else. If it is r − 1, then the original number is divisible
by the cofactor. This leads to the fact that the sum of digits of a number
divisible by 3 is itself divisible by 3.

(ii) Divisibility by r

The remainder on dividing dlr
l + dl−1r

l−1 + . . .+ d1r
1 + d0r

0 by r is just d0,
and so dlr

l + dl−1r
l−1 + . . .+ d1r

1 + d0r
0 is divisible by r iff d0 = 0

A decimal integer is divisible by 10 if its last digit is zero.
A similar argument about factors gives simple rules for divisibility by 2

and 5.

(iii) Divisibility by r+ 1

dr has a remainder of −d when divided by r+1; dr2 a remainder of +d, and
so on alternately, so that drn gives a remainder of −d when n is odd and of
+d when n is even. Thus the total remainder when dlr

l + dl−1r
l−1 + . . . +

d1r
1 +d0r

0 is divided by 1+ r is given by alternately adding and subtracting
the digits.

A decimal integer is divisible by 11 if the difference between the sum of
the odd digits and the sum of the even ones is divisible by 11. Again, the test
can be applied recursively to handle easily numbers of any size, terminating
when the difference is 10 or less.

Because 11 is prime there are no simple examples of divisibility by its
factors. However, we can regard this as an example of divisibility by a factor
of r2 − 1, in this case 99. This involves taking the digits in pairs, as ‘digits’
with respect to the radix r2 = 100.

(iv) Divisibility by r2 + r + 1

We can take this further by noting that dr3 has a remainder of d when divided
by r2+ r+1. Thus dlr

l+dl−1r
l−1+ . . .+d1r

1+d0r
0 is divisible by r2+ r+1

iff each of the three sums of digits taken by splitting the original number into
consecutive triples is the same.

In the case of r = 10, this gives a simple test for divisibility by 37. First
multiply the candidate number by 3 and then test for divisibility by 111.

9.1 Summary

Because of certain properties of divisibility of r2 − 1, numbers expressed in
radix notation can be tested for divisibility rather easily. The relevance here
is that the radix might be algebraic, rather than a fixed number, and all of
these results still apply.



10. z-transforms

The z-transform was originally devised by control engineers of the early
1950’s who needed to extend the Laplace transform methods, which served
well in determining the stability of analogue control systems, to the new world
of digital control systems in which time delays played a more important role.

In our context, these transforms are approachable much more simply as
a notational device which, by exploiting the correspondence between convo-
lution of sequences and multiplication of polynomials, makes many results
easier to express and to follow.

10.1 The z-transform

The basic idea is that, given two sequences, A ≡ [. . . aj . . .], j ∈ Z and
B ≡ [. . . bk . . .], k ∈ Z and also two polynomials A(z) = Σjajz

j and
B(z) = Σkakz

k, the convolution sequence C, given by cl = Σjajbl−j has
exactly the same entries as the coefficients cl of the product polynomial
C(z) = A(z)B(z).

Armed with this fact, it becomes trivial to see
(i) that convolution is commutative and associative.

AB = BA

A(BC) = (AB)C

(ii) that a symmetric sequence can be expressed as a convolution of shorter
such sequences if and only if the corresponding polynomial can be fac-
torised.

(iii) that such a factorisation is unique8.
The triviality of the equivalence applies only to finite sequences. We take

on trust that the results apply also to products where one or both factors
extend indefinitely in both directions. We then need to use the concept of

8 Not quite. The individual polynomial factors can be multiplied by arbitrary scalar
factors provided that the product of all those factors is equal to 1. We shall resolve
this later by using only polynomials whose coefficients sum to 1.
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42 10. z-transforms

Laurent Polynomial where the exponent in a power of z can be negative
as well as positive or zero.

The Laurent polynomial corresponding to a given sequence is called its
Generating Function, its z-transform, or its symbol.

In fact we can use generating functions which are not polynomial or Lau-
rent polynomial, provided that they have a formal Taylor expansion about
z = 0. We can then think of them as shorter notations for that expansion,
and this can be extremely useful for denoting concisely sequences with an
unbounded number of non-zero entries.

10.2 Why z?

This convention, of using the letter z to denote the variable, probably stems
from the control systems origin of the technique. The control engineers needed
a symbol which was different from s (the similarly universal symbol for the
Laplace variable), but not too different. t was not possible, because it already
denoted time in that context, and z just emerged as the standard choice.

Or, maybe, that z = x+ iy is the standard symbol for a complex variable
in a domain context, and the convention goes a lot further back.

In fact a theory with much the same content, called generating functions,
was indeed in use much earlier in combinatorics, but it was typically applied
using the letter x as the argument, rather than z.

10.3 What Sort of Object is z?

When one first looks at a polynomial the expectation is that it is a function,
a map from a domain to a range, and defining the domain is an important
part of the semantics of the function.

This is not necessarily the case here.
It is possible to use the idea of evaluating the polynomial at a real or

complex value as an aid to proving that one polynomial is a factor of another,
by showing that all the roots of the first are also roots of the second. In fact
in the Laplace transform the domain is definitely that of complex numbers,
and [CDM91] uses this interpretation very fluently and to good effect.

However, there are four other interpretations:-
1 A purely algebraic symbol

This interpretation says that the only reason we are playing with these
polynomials is to determine coefficients of other polynomials. Formal
manipulations, in which the nature of the variable plays no part, and so
we do not need to define anything about it, beyond the property that
it can be raised to positive or negative powers.
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This is strictly correct in this context, but anybody who trumpets it too
loud had better find other ways of proving divisibility of one polynomial
by another than that just mentioned.

2 A very large radix
This is actually a nice concretisation of the previous viewpoint. It says
that polynomial multiplication and convolution are just like long mul-
tiplication, learned in primary school. However, long multiplication has
a complication called carrying which these other two operations don’t
have. So we need to make the radix large enough that carrying doesn’t
happen. But because carrying never happens we don’t have to specify
exactly what value the radix has.
This viewpoint does help to make the Laurent Polynomial idea much less
outlandish. You can do long multiplication with decimal fractions just
as well as with integers, and the actual manipulation of the coefficients
is more or less independent of where you put the decimal point.
In fact a very small radix (<<< 1) also avoids carrying, and this has
the advantages that
(i) the natural sequence of the entries is the same as the natural

sequence of digits in a z-mal number.
(ii) the formal Taylor expansions mentioned above become much more

plausible.
3 A shift operator

Yes, of course. Multiplying a sequence by z shifts all its terms along
one. Note that a term which consists of only a scalar really means that
scalar times z0. In particular the term ‘1’ is the identity operator (don’t
shift it at all) rather than just a number.

4 A circulant matrix
Yet another operation which also has the same rules as convolution,
multiplication of polynomials and long multiplication with a large radix,
is the multiplication of circulant matrices.
z can then be interpreted as an infinite circulant matrix containing all
zeroes except for the entries just below the diagonal, which are all unit
values. (So that multiplying a vector by it shifts it down a row.)
Each sequence is then expressed as an infinite circulant matrix whose
columns (or the reverses of the rows) are all copies of the sequence.
This analogue is most relevant when one or both of the sequences is
potentially infinite in length.

Each of these ideas has its part to play in making the manipulations
that we shall be carrying out in the main part of this book seem perfectly
natural and obvious. They all describe exactly the same mathematics and
are all, in that sense, exactly equivalent. There is no question of any one of
them being ‘better’ or ‘more accurate’ than any of the others in any absolute
sense, though some may be more effective than others in making obvious
some specific results.
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10.4 Some Special Sequences

There are some rather special sequences that we shall encounter later in the
book, which have rather simple expressions in this notation. Note that just
as the symbol z really means something rather abstract, the symbol ‘1’ also
means an identity operator, rather than a numerical value.

1) (1 + z)/2
This is the sequence [. . . , 0, 1/2, 1/2, 0, . . .]. Convolution of a sequence
A : [. . . aj . . .] with this gives the sequence of means of adjacent entries.
If you want to position those means half-way in between the original
entries in some sense, then the notation (1 + z)/2

√
z is available, but

usually we don’t worry too much about positioning. (Except when we
are doing term by term addition or subtraction of sequences, when it
has to be exactly right. Then we can use the symbol

σ =
1 + z

2
√
z

to denote this operation.)

2) (1− z)
This is the sequence [. . . , 0,−1, 1, 0, . . .]. Convolving another sequence
with it gives the sequence of first differences. Again, a

√
z can posi-

tion the sequence in the right place for central differences if aligning
sequences is really important. Again, we can give this operator a name:

δ =
1− z√

z

.
Powers of δ give higher differences.

3) z−∞/(1− z)
This starts to show the power of this notation. It gives the sequence
[. . . , 1, 1, 1, . . .]. Not surprisingly, the product (or convolution) with (1−
z) gives the zero sequence ([. . . , 0, 0, 0, . . .])(except at −∞, which is well
out of the way).
Taking higher powers of 1/(1 − z) gives sequences which vary linearly,
quadratically . . ., and this is useful in considering the precision set of a
subdivision scheme.
If you don’t like the idea of using this shorthand for a polynomial with
an unbounded number of terms, which may not even converge for all
values of z, you can think of z as being a very tiny radix, which is just
as effective as a large radix for avoiding carries.
Note that this implies that a sequence P whose terms Pj are jd, can be
denoted by z−∞/(1− z)d+1. We then see easily that

(1− z)d+1P = 0
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(except at−∞) so that the d+1th differences (and all higher differences)
of P are zero.

10.5 Normalisation

The astute reader may well ask “Why is (1+ z) divided by 2, while (1− z) is
not ?”.

This is just a convention which has been found to work. The concept
underneath is that we are usually operating on sequences of points. The mean
of two points is another point; the difference of two points is a displacement
vector, but the sum of two points does not have a clear geometric meaning.

It is a particular case of a broader convention, that we express polynomials
whose coefficients do not sum to zero (or infinity) as a polynomial whose
coefficients sum to one, times a scalar factor. This (or some equivalent) is
necessary in order to make factorisation of polynomials fully determinate.

For example, 4z2 + 10z + 4 = (4z + 2)(z + 2) = (2z + 1)(2z + 4). Which
of the two factorisations is most useful ? This problem is neatly sidestepped
by expressing the factorisation as

18

(
4z2 + 10z + 4

18

)
= 18

(
2z + 1

3

)(
z + 2

3

)
Taking first differences, on the other hand, is a standard operation, and

dividing the first difference by two would be an arbitrary deviation from
standard practice.

This convention is in fact rather nicely self-consistent. Consider the central
divided difference sequence (1− z2)P/2z obtained by subtracting, from each
member of P the member two earlier, and dividing by the distance, 2, between
them. This factorises into δσP , which is exactly the sequence of first divided
differences of means.

10.6 Summary

We want a notation in which to do algebra involving lots of convolutions.
That notation has to make the algebra short and transparent, preferably
without losing too much rigour. This is exactly what z-transforms provide.





Part II. Dramatis Personae

A univariate subdivision scheme is a set of rules by which a denser polygon is
defined in terms of a sparser one. The same set of rules can then be applied
again to make an even denser one, and this can be repeated indefinitely to
make such a dense polygon that it looks like a curve. In principle an infinite
number of such refinements would indeed give a continuous curve, and it
is possible to deduce from the rules some properties of that curve without
actually taking an infinite number of steps.

It is appropriate at this point to define some terms relatively precisely,
which will be used in the remainder of this book.

We also introduce some particular subdivision schemes of either technical
or historic interest, which will be used as examples throughout.





11. An introduction to some regularly-

appearing characters

This section defines terms. Where a word or phrase appears in bold font, it
is being defined by the context in which it appears.

11.1 Polygons

We start with the original or initial polygon. This consists of a sequence
of vertices, joined, at least for display purposes, by straight line segments
called edges. The sequence can either have two ends, or else can be cyclic,
with the end leading back into the beginning. The number of and positions
of the vertices define the polygon completely and we don’t ask how they were
chosen. This is an input defined by whoever wants to design the shape of the
final curve. We therefore call the vertices control points. The term point
on its own indicates a position; the term vertex a rôle within a polygon.

One application of the rules (a step) leads to the construction of a refined
polygon. When we are talking about later steps the input to that step is
called the old polygon and the output from it the new polygon.

The description above is extremely general, and initially we look at a
subset about which it is possible to prove things. We consider the context
in which the rules take the form of using linear combinations of the coordi-
nates of the old polygon vertices to give the coordinates of the vertices of
the new polygon at each step. The set of weights in the linear combination
giving a new vertex is called a stencil. We take the uniform, stationary,
symmetric case.

Uniform means that the same stencils are used everywhere along the
polygon. A non-uniform scheme could have stencils near one end of the
polygon different from those near the other and yet again different everywhere
in the interior.

Stationary means that the same stencils are used at every step of refine-
ment. A non-stationary scheme could have different stencils used for each
step.

Symmetric means that the shape of the limit curve does not depend on
which end of the polygon is regarded as the start and which one as the finish.
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old polygon

new polygon

Example Scheme 1

For example, in one particular scheme each
step creates alternate new vertices (e-vert-
ices) at the midpoints of the edges of the
old polygon (i.e. at a weighted mean with
weights 1/2, 1/2) and intervening ones (v-
vertices) at points given by a weighted
mean of three consecutive vertices with
weights 1/8, 6/8 and 1/8 respectively. Both
from the symmetry of these weights and
from the fact that the dominant weight is
the central one, each new v-vertex is asso-
ciated with the central old one of the three
used to define it.

These new vertices are joined together,
in the sequence matching the sequence of
the edges and vertices of the old polygon,
to form the new polygon.

This particular scheme is called the cu-
bic B-spline scheme, because its limit curve
is indeed a cubic B-spline curve.

At the ends it can be convenient for a new v-vertex, which does not have
three old vertices to apply the weights to, merely to be placed at the same
position as the end vertex of the old polygon. Much later in the book we
shall see why this is an unfortunate end-condition, but for now it provides a
simple way of tying up the loose end.

When we are dealing with just a local part of a polygon somewhere in the
interior, so that end-conditions do not complicate the story, we will refer to
‘local configuration’ or ‘configuration’ rather than ‘polygon’.

This first example has approximately twice as many vertices in the new
polygon as in the old. We call it a binary scheme. If there had been three
times as many it would have been a ternary scheme, and such generalisations
will be discussed in a few pages’ time. In principle at each refinement we can
multiply the number of vertices by whatever we choose, and this number is
called the arity and denoted by the letter a. It is also called the dilation
factor, which stems from generating function usage.
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11.2 Labelling and Parametrisation

When we start to apply some mathematics to these objects, we need a way of
identifying how the correspondence between old and new vertices works. The
method used here is that the old vertices are labelled by integers, multiples
of the arity9. Their positions will be denoted by Pi, i ∈ aZ when we get
to some mathematics. The v-vertices get the same labels as the old vertices
with which they are associated, and the e-vertices after one step get the
intervening integers. These positions will be called pi, i ∈ Z. In the binary
case the v-vertices get even labels, the e-vertices odd labels. Applying upper
case for old vertices and lower case for new allows us to use the same letter
for two different levels of refinement without a lot of extra superscripts or
subscripts.

When subsequent steps are applied, new e-vertices get first half-integer
labels, then quarter-integer etc. and so successive steps fill in all the dyadic
numbers10.

These are dense in the reals and so in the limit we have something very
close to a continuous parametrisation of the limit curve using vertices alone.
However, we can extend the labelling to a continuous parametrisation at
every stage by associating (by linear interpolation) intermediate labels with
the points on the edges of the polygon.

Every polygon is thus a parametric curve, and so is their limit, the limit
curve. To every real value of parameter (and we shall use the letter t to denote
the parameter) between 0 and the arity times the number of original sides
of the polygon there corresponds a point of the limit curve11. It may not be
possible to write a closed form for this function (except in some special cases)
and the function may not be differentiable or even continuous, but it is in
principle defined at every real value in the domain, as the limit of a sequence
of points lying somewhere on consecutive polygons12.

9 In fact we can put the origin, the label of value zero, at any convenient point,
because all of the mathematics is invariant under a consistent translation of the
whole configuration.

10The dyadic fractions are those which have a finite representation as binary num-
bers. Rationals which are not dyadic have a binary fraction representation which
after a while repeats some pattern to infinity. Irrationals do not have any such
pattern in their infinite binary representation

11This is not quite true, because some schemes have special rules at the ends which
allow for definition of new vertices which don’t have old vertices on both sides.
Others do not, and then each new polygon covers a slightly shorter parametric
range than the previous one. This distinction can be ignored until we come to the
chapter on end-conditions at page 175.

12

115) but this is a good enough first approximation to bootstrap the ideas.
There will be a somewhat more sophisticated viewpoint taken later (see page
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11.3 Primal and Dual Schemes

The example above is called a primal scheme, because old vertices map into
new v-vertices under the labelling.

However, it is also possible to define schemes in which the relationships
are more subtle.

old polygon

new polygon

Example Scheme 2

In this scheme, which is called the quad-
ratic B-spline scheme, because its limit is
indeed a quadratic B-spline curve, new ver-
tices are constructed at points one quarter
and three quarters of the way along each
edge of the old polygon. At the first step
they get labels which are half-integers.

Such schemes are called dual schemes
because edges map into edges under the
labelling.

The terms e-vertex and v-vertex are no
longer applicable, but the labelling is clear.
It would be possible to use the terms ‘e-
edges’ and ‘v-edges’, but in fact we don’t
bother.

It is tempting to say that the parameter
values of new vertices are obtained by ap-
plying the same process to them as to the
coordinates. However, this is dependent on
a subtlety called linear precision which
will be elaborated later in chapter 20 be-
low.

11.4 Ternary Schemes and Higher Arities

Both of the above examples approximately double the number of vertices
in the polygon with each step of refinement. They are binary schemes. It
is also possible to have schemes in which the number of vertices trebles or
quadruples or is multiplied by a still higher factor. As mentioned above, we
call that factor the arity, so that binary schemes have an arity of 2, ternary
of 3, quaternary of 4 etc. Some of the mathematics applies to all arities,
and in such cases we will denote the arity by the letter a.
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old polygon

new polygon

Example Scheme 3

One particular ternary scheme, called
the ternary quadratic B-spline for
the obvious reason, has new v-vertices
given by weights of 1/9, 7/9, 1/9, and
new e-vertices given by the weight com-
binations 2/3, 1/3 and 1/3, 2/3.

Clearly the old vertices have labels
which are multiples of 3. The new e-
vertices get labels of integers not divisi-
ble by 3. Such a scheme is both primal
and dual, because vertices map into ver-
tices and also edges map into edges. We
call it a ‘both’ scheme.

This particular scheme turns out to
have exactly the same limit curve as the
second example above.

old polygon

new polygon

Example Scheme 4

It is also possible to have more compli-
cated schemes in which vertices map un-
der the labelling into edges and edges
into vertices, so the scheme is neither pri-
mal or dual.

The terms e-vertex and v-vertex are
no longer applicable, but the labelling is
clear. After one step there are new ver-
tices with fractional labels.

An example has these vertices de-
fined by weight combinations [5/6, 1/6],
[1/2,1/2] and [1/6, 5/6]. This is a para-
doxical scheme whose limit curve has
strange properties that we shall deduce
as examples later in the book. We call it
just the ‘ternary neither scheme’, as its
main function is to illustrate that possi-
bility.
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For precision we shall refer to schemes of odd arity which are both primal
and dual as both schemes, and to schemes which are neither primal or dual
as neither schemes, but the reader should be aware that other authors refer
to them as ‘primal’ and ‘dual’ respectively.

11.5 Interpolatory Schemes

old polygon

new polygon

Example Scheme 5

All the previous examples have the prop-
erty that the corners are smoothed off
the original polygon. It is also possi-
ble for a scheme to have the property
that the new polygon has new v-vertices
which lie exactly at the corresponding
old polygon vertices. If this is true after
one step it will also be true after two, or
three, or more, and indeed it is true, by
induction, of the limit curve.

The scheme illustrated here has its v-
vertices at the original vertices, and each
of its e-vertices at the place defined by
a parametric cubic Lagrange interpolant
through four points. The weights for an
e-vertex are -1/16, 9/16, 9/16 and -1/16,
and the scheme is therefore known as the
four-point scheme.

11.6 Range

The limit curve of a subdivision scheme is a function from real parameter
values. The range of points in the illustrations, particularly in this chapter,
is two-dimensional Euclidean space, represented by R

2. In typical CADCAM
or animation usage they will be in three-dimensional Euclidean space, repre-
sented by R

3, though it is possible for even more dimensions to be involved
if texture coordinates or temperatures or values of other properties are han-
dled in parallel with the three coordinates. This variation of range is rendered
trivial by the fact that each coordinate or other property is handled indepen-
dently of the others13.

13At least in the limited set of schemes considered most of the way through the
book.
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We can do most of our analysis by considering just a single real ordinate
as the range. When the map is to a single real, it is convenient to plot the
abscissa t as the x-coordinate and the value as y. Some of the figures in later
sections are plots of this kind. It should be easily visible whether a figure is
one of these or, like the earlier ones in this chapter, a plot of y(t) against
x(t), both being functions of t.

11.7 Representations of Subdivision Schemes

There are four ways in which we can look at the weighted mean coefficients
which define how a subdivision scheme behaves: stencils, the subdivision ma-
trix, the mask, and the generating function.

Stencils The first obvious representation is the set of weight combina-
tions for each of the types of vertex in the new polygon.
Each set of weights is called a stencil, and the set of stencils taken
together is a complete description of a uniform, stationary scheme. (The
arity is implicit in the number of stencils.)
Because the values in a stencil are often rational with a relatively small
denominator, it saves space when writing to put a common denominator
outside the brackets which enclose the values. Because the values are
components of a weighted mean, the sum of the values in a stencil must
be unity, so the denominator can always be derived from the set of
values themselves.
The stencils of example scheme 1 are thus [1,6,1]/8 for v-vertices and
[4,4]/8 for e-vertices. There are two different stencils because the arity
is 2.
Example scheme 2 also has two stencils, [3,1]/4 and [1,3]/4 . Exam-
ple scheme 3 has three stencils because it is a ternary scheme, [3,6]/9,
[1,7,1]/9 and [6,3]/9.

Subdivision Matrix It is also possible to assemble the stencils into a
matrix, by which the column vector of old vertices is multiplied to give
the column vector of new ones.
The stencils are clearly visible as the rows. Because the scheme is uni-
form, the same stencils alternate all the way down the matrix. If the
scheme had been ternary the same sequence of three stencils would have
repeated all the way down.
One step of the scheme of example 1 can be expressed as the matrix
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8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

...

...
pi−2

pi−1

pi
pi+1

pi+2

...

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Pi−4

Pi−2

Pi

Pi+2

Pi+4

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mask Just as the matrix is made up of the stencils as rows, we can also
think of it as made up of columns. When a larger part of the matrix is
drawn, rather than just a short section, it becomes visible that all the
columns are the same, merely being shifted down 2 rows (or in general
the same number of rows as the arity) for each step to the right.
Such a column is called the mask of the scheme. That of example
scheme 1 is [1, 4, 6, 4, 1]T/8, but when it is clear that we are talking
about masks the transposition will not be written in every time.
Example scheme 2 has as its mask [1, 3, 3, 1]T/4, example scheme 3 has
mask [1, 3, 6, 7, 6, 3, 1]T/9 and example scheme 4 has [1, 3, 5, 5, 3, 1]T/6.
The sum of the values in the mask is the same as the total of the sums
of the values in the stencils, and so it is equal to the arity. This means
that to complement the actual string of numerator values either the
denominator or the arity is needed to be completely precise. If neither
is quoted, the default assumption is that the scheme is binary.
Some early papers referred to the stencils as the masks, but this usage
can be distinguished by the use of the plural.
The stencils show diagrammatically the influences of neighbouring old
vertices on a given new one: the mask shows diagrammatically the in-
fluences of a given old vertex on neighbouring new ones.
In a symmetric scheme, the mask is palindromic: each stencil either is
palindromic, or else has a mirror-image mate.
In order to make clear exactly how the mask is applied, the entries are
given the same labels (parameter values) as the new vertices influenced
by P0. If the mask entries are denoted by mt, this makes the symmetry
relation particularly simple,

m−t = mt.

The new vertices are then given by
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pt =
∑
s∈aZ

mt−sPs

Note that t here might not be an integer: for binary dual schemes each
t will be an odd half-integer. s will be an integral multiple of the arity.
These complicated conventions are designed exactly to make these last
two equations simple.

Generating Function The fourth representation is made by treating
the values in the mask as the coefficients of a Laurent Polynomial. This
is the z-transform, which maps a sequence of values into a function.
The Laurent polynomial is also called the symbol of the scheme.
This is not an obvious thing to do, but it turns out to be incredibly
powerful. The immediate application is that convolution of the mask
with the old polygon becomes multiplication of the generating function
of the old polygon by the generating function of the mask.
Thus one step of example scheme 1 can be written as

. . .+ pi−2z
−2 + pi−1z

−1 + piz
0 + pi+1z

1 + pi+2z
2 . . .

= (1z−2 + 4z−1 + 6z0 + 4z1 + 1z2)∗
(. . .+ Pi−4z

−4 + Pi−2z
−2 + Piz

0 + Pi+2z
2 + Pi+4z

4 . . .)

Note that because the spacing of the old vertices is twice as sparse as
that of the new ones, the old Laurent polynomial is in z2.
If the scheme is not primal, the z-transform then becomes a generali-
sation of a Laurent polynomial: a Laurent polynomial with a shift of a
fractional power of z. This shift is not important for the algebra: the
entire equation is just shifted a little to one side, but the shift in the
algebra is actually achieving the maintenance of symmetry.

These four representations all convey exactly the same information. All
are equivalent. We shall choose different ones for different purposes through
this book. Stencils are easier for first describing a scheme; the mask is a more
concise and precise representation; the matrix and the generating function
are representations which lend themselves to different analyses.

