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Preface

Subdivision surfaces were introduced in the Computer-Aided Design (CAD) liter-
ature in the late 1970s, and they have since attracted much attention in the fields
of computer graphics, solid modelling, and computer-aided geometric design. It is
the purpose of this book to introduce the essential mathematics underlying these
surfaces, at a level that is accessible both to graduate students in computer sci-
ence and to researchers and practitioners with a similar or stronger mathematical
background.

In terms of mathematical content, the book has two main goals. The first is
to provide a unified view of the field. The second is to explain the mathematics
carefully, but as simply as possible, so that the reader will be able to easily read
the literature.

It is easy to get the impression, from a first encounter with the subdivision
literature, that the field consists of a miscellaneous collection of smoothing tech-
niques, some inspired by classical B-spline methods, and others that are completely
ad hoc. In particular, even when taxonomies of methods are given, the classifica-
tions do not seem to lead to sharp distinctions. For example, methods designed
for quadrilateral or triangular meshes can nonetheless be applied to other kinds of
meshes, including meshes of opposite or mixed type. Similarly, the distinction be-
tween primal and dual methods seems slightly obscure, and in fact this distinction
also fails to be perfectly sharp: even if we restrict our attention to the most special
classes of methods, they may be of mixed primal-dual type.

In fact, however, there is a great deal of unity and structure to the field. The
main idea we use to show this, is to arrange all of the standard subdivision methods
in a simple hierarchy based on the class of spline surfaces they generate. The most
special methods in this hierarchy are those that generate classical tensor-product
uniform B-splines, while the most general methods in the hierarchy correspond to
generalized splines, i.e., linear combinations of nodal functions which themselves
can be obtained by applying an affine-invariant subdivision procedure to the unit-
impulse function. A second idea which shows the unified nature of the field is that a
step of the basic subdivision method can be viewed, in the B-spline case, as a series
of simple averagings done in alternation between the initial refined mesh for the step
and the dual of this mesh. If we decide to alternate back and forth an even number
of times at each step, then there is no need to actually construct the dual mesh, and
we have what is called a primal method. On the other hand, if we decide to compute
these averages an odd number of times, then the dual mesh must be constructed in

xvii
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some way, and we have what is called a dual method. This alternating-averaging
structure is an important thing to notice. A generalized version of alternating
averaging occurs for more general classes of subdivision methods, such as box-
spline methods, and even

√
3-subdivision, a non-box-spline method, can be viewed

as involving a form of alternate averaging.
The organization of the book is discussed in detail in Section 1.1. One signifi-

cant aspect of the organization is that Chapter 1 jumps ahead and makes statements,
about subdivision methods and surfaces, that are only justified later, in the more
orderly mathematical presentation which begins in Chapter 2. One of the reasons
for this choice of organization is to make the book more useful as a graduate-level
textbook in computer science. In such a situation, the student may already have a
great deal of informally obtained information about, say, Catmull–Clark and Loop
subdivision and may be interested in seeing a description of these methods without
having to first read three or four chapters. Also, Chapter 1 contains basic infor-
mation that may help the student, or general reader, make sense of what is often
left unclear in the literature. For example, as is the case for the implementation
of solid-modelling systems, it is important when describing subdivision methods to
distinguish between a logical mesh and a polyhedral mesh (this is done carefully in
Chapter 1, but not always in the literature). Similarly, Chapter 1 gives descriptions
of various kinds of subdivision matrices that are used in the description and anal-
ysis of subdivision procedures (many papers in the literature simply refer to “the”
subdivision matrix, which is confusing for the novice, since in fact there are many
different varieties of subdivision matrix). Chapter 1 also describes splitting schema,
dual meshes, and regular and nonregular meshes, and it presents the hierarchical
classification described above. In particular, within this hierarchy, the distinction
is made between basic and variant methods, where the latter are designed for use
in nonregular meshes.

Early drafts of the book have been used as a reference text in a one-month
segment of a graduate course in solid modelling, in the computer science department
of the Université de Montréal. This segment includes most of Chapter 1, much of
Chapter 2, some of Chapter 3, and some brief remarks on convergence, smoothness,
and surface evaluation and estimation (Chapters 5 and 6). This experience led
to the conclusion that the material is difficult for beginning graduate students in
computer science, but quite accessible to mathematically inclined Ph.D. students.
Material from Chapter 7 (shape control) could also be included in such a graduate
course, and the Notes might also be useful to the student.

The book should probably be read in the order in which it is written, with
the exception of the Appendix and the Notes, which should be consulted as needed.
Any material that is already familiar can, obviously, be skimmed, but all chapters
depend on the basic information in Chapter 1, and Chapters 2, 3, and 4 are pro-
gressively more general. All chapters also rely heavily on Chapter 5, on convergence
and smoothness, although these topics are postponed until the basic theory of the
first four chapters is in place. Chapters 6 and 7 rely on earlier chapters, and in par-
ticular, the last section of the main text, on shape control, makes use of the global
subdivision matrices of Chapter 1 and the Generalized-spline subdivision methods
of Chapter 4.
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The mathematical level required to read the book is that of an advanced
graduate student in computer science. It is assumed in particular that the reader
has taken courses in Linear Algebra and Advanced Calculus. It is also assumed
that the reader is generally familiar with B-splines, at the level it would normally
be taught in an undergraduate computer graphics course (based, for example, on
[147, Ch. 15] with some supplementary material added on bicubic surface patches,
or on [53, Ch. 11]). The presentation of B-spline surfaces is narrowly focused on
subdivision surfaces: the reader who wants a thorough understanding of B-splines
and Non-Uniform Rational B-Splines (NURBS) should read the books of Cohen,
Riesenfeld, and Elber [30], Farin [51], and Piegl and Tiller [127]. We note finally,
on the topic of the mathematical level of the book, that it increases quite sharply
following Chapter 1.

The reader described in the previous paragraph may from time to time be
required to learn techniques not previously seen. A good example is generating
functions. It is not possible to read the subdivision literature without knowing
something of these: they are used by many authors, because they often lead to
simpler derivations. On the other hand, a typical computer science program may
not include discussion of this topic, and it may be necessary to consult, for example,
Knuth’s The Art of Computer Programming [72, Sec. 1.2]. Similarly, we make use
of the complex Fourier transform (although some of the related derivations are
relegated to the Appendix) and the discrete Fourier transform. Many graduate
students in computer science know of these techniques (perhaps because of a course
in signal processing or in computer vision), but again, a typical computer science
program may not include discussion of these topics.

The idea of structuring the field as subclasses of generalized splines came
from the understanding gained by reading the work of Peters and Reif, and in
particular, by reading a draft of [124]. Similarly, the fundamental nature of the
primal-dual alternation in B-spline methods is quite evident in the original Lane–
Riesenfeld paper [81], and it is brought out very clearly in the references [101, 151,
177]. On the other hand, the formal structuring of the field as we have done it
is new, and our use of centered nodal functions aids considerably in bringing out
the essential symmetry of subdivision methods. The presentation of box splines in
Chapter 3 is, we believe, made quite accessible by developing it in exact parallel
with the development for tensor-product B-splines. Similarly, the later development
of subdivision polynomials related to generalized splines is also done in parallel with
the more special cases just mentioned, which leads to very natural analyses of the
corresponding general methods.

Exercises and projects appear in separate sections at the end of each chap-
ter. Course materials, including solutions to the exercises (and results for a few
of the projects) are available to professors using the book as a course text; see
www.siam.org/books/ot120 for information. The Notes appear at the end of the
book. References to theorems, equations, figures, etc. have an appended subscript
giving the page number: for example, (2.33)/65 refers to equation (2.33), which ap-
pears on page 65, and Figure 2.7/68 refers to Figure 2.7 on page 68. (This idea,
as well as the notation pQ4, pT4, and dQ4 used to identify the standard splitting
schema, were also adopted from an early draft of [124].) In the chapters following
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Chapter 1, the end of a formal proof is indicated by an open box , and the end of
a remark or an example that has been set off from the main text by a filled box .
Note that even in the first chapter, which is relatively informal, we occasionally
adopt a formal style for definitions, but only when it seems necessary for clarity.
Finally, certain remarks are annotated with a star, as in the case of Remark* 1.2.4/11.
Such remarks, although perhaps important, contain details that need not be thor-
oughly understood on a first reading. Alternatively, a starred remark may simply
mention that the material immediately following can be skimmed on a first reading.
Occasionally starred remarks refer forward to results not yet proved.

Many people provided useful comments on the manuscript, at various stages,
including P. Beaudoin, S. Bouvier Zappa, F. Duranleau, D. Jiang, V. Lazar,
V. Nivoliers, V. Ostromoukhov, J. Peters, P. Poulin, I. Stewart, J. Vaucher, Z. Wu,
M. Zidani, and an anonymous referee.

François Duranleau and Di Jiang produced most of the more difficult figures,
with help from Wu Zhe. Figure 1.5/5 was produced by Wu Zhe using Quasi 4-8
subdivision [161], starting with a model obtained from www.blender.org. All three
of these people provided considerable help over a long period.

The members of the team at SIAM were unfailingly friendly, helpful, and
efficient. In particular, the authors are very grateful to Elizabeth Greenspan, Sara
Murphy, Nancy Griscom, and Lisa Briggeman. They made this a better book.

The second author wishes to thank the Natural Sciences and Engineering
Research Council of Canada for its support of his research. He also wishes to
express his gratitude to Warren and Enid Damer, without whose inspiration this
book would not have been written.

Lars-Erik Andersson
Linköping, Sweden

Neil F. Stewart
Montréal, Canada

July 2009

It is impossible for an expositor not to write too little for some, and too
much for others. He can only judge what is necessary by his own expe-
rience; and how long soever he may deliberate, will at last explain many
lines which the learned will think impossible to be mistaken, and omit
many for which the [uninitiated] will want his help. These are censures
merely relative, and must be quietly endured. I have endeavoured to be
neither superfluously copious, nor scrupulously reserved, and hope that
I have made my author’s meaning accessible to many who before were
frighted from perusing him, and contributed something to the public by
diffusing innocent and rational pleasure.

—Samuel Johnson
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Notation, Conventions,
Abbreviations

Points in RN are denoted in ordinary type. For example, a spline surface is denoted
by the vector-valued function x(u, v) with values lying in RN , and similarly for a
spline curve x(t). When modelling physical space, the dimension N of the space
RN is often equal to 3. But N may be arbitrary—the control points of a subdi-
vision mesh may correspond to general attributes. We do not distinguish between
N -dimensional Euclidean space (an affine space of points) and the real vector space
RN : points in Euclidean space are viewed as vectors starting at the origin. The
value of the function x viewed as a vector in RN , the associated control points, and
certain related coefficients such as cj are written as row vectors. Other vectors are
written as column vectors.

The usual meaning of the principal symbols used is as shown in the following
list, but it sometimes happens that a variable with the same or similar name is used
locally for some other purpose.

A a matrix A(N×N), or a matrix
A(2×k) representing a mapping A

cj coefficients in eigenvector expansion
Ck, Ck(R), Ck(R2) k times continuously differentiable
Ck the unit cube in Rk

C, C̄, Ck, C̄k, c, ck constants
d = m− 1 (bi-) degree of (tensor-product) B-spline,

m the order of the univariate B-spline
D = d

dt , D
k, Dy, De (e ∈ R2), ∇ derivative operators

∆e,∆,∆k difference operators
∂
∂u partial differentiation
∂B boundary of a subset B of R2

e number of edges in a face
em = {e1, . . . , em} directions defining a box spline
em(i) em with ei deleted
em(ij) em with ei and ej deleted
ē/2 = 1

2

∑m
i=1 ei centre of box-spline coefficient grid

Ei, E′i control point (Catmull–Clark)

xxi
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xxii Notation, Conventions, Abbreviations

Ef the set of edges in face f
f a face in a logical mesh
f = f(t), f = f(y) a function of the variable t or y
Fi, F ′i control point (Catmull–Clark)
F1, . . . , Fα faces in R2

F 1, . . . ,F α faces in manifold M
F (y − l) a function in L1(R2)
G(z), Ga(z), Gf (z), Gfih/2(z) generating functions
G, G∗k coefficient grids

(support of subdivision polynomial)
Gk subset of R2

(defined by k-ring neighbourhood)
Gm, G∗m grids defined by em

h resolution of grid, grid-size
i a general index, or

√−1
k, l general indices

(often indexing control points)
� ∈ Z indexing logical vertices
L the number of control points in a mesh
L1(R2) the Lebesgue integrable functions on R2

λi eigenvalues of local subdivision matrix
m (bi-) order of a (tensor-product) B-spline, or

total order of a box spline
M , M ′, M∗, Mν , Modd, Meven logical mesh
M = (M,p) polyhedral mesh
N dimension of RN

Nm
k (h;u), N1(h; t), N∗(hek; y), N(y) nodal functions

n valence of a logical vertex
n(y) normal vector depending on parameter y
ν subdivision iteration index
pkl, p�, pν ∈ RN control points (row vectors)
p(L×N) matrix with L rows of control points
p(ω×1) scalar control points

(case of an infinite grid)
p(z), p(h; z), q(z) generalized polynomials corresponding to

sets of control points
qk =

∑
l sk−2lpl control points after subdivision

RN real vector space of dimension N
R, Q, S control points (Catmull–Clark)
S local subdivision matrix
Σ, Σν global subdivision matrices
S(y), Ŝ(ω) functions used in Fourier analysis
s(z) subdivision polynomial
(0, 1)t, St transpose of a matrix
t(1×N) translation of control sequence
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t independent variable in univariate case:
x = x(t)

(u, v)t independent variable in bivariate case:
x = x(y), y = (u, v)t

V , V ′ control points (Catmull–Clark)
w ∈ Rk vector (in the context of box splines)
w = e2πi/n nth root of unity
w, w∗, ω standard parameters in Butterfly,

Kobbelt, and Loop methods
ω cardinality of the natural numbers
ω variable of Fourier transform
x = x(1×N) = x(u, v) spline surface
x = x(1×N) = x(t) spline curve
y = (u, v)t independent variable in bivariate case
Z the integers (bi-infinite grid)
Z2 = Z× Z ⊂ R2 two-dimensional vectors of integers
ZL = {0, . . . , L− 1} the integers modulo L
z variable in generating function,

translation operator, argument of
subdivision polynomial s(z)

ζν , κν control sequences
ξ, η right and left eigenvectors of local

subdivision matrix
ω see w above
Ω, Ω̄ open subset of R2 and its closure
| · | Euclidean norm of vector in R2 or RN

|k| = |k1|+ |k2| 1-norm of k = (k1, k2) ∈ Z2

�a� greatest integer less than or equal to a
�a� smallest integer greater than or equal to a
lg(·), ln(·) logarithm base 2, base e
η∗ξ η∗ denotes transposition and complex

conjugation of the complex vector η
η̄l complex conjugate of the component ηl
	, 
 real and imaginary parts
A0 interior of the set A
conv(·) convex hull of a set of points
det(·) determinant of a matrix
volk−2 Lebesgue measure in Rk−2

supp(·) the support of a function
∼ equivalence, or asymptotic equality
:= value assignment
.= defined to be equal
× vector cross product
⊗ convolution
N̂ , (yk−rF (y))̂ Fourier transform of N , yk−rF (y)
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Conventions

• If z = (z1, z2), a = (a1, a2), then za = za1
1 za2

2 .

• If p(z) = p(z1, z2) is a polynomial in two variables, then p(z2) = p(z2
1 , z

2
2)

and p(z1/2ν

) = p(z1/2ν

1 , z
1/2ν

2 ).

• If p(z) =
∑
a paz

a, f = f(t), then p(z)f =
∑
a pa(z

af).

• Let j = (j1, j2), d = (d1, d2), z = (z1, z2), k = (k1, k2). Then

– 0 ≤ j ≤ d means 0 ≤ j1 ≤ d1, 0 ≤ j2 ≤ d2;

– ∂j = ∂j11 ∂
j2
2 (partial differentiation);

– p(k)(z) = p(k1,k2)(z1, z2) = ∂k11 ∂k22 p(z1, z2).

• The notation Πd � yk �→ yk +
∑

0≤r<k ck,ry
r ∈ Πd means that each yk in

Πd is mapped onto the element shown to the right of the symbol �→, and this
element is also in Πd.

• The notation πf : M ⊃ F → F ⊂ R2
f means that M ⊃ F , F ⊂ R2

f , and
πf : F → F .

Abbreviations

dQ4: dual quadrilateral 4-split
pQ4: primal quadrilateral 4-split
pT4: primal triangular 4-split
LR(d): the Lane–Riesenfeld algorithm of degree d
LR(d× d): the Lane–Riesenfeld algorithm of bidegree d
LSS: Linear Subdivision plus Smoothing algorithm
4pt× 4pt: tensor product of the four-point method with itself



book
2010/3/3
page 1

�

�

�

�

�

�

�

�

Chapter 1

Introduction

Divide et impera.
—Latin maxim

Söndra och härska.
—Swedish translation

A sure axiome, Divide and rule.
—J. Hall, 1605

1.1 A brief overview
Subdivision surfaces were introduced in the field of solid and surface modelling in
1978, with the publication of the papers by Catmull and Clark [24] and by Doo
and Sabin [45]. They are now widely used in many application areas, including
computer graphics, solid modelling, computer game software, film animation, and
others, as an alternative to B-splines and NURBS (Non-Uniform Rational B-Splines)
[30, 51, 127].

To illustrate the basic idea of subdivision methods, we give a brief description
of Chaikin’s algorithm. The algorithm applies to curves, rather than to surfaces,
but it is a simple example that illustrates clearly the idea of subdivision. Suppose
that we start with a polygonal simple closed curve, made up of four segments, as
illustrated by the large square in Figure 1.1/2 (left). In the first step of the subdi-
vision process, two intermediate points are introduced on each segment by taking a
weighted average of the corner points, using weights

( 1
4 ,

3
4

)
and

( 3
4 ,

1
4

)
, respectively.

This produces the octagonal polygon (eight segments and eight corners) shown in
Figure 1.1/2 (middle).

The same procedure is then repeated, using the octagonal polygon as a starting
point. In the second subdivision step, two intermediate points are introduced into
each of the eight segments, again using the weights

( 1
4 ,

3
4

)
and

( 3
4 ,

1
4

)
for each seg-

ment. This produces a polygon with 16 segments, as shown in Figure 1.1/2 (right).

1
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2 Chapter 1. Introduction

Figure 1.1. Two steps of Chaikin’s algorithm.

h

(kh, lh)t

Figure 1.2. Quadrilateral grid.

It is intuitively clear that if this process is repeated indefinitely, the polygonal cor-
ners computed at each step will converge towards a smooth limit curve.

Chaikin’s method will be discussed in more detail later. The basic idea illus-
trated here generalizes in several different ways to the bivariate case (surfaces), and
this is the subject of the book.

In order to discuss the relation between subdivision surfaces and the rest of the
field of surface modelling, we compare them to B-spline surfaces. It is assumed that
the reader has some familiarity with the latter type of surfaces, but we give here a
brief description of a special case, the tensor-product uniform B-splines. These are
discussed in much more detail in Section 1.3.1 and Chapter 2, where the notation
is carefully defined.

Suppose that a grid has been defined on R2, with separation h between the grid
lines (see Figure 1.2/2). We refer to the separation h as the grid-size or resolution
of the grid . A tensor-product uniform B-spline is a parametric surface of the form

x(u, v) =
∑
k∈Z

∑
l∈Z

pk,lN
m
k (h;u)Nm

l (h; v). (1.1)

It is assumed that there is associated with each grid point (kh, lh)t a control point
pk,l lying, say, in R3. Each of the functions Nm

k (h;u) and Nm
l (h; v) is a function

of a single variable u or v, and each has a shape like the profile of a bell. Thus
the product Nm

k (h;u)Nm
l (h; v) defines a bell-shaped function, illustrated for m = 4

in Figure 1.3/3, that determines the influence of the control point pk,l on the final
surface x = x(u, v). Such functions are called basis functions1 or nodal functions.
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1.1. A brief overview 3

Figure 1.3. B-spline basis function of order 4.

Both Nm
k and Nm

l are piecewise polynomials of degree m − 1, and they are cen-
tered around kh and lh, respectively, so that Nm

k (h;u)Nm
l (h; v) is centered around

(kh, lh)t in the parametric domain.
A bounded portion of a tensor-product uniform B-spline surface x(u, v) is

illustrated in Figure 1.4/4, along with a typical control point. The control points
pk,l do not usually lie on the surface, but they influence its position: the shape
of the surface can be modified by moving the control points. Control points are
usually denoted by the letter p, with indexing that varies depending on the context.
(An exception occurs in Section 1.3.1 and following, where a different notation for
control points is used to describe the Catmull–Clark method.)

If the control points pk,l and their surrounding faces are linked together logi-
cally in the way specified by the planar grid, then they form an infinite polyhedral
mesh in RN (in the example above we had N = 3). Some remarkable theorems
and algorithms have been developed for B-splines which permit their evaluation by
means of repeatedly subdividing this mesh. Several of the standard subdivision-
surface methods can be viewed as generalizations of these algorithms to the case of
meshes (usually finite) having a more general topology. These subdivision methods
are applied directly in the polyhedral mesh, but in those parts of the mesh that
correspond to a subset of the plane tesselated with a simple quadrilateral grid, the
surfaces generated correspond locally to ordinary tensor-product B-splines. This is
an important fact.

In fact, subdivision algorithms for B-splines have been developed for cases
much more general than the tensor-product uniform case of (1.1)/2, namely the cases
of nonuniform grids [51] and rational B-splines (NURBS) [127]. (These algorithms
include “knot-insertion algorithms” and the well-known “Oslo algorithms” [30, 51,
127].) We do not need to consider these more general B-spline cases, but we do need
to use another generalization, in a different direction, of tensor-product uniform
B-splines, namely the generalization to box splines.

One of the main advantages of subdivision surfaces, as compared to B-spline
and NURBS surfaces, is that the latter must be trimmed and pieced together in or-
der to produce surfaces of general form, since otherwise we would be limited to the
bi-infinite sheet or, by identification of points, the cylinder and torus. (“Trimming”
simply means that a subset of the domain of the B-spline or NURBS surface is de-
lineated as the part of the surface to be used.) This process of trimming and piecing
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pk,l

Figure 1.4. Bounded portion of a B-spline surface.

together leads to difficult problems related to guaranteeing continuity and consis-
tency [5]. In contrast, subdivision surfaces are intrinsically capable of assuming
general form.

Other advantages of subdivision surfaces include scalability and good com-
patibility with application areas requiring meshes, and in particular, finite-element
meshes [6]. On the other hand, combining these advantages with tools comparable
to those available in the trimmed-NURBS context [42], and especially, to obtain
the advantages of interactive editing [175], is not always simple, and this is one
reason why the subdivision-surface literature has grown so quickly over the last two
decades.

There are many different ways to categorize subdivision-surface schemes: for
example, classification parameters used in [44] include the size of the footprint of the
rules defining new points and whether the predominant element in the subdivided
mesh should be a triangle or a quadrilateral. (Data defining geometric models are
frequently in the form of a triangular mesh, but quadrilaterals are often better than
triangles for representing the symmetries of natural and artificial objects, including
objects such as arms, legs, and fingers [42].) Other classification criteria that may be
useful include whether the methods interpolate the given data or only approximate
it, the level and nature of the continuity of the limit surfaces, and whether the con-
trol points produced at each step are associated with a refined version of the starting
mesh (primal method) or with its dual (dual method). In this book, however, all
of the above characteristics are viewed as secondary classification criteria since, as
will be seen below, they do not always lead to clear and precise distinctions. The
main classification used here is an unambiguous hierarchical classification, based on
the mathematical nature of the surface generated.

An example of subdivision in R3 is shown in Figure 1.5/5. In this model, the
elephant’s tusk merges with the trunk.

Historical background

As mentioned above, subdivision surfaces can be viewed as a generalization of
B-spline surfaces of the form (1.1)/2, and the histories of the two subjects therefore
have much in common.
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Figure 1.5. Various stages of Quasi 4-8 subdivision.

A brief history of the beginnings of B-splines is given by Farin [51, Ch. 10],
where the earliest reference is to the nineteenth-century work of Lobachevsky, who
constructed splines using convolution. A very important modern paper was pub-
lished in 1946 by Schoenberg [143]. This paper can be viewed as the origin of two dis-
tinct and major fields involving the use of splines: geometrical modelling [30, 51, 127]
and statistical data smoothing [165].

Subdivision algorithms for curves and surfaces in Bernstein form (Bézier curves
and surfaces) were developed starting around 1960 by de Casteljau and Bézier. The
recurrence relations for B-splines were discovered by de Boor, Cox, and Mansfield
in 1972, and one of the most important algorithms for B-splines, from our point of
view, was published by Lane and Riesenfeld in 1980 [81]. This algorithm is studied
carefully in Chapter 2. The development of box splines was another advance that
is very important for the theory of subdivision surfaces: the standard references
are [38, 129], both of which contain bibliographies.

The history of subdivision itself is at least as old as the self-similar subdivision
of certain tiles into smaller ones of the same form, which first appeared in medieval
architecture beginning in the thirteenth century [93]. It is shown below that current
subdivision algorithms are closely related to self-similar subdivision of certain tilings
of the plane.

The first modern references to subdivision algorithms are the 1947 and 1956
papers of de Rham [39, 40]. Chaikin’s algorithm [26], a special case of a method
described in [40], was published in 1974. Subdivision surfaces were introduced
into modern solid modelling with the publication in 1978 of papers by Catmull
and Clark [24], and Doo and Sabin [45], followed by Loop’s paper [91] in 1987.
Finally, a recent historical fact is noted in [176, p. 20]: the strong interest in
subdivision surfaces that appeared in the 1990s arose out of a desire to circum-
vent the problem of topology limitations involved with the use of ordinary B-spline
surfaces.

Choice of method, including data structures and implementation

We can describe in very general terms some typical criteria that might be used to
guide our choice of method. Some of these criteria, such as mesh type, the level
and nature of continuity, and whether the surface interpolates given data, have
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already been mentioned, and these might be grouped generically under the heading
“quality and nature of the generated surface.” In addition, there is the cost of
evaluating the surface, which might be measured by computation time, by memory
utilisation, or by a combination of the two. Yet another criterion is the ability to
associate attributes, such as colour and texture, to the faces of the surface in a
persistent way.

These criteria will be discussed further, but first we mention, again in very
general terms, what is involved in the choice of method. First of all, there is the
choice of basic subdivision method (Catmull–Clark, Loop, etc.). Second, there
is the choice of data structure: how should the subdivision mesh be represented
on the computer? Third, there are choices to be made in the implementation of
specific tasks: for example, should the surface be evaluated by repeated subdivision,
or rather by an auxiliary method that permits evaluation for specific parameter
values?

It is clear, even from these short lists of criteria and choices of method, that
there are many complicated trade-offs here, but we do not discuss these. We do of
course mention advantages and disadvantages of particular methods from the point
of view of implementation, but resolving the various trade-offs involved is beyond
the scope of this book. Our goal is limited to providing an understanding of the
underlying mathematical structure.

In fact, the situation is much more complicated than the discussion above
might suggest. Let us look first at the criteria used. If we consider the criterion of
cost of evaluating the surface, there is often a time-memory trade-off. In addition,
however, we must distinguish between absolute cost and incremental cost: it is
sometimes possible to precompute certain quantities once and for all (incurring,
usually, an increased cost of memory utilisation), in such a way that the subsequent
time cost per evaluation is low. Further, there are other aspects of time and memory
costs that are as important as their overall magnitude, such as whether they grow
gradually as a function of required precision, or, rather, in sudden jumps. In fact,
this is a central issue for subdivision-surface methods.

In addition to all this, related but different criteria, such as the cost of, say,
picking a specified point on a subdivision surface, may also be relevant.

The quality of the generated surface is also not an unambiguous criterion.
For example, there are many different kinds and levels of continuity that may be
specified, as well as certain “fairness” measures that are sometimes very subjective
(does the method produce surfaces that are too “pointy,” or too “chunky?”).

Turning now to the choice of method , the situation is again quite compli-
cated. For example, the choice may be heavily influenced by a previous choice of
mesh representation in a larger system for which subdivision surfaces are only a
part. It is mentioned below that in such circumstances, some methods (the primal
methods) are more convenient than others (the dual methods) when it comes to
associating attributes such as colour and texture, in a persistent way, to objects
defined by subdivision surfaces. There exist convenient data structures for dual
methods, but converting from one representation to another is expensive. Simi-
larly, data structures capable of representing both primal and dual methods tend
to be quite elaborate in comparison with the streamlined implementations possible
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for a method like Catmull–Clark, which requires only the primal mesh and can be
implemented “in-place.”

Similar remarks hold for the actual implementation of specific algorithms:
different memory-management strategies are possible, and the resolution of the
trade-offs involved may depend on whether the implementation is to be on a low-
end or high-end system, since these may have different numbers of processors and
different memory-cache designs [18]. Resolving the trade-offs is especially difficult
in an environment of rapidly evolving graphics cards which permit significant levels
of on-card processing.

The complexity does not end with this, however, since partial solutions to the
problems mentioned above may introduce new difficulties. For example, in order
to reduce both time and memory requirements, it is of interest to use adaptive
subdivision (carrying the subdivision to different levels in different parts of the
object). This introduces new criteria, namely whether it is possible to vary the
level of subdivision in a convenient way, and without visible artifacts in the rendered
object.

A good discussion of general approaches to the implementation of important
operations in the subdivision-surface context, including the operations of surface
display, finding plane sections, and surface-surface intersection, is given in [139].

Plan of the book

Many subdivision surfaces can be viewed as generalizations of B-spline surfaces in
the sense that, instead of being limited to surfaces defined in terms of a planar
parametric domain, we can represent directly surfaces of more general form, such
as an elastic deformation of a sphere, or of a torus (the surface of a doughnut)
with several holes. Other subdivision surfaces are generalizations of box splines,
which themselves are generalizations (in a different sense) of B-splines. A natural
order of mathematical presentation is, therefore, to begin with B-spline surfaces,
and later to proceed to the more general cases. This order is the one used in
the book, starting in Chapter 2. First, however, we jump ahead a little in the
present chapter. The goal in doing this is to give the reader an overview of sub-
division methods and the corresponding surfaces they generate. In Section 1.2 we
introduce polyhedral meshes and primal and dual subdivision processes, and the
idea of a stencil (sometimes referred to in the literature as a subdivision mask).
Then, in Section 1.3, we describe several subdivision methods, including those of
Catmull–Clark, Doo–Sabin, and Loop, and then we give a classification (or taxon-
omy) of subdivision methods that shows the mathematical structure of the field.
Section 1.4 gives a summary of the relationships among the various kinds of sub-
division matrices that appear in the literature. In Section 1.5 we give an example
illustrating that a minor modification of a standard method may produce fractal
curves. The material in Chapter 1 is presented with little or no mathematical
justification.

In Chapter 2, we return to the beginning, introducing those parts of the
B-spline theory that are necessary for the later development of subdivision methods.
In particular, we discuss generating functions, discrete and continuous convolution,
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subdivision polynomials, the Lane–Riesenfeld algorithm, and several important
principles related to subdivision. In Chapter 3 this theory is generalized to the box-
spline case, and corresponding box-spline methods are described: Loop, Midedge,
and 4–8 subdivision. Then, in Chapter 4, we generalize even further, using general
subdivision polynomials; this leads to a class of methods wide enough to include all
of the commonly used subdivision algorithms, including

√
3-subdivision, the Modi-

fied Butterfly method, and the Kobbelt method. We also define a sort of universal
set: the class of generalized-spline surfaces, which correspond to the Generalized-
spline subdivision methods.

Convergence and smoothness are discussed in Chapter 5. Fairly complete re-
sults on convergence are given for the box-spline case, and we demonstrate what can
be proved, by elementary means, for methods defined by more general subdivision
polynomials. The chapter also gives an introduction to the topic of convergence and
smoothness in the nonregular case and points the reader to major references, such
as [124, 172], which give much more extensive analyses. In Chapter 6, evaluation
and estimation of surfaces are discussed. Surface evaluation includes evaluation
of a subdivision surface as a function of a parameter, and the use of stencils to
compute the limiting positions and tangents corresponding to the control points at
any subdivision level. Surface estimation refers to the calculation of tight bounding
envelopes for surface patches, and adaptive subdivision is mentioned as an applica-
tion. Precision sets and degree of polynomial reproduction are also examined. In
Chapter 7 we discuss the question of shape control. This includes the treatment of
boundaries and crease edges, interpolation and surface fitting, and methods for mul-
tiresolution editing, one of which makes an interesting connection with the theory of
wavelets.

Notes on terminology

The classification given in Section 1.3 is intended to describe relationships among
subdivision methods. The terms subdivision process and subdivision scheme will be
used as synonyms for “subdivision method.” The subdivision surface generated by
a given subdivision method is of course not the same thing as the method itself,
but subdivision methods can be classified according to the type of surfaces they
generate. This is the classification approach used here.

Many authors remark informally that some specific subdivision method is a
variant of a certain basic subdivision method defined for regular meshes (meshes
that correspond to simple tilings of the plane, such as triangular and rectangular
tilings). In this book we elevate the terms basic method and variant method almost
to the level of definitions; i.e., we use the adjectives “basic” and “variant” system-
atically in this context. The basic method applies on regular parts of the mesh,
while the variant method is designed to deal with the nonregular case.

The word grid is also used systematically to refer to a decomposition of the
parametric domain, as in Figure 1.2/2. The corresponding linked collection of control
points pk,l in RN is referred to as a polyhedral mesh, which, it should be noted, is
not the same thing as a logical mesh. The definitions of logical mesh and polyhedral
mesh are given in the next section.
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Figure 1.6. A simple example of Catmull–Clark subdivision.

1.2 Underlying combinatorial structure
The subdivision rules applied at each step will have the effect, as described below,
of producing a refined mesh; see Figure 1.6/9. (A subdivision step will occasionally
be referred to as a round of subdivision.) We primarily discuss stationary schemes,
which means that the same rules are used repeatedly at each step. The number
of steps is arbitrary: the intuitive idea is that after a sufficiently large number of
steps, the collection of control points will converge to a smooth limit surface. Note,
however, that although convergence proofs make reference to “a sufficiently large
number of steps,” in practice the number of steps will usually be very small. One
reason for this is that memory requirements, and the time required to display the
object on the computer screen, increase very rapidly at each step.2

The reader might naturally ask where the subdivision rules come from, whether
the process converges, and if so, whether it converges to a surface that really is in
some sense smooth. Further, if the answers to these questions are satisfactory for
the standard methods presented here, one might ask whether the same will be true
for some new set of rules that might be proposed. Answers to these and related
questions make up the remainder of the book.

1.2.1 Polyhedral meshes

A subdivision method begins with a polyhedral mesh, including the associated
control points, and performs a certain number of steps of the subdivision process.

In solid-modelling systems [1, 154], the model is usually divided into two parts.
First there is the logical or topological information, which defines how the various
parts (vertices, edges, faces) of an object fit together. Second, there is the geometric
information, which defines where the various parts are actually situated in Euclidean
space. A similar division is appropriate here. We first define a logical mesh and set
out the conditions that it must satisfy. This is important for implementation: it
determines the conditions that must be satisfied by the data structures used. We
then attach geometric information to the logical mesh, to obtain what is called a
polyhedral mesh.

The polyhedral meshes used in practice usually correspond to simple well-
formed structures3 in R3, and we describe below exactly which kinds of well-formed
structures are possible. On the other hand, we do not require here that the geometric
data should necessarily correspond to physical position in R3.
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A logical mesh M is defined by its vertices � ∈ ZL = {0, . . . , L− 1}, its edges
{�, �′}, �, �′ ∈ ZL, its faces, and the topological relationships among all these. A
polyhedral mesh is denoted M = (M,p), where M is a logical mesh, and p(L×N)
is a vector of vectors, i.e., a matrix whose rows contain the control points p� (ele-
ments of RN ) associated with the logical vertices � of M . A simple example is a
polyhedral mesh corresponding to a sphere, as illustrated in Figure 1.6/9. When
the word “mesh” is used alone, it will be clear from the context whether “logical”
or “polyhedral” is intended.

Before giving the formal definitions, we note that it is convenient to use the
single index �, running over the finite set ZL, to denote a vertex, when discussing
the structure of a logical mesh. In other situations, however, the logical vertices
are more naturally indexed in other ways, for example, by pairs of integers (k, l)
denoting a grid point in the plane, as in (1.1)/2. Alternate indexing of this kind
is used frequently in the book, especially where infinite logical meshes are used for
theoretical analysis, prior to discussion of methods for finite meshes such as those
illustrated in Figure 1.6/9.

Logical meshes

In the following definitions, we adopt a formal style of presentation, as we will
occasionally do even in this first chapter when it seems necessary to make the
concepts clear.

Definition 1.2.1. (Face.) A face f is a finite ordered set of distinct vertices

f = (�0, �1, . . . , �e−1), �i ∈ ZL, i = 0, . . . , e− 1.

The face f is also identified with the same set in reverse order, and with sets obtained
by cyclic permutation of the elements of either of these.

Definition 1.2.2. (Edge set.) The edge set of face f = (�0, �1, . . . , �e−1) is the
collection of unordered pairs

Ef = {{�0, �1}, {�1, �2}, . . . , {�e−1, �0}}.
The number of edges e may vary depending on the face; we assume e ≥ 3.

Also, to simplify the discussion, we do not permit multiple edges between identical
pairs of vertices.

Definition 1.2.3. (Logical mesh.) A logical mesh is a finite collection of faces and
corresponding edge sets.

As described below, we often deal with logical meshes composed primarily
of triangular faces (e = 3) or quadrilateral faces (e = 4). There is an abuse of
terminology here, since there is no geometric information specified, and therefore
no suggestion that the “quadrilateral” face is a planar polygon.

An example of a logical mesh is given in Figure 1.7/11 (left); it is defined by
the six quadrilateral faces (1, 2, 6, 5), (2, 3, 7, 6), (4, 5, 6, 7), (4, 7, 3, 0), (0, 1, 5, 4), and
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Figure 1.7. Two examples of logical meshes.

(3, 2, 1, 0). Another example [98] is given in Figure 1.7/11 (right). The faces of the
two meshes are not indicated in the figure, but these faces (and their edge sets,
which implicitly specify the way in which the faces are linked to the vertices and
edges) must be specified. For example, in Figure 1.7/11 (right) the direction of the
through hole is ambiguous: it could join the sides as shown in the figure, or it could
join the opposite pair of sides; alternatively, the hole could go from top to bottom,
or even be absent.

For subdivision, we are interested in logical meshes that satisfy the further
condition of local planarity [124], [176, Sec. 5.1.1]. Such meshes may be meshes
with or without boundary. To illustrate the ideas intuitively, we give some infor-
mal examples. If the mesh in Figure 1.7/11 (left) has the six faces mentioned just
above, then it is a locally planar mesh without boundary; the same is true for Fig-
ure 1.7/11 (right) if, for example, the faces are defined so as to create a through hole
in some direction. A 4× 5 logical mesh, with the form of Figure 1.4/4 but without
control points, would be a locally planar logical mesh with boundary. On the other
hand, if two copies of the mesh in Figure 1.7/11 (left) were combined by identifying
the edge {4, 7} in one copy with the edge {1, 2} in the other copy, then the resulting
mesh would not be locally planar.

Remark* 1.2.4. The ideas of the last paragraph are made precise in the two def-
initions that follow. These definitions can be skimmed on a first reading.

Definition 1.2.5. (Interior edge/vertex, exterior or boundary edge/vertex, bound-
ary, mesh without boundary.) An edge {�, �′} in the logical mesh is called interior
if it belongs to at least two faces; otherwise it is an exterior edge, or boundary
edge. The boundary of the logical mesh is the set of all boundary edges. If it is
empty, we say that we have a mesh without boundary. An interior vertex is a ver-
tex that is not in a boundary edge; otherwise it is an exterior vertex, or boundary
vertex.

Definition 1.2.6. (Locally planar.) A logical mesh is called locally planar if each
edge belongs to at most two faces and if, for any vertex �, the j faces φi incident
at � can be ordered in such a way that φi meets φi+1 at an edge containing � for
i = 0, 1, . . . , j − 2.
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. . .

�
φj−1

φ3

φ2

φ0
φ1

φj−1

�
. . .

φ1
φ0

Figure 1.8. Local planarity: The two possible cases.

Note that “locally planar” does not mean geometric planarity: no geometric
information is present.

In a locally planar mesh, it may happen that φj−1 meets φ0 along an edge. If
this occurs, then all of the incident edges are interior; otherwise, two of them are
exterior. The two cases are illustrated in Figure 1.8/12. A locally planar mesh may
contain holes (see Exercise 1/47).

Another example of a mesh that is not locally planar is a mesh composed
of two opposing tetrahedra, joined at a common vertex. Similarly, a non-locally-
planar mesh might contain two triangular faces meeting in a single vertex, in the
form of a bow tie or butterfly, or several such faces. Other examples are suggested
in Exercise 2/48.

It is often stated in the subdivision literature that subdivision permits sur-
faces of “arbitrary topology.” This is usually meant to imply that any locally planar
mesh is permitted, and the topology is therefore not completely arbitrary.4 We do
not often use the hypothesis of local planarity explicitly, but we assume throughout
that meshes are locally planar. This is true in particular for the definition of the
dual mesh, which is given now.

The concept of the dual of a locally planar mesh M is central to the under-
standing of subdivision methods. We give the definition5 first for a locally planar
mesh without boundary and then extend the definition to the case of a locally pla-
nar mesh with boundary. Let M be a locally planar mesh without boundary. The
vertices of the dual of M consist of one point associated with each face of M , as il-
lustrated in Figure 1.9/13 for the case of the cube-shaped mesh in Figure 1.7/11 (left).
The mesh is shown folded into the plane in Figure 1.9/13, with the vertices numbered
exactly as in Figure 1.7/11. In Figure 1.9/13, and throughout the book, vertices of
the dual mesh are shown as black squares. There is an edge connecting two vertices
in the dual of M if the corresponding faces in M are separated by an edge; the edges
in the dual are shown in the figure by dashed lines. Finally, there is a face in the
dual of M for each vertex in M . The faces of the dual are indicated in Figure 1.9/13

by the regions between the dashed lines: in the example shown there are eight, and
the original vertex numbers serve to label them.

Now, to define the dual mesh of a locally planar mesh M with boundary, we
observe first that such a mesh can be extended to a locally planar mesh without
boundary (let us call the extended mesh M∗) by filling in a finite number of holes.
To see this, consider any boundary edge in M (see Figure 1.8/12, left). This edge
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Figure 1.9. The dual of the cube-shaped locally planar mesh.

Figure 1.10. Dual mesh (bivariate and univariate cases).

must be connected to another boundary edge, which must in turn be connected to
another boundary edge. The chain resulting from a continuation of this procedure
is closed and simple (no repeated vertices) and has length at least 3, since we have
excluded multiple edges between the same pair of vertices. Its length must be finite
since M is finite, so that we can add a face to the mesh corresponding to the edges
in this chain. Repeating this process, which we have informally described as “filling
in a hole in the mesh,” until all boundary edges have been exhausted, we obtain a
locally planar mesh without boundary. Having denoted this mesh without boundary
by M∗, the dual of the original mesh is now defined to be the dual of M∗.

An example corresponding to the case usually illustrated in the literature is
shown in Figure 1.10/13 (left). Here there is only one boundary chain, around the
outside of the mesh, and the mesh can be extended to a mesh without boundary by
adding a single face corresponding to the exterior region of the figure. The extended
mesh M∗ in this example has the topological form of a sphere.

As is customary, in Figure 1.10/13 (left) we have not shown the dual vertex
corresponding to the additional face (the external region). The device of adding the
additional face, however, must not be omitted, in order to avoid shrinkage of the
mesh each time we take the dual of the mesh.
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For a locally planar mesh without boundary, the dual of the dual is the orig-
inal primal mesh. See Exercise 3/48. The dual mesh can also be illustrated in the
one-dimensional case, as in Figure 1.10/13 (right).

The relevance of the dual mesh is intuitively clear. If we are given a polyhedral
mesh, and we form an average of values associated with pairs of vertices, such as
those illustrated by black circles in Figure 1.10/13 (right), it is natural to associate
that average value with a newly introduced vertex, shown as a black square. Simi-
larly, if we average the values associated with the corner vertices of the pentagonal
face in Figure 1.10/13 (left), it is natural to associate the average value with a newly
introduced vertex associated with the middle of the face. Further, once we have
determined the average values for each of the black squares, we may repeat the
process, and the new average values are naturally associated with the vertices of
the original primal mesh.

In the next section it is observed that many commonly used subdivision meth-
ods are either primal methods or dual methods, and the latter make explicit use of
the dual mesh. The theoretical importance of the dual mesh is greater than this fact
might suggest, however, since it turns out that the underlying mechanism behind
many subdivision methods, whether primal or dual, can be viewed as an alternation
at each step between a refinement of the initial mesh for the step, and the dual of
this mesh (even if it is unnecessary to actually construct the dual mesh in the case
of primal methods). This is most easily observed in the Lane–Riesenfeld algorithm,
which is the basis for the Doo–Sabin and Catmull–Clark methods, discussed later
in this chapter. Furthermore, a generalized version of this alternation mechanism
will appear in the discussion of box splines (Chapter 3), and other methods, such
as
√

3-subdivision (Chapter 4), can also be viewed as involving alternate averaging.

Polyhedral meshes

We turn now to the control points, introduced above, which form part of the defi-
nition of a polyhedral mesh. One (but not the only) possible use of these points is
to associate physical position in R3 with a logical mesh.

Associated with each vertex � is the control point p� ∈ RN (see Figure 1.11/14).
These points in RN are written as row vectors, and collected together in an L×N

p�

Figure 1.11. Doughnut with two holes, or coffee cup with intertwined handles.
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matrix, or vector of vectors, denoted p:

p =

 p0
...

pL−1


(L×N)

.

Definition 1.2.7. (Polyhedral mesh.) If M is a logical mesh and p is the associ-
ated matrix of control points, the pair M = (M,p) is called a polyhedral mesh. A
polyhedral mesh is called a mesh without boundary if M is a mesh without boundary,
and similarly, it is called locally planar if M is locally planar.

The intuitive idea behind the name “control point” comes from the fact that
control points may represent the physical positions of the corners of the mesh: in
choosing the initial control points, we have some control over the shape of the limit
surface that results from applying the subdivision process. Thus, in Figure 1.6/9, if
the physical positions of the corners of the initial cube were moved, the form of the
resulting surface would be changed.

If we continue for a moment to assume that the control points p� represent
physical position, then we can consider the case when the polyhedral mesh M =
(M,p) corresponds to a polyhedron in a bounded subset of R3. (To establish such
a correspondence, a suitable interpretation of a face as a curvilinear surface patch
must be introduced, since the control points in a face may not be coplanar.) The
nature of such polyhedra is quite well understood, due to the classification theorem
for compact surfaces [100, Thm. 7.2]. A mesh without boundary must correspond
either to a sphere or to the direct sum6 of several tori. If we assume that the
polyhedron is not self-intersecting, this means that the mesh is like the surface of a
doughnut with zero or more holes, where parts of the surface may be intertwined,
as illustrated in Figure 1.11/14. Another metaphor that is often used to describe
the most general non-self-intersecting mesh without boundary is a coffee cup with
zero or more handles. If the surface is pushed in, or indented, to form a depression,
just where p� is indicated in Figure 1.11/14, the depression in the surface can be
viewed as the basin of a coffee cup; then, the two intertwined circular parts of the
surface can be viewed as intertwined handles on the cup. Finally, for the case of
meshes with boundary, all such meshes can actually be modelled in R3, as disks
with (perhaps twisted) strips of paper glued to their boundaries [100, Sec. 12].

While it is useful to have some feeling for the level of generality attainable by
locally planar surfaces, as just outlined, we make no assumption in this book that
the mesh satisfies the conditions mentioned in the previous paragraph. In particular,
if the control points correspond to physical position, there is no assumption that
M = (M,p) can somehow be interpreted as a non-self-intersecting polyhedron7

in R3. In fact, as we have mentioned, we do not even assume that the control
points correspond to physical position: they might instead correspond to colour,
texture coordinates, surface normal vectors, or the sharpness of what are called
semisharp boundary edges, as in Section 7.1.1. Alternatively, there could be more
than one set of control points, some corresponding to physical position and some
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[63] [44] [4.82]

Figure 1.12. Three regular tilings of the plane.

not. Verifying that the results of subdivision have a useful interpretation, when the
control points do not correspond to physical position, is a topic that merits close
attention, but it is not discussed here. We view the control points p� simply as
elements of RN .

1.2.2 Primal and dual subdivision methods

The conceptual starting point for the standard methods of subdivision can be viewed
as a choice of a regular tiling of the plane, along with an associated splitting schema
that allows us to subdivide a mesh corresponding to the tiling, into a mesh corre-
sponding to a more refined version of the tiling or its dual. Smoothing rules are
then introduced to compute new values of the control points on the refined mesh,
and later, the rules are modified to take account of meshes that do not correspond
exactly to the regular tiling.

We begin by defining a regular mesh. Regularity is defined with respect to one
of the regular tilings of the plane. There is a large variety of such tilings [60]. Among
the simplest are the eleven isohedral Laves tilings [60, pp. 96, 176], and almost all
subdivision methods are based on meshes which, although not planar, are closely
related to the three tilings shown in Figure 1.12/16, namely8 those denoted [63], [44],
and [4.82].

Let M be a locally planar mesh without boundary. We denote the number of
edges in a face by e (see Definitions 1.2.1/10 and 1.2.2/10), and the number of edges
incident at a vertex (the valence) by n. Then, a regular triangular mesh is defined
as one for which all faces have e = 3 and all interior vertices have valence n = 6.
Similarly, a regular quadrilateral mesh is defined9 as one for which all faces have
e = 4 and all interior vertices have valence n = 4. A regular part of a triangular or
quadrilateral mesh is defined similarly, and the definition of a regular 4-8 mesh is
given later, in Section 3.7.2.

If a mesh is considered to be triangular, but it is not a regular triangular mesh,
then any vertex with n �= 6 is called an extraordinary vertex , and any face with e �= 3
is called an extraordinary face. Similarly, if a mesh is considered to be a quadrilateral
mesh, but it is not a regular quadrilateral mesh, then any vertex with n �= 4 is called
an extraordinary vertex , and any face with e �= 4 is called an extraordinary face.10

Vertices and faces that are not extraordinary are called ordinary . Meshes considered
to be triangular are usually made up of mostly triangles, and meshes considered to



book
2010/3/3
page 17

�

�

�

�

�

�

�

�

1.2. Underlying combinatorial structure 17

Figure 1.13. The pT4 triangular split.

pQ4 pT 4

Figure 1.14. The pQ4 and pT4 splittings.

be quadrilateral are usually made up of mostly faces with e = 4, but there is no
requirement that this always be so.

Associated with the underlying tiling is a splitting schema, which typically
satisfies the condition that if the splitting schema is applied to the tiling, viewed as
a mesh, then it produces a new version of the tiling, or its dual (which may be the
same, as in the case of [44]).

The primal methods use rules that work directly with a refined version of M ,
defined in terms of its vertices, edges, and faces. One important type of splitting used
in the context of meshes considered to be triangular proceeds as follows: the edges
of each e-gon (a polygon with e edges) are split in two, and joined by new edges,
as in Figure 1.13/17 for e = 3, 4, 5. We refer to this schema as primal triangular
4-split (pT4). With this schema, an e-gon in the original mesh is transformed into e
triangles, and one new e-gon, in the refined mesh. In particular, if the original mesh
contains only triangles (e = 3), then the refined mesh will contain only triangles.
This is the usual case; see Figure 1.14/17 (right), For the pT4 schema,

• if there is an extraordinary face (i.e., a nontriangle) in the original mesh, it
will remain after each subsequent subdivision step. No new extraordinary
faces will be introduced after the first subdivision step.
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• if there is an extraordinary vertex in the original mesh, it will remain after each
subsequent subdivision step. No new extraordinary vertices will be introduced
after the first subdivision step.

In the context of meshes considered to be quadrilateral, the procedure is
slightly different. Again, the edges of each e-gon are split in two, but now, an
additional vertex is added in the middle of the face. This additional vertex is joined
by new edges to each of the new midedge vertices, as illustrated in Figure 1.15/18 for
e = 3, 4, 5. As a result, an e-gon in the original mesh is transformed into e quadri-
lateral faces. Thus, after the first round of subdivision, the mesh will comprise only
quadrilateral faces (e = 4). This schema is referred to as primal quadrilateral 4-split
(pQ4): the case e = 4 is shown in Figure 1.14/17 (left).

Another kind of splitting schema applicable to meshes considered to be quadri-
lateral leads to the class of dual methods. We proceed as in the primal case, except
that the procedure is followed by taking the dual of the mesh. Thus, the edges
of each e-gon are split in two, an additional vertex is added in the middle of each
face, and the additional vertex is joined by new edges to each of the new midedge
vertices. So far, this is the same as the pQ4 schema. Now, however, there is an
additional step: we take the dual of the mesh, as illustrated in Figure 1.16/19. This
new schema11 is referred to as dual quadrilateral 4-split (dQ4). When it is used, an
e-gon is transformed into e quadrilateral faces, and a new vertex is associated with
each new quadrilateral face in order to form the dual mesh. After the first round
of subdivision, the mesh will contain only vertices with valence n = 4.