All are exactly equivalent, holding the same information about the
scheme. Because they are so tightly linked, we shall sometimes use some-
what sloppy wording, saying, for example, that scheme S1: ([1, 4, 6, 4, 1]/8)
has a factor of [1, 1]/2, when what has the factor (of (1+z)/2

√
z) is the corre-

sponding generating function. If the name of a scheme is S1, for example, we
shall refer to ‘the matrix S1’ or to ‘S1(z)’ without further comment. Please
bear with this: it makes the reading much easier and does not cover up lack
of rigour in the argument.
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11.8 Exercises

(i) For each of the schemes in 11.9(i), write out the stencils of the scheme.
Use the notation which inserts a ‘*’ at the place of an edge-vertex.

(ii) For each of the schemes in 11.9(i), write out the part of the matrix
with non-zero principal diagonal. What complications did you find in
interpreting this question ?

(iii) How can the denominator of a scheme be determined from the arity and
the sequence of integers in the 11.9(i) examples ? Equally, how can the
arity be determined from that sequence and the denominator ?

(iv) Write a small program which loads into a memory data structure the
arity and mask of a scheme. A convenient structure holds the arity and
the number of entries as integers and the mask as an array of floating
point numbers. The source of the data should be either a file or values
entered through the screen by the user. This question will not have
a solution provided, but questions in later chapters of the book will
extend this program to carry out analyses on masks held in this data
structure.

11.9 Summary

(i) Five example schemes have been encountered.

Scheme Arity Name Mask

1 2 Cubic B-spline [1, 4, 6, 4, 1]/8
2 2 Quadratic B-spline [1, 3, 3, 1]/4
3 3 Ternary Quadratic B-spline [1, 3, 6, 7, 6, 3, 1]/9
4 3 Ternary neither [1, 3, 5, 5, 3, 1]/6
5 2 Four-point [−1, 0, 9, 16, 9, 0,−1]/16

Between them these illustrate many of the aspects to be analysed in
later chapters.

(ii) Subdivision curves are parametric curves. They can be maps from the
reals to curves in a space of any number of dimensions. The important
numbers of dimensions are
1: This gives the functional form. In fact when dealing with higher

dimensional spaces we deal with each of the coordinates indepen-
dently.

2: for illustrations in this book, where the pages are two-dimensional.
3: for real applications, where twisted curves are often required.

Clearly there is little difference between a two-dimensional curve
and a curve which happens to be planar. Also, if a scheme has the
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property called linear precision (which all useful schemes do in fact
have), the abscissa itself obeys the same rules as the ordinate(s), and
so even the functional case is just a particular case (not a special case)
of the general n-dimensional one.

(iii) There are four representations of a uniform stationary scheme.
• Stencils
• Matrix
• Mask
• Generating Function or Symbol

These are all exactly equivalent in terms of information content.
The stencils appear as the rows of the matrix and the mask as the
columns. The generating function is a nice notation, associating some
semantics with the entries in the mask, which allows us to do some
algebraic manipulations on the mask in an easily understood way. We
shall use the mask as the definition of a uniform stationary scheme.

This chapter has introduced a large number of new terms, but we have now
reached the point that we can embark on analysis. A colleague has just
brought in a new scheme and asked “I think this new scheme (here is the
mask) is marvellous: what do you think of it ?”, and the next few chapters
will allow us to find out systematically whatever weak points that scheme
has.





Part III. Analyses

The body of this book describes five major questions which we are now
able to answer about an arbitrary uniform, stationary, symmetric subdivi-
sion scheme. In each case there are additional issues which are conveniently
addressed in the same chapter.

• Support: How much of the limit curve is influenced by a given control
point ?

• Enclosures: How closely can we put boxes around parts of the curve to
help test for intersections etc. ?

• Continuity: What discontinuities of some derivative are present in the
limit curve ?
This is a long story with several aspects.

– necessary conditions from eigenanalysis
– sufficient conditions from z-transform analysis
– using deeper factorisation of the z-transform
– combining the necessary and sufficient conditions, using the Joint

Spectral Radius.

• Precision Set and Order of Approximation: What degree of polynomial
can be reproduced exactly, and how does the error between the limit
curve and a curve from which the control points are sampled vary with
the density of sampling ?

• Artifacts: What features can be seen in the limit curve which cannot be
controlled by choice of the initial input polygon ?

For most purposes we look at subdivision functions rather than subdivi-
sion curves, because subdivision curves can be looked at as parametric curves
where each of the coordinates of a point on the curve is an independent func-
tion of an implicit parameter. Part way through this story we shall discover
that, for almost all of the schemes of interest, the functional case is a partic-
ular case of the more general one anyway.

As we look at different analyses in the following chapters we shall take
the binary primal subset first, to establish ideas, and then generalise to duals
and to higher arities.





12. Support

This is the most basic and simplest of the analyses that we can do. It de-
termines how much of the limit curve is modified when one control point is
moved. That part which is dependent on a given control point is called the
support region of that point. Pedantically both of these refer to an interval
in parameter space, but since that corresponds to a piece of the curve we can
also use ‘support’ to refer to that.

It is of interest for three reasons:
(i) It is directly relevant to the ease of use of a scheme in interactive graphi-

cal editing, where the limit curve is pulled and pushed by the movement
on the screen of control points14.

(ii) Its results are used by other analyses.
(iii) It leads to the concept of the basis function.

12.1 The Basis Function

This is such an important concept that we take it first.
The basis function is the limit function resulting from cardinal data,

where all vertices of the polygon have value zero except for one. Clearly
there is one such basis function for each control point in the polygon, but in
uniform schemes, where the weights in the weighted means do not depend
on position in abscissa space, all of these basis functions have the same shape.
They are just translates of each other, and so there is only one shape, which
we call the basis function.

This gives a more precise meaning to the term support width. It is the
width in abscissa units of the closure15 of the abscissa region over which the
basis function is non-zero (the support region).

14

of the region in which the magnitude of the support function is greater than some
positive constant, modelling the region in which a perceptible difference in the
curve can be seen.

15‘closure’ is a technicality which allows us to ignore the fact that the basis function
can be zero at isolated points of the support region.
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As well as the strict definition of support just made, a useful measure is the width
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In all schemes which are linear (i.e. the mask does not depend on the
coordinates of the control points16), the limit curve can be expressed as

P (t) =
∑

Pibi(t)

where bi(t) is the basis function associated with the ith control point. In the
uniform case this simplifies to

P (t) =
∑

Pib(t− i)

because all basis functions are just translates of the same function b(.).
Most of the properties that we ask about in general of limit curves are

directly related to properties of the basis function.
In a few (important) special cases the basis function has a closed form,

but more generally adequate approximations can be evaluated numerically
by the cascade algorithm. This amounts to just applying the subdivision
process repeatedly to initial cardinal data. There is an efficient way of doing
this.

The first step of applying a scheme to cardinal data produces a sequence
of control values which are just the entries in the mask, two per original span.
The second step produces four control values per span. These could have been
produced directly by a quaternary scheme (of arity equal to 4) with the same
basis function as the original binary one, and the values just computed are
indeed the mask of that quaternary scheme. In the usual description of the
cascade algorithm the third step would have produced eight control values
per span, the fourth 16 and the fifth 32. However, if we apply the quaternary
scheme to the result of the second step we get 16 control values per span,
and we can regard these control values as the mask of a scheme of arity 16.
Applying this scheme to the latest values gives a scheme of arity 256 in only
four steps. For graphical purposes this is typically enough, but one more step
gives a representation of the basis function with 65536 control values per span
which would be dense enough even for engineering applications.

As described above, the cascade algorithm is regarded as producing the
basis function as the pointwise limit of a sequence of polygons. There is,
however, another way of looking at it.

The limit curve is

P (t) = ΣiPibi(t)

= ΣiPib(t− i)

But P (t) = Σjpjb(2t− j)

= ΣjΣiPimj−2ib(2t− j)

= ΣiPiΣjmj−2ib(2t− j)

Therefore ∀i, b(t− i) = Σjmj−2ib(2t− j)

16This is a very weak precondition. Even if the mask depends on position along
the curve and on the step of refinement, there is still a set of well-defined basis
functions.
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If we take the particular case i = 0 (all the others are just translations of
it) we get

b(t) = Σjmjb(2t− j)

and this equation holds at all values of t.
The basis function can be expressed as the sum of scaled copies of itself,

and the scaling factors are just the entries in the mask. The cascade algorithm
can then be viewed as making the basis function from tinier and tinier copies
of itself as iteration proceeds.

An even more important theoretical result is that if we take some other
function (with some small print) b0(t) and apply the cascade algorithm by
iterating

bk+1(t) = Σjmjbk(2t− j)

successive bk converge towards the true basis function. This property holds
for all t, not just the dyadic values which we actually construct.

12.2 Support Width

We now look at the question again, of how much of the curve is influenced
by a single control point.

12.2.1 Primal binary schemes

Suppose that the scheme is a primal binary one. The mask has an odd number
of entries, m. Thus the effect of the original control point, Pj , being moved
reaches as far after one iteration as (m− 1)/2 new points from Pj , or (m−
1)/4 old points. At the second step the mask being applied has the same
numbers but is at a narrower abscissa scale, and so the second step extends
the influence by one half of this, = (m− 1)/8, and all subsequent steps give
a total series of ((m− 1)/4)(1+1/2+1/4 . . .) which is easily summed to give
(m− 1)/2.
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By looking at the extent of influence of one control point after 0,1,2,∞
refinements, in the cubic B-spline scheme we can see that the refined polygons
converge towards the basis function, and the last non-zero entry converges
towards the end of the support region.

Thus moving a single control point influences at most a piece of the limit
curve which stretches (m − 1)/2 old spans on each side. m was odd and so
this is an integer.

Beyond this point the control point has no influence. We should not there-
fore be surprised to find a discontinuity of some derivative at such places. Note
that the sum of the series converges from below, and the amount of influence
actually felt at the limit of the series has diminished to zero by the time that
the edge of the support is reached. The original control point can influence
some derivative on the near side of the final point, but not the point itself or
anything beyond it.

We have made a big assumption so far, that the subdivision process con-
verges to a limit curve. We shall discover later that it is possible to have a
scheme which is not convergent. However, these take deliberate perversity to
construct, and the support analysis applies even to such monsters.
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12.2.2 Dual binary schemes

Here the mask has an even number of entries. The calculations above follow
through in exactly the same way, except that the range of influence of an
original control point reaches to a point half-way between images of control
points. This means that we expect there to be discontinuities of some deriva-
tive at these half-way points, rather than at the images of control points.

For example, the binary scheme whose mask is [1, 3, 3, 1]/4 (the binary
quadratic B-spline) has a support width of (4 − 1)/2 = 3/2 spans on each
side.

We see the same effect in the growth of the extent of influence of one
control point after 0,1,∞ refinements in the quadratic B-spline scheme. Again,
the refined polygons converge towards the basis function.

12.2.3 Ternary schemes

We consider first ternary schemes which are both primal, in the sense that
there is a vertex in the new polygon corresponding to each vertex of the old,
and dual, in that there is an edge of the new polygon matching each each of
the old.

In this case the mask has an odd number of entries, and the distance
reached at the first step is (m−1)/6. Considering subsequent steps multiplies
this by a factor of (1+1/3+1/9+ . . .) which is equal to 3/2. Thus the range
of influence is (m− 1)/4 on each side.
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Depending on the size of the mask, this can lie either at the image of an
original control point or half-way in between.

For example, the ternary scheme whose mask is [1, 2, 3, 2, 1]/3 (the ternary
linear B-spline) has a support width of exactly (5−1)/2 = 2 old spans, while
the scheme whose mask is [1, 3, 6, 7, 6, 3, 1]/9 (the ternary quadratic B-spline)
has a support width of (7 − 1)/2 = 3 spans, one and a half on each side of
the control point.

12.2.4 ‘Neither’ ternary schemes

It is also possible for the mask of a ternary scheme to have an even number
of entries. In this case exactly the same algorithm tells us that the range of
an original control point can lie one quarter of the way between point images.
The end of the influence of one control point is no longer at the same place
as the start of the influence of another.

This can be seen in the basis function of the ternary scheme [1,3,5,5,3,1]/6
with the control points after one step from cardinal data.

12.2.5 Higher arities

As far as can be seen, all the interesting effects are covered above, and higher
arities introduce no new features.

In general the width, w, of the non-zero part of the basis function is
(m− 1)/(a− 1) old spans, (or (m− 1)/2(a− 1) on each side).

12.3 Facts which will be Relevant to Other Analyses

Once we know how much of the curve is influenced by each original control
point, we can determine how many control points influence a given part of
the limit curve. This is a key parameter to some of our other analyses.
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Call the parameter value at which the zero and non-zero parts of the basis
function meet an end-point.

We have to consider two cases: such a point may be either at the ends of
two different control points’ supports, which will be the case if the support
width is integral, or at the end of only one, which will be the case if the
support width is fractional.

Consider first the case of integer support width. If the support width is
even, the end-point will have an integer label and correspond to an original
control point. If the support width is odd, the end-point will have a half-
integer label and correspond to a midedge of the original polygon.

There are three slightly different variants of the question that we need to
ask.

(i) How many control points influence a specific point which is the end of
an original control point’s support ?
Provided that the basis function is continuous17 only w − 1, because
there are only w − 1 such end-points in the non-zero part of the basis
function.

In the cubic B-spline scheme, for example, the support is 4 spans wide
and each end-point is influenced by only 3 original control points.

(ii) How many control points influence the neighbourhood of an end-point ?
Exactly w+ 1, because there are w+ 1 end-points in the closure of the
support.

In the cubic B-spline scheme the neighbourhood of each end-point is
influenced by 5 original control points.

17If the basis function is not continuous the value can be w.
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(iii) How many control points influence the interior of a specific span of the
limit curve between adjacent end-points ?
Only w, because each basis function is non-zero over the interiors of w
spans.

In the cubic B-spline scheme each basis function has four non-zero spans,
and thence each span is influenced by 4 original control points.

Now consider the case when the support width w is not an integer: there
are two kinds of spans between end-points, and they must alternate. When
moving along the curve, when leaving a support region the number of active
control points reduces by one, so that spans influenced by �w
 are separated
by those influenced by �w�. The end-point itself and one side of the neigh-
bourhood will be influenced by the lower of these figures; the other side of
the neighbourhood by the higher.

within 2 supports
within 3 supports

For example, the ternary scheme whose mask is [1, 3, 5, 5, 3, 1]/6 has a
support width of (6−1)/4 = 5/4 old spans on each side, so that the part of a
span near the original control points is influenced by three original vertices,
while the part from 1/4 to 3/4 is influenced by only two.

This implies that the structure of the central part of each span can be
different from the end parts. In the case just considered, the central part of
each span is straight, because it is influenced by only two control points, while
the part from 3/4 along one span to 1/4 along the next has a fractal structure.
In fact the basis function has the interesting combination of properties that
it is entirely made up of pieces of linear functions at different scales, but it
has a continuous first derivative.
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12.4 The Matrices of Powers of a Scheme

Applying a scheme to cardinal data gives its mask, because, thinking of the
scheme in terms of a matrix, cardinal data essentially picks out one column
from the matrix of the scheme. Applying the scheme a second time (multi-
plying the mask by the matrix) gives the mask of a scheme which is of higher
arity. Because applying this scheme to any data is just applying the original,
two steps at a time, it must have the same limit curve. We call this scheme
the square of the original. The matrix of the square has a longer column
and a steeper slope than the original. Taking yet more steps gives the masks
of schemes of even higher arity and even steeper slopes.

The number of non-zero entries within any row remains constant, at the
number of control points influencing one point of the limit curve. In the
limit we can imagine a ‘matrix’ which has continuous rather than discrete
columns, each of which has its value varying as the basis function. Although
the ‘columns’ are infinitely long, the number relevant at any point is still only
a relatively small number, the same as the size of the largest original stencil.

12.5 Practical Support

Our original support question was “ how much of the limit curve is modified
when you move one control point ?”. When building interactive design soft-
ware it may be very relevant that in regions where the basis function has a
tiny value, the change in the curve from a small movement of a control point
may be undetectable.

Suppose that a control point is being moved by 50 pixels interactively. In

for the cubic B-spline the last one-third of a span at each end is well below
this threshold, as is the entire end span of the quintic B-spline. For higher
degrees even more will have no visible effect.

12.6 Exercises

(i) For each of the schemes of 11.9(i) above, determine the support.

(ii) What is the square of [1,3,3,1]/4 ?, what is its arity, what are its stencils,
and what is its support ?

(iii) Write a routine to take your representation of the mask of a scheme (as
in question (iv) on page 58 above) and compute its square.

(iv) Using that routine, plot an approximation to the basis function of a
given mask.

places where b(t))<0.01 this is unlikely to change the image of the curve. Even
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(v) Write a routine to take your representation of a mask, and compute the
support and also good estimates of its practical support at levels of 1%,
2% and 5%.

12.7 Summary

(i) Only a finite part of the limit curve is influenced when one control point
is moved. The length of the abscissa of that part is given (in units of
old polygon edges) by

w = (m− 1)/(a− 1).

(ii) The amount which is noticeably influenced is usually less.

(iii) We should not be surprised to find a discontinuity of some derivative at
a place where the influence of a control point ends.

(iv) Only a finite number of control points influence each point of the limit
curve.
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Promenade

Knowing the support tells us how much of the limit curve is influenced when
one control point is moved. We also want to know how the overall position of
the curve is influenced by the set of control points as a whole. This is particu-
larly important when calculating intersections of, for example, a subdivision
curve with some plane. We express this in terms of enclosures, simply shaped
pieces of space within which we can guarantee that the curve lies.

13.1 Positivity

For many schemes every point of the limit
curve is a positive weighted mean of the
original control points. The limit curve then
lies inside the convex hull of those points.

An even stronger result is that each span
of the curve has its points depending on only
a relatively small number of control points,
and so that span lies inside the convex hull
of a local group of control points, and the
curve itself lies inside the union of those lo-
cal hulls.

For example, convex hulls are shown for
sets of three consecutive points using the
scheme [1,3,3,1]/4. The limit curve must lie
within the shaded area.

Schemes which satisfy this property are
called positive schemes, and we first look
for ways of checking whether we can rely on
this.

The sharp test is that if every point on the curve can be guaranteed to be
a positive linear combination of some set of control points, then we can find
an enclosure for the complete curve by taking all the control points, or for
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any part of it, from one span up, by taking the relevant subset of the control
points.

This will hold when all of the basis functions are non-negative, because it is
the basis function values which give the coefficients of the linear combination
of control points for a given curve point.

If any basis functions are negative at some abscissa, t, then we can set
up a set of control points which force the limit point at t to lie outside the
convex hull of the control points. We need only consider one coordinate, and
we just give those control points for which the basis function is negative at t
the coordinate −h, and those for which it is positive the coordinate +h. The
linear combination will then have a value greater than h, which lies outside
the convex hull.

13.2 If the Basis Functions are Somewhere Negative

The condition on a non-negative basis function is essentially a condition on
the l∞ norm of the matrix of basis functions, introduced in the last chapter,
maxt Σi|b(t− i)| ≤ 1 which, because Σib(t− i) = 1, cannot be less than 1.

Consider the argument above, which said that the convex hull only worked
if l, the l∞ norm, was less than or equal to 1. This same argument can still
be applied to construct an enclosure when l ≥ 1.

We merely have to scale up the convex
hull by a factor of l. To be more precise,
each band corresponding to a face orienta-
tion needs to be scaled up about its centroid
by a factor of l.

Thus enclosures can indeed be found for
schemes which are not positive ones.

The straightforward way of determining
a good approximation to the l∞ norm of the
scheme is to raise its matrix to a high power
and scan down the rows of the resulting ma-
trix. This is not, in fact, particularly oner-
ous, though hardly elegant. Repeated squar-
ing gives high powers very quickly.

The example here is the four-point scheme

[−1, 0, 9, 16, 9, 0,−1]/16,

for which the l∞ norm is just over 1.25
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The basis is

0

0.5

1

-3 -2 -1 0 1 2 3

and graphing the copies of
the basis functions within
one span gives

0

0.5

1

0 1

The l∞ norm graphed over one span is symmetric, and it looks as though
the maximum is at the central point of a span. In fact it is not quite. abs(f(x))
is itself a function, with V-shaped discontinuities of slope at the roots of f(x).

Expanding the vertical scale
of the above plot makes the
first span of the basis of the
four point scheme visible. It
has roots at . . . , 1/8, 1/4, 1/2

0

0.01

0 1

and so the l∞ norm has V-shaped kinks at

. . . , 1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16, . . .

and the one at 1/2 means that the maximum value is displaced slightly, and
is slightly greater than the central value of 1.25.
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1

1.1

1.2

0 1

13.3 Exercises

(i) Which of the five schemes of 11.9(i) above have non-negative basis func-
tions ?

(ii) Identify a sequence of control points lying within the band −1 < y <
+1, for which the limit curve of the four-point scheme goes outside that
band.

(iii) Is it necessary for all mask entries to be non-negative for the basis
function to be non-negative ?

(iv) Extend the routine for plotting approximate basis functions (exercise
(iv) of the previous chapter), to report an approximation to the factor
by which the distances between opposite faces of the hull of the control
points must be scaled up to give an enclosure for the limit curve.

13.4 Summary

(i) Enclosures can be found for any convergent18 scheme. This is easiest if
the mask has only positive entries, when the enclosure for any piece can
be taken as the enclosure of the control points influencing that piece.

(ii) However, even when the positivity condition is not met, the l∞ norm of
the basis gives a factor by which the convex hull must be expanded to
give a usable enclosure. This norm is thus a measure of the enclosability
of the scheme.

18The question of whether a scheme is convergent or not will be addressed in chapter
16 below.
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Promenade

In a previous chapter we saw that we should expect to see discontinuities of
some derivative in the limit curve at places corresponding to the ends of the
support region.

This raises the obvious question ‘a discontinuity of what derivative ? ’.
The more general question ‘what is the Hölder continuity of the limit

curve ? ’ has attracted an enormous amount of attention. Much more indeed
than is justified by the importance of the answer to applications. However,
some really sharp tools have been developed, which are applicable to address-
ing the more important issues, and so that work has been well-justified. It
also makes a good story, which will be told in the next few chapters. Our
two subjects are eigenanalysis and difference schemes. These are developed
in counterpoint by looking at the eigenanalysis of difference schemes and the
joint spectral radius of a scheme, and brought to a coda by the question of
what it is that actually converges to the limit curve.

14.1 Derivative Continuity of the Basis Function at its

Ends

We look first at the original question ‘What is the level of derivative continuity
at the ends of the basis function’.

This can be addressed informally by looking at the rate at which the final
entry of the mask reduces, compared with the rate at which the gap between
the last control and the end of the support reduces.
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3 2 1 0

If the final non-zero entry in the mask has the value f and the arity is a,
yj is the final non-zero in the j-times refined polygon (so that f = y0) and

xj is the distance from that entry to the end of the support then yj = yj0 and
xj = s(a−j), where s is half the support width, the initial value of x (so that
s = x0).

We are looking for behaviour of the form |y| = αxk and this is

|yj| = |y0|j
αxk

j = αska−jk

(|y0|ak)j = αsk

The right hand side is constant, independent of j, and so the left hand side
must be also. For this to be the case we must have |y0|ak = 1, or |y0| = a−k.
Thus k = − loga(|y0|) = − log(|y0|)/ log(a) = − loga(|f |)

end of the support region, and the next derivative to have a discontinuity.
This is at first sight a plausible argument, but as it stands it has a number

of glaring holes.
• The values which are converging at a certain rate towards zero are not
samples from the limit curve, but control values.
• There is no guarantee that samples taken in between the dyadic places
sampled here are equally well behaved.
• Although the basis function itself may have a discontinuity of the com-
puted level at its end, the other translates of the basis function may have
worse discontinuities in their interiors at the same point, and so this does not
tell us anything about the continuity of limit curves in general.

Then we expect derivatives lower than the k th to be continuous at the
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• Worse, this is telling us only about the points corresponding to basis
function end-points, not about other points on the limit curve.

Consider these challenges one at a time.

14.1.1 Why does the limit curve converge just because the control
points do?

This problem is not hard to fix. It is clear that there is a finite piece of the
basis function whose size depends only on the final value in the mask. The
influence of the last value reaches to the end of the support, and the influence
of the rest does not reach so far. The detail of the shape within that piece
may depend on all the values, but the size relative to that of the same piece
at other levels of refinement depends only on the end value. It shrinks by a
factor of f , just like the end value itself.

The next one along cannot have any influence over the neighbourhood of
the end of the support, and that is a finite neighbourhood, not an infinitesimal
one.

Within that neighbourhood, the value of the limit function depends only
on the extreme mask value, in exactly the same way that the value of the
extreme control value does. Those values, which are values of the basis func-
tion, scale down from one refinement to the next by exactly the same factors
as the control values that we looked at.

14.1.2 How do you know something nasty doesn’t happen at
places in between the extreme control points examined?

Here we can make a nice illustration of the problem. Consider the function

f(x) =

{
0 x ≤ 0

x cos(2π log2 x) + sin(2π log2 x) x > 0
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If we sample this at values x = 1, 1/2, 1/4, 1/8 . . ., because log2(x) is an
integer, and so sin(2π log2(x)) = 0, only the first term contributes. The values
are 1, 1/2, 1/4, 1/8 . . ., which appear to be converging nicely as x.

But at intermediate places there is no convergence to zero.
However, this illustration was not of a subdivision construction. If a sub-

division scheme is convergent, we have the result from the previous chapter,
that the limit function cannot take a larger value within a span than a certain
factor times the largest of a few local control values. By the same argument
as for the previous problem, these local control values are all scaling down at
the same rate, and so the upper bound on the limit values must also.

Thus the first two of these gaping holes can be plugged: they have rea-
sonable answers. The other two are indeed problems, which will be addressed
in later chapters.

Indeed, we can make a subdivision scheme (the mask is [1,8,14,8,1]/16)
which does indeed have a poorer level of continuity in the limit curve, even
at points corresponding to the original control points, than appears at the
ends of the basis function.

We can also make a subdivision scheme (the mask is [2,7,10,7,2]/14) which
has a poorer level of continuity in the curve as a whole than it does at the
limit curve points which correspond to control points.

Thus the analysis of this chapter has indeed determined the Hölder con-
tinuity, but only of the basis function and only at its end points. There is
much more to do before we have a full answer to the continuity question.