For the pQ4 and dQ4 splitting schema, we have the following dual sets of
statements related to extraordinary vertices and faces. For the pQ4 schema,

• if there is an extraordinary face in the initial mesh, then the pQ4 schema will
create a corresponding extraordinary vertex in the subdivided mesh, at the
first step.

• this new extraordinary vertex, and any other extraordinary vertices that were
already in the initial mesh, will remain after each subsequent subdivision
step.

• no extraordinary faces will remain in the mesh after the first subdivision step,
and no new extraordinary vertices will be introduced after the first subdivision
step.

Figure 1.15. The pQ4 quadrilateral split.
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Figure 1.16. The dQ4 dual quadrilateral split.

Similarly, for the dQ4 schema,

• if there is an extraordinary vertex in the initial mesh, then the dQ4 schema
will create a corresponding extraordinary face in the subdivided mesh, at the
first step.

• this new extraordinary face, and any other extraordinary faces that were
already in the initial mesh, will remain12 after each subsequent subdivision
step.

• no extraordinary vertices will remain in the mesh after the first subdivision
step, and no new extraordinary faces will be introduced after the first subdi-
vision step.

The dual of a triangular mesh that is to be subjected to pT4 splitting is a
hexagonal mesh, but with a nonhexagonal face corresponding to each extraordinary
vertex in the original mesh. A duality, of the sort just described for the pQ4/dQ4
case, could be established here, also, but hexagonal meshes are less frequently used
in practice,13 so we do not do this.

Remark 1.2.8. The dQ4 splitting procedure involves, in the first step, subdivi-
sion followed by taking the dual. The same procedure is followed in the next and
subsequent steps, but this does not imply that the method alternates between the
primal mesh and dual mesh at each step. The first step takes us to the dual of
the subdivided primal mesh. The second step takes us not back to the primal,
but, rather, to the dual of the twice subdivided primal mesh. After ν steps we end
up in the dual of the ν-times subdivided primal mesh. Figure 1.17/20 illustrates
both the two-dimensional and one-dimensional cases. The first step takes us to
the dual mesh, indicated by solid black lines intersecting black squares (just as in
Figure 1.16/19). At the second step this mesh is subdivided, as shown by the green
lines in Figure 1.17/20 (top), and the dual is taken, producing the points shown by
green triangles. These points are in the dual of the twice subdivided primal mesh.

It is shown below that the same remark applies to the process of alternate
averaging (at the level of substeps) between the refined initial mesh for each step
and the dual of this mesh. This will be described in some detail in Section 1.3.1. In
the first step of a dual method we alternate an odd number of times between the
subdivided primal and dual meshes. This process is repeated at the second step,
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Step 1.

Step 2.

Figure 1.17. Two steps lead to dual of twice subdivided primal mesh.

Step 2.

Step 1.

Figure 1.18. The result of an odd number of alternations at each step.

but this does not send us back to the primal: it takes us instead to the dual of the
twice subdivided primal mesh, as illustrated in the one-dimensional case (supposing
three alternations within each step) in Figure 1.18/20.

It is shown later that there are other, different, splitting schema that can be
used in connection with the [63] tiling, but they have the same kind of extraordinary
vertices (valence n �= 6): an example is

√
3-subdivision. Similarly, the 4-8 subdivi-

sion method is defined in terms of a splitting schema that preserves the topology
shown in Figure 1.12/16 (right), and regularity is defined accordingly.

The splitting schema involved is often clear from the context. For example,
if the term “nonregular quadrilateral mesh” is used, it is clear that pQ4 or dQ4
splitting is involved, and that the situation which is considered normal or ordinary
is defined by the [44] tiling.

1.2.3 Stencils

Suppose now that a splitting schema, such as pQ4, dQ4, or pT4, has been chosen.
Given the control points p of the polyhedral mesh M = (M,p), one step of a
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1
4

1
4

1
4

1
4

Figure 1.19. A simple example of a stencil.

subdivision method involves first the refinement of the logical mesh M , and second
the computation of the control points for the refined mesh. The definition of this
second computation is referred to as the specification of the smoothing rule for the
method. Normally there is a fairly small number of cases for the local vertex-edge-
face topology in the refined mesh, and to describe a step in the subdivision method
it is sufficient to define how to compute the new control points for each such case.
This can be done by specifying a stencil for each case. Stencils are primarily used
to define or illustrate a subdivision rule. For example, a subdivision rule might
introduce a new vertex in the middle of a quadrilateral face with a new associated
point p equal to the average of the control points at the four corners, and the stencil
would be as illustrated in Figure 1.19/21.

Some authors refer to stencils as “subdivision masks,” but we follow [25, 44,
124] and others, reserving the word “mask” for the array of nonzero coefficients of
the subdivision polynomial introduced in Section 2.2 below.

Calculations defined by subdivision rules will sometimes be described as being
done in Jacobi manner.14 This means that the original unmodified data are is
somehow kept available, perhaps by making a copy of the data, or by reading the
input data, transforming it, and writing the output without overwriting any of
the input data. Thus, all calculations of new values are made using the original
(nonupdated) version of the data. Computations done in Jacobi manner by making
a copy of the data are in contradistinction to in-place computations.

1.3 Examples and classification
In this section we present the principal subdivision methods used in practice in
the case of meshes without boundary. Auxiliary rules for the case of meshes with
boundaries are given in Chapter 7. We begin with a summary description of some
of the most commonly discussed algorithms. Following is a classification of subdivi-
sion methods, based on a hierarchy of the spline surfaces generated by the various
methods. All of the algorithms studied in the book are discussed in terms of this
classification.

Following presentation of the main classification, cross-classifications are given,
based on criteria such as mesh type, interpolation versus approximation, etc.



book
2010/3/3
page 22

�

�

�

�

�

�

�

�

22 Chapter 1. Introduction

1.3.1 The methods of Catmull–Clark, Doo–Sabin, and Loop

The Catmull–Clark [24] and Doo–Sabin [45] methods were among the first surface-
subdivision methods introduced, and the Catmull–Clark, along with the Loop [91]
method, has become a graphics industry standard. The Doo–Sabin and Catmull–
Clark methods provide an example of one approach to generating15 subdivision
algorithms. We start with the class of tensor-product uniform B-splines of order
m = d+ 1, and we observe that there is a method for the evaluation of such func-
tions based on subdivision of the infinite regular quadrilateral grid (see Figure 1.2/2)
in R2, namely, the Lane–Riesenfeld algorithm. We then observe that the steps of
the algorithm depend only on control points available locally. This permits us to
change our point of view and apply the subdivision algorithm to regular portions of
a finite polyhedral mesh and then to propose extensions of the subdivision rules that
deal with nonregular portions of the finite mesh. We view this extended method as
a variant of the basic subdivision method: only the variant method is implemented,
but it reduces to the basic method in regular parts of the mesh (and this fact is
crucial for purposes of analysis).

Two such variants are the Doo–Sabin (d = 2) and Catmull–Clark (d = 3)
methods, but there are others, including the Repeated Averaging variant (d arbi-
trary), which is described first. The Repeated Averaging variant is a very natural
and intuitive method, and the Doo–Sabin and Catmull–Clark algorithms can be
viewed as minor variations of Repeated Averaging.

Finally, we also describe the Loop method, which is a variant of a method for
regular triangular grids.

Tensor-product uniform B-splines and the Lane-Riesenfeld algorithm

Suppose we are given a two-dimensional regular quadrilateral grid with grid-size h,
bi-infinite in both dimensions, and with control points pk,l ∈ RN defined on hZ2 =
{(kh, lh)t : (k, l) ∈ Z2}. A tensor-product uniform B-spline of bidegree d is the
piecewise polynomial

x(u, v) =
∑

(k,l)∈Z2

pk,lN
m
k (h;u)Nm

l (h; v), (u, v) ∈ R2,

given in (1.1)/2. Here, Nm
k (h;u) and Nm

l (h; v) are the centered B-spline basis
functions, introduced formally in Chapter 2, and we have used a standard notation
for the order m, which is one more than the degree d. Although the summation
is over the infinite grid, at a particular parameter value (u, v), only m of the basis
functions Nm

k (h;u), and m of the basis functions Nm
l (h; v), are different from zero.

The bivariate Lane–Riesenfeld algorithm for the evaluation of the surface
x(u, v) with m = d + 1 is denoted LR(d × d) and consists of a linear subdivi-
sion substep followed by d− 1 averaging substeps [151]. We consider first the case
d = 2.

A single step of the LR(2 × 2) algorithm is illustrated in Figure 1.20/23. To
begin, the control points pk,l are associated with the rectangular grid of points in
hZ2 (Figure 1.20/23, left). For d = 2, each step of the LR(2× 2) algorithm proceeds
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Grid for
next step

pk,l+1 pk+1,l+1

pk,lpk+1,lpk,l

pk,l+1

1
2 [pk,l+1 + pk+1,l+1] 1

2 [pk+1,l + pk+1,l+1]
pk+1,l+1

pk+1,l

1
2 [pk,l + pk+1,l]1

2 [pk,l + pk,l+1]

1
4 [pk,l + pk+1,l + pk+1,l+1 + pk,l+1]

Figure 1.20. The LR(2× 2) algorithm (one step) viewed in parameter space.

Figure 1.21. The LR(2× 2) algorithm (three steps) viewed in RN .

in two substeps. In the linear subdivision substep, the grid is first subdivided
so that the grid-size is halved, and new (but temporary) points in the mesh are
calculated by averaging along the grid lines and computing the centroid 1

4 [pk,l +
pk+1,l+pk+1,l+1+pk,l+1] of the corner control points (Figure 1.20/23, middle). Then,
a single (d− 1 = 1) averaging substep is executed, producing a new array of points.
The vertices of this new array are denoted by black squares in Figure 1.20/23 (right):
the new control point for each black square is calculated as the average of the four
neighbouring points computed in the first substep. Thus, for example, the control
point for the lower left black square is easily verified to be

9
16
pk,l +

3
16
pk+1,l +

3
16
pk,l+1 +

1
16
pk+1,l+1 . (1.2)

The network of points in RN , for N = 3, after one complete step of the algorithm
applied to the unit cube, is shown in the second illustration of Figure 1.21/23.

The single step of the biquadratic Lane–Riesenfeld algorithm LR(2× 2), just
described, is repeated as often as desired, producing a finer and finer mesh at
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each step. Each step consists of a linear subdivision substep and an averaging
substep. Figure 1.21/23 also shows the results of the second and third steps of the
algorithm. In the limit, the network of points exactly matches (in a sense to be
made precise) the form of x(u, v).

We consider next the case d = 3. In this case, in each step, the initial linear
subdivision substep is followed by d− 1 = 2 averaging substeps. Thus, in addition
to the substeps illustrated in Figure 1.20/23, the bicubic Lane–Riesenfeld algorithm
LR(3 × 3) executes one more averaging substep within each step. To illustrate,
before proceeding to the subsequent step, the method averages the values associated
with the four black squares in Figure 1.20/23 (right), and the computed average is
associated with the centre node in the subdivided primal mesh.

For larger values of d, d − 1 averaging substeps follow the linear subdivision
substep within each step. If d is even, the initial mesh for the next step is the dual
mesh, as in Figure 1.17/20 (top), while if d is odd, the initial mesh for the next step
is the primal mesh.

Later it will be convenient to divide the linear subdivision substep itself into
two smaller substeps, but this is just a difference in terminology.

When d = 4, the LR(d×d) method is called Biquartic subdivision [176, p. 82].

The Repeated Averaging variant

It can be shown that the LR(d × d) algorithm converges to the B-spline surface
x(u, v) defined by m = d+ 1. Furthermore, we see that the computations involved
in each step comprise only local averagings, so that we can decide to apply them
directly in finite regular quadrilateral meshes. In addition, there is a very natural
way to define a variant method applicable in regions of the mesh involving extraor-
dinary vertices and faces (such as the mesh illustrated in Figure 1.22/24). First,
in the linear subdivision substep, when computing the control-point value at the
new point in the middle of a face, the value 1

4pk,l + 1
4pk+1,l + 1

4pk+1,l+1 + 1
4pk,l+1

is replaced by the centroid, i.e., the average of the e control points around the face,
where e is the number of edges (and vertices) in the face. Second, in the averaging
substep, the four-point averaging process is replaced by computation of the centroid
of the face. The resulting algorithm for meshes without boundary can be described
in terms of two procedures [155] named LinSubd and Dual .

The procedure LinSubd takes a locally planar polyhedral mesh M = (M,p)
and subdivides it according to the pQ4 schema, assigning new values to p as follows:

Figure 1.22. An example of a nonregular mesh.
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1
e

1
e

1
e

1
e

1
e

1
2

1
2

p1

1
5 [p0 + . . .+ p4] p2 p3

p4

p0
1
2 [p0 + p1]

Figure 1.23. Linear subdivision: Stencils and subdivided face.

the new control point at a new vertex in the middle of an edge (�, �′) is assigned
the value 1

2 [p� + p�′ ], and the new control point in the middle of a face defined by
(�0, . . . , �e−1) is assigned the value 1

e

∑e−1
i=0 p�i . These two rules are illustrated in

Figure 1.23/25 (left). The values at existing vertices are left undisturbed. Edges
are added to connect the new face points to the new edge points, so that the new
mesh contains only quadrilateral faces. The linearly subdivided face is illustrated
in Figure 1.23/25 (right) for the case e = 5. The second procedure, called Dual ,
takes a polyhedral mesh M = (M,p) and replaces it by a polyhedral mesh having
as logical mesh the dual of M , with control points defined by the centroids of faces
in M. Thus, Dual(M) is a new polyhedral mesh whose vertices have control points
equal to the centroids of faces of M = (M,p), and whose edges join centroids of
faces that share a common edge in M [151, p. 387].

The Repeated Averaging algorithm, a variant method that can be used for
nonregular meshes, is then defined by the following pseudocode. (Note, however,
that in practice the method would not be implemented in this way; see the discussion
below.)

Algorithm. Repeated Averaging.

Input: M0, d ≥ 1, λ ≥ 0
Output: A mesh subdivided to level λ with a degree-d process

function RepeatedAveraging(M0, d, λ)
for ν = 1 to λ do
Mν ← LinSubd(Mν−1)
for j = 1 to d− 1 do
Mν ← Dual(Mν)

end
end
return Mλ

end RepeatedAveraging

The logical mesh associated with odd values of d (d = 1, 3, 5, . . .) is the mesh
Modd produced by a single invocation of LinSubd , i.e., Modd =LinSubd(M0). The
logical mesh Meven associated with even values of d (d = 2, 4, 6, . . .) is the dual
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Modd

Meven

LinSubd Dual Dual Dual

Figure 1.24. Logical meshes used by RepeatedAveraging.

of this mesh. The logical meshes Modd and Meven can be seen in the two rows in
Figure 1.24/26 [151, Fig. 3]. For ν > 1, the input polyhedral mesh M0 is replaced
by Mν−1 from the previous step.

The Repeated Averaging variant of the LR(d × d) algorithm is called the
Simple algorithm in [151]; see also [101, 128, 177].

Isolation of extraordinary vertices and faces

In going from a regular planar grid to a nonregular locally planar mesh, there are two
kinds of changes involved: we have moved from planar grids to locally planar meshes
(such as meshes in the form of a sphere, or a torus with one or more holes), and
from regular to nonregular meshes.16 If an algorithm like the Repeated Averaging
variant is applied, however, the basic LR(d × d) algorithm remains relevant, since
large parts of the mesh may be regular. In fact, as described in Section 1.2.2 above,
subdivision using the pQ4 schema does not introduce new extraordinary vertices
after the first step, and subdivision using the dQ4 schema does not introduce new
extraordinary faces after the first step. This means that as subdivision proceeds,
the extraordinary vertices (pQ4) or faces (dQ4) become (topologically) more and
more isolated, and the regular portions of the mesh become larger and larger (see
Figure 1.25/27, where there are two extraordinary vertices in the pQ4 case, and two
extraordinary faces in the dQ4 case). Thus, over submeshes corresponding to almost
all of the subdivided mesh, basic subdivision methods can be analysed in terms of
their corresponding classical B-splines. Only extraordinary vertices or faces of the
mesh will require a special analysis of the variant method and its associated spline,
and the number of such vertices or faces remains fixed as the subdivision proceeds.

The Doo–Sabin variant

The Doo–Sabin variant of the LR(2×2) method is almost identical to the Repeated
Averaging variant with d = 2. Both methods apply the dQ4 schema and assign
values to the control points associated with the nodes in the subdivided dual mesh.
These values depend only on the control points of the parent face. For the Doo–
Sabin variant, if the parent face had e vertices �j , j = 0, . . . , e−1 (see Figure 1.26/27),
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pQ4

dQ4

Figure 1.25. Extraordinary vertices and faces become topologically isolated.

e = 5 pnewi =
∑e−1

j=0 Wijp�j

p�i+2

p�i+1

p�i

p�i+4p�i+3

Figure 1.26. Stencil for Doo–Sabin method.

then the value pnewi assigned to a new face point, for a face having �i as one of its
vertices, is

pnewi =
e−1∑
j=0

Wij · p�j ,

where17

Wij =


e+5
4e , j = i,

3+2 cos(2π(i−j)/e)
4e , j �= i.

(1.3)

These weights can be compared with those used by the Repeated Averaging variant,
which are given in Exercise 5/48.

The choice of weights in (1.3)/27 is related to the spectral properties of a
subdivision matrix associated with the method; see Section 5.8. We note here that
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Wij > 0 and

e−1∑
j=0

Wij =
e+ 5
4e

+
3(e− 1) + 2

∑e−1
k=1 cos(2πk/e)

4e
= 1 (1.4)

(see Exercise 6/48). The reason for choosing weights satisfying (1.4)/28 is that this
condition guarantees affine invariance of the method (see Section 1.4.1).

A practical difficulty with dual subdivision methods, such as the Doo–Sabin
method, is that it may be difficult to associate attributes, such as colour or texture
coordinates, with the dual mesh. The difficulty can be seen in the top centre of
Figure 1.24/26, where the result of the first Dual operation is the mesh resulting
from a single Doo–Sabin step. If the colours of the three visible faces of the original
cube were, say, red, white, and blue, then it would not be clear what colour should
be assigned to the triangular face in the dual mesh. This is an example of what
in solid modelling is called the “persistent naming problem” [99]. One solution to
the problem in the case that concerns us here is the Arbitrary-degree method [155],
mentioned in the context of the LSS variant, below.

The Catmull–Clark variant

The Catmull–Clark variant of the LR(3 × 3) method is almost identical to the
Repeated Averaging variant with d = 3. Both methods apply the pQ4 schema and
assign values to the control points in the refined primal mesh.

We begin by examining the Repeated Averaging variant for d = 3 more closely.
Since the Repeated Averaging variant with d = 3 involves two averaging substeps
after the linear subdivision substep, there is no need to actually construct the dual
mesh: the two averagings can be combined and the values associated directly with
the refined primal mesh Modd.

Suppose for simplicity that there are no extraordinary faces, i.e., all faces
in the mesh have four edges. (This will always be the case if at least one pQ4
step has already been executed.) Departing from our usual notation of p� for con-
trol points, denote the initial control points surrounding a vertex of valence n by
E0, E1, . . . , En−1, F0, F1, . . . , Fn−1, and the values produced by the Repeated Av-
eraging variant with d = 3 by E′0, E

′
1, . . . , E

′
n−1, F

′
0, F

′
1, . . . , F

′
n−1, as illustrated in

Figure 1.27/29 for n = 5 [8, 9]. Linear subdivision produces the values

EL
i =

1
2
(
V + Ei

)
,

FL
i =

1
4
(
V + Ei + Fi + Ei+1

)
,

i = 0, . . . , n− 1, (1.5)

where the indices are calculated modulo n. Then, it is clear that the result of the
two averaging substeps is to replace each of the points EL

i and FL
i by a new value

obtained by applying the smoothing stencil shown in Figure 1.28/29 (left) in Jacobi
manner in the subdivided mesh, and to replace V by the new value

V RA =
1
n

n−1∑
j=0

[
1
4
(
V + EL

j + EL

j+1 + FL

j

)]
.
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Figure 1.27. Notation for Catmull–Clark vertices.
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Figure 1.28. Catmull–Clark smoothing stencil.

It is easy to show that this smoothing leaves the values FL
i unchanged, so that

F ′i = FL

i =
1
4
(V + Ei + Fi + Ei+1), i = 0, . . . , n− 1, (1.6)

that it replaces the values EL
i by

E′i =
3
8
(V + Ei) +

1
16

(Ei−1 + Fi−1 + Fi + Ei+1), i = 0, . . . , n− 1, (1.7)

and it replaces the value of V by

V RA =
9
16
V +

3
8

 1
n

n−1∑
j=0

Ej

+
1
16

 1
n

n−1∑
j=0

Fj

 . (1.8)

Exercise 7/48 asks for confirmation of this.
The Catmull–Clark method does exactly the same thing as the Repeated Av-

eraging variant with d = 3, except that (1.8)/29 is replaced by the smoothing stencil
shown for n = 5 in Figure 1.28/29 (right), where α∗n = (n − 3)/n, β∗n = 2/n2,
γ∗n = 1/n2. For n = 4 the replacement causes no change, since α∗4 = 1/4,
β∗4 = 1/8, and γ∗4 = 1/16 coincides exactly with the smoothing stencil shown in
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Figure 1.28/29 (left). The values of new face points and new edge points are there-
fore the same as for the Repeated Averaging method, but the value (1.8)/29 is
replaced by

V ′ = α∗n V + β∗n
n−1∑
j=0

EL

j + γ∗n
n−1∑
j=0

FL

j . (1.9)

The Repeated Averaging method corresponds to using a smoothing stencil with
α∗n replaced by 1/4, β∗n replaced by 1/(2n), and γ∗n replaced by 1/(4n) (again, see
Exercise 7/48). The surfaces produced by this smoothing were rejected in [24] as
“too pointy.”

Catmull–Clark variant (in-place formulation)

The method as described above involves Jacobi-manner smoothings, including one
which is redundant, but an in-place version of the method can also be given. Note
first that the expression (1.9)/30 for the updated value of V is equivalent to

V ′ = α∗n S + nβ∗nR+ nγ∗nQ, (1.10)

where
S = V,

R =
1
n

n−1∑
j=0

1
2
(V + Ej),

Q =
1
n

n−1∑
j=0

F ′j .

That this is equivalent to (1.9)/30 can be confirmed by an easy algebraic verification;
see Exercise 8/49.

Now suppose that the current values of V and the Ei, Fi are stored, and that
storage has been allocated for each new face point F ′i and each new edge point E′i.
Then, calculating indices modulo n, do the following:

1. Begin the computation of E′i :
E′i ← 1

2 (V + Ei).

2. Compute F ′i : F ′i ← centroid of the face’s old vertex points.
For quadrilateral faces, this means simply:
F ′i ← 1

2E
′
i + 1

4 [Fi + Ei+1].

3. Compute the modified vertex point V ′ :
V ′ ← α∗nV + nβ∗nR+ nγ∗nQ.

4. Complete the computation of E′i :
E′i ← 1

2 [E′i + 1
2 (F ′i−1 + F ′i )].

In substep 3, R is the average of the midpoints of all edges incident on the vertex
(the required values are available from substep 1), and Q is the average of the new
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face points for faces adjacent to the vertex (the required values are available from
substep 2). The final value of E′i calculated in substep 4 is equal to 1/4(V +Ei) +
1/4(F ′i−1 + F ′i ), which is the same as the value in (1.7)/29.

This in-place version is exactly the original Catmull–Clark formulation, and
the notation Q and R used here is the same as that used in [24]. The only dif-
ference between the two formulations is the order of computation, which has been
rearranged here to obtain an in-place computation.

The in-place formulation of the Catmull–Clark algorithm is equivalent to the
one given by (1.5)/28, (1.6)/29, (1.7)/29, and (1.9)/30, except that the edge point E′i
calculated at the very first step of the algorithm may be different in the case when
there is a nonquadrilateral face in the initial mesh. Note also that auxiliary rules
are used for surface boundaries and crease edges; see Section 7.1.1.

The following remark concerning Catmull–Clark formulations may be useful.

Remark 1.3.1. We have chosen to introduce the Catmull–Clark method with a
presentation close to the one in [151]. This is by far the simplest way to understand
the method: it is just the Repeated Averaging method with a modified choice
of weights for extraordinary vertices. Algebraically, this formulation (as well as
the in-place formulation and the original Catmull–Clark presentation [24]) can be
summarized by (1.5)/28, (1.6)/29, (1.7)/29, and (1.9)/30.

On the other hand, there are two other formulations of the Catmull–Clark
method that are often used in the literature, and later in the book, both of which
express V ′ in terms of the original control points Ej and Fj , rather than EL

j and
FL
j . One of these expressions is given in the context of subdivision matrices (see

(1.17)/44, below). Another is

V ′ =
n− 3
n

V +
2
n2

n−1∑
j=0

1
2
(V + Ej)

+
1
n2

n−1∑
j=0

1
4
(V + Ej + Fj + Ej+1)

 , (1.11)

which follows immediately from (1.6)/29 and (1.10)/30.
A summary of the algebraic equivalence of the various formulations is given

in the Appendix (Section A.1).

Linear Subdivision and Smoothing (LSS) variant

Just as pairs of averaging substeps were combined in the case of the Catmull–Clark
variant, we can combine pairs of averaging substeps for the Repeated Averaging
variant for larger values of d. This gives a variant [151] that we call the Linear
Subdivision and Smoothing (LSS) variant.

In the case when d is odd this variant invokes the procedure LinSubd once,
followed by (d − 1)/2 smoothings Smooth, where Smooth is such that Smooth(·)
≡ Dual(Dual(·)) for quadrilateral meshes perhaps having extraordinary vertices.
In the case when d is even, we must apply Dual once to obtain M2 = Meven.
Then, if d > 2 (d = 4, 6, 8, . . .), this is followed within each step by (d − 2)/2
smoothings Smooth, each of which again duplicates the effect of two applications of
Dual . Exercise 9/49 asks for pseudocode in the two cases.
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Figure 1.29. Loop stencils.

A modification of the LSS variant that permits implementation without ex-
plicit use of the dual mesh, for arbitrary values of the degree d, was proposed in [155].
This algorithm solves the problem of persistent assignment of attributes, such as
colour, that was mentioned above in the context of the Doo–Sabin variant. It also
permits interpolation or “morphing” between surfaces of even and odd degree.

Loop variant

All of the variant methods mentioned so far have been variants of some form of the
LR(d × d) algorithm for uniform tensor-product B-splines defined over a regular
quadrilateral grid. The Loop method is a variant of a different basic method.

There is a class of splines defined on R2 that is more general than the uni-
form tensor-product B-splines, and methods can be derived from these more general
splines in a completely analogous way. One such method uses subdivision to com-
pute a certain box spline called a three-direction quartic box spline. It turns out
that this defines a basic method defined on regular triangular meshes in R2 (see
Figure 1.12/16, left), and the Loop method is a variant of this method for triangular
meshes with vertices having valence other than 6. We describe this variant here,
leaving aside for now the description of the underlying basic method.

In the Loop method [91], the mesh M is triangular (e = 3 for each face). At
each subdivision step, the edges of each triangle are split in two to create a new
vertex (new edge point) in the middle of the edge. These points are then joined,
so that four subtriangles are created. The method is therefore based on the pT4
schema (Figure 1.14/17, right). Recall that a vertex is called extraordinary in this
case if n �= 6.

There are two kinds of vertices: values are assigned to new edge points ac-
cording to the weights indicated in the stencil in Figure 1.29/32 (left); thus, values
assigned to new edge points depend only on values of the control points at the
vertices of the two neighbouring parent triangles. Values are assigned to existing
vertex points according to the weights indicated18 for n = 7 and n = 6 in the stencil
in Figure 1.29/32 (right). Here,

w(n) =
5
8
−
(

3
8

+
1
4

cos
(

2π
n

))2

, (1.12)
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- Repeated Averaging
- Catmull–Clark
- Doo–Sabin
- . . .

- Loop
- {Midedge}2

- 4-8 subdivision
- . . .

- Kobbelt
- {√

3}2

- . . .
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- Lane–Riesenfeld:
LR(d � d),
d = 2, 3 . . .
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- . . .

Generalized-
spline
subdivision
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Figure 1.30. Basic methods (lower row) and variant methods (upper row).

and when n = 6 (an ordinary vertex) we have w(n)/n = 1/16. Note that w(n) > 0,
and that in both cases in Figure 1.29/32 the sum of the weights is equal to 1, again
to guarantee affine invariance.

1.3.2 A classification of subdivision methods

Despite the large number of mesh topologies, splitting strategies, and averaging
rules available, there is a great deal of unity and structure in the class of subdivi-
sion methods actually used, and one of our major goals is to show this unity and
structure. In this section we give a classification that is used as a reference through-
out the book. As elsewhere in this chapter, the concepts and methods described
here are presented only in an intuitive way: most of the mathematical definitions
and justifications are postponed until later.

The classification: Summary discussion

The entire field of subdivision-surface methods can be arranged in a simple and
comprehensive hierarchy defined by the classes of spline functions the methods
generate. The structure of the hierarchy is give in Figure 1.30/33, which is explained
now.

We first give a summary of Figure 1.30/33. Each of the seven rectangles in the
figure can be viewed as representing either a class of methods, or the class of subdi-
vision surfaces these methods generate. The lower row of the figure corresponds to
basic methods, applicable only on regular meshes, while the upper row corresponds
to variant methods that apply also to nonregular meshes. Thus, the basic methods
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are special cases of the variant methods. Similarly, as we move from left to right in
the figure, the level of generality increases: the B-spline methods are a special kind
of box-spline methods, the box-spline methods are a special case of the General-
subdivision-polynomial methods, and all are special cases of the class we have called
the Generalized-spline subdivision methods. Consequently, the arrows in the figure
can be interpreted as “is a special case of” if we are thinking of the rectangles as
representing classes of methods, or as “is a subset of” if we are thinking of the
rectangles as representing the classes of subdivision surfaces the methods generate.
We keep the two interpretations in view, since both are convenient, depending on
circumstances.

Several particular methods are shown in Figure 1.30/33. In the lower left-hand
rectangle is the Lane–Riesenfeld method of bidegree d, denoted LR(d× d), a basic
method for regular quadrilateral meshes described in Section 1.3.1 above. In the up-
per left-hand rectangle are variants of this method, suitable for nonregular meshes.
In the second column, in the lower row, are listed some common box-spline methods
(the notation ×1 and ×2 indicates the multiplicity with which the four directions
are included). In the upper row of the second column are the corresponding variant
methods for nonregular meshes: for example, the Loop method is a variant of the
three-direction quartic-spline scheme. The structure of the third column is similar:
the basic methods are indicated in the lower row, and the variant methods19 for
nonregular meshes are shown in the upper row. The methods shown in the third
column of the figure lie outside the class of box splines and their variants.

In Figure 1.30/33, the notation {. . .}2 signifies a method obtained by applying
the underlying method (Midedge or

√
3-subdivision) twice in succession.

The class “Generalized-spline subdivision methods,” shown on the right in
Figure 1.30/33, is defined in Chapter 4. It serves as a universal set and provides a
convenient mathematical framework for the most general case.

Box-spline methods

We turn now to the class shown in the lower row of the second column of Fig-
ure 1.30/33, namely the box-spline methods. The box splines are a more general
class than the uniform B-splines. Tensor-product uniform B-splines can be viewed
as the result of a projection of a hyper-rectangle (a box) in a higher-dimensional
space, to the plane. By orienting this box in different ways (and by choosing the
vectors defining the box in different ways), we obtain a more general class of splines,
including many defined on nonrectangular grids in the plane [38, 129]. These are
the box splines. Furthermore, there are specific binary subdivision rules associated
with this new class of functions, which permit their evaluation using subdivision, in
analogy with tensor-product B-splines. One example of a box spline that is not a
tensor-product uniform B-spline is the three-direction quartic box spline. It has an
associated subdivision process that can be viewed as being defined on a triangular
grid. But, as in the case of the tensor-product B-splines, we can change our point
of view and consider application of this subdivision process to the regular portions
of finite locally planar meshes. This leads to a basic subdivision method for regular
triangular meshes.
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A variant of the method is again necessary for nonregular meshes, to deal with
extraordinary vertices (which, because we are now dealing with pT4 splitting of a
triangular grid, means n �= 6). As already mentioned, the Loop method is such a
variant of the three-direction quartic-spline scheme.

The class of variant box-spline methods also includes other well-known meth-
ods. In particular, it includes the “simplest subdivision method” [121], denoted
Midedge. If this method is applied twice (denoted {Midedge}2), then in a reg-
ular quadrilateral mesh the method produces a certain four-direction box spline.
Similarly, 4-8 subdivision [161, 162, 164], Quasi 4-8 subdivision [161, 162, 163],
and

√
2-subdivision [88] produce a (different) four-direction box spline in a regular

quadrilateral mesh.

Generalized-spline subdivision methods

Corresponding to the fourth column of Figure 1.30/33, we introduce a class of gener-
alized splines that imposes only the weakest of conditions on the subdivision process.
A generalized spline is a linear combination of nodal functions with compact support
produced by applying some affine-invariant subdivision process to a scalar control
point (N = 1) that has value 1 at one vertex in the mesh, and 0 elsewhere. Such
generalized splines correspond to the Generalized-spline subdivision methods. They
are used, for example, in Section 7.3.1, where multiresolution subdivision surfaces
are discussed.

The nodal functions involved in the definition of generalized splines are not
necessarily linearly independent, need not be nonnegative, and need not be piecewise
polynomials. Their domain of definition is a two-dimensional topological manifold.
The manifold and the nodal functions are defined in Chapter 4. In the special case
of B-splines the nodal functions are the nonnegative piecewise-polynomial basis
functions in (1.1)/2.

The requirements for membership in the class of generalized splines are very
weak: the class includes the splines generated by any plausibly useful stationary
subdivision method. In particular, it includes the class of box splines and their
variants, as well as the limit surfaces produced by the following other well-known
subdivision methods that are not box-spline methods:

• the Butterfly scheme [49], and the Modified Butterfly scheme [178] which is
designed for nonregular triangular meshes;

• the Kobbelt scheme [73] for nonregular quadrilateral meshes, which, in the
regular case, is the tensor product with itself of a method called the “four-
point scheme for curves” [46, 48] (indicated by 4pt× 4pt in Figure 1.30/33);

• the {√3 }2 method [76] for nonregular triangular meshes.

In the regular case, the methods just listed lie in a certain class of basic methods
more special than the Generalized-spline subdivision methods, namely the class
of General-subdivision-polynomial methods (Figure 1.30/33, third column). These
methods could also be called shift-invariant methods, since the linear combination
of nodal functions involves, in this case, shifted versions of a single nodal function.
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The Generalized-spline subdivision methods include all of the variant methods
shown in Figure 1.30/33, upper row. Those in the third column of the figure are
discussed in Chapter 4.

Further discussion of classification

The above classification seems to best reflect the mathematical structure of the
field. Traditionally, however, subdivision methods have been classified according to
other criteria [44, 95], [176, p. 65], even though these criteria do not always lead to
sharp distinctions.

One criterion frequently mentioned is whether the method is interpolating
or approximating . A method is interpolating if the initial and all subsequently
generated control points remain in the mesh as the subdivision process proceeds
(consequently, the initial and all generated points are in the limit surface). Methods
that are not interpolating are said to be approximating. In the following two tables,
methods from the upper row of Figure 1.30/33 are classified as either interpolating
or approximating.

Interpolating methods

Modified Butterfly (Section 4.2.3)
Kobbelt method (and four-point method for curves) (Section 4.2.3)
Repeated Averaging with d = 1 (Linear Subdivision) (Section 1.3.1)

Approximating methods

Repeated Averaging with d > 1 (Section 1.3.1)
Doo–Sabin method (Section 1.3.1)
Catmull–Clark method (Section 1.3.1)
Loop method (Sections 1.3.1 and 3.5.2)
{Midedge}2 (Section 3.7.2)
4-8 subdivision (Section 3.7.2)
The {√3}2 method (Sections 4.2.1 and 4.2.3)

Note, however, that approximating methods can also be used to construct
surfaces that interpolate the vertices (and normals) of a given control polyhedron
[63, 106]. These methods have the advantage that it is not necessary to interpolate
every vertex, and their limit surfaces have better curvature properties [115]. See
Sections 7.1 and 7.2, and also see [74] on “variational subdivision.” Further, there
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are also approximating methods called quasi-interpolation methods [28]; see Sec-
tion 6.4. Other interpolating methods, not shown in the table above, are described
in [79, 87, 119].

Another criterion that has been used for the classification of methods is the
level of parametric continuity of the limit surface, away from extraordinary points.
On the other hand, other aspects of continuity of limit surfaces are also important,
as discussed in Chapter 5.

Here is a summary according to the parametric-continuity classification.

Parametric continuity away from extraordinary points

{Midedge}2 method: C1

Kobbelt method: C1

Modified Butterfly: C1

Doo–Sabin method: C1

Catmull–Clark method: C2

Repeated Averaging: Cd−1 (bidegree d ≥ 1)
Loop method: C2

The {√3}2 method: C2

Stam’s extension of Loop method: C(2m−6)/3 (total order m = 6, 9, 12, . . .)
4-8 subdivision: C4

The reproduction degree [28, 67, 86] is another way to classify subdivision
methods. The reproduction degree is the largest integer d such that the subdivision
scheme reproduces polynomials up to degree d. This means that if the initial control-
point data are obtained by uniform sampling of a polynomial of degree d, then
the subdivision method converges to that polynomial. The sets of polynomials
reproduced are referred to as precision classes; thus, a method that reproduces
polynomials up to degree 1 is said to have linear precision, up to degree 2 quadratic
precision, and up to degree 3 cubic precision.

The degree of polynomial reproduction, or precision, is studied in Section 6.4.
To illustrate this method of classification, with a minor caveat all box-spline meth-
ods (Figure 1.30/33, second column, lower row) have linear precision, and in par-
ticular, for d ≥ 1 the LR(d) algorithm for univariate uniform B-splines has linear
precision. Further, the LR(d× d) algorithm has bilinear precision. The four-point
scheme for curves has cubic precision, and the 4pt × 4pt algorithm has bicubic
precision.

Yet another criterion used to classify methods is the type of mesh on which they
are used. Thus, the Loop method and the Modified Butterfly method are normally
used with triangular meshes, while the Doo–Sabin, Catmull–Clark, and Kobbelt
methods are used with quadrilateral meshes. This is not, however, a reliable
way to classify methods. For example, the Repeated Averaging method and the
Midedge method are applicable to general meshes, including both triangular and
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quadrilateral meshes. Similarly, the Catmull–Clark method converts a triangular
mesh into a quadrilateral mesh as part of its first step. Also, some methods explicitly
permit the possibility of transition between triangular meshes and quadrilateral
meshes [125], or explicitly use both triangular and quadrilateral faces [152], while
4-8 subdivision is based on a completely different tiling of the plane which in a
certain sense combines the use of triangular and quadrilateral meshes [164]. Another
example is

√
3-subdivision, which subdivides triangular grids [76], but which can

also be viewed as a method that makes use of the hexagonal dual. (This is a useful
point of view for comparison of the

√
3-subdivision method with box splines; see

Section 4.2.2.)
On the other hand, it is possible, as we have seen, to give a rough classification

of methods based on the type of tiling associated with their splitting schema.
Finally, as mentioned in Section 1.2.2, subdivision methods are sometimes

classified as primal methods or dual methods. This terminology is also useful for
rough classification, but there are difficulties associated with it. First, all box-spline
subdivision methods (including pure primal methods such as Catmull–Clark) can
be viewed as based on alternation between primal grids, dual grids, or semidual
grids. Second, if we try to classify methods according to where this alternation
terminates, we find that it may terminate in a semidual grid, so that even with
this approach we must admit the possibility of methods of mixed type. (This is
discussed, in particular, in Example 3.5.8/122.) Third, even primal methods such as√

3-subdivision and 4–8 subdivision can be viewed as using the vertices of the dual
of the unrefined mesh to conveniently break a single step of the method into two
substeps, which is useful for the reduction of the incremental increase in memory
requirements.

1.4 Subdivision matrices
There are several kinds of subdivision matrices used in the analysis of subdivision
methods, but all varieties have the same general purpose: to specify, using a matrix-
vector multiplication,20 the control points at one step in the process, in terms
of the control points at the previous step. When reading the literature, it must
be determined which subdivision matrix is being used (often this is not explicitly
stated).

One of the most useful kinds of subdivision matrices is the local subdivision
matrix, which permits analysis of a subdivision surface in a neighbourhood of a
single point. Even this matrix, however, comes in several varieties. One of the
purposes of this section is to show the relationships among various subdivision
matrices that appear in the literature, and it is most convenient to start with the
global subdivision matrix.

1.4.1 The global subdivision matrix

We begin with a general form of matrix that specifies how the complete set of con-
trol points at one step is transformed into a complete set of control points at the
next [92]. Suppose that the mesh is a locally planar mesh without boundary. Given
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the Lν control points pν = pν(Lν×N) at step ν of the subdivision process, the sub-
division matrix Σν computes the control points pν+1 as affine combinations21 [137]
of the control points of pν :

pν+1 = Σνpν , ν = 0, 1, . . . . (1.13)

Since the number of control points increases at each step of the process, the matrix
Σν is not square: in (1.13)/39, Σν is Lν+1×Lν . The constraint that the multiplication
should produce affine combinations is guaranteed by a hypothesis that the sum of
the elements in each row of Σν sums to 1. That this hypothesis guarantees affine
invariance of the process is easily shown: if A(N×N) is a matrix, and t(1×N) ∈ RN is
a translation vector, let τ(L×N) be a matrix with L identical rows, each equal to t.
Then

Σν
(
pνA+ τ(Lν×N)

)
= (Σνpν)A+ Σντ(Lν×N) = pν+1A+ τ(Lν+1×N);

i.e., an affine transformation p� := p� · A+ t applied to each control point before a
subdivision step will have the same effect as it would if applied after the subdivision
step. This is true in particular if N = 3 and A(3×3) defines a rotation in R3, so that
p� := p� · A+ t corresponds to a rigid motion in R3, and also if A defines a scaling
or shear [127, p. 83]. Affine invariance guarantees independence of the coordinate
system used [156, p. 146].

In Section 5.1 we show, for methods based on general subdivision polynomials,
that affine invariance is a necessary condition for convergence.

Remark 1.4.1. Affine invariance guarantees invariance with respect to transla-
tions and rotations. On the other hand, given a process of the form (1.13)/39,
invariance with respect to translation is sufficient to guarantee affine invariance.

In fact, if a translation p� := p� + t of the control points, with a constant
vector t, gives the same translation for the new control points obtained after the
subdivision step, then the process is affine invariant. This follows because

Σν
(
pν + τ(Lν×N)

)
= Σνpν + τ(Lν+1×N)

implies that

Σντ(Lν×N) = τ(Lν+1×N),

and (omitting the dimensions on the matrices τ)

Σν(pνA+ τ) = ΣνpνA+ Σντ = ΣνpνA+ τ = pν+1A+ τ ;

i.e., the process is affine invariant. Thus, for linear subdivision, invariance with
respect to translation is equivalent to affine invariance.

If the elements of Σν are also nonnegative, then Σν will produce convex com-
binations of the control points at the previous step, and the limiting surface, if it
exists, will therefore lie in the convex hull of the original control points.
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The condition that the subdivision matrix has row sums equal to one is sat-
isfied for all practical subdivision methods, including the Doo–Sabin method (see
(1.4)/28), the Catmull–Clark method (see Section 1.4.3), and the Loop method (as
indicated following (1.12)/32).

The class of processes defined by (1.13)/39 is very general, as is shown by
the example of fractal generation given in Section 1.5. A process is completely
defined by the splitting schema (which specifies how the logical mesh at step ν + 1
is obtained from the mesh at step ν), by the global subdivision matrices Σν , and by
the initial configuration of the mesh and p0. Each Σν is independent of the control
points pν , and so the rules at each step depend only on the logical mesh M , and
not on control-point positions. On the other hand, as observed in [176, Sec. 2.3.3],
in principle there is no reason why different subdivision rules could not be used
in different parts of the mesh, and, since Σν may change with ν, the rules could
change as the subdivision progresses. Certain such methods have been proposed
[161, 162]. In practice, however, the subdivision processes considered22 are almost
always stationary , which means that the subdivision rules, defined in terms of the
mesh, remain fixed and depend only on the local topology for all ν greater than
or equal to some ν0 [92, 172]. Thus, for example, the hybrid subdivision of [42]
initially uses special rules for an arbitrary, but finite, number of subdivision steps,
but subsequently uses a fixed set of rules. Such a method is stationary.

The subdivision matrix in (1.13)/39 is unnecessarily cumbersome for many
purposes. If, as is usually the case, a small number of rules suffices to define the
process locally, then it is better, for purposes of analysis in the neighbourhood
of a single point on the surface, to use a local subdivision matrix. We show in
Section 1.4.3 how simpler subdivision matrices can be obtained.

1.4.2 Global subdivision matrices for B-spline functions

In order to find more convenient subdivision matrices for the description of surface
subdivision, we temporarily leave the case of finite meshes and permit the control
points to be defined on a countably infinite domain. At the same time, we leave the
case of surfaces and temporarily restrict our attention to scalar functions defined on
the real line, or curves having the real line as parametric domain. Thus, in place of
the finite vector of control points pν(Lν×N) above, we have instead an infinite vector
pν(ω×N), where ω is the cardinality of the natural numbers and of Z. We take the
underlying grid to be hZ, where h is the grid-size and Z is the set of (positive and
nonpositive) integers. Consequently, the matrix Σν is now doubly infinite in both
dimensions. Also, we assume temporarily that h = 1.

At first glance, this may seem a surprising way to proceed. As we have
just stated, moving to the infinite case has resulted in the replacement of a finite
subdivision matrix Σν(Lν+1×Lν) by a matrix that is doubly infinite in both dimen-
sions. Worse still, the vectors pν(Lν×N) have been replaced by doubly infinite vectors
pν(ω×N), and it may not be immediately clear how this will conveniently generalize
to the case of surfaces, where pν is doubly infinite in two dimensions.

It turns out that these worries are unfounded. Initial analysis of the regular
case of subdivision methods is, usually, most easily carried out using an infinite
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domain. Subsequently, it always transpires that the processes derived are local in
nature, and this permits us to switch from global subdivision matrices to local
subdivision matrices. The crucial fact here is that because of the locality, these
local subdivision matrices are finite, even in the surface case.

Let us begin with a very simple case, a scalar B-spline function defined on the
real line, with subdivision carried out on a one-dimensional mesh associated with
the dyadic numbers 2−νZ = {x : x = 2−νy, y ∈ Z}. In this case, the matrix Σν can
be viewed as a 2ω×ω matrix. (Mathematically, the cardinality 2ω is the same as ω,
but it is informative to write the matrix dimensions in this way, since the notation
suggests a doubling of the number of grid points at each step.) It can be shown, for
example, that the matrix defining a fourth-order univariate B-spline function is

0 1
↓ ↓

Σ =
1
8



0 . . .
1 0 . .
4 0 . .
6 1 0 .
4 4 0 .
1 6 1 0
0 4 4 0
0 1 6 1
. 0 4 4
. 0 1 6
. . 0 4
. . 0 1
. . . 0


(2ω×ω)

← −2
← −1
← 0 . (1.14)

Because of the uniformity introduced by the infinite domain, there is no longer
any need for the superscript ν on Σ: the matrix does not depend on the iteration
number.

The subdivision matrix Σ is often denoted in the literature by S [168, p. 23],
[176, p. 28]. It is, however, a global subdivision matrix, so in this book we in-
stead continue to use the symbol Σ. (The local subdivision matrix introduced in
Section 1.4.3 below is, confusingly, also denoted by S in the literature. Thus, our
choice of Σ here has the additional advantage of avoiding a conflict of notation.)

If pν(ω×N) is a one-dimensional array of control points associated with the grid
2−νZ, then a step in the subdivision process that evaluates the B-spline corresponds
to multiplying pν on the left by Σ. This is proved in Section 2.2.2, and illustrated
for a set of scalar control points (N = 1) in Figure 1.31/42. In this example the
initial vector and the result of one multiplication by Σ are, respectively,

0 1
↓ ↓

pν(ω×1) =
[
. . . 0 1 3 2 0 . . .

]t
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Figure 1.31. The result of three successive multiplications by Σ.

and

− 2 − 1 0 1
↓ ↓ ↓ ↓

pν+1
(2ω×1) =

[
. . . 0 1

8
1
2

9
8 2 . . .

]t
.

The row indexing in Σ is determined by the use of centered versions of the basis
functions: if the index in the result pν+1

(2ω×1) is divided by 2, we obtain the locations
in the original parametric domain, as illustrated in Figure 1.31/42 (top right). The
centered versions of the basis functions are introduced to avoid unwelcome shift-
ing of the resulting spline; this is discussed in detail in Chapter 2. Two further
multiplications by Σ are shown in the second row of Figure 1.31/42.

We have considered an infinite mesh here, because this leads naturally to
useful local subdivision matrices for the surface case. We note in passing, how-
ever, that we can, in the scalar or curve case, write down the global subdivision
matrix Σν corresponding to a finite mesh; see Exercise 10/49. This is not, how-
ever, the most productive avenue to follow in the search for useful subdivision
matrices.

1.4.3 Local subdivision matrices

The key to obtaining a concise representation of the information contained in the
general matrix Σν , both in the curve and surface cases, is to make use of the fact
that in each row there is only a small number of nonzero elements, i.e., to make use
of the local nature of the subdivision process.

We again consider, to begin with, the curve case and suppose that we are
interested in the behaviour of the curve at a particular point. There is no loss in
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−4h −3h −2h −h 0 h 2h 3h 4h

1

N4
l (h; ·), l = −2,−1, 0, 1, 2

t

Figure 1.32. The five order-4 B-spline basis functions nonzero on [−h, h].

generality in assuming that this point is the origin, t = 0 [176, p. 36]. Consider
again the fourth-order B-spline curve, which has the form

x(t) =
∞∑

l=−∞
plN

4
l (h; t), 0 ≤ t ≤ h, (1.15)

where the N4
l (h; ·) are centered cubic basis functions shifted by lh, as shown in

Figure 1.32/43, and pl ∈ RN . The control points that influence x(t) on [0, h] are
p−1, p0, p1, and p2. Similarly, the control points p−2, p−1, p0, and p1 are those that
influence x(t) on [−h, 0]. Thus, to study x(t) in a neighbourhood of the origin, it is
sufficient to consider the 5× 5 subblock of the bi-infinite matrix Σ, namely

1
8


1 6 1 0 0
0 4 4 0 0
0 1 6 1 0
0 0 4 4 0
0 0 1 6 1

 . (1.16)

We call this matrix a local subdivision matrix .
On the other hand, in [156] the middle 3×3 submatrix of the matrix in (1.16)/43

is referred to as the “local subdivision matrix.” The reason for this difference in
terminology is explained in [176, p. 45], where it is remarked that the 5× 5 matrix
is needed for analysis, but only the 3 × 3 matrix is needed for computation of the
exact value on the curve, corresponding to the origin (since there are only three
nonzero basis functions at the origin); see Sections 2.5.5 and 6.1.1.

Now let us consider subdivision rules for surfaces. These rules too are usually
local in nature, and sufficiently uniform that a single subdivision step can be de-
scribed by a square matrix S of small dimension that maps a submesh of Mν , the
locally planar logical mesh at step ν, into a topologically equivalent submesh of the
refined mesh Mν+1 at step ν + 1 [76, p. 105].

A common situation is that a k-ring neighbourhood is mapped onto a
k-ring neighbourhood in the refined mesh with an identical topological structure.
Typically it is sufficient to use a matrix corresponding to k = 1 to compute exact
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values or tangent vectors (see Section 6.1), but matrices corresponding to a larger
number of rings are necessary for the analysis of convergence and smoothness (see
Sections 5.5 and 5.6). A precise definition of k-ring neighbourhood is given in
Section 5.5.1.

Each row of the matrix S is a rule to compute the control point for a vertex
in Mν+1. Each column of the matrix specifies the contribution of the control point
associated with a vertex in Mν to the control point associated with the refined
mesh Mν+1. Thus, we may relate the local subdivision matrix S to the matrix Σν .
Suppose that Σν (whose dimension Lν+1 × Lν varies with ν) defines a stationary
process, and that consequently there is a fixed and finite number of rules that may
apply at each step, for ν ≥ ν0. A local subdivision matrix S is a square matrix that
defines these rules, and which can be obtained from any Σν , ν ≥ ν0, by means of
the following operations: deletion of a certain number of rows of Σν , followed by
deletion of a certain number of columns of Σν , where deleted columns contain only
zeroes, and followed possibly by a permutation of rows and columns.

It follows that if the sum of the elements of each row of Σν is equal to 1, then,
the sum of the elements of each row of S is equal to 1.

A typical example is the Catmull–Clark method, described in Section 1.3.1.
After the first step in the pQ4 process, all faces in the mesh are quadrilateral, as
illustrated in Figure 1.15/18. For example, in Figure 1.15/18 (centre), the four corner
points represent the old vertices, and the five other points represent new vertices in
the finer mesh (to be computed).