14.2 Exercises

(i) Applying the methods of this chapter to the schemes in 11.9(i) above
is totally trivial, but do it anyway.

14.3 Summary

(i) The Hölder continuity at the ends of the basis function is determined
from the value, f , at the ends of the mask and the arity, a. Let k =
− loga(|f |) = − log(|f |)/ log(a). Then the highest derivative continuous
at the ends of the basis function is d = �k
 − 1 and the fractional part
of the Hölder continuity is k − d.

(ii) This is only an upper bound on the Hölder continuity of the limit curve.
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Promenade

The earliest work on continuity focussed on the questions “ here is a scheme:
is it continuous ? is it C1 ? is it C2 ?...” which can be subsumed into the
single question “How many derivatives are continuous ?”. We now phrase
the question a different way: what are upper and lower bounds on the Hölder
continuity ? This is because numbers like − log(|f |)/ log(a) are very rarely
integers.

The number found in the previous chapter is a strict upper bound on
the Hölder continuity because we have an example of a discontinuity at one
particular place of one particular limit curve.

In fact, because other places could have discontinuities of lower derivatives
and often do, this is usually a rather sloppy upper bound, and the next few
chapters deal with ways of finding tighter bounds, both upper and lower.
When the bounds converge, we can say that we know the continuity of the
limit curve.

15.1 Continuity at Mark Points by Eigenanalysis

Because each vertex of the refined control polygon is a weighted mean of
vertices of the original, the construction of a refined control polygon can be
expressed in the form

P ′ = S P

where P is a column vector whose entries are the vertices of the initial poly-
gon, S is a matrix all of whose rows sum to 1, and P ′ is a column vector
holding the new polygon.

S is called the Subdivision Matrix. It has an interesting structure.
Every column is a copy of the mask, but successive columns have their copies
shifted down by the arity compared with their left neighbours. For example,
the subdivision matrix for the Cubic B-spline scheme is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 1

8

Note that because we are ignoring what happens at the ends of the poly-
gon, this has to be treated as an infinite matrix, and we have to be very
careful to justify steps which are only known to apply to finite matrices.

The interesting property of an infinite matrix is that, lacking a top left
hand corner, it doesn’t have a principal diagonal. Any diagonal can be taken
as principal. Because we have chosen a binary scheme for the example, all
diagonals look the same anyway, so it makes no difference for our analysis
which one we choose.

What the choice of a diagonal does is to imply a labelling, giving a corre-
spondence between a sequence of points of the old polygon and a sequence of
the refined one. In particular it implies a mark point which is an abscissa
value which maps into itself under the map from old abscissa values to new
ones. In the case of a primal binary scheme, the mark point is at a point of
both new and old polygons. In the case of a dual scheme the mark point is
at a mid-edge in both old and new.

Because the slope of the non-zero entries in the matrix is greater than 1,
it also defines a square region of the matrix for which no point outside the
row-range of that square influences any new point in the column-range.

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
w
x
y
z
a
b
c
d
e
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
W
X
Y
Z
A
B
C
D
E
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus W , X , D and E do not affect any of y,z,a,b or c.
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Y to C are exactly the control points which affect the neighbourhood of
A, as determined above, in the support chapter.

We may therefore take just this square region, and forget the rest when
we are looking at the continuity of the limit curve at A. When we multiply
the Y to C part of the initial polygon by the matrix repeatedly, we construct
refined polygons which in the limit converge to a tiny neighbourhood of the
limit curve, and it is that tiny neighbourhood which determines the continuity
at A. Eigenanalysis tells us what happens when we multiply repeatedly.

5×5 is a rather large matrix to address directly by hand, but we can apply
both symmetry and the block structures of the symmetry-partition matrices
to make the calculations easy.

15.1.1 Odd-even partitioning

The sequence Y, Z,A,B,C can be expressed as the sum of two components

8

⎡
⎢⎢⎢⎣
Y
Z
A
B
C

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(C + Y )/2
(B + Z)/2

A
(B + Z)/2
(C + Y )/2

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
−(C − Y )/2
−(B − Z)/2

0
(B − Z)/2
(C − Y )/2

⎤
⎥⎥⎥⎦

where the first component is symmetric and the second is antisymmetric.
Because of the symmetry of the 5× 5 matrix, when we multiply the first

component by the matrix we get a symmetric result, and when we multiply
the second component by the matrix we get an antisymmetric result. We can
thus look at each of these cases.

8

⎡
⎣ a
(b+ z)/2
(c+ y)/2

⎤
⎦ =

⎡
⎣ 6 2
4 4
1 6 1

⎤
⎦
⎡
⎣ A
(B + Z)/2
(C + Y )/2

⎤
⎦

8

[
(b− z)/2
(c− y)/2

]
=

[
4
6 1

] [
(B − Z)/2
(C − Y )/2

]
Note that these two linear systems together have enough eigencomponents

to equal the number of eigencomponents of the original 5 × 5. We have not
ignored any mixed eigencomponents. Indeed, the simple counting is a proof
that for a palindromic binary primal subdivision scheme every eigencompo-
nent must have either a symmetric or an antisymmetric column eigenvector.
A similar proof applies to dual schemes, where the number of symmetric
components is the same as the number of antisymmetric ones.
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15.1.2 Using block structure

The next simplification of the calculations is by exploiting the block struc-
ture of these matrices. We use the property that if a matrix is block lower
triangular, its eigenvalues are those of the diagonal blocks.

The eigenvalues of the upper, symmetric, case are given by those of[
6 2
4 4

]
, which are 8 and 2, and 1 from the trailing block. The unnormalised

eigencolumns are ⎡
⎣ 1
1
1

⎤
⎦

⎡
⎣−1

2
11

⎤
⎦

⎡
⎣ 0
0
1

⎤
⎦

and the unnormalised eigenrows are

[ 2 1 0 ]
[−1 1 0 ]
[ 0 0 1 ] .

Those of the lower, antisymmetric, case are 4 and 1 from the lower trian-
gular block structure.

The unnormalised eigencolumns are[
1
2

] [
0
1

]
and the unnormalised eigenrows are

[ 1 0 ]
[ 2 −1 ]

Observe that the matrices containing the eigenvectors have the same lower
triangular block structure as the originals.

15.1.3 Interpretation

We now need to divide by the denominator 8, previously tucked away on the
left hand sides of the equations, to find the complete set of eigenvalues of the
original matrix

1, 1/2, 1/4, 1/8, 1/8,

and use the original construction of the symmetric and antisymmetric parti-
tions to determine the eigenvectors.

The unnormalised eigencolumns are

1 1/2 1/4 1/8 1/8

⎡
⎢⎢⎢⎣
1
1
1
1
1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
−2
−1
0
1
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
11
2
−1
2
11

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
−1
0
0
0
1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1
0
0
0
1

⎤
⎥⎥⎥⎦
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and the unnormalised eigenrows are

1 [ 0 1 4 1 0 ]
1/2 [ 0 −1 0 1 0 ]
1/4 [ 0 1 −2 1 0 ]
1/8 [−1 2 0 −2 1 ]
1/8 [ 1 −4 6 −4 1 ]

By taking larger square matrices with initial and final columns of zeroes,
we find that the eigencolumns are just parts of much longer non-zero columns.

1 1/2 1/4 1/8 1/8⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1
1
1
1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
−3
−2
−1
0
1
2
3
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
26
11
2
−1
2
11
26
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
−8
−1
0
0
0
1
8
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
8
1
0
0
0
1
8
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

but the eigenrows are not extended in this way. They stay short. This ties
up with the fact that the number of original control points influencing a
neighbourhood of the limit curve is limited by the support arguments above.
A larger matrix does, of course, have additional eigencomponents, but these
all have zero eigenvalues, and so we can ignore them, at least for the next
few chapters.

Clearly the eigenvalue 1 is dominant. Its column eigenvector in the original
matrix is a column of all 1s19, which means that all the points in this piece
of the control polygon will be at the same place in the limit.

That place is given by multiplying the original polygon by the normalised
eigenrow, which gives (Z + 4A+B)/6.

This turns out to be an extremely important result. Being able to con-
struct limit points without actually doing an infinite number of refinements
is a key to practical use of subdivision curves and surfaces.

In order to look more closely at the neighbourhood of this point, let us
choose the coordinate system20 in which the initial polygon is expressed,
so that this point is at the origin. There is then no contribution to this

19In fact as long as each of the stencils sums to 1, the matrix will always have a
unit eigenvalue with an eigencolumn of 1s

20Can we do this ? Yes, because each stencil defines an affine combination, and
affine combinations are invariant under translations. In fact they are invariant
under solid body rotations, scalings and affine transforms too.
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eigencomponent, and we can see, by looking at the next eigencomponent,
what is happening near the origin.

The next column eigenvector is varying linearly, and so the polygon is
converging towards a straight line, with points evenly spaced along it. The
eigenvalue is 1/2, which means that the density doubles at each step. The
first derivative at the limit point is the limit of the first divided difference,
which is (B − Z)/2.

To explore further, we choose our coordinate system so that this straight
line is the x-axis. The subdominant eigencomponent then makes no contri-
bution to y, which is dominated by the third eigencomponent. The column
eigenvector looks complicated, but in fact it is just a quadratic variation,
with an offset added⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
26
11
2
−1
2
11
26
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
27
12
3
0
3
12
27
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1
1
1
1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
9
4
1
0
1
4
9
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1
1
1
1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This component is giving the curvature of the limit curve. The second
derivative at the limit point is given by the limit of the second divided dif-
ference, which is B + Z − 2A.

We can keep exploring, by again choosing our coordinate system so that
this component lies in the xy-plane, and then look at the z-values.

Now we have two components with the same eigenvalue, 1/8.
The antisymmetric one follows exactly the same pattern as before, giving

us a well-defined third derivative, given by the mean, C − 2B + 2Z − Y , of
the third divided differences to left and right.

However, the symmetric component gives something more awkward. The
limit has different third divided differences on left and right, which means
that there is a discontinuity of third derivative. The size of this discontinuity
is given by the fourth divided difference of the original polygon.

Again we have constructed a discontinuity which can be used as an upper
bound, in this case 2+1, on the Hölder continuity.

Because we could have carried out the analysis after applying a few levels
of refinement, the discontinuity found in this way can, in principle, be found
at limit points corresponding to control points at any level of refinement.
These points are called dyadic points. They are dense, but not as dense as
the rationals, let alone the reals. Between any two of them, however close,
you can find a point which is not a dyadic.
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This procedure can be applied to any primal binary scheme, although
it may be necessary to imagine higher dimensions than 3 in order to keep
applying the principle of suppressing successive dominant eigencomponents.

In the particular case shown as an example here, at the mark points
constructed in this way other than at abscissae of original vertices, the fourth
difference turns out to be zero, and so the discontinuities do not occur except
at limit points corresponding to original control points. That ties up with
our knowledge of B-splines, but it is a very special property. In general,
subdivision schemes give limit curves with discontinuities of some derivative
at all dyadic points.

Now consider the scheme whose mask is [1, 8, 14, 8, 1]/16. Clearly the dis-
continuity at the ends is − log2(1/16) = 4. The basis function is C3+1 there.
However, eigenanalysis gives a different result.

The matrix is ⎡
⎢⎢⎢⎣
1 14 1

8 8
1 14 1

8 8
1 14 1

⎤
⎥⎥⎥⎦ /16

The symmetric and antisymmetric components are⎡
⎣ 14 2

8 8
1 14 1

⎤
⎦ /16 and

[
8
14 1

]
/16

The symmetric eigenvalues are 1, 6/16, 1/16 and the antisymmetric ones
1/2, 1/16. The complete set is therefore [1, 1/2, 3/8, 1/16, 1/16] which com-
pares with the [1, 1/2, 1/4, 1/8, 1/8] of the cubic B-spline scheme. The impor-
tant difference is the 3/8 which replaces the 1/4.

The unnormalised eigenvectors of the first three eigenvalues are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1
1
1
1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
−3
−2
−1
0
1
2
3
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
20
11
4
−1
4
11
20
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The first two of these are well-behaved, but the third is definitely not
quadratic in shape21. We can therefore say that the largest non-polynomial

21If more of it is evaluated it turns out that it is not polynomial at all.



88 15. Continuity 2 - Eigenanalysis

eigencomponent has eigenvalue 3/8, and that the Hölder continuity is no
higher than − log2(3/8) ≈ 1.418.

C1+0.418 is a significantly lower continuity level than the C3+1 which our
endpoint analysis gave. The endpoint has the better continuity level because
the more typical behaviour has as its amplitude the product of the local
configuration with the relevant row eigenvector, which in this case is [1,−2, 1],
which is zero two control points away from the 1 in cardinal data.

15.2 A Motivation Question

Why do all the arithmetic of calculating eigencomponents, when there is soft-
ware available to do it for us ?

The reason for this tedious working through is that the separations we
have made by symmetry and by block structure do enable us to pick out and
observe patterns in the eigenvectors which could be confused when there are
two or more eigencomponents with the same eigenvalue. These patterns are
going to be significant in a couple of chapters’ time, and it is important to
observe them empirically first.

15.3 Dual Schemes

In the case of dual schemes, the piece of matrix which has to be dealt with
has an even number of rows and columns. The partitioning into even and
odd, symmetric and antisymmetric partitions is therefore slightly neater. It
also means that the place where the continuity is assessed (like the ends of
the support) is halfway between control points rather than being at them.
Otherwise the process is exactly analogous. The partitioning and the use of
block structure works in exactly the same way.

15.4 Higher Arities

The slope of the subdivision matrix is equal to the arity, and so when we
have a scheme with an arity higher than two, not all diagonals are equal. We
find a − 1 different possible matrices to analyse. For a = 3 we get analyses
at limit points corresponding to the control points and to the middles of the
spans. In each case the choice of a diagonal identifies a labelling, which can
then be viewed as defining a centre of symmetry.
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3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3
2 1
1 2

3
2 1
1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A B C

a b c

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3
2 1
1 2

3
2 1
1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B C

a b c d

For a = 4, we get something much more interesting, points one third of the
way along a span, which are not points which ever get explicitly constructed
by the refinement.

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 2
1 3

4
3 1
2 2
1 3

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B C

a b c d

It then turns out that the discontinuities found at such points may be
totally different from those at the dyadic points. We can always make schemes
of higher arity by considering two or more refinements as a single step. We
call this squaring or taking a higher power of the scheme.

The binary scheme [2, 7, 10, 7, 2]/14 illustrates this.
The matrix is ⎡

⎢⎢⎢⎣
2 10 2

7 7
2 10 2

7 7
2 10 2

⎤
⎥⎥⎥⎦ /14

the symmetric and antisymmetric parts are⎡
⎣ 10 4

7 7
2 10 2

⎤
⎦ /14 and

[
7
10 2

]
/14
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and the eigenvalues 1, 1/2, 3/14, 2/14, 2/14. The components with eigenvalues
1 and 1/2 are perfectly well-behaved, and so the focus is on the 3/14 value,
which is less than 1/4.

If, however, we take the square of the scheme, we get a quaternary scheme

[4, 14, 34, 63, 94, 119, 128, 119, 94, 63, 34, 14, 4]/196

whose matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 94 94 4
63 119 14
34 128 34
14 119 14
4 94 94 4

63 119 14
34 128 34
14 119 14
4 94 94 4

63 119 14
34 128 34
14 119 14
4 94 94 4

63 119 14
34 128 34
14 119 14
4 94 94 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/196

If we choose a diagonal through the value 128, we find a 5 × 5 matrix
which is just the square of that of the original scheme. Its eigenvalues are
therefore the squares of those determined above, and the Hölder continuiity
would appear to be better than 2.

A diagonal chosen one higher however gives a 4× 4 matrix⎡
⎢⎣
14 119 14
4 94 94 4

63 119 14
34 128 34

⎤
⎥⎦ /196

which has eigenvalues [1, 1/4, 0.0678133775, 0.0051020408], the third of which
is greater than 1/16. The Hölder continuity at this point is only 1+0.9411397.

In general every power of the scheme considered introduces new mark
points, and there is no guarantee in general that the 117th power will not
show us places where the Hölder continuity is lower than that found for lower
powers. Thus this procedure can only ever give us upper bounds on the Hölder
continuity.
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15.5 Piecewise Polynomial Schemes

In some rather special cases, it is possible for the matrices on some diagonals
to have only polynomial eigencomponents, saying that the Hölder continuity

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 1
2
1 1

2
1 1

2

1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 1
2 2
1 3

4
3 1
2 2
1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
/4

and the small matrix

[
3 1
2 2

]
has eigenvalues 1 and 1/4 only. The eigenvectors

are polynomial. This is hardly surprising, because we know that the limit
curve is piecewise polynomial, having complete continuity in the interior of
its spans.

An exactly similar effect happens for the ternary neither schemes. The
square of [1, 3, 5, 5, 3, 1]/6 is [1, 3, 5, 8, 12, 16, 20, 24, 28, 30, 30, 30, 28, 24, . . .]/36
and within its matrix (arity 9, so there is lots of step down from one column
to the next) we find the submatrix[

20 16
16 20

]
/36

which has eigenvalues 1 and 1/9, with polynomial eigenvectors. Again this
ties up with what we know from the support arguments in section 12.3.

15.6 What Mark Points can be Made ?

By taking a high enough power of the scheme, any rational point can be
determined as a mark point. The power needed is just the Euler function
of the quotient when the denominator has all powers of 2 (in general of the
arity) divided out.

However, at the time of writing, ‘What is the simplest scheme with a
Hölder-dominant denominator greater than 3’ was still an open question.

The first few powers and the denominators of the mark points that they
can find are

is infinite. This happens for the B-splines.

/2 =
2
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Power Arity No. of Matrices Denominator factors
1 2 1 1
∗2 4 3 3
3 8 7 7
∗4 16 15 3, 5, 15
5 32 31 31
6 64 63 3, 7, 9, 27, 63
7 128 127 127
∗8 256 255 3, 5, 15, 17, 51, 85, 255
9 512 511 7, 73, 511
10 1024 1023 3, 11, 31, 33, 93, 341, 1023
11 2048 2047 23, 89, 2047
12 4096 4095 3, 5, 7, 9, 13, 15, 21, 39, 63, . . . , 4095
13 8192 8191 8191
14 16384 16383 3, 43, 127, 129, 381, . . . , 5461, 16383
15 32768 32767 7, 31, 217, 151, 1057, . . . , 32767
∗16 65536 65535 3, 5, 15, 17, 51, 85, 255, 257, . . . , 65535

The powers noted by * are those cheaply created by successive squaring.
Clearly some powers are richer than others for covering many denominators.

15.7 Exercises

One of the five schemes in 11.9(i) has already been analysed in detail above.
The exercises here are essentially about eigenanalyses for the others, taking
in the complications mentioned in this chapter.
(i) Find the Hölder continuity of the quadratic B-spline scheme [1,3,3,1]/4

at the centre of the spans between control points.
(ii) Find the Hölder continuity at both of the mark points of the ternary

quadratic scheme [1,3,6,7,6,3,1]/9 .
(iii) Find the Hölder continuity of the ternary neither scheme scheme

[1,3,5,5,3,1]/6 at the 1/4 point.
(iv) Find the Hölder continuity of the four-point scheme [-1,0,9,16,9,0,-1] at

the limit points corresponding to the control points.
(va) Write a routine to do this analysis for any given mask. You are ad-

vised to find a library routine (rather than writing your own) to do
the actual eigenanalysis, so all you have to do is form the appropriate
matrix/matrices to provide the input arguments for that routine. Don’t
worry about the short cuts if you have a library routine to handle big
matrices. Remember that for arities greater than 2 there can be more
than one matrix to handle.

(vb) Smarten that routine up by applying the short cuts before calling the
library routine on smaller matrices, and compare the results. A good
library routine will produce symmetric and antisymmetric eigenvectors
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when there is a repeated eigenvalue, but a less good one may not. In
any case reducing the size of the matrices cannot make the precision of
the results any worse.

15.8 Summary

(i) This chapter has been full of tedious arithmetic. However, it illustrates
a procedure which can be applied systematically to any scheme to de-
termine the continuity at mark points, which are at control points in
the case of primal binary schemes and at mid-edges in the case of dual
ones. If we did not have better procedures, to be described in the next
three chapters, it could be programmed as an algorithm, taking as input
only the arity and the mask.

(ii) This level of continuity applies at mark points after any number of
refinements (because we could just have done those refinements before
starting the analysis). These points are called the dyadic points, and
they are dense.

(iii) However, there are other points in between, which may have different
continuity properties, and so we can only achieve upper bounds in this
way. Tighter upper bounds can be found by taking powers of the scheme,
which make some of these in-between points explicit.

(iv) This procedure can be applied to any scheme, although it may be nec-
essary to imagine higher dimensions than 3 in order to keep applying
the principle of suppressing successive dominant eigencomponents.

(v) The row eigenvalues of unit eigenvalue (the unit eigenrows) can give
explicit stencils for any rational parameter value. These stencils allow
evaluation of points on the limit curve itself with a relatively small
amount of calculation.





16. Continuity 3 - Difference Schemes

Promenade

We have seen that it is possible to place upper bounds on the continuity of
a scheme by carrying out eigenanalysis around a mark point. In principle
these upper bounds can be tightened by doing this analysis for powers of the
scheme, which give additional markpoints.

However, if we are ever to say with confidence ‘This is the Hölder conti-
nuity of curves generated by this scheme’, we need also lower bounds, which
we can approach rigorously by using difference schemes.

16.1 Lower Bounds by Difference Schemes

16.1.1 Continuity by difference schemes

This approach uses the definition of continuity, that a function f(x) is con-
tinuous at an abscissa x if

Ltδx→0f(x+ δx)− f(x) = 0

The sequence of δx used for taking this limit is conveniently the sequence
of polygon edges at successive refinements of the original polygon.

The question is whether we can bound the values of f(x + δx) − f(x) in
terms of the original control points, and the answer is ‘yes’, using the neat
idea of a difference scheme, which relates the first differences of the new
polygon to the first differences of the old.

Suppose that a binary scheme, S, has a z-transform of S(z) and the old
polygon is P0(z

2). Then the new polygon is given by

P1(z) = S(z)P0(z
2)

Now the generating function of the first differences δP0 of P0 is just (1−
z2)P0(z) and that of the first differences δP1 of the new one (1− z)P1(z).

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 95 
DOI 10.1007/978-3-642-13648-1_16, © Springer-Verlag Berlin Heidelberg 2010 
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δP1 = (1− z)P1(z)

= (1− z)S(z)P0(z
2)

=
1− z2

1 + z
S(z)P0(z

2)

=
S(z)

1 + z
(1 − z2)P0(z

2)

=
S(z)

1 + z
δP0

Thus if S(z) is divisible by 1 + z (and it always is if each of the stencils
sums to 1) we can take the quotient as a scheme which relates first differences
of P1 to first differences of P0. Call this scheme D(z).

Now if for any sequence δP0 the corresponding sequence δP1 has all its
entries strictly smaller than the largest entry in δP0, then the largest first
difference shrinks at every step and so we prove that the limit curve is con-
tinuous.

That will be the case if the sum of the absolute values of the entries
in each row22 of the subdivision matrix (alternate entries in the mask of
D(z)) is strictly less than one. If this is the case we say that the scheme is
contractive.

There is an apparent hole in this argument. We are using only dyadic
points for looking at the convergence. How do we know that all differences
in between also contract ? As in section 14.1.2 above, the answer is in the
enclosure property. If the first differences contract, then a long enough se-
quence of consecutive first differences to define a span must also contract,
and enclosure then says that the span itself must contract23.

Take the example of the cubic B-spline again. The mask is [1,4,6,4,1]/8
so the symbol of the mask is S(z) = (1 + 4z + 6z2 + 4z3 + z4)/8, and if we
divide this by 1 + z we get D(z) = (1 + 3z + 3z2 + z3)/8. The rows of its
matrix are all copies of either [1, 3]/8 or [3, 1]/8 and the sum of the absolute
values is in each case 4/8 = 1/2 < 1.

This shows that the limit curve is continuous, not just at a mark point,
or at dyadic points, but at all points of the curve.

In contrast we can take the scheme whose mask is [-1,5,5,-1]/4, and whose
symbol is (−1 + 5z + 5z2 − z3)/4. The difference scheme has symbol (−1 +
6z − z2)/4. The rows (stencils) are (−1,−1)/4 and 6/4. The row sums are
therefore 2/4 and 6/4. The second of these is greater than 1 and so there is
no guarantee that the limit curve is continuous. In fact it diverges nicely.

22This is the l∞ norm
23This is a circular argument, because we used continuity in developing the enclo-
sure property. This will eventually get resolved properly in chapter 19.
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16.2 Continuity of Derivatives by Divided Difference

Schemes

The question of continuity of the limit function itself was addressed by using
difference schemes. Closely related is the divided difference scheme, which
is based on the definition of the derivative at a point.

df/dx = Ltδx→0
f(x+ δx)− f(x)

δx

The change from the definition of convergence to this definition is essen-
tially a factor of δx in the denominator. Because at each refinement the δx
is just halved (or in general divided by the arity), all we need to do is to
take the difference scheme D(z) and multiply it by the arity, giving a scheme
which we shall call T (z).

T (z) = aD(z) =

(
a(1− z)

1− za

)
S(z)

We then have a scheme which relates divided differences in P0 to divided
differences in P1, and which, if it converges, converges to the derivative func-
tion.

The test for whether it converges is just the test described above. Take
the difference scheme of T (z) and see whether it is contractive.

In the cubic spline case T (z) = 1+3z+3z2+z3

4 . Its difference scheme is
1+2z+z2

4 which has rows which are all copies of [2]/4 or [1, 1]/4. The sum of
the absolute values of the entries in each row is 2/4 < 1, and therefore the
divided difference scheme converges and the first derivative is continuous.

We can keep going, taking higher and higher divided difference schemes,
until we find a scheme whose difference scheme is not contractive. The last
scheme which was continuous gives a lower bound on the Hölder continuity
of the original scheme.