Suppose that all of the old vertices are ordinary, except possibly for one,
denoted by V , which has valence n. It can be seen from Figure 1.27/29 (where
n = 5) that if the mesh is locally planar, there are n old vertices E0, . . . , En−1 on
an edge adjacent to V in Mν , and n old vertices F0, . . . , Fn−1 diagonally across
a face from V in Mν . Along with V itself, this makes a total of 2n + 1 old ver-
tices. On the other hand, there are also n newly created edge points E′0, . . . , E

′
n−1

adjacent to V in Mν+1, and n newly created face points F ′0, . . . , F
′
n−1 in faces

adjacent to V in Mν+1. Thus, the total number of new vertices, including the
vertex V which must be modified, is 2n + 1. Note that V and Ei, E

′
i, Fi, F

′
i , i =

0, . . . , n− 1, are elements of RN ; they are most conveniently viewed as (1×N) row
vectors.

The Catmull–Clark rules specify how the 2n + 1 control points at the new
vertices are to be computed in terms of the 2n+1 control points at the old vertices.
In fact, one way to express the Catmull–Clark algorithm, after the first subdivision
step, is

V ′ =
4n− 7

4n
V +

3
2n

 1
n

n−1∑
j=0

Ej

+
1
4n

 1
n

n−1∑
j=0

Fj

 ,

E′i =
3
8
(V + Ei) +

1
16

(Ei−1 + Fi−1 + Fi + Ei+1),

i = 0, . . . , n− 1.

F ′i =
1
4
(V + Ei + Fi + Ei+1),

(1.17)
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Indices here are calculated modulo n. These equations define a (2n+ 1)× (2n+ 1)
matrix S having row sums equal to 1:

F ′0
.
.
.

F ′n−1
E′0
.
.
.

E′n−1
V ′


=

1
16



4 4 4 4
4 4 4 4

. . . 4 . . . .
4 4 4 4

4 4 4 4
1 1 6 1 1 6
1 1 1 6 1 6

1 . . . 1 6 . . . .
. . . 1 1 . . . 1 6

1 1 1 1 6 6
4
n2

4
n2 . . . 4

n2
4
n2

24
n2

24
n2 . . . 24

n2
24
n2

16n−28
n





F0
.
.
.

Fn−1
E0
.
.
.

En−1
V


,

where S is the matrix multiplying [F0, . . . , Fn−1, E0, . . . , En−1, V ]t on the right-hand
side of the equation just shown.

The verification that (1.17)/44 is the same as the two equivalent formulations
of the Catmull–Clark method given in Section 1.3.1, is immediate. The expression
for E′i in (1.17)/44 is identical to (1.7)/29, and the expression for F ′i in (1.17)/44 is the
same as that in (1.5)/28. Finally, the expression for V ′ in (1.11)/31 is easily verified
to be identical to the value of V ′ in (1.17)/44; see Exercise 11/49 and Section A.1.

The k-ring neighbourhood involved in the subdivision matrix S discussed here
has k = 1: in Figure 1.27/29, only points from the first ring of vertices surrounding
V are used in the definition of S. As already mentioned, larger local subdivision
matrices are necessary for the study of smoothness (e.g., matrices of dimension
(12n+1)×(12n+1), or 13n×13n [124, Example 5.14]). For this reason, the matrix
S just introduced is later denoted by S1, to distinguish it from the larger local
subdivision matrices; see Sections 5.4 and 5.6. Similarly, other subdivision matrices
are sometimes employed for other purposes. For example, the presentation of Stam’s
method [150] introduces such matrices (see Section 6.3.2).

Exercise 12/49 asks for an explicit subdivision matrix S for the Loop scheme,
similar to the one defined by (1.17)/44 for the Catmull–Clark method.

As mentioned in [124, p. 109], subdivision stencils such as those illustrated in
Figure 1.29/32 are just representations of the rows of the local subdivision matrix.

1.5 Generating fractal-like objects
We conclude this chapter with an example that shows that very simple processes
of the sort we have described may lead to fractal-like objects [12, 32, 156], such as
continuous curves that are nondifferentiable on a dense set, i.e., nondifferentiable on
a set that is dense in the parametric domain. This provides a context for our later
study (Chapter 5) of conditions guaranteeing convergence of a subdivision scheme
to a smooth limit surface: exactly what are the conditions necessary or sufficient
for various levels of smoothness?

For comparison purposes, we begin by presenting one of the earliest and
simplest subdivision algorithms invented. This is Chaikin’s algorithm, which was
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introduced in Section 1.1, and which produces continuously differentiable piece-
wise quadratic curves (see Chapters 3 and 5). Following this, we make a relatively
minor change to the algorithm, which results in a new algorithm that generates
nowhere-differentiable curves.

Chaikin’s algorithm

Chaikin [26] introduced a method for generating a curve defined by the control
points pl ∈ RN , l ∈ Z, with components that are piecewise quadratic functions. We
view the points pl as defined on a grid with resolution h: lh, l ∈ Z.

Let p0
l
.= pl, l ∈ Z. Then, subsequent sequences pνl , ν ≥ 1, are produced from

pν−1
l by the following substeps.

1. Linear subdivision:

p̂ν2l = pν−1
l ,

p̂ν2l+1 =
1
2
(
pν−1
l + pν−1

l+1

)
,

l ∈ Z. (1.18)

These values can be viewed as associated with a grid with resolution h/2:
letting i = 2l p̂i takes values at ih/2, i ∈ Z.

2. Averaging:

pνi =
1
2
p̂νi +

1
2
p̂νi+1, i ∈ Z. (1.19)

These equations can be rewritten as

pν2i =
1
2
pν−1
i +

1
2

1
2

(pν−1
i + pν−1

i+1 ) =
3
4
pν−1
i +

1
4
pν−1
i+1 ,

pν2i+1 =
1
2

1
2

(pν−1
i + pν−1

i+1 ) +
1
2
pν−1
i+1 =

1
4
pν−1
i +

3
4
pν−1
i+1 .

(1.20)

This process is called “corner cutting” [39, 40], a terminology motivated in
Figure 1.33/46, where the method is applied to a finite mesh rather than to an

pν−1
0

pν−1
1pν−1

2

pν−1
3

pν3 pν2

pν1

pν0

Figure 1.33. Corner cutting.
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infinite sequence of control points. In the figure, the pν−1
� , � ∈ {0, 1, 2, 3}, are the

four original corner points, and the square boxes show the positions of the new points
pν� , � ∈ {0, 1, . . . , 7}. The new points are a weighted average of the neighbouring
pν−1
� , with weight 1/4 applied to one neighbour and weight 3/4 applied to the other.

Exercise 13/49 asks that the two steps in the process be expressed as a product of
bi-infinite subdivision matrices.

The Chaikin process for each component can be shown to converge to a piece-
wise quadratic function defined by the initial control points: it is the LR(2) algo-
rithm for curves. The tensor product of the Chaikin method with itself produces,
for d = 2, the biquadratic Lane–Riesenfeld algorithm LR(2× 2) for surfaces.

Generation of a nonsmooth curve

It is shown in [40] that a modification of Chaikin’s algorithm, obtained by chang-
ing the weights 3/4 and 1/4 in (1.20)/46 to 3/5 and 1/5, respectively, produces
in the limit a curve that fails to be differentiable on the parametric domain. In
fact, the curve contains a dense set of points at which the left and right deriva-
tives exist, but are unequal, and at which the left and right curvatures are both
infinite. (Project 2/50 suggests an implementation permitting a visual comparison
of Chaikin’s method with a version of the method that uses the modified weights
just mentioned.) A similar example, which occurs in the construction of wavelet
bases, is shown in [156, Fig. 6.4]. Thus, nonsmooth functions can be produced us-
ing subdivision methods almost identical to the simplest methods commonly used
in solid modelling. In the context of applications that require smooth surfaces,
this provides motivation for finding conditions that guarantee various degrees of
smoothness.

1.6 Additional comments
An overview of subdivision surfaces is given in [176], although this reference does
not give a systematic mathematical treatment. Mathematically rigorous treatments
at a high mathematical level are given in [25, 124] and in the thesis [172]. Further
historical information is given in [52, Sec. 1.8]. Another overview of the subject is
given in [140], along with [139] on the interrogation of subdivision surfaces. Special
journal issues [113, 135] have been devoted to subdivision surfaces, and most of the
papers in these issues are cited at various places in this book. An important related
document is a series of tutorials on geometric modelling using polygonal meshes [20].

Also, the CGAL library is of interest; see www.cgal.org.
Chapters on subdivision surfaces appear in [30, 158]. Other books on the topic

are [141, 168]; the paper [167] is a tutorial. A recent survey paper is [95].

1.7 Exercises
1. Give an example of a polyhedral mesh in R3 that is a locally planar mesh with

boundary, has (geometrically) planar faces, and that has no self-intersections



book
2010/3/3
page 48

�

�

�

�

�

�

�

�

48 Chapter 1. Introduction

in R3, but for which any extension to a locally planar mesh without boundary
will introduce a self-intersection.

2. Consider the logical mesh shown in Figure 1.7/11 (left), with faces as indicated
below. State whether the resulting logical mesh is locally planar, and whether
it is a mesh with boundary or a mesh without boundary.

(a) The mesh M defined by the mesh faces (1, 2, 6, 5), (2, 3, 7, 6), (4, 7, 3, 0),
and (0, 1, 5, 4).

(b) The mesh obtained by adding the face (4, 5, 6, 7) to M .
(c) The mesh obtained by adding the faces (4, 5, 6, 7) and (3, 2, 1, 0) to M .
(d) The mesh M ′ obtained by adding the edges (4, 6) and (0, 2), and the

faces (4, 5, 6), (4, 6, 7), (0, 2, 1), and (0, 3, 2), to M .
(e) The mesh obtained by adding the face (0, 2, 6, 4) to M ′.

3. Show that for a locally planar mesh without boundary, the dual of the dual
is the original primal mesh.

4. The Euler–Poincaré formula for a mesh that is a topological sphere asserts that
F −E+V = 2, where F is the number of faces, E is the number of edges, and
V is the number of vertices in the mesh. (For example, the cube has F = 6,
E = 12, and V = 8, and 6 − 12 + 8 = 2; the tetrahedron has F = 4, E = 6,
and V = 4, and 4 − 6 + 4 = 2.) Use this formula to show that such a mesh
can be neither a regular triangular mesh nor a regular quadrilateral mesh.

5. Show that the Repeated Averaging method with d = 2 is equivalent to the
Doo–Sabin method with the weights Wij of Section 1.3.1 replaced by

WR

ij =


2e+1
4e , j = i,

e+2
8e , j = i± 1,

1
4e , otherwise.

(1.21)

Show also that for each i,
∑
jW

R
ij = 1. (This alternate choice of weights

is mentioned by Catmull and Clark [24, p. 354], and is referred to in [177,
eq. (1)] as the Catmull–Clark variant of Doo–Sabin subdivision.)

6. Verify that Wij > 0, where Wij is defined as in (1.3)/27. Also, verify (1.4)/28

by showing that
∑e−1
k=1 cos(2πk/e) = −1.

7. Show that in the Repeated Averaging method with d = 3, the two averag-
ing steps following linear subdivision leave the face-point values FL

i produced
by linear subdivision unchanged, produce the values in (1.7)/29 for new edge-
point values, and produce the value V RA in (1.8)/29 as new value for an existing
vertex.
Show also that the Repeated Averaging method with d = 3 corresponds to
using a smoothing stencil with α∗n replaced by 1/4, β∗n replaced by 1/(2n),
and γ∗n replaced by 1/(4n).
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8. Show that (1.10)/30 is equivalent to (1.9)/30.

9. Write pseudocode for the two procedures

LSS Odd (M0, d, λ) and LSS Even(M0, d, λ),

to replace the procedure RepeatedAveraging (M0, d, λ) for d ≥ 1, d odd, λ ≥ 0,
and d ≥ 2, d even, λ ≥ 0, respectively. The procedure Dual (·) should be in-
voked only once in each subdivision step in LSS Even, and never in LSS Odd .
All other invocations of Dual should be replaced pairwise by a procedure
Smooth satisfying Smooth (·) ≡ Dual (Dual (·)) for all quadrilateral meshes
(perhaps containing extraordinary vertices).

The procedure Smooth is understood to be applied in Jacobi manner. Give
the stencil that defines its function.

10. Consider a finite circular loop of edges containing 9 edges and vertices. We
can apply univariate fourth-order B-spline subdivision to this finite mesh, and
after the first step, the circular loop will contain 18 edges and vertices. Write
down the global subdivision matrix Σν corresponding to this single subdivision
step, ν = 1.

11. Prove that the value of V ′ given in (1.17)/44 is the same as the value given by
the two formulations in Section 1.3.1.

12. Consider the effect of one step of the Loop subdivision method, in the neigh-
bourhood of an extraordinary vertex V (i.e., a vertex with valence n �= 6).
The control point V is replaced by V ′, and the value Ei associated with each
adjacent vertex is replaced by a new value E′i corresponding to a new edge
point, i = 0, . . . , n−1. Draw the diagram for the Loop method corresponding
to Figure 1.27/29 (case n = 5), and write down the (n + 1) × (n + 1) local
subdivision matrix S corresponding to the one defined for the Catmull–Clark
method by (1.17)/44. (The k-ring neighbourhood for S again has k = 1.)

13. Write the process corresponding to (1.20)/46 as the product of two bi-infinite
subdivision matrices, one corresponding to the linear subdivision step (1.18)/46

and the other corresponding to the averaging step (1.19)/46.

1.8 Projects
1. Generalization of local planarity.

This is a mathematical project, which requires no implementation.

The definition of local planarity was given in terms of meshes designed for
surface subdivision. Analogous definitions in the univariate case, for subdivi-
sion in the univariate (function or curve) case, are straightforward. It is also
relevant to give such definitions in the case of higher dimensions (see, for ex-
ample, [7, 97], where subdivision is extended to the three-dimensional case).
Give a definition of “locally N -manifold” that is general enough to include
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the case of curve, surface, and cellular decomposition. Investigate how this
definition fits within the theory of geometric complexes, which are relevant
in the context of solid modelling, and homology theory. (An informal and
practically oriented description is given in [10] and [11, Chap. 12, 14].)

2. Modifying the weights of Chaikin’s method.

Implement Chaikin’s method for the case of a univariate function, as well as
a modified version of Chaikin’s method that uses the weights 3/5 and 2/5
instead of the weights 3/4 and 1/4. Output a graph of the results of the two
methods when subdivision is applied to a depth of 10, using the following
(l, p0

l ) data:

(0, 0.52), (1, 0.7), (2, 0.3), (3, 0.5), (4, 0.45),
(5, 0.55), (6, 0.52), (7, 0.2), (8, 0.8), (9, 0.3), (10, 0.2).

(This data is similar to that in [156, Fig. 6.4].) Visually compare the smooth-
ness of the two results by comparing graphs of the two functions.



book
2010/3/3
page 51

�

�

�

�

�

�

�

�

Chapter 2

B-Spline Surfaces

With this chapter we begin the more formal mathematical development, starting
with a presentation of B-spline surfaces. Our goal is to present the part of the
classical B-spline theory needed to formulate subdivision-surface methods. The
presentation is more specialised than the usual developments of the classical spline
theory [30, 51, 127]: we omit discussion of nonuniform B-splines, and also of the
more general Non-Uniform Rational B-splines (NURBS), since these are not needed
for the formal description of subdivision-surface methods.23 In particular, we do not
discuss knot-insertion algorithms [30, 36, 51, 127]. Such algorithms are important
in the context of the general spline theory, but they are not necessary for our
purposes.24

We begin, after introducing certain mathematical preliminaries, by presenting
definitions and recursion formulas for scalar univariate uniform B-spline functions,
and uniform B-spline curves. It may be surprising at first that so much attention is
devoted to the univariate case, but the theory developed in this context is almost
immediately applicable to tensor-product B-spline surfaces. A result that appears
fairly early in the presentation is Proposition 2.2.6/64, which is the foundation of
the Lane–Riesenfeld algorithm [81]. This is perhaps the most important result re-
quired for the understanding of the subdivision methods used in computer graphics
and solid modelling: it is important to understand its proof, and the subsequent
dissection of what is essentially the univariate Lane–Riesenfeld algorithm LR(d). It
is Proposition 2.2.6/64, in combination with Proposition 2.2.3/60, that shows what is
really happening during the execution of a typical binary subdivision method. Fur-
thermore, similar mechanisms come into play for box splines, and even in methods
that are not based on box splines, such as

√
3-subdivision [118].

The nodal functions mentioned in Chapter 1 will be referred to as basis func-
tions in the B-spline case, since they do in fact form a basis of a linear function
space.

The presentation of uniform B-splines given here is unusual, in that it is based
on centered basis functions, and corresponding centered versions of the subdivision
polynomial, introduced below. The reason for using centered representations is

51
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52 Chapter 2. B-Spline Surfaces

that they better reflect the essential symmetry of the subdivision processes used in
practice. For uniform B-spline curves and surfaces, where the subdivision rule to
be applied is the same for all vertices, the method of indexing basis functions is not
of fundamental importance, although even in this case the centered version is more
natural, as shown in the discussion following (1)/330 in note 31 of this chapter. In the
case of a mesh that contains extraordinary vertices, however, the subdivision rule
to be applied depends on the nature of the particular vertex, and the control point
corresponding to this vertex is in a natural way associated with a basis function
centered around the vertex and indexed in the same way as the vertex. But doing
this for an extraordinary vertex forces us to do the same for the ordinary vertices,
i.e., to associate the vertex index with a centered basis function. Further, using
centered representations is consistent with what is done for non-box-spline methods,
such as the Butterfly, Kobbelt, and

√
3 methods introduced in later chapters.

Following the discussion of uniform B-spline functions and curves, the case of
tensor-product surfaces is described. We then discuss application of the methods to
finite meshes. Finally, further fundamental results are given for univariate B-splines.

This chapter corresponds to the first column in Figure 1.30/33. Variants of the
tensor-product Lane–Riesenfeld algorithm LR(d × d), corresponding to the upper
row in the first column of Figure 1.30/33, were described in Section 1.3.1.

2.1 Mathematical preliminaries
We begin by summarizing certain mathematical tools used later in this section and
elsewhere in the book.

A convenient technique for the study of sequences of numbers s0, s1, s2, . . .
is the method of generating functions. An exposition from the point of view of
applications in computer science25 is given in [72, Sec. 1.2]. Generating functions
are widely used in the study of subdivision processes, and we use a generalized
version of them extensively.

Given the sequence s0, s1, s2, . . . , the associated generating function is the
infinite series

G(z) = s0 + s1 · z + s2 · z2 + · · · .
As observed in [72, p. 82], the advantage of introducing this series is that it rep-
resents the entire sequence at once, and if G(z) turns out to be a known function
(say, one for which we know the power series expansion), then its coefficients can
be found.26

Some of the basic properties of generating functions [72, Sec. 1.2.9] are listed
below. They follow immediately from the definition of the generating function.

• Linear transformation. If Ga(z) is the generating function for a0, a1, a2, . . . ,
and Gb(z) is the generating function for b0, b1, b2, . . . , then αGa(z)+βGb(z) is
the generating function for the sequence αa0 + βb0, αa1 + βb1, αa2 + βb2, . . . .
This can be written as

α
∑
k≥0

akz
k + β

∑
k≥0

bkz
k =

∑
k≥0

(αak + βbk)zk.
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• Shifting. If G(z) is the generating function for a0, a1, a2, . . . , then ziG(z) is
the generating function for 0, . . . , 0, a0, a1, a2, . . .:

zi
∑
k≥0

akz
k =

∑
k≥i

ak−izk.

• Multiplication. If Ga(z) is the generating function for a0, a1, a2, . . . , and Gb(z)
is the generating function for b0, b1, b2, . . . , then Ga(z)Gb(z) is27 the generat-
ing function for the sequence σ0, σ1, . . . , where

σi =
∑

0≤k≤i
akbi−k.

This last sum is the discrete convolution of the two sequences; we also in-
troduce below the convolution of two functions (as opposed to sequences),
defined in terms of integrals (as opposed to summation).

There are also properties related to the change of scale G(cz), and to the differen-
tiation and integration of generating functions [72, Sec. 1.2.9].

It is sometimes convenient to use various generalizations of the generating
function just introduced, such as versions with negative and noninteger powers of z.
One such generalization will be given presently. These more general generating
functions are called generalized polynomials.

Given a function f = f(t), let the sequence s be defined by

sk = f(t+ kh/2), k ∈ Z,

and define the translated function

fkh/2(t) = f(t− kh/2), k ∈ Z.

Then, the doubly infinite generating function for the sequence s specified by f , h,
and t is defined as

Gf (z) =
∑
k∈Z

skz
k,

and we have

ziGf (z) =
∑
k

f(t+ kh/2) · zk+i

=
∑
k

f(t+ (k − i)h/2) · zk

=
∑
k

fih/2(t+ kh/2) · zk

= Gfih/2(z),

where
∑
k =

∑
k∈Z

. Thus, multiplying a certain generating function by zi can be
made to encapsulate the idea of operating on functions by translation.
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A translation operator

In the derivation given below, we proceed in a slightly different way, introducing
a translation operator directly. It turns out to be convenient, in the context of
subdivision, to work with units of h/2 rather than units of h, and consequently we
introduce the operator za which operates on functions by translation in units of
h/2:

zaf = fah/2, (2.1)

where
fah/2(t) = f(t− ah/2).

Next, for a generalized polynomial p(z) =
∑
k pkz

k, we define p(z)f =
∑
k pk(z

kf),
i.e.,

p(z)f(t) =
∑
k

pkf(t− kh/2). (2.2)

Further, since the operations of taking linear combinations and making translations
commute, we have p(z)(q(z)f) = (p(z)q(z))f for all generalized polynomials p(z)
and q(z).

As examples, we have

z−1f = f(t+ h/2),

z1/2f = f(t− h/4),

z−1/2f = f(t+ h/4).

This level of generality is sufficient to permit convenient description of B-spline
subdivision.

Convolution of functions

The convolution f ⊗ g of two functions f = f(t) and g = g(t) is a function of t
defined by

(f ⊗ g)(t) =
∫ ∞
−∞

f(s)g(t− s)ds. (2.3)

We can think of f ⊗ g as a smoothing of g, using f as a smoothing function: g(t)
is replaced by a weighted combination of its neighbouring values g(t − s), where
the weight used for each value of s is f(s). A simple change in variable shows that
smoothing the function f , using g as a smoothing function, gives the same result:

(f ⊗ g)(t) = (g ⊗ f)(t), (2.4)

i.e., convolution is commutative.
From the definition of the translation operator in (2.1)/54, or from (2.2)/54, it

follows that za(zbf) = za+bf , and from (2.3)/54 it follows that

(zaf)⊗ (zbg) = za+b(f ⊗ g). (2.5)
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Further, if p(z) and q(z) are generalized polynomials, we have from (2.2)/54 and
(2.5)/54 that

(p(z)f)⊗ (q(z)g) = (p(z)q(z))(f ⊗ g). (2.6)

To show this, observe that if p(z) =
∑
k pkz

k and q(z) =
∑
l qlz

l, then the right-
hand side of (2.6)/55 is equal to∑

k,l

pkqlz
k+l(f ⊗ g) =

∑
k,l

pkql(zkf)⊗ (zlg) (from (2.5)/54)

=
∑
k

pk(zkf)⊗
∑
l

ql(zlg) (from (2.3)/54)

= (p(z)f)⊗ (q(z)g).

2.2 Univariate uniform B-spline functions
We use a standard approach, based on convolution, to derive uniform B-spline basis
functions. These functions are denoted Nm

l (h; t). Such basis functions were used,
for example, in the fourth-order B-spline functions that defined the components of
the curve (1.15)/43.

Following the derivation of the B-spline basis functions, we exhibit certain
recursion formulas that they satisfy. These recursion formulas are then extended to
recursion formulas for the control points pl of the B-spline function

∑
l∈Z

plN
m
l (h; t).

Propositions 2.2.3/60 and 2.2.6/64, which contain the results just mentioned, are of
fundamental importance for the understanding of subdivision methods.

We restrict our attention for now to the univariate case. If the pl are scalars,
then the function

∑
l∈Z

plN
m
l (h; t) is a scalar univariate function, whereas if pl ∈ RN ,

it defines a curve in RN .

2.2.1 Definition of B-spline basis functions using convolution

The following derivation is based on repeated convolution of the pulse function

∗
N1(h; t) =

 1 if 0 < t < h,
1/2 if t = 0 or t = h,
0 otherwise

(2.7)

with itself, or repeated convolution of a centered version of this function with itself.
The centered version of the pulse function is defined by

N1(h; t) =

 1 if |t| < h/2,
1/2 if |t| = h/2,
0 otherwise.

(2.8)

Centered functions are used as much as possible throughout the book, but on occa-
sion, analyses turn out to be more easily expressed using uncentered versions, and
we therefore give the basic definitions in both cases.
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From (2.3)/54, for any f we have

(f ⊗N1(h; ·))(t) =
∫ t+h/2

t−h/2
f(s)ds.

If we convolve repeatedly by N1(h; ·), then the degree of continuity increases by one
at each step: if f ∈ Ck, then

(f ⊗N1(h; ·))′(t) = f(t+ h/2)− f(t− h/2),

which implies (f ⊗ N1(h; ·))′ ∈ Ck and f ⊗ N1(h; ·) ∈ Ck+1. Clearly, a similar
statement holds for repeated convolution by

∗
N1(h; ·).

The basis functions
∗
Nm(h; ·) are defined inductively, using (2.7)/55:

∗
Nk(h; t) =

1
h

(
∗
Nk−1(h; ·)⊗ ∗

N1(h; ·))(t), k = 2, . . . ,m. (2.9)

The centered B-spline basis functions Nm(h; ·) are defined similarly, using (2.8)/55:

Nk(h; t) =
1
h

(Nk−1(h; ·)⊗N1(h; ·))(t), k = 2, . . . ,m. (2.10)

Consequently, we have

∗
Nm(h; ·) = ⊗mk=1

∗
N1(h; ·) 1

hm−1 , m ≥ 1,

and
Nm(h; ·) = ⊗mk=1N

1(h; ·) 1
hm−1 , m ≥ 1. (2.11)

To prove (2.11)/56, note that from (2.7)/55 and (2.8)/55 it is clear that zN1(h; ·) =∗
N1(h; ·). By (2.5)/54 and (2.6)/55 we conclude that zmN(h; ·) =

∗
Nm(h; ·), i.e., that

Nm(h; t−mh/2) =
∗
Nm(h; t).

We also introduce shifted versions in both the uncentered and centered cases:
∗
Nm
l (h; t) =

∗
Nm(h; t− lh) = z2l ∗

Nm(h; t) (2.12)

and
Nm
l (h; t) = Nm(h; t− lh) = z2lNm(h; t). (2.13)

With this the basis functions in the example of (1.15)/43 are completely defined.

Remark 2.2.1. The dependence of the nodal functions on the parameter h is
given by

∗
Nm(h; t) =

∗
Nm(1; t/h) and Nm(h; t) = Nm(1; t/h). (2.14)

We give the proof only for the case of centered functions. The result is obvious for
m = 1. Proceeding by induction, if we assume that, for k − 1 ≥ 2, Nk−1(h; t) =
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Nk−1(1; t/h), then it follows by (2.10)/56 that

Nk(1; t/h)=
∫

R

N1(1; t/h− s)Nk−1(1; s) ds = {r = sh}

=
∫

R

N1(1; (t− r)/h)Nk−1(1; r/h) dr/h

=
∫

R

N1(h; t− r)Nk−1(h; r) dr/h = Nk(h; t),

and the proof is complete.

The function Nm
l (h; ·) has support28 [lh − mh/2, lh + mh/2]. We note the

following series of particular cases, culminating with the example of the basis func-
tions involved in the fourth-order B-spline just mentioned. The function N1

l (h; ·) is
a pulse function with support [(l − 1/2)h, (l + 1/2)h], and it is piecewise constant.
The function defined by

N2(h; t) =
1
h

(N1(h; ·)⊗N1(h; ·))(t)

=
1
h

∫ t+h/2

t−h/2
N1(h; s)ds

is a “hat function” with support [−h, h], and N2
l (h; t) is also a hat function with

support [(l − 1)h, (l + 1)h]: these functions are in C0. The functions N1
l (h; ·) and

N2
l (h; ·) are graphed in Figure 2.1/57.

Repeating this process, we obtain a function with one further degree of con-
tinuity at each step, and which, piecewise, is a polynomial of one higher degree at
each step. Consequently, after one more step, the basis function N3

l (h; ·) of order 3
is a piecewise quadratic function in continuity class C1 (see Figure 2.2/58, top), with
support [(l − 3/2)h, (l + 3/2)h]. After yet another step, the basis function N4

l (h; ·)

lh (l + 1)h

t

t

N1
l (h; t)

N2
l (h; t)

(Pulse function)

(Hat function)

(l + 1
2 )h(l − 1

2 )h

(l − 1)h

1

1

Figure 2.1. Order-1 and order-2 centered B-spline basis functions.
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(l − 2)h (l − 1)h lh (l + 1)h (l + 2)h
t

N4
l (h; ·)

(l − 3
2 )h

(l − 1
2 )h (l + 1

2 )h

(l + 3
2 )h

t

N3
l (h; ·)

Figure 2.2. Order-3 and order-4 centered B-spline basis functions.

of order 4 is a piecewise cubic function in continuity class C2, supported on the
interval [(l − 2)h, (l + 2)h] (see Figure 1.32/43; see also Figure 2.2/58, bottom).

The nodes of the centered basis function Nm(h; ·) are the values of t at which
the derivative of order m− 1 has a jump discontinuity. Referring to Figures 2.1/57

and 2.2/58, for even values of m the nodes are in hZ = {lh : l ∈ Z}, while for
odd values of m the nodes are in hZ + h/2. The node positions are indicated in
the figures by vertical dashed lines. We may summarize by saying that the nodes
of Nm

l (h; t) are in hZ + (m − 2)h/2. Similarly, the nodes of Nm
l (h/2; t) are in

(h/2)Z + (m− 2)h/4. See Exercise 1/91.

2.2.2 Recursion formulas for uniform B-splines

We first derive recursion formulas for the univariate B-spline basis functions, and
then recursion formulas for the B-spline function defined in terms of control points.
These lead to a subdivision algorithm (the Lane–Riesenfeld algorithm) that ap-
plies to B-spline curves and surfaces. We have already seen, in Section 1.3.1, that
this algorithm can be extended to meshes of general topological form; see also
Section 2.4.

To emphasize the applications, the exposition in the univariate case is phrased
in terms of curves in RN , rather than a single univariate function. Each compo-
nent of the curve is a scalar univariate function. More specifically, given a curve
represented using uniform B-spline basis functions as

x(t) =
∑
l∈Z

plN
m
l (h; t), (2.15)

where the pl ∈ RN are the control points of the curve, and where Nm
l (h; t) is defined

by (2.13)/56, we show how to find its representation in a refined grid with resolution
h/2. Repeating this procedure indefinitely, we get a sequence of points converging
to the curve.
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Remark 2.2.2. The control points {pl}l∈Z in representation (2.15)/58 are uniquely
defined. Equivalently we say that the functions {Nm

l (h; ·)} are linearly indepen-
dent, i.e., ∑

l∈Z

plN
m
l (h; t) = 0

for all t implies that pl = 0 for all l, as proved in Section 2.5.3. Because of this, the
nodal functions Nm

l (h; ·) are also referred to as basis functions.

Recursion formulas for uniform B-spline basis functions

We first derive recursion formulas for the B-spline basis functions associated with
the two one-dimensional grids of resolution h and h/2, respectively.

We introduce here a matrix first mentioned in (1.14)/41, where it was de-
noted Σ. This matrix has the following remarkable property: it succinctly describes
both the recursion (2.17)/60 for uniform B-spline basis functions, and the recursion
(2.28)/64 for the control points of a B-spline curve, both derived below. The matrix
Σ is defined by the requirement that its element in the position (k, l) is equal to
sk−2l, where

si =
1

2m−1

(
m

i+m/2

)
,

i ∈ Z, m even,
i ∈ Z + 1/2, m odd.

Then, Σ has the form

k = 2l −m/2 →

k = 2l →

k = 2l +m/2 →

l
↓

0 0 .
s−m/2 0 0
s−m/2+1 0 0

. s−m/2 0

. s−m/2+1 0

. . s−m/2

. . s−m/2+1

. s0 .
sm/2−1 .
sm/2 . .

0 sm/2−1 .
0 sm/2 .
0 0 sm/2−1
0 0 sm/2
. 0 0


(2ω×ω)

.

(2.16)
We will show that the coefficients si relate the centered basis functions at two
different levels of subdivision.

Each column of Σ is shifted by two positions relative to an adjacent column.
Also, it should be observed that by definition, si = 0 if |i| > m

2 , and that, apart
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−h
4−h

2 0 h
4

h
2

N(h2 ; + h
4 ) = N1

−1/2(
h
2 ; )

N1(h; )

N(h2 ; − h
4 ) = N1

1/2(
h
2 ; )

t

tt

t

tt

Figure 2.3. Order-1 basis functions: The 2-scale relation.

from the factor 1
2m−1 , the coefficients si are just the binomial coefficients (a column

of Σ corresponds to a row in Pascal’s triangle). The columns of Σ are indexed by
l ∈ Z, but the rows of Σ are indexed by half-integer indices k ∈ Z + 1

2 when m
is odd. This is unorthodox, but it presents no difficulty29 since we always have
i +m/2 ∈ Z, and si is therefore well defined. Note that si depends on m, m ≥ 1,
and the element in row k of column l is equal to si if k = i+ 2l.

Let
Nh = [ . . . Nm

l (h; t) . . . ](1×ω)

be the row vector of basis functions on the grid with resolution h, and let

Nh/2 = [ . . . Nm
k (h/2; t) . . . ](1×2ω)

be the row vector of basis functions on the grid with resolution h/2. Here, k ∈
Z +m/2, i.e., k ∈ Z if m is even, and k ∈ Z + 1/2 if m is odd.

Proposition 2.2.3. The row vector of basis functions associated with the grid of
resolution h satisfies

Nh = Nh/2 · Σ, (2.17)

i.e.,

Nm
l (h; t) =

2l+m/2∑
k=2l−m/2

sk−2lN
m
k (h/2; t).

Proof. By definition (2.8)/55 it follows that

N1(h; t) = N1(h/2; t− h/4) +N1(h/2; t+ h/4)
= N1

1/2(h/2; t) +N1
−1/2(h/2; t). (2.18)

(See Figure 2.3/60, which is somewhat stylized so that the relevant functions can
be distinguished.) This equation illustrates the simplest case of the “2-scale re-
lation” (2.25)/62, below, which is equivalent to (2.24)/61 in the proof. Equation
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(2.18)/60 can be rewritten as

N1(h; ·) = (z1/2 + z−1/2)N1(h/2; ·).
Applying (2.6)/55 m− 1 times, we obtain

[N1(h; ·)]m = (z1/2 + z−1/2)m[N1(h/2; ·)]m,
where the exponent m denotes m-fold convolution. But by (2.11)/56 we have

Nm(h; ·) =
1

hm−1 [N1(h; ·)]m =
1

hm−1

(
z1/2 + z−1/2

)m
[N1(h/2; ·)]m

= 2
(
z1/2 + z−1/2

2

)m
1

(h/2)m−1 [N1(h/2; ·)]m

= 2
(
z1/2 + z−1/2

2

)m
Nm(h/2; ·).

Thus,

Nm(h; t) = 2
(
z1/2 + z−1/2

2

)m
Nm(h/2; t) = s(z)Nm(h/2; t), (2.19)

where we have introduced the generalized polynomial

s(z) .= 2
(
z1/2 + z−1/2

2

)m
= 2z−m/2

(
1 + z

2

)m
=

m/2∑
i=−m/2

siz
i (2.20)

with coefficients

si =
1

2m−1

(
m

i+m/2

)
, (2.21)

and where the summation is over i ∈ Z +m/2, i.e., over i ∈ Z if m is even and over
i ∈ Z + 1/2 if m is odd. Consequently, (2.19)/61 is equivalent to

Nm(h; t) =
m/2∑

i=−m/2
siN

m
i (h/2; t), (2.22)

and this generalizes to

Nm
l (h; t) =

m/2∑
i=−m/2

siN
m
i+2l(h/2; t). (2.23)

Replacing the summation index by k = i+ 2l, we have

Nm
l (h; t) =

2l+m/2∑
k=2l−m/2

sk−2lN
m
k (h/2; t), (2.24)

completing the proof.



book
2010/3/3
page 62

�

�

�

�

�

�

�

�

62 Chapter 2. B-Spline Surfaces

The 2-scale relation and the subdivision polynomial

The 2-scale relations described in the following remark will be used frequently later.

Remark 2.2.4. The formulas (2.23)/61 and (2.24)/61 can, with l = 0, be rewrit-
ten as

Nm(h; t) =
∑
k

skN
m(h; 2t− kh) = s(z)N(h; 2t) (2.25)

with s(z) =
∑
k skz

k. This follows from (2.14)/56 which implies that Nm
k (h/2; t) =

Nm(h/2; t−kh/2) = Nm(h; 2t−kh). The generalized polynomial s(z) is called the
(centered) subdivision polynomial .

The relation (2.25)/62 expresses a property of the nodal function Nm(h; t) and
is called the 2-scale relation [86]. This 2-scale relation has been derived above start-
ing with the obvious 2-scale relation N1(h, t) = N1(h; 2t−h/2)+N1(h; 2t+h/2) =
(z−1/2 + z1/2)N1(h; 2t). Similar 2-scale relations defined by some subdivision poly-
nomial s(z) exist for a much wider class of nodal functions N , including functions
defined in the bivariate case.

We have now established the first half of the “remarkable property,” men-
tioned above, of the matrix Σ: it describes the recursion for uniform B-spline basis
functions; see (2.17)/60. Proposition 2.2.3/60 is reformulated below, in Proposi-
tion 2.2.6/64, to express the relationship between control points from one step to
the next.

The subdivision polynomial s(z) in (2.19)/61, (2.20)/61, and Remark 2.2.4/62,
as well as generalizations of this polynomial, are used throughout the book. The
coefficients of the subdivision polynomial tell us how to express a nodal function in
terms of a refined version of the nodal function, as shown in Proposition 2.2.3/60,
and, also, how to find the refined set of control points given the control points pl, as
will be shown in Proposition 2.2.6/64. Important remarks about the interpretation
of the subdivision polynomial appear in the discussion of the subdivision equation,
which follows the latter proposition.

Generalizations of the polynomial in (2.20)/61 are introduced in Chapters 3
and 4, in the context of box-spline and more general subdivision methods.

Example 2.2.5. Recursion for B-spline basis function of order 4.
The functions on the left-hand side of (2.24)/61 are illustrated for m = 4 in

Figure 2.4/63, where the weights for the five functions N4
i+2l(h/2; t) are, respectively,

1/8, 1/2, 3/4, 1/2, and 1/8. These weights are the coefficients of

s(z) = 2
(
z1/2 + z−1/2

2

)4

=
2
16

(z2 + 4z + 6 + 4z−1 + z−2)

=
1
8
z2 +

1
2
z +

3
4

+
1
2
z−1 +

1
8
z−2.

Figure 2.5/63 illustrates why a column of Σ is shifted by two positions, relative
to an adjacent column, as noted above. In Proposition 2.2.3/60, increasing l by 1
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(l − 2)h (l − 1)h lh (l + 1)h (l + 2)h
t

N4
l (h; t) (heavy line)

and N4
i+2l(

h
2 ; t), i = −2,−1, 0, 1, 2

(l − 1
2 )h(l − 3

2 )h (l + 3
2 )h(l + 1

2 )h

Figure 2.4. Order-4 basis functions involved in the 2-scale relation.

lh

(l − 2)h (l + 2)h

t

N4
l (h; t) N4

l+1(h; t)

Figure 2.5. Illustrating the two-position shift in columns of Σ.

corresponds to looking at the basis function Nm
l+1(h; t) instead of Nm

l (h; t); i.e., it
corresponds to considering a basis function shifted h units to the right. But it is
clear from Figure 2.5/63 that the corresponding basis functions on the refined grid
are found by looking at the functions two positions to the right.

Exercise 2/91 asks that a discussion analogous to that in Example 2.2.5/62 be
given in the case m = 3.

We pointed out in Section 1.4.2 that the coefficients in (2.21)/61 are exactly
those in the columns of the matrix in (1.14)/41, in the case m = 4. It is shown next
that multiplying the grid-size-h control-point vector on the left by Σ corresponds
exactly to one step of the subdivision process, as stated in Section 1.4.2.

Recursion formulas for control points for curves

Assume that we are given the curve

x(t) =
∑
l∈Z

plN
m
l (h; t) (pl ↔ grid-size h). (2.26)

We now show how to find a representation

x(t) =
∑

k∈Z+m/2

qkN
m
k (h/2; t) (qk ↔ grid-size h/2) (2.27)

using spline basis functions defined on a refined grid with grid-size h/2. The Lane–
Riesenfeld algorithm, which was introduced in a preliminary way in Section 1.3.2,
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will accomplish this, and the following proposition is the mathematical basis of the
Lane–Riesenfeld algorithm.

Proposition 2.2.6. Let p(ω×N) be the one-dimensional array, viewed as a column
vector, of control points pl associated with the grid of resolution h. Then, there
exists another array of control points qk associated with the grid of resolution h/2
for which (2.27)/63 is satisfied, and q(2ω×N) satisfies

q = Σ p, (2.28)

i.e.,
qk =

∑
l∈Z

sk−2lpl, k ∈ Z +m/2. (2.29)

Proof. Equations (2.26)/63 and (2.27)/63 may be rewritten as

x(t) = Nhp = Nh/2q.
Inserting (2.17)/60, we get

Nh/2Σp = Nh/2q (2.30)

which is satisfied if
q = Σ p, (2.31)

and (2.31)/64 can also be written as

qk =
∑
l∈Z

sk−2lpl, k ∈ Z +m/2.

According to Remark 2.2.2/59, this representation is unique.

We now make some further comments on Propositions 2.2.3/60 and 2.2.6/64

and their proofs. In the following discussion we use the abbreviations
∑
l =

∑
l∈Z

and
∑
k =

∑
k∈Z+m/2.

Observe that if we use (2.1)/54 and the shift operator introduced above, the
representation (2.26)/63 can be rewritten as

x(t) =
∑
l

plz
2lNm(h; t) =

(∑
l

plz
2l

)
Nm(h; t),

and inserting (2.19)/61, we have

x(t) =

(∑
l

plz
2l

)
s(z)Nm(h/2; t).

Similarly, (2.27)/63 can be rewritten as

x(t) =
∑
k

qkz
kNm(h/2; t) =

(∑
k

qkz
k

)
Nm(h/2; t).
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These representations are equivalent if

p(h/2; z) = s(z) p(h; z2), (2.32)

i.e., if

p(h/2; z) = 2
(
z1/2 + z−1/2

2

)m
p(h; z2), (2.33)

where we have introduced the notation

p(h; z) =
∑
l

plz
l (pl ↔ grid-size h)

and
p(h/2; z) =

∑
k

qkz
k (qk ↔ grid-size h/2).

Inserting (2.20)/61 in (2.32)/65, we get

∑
k

qkz
k =

 m/2∑
i=−m/2

siz
i

∑
l

plz
2l =

m/2∑
i=−m/2

∑
l

siplz
i+2l (2.34)

or, substituting k = i+ 2l, i.e., i = k − 2l,

∑
k

qkz
k =

m/2+2l∑
k=−m/2+2l

(∑
l

sk−2lpl

)
zk,

where in the outer summation k ∈ Z if m is even and k ∈ Z + 1/2 if m is odd. For
the new control points associated with the refined grid, we therefore take

qk =
∑
l

sk−2lpl, (2.35)

where k ∈ Z if m is even and k ∈ Z + 1/2 if m is odd, and we have obtained an
alternative derivation of (2.28)/64 and (2.29)/64 by using generating functions.

As already mentioned, the two propositions above show that the matrix Σ
describes both the process of refinement of basis functions (Proposition 2.2.3/60)
and a single step of the subdivision process itself (Proposition 2.2.6/64).

Finally, notice the discrete convolution in (2.35)/65, which corresponds to the
multiplication in (2.32)/65. This is an example of the “Multiplication” principle
mentioned at the beginning of Section 2.1. The presence of the factor of 2 in the
subscript k− 2l in (2.35)/65 corresponds to the argument z2 in p(h; z2) in (2.32)/65.

The subdivision equation and the subdivision mask

Equation (2.29)/64 is fundamental, and this equation or its generalizations are used
in the study of all of the subdivision methods described in the book. We therefore
give it a name: the subdivision equation.
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k = 2l+ 2k = 2l+ 1k = 2l

l l + 1

h

Figure 2.6. Grid indexing at adjacent levels of resolution (univariate case).

The subdivision equation gives the control points in the refined mesh, after
a single subdivision step, in terms of the control points in the unrefined mesh.
This relationship is described in (2.29)/64 by means of the coefficients of the sub-
division polynomial in the following way. The control points pl at the beginning
of the subdivision step are indexed on the grid of resolution h, whereas following
the subdivision step the same grid point is referenced by qk by doubling the in-
dex: k = 2l. (This doubled index can be viewed as the index of the grid point on
the grid of resolution h/2; in addition, there are new grid points k in the refined
grid with k odd. See Figure 2.6/66.) The subdivision equation (2.29)/64 focuses
on the index k (or row k in (2.16)/59) and asserts that the control point qk re-
ceives a contribution from each nearby control point pl. Here, a “contribution from
each pl” corresponds exactly to a contribution from each column of (2.16)/59, and
“nearby” means that |k − 2l| ≤ m/2. This last inequality can be rewritten as

l such that k − 2l ∈ G .= {−m/2,−m/2 + 1, . . . ,m/2},

which corresponds to the notation that is used often later in the book. The weight
assigned to each contribution is sk−2l.

As we saw in Chapter 1, the steps defined by a subdivision matrix such
as (2.16)/59 are often described by stencils, with one stencil corresponding to each
row of the matrix.

The subdivision equation (2.29)/64 also gives another interpretation of the
subdivision polynomial itself. Looking again at (2.16)/59, and focusing now on
column l, we see that the coefficients of the subdivision polynomial specify how the
weight of pl is distributed by a subdivision step over the new control points qk. This
set of coefficients is referred to as the mask of the subdivision scheme [25, 44, 124].

Example 2.2.7. Subdivision-polynomial description of recursion.
For m = 2, (2.33)/65 becomes

p(h/2; z) = 2
(
z1/2 + z−1/2

2

)2

p(h; z2).
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The product 2p(h; z2) is the representation of a sequence having the doubled control
points 2pl assigned to even indices k, and the value 0 assigned to odd indices k:

. . . , 0, 2pl−1, 0, 2pl, 0, 2pl+1, . . . .

Multiplying by the factor ( z
1/2+z−1/2

2 ), we obtain the sequence with half-integer
indexing (relative to k)

. . . , pl−2, pl−1, pl−1, pl, pl, pl+1, pl+1, . . . ,

and multiplying by the same factor again gives the sequence with whole-integer
indexing (again, relative to k)

. . . , pl−2, (pl−2 + pl−1)/2, pl−1, (pl−1 + pl)/2, pl, (pl + pl+1)/2, . . . . (2.36)

Alternatively, we might have said that p(h; z2) corresponds to the sequence

. . . , 0, pl−1, 0, pl, 0, pl+1, . . . ,

and applying

s(z) = 2
(
z1/2 + z−1/2

2

)2

=
1
2
z−1 + 1 +

1
2
z

directly to this sequence produces immediately the sequence (2.36)/67 with whole-
integer indexing. The advantage of using the subdivision polynomial is clear: we
can manipulate this polynomial algebraically, rather than writing out the various
sequences explicitly.

It is useful to make a mental note of the fact that from (2.1)/54 integral powers
of z, such as the powers −1, 0, and 1 in s(z) = z−1/2 + z0 + z1/2, refer to steps in
the grid of resolution h/2, indexed here by k.

2.2.3 The Lane–Riesenfeld algorithm

We now interpret Proposition 2.2.6/64 as the mathematical foundation for the Lane–
Riesenfeld algorithm LR(d). Thus, for now, we discuss only the version of the
algorithm that applies to curves, viewing the linearly linked set of control points as
a linear mesh.

The Lane–Riesenfeld algorithm: Initial substeps

A single step in the LR(d) algorithm begins by performing substeps that linearly
subdivide the mesh. Then, it performs an additional m−2 substeps, each involving
an averaging operation, with alternation between the primal refined mesh and the
dual of the refined mesh. This does not mean that both of these meshes must
be constructed for an implementation: we are discussing only the mathematical
structure of the method. The process defines a limit curve made up of piecewise
polynomials of degree m− 1, and in particular, if at each step we stop immediately
after linear subdivision (m = 2), the process defines a piecewise-linear limit surface.
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h
2

h

h
2 Z

hZPrimal grid

refined grid
Primal

h
2 Z + h

4

hZ + h
2 Dual grid

Dual of the
refined grid

Figure 2.7. Relevant grids in the univariate case.

Linear subdivision in the univariate case could also be referred to as the LR(1)
algorithm.

In Figure 2.7/68 we display the one-dimensional grids involved in the case of
curves:

the primal grid hZ (this grid has the nodes lh, l ∈ Z);

the dual grid hZ + h
2 (this grid has the nodes (l + 1/2)h, l ∈ Z);

the primal refined grid h
2 Z (this grid has nodes lh/2, l ∈ Z);

the dual of the refined grid h
2 Z + h

4 (this grid has nodes (l + 1/2)h/2, l ∈ Z).

By definition, the functions Nm
l (h; t) have their supports in the intervals

[(l −m/2)h, (l +m/2)h]

and their peak values are taken at the nodes lh of the original primal grid. Similarly,
the functions Nm

l (h/2; t) have their supports in the intervals

[(l −m/2)h/2, (l +m/2)h/2]

and their peak values are taken at the nodes lh/2 of the primal refined grid h
2 Z.

Equation (2.33)/65 is the central equation related to the LR(d) algorithm.
The algorithm begins with the sequence p(h; z) and replaces it by the sequence
2p(h; z2); it then performs m = d + 1 subsequent substeps, applying the operator
(z1/2 + z−1/2)/2 at each substep k, k = 1, . . . ,m. This corresponds to an averaging
process at each substep. In terms of the centered subdivision polynomial, this is
equivalent to initializing s(z) ≡ 2 for k = 0, and then multiplying the polynomial
by the factor (z1/2 + z−1/2)/2 for each substep, k = 1, . . . ,m. We begin by showing
how the initial substeps of the algorithm accomplish linear subdivision. This has
already been discussed informally in Example 2.2.7/66.
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The operations in (2.33)/65 can be represented as follows. The initial sequence
p(h; z) associates control points with a primal grid, producing a linear mesh. In an
initial substep 0 we introduce coefficients defined by

q02l = 2pl,

q02l+1 = 0.
(2.37)

Then
2p(h; z2) = 2

∑
l

plz
2l =

∑
j

q0j z
j , (2.38)

and this polynomial corresponds to a sequence defined on the refined primal grid,
where the control points on the new nodes are set to zero, whereas the values on
the original nodes are multiplied by a factor of 2. This initial substep in the process
is sometimes referred to [168] as upsampling.30 The factor of 2 in q02l is necessary
to initialize the process of applying the operator (z1/2 + z−1/2)/2 at each substep,
in a way that is consistent with the fact that (2.19)/61 is true for m = 1.

In substep 1 we form the sequence q1i defined for i ∈ Z + 1/2 by

q1i = (q0i−1/2 + q0i+1/2)/2,

where i = j + 1
2 , and the index j on q0j is either even (j = 2l) or odd (j = 2l + 1),

l ∈ Z. This sequence is associated with h
2 Z + h

4 , the dual of the refined grid, and
represents multiplication of 2p(h; z2) by a factor (z1/2 + z−1/2)/2, so that

p1(z) .=
∑

i∈Z+1/2

q1i z
i =

(
z1/2 + z−1/2

2

)
2 p(h; z2). (2.39)

We have

q1j+ 1
2

= (q0j + q0j+1)/2 =


(q02l + q02l+1)/2 = pl, j = 2l,

(q02l+1 + q02l+2)/2 = pl+1, j = 2l + 1
(2.40)

(see Figure 2.8/70).
In substep 2 we define q2j for j ∈ Z by

q2j = (q1j−1/2 + q1j+1/2)/2,

which gives

p2(z) .=
∑
j∈Z

q2j z
j =

(
z1/2 + z−1/2

2

)2

2 p(h; z2)

and

q2j =

 pl, j = 2l,

(pl + pl+1)/2, j = 2l + 1.
(2.41)
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pl pl+1

h

pl+1

q02l+2 = 2pl+1q02l+1 = 0q02l = 2pl

(
z

1
2 +z− 1

2

2

)2
Linear subdivision
Substep 2

q12l+ 1
2

= (q02l + q02l+1)/2 = pl

Substep 1

Upsampling
Substep 0

q12l+ 3
2

= pl+1

Figure 2.8. First substeps of the univariate Lane–Riesenfeld algorithm.