16.3 Dual Schemes

The procedure is identical for dual schemes. Indeed, if the original scheme is
a primal scheme, its first divided difference scheme is a dual scheme.
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16.4 Higher Arities

For a higher arity, a, the necessary changes in the procedure are:-
• that the scheme has to be divisible by 1 + z + . . .+ za−1 in general, in
place of the 1 + z which is the particular case of this for a = 2, to give the
difference scheme.
• that the difference scheme is multiplied by the arity to give the divided
difference scheme.

It is convenient to make a common notation for all arities by defining
the symbol24 σ := (1 − za)/a(1 − z). Then the divided difference scheme is
constructed by dividing by σ. It is computationally convenient then to replace
the condition that the l∞ norm of the difference scheme be less than 1 by
the equivalent condition that the l∞ norm of the divided difference scheme
be less than the arity.

16.5 Tightening the Lower Bound

However, the bounds determined in this way are only lower bounds. It is
possible for a scheme to fail at a certain level, even when the Hölder continuity
is actually higher. Just as in the eigenanalysis case, we can often tighten the
bounds by taking a power of the scheme.

A good example is the 4-point scheme, whose mask is

[−1, 0, 9, 16, 9, 0,−1]/16.

The difference scheme is [−1, 1, 8, 8, 1,−1]/16 whose largest row sum is
10/16 < 1 and so the limit curve is continuous.

The first divided difference scheme is [−1, 1, 8, 8, 1,−1]/8, whose difference
scheme is [−1, 2, 6, 2,−1]/8. The largest row sum is 8/8 which is not strictly
less than 1, and so we cannot assert from this that the first derivative is
continuous.

If we take two steps together, however, we get a quaternary scheme, which
we can refer to as the square of the original, whose mask is

[1, 0,−9,−16,−18, 0, 66, 144, 216, 256, 216, 144, 66, 0,−18,−16,−9, 0, 1]/256.

The difference scheme is now given by dividing by (1 − z4)/(1 − z) =
1 + z + z2 + z3 to give

[1,−1,−9,−7,−1, 17, 57, 71, 71, 57, 17,−1,−7,−9,−1, 1]/256

24

complicated version of this, σ = (1− za)/((1− z)z(a−1)/2) which has coefficients
for positive and negative powers of z equal in pairs.

In later chapters, where symmetry is important, we shall use a slightly more
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whose rows are copies of [1,−1, 71,−7]/256 or [−1, 17, 57,−9]/256, so that
the absolute row sums are 80/256 and 84/256, confirming that the limit
function is continuous.

The divided difference scheme is four times the difference scheme:

[1,−1,−9,−7,−1, 17, 57, 71, 71, 57, 17,−1,−7,−9,−1, 1]/64.

The difference scheme of the divided difference scheme is

[1,−2,−8, 2, 7, 16, 32, 16, 7, 2,−8,−2, 1]/64

whose stencils are all copies of [1, 7, 7, 1]/64, [2, 16,−2]/64, [−8, 32,−8]/64 or
[−2, 16, 2]/64, and so the largest absolute row sum = 48/64 < 1. The first
divided difference scheme is convergent and so the four-point scheme has a
continuous first derivative.

These calculations can be eased significantly by using the facts that
(i) The difference scheme of the square of a scheme is the square of the

difference scheme of the original.
(ii) The divided difference scheme of the square of a scheme is the square

of the divided difference scheme of the original.
Write S2(z) to denote the scheme one step of which is the same as two

steps of S(z), and T2(z) to denote the scheme one step of which is the same
as two steps of T (z).

S2(z) = S(z)S(z2)

=
1− z

1− z2
T (z)

1− z2

1− z4
T (z2)

=
1− z

1− z4
T (z)T (z2)

=
1− z

1− z4
T2(z)

This easing of calculations is illustrated by merely taking the square of
[−1, 2, 6, 2,−1]/8 to give [1,−2,−8, 2, 7, 16, 32, 16, 7, 2,−8,−2, 1]/64 instead
of going via [1,−1,−9,−7,−1, 17, 57, 71, 71, 57, 17,−1,−7,−9,−1, 1]/256

-1 2 6 2 -1
-1 2 6 2 -1

1 -2 -6 -2 1
-2 4 12 4 -2

-6 12 36 12 -6
-2 4 12 4 -2

1 -2 -6 -2 1

1 -2 -8 2 7 16 32 16 7 2 -8 -2 1
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Clearly this property can be extended to any number of steps taken at
once, and to divided difference schemes.

16.6 A Procedure for Determining Bounds on Hölder

Continuity

A systematic procedure, which can be totally automated, for determining
how many continuous derivatives the limit curve of a binary scheme has is as
follows.

Let S be the scheme to be analysed and T and U local scheme-valued
variables holding the arity and the mask. l∞ is a function returning the l∞
norm of a scheme, and square is a function returning the square of a scheme.

begin

lb := -1;

done := false;
T := S;
until done
do if T has a factor of (1− za)/(1− z)

then T := divided difference of T;
U := T;
while l∞(U) ≥ U.arity
and there is enough memory to hold U2

do U := square(U);

od

if l∞(U) < U.arity
then lb := lb+ 1;
else done := true;
fi

else done := true;
fi

od

return lb as the number of continuous derivatives.

end

If the value of lb returned is -1, that means that the limit curve itself is
not proven continuous: if the value of lb is 0, it means that the limit curve
is continuous but it does not necessarily have a continuous derivative. If the
value is higher, it means that the lbth derivative is continuous, but not the
lb+ 1th.

This procedure was still the state of the art at about the year 2000, but
we shall do better using techniques to be found in the next few chapters.
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16.7 Exercises

(i) How many continuous derivatives does the ternary neither scheme
[1,3,5,5,3,1]/6 have ?

(ii) Implement the pseudocode from 16.6 above for determining integer
lower bounds on Hölder continuity.

16.8 Summary

(i) Integer lower bounds for continuity can be determined by taking a se-
quence of divided difference schemes, and checking each for continuity,
by testing its difference scheme for contractivity.

(ii) This involves algebraically dividing the z-transform of the mask by
1−za

a(1−z) , which equals (1 + z)/2 for binary schemes.

(iii) The bounds achieved in this way can often be tightened by applying
the same procedure to higher powers of the scheme.





17. Continuity 4 - Difference Eigenanalysis

Promenade

The next twist of the plot links the two strands encountered so far, using the
ideas of the divided difference schemes, expressed in terms of z-transforms,
to make the upper bound eigenanalysis dramatically easier.

17.1 Efficient Computation of the Eigencomponents

The original scheme and its divided difference scheme are clearly closely
linked, and an interesting question to ask is whether their eigenfactorisations
are related in any transparent and useful way.

Yes, they are !
Suppose that V is an eigencolumn with eigenvalue λ, of a scheme S, of

arity a, whose mask is M .
Let the divided difference scheme of S be S′.
When S is applied to V , the result is a copy of V , scaled by λ. The

first differences of V are therefore also scaled by λ, and so the first divided
differences are scaled by aλ.

Thus the first differences of an eigencolumn of S form an eigencolumn of
S′, and the corresponding eigenvalue is scaled up by a factor of a.

Note that the unit eigencolumn vanishes in a puff of smoke, because its
first differences are all zero. Yes, a column of zeroes is an eigenvector, but it
is the trivial one, not to be considered beside the real ones. The number of
eigencomponents of the divided difference scheme is therefore one less than
the number in the original scheme.

17.1.1 The Kernel

Going from the scheme to its difference scheme removes the unit eigencom-
ponent, and each of the other components has its eigenvalue multiplied by
the arity and its (column) eigenvector converted by simple differencing. We
can do this as many times as there are σ factors in the generating function
of the original scheme.

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 103  
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Working the other way is even more interesting. We can take the eigen-
analysis of whatever scheme is left when all of the σ factors have been re-
moved, and progressively work back by taking each eigencomponent, divid-
ing its eigenvalue by the arity and anti-differencing the eigenvector, and then
adding a unit eigencomponent to the set.

Whatever is left when all of the σ factors has been removed is of such
importance that we give it a name, the Kernel25 of the scheme.

Our upper bounds on continuity can therefore be evaluated with a lot less
arithmetic than in chapter 15 above. If the scheme can be factorized into

σk K(z)

then we take the largest eigenvalue, e, of the matrix of K and divide by ak.
The Hölder continuity is bounded above by

− loga(|e|/ak) = − loga(|e|) + loga(a
k) = k − loga(|e|)

Of course, this gives only the dyadic26 bound on continuity, but all of this
applies equally to the high arity schemes obtained by raising the kernel to a
high power. This makes everything more economical, because if the original
scheme has a width of w, the kernel has a width of only w − (a− 1)k. Both
the raising to powers and the eigenanalysis become vastly easier.

17.1.2 Eigenvectors

Once the eigenvalues are determined, it is always possible to get the eigen-
vectors from the original subdivision matrix. It is also possible to determine
them in parallel with the eigenvalues by working back down the chain of
divided difference schemes.

We saw above that each eigencolumn of the original scheme gives an
eigencolumn of the divided difference scheme by just differencing. Working
back requires antidifferencing. This has but one complication, which is that
anti-differencing, like antidifferentiation, requires a constant of integration.
This has to be determined by solving a single linear equation.

The eigenrows are somewhat easier in that we have to antidifference on
the way up the chain and therefore only have to difference on the way back
down. The complication takes a different form, deciding what eigenrow is
going to apply to each unit eigencomponent as it gets inserted. It turns out

25

it will not converge. However, it has an arity and a sequence of values of some
specific length, and so it can be stored in the same shape of computational object
as if it were, and it can be operated on in the same ways. Although the entries
of each of its stencils do not sum to unity, the sum of the terms in its mask does
equal the arity.

26in the binary case: for higher arities the successive refinements are by the arity.

Note that the kernel itself is not a subdivision scheme. If you try to use it as one
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that the constants of integration required for the eigencolumns are exactly
what is needed, applied in a different way, to give the right eigenrow.

The unit column eigenvector is a polynomial sequence (of degree 0), and
anti-differencing any polynomial merely gives a polynomial of degree higher
by 1. Thus every (1+ z) factor in the original gives an additional polynomial
component, and the dominant non-polynomial eigencomponent in the scheme
must come from the kernel. Its eigenvalue is just the dominant eigenvalue of
the matrix of the kernel, divided by the arity raised to a power the number
of (1 + z) factors.

The viewpoint of this chapter gives us a good argument as to what the
‘right’ scale is for each row eigenvector (and thence for the columns). The
argument is simple: it is possible to scale the row eigenvectors corresponding
to polynomial columns so that applying them to the original polygon gives the
values of derivatives at points on the limit curves. This happens automatically
if we introduce the unit eigenrows at such a scale that their components sum
to 1. Subsequent differencing turns them into exactly the right stencils.

17.2 Examples

17.2.1 Cubic B-spline

The mask (1+4z+6z2+4z3+ z4)/8 is 2((1+ z)/2)4, and so we can go back
to the scheme whose mask is [2] in just four steps. The matrix of this has an
eigenvalue of 2, and its row and column eigenvectors are both symmetric. (It
is this component which gives rise to the discontinuity.)

After one step back down the chain we have an eigenvalue of 1, given by
dividing 2 by the arity, and another eigenvalue of 1, added to the list in the
usual way. After two steps we have eigenvalues of 1/2,1/2 by dividing these
by the arity plus a unit eigenvalue. After three the list is 1/4,1/4,1/2,1, and
after four 1/8,1/8,1/4,1/2,1.

No solutions of quadratic equations at all were needed, and a very visible
structure emerges, with reasons, for the last four components.

17.2.2 Four point

Consider the four point scheme again. Its kernel is (−1 + 4z − z2) and the
kernel subdivision matrix is⎡

⎢⎢⎢⎢⎢⎣

. . .

−1 −1
4
−1 −1

. . .

⎤
⎥⎥⎥⎥⎥⎦
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The eigenanalysis is now trivial. The antisymmetric component has only
the trailer, −1, the symmetric component is block lower triangular and its
eigenvalues are 4 and −1. When we take these through two successive mul-
tiplications by (1 + z)/2, the dominant eigenvalue becomes 4/22 = 1 which
is the same as the unit eigenvalue naturally appearing at that stage. There
is a coupling between the two components, as we shall see when we look at
eigenvectors below, and this causes a Jordan block.

17.3 Dual Schemes

Dual schemes are handled in exactly the same way. Each taking of a divided
difference scheme switches either from primal to dual or the reverse, and so
both primals and duals are intimately involved in any scheme.

17.4 Higher Arity Schemes

For higher arity schemes we have the two complications noted in the previous
chapter, that the equivalent of the (1+z)/2 found in the binary case becomes
(1 + z + . . .+ za−1)/a.

Then we find that the eigenanalysis can be performed at a−1 mark points
spread along a span of the polygon.

17.5 A Special Case

When we raise the kernel of a B-spline to a higher power we get again a single
entry in its mask. When this is converted to a matrix we find the interesting
effect that the submatrices corresponding to diagonals other than through
that single entry are of size 0× 0, which have no eigencomponents.

For example, when the kernel is [2] of a binary scheme, the kernel of its
quaternary square is [4], giving the matrix⎡

⎢⎢⎢⎣
4
0 0
0 0
0 0
0 4

⎤
⎥⎥⎥⎦

The process of integrating back up, for those submatrices which do not
contain the ‘4’, gives schemes with only polynomial eigenvectors. There is no
discontinuity at all. This fits exactly what we know about B-splines, which
are indeed fully continuous at all points in the interior of the spans.
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17.6 Exercises

(i) What is σ for a ternary scheme ?
(ii) What is the kernel of the ternary neither scheme [1,3,5,5,3,1]/6, and

how many σ factors does it have ?
(iii) Write a routine to determine k and K(z) for a given scheme.
(iv) Write a routine for determining the Hölder continuity upper bound from

k and K(z).
(v) Write a routine to determine the appropriately scaled row eigenvectors

to give the limit points and whatever derivatives exist at the mark
points.

17.7 Summary

(i) Factorisation of the symbol of the scheme into factors of σ and a kernel
can reduce the size of matrix to be analysed dramatically.

(ii) The eigenvalues obtained from analysis of the kernel are then scaled
down by a factor of the arity for each smoothing factor. The eigenvectors
can also be obtained progressively as the σ factors are reapplied.

(iii) The column eigenvectors added in this way are all polynomial and so
only the kernel eigencomponents contribute to discontinuity.

(iv) The row eigenvectors give stencils which, applied to the original poly-
gon, give points and derivatives on the limit curve.
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Promenade

We have seen how a lower bound on the continuity of the limit curve can be
determined by z-transform analysis, and an upper bound by eigenanalysis.

The insights of z-transforms enable us to compute the eigenproperties
very efficiently.

Yet another twist shows that both of these two computations can be
understood in terms of a standard property of a pair of matrices, their Joint
Spectral Radius.

18.1 The Joint Spectral Radius Approach

In the eigenanalysis chapter we used the support analysis to tell us how many
control points influenced a neighbourhood of a point of the limit curve, and
thus how large the matrix needed to be on which to carry out the eigenanal-
ysis.

However, this told us only the continuity exactly at one point of the limit
curve.

We can also ask the support analysis how many points influence one span
of the limit curve, the piece corresponding to one edge of the control polygon.
This turns out to be one fewer. Call it m. The value will be 4 for the cubic
B-spline.

After one refinement, the pieces of limit curve are just half as long, and
there are two pieces, each dependent on m new points.

A B C D

a b c d e

The left hand half depends on the new points a to d, the right hand half
on b to e, all of which depend only on A to D.

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 109 
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Thus there are two m × m sub-matrices within the overall subdivision
matrix, sharing the same non-zero columns. Their rows overlap by m − 1,
because the sets of new control points influencing the two new pieces are
adjacent consecutive sequences.

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1
0 0 4 4
0 0 1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
A
B
C
D

⎤
⎥⎦

and

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
c
d
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1
0 0 4 4
0 0 1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
A
B
C
D

⎤
⎥⎦

The upper such matrix tells how the original m control points influence
those of the left-hand subpiece, the lower submatrix how they influence the
right hand subpiece. Call the two submatrices L and R.

At the next iteration there are four pieces, which are given by LL, RL,
LR and RR times the original piece of polygon. Note that these four matrices
are still m×m in size and they all overlap, being successive m-line pieces of
the matrix of the arity 4 scheme given by applying the original scheme twice.

After three refinements there are eight pieces, given by sequences three-
long of L and R.

L R

LL RL LR RR

LLL RLL LRL RRL LLR RLR LRR RRR
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After many refinements, each short segment of limit curve is given by
some sequence of upper and lower choices in the instances of the matrix in
the high power which corresponds to making many refinements. If we want to
consider what might happen anywhere in the limit curve we need to consider
all such sequences.

This is what the joint spectral radius analysis does. The joint spectral
radius of the two matrices L and R, is defined as the limit, as n tends to ∞,
of the value of the nth root of the largest dominant eigenvalue of any of the
matrices formed by taking all possible product sequences of length n of L
and R.

The key theorem is that upper bounds, given by norms, and lower bounds,
given by actually taking eigenvalues as per the definition of joint spectral
radius, do in fact converge to the same value.

An upper bound on this is given for finite n by the maximum matrix norm
taken over all the matrices given by such sequences of length n. This bound
converges as n increases. It is worth noting that because these matrices are
just the submatrices of the high arity one, they overlap, each sharing all of its
rows bar the last with the previous and all rows bar the first with the next.
This means that to determine the highest l∞ norm of all the submatrices it is
only necessary to scan once through all the rows of the long thin rectangular
matrix, not through the rows of each submatrix.

A lower bound is given by the largest non-polynomial eigenvalue, and
clearly this lower bound also converges as n increases.

Unfortunately there is no simple method of computing directly the joint
spectral radius for two given general matrices. The best we can do is to
compute the upper and lower bounds for larger and larger values of n and
watch them converge.

These computations are exactly the computations we would have carried
out using the eigenanalysis and z-transform approaches, using higher and
higher powers of the scheme.

There are, however, some valuable tricks to play to ease these calculations.
Again they depend on factorising the scheme into a kernel and σ factors.

18.2 The Continuity Argument

If the dth divided difference scheme Sd of some power of a scheme S has an
l∞ norm less than the arity of that power, then the difference scheme of the
(d−1)th divided difference has an l∞ norm less than one, and so the (d−1)th

divided difference scheme is contractive, and therefore converges. The limit
curve of the original scheme has continuity of the (d− 1)th derivative.

If the dth divided difference scheme Sd of some power of a scheme S has
a dominant eigenvalue greater than or equal to the arity of that power, then
the (d−1)th divided difference scheme has an eigenvalue greater than or equal
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to 1, which will dominate over any polynomial eigencomponents, and so the
limit curve of the original scheme has a discontinuity of (d− 1)th derivative.

Note that the kernel itself always has an l∞ norm greater than 1, because
the sum of the entries in the mask is equal to the arity a. It is also equal to
the sum of the stencil sums and there are a stencils. If the average stencil
sum is 1, and they are not all equal to 1 (when the mask would be divisible
by (1−za)/(1−z), which the kernel is not) at least one must be greater than
1.

The subtlety of the joint spectral radius results is that the fact that both
the highest eigenvalue and the lowest l∞ norm converge to a well defined
joint spectral radius value means that the l∞ norm of any finite power of the
kernel gives an upper bound on the eigenvalues of all powers of the kernel,
and therefore a lower bound on any constructible discontinuity. We do not
have to prove that the l∞ norm shrinks by the arity every time we add an
extra (1− za)/a(1− z) factor.

18.3 A Procedure for Determining Hölder Continuity

Given a scheme S of arity a
begin

factorise S(z) into σk
aK(z)

raise K(z) to a high power Kn(z)
determine the l∞ norm l of Kn(z)

and the rows with the largest sum of absolute values.

for each submatrix M containing any of these rows

do determine the dominant eigenvalue of M
recording the largest, e

od

end

An upper bound on the Hölder continuity of S is k − loga(|e|)/n and a
lower bound k − loga(|l|)/n, except that if either bound is an integer i the
Hölder bound is i− 1, 1 rather than i.

If even tighter bounds are required, then a search further down the binary
tree of submatrices can be undertaken, starting from those matrices whose
norm is greater than the largest eigenvalue so far, e. A 2n-ary tree may in
fact be more efficient, because each matrix with norm l > e need only be
multiplied by those matrices with norm greater than e2/l.

Also starting by getting a value of e from the original scheme, its square
and its cube may be a good strategy for being as selective as possible when
choosing submatrices to calculate eigenvalues for later. Because of symme-
tries, A, AB and AAB will be enough to look at for this purpose.
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Be warned that there are schemes with coefficients close to B-splines where
almost all the submatrices in the tree have almost exactly the same eigenval-
ues. For these the above algorithm may be extremely slow.

18.4 Summary

(i) The joint spectral radius of the kernel leads in principle to the exact
Hölder continuity of the scheme, but unfortunately we do not have an
efficient algorithm for going directly to its exact value.

(ii) The computations giving bounds on the joint spectral radius are essen-
tially the computations that we would have carried out with the previ-
ous approaches, of checking contractivity by norms and of eigenanalysis,
but this result unifies the two approaches, once thought competing, in
a very elegant way.





19. What Converges ?

Promenade

There is an apparent contradiction which has been swept under the carpet
in the previous few chapters.

We have gaily elaborated very plausibly on how to compute the continuity
levels of schemes with high continuity, but the definition of the limit curve has
been as the limit of a sequence of polygons. Now each polygon has a piecewise
constant first derivative, and its second derivative is a sequence of Dirac
delta functions. As we refine, the sequence of delta functions becomes denser
and denser until in the limit there is one at every dyadic value of abscissa.
Although the dyadics are dense in the reals, there are lots of reals which
are not dyadics, and so the second derivative of the limit of any sequence
of polygons is going to be something like the Dedekind function, with delta
functions interspersed by zeroes at an extremely dense scale. How can we
talk about schemes having a continuity of C2 or higher, which have this kind
of structure ?

19.1 A More Appropriate Description

There is a more appropriate wording that can be used.
If a scheme has a Ck limit, then the polygons converge towards that limit.
This is not at all objectionable, because we can make examples of poly-

gons converging towards even a C∞ function (such as sin(x)) merely by join-
ing samples evaluated from the desired function. As the samples are taken
more and more densely, the polygons converge. The order of convergence is
quadratic if the function is C1 or more, linear if it is only C0.
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19.2 A More Appropriate Definition

However, defining the limit function as the limit of the polygons is prob-
lematic, and it can be avoided, merely by defining it instead as the limit
of a sequence of Ck functions. The question then is “what sequence of what
functions?”.

This is very simple. We can define it as the limit of a sequence of any well-
behaved curve27 defined by the vertices of the polygons as control points. For
example, we could define it as the limit of

fj(x) = Σifij(sin(2
jx)/2jx)

Every curve in the sequence would be C∞, but the limit would have
divergent derivatives at the places where the analysis in previous chapters
predicted it. This behaviour is not regarded as in any way abnormal. For
example, tan−1(nx) is C∞ everywhere for all finite n, but the limit as n → ∞
has a discontinuity at x = 0 where the first derivative diverges.

However, there is a better choice. If we believe the limit function to be
Ck, then we choose as our sequence of functions the B-splines of degree k+1.
This is actually the assumption which has been made implicitly in the use
of difference schemes above. If, for example, a scheme has a convergent sec-
ond difference scheme, then we can think of this second difference scheme as
having a polygon, so that the second derivative varies linearly. If the second
derivatives vary linearly in each span, then the first derivatives vary quadrat-
ically and the actual values cubically, and so, because the support is finite,
the implicit approximant is a sequence of cubic B-splines28.

This definition is also justified by the view taken of the cascade algorithm
at the end of section 12.1.

19.3 Example

This view can be illustrated by seeing how the cubic B-spline approximants
to the basis function of the four-point scheme converge.

27

not too large an expansion factor.
28

second derivative the pieces form a spline. Because the support is bounded, they
form a B-spline.

‘well behaved’ here probably means that there is a well-defined enclosure with

That the pieces are cubic is evident. Because the pieces join with continuity of
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An even more interesting picture emerges if we plot the second derivatives
of the cubic B-spline approximations at successive steps. In the next figure
each line is a plot of the B-spline second derivative at a dyadic place near to
t = 1/3. The steps are highlighted by vertical bars.

1 2 3 4 5 6 7 8 9 10

The first to start diverging (the third from bottom at the left) is at a
multiple of 1/32 and it starts diverging at the 5th bar. The next is at the
top, at a multiple of 1/64, diverging from the 6th bar. In between, the multiple
of 1/128 at 5 from the top diverges from the 7th.

The larger the denominator of the dyadic point, the later its divergence
starts, and the slower the divergence because by then the fourth differences
(which are what drive the divergence) are relatively small. If the figure were
continued a long way to the right, all of these plots would diverge, but a plot
exactly at t = 1/3 would remain convergent.
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19.4 Summary

(i) An apparent contradiction evaporates if we regard the limit curve as
being defined, not by the sequence of polygons, but by a sequence of
B-splines.

(ii) In the case of B-spline schemes the convergence is immediate, but for
more interesting ones it is typically quadratic.

(iii) Following this for a particular example helps to illustrate how the con-
vergence behaviour can be different for different abscissae.



20. Reproduction of Polynomials

Promenade

What happens when the control points of the initial polygon have values
following some pattern ?

A classical question is to consider the case when the control values are
samples taken from some polynomial, and to ask how the limit function is
related to that polynomial.

There are actually three questions with three different answers.
i If the control values are sampled at equal intervals from a polynomial of

degree d, up to what value of d will the limit function be a polynomial ?
We call the maximum value of d the spanning degree or generation
degree of the scheme.

ii If the control values are sampled at equal intervals from a polynomial
of degree d, up to what value of d will the limit function interpolate the
sample points ? We call the maximum value of d the interpolating
degree or the quasi-interpolating degree of the scheme.

iii If the control values are sampled at equal intervals from a polynomial
of degree d, up to what value of d will the limit function reproduce
that polynomial ? We call the maximum value of d the reproduction
degree of the scheme. Polynomials of degree not exceeding this value
form the precision set of the scheme.