The first substep described here, in (2.40)/69, has the effect of transferring a
typical control-point value pl+1 to two vertices of the dual of the refined grid, one
on each side of the vertex in the primal grid (see Figures 2.7/68 and 2.8/70). This
corresponds to a method called “constant subdivision” which is trivial, but which
is nonetheless useful for describing other methods. Similarly, in Section 1.5 and
(1.2)/23, substeps 1 and 2 here were described31 as a single substep called “linear
subdivision.” We saw in Example 2.2.7/66 that applying

s(z) = 2
(
z1/2 + z−1/2

2

)2

=
1
2
z−1 + 1 +

1
2
z (2.42)

directly to the sequence . . . , 0, pl−1, 0, pl, 0, pl+1, . . . yields the new sequence

. . . , (pl−2 + pl−1)/2, pl−1, (pl−1 + pl)/2, pl, (pl + pl+1)/2, pl+1, . . . .

The Lane–Riesenfeld algorithm: Substeps achieving order m ≥ 3

The process so far is illustrated in Figure 2.8/70. These first two substeps have
accomplished a linear subdivision of the mesh. If the process is stopped here at
each step, it provides a method with m = 2, i.e., a process with a piecewise-linear
limit function. If an additional substep is introduced at each step (m = 3), we
obtain the Chaikin method (i.e., the LR(2) algorithm), as we now show.

Each subsequent substep (when m > 2) increases the degree of the piecewise
polynomials, of which the limit curve is formed, by one, and increases the degree
of continuity of the limit curve by one. Repeating the process started above, for
r ≥ 1, we obtain the sequences q2r+1

i defined for i ∈ Z + 1/2 (i.e., associated with
the dual of the refined grid) by

q2r+1
i+1/2 = (q2ri + q2ri+1)/2, (2.43)

so that

p2r+1(z) =
∑

i∈Z+1/2

q2r+1
i zi =

(
z1/2 + z−1/2

2

)2r+1

2 p(h; z2),
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and the sequences q2r+2
j defined for j ∈ Z (i.e., associated with the primal refined

grid) by
q2r+2
j = (q2r+1

j−1/2 + q2r+1
j+1/2)/2, (2.44)

so that

p2r+2(z) =
∑
j∈Z

q2r+2
j zj =

(
z1/2 + z−1/2

2

)2r+2

2 p(h; z2).

Thus, we alternate between the primal and the dual of the refined grid until we
reach the final substep in (2.33)/65.

To transform these expressions into an algorithm for a given value ofm ≥ 2, we
see that for each r = 1, . . . , �m−2

2 �, we must apply (2.43)/70 and (2.44)/71, followed,
if m is odd, by application of (2.43)/70 with r = m−1

2 . Thus, we begin with linear
subdivision, and then perform m − 2 successive substeps, where in each substep
we simply average the control-point values obtained in the previous substep. For
m = 3 this is Chaikin’s algorithm, introduced as an example in Section 1.5 ; equation
(2.43)/70 with r = 1 corresponds to (1.19)/46. More importantly, for each m, a
tensor-product version of the algorithm just described is the basis of the Lane–
Riesenfeld algorithm LR(d × d) for subdivision surfaces (Sections 1.3.1 and 2.3),
and of the Repeated Averaging algorithm for subdivision surfaces, described in
Section 1.3.1.

Until now, we have been discussing the substeps of one step of the LR(d) algo-
rithm. After ν full steps, the nodes are in h2−νZ if m is even (as in Section 1.4.2),
and in h2−νZ + h2−(ν+1) if m is odd. Exercise 3/92 asks for the subdivision poly-
nomial corresponding to ν complete steps of the LR(d) algorithm.

2.2.4 Two important principles

We conclude this section with some remarks on the values of s(−1) and s(1), and
with the statement of two important principles related to the use of the unit-impulse
function,32 i.e., the function defined on the discrete grid of resolution h, with value 1
at the origin and 0 elsewhere. Because these two principles are mentioned so fre-
quently in the book, we give them names: they are the Nodal-Function Computation
principle and the Polynomial Coefficient principle. They are introduced here in the
context of univariate B-splines, but later in the book they are shown to apply in
very general situations in the bivariate case.

Interpretation of the values s(−1) and s(1)

According to (2.20)/61 we have s(−1) = 0 and s(1) = 2. These equalities33 cor-
respond to the statement that in each column of Σ, summing separately over row
indices k with �k� even, and over row indices k with �k� odd, must always produce 1.
A further interpretation of the two equalities is given in Remark 2.2.8/72.

It is observed in Section 4.5 that a univariate linear subdivision process defined
by a subdivision polynomial s(z) =

∑
k∈Z

skz
k is affine invariant if and only if

s(−1) = 0 and s(1) = 2. See Theorem 4.5.1/172.



book
2010/3/3
page 72

�

�

�

�

�

�

�

�

72 Chapter 2. B-Spline Surfaces

This equivalence does not depend on s being centered; i.e., there is no require-
ment that the coefficients of s be centered around the origin.

Remark* 2.2.8. The two equalities just mentioned can be viewed in the univariate
B-spline case as guaranteeing an even or equitable distribution of the weight of the
control points at each step of the subdivision.

Consider first the case when m is even, so that the rows of Σ are indexed by
k ∈ Z. Then, according to (2.44)/71, the values obtained at the end of a complete
step are in the primal refined grid h

2 Z (see Figure 2.7/68). Examining the primal
refined grid in Figure 2.7/68, we see that there are two kinds of nodes in the grid:
those corresponding to existing nodes in the primal (nonrefined) grid, and those
corresponding to new nodes, situated half way between them. In [75], these are
referred to as even and odd nodes, respectively. Now, the statement that in each
column of Σ, summing separately over rows with k even and over rows with k odd,
always produces 1, can be interpreted as follows. The total weight assigned to a
particular control point pl doubles as the result of a subdivision step, but not in
completely arbitrary fashion: rather, it is distributed evenly between even nodes
and odd nodes. Thus, the subdivision step does two things: it distributes the weight
of pl across all even nodes, and in addition, it distributes the weight of pl across all
odd nodes, so that the total weight doubles.

A similarly equitable distribution of weight occurs when m is odd. In this
case, according to (2.43)/70, the values obtained at the end of a complete step are in
the dual of the refined grid, i.e., in h

2 Z + h
4 (see Figure 2.7/68). Examining the dual

of the refined grid, we see that again there are two types of nodes in the grid. We
might call a node situated h/4 units to the left of a node in the primal (nonrefined)
grid a “left node,” and a node situated h/4 units to the right a “right node.” Again
the total weight assigned to a particular control point pl doubles as the result of
a subdivision step, but it is distributed evenly between left nodes and right nodes.
Thus, the subdivision step distributes the weight of pl across all left nodes, and
in addition, it distributes the weight of pl across all right nodes, so that the total
weight doubles.

Nodal-Function Computation principle

Given the definition of Nm
l (h; t) in Section 2.2.1, we can find explicit analytic ex-

pressions for this function. The same will be true in the tensor-product and box-
spline cases (although the analysis is more complicated). Here, however, we note
a useful principle, valid also in more general contexts, that is mentioned often be-
low. If we are given any convergent (in a sense described in Definitions 4.7.1/182

and 5.1.1/193) subdivision procedure defining sequences qk (corresponding to grid-
size h/2) in terms of sequences pl (corresponding to grid-size h), as in (2.26)/63

and (2.27)/63, we can compute an approximation for the nodal function Nm
l (h; t)

associated with l ∈ Z even if we have no knowledge about its analytic form. This
can be done by simply applying the subdivision process, until the approximation is
satisfactory, to the scalar control points pl = 1 and pi = 0 if i �= l. The algorithm
will converge to Nm

l (h; t), since substituting pl = 1 and pi = 0, i �= l, into (2.26)/63
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−2h −h 0 h 2h

−2h −h 0 h 2h

−2h −h 0 h 2h

1

1

1
8

3
4

1
2

1
2

Figure 2.9. Polynomial Coefficient principle illustrated for LR(3).

gives x(t) = Nm
l (h; t). In more general situations the basis functions Nm

l are called
nodal functions.

Polynomial Coefficient principle

A second useful principle related to the unit-impulse function is the following. Given
the subdivision rules, perhaps defined by stencils, that describe how to find control-
point values on a grid of resolution h/2 given the values at resolution h, it is possible
to find the coefficients of the subdivision polynomial by applying the rules to the
unit-impulse function. The rules are applied for a single step of the subdivision
procedure, in Jacobi manner. It is clear in fact that if we set pl = 1 for l = 0, and
pl = 0 for l �= 0, then (2.35)/65 gives qk = sk.

We can illustrate this principle with a simple example. Suppose that we are
interested in finding the coefficients of the subdivision polynomial for the univariate
degree-three Lane–Riesenfeld algorithm LR(3), by using the Polynomial Coefficient
principle. We begin by placing a 1 at the origin, and 0 elsewhere, as illustrated
in Figure 2.9/73 (top). Then, according to the rules given in Section 2.2.3, we
must linearly subdivide, and then perform m− 2 = 4− 2 = 2 successive averaging
substeps. Given the values in Figure 2.9/73 (top), linear subdivision produces the
values shown in Figure 2.9/73 (middle), and the two subsequent averagings produce
the values in Figure 2.9/73 (bottom), which are exactly those shown in column 0 of
Σ in (1.14)/41. See also (2.16)/59.
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We have justified the two principles above by reference to the appropriate
mathematical equations, but we also appeal to the reader’s intuition about the inter-
pretation of the mathematical objects involved. In the discussion of the subdivision
mask, earlier in this section, it was shown that the coefficients of the subdivision
polynomial (i.e., the subdivision mask) specify how the weight of pl is distributed
by a subdivision step over the new control points qk, and this makes the Polynomial
Coefficient principle quite obvious at an intuitive level. An intuitive interpretation
of the Nodal-Function Computation principle follows immediately: applying the
subdivision process not just once, but infinitely often until convergence, we obtain
the influence of pl over a dense set of points in the parametric region surrounding
the parameter value t = hl that corresponds to pl. But, according to (2.26)/63, it
is exactly Nm

l (h; t) that specifies the influence of pl on this surrounding part of the
parametric domain.

2.3 Tensor-product surfaces
The results in Section 2.2 can be applied immediately to produce tensor-product
B-spline surfaces. The curve (2.15)/58 given as

x(t) =
∑
l∈Z

plN
m
l (h; t)

is replaced by the surface

x(u, v) =
∑
l1∈Z

∑
l2∈Z

pl1,l2N
m1
l1

(h;u)Nm2
l2

(h; v). (2.45)

To simplify the exposition, we assume that m1 = m2 = m, and write

x(u, v) =
∑
l1

∑
l2

pl1,l2N
m
l1 (h;u)Nm

l2 (h; v). (2.46)

Equation (2.46)/74 can be rewritten as

x(u, v) =

(∑
l1

∑
l2

pl1,l2z
2
1z

2
2

)
Nm(h;u)Nm(h; v)

=

(∑
k1

∑
k2

qk1,k2z1z2

)
Nm(h/2;u)Nm(h/2; v),

and by (2.19)/61 we have

Nm(h;u) = s(z1)Nm(h/2;u),
Nm(h; v) = s(z2)Nm(h/2; v).

Consequently,

x(u, v) = p(z2)s(z1)s(z2)Nm(h/2;u)Nm(h/2; v)
= q(z)Nm(h/2;u)Nm(h/2; v),
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pl1+1,l2+1

pl1,l2

pl1,l2+1

0 00

4pl1,l2pl1+1,l2

4pl1+1,l2+1

4pl1+1,l2

0

0
h

4pl1,l2+1

Figure 2.10. Upsampling in the bivariate case.

so that

q(z) = s(z1)s(z2)p(z2) = s̄(z)p(z2)

and

qk =
∑
l∈Z2

s̄k−2lpl,

where

s̄k1,k2(z) = sk1(z1)sk2(z2),

i.e.,

qk1,k2 =
∑
l1,l2

sk1−2l1sk2−2l2pl1,l2 . (2.47)

Thus, we operate separately using the two univariate operators. The bar on s̄ is
dropped in subsequent chapters.

The tensor-product Lane–Riesenfeld algorithm LR(d× d) for surfaces begins
with control points on the primal grid hZ2, as shown in Figure 2.10/75 (left). Substep
0 (upsampling) produces the values shown in Figure 2.10/75 (right), on the two-
dimensional primal refined grid. This should be compared with the one-dimensional
primal refined grid in Figure 2.7/68 and the initial values in (2.37)/69.

The next substep (substep 1) assigns values to the two-dimensional dual of
the refined grid h

2 Z2 + (h4 ,
h
4 ) and represents multiplication of

4p(h; z2
1 , z

2
2) = 4

∑
l1

∑
l2

pl1,l2z
2l2
1 z2l2

2

by a factor of (
z
1/2
1 + z

−1/2
1

2

)(
z
1/2
2 + z

−1/2
2

2

)
, (2.48)
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h

0

0 0

Two-dimensional primal refined grid

1
4 (pl1,l2+1 + 0 + 0 + 0) = pl1,l2+1

4pl1,l2+1

4pl1+1,l2+1

4pl1+1,l2+14pl1+1,l2+1

4pl1+1,l2+1

Two-dimensional dual refined grid

Figure 2.11. Constant subdivision in the bivariate case.

which averages the values shown in Figure 2.10/75 (right), producing the values
shown in Figure 2.11/76. For example, the value pl1,l2+1 associated with the dual
node in the upper left of Figure 2.11/76 is obtained by computing the average of
the four values in the upper left-hand square of the grid in Figure 2.10/75 (right):
1
4 (4pl1,l2+1 + 0 + 0 + 0). Each of the four terms contributing to the average is
indicated by a light arrow in Figure 2.11/76. This should be compared with the
computed result of substep 1 in Figure 2.8/70.

The method described so far (which we could denote LR(0 × 0)) is called
constant subdivision [177]. Its action is very simple: it forms the dual of the refined
grid and copies the value of each original control point on the primal grid to the four
associated dual vertices, as illustrated by heavy arrows in Figure 2.11/76. Computing
the average of four terms, in which one term is a certain value multiplied by 4 and the
other three are equal to zero, is equivalent to copying the value. The corresponding
subdivision polynomial is

(z1/2
1 + z

−1/2
1 )(z1/2

2 + z
−1/2
2 ) = 2

(
z
1/2
1 + z

−1/2
1

2

)
2

(
z
1/2
2 + z

−1/2
2

2

)
(2.49)

= z
1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2 + z

−1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2

(compare (2.39)/69).
In analogy with (2.42)/70, when d = 1 we have

s(z) = 2

(
z
1/2
1 + z

−1/2
1

2

)2

2

(
z
1/2
2 + z

−1/2
2

2

)2

, (2.50)

where z = (z1, z2), which corresponds to linear subdivision, LR(1 × 1). Conse-
quently, substep 2 involves multiplying again by the factor in (2.48)/75, i.e., aver-
aging the values in the dual grid and placing them in the primal grid, as shown in
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h

1
4 (pl1,l2 + pl1+1,l2 + pl1,l2+1 + pl1+1,l2+1)

1
4 (pl1,l2 + pl1,l2 + pl1,l2+1 + pl1,l2+1) =

1
2 (pl1,l2 + pl1,l2+1)

pl1,l2+1

1
4 (pl1,l2+1 + pl1,l2+1 + pl1,l2+1 + pl1,l2+1) =

Figure 2.12. Linear subdivision in the bivariate case.

Figure 2.12/77. Thus, in analogy with substep 2 for curves, shown in Figure 2.8/70,
substep 2 of the tensor-product process accomplishes linear subdivision.

Subsequent substeps similarly operate in a way analogous to the process for
curves, alternating between the two-dimensional dual refined grid of Figure 2.11/76

and the two-dimensional primal refined grid. Each substep corresponds to a mul-
tiplication that adds another factor of the form (2.48)/75 in order to eventually
produce the subdivision polynomial

4

(
z
1/2
1 + z

−1/2
1

2

)m(
z
1/2
2 + z

−1/2
2

2

)m
, (2.51)

and each substep involves an averaging of the points computed at the previous
substep. For practical computation, there is no need to construct the dual mesh
unless m is odd: if m is even, a pair of averages can be computed simultaneously
and the result stored in the primal refined mesh. The pair of averages used in a
double substep corresponds to the factor

(
z
1/2
1 + z

−1/2
1

2

)2(
z
1/2
2 + z

−1/2
2

2

)2

=

1
16
z−1
1 z2 +

1
8
z2 +

1
16
z1z2

+
1
8
z−1
1 +

1
4

+
1
8
z1

+
1
16
z−1
1 z−1

2 +
1
8
z−1
2 +

1
16
z1z
−1
2

(2.52)

which corresponds to a smoothing in the primal mesh using the stencil shown in
Figure 1.28/29 (left). (The right-hand side of (2.52)/77 is an ordinary sum: the terms
are written on three separate lines for purposes of comparison with the stencil just
mentioned.)
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h

l = (l1 + 1, l2)l = (l1, l2)

k = (2l1 + 1, 2l2)

k = (2l1 + 2, 2l2)k = (2l1, 2l2)

l = (l1 + 1, l2 + 1)

k = (2l1 + 2, 2l2 + 2) h

(k1.k2)

(case of m = 4, m/2 = 2)

hG

Figure 2.13. Grid indexing at adjacent levels of subdivision (bivariate case).

In general, it is necessary to compute �m/2� pairs of averages, in addition to
one further simple averaging in the dual mesh in the case when m is odd.

Exercise 4/92 illustrates the relationship between the curve and tensor-product-
surface versions of the Lane–Riesenfeld algorithm.

Writing (2.47)/75 with its restricted summation domain, we have

qk =
∑

l:k−2l∈G
sk−2lpl, (2.53)

where k = (k1, k2) and l = (l1, l2), and

G = {(l1, l2) : −m/2 ≤ l1, l2 ≤ m/2}.

Like (2.53)/78 itself, the associated discussion is entirely analogous to the univariate
case: the control points pl at the beginning of the step are indexed on the grid of
resolution h, whereas following the subdivision step, the same grid is referenced by
doubling the index: k = 2l. See Figure 2.13/78 (left), which should be compared
with Figure 2.6/66. The subdivision equation (2.53)/78 asserts that the control point
qk receives a contribution from each nearby control point pl, where “nearby” means
l such that k−2l ∈ G, i.e., −m/2 ≤ k1− l1, k2− l2 ≤ m/2 (see Figure 2.13/78, right).
The coefficients sk−2l, k − 2l ∈ G, define the mask of the subdivision scheme.

The Nodal-Function Computation principle for the approximation of the bi-
variate nodal function Nm

l1
(h;u)Nm

l2
(h; v) applies as in the scalar case, by applying

the LR(d, d) algorithm to the scalar control points p(l1,l2) = 1 and p(i1,i2) = 0 if
(i1, i2) �= (l1, l2). Similarly, the Polynomial Coefficient Principle applies: we can
obtain the subdivision mask sk by applying a single step of the LR(d×d) algorithm
to the scalar data p(l1,l2) = 1 for (l1, l2) = (0, 0), p(l1,l2) = 0 for (l1, l2) �= (0, 0). This
is the tensor-product version of the process illustrated in Figure 2.9/73 for d = 3.
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Mesh in RN

Patch in RN

Figure 2.14. Patch computed by LR(3× 3) algorithm.

2.4 B-spline methods for finite meshes
A basic subdivision method, applicable to regular finite quadrilateral meshes, is
the ordinary LR(d × d) algorithm of Section 2.3. In fact, it is a class of methods,
parametrized by the degree d, that corresponds to the lower row of column 1 of
Figure 1.30/33, i.e., the case of regular meshes. If we implement a variant method,
then we can view the basic LR(d× d) method as having been implemented on the
regular part of the mesh. For example, if the Catmull–Clark method is applied to a
polyhedral mesh containing the 16 control points illustrated in Figure 2.14/79 (top),
then part of the resulting surface can be viewed as defined on a quadrilateral grid,
as shown in Figure 2.14/79 (bottom left). Only the 16 control points indicated
influence the value of the surface on the central square in the parametric domain
(consider the interval [0, h] in Figure 1.32/43). The image of the central square in
the parametric domain can be viewed as defining a surface patch corresponding to
the central face in the logical mesh defining the original polyhedral mesh. Once
convergence has been proved, it follows by definition that each sequence of control
points, corresponding to one of the four internal control points in the 16-point mesh,
converges to a corner of the patch.

Similar statements can be made for the tensor-product LR(d × d) algorithm
for arbitrary values of d. For example, in Section 1.3.1, variant methods were given
that reduce to the basic LR(d×d) algorithm on regular meshes. Thus, for example,
if d is odd and such a variant method is applied to a square polyhedral mesh with
(d+1)×(d+1) vertices, then a patch will be defined that corresponds to the central
face in a (d+1)× (d+1) mesh. Again, this patch can be expressed as a parametric
function of the form (2.46)/74. The case of d even is considered in Exercise 5/92.

These remarks can be extended to larger meshes, as illustrated for the case
d = 3 in Figure 2.15/80, and the continuity properties on the combined patch will
be as specified by the theory in Section 2.5.6. If, however, there are extraordinary
vertices nearby, then it will be necessary to use more elaborate parametrizations to
describe the extension of the surface. This is discussed in Section 6.3.2.

Variants of the Lane–Riesenfeld algorithm, applicable in the nonregular case,
were presented in Section 1.3.1. They included the Repeated Averaging method
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Figure 2.15. Regular portion of surface computed by LR(3× 3) algorithm.

with d − 1 averagings, the related LSS method (Exercise 9/49 of Chapter 1), and
the Doo–Sabin and Catmull–Clark methods. This corresponds to the upper row in
the first column of Figure 1.30/33.

2.5 Further results for univariate B-splines
We present here some further fundamental results for univariate B-splines. These
results either generalize directly, or serve as models for results in more general cases.

2.5.1 Differentiation

For k ≥ 2 we have, from (2.9)/56,

∗
Nk(h; t) =

1
h

(
∗
Nk−1(h; ·)⊗ ∗

N1(h; ·))(t) =
1
h

∫ t

t−h

∗
Nk−1(h; s) ds,

so that, using the notation D = d
dt ,

D
∗
Nk(h; t) =

1
h

(
∗
Nk−1(h; t)− ∗

Nk−1(h; t− h)), (2.54)

and, using the translation operator z and (2.12)/56,

D
∗
Nk
l (h; t) =

1
h

(1− z2)
∗
Nk−1
l (h; t) =

1
h

(
∗
Nk−1
l (h; t)− ∗

Nk−1
l+1 (h; t)).

Similarly, for centered spline functions we obtain

DNk
l (h; t) =

1
h

(z−1 − z)Nk−1
l (h; t) =

1
h

(Nk−1
l−1/2(h; t)−Nk−1

l+1/2(h; t)).

If we replace k by m and repeat this process, we get the following for higher-order
derivatives:

Dk
∗
Nm
l (h; t) =

1
hk

(1− z2)k
∗
Nm−k
l (h; t) (2.55)
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and

DkNm
l (h; t) =

1
hk

(z−1 − z)kNm−k
l (h; t). (2.56)

The sizes of the jump discontinuities of Dm−1
∗
Nm
l (h; ·) are needed later, and

they may be computed using (2.55)/80. Taking l = 0 and k = m − 1 in (2.55)/80,
expanding the binomial (1 − z2)m−1, and using the definition of the translation
operator z, we get

Dm−1 ∗
Nm

0 (h; t) =
1

hm−1

m−1∑
i=0

(
m− 1
i

)
(−1)i

∗
N1

0(h; t− ih). (2.57)

Equation (2.57)/81 shows that the function Dm−1
∗
Nm

0 (h; t) has a jump dis-
continuity [

Dm−1 ∗
Nm

0 (h; t)
]t=ih+

t=ih−

=
1

hm−1

[
(−1)i

(
m− 1
i

)
− (−1)i−1

(
m− 1
i− 1

)]
(2.58)

=
1

hm−1 (−1)i
(
m

i

)
(2.59)

at the point t = ih, i = 0, . . . ,m, where
(
m−1
−1

)
and

(
m−1
m

)
are zero by definition.

For translated functions we have similarly

[
Dm−1 ∗

Nm
l (h; t)

]t=ih+

t=ih− =
1

hm−1 (−1)i−l
(
m

i− l
)
. (2.60)

Thus, for m ≥ 2,
∗
Nm
l (h; ·) is in Cm−2, but not in Cm−1.

Control points for the derivative of a curve

Assume that we are given a spline curve

x(t) =
∑
l∈Z

plN
m
l (h; t)

represented by centered nodal functions and control points {pl}l∈Z.
The tangent curve to this curve is then obtained by operating on the compo-

nents of the curve with D = 1
h (z−1 − z), so that

Dx(t) =
1
h

(z−1 − z)
∑
l∈Z

plN
m−1
l (h; t) =

1
h

∑
l∈Z

pl(Nm−1
l−1/2(h; t)−Nm−1

l+1/2(h; t)),

i.e.,

Dx(t) =
1
h

∑
l∈Z+1/2

(pl+1/2 − pl−1/2)Nm−1
l (h; t). (2.61)
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x2

x1

Triple control point

Figure 2.16. Control points defining a C2 curve with singularity.

The control points pdl for the tangent curve are thus given by

pdl = (pl+1/2 − pl−1/2)/h, l ∈ Z + 1/2, (2.62)

i.e., by taking centered differences on the original primal grid. The control points
are now defined on the dual grid, and the spline functions are of order m − 1,
m ≥ 2. For m = 2 there are jump discontinuities in the derivative, and therefore in
the tangent.

Higher-order derivatives are obtained by repeating this process.
Even if we have parametric continuity of the derivatives of each component of

the curve, there may nonetheless be singularities in the curve itself, for particular
choices of the control points. A similar remark holds for surfaces, and many authors
allude to this by saying, for example, that a certain result for subdivision surfaces
holds for almost all control points, or that it is assumed that the control points are
in general position [132, Thm. 3.5], [144, p. 30], [172, p. 66].

Example 2.5.1. Subdivision producing a C 2 curve with a singularity.
A simple example to illustrate the comments of the previous paragraph can

be obtained by arranging the control points uniformly on the curve (t, |t|), with the
control point (0, 0) repeated three times (see Figure 2.16/82, where the superscripts
denote components in R2).

Let

pl =

 (l + 1,−(l + 1)), l ≤ −1,
(0, 0), l = 0,
(l − 1, l − 1), l ≥ 1,

and apply the LR(3) method of (1.14)/41 with h = 1. Because of the repeated
control points at the origin, the method converges in each of the first two quadrants
to a half line terminating at the origin. For example, from (2.15)/58 we have, in the
first quadrant,

x(t) =
∞∑
l=2

plN
4
l (1; t),

and the curve is equal to (N4
2 (1; t), N4

2 (1; t)) on [0, 1]. Similarly, the curve is equal
to (−N4

−2(1; t), N4
−2(1; t)) on [−1, 0], and on the real line it is a C2 parametrization

of (t, |t|), with tangent vector equal to 0 at the origin: Dx(0) = 0.
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A small perturbation of the control points is sufficient to remove the singularity
in the curve. In this case the control points would be said to be in general position.

Exercise 6/92 asks for the result of applying the subdivision process once to
the given control points.

2.5.2 Partition of unity

For univariate uniform B-splines we have the following result concerning partition
of unity.

Theorem 2.5.2. ∑
l∈Z

Nm
l (h; t) = 1 (2.63)

for all t, m ≥ 1. Further ∫ ∞
−∞

Nm
l (h; t) dt = h. (2.64)

Proof. The equality (2.63)/83 is trivially true for m = 1, i.e.,∑
l∈Z

N1
l (h; t) = 1.

Convolving repeatedly by 1
hN

1
0 (h; ·) and using that

1
h
N1

0 (h; ·)⊗ 1 =
∫ ∞
−∞

1
h
N1

0 (h; t) dt = 1,

the equality (2.63)/83 follows.
Similarly (2.64)/83 is trivially valid for m = 1. Using that

∫
R
(f ⊗ g)(t) dt =∫

R
f(t) dt

∫
R
g(t) dt and (2.10)/56, the equality (2.64)/83 follows by induction.

A slightly more general local result is the following.

Corollary 2.5.3. Assume that (a, b) ⊂ R is an open interval and that pl = 1 for
all l such that supp (Nm

l (h; ·)) ∩ (a, b) �= ∅. Then∑
l∈Z

plN
m
l (h; t) = 1 (2.65)

for all t ∈ (a, b).

Proof. The result is trivially valid for m = 1. For m ≥ 2, the sum∑
l∈Z

plN
m
l (h; t)

does not change its value on the interval (a, b) if all coefficients pl are taken to be
equal to 1. Applying Theorem 2.5.2/83 completes the proof.
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The above result is actually valid in a much more general setting. In fact,
every linear subdivision process that is affine invariant and which converges gives
a partition of unity in terms of the nodal functions involved. In this more general
context, a nodal function related to the node l is a function defined on the actual
manifold by taking pl = 1 at the node l and all other coefficients pk equal to zero.
This is discussed in Remark 4.7.3/183.

Remark 2.5.4. It is clear that the statements of Theorem 2.5.2/83 and Corol-
lary 2.5.3/83 are also true if the centered functions Nm

l (h; ·) are subjected to a
translation; i.e., the statement does not depend on the fact that the nodal functions
are centered.

2.5.3 Linear independence

We have the following theorem on global linear independence for univariate uniform
B-splines.

Theorem 2.5.5. If ∑
l∈Z

plN
m
l (h; t) = 0

for all t, then pl = 0 for all l ∈ Z.

A more general result on local linear independence is the following.

Theorem 2.5.6. If ∑
l∈Z

plN
m
l (h; t) = 0

for all t ∈ (a, b), then pl = 0 for all l such that supp (Nm
l (h; ·)) ∩ (a, b) �= ∅.

It is clear that Theorem 2.5.5/84 follows from Theorem 2.5.6/84 by taking
(a, b) = (−∞,∞).

Proof. The proof is by induction. The statement of the theorem is trivially true
for m = 1. Next assume that the statement has been proved for m = k, k ≥ 1. For
m = k + 1 we assume that

∑
l∈Z

plN
k+1
l (h; t) = 0 for all t ∈ (a, b). Differentiating,

using (2.62)/82 and the induction hypothesis, we conclude that

pl+1/2 − pl−1/2 = 0 for a/h− k/2 < l < b/h+ k/2.

It follows that pl is constant for

a/h− (k + 1)/2 < l < b/h+ (k + 1)/2,

and using Corollary 2.5.3/83, we conclude that
∑
l∈Z

plN
k+1
l (h; t) is equal to this

constant on the interval (a, b). By the induction hypothesis, the constant is zero
and the proof is complete.
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Remark 2.5.7. It is clear that the statement of Theorem 2.5.6/84 is true if the
centered functions Nm

l (h; ·) are subjected to a translation.

In Section 3.6 we give a more general theorem on linear independence, valid
for a class of box splines.

2.5.4 A linear function space

Let us introduce the following linear function space.

Definition 2.5.8. Bm(hZ) is the set of functions x ∈ Cm−2(R) such that

x|((i−1)h,ih) is a polynomial of degree m− 1 for every i ∈ Z.

It is clear that
∗
Nm
l (h; ·) ∈ Bm(hZ) for all l ∈ Z.

The following theorem expresses that the linear span of the set of functions
{ ∗
Nm
l (h; ·)}l∈Z is Bm(hZ) and that they form a basis for this linear function space.

Theorem 2.5.9. Every function x ∈ Bm(hZ) can be written as

x(t) =
∑
l∈Z

pl
∗
Nm
l (t)

with uniquely defined coefficients pl.

Proof. Let us consider an open interval ((i− 1)h, ih). We have that

supp (
∗
Nm
l (h; ·)) ∩ ((i− 1)h, ih) �= ∅

if and only if i − m ≤ l ≤ i − 1, i.e., for exactly m values of the index l. (This
can be seen in Figure 1.32/43, for example, with i = 1, interval (0, h), m = 4, and
l = −3,−2,−1, 0. The index l is shifted by 2 in Figure 1.32/43 since the centered
functions Nm

l are illustrated there.) By Theorem 2.5.6/84 and Remark 2.5.7/85, it
follows that the set of functions

{ ∗
Nm
l (h; ·)|((i−1)h,ih)}i−m≤l≤i−1

is linearly independent. Since their number is m and their linear span is contained
in the space of polynomials on ((i − 1)h, ih) of degree less than or equal to m − 1
(which has dimension m), we conclude that they are a basis for this space. This
follows from the fact that the number of functions in the power basis is exactly m.
It follows next that for every x ∈ Bm(hZ), we have

x(t)|((i−1)h,ih) =
∑

i−m≤l≤i−1

pl
∗
Nm
l (h, ; t)

with uniquely defined coefficients pl. Using that
∗
Nm,i(h; t)|(ih,(i+1)h) = (t/h− i)m−1/(m− 1) !
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86 Chapter 2. B-Spline Surfaces

and that Dm−1
∗
Nm,i(h; ih+) = 1/hm−1, it is clear that we can choose a new coeffi-

cient pi in a unique way so thatDm−1

x(t)− ∑
i−m≤l≤i

pl
∗
Nm
l (h; t


t=ih+

= 0. (2.66)

Note also that, since the function x(t)−∑i−m≤l≤i pl
∗
Nm
l (h; t) vanishes on the

interval ((i− 1)h, ih) and is in Cm−2(R), we haveDk

x(t)− ∑
i−m≤l≤i

pl
∗
Nm
l (h; t)


t=ih+

= 0 for 0 ≤ k ≤ m− 2. (2.67)

By (2.66)/86 and (2.67)/86 and the fact that x(t)−∑i−m≤l≤i pl
∗
Nm
l (h; t) is a poly-

nomial of degree at most m − 1 on the interval (ih, (i + 1)h), we conclude that it
vanishes also on that interval.

Repeating this process for an infinite sequence of adjacent intervals, the state-
ment of the theorem follows.

Corollary 2.5.10. If x ∈ Bm(hZ) is zero on the intervals

(ih, (i+ 1)h) and ((i+ k)h, (i+ 1 + k)h), where k ≤ m,

then it vanishes also on the intermediate intervals, i.e., x(t) = 0 on (ih, (i+1+k)h).
It follows that if x ∈ Bm(hZ) has its support in an interval, then the interval must
have length at least mh.

Proof. Without loss of generality, we may assume that i = 0. By Theorem 2.5.9/85

the function x has the unique representation

x(t) =
∑
l∈Z

pl
∗
Nm
l (h; t).

Then, by Theorem 2.5.6/84 we conclude that pl = 0 for all l such that
supp (

∗
Nm
l (h; ·)) ∩ (0, h) �= ∅ and supp (

∗
Nm
l (h; ·)) ∩ (kh, (k + 1)h) �= ∅. This im-

plies that l = 0 for −m + 1 ≤ l ≤ 0 and k + 1 − m ≤ l ≤ k. If k − m ≤ 0, it
follows that l = 0 for −m + 1 ≤ l ≤ k, from which we conclude that x(t) = 0 for
(0, (k + 1)h), and the proof is complete.

2.5.5 Computation of exact values

If we are given control points for a spline curve at some subdivision level, we might
want to compute exact positions of some or all points of the curve, or exact tangent
vectors (the values of the control points provide only approximations). To obtain
simple rules for doing so, the following recursion formula (which is due to de Boor
[35] in the more general setting of nonuniform splines), is useful. Note that, in
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contrast to the case of Section 2.2.1, the recursion here is in the order m with a
fixed mesh.

Lemma 2.5.11. For all m ≥ 2 the following recursion formula is valid:
∗
Nm

0 (h; t) =
1

m− 1
((t/h)

∗
Nm−1

0 (h; t) + (m− t/h) ∗
Nm−1

1 (h; t)). (2.68)

Proof. The functions
∗
Nm
l (h; t) were defined in (2.7)/55, (2.9)/56, and (2.12)/56, and

from these definitions the statement of the theorem is true for m = 2. The functions
are pulse functions when m = 1, and hat functions when m = 2, as illustrated in
the centered case in Figure 2.1/57.

When m ≥ 3, using that
∗
Nm(h; t) =

∗
Nm(1; t/h), it is clearly sufficient to

carry out the proof for h = 1.
By (2.59)/81 we have

∗
Nm

0 (1; t) =
∗
Nm

0 (t) = tm−1/(m− 1) ! on the interval
(0, 1) and

∗
Nm,1(t) = (m − t)m−1/(m − 1) ! on the interval (m − 1,m). It follows

that the right-hand side minus the left-hand side in (2.68)/87 vanishes on these
intervals. Therefore, if we can prove that the right-hand side is in Cm−2(R), then
the conclusion of the lemma follows. This is due to the fact that the right-hand side
minus the left-hand side would be a function in Bm(Z) with support on (1,m− 1)
and therefore, by Corollary 2.5.10/86, would have to vanish.

Differentiating in the right side of (2.68)/87, with h = 1, and using the product
rule

Dm−2f(t)g(t) =
m−2∑
i=1

(
m− 2
i

)
Dif(t)Dm−2−ig(t),

we get

Dm−2(t
∗
Nm−1

0 (t) + (m− t) ∗
Nm−1

1 (t))
= tDm−2 ∗

Nm−1
0 (t) + (m− t)Dm−2 ∗

Nm−1
1 (t)

+ (m− 2)Dm−3 ∗
Nm−1

0 (t)− (m− 2)Dm−3 ∗
Nm−1

1 (t).

Here the two last terms are in C(R) and therefore it only remains to prove that the
function

tDm−2 ∗
Nm−1

0 (t) + (m− t)Dm−2 ∗
Nm−1

1 (t)

is continuous. Now, using (2.59)/81 and (2.60)/81 with h = 1 and m replaced by
m− 1, we get[

tDm−2 ∗
Nm−1

0 (t) + (m− t)Dm−2 ∗
Nm−1

1 (t)
]t=i+
t=i−

= i
[
Dm−2 ∗

Nm−1
0 (t)

]
t=i + (m− i) [Dm−2 ∗

Nm−1
1 (t)

]t=i+
t=i−

= (−1)i
[
i

(
m− 1
i

)
− (m− i)

(
m− 1
i− 1

)]
= (−1)i

[
i
(m− 1) · · · (m− i)

i !
− (m− i) (m− 1) · · · (m− i+ 1)

(i− 1) !

]
= 0,

and the proof is complete.
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For centered splines we have the following:

Nm
0 (h; t)

=
1

m− 1
((t/h+m/2)Nm−1

−1/2(h; t) + (m/2− t/h)Nm−1
1/2 (h; t))

or, for translated functions,

Nm
l (h; t)

=
1

m− 1

{
((t/h− l) +m/2)Nm−1

l−1/2(h; t) + (m/2− (t/h− l))Nm−1
l+1/2(h; t)

}
.

Rewriting the last expression slightly, we get the following theorem.

Theorem 2.5.12. For all m ≥ 2 the following recursion formula is valid:

Nm
l (h; t) =

(
1
2
− l − 1/2

m− 1
+

t

(m− 1)h

)
Nm−1
l−1/2(h; t)

+
(

1
2

+
l + 1/2
m− 1

− t

(m− 1)h

)
Nm−1
l+1/2(h; t). (2.69)

The recursion formula (2.68)/87 of de Boor can be generalized to box splines.
This is shown in Section 6.3.1. As in the univariate case it can be used for exact
evaluation of nodal functions.

Computation of exact values, first method (de Boor method)

Now assume that the control points {pml }l∈Z for some spline curve have been com-
puted up to a subdivision level h, so that

x(t) =
∑
l∈Z

pml N
m
l (h; t).

Using (2.69)/88 and shifting summation index, we obtain

x(t) =
∑
l∈Z

pm−1
l (t)Nm−1

l (h; t)

with functions pm−1
l (t) given by

pm−1
l (t) = pml+1/2

(
1
2

+
(t/h− l)
m− 1

)
+ pml−1/2

(
1
2
− (t/h− l)

m− 1

)
, (2.70)

where l ∈ Z + 1/2, i.e., in the dual grid.
We note that the interpolation in (2.70)/88 is convex, since Nm−1

l (h; t) = 0 for∣∣∣∣ (t/h− l)m− 1

∣∣∣∣ ≥ 1/2.
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tlh

x(t)
p1
l (t) p1

l+1(t)

Figure 2.17. Computation of exact values, first method.

Interpolating recursively in (2.70)/88 we obtain the representation

x(t) =
∑
l∈Z

p1
l (t)N

1
l (h; t),

where we can read off the value of x(t). Each function p1
l (·) represents x(t) exactly,

on the interval [lh− h/2, lh+ h/2], as illustrated in Figure 2.17/89.

Computation of exact values, second method

Usually it is sufficient to evaluate x(t) at points t = ih/2, i.e., for parameter values
in the primal or the dual grid. In this case the method described below is easy to
use. It is shown in Sections 6.1 and 6.2 that this method is the same as the method
described in [156], sometimes referred to as “pushing a control point to its limit
position.”

For the primal grid we get

x(ih) =
∑
l∈Z

plN
m
0 (h; ih− lh) =

∑
l∈Z

plN
m(1; i− l).

This may be rewritten as
x(ih) =

∑
l∈Z

pi−lNm(l),

where Nm(t) .= Nm(1; t) is the spline centered at the origin with h = 1. For the
dual grid we get similarly

x((i+ 1/2)h) =
∑
l∈Z

pi−lNm(l + 1/2).

Therefore, in order to compute the values x(ih) and x((i + 1/2)h), we have to
convolve the sequence {pl}l∈Z with the sequences {Nm(l)}l∈Z and {Nm(l+1/2)}l∈Z,
respectively. Now using (2.69)/88 with t = 0 and l replaced by −l/2, we get

Nm(l/2) =
(

1
2

+
l + 1

2(m− 1)

)
Nm−1

(
l + 1

2

)
+
(

1
2
− l − 1

2(m− 1)

)
Nm−1

(
l − 1

2

)
. (2.71)
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Table 2.1. Nodal spline values for half-integer arguments.

l/2 0 1/2 1 3/2 2 5/2

N2(l/2) 1 1/2 0 0 0 0
N3(l/2) 3/4 1/2 1/8 0 0 0
N4(l/2) 2/3 23/48 1/6 1/48 0 0
N5(l/2) 115/192 11/24 19/96 1/24 1/384 0

For m = 2 we have N2(−1/2) = N2(1/2) = 1/2, N2(0) = 1, and we have
N2(i/2) = 0 for |i| ≥ 2. Therefore, using (2.71)/89 recursively for m = 3, 4, . . .
we can compute the values Nm(l/2) for arbitrary m and l (note the symmetry
Nm(l/2) = Nm(−l/2)). In Table 2.1/90 some of these values are listed.

Note also that
∑
l∈Z

Nm(l) = 1 and
∑
l∈Z

Nm(l + 1/2) = 1, in accordance
with (2.63)/83 of Theorem 2.5.2/83.

Computation of exact tangent vectors

In order to compute exact values for tangent vectors, we simply apply the previous
methods to the expression (2.61)/81.

2.5.6 Application to the tensor-product-surface case

Most of the results developed in the previous subsections are directly applicable in
the tensor-product case. Consider for example the results for differentiation. We
first recall the definition of directional derivative.

Definition 2.5.13. The directional derivative of a function f : R2 → R in the
direction e ∈ R2 is given by

Def(y) = lim
ε→0+

f(y + εe)− f(y)
ε

. (2.72)

According to (2.46)/74, we have

x(u, v) =
∑
k

∑
l

pk,lN
m
k (h;u)Nm

l (h; v). (2.73)

Now, the results of Section 2.5.1 can be used to compute partial derivatives: for
example,

∂x

∂u
=

1
h

∑
k∈Z+1/2

∑
l∈Z

(pk+1/2,l − pk−1/2,l)Nm−1
k (h;u)Nm

l (h; v), (2.74)

and similarly for ∂x
∂v . If m > 2, then x ∈ C1(R2), and we can compute arbitrary

directional derivatives from

Dex(u, v) = α
∂x

∂u
+ β

∂x

∂v
,

where e = (α, β)t. This result is generalized to the box-spline case in Section 3.2.
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For partition of unity we have

∑
l1

∑
l2

Nm
l1 (h;u)Nm

l2 (h; v) =

(∑
l1

Nm
l1 (h;u)

) (∑
l2

Nm(h; v)

)
= 1.

For global linear independence, we have the following. Suppose that∑
l1

∑
l2

pl1,l2N
m
l1 (h;u)Nm

l2 (h; v) = 0

for all u, v. Then, keeping v fixed, it follows that

∑
l1

(∑
l2

pl1,l2N
m
l2 (h; v)

)
Nm
l1 (h;u) = 0,

which implies that
∑
l2
pl1,l2N

m
l2

(h; v) = 0 for all l1 (and all v). It follows that
pl1,l2 = 0 for all l1, l2.

Computation of exact values as in Section 2.5.5 generalizes trivially to the
nodal functions Nm(h;u)Nm(h; v).

In fact, many of the results for the univariate case generalize far beyond the
case of tensor-product B-splines, and we therefore postpone these generalizations
until later sections. In particular, the result in Section 2.5.2 on partition of unity
is discussed for box splines in Section 3.6 and more generally in Section 4.7. The
extension of the result on linear independence, in Section 2.5.3, is also treated in
the more general case of box splines, in Section 3.6. Similarly, the question of
computation of exact values, in Section 2.5.5, is treated at quite a high level of
generality in Chapter 6.

2.6 Additional comments
A good reference for generating functions is [72, Sec. 1.2]. Convolution and the
Fourier transform are discussed in many textbooks: for the level of generality used
here and in Section A.3, see the advanced texts [21, 54, 153].

Good references for B-splines and Non-Uniform Rational B-Splines (NURBS)
are [30, 51, 127].

2.7 Exercises
1. The nodes of Nm

l (h; t) are in hZ + (m− 2)h/2, while the nodes of Nm
l (h/2; t)

are in h
2 Z + (m− 2)h/4. Draw the B-spline nodal functions, with their asso-

ciated nodes, for the cases m = 3 and m = 4, and relate the position of the
nodes to the grids in Figure 2.7/68.

2. Repeat Example 2.2.5/62 for the case m = 3. In particular, give the illustra-
tions analogous to Figures 2.4/63 and 2.5/63 in the case m = 3.
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3. Give the subdivision polynomial pν(h2−ν ; z) corresponding to ν complete
steps of the LR(d) algorithm.

4. For m = 3 we have, in the notation illustrated in Figure 2.8/70,

q32l+ 1
2

=
1
2

(
pl +

1
2
(pl + pl+1)

)
=

3
4
pl +

1
4
pl+1

and

q32l+ 3
2

=
1
2

(
1
2
(pl + pl+1) + pl+1

)
=

1
4
pl +

3
4
pl+1,

which corresponds to (1.20)/46. It corresponds also to applying the subdi-
vision polynomial z1/2+z−1/2

2 to the linearly subdivided curve. Draw three
one-dimensional stencils corresponding, respectively, to linear subdivision, to
the subsequent smoothing, and to the overall Chaikin process. Do the same for
the tensor-product-surface version of the Lane–Riesenfeld algorithm LR(2×2).
The stencils in the latter case are tensor-product versions of the stencils for
Chaikin’s method, corresponding, for example, to the fact that the factor
z1/2+z−1/2

2 is replaced by

(
z
1/2
1 + z

−1/2
1

2

)(
z
1/2
2 + z

−1/2
2

2

)
=

1
4
z
−1/2
1 z

1/2
2 +

1
4
z
1/2
1 z

1/2
2

+
1
4
z
−1/2
1 z

−1/2
2 +

1
4
z
1/2
1 z

−1/2
2

(the right-hand side is an ordinary sum with four terms written on two lines).

Repeat the above exercise for m = 4, omitting the stencils corresponding to
the overall process.

5. In the case d = 2, there is a patch that can be associated with the dual node
of the face in the middle of the grid in Figure 2.14/79 (left). Draw the centered
parametric domain corresponding to this patch.

6. State and graph the result of applying the subdivision process LR(3), defined
by (1.14)/41, to the control points specified in Example 2.5.1/82.
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Chapter 3

Box-Spline Surfaces

In this chapter we consider a more general class of splines, the box splines, which
appear in the second column of Figure 1.30/33. This class of splines includes the
tensor-product uniform B-splines as a special case, as well as other splines that are
not tensor-product B-splines.

We first develop the theory for classical uncentered box-spline surfaces, which
have the form

x(u, v) =
∑
l

plN
∗
l (hem;u, v), l = (l1, l2) (3.1)

(with notation to be explained below). We then introduce centered versions

x(u, v) =
∑
l

plNl(hem;u, v), l = (l1, l2), (3.2)

and subdivision algorithms that can be used in the evaluation of such surfaces.
These algorithms are then modified to produce variant methods applicable in finite
nonregular meshes without boundary in RN .

3.1 Notation and definitions
Let {fi}mi=1 be the standard orthonormal basis in Rm, so that {fi}ki=1 spans Rk,
which is viewed as a k-dimensional subspace of Rm.

The k-dimensional subsets (unit-cubes) Ck ⊂ Rm are defined by

Ck =
{
w ∈ Rk : w =

k∑
i=1

cifi, 0 ≤ ci ≤ 1, i = 1, . . . , k
}
⊂ Rk ⊆ Rm.

Suppose also that we are given a sequence of vectors em = {ei}mi=1 in R2, 0 �= ei,
i = 1, 2, . . . ,m, with e1 and e2 linearly independent and such that all vectors in
the sequence lie in an integer grid, i.e., ei ∈ Z2 ⊂ R2, i = 1, . . . ,m. (In order to
give a simple illustration, in one of the examples below, R2 is replaced by R, and

93
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ek = (1, 1)t

R2

e1 = (1, 0)t

fk

f1

Rk
f2

e2 = (0, 1)t

A(2×k)

hZ2

Ck

h

hG∗k

Figure 3.1. Grid hG∗k for uncentered box spline ( k = 3).

Z2 by Z.) We allow several of the vectors in the sequence {ei}mi=1 to be equal. Let
ek = {ei}ki=1 denote the subsequence made up of the first k elements of em.

Next we define a linear mapping

A : Rm → R2

by requiring Afi = hei, i = 1, . . . ,m. The restriction of A to the subspace Rk

is, with slight abuse of notation, also denoted by A, and the linear mapping is
represented by a matrix A = A(2×k). The parameter h denotes the grid-size.

For 2 < k ≤ m the set of vertices of the cube Ck is mapped by A onto the set
of grid points

hG∗k =

{
y ∈ hZ2 : y = h

k∑
i=1

εiei, εi = 0, 1, i = 1, . . . , k

}

(see Figure 3.1/94), and the whole cube Ck is mapped onto the convex hull of the
set hG∗k:

conv(hG∗k) =

{
y ∈ R2 : y = h

k∑
i=1

ciei, 0 ≤ ci ≤ 1, i = 1, . . . , k

}
.

In the following definition, the unscaled version of hG∗m, obtained by taking
h = 1, is given a special name.

Definition 3.1.1. The set G∗m ⊂ Z2 defined by G∗m = {y ∈ hZ2 : y =
∑m
i=1 εiei,

εi = 0, 1, i = 1, . . . ,m} is called the coefficient grid.

The explanation for the name is that later in the chapter we introduce a sub-
division polynomial for box-spline surfaces, and the coefficients of this polynomial
are given on the set defined here as the coefficient grid.

Now, the box-spline nodal function N∗(hek; ·) associated with these sets of
grid points in R2 is defined in Definition 3.1.2/95. The nodal function depends on
the sequence ek = {ei}ki=1, where ei ∈ Z2, i = 1, . . . , k.
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N∗(he2; y) = d2
4 at corners

N∗(he2; y) = d2
2 on edgesR2

u

v

conv(hG∗2)

Figure 3.2. The support of N∗(he2; y).

Definition 3.1.2. If 2 < k ≤ m, then

N∗(hek; y) = dkvolk−2
({w ∈ Rk : Aw = y} ∩ Ck) . (3.3)

If k = 2, then

N∗(he2; y) =


d2 if y = h(c1e1 + c2e2) and 0 < c1, c2 < 1,
d2/2 if y = h(c1e1 + c2e2) and ci = 0 or 1 for exactly one index i,
d2/4 if y = h(c1e1 + c2e2) and ci = 0 or 1 for both indices i,
0 otherwise.

(3.4)
Here {w ∈ Rk : Aw = y} denotes the (k− 2)-dimensional affine subset in Rk which
is the inverse image of the point y ∈ R2, and volk−2 denotes the (k−2)-dimensional
Lebesgue measure. The constants dk = dk(h) are normalization constants that are
chosen so that ∫

R2
N∗(hek; y) dy = h2. (3.5)

The definition in the case k = 2 will, after centering, be in accordance with
(2.8)/55; see Figure 3.2/95, where y = (u, v)t.

Definition 3.1.3. The constant m is called the (total) order of the box spline.

The following remark is referred to later.

Remark 3.1.4. We have the following scaling relation:

N∗(ek; y/h) = N∗(hek; y). (3.6)

To see this we note that

N∗(ek; y/h) = dk(1) volk−2({w : Aw = y/h} ∩ Ck)
= dk(1) volk−2({w : hAw = y} ∩ Ck),



book
2010/3/3
page 96

�

�

�

�

�

�

�

�

96 Chapter 3. Box-Spline Surfaces

conv(hG∗3)

v
N∗(he3; y)

h u

Figure 3.3. An example of N∗(he3; y).

where Afi = hei, 1 ≤ i ≤ k. It follows from Definition 3.1.2/95 that

N∗(ek; y/h) =
dk(1)
dk(h)

N∗(hek; y).

Also, from (3.5)/95,

1
∫

R2
N∗(ek; y/h)dy = h2

∫
R2
N∗(ek; y)dy = h2,

from which we conclude that dk(1)/dk(h) = 1, and that (3.6)/95 is true.
We also have the scaling relation

N∗(hek; 2y) = N∗(hek/2; y),

since from (3.6)/95 we have

N∗(hek; 2y) = N∗(ek; 2y/h)

and
N∗(hek/2; y) = N∗(ek; 2y/h),

which gives the stated equality.

Remark 3.1.5. The support of N∗(hek; ·) is contained in conv(hG∗k). This follows
directly from Definition 3.1.2/95. In fact, the support is exactly the set conv(G∗k),
as stated in Corollary 3.2.2/98.

The graph of the function N∗(hek; ·) corresponding to the example of Fig-
ure 3.1/94, with k = 3, is shown in Figure 3.3/96, where again y = (u, v)t. The set
conv(hG∗3) is also indicated there. We give a geometrical interpretation of (3.3)/95,
using two particular examples in the next section, but first we prove a basic theorem
about N∗(hek; ·). It may be useful to glance ahead at Figures 3.4/103 and 3.5/104 to
get an intuitive feeling for the definition in (3.3)/95.

Remark 3.1.6. For the constant d2 we have

d2 = 1/|det(e1, e2)| = 1/|det(T )|,
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where T = (e1, e2) denotes the 2 × 2 matrix with the column vectors e1 and
e2, since the modulus of the determinant det(T ) is the area of the parallelogram
conv(G∗2) ⊂ R2.

The function N∗(hem; ·) is independent of the order of the vectors in the
set {e1, e2, . . . , em}; i.e., any permutation {ei1 , ei2 , . . . , eim} will produce the same
function N∗(hem; ·), provided that the first vectors ei1 and ei2 are linearly indepen-
dent. This follows from Definition 3.1.2/95 for k = m. The intermediate functions
N∗(hek; ·), 2 ≤ k < m, are, however, in general different for this permutation—in
fact, the grids hG∗k themselves may be different. The intermediate functions actu-
ally depend on {e1, . . . , ek} rather than on hG∗k; the former determines the latter,
but the same grid may be generated by different sets of direction vectors defining
different nodal functions.

The discussion in the next three sections is focused on the nodal functions
N∗(hek; ·). Only in Section 3.5.2 do we return to the evaluation of the surface
x(u, v).

3.2 Properties of box-spline nodal functions
In the following it is shown that the functions N∗(hek; ·) can be obtained through
repeated convolution by certain functions which are equal to 1 on intervals with
length h|ei| and with the directions ei in R2, in analogy with the presentation in
Section 2.2 for uniform one-dimensional B-splines and for uniform two-dimensional
tensor-product B-splines. Here, | · | denotes Euclidean distance on R2.

Construction of box-spline nodal functions by repeated convolution

We have the following theorem for the box-spline nodal functions.

Theorem 3.2.1. For 2 < k ≤ m we have

N∗(hek; y) =
1
h

∫ h

0
N∗(hek−1; y − tek) dt. (3.7)

Recall that N∗(he2; y) is defined by (3.4)/95.
Before proving the theorem we note that in (3.7)/97 the one-dimensional inte-

gral is, for a fixed y, taken in the ek-direction. If we make an orthogonal change
of coordinates from y = (u, v)t in R2 to new coordinates y′ = (u′, v′)t so that the
ek-direction coincides with the positive u′-axis, then (3.7)/97 takes the form (after
substituting s = t|ek|)

N∗(hek;u′, v′) =
1

h|ek|
∫ h|ek|

0
N∗(hek−1;u′ − s, v′) ds

or, equivalently,

N∗(hek;u′, v′) =
1

h|ek|
∫ ∞
−∞

N∗(hek−1;u′ − s, v′) ∗
N1(h|ek|; s) ds,
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where, in analogy with the notation of Section 2.2.1,

∗
N1(h|ek|; t) =

 1 if 0 < t < h|ek|,
1/2 if t = 0 or t = h|ek|,
0 otherwise.

Consequently, the steps in the iteration suggested by (3.7)/97 should be interpreted
as a sequence of (one-dimensional) partial convolutions in the directions given by
the vectors e3, e4, . . . , em.

Proof. By Definition 3.1.2/95 we have for k > 2,

N∗(hek; y) = dkvolk−2
({w ∈ Rk : Aw = y} ∩ Ck)

= dkvolk−2

{
c ∈ Ck : h

k∑
i=1

ciei = y

}
.

Since multiple integrals may be evaluated by repeated one-dimensional integration,
we have

N∗(hek; y) = dkbk

∫ 1

0
volk−3

{
c ∈ Ck : h

k−1∑
i=1

ciei = y − hckek
}
dck,

where bk is some constant. Using Definition 3.1.2/95 and substituting t = hck, we
have

N∗(hek; y) = (dkbk/dk−1)
∫ 1

0
N∗(hek−1; y − hckek) dck (3.8)

= (dkbk/dk−1)
1
h

∫ h

0
N∗(hek−1; y − tek) dt.

It remains to verify that dkbk/dk−1 = 1. Integrating with respect to y
in (3.8)/98 we get, by (3.5)/95,

h2 =
∫

R2
N∗(hek; y) dy = (dkbk/dk−1)

∫
R2

∫ 1

0
N∗(hek−1; y − hckek) dck dy

= (dkbk/dk−1)
∫ 1

0

∫
R2
N∗(hek−1; y − hckek) dy dck

= (dkbk/dk−1)
∫

R2
N∗(hek−1; y) dy = dkbk/dk−1h

2,

and the proof is complete.

Corollary 3.2.2. The support of N∗(hek; ·) is conv(hG∗k).

Proof. This is trivially true for k = 2 and follows for general k by induction from
the theorem.
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Derivatives of box-spline nodal functions

Certain of the results of Section 2.5 are now extended to the box-spline case. In
particular, we generalize the results of Sections 2.5.1 and 2.5.6 concerning derivatives
of nodal functions, and the theorem proved here is used explicitly in Chapter 5.
Many of the results of Sections 2.5.2–2.5.5 can also be extended to the box-spline
case [38], and even further (see, however, Exercise 4/141). We do not present such
extensions for the specific case of box splines, but certain of the results are discussed
later in quite a general context. See, for example, Section 6.1.1, where evaluation
stencils are derived.

As in Section 2.5.6, we can use the following formula for the directional deriva-
tive Def , provided that f ∈ C1(R2):

Def(y) = et∇f(y) = α
∂f

∂u
+ β

∂f

∂v
(3.9)

with e = (α, β)t and y = (u, v)t. Similarly, if e1 and e2 are two linearly independent
vectors in R2, then any vector e ∈ R2 can be written as e = γe1 + δe2, and we get

Def(y) = (γet1 + δet2)∇f(y) = γDe1f(y) + δDe2f(y). (3.10)

For the Fourier transform we have, from item 2 of Table A.2/313, that

(Def )̂ (ω) = iωtef̂(ω). (3.11)

The following theorem concerns differentiation of box-spline nodal functions
in the directions of the vectors in em.

Theorem 3.2.3. For m > 2 we have

Dem
N∗(hem; y) =

1
h

(
N∗(hem−1; y)−N∗(hem−1; y − hem)

)
=

1− z2em

h
N∗(hem−1; y),

provided that the vectors e1 and e2 are linearly independent.

Proof. By Theorem 3.2.1/97 we have

N∗(hem; y) =
1
h

∫ h

0
N∗(hem−1; y − tem) dt

=
1
h

∫ ∞
0

N∗(hem−1; y − tem) dt− 1
h

∫ ∞
h

N∗(hem−1; y − tem) dt

=
1
h

∫ ∞
0

(
N∗(hem−1; y − tem)−N∗(hem−1; y − (t+ h)em)

)
dt

=
1
h

∫ ∞
0

g(y − tem) dt,
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where g(y) = N∗(hem−1; y)−N∗(hem−1; y − hem). We then get, for ε > 0, that

1
ε

(
N∗(hem; y + εem)−N∗(hem; y)

)
=

1
h

∫ ∞
0

g(y − (t− ε)em)− g(y − tem)
ε

dt

=
1
h

∫ 0

−ε

g(y − tem)
ε

dt,

where the last equality is obtained by making the change of variables t ↔ t − ε in
the first term in the numerator of the integrand. Now, taking limits as ε→ 0+, we
get from continuity that

DemN
∗(hem; y) =

1
h
g(y) =

1
h

(N∗(hem−1; y)−N∗(hem−1; y − hem))

at all points of continuity for N∗(hem−1; y) and N∗(hem−1; y − hem).

The derivative in the theorem is taken in the direction of the last vector em.
However, since the vectors of em can be permuted without changing N∗(hem; y),
we conclude the following. Denote by em(i) the sequence obtained by deleting the
vector ei from em. Then we have

Dei
N∗(hem; y) =

1
h

(
N∗(hem(i); y)−N∗(hem(i); y − hei)

)
,

provided that em(i) spans R2. We conclude also that if both Dei
N∗(hem; y) and

DejN
∗(hem; y) can be computed, with ei and ej linearly independent, then any

directional derivative of N∗(hem; y) can be computed.
Exercise 1/141 asks for an explicit justification of the first step in the proof of

Theorem 3.2.3/99.

Example 3.2.4. Tensor-product B-splines.
As a first example, we show that the ordinary tensor-product B-splines of

bidegree d can be obtained by taking d + 1 copies of (1, 0)t, and d + 1 copies of
(0, 1)t, for the sequence {ei}mi=1, m = 2(d+ 1), d ≥ 0. Thus, if

e1 = (1, 0)t,
e2 = (0, 1)t, ej =

{
(1, 0)t, j = 3, . . . , d+ 2,
(0, 1)t, j = d+ 3, . . . , 2d+ 2, (3.12)

then the matrix T is equal to the 2×2 identity matrix, det(T ) = 1, and from (3.4)/95

we have, with y = (u, v)t,

N∗(he2;u, v) =
∗
N1(h;u)

∗
N1(h; v). (3.13)

This means in particular that N∗(he2;u, v) = 1 if 0 < u, v < h, and N∗(he2;u, v) =
0 if either u or v is not in [0, h].

The grid hG∗m, with m = 2(d+1), is equal to {(j1h, j2h)t : 0 ≤ j1, j2 ≤ d+1},
and we therefore have conv(hG∗m) = {y = (u, v)t : 0 ≤ u, v ≤ (d+ 1)h}.

We show now that N∗(hem;u, v), defined recursively by (3.7)/97, is exactly
equal to an uncentered version of the tensor-product B-spline introduced in Sec-
tion 2.3. Thus, in the special case considered here, the box-spline nodal functions
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reduce to tensor-product uniform B-spline basis functions. Centered box splines are
introduced later in this section, and in the special case defined by (3.12)/100, they
reduce to exactly the basis functions of Section 2.3.

Using (3.13)/100 and applying (3.7)/97 d times with ek = (1, 0)t, we have

N∗(hed+2;u, v) = h−d
[⊗d+1

k=1

∗
N1(h;u)

] ∗
N1(h; v).

Then, applying (3.7)/97 d times with ek = (0, 1)t, we obtain for m = 2(d+ 1)

N∗(hem;u, v) = h−2d [⊗d+1
k=1

∗
N1(h;u)

] · [⊗d+1
k=1

∗
N1(h; v)

]
,

which is the uncentered tensor-product version of (2.11)/56 if d + 1 is substituted
for m in (2.11)/56.

Since em = (0, 1)t, Theorem 3.2.3/99 gives

∂

∂v
N∗(hem; y) =

(1− z2
2)

h
N∗(hem−1; y)

=
1
h

∑
k,l∈Z

(pk,l − pk,l−1)Nm
k (hem;u)Nm−1

l (hem−1; v),

an uncentered derivative with respect to v, similar to (2.74)/90.

Example 3.2.5. Univariate B-splines.
The box-spline nodal function can be viewed as the intensity of the shadow of

a box in Rm when projected into R2. In order to get some geometric intuition for
this, we consider an example in the simpler case of a mapping

A : Rm → R1 (3.14)

and mimic the development at the beginning of the chapter. In our simple example,
the total order m is equal to d + 1, and we choose d + 1 identical vectors 1 =
e1 = · · · = ed+1 ∈ R1, in analogy to what we did in Example 3.2.4/100, where we
had A : Rm → R2. In this new situation, the box spline reduces to an ordinary
univariate B-spline, and the order of the box spline is equal to the order of the
univariate B-spline.

Consider the case m = 3, which, according to what we have just claimed,
should reduce to an ordinary univariate B-spline of degree 2. We have

f1 =

 1
0
0

 , f2 =

 0
1
0

 , f3 =

 0
0
1

 ,
A(1×3) = h(e1, e2, e3) = h(1, 1, 1),

hG∗1 = {0, h} ⊂ hZ,

conv(hG∗1) = [0, h] ⊂ R,
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and
∗
N(he1; t) =

 1 if 0 < t < h ,
1/2 if t = 0 or t = h,
0 otherwise.

Thus, ∫
R1

∗
N(he1; t)dt = h,

in analogy with (3.5)/95. In this simple case, T(1×1) has the single element 1, and
det(T ) = 1.

In analogy with (3.3)/95, we have
∗
N(hek; t) = dkvolk−1

({w ∈ Rk : Aw = t} ∩ Ck) ,
where A = A(1×k) contains k elements, each equal to h; t is a scalar; and dk = k−1/2,
1 < k ≤ m = 3. This analytically produces the result

∗
N(hek; t) =

1
h

∫ h

0

∗
N(hek−1; t− s)ds,

which is analogous to (3.7)/97 and which corresponds exactly to (2.10)/56 for uni-
variate B-splines. The constant dk is chosen so that∫

R1

∗
N(hek; t)dt = h.

For k = 2 we have
A(1×2) = h(1, 1),

hG∗2 = {0, h, 2h} ⊂ hZ,

conv(hG∗2) = [0, 2h] ⊂ R,

and
∗
N(he2; t) =

1√
2
vol1

({w ∈ R2 : h(1, 1)w = t} ∩ C2) ,
where t ∈ [0, 2h]. See Figure 3.4/103.

Similarly, for k = 3 = m,

A(1×3) = h(1, 1, 1),

hG∗3 = {0, h, 2h, 3h} ⊂ hZ,

conv(hG∗3) = [0, 3h] ⊂ R,

and
∗
N(he3; t) =

1√
3
vol2

({w ∈ R3 : h(1, 1, 1)w = t} ∩ C3) ,
where t ∈ [0, 3h]. See Figure 3.5/104.
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2h t0

this line, divided by
√

2

1

R2

w2

w1

w1 + w2 = 2w1 + w2 = 0

∗
N(he2; t) is the length of

∗
N(he2; t)

Figure 3.4. Cross-section of a box in univariate case, k = 2.

Example 3.2.6. Three-direction quartic box spline.
We next consider the box spline that corresponds to the basic method under-

lying the Loop method (Section 3.7.1). This spline involves three directions, each
included with multiplicity two, so that m = 6:

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 0)t, e4 = (0, 1)t, e5 = (1, 1)t, e6 = (1, 1)t.

The matrix

A(2×6) = h

[
1 0 1 0 1 1
0 1 0 1 1 1

]
has leading square matrix hT(2×2) equal to h times the identity, and det(T ) = 1.
The grid hG∗6 is illustrated in Figure 3.6/104 (left), along with sequences of vectors
from {he1, . . . , he6} that permit each extreme grid point to be reached. It is clear
that each of the interior grid points illustrated can also be attained using a subset
of the directions. Note also that the sequence of vectors to reach an interior grid
point is not necessarily unique. In Figure 3.6/104 (right), the convex hull of hG∗6
is shown: it is a hexagonal region. By adding diagonal grid lines in the direction
(1, 1)t, hG∗6 can be viewed as a triangular grid, and this is the view adopted in the
Loop method.

The box-spline nodal function N∗(he6; ·), with support conv(hG∗6), is shown
in Figure 3.7/105. Theorem 3.2.9/107 shows that it is a piecewise polynomial of degree
m − 2 = 4, which gives the spline its name (“quartic box spline”). The pieces on
which the function is polynomial are exactly the triangles mentioned in the previous
paragraph. Finally, Theorem 3.3.2/111 shows that it is a C2 function of u and v.
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∗
N(he3; t) is the area
of this surface, divided
by
√

3

1

w3

w1

∗
N(he3; t)

3h t0

R3

w2
w1 + w2 + w3 = 0 w1 + w2 + w3 = 3

Figure 3.5. Cross-section of a box in univariate case, k = 3 = m.

conv( 6)
u

y = (u, v)vh

6

v

u

Figure 3.6. Grid for three-direction quartic box spline.

Example 3.2.7. Two four-direction box splines.
Our next example involves a choice of four-direction vectors, namely

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, e4 = (−1, 1)t,

which leads to two other well-known methods. If the vectors are chosen with mul-
tiplicity one (m = 4), the spline is a four-direction quadratic box spline. This box
spline corresponds to the basic method underlying the Midedge method (or, more
precisely, as shown in Section 3.7.2, the Midedge method applied twice in succession,
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Figure 3.7. Nodal function for three-direction quartic box spline.

y = (u, v)

4

h

conv( 4)

v

uu

v

Figure 3.8. Grid for Zwart–Powell element.

denoted {Midedge}2). If the vectors are chosen with multiplicity two (m = 8), the
spline is a four-direction box spline corresponding to the basic method underlying
4-8 subdivision (again, see Section 3.7.2).

We begin with the case when the four vectors are chosen with multiplicity
one, so that m = 4. The matrix

A(2×4) = h

[
1 0 1 −1
0 1 1 1

]
has leading square matrix hT(2×2) equal to h times the identity, and det(T ) = 1.
The grid hG∗4 is illustrated in Figure 3.8/105 (left), along with sequences of vectors
from {he1, he2, he3, he4} that permit each extreme grid point to be attained. Again,
it is clear that each of the interior grid points illustrated can be reached using a
subset of the directions. In Figure 3.8/105 (right), the octagonal region conv(hG∗4) is
shown. The box-spline nodal function N∗(he4; ·), with support conv(hG∗4), is shown
in Figure 3.9/106. Theorem 3.2.9/107 below shows that N∗(he4; ·) is a piecewise
polynomial of degree m− 2 = 2, i.e., piecewise quadratic. See Exercise 2/141. This
function is called the Zwart–Powell element [38, p. 5]. Theorem 3.3.2/111 shows that
it is a C1 function of u and v.

Consider now the case when the four vectors are taken with multiplicity two,
so that m = 8. The grid hG∗8 looks exactly like hG∗4 in Figure 3.8/105 except that
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00 0 0
0 0

Figure 3.9. Zwart–Powell element ( {Midedge}2 nodal function, regular case).

e1 = (1, 0)t

e2 = (0, 1)t

e3 = (1, 1)t

e1 = (1, 0)t

e2 = (0, 1)t

e3 = (1, 1)t

e4 = (−1, 1)t

Ω3
I

Ω4
I

v

v

u u

Figure 3.10. Domains of polynomiality.

(if h is held constant) the grid is magnified by a factor of two, the centre of the grid
moves from h(1/2, 3/2)t to h(1, 3)t, and each arrow is replaced by a pair of arrows.
Similarly, conv(hG∗8) is the same as conv(hG∗4), but magnified by a factor of two.
The box-spline nodal function is a piecewise polynomial of degree m − 2 = 6, and
Theorem 3.3.2/111 shows that it is a C4 function of u and v.

We show now that the box-spline nodal functions are piecewise polynomials
in two variables.34 The nature of the pieces on which the function N∗(hek; ·) is a
polynomial can be quite complicated. The following example illustrates the conclu-
sions of Theorem 3.2.9/107 in a simple case. The example is presented before the
theorem because it gives strong motivation for the proof of the theorem: each time
a new direction is added, the domains of polynomiality are refined.

Example 3.2.8. Domains of polynomiality.
Consider first a three-direction box spline with

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t,

where (in contrast to the quartic box spline of Example 3.2.6/103) the directions
are included with a multiplicity of only one. According to Theorem 3.2.9/107, the
domains of polynomiality of the corresponding function N∗(he3; ·) are as shown
in Figure 3.10/106 (left), where the squares have side h. In fact, the function is a
piecewise linear function with pieces defined as shown in the left of the figure. If we
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now add a fourth direction, so that

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, e4 = (−1, 1)t,

we have the four-direction box spline of Example 3.2.7/104, in the case where the
directions are chosen with multiplicity one. The corresponding function N∗(he4; ·)
has domains of polynomiality as shown in Figure 3.10/106 (right): it is a piecewise
quadratic. The use of dashed lines in Figure 3.10/106 (right) is intended only to
bring out the relationship between the two illustrations in the figure.

We now turn to the proof of piecewise polynomiality for box splines. First let
us introduce some notation.

We consider the two-dimensional subfaces of the cube Ck which are of the
form {

w ∈ Rk : w = ci1fi1 + ci2fi2 +
∑
i

εifi

}
,

where ci1 , ci2 ∈ (0, 1), i1 �= i2, εi = 0 or 1, and the last summation is over 1 ≤ i ≤ k,
i �= i1, i2. The images under the mapping A are denoted by

F ki,ε =

{
y ∈ R2 : y = h

(
ci1ei1 + ci2ei2 +

∑
i

εiei

)}
⊂ R2,

where i = (i1, i2) and ε = (ε1, . . . , εk)t. Next we form intersections

ΩkI =
⋂

i,ε∈I
F ki,ε

which are nonempty, with maximal index set I, i.e., such that ΩkI ∩ F ki,ε = ∅ if
i, ε /∈ I. The sets ΩkI are open, convex, and mutually disjoint, and their boundaries
∂ΩkI consist of finitely many line segments parallel to some vector ei, 1 ≤ i ≤ k.
Further, they have the property that

supp(N∗(hek; ·)) =
⋃
I

Ω̄kI ,

where the union is taken over all index sets I, and where Ω̄ denotes the topological
closure of Ω. We now have the following theorem.

Theorem 3.2.9. For 2 ≤ k ≤ m the functions N∗(hek; ·) are polynomials of degree
at most k − 2 on each subset ΩkI .

Proof. There are two cases. In the first case, not all vectors e2, . . . , em are parallel.
Then, by reordering vectors we may assume that e2 and e3 are linearly independent.
In the second case we assume that e2, . . . , em are all parallel.

We carry out the proof in the first case by induction. For k = 2 the statement
is true, since by definition, N∗(he2; ·) is a piecewise constant function with support
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equal to the parallelogram defined by e1 and e2. Next assume that the statement
is true for some value of k − 1 ≥ 2.

Every set F k−1
i,ε and F k−1

i,ε + hek belongs to the class of sets of the form F ki,ε.
Moreover, if a set ΩkI intersects some set F k−1

i,ε or F k−1
i,ε + hek, then ΩkI is a subset

of some Ωk−1
J or Ωk−1

J + hek, respectively. Conversely, if ΩkI does not intersect any
set F k−1

i,ε , then ΩkI is disjoint from all sets Ωk−1
J , and if ΩkI does not intersect any

set F k−1
i,ε + hek, then ΩkI is disjoint from all sets Ωk−1

J + hek.
There are now three possibilities as follows. For some J :

1. ΩkI ⊂ Ωk−1
J ∩ (Ωk−1

J + hek).

2. ΩkI ⊂ Ωk−1
J but ΩkI ∩ (Ωk−1

J + hek) = ∅.
3. ΩkI ⊂ Ωk−1

J + hek but ΩkI ∩ Ωk−1
J = ∅.

In the first case, we have for every y ∈ ΩkI that y ∈ Ωk−1
J , y − hek ∈ Ωk−1

J ,
and according to Theorem 3.2.3/99 and the induction hypothesis, that

Dek
N∗(hek; y) =

1
h

(N∗(hek−1; y)−N∗(hek−1; y − hek))

is a polynomial of degree at most k − 3. In the second case, we have y ∈ Ωk−1
J ,

y − hek /∈ supp(N(hek−1; ·)), and that

Dek
N∗(hek; y) =

1
h
N∗(hek−1; y)

is again a polynomial of degree at most k − 3. In the third case, we have y ∈
Ωk−1

J + hek, y /∈ supp(N∗(hek−1; ·)), and that

Dek
N∗(hek; y) = − 1

h
N∗(hek−1; y − hek)

is a polynomial of degree at most k − 3.
Consequently, writing f(y) = N∗(hek; y), we see that the directional derivative

Dek
f(y) is a polynomial of degree at most k−3 on each set ΩkI . This is not sufficient

to conclude that f(y) is a polynomial of degree at most k−2 on each ΩkI . However,
if we assume that not all vectors el, 2 ≤ l ≤ k, are parallel, then we can reorder the
vectors e1, e2, . . . , ek, and by repeating the argument above we may conclude that
Del

f(y) is a polynomial of degree at most k − 3, with el not parallel to ek (we can
take l = 2 or 3). Now, since we can write (1, 0)t = γek + δel, we get from (3.10)/99

∂f(y)
∂u

= (γetk + δetl)∇f(y) = γDek
f(y) + δDel

f(y),

i.e., ∂f
∂u is a polynomial of degree at most k − 3 on each set ΩI . We also get the

same conclusion for ∂f
∂v .

Now
∂f

∂u
=
∑
l

alu
l1vl2
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with l1 + l2 ≤ k − 3 for all indices. This implies that

f(u, v) =
∑
k

al
l1 + 1

ul1+1vl2 + g(v), (3.15)

where g(v) is some function of v, which is differentiable on ΩI since f is. If we
differentiate with respect to v, we get

∂f

∂v
=
∑
l

l2al
l1 + 1

ul1+1vl2−1 + g′(v).

Here the left-hand side is a polynomial, and therefore g′(v) must be a polynomial
in u and v, i.e., in v of degree at most k − 3. Therefore, g(v) is a polynomial of
degree at most k − 2, and it follows from (3.15)/109 that f(u, v) is a polynomial of
degree at most k − 2 on each set ΩI .

By induction the statement is valid for all k, 2 ≤ k ≤ m.
In the case that e2, . . . , em are all parallel, we get that N∗(hem; y) is constant

in the e1-direction and a piecewise polynomial in the direction of e2. The details
are omitted.

Remark* 3.2.10. We have characterized the open sets ΩkI of polynomiality as
maximal, nonempty intersections of images under the mapping A of faces of the
cube Ck. An alternative way of describing the domains of polynomiality is the
following. Consider all the closed edges in the cube Ck. Their number is m2m−1

and they have the form w ∈ Rk : w = cifi +
∑
j

εjfj

 ,

where ci ∈ [0, 1], εj = 0 or 1, and where the last summation is over 1 ≤ j ≤ k,
j �= i. Their images in R2 under the mapping A are the segments

Ei,ε =

y ∈ R2 : y = h

ciei +
∑
j

εjej

 .

Now, if we form the closed union
⋃
i,εEi,ε of all these segments and take the

complement with respect to conv(hG∗k), i.e.,

Ω = conv(hG∗k)
0 \

⋃
i,ε

Ei,ε,

then the open set Ω has the property that Ω =
⋃
I ΩI and the sets ΩI above are

its connected components (the maximal open connected subsets). We may note
that

⋃
i,εEi,ε is the shadow of the edge set of the cube Ck (the image under the

mapping A).
Thus, in order to determine explicitly the domains of polynomiality, we must

form all the segments Ei,ε in R2 and identify the disjoint open sets that they bound.
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In a general situation the number of segments can be m2m−1 and the number of
sets ΩI becomes very large. In practice, however, there are often symmetries which
reduce the complexity considerably.

Remark* 3.2.11. In Theorem 3.2.9/107 and Remark 3.2.10/109 we characterized
the domains ΩI of polynomiality for a fixed nodal function N∗(hek; y). For a box-
spline surface with representation

x(y) =
∑
l∈Z2

plN(hek; y − lh),

the partition of R2 into domains of polynomiality is finer, since each point y ∈ R2 is
affected by several nodal functions N∗(hek; y − lh). Consequently, we have instead
the following partitioning.

Consider the class of all closed segments

Ei,ε =

y ∈ R2 : y = h

ciei +
∑
j

εjej

 ,

where, as before, 0 ≤ ci ≤ 1, but, in contrast to the case in Remark 3.2.10/109,
εj ∈ Z, 1 ≤ j ≤ k. Then the components of the open set

R2 \
⋃
i,ε

Ei,ε

are the domains of polynomiality of the surface. The closed set
⋃
i,εEi,ε is the

shadow of the edge set of all integer translations of the cube Ck ⊂ Rk. Thus, in
order to determine explicitly the domains of polynomiality, we must form all the
segments Ei,ε in R2 and identify the disjoint open sets which they bound. Also, for
the union of all these sets we have⋃

i,ε

Ei,ε = hG∗m +
m⋃
j=1

{tej : −∞ < t <∞},

where G∗m = {l =
∑m
j=1 εjej , εj = 0, 1} is the additive subgroup of Z2 generated by

{e1, e2, . . . , em}. The closed set 1
h

⋃
i,εEi,ε is therefore the union of all straight lines

with directions e1, e2, . . . , em, drawn through all points of G∗m. The set 1
h

⋃
i,εEi,ε

is also the shadow of the edge set of all integer translations of the cube Ck.
As mentioned in Remark 3.5.5/118, for all the box splines we consider, G∗m = Z2.
For the case of the three-direction box spline, we get the partition shown in

Figure 3.11/111, as discussed in the next example.

Example 3.2.12. Domain of polynomiality and associated patch.
Consider the quartic box spline of Example 3.2.6/103, where the directions are

included with multiplicity two (the spline corresponding to the basic method under-
lying Loop subdivision). A picture of the domains of polynomiality, for the nodal
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1
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4 8 12

7 11

6 10

Figure 3.11. Loop patch.

functions as well as the box-spline surface, looks exactly like Figure 3.6/104 (right),
but with each one of the shaded h × h squares divided by a diagonal line having
slope +1.

Centering the support set shown in Figure 3.6/104 (right), we see that the only
points making a contribution to a single domain of polynomiality are the 12 control
points surrounding the triangular domain, and the polynomial surface correspond-
ing to this domain can be viewed as a Loop “patch” (see Figure 3.11/111). This
polynomial function is given explicitly in [149, Appendix A] as a linear combination
of polynomials weighted by the 12 control points shown in Figure 3.11/111. Eval-
uation of the patch by conversion to Bézier form is described in [29, 71, 80] and
[144, p. 21].

3.3 Continuity properties of box splines
We first define a parameter α that determines the regularity of the box spline.

Definition 3.3.1. Let α be the smallest integer such that any subsequence of {ei}mi=1
with α elements spans R2. Equivalently, α − 1 is the largest number of vectors ei
that are parallel.

With this definition, the following regularity result holds.

Theorem 3.3.2. The box-spline nodal function N∗(hem; y) defined by the sequence
em is in Cm−1−α(R2).

The proof of this theorem appears in the Appendix (Section A.3). Note that,
so far, we have not discussed box-spline subdivision methods at all, and neither here
nor in Section A.3 is the convergence of such schemes discussed. For now, we know
only that if we define box-spline nodal functions using repeated convolution in the
directions ei, then the regularity properties of Theorem 3.3.2/111 hold. Convergence
of the associated subdivision schemes is discussed in Chapter 5.
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Returning to the examples presented above, we now examine the continuity
properties of the nodal functions defined. For the tensor-product B-spline case
with order m = 2(d + 1), discussed in Example 3.2.4/100, we have α = d + 2,
and m − 1 − α = d − 1, so that the nodal function (in this case a B-spline basis
function) has parametric continuity Cd−1. This coincides with well-known results
for B-splines (see the last table of Section 1.3.2): for the biquadratic Lane–Riesenfeld
method LR(2×2) (which corresponds to the Doo–Sabin method), the basis function
is C1; for the bicubic Lane–Riesenfeld method LR(3×3) (which corresponds to the
Catmull–Clark method), the basis function is C2; more generally, for the Repeated
Averaging algorithm with bidegree d ≥ 1, away from extraordinary vertices, the
basis function is Cd−1.

For the three-direction quartic box spline, described in Example 3.2.6/103, we
had m = 6, and clearly α = 3, so that (since m− 1− α = 2) the nodal function is
C2, as claimed in the example.

Finally, in Example 3.2.7/104, for the four-direction box spline with directions
included with multiplicity one, we had m = 4, and clearly α = 2, so that (since
m−1−α = 1) the nodal function is C1, as claimed. Similarly, for the four-direction
box spline with directions included with multiplicity two, we had m = 8, and clearly
α = 3, so that (since m− 1− α = 4) the nodal function is C4.

These last examples establish three more of the entries in the last table of
Section 1.3.2: away from extraordinary points, the Loop method (based on the
three-direction quartic box spline) is C2, the {Midedge}2 method is C1, and 4-8
subdivision is C4.

3.4 Box-spline subdivision polynomials
In Section 2.1 we introduced the one-dimensional translation operator z by zaf =
fah/2, i.e., by

(zaf)(t) = f(t− ah/2),

where f is a function of one variable and where a ∈ R. (Usually we have a ∈ Z or
a ∈ Z + 1/2.) For functions f : R2 → R and a ∈ Z2 or a ∈ Z2 + (1/2, 1/2), we may
in the same way define

(zaf)(y) = f(y − ah/2),

where y = (u, v)t, z = (z1, z2) and za = za1
1 za2

2 (a notation somewhat reminiscent
of inner-product notation).

In analogy with (2.2)/54, for a polynomial p(z) =
∑
a paz

a we define

p(z)f =
∑
a

pa(zaf).

Now consider the sequence of functions N∗(hek; ·) which was analysed in the pre-
vious sections. Since N∗(he2; ·) is constant on the parallelogram

{y ∈ R2 : y = h(c1e1 + c2e2), 0 ≤ c1, c2 ≤ 1},
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ε1 = 0
ε2 = 1

ε2 = 0
ε1 = 0

ε1 = 1
ε2 = 1

ε2 = 0
ε1 = 1

u

v

N∗(he2; y)

h
2

Figure 3.12. Nodal function with total order 2.

it is clear that

N∗(he2; y) =
∑

ε1=0,1
ε2=0,1

N∗(he2; 2(y − ε1e1h/2− ε2e2h/2))

=
∑

ε1=0,1
ε2=0,1

zε1e1zε2e2N∗(he2; 2y) = (1 + ze1)(1 + ze2)N∗(he2; 2y), (3.16)

i.e., we have the subdivision rule

N∗(he2; y) = (1 + ze1)(1 + ze2)N∗(he2; 2y). (3.17)

See Figure 3.12/113, which illustrates the case e1 = (1, 0)t, e2 = (0, 1)t, and compare
with Figure 2.3/60.

Lemma 3.4.1. If for some polynomial p(z), the function N∗(hek−1; y), with k ≥ 3,
satisfies the subdivision rule

N∗(hek−1; y) = p(z)N∗(hek−1; 2y),

then N∗(hek; y) satisfies the subdivision rule

N∗(hek; y) =
1
2
(1 + zek)p(z)N∗(hek; 2y).

The polynomial p(z) in the statement of the lemma corresponds, in analogy
with (2.23)/61, to one of the factors in a subdivision polynomial that is given in the
next theorem.

Proof. By the recursion formula (3.7)/97 we have

N∗(hek; 2y) =
1
h

∫ h

0
N∗(hek−1; 2y − tek) dt =

1
h

∫ h

0
N∗(hek−1; 2(y − tek/2)) dt.



book
2010/3/3
page 114

�

�

�

�

�

�

�

�

114 Chapter 3. Box-Spline Surfaces

Operating with (1 + zek)/2, we get

1
2
(1 + zek)N∗(hek; 2y) =

1
2
N∗(hek; 2y) +

1
2
N∗(hek; 2(y − hek/2))

=
1
2h

∫ h

0
N∗(hek−1; 2(y − tek/2)) dt+

1
2h

∫ h

0
N∗(hek−1; 2(y − hek/2− tek/2)) dt.

Substituting s = t/2 in the first integral, and s = t/2 + h/2 in the second, we get

1
2
(1 + zek)N∗(hek; 2y)

=
1
h

∫ h/2

0
N∗(hek−1; 2(y − sek)) ds+

1
h

∫ h

h/2
N∗(hek−1; 2(y − sek)) ds

=
1
h

∫ h

0
N∗(hek−1; 2(y − sek)) ds.

Now using the hypothesis that p(z)N∗(hek−1; 2y) = N∗(hek−1; y), we get after
operating with p(z),

1
2
(1 + zek)p(z)N∗(hek; 2y) =

1
h

∫ h

0
p(z)N∗(hek−1; 2(y − sek)) ds

=
1
h

∫ h

0
N∗(hek−1; y − sek) ds = N∗(hek; y), (3.18)

where we have used (3.7)/97, and the proof is complete.

We immediately obtain the following theorem.

Theorem 3.4.2.

N∗(hem; y) = 4
m∏
i=1

(
1 + zei

2

)
N∗(hem; 2y).

Recall that the coefficient grid G∗m was defined in Definition 3.1.1/94.

Definition 3.4.3. The polynomial

s∗(z) = 4
m∏
i=1

(
1 + zei

2

)
=

∑
k∈G∗

m

s∗kz
k (3.19)

is called the subdivision polynomial associated with the coefficient grid G∗m. The
second equality defines the notation s∗k for the coefficients of the polynomial.

(Note that the meaning of the notation k has just changed. So far in this
section, as in (3.18)/114, it has served as an index for hek, k = 2, . . . ,m. Now that
we have derived N∗(hem; ·), however, we no longer need k for this purpose. On the
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other hand, in the following pages it will be very convenient to use k = (k1, k2) as
we have done in (3.19)/114, since it facilitates comparison with the previous B-spline
development. Also, Definition 3.4.3/114 should be compared with (2.20)/61. In the
next section we introduce centered versions of s∗ and N∗, which will be denoted
without the star superscript.)

We thus have

N∗(hem; y) = s∗(z)N∗(hem/2; y), (3.20)

since, from Remark 3.1.4/95, N∗(hem; 2y) = N∗(hem/2; y). Writing (3.20)/115 ex-
plicitly,

N∗(hem; y) =
∑
k∈G∗

m

s∗kN
∗(hem/2; y − kh/2). (3.21)

This should be compared with (2.22)/61, although the latter equation corresponds
more closely to the centered box-spline nodal functions introduced in the next
section.

Example 3.4.4. Box-spline subdivision polynomials.
Referring to Example 3.2.4/100, we observe that for the tensor-product B-spline

we have d + 1 copies of e1 = (1, 0)t, and d + 1 copies of e2 = (0, 1)t, which gives,
according to (3.19)/114 with m = 2(d+ 1),

s∗(z) = 2
(

1 + z1
2

)d+1

2
(

1 + z2
2

)d+1

.

If we multiply by z−(d+1)/2
1 z

−(d+1)/2
2 to allow for the fact that the spline has not yet

been centered, we obtain (2.51)/77. We return to this example in the next section
and show in (3.46)/124 that the correction for centering used here is correct.

For the three-direction quartic box spline with

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 0)t, e4 = (0, 1)t, e5 = (1, 1)t, e6 = (1, 1)t

(Example 3.2.6/103), we have

s∗(z) =
1
16

(1 + z1)2(1 + z2)2(1 + z1z2)2, m = 6. (3.22)

For the four-direction box splines (Example 3.2.7/104) with

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, e4 = (−1, 1)t,

we have

s∗(z) =
1
4
(1 + z1)(1 + z2)(1 + z1z2)(1 + z−1

1 z2), m = 4, (3.23)

if the vectors are included with multiplicity one, and

s∗(z) =
1
64

(1 + z1)2(1 + z2)2(1 + z1z2)2(1 + z−1
1 z2)2, m = 8, (3.24)

if the vectors are included with multiplicity two.
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3.5 Centered box-spline subdivision
We now introduce centered nodal functions, centered subdivision polynomials, and
centered coefficient grids for box-spline subdivision.

3.5.1 Centered nodal functions and subdivision polynomials

The function N∗(hem; ·) defined in Section 3.1 has its support in conv(hG∗m) and
its centre at h

∑m
i=1 ei/2. We now introduce the centered function N(hem; ·) having

its centre at the origin, and then, in Definition 3.5.2/117, we introduce the translates
Nl(hem; ·).

Definition 3.5.1. Let ē =
∑m
i=1 ei so that ē/2 is the centre of the coefficient grid

G∗m and let

N(hem; y) = N∗(hem; y + (h/2)ē) = z−ēN∗(hem; y), m ≥ 2. (3.25)

Recursion formula for box-spline nodal functions

It follows from Definition 3.5.1/116 that

N(hem/2; y) = N∗(hem/2; y + (h/4)ē) = z−ē/2N∗(hem/2; y).

We then get

N(hem; y) = z−ēN∗(hem; y) = s∗(z)z−ēN∗(hem/2; y)
= s∗(z)z−ēzē/2N(hem/2; y) = z−ē/2s∗(z)N(hem/2; y)

or
N(hem; y) = s(z)N(hem/2; y), (3.26)

where s(z) is the generalized polynomial

s(z) = z−ē/2s∗(z) = z−ē/24
m∏
i=1

(
1 + zei

2

)

= 4
m∏
i=1

(
zei/2 + z−ei/2

2

)
=

∑
k∈G∗

m

s∗kz
k−ē/2. (3.27)

Box-spline subdivision polynomial

Introducing the notation
Gm = G∗m − ē/2 (3.28)

for the centered coefficient grid, we have

s(z) =
∑
k∈Gm

skz
k (3.29)
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with
sk = s∗k+ē/2.

This is called the (centered) box-spline subdivision polynomial, and (2.20)/61 is a
special case: the set Gm corresponds to the set {−m/2,−m/2 + 1, . . . ,m/2} in
the univariate B-spline case (see Proposition 2.2.3/60). We can rewrite (3.26)/116

explicitly as
N(hem; y) =

∑
k∈Gm

skN(hem/2; y − kh/2). (3.30)

Definition 3.5.2. As in Section 2.2 we introduce the translated box splines

Nl(hem; y) = N(hem; y − lh),
where l ∈ Z2 + 1

2 (ε1, ε2)t, ε1, ε2 ∈ {0, 1}.

This definition is analogous to (2.13)/56. Observe that

Nl(hem; y) = z2lN(hem; y)

and that (3.26)/116 generalizes to

Nl(hem; y) = z2ls(z)N(hem/2; y) = s(z)N2l(hem/2; y), (3.31)

i.e.,
Nl(hem; y) = s(z)N2l(hem/2; y) =

∑
i∈Gm

siNi+2l(hem/2; y), (3.32)

which should be compared with (2.23)/61.

Example 3.5.3. Centered box-spline grids.
We illustrate the above ideas with the example of the three-direction quartic

box spline, discussed in Example 3.2.6/103. In this case, ē =
∑6
i=1 ei = (4, 4)t.

The centered grid G6 = G∗6 − (2, 2)t is shown in Figure 3.13/118, which should be
compared with Figure 3.6/104 (left).

3.5.2 Recursion formulas for control points of
box-spline surfaces

In analogy with Proposition 2.2.6/64, we seek recursion formulas for control points
of box-spline surfaces. We begin by introducing the grids G∗m and Gm. The latter
may be equal to Gm, or it may correspond to a dual or semidual grid playing the role
of the grid shown in green in Figure 1.17/20. The exact definitions are given now.

First we introduce the grid G∗m by the following definition.

Definition 3.5.4.

G∗m =
{
l ∈ Z2 : l =

∑m

i=1
kiei, ki ∈ Z, 1 ≤ i ≤ m

}
⊂ Z2. (3.33)
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Z2

v

u

Figure 3.13. The centered grid G6 = G∗6 − (2, 2)t.

We also define a centered grid by

Gm = G∗m − ē/2, (3.34)

i.e.,
Gm = {l ∈ Z2/2 : l + ē/2 ∈ G∗m}. (3.35)

Note that Gm ⊆ Z2 if ē/2 ∈ Z2, and that Gm = G∗m if ē/2 ∈ G∗m.

Remark 3.5.5. By definition it is clear that G∗m is an additive subgroup of Z2.
Further, it can be shown that Theorem 4.5.1/172 implies that box-spline methods
are affine invariant if and only if G∗m = Z2. Since it will be shown in Chapter 5
that affine invariance is necessary for convergence, in this book we consider only
methods for which G∗m = Z2.

The equivalence between affine invariance and G∗m = Z2 follows easily. Theo-
rem 4.5.1/172 shows that box-spline subdivision methods are affine invariant if and
only if their subdivision polynomial s∗(z1, z2) (see (3.19)/114) satisfies the condition

s∗(1, 1) = 4, s∗(1,−1) = s∗(−1, 1) = s∗(−1,−1) = 0. (3.36)

It is straightforward to verify that condition (3.36)/118 is satisfied if and only if
G∗m = Z2 (see (3.33)/117) i.e., if and only if every l ∈ Z2 can be written as some
integer combination l =

∑m
i=1 kiei with ki ∈ Z. In fact we get the following.

Considering (3.19)/114 we conclude that, for example, s∗(−1, 1) = 0 if and only if
the factor 1+(−1)ei1(+1)ei2 = 1+(−1)ei1 = 0 for at least one i, i.e., ei1 must be odd
for at least one i. Here, ei = (ei1, ei2)t. Now, any l = (l1, l2) ∈ Z2 can be written
as (l1, l2) =

∑
i ki(ei1, ei2), so that l1 =

∑
i kiei1 with ki an integer. Choosing l1

odd, it is clear that not all ei1 can be even. Conversely, if all ei1 are even, then l1
is always even. We argue similarly for s∗(1,−1) and s∗(−1,−1).

Before proceeding we note the following general result for subgroups in Z2.
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Proposition 3.5.6. For every subgroup G∗of Z2, such that G∗ contains at least
two linearly independent vectors, there is a set {u1, u2} ⊂ G∗ of generators with the
property that every element g ∈ G∗ can be written as

g = k1u1 + k2u2

with uniquely defined integers k1 and k2. The generators u1 and u2 are not uniquely
defined.

Proof. Consider the mapping

G∗ × G∗ � (a, b) �→ det(a, b) ∈ Z,

and let

kmin = min{det(a, b) : a, b ∈ G∗,det(a, b) > 0}. (3.37)

Now let u1 and u2 be vectors in G∗ with kmin = det(u1, u2). Let g ∈ G∗ be
arbitrary, and consider the equation

k1u1 + k2u2 = g or (u1, u2)(k1, k2)t = g,

which, by Cramer’s rule [157, p. 233], has the unique solution

k1 = det(g, u2)/det(u1, u2), k2 = det(u1, g)/det(u1, u2).

By the minimality property (3.37)/119 it follows that k1 and k2 are integers.
In fact, consider the expression

det(g − nu1, u2) = det(g, u2)− ndet(u1, u2) = det(g, u2)− nk

with n ∈ Z. The right-hand side is equal to zero for some n; otherwise we could
choose n such that

0 < det(g − nu1, u2) < k,

contradicting the minimality property, and we have shown that k1 is an integer.
For k2 the argument is similar.

Remark 3.5.7. We note that ē/2 = k1u1/2+k2u2/2 for some integers ki, i = 1, 2,
which implies that

Gm = G∗m + (ε1u1 + ε2u2)/2,

where εi = 0 if ki is even and εi = 1 if ki is odd. Note that Gm = G∗m+(ε1u1+ε2u2)/2
is the dual grid of G∗m if ε1 = ε2 = 1. If (ε1, ε2) = (1, 0) or (ε1, ε2) = (0, 1), then Gm
is a semidual grid.
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Control points for the refined mesh

The development now continues in analogy with the B-spline case. We examine
here the relationship between the control points in the refined and unrefined meshes.
Consider the parametric surface defined on the grid Z2 by

x(y) = x(u, v) =
∑
l

plNl(hem; y), (3.38)

where the summation is over Z2, or in the centered case over Z2 + ē/2, and where
pl ∈ RN denote the control points. Using again that

Nl(hem; y) = z2lN(hem; y),

this may be rewritten as

x(y) =

(∑
l

plz
2l

)
N(hem; y) = p(h; z2)N(hem; y),

where we have introduced the generalized polynomial p(h; z) =
∑
l plz

l.
We now wish to find the new control points qk for the representation

x(y) = x(u, v) =
∑
k

qkNk(hem/2; y) = p(h/2; z)N(hem/2; y) (3.39)

on the refined grid, where qk ∈ RN , and

p(h/2; z) =
∑
k

qkz
k. (3.40)

By (3.26)/116 we conclude that

x(y) = p(h; z2)N(hem; y) = p(h; z2)s(z)N(hem/2; y). (3.41)

Then (3.39)/120 is satisfied if we take

p(h/2; z) = s(z)p(h; z2). (3.42)

This may be compared with (2.32)/65. Now equations (3.29)/116 and (3.42)/120 and
the definition of p(h; z) give∑

k

qkz
k =

∑
i

siz
i
∑
l

plz
2l =

∑
i

∑
l

siplz
i+2l. (3.43)

Here the coefficients si are initially defined for i ∈ Gm ⊂ Z2 + ē/2. By defining
si = 0 outside Gm, the summation in i can be taken over Z2 + ē/2. Now taking
k = i+ 2l, i.e., i = k − 2l in (3.43)/120, we have

∑
k

qkz
k =

∑
k

(∑
l

sk−2lpl

)
zk.
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From this we conclude that

qk =
∑
l

sk−2lpl. (3.44)

The summation in l ranges over Z2 or possibly Z2 + ē/2. The terms in the
sum of (3.44)/121 are nonvanishing only if sk−2l is different from zero, i.e., only if
k − 2l ∈ Gm ⊂ Z2 + ē/2. It follows that qk �= 0 only if k ∈ Z2 + ē/2. So on the
refined level the index set (for k) is always Z2 + ē/2, regardless of whether for the
initial level the vectors pl have been chosen with l ∈ Z2 or l ∈ Z2 + ē/2 (2l is always
in Z2).

Formula (3.44)/121 is the subdivision equation for the box-spline case. We note
that the choice of the refined polynomial

∑
k qkz

k is not the only one possible. The
choice is unique if an equality∑

k

qkN(hem/2; y − kh/2) =
∑
k

q′kN(hem/2; y − kh/2)

always implies that qk = q′k for all k, i.e., if the translates of the nodal functions are
linearly independent. Linear independence for box-spline nodal functions is treated
in Section 3.6. This question of nonuniqueness is, however, no difficulty here. The
choice in (3.44)/121 will always be used and guarantees satisfactory convergence and
smoothness properties for the process, as will be seen later in Chapter 5.

There are essentially four cases for the index k in (3.44)/121; see Exercise 3/141.
This limits the number of stencils needed to describe a method. Exercise 4/141 gives
an example of nonuniqueness for the coefficients qk.

As in the B-spline case, convergence of the qk has to be proved. This is done
in Chapter 5.

Averaging over dual and semidual grids

As for the univariate and tensor-product B-spline cases, the procedure defined by
(3.44)/121 and (3.42)/120 with

s(z) = 4
m∏
i=1

(
zei/2 + z−ei/2

2

)
(3.45)

can be implemented at each step as a sequence of averagings of control points over
the refined version of the initial grid and its dual, and this is the generalized version
of the alternation mechanism observed for the Lane–Riesenfeld algorithm. The
averagings are in the directions of the vectors ei, 1 ≤ i ≤ m, defining the box
spline. As before, extraction of a factor of 4p(h; z2) in (3.42)/120 is the upsampling.
Multiplication by a factor

zei/2 + z−ei/2

2

corresponds to the interpolation or averaging qij = (qi−1
j+ei/2

+ qi−1
j−ei/2

)/2, where
qi(z) =

∑
j q

i
jz
j , 0 ≤ i ≤ m, is the sequence of intermediate generalized polynomials.
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The final member of this sequence, qm(z) = p(h/2; z), is the generalized polynomial
having control points over a refined grid with resolution h/2. After ν complete steps
of the process, the control points are in a grid

2−ν
(
hZ2 + h(ε1/2, ε2/2)t

)
, ε1, ε2 ∈ {0, 1}.

Example 3.5.8. Dual and semidual grids.
For the tensor-product B-spline of degree d = 3, we have m = 2(d + 1) = 8,

ē = (4, 4)t, and G∗8 = Z2, with u1 = (1, 0)t and u2 = (0, 1)t. Consequently, in
Remark 3.5.7/119, we have k1 = k2 = 4 and ε1 = ε2 = 0. Thus G8 = G∗8 = Z2.

In contrast, for the tensor-product B-spline of degree d = 2, we have m =
2(d + 1) = 6, ē = (3, 3)t, and G∗6 = Z2, with u1 = (1, 0)t and u2 = (0, 1)t.
Consequently, in Remark 3.5.7/119, we have k1 = k2 = 3 and ε1 = ε2 = 1. Thus
G6 = G∗6 + (1/2, 1/2)t = Z2 + (1/2, 1/2)t.

The tensor product, of a B-spline of even degree and a B-spline of odd degree,
would lead to a semidual grid Gm.

Note that in (3.32)/117 the index i is in Gm, which means that i+2l ∈ Gm = Z2

if l ∈ Z2. If one of the components of i+2l is a half-integer, the nodal function Ni+2l
in (3.32)/117 is shifted by half-integer values in that component, corresponding to a
shift of h/4. This is analogous to the comment in the solution to Exercise 2/91 of
Chapter 2 that, if m is odd, the functions on the right-hand side of (2.24)/61 have
their peak values in h

2 Z + h
4 .

Nodal-Function Computation principle

We can apply the Nodal-Function Computation principle, given in Section 2.2.4, in
the case of box splines. Since we will be able to show that the averaging process
we have just described is convergent (in a sense described in Definitions 4.7.1/182

and 5.1.1/193), we can find an approximation to Nl(hem; y) by applying the subdi-
vision process to the scalar control points with pl = 1, l = (l1, l2), and pi = 0,
i = (i1, i2) �= (l1, l2). This is because substituting the values just mentioned
into (3.38)/120 gives x(y) = Nl(hem; y).