The key fact on which we build a theory is that if (and only if) polygon
vertices are samples at equal intervals from a polynomial of degree at most
d, then the d+ 1th differences (and all higher differences) of the polygon are
zero.

i.e. if P0 is such a polygon, then (1 − z)d+1P0(z) = 0
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20.1 Generation Degree

We consider first binary schemes: primal and dual need not be distinguished.
If the symbol has d+ 1 factors of (1 + z)/2 then

(1− z)d+1P1(z) = (1− z)d+1S(z)P0(z
2)

= (1− z)d+1((1 + z)d+1/2d+1)K(z)P0(z
2)

= (1/2d+1)K(z)(1− z)d+1(1 + z)d+1P0(z
2)

= (1/2d+1)K(z)(1− z2)d+1P0(z
2)

= (1/2d+1)K(z) ∗ 0
= 0

so that if the original polygon has vertices on a polynomial of degree d (whose
d+1th differences are zero), the d+1th differences of the refined polygon are
also zero and thus the refined polygon vertices also lie on a polynomial of the
same degree.

If the symbol has fewer factors, e say, of (1 + z)/2 then

(1− z)e+1P1(z) = K(z)(1− z2)e+1P0(z
2)

which would be zero only if the degree of the original polynomial were actually
only e.

20.1.1 Higher arities

The same result holds for higher arities. The smoothing factor is 1−za

a(1−z) and

so exactly the same proof logic applies.

20.1.2 Local polynomial structure

Remember that a subdivision limit curve consists of pieces, each of which
depends only on a finite number, w, of original control points. If those con-
trol points lie on a polynomial, then that piece of the limit curve will be
polynomial or not, depending on the degree, irrespective of the other control
points.

However, a polynomial of degree w−1 can always be fitted, however many
such control points there are, and if w−1 is less than or equal to the spanning
degree, the limit curve will have polynomial pieces.

Consider first the binary case. Let the scheme be of the form σnK where
K is the kernel of k entries.

The total width w of the mask is k + n because each convolution with σ
adds one to the width.
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The number of control points influencing one span is w−1. We can always
find a polynomial of degree at most w − 2 interpolating all of these points.
That polynomial will be spanned if its degree is less than or equal to n − 1
and so we have the condition

w − 2 = k + n− 2 ≤ n− 1

or
k ≤ 1

The only solution is k = 1, so that the only binary schemes with piecewise
polynomial limit curves are the B-splines.

Unfortunately this result is not quite true. In order to understand the
exceptions we shall need the concept of a two-slanted sampling matrix which
will be introduced in chapter 21, and so this whole issue will be taken up
in chapter 22. Essentially factors other than (1 + z)/2 can have the effect of
increasing the effective degree. The theory here does apply to normalised
schemes, where those other factors have been removed.

20.1.3 Higher arities

Now consider higher arities. Again the mask has k+n(a− 1) entries and the
width w of the basis function is (k+n(a− 1)− 1)/(a− 1). If the width is not
an exact integer there will be pieces of limit curve influenced by c = �w−1

a−1 �
control points and other pieces influenced by �w−1

a−1 
.
The former piece can have control points lying on a polynomial of degree

c− 1 and this will be spanned if c− 1 ≤ n− 1.

�k + n(a− 1)− 1

a− 1
� − 1 ≤ n− 1

�k − 1 + n(a− 1)

a− 1
� ≤ n

�k − 1

a− 1
�+ n ≤ n

�k − 1

a− 1
� ≤ 0

k − 1 < a− 1

k < a

The latter piece requires k ≤ 0 which will never be satisfied.
The ternary neither example (Example 4) shows this behaviour. The mask

is
[1, 3, 5, 5, 3, 1]/6 = [1, 1, 1]2[1, 1]

so that a = 3, k = 2, n = 2.
k < a and therefore there can be polynomial pieces of degree n− 1 = 1.
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Looking at the support width, we see that at each refinement just half
of the remaining amount of parameter line is filled with straight line pieces.
Thus as refinement steps proceed, the amount remaining is halved at each
step: the limit curve consists entirely of pieces of straight line.

With higher arity still the kernel width can be higher. The fraction of
each span with the lower number of support points is (k − 1)/(a − 1), and
this fraction is filled at the first step of refinement by a polynomial piece. The
remainder is a fraction r = (a − k)/(a− 1) which is less than 1. It has that
same fraction as the original filled at the next step by one or more polynomial
pieces, and thus the amount remaining unfilled by polynomial pieces after m
steps is rm which converges to zero. Thus the entire limit curve consists of
polynomial pieces (of degree n− 1), but an unbounded number of them.

20.2 Interpolating Degree

20.2.1 Primal binary schemes

Consider the primal binary case first.
The unit eigenvector gives the stencil for a point on the limit curve cor-

responding to an original control point. Express the symmetric form of its
stencil as a polynomial in δ2 = (1− z)2.

α0 + α1δ
2 + α2δ

4 . . .∑
i∈0..�n/2�

αiδ
2i

The value of α0 is always 1. The interpolating degree is determined by
the subscript, i, of the first non-zero αi.

p(z) = α0P (z) + α1(1− z)2P (z) + α2(1− z)4P (z) + . . .

p(z)− P (z) = α1(1− z)2P (z) + α2(1 − z)4P (z) + . . .

where P is the sequence of original control points and p is the sequence of
corresponding limit curve points.

If P is sampled from a polynomial of degree d, then the right hand end of
the series is truncated because a sufficiently high power of δ (greater than d)
annihilates the term. If sufficiently many αi are zero, the left hand end of the
series is also zero, so that p(z) = P (z), which is the interpolation condition.

It is equally possible to take the stencil for the v-vertices, and express that
as a polynomial in δ2. There is then a direct argument that, if sufficient αi

are zero, then for a polynomial of sufficiently low degree, at every stage the
new v-vertices coincide with the old ones, and thence the limit curve must
do so also.
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20.2.2 Dual binary schemes

When the scheme is not primal, the scheme maps each vertex into an edge.
However, the unit row eigenvector as a stencil maps edges into vertices, and
so the product of the mask with the unit row eigenvector maps vertices into
vertices.

This product is now at a higher density, and so we need to select just
those terms which are at the original density (just as we selected terms in
the v-stencil in the primal case).

In fact this product can be used in the primal case also, but the individual
factors are shorter and therefore easier to handle.

20.2.3 Higher arities

Even at higher arities the formula of multiplying the mask by the appropriate
unit row eigenvector and selecting just the vertices corresponding to the orig-
inal vertices, then expressing that stencil as a polynomial in δ2 works. Where
the scheme is primal the short cut of just looking at the v-vertex stencil also
works.

20.3 Reproduction Degree

This is the classical question, because it tells how densely the points on
some other curve need to be sampled in order to give a desired accuracy of fit
between the original curve and the approximant. If the degree of reproduction
is d, then the order of approximation is O(hd+1), and so every doubling of
the density of the sampling gives a reduction in the error by a factor of 2d+1.

Note that this doubling of the density is not the refinement of the subdi-
vision step, but a doubling of the density of the original polygon. A doubling
of the amount of work done in collecting data.

We still need to be concerned about it.
If a given polynomial is to be reproduced, it must be within the span of

the scheme, and it must also be interpolated. We can therefore see without
any sophisticated argument that the degree of reproduction is just the lower
of the spanning degree and the interpolation degree.

20.4 Exercises

(i) Check the reproduction degree of the four-point scheme [-1,0,9,16,9,0,-
1]/16.
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(ii) Write a routine to convolve the mask with the unit row eigenvector
(multiply their z-transforms) and express the even entries in this prod-
uct as a polynomial in δ2. Then count the zeroes near the beginning.

20.5 Summary

(i) The maximum degree of polynomial, the spanning degree, which a
scheme can have in its limit curve is n − 1 where n is the number
of (1 + z)/2 factors in the symbol.

(ii) If the width of the kernel is 1, then the limit curve will always consist
of pieces of this degree.

(iii) If the width of the kernel is less than the arity, the limit curve will
consist of a fractal assembly of pieces of this degree.

(iv) The maximum degree of polynomial with the property that if the control
points all lie on it they will be interpolated by the limit curve, the
interpolating degree, can be determined by looking at the limit stencil
(a subsequence of the terms in the convolution of the mask and the unit
row eigenvector) as a polynomial in δ = (1− z)2.

(v) The classical degree of reproduction, which gives the approximation
order of the scheme, is just the lesser of the spanning degree and the
interpolating degree.



21. Artifacts

Promenade

We have seen the use of two particular data patterns, cardinal data where
only one control point has a unit value and all others are zero, and polyno-
mial data where all control points have values lying on some polynomial.

Cardinal data led us to the basis function; polynomial data led to global
approximation properties of the limit curve.

We have also analysed what continuity the limit curve has. But continuity
is essentially a local property. We now look at what happens with yet another
data pattern, that when all control points have values lying on a sinusoid,
and this tells us about structures intermediate in scale between the two.

21.1 Artifacts

When a designer is checking the fairness of a curve one of the tools which
can be used is the ‘curvature plot’. This is a graph of the curvature against
arc length.

It is quite typical for curves which are defined in terms of a control poly-
gon, such as B-splines and subdivision curves, to exhibit features in their
curvature plots with a spatial frequency too high to be justified by the data.

For example, the quadratic B-spline fitted to four points per cycle, has
a curvature plot where the maximum and minimum curvatures have a ratio
greater than 2:1.

The cubic B-spline has a ratio of just under 2:1.
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In both of these examples there is a maximum of curvature near each
control point and a minimum in between. There is no systematic movement
of the control points which can remove this variation. If proof of this is
required, we can appeal to the Shannon sampling theorem. Although this
was originally conceived in the temporal domain it applies equally to the
spatial.

The ripples in the curvature plot are essentially created by the defini-
tion of the limit curve in terms of the vertices. They are artifacts of that
construction.

This is not due to subdivision, but is a property of the splines themselves.
However, we can use the subdivision construction to analyse just how bad
the effect is, not just for splines, but for any curve which can be constructed
by subdivision.

Because the ripples have the spatial frequency that they do, we can per-
ceive that most of the artifact is caused by the first step of subdivision.
Beyond that step the artifacts introduced then are just part of the definition.
It is also evident from a few experiments that the ripple amplitude is strongly
influenced by the spatial frequency of the original sampling.

For example, if we use eight points per cycle, the curvature plot of the
quadratic is significantly improved,

and for the cubic the improvement is even more marked.
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We therefore look first at what happens during a single step, with data
at just a single spatial frequency.

21.2 Factorising the Subdivision Matrix

The subdivision matrix of a binary uniform scheme has each column a copy
of the mask, shifted down two rows for each step to the right. Every row
(stencil) sums to 1, but the mask entries sum to 2.

We can reexpress this matrix as the product of two matrices. The first
is a circulant matrix with every row29 and every column a copy of the mask
divided by 2. The second is a ‘diagonal’ matrix with the value 2 on the
diagonal of slope -2. We call the latter the sampling matrix and the former
the smoothing matrix.

For example, the scheme whose mask is [1, 2, 1]/2 can be written in matrix
form as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

2
1 1

2
1 1

2
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

2 1
1 2 1

1 2 1
1 2 1

1 2
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
/4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

2
0 0

2
0 0

2
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Essentially, alternate columns in the smoothing matrix are multiplied by
the empty rows of the sampling matrix.

21.2.1 Effect of the sampling matrix

This inserts zero values at the e-vertex positions and doubles whatever values
were originally present to give v-vertices.

If the original polygon is sampled from a sinusoid of spatial frequency
ω = 1/m where m is the number of polygon points per complete cycle, so
that P0[j] = cos(2πjω), j ∈ Z, the result of multiplying by the sampling
matrix can be expressed as

cos(2πjω)(1 + cos(2πj)), j ∈ Z/2

We can view this as the sum of a signal component, cos(2πjω), and an
artifact component30, cos(2πjω)cos(2πj)

29Strictly speaking the rows are the reverse of the mask, but because we deal with
palindromic masks we ignore that here.

30This can further be expressed in terms of two sideband components, cos(2π(ω±
1)j), but for this analysis it is convenient not to do so.
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The two components each have unit amplitude.

21.2.2 Effect of the smoothing matrix

The smoothing matrix can now be viewed as a filter which will have differ-
ent effects on the two components. We attack the analysis of its effects by
doing a further factorisation, exploiting the fact that the z transform can be
regarded as a representation of the smoothing matrix as a polynomial in the
unit subdiagonal. Factorisation of a circulant matrix is exactly equivalent to
factorisation of the generating function as a polynomial.

This factorisation is made unique by the convention that every factor
must have rows which sum to unity. Also, because the mask is palindromic,
we use the form of the symbol divided by such a power of

√
z as will make

the coefficients of positive and negative powers of
√
z equal. Thus σ = (1 +

z)/2
√
z.

We first pull out as many factors of σ2 =
(

(1+z)2

4z

)
as we can.

Each such factor has the effect of scaling the signal and artifact compo-
nents by factors determined as follows.

Three consecutive original signal components after sampling are

cos(2πω(j − 1/2),

cos(2πjω)

and cos(2πω(j + 1/2),

so that when the signal is multiplied by σ2 we get

(cos(2π(j − 1/2)ω) + 2cos(2πjω) + cos(2π(j + 1/2)ω))/4

=(2cos(2πjω)cos(2πω/2) + 2cos(2πjω))/4

=2cos(2πjω)(1 + cos(πω))/4

=2cos(2πjω)(2cos2(πω/2))/4

=cos(2πjω)cos2(πω/2)

and thus every sample is multiplied by cos2(πω/2).
Three consecutive artifact components after sampling are

cos(2π(j − 1/2)ω)cos(2π(j − 1/2)),

cos(2πjω)cos(2πj)

and cos(2π(j + 1/2)ω)cos(2π(j + 1/2)),

so that when the artifact is multiplied by σ2 we get
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⎝ cos(2π(j − 1/2)ω)cos(2π(j − 1/2))

+2cos(2πjω)cos(2πj)
+cos(2π(j + 1/2)ω)cos(2π(j + 1/2))

⎞
⎠ /4

=(−2cos(2πjω)cos(2πj)cos(2πω/2) + 2cos(2πjω)cos(2πj))/4

=2cos(2πjω)cos(2πj)(1− cos(πω))/4

=2cos(2πjω)cos(2πj)(2sin2(πω/2))/4

=cos(2πjω)cos(2πj)sin2(πω/2)

so that every sample is multiplied by sin2(πω/2).
Each of the σ2 factors in the mask multiplies the amplitudes of the signal

and artifact components by these factors.
Primal schemes have an even number of σ factors in the mask, and so all

that is left is the kernel of the scheme.

21.2.3 Effect of the kernel

The kernel by definition has no further factors of σ, but it can be expressed
as a polynomial in σ. In fact, because the kernel of a binary scheme always
has an odd number of entries, its symmetric form can be expressed as a
polynomial in σ2.

Each term in that polynomial multiplies the signal and artifact by an
appropriate power of cos2(πω/2) or sin2(πω/2) respectively, and the resulting
contributions can be added together again.

We thus see that the effect of one step of the complete scheme is computed
by expressing the mask as a polynomial in σ2, and then evaluating that
polynomial as a function of cos2(πω/2) for the signal and sin2(πω/2) for the
artifact.

21.3 Effect on the Limit Curve

This determines the amount of artifact present in the polygon after the first
step of subdivision. What we are really interested in is the amount of artifact
present in the limit curve. Once the sampling and smoothing process has been
done, we have a denser polygon. We can then apply the unit row eigenvector
to this (in the form of a circulant matrix) to determine limit points at this
density. It is easiest to carry out the arithmetic by combining the circulant
unit eigenrowmatrix with the smoothing matrix. That combination can easily
be done in the z-transform, where we are merely looking for (1+z)/2 factors.
We look for them in the eigenrow, too, and then multiply the quotient into
the kernel to give a polynomial which is expressed in terms of powers of σ2.
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21.4 Dual Schemes

These have an odd number of σ factors in the mask. However, the unit row
eigenvector also has an odd number of σ factors, and so the product has an
even number, and so we can determine the amount of artifact in the limit
curve in exactly the same way.

The net result for both primal and dual schemes is that if we take the
product of the symmetric mask symbol and the symmetric unit eigenrow
symbol and express it as a polynomial in σ2, then the artifact amplitude is
given by substituting sin2(πω/2) for σ2 in that polynomial, and the signal
amplitude by subsituting cos2(πω/2).

21.5 Examples

The cubic spline scheme has mask 2σ4 and unit eigenrow (2 + 4σ2)/6. The
artifact is therefore given by 2 sin4(πω/2)(1 + 2 sin2(πω/2))/3. Near ω = 0
(the case for very dense sampling) this is close to π4ω4/24.

The quadratic spline scheme has mask 2σ3 and unit eigenrow σ. The
artifact is therefore given by 2 sin4(πω/2). Near ω = 0 this is close to π4ω4/8.

The four-point scheme has mask (6 − 4σ2)σ4 and unit eigenrow 1. The
artifact is therefore given by 2(3− 2 sin2(πω/2)) sin4(πω/2). Near ω = 0 this
is close to 3π4ω4/8.
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21.6 Higher Arities

For ternary schemes which are both primal and dual there is a short cut.
There are two mark points, and we can determine the unit row eigenvector
for each of them, thus giving the values at the limit points corresponding to
both the vertices and the mid-edges.

For example, if we take the ternary quadratic B-spline, whose mask is
[1,3,6,7,6,3,1], the submatrices for the mid-edge and vertex mark points are⎡

⎢⎣
1 7 1

6 3
3 6
1 7 1

⎤
⎥⎦ and

⎡
⎣ 3 6
1 7 1

6 3

⎤
⎦

and their unit row eigenvectors are [4, 4]/8 and [1, 6, 1]/8
Half the difference of the two eigenrows is a binary mask for the ar-

tifact [1,−4, 6,−4, 1]/16, and half the sum a binary mask for the signal
[1, 4, 6, 4, 1]/16. Multiplying the original polygon by these therefore gives the
required measures.

It is not too surprising that the ternary and binary quadratic B-splines
have the same amounts of signal and artifact. They are the same curve,
depending in the same way on the original polygon.

This approach to artifact analysis, while useful for low arities, runs out
of steam above ternary. It is certainly possible to determine the limit points
corresponding to original vertices and mid-spans, and to create measures of
artifact and signal, but this ignores the fact that a quaternary scheme can
introduce at the first step artifacts of twice the sampling frequency.

21.7 Exercises

(i) Determine the artifact amplitude of the ternary neither scheme as a
function of the frequency ω.

(ii) Plot it, for values of ω between 0 and 1/4.
(iii) Write a routine which determines the artifact amplitude as a function

of ω for a given binary or ternary scheme.
(iv) Write a routine which calls the previous one to plot the artifact over

the range of ω from 0 to 1/4.
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21.8 Summary

(i) Using test data sampled from a sinusoid gives some idea of how large
the components of the limit curve are which cannot be justified by the
original data.

(ii) Calculation of these magnitudes is relatively simple, in terms of the
mask and the unit row eigenvector(s) of the scheme.



22. Normalisation of Schemes

Promenade

It was mentioned in earlier chapters that some of their results are inaccu-
rate, that results are shown by methods which apply only to ‘normalised’
schemes. Here we look at unnormalised schemes and how their properties
can be deduced by normalising them. Because there are no obvious advan-
tages in unnormalised schemes, they will be ignored in subsequent parts of
this book. The reader impatient to get to the Design chapters can therefore
skip this one.

22.1 Quasi-B-Splines

A slightly surprising result is that the limit curve of polygon P (z) under the
binary scheme with mask 2σk(1 + z2)/2z is identical to the limit curve of
polygon σP (z) under the scheme whose mask is 2σk+1. It is a B-spline curve,
but with a different control polygon.

This can be traced back to the result that the two-slanted sampling ma-
trix S encountered in the chapter on artifacts has the same product when
multiplied on the right by the circulant matrix corresponding to (1 + z) as
when multiplied on the left by that corresponding to (1 + z2).
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1

2

⎡
⎢⎢⎢⎢⎢⎣

. . .

1 0 1
1 0 1

1 0 1
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0 0
0 2

0 0
0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0 0
0 2

0 0
0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 1
1 1

1 1
1 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
/2

Remember that circulant matrices commute. We can therefore think of
the 1+z2 matrix as being the first to be applied to the result of sampling, and
this produces the same result as applying 1 + z to the original polygon first
and then sampling. The same move can happen at the end of each refinement
step, with the 1 + z2 of the second step becoming a final 1 + z in the first.
Because there is no end to the refinement process, all that we see is the 1+ z
appearing at the start of it and the changing of an initial 1 + z2 operation
within each step being replaced by a final 1 + z.

For example, we show here the
first three refinements of cardinal
data using the mask whose gener-
ating function is 2((1+z)/2)2((1+
z2)/2)2, and the argument above
says that this has the same limit
curve as applying the mask 2((1 +
z)/2)4 to the polygon with vertices
[1,2,1]/4.

The polygons are shown as lines:
the dots are at points of the limit
curve, using a unit row eigenvector
obtained by convolving that of the
normalised scheme [1,4,1]/6 with
the prefix [1,2,1]/4.

The limit curve does indeed con-
sist of cubic spans, meeting C2.



22.2 Similar effects 135

If, however, we look at the sec-
ond divided difference scheme 2((1+
z2)/2)2, we find a more compli-
cated story.

Again, the polygons are shown
as lines and the limit points, using
an appropriate unit row eigenvec-
tor, as dots. We see that the limit
points do what we expect, but the
polygon shows no sign of converg-
ing towards them.

It does not actually diverge, in
the way that a scheme with a high
norm might be expected to, but its
behaviour is uncomfortable.

22.2 Similar effects

Similarly, a scheme containing a factor of (1 + z4) has the same structure of
limit curve as one containing a factor of (1 + z2) instead, with the original
polygon being modified by a (1+ z2) factor before the subdivision is started,
and therefore the same as one containing a factor of (1+ z), with the original
polygon being modified by a factor of (1 + z)(1 + z2) = (1 + z + z2 + z3)
before subdivision.

This effect is not, of course, limited to schemes generating B-splines.

[−1, 1, 7, 9, 9, 7, 1,−1]/16

is a scheme which interpolates the midpoints of the edges of the initial poly-
gon. It is not as simple as [1, 3, 3, 1]/4, but it is also less expected. Its limit
curve is exactly the same as the limit of the four-point scheme applied to the
polygon of those midpoints.

Nor is it limited to factors of the form (1 + z2
k

). Any factor which is a
function of only even powers of z has a similar property.
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22.3 Summary

(i) If the generating function of a binary scheme has any factors which are
polynomials in z2, the limit curve is that of its normalised form, in
which each such factor q(z2) is replaced by q(z), and a prefix (also of
q(z) is applied to the initial polygon before refinement starts.

(ii) This means that the sections above covering generation degree and
piecewise polynomial structure above are inaccurate. They apply only
in situations where factors polynomial in z2 do not occur in the mask,
or have been converted into ones without, with an operation on the
polygon before subdivision starts.

(iii) This is not a practical concern when choosing or designing a scheme,
because a 1 + z2 factor, for example, increases the mask width and the
support unnecessarily compared with the equivalent 1 + z factor, and
avoiding the use of such factors also avoids this issue. However, the
analysis story would be incomplete without it.

(iv) The theory describing this is already present in [CDM91]pp161-165.



23. Summary of Analysis Results

23.1 Exercises

(i) Take all of the routines you have written for the various chapters above,
and call them from a routine which, when given a scheme reports:

– the support and the practical supports,
– upper and lower bounds on the Hölder continuity,
– the generation, interpolation and reproduction degrees,
– a plot of the basis function
– a plot of the artifact magnitude as a function of spatial frequency.

23.2 Summary

(i) A range of analyses have been described, all relevant to the performance
of a subdivision scheme in one application or another.

(ii) There are certain key ideas which appear more than once.
– The use of standard test data sets: cardinal for support, polyno-

mial for precision set, trigonometric for artifact analysis. It is pos-
sible that additional sharply chosen data sets could clarify further
important analyses.

– The σ = (1 − za)/(a(1 − z)) factor which allows the difference
schemes to be determined, and which turns out to be a key concept
in artifact analysis also.

– Row eigenvectors giving points and derivatives on the limit curve.
– Higher powers of a scheme giving sharper bounds on continuity

and enclosure.
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Part IV. Design

In the previous chapters we have seen how, given a mask, we can analyse
various aspects of the behaviour of a subdivision scheme. We now address
the much more interesting topic of how to invent a subdivision scheme which
has some combination of desirable properties.

We do this by looking at the space of all possible schemes, to see how
the properties analysed above are distributed within it, and how, given a
desirable property, what the subspace is containing all schemes with that
property.

Then all we have to do is to take the intersection of the required subspaces.
This sounds easy, but, as usual in a design context, there are trade-offs

to be made. Often the requirements are conflicting. However, the following
approach allows it to be visible when this is the case.
• What is the space of all possible schemes ?
• What are the subspaces defined by each of the properties that we know
how to analyse ?
• How can these be intersected to give the scheme that satisfies the re-
quirements ?

Finally we look at what can be achieved by changing the rules funda-
mentally, by considering non-stationary subdivision, in which the mask
changes from step to step. In particular we consider geometry-sensitive
schemes where the mask is itself determined locally and at every step from
the geometry of the polygon.





24. The Design Space

24.1 Binary Schemes

In the analysis of artifacts above, we observed that the mask of every binary,
uniform, stationary scheme can be expressed as the product of a number of
σ = (1 + z)/2

√
z factors and a further factor called the kernel. Then we saw

that the kernel itself can be expressed as the sum of a number of terms, each
of which is just a constant times an even power of σ.

s(z) = 2σp

q∑
i=0

ciσ
2i, where σ =

1 + z

2
√
z

Note that
∑

ci = 1 is necessary in order for the overall scheme to have
weighted mean stencils.

If we take the σp inside the sum, we can express this as

s(z) =

q∑
i=0

2ciσ
2i+p

which means simply that every mask is a weighted mean of B-spline masks,
either all primal or all dual.