It is worthwhile to confirm for one or two simple examples that this process
produces an approximate function with the correct support. For example, if the
LR(3 × 3) algorithm is applied to the unit impulse with 1 at the origin in hZ2,
the first subdivision step is easily seen to produce nonzero values in the domain
{(u, v) : −h ≤ u, v ≤ h} (compare with Figure 2.9/73). The second subdivision
step (with h replaced by h/2) then produces nonzero values in the domain {(u, v) :
−3h/2 ≤ u, v ≤ 3h/2}, and, continuing, the ν th subdivision step produces nonzero
values in {(u, v) : −(2−2−ν+1)h ≤ u, v ≤ (2−2−ν+1)h}. The process thus converges
to a function with support {(u, v) : −2h ≤ u, v ≤ 2h}, which is consistent with what
we know about conv(hG∗m) from Example 3.2.4/100 and Figure 2.2/58 (bottom).
Similarly, if Loop subdivision (Figure 1.29/32) is applied to the unit impulse with 1
at the origin in hZ2, in the regular case, then at the ν th iteration, nonzero values
are obtained in the region

{(u, v)t : |(1, 0)(u, v)t|, |(0, 1)(u, v)t|, |(−1, 1)(u, v)t| ≤ h(2− 2−ν+1)}
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(see Figure 3.13/118). Allowing for centering, the support of the nodal function is
thus confirmed to be as given in Example 3.2.6/103. See Exercises 5/142 and 6/142.

From the definition of a box spline, Gm is symmetric in the origin, and
from (3.27)/116 and (3.29)/116 we have

4
m∏
i=1

(
zei/2 + z−ei/2

2

)
=

∑
j∈Gm

sjz
j ,

which implies that the subdivision mask sj , j ∈ Gm, is symmetric in the origin,
i.e., sj = s−j . From the Nodal-Function Computation principle, symmetry of the
subdivision mask implies that the corresponding centered box-spline nodal function
is also symmetric in the origin: N(hem; y) = N(hem;−y).

Polynomial Coefficient principle

This principle, which was introduced in the B-spline case in Section 2.2.4, generalizes
immediately to the box-spline case. Putting p(0,0) = 1 and pl = 0 for l �= (0, 0) in
(3.44)/121, and applying one step of the subdivision process, produces qk = sk. See
Exercise 7/142.

Interpretation of polynomial factors

Any box spline involving the directions (1, 0)t and (0, 1)t will have the factor(
z
1/2
1 + z

−1/2
1

2

)(
z
1/2
2 + z

−1/2
2

2

)
=

1
4
(z1/2

1 + z
−1/2
1 )(z1/2

2 + z
−1/2
2 )

in its centered subdivision polynomial. This, along with the upsampling 4p(h; z2),
corresponds to constant subdivision (see (2.49)/76), and any process for which the
subdivision polynomial contains this factor can thus be viewed as having been
built on top of constant subdivision. This includes in particular the tensor-product
B-splines (Example 3.2.4/100), three-direction box splines with vectors included with
multiplicity one (Example 3.2.8/106) or two (Example 3.2.6/103), and four-direction
box splines (Example 3.2.7/104).

Similarly, any box spline involving the directions (1, 0)t and (0, 1)t with mul-
tiplicity two will involve the factor

(
z
1/2
1 + z

−1/2
1

2

)2(
z
1/2
2 + z

−1/2
2

2

)2

,

which, again in conjunction with the upsampling 4p(h; z2), corresponds to linear
subdivision: compare (2.42)/70 and (2.50)/76. Thus, for example, tensor-product
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B-splines (Example 3.2.4/100) have centered subdivision polynomial

s(z) = 4
2(d+1)∏
i=1

(
zei/2 + z−ei/2

2

)
(3.46)

= 4

[(
z
1/2
1 + z

−1/2
1

2

)(
z
1/2
2 + z

−1/2
2

2

)]d+1

= 2

(
z
1/2
1 + z

−1/2
1

2

)d+1

2

(
z
1/2
2 + z

−1/2
2

2

)d+1

.

Each of these last two factors corresponds exactly to (2.20)/61.
Exercise 8/142 gives a simple example, related to constant subdivision, which

shows that the scaling of the vectors ei is significant.

The Loop subdivision scheme (regular case)

The centered version of the three-direction quartic box spline (Example 3.5.3/117)
can be understood as an averaging process built on top of linear subdivision, and
it can also be shown to produce Loop subdivision at ordinary vertices, as illus-
trated in Figure 1.29/32. From Definition 3.5.1/116 we have that ē/2 = (2, 2)t (see
Figure 3.13/118). Consequently, G∗6 = G6 = Z2 and z−ē/2 = 1

z21z
2
2
. Thus, it follows

from (3.27)/116 that

s(z) =
1

16z2
1z

2
2
(1 + z1)2(1 + z2)2(1 + z1z2)2 (3.47)

= 2

(
z
1/2
1 + z

−1/2
1

2

)2

2

(
z
1/2
2 + z

−1/2
2

2

)2(
z
1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2

2

)2

.

Again, the factor

2

(
z
1/2
1 + z

−1/2
1

2

)2

2

(
z
1/2
2 + z

−1/2
2

2

)2

corresponds to linear subdivision, while the remaining factor corresponds to aver-
aging in the direction (1, 1)t using the weights

[
1/4 1/2 1/4

]
.

Observing (3.47)/124, it is natural to redraw Figure 3.13/118 as we have done
in Figure 3.14/125 using an oblique coordinate system. This and similar layouts
are used later, for example when discussing

√
3-subdivision. The nodal function

would in this case have a different form, due to a linear change of coordinates in the
parametric domain. For our purposes here we continue using the rectangular grid.

Introducing diagonal lines in the rectangular grid, as shown in Figure 3.15/125,
a triangular grid is created, and binary subdivision induces a pT4 subdivision of
this triangular grid. There are four kinds of vertices resulting from this subdivision:
existing triangle vertices (E) and new edge points, which may occur on vertical
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z−1
2

z−1
1 z−1

2

z1

z1z2

z−1
1

z2

Figure 3.14. The centered grid in triangular form.

D V
h

h/2

H E

Figure 3.15. A triangular grid from a rectangular grid.

lines (V ), horizontal lines (H), and diagonal lines (D). It is easily shown that
vertices of these last three types all use the same weighted average of the control
points at the preceding step if they are viewed in the context of the triangular
grid, namely the weighted average illustrated in Figure 1.29/32 (left). For a point
of type V we have the linearly subdivided mesh shown in Figure 3.16/126, and the
smoothing that follows linear subdivision produces

V ← 1
4

(pk,l + pk+1,l) /2

+
1
2

(pk+1,l + pk+1,l+1) /2

+
1
4

(pk+1,l+1 + pk+2,l+1) /2

=
1
8
pk,l +

3
8
pk+1,l +

3
8
pk+1,l+1 +

1
8
pk+2,l+1,

which corresponds exactly to Figure 1.29/32 (left). Averaging in the direction (1, 1)t

produces the same result in the other cases; see Exercise 9/142.
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V

1
2 (pk,l + pk+1,l)

pk,l pk+1,l

pk+1,l+1 pk+2,l+1

1
2 (pk+1,l+1 + pk+2,l+1)

1
2 (pk+1,l + pk+1,l+1)

Figure 3.16. Initial linear subdivision for a type-V vertex.

There is an easier way to confirm that the subdivision polynomial in (3.47)/124

corresponds to Loop subdivision in the regular case: we can apply one step of the
Loop subdivision rules to the unit-impulse function in Z2 and compare what we get
with the coefficients of the subdivision polynomial (3.47)/124. This is the Polynomial
Coefficient principle mentioned above. The procedure will be carried out for the
Loop method in Section 3.7.

3.6 Partition of unity and linear independence
for box splines

Definition 3.6.1. Assume that we are given a function F ∈ L1(R2) with compact
support. Then the translates F (y− lh), l ∈ Z2, are said to give a partition of unity
over hZ2 if ∑

l∈Z2

F (y − lh) = 1 for all y ∈ R2.

They are said to be globally linearly independent if∑
l∈Z2

plF (y − lh) = 0 for all y ∈ R2

implies that pl = 0 for all l ∈ Z2, and globally linearly dependent otherwise. Further
they are said to be locally linearly independent if for any open set Ω ⊂ R2

∑
l∈Z2

plF (y − lh) = 0 for all y ∈ Ω

implies that pl = 0 for all l ∈ Z2 such that supp(F (y − lh)) ∩ Ω �= ∅, and locally
linearly dependent otherwise.
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In Remark 4.7.3/183 it is observed that all subdivision methods which are affine
invariant give a partition of unity, and as mentioned in Remark 3.5.5/118, we consider
only affine-invariant methods.

By definition, local linear independence implies global linear independence. It
is a remarkable fact that for box splines, local linear independence is equivalent to
global linear independence. This is a consequence of the following theorem, which
is the main result of this section.

Theorem 3.6.2. Assume that the vectors in em satisfy the condition

det(ei, ej) = ±1 or det(ei, ej) = 0 (3.48)

for all i, j. Then the translates of N∗(hem; y− lh) of the nodal functions are locally
linearly independent. Conversely, if condition (3.48)/127 is not satisfied, then the
translates are globally linearly dependent; i.e., there exist control vectors pl ∈ RN ,
l ∈ Z2, not all equal to zero, such that∑

l

plN
∗(hem; y − lh) = 0 for all y ∈ Ω.

The requirement (3.48)/127 is quite restrictive. Assume that (3.48)/127 is sat-
isfied and also, without loss of generality, that det(e1, e2) = 1. Then every a ∈ Z2

can, in a unique way, be written as a = k1e1 + k2e2, where k1, k2 ∈ Z. Then, if for
some i > 2, det(ei, e1) = ±1 and det(ei, e2) = ±1, we get the following. Taking ei =
ki1e1+ki2e2, we conclude that det(ei, e1) = det(ki1e1+ki2e2, e1) = ki2 det(e2, e1) =
−ki2 = ±1. Similarly, we have det(ki1e1 + ki2e2, e2) = ki1det(e1, e2) = ki1 = ±1,
and we get that

ei = ki1e1 + ki2e2 with ki1 = ±1, ki2 = ±1.

Next, if for some j > 2 we have det(ej , e1) = ±1 and det(ej , e2) = ±1, we have

ej = kj1e1 + kj2e2 with kj1 = ±1, kj2 = ±1.

Now det(ei, ej) = det(ki1e1 + ki2e2, kj1e1 + kj2e2) = ki1kj2− ki2kj1 = ±1± 1. This
expression is either ±2 or 0, but since the values ±2 are excluded we conclude that
det(ei, ej) = 0, i.e., ei = ±ej .

Moreover, if el = kl1e1+kl2e2, l > 2, satisfies det(el, e1) = ±1 and det(el, e2) =
0, we have −kl2 = ±1 and kl1 = 0. Similarly, if det(el, e1) = 0 and det(el, e2) = ±1,
we have kl2 = 0 and kl1 = ±1. The case that det(el, e1) = det(el, e2) = 0 would
give that kl1 = kl2 = 0 and el = 0 which is not possible. We have shown that there
are numbers κ1, κ2 = ±1 such that every ei, with i > 2, can be written as

ei = ±(κ1e1 + κ2e2) or (3.49)
ei = ±e1 or ei = ±e2.

Typical box splines satisfying these conditions are

• the bilinear three-direction box spline with

e1 = (1, 0)t, e2 = (0, 1), e3 = (1, 1)t;
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• the quartic three-direction box spline with

e1 = e2 = (1, 0)t, e3 = e4 = (0, 1), e5 = e6 = (1, 1)t;

• a tensor-product spline with

e1 = e2 = e3 = e4 = (1, 0)t, e5 = e6 = e7 = e8 = (0, 1)t.

Further we note that for the four-direction box spline with

e1 = (1, 0)t, e2 = (0, 1)t e3 = (1, 1)t, e4 = (−1, 1)t,

we have det(e3, e4) = 2, and therefore the nodal functions are linearly dependent .
The proof of Theorem 3.6.2/127 can actually be simplified in the sense that

when proving linear independence we may replace condition (3.49)/127 either by the
requirement

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, and ei = e1, e2 or e3 for i > 3,

or by the requirement

e1 = (1, 0)t, e2 = (0, 1)t, and ei = e1 or e2 for i > 3.

This can be understood in the following way.
Suppose that h = 1. We first note that replacing some vector ei ∈ em with

−ei corresponds to a translation of the nodal function and does not affect the linear
independence. In fact if fm = {e1, . . . , ei−1,−ei, ei+1, . . . , em}, then

N(fm; y) = N(em; y + ei).

Also N(em; y) is unchanged if the vectors of em are permutated. Therefore, if there
is at least one vector ei ∈ em such that ei �= ±e1 or ±e2, then we can take the three
first to be e1, e2, e3, with e3 = e1± e2, and ei = +e1, +e2 or +e3 for i > 3. Further,
in the case that e3 = e1 − e2, we may reorder them as e1 − e2, e2, e1. Then we can
rename them as e1 := e1 − e2, e3 := e1, so that we have

e1, e2, e3,with e3 = e1 + e2, and ei = +e1 or +e2 for i > 3. (3.50)

We conclude that when proving that condition (3.48)/127 implies linear indepen-
dence, it suffices to consider the case (3.50)/128. Similarly, if for i > 2 we have
ei = ±e1 or ±e2, then we need only consider the case that ei = +e1 or +e2.

We also note the following. Suppose that we have the case (3.50)/128. Then
the linear mapping

A : R2 → R2

defined by Ae1 = (1, 0)t and Ae2 = (0, 1)t is a bijection when restricted to Z2. The
sequence of vectors fm = Aem then generates a three-direction box spline of degree
m with the standard directions (1, 0)t, (0, 1)t, and (1, 1)t. Further

N(em; y) = N(fm;Ay) and N(em;A−1y) = N(fm; y),



book
2010/3/3
page 129

�

�

�

�

�

�

�

�

3.6. Partition of unity and linear independence for box splines 129

and therefore we get∑
l∈Z2

plN(em; y − l) =
∑
l∈Z2

plN(fm;Ay −Al) =
∑
l′∈Z2

plN(fm; y′ − l′),

where l′ = Al and y′ = Ay. This shows that the translates N(em; y − l) and
N(fm; y − l) are linearly independent simultaneously.

We now give the proof of Theorem 3.6.2/127, but only in the case when Ω = R2.

Proof. It is enough to consider the case of scalar control points.
First assume that (3.48)/127 is not satisfied, i.e., det(ei, ej) �= ±1, or 0 for some

ei, ej ∈ em. We will show that for some nonvanishing set {pl ∈ RN}l∈Z2 of control
points we have ∑

l∈Z2

plN
∗(em; y − l) = 0 for all y ∈ R2. (3.51)

By reordering the vectors in em we may assume that i = 1 and j = 2. Now the
additive subgroup

G∗2 = {k1e1 + k2e2 : k1, k2 ∈ Z} ⊂ Z2

(see(3.33)/117) does not coincide with Z2, i.e., there exists an l0 ∈ Z2 \ G∗2 . It also
follows that the sets G∗2 and l0 + G∗2 are disjoint. We now define pl = 1 if l ∈ G∗2 ,
pl = −1 if l ∈ l0 + G∗2 , and pl = 0 otherwise. Observing that N∗(e2; y) is the
characteristic function of the parallelogram spanned by e1 and e2, we conclude that∑

l∈G∗
2

N∗(e2; y − l) = 1 for all y ∈ R2.

Similarly, it follows that
∑
l∈l0+G∗

2
N∗(e2; y − l) = 1 for all y ∈ R2, and hence

(3.51)/129 is satisfied, with em replaced by e2. Using (3.7)/97 repeatedly we conclude
that (3.51)/129 is true.

Next assume that (3.48)/127 is satisfied. We will provide the proof of global
linear independence only (i.e., the case Ω = R2). For the more general result on
local linear independence, see [38].

By the preceding discussion it suffices to consider the cases

e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, ei = e1, e2 or e3 for 4 ≤ i ≤ m (3.52)

and
e1 = (1, 0)t, e2 = (0, 1)t, ei = e1 or e2 for 3 ≤ i ≤ m. (3.53)

We first carry out the proof when we have (3.52)/129, or (3.53)/129 with not all ei
equal for 3 ≤ i ≤ m.

If x(y) =
∑
l∈Z2 plN

∗(em; y − l), we conclude from Theorem 3.2.3/99 that

Deix(y) =
∑
l∈Z2

pl(N∗(em(i); y − l)−N∗(em(i); y − l − ei)) (3.54)

=
∑
l∈Z2

(pl − pl−ei)N
∗(em(i); y − l),
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where em(i) denotes the sequence obtained from em by deleting ei. We now argue
by induction. For m = 2 the function N∗(e2; y) is the characteristic function for
the unit square [0, 1] × [0, 1], and therefore x(y) = plN

∗(e2; y − l) = pl if (u, v) ∈
(l1, l2) + (0, 1) × (0, 1) (an open square). This shows that the statement above is
true for m = 2. Next assume that it has been proved for some value m = k−1 ≥ 2.
For m = k we then obtain the following. If

x(y) =
∑
l∈Z2

plN
∗(ek; y − l) = 0 for all y ∈ R2,

then, by (3.54)/129 we have

Deix(y) =
∑
l∈Z2

(pl − pl−ei)N
∗(ek(i); y − l) = 0 for all y ∈ R2

if i = 1, 2. By the induction hypothesis we conclude that pl − pl−ei = 0 for all
l ∈ Z2. It follows that pl = pl−(1,0)t = pl−(0,1)t = p for all l, where p is a constant.
Therefore,

x(y) =
∑
l∈Z2

plN
∗(ek; y − l) = p

∑
l∈Z2

N∗(ek; y − l) = p = 0,

i.e., pl = 0 for all l ∈ Z2. By induction the argument is complete (for Ω = R2).
The remaining case is that e1 = (1, 0)t, e2 = (0, 1)t, and either ei = e1 for

3 ≤ i ≤ m or ei = e2 for 3 ≤ i ≤ m. Without loss of generality, we assume ei = e2.
Then N∗(em; y) =

∗
N1(u)

∗
Nm−1(v), and∑

l∈Z2

plN
∗(em; y − l) =

∑
l1

∑
l2

pl1,l2
∗
N1(u− l1)

∗
Nm−1(v − l2) = 0

implies that, for u ∈ (0, 1) + l1, with u and l1 fixed,∑
l

plN
∗(em; y − l) =

∑
l1

∑
l2

pl1,l2
∗
Nm−1(v − l2) = 0

for all v. By Theorem 2.5.5/84, pl1,l2 = 0 for all l2. Since l1 was arbitrary we
conclude that pl = 0 for all l, and the proof is complete (for Ω = R2).

3.7 Box-spline methods and variants for finite meshes
We have presented several standard box splines as examples: Example 3.2.4/100

showed that the tensor-product B-splines are a special kind of box splines, while
Example 3.2.6/103 introduced the three-direction quartic box spline, and Exam-
ple 3.2.7/104 introduced two four-direction box splines. We now show how the cor-
responding methods can be adapted for use in finite polyhedral meshes without
boundary, both in the regular and nonregular case. This corresponds to the second
column in Figure 1.30/33.
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Figure 3.17. Application of Loop method to unit-impulse function.

3.7.1 The Loop method and its extension to higher orders

In Section 3.5 we mentioned that an easy way to verify that the Loop subdivision
rules of Figure 1.29/32 give, in the regular case, the subdivision polynomial (3.47)/124

corresponding to the three-direction quartic box spline, is to use the Polynomial
Coefficient principle. If we substitute the value 1 for pl when l = (0, 0) in (3.44)/121,
and 0 for all other points l ∈ Z2, we obtain simply qk = sk, k ∈ Gm. Thus, if
we apply the Loop subdivision method to the unit-impulse function, for one step,
we get the coefficients of the centered subdivision polynomial. Applying the Loop
rules in Figure 1.29/32 to the unit-impulse function produces the values shown in
Figure 3.17/131. (See Exercise 10/142. Values below the diagonal axis in the figure
are given by reflections in the axis; other values not shown are equal to zero.) But
from (3.47)/124 we find

s(z) =
1
16

(z1 + 2 + z−1
1 )(z2 + 2 + z−1

2 )(z1z2 + 2 + z−1
1 z−1

2 )

=
5
8

+
3
8
z1 +

3
8
z−1
1 +

1
16
z2
1 +

1
16
z−2
1 +

1
8
z−1
1 z2 + · · · ,

i.e., a polynomial with coefficients as shown in Figure 3.17/131.
In the nonregular case, the weights for an existing vertex, with n �= 6, were

given in Figure 1.29/32: a weight of 1 − w(n) is assigned to the vertex, and a
weight of w(n)/n is assigned to each of its neighbours. The formula for w(n) is
given in (1.12)/32; it is chosen with an eye to the smoothness of the surface at the
extraordinary point. This issue is discussed briefly in Section 5.8. The splitting
schema is the pT4 split, which was described in Section 1.3.1.

We consider now an extension of the Loop method, in the nonregular case,
that provides surfaces of higher continuity away from extraordinary points. This is
a class of methods (parametrized by the total order m = 6, 9, 12, . . .) that can be
placed in the second column of Figure 1.30/33: the methods are analogous to the
RepeatedAveraging algorithm. Recall that if m is the total order of a tensor-product
B-spline, viewed as a box spline as in Example 3.4.4/115, the RepeatedAveraging
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New vertices

n = 7

n = 6

1/8

2w(n)/n w(6) = 3/8

1− 2w(n)

1/4

Figure 3.18. Smoothing stencils for extended Loop method.

algorithm generalized the LR(3×3) or Catmull–Clark process to the case of bidegree
d, d > 3. (Catmull–Clark is the case d = 3, and m = 2d+ 2.) The algorithm began
with Linear Subdivision and performed d− 1 = m/2− 2 subsequent averagings to
obtain in the regular case a surface of bidegree d. This same idea was used in [151]
to generalize the Loop method to the case of total order m = 3j + 3, j = 1, 2, . . . .
The algorithm begins by placing new vertices in the middle of each logical edge of
the triangular mesh and assigning a control point to these new vertices that is equal
to the average of the control points at each end of the edge. Then the algorithm
applies m/3− 1 smoothings using the stencil shown in Figure 3.18/132 (left), where
w(n) is defined as in (1.12)/32. It is easy to check that if the process is initialized
by assigning midpoint values to the control points, as described above, followed by
a single smoothing (m = 6, m/3 − 1 = 1 smoothing) using the stencil shown in
Figure 3.18/132 (left), then the Loop weights of Figure 1.29/32 are obtained for new
edge points and for existing vertex points. See Exercise 11/142.

We now consider larger values of m. The class of methods just described,
involving j smoothings and with total order m = 3j+3, j = 1, 2, . . . , in the regular
case, can be included in column 2 of Figure 1.30/33. The Loop method is the case
j = 1, m = 6.

This extension of the Loop method [151] was also listed in the table on page 37,
where the continuity properties of the limit surface, away from extraordinary ver-
tices, were given. To explain these properties, we examine the subdivision polyno-
mial in the regular case. It is shown that the method involves inclusion of the three
directions of the three-direction box spline j + 1 times, j ≥ 2, rather than only
twice, so that the exponent 2 appearing on each of the three right-hand factors of
(3.47)/124 is replaced by j + 1.

The initial assignment of new control points at edge midpoints corresponds to
the polynomial

sI(z) =
1

2z1z2
(1 + z1)(1 + z2)(1 + z1z2)

= 1 +
1
2
(z1 + z2 + z−1

1 + z−1
2 + z1z2 + z−1

1 z−1
2 ), (3.55)
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Figure 3.19. Subdivision mask for extended Loop method.

where the subscript I is intended to suggest “initial.” (If we apply the initial
midpoint averaging to the unit-impulse function, it produces the mask shown in
Figure 3.19/133 (left), and these are exactly the coefficients of the subdivision poly-
nomial displayed in (3.55)/132.) At each subsequent smoothing step we apply the
stencil in Figure 3.18/132 (right), which when applied to the unit-impulse function
produces the mask shown in Figure 3.19/133 (right). This corresponds to multiplying
by the polynomial

sS(z) =
1

8z1z2
(1 + z1)(1 + z2)(1 + z1z2)

at each smoothing (the subscript S is intended to suggest “smoothing”). The prod-
uct

s(z) = sI(z) [sS(z)]j =
4(1 + z1)j+1(1 + z2)j+1(1 + z1z2)j+1

(8z1z2)j+1 (3.56)

is the subdivision polynomial corresponding to the complete process: we do smooth-
ings for j = 1, . . . ,m/3− 1.

Referring to Theorem 3.3.2/111, the value of α there is equal to m/3 + 1, and
the surface therefore has parametric continuity (2m−6)/3, m = 6, 9, . . . . We might
also envisage adding directions one at a time, rather than in groups of three as
happens using the stencil in Figure 3.19/133 (right). If this were done, the level of
parametric continuity would be �(2m−6)/3�, m = 6, 7, 8, 9, . . . . See Exercises 12/143

and 13/143.

3.7.2 The Midedge and 4-8 subdivision methods

In this section we describe two other important box-spline methods, which are based
on two different versions of four-direction box splines. Like the Loop method, these
methods are listed in the second column of Figure 1.30/33.
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Figure 3.20. An example of Midedge subdivision.

The Midedge method

We begin by discussing the Midedge method [121] which, when applied twice in
succession on a regular mesh, is equivalent to the four-direction quadratic box
spline of Example 3.2.7/104 and (3.23)/115. Just as the Loop method reduced,
on regular triangular meshes, to the three-direction quartic spline, the method
{Midedge}2 reduces, on regular quadrilateral meshes, to the four-direction quadratic
box spline.

The Midedge method is defined as follows. Let (�, �′) be an edge in the mesh;
then, there are exactly four edges that share both a vertex and a face with this
edge. The Midedge method joins the midpoints of each of these four edges to the
midpoint of (�, �′), computes the control point at each new vertex as the average
of the points at adjacent vertices, and discards the old mesh. Thus, after one step,
the valence of all mesh points is four; see Figure 3.20/134, which is similar to [121,
Fig. 1].

The Midedge method, as just defined, is applicable to arbitrary locally planar
meshes. In contrast to other methods, such as the Loop method, the Midedge
method can be expressed without reference to the number of edges associated with
a vertex or face.

We define extraordinary faces and vertices as they were defined for the dQ4
splitting, i.e., faces or vertices with other than four incident edges. In fact, we
can view the {Midedge}2 process as one that uses the dQ4 schema, although the
method was not originally presented in this way. Referring to the outermost polygon
in Figure 3.21/135 (a pentagon is used to illustrate, i.e., e = 5), dQ4 begins with
linear subdivision (dashed lines), followed by taking the dual (the vertices of the
dual mesh are indicated by the black squares, as in Figure 1.16/19, right). This can
be compared with the results of applying {Midedge}2: the smallest pentagon in
Figure 3.21/135 corresponds both to the edges in the mesh produced by {Midedge}2
and to the edges of the dual mesh produced by dQ4.
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Linear subdivision

Figure 3.21. Splitting for two steps of the Midedge method is dQ4.
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1
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pk,l+1

pk+1,lpk,l

1
2pk,l +

1
4pk+1,l + 1

4pk,l+1

Grid for
next step

Figure 3.22. Two steps of the Midedge method.

Consequently, in terms of the topology of the subdivided mesh, the {Midedge}2
method behaves in exactly the same way as a method based on dQ4 splitting, as
described in Section 1.2.2.

For a regular face, as illustrated in Figure 3.22/135 (left), we obtain the new
points illustrated in Figure 3.22/135 (middle) after one application of the Midedge
method (the discarded mesh is shown with a dashed line). Continuing, the second
application of the Midedge method is illustrated in Figure 3.22/135 (right), along
with the values of the control points associated with the new vertices. We can view
these new vertices, illustrated by black squares in the figure, as corresponding to
nodes in the dual mesh, and the new control-point value of

1
2
pk,l +

1
4
pk+1,l +

1
4
pk,l+1 (3.57)

is exactly that of the four-direction quadratic box spline of Example 3.2.7/104. This
can be seen in the following way. From (3.23)/115 and (3.27)/116 we have, for the
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pk,l+1

pk,l pk+1,l

Figure 3.23. Constant subdivision in the bivariate case.

four-direction quadratic box spline,

s(z) = z−ē/24
4∏
i=1

(
1 + zei

2

)
=

1
4
z
−1/2
1 z

−3/2
2 (1 + z1)(1 + z2)(1 + z1z2)(1 + z−1

1 z2) (3.58)

= (z1/2
1 + z

−1/2
1 )(z1/2

2 + z
−1/2
2 )

1
4
(z−1

2 + z1 + z−1
1 + z2).

The first two factors here correspond to constant subdivision (see (2.49)/76 and
Figure 3.23/136, where the grid shown corresponds to the primal refined grid, shown
in black, in Figure 2.11/76). The remaining factor 1

4 (z−1
2 +z1+z−1

1 +z2) corresponds,
for the encircled node in Figure 3.23/136, to 1/4 of the sum of the values at its North,
South, East, and West neighbours in the dual mesh: 1

4 (pk,l+1 + pk,l + pk+1,l + pk,l).
This last expression coincides with (3.57)/135.

With convergence established, the discussion following Theorem 3.3.2/111 shows
that the {Midedge}2 method produces C1 surfaces on regular parts of the mesh.
See also Exercise 2/141.

It is interesting to compare Figure 3.22/135 with Figure 1.20/23, which illus-
trated the LR(2 × 2) algorithm. The similarity is only at the level of the logical
mesh; the computed control-point values are different.

The rate of convergence of the Midedge method is uneven. A Modified Mid-
edge method for nonregular meshes was also introduced in [121, p. 426], with the
goal of improving the rate of convergence, and this modified method could be added
to the variant methods in the upper row of Figure 1.30/33 (second column). The
modified method uses modified weights for faces having a number of edges other
than four and therefore does, in contrast to the Midedge method, make reference
to the number of edges associated with an extraordinary face.

4-8 subdivision

We now describe the 4-8 subdivision method [164]. In the regular case (this
will be defined presently), it is equivalent to the four-direction box spline of
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Figure 3.24. A quadrilateral mesh with auxiliary diagonal edges.

Example 3.4.4/115 when the four directions are chosen with multiplicity two. Since
we have ē/2 = (1, 3)t, z−ē/2 = 1

z1z32
, it follows from (3.23)/115 that

s(z) =
1

64z1z3
2
(1 + z1)2(1 + z2)2(1 + z1z2)2(1 + z−1

1 z2)2 (3.59)

= 2

(
z
1/2
1 + z

−1/2
1

2

)2

2

(
z
1/2
2 + z

−1/2
2

2

)2(
z
1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2

2

)2

·
(
z
−1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2

2

)2

.

It can be seen that this four-direction box spline corresponds to linear subdivision,
LR(1×1), but with additional averagings in the directions (1, 1)t and (−1, 1)t, using
the weights [1/4 1/2 1/4] for both averagings.

Other variants of the four-direction box spline, similar to 4-8 subdivision,
are Quasi 4-8 subdivision [161, 162, 163] (a method that is nonstationary in the
nonregular case) and

√
2-subdivision [88].

We first examine the 4-8 subdivision method without reference to the four-
direction box spline. The basic method can be related to a mesh with topology cor-
responding to the [4.82] tiling of [60], which was illustrated in Figure 1.12/16 (right).
Rotating that tiling by 45 degrees, we obtain Figure 3.24/137, which corresponds to
[164, Fig. 1.a]. For the purpose of integrating the method within the box-spline
theory, however, we view the edges defining the squares in Figure 3.24/137 as the
principal edges, and the diagonal edges as auxiliary. Thus, the mesh is viewed as a
quadrilateral mesh, with regular vertices having valence 4.

In a general mesh, a quadrilateral face that has been split into two triangles
is called a basic block. Each of the eight quadrilateral faces in Figure 3.24/137 is
therefore a basic block, but note that if one of the eight diagonal edges were flipped,
or rotated 90 degrees, the block would remain a basic block. Similarly, five basic
blocks are shown in Figure 3.25/138 (left), with one of them shown lightly shaded.
The common edge of the two triangles making up a basic block is called an interior
edge, and the other two edges of each triangle are called exterior edges.

One step of the 4-8 subdivision method is made up of a series of two substeps
which are loosely referred to as “bisection” substeps. To apply bisection we need a
triangulated quadrilateral mesh, i.e., a locally planar mesh formed of basic blocks.
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Figure 3.25. First bisection substep.

Figure 3.26. Second bisection substep.

Methods for transforming a locally planar mesh into a triangulated quadrilateral
mesh are discussed below, at the end of the description of the method.

A bisection substep proceeds as follows. A new vertex is introduced in the
middle of every internal edge of every basic block in the logical mesh (see Fig-
ure 3.25/138, middle), and it is assigned a new control point (see “Face rule,” be-
low). The adjoining triangular faces in the logical mesh are then split into two
subfaces by linking the new vertex on the internal edge to the opposite vertex of
each adjoining triangle. The dashed lines in Figure 3.25/138 (middle) show all edges,
including those that were present due to the existence of the original basic block,
and those that were created as a result of the bisection. In Figure 3.25/138 (right)
a typical new basic block (for the next substep) is shown with dark shading, along
with the newly introduced vertices shown by black circles. The new basic blocks
are defined by two adjacent triangles separated by an edge that was exterior in the
first substep.

To complete the first substep, the values of control points associated with
existing vertices are revised (see “Vertex rule,” below).

The second substep performs another bisection with the new basic blocks. To
illustrate the second step, we first replace the dashed lines by solid lines, and the
solid lines by dashed lines, so that we are in the same situation that obtained at the
beginning of the first substep, as illustrated in Figure 3.26/138 (left). We then apply
the second-substep bisection to obtain Figure 3.26/138 (right). The new vertex is
introduced with valence 4 on an edge that was external in the first substep. This
completes one full step of 4-8 subdivision. A new basic block at the end of the
second substep is shown with dark shading.
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Substep 2:

Substep 1:

Figure 3.27. Two bisections in the regular case.
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Figure 3.28. Stencils for the 4-8 subdivision method.

The corresponding illustrations are given for the regular case in Figure 3.27/139,
where the top row shows the bisection of the first substep, and the lower row shows
the bisection of the second substep.

The new control points are computed in each substep according to the follow-
ing rules.

• Face rule: the new control point associated with a vertex inserted as a result
of a single bisection of a basic block is computed as the centroid of that block.

• Vertex rule: the revised control point associated with an existing vertex � is
computed as the average of the old value of the control point and the average
of the vertices sharing an exterior edge with �.

These rules are presented as stencils in Figure 3.28/139, where the vertex has valence
n = 5. The weights given for the vertex stencils are specified at vertices incident to
an external edge, and they are valid independently of the orientation of the internal
edges of basic blocks.

We can show that the given subdivision rules correspond in the regular case
to the subdivision polynomial (3.59)/137 by using the Polynomial Coefficient prin-
ciple; i.e., we place the value 1 at the origin of the grid Z2, and 0 elsewhere, and
apply the subdivision process. The first substep produces the values shown in
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Figure 3.29. Subdivision mask for the 4-8 subdivision method.

Figure 3.29/140 (left), where other nonzero values are given by reflection in the ver-
tical axis followed by reflection in the horizontal axis. The second substep produces
the values in Figure 3.29/140 (right); again, nonzero values not shown are defined by
symmetry: reflection in the diagonal, reflection in the vertical axis, and reflection
in the horizontal axis. See Exercise 14/143.

It can be verified that these values are exactly the coefficients of the subdi-
vision polynomial s(z) given by (3.59)/137, and that the process is equivalent to
linear subdivision followed by the averagings described following (3.59)/137. See
Exercise 15/143.

The Midedge and 4-8 subdivision methods are sometimes referred to as
√

2
methods [44], since in the regular case the edge length of the grid is reduced by a
factor of

√
2 at each substep. Similarly, it is shown later that in the regular case,

the edge length of the grid is reduced by a factor of
√

3 at each of the two substeps
of the {√3 }2 method.

Again, once convergence has been established, the discussion following Theo-
rem 3.3.2/111 shows that the 4-8 subdivision method produces C4 surfaces on regular
parts of the mesh.

An important advantage of the 4-8 subdivision method is that the process
may be stopped after the first substep within a step, and the number of faces, and
therefore the amount of memory used, increases by only a factor of two after each
substep. Also, it is shown in [164] how to subdivide adaptively using 4-8 subdivision,
i.e., how to subdivide to different depths in different parts of the mesh.

Finally, methods for obtaining an initial triangulated quadrilateral mesh are
discussed in [164]. For example, if we are given a quadrilateral mesh, it is sufficient
to split each face into two triangles. If we are given a general locally planar mesh,
we can begin with one Catmull–Clark step (pQ4 splitting) to obtain a quadrilateral
mesh, and the faces can be split as before. Other methods for obtaining triangulated
quadrilateral meshes are given in [164].
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3.8 Additional comments
The standard references for box splines are [38], [129]. See also [37].

In the case when nonregular points occur, the questions of linear dependence
and independence are harder to resolve. These questions are settled for the Catmull–
Clark and Loop methods in [126].

3.9 Exercises
1. In the proof of Theorem 3.2.3/99, we used that

∫ h
0 φ(t)dt =

∫∞
0 φ(t)dt −∫∞

h
φ(t)dt. Justify the use of this equality in the proof just mentioned.

2. Consider the four-direction quadratic box spline, with directions included with
multiplicity one. This is the method on which the {Midedge}2 method is
based, and the corresponding nodal function is the Zwart–Powell element.
Use Theorem 3.2.9/107 to show that the nodal functions associated with the
method are piecewise polynomials of degree at most 2, and show also that the
polynomial is of degree exactly 2 on each piece of the domain. (This justifies
the name “quadratic.”)

3. We have seen, in examining the Catmull–Clark and other methods, that the
subdivision rules describing a method can be formulated in more than one
way, and these formulations may appear to involve a different number of rules
for the same method. Fundamentally, however, the number of rules to be
specified is closely related to the parity of the indices �k� and (�k1�, �k2�) in
the subdivision equations (2.35)/65 and (3.44)/121, respectively. What is the
number of rules that must be specified in the univariate and bivariate cases,
to describe a box-spline method in the regular case, if symmetric cases are not
combined? Relate this to the rules for the Catmull–Clark and Loop methods.

4. Consider the subdivision method defined by the subdivision polynomial s(z) =
z−3/2(1 + z)(1 + z2)/2, which has nodal functions defined by Nl(h; t) =
N(h; t − lh), where Nl(h; t) = N1(h; t) ⊗ N1(2h; t) and N1(h; t) is defined
as in (2.8)/55. Show that

Nl(h; t) =



1
2h (t− lh) + 3

4 , −3h/2 ≤ t− lh < −h/2,
1
2 , −h/2 ≤ t− lh < h/2,

− 1
2h (t− lh) + 3

4 , h/2 ≤ t− lh < 3h/2,

0, otherwise,

and consequently
∑
l(−1)lNl(h; t) = 0. There is therefore a dependence

among the nodal functions, and the coefficients in (3.44)/121 are not neces-
sarily unique. The same example is valid in the surface case: consider the
tensor product of the above method with itself.
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In contrast, the univariate B-spline nodal functions for m = 2, corresponding
to the subdivision polynomial s(z) = z−1(1 + z)(1 + z)/2, are linearly inde-
pendent. Verify this fact.

5. Carry out the first subdivision step of the LR(3 × 3) algorithm with the
unit-impulse function as initial data. Consider also the effects of subsequent
subdivision steps (it is not necessary to carry them out explicitly) and conclude
that the support of N(he8; y) in this case is indeed {(u, v) : −2h ≤ u, v ≤ 2h},
as claimed in the discussion on the Nodal-Function computation principle
that followed Example 3.5.8/122. Similarly, carry out the first subdivision step
of the method corresponding to the three-direction quartic box-spline, again
with the method applied to the unit-impulse function, and conclude that in
the regular case, the support of the nodal function for Loop subdivision is as
shown in Figure 3.6/104.

6. Consider again the Zwart–Powell element, discussed in Exercise 2/141. Carry
out the first subdivision step, and perhaps part of the second step, in order
to determine the support of the nodal function (as in Exercise 5/142). See
Figure 3.9/106.

7. Apply the LR(d×d) algorithm for one subdivision step, for the cases d = 2 and
d = 3, and show that it produces the coefficients of the centered subdivision
polynomial, as guaranteed by the Polynomial Coefficient principle.

8. Compare the two box-spline methods defined, respectively, with the vectors
(1, 0)t, (0, 1)t, (1, 1)t and the vectors (1, 0)t, (0, 1)t, (2, 2)t. Show that each
method is related to constant subdivision combined with an averaging, but
that the two methods are different.

9. In the regular case the Loop method can be viewed as linear subdivision fol-
lowed by an averaging in the direction (1, 1)t using weights [1/4 1/2 1/4].
This was shown in the text in the case of vertices of type V in Figure 3.15/125,
by applying the averaging to the values shown in Figure 3.16/126. The state-
ment is also true for vertices of typeH, by symmetry. Show that the statement
is also true for vertices of type D and E in Figure 3.15/125.

10. Show that applying the Loop subdivision rules of Figure 1.29/32 to the unit-
impulse function produces the coefficients 5/8, 1/16, 1/16, 1/16 shown in
Figure 3.17/131. Then, do the same for the coefficients 3/8, 3/8, 3/8, 1/8, 1/8
in the nonnegative first quadrant in Figure 3.17/131.

11. Consider the extension of the Loop method to the case of total order m =
3j + 3, j = 1, 2, . . . , described in Section 3.7.1. Show that if new vertices are
introduced in each logical edge of a triangular mesh, with control points equal
to the average of the control points at each end of the edge, and if the stencil
of Figure 3.18/132 is then applied once (j = 1), then the resulting method is
identical to the Loop method, even if there are extraordinary vertices.
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12. Show that the value of α in Theorem 3.3.2/111 is m/3+1 for the extended Loop
method, and that the level of parametric continuity is therefore (2m − 6)/3,
as asserted in the text.

13. Extending Exercise 12/143, show that if direction vectors in the extended Loop
method are added one at a time, rather than in groups of three, then the level
of parametric continuity is �(2m− 6)/3�.

14. Show that in the regular case the Face rule and Vertex rule for 4-8 subdivision,
when applied to the unit-impulse function, produce at the end of the first
substep the values shown in Figure 3.29/140 (left). Also, verify the following
three typical cases for the results of the second substep (values shown in
Figure 3.29/140, right): the coefficient 9/32 at (1, 0), the coefficient 3/8 at the
origin, and the coefficient 7/32 at (1, 1).

Suggestion. Consider first the basic block with vertices (0, 0), (2, 0), (2, 2), and
(0, 2) for the first substep, and the basic block with vertices (0, 0), (1,−1),
(2, 0), and (1, 1) for the second substep.

15. Verify that applying linear subdivision, followed by averagings in the direc-
tions (1, 1)t and (−1, 1)t with weights [1/4, 1/2, 1/4], produces the coefficients
shown in Figure 3.29/140 (right). (In view of Exercise 14/143, this shows that in
the regular case the 4-8 subdivision rules are equivalent to the process of linear
subdivision plus the two averagings. In Section 4.2.2, it is shown that this
equivalence is a consequence of the commutativity of the factors in the subdi-
vision polynomial.) Show also that the coefficients in Figure 3.29/140 (right)
are in fact the coefficients of the subdivision polynomial (3.59)/137.
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Generalized-Spline
Surfaces

In this chapter we consider the most general class of methods shown in Figure 1.30/33,
namely the Generalized-spline subdivision methods, indicated in the fourth column
of the figure.

We begin in the first section by introducing a subset of this class, the General-
subdivision-polynomial methods (Figure 1.30/33, lower row of third column). This
subset is general enough to include the regular case of all of the major methods
mentioned in the literature, including the Modified Butterfly, Kobbelt, and {√3 }2
methods. The derivation and analyses are done by means of general subdivision
polynomials, and the corresponding subdivision methods are basic methods.

On the other hand, the class of Generalized-spline subdivision methods is
even more general. It could in principle contain basic methods that are not based
on general subdivision polynomials, and it includes in addition all of the variant
methods in the upper row of Figure 1.30/33. We also study the three specific methods
mentioned above in the nonregular case.

Following this, we return to the regular case and extend certain ideas, dis-
cussed in previous chapters, to the more general context of this section. These
ideas include the subdivision equation, the Nodal-Function Computation principle,
and the Polynomial Coefficient principle. Using Fourier analysis we investigate the
existence and construction of a nodal function corresponding to a given subdivision
polynomial. We also describe how the support of a nodal function is related to the
coefficient set of the subdivision polynomial and give conditions on the subdivision
polynomial that characterize affine invariance.

Finally, this chapter introduces a certain two-dimensional manifold associated
with a given locally planar logical mesh. This manifold can be viewed as a global
parametric domain for the subdivision surface, and we use it to define the general-
ized nodal splines (Figure 1.30/33, fourth column) by means of the Nodal-Function
Computation principle.

145
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4.1 General subdivision polynomials
In Section 2.2 we derived recursion formulas for control points that were based on
the 2-scale relation

Nm(h; t) =
∑
k

skN
m(h/2; t− kh/2)

as in formula (2.24)/61 with l = 0. This may also be rewritten as

Nm(h; t) =
∑
k

skN
m(h; 2t− kh) =

(∑
k∈G

skz
k

)
Nm(h; 2t),

i.e.,

Nm(h; t) = s(z)Nm(h; 2t),

where

s(z) = 2
(z1/2 + z−1/2

2

)m
. (4.1)

The corresponding formulas for control points were, in terms of generating functions,

p(h/2; z) = s(z)p(h; z2), (4.2)

and explicitly in terms of coefficients,

qk =
∑
l∈Z

sk−2lpl, (4.3)

where p(h/2; z) =
∑
k qkz

k and p(h; z) =
∑
l plz

l. This was generalized to the case
of box splines in (3.44)/121.

It is now quite natural to consider more general subdivision polynomials s(z) =∑
k∈G skz

k than those given in (3.29)/116. In order to carry out the analysis we must,
for a given subdivision polynomial s(z), find some function N(t) such that

N(t) =
∑
k∈G

skz
kN(2t) =

∑
k∈G

skN(2(t− kh/2)) =
∑
k∈G

skN(2t− kh), (4.4)

where h is an initial mesh size and G denotes a finite subset of Z or Z + 1/2. Then
the subdivision procedure is used to produce a parametric curve

x(t) =
∑
l∈Z

plN(t− lh) =
∑
l∈Z

plNl(t). (4.5)

For a given subdivision polynomial the crucial problem is first to find (if possible)
a function N(t) satisfying the 2-scale relation (4.4)/146, then to show that the sub-
division procedure converges to the curve in (4.5)/146, and finally to analyse the
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regularity of this curve. The analysis, in the general case, is quite difficult. A rigor-
ous convergence and smoothness analysis for ordinary B-spline curves, as well as for
those given by more general subdivision polynomials, is postponed until Chapter 5.
In this section we only describe some more formal, although illuminating, aspects
of the analysis.

Exactly the same formalism and analysis may be used in the bivariate case
when we wish to construct parametric surfaces of the form

x(y) =
∑
l∈Z2

plN(y − lh). (4.6)

Here N(y) = N(u, v) is a function of (u, v)t ∈ R2 satisfying a 2-scale relation
(compare with (4.4)/146):

N(y) =
∑
k∈G

skz
kN(2y) =

∑
k∈G

skN(2(y − kh/2)) =
∑
k∈G

skN(2y − kh), (4.7)

i.e.,

N(y) = s(z)N(2y),

where we have introduced the subdivision polynomial

s(z) =
∑
k∈G

skz
k (4.8)

and where, as usual, we have the compact notation z = (z1, z2), k = (k1, k2), and
zk = zk11 zk22 . The coefficient grid G is a finite subset of Z2 + (ε1/2, ε2/2)t with
ε1, ε2 ∈ {0, 1}. In all our examples G is a centrally symmetric set, which leads to
centered subdivision polynomials, but this hypothesis is not necessary for purposes
of the analysis.

Consider the case ε1 = ε2 = 0. If such a function N(y) satisfying (4.7)/147 can
be found, then, as in the univariate case, we must have

x(y) =

(∑
l∈Z2

plz
2l

)
N(y) =

(∑
l∈Z2

plz
2l

)
s(z)N(2y) =

(∑
k∈Z2

qkz
k

)
N(2y), (4.9)

which is satisfied if ∑
k∈Z2

qkz
k = s(z)

∑
l∈Z2

plz
2l

or, with the previous notation,

p(h/2; z) = s(z)p(h; z2). (4.10)

As in the univariate and the box-spline cases, this gives the fundamental recursion
formula

qk =
∑
l∈Z2

sk−2lpl, k ∈ Z2 (4.11)
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for the refinement of sets of control vectors, and as before, this formula is referred
to as the subdivision equation. It is shown below that if the subdivision process
converges, then the function N(y) must satisfy the condition that

∫
R2 N(y)dy = h2.

The set G is defined as the set of nonzero coefficients of the subdivision poly-
nomial, and it gives the indices for which pl influences the control point qk. In fact,
one of the first things we do, following the description of certain particular General-
subdivision-polynomial methods in the next section, is to generalize the subdivision
equations (2.29)/64 and (3.44)/121. It is instructive to look again at column l of the
matrix Σ in (2.16)/59, in relation to the equation qk =

∑
l∈Z

sk−2lpl in (2.29)/64.
Together these show that first, the influence of pl on control points qk in the refined
mesh is restricted to values of k such that −m/2 ≤ k − 2l ≤ m/2, and second,
that the additive contribution of pl to the value of the control point qk is sk−2l.
In the more general context of this section, the set G corresponds exactly to the
set {−m/2,−m/2+1, . . . ,m/2} in the scalar uniform B-spline case, since (4.11)/147

above generalizes (2.29)/64 to

qk =
∑

k−2l∈G
sk−2lpl.

Further, it follows that the Polynomial Coefficient principle of Section 2.2.4 gener-
alizes to the case of general subdivision polynomials. As in the B-spline case, if only
the subdivision process is given, the subdivision polynomial, and the set G, can be
found by applying a single step of the process to the unit-impulse function.

To simplify the notation, we present the analysis only in the case ε1 = ε2 = 0,
since the analysis is identical for the other cases. Also, we have dropped the pa-
rameter h when referring to N(h; ·). We often do this, from now on, when h is not
explicitly required.

Bisection is not the only possibility for defining general subdivision poly-
nomials: another is trisection. For example, the {√3 }2 method is based on tri-
section, and the necessary modifications in the definitions to cover this case are
straightforward. The variable z in the corresponding general subdivision polynomial
corresponds to translations of h/3 rather than h/2. The polynomial is given in
Section 4.2.1.

Later in the chapter, we give conditions on the subdivision polynomial that
characterize affine invariance, and the latter is shown in Chapter 5 to be neces-
sary for convergence. Further, the Nodal-Function Computation principle of Sec-
tion 2.2.4 can be applied in the case of general subdivision polynomials. Thus, if the
subdivision process is convergent, then (4.6)/147 implies that N(y) can be computed
by applying the process to the unit-impulse function. In fact, the Nodal-Function
Computation principle can be applied even in the case of nonregular meshes; see
Section 4.7. In Section 4.3 we investigate in a formal way, using Fourier analysis,
how for a given subdivision polynomial s(z) a nodal function satisfying the 2-scale
relation (4.7)/147 can be constructed. In Section 4.4 we show how to determine the
support of the nodal function. It is also possible to relate the support of the nodal
function to the coefficient set G.

We first present the examples mentioned above.
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4.2 General-subdivision-polynomial methods and
their variants

In this section we give examples of subdivision methods which correspond to general
subdivision polynomials, but which are not box-spline methods. We call these
methods General-subdivision-polynomial methods; see Figure 1.30/33, lower row of
the third column. They are also called shift-invariant methods.

4.2.1 Examples of non-box-spline schemes: 4pt × 4pt,
Butterfly,

√
3-subdivision (regular case)

We first observe that the box splines are indeed a special case, i.e., they can be
formulated in terms of general subdivision polynomials, as a special case. The
subdivision polynomial in (3.29)/116 corresponds to (4.8)/147, with G = Gm, and
(3.38)/120 corresponds to (4.6)/147. Looking ahead, the 2-scale relation (3.30)/117,
corresponds to (4.33)/167, and the statement about the support of the nodal function,
in Remark 3.1.5/96, corresponds to Theorem 4.4.1/170.

The following examples, however, are not box splines.

The four-point subdivision scheme

We return temporarily to the univariate case and consider an important example.
In the description here, we suppose that the subdivision polynomial has been given.

The four-point subdivision scheme as described in [46, 48] is an interpolating
subdivision process for curves, having the centered subdivision polynomial

s(z) =
(z1/2 + z−1/2

2

)4
(−z + 4− z−1) (4.12)

= (−z−3 + 9z−1 + 16 + 9z − z3)/16. (4.13)

In (4.13)/149 all terms, except the middle one, are of odd degree. Now, the subdivi-
sion formula

p(h/2; z) = s(z)p(h; z2)

produces the coefficients {qk}k∈Z in

p(h/2; z) =
∑
k

qkz
k

given by
qk =

∑
l∈Z

sk−2lpl.

Since from (4.13)/149 we have

s2l =
{

1 if l = 0,
0 otherwise,
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pl

− 1
16

pl−1

9
16

9
16

pl+1

− 1
16

pl+2

pl

1

Existing vertex (even indices k = 2l)

New vertex (odd indices k = 2l+ 1)

Figure 4.1. Stencils for the four-point method.

0
t

Figure 4.2. Nodal function for the four-point scheme.

it follows that for even indices k = 2l we get q2l = pl, i.e., the old control points are
unchanged and the process is in fact interpolating. For odd indices, we have

q2l+1 = − 1
16
pl−1 +

9
16
pl +

9
16
pl+1 − 1

16
pl+2.

The two cases are illustrated by the stencils in Figure 4.1/150. A subdivision matrix,
analogous to the matrix Σ given in (2.16)/59 for the B-spline case, can be determined
from these expressions; see Exercise 1/186.

The set G ⊂ Z is {−3,−1, 0, 1, 3}, and the support of the nodal basis function
is the interval h conv(G) = [−3h, 3h]; see Section 4.4.

The nodal function for the four-point scheme is shown in Figure 4.2/150. It
was obtained by applying the subdivision process to a scalar control sequence with
value 1 at l = 0, and 0 elsewhere. This is the Nodal-Function Computation principle:
substituting the values just mentioned into (4.5)/146 gives x(t) = N0(t). The nodal
function is not a piecewise polynomial; see Exercise 2/186.

A more general form of the four-point subdivision scheme [49] introduces a
tension parameter w > 0 and has centered subdivision polynomial

s(z) = −wz−3 + (1/2 + w)z−1 + 1 + (1/2 + w)z − wz3. (4.14)

In (4.13)/149 we have w = 1/16.
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αα ββ

σ µ µ σ

µ ν ν µ

µ ν ν µ

σ µ µ σ

Four-point scheme

4pt× 4pt scheme

α = −w β = (1/2 + w)

σ = α2 = w2

µ = αβ = −w(1/2 + w)

ν = β2 = (1/2 + w)2

Figure 4.3. Stencil for the 4pt× 4pt scheme (new vertices).

The 4pt × 4pt subdivision scheme

We denote the tensor product of the four-point scheme with itself by 4pt×4pt (Fig-
ure 1.30/33, third column). This is an interpolating subdivision scheme that uses a
pQ4 splitting schema and applies to a regular quadrilateral grid. The generalization
of the resulting surface-subdivision scheme to nonregular meshes is called Kobbelt’s
method, which is discussed in Section 4.2.3.

It is clear from (4.14)/150 that the 4pt×4pt scheme is not a box-spline method,
since from (3.19)/114, the coefficients of box-spline subdivision polynomials are
nonnegative.

The weights for the general four-point scheme [49], and the tensor-product
4pt × 4pt scheme, are shown in Figure 4.3/151. (Note that the w of [48, 49] is
denoted ω/16 in [73]; also, a new variable w has been introduced in [73] which is
equal, in the regular case, to 8 times the w used in this book and in [48, 49].)

The coefficients of the univariate four-point rule are shown in Figure 4.3/151 (top),
and the coefficients for the 4pt× 4pt method are shown in Figure 4.3/151 (bottom).

The Butterfly subdivision scheme (regular case)

In the description of this method, we suppose that the stencil describing the subdi-
vision is given.

The Butterfly subdivision scheme is described in [49]. It applies to triangular
meshes and uses the pT4 splitting schema. Here we consider its application to a
regular mesh. Given the triangular mesh at some subdivision level, new vertices
are introduced on each edge, and the new vertices corresponding to a given triangle
are connected (dashed lines in Figure 4.4/152). The control point for this “new edge
point” is defined by

q =
1
2
(p1 + p2) + 2w(p3 + p4)− w(p5 + p6 + p7 + p8) (4.15)
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p5 p4 p6

p8 p3 p7

q
p2p1

Figure 4.4. Notation for the Butterfly scheme.

h
2

h
2 conv(G)

Subdivision
polynomial
coefficients

1/2
1

z2
z�1
1 z2

z1

2w
�w

Figure 4.5. Subdivision mask for the Butterfly method.

with notation according to Figure 4.4/152. The stencil for the new vertices is shown
in Figure 4.6/154 (left). The old vertices retain their control points, and therefore
the Butterfly scheme is interpolating. Using this last fact, and (4.15)/151, we may
construct the subdivision polynomial for the Butterfly scheme. To do this, we
use a layout similar to the one shown in Figure 3.14/125: we associate z1 and z2
with a nonorthogonal coordinate system having axes separated by an angle of π/3
rather than π/2, as shown in Figure 4.5/152. This gives a triangular grid defined by
the six axes z1, z2, z−1

1 z2, z−1
1 , z−1

2 , z1z−1
2 . The grid shown in the figure is h

2G,
and the equilateral triangles shown have sides of length h/2. The set h

2 conv(G) is
also indicated. The nodal basis function N(u, v) has its support in h conv(G); see
Section 4.4, below.

The stencil shown in Figure 4.4/152 focuses on the points pl contributing to
the value of a typical point q in the refined mesh, but the subdivision mask in
Figure 4.5/152 is centered on a typical control point pl from the nonsubdivided
mesh. According to the Polynomial Coefficient principle, mentioned in Section 4.1,
the coefficients sk−2l of the subdivision polynomial quantify the influence of such a
point pl on the neighbouring control points in the refined mesh, and Figure 4.5/152

shows this influence. The subdivision mask can be found, as usual, by applying a
single step of the subdivision rules illustrated in Figure 4.4/152 to the unit-impulse
function in Z2.
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Giving more detail, the points in the set G for which pl will make a contribu-
tion are

G = (0, 0) ∪G1 ∪G2 ∪G3

with

G1 = {(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)},
G2 = {(1, 1), (−1, 2), (−2, 1), (−1,−1), (1,−2), (2,−1)},
G3 = {(2, 1), (1, 2), (−1, 3), (−2, 3), (−3, 2), (−3, 1),

(−2,−1), (−1,−2), (1,−3), (2,−3), (3,−2), (3,−1)}.
Thus,

s(z) =
∑
k∈G

skz
k,

where s(0,0) = 1, sk = 1/2 if k ∈ G1, sk = 2w if k ∈ G2, and sk = −w if k ∈ G3.
This gives

s(z) = s(z1, z2) = 1 +
1
2
(z1 + z−1

1 + z2 + z−1
2 + z−1

1 z2 + z1z
−1
2 )

+ 2w(z1z2 + z−1
1 z−1

2 + z−1
1 z2

2 + z1z
−2
2 + z−2

1 z2 + z2
1z
−1
2 )

−w(z2
1z2 + z−2

1 z−1
2 + z1z

2
2 + z−1

1 z−2
2 + z−1

1 z3
2 + z1

1z
−3
2

+ z−2
1 z3

2 + z2
1z
−3
2 + z−3

1 z2
2 + z3

1z
−2
2 + z−3

1 z2 + z3
1z
−1
2 ). (4.16)

The Butterfly method is not a box-spline subdivision scheme. This again
follows from the fact that box-spline nodal functions are by definition nonnegative:
for the Butterfly scheme the tension parameter w is positive, and therefore the
nodal function N(y) has the property that N(y) = −w < 0 if y ∈ hG3/2. Here we
have used the interpolation property of the scheme.

Another version of the basic Butterfly scheme uses a larger 10-point sten-
cil for the regular case: stencils for the two versions are shown side by side in
Figure 4.6/154. The 10-point stencil with w∗ = 0 gives the 8-point stencil with
w = 1/16 [178, Sec. 3.3]. Also, there is a variant of the Butterfly scheme, called the
Modified Butterfly Scheme [178], which is suitable for nonregular meshes, and which
is discussed in Section 4.2.3. Although the 8-point Butterfly method is applicable
in the nonregular case, the Modified Butterfly method was introduced in order to
obtain satisfactory smoothness properties in the nonregular case; see Section 5.8
and [172, Sec. 6.4.1].

The
√

3-subdivision scheme (regular case)

The
√

3-subdivision method [76] applies to triangular meshes, which need not be
regular (the nonregular case is discussed in Section 4.2.3). The method uses a split-
ting schema that is different from the pT4 schema used by the Loop and Butterfly
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a a

c c

b

c b

a a

c

c cc b c

b

10-point stencil8-point stencil
a = 1/2

dd

b = 2w
c = −w

a = 1/2− w∗
b = 1/8 + 2w∗

c = −1/16− w∗
d = w∗

Figure 4.6. Butterfly method: 8-point and 10-point stencils.

z−1
1 z2 z2z−1

1 z2z2

h

h√
3

h
3

z1 z1

Figure 4.7. The
√

3 splitting: Two substeps.

methods. The pT4 schema adds a new vertex in each edge of each triangle and
performs a 4-1 split. In contrast, in a single subdivision step, the splitting schema
used by the

√
3 method inserts a new vertex in the middle of each triangle of the

mesh, joins them to the original vertices, and then flips the original edges to obtain
the subdivided mesh. The underlying tiling implicit in the splitting schema is, as it
was for the pT4 splitting, the [63] tiling of Figure 1.12/16. Consequently, ordinary
vertices again have n = 6, and ordinary faces have e = 3.

The process is illustrated in Figure 4.7/154 (left), in which six equilateral trian-
gles are shown, each with side h. The new vertex inserted in the top centre triangle
is indicated by a black dot. This new vertex and the new vertices inserted in ad-
jacent triangles are joined to the original vertices, as illustrated by the heavy solid
lines. The edges of the original triangle that disappear, due to the edge flip, have
been downgraded to dashed lines, while the new edges resulting from the flip are
shown as heavy solid lines. The resulting triangles have been rotated by 30 degrees
(this is made more explicit below) and have edge length equal to h/

√
3.

Applying this process twice (which corresponds to the method we have de-
noted {√3 }2), produces a subdivided mesh with nine triangles for each original
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triangle, and with two new vertices introduced for each original edge, as illustrated
in Figure 4.7/154 (right). For reasons that will become apparent in Section 4.2.2,
where we compare this method with the box-spline method underlying 4-8 subdivi-
sion, we prefer to view the {√3}2 method as the fundamental method, so that each
of the two applications of the

√
3 process is a substep of the method. The initial

edges at the beginning of the second substep are shown in Figure 4.7/154 (right) as
dashed lines, since, as in the first substep, they will presently disappear, due to the
edge flip. In fact, in the second substep, new vertices are inserted in the middle of
the triangles having edge length h/

√
3, the new vertices are joined to the original

vertices of these triangles, and the edges are flipped; the flipping process causes the
dashed lines to be replaced by solid lines that cross the dashed lines at right angles,
as illustrated in Figure 4.7/154 (right). The newly formed triangles have sides of
length (h/

√
3)/
√

3 = h/3, so that the edges which had length h, at the start of the
complete two substep process, have now been trisected.

The {√3 }2 method involves a form of primal-dual alternation [118]. In fact,
the nodes introduced in the first substep, such as the one indicated by the black
dot in Figure 4.7/154 (left), correspond to nodes in the hexagonal dual of the primal
triangular graph we started with, at the beginning of the first substep, whereas the
nodes introduced in the second substep are in a subdivided version of the primal
triangular graph.

In each of the two substeps, the smoothing rule for
√

3-subdivision specified
in [76] assigns a value, for a new vertex introduced in the middle of a face, that
is equal to the centroid of the vertices of the face. Further, if p�0 , . . . , p�5 are the
immediate neighbours of an existing regular vertex � with control point p�, then the
modified value of the control point is

2
3
p� +

1
3

(
1
6

5∑
i=0

p�i

)
=

2
3
p� +

1
18

5∑
i=0

p�i . (4.17)

As mentioned in Section 4.1, the Polynomial Coefficient principle can be ap-
plied for methods based on general subdivision polynomials, and this includes gen-
eral subdivision polynomials based on trisection. If we apply this principle to the
{√3 }2 method, putting a value of 1 at the origin results in the values shown to the
right of the vertices in Figure 4.8/156. In order to not clutter the figure, the values
resulting from the first

√
3 substep are not explicitly shown: they are 2/3 at the

origin (large white circular symbol), 1/3 at the vertices in the middle of each of
the six original triangles (medium-size white circles), and 1/18 at the outer vertices
of the six original triangles (small white circles). A typical original triangle with
side h is shown shaded. Given the values from the first

√
3 substep, the second√

3 substep is applied to produce the values shown in Figure 4.8/156. (Values not
shown are defined by symmetry: first by reflection in a line drawn vertically from
the origin in Figure 4.8/156, and then by hexagonal symmetry.)

There are several things worth mentioning about the values shown in Fig-
ure 4.8/156. First, the sum of the values of all coefficients is equal to 9: in each of
the two substeps, the total weight increases by a factor of 2/3+6(1/3)+6(1/18) = 3.
See Exercise 3/186. Second, according to the Nodal-Function Computation principle,
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z1

z2
z−1
1 z2

5
9
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54

4
9

7
54

2
27

1
54

2
81

1
54

49
162

1
324

Figure 4.8. Subdivision mask for the {√3 }2 method.

the coefficients can be viewed as a first approximation to the nodal function in
(4.4)/146. Third, the fact that the new coefficients in Figure 4.8/156 contain negative
powers of integers other than 2 shows that {√3}2 is not a box-spline method in the
sense of Section 3.5.1, since this would be inconsistent with (3.27)/116. On the other
hand, it is shown in Section 4.2.2 that the {√3 }2 method is strongly analogous to
4-8 subdivision, which is a box-spline method.

It is interesting, also, that by affine invariance, the total contribution to a
single point, upon applying a weight of 1 to all of the vertices of the original triangles
having edge length h, must be 1. This can be seen, for example, for the origin,
which receives a contribution of 2/27 from each of its neighbours in the six original
triangles, plus a contribution of 5/9 from itself, for a total of 6(2/27) + 5/9 = 1.
The other types of points are similar. See Exercise 4/186.

We may view the {√3}2 method as defined on a regular triangular grid where
the grid points are generated by the vectors h(1, 0), h(0, 1), h(−1, 1), h(−1, 0),
h(0,−1), h(1,−1), which are represented by the monomials z1, z2, z−1

1 z2, z−1
1 , z−1

2 ,
z1z
−1
2 , respectively, so that the grid points are exactly hZ2. If we consider an oblique

coordinate system where the z1- and z2-axes are separated by an angle of π/3, then
all triangles are equilateral, as illustrated in Figure 4.8/156.
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The sequence of control points at the subdivision level h are represented by
the generalized polynomial

p(h; z) =
∑
k∈Z2

phk1,k2z
k1
1 zk22 .

After the two substeps of the {√3}2 method, the sequence of control points at level
h/3 is represented by p(h/3; z) given by

p(h/3; z) = s(z1, z2)p(h; z3), (4.18)

where p(h; z3) is obtained from p(h; z) by replacing z1 by z3
1 and z2 by z3

2 , and the
subdivision polynomial s(z1, z2) is given by

s(z1, z2) = sP (z1z2, z−1
1 z2

2)sP (z3
1 , z

3
2) (4.19)

with

sP (z1, z2) =
2
3

+
1
3
(z1/3

1 z
1/3
2 + z

−1/3
1 z

2/3
2 + z

−2/3
1 z

1/3
2 + z

−1/3
1 z

−1/3
2 + z

1/3
1 z

−2/3
2 + z

2/3
1 z

−1/3
2 )

+
1
18

(z1 + z2 + z−1
1 z2 + z−1

1 + z−1
2 + z1z

−1
2 ). (4.20)

The subscript P in sP is intended to suggest “partial.”
Multiplying p(h; z3

1 , z
3
2) by the second factor sP (z3

1 , z
3
2) corresponds to the

first substep, and multiplying by the first factor sP (z1z2, z−1
1 z2

2) corresponds to the
second substep. The second factor in (4.19)/157 is, explicitly,

sP (z3
1 , z

3
2) =

2
3

+
1
3
(z1z2 + z−1

1 z2
2 + z−2

1 z2 + z−1
1 z−1

2 + z1z
−2
2 + z2

1z
−1
2 )

+
1
18

(z3
1 + z3

2 + z−3
1 z3

2 + z−3
1 + z−3

2 + z3
1z
−3
2 );

the first factor in (4.19)/157 is

sP (z1z2, z−1
1 z2

2) =
2
3

+
1
3
(z1 + z2 + z−1

1 z2 + z−1
1 + z−1

2 + z1z
−1
2 )

+
1
18

(z1z2 + z−1
1 z2

2 + z−2
1 z2 + z−1

1 z−1
2 + z1z

−2
2 + z2

1z
−1
2 ).

Multiplying the two polynomials just given, as prescribed by (4.19)/157, gives
a polynomial with exactly the coefficients shown in Figure 4.8/156. This can be
verified by symbolic computation, or by means of the method summarized in the
solution to Exercise 15/143 at the end of Chapter 3.

It was stated in Section 4.1 that the theory presented later in this section
holds for trisection, as well as for bisection, provided that appropriate modifications
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z�1
1 z2

z2

z1

h
3

h
3 conv(G)

Figure 4.9. The set h
3 conv(G).

are made. Thus, the variable z in the subdivision polynomial corresponds to transla-
tions of h/3 rather than h/2, and the side of an equilateral triangle in Figure 4.8/156

is h/3, as opposed to h/2 in Figure 4.5/152. Carrying the comparison between the
two figures a little further, in Figure 4.5/152 the set h

2 conv(G) is illustrated, and in
Figure 4.9/158, in place of that set, we show the set h

3 conv(G), which corresponds
to the {√3 }2 method.

Remark* 4.2.1. Theorem 4.4.1/170 states that the support of the nodal function
for a method like the Butterfly method is contained in a set twice as large as
h
2 conv(G), i.e., the set h conv(G) = 2

[
h
2 conv(G)

]
. The support of the nodal func-

tion in the case of the {√3 }2 method is contained in 3
2

[
h
3 conv(G)

]
, i.e., a set 3

2 as
large as the one shown in Figure 4.9/158. The modifications to Theorem 4.4.1/170

that explain the new constants are easy to describe: in (4.43)/168 and (4.56)/170,
each appearance of the constant 4 must be replaced by a 9, and each 2 by a 3. This
means that the conclusion of Theorem 4.4.1/170 becomes supp (N) ⊆ h

2 conv(G),
since in (4.57)/171, h/2 is replaced by h/3 and

k∑
j=0

2−jconv(G) = 2(1− 2−k−1)conv(G)

is replaced by
k∑
j=0

3−jconv(G) =
3
2
(1− 3−k−1)conv(G).

Thus the product h
2 2 = h is replaced by h

3
3
2 = h

2 , and

supp (N) ⊆ h

2
conv(G) =

3
2

[
h

3
conv(G)

]
.

In fact, equality holds, although we do not prove it.



book
2010/3/3
page 159

�

�

�

�

�

�

�

�

4.2. General-subdivision-polynomial methods and their variants 159

4.2.2 Comparison of 4-8 and
√

3-subdivision (regular case)

In this section we compare the order-8 four-direction box-spline method, defined
in Examples 3.2.7/104 and 3.4.4/115 and by (3.42)/120, with the regular version of
the {√3 }2 method, just discussed. The first of these two methods is a box-spline
method, but the second is not, as can be seen from the fact that in the {√3 }2 case
we are led to subdivision polynomials that do not have the form (3.27)/116. We show
nonetheless that the two methods are essentially the same, with the first applied to
regular quadrilateral meshes and the second applied to regular triangular meshes.

Exercises 14/143 and 15/143 in Chapter 3 confirmed that the 4-8 subdivision
method, defined in terms of the rules given in Section 3.7.2, is equivalent in the
regular case to the order-8 four-direction box-spline method. For brevity, in this
section we omit the words “four-direction.”

Aside from the different types of mesh, the essential difference between the
order-8 box-spline method and the {√3 }2 method is a different choice of weights
for an existing vertex, relative to the weights of its neighbours, when updating the
existing vertex. This is a fairly minor difference, something like the different choice
of weights mentioned in Section A.1 for the Catmull–Clark method.

For the order-8 box-spline method we have, repeating (3.59)/137, that

s(z) =
1

64z1z3
2
(1 + z1)2(1 + z2)2(1 + z1z2)2(1 + z−1

1 z2)2 (4.21)

= 2

(
z
1/2
1 + z

−1/2
1

2

)2(
z
1/2
2 + z

−1/2
2

2

)2

2

(
z
1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2

2

)2

·
(
z
−1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2

2

)2

.

This means that the sequence of control points at level h/2 is represented by

p(h/2; z) = s(z1, z2)p(h; z2),

where p(h/2; z) represents the sequence of control points at subdivision level h. The
subdivision polynomial s(z1, z2) can be written as

s(z1, z2) = sP (z1z2, z−1
1 z2)sP (z2

1 , z
2
2), (4.22)

where

sP (z1, z2) = 1/2 + (1/4)(z1/2
1 z

1/2
2 + z

−1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2 + z

−1/2
1 z

−1/2
2 )

+(1/8)(z1 + z2 + z−1
1 + z−1

2 ). (4.23)

As in (4.19)/157, the subscript P is intended to suggest “partial”: multiplying p(h; z2)
by the second factor

sP (z2
1 , z

2
2) = 2

(
z
1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2

2

)2(
z
−1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2

2

)2
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1 z2

2
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3
2= z2
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2
2
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1 z2

z−1
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Figure 4.10. Rotations corresponding to a single substep.

represents the first substep of the method, and multiplying by the first factor

sP (z1z2, z−1
1 z2) = 2

(
z
1/2
1 + z

−1/2
1

2

)2(
z
1/2
2 + z

−1/2
2

2

)2

represents the second substep. See Section 3.7.2.
It can be seen from (4.19)/157 and (4.22)/159 that for both the order-8 box-

spline method and the {√3 }2 method, the algorithm replaces the initial tiling with
a new tiling that has been rotated and given a change in scale (see Figure 4.10/160,
where the black circles correspond to the coordinates (1, 0) and (0, 1) in the initial
coordinate systems, and the black circles with small white dots correspond to the
coordinates (1, 0) and (0, 1) in the rotated coordinate systems). The new control
points are assigned to the vertices in the new tiling.

In the case of the order-8 box-spline method, the rotation corresponding to a
single substep is π/4, with a change in scale of 1/

√
2. In the case of a single substep

of
√

3-subdivision, the rotation is π/6, with a change in scale of 1/
√

3. In both
cases the new tiling contains the set of vertices belonging to the initial tiling as a
subset. In both cases, application of two substeps of the process gives us back the
initial tiling, either bisected or trisected.

Each substep of the order-8 box-spline method is, except for a change in the
normalization factor35 a four-direction box-spline subdivision, with directions (1, 1),
(1, 1)t, (−1, 1)t, (−1, 1)t and (1, 0)t, (1, 0)t, (0, 1)t, (0, 1)t, respectively. Each box
spline is a bilinear tensor-product spline (linear subdivision): the second factor in
(4.21)/159 (corresponding to the first substep in the process) is a linear subdivision
taken along axes given by the vectors (1, 1) and (−1, 1).

Let us now compare the effect on the control points of sP , in the {√3 }2 case,
with the effect of sP on the control points in the order-8 box-spline case. In both
cases the new value assigned to a new vertex, introduced in the middle of a face, is
equal to the centroid of the face.
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In the case of existing vertices, for
√

3-subdivision, sP assigns a weight of
2/3 to the existing vertex, and a weight of 1/3 to the average of its neighbouring
vertices. For the order-8 box-spline method, sP assigns a weight of 1/2 to the ex-
isting vertex, and a weight of 1/2 to the average of its neighbouring vertices. This
difference between the two methods is relatively minor, since these choices are some-
what arbitrary: the only requirement is that affine invariance be maintained. This
difference persists in the nonregular case, which is described in the next section.

In the case of
√

3-subdivision, the assignment of new vertices by sP produces
vertices with double the weight of existing vertices, while reassignment of weights
to existing vertices maintains the weight of existing vertices: in total therefore the
weight is tripled. In the case of the order-8 box-spline method, assignment of new
vertices by sP produces vertices with weight equal to that of existing vertices, while
reassignment of weights to existing vertices maintains the weight of existing vertices:
in total the weight is doubled. If we apply these facts to the two substeps, the total
overall increase in weight is 9 for the {√3}2 method and 4 for the order-8 box-spline
method.

4.2.3 Some Generalized-spline methods:
√

3-subdivision,
Modified Butterfly, and Kobbelt

In this section, we discuss the three subdivision methods listed in the heading. They
are applicable in the general setting of locally planar meshes without boundary in R3

(Figure 1.30/33, third column). The regular versions of the methods were introduced
in Section 4.2.1.

The
√

3-subdivision scheme (nonregular case)

The
√

3-subdivision method [76] applies to triangular meshes. As described in
Section 4.2.1, it uses a splitting schema that is different from pT4 splitting: it
inserts a new vertex in the middle of each triangle of the mesh, joins them to the
original vertices, and then flips the original edges to obtain the subdivided mesh.
This procedure can be applied to triangular meshes with nonregular vertices (n �= 6)
and can even be extended to the case of nonregular faces (e �= 3). The cases of n = 5
and e = 4 are illustrated in Figure 4.11/162, where a pair of

√
3 steps has been applied

in each case. As can be seen from the figure, the first pair of subdivision steps may
create a new extraordinary vertex, but subsequent steps will introduce no further
extraordinary vertices and no extraordinary faces. The schema is analogous to pT4
in this respect.

The smoothing rule for
√

3-subdivision specified in [76] assigns a value, for a
new vertex introduced in the middle of a triangle of the original mesh, that is equal
to the centroid of the vertices of the triangle. (In the case of an extraordinary face,
we can simply take the centroid of the vertices of the face.) After the first step, all
faces will be triangles, and the expression for a newly introduced face point is

pnew =
1
3
(p′ + p′′ + p′′′),
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Figure 4.11. Initial extraordinary vertex and initial extraordinary face.

where p′, p′′, and p′′′ are the control points at the triangle vertices (these are denoted
pi, pj , and pk in [76, eqn. (1)]). As for the modified value of a control point p�
corresponding to an existing vertex of valence n, let p�0 , . . . , p�n−1 be the directly
adjacent neighbours in the unrefined mesh. Then, the value of the modified control
point is

(1− αn)p� + αn
1
n

n−1∑
i=0

p�i , (4.24)

where

αn =
4− 2 cos(2π/n)

9
.

Note that α6 = 1/3, so that in the regular case, (4.24)/162 becomes

2
3
p� +

1
3

(
1
6

5∑
i=0

p�i

)
,

as in (4.17)/155.
Like the 4-8 subdivision method,

√
3 subdivision has advantages in the context

of adaptive subdivision; see [76, Sec. 4].

Modified Butterfly method

The Butterfly subdivision method was discussed in Section 4.2.1. Two versions
were described, one using an 8-point stencil and another using a 10-point stencil;
see Figure 4.6/154. When the parameter w∗ is assigned the value 0 in the 10-point
scheme, it reduces to the 8-point scheme with w = 1/16.

The Butterfly subdivision scheme can be applied in triangular meshes with
extraordinary vertices (n �= 6), since it is an interpolating method that uses no
vertex stencil. It was noticed, however, that the method may produce cusps at
nonregular vertices; see [179, Fig. 1] for an example, and also see the references
in Section 5.8. As a result of this observation the Modified Butterfly method was
introduced in [178, 179] (the latter reference provides more detail). This method
uses modified edge-point rules for edges adjacent to extraordinary vertices.
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pl1 pl2

pl0

pln−1 pln−2

q

pln−3

pl3

...
...

...
qpln

Figure 4.12. Stencils for Modified Butterfly method.

The modified edge-point rules are given by the stencils shown in Figure 4.12/163

for an extraordinary vertex p�n of valence n. (The notation in Figure 4.12/163 has
been chosen to be consistent with that of Figure 4.4/152 and the rest of the book. It
is not consistent with [178, 179]: in particular, in those papers p�n is denoted by q,
and the point that we have denoted q is not given a name.) The left illustration in
Figure 4.12/163 shows the case where only one neighbour of q is extraordinary, while
the right illustration shows the case where both neighbours are extraordinary.

The method used in [178, 179] in the case of two ordinary neighbours is the
Butterfly scheme of Section 4.2.1, with w∗ = 0, as illustrated in Figure 4.6/154.
(In [178, 179], w∗ is denoted by w: we have added a star to avoid the conflict
in notation with the parameter w in the basic Butterfly method.) The point q is
therefore calculated according to (4.15)/151.

In the case of one extraordinary neighbour, with valence n �= 6 (Figure 4.12/163,
left), the point q is calculated according to

q =
3
4
p�n +

n−1∑
j=0

sjp�j ,

where the coefficients sj are defined as follows. For n ≥ 5, i.e., for n = 5, 7, 8, 9, . . . ,

sj =
1
n

(
1/4 + cos(2πj/n) + 1/2 cos(4πj/n)

)
, j = 0, . . . , n− 1. (4.25)

(This rule does not, in the case n = 6, reduce to the rule used in the case of
two ordinary neighbours.) For n = 3, s0 = 5/12 and sj = −1/12 for j = 1, 2,
while for n = 4, s0 = 3/8, s2 = −1/8, and sj = 0 for j = 1, 3. In all cases
(n = 3, 4, 5, 7, 8, 9, . . .),

∑n−1
j=0 sj = 1/4, as required for affine invariance.

In the case of two extraordinary neighbours (Figure 4.12/163, right), the coeffi-
cients are computed according to (4.25)/163 for each of the two neighbours, and the
average of the values for the two neighbours is used.

The explanation for the choice of weights sj is given in [178, 179].

Kobbelt method

The Kobbelt method [73], like the Butterfly method, is an interpolating method, but
in contrast to the Butterfly method, it is based on the pQ4 splitting schema. In the
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then vertically:applied horizontally:
Four-point method

Figure 4.13. Two substeps of Kobbelt method (regular case).

regular case the method reduces to the 4pt×4pt scheme, which is the tensor product
with itself of the four-point subdivision method that was discussed in Section 4.2.1.

We assume that the mesh is quadrilateral, possibly with extraordinary vertices
(n �= 4). To achieve this, it may be necessary to use one step of, say, the Catmull–
Clark method, in order to eliminate extraordinary faces. With this assumption,
there remains only the question of how to compute new edge points, and new face
points, when there is an extraordinary vertex. No new vertex points are computed,
since the method is interpolating.

The calculation of new face points in the regular case can be viewed as made
up of two substeps. In the first substep, the four-point subdivision method (Fig-
ure 4.3/151, top) is applied in the horizontal direction to produce edge points in the
middle of each horizontal segment in Figure 4.3/151 (bottom). This is shown in Fig-
ure 4.13/164 (left), where the edge points are shown with diamond-shaped symbols.
Then, the four-point subdivision method is applied in the vertical direction to pro-
duce edge points, in the middle of each vertical segment, and to produce new face
points. The result of this second substep is illustrated in Figure 4.13/164 (right).
Because of the symmetry in the coefficients in Figure 4.3/151, it does not matter in
which order the two substeps are performed.

If we apply the four-point subdivision method in a mesh with an extraordinary
vertex, new edge points and new face points can be calculated in the same way,
except for edges and faces adjacent to the extraordinary vertex. This is illustrated
in Figure 4.14/165: if the edge points adjacent to p that have been indicated by open
circles are computed using the four-point method, the value of a face point, such as
the one denoted yi in the figure, depends on whether we first compute horizontally
or vertically. It is not immediately clear, therefore, how the new edge points and
face points indicated by open circles in Figure 4.14/165 should be defined.

The first requirement introduced in [73], in order to fix the values of the edge
points and face points, is to require that the evaluation of a face point, such as yi in
Figure 4.14/165, should not depend on whether the univariate four-point subdivision
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li−1

∗ ∗ ∗

∗ ki−1

∗ ∗ ∗

∗

ki+2

ki−2

∗ hi

pxi+1

ki+1

yi xi

∗

∗

ki li

p is extraordinary
li+1hi+1

li+2

Figure 4.14. Notation for Kobbelt method.

rule is applied in the vertical direction or in the horizontal direction. If notation is
introduced for each of the points indicated by a ∗ in the figure, it is easy to verify
that the requirement just mentioned leads to the following compatibility condition
on the xi’s:

xi+1 − xi = β(li+1 − li) + α(hi+1 − hi) + α(li−1 − li+2) +
α2

β
(ki−2 − ki+2)

= w(hi − hi+1) +
2w2

1 + 2w
(ki−2 − ki+2)

+w(li+2 − li−1) +
1
2
(1 + 2w)(li+1 − li), (4.26)

where w is the coefficient in Figure 4.3/151 (note the discussion on page 151 con-
cerning the use of ω and w in [73]); the other notation is defined in Figure 4.14/165.

The other requirement introduced to fix the values of the edge points and face
points is that the centroid of the edge points 1

n

∑n−1
i=0 xi should give the correct

value in the regular case. This value is easily verified to be

1
2
(1 + 2w)p+

1
2n

n−1∑
i=0

li − w

n

n−1∑
i=0

hi (here, n = 4). (4.27)

Defining ∆xi = xi+1 − xi, i = 0, . . . , n− 1 (with indices calculated modulo n), it is
easy to verify the following identity, using telescoping sums:

1
n

n−1∑
i=0

xi = xj +
1
n

n−2∑
i=0

(n− 1− i)∆xi+j , j = 0, . . . , n− 1. (4.28)
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If we define the virtual point

vj =



(
4
n

∑n−1
i=0 li

)
− (lj−1 + lj + lj+1)

+ 2w
1+2w

(
kj−2 + kj−1 + kj + kj+1 − 4

n

∑n−1
i=0 ki

)
, n �= 4,

lj+2, n = 4,

and insert (4.26)/165 in (4.28)/165, we obtain

xj = −whj + (1/2 + w)lj + (1/2 + w)p− wvj ,
and when n = 4, the centroid of the xi’s is equal to the value given in (4.27)/165, as
required. (When n = 3, we set li−1 = li+2 = ki−2 = ki+2.) Thus, the edge points
xj can be computed by applying the univariate four-point rule to the points hj , lj ,
p, and vj , j = 0, . . . , n − 1. The face points yj can then be computed, and it does
not matter whether we compute horizontally (using xi) or vertically (using xi+1).

4.3 Fourier analysis of nodal functions
We now return to the regular case and derive some of the generalizations mentioned
at the end of Section 4.1.

We carry out the analysis in the bivariate case. A summary of the necessary
changes, to do the analysis in the univariate case, is also given.

Section A.2 provides some background for this section, on Fourier analysis and
the use of the delta function. Also, Exercise 5/187 is intended to provide more detail
and intuition for certain of the steps in the analysis given here. There is a slight
conflict in notation between the function S(y), to be introduced now, and the local
subdivision matrix S, but this should cause no confusion.

The delta function δ(y) is defined by the requirement [54] that it have its
support in the origin, where it is assumed to be “infinite” in such a way that for
every continuous function f : R2 → R we have∫

R2
f(z)δ(y − z) dz = f(y) (4.29)

if z ∈ R2. Further, for convolution with the delta function we have the following
formal relations:

f(y)⊗ δ(y) = f(y),

f(y − z)⊗ δ(y) = f(y)⊗ δ(y − z) = f(y − z).
These definitions are consistent with (4.29)/166 if we define

(f ⊗ g)(y) = (f(y)⊗ g(y))(y) =
∫

R2
f(z)g(y − z)dz (4.30)

in analogy with (2.3)/54. For convolution we also have the formulas

f̂(ay)(ω) =
1
a2 f̂(ω/a) (4.31)
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if a �= 0 and

f̂ ⊗ g(ω) = f̂(ω)ĝ(ω); (4.32)

see the Appendix, Sections A.2 and A.3.
In analogy to (4.4)/146, we seek a 2-scale relation

N(y) =
∑
k∈G

skN(2y − kh) (4.33)

which can be rewritten as

N(y) =
∑
k∈G

sk(δ(y − kh/2)⊗N(2y))(y) (4.34)

or

N(y) = (S(y)⊗N(2y))(y) (4.35)

if we introduce the function

S(y) .=
∑
k∈G

skδ(y − kh/2). (4.36)

Next, taking Fourier transforms (again, see Sections A.2 and A.3) we get from
(A.15)/312 that

̂δ(y − hk)(ω) = exp(−iωtkh)
and

Ŝ(ω) =
∑
k∈G

sk exp(−iωtkh/2). (4.37)

Using (4.31)/166 and (4.32)/167, (4.35)/167 can be rewritten as

N̂(ω) =
1
4
Ŝ(ω)N̂(ω/2). (4.38)

In order to determine if there exists some function N(y) satisfying (4.35)/167,
we pick an initial function N0(y) that is continuous, with compact support and such
that

∫
R2 N

0(y) dy = h2, but otherwise arbitrary. We then compute recursively,

Nν+1(y) = S(y)⊗Nν(2y), ν = 0, 1, 2, . . . . (4.39)

Again using the Fourier transform, (4.39)/167 may be rewritten as

N̂ν+1(ω) =
1
4
Ŝ(ω)N̂ν(ω/2), ν = 0, 1, 2, . . . . (4.40)

The functions in (4.39)/167 are well defined, since N0 is continuous.
Now, using (4.40)/167 recursively we obtain

N̂ν+1(ω) =
1
4
Ŝ(ω)

1
4
Ŝ(ω/2)

1
4
Ŝ(ω/4) · · · 1

4
Ŝ(ω/2ν)N̂0(ω/2ν+1), ν = 0, 1, 2, . . . ,

(4.41)
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i.e.,

N̂ν+1(ω) = Ŝ(ω)Ŝ(ω/2)Ŝ(ω/22) · · · Ŝ(ω/2ν)N̂0(ω/2ν+1)4−ν−1,

or

N̂ν+1(ω) =
ν∏
j=0

( Ŝ(ω/2j)
4

)
N̂0(ω/2ν+1). (4.42)

Applying the inverse Fourier transform, (4.41)/167 becomes

Nν+1(y) = S(y)⊗ 4S(2y)⊗ · · · ⊗ 4νS(2νy)⊗N0(2ν+1y), ν = 0, 1, 2, . . . . (4.43)

Taking ω = 0 in (4.42)/168 we get

N̂ν+1(0) = (Ŝ(0)/4)ν+1N̂0(0), ν = 0, 1, 2, . . . . (4.44)

Since N̂0(ω) =
∫

R2 N
0(y) exp(−iωty) dy, taking ω = 0 gives

N̂0(0) =
∫

R2
N0(y) dy = h2,

so that

N̂ν+1(0) = (Ŝ(0)/4)ν+1h2, ν = 0, 1, 2, . . . . (4.45)

Note here that from (4.37)/167 we have Ŝ(0) =
∑
k∈G sk = s(1, 1).

The function N0 is continuous with compact support, and it follows that its
Fourier transform is continuous. Therefore, considering the equality (4.42)/168 we
see, since N̂0(ω/2k+1) → N̂0(0) = h2 as k →∞, that we have a pointwise limit

N̂(ω) .= lim
k→∞

N̂k+1(ω) = h2
∞∏
j=0

Ŝ(ω/2j)
4

, (4.46)

provided that the product in the right-hand side of (4.46)/168 converges for each ω.
It follows from (4.46)/168 that the limit function N̂(ω) satisfies

N̂(ω) =
Ŝ(ω)

4
N̂(ω/2) (4.47)

or, equivalently, from the convolution theorem and the inverse Fourier transform,

N(y) = S(y)⊗N(2y) =
∑
k∈G

skN(2y − kh), (4.48)

as was our goal in (4.33)/167.
Note finally that the limit (4.46)/168 is independent of N0(y), which justifies

our choice, for this function, of an arbitrary continuous function with compact
support.
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An exactly parallel development is possible for the univariate case. Corre-
sponding to (4.31)/166 we have

f̂(ay)(ω) =
1
|a| f̂(ω/a) (4.49)

if a �= 0, and corresponding to (4.39)/167 and (4.40)/167 we have

Nν+1(t) = S(t)⊗Nν(2t), ν = 0, 1, 2, . . . , (4.50)

and

N̂ν+1(ω) =
1
2
Ŝ(ω)N̂ν(ω/2), ν = 0, 1, 2, . . . , (4.51)

and corresponding to (4.43)/168 we have

Nν+1(t) = ⊗νj=02
jS(2jt)⊗N0(2ν+1t), ν = 0, 1, 2, . . . .

Equation (4.37)/167 also holds in the univariate case, while in (4.38)/167, (4.42)/168,
(4.46)/168, and (4.47)/168, the factor of 4 in the denominator is replaced in each case
by a factor of 2. Finally, in the univariate case, (4.45)/168 is replaced by

N̂ν+1(0) = (Ŝ(0)/2)ν+1h, ν = 0, 1, 2, . . . , (4.52)

and Ŝ(0) =
∑
k∈G sk = s(1).

We next observe, from (4.46)/168, that the condition

Ŝ(0) = s(1, 1) = 4 (4.53)

is necessary in order that the infinite product in (4.46)/168 should converge to a
function which is neither identically zero nor identically equal to ∞. (As can be
seen from (A.15)/312 and (A.16)/313, such a function would correspond to a function
N that is itself identically zero or infinite, and therefore is useless as a subdivision
polynomial.) Similarly, we conclude that in the univariate case,

Ŝ(0) = s(1) = 2 (4.54)

is a necessary condition for convergence of the corresponding product to something
other than 0 or ∞. These conditions are described more fully in Theorems 4.5.1/172

and 5.1.3/193.

Example 4.3.1. Fourier transform for the four-point scheme.
For the four-point subdivision scheme, from (4.12)/149 and (4.37)/167 we con-

clude that
1
2
Ŝ(ω) = cos4(ωh/4)(2− cos(ωh/2)). (4.55)

Note that (4.54)/169 is satisfied. Also, from (4.13)/149,

S(t) =
1
16

(−δ(t+ 3h/2) + 9δ(t+ h/2) + 16δ(t) + 9δ(t− h/2)− δ(t− 3h/2)).

This should be compared with Figure 4.1/150.
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The preceding analysis is formal in the sense that we have given no conditions
on the coefficients of the polynomial s(z) guaranteeing the appropriate convergence
of the product

∏∞
j=0

( Ŝ(ω/2j)
4

)
and reasonable regularity properties for the corre-

sponding function N(y). This is, with the exception of the B-spline and box-spline
cases, a difficult task. These questions of convergence and regularity are discussed
in Chapter 5.

Note also that the convergence properties of the product in (4.46)/168 are
directly related to the convergence properties of the subdivision algorithm, when
applied to the control point sequence {pl}l∈Z2 in (4.6)/147.

If we have convergence to the curve in (4.5)/146 or the surface in (4.6)/147,
then we can apply the Nodal-Function Computation principle and the Polynomial
Coefficient principle.

4.4 Support of nodal functions generated by
subdivision polynomials

Assume that the set G is given together with the subdivision polynomial s(z) =∑
k∈G skz

k. Let conv(G) denote the convex hull of G.
We then have the following result concerning the support of the function N(y)

defined by the subdivision process in the preceding section (provided that N is a
well-defined function).

Theorem 4.4.1. supp (N) ⊆ h conv (G).

Proof. Consider the repeated convolution

πk(y) = S(y)⊗ 4S(2y)⊗ 42S(22y)⊗ · · · ⊗ 4kS(2ky) (4.56)

appearing in (4.43)/168. We need the following well-known lemma about the support
of convolutions (which is valid also for delta functions). In the formulation, the sum
A+B of two subsets in R2 is the Minkowski sum defined as

A+B
.= {a+ b : a ∈ A, b ∈ B}.

Similarly, if α ∈ R,
αA

.= {αa : a ∈ A}.

Lemma 4.4.2.

supp (f ⊗ g) ⊆ supp (f) + supp (g).

Proof. We carry out the proof only for the case when f and g are continuous
functions.36 We observe that

f ⊗ g(y) �= 0
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implies that for at least one z ∈ supp (g) we have y − z ∈ supp (f), i.e.,

f ⊗ g(y) �= 0 =⇒ y ∈ supp (g) + supp (f),

which completes the proof of the lemma.
Next, using that supp (4jS(2jy)) = 2−jsupp (S(y)), we conclude from the

lemma that

supp (πk(y)) ⊆
k∑
j=0

2−jsupp (S(y)).

Further from

S(y) =
∑
i∈G

siδ(y − ih/2),

it follows that supp (S(y)) ⊆ (h/2)conv(G) and that

supp (πk(y)) ⊆ (h/2)
k∑
j=0

2−jconv(G). (4.57)

Next, we claim that if A ⊆ R2 is a convex set and if α > 0 and β > 0, then

αA+ βA = (α+ β)A.

In fact any element in αA+ βA can be written as

αa1 + βa2 = (α+ β)
(

α

α+ β
a1 +

β

α+ β
a2

)
with a1 and a2 ∈ A. Then the convex combination α

α+βa1 + β
α+βa2 is in A and the

claim is proved, since the opposite inclusion is trivial. It now follows that

k∑
j=0

2−jconv(G) =

 k∑
j=0

2−j

 conv(G) = (2− 2−k)conv(G)

and that

supp (πk(y)) ⊆ h(1− 2−k−1)conv(G) ⊂ h conv(G).

Considering again (4.43)/168, we conclude that

supp (πk(y)) ⊆ h(1− 2−k−1)conv(G) + supp (N0(2k+1y))

= h(1− 2−k−1) conv(G) + 2−k−1 supp (N0(y)).

As k →∞, the last set shrinks to the origin and we obtain in the limit

supp (N(y)) ⊆ h conv(G),

which completes the proof.
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Generally, the support of N is equal to h conv(G), but we do not give a formal
proof of this. Equality holds, however, for all of the standard subdivision methods
discussed in the literature.

4.5 Affine invariance for subdivision defined by a
subdivision polynomial

We observed in the previous section that (4.53)/169 and (4.54)/169 are necessary con-
ditions for convergence of the subdivision process in the bivariate and univariate
case, respectively. In this section, we formulate additional conditions on the sub-
division polynomial being equivalent to affine invariance of a subdivision process
based on bisection.

Theorem 4.5.1. If, in the bivariate case, the subdivision process is defined by some
polynomial s(z) = s(z1, z2), then it is affine invariant if and only if

s(1,−1) = s(−1, 1) = s(−1,−1) = 0 and s(1, 1) = 4. (4.58)

Similarly, in the univariate case with a subdivision polynomial s(z), affine invari-
ance is equivalent to the conditions

s(−1) = 0 and s(1) = 2.

This should be compared with the discussion in Section 2.2.4.

Proof. We give the proof for the bivariate case only. Exercise 6/187 asks for a proof
in the univariate case.

A necessary and sufficient condition for affine invariance is that a shift pl :=
pl + t for the control points, with a constant vector t, should give the same shift for
the new control points qk on the refined grid; see Remark 1.4.1/39. Using (4.11)/147,
this is equivalent to the statement that∑

l

sk−2l = 1 for all k ∈ Z2 (4.59)

(consider the vector t ∈ RN with each component equal to 1). Taking k = (0, 0),
k = (1, 0), k = (0, 1), and k = (1, 1), respectively, we find that the equalities in
(4.59)/172 are equivalent to the following:

see
.= q(0,0) =

∑
l∈Z2

s2l = 1,

soe
.= q(1,0) =

∑
l∈Z2

s(1,0)+2l = 1,

seo
.= q(0,1) =

∑
l∈Z2

s(0,1)+2l = 1,

soo
.= q(1,1) =

∑
l∈Z2

s(1,1)+2l = 1. (4.60)
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In the notation for these sums “o” stands for odd and “e” for even subindices.
We also have

s(1,−1) =
∑
k

s(k1,k2)(−1)k2 = see + soe − seo − soo,

s(−1, 1) =
∑
k

s(k1,k2)(−1)k1 = see − soe + seo − soo,

s(−1,−1) =
∑
k

s(k1,k2)(−1)k1(−1)k2 = see − soe − seo + soo,

s(1, 1) =
∑
k

s(k1,k2) = see + soe + seo + soo, (4.61)

which gives the equivalence between (4.58)/172 and (4.60)/172.

Exercise 7/187 suggests a specific application of the theorem for 4-8 subdivision.
This is relevant in the context of the comparison in Section 4.2.2.

Condition (4.58)/172 is much easier to check than condition (4.60)/172, but the
latter gives an intuitive interpretation of these two equivalent conditions, in analogy
with Remark* 2.2.8/72. This is examined in Exercise 8/187, and Exercise 9/187 asks
how Exercise 8/187 should be modified in order to deal with a method based on
trisection, rather than bisection.

4.6 A two-dimensional manifold serving as
parametric domain

To support the definition of subdivision surfaces in a general context, we define
here a two-dimensional manifold M associated with a given locally planar logical
mesh M . The manifold M is a topological space such that each point p in M has a
neighbourhood that is homeomorphic to either the unit disk in R2 (p is an interior
point) or to a unit half disk in R2 (p is a boundary point), with p corresponding
to the origin in R2. This manifold can be viewed as a parametric domain for the
subdivision surface defined by a subdivision method.

Remark* 4.6.1. The details in this section can be skimmed at first reading, al-
though this may mean that the important discussion at the beginning of Section 4.7,
and the important Example 4.7.5/184, are understood only intuitively.

4.6.1 The two-dimensional manifold

The mathematical machinery introduced in order to define the manifold M appears
somewhat complicated, but the idea is very simple. Consider first the simple case
where the logical mesh can be represented in R3 in such a way that the logical faces
are associated with planar subsets of R3, as in Figure 1.7/11 (left). In such a case we
have at our disposal a two-manifold (a two-sphere in the case of Figure 1.7/11) that
could be conveniently viewed as a parametric domain for the subdivision surface,
and we would like to have such a manifold for arbitrary locally planar logical meshes.
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There are, however, some technical problems in doing this. In particular, if we try
to use the control points of the corresponding polyhedral mesh M to construct this
representation, as in [18, Sec. 2.3] for example, there remains the problem of what
to do if the control points in each face are not coplanar. One possibility [172, Ch. 2]
is to identify the polyhedral mesh with a simplicial complex, introducing auxiliary
vertices and tagged edges to deal with the case of nontriangular faces. Although
this approach presents no theoretical difficulty, it is often more convenient to define
the manifold M in terms of faces residing in disjoint spaces. This leads to a simple
explicit37 representation of the parametric domain that is well defined even for
nontriangular faces. A similar approach is used in [124], although the focus there
is on quadrilateral faces; see Example 4.7.5/184, below.

Our definition of the parametric domain introduces the ideas of chart and
atlas. A chart is a local parametric representation of the underlying manifold M ,
and these charts are used very often in convergence and regularity analysis, and in
other applications, even if the word “chart” is not explicitly mentioned. A typical
example is Stam’s method for the parametric evaluation of surfaces near extraor-
dinary vertices: for example, the illustration in Figure 6.3/264 is a chart. Detailed
definitions are given below.

Our goal here is limited to introducing a parametric domain that is sufficient
and convenient for the mathematical analysis of subdivision surfaces. The ideas
presented here are, however, relevant for other questions, such as the choice of
convenient parametric domains for texture mapping and rendering in computer
graphics. Surveys of applications in graphics are given in [59, 146].

First, let us introduce the notation F for the set of all faces in the logical mesh
M . For each f ∈ F we consider a copy R2

f of the space R2. This means that for
different faces f and g, the Euclidean spaces R2

f and R2
g are different.

Now, given a logical face f = (�0, �1, . . . , �e−1) in F , we first define points
[�j ]f ∈ R2

f , called vertices, by

[�j ]f = r(cos(2πj/e), sin(2πj/e)), j = 0, . . . , e− 1, (4.62)

where the radius r = 1/(2 sin(π/e)) is chosen so that the distance between two
consecutive vertices [�j ]f and [�j+1]f is equal to 1. See Exercise 10/187. Here and in
the following definitions, indices are calculated modulo e.

Next, we define the face F ⊂ R2
f by

F = conv{[�0]f , [�1]f , . . . , [�j ]f , . . . , [�e−1]f} (4.63)

and the edge [�j , �j+1]f ⊂ F by

[�j , �j+1]f = conv{[�j ]f , [�j+1]f}, j = 0, . . . , e− 1. (4.64)

Thus the face F corresponds to the logical face f , the edge [�j , �j+1]f to the logical
edge {�j , �j+1} ∈ Ef , and [lj ]f to the logical vertex lj . Each logical face f is
associated with the regular closed e-gon defined by (4.62)/174 and (4.63)/174, having
edges and vertices given by (4.64)/174 and (4.62)/174. See Figure 4.15/175.



book
2010/3/3
page 175

�

�

�

�

�

�

�

�

4.6. A two-dimensional manifold serving as parametric domain 175

F ⊆ R2
f

f ∈ F
Logical face

lk+1

{lk, lk+1}
[lk, lk+1]f

lk

[lk]f
1

Figure 4.15. The face represented in R2, and the corresponding logical face.

Remark 4.6.2. We denote faces associated with logical faces f, g, . . . by the cor-
responding uppercase letters F,G, . . . . If the logical faces f0, . . . , fα, . . . , fm−1 are
enumerated by α, the associated faces are denoted by F0, . . . , Fα, . . . , Fm−1.

We now let the set M ′ be defined by

M ′ =
⋃
fα∈F

Fα

with the union taken over all faces fα. Expressing this differently, we can say that
M ′ is the disjoint union of all the regular e-gons F . The union is disjoint because
each face Fα lies in a different copy of Rf .