The space of binary uniform stationary schemes is therefore understand-
able in terms of two components: one contains all primal schemes, with an
odd number of entries in the mask, which is a linear combination of odd de-
gree B-splines: the other all dual schemes, with an even number of entries in
the mask, which is a linear combination of even degree B-splines. In principle
each is only a countably infinite-dimensional space, and in practice each is
only a finite dimensional space because we shall not wish to include B-splines
above some maximum degree in order to keep the support limited.

Each component may therefore be viewed as having barycentric coordi-
nates, and any choice of a specific set of barycentric coordinates is the design
of a scheme.

The coordinate values themselves become the coefficients ci giving the
terms in the kernel, and so translating from them to the mask itself is fairly
trivial arithmetic.
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24.2 Higher Arities

In the case of ternary schemes a very similar structure holds. If a scheme is
both primal and dual, the structure is exactly the same: a linear combination
of B-spline masks. But it can be a linear combination of even and odd degree
B-splines, because both are both primal and dual. The number of entries in
the mask is always odd.

If it is neither primal nor dual, then by symmetry the kernel contains a
factor of [1, 1]/2, but the space is still that of linear combinations of schemes
which have this factor as well as a varying number of (1−za)/(1−z) factors.

Quaternary and higher arities are significantly more complex. Quaternary
schemes can, of course be created by squaring a binary scheme, but there are
others which are not so created. Note that the square of a weighted mean of
two binary schemes is not the same as the weighted mean of the squares of
those schemes.

24.3 Exercises

(i) What is the mask of the binary scheme 2(3− 2σ2)σ4 ?
(ii) What is the mask of the ternary scheme 3σ3(4−3σ) and what property

can you easily identify ?

24.4 Summary

We can look on any binary scheme as an affine combination of B-splines,
and choosing the barycentric coordinates in such a combination is a very
convenient viewpoint for designing a scheme to have specific properties.



25. Linear Subspaces of the Design Space

Promenade

Each of our analysis criteria leads to a function of position inside the space
of all schemes, and those schemes which satisfy some requirement lie inside
a subspace. To achieve some combination of requirements means choosing a
point of the design space lying in the intersection of the subspaces. If the
desired subspaces do not intersect, then the requirements are incompatible.

In this chapter we identify the properties whose specification limits di-
rectly the dimension of the design space to be considered.

These are the support, the generation degree and the interpolating degree.

25.1 Support

It is useful to consider this first, because if there is an upper bound on the
support as a design criterion, it can be used immediately to limit the design
space to relatively few dimensions.

The support is directly related to the width of the mask, which is that
of the highest order B-spline with a non-zero coefficient in the barycentric
combination. An upper bound on support (which is the most likely kind of
design requirement) therefore immediately tells us how many B-splines we
need to consider, and how many coefficients we are able to choose.

If the maximum support width acceptable is w, then the expression for
the generic scheme satisfying this constraint becomes

s(z) = 2
w∑
i=0

ciσ
i

where the subscripts, i, are all even or all odd.
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25.2 Generation Degree

This is useful to take second, because it limits the design space from the other
end. If we require the scheme to be able to generate polynomials of degree
dg then the generic scheme becomes

s(z) = 2

w∑
i=dg+1

ciσ
i

where, again, the subscripts, i, are all even or all odd.

25.3 Interpolation Degree

25.3.1 Primal binary schemes

We consider binary primal schemes, for which the generic scheme can be
represented as

s(z) = 2Σw
i=dg+1ciσ

i

where the sum is taken over even values of i = 2j, say, so that

s(z) = 2Σ
w/2
j=(dg+1)/2c2j(σ

2)j .

Now σ2 can be rewritten in terms of δ2 and so for even i

(σ2)j =(1 + δ2/4)j

which can be rewritten as

⎛
⎝ 1 + j

(
δ2

4

)
+
(

j!
2!(j−2)!

)(
δ2

4

)2
+
(

j!
3!(j−3)!

)(
δ2

4

)3
. . .

⎞
⎠

We can therefore write

s(z) = 2Σ
w/2
j=(dg+1)/2c2jσ

2j(z)

= 2Σ
w/2
j=(dg+1)/2c2j

(
1 + δ2/4

)j

= 2Σ
w/2
j=(dg+1)/2c2j

⎛
⎜⎜⎜⎝

1 + j
(

δ2

4

)
+
(

j!
2!(j−2)!

)(
δ2

4

)2
+
(

j!
3!(j−3)!

)(
δ2

4

)3
+ . . .

⎞
⎟⎟⎟⎠

= 2Σ
w/2
j=(dg+1)/2c2j

+Σw
i=(dg+1)/2c2jj

δ2

4

+Σw
i=(dg+1)/2c2j

(
j!

2!(j − 2)!

)(
δ2

4

)2

+ . . .
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The interpolation degree is given by one less than the first (non-zero)
power of δ with a non-zero coefficient in this expansion of the symbol, and
so for linear interpolation we have effectively no constraint.

For cubic precision we have

Σ
w/2
j=(dg+1)/2jc2j = 0

and for quintic precision also

Σ
w/2
j=(dg+1)/2

(
j!

2(j − 2)!

)
c2j = 0

etc.
These conditions are independent linear conditions on the coefficients ci,

which can be satisfied just as far as there are sufficient coefficients ci available
in the range d− 1 ≤ i ≤ w.

Each condition imposed reduces the dimension of the space of possible
schemes by one.

If the number of conditions is enough to reduce the dimension to zero,
then the values of the c2j can be found by solving a small linear system.

If it is larger, there is no solution and some requirement must be relaxed.
If it is smaller, then some particular solutions can be found by taking the

first few c2j then the next set of consecutive ones and then the next... These
will give schemes satisfying the requirements, and because of the linearity of
these conditions, any linear combination of them will also satisfy them.

This linear subspace can usefully be made more explicit by taking as
the corners of our barycentric combination not the B-splines, but schemes
satisfying the interpolation degree constraints.

The interpolation degree can also be expressed in terms of the presenta-
tion of the unit row eigenvector as a polynomial in δ2. Since the unit row
eigenvector is often shorter than the mask, this might be slightly advanta-
geous.

25.3.2 Non-primal schemes

The interpolation degree can also be expressed in terms of the presentation of
alternate terms of the product of the unit row eigenvector with the mask as a
polynomial in δ2. For non-primal schemes this approach has to be taken, since
for such a scheme interpolation only means that the limit curve interpolates
the data. Vertices of refined polygons do not coincide with original vertices.

Because the unit row eigenvector is not a linear function of the mask,
the quasi-interpolation degree is not necessarily a linear constraint in design
space.
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25.3.3 Higher arities

The situation gets considerably more complex for higher arities.
However, for primal schemes of any arity, any scheme with interpolation

degree di will leave original vertices unchanged if they lie on a polynomial of
degree less than or equal to di. A weighted mean of equal points is always
the same point, and so this condition remains a linear one.

25.4 Exercises

(i) How many dimensions does the space of schemes with support ≤ 6 and
interpolating degree di ≥ 3 have ?

25.5 Summary

(i) Provided that the requirements stated are not too ambitious, it is pos-
sible to find a set of linearly independent schemes with a given support,
generation degree and interpolation degree. This set will typically be
quite small, and barycentric coordinates giving linear combinations of
them will typically span a space of low dimension.

(ii) Searching for schemes satisfying further requirements is a relatively easy
search process when carried out in a low dimension space of schemes
guaranteed to satisfy some of our conditions, compared with searching
in the full space for all conditions at once.



26. Non-linear Conditions

Promenade

Once the dimension of the space to be considered has been reduced to a small
enough number, the ranges of the barycentric coordinates for which other
properties take acceptable values can be determined by a simple search. We
are aided in this by the fact that most of these properties are continuous with
respect to the ci, and so a relatively coarse sampling is adequate to give a
good idea.

If the dimension is 1, a simple scanning and the plotting of graphs gives
a complete enough guide, and we do this here for the case of binary schemes
combining two successive B-splines of the same parity.

26.1 Derivative Continuity

The Hölder continuity is a function of the scheme and therefore of the co-
efficients when a scheme is expressed as a linear combination of B-splines.
For schemes with small kernels it is possible to use sharp specific arguments
to determine this directly, at least for certain ranges of coefficients. We saw
above that the continuity degree was determined by the kernel, almost inde-
pendently of the number of σ factors, which merely added a separate term.

Again we look first at the linear combination of just two consecutive B-
splines. The scheme is

s(z) = σdk(z)

so that the Hölder continuity is given by

d− loga(J(k))

where J(k) is the joint spectral radius as described in chapter 18 at page 109
above.

For binary schemes the kernel can be written as
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k(z) = 2((1− c) + cσ2)

= 2(1− c) + 2c
z−1 + 2 + z

4

= 2− 2c+ cz−1/2 + c+ cz/2

= (c/2)z−1 + (2 − c) + (c/2)z

The piece of the matrix we have to look at for eigenanalysis is⎡
⎣ c/2 c/2

(2− c)
c/2 c/2

⎤
⎦

This has eigenvalues 2 − c and c/2 by inspection. It also has a norm of
the maximum of |c| and |2− c|. We can plot these against c,

-1 0 1 2 3 4
c

0

1

2

3

and it becomes apparent that for c < 1 the norm and the larger eigenvalue
are both equal to 2− c. Thus J(k) also takes this value.

When c exactly equals 1, the same applies, but in fact the largest eigen-
value becomes that of a polynomial component, and we can take a further
two factors of σ out of the kernel. There is an isolated anomalous value here.

For values of c greater than 1, the norm is greater than the largest eigen-
value, and so we need to explore further by taking powers. The square of the
scheme is

[c2/4, c(2− c)/2, c(4− c)/4, (2− c)2, c(4− c)/4, c(2− c)/2, c2/4]

and so the matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c2/4 c(4− c)/4
(2− c)2

c(4− c)/4 c2/4
c(2− c)/2 c(2 − c)/2

c2/4 c(4 − c)/4
(2− c)2

c(4 − c)/4 c2/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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The row sums of the rows here depend on the value of c.

1 < c < 2 2 < c < 3 3 < c < 4 4 < c
c c c c(c− 2)/2

(2 − c)2 (c− 2)2 (c− 2)2 (c− 2)2

c c c c(c− 2)/2
c(2− c) c(c− 2) c(c− 2) c(c− 2)

c c c c(c− 2)/2
(2 − c)2 (c− 2)2 (c− 2)2 (c− 2)2

c c c c(c− 2)/2

The dominant norm is c in the first two columns and c(c− 2) in the third
and fourth. To make these values comparable with the figure above we need
to take the square roots, giving

√
c and

√
c(c− 2) respectively.

The top three rows and the bottom three rows are just the square of the
original matrix, and so the eigenvalues are just the squares of the originals.
We do not need to consider these. By symmetry we can focus on just the
2× 2 component [

c(4 − c)/4 c2/4
c(2 − c)/2 c(2− c)/2

]
whose characteristic equation is

4λ2 − λc(8− 3c) + c2(2− c)2

The eigenvalues are

c
(
8− 3c±

√
c(16− 7c)

)
/8

Clearly if c > 16/7 ≈ 2.29 the eigenvalues will be complex and we need
to take the modulus which is given by c(c− 2)/4.

Again we need to take the square root of the modulus of the largest
eigenvalue to make it comparable with the original scheme.

Adding these bounds to the previous figure gives
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It is clear that going further algebraically will probably give very little
insight. Numerically we can take much higher powers, and check both the
upper and lower bounds.

Taking the 16th power by repeated squaring gives a scheme of arity 65536.
Plotting the upper and lower bounds for each squaring (arities 2, 4, 16, 256
and 65536) makes it look as though the upper bound derived from the norm
tends monotonically to the limit determined from the eigenanalysis of rela-
tively low powers.
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This figure does include five lower bounds, but apart from the interval
between c = 1 and c = 2, where the lower bound comes from the square of
the scheme, all are coincident with the bounds from the scheme itself.
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It is of interest to note that schemes containing the kernel [1, 0, 1], at
c = 2, are in fact unnormalised schemes. Their continuity is exactly that
determined by the joint spectral radius analysis of the kernel without any
need for normalisation.

26.2 Positivity

26.2.1 Another sufficient condition

If all the coefficients ci are non-negative, then the kernel will have non-
negative entries and so the mask will also, and the basis function will be
non-negative.

This is a nice trivial result to make very safe design decisions easily.
Unfortunately it is so weak that it significantly over-constrains the design
space.

26.2.2 Realistic conditions

In the case where just two B-splines are involved, we see directly from the
above that for 0 ≤ c ≤ 1 the scheme will be positive.

It is also clear from the first necessary condition that the coefficient of
the widest B-spline needs to be positive: in this case c ≥ 0. Otherwise the
extreme entries in the mask would be negative31.

Above c = 1 we need to resort to numerical methods, and we may just
as well go direct to what really matters, the l∞ norm, which dictates by how
much the bounding box must be expanded.. Because the l∞ norm depends
on the number of σ factors, we present the result as a set of graphs, covering
the cases 2 ≤ d ≤ 6.

31

covering the case where the coefficient of the widest B-spline is zero.
For situations with more B-splines involved there is a more complicated rule
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1

1.1

1.2

1.3

1.4

1.5

1.6

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

If a certain value of l∞ is regarded as acceptable, the bounds on c for a
given number, d, of σ factors can be read off. The facetting is not an artifact
of the plotting: the curves for c < 0 really are piecewise linear, and so exact
bounds for given values of d and l∞ are accessible.

26.3 Artifacts

There are two reasonable design criteria based on artifacts. The first is to
make the artifact component zero at some specific spatial frequency: the
other is to minimise the artifact component over a given range, for example
from ω = 0 to ω = 1/4.

26.3.1 Zero artifact at a given spatial frequency

The first is very simple to arrange. We just need to choose the coefficients
so that the kernel has a zero at the value of σ which corresponds to the
frequency at which we wish to have zero artifact.

Suppose that we want to have zero artifact at ω = ω0. Then we require
that k(sin(πω0/2)) = 0

In the two component case, the kernel is k(z) = 2((1− c) + cσ2) and this
will have a zero when (1− c)+ c sin2(πω0/2) = 0. We determine directly that

c =
1

1− sin2(πω0/2)
= 1/cos2(πω0/2).

Note that this value will be greater than 1, tending to 1 as ω → 0. Also
it will never be greater than 2 for ω0 < 1/2.
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1/n ω0 c
1/3 0.333 1.333
1/4 0.250 1.172
1/6 0.167 1.072
1/8 0.125 1.040
1/10 0.100 1.025

26.4 Exercises

(i) The four-point scheme has cubic precision. Identify the scheme with
cubic quasi-interpolation degree (di = 3) with σ6 as a factor.

(ii) Determine kernels which give zero artifacts when the number of control
points around a circle is 6, 12, 24. How does the coefficient for a given
number relate to that at half that number ?

(iii) Write code to plot the non-polynomial eigenvalue and the norm against
the weighted mean coefficient between two arbitrary schemes. Use it to
make plots between the two schemes of question (i) above, which have
di = 3.

26.5 Summary

(i) The non-linear criteria considered above can be evaluated and plotted as
functions of the barycentric coordinates in our linear space of schemes.

(ii) Values of ci, and thence the entries in an ideal mask, can be read off
from these plots.

(iii) Thus subdivision schemes can be designed to meet required criteria, not
just invented and tested.





27. Non-Stationary Schemes

Promenade

All of the above has dealt with stationary schemes where the coefficients in
the affine combinations giving refined points remain the same at all steps of
the refinement. However, some of the properties we have considered depend
primarily on the early steps (such as the support and the artifacts), some
on the later ones (such as derivative continuity), and so it seems sensible to
consider varying the coefficients between the steps.

We look at two examples which have been suggested in the literature,
introduce a new criterion, that of step-independence, and open a Pandora’s
box of schemes which satisfy that criterion.

27.1 Examples

27.1.1 The UP-function.

It appears from our consideration of the support and continuity properties,
that there is a serious tension between them. A narrow support, desirable so
that separate parts of a curve can be designed fairly independently, requires
that the mask have few entries. A high level of derivative continuity demands
many (1 + z) factors and thence that the mask be large.

However, the support is dominated by the effect of the first few refinement
steps, the continuity by the ‘last’ few, and so there is the possibility of using
a small mask for the first few steps and a larger one later. This is elegantly
exemplified by the so-called ‘UP’ function32, which is the basis function of a
scheme in which at the first step the coefficients used are those of the zero
degree B-spline, at the second those of the linear B-spline and, in general, at
the nth step those of the degree n− 1 B-spline.

This has a finite support, two spans, and infinite differentiability, require-
ments totally incompatible in the stationary context.

32

are ‘I’ and ‘R’ respectively. However the incorrect pronunciation is now used
wherever this function is discussed.
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The original definition was in terms of a differential equation

UP ′(x) = 2(UP (2x+ 1)− UP (2x− 1)

which was invoked by the idea that the derivative of a bell-shaped function
should itself look like a bell-shaped function on the left and minus a bell-
shaped function on the right. Why not the same bell-shaped functions ?

27.1.2 Variants on UP

In fact UP itself does not work in the parametric curve context, because
its support is so narrow. Every span has only two non-zero (positive) basis
functions, and so any point lies on a straight line between the two points
which influence it. We have just reinvented the polygon, which does not have
infinite geometric continuity.

The first variant to look at is therefore to start the process slightly further
up the chain of derivatives. If we start at the linear B-spline we get a basis
function of support 3, if we start at the quadratic we get one of support 4,
and so on. If we call the original UP function UP0, we can call the others
UP1, UP2 etc.

UP0

UP1
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UP2

27.1.3 STEP UP

Here are two thought experiments.
1) Instead of carrying out one refinement at each degree in the UP con-

struction, try carrying out two, or three, or several. This fails for UP0,
because the translates of the basis functions no longer sum to 1, but it
is OK for UP1 and UP2. At each increase in the number of refinements
at each degree the support drops, but the continuity remains infinite.

2) Instead of starting with low degree refinements, carry out the first hun-
dred of whatever scheme you like to name - let’s say the four-point
scheme. Then after one hundred steps switch to the UP1 rules. The
result will be your scheme for all practical purposes, but the limit curve
has infinite continuity. This is an argument which says that Hölder con-
tinuity of itself is not an important criterion.

27.1.4 DOWN

Although it seems logical to use a narrow scheme for initial steps and a wider
one for later, in fact the exact opposite makes sense in one context, where
some specific scheme is used for a number of steps, of whatever width is of
interest, but thereafter the degree 1 B-spline is used to generate whatever
polygon has been reached at that point. We don’t usually look at it in that
light, but that is the scheme whose limit curve is the polygon drawn after a
number of steps.

27.1.5 Circle-preserving schemes

It was shown, in chapter 21.2 above, that with a stationary scheme non-
zero artifacts can be achieved after the first refinement at a finite number of
imposed spatial frequencies. However, at the second refinement the original
spatial frequency will appear to have halved, relative to the density of the
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control polygon, and so an infinite number of zeroes in the artifact as a
function of spatial frequency would be required to preserve circles exactly.33

With a non-stationary scheme, however, for a given initial spatial fre-
quency of polygon, (i.e. a fixed known number of vertices per complete cycle,
or vertices forming a regular polygon), the coefficients can vary at each step
so that the halving relative frequency of the signal is tracked by a zero of the
kernel.

This tracking is regular enough that the updating of the coefficients can
be made into a regular recurrence.

27.2 Analyses of Non-Stationary Schemes

27.2.1 Support

UP is definitely an exception. Most of the interesting non-stationary schemes
can be looked at as letting the coefficients of a scheme take some trajectory in
the design space of fixed finite dimension (and fixed arity) considered above.
Except when the coefficient of the widest box-spline happens to drop to zero,
the support will remain constant, at that given by the widest scheme included
in the linear combinations.

The design of a non-stationary scheme can be regarded then as the design
of a trajectory in design space.

Such a trajectory has an important property. It could converge towards a
limiting scheme, it could repeat itself, or it could wander around randomly.
Discount the last possibility. If it repeats itself after a fixed number of steps,
then we can take that cycle of steps together as a single scheme of high arity
and discover that it is essentially a stationary scheme.

If it does converge to a limit scheme, then that convergence is an impor-
tant property for those criteria which depend most on the late stages.

27.2.2 Reproduction degree

The simple result here is that each of the polynomial degrees we considered
is no lower than the lowest of the individual steps. If a given generation or
interpolation degree is required, then the trajectory of the scheme should lie
entirely within the set of schemes that has that degree.

In the original work on the four-point scheme, (and much of the later
exploration), schemes which are a linear combination of [0,1,2,1,0]/2 and
[-1,0,9,16,9,0 -1]/16 were considered, the exact linear combination being de-
fined by a tension parameter. These schemes were all interpolating.

33This could in principle be achieved by making the basis function π sin x/2x, but
this would require a mask of infinite width.
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27.2.3 Continuity

It would appear that, if the coefficients are different at every step, there
is no hope of applying any of the methods explored earlier for determining
the continuity of the limit curve. In fact, however, it makes sense for the
trajectory to take a path which converges to a limit, so that after a certain
number of steps the scheme becomes almost stationary. When this happens
we call the limit the limit scheme.

Because the continuity is dominated by the later steps (just think of all
the earlier steps as merely making a polygon to which the later steps are
applied), if the scheme converges fast enough to its limit scheme, then the
continuity properties are indeed those of that limit.

How fast is necessary ? This depends on the degree of continuity being
aimed at. Twice as fast as that degree (e.g. quartic convergence to get C2) is
provably enough.

27.2.4 Positivity

Positivity analysis is riddled with loose sufficient conditions. Another such is
the condition that if every step is positive, however different they may be,
the sequence will remain positive. Clearly if no step can create a negative
value in the net matrix, it remains positive. We can therefore expect that
the overall value of the norm of the scheme will be no worse than the largest
value of any of the steps.

27.2.5 Artifacts

The artifact behaviour tends to be dominated by the earlier steps, because
after each step the intended spatial frequency is halved relative to the den-
sity of vertices along the polygon. Because low spatial frequencies have little
artifact effect, the later steps do not cause much distortion.

The early part of the trajectory can be designed to minimise these effects
and later parts optimised for some other criterion.

The circle-preserving schemes described above are essentially just carrying
out this recipe.

27.3 Step-independence

Non-stationary schemes where the trajectory is pre-defined have a big inele-
gance: that if one step of refinement is made, perhaps to permit the addition
of short-wavelength features, then either the implementation has to remember
that the first step has already been made, and start instead at the second, or
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else, if the implementation starts again with the coefficients of the first stage,
those parts of the curve which have not been edited will change their shape.
Such changes may be slight and subtle, but they are thoroughly inelegant.

We therefore have an important property, that of step-independence,
to consider. A scheme is step-independent if the original polygon and the
n-times refined polygon have the same limit curve. I.e., if for all values of
n they have the same limit curve without the implementation knowing the
value of n.

If the progress along the trajectory is not defined by the step-number,
what can it be defined by ? The only other option is for it to be defined by
the shape of the polygon itself. The scheme becomes geometry sensitive.
This opens a complete new can of worms, in that the different parts of a
given polygon may be suggesting different amounts of progress along the
trajectory. This means that such schemes may be not just non-stationary,
but also non-uniform. They are worth a chapter in their own right.

27.4 Exercises

(i) Confirm the support widths of UP0, UP1 and UP2 from the subdivision
definition.

(ii) Determine how the coefficients of a dual scheme, a weighted mean of
2σ and 2σ3, should vary so that a square initial polygon should have a
circular limit curve.

27.5 Summary

(i) A scheme is non-stationary if the coefficients used in the refinement
vary from step to step. This is a powerful way of combining good values
of properties which depend mainly on the early steps with otherwise
incompatible good values of other properties which depend mainly on
the later steps.

(ii) A nice way of looking at non-stationary schemes is that they are defined
by a trajectory in design space. Both the trajectory and the rate of
progress along it can be designed deliberately to give a desired overall
behaviour.

(iii) A particularly important aspect of the trajectory is the scheme to-
wards which it converges as the number of steps taken increases without
bound.
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Promenade

The step-independence criterion sounds as if it demands that the scheme be
stationary, but in fact it does not. It demands that the coefficients should
not depend on the step-number, but they can still depend on the shape of
the polygon.

The two important avenues of exploration so far have been based on using
either the distances between consecutive vertices (span-based criteria) or
the angles at vertices (vertex-based criteria).

28.1 Span Criteria

When the interpolating cubic spline was the standard curve form in CAD
systems, it was found that the uniform spline behaved very badly when the
points being interpolated were unevenly spaced. There was a perfectly good
theory of non-uniform interpolating splines, and various methods were tried
of making the knot intervals depend on the distances between points. Actually
making them equal to those distances (chord-length knot spacing) was not
ideal either, and a happy medium, of using the square roots of the distances
as knot intervals was found to work quite well. This was called centripetal
knot spacing.

Uniform B-splines are much less sensitive to poor spacing of the control
points, because the first derivative is given by a lower degree B-spline with
control ‘points’ the first differences of the control points. If the control points
have first differences all more or less in the same direction, the curve cannot
kink back on itself.

The first derivatives can, of course, vary fairly wildly in magnitude if the
first differences do, and there is a perfectly good theory of knot-insertion into
non-uniform B-splines and this can indeed be expressed in terms of choosing
the coefficients in a subdivision implementation.

However, the step-independence criterion is still a relevant one, and, if we
insist on it, the knot intervals have to be determined from local data at every
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refinement. This means that our limit curves are not exactly the non-uniform
B-splines defined by the control point distances in the original polygon.

There is a lot of subtlety here. Although it is still possible to define a basis
function as being the effect of moving one point by an infinitesimal amount,
this applies only to one specific original polygon. As soon as you start editing
it, the basis functions change.

This means that proofs really have to be hand-crafted from very funda-
mental principles. You cannot just wave your arms and say ‘linearity’ because
these schemes are no longer linear, and all the short-cuts which linearity
brought can no longer be relied upon.

All this difficulty means that schemes have to be designed to be analysable,
and this is an art still being developed.

28.2 Vertex Criteria

Another approach resorts to pure geometrical constructions, rather than
weighted means with argued coefficients, to determine the new polygon. This
is exemplified by a circle-preserving interpolatory scheme which takes the
four-point scheme and observes that the new e-vertices are placed where a
quadratic through three points has the average of the second derivatives of
quadratics through left and right groups of three points.

A geometric analogue of this puts the new e-vertex on the circle whose
curvature is the mean of circles through left and right groups of three points.
(The curvature can be defined as a vector and so this is well-defined for curves
in three-dimensional space.) If four points happened to lie on a circle initially,
the mean would give the same circle and so the new point would lie on it
too. If all the initial points lay on the same circle, then the limit curve could
never leave that circle.

The issue then was, ‘which new point on the circle should be chosen ?’.
Here the requirement to be able to analyse gave an answer, that if new points
were chosen so that in any few-point locality the spacing converged to uni-
form fast enough, the limit scheme would be the four-point scheme itself,
and continuity properties could be argued in that way. Of course in parts
of the curve defined by parts of the initial polygon with sparse points, the
final density would be lower than in places defined by dense initial poly-
gon points, but these regions would become separated by larger and larger
numbers of intermediate points as refinement proceeded. In fact, making ar-
guments about geometric progression proved adequate to support the proofs
and also a well-behaved scheme.

The nice property about schemes defined by geometric constructions in
this kind of way is that they do appear to have a kind of stationarity. Not
stationarity of coefficients, but stationarity of algorithm, which bodes well
for simplicity of the implementation and ease of testing.
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28.3 Geometric Duality

In classical projective geometry there is a concept of duality slightly different
from the one used so far in this book. It is that every theorem or construction
which relates points to lines has a dual which relates lines to points. For
example, every pair of distinct points determines a line: every pair of distinct
lines determines a point.

All of this can be applied easily, at least in the two-dimensional case, to
give a complete parallel theory in which a polygon is a sequence of edges
(lines) rather than a sequence of points. A new polygon can be created from
an old one by taking linear combinations of the lines to make new lines, and
the vertices of the new ones just pop out as the places where consecutive new
lines intersect.

Such schemes will typically look non-uniform and non-stationary when
re-expressed in terms of points, but all the theory is still in fact regular when
standing in the dual world.

A nice example is the dual of the quadratic B-spline, which turns into
a primal interpolating scheme (because each old line in the old polygon is
retained in the new one). The limit curve (the envelope of the lines in the
limit polygon) turns out to be a concatenation of conic section pieces.

The problem with this particular duality is that the dual of an inflexion
in a curve is an asymptote, so that if the polygon has an inflexion the curve
will contain pieces of hyperbola going off to infinity. If rules are put in place
that something special is done when the polygon has an inflexion, however,
this can give a nice shape-preserving scheme which has no inflexions in the
limit curve when the initial polygon has none.

In three dimensions the dual of a point is a plane, so that the dual of a
curve is a developable surface, the envelope of a univariate set of planes34.

The dual of a sequence of lines is still a sequence of lines, and so refinement
algorithms based on lines35 can still be set up.

28.4 Summary

(i) Making the coefficients of the subdivision scheme depend on the local
geometry allows us to have non-stationarity and step independence at
the same time.

(ii) However, it implies non-uniformity, and thus losing the analysis methods
which depend on uniformity.

34All of the subdivision theory remains the same for this interpretation. The only
difference is that the numbers on which it operates are interpreted differently in
terms of the semantics of the objects they represent.

35Possibly represented by Plücker coordinates
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(iii) All is not quite lost, because it is possible to argue by proximity when a
scheme converges fast enough towards a uniform one as its limit scheme.

(iv) It is also possible to argue that some properties which are maintained
at every step will be maintained in the limit also.



Part V. Implementation

Most of this book has been about first analysing a given scheme and then
designing a scheme to have some specific attainable compromise between the
required properties.

Once a scheme has been designed, however, we need to be able to make
use of it. This part therefore addresses the way in which code can be written
which allows the resulting curves to be used for practical purposes.

We consider first how to implement the refinement process itself, then
how to draw the curve defined for a given scheme and a given initial polygon,
and then how to compute the primitive operations used within, for example,
a Computer Aided Design software system.

Finally the issues are considered of what end conditions to support, and
whether to offer the application of preliminary modifications to the control
polygon to make the overall system more ergonomic for the curve designer.





29. Making Polygons

The obvious thing to want to do, given a scheme, is to be able to draw
its polygons at successive levels of refinement. Although this is an obvious
requirement, it is far from the whole story, and subsequent chapters in this
part will address the real requirements. However, as a preliminary to that,
we shall consider some different ways of programming the refinement steps
themselves, making polygons, given the scheme and the initial polygon.

The first three of these are each obvious, but they differ, depending on
the way that you really look at the refinement equation.

29.1 Pull

The first is obvious if you think primarily of the stencils.

for each new vertex

do clear it to zero

for each entry in its stencil

do multiply an old point by that entry and add it in

od

od

We are making each new vertex by pulling the contributions from the
appropriate old vertices.

29.2 Push

The second is obvious if you think primarily of the mask.

for each new vertex

do clear it to zero

od

for each old vertex

do for each entry in the mask

do multiply it by the old vertex and
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add it into the relevant new vertex

od

od

We are taking each old vertex and pushing its contributions to a range of
new ones

29.3 Multi-Stage

The third is obvious if you think of the mask as being the product of a kernel
and smoothing factors.

apply the kernel

for each smoothing factor

do for each local group of vertices

do apply the smoothing

od

od

The kernel is applied first as if it were the mask, by either push or pull,
and then the resulting polygon is smoothed out iteratively. It is arguable that
this is likely to be the least susceptible to inaccuracies from floating point
arithmetic.

29.4 Going Direct

If the objective is the polygon after a reasonably high number of refinement
steps, it is more efficient to raise the scheme to that power first, particularly
if this is done by using squaring where possible. Once a high-arity mask
has been built it can be cached, so that subsequent initial polygons can be
processed quickly. The ultimate in speed is to implement a change in the
initial polygon by just adding the displacement of a vertex on to the relevant
part of the refined polygon by just running through the long mask once.

Clearly the ‘high’ power need only be high enough to give adequate ac-
curacy.

29.5 Going Direct to Limit Points

If what is required is a polygon with points actually on the limit curve,
then these can be constructed by multiplying the polygon constructed in the
previous paragraphs by the unit row eigenvector.
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Again this can be implemented efficiently by applying this process to the
high-arity mask just once before it is cached.

29.6 Summary

Polygons resulting from multiple applications of the subdivision process can
be built by alternative methods, all fairly simple. Literal application of the
subdivision rules may not be the best in all circumstances.





30. Rendering

Promenade

Rendering is the process of creating a graphical image of a curve. There will be
complications like drawing the curve in some particular view, or like trimming
to fit a viewport, but these are standard graphics operations, and so we can
ignore them here. We are really concerned with making a representation
which can be fed into the graphics pipeline.

30.1 Polygon Rendering

The simplest way of doing this is, of course, to apply enough refinements and
then just send the edges of the polygon to the routines which do the actual
drawing. Simplicity of implementation is important, and this approach is
recommended for any first implementation of subdivision software.

However, there are more efficient approaches.

30.2 B-spline Rendering

The first of these is to use instead of the polygon after a number of iterations,
the B-spline which, as we saw in chapter 19 above, can be used in the limiting
process to define the limit curve. With rendering engines which are capable
of accepting cubics, such as PostScript, it is sensible to use a cubic B-spline
for this purpose.

PostScript36 requires its cubics to be provided in Bézier form, but the
intermediate control points can easily be determined as the 1/3 and 2/3
points of successive edges. The junction points, at the knot values of abscissa

36

project the initial polygon into 2D first before doing any refinement, but because
geometry sensitive schemes may not give the same answer after such a projection
as they do before, it is probably better not to start down that route. Project just
before feeding the points to the graphics.
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are just the average of the nearest such edge-points in the before and after
edges.

This approach can give a smooth-looking curve with many fewer spans
(and so many fewer refinement steps) than the polygon approach.

30.3 Hermite Rendering

the polygon. The order is quadratic in both cases. If actual accuracy of ren-
dering is important, rather than just beauty, there is another way of making
a smooth curve out of cubics which is significantly more accurate for a given
number of refinement steps.

This is to evaluate the limit curve points corresponding to the control
points, using the row eigenvector of unit eigenvalue, and also the first deriva-
tives, using the next row eigenvector. These are then used to make a Hermite
cubic interpolant, which converges as the fourth power of the number of re-
finements.

30.4 What about Non-stationary Schemes ?

A non-stationary scheme does not have the necessary eigenvectors to apply
the above directly to the original polygon. However, in cases where the scheme
converges adequately fast towards its own limit, the eigenvectors of the limit
scheme can be used with good accuracy after a relatively small number of
refinements. How many such refinements are needed has to be determined
for each scheme individually.

30.5 Summary

(i) The simplest way of drawing subdivision curves is just to apply a few
steps of subdivision to the given polygon.

(ii) There are ways of making this much more efficient if speed is important.

However, the B-splines do not converge to the limit curve any faster than



31. Interrogation
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If subdivision curves are to be used within, for example, a CAD system, then
it is necessary not just to draw them, but to determine points on them fairly
accurately for purposes of, for example, finite element meshing.

We treat three examples here:

31.1 Evaluation at Given Abscissa Values

Because of the fractal nature of the definition, it is not possible in general to
evaluate the subdivision curve exactly, except at dyadic points with a small
denominator. We have to settle for an approximation within some required
tolerance. Because that tolerance can be chosen in the light of the precision
needs of the application, this is indeed good enough.

Each of the methods described under rendering above can be applied
directly to evaluation. The third, Hermite, form is probably most relevant to
applications requiring high accuracy. In fact where the second derivative can
also be evaluated exactly at dyadic points, a quintic Hermite interpolant can
be used to give an even higher rate of approximation.

The number of refinements is first worked out from the required precision
and the initial control polygon. These refinements are then carried out, but
only in the smallest possible region around the place where the evaluation is
to be made. Doing it everywhere requires excessive computation and storage
space. The number of control points needed is only the number required for
the evaluation of the points and derivatives at the end of the required span.

31.2 Evaluation at the Intersection with a Given Plane

This is a problem much more typical than just evaluating at a known abscissa.
There are two approaches that we can use. The first is to scan along the
polygon to find the region likely to be relevant. Then that region is refined as
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above, and finally the intersection point is determined by iterating evaluation
and correcting an estimated abscissa until the required precision is reached.

The other is to use the convex hull property (if necessary the expanded
convex hull, or the expanded bounding box) not only to determine the likely
region, but to steer the refinement.

31.3 Evaluation of a Point near a Given Point

There are two closely related enquiries. One is to find the point of the curve
actually nearest to the given point. The other is to find all of the points where
the distance function is stationary, the foot-points. The actual nearest point
is unique (except in cases of ties), and may be a foot point or else an end of
the curve. Several foot-points may exist for a given curve and target point,
some of which will be local minima of distance and some local maxima.

The condition that a span of the curve might contain a foot-point is that
the set of vectors from the target point to the hull of the span should have an
intersection with the set of planes perpendicular to the tangent vectors in the
hull of the first derivatives. The tangent hull is defined exactly analogously to
the hull of points, but using the first difference scheme instead of the original
scheme.

31.4 Summary

Subdivision curves are parametric curves, and they can be incorporated
within Computer-Aided-Design systems as such. Although each curve scheme
will need its own low-level evaluation process, much of the mechanism re-
quired is standard within CAGD theory and within CAD systems.



32. End Conditions
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The rest of the book has led up to being able to design into a scheme exactly
the right behaviour in the interior of a long curve, but for practical purposes
what happens at the ends of a finite piece of curve, and how that is controlled
is of at least equal importance.

The previous theory is applicable to finite polygons, provided that they
are closed, forming loops. This can be useful, but cannot be called a complete
theory. Designers need to be able to create curves which start at one chosen
place and finish at another. They also need to be able to influence fairly
precisely the derivatives of the curve at those places.

32.1 End Conditions

We consider in fact what happens at the start of the curve, because that is
marginally easier to illustrate, but the conditions are equally applicable by
symmetry to the other end.

The simplest thing which can happen at the end of a curve subjected to
a subdivision construction is for the matrix to just stop. It stops by left hand
columns corresponding to non-existent old control points being dropped, as
are any rows which then do not sum to unity.

Thus⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 6 1
4 4
1 6 1

4 4
1 6 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
/8 becomes

⎡
⎢⎢⎢⎢⎣
4 4
1 6 1

4 4
1 6 1

. . .

⎤
⎥⎥⎥⎥⎦ /8.

When this is done at both ends, the matrix becomes a finite one which
can be applied to a finite old polygon. The result is a new polygon with
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rather fewer than twice as many vertices. The end of the new polygon is not
transparently related to the end of the original. It certainly does not have
the same parameter value, and so we can say loosely that the new polygon
is shorter than the old.

At each subsequent refinement step, a further shortening takes place, and
the limit curve is significantly shorter in parameter space than the original
polygon.

32.2 How Much Shorter?

A useful concept here is that of the first missing control point. Once that is
articulated, it is clear that the limit curve must lose everything in the support
of that first missing control point.

32.3 How do you want the Limit Curve to be Related

to the Polygon?

It is far from obvious to the curve designer, who may well want to constrain
the position of the end of the curve, how the polygon should be constructed
to achieve a particular end-point for the limit curve. It would be much nicer
if we could in some way arrange for the limit curve to reach exactly the end
of the original polygon.

For the cubic B-spline this can be achieved in an ad-hoc way by just
retaining the first control point of the old polygon in the new polygon. This
is very easily achieved and implemented, but it has the unfortunate effect
that the curvature is always zero at the end of the limit curve.
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It would be nice if we could arrange for the derivatives at the end to be
reasonably transparently related to the first few control points, and this can
be achieved at the price of rather deeper thought about what properties are
required and a little more complication in the implementation.

32.4 Requirements for Approximating Schemes

For approximating schemes we can design end-conditions by analogy with the
B-splines, where the most widely used end-condition is that called Bézier
end-conditions.

Strictly speaking these flow simply and naturally from a multiple knot at
the end of the domain, and are understood best in terms of unequal interval
(non-uniform) B-spline theory, but we can equally well approach them in
an ad-hoc fashion, modifying the top left hand corner of the matrix, adding
columns as well as rows. For schemes other than box-splines some element of
ad-hoc design will be necessary.

The most apparent aspects of these end-conditions are that;-
1 The position of the end of the limit curve is given by the first control

point.
2 The first derivative at the end of the curve is given by the first divided

difference at the end.
3 The second derivative at the end of the curve is given by the second

divided difference at the end.
. . . Similarly for higher derivatives up to the generating degree of the

scheme.
5 The control points are no longer equally spaced in parameter value.

32.5 Requirements for Interpolating Schemes

The appropriate analogue here is with the various end-conditions which can
be devised for interpolating splines37.
1 The simplest, and probably least useful is the “natural” end-condition,

which sets the second derivative to zero at the end of the limit curve.

37which are not themselves limiting curves of any finite subdivision schemes.
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2 Rather better is the constant curvature end-condition, which sets
the second derivative constant over the first span.

3 For the cubic interpolating spline, there is the not-a-knot end-cond-
ition which forces the discontinuity of the third derivative at the second
knot to be zero, thus making the first two spans part of the same poly-
nomial.

. . . For higher degrees there can be imposed zero discontinuities of the rel-
evant derivative at more internal knots, thus forcing the end of the
curve to be controlled in a way which is more and more like a Lagrange
polynomial.

These lists of properties are a gross oversimplification. Most schemes of
interest are neither box-splines nor interpolating schemes, and there is great
scope for thoughtful design of the requirements. This has to be a little ad-
hoc, because it does depend on the context and on the objectives which the
design of the scheme in the interior of the curve tries to meet.

32.6 How to Implement End-conditions

There are essentially three approaches.
• One is to modify the set of stencils at the top of the matrix.
• A second is to modify the original polygon once and for all before start-
ing any subdivision. This usually involves adding extra control points, (whose
positions depend on the original ones) but may also involve moving some con-
trol points. The new control points can loosely be called fake points.
• The third is to modify the polygon before each subdivision step.

The third is obviously equivalent to the first approach because the modifi-
cation can be expressed as a premultiplication of the old polygon by a matrix,
which can alternatively be combined with the standard subdivision matrix
to give a modified matrix.

In fact all three approaches are equivalent, and we shall illustrate the first
with Bézier end-conditions for box-splines, and the second with Lagrange
conditions for the four-point scheme.

Because the second and third approaches rely on the modification of the
polygon and the shortening effect during subdivision cancelling each other
out, the first approach is numerically preferable. The second involves best
separation between the end-condition code and the actual refinement, and so
is preferable from the point of view of software robustness.
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32.6.1 Modifying the matrices for approximating schemes

Here are the top left hand corners of the matrices for the first few box-spline
schemes. ⎡

⎢⎢⎢⎢⎣
2
1 1

2
1 1

. . .

⎤
⎥⎥⎥⎥⎦ /2

⎡
⎢⎢⎢⎢⎣
4
2 2

3 1
1 3

. . .

⎤
⎥⎥⎥⎥⎦ /4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
4 4

6 2
1.5 5.5 1

4 4
1 6 1

4 4
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
/8

The top left corner is always lower triangular. This means that the eigen-
values at the end of the limit curve are given by the diagonal entries, which
are successive powers of 1/2, giving the correct eigenvalue spectrum.

The corresponding row eigenvectors are the same length as the rows, and
so the derivatives depend only on the first few old control points at the start
of the polygon.

The column eigenvector of the 1/2 eigenvalue gives the distribution of
control points with parameter.

Thus the behaviour at the ends of the curve gets more and more similar
to the control at the end of a Bézier curve.

Note that for dual binary schemes the distribution of control points gives
an extra half-integer-worth of curve.
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32.6.2 Modified initial polygon for interpolating schemes

Here is an example of what can be done by using fake points. Recall that the
four-point scheme has a first derivative at a mark point given by the second
eigenrow.

[1,−8, 0, 8,−1]/12

The second derivative is unbounded unless the fourth divided difference
happens to be zero, in which case it is given by the second divided difference.

Let the local control points be Y ,Z,A,B,C,D
The natural end-condition is given by the simple equations

Y := 2A− C

Z := 2A−B.

We can set up end conditions analogous to constant curvature in the end
span by asking that the first derivatives at A and B should have the chord
B −A as their mean, and that the fourth difference at B should be zero.

Y := 34A− 48B + 21C − 6D

Z := 4A− 6B + 4C −D

and conditions analogous to “not-a-knot” by setting the fourth differences at
A and B, Z − 4A+ 6B − 4C +D and Y − 4Z + 6A− 4B + C to zero. This
gives the equations

Z := 4A− 6B + 4C −D

Y := 10A− 20B + 15C − 4D.

When this is done the span between A and B is exactly cubic, because of
the cubic reproduction property of the 4-point scheme. The first derivative
at A is given by

18[B −A]− 9[C −A] + 2[D −A]

32.7 Summary

(i) To build software which can provide a convenient medium for the design
of curves by placing the vertices of a polygon requires attention to be
given to what happens at the ends of the polygon and how conditions
at the ends of the limit curve can be controlled.

(ii) For approximating schemes Bézier end conditions are a useful guide, as
are Lagrange or Hermite conditions for interpolating ones.

(iii) However, the detail of designing end conditions does depend on the
objectives to which the rest of the scheme is aimed, and so there is
great scope for ad-hoc creative thinking.
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Promenade

The idea of adjusting the original control polygon before starting any refine-
ment was introduced in the previous chapter in the context of end conditions,
but it can be used more widely. In particular we can often use an approxi-
mating subdivision scheme to interpolate a set of given points.

33.1 Making a Polygon to Interpolate Given Points

The unit row eigenvector is a stencil which gives a point on the limit curve
in terms of the original control points. The product of a circulant matrix, E,
all of whose rows are equal to that eigenvector, with the control polygon, P ,
gives a sequence of points, Q, on the limit curve.

Q = EP

This implies that we could determine a control polygon whose limit curve
would interpolate all the points of Q. All we have to do is invert E and
multiply Q by it. This is not in fact practical for two reasons. The first is
that we do have to worry about end conditions to make E finite. The second is
that although E is a narrow-banded matrix, its inverse is typically completely
full. It is therefore much cheaper to solve the system EP = Q for P than
either to invert E or to multiply Q by it.

The appropriate end-conditions can then be taken in to that solution
process.

It is also possible to increase the interpolation degree without going all
the way, by using narrow-banded approximations to the inverse of E.
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33.2 Summary

(i) A software system applying subdivision curve theory needs a lot of
aspects to be considered which are not usually included in academic
papers. Issues like vectorisation and efficient use of multi-core architec-
tures are even beyond the scope of this book.

(ii) The point being made here is that operations on the polygon as supplied
in some way by the curve designer are perfectly legitimate ways for the
software creator to make that designer’s task easier.



Part VI. Appendices

We include here four appendices. These cover the proofs of four theorems
relevant to the body of the book, a short picture of the history of the subject
of subdivision curves, worked solutions of the exercises and a coda suggesting
interesting topics for future research.





1. Proofs

Theorem 1 The kernel of the square of a scheme is a

factor of the square of the kernel

Let σa(z) denote 1−za

1−z
z(1−a)/2

a , so that σa2(z) = 1−za2

1−z
z(1−a2)/2

a2 and let the
symmetric symbol of a scheme of arity a be f(z) = (σa(z))

mka(z) where
ka(z) is a symmetric Laurent polynomial not divisible by σa(z), and whose
coefficients sum to a.

Then the square of the scheme is given by

f(z)f(za) = (σa(z))
mka(z)(σa(z

a))mka(z
a)

= (σa(z)σa(z
a))mka(z)ka(z

a)

=

(
1− za

1− z
· z

(1−a)/2

a
· 1− (za)a

1− z
· (z

a)(1−a)/2

a

)m

· ka(z)ka(za)

=

(
1− (za)a

1− z
· z

(1−a)/2(za)(1−a)/2

a2

)m

· ka(z)ka(za)

=

(
1− za

2

1− z
· z

((1−a)/2+a(1−a)/2)

a2

)m

· ka(z)ka(za)

=

(
1− za

2

1− z
· z

(1+a)(1−a)/2

a2

)m

· ka(z)ka(za)

=

(
1− za

2

1− z
· z

(1−a2)/2)

a2

)m

· ka(z)ka(za)

= (σa2 (z))m · ka(z)ka(za)
This is of the form that we expect if the theorem is true. Indeed, it proves

everything that we need for the justification of the algorithms in chapters 17
and 18 above.

However, the question is still open as to whether ka(z)ka(z
a) is actually

the kernel, because it is conceivable that this could have a further factor of
σa2(z).

M. Sabin, Analysis and Design of Univariate Subdivision Schemes, Geometry and Computing 6, 185 
DOI 10.1007/978-3-642-13648-1_34, © Springer-Verlag Berlin Heidelberg 2010 



186 1. Proofs

Theorem 2 The kernel of the square of a scheme is the

square of the kernel

Because σa2(z) is divisible by σa(z) and by σa(z
a) then for there to be such

a further factor ka(z)ka(z
a) would need also to be divisible by them. We

know that by definition ka(z) is not divisible by σa(z) and that ka(z
a) is not

divisible by σa(z
a), and so it would be necessary for ka(z) to be divisible

by σa(z
a) and ka(z

a) to be divisible by σa(z). The first of these is certainly
possible, but the second is not, at least for even values of a. This is because
if it did have such a factor it would have a root at z = −1. Now if z = −1
then z2 and all even powers of z are equal to 1, and the only way for ka(z

a)
to be zero is to have its coefficients sum to zero. They have to sum to a and
so for even a, the square of the kernel of the scheme is indeed the kernel of
the scheme. This proof needs completing by inclusion of the case for odd a.

Theorem 3 Contribution to the joint spectral radius

from a shared eigenvector

Consider the case where A and B are two n × n matrices which share an
eigenvector V .

Clearly AV = λaV

and BV = λbV

so ABV = AλbV = λbAV = λbλaV

and BAV = BλaV = λaBV = λaλbV

Thus V , as well as being an eigenvector of A2 and B2, is also an eigen-
vector of AB and of BA, with eigenvalue λaλb, which will not be larger than
the maximum of λ2

a and λ2
b .

All product sequences of A and B of length l will therefore share the
eigenvector V , with an eigenvector which is a weighted geometric mean of
λl
a and λl

b, which will not exceed the larger of λl
a and λl

b. The joint spectral
radius of A and B will not, therefore, come from any mixed sequence of A
and B.

Note that this says nothing about contribution from other eigencompo-
nents.
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Theorem 4 Contribution to the joint spectral radius

from nested invariant subspaces

Consider the case where A and B are two n × n matrices which share not
only an eigenvector V1 but also a sequence of invariant subspaces of increasing
dimension where each subspace contains all its predecessors. Thus the first
subspace is spanned by some vector V1, the second by V1 and V2, the third
by V1, V2 and V3, and the mth by Vi, i = 1 . . .m.

Apart from V1, the actual eigenvectors of the matrices are defined only
in so far as they span the subspaces. A must have an eigenvector which is a
linear combination of V1 and V2, and so must B, but they do not have to be
the same eigenvector.

Let the largest subspace be of dimension m, which can be less than n, the
size of the matrices. Arrange the eigenvectors of A spanning the subspaces
in ascending sequence of i, and then append A’s other eigenvectors in any
sequence. Do the same for B.

Then use Gram-Schmidt orthonormalisation of either result to construct
a set of basis vectors.

With respect to this basis, both of the matrices of eigenvectors have the
form [

U V
0 W

]
where U is upper triangular. By appropriate scaling of the eigenvectors these
matrices can be given unit diagonals. The inverses of these, the matrices of
eigenrows, must also have the same form, and A and B themselves will have
the same shape, (though not the unit diagonals), when expressed with respect
to that basis because the product of upper triangular matrices is itself upper
triangular.

All product sequences of A and B of length l will have the same shape as
A and B, showing that the nest of invariant subspaces is common to them all.
The eigenvalues corresponding to the eigenvectors in the nest are the diagonal
elements ofA and B with respect to the chosen basis and so the corresponding
eigenvalues are again weighted geometric means of the eigenvalues of Al and
Bl.

Thus the joint spectral radius of A and B will either be the larger of the
spectral radii of A and B, or else come from the part of the spectrum which
is not associated with the nested invariant subspaces.





2. Historical Notes

The first mathematical study of what we now recognize as subdivision curves
was made by Georges de Rham in 1947[deR47]. He had been asked the equa-
tion of a shape resulting from a recursive manufacturing process, and pro-
duced the answer that it did not have one.

He also proved that the shape was tangent continuous everywhere but did
not have a second derivative. Although his arguments were specific to the
question at hand, they are recognisably related to the eigenanalysis approach
described above.

Subdivision curves were then independently invented in 1974 by George
Chaikin, who presented a recursive construction for drawing curves defined by
a polygon at an early CAD conference. His paper did not appear in the pro-
ceedings, but was submitted to a journal later[Ch74]. In the meantime, how-
ever, Richard Riesenfeld[Ri75] and Robin Forrest[Fo74] had independently
worked out from the presentation that this construction did have an equa-
tion. It was the quadratic B-spline. Knot insertion into B-splines was a hot
topic at the time, and so it was rapidly realised that B-splines of other de-
grees also had subdivision constructions. Jeff Lane and Richard Riesenfeld
showed[LaRi80] that all of these constructions could be described in terms of
a multi-stage process where higher degrees merely needed more stages within
each refinement step.

The next big step came a decade later, when Serge Dubuc and Gilles
Deslauriers[DeDu85/DeDu87a], stimulated by the ideas of fractals, explored
subdivision constructions giving curves which interpolated the vertices of
the control polygon. The four-point scheme was just one of a sequence of
schemes using 2n existing vertices in the stencil for the new edge-vertices,
and these stencils were simply derived by the Lagrange interpolation formula
for a polynomial of degree 2n− 1. This gave the generation degree trivially.

The first of these, with n = 2, was independently discovered by Nira
Dyn, John Gregory and David Levin[DLG87], who also introduced the idea
of a tension factor, so that their four-point scheme was a linear combination
(in the sense of chapter 24 above) of [-1,0,9,16,9,0,-1]/16 and [1,2,1]/2. This
stimulated much exploration into how the value of the tension factor was
related to the level of derivative continuity. The most important innovation
in this paper was, however, the method for determining the level of continuity
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using difference schemes. This was first cast without the use of z-transform
notation. [DLG91], which does use that notation, is a great deal easier to
follow.

The z-transforms were applied without comment as a standard tool in the
text-book by Alfred Cavaretta, Wolfgang Dahmen and Charles Micchelli pub-
lished in 1992[CDM91], a book which is strictly about multivariate schemes,
rather than curves. However, many univariate results can be recovered by
just omitting one of the many superscripts and subscripts which adorn all
the variables. This book is essential reading for mathematicians, though not
particularly accessible for computer scientists.

Dyn, Levin and Gregory recast their results in terms of z-transforms in
[DLG91]. This paper has been incredibly influential. Referees for journals
still see papers submitted which apply their derivative-at-a-time procedure
to new schemes with masks apparently plucked from the air.

The joint spectral radius approach appeared in a paper by Ingrid Dau-
bechies and Jeffrey Lagarias[DaLa91] in 1991, and also in one by Hartmut
Prautzsch and Charles Micchelli[PM87] in 1987. Efficient computation is still
a hot topic. A strong competitor for the ideas described in section 18.3 above
is the depth first search method developed by the team of Ulrich Reif.

Many of the other results are harder to pin down. The community was
aware of ideas without specific papers being written on them. For example,
quasi-interpolation schemes were known long before the 2008 paper of Kai
Hormann and Malcolm Sabin[HoSa08] put together enough specifics to be
worthy of a journal paper. The idea of support was well understood long
before 2004, when Ioannis Ivrissimtzis sorted out systematically the rules for

Convex hull results were already well understood from B-spline theory,
but Ron Goldman and Tony deRose[GodR86] showed in 1986 that they could
still be applied to schemes which did not have all coefficients in the mask
positive.

Recent topics popular for research in the subdivision community have
been

-
nential and trigonometric splines,

- non-linear schemes, stimulated by the desire for methods preserving
properties like monotonicity and convexity from the initial polygon to
the limit curve (‘shape preservation’),

- non-uniform schemes, stimulated by the desires for better shaped limit
curves when the available data is badly spread, and by the need for

systems.

Results in these areas are still appearing and it would have been premature
to provide any conclusive summaries of those areas.

all arities[ISD04].

non-stationary schemes, largely stimulated by seeking methods for expo-

compatibility with the non-uniform B-splines, widely used in CAD
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The biggest omission from this book, and a deliberate one, has been sub-
division surfaces. This where most of the work has been done, and often the
univariate results are just spin-offs. The reader is referred to the book of Joe
Warren and Henrik Weimer [WaWe02] for a general overview of subdivision
surfaces, and to that of Jörg Peters and Ulrich Reif [PeRe08] for a more de-
tailed examination of the key question of the less than perfect behaviour of
subdivision surfaces around extraordinary points.





3. Solutions to Exercises

Worked solutions are provided only for the questions which are not program-
ming exercises.

1 Dramatis Personae

(i) For each of the schemes in 11.9(i), write out the stencils of the scheme.
Use the notation which inserts a ‘*’ at the place of an edge-vertex.

[1, 4, 6, 4, 1]/8 has stencils [1 6 1]/8

and [4 ∗ 4]/8.

[1, 3, 3, 1]/4 has stencils [1 ∗ 3]/4

and [3 ∗ 1]/4.

The symmetry of these two stencils means that often only one of the two
is explicitly described.

[1, 3, 6, 7, 6, 3, 1]/9 has stencils [3 ∗ 6]/9,

[1 7 1]/9

and [6 ∗ 3]/9.

[1, 3, 5, 5, 3, 1]/6 has stencils [5 ∗ 1]/6,

[3 ∗ 3]/6

and [1 ∗ 5]/6.

[−1, 0, 9, 16, 9, 0,−1]/16 has stencils [−1 9 ∗ 9 − 1]/16

and [0 16 0]/16.

The latter is not usually made explicit, as the scheme is interpolating.
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(ii) For each of the schemes in 11.9(i), write out the part of the matrix
with non-zero principal diagonal. What complications did you find in
interpreting this question ?

[1, 4, 6, 4, 1]/8 has matrix

⎡
⎢⎢⎢⎣
1 6 1

4 4
1 6 1

4 4
1 6 1

⎤
⎥⎥⎥⎦ /8

[1, 3, 3, 1]/4 has matrix

⎡
⎢⎣
1 3

3 1
1 3

3 1

⎤
⎥⎦ /4

[1, 3, 6, 7, 6, 3, 1]/9 has matrices

⎡
⎢⎣
1 7 1

6 3
3 6
1 7 1

⎤
⎥⎦ /9 and

⎡
⎣ 3 6

1 7 1
6 3

⎤
⎦ /9

[1, 3, 5, 5, 3, 1]/6 has matrices

⎡
⎣ 3 3
1 5

5 1

⎤
⎦ /6 and

⎡
⎣ 1 5

5 1
3 3

⎤
⎦ /6

[−1, 0, 9, 16, 9, 0,−1]/16 has matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 9 9 −1
0 16 0
1 9 9 −1

0 16 0
1 9 9 −1

0 16 0
1 9 9 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
/16

The expected complication is that the ternary schemes have two matrices
each.

(iii) How can the denominator of a scheme be determined from the arity and
the sequence of integers in the 11.9(i) examples ? Equally, how can the
arity be determined from that sequence and the denominator ?

Because each stencil has to be a weighted mean, its entries must add up
to 1. The number of stencils is equal to the arity, and so the sum of all values
in the mask must equal the arity. To get the denominator, therefore divide
the total of the mask numerator entries by the arity.

Similarly, if you have the denominator divide that total by it to get the
arity.
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2 Support

(i) For each of the schemes of 11.9(i) above, determine the support.

scheme support

[1, 4, 6, 4, 1]/8 4
[1, 3, 3, 1]/4 3

[1, 3, 6, 7, 6, 3, 1]/9 3
[1, 3, 5, 5, 3, 1]/6 2.5

[−1, 0, 9, 16, 9, 0,−1]/16 6

(ii) What is the square of [1,3,3,1]/4 ?, what is its arity, what are its sten-
cils, and what is its support ?

The square of [1,3,3,1]/4 is [1,3,6,10,12,12,10,6,3,1]/16
Its arity is 4, its stencils are

[1 12 3]
[ 10 ∗ 6 ]
[ 6 ∗ 10 ]

and [3 12 1]

each divided by 16, and its support is the same as that of [1,3,3,1], namely 3.

3 Enclosures

(i) Which of the five schemes of 11.9(i) above have non-negative basis
functions ?

Schemes 1,2,3 and 4. Only scheme 5 has its basis function somewhere
negative.

(ii) Identify a sequence of control points lying within the band −1 < y < +1,
for which the limit curve of the four-point scheme goes outside that band.

The x coordinates are irrelevant. A possible sequence of y coordinates is

[. . . ,−0.9,−0.9,+0.9,+0.9,−0.9,−0.9, . . .].

(iii) Is it necessary for all mask entries to be non-negative for the basis func-
tion to be non-negative ?

No. The scheme of mask [1, 2, 1,−1,−2,−1, 1, 2, 1]/2 has a non-negative
basis function despite the presence of a negative value in the mask38.

38see [CDM91] page 163.
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4 Continuity 1 – at Support Ends

(i) Applying the methods of this chapter to the schemes in 11.9(i) above
is totally trivial, but do it anyway.

The values of f are 1/8, 1/4, 1/9, 1/6 and -1/16 respectively and the
values of the Hölder continuity at the ends of the support are

−log2(1/8) = 2 + 1

−log2(1/4) = 1 + 1

−log3(1/9) = 1 + 1

−log3(1/6) ≈ 1 + 0.63

−log2(| − 1|/16) = 3 + 1

5 Continuity 2 – Eigenanalysis

(i) Find the Hölder continuity of the quadratic B-spline scheme [1,3,3,1]/4
at the centre of the spans between control points.

The matrix is ⎡
⎢⎣
1 3

3 1
1 3

3 1

⎤
⎥⎦

The symmetric and antisymmetric components are[
4
3 1

]
/4 and

[
2
3 1

]
/4

and the eigenvalues can be read off immediately as 1,1/2,1/4 and 1/4.
The column eigenvectors are⎡

⎢⎣
1
1
1
1

⎤
⎥⎦
⎡
⎢⎣
−3
−1
1
3

⎤
⎥⎦
⎡
⎢⎣
1
0
0
1

⎤
⎥⎦
⎡
⎢⎣
−1
0
0
1

⎤
⎥⎦

and the rows
[ 0 1 1 0 ]

[ 0 −1 1 0 ] /2
[ 1 −1 −1 1 ] /2
[−1 3 −3 1 ] /2

The fourth of the column eigenvectors is not polynomial, and the asso-
ciated eigenvalue is 1/4 and so the Hölder continuity is no better than
−log2(1/4) = 1 + 1.
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If you have different denominators for the eigenvectors that doesn’t matter
at this stage, because we have not yet considered what the right values are.
However, if you multiply your matrix of columns by the matrix of rows the
answer should be a unit matrix.

(ii) Find the Hölder continuity at both of the mark points of the ternary
quadratic scheme [1,3,6,7,6,3,1]/9 .

The complete matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 7 1
6 3
3 6
1 7 1

6 3
3 6
1 7 1

6 3
3 6
1 7 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/9

which contains two different submatrices⎡
⎢⎣
1 7 1

6 3
3 6
1 7 1

⎤
⎥⎦ /9 and

⎡
⎣ 3 6
1 7 1

6 3

⎤
⎦ /9

The first of these has exactly the same eigenvectors as the binary
quadratic scheme of the previous question, but eigenvalues 1,1/3,1/9,1/9.
Again, the fourth of the column eigenvectors is not polynomial, and the
associated eigenvalue is 1/9 and so the Hölder continuity is no better
than −log3(1/9) = 1 + 1.
The second, which gives the neighbourhood of a limit point correspond-
ing to a control point has eigenvalues 1,1/3,1/9, with column eigenvec-
tors ⎡

⎣ 1
1
1

⎤
⎦
⎡
⎣−1

0
1

⎤
⎦ and

⎡
⎣ 3
−1
3

⎤
⎦ /8

and row eigenvectors
[ 1 6 1 ] /8
[−1 0 1 ] /2
[ 1 −2 1 ] /2

The column eigenvectors are all polynomial, and so there is no constraint
on the Hölder continuity here.



198 3. Solutions to Exercises

(iii) Find the Hölder continuity of the ternary neither scheme [1,3,5,5,3,1]/6
at the 1/4 point.

The complete matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 5
5 1
3 3
1 5

5 1
3 3
1 5

5 1
3 3
1 5 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/6

This has two matrices, but one is just the mirror image of the other. These
twins will share the same eigenvalues, but will have mirrored eigenvectors.⎡

⎣ 1 5
5 1
3 3

⎤
⎦ /6

We cannot apply the symmetric/antisymmetric short cut, but can apply
the block matrix one. [

5 1
3 3

]
/6

has eigenvalues 1,1/3 and so the complete set is 1,1/3,1/6.
The column eigenvectors are⎡

⎣ 1
1
1

⎤
⎦
⎡
⎣−5
−1
3

⎤
⎦ /4 and

⎡
⎣ 1
0
0

⎤
⎦

and the row eigenvectors
[ 0 3 1 ] /4
[ 0 −1 1 ] /2
[ 1 −2 1 ]

The third column eigenvector is non-polynomial, and so the Hölder con-
tinuity is no higher than −log3(1/6) ≈ 1 + 0.65.

(iv) Find the Hölder continuity of the four-point scheme [-1,0,9,16,9,0,-
1]/16 at the limit points corresponding to the control points.

This is a much larger problem. The relevant matrix is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 9 9 −1
0 16 0
−1 9 9 −1

0 16 0
−1 9 9 −1

0 16 0
−1 9 9 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
/16

The symmetric and antisymmetric components are⎡
⎢⎣
16
9 8 −1
0 16 0
−1 9 9 −1

⎤
⎥⎦ /16 and

⎡
⎣ 10 −1
16 0
9 9 −1

⎤
⎦ /16

with eigenvalues 1,1/4,1/4,-1/16 and 1/2,1/8,-1/16 respectively.
There is a Jordan block from the two 1/4 eigenvalues, which have a cou-

pling value of 1. This causes a new component of the second difference (of
size proportional to the fourth difference) to be added at each refinement.
Thus the second difference grows arithmetically, and the Hölder continuity is
no better there than 1+1.

6 Continuity 3 - Difference Schemes

(i) How many continuous derivatives does the ternary neither scheme
[1,3,5,5,3,1]/6 have ?

The difference scheme is [1, 2, 2, 1]/6, with stencils [1, 1]/6, [2]/6 and [2]/6
and so the norm is 1/3 < 1. The scheme is convergent.

The divided difference scheme is [1, 2, 2, 1]/2 whose difference scheme is
[1,1]/2. The stencils are [1]/2 and [1]/2 and so the norm is 1/2 < 1. The first
divided difference scheme is convergent.

The second divided difference scheme is 3[1, 1]/2 which does not have any
factors of σ and so we cannot make any statement about the second derivative
continuity. The second derivative is probably not continuous.

7 Continuity 4 - Difference Eigenanalysis

(i) What is σ for a ternary scheme ?
For a ternary scheme σ = (1 − z3)/3(1− z) = (1 + z + z2)3

(ii) What is the kernel of the ternary neither scheme [1,3,5,5,3,1]/6, and
how many σ factors does it have ?
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[1, 3, 5, 5, 3, 1]/6

[1, 1, 1]/3
= [1, 2, 2, 1]/2

[1, 2, 2, 1]/2

[1, 1, 1]/3
= 3[1, 1]/2

Thus the kernel is 3[1,1]/2 and the number of σ factors is two.
Both the eigenvalue and the norm of the kernel are equal to 3/2, and so

the Hölder continuity is 2− log3(3/2) = 1 + log(2)/log(3) = 1 + 0.630929.

8 Reproduction of Polynomials

(i) Check the reproduction degree of the four-point scheme [-1,0,9,16,9,0,-
1]/16.

This scheme can be expressed as 2σ4(3− 2σ2) and the generating degree
is therefore 3.

The v-stencil is [0, 16, 0]/16 which can be expressed as 1+ 0δ2 +0δ4 + . . .
and so the quasi-interpolating degree is not bounded.

The reproduction degree is the lower of these two and is therefore 3.

9 Artifacts

(i) Determine the artifact amplitude of the ternary neither scheme as a
function of the frequency ω.

This is a fairly tough question. Because the ternary neither scheme does
not have unit eigenrows for the vertices and mid-spans as it stands, we have
to take its square, thus creating a ‘both’ scheme.

[1, 3, 5, 8, 12, 16, 20, 24, 28, 30, 30, 30, 28, 24, 20, 16, 12, 8, 5, 3, 1]/36

When this is expressed as a matrix, the square pieces centred on the
vertices and mid spans are⎡

⎣ 5 30 1
3 30 3
1 30 5

⎤
⎦ /36 and

[
20 16
16 20

]
/36

of which the unit eigenrows are [1,10,1]/12 and [1,1]/2 respectively. Writing
the second of these as [6,6]/12 and combining them we get [1,6,10,6,1]/12 as
an equivalent binary mask. This is 2[1,2,1]*[1,4,1]/24 which can be written
as σ2(2 + σ2)/3.

The expression for the artifact as a function of ω is therefore

sin2(πω/2)(2 + sin2(πω/2))/3
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(ii) Plot it, for values of ω between 0 and 1/4.

This plot is not very informative. The value at ω = 1/4 should be about
0.2235 and the variation close to ω = 0 should be quadratic.

10 The Design Space

(i) What is the mask of the binary scheme 2σ4(3 − 2σ2) ?
Write this as σ4(6− 4σ2)

σ4 = [1, 4, 6, 4, 1]/16

4σ2 = [1, 2, 1]

6− 4σ2 = [−1, 4,−1]

1 4 6 4 1
−1 4 −1

−1 −4 −6 −4 −1
4 16 24 16 4

−1 −4 −6 −4 −1

−1 0 9 16 9 0 −1

The mask is [-1,0,9,16,9,0,-1]/16.

(ii) What is the mask of the ternary scheme 3σ3(4− 3σ) and what property
can you easily identify ?

σ = [1, 1, 1]/3

σ3 = [1, 3, 6, 7, 6, 3, 1]/27

3σ3 = [1, 3, 6, 7, 6, 3, 1]/9

3σ = [1, 1, 1]

4− 3σ = [−1, 3,−1]
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1 3 6 7 6 3 1
−1 3 −1

−1 −3 −6 −7 −6 −3 −1
3 9 18 21 18 9 3

−1 −3 −6 −7 −6 −3 −1

−1 0 2 8 9 8 2 0 −1

The mask is [-1,0,2,8,9,8,2,0,-1]/9 and its scheme has the obvious property
that because the entries three from the centre are zero, it is an interpolating
scheme.

11 Linear Subspaces of the Design Space

(i) How many dimensions does the space of schemes with support ≤ 6 and
interpolating degree di ≥ 3 have ?

The space is of dimension zero, i.e. it contains just one point, which is the
four-point scheme.

12 Non-linear Conditions

(i) The four-point scheme has cubic precision. Identify the scheme with
cubic quasi-interpolation degree (di = 3) with σ6 as a factor.

We can express σ6 as a polynomial in δ2

64σ6 1 6 15 20 15 6 1
δ6 1 −6 15 −20 15 −6 1

12 0 40 0 12
12δ4 12 −48 72 −48 12

48 −32 48
48δ2 48 −96 48

64

Thus 64σ6 = δ6 +12δ4+48δ2 +64. We therefore need to multiply it by a
polynomial in δ2 starting with (64−48δ2)/64 in order to get a zero coefficient
for δ2, and the simplest of these is (64− 48δ2)/64 = (4− 3δ2)/4.

This can be expressed as [-3,10,-3]/4 or as (4−3σ2) and the mask required
is given by the product, 2σ6(4 − 3σ2)



13 Non-stationary Schemes 203

The strategy used here, of subtracting multiples of high powers first of
(1 − δ2) is probably the most effective for hand-calculation for small masks.
The alternative strategy of noting quotients and remainders for successive
division by (1 − δ2) is probably a more general way to go for an algorithm
which might be faced with masks of any size.

(ii) Determine kernels which give zero artifacts when the number of control
points around a circle is 6, 12, 24. How does the coefficient for a given
number relate to that at half that number ?

We need kernels of the form (1−c)+c sin2(πω/2) for ω = 1/6, 1/12, 1/24.
The expression for the kernel will be zero when sin2(πω/2) = (c − 1)/c, or
c = 1/(1− sin2(πω/2)) = 1/ cos2(πω/2) = 2/(1 + cos(πω)).

This can be tabulated

n πω cos(πω) c
(in degrees)

6 30 0.866 1.07179
12 15 0.966 1.01734
24 7.5 0.9914 1.00429

Using the double angle formula cos(2x) = 2 cos2(x)− 1 we can determine
that if c is the coefficient for ω, the coefficient c′ for 2ω is given by

c′ = 2
√
c/(1 +

√
c).

13 Non-stationary Schemes

(i) Confirm the support widths of UP0, UP1 and UP2 from the subdivision
definition.

A B-spline of degree d has d+2 entries in the mask and the distance from
the centre of symmetry to the extreme new point is (d+ 1)/4

Thus B-splines whose degrees d(l) depend on the level l of an UP scheme
will add contribute Σ∞

l=0(d(l) + 1)/(4 ∗ 2l) to the distance from the centre of
symmetry to the edge of the support.

In the case of UP0 d(l) = l and so we need to evaluate (to get half the
support width)

S = Σ∞
l=0(l + 1)/(4 ∗ 2l)

= 1/4 +Σ∞
l=1(l + 1)/(4 ∗ 2l)

Letting l = j + 1 = 1/4 +Σ∞
j=0(j + 2)/(8 ∗ 2j)

= 1/4 + S/2 +Σ∞
j=01/(8 ∗ 2j)

= 1/4 + S/2 + 2/8

Hence

or S = 1 giving a support of 2

S/2 = 1/4 + 2/8



204 3. Solutions to Exercises

The values for UP1 and UP2 can be derived by noting that (by making the
initial degree 0 B-spline step) we can make the support UP0 by adding half
that of UP1 (because it is being applied at the second step) to the distance
(=1/2) between the two new control points.

Thus the support of UP1 = 2(2− 1/2) = 3 and similarly for UP2.

(ii) Determine how the coefficients of a dual scheme, a weighted mean of
2σ and 2σ3, should vary so that a square initial polygon should have a
circular limit curve.

The new scheme will be of the form 2σ((1−c)+cσ2), which is very similar
to the problem solved above.

All we need to add is the initial value of c, which is given by

c = 2/(1 + cos(πω)) = 2/(1 + cos(π/4)) = 2/(1 + 1/
√
2) = 1.172

After the each step the new coefficient c′ is given by

c′ = 2
√
c/(1 +

√
c)

.



4. Coda

A coda is supposed to tidy everything up, so that the reader gets a feeling of
rounded completeness. This coda will not do that. At the start of the book
it was suggested that one of its purposes was to trigger others to prove that
the theory wasn’t complete after all. That process already started during
the writing of the book, as one aspect after another turned up that would
have been nice to include, but was not completely enough understood. Here,
therefore, are some of the holes in the story which look as if they might lead
to productive insights.

1 Fourier Decay Analysis

Much of the earliest work was done using the ideas of the Fourier transform.
In particular, there is a measure of smoothness which is not the same as
Hölder continuity but eerily related to it, based on the rate at which the
Fourier transform of the basis function decays at high frequencies.

Just as the Hölder continuity can be measured exactly at rational points
with a finite computation, but only bounds can be found for the curve as a
whole, the Fourier decay rate can be measured exactly at rational frequencies
with a finite computation, but only bounds found for the spectrum as a whole.
The two measures turn out to be identical for the B-splines, but are typically
different (by a small amount) for other basis functions. Both are changed by
the same amount for every additional σ factor in the mask.

The Fourier domain arguments do appear to apply well to non-stationary
schemes, and they deserve more attention now.

2 Fourier Energy

The artifact analysis above is limited, essentially to binary and ternary
schemes. Higher arities can bring in artifacts at higher frequencies which
might spoil or improve the shapes of the limit curves, and it is not obvious
how these can most sensibly be handled.
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The total energy in the Fourier transform above the Shannon limit (or
its ratio to that below) might provide a way of measuring artifacts which is
focussed on the effects of the first few refinements, but extends naturally into
later ones, and thus also covers high arities elegantly.

3 Links between the Artifacts and Approximation

Order

There is a tantalising link between the plots at the end of the artifacts chapter
and the polynomial degrees in the preceding one. The sum of the artifact and
signal curves has a Taylor expansion around ω = 0 which almost ties up with
the interpolation degree. The artifact curve itself has a Taylor expansion
around ω = 0 which almost ties up with the generation degree. This needs
looking at.

4 End-conditions for Schemes with Higher

Quasi-interpolation Degree

The end-conditions described above cover two distinct cases, those of inter-
polating schemes, which are likened to Lagrange interpolation, and those of
B-splines, likened to the Bézier end-conditions. The schemes which interpo-
late when the data lies on a cubic or higher polynomial do not really fit either
of these cases. They are almost interpolating (when the data is really smooth)
but not quite. Somebody needs to play with these schemes to find out how
they currently misbehave at the ends and what kinds of control are required
to make them do what the curve designer wants.

5 Non-uniform Theory to Encompass Endconditions

Handling non-uniformity is a known research topic at the time of writing. In
the case of B-splines, the end conditions can elegantly be treated as a specific
case of non-uniformity. Can this be extended neatly to other subdivision
schemes ?

Non-uniformity also brings the question of where within each span each
new knot should be inserted. Forcing it always to be at the centre is a totally
arbitrary choice. A second question is close behind, whether to insert in every
span anyway. Quasi-crystal theory, which inserts knots only one at a time,
but where they are most needed, does not lead to obvious efficiency, but could
provide some theoretical insight.
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