Finally, two edges in different faces F and G in M ′ will be identified if they
correspond to the same logical edge {�, �′}, and in this case the two points

xf = (1− u)[�]f + u[�′]f and yg = (1− u)[�]g + u[�′]g

are considered to be identical, or equivalent, for every u ∈ [0, 1].

Definition 4.6.3. The set obtained from M ′ by identifying points on edges in
this way is denoted by M . Further, we introduce the notation F for the subset of
M corresponding to points in the face F ⊂ R2

f . The point in M corresponding
to [�]f ≡ [�]g is denoted [�], and the point in M corresponding to [�′]f ≡ [�′]g is
denoted [�′]. Similarly, the edge corresponding to [�, �′]f ≡ [�, �′]g is written [�, �′].

This definition expresses informally that the set M is obtained by gluing
together all the disjoint faces F,G, . . . along their common logical edges. A more
rigorous mathematical definition of M can be given using equivalence classes.

The sets F and G corresponding, respectively, to F and G, sharing the same
logical edge {�, �′}, are not disjoint. The correspondence between F and F is de-
fined now.

Definition 4.6.4. The one-to-one mapping

πf : M ⊃ F → F ⊂ R2
f
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is defined by letting the point x ∈ F be mapped onto the corresponding point x in
F ⊂ R2

f . If x is an interior point of F , then x and x are identical. In the case that
x is contained in some edge in F , then x can be considered as a set of equivalent
points from edges of different faces.

Note that if we did not make the distinction between the face F ⊂ R2
f and

the face F as a subface of M , then πf would be the identity mapping.

Example 4.6.5. The correspondence between subfaces in R2 and sub-
faces of M .

A simple example is shown in Figure 4.16/177, in a case where the manifold
M can be represented as a cube in R3 (although we emphasize again that there is
no requirement that there should exist such a representation). The set of logical
vertices is

Z8 = {0, 1, 2, . . . , 7}
and the logical faces are denoted by

f0 = {0, 1, 2, 3},
f1 = {0, 3, 4, 7},
f2 = {0, 1, 6, 7},
f3 = {2, 3, 4, 5},
f4 = {1, 2, 5, 6},
f5 = {4, 5, 6, 7}.

The six faces F0, . . . , F5 are shown in the figure, and for three of these, namely
F0, F1, and F2, the details of the vertices [�] and certain of the edges [�, �′] are also
shown. Each of these six faces lies in a separate copy of R2. Finally, the figure
shows πf0 , which takes F 0 onto F0.

This example will be discussed further, below.

4.6.2 A topology on the manifold

We now define a topology on the abstract point set M defined above.
First, if x0 ∈ F , and x0 = πf (x0) ∈ R2

f , then we define the ε-neighbourhood
of x0 ∈ F as

{x ∈ F : |x− x0| < ε} ⊂ F.

Here we also make the following restrictions on the size of ε.

1. If x0 is an interior point of F , then ε must be so small that

{x ∈ R2
f : |x− x0| < ε} ⊂ F.

2. If x0 is an interior point x0 = (1 − t)[�]f + t[�′]f , 0 < t < 1, of some edge
[�, �′]f ⊂ F , then ε must be so small that {x ∈ R2

f : |x − x0| < ε} does not
intersect any other edge of F , and in particular it contains no vertices of F .
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F3

F4 F5

[4]

[3] [2]

[1]

[6][7]

[0]

[5]

F2

[0]f0[0]f2

F0
[0, 1]f0

[0, 3]f0
[7]f2

[0, 1]f2

�f0

[3]f0

[0, 7]f2

[1]f2 [1]f0

as a cube in R3

[6]f2 [2]f0
F1

[0, 7]f1 [0, 3]f1
[0]f1

[4]f1

[7]f1 [3]f1

F0

F1

represented

F2

Figure 4.16. Faces Fα ⊂ R2
α, α = 0, . . . , 5, and manifold M .

3. If x0 is a vertex [�]f , then we require that ε < 1, so that the ε-neighbourhood
does not contain any other vertex of F .

The corresponding ε-neighbourhood Bf (x0, ε) in F is then defined by

Bf (x0, ε) = π−1
f ({x ∈ F : |x− x0| < ε}).

Now, if x0 is any point in M , then it is contained in at most finitely many faces
F α, 0 ≤ α ≤ m− 1, corresponding to the logical faces fα, 0 ≤ α ≤ m− 1. We then
define the ε-neighbourhood B(x0, ε) ⊂ M by

B(x0, ε) =
m−1⋃
α=0

Bfα
(x0, ε). (4.65)

Here ε must satisfy all the restrictions originating from the separate faces F α.
We now have the following definition of open and closed sets, which defines

the topology on M .

Definition 4.6.6. A subset A ⊂ M is said to be open if for every x0 ∈ A there
exists an ε-neighbourhood B(x0, ε) ⊂ A. The subset A is said to be closed if the
complement M \A is open.

We also give the following definition.
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Definition 4.6.7. If A ⊂ M is a given set, then x0 ∈ A is said to be an interior
point if there exists an ε-neighbourhood B(x0, ε) ⊂ A. The set of all interior points
in A is denoted by A0.

We note that the set A0 is open, and that A is open if and only if A0 = A.

4.6.3 Local homeomorphisms

For every point x0 ∈ M there exists an open subset U containing x0 and a bi-
continuous mapping

X : U → R2, (4.66)

i.e., a mapping that is bijective and with domain homeomorphic to its range X(U).
Further, we will show that if we are given any two such open subsets U and V with
the corresponding mappings

X : U → R2

and
Y : V → R2,

then, if U ∩ V �= ∅, the mapping

Y ◦X−1 : X(U ∩ V ) → Y (U ∩ V ) (4.67)

and its inverse
X ◦ Y −1 : Y (U ∩ V ) → X(U ∩ V ) (4.68)

are continuous and, in fact, piecewise-affine functions.
One says that the point x0, the open set U , and the mapping X define a

coordinate patch around x0.
Such a pair (X,U) is also called a chart on M , and a family of charts with

the properties that the charts cover M (every point in M appears in the domain
of at least one chart in the family) and are compatible (any two charts (X,U) and
(Y, V ) in the family satisfy (4.67)/178 and (4.68)/178) is called an atlas on M . See,
for example, [31] for more details on differential manifolds.

4.6.4 Construction of the local homeomorphisms

It is natural [172] in the context of subdivision surfaces to define a chart for each
face, edge, and vertex in the logical mesh. We distinguish the following cases:

a. chart corresponding to the logical face f ;

bi. chart corresponding to an interior edge of some face F (i.e., the corresponding
logical edge {�, �′} is an interior edge);

be. chart corresponding to an exterior edge of some face F (i.e., the corresponding
logical edge {�, �′} is an exterior edge);
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ci. chart corresponding to an interior vertex (i.e., the corresponding logical vertex
� is interior);

ce. chart corresponding to an exterior vertex (i.e., the corresponding logical vertex
� is exterior).

In the cases a and be, we take U = F 0 and X = πf . In the case bi, [�, �′]
is contained in exactly two faces F and G, since the logical mesh is locally planar.
Then let

A : R2
f → R2

g

be a rotation followed by a translation (A is therefore an affine mapping), mapping
the set F ⊆ R2

f onto a set which is such that A(F ) ∩ G = [�, �′]g ⊆ G. Take
U = (F ∪G)0 and let X be defined by

X(x) = A ◦ πf (x) if x ∈ F and X(x) = πg(x) if x ∈ G.

The definition is consistent, since A ◦ πf (x) = πg(x). We note that

X(U) = (A(F ) ∪G)0 ⊂ R2.

In Figure 4.16/177, for example, the faces F1 and F2 in the lower left corner of the
figure could play the roles of F and G, respectively, and in this case the mapping
A would carry F1 into the version of R2 corresponding to F2.

In case ci, the vertex [�] belongs to the faces

F 0,F 1, . . . ,F k, . . . ,F n−1, n ≥ 3,

corresponding to the logical faces f0, f1, . . . , fn−1, and to the edges [�, �k], 0 ≤ k ≤
n− 1, enumerated in such a way that

[�, �k] ∪ [�, �k+1] ⊂ F k for 0 ≤ k ≤ n− 2, and [�, �n−1] ∪ [�, �0] ⊂ F n−1.

We then define affine mappings Ak : R2
fk
→ R2 such that

Ak([�]fk
) = (0, 0)t and Ak([�k]fk

) = (cos(2πk/n), sin(2πk/n))t for 0 ≤ k ≤ n− 1

and so that

Ak(Fk) ⊂ {(r cosϕ, r sinϕ)t : r ≥ 0, ϕ ∈ [k2π/n, (k + 1)2π/n]} for 0 ≤ k ≤ n− 1.
(4.69)

Then take

U =

(
n−1⋃
k=0

F k

)0

and define the mapping X : U → R2 by

X(x) = Ak ◦ πfk
(x) if x ∈ F k.

The definition is consistent since Ak ◦ πfk
(x) = Ak′ ◦ πfk′ (x) if x ∈ F k ∩ F k′ .
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[4]

[3] [2]

[1]

[6][7]

[0]

[5]

F2

[0]f0[0]f2

F0
[0, 1]f0

[0, 3]f0
[7]f2

[0, 1]f2

[3]f0

[0, 7]f2

[1]f2 [1]f0

[6]f2 [2]f0
F1

[0, 7]f1 [0, 3]f1
[0]f1

[4]f1

[7]f1 [3]f1

F0

F1

F2

U = (F0 ∪ F1 ∪ F2)o

X(U) an open

10

3 2

4

7 6

A1

subset of R2

A2

A0

Figure 4.17. Chart corresponding to an internal vertex.

We note that

X(U) =

(
n−1⋃
k=0

Ak(Fk)
)0

. (4.70)

Example 4.6.8. The case of an internal vertex.
Example 4.6.5/176 can be extended to illustrate the case ci, just discussed.

Consider the vertex [�] = [0] in Figure 4.17/180, The edges [0, 1]f0 ⊂ F0 and [0, 1]f2 ⊂
F2 are identified and considered to be equal in M . In the same way the edges
[0, 3]f1 ⊂ F1 and [0, 3]f0 ⊂ F0 are identified, as well as [0, 7]f1 ⊂ F1 and [0, 7]f2 ⊂ F2.
Here we have n = 3, �0 = 1, �1 = 3, �2 = 7 and [0, 1]∪ [0, 3] ⊂ F0, [0, 3]∪ [0, 7] ⊂ F1,
and [0, 7] ∪ [0, 1] ⊂ F2.

The set X(U) ⊂ R2 is also shown.

In case ce, the vertex [�] is an exterior vertex belonging to the faces

F 0,F 1, . . . ,F k, . . . ,F n−2, n ≥ 2,

and to the edges [�, �k], 0 ≤ k ≤ n− 1, enumerated in such a way that

[�, �k] ∪ [�, �k+1] ⊂ F k for 0 ≤ k ≤ n− 2,

and with [�, �0] and [�, �n−1] being exterior edges. Then define affine mappings
Ak : R2

fk
→ R2 such that

Ak([�]fk
) = (0, 0)t and Ak([�k]fk

) = (cos(πk/(n− 1)), sin(πk/(n− 1)))t

for 0 ≤ k ≤ n− 2
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and so that

Ak(Fk) ⊂ {(r cosϕ, r sinϕ)t : r ≥ 0, ϕ ∈ [kπ/(n− 1), (k + 1)π/(n− 1)]}
for 0 ≤ k ≤ n− 2. (4.71)

The set U is defined by

U =

(
n−2⋃
k=0

F k

)0

and the mapping X : U :→ R2 by

X(x) = Ak ◦ πfk
(x) if x ∈ F k.

The definition is again consistent since Ak ◦ πfk
(x) = Aj ◦ πfj (x) if x ∈ F k ∩ F j ,

and again

X(U) =

(
n−2⋃
k=0

Ak(Fk)
)0

. (4.72)

4.7 Generalized splines and Generalized-spline
subdivision methods

In the case of box-spline surfaces (or uniform B-spline curves), the underlying logical
mesh is a doubly infinite rectangular mesh (or a doubly infinite linear mesh), and
as we have seen, the resulting surface (curve) is in a natural way associated with
a parametrical representation over R2 (or R) as in (3.2)/93, (2.46)/74, and (2.26)/63.
Moreover, referring to (3.38)/120 above, the control vector pl in the representation

x(y) =
∑
l

plNl(hem; y) (4.73)

is the coefficient for a function Nl(hem; y) with its support centered at the point
l ∈ Z2 ⊂ R2 in the parameter space. (In fact, in (4.73)/181, the index l varies over Z2,
or Z2 + ē/2, as described in Remark 3.5.7/119 and (3.38)/120, but for simplicity we
assume here that l varies over Z2.) This function is defined by the subdivision
process by choosing a sequence of scalar control points {pi}i∈Z2 ⊂ R so that pl = 1
and pi = 0 for i �= l. This is the Nodal-Function Computation principle.

In a more general case when the logical mesh does not have the simple struc-
ture above (in particular, the mesh may be a finite mesh without boundary, and
containing nonregular points), we can still define a parametric representation sim-
ilar to that in (4.73)/181. We assume that the logical mesh M is locally planar
and define the two-dimensional manifold M as in Section 4.6. We then obtain an
analogous representation

x(y) =
∑
�

p�N�(y), (4.74)

where � ranges over all logical vertices in the mesh and y ∈ M . The functions
Nl(y) are defined on M with their supports located in some neighbourhood of the
corresponding point [�] ∈M .
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We now describe how to obtain the representation (4.74)/181 and the nodal
functions N�(y). Generally, a subdivision process can be described in the following
way. In each step of the process the old logical mesh is replaced by a new one
according to some specific rule (which for nonstationary processes may be different
from step to step). This is done by introducing new vertices on old edges and/or
faces, possibly deleting some of the old vertices, and forming new faces by connecting
new vertices (obeying the restriction that the new mesh must be locally planar) in a
prescribed manner. The control vectors corresponding to the old logical vertices are
also replaced according to some specific rule, and in the end the resulting surface
in RN is obtained by taking limits of the sequence of control vectors.

In step ν of the subdivision process, let us denote the logical mesh by Mν , its
set of logical vertices by ZLν

, and the set of control vectors by

pν = pν(Lν×N). (4.75)

We also assume that to each control vector pν� we have associated a corresponding
point y�,ν ∈M , and that the sequence of point sets

Yν = {y�,ν : � ∈ ZLν} ⊂ M

becomes dense in M as ν → ∞, in the following sense: for every y ∈ M there
exists a sequence {�ν}∞ν=1 such that

y�ν ,ν → y as ν →∞.

There are several different concepts of convergence for subdivision methods.
From a practical point of view, we restrict our attention to local uniform conver-
gence, defined in the following way.

Definition 4.7.1. The subdivision process is said to be locally uniform convergent
if for every initial sequence {p0

�}�∈ZL0
⊂ RN there exists a continuous function

x : M → RN such that for every compact subset A ⊂ M , we have

max
y�,ν∈A

|x(y�,ν)− pν� | → 0

as ν →∞.

We note that the limiting function is unique.
Now, if for the initial set of control vectors p1, we choose the set of scalars

p1
i =

{
1 if i = �,
0 if i �= �,

then we obtain the functions N�(y) defined on M . Thus, in this most general
case, we actually use the Nodal-Function Computation principle to define the nodal
functions. We call a convergent subdivision process defining the nodal functions in
this way a Generalized-spline subdivision method .
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The previous description of how to define the nodal functions N� does not
tell us how to choose the points in M corresponding to the vertices of the logical
mesh (or equivalently, to the control vectors) in order to satisfy the assumptions of
the previous three paragraphs. This is due to the generality of the definitions. In
all subdivision processes in the literature, however, the way to construct the nodal
functions and their parametrizations comes quite naturally, as illustrated by the
example of Catmull–Clark in Section 5.5.

Definition 4.7.2. A generalized spline is a linear combination of nodal functions
with compact support produced by applying some locally uniformly convergent affine-
invariant subdivision process to a scalar control point (N = 1) that has value 1 at
one vertex in the mesh, and 0 elsewhere.

In all the methods that we consider, the nodal functions have compact sup-
port,38 and therefore the Nodal-Function Computation principle gives a (globally)
uniformly convergent method, i.e.,

max{|x(y�,ν)− pν� | : y�,ν ∈M} → 0

as ν →∞.
In the following remark, we observe that the nodal functions on which gener-

alized splines are based have the property of partition of unity .

Remark 4.7.3. For the sequence of control vectors pν , ν ≥ 1, we have

pν+1 = Σνpν , ν = 1, . . . ,

with Σν denoting the global subdivision matrix in (1.13)/39. In Section 1.4.1, we
noted that affine invariance is equivalent to the property that all the row sums of
the matrices Σν are equal to one. Then, taking an initial set

p1
� ⊂ R1

with p1
� = 1 for all � ∈ ZL1 , it follows that pν� = 1 for all ν > 1 and all � ∈ ZLν . We

conclude that for the limiting function, we have

x(y) =
∑
�

N�(y) = 1

for all y ∈ M. Consequently, the nodal functions N� give a partition of unity on
the manifold M, provided that the subdivision process is affine invariant.

Remark 4.7.4. Although the surface in RN is uniquely defined by the subdivision
process, the nodal functions N� described above are not. In fact they depend on how
we choose to do the subdivision of the two-dimensional manifold M corresponding
to the subdivision of the logical meshes, i.e., how we assign points y�,ν ∈ M to
points pν� ∈ RN . It is also clear that, if we are given one set {N�(y)} of nodal
functions and if

h : M → M

is a homeomorphism, then {N�(h(y))}�∈ZL
is another set of nodal functions.
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v
(1, 1)

Σ
F (r, 0)(−r, 0)

(0,−r)

(0, 0) u

(0, r)

Figure 4.18. Comparison of parametric domains.

If in Example 4.6.8/180 we assign the control values p0 = 1 and p� = 0, for
� = 1, 2, . . . 7, and apply, for example, Catmull–Clark subdivision, we obtain in the
limit the nodal function N0(y) defined for y ∈ M . In Figure 4.17/180 we have also
indicated the first step in the splitting of the logical mesh and the corresponding
splitting in the parameter domain X(U). It also follows, by the properties of the
Catmull–Clark method, that the support of the nodal function N0(y) is all of M ,
and similarly for every nodal function.

Example 4.7.5. A parametrization of Peters–Reif.
The above ideas can be illustrated by a construction introduced in [124,

Chap. 3], which leads to a parametrization involving an oriented manifold M .
Suppose that all faces in the logical mesh have e = 4. (Such an assumption

is appropriate, for example, in the case of analysis of a pQ4 method, assuming
that at least one subdivision step has been executed.) In this case the points [�j ]f
are, from (4.62)/174, equal to (r, 0), (0, r), (−r, 0), (0,−r), where r =

√
2/2, as

illustrated in Figure 4.18/184 (left). A typical face F ⊂ R2
f is therefore defined by

{x ∈ R2 : (±1,±1)x ≤ r}, and a typical edge by the line segment with endpoints
reiπj/2 and reiπ(j+1)/2, j = 0, 1, 2, 3, where R2

f is viewed as the complex plane.
Indices are calculated modulo 4 throughout this example.

We begin by describing the differences between our parametrization and that
used in [124]. First, in the construction of [124], the faces have e = 4, since the anal-
ysis there focuses on this case. Second, there is the trivial difference that the faces F
in [124] are defined as lying in the standard position shown in Figure 4.18/184 (right):
it is denoted Σ = [0, 1]2. The two versions of the face can be obtained from one
another by a rigid motion comprising (plus or minus) a rotation of π/4 and a trans-
lation of (1/2, 1/2). The version illustrated in Figure 4.18/184 (right) is convenient
if only the case e = 4 is to be considered. We have used Figure 4.18/184 (left)
in order to easily describe cases with e �= 4, and we continue to use it in this
presentation of the construction of [124], making the necessary straightforward
modifications.

For j = 0, 1, 2, 3 define

κj = reiπj/2,
εj(u) = (1− u)κj + uκj+1, 0 ≤ u ≤ 1.

(4.76)
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3 2

0

6

4 1

ε1(u)
7

(F, 1) (F, 2)
α = 1 α′ = 2

(j = 2) ε2(u)

(j′ = 1)

κ1 ↔ [0]f2

κ0[7]f2 ↔ κ2κ0

κ3κ3 ↔ [0]f1

κ1

[7]f1 ↔ κ2

Figure 4.19. Parametrization near an extraordinary vertex.

Recall that we have indexed the faces in the logical mesh by α. Peters and Reif
[124] call the pair (F, α) a cell , and the union ∪α(F, α) a spline domain. They
then “stamp” a patch layout on the spline domain by identifying points on edges
according to

(εj(u), α) ∼ (εj′(1− u), α′), 0 ≤ u ≤ 1. (4.77)

This pointwise identification of edges induces an equivalence relation on the set
{κ0, κ1, κ2, κ3} × {α} of corners,

(εj , α) ∼ (εj′ , α′) ⇒ (κj , α) ∼ (κj′+1, α
′).

Each equivalence class is called a knot , and pairs of related edges are called knot
lines.

To illustrate, the construction and linking of the faces in the manifold corre-
sponding to (0, 7, 6, 1) and (7, 0, 3, 4) in the logical mesh illustrated in Figure 4.17/180

can be accomplished as shown in Figure 4.19/185. Note that we have had to change
the parametrization of F2 from what was given in Figure 4.17/180, by reversing the
orientation, since we are now required to glue faces together in a way that produces
oriented faces. The notation ↔ is intended only to show the link with our previous
presentation.

The equivalences defining knots are

[7]f1 ↔ (κ2, 1) ∼ (κ2, 2) ↔ [7]f2 ,

[0]f1 ↔ (κ3, 1) ∼ (κ1, 2) ↔ [0]f2

and the knot line is defined by

(ε2, 1) ∼ (ε1, 2)

with the pointwise correspondence

(ε2(u), 1) ∼ (ε1(1− u), 2), 0 ≤ u ≤ 1.
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The subscripts on the corners κ come from the choices j = 2 and j′ = 1, required
for the correspondence (4.77)/185: we have

(εj(u), α) = ((1− u)κj + uκj+1, α)
= ((1− u)κ2 + uκ3, 1)
↔ (1− u)[7]f1 + u[0]f1 ,

(εj′(1− u), α′) = (uκj′ + (1− u)κj′+1, α
′)

= ((1− u)κ2 + uκ1, 2)
↔ (1− u)[7]f2 + u[0]f2 ,

and so the identification required by (4.77)/185 has been achieved.
The topology on the manifold can now be introduced in exact analogy with

the presentation given above, beginning in Section 4.6.2.

4.8 Additional comments
General subdivision polynomials are discussed in the monograph [25]. For example,
the necessary conditions for convergence, discussed in Theorem 4.5.1/172, can be
found in [25, Sec. 2.1]. References for the particular methods discussed in Section 4.2
were given in the text.

For the use of Fourier analysis in the context of subdivision, see [25]. For a
more general reference on Fourier analysis, see [153].

The two-dimensional manifold introduced to serve as a parametric domain
relies on standard methods in differential geometry [43, 31]. A somewhat different
choice of parametric domain was made in [124], as suggested by Example 4.7.5/184.

The ideas of charts and atlases have recently found wide use in computer
graphics in the context of reparametrization for texture mapping [22, 83, 142].

4.9 Exercises
1. Give the global subdivision matrix for the univariate four-point scheme. (The

columns have coefficients corresponding to qk =
∑
l∈Z

sk−2pl, and the matrix
is analogous to the matrix Σ given for the B-spline case in (2.16)/59.)

2. The nodal function for the four-point scheme is not piecewise polynomial.
Prove the weaker result that for any a > 0, the nodal function has an infinite
number of sign changes in the interval (a, 3h), which means that it cannot be
piecewise polynomial on this interval.

3. Show that the sum of the coefficients in Figure 4.8/156 (
√

3-subdivision) is
equal to 9. (Compare this exercise with Exercise 7/187 below.)

4. Show that the points corresponding to z2, and to z−1
1 z2

2 , in Figure 4.8/156,
receive a total contribution of 1 when a unit impulse is applied to all of the
vertices of the original triangles having edge length h.
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5. Consider the derivation in Section 4.3. The following are intended to provide
motivation and further explanation of the steps in the derivation.

(a) Explain in detail how (4.34)/167 follows from the equations preceding it.

(b) Explain what purpose is served by introducing the function S in (4.36)/167.
Also, in the lines following (4.34)/167 we see the main advantage of intro-
ducing the Fourier transform: explain what it is.

(c) The right-hand side of (4.41)/167 is a product with several factors, and
the right-hand side of (4.43)/168 is a multiple convolution involving what
can also be referred to loosely as “factors.” Explain what the first factor
in (4.41)/167 and in (4.43)/168 corresponds to; similarly, explain what
the second factor corresponds to. Finally, relate the overall convolution
in (4.43)/168 to control vectors.

6. Prove Theorem 4.5.1/172 in the univariate case.

7. Use Theorem 4.5.1/172 (4-8 subdivision) to show that the sum of the values of
the coefficients shown in Figure 3.29/140 should be equal to 4. Verify that this
is in fact true. (Compare this exercise with Exercise 3/186 above.)

8. Illustrate the mask for the LR(3 × 3) subdivision method, i.e., draw the
grid illustrating the set G (the points where the coefficients of the subdi-
vision polynomial are not zero), along with the coefficients themselves. Also,
draw four corresponding grids for which the sum of the coefficients, according
to (4.60)/172, should be 1. Finally, verify that these sums are in fact equal to
1 for the LR(3×3) method. Thus, affine invariance of the subdivision process
places some constraints on how a subdivision method distributes the weight
of a given input control point: the weight must be distributed evenly among
the four classes of grid point indicated.

9. Make a conjecture about how (4.60)/172 should be modified in the case of a
subdivision method based on trisection, rather than bisection. Then (omitting
cases once the principle has become clear), repeat Exercise 8/187 for the {√3}2
method, which is based on trisection.

10. Show that if r is chosen to be 1/(2 sin(π/e)) in (4.62)/174, then the distance
between the two consecutive vertices [�k]f and [�k+1]f is equal to 1.
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Convergence and
Smoothness

The question of convergence has been left open until now, even when the discussion
depended on the convergence of the method involved. For example, the Nodal-
Function Computation principle depended on the fact that the method under dis-
cussion was convergent. This chapter discusses both convergence and smoothness,
and for the latter topic, we consider parametric continuity and tangent-plane (or
normal) continuity. Other kinds of smoothness are also relevant, and for these we
give references to the literature.

We begin with some preliminary results concerning the convergence of sub-
division methods defined by subdivision polynomials in one or two variables. First,
Theorem 5.1.3/193 gives three necessary conditions for convergence of a subdivision
process. Following this is the statement of Theorem 5.1.4/195, which shows that
if two subdivision polynomials defining convergent processes are given, then their
product defines a new convergent process, and the nodal function for the new process
is the convolution of those for the factors. This result is proved in the Appendix.

We then consider specific classes of methods. For box-spline schemes we prove
very precise and general results on convergence, but results on convergence for
General-subdivision-polynomial schemes are more difficult to obtain. In the latter
case we give some results based on elementary analyses and, for results depending
on more elaborate methods of analysis, we give references to the literature.

In the nonregular case a fairly detailed exposition is given, using the Catmull–
Clark method as an example. This analysis shows the main ideas related to con-
vergence and smoothness in the nonregular case. Spectral analysis of a subdivision
matrix corresponding to a 2-ring neighbourhood of the nonregular point is used
to show convergence, while spectral analysis of a matrix corresponding to a larger
neighbourhood is used to establish regularity of a map called the characteristic map.
Then, injectivity of the characteristic map is used to show single sheetedness, i.e.,
to show that the process converges to a well-defined surface. The chapter concludes
with a section giving suggestions for further reading on the extensive subject of
the relationship between surface shape and the spectral properties of subdivision
matrices.

189
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5.1 Preliminary results for the regular case
We first present certain general results concerning the convergence of subdivision
methods defined by subdivision polynomials. Thus, we restrict our attention for
now to the regular case (Figure 1.30/33, lower row). We analyse only the bivariate
case: corresponding results for the univariate case can be obtained by obvious
modifications. It is sufficient to study the case of convergence of methods applied to
the unit-impulse function, towards a nodal function N(y), since the results will then
apply immediately to any finite linear combination of such functions defining x(y).

In Section 4.1 we introduced a general subdivision polynomial
∑

k∈G skz
k and

asked (see (4.33)/167 in Section 4.3) if there exists a continuous function N(y), with
compact support, satisfying

N(y) =
∑
k∈G

skN(2y − kh) =
∑
k∈G

skN(2(y − kh/2)), (5.1)

or equivalently

N(y) =

(∑
k∈G

skz
k

)
N(2y) = s(z)N(2y), (5.2)

where, as usual, z denotes translation by h/2. As in Section 4.1, the finite set G is
a subset of Z + (ε1/2, ε2/2), εi ∈ {0, 1}, i = 1, 2, but the presentation is phrased in
terms of the case ε1 = ε2 = 0. There is no assumption that s or G is symmetric in
the origin.

It is convenient to extend the coefficients sk to the index set Z2 by defining
sk = 0 if k ∈ Z2 \G. Then we may write, for example,

N(y) =
∑
k∈Z2

skN(2y − kh).

We also require that N should be normalized so that
∫

R2 N(y) dy = h2 in the
bivariate case. In Section 4.3 it was shown that (5.1)/190 can be rewritten as

N(y) = (S(y)⊗N(2y))(y),

where S(y) =
∑

k∈G skδ(y − kh/2) and δ denotes the delta function, and that its
Fourier transform can be expressed as

N̂(ω) =
Ŝ(ω)

4
N̂(ω/2), (5.3)

where Ŝ(ω) =
∑

k∈G sk exp(−iωtkh/2). We also showed, in Section 4.4, that

supp (N) ⊆ conv (hG).

If such a nodal function exists, then it must be unique. In fact, using (5.3)/190

we get

N̂(ω) = N̂(ω/2ν)
ν−1∏
j=0

Ŝ(ω/2j)
4

,
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and since N̂(ω/2ν) → N̂(0) =
∫

R2 N(y) dy for every ω, we have

N̂(ω) = N̂(0)
∞∏
j=0

Ŝ(ω/2j)
4

.

See (4.46)/168. This implies that the Fourier transform N̂(ω) is unique, and hence
N(y) is unique. In the following, we use the notation Ns(h; y) for such a nodal
function when we wish to emphasize the dependence on the particular polynomial
s(z) and the parameter h, and otherwise N(h; y), Ns(y), or N(y). It is shown in
Theorem 5.1.3/193 that if the subdivision process is convergent, it is necessary that
N̂(0) = h2, as we have required.

Now consider a generalized-subdivision-polynomial surface given on its initial
grid as

x(y) =
∑
l∈Z2

p0
lNl(h; y) =

∑
l∈Z2

p0
lNl(h; y − lh) = p0(z2)N(h; y), (5.4)

where we have introduced the generating function p0(z), related to the initial grid
hZ2, defined by

p0(z) =
∑
l∈Z2

p0
l z
l.

The control vectors p0
l , l ∈ Z2, here are associated with parameter values y = lh.

We also remark that if a bivariate polynomial p(z) = p(z1, z2) is given, then p(z2)
denotes the polynomial p(z2

1 , z
2
2). Similarly, below we introduce fractional powers

such as p(z1/2ν

) = p(z1/2ν

1 , z
1/2ν

2 ).
On the refined grid hZ2/2 we then have the representation

x(y) =
∑
l

p1
lNl(h; 2(y − lh/2)) =

∑
l

p1
l z
lN(h; 2y) = p1(z)N(h; 2y),

where
p1(z) =

∑
k∈Z2

p1
kz
k

and where the control vectors p1
l , l ∈ Z2, are related to parameter values y = lh/2.

Inserting (5.2)/190 we get
p1(z) = s(z)p0(z2).

The displayed equations just given correspond to (4.9)/147 and (4.10)/147, which used
a notation that emphasized the link with the previously developed B-spline and box-
spline cases. The notation here is slightly different and is chosen to facilitate study
of the result of repeating the process many times. Thus, repeating the procedure
recursively we get

pν+1(z) = s(z)pν(z2) (5.5)

for ν = 0, 1, . . . , i.e.,

pν+1(z1/2ν

) = s(z1/2ν

)s(z1/2ν−1
)s(z1/2ν−2

) · · · s(z1/2)s(z)p0(z2), (5.6)
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where the refined generating function pν(z) =
∑
l∈Z2 pνl z

l is related to the grid
hZ2/2ν . The index in the coefficient pνl is related to the position lh/2ν ∈ R2 in the
parameter domain and we have

x(y) =
∑
l∈Z2

pνl Nl(h; 2
ν(y − lh/2ν))

=

(∑
l∈Z2

pνl z
l/2ν−1

)
N(h; 2νy)

= pν(z1/2ν−1
)N(h; 2νy).

Using the recursion relation (5.5)/191, we get

pν+1
k =

∑
l∈Z2

sk−2lp
ν
l (5.7)

for ν = 0, 1, 2, . . . , as in (4.11)/147. If we now take p0(z) ≡ 1, i.e., p0
0 = 1 and p0

l = 0
if l �= 0, then

x(y) = N(h; y)

in (5.4)/191, and from (5.6)/191 we conclude that

pν+1(z1/2ν

) = pν(z1/2ν

)s(z), (5.8)

or equivalently
pν+1(z) = pν(z)s(z2ν

). (5.9)

(Exercise 1/245 asks that this, and two of the other steps in the derivation being pre-
sented here, be explained in slightly more detail.) This gives the following recursion
formula:

pν+1
k =

∑
i∈G

sip
ν
k−i2ν . (5.10)

To obtain the coefficients in pν(z1/2ν−1
) for ν ≥ 1 we write

pν(z1/2ν−1
) =

ν−1∏
j=0

s(z1/2j

)

=
ν−1∏
j=0

∑
ij∈Z2

sijz
ij/2j


=
∑

si0si1si2 · · · siν−1z
i0+i1/2+i2/4+···+iν−1/2ν−1

=
∑
i∈Z2

pνi z
i/2ν−1

, (5.11)

where

pνi =
∑

i/2ν−1=i0+i1/2+···+iν−1/2ν−1

si0si1si2 · · · siν−1 . (5.12)
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In (5.12)/192 the summation is, for a fixed index i ∈ Z2, over all combinations of
indices i0, i1, . . . , iν−1 in Z2 such that i/2ν−1 = i0 + i1/2 + · · ·+ iν−1/2ν−1.

We now turn to the question of convergence.

Definition 5.1.1. We say that the subdivision process with p0(z) ≡ 1 converges
uniformly towards a continuous limit function, which we denote by Ns(y), if

max
k∈Z2

|Ns(kh/2ν)− pνk| .= εsν → 0 (5.13)

as ν → ∞. This is equivalent to the statement that the function sequence Pν(y),
defined by the requirement that Pν(y) is continuous everywhere, that Pν(kh/2ν) = pνk
for all k ∈ Z, and that it is bilinear on all squares 2−νh{y ∈ R2 : k1 ≤ u ≤
k1 + 1, k2 ≤ v ≤ k2 + 1}, should converge uniformly, i.e.,

Pν(y) → Ns(y) uniformly as ν →∞.
This definition should be compared with Definition 4.7.1/182, which is appli-

cable in a more general situation.

Remark 5.1.2. In (5.12)/192 the sum is over i ∈ (2νconv(G))∩Z2 in the bivariate
case and i ∈ (2νconv(G)) ∩ Z in the univariate case. This means that the number
of nonzero coefficients pνi is limited by C4ν in the bivariate case and by C2ν in the
univariate case, where C is some constant.

From Theorem 4.4.1/170, the function Ns in (5.13)/193 has compact support,
and since it is explicitly assumed to be continuous, it must also be bounded.

Before formulating the following theorem we recall from Theorem 4.5.1/172

that, in the bivariate case, the subdivision process defined by a polynomial s(z) =
s(z1, z2) is affine invariant if and only if

s(1,−1) = s(−1, 1) = s(−1,−1) = 0 and s(1, 1) = 4,

or, equivalently, if and only if
∑
l sk−2l = 1 for all k ∈ Z2. In the univariate case

the condition is s(−1) = 0 and s(1) = 2.

Theorem 5.1.3. Assume that the General-subdivision-polynomial subdivision pro-
cess converges in the sense of Definition 5.1.1/193 to a function that is not identically
zero. Then

• the process is affine invariant,

• the limit function N(y) satisfies the 2-scale relation

N(y) =
∑
k∈G

skN(2y − kh) = s(z)N(2y),

• the limit function N(y) satisfies

N(h; y) = N(1; y/h) (5.14)
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and ∫
R2
N(h; y) dy = h2. (5.15)

Proof. Adding and subtracting terms in (5.7)/192, we get

pν+1
k −N(kh/2ν+1)

=
∑
l∈Z2

sk−2l(pνl −N(lh/2ν)) +
∑
l∈Z2

sk−2l(N(lh/2ν)−N(kh/2ν+1))

+N(kh/2ν+1)

(∑
l∈Z2

sk−2l − 1

)
.

By (5.13)/193 and the fact that G is a finite set, we conclude that the left-hand
side and the first term on the right-hand side tend to zero as ν → ∞. Since
k − 2l ∈ G, we have that G/2ν+1 � k/2ν+1 − l/2ν → 0 as ν → ∞, and there-
fore also the second term on the right-hand side tends to zero. Consequently,
N(kh/2ν+1)

(∑
l∈Z2 sk−2l − 1

) → 0 as |k| and ν tend to ∞. Let kij = (i, j)t,
where i, j ∈ {0, 1}. For fixed (i, j), every k ∈ Z2 can be written as k = kij + 2r
for some r ∈ Z2. Further, it is clear that

∑
l∈Z2 sk−2l =

∑
l∈Z2 skij−2l. Now choose

y ∈ R2 such that N(y) �= 0 and a sequence {kν}∞ν=0 ⊂ Z2 such that kν = kij + 2rν
and kν/2ν+1 → y as ν →∞. Then

N(kνh/2ν+1)

(∑
l∈Z2

skij−2l − 1

)
→ N(y)

(∑
l∈Z2

skij−2l − 1

)
= 0,

and we conclude that
∑
l∈Z2 skij−2l− 1 = 0 for each of the four vectors kij , and the

first statement of the theorem is proved.
For the proof of the second statement we use (5.10)/192. Adding and subtract-

ing terms, we have

(pν+1
k −N(kh/2ν+1)) +N(kh/2ν+1)

=
∑
i∈G

si(pνk−i2ν −N(kh/2ν − ih)) +
∑
i∈G

siN(kh/2ν − ih).

Using (5.13)/193 we conclude that∣∣∣∣N(kh/2ν+1)−
∑
i∈G

si(pνk−i2ν −N(kh/2ν − ih))
∣∣∣∣ ≤ 2εν

for all k and i. Now for given y ∈ R2 choose a sequence {lν}∞ν=0 ⊂ Z2 such that
lνh/2ν+1 → y as ν → ∞. Taking limits, we obtain the second statement of the
theorem.

Next, we observe that the subdivision procedure defines the coefficients pνk
recursively by pν+1

k =
∑
l∈Z2 sk−2lp

ν
l with p0

0 = 1 and p0
l = 0 if l �= 0. This means
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that the values pνk are related to the parameter value kh/2ν , k ∈ Z2, independently
of the value of h. From this we conclude that (5.14)/193 is valid and that it suffices
to prove (5.15)/194 for h = 1.

We have ∑
k∈Z2

N(k/2ν)4−ν →
∫

R2
N(y) dy

as ν → ∞ since the integrand in the right-hand side is continuous with compact
support and the left-hand side is its Riemann sum with the grid-size 2−ν . Moreover,
from (5.13)/193 it then follows that∑

k∈Z2

4−νpνk →
∫

R2
N(y) dy.

By the recursion relation (5.7)/192 we have

pνk =
∑

l:k−2l∈G
sk−2lp

ν−1
l for k ∈ Z2.

Summing over k and using that
∑
k∈Z2 sk−2l =

∑
k∈Z2 sk = 4, we conclude that∑

k∈Z2

pνk = 4
∑
k∈Z2

pν−1
k = · · · = · · · = 4ν

∑
k∈Z2

p0
k = 4ν

for all ν, and it follows that

1 =
∑
k∈Z2

4−νpνk →
∫

R2
N(y) dy;

i.e., the constant sequence with all terms equal to 1 converges to the integral on the
right. The proof is now complete.

We now state a theorem concerning the convergence of subdivision procedures
defined by subdivision polynomials that are the product of subdivision polynomi-
als corresponding to other convergent procedures. The theorem is proved in the
Appendix (Section A.4).

Theorem 5.1.4. Assume that we are given two subdivision polynomials s(z) and
w(z) defining convergent subdivision processes in the sense of Definition 5.1.1/193.
Then in the bivariate case the polynomial ψ(z) = s(z)w(z)/4 also defines a conver-
gent process producing the continuous nodal function

Nψ(h; y) =
1
h2N

s(h; y)⊗Nw(h; y). (5.16)

In the univariate case the same conclusion is valid with ψ(z) = s(z)w(z)/2 and
with the factor 1

h in the right-hand sides of (5.16)/195 and (A.35)/321. Further, the
convergence for the subdivision associated with the polynomial ψ is uniform in the
sense of Definition 5.1.1/193.
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Theorem 5.1.4/195 is interesting, for example, in connection with box splines.
Thus, in the context of the four-direction box splines discussed in Example 3.2.7/104,
the theorem states that the Zwart–Powell element (the nodal function generated by
the {Midedge}2 method in the regular case), convolved with itself, is the nodal
function generated by 4-8 subdivision in the regular case; see Section 3.7.2. In
fact, from (3.58)/136 we have for the {Midedge}2 method the centered subdivision
polynomial

sME(z) .=
1
4
z
−1/2
1 z

−3/2
2 (1 + z1)(1 + z2)(1 + z1z2)(1 + z−1

1 z2), (5.17)

and according to (3.59)/137, sME(z)sME(z)/4 is the centered subdivision polynomial
corresponding to the 4-8 subdivision method, i.e.,

s4-8(z)
.=

1
64z1z3

2
(1 + z1)2(1 + z2)2(1 + z1z2)2(1 + z−1

1 z2)2, (5.18)

which provides a confirmation of Theorem 5.1.4/195.
It should be noted, however, that not every factorization of a subdivision

polynomial gives a useful result. For example, from (4.22)/159 we have that

s4-8(z) = sP (z1z2, z−1
1 z2)sP (z2

1 , z
2
2), (5.19)

where

sP (z1, z2) = 1/2 + (1/4)(z1/2
1 z

1/2
2 + z

−1/2
1 z

1/2
2 + z

1/2
1 z

−1/2
2 + z

−1/2
1 z

−1/2
2 )

+ (1/8)(z1 + z2 + z−1
1 + z−1

2 ).

The method defined by twice the second factor on the right in (5.19)/196, with
subdivision polynomial s(z1, z2) defined by

2sP (z2
1 , z

2
2) = 1 +

1
2
(z1z2 + z−1

1 z2 + z1z
−1
2 + z−1

1 z−1
2 ) +

1
4
(z2

1 + z2
2 + z−2

1 + z−2
2 ),

is not affine invariant, and therefore not convergent in the sense of Definition 5.1.1/193.
(It must be used in alternation with the first factor on the right in (5.19)/196 to
produce a convergent method.) That the method is not affine invariant follows
from Theorem 4.5.1/172. In fact, s(1, 1) = 4, and s(1,−1) = s(−1, 1) = 0, but
s(−1,−1) = 4 �= 0. On the other hand, the method defined by twice the first factor
on the right in (5.19)/196, i.e., the method with subdivision polynomial s(z1, z2)
defined by

2sP (z1z2, z−1
1 z2) = 1 +

1
2
(z2 + z−1

1 + z1 + z−1
2 ) +

1
4
(z1z2 + z−1

1 z2 + z−1
1 z−1

2 + z1z
−1
2 ),

happens to be affine invariant: s(1, 1) = 4 and s(1,−1) = s(−1, 1) = s(−1,−1) = 0.
Similar negative remarks hold for the factorization (4.19)/157 of the subdivision

polynomial for the {√3}2 method. The method defined by three times the second
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factor on the right in (4.19)/157, with subdivision polynomial s(z1, z2) defined by

3sP (z3
1 , z

3
2) = 2 + (z1z2 + z−1

1 z2
2 + z−2

1 z2 + z−1
1 z−1

2 + z1z
−2
2 + z2

1z
−1
2 )

+
1
6
(z3

1 + z3
2 + z−3

1 z3
2 + z−3

1 + z−3
2 + z3

1z
3
2),

where sP is defined by (4.20)/157, is not affine invariant. Thus, although s(1, 1) = 9
as required, none of the equations

∑
l∈Z2 sk−3l = 1 (mentioned in the solution to

Exercise 9/187 in Chapter 4) is satisfied, k ∈ {(k1, k2) : 0 ≤ k1, k2 ≤ 2}. Furthermore,
the method defined by three times the first factor on the right in (4.19)/157 fails to
be affine invariant; see Exercise 2/245 at the end of this chapter.

5.2 Convergence of box-spline subdivision processes
In this section, we give two general theorems on linear and quadratic convergence
for box-spline nodal functions. As in Section 5.1, here we are concerned only with
the regular case (Figure 1.30/33, lower row, first and second columns).

Assume that we are given a box-spline subdivision polynomial

s∗(z) = 4
m∏
i=1

(1 + zei

2

)
=

∑
k∈G∗

m

s∗kz
k (5.20)

as in (3.19)/114. We consider the case that the parameter value α in Theorem 3.3.2/111

is such that m−1−α ≥ 0, i.e., the box-spline nodal function N∗(hem; y) is at least
continuous. Since we must have α ≥ 2, this means that m is at least 3. That
N∗(hem; y) is piecewise polynomial and continuous implies that all first derivatives
are continuous over all subdomains of polynomiality and that they have only jump
discontinuities. It also means, since m − 2 ≥ α − 1 (the largest number of parallel
vectors in em), that the subset {e1, e2, . . . , em} \ {ek} obtained by omitting one of
the vectors in em spans R2 and defines an (m− 1)-order box-spline nodal function
which is piecewise continuous with at most jump discontinuities.

Before proceeding we introduce some notation. The notation

∆eζ
ν
k

.= ζνk − ζνk−e
denotes a first backward difference, while the notations

∆ei∆ejζ
ν
k = ζνk − ζνk−ej

− ζνk−ei
+ ζνk−ej−ei

and

∆2
ei
ζνk = ζνk − 2ζνk−ei

+ ζνk−2ei

denote second differences. Also let em(i) denote the sequence of vectors obtained from
em = {e1, e2, . . . , em} by omitting ei, and let em(ij ) denote that obtained by omitting
both ei and ej . Then, N∗(hem(i); y) and N∗(hem(ij ); y) are the corresponding nodal
functions, and the refined subdivision polynomials for N∗(hem; y), N∗(hem(i); y), and
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N∗(hem(ij ); y) are denoted by, respectively,

ζν(z1/2ν−1
) =

∑
k∈Z2

ζνk z
k/2ν−1

,

pν(z1/2ν−1
) =

∑
k∈Z2

pνkz
k/2ν−1

,

and
κν(z1/2ν−1

) =
∑
k∈Z2

κνkz
k/2ν−1

.

The polynomials pν and let κν depend on em(i) and em(ij ), respectively, but this is
suppressed in the notation. Also, these polynomials correspond to the uncentered
subdivision polynomial s∗, but to reduce the notational complexity, we have not
added the symbol ∗ to the coefficients ζνk , pνk, and κνk. This creates no problem,
except in the case of ζνk : in Theorem 5.2.7/205, we need to introduce the correspond-
ing constants for the centered box splines, and these constants would normally be
denoted ζνk , so that a mental change of notation is necessary immediately preceding
Theorem 5.2.7/205.

5.2.1 Linear convergence

We first formulate a lemma.

Lemma 5.2.1. If N∗(hem; y) is continuous, then

|∆ej
ζνk | = |ζνk − ζνk−ej

| ≤ h/2ν

for all k ∈ Z2 and all j, j = 1, 2, . . . ,m.

Proof. It suffices to carry out the proof for j = m. Using Theorem 3.2.3/99 we
have

DemN
∗(hem; y) =

1− z2em

h
N∗(hem−1; y) (5.21)

with z2em denoting translation by the vector hem. Now, let us introduce the notation

pν(z1/2ν−1
) =

ν−1∏
i=0

s∗m−1(z
1/2i

) =
∑
µ∈Z2

pνµz
µ/2ν−1

for the refined subdivision polynomial corresponding to the box-spline subdivision
polynomial

s∗m−1(z) = 4
m−1∏
i=1

(1 + zei

2

)
=

∑
k∈Gm−1

s∗kz
k.
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Then we have

N∗(hem; y) = ζν(z1/2ν−1
)N∗(hem/2ν ; y)

=

(∑
k∈Z2

ζνk z
k/2ν−1

)
N∗(hem/2ν ; y) (5.22)

and

N∗(hem−1; y) = pν(z1/2ν−1
)N∗(hem−1/2ν ; y)

=

(∑
k∈Z2

pνkz
k/2ν−1

)
N∗(hem−1/2ν ; y). (5.23)

Now, using (5.22)/199 and the fact that differentiation commutes with translation,
we have

Dem
N∗(hem; y) = ζν(z1/2ν−1

)DemN
∗(hem/2ν ; y). (5.24)

Inserting (5.21)/198 with hem replaced by hem/2ν , this becomes

DemN
∗(hem; y) = ζν(z1/2ν−1

) 2ν
1− zem/2ν−1

h
N∗(hem−1/2ν ; y).

Again, using (5.21)/198 and (5.23)/199 we have

1− z2em

h
pν(z1/2ν−1

)N∗(hem−1/2ν ; y)

= 2ν
1− zem/2ν−1

h
ζν(z1/2ν−1

)N∗(hem−1/2ν ; y), (5.25)

i.e.,

2ν
1− zem/2ν−1

h
ζν(z1/2ν−1

) =
1− z2em

h
pν(z1/2ν−1

).

For the coefficients of these polynomials we then get

2ν
1− zem/2ν−1

h

∑
µ∈Z2

ζνµz
µ/2ν−1

 =
1− z2em

h

(∑
k∈Z2

pνkz
k/2ν−1

)
(5.26)

and, identifying powers of z,

ζνk − ζνk−em
=

h

2ν
(pνk − pνk−2νem

) (5.27)

for all k ∈ Z2. Now by (5.7)/192,

pνk =
∑
l∈Z2

s∗k−2lp
ν−1
l
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and similarly

pνk−2νem
=
∑
l∈Z2

s∗k−2(l+2ν−1em)p
ν−1
l

=
∑
l∈Z2

s∗k−2lp
ν−1
l−2ν−1em

.

This gives
pνk − pνk−2νem

=
∑
l∈Z2

s∗k−2l(p
ν−1
l − pν−1

l−2ν−1em
).

Using that s∗k−2l ≥ 0 for all k, l ∈ Z2 and that
∑
l∈Z2 s∗k−2l = 1, we conclude that

max
k∈Z2

|pνk − pνk−2νem
| ≤ max

l∈Z2
|pν−1
l − pν−1

l−2ν−1em
|.

By recursion we have

max
k∈Z2

|pνk − pνk−2νem
| ≤ max

k∈Z2
|p0
k − p0

k−em
| = 1

and by (5.27)/199 we have

max
k∈Z2

|ζνk − ζνk−em
| ≤ h/2ν ,

which completes the proof of the lemma.

By Remark 3.5.5/118 the vectors e1, e2, . . . , em generate Z2. This implies that
given any k ∈ Z2 there exist ki ∈ Z, 1 ≤ i ≤ m, such that

k =
m∑
i=1

kiei

or equivalently,

k =
M∑
j=1

uj ,

where ±uj ∈ em and M is the number of elements in the sum.
Now, let us introduce constants Ck, C, and C̄i defined by the set em in the

following way.

Definition 5.2.2.

Ck = min

{
m∑
i=1

|ki| : k =
m∑
i=1

kiei, ki ∈ Z

}
.

C = max
{
Ck : k ∈ Z2 ∩ (conv(G∗m))0

}
.

C̄i = min

∑
j

|kj | : ei =
∑

1≤j≤m,j 	=i
kjej

 .
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We then have the following lemma.

Lemma 5.2.3. For all l ∈ Z2 and all k ∈ Z2 we have

|∆kζ
ν
l | = |ζνl − ζνl−k| ≤ Ckh/2ν . (5.28)

Proof. We first note that

∆kζ
ν
l =

M∑
j=1

∆ujζ
ν
l−lj , (5.29)

where l1 = 0 and
lj =

∑
1≤r<j

ur for 1 < j. (5.30)

We conclude by the triangle inequality and Lemma 5.2.1/198 that

|∆kζ
ν
l | ≤Mh/2ν ,

i.e., by Definition 5.2.2/200 that

|∆kζ
ν
l | ≤ Ckh/2ν ,

and the proof is complete.

Theorem 5.2.4. If the nodal function N∗(hem; y) is continuous, then the sub-
division process, defined by s∗(z) in (5.20)/197 and with initial control points pl = 1
if l = 0 and pl = 0 otherwise, converges uniformly towards N∗(hem; y). Moreover,
the convergence is linear in the sense that

|ζνk −N∗(hem; kh/2ν)| ≤ Ch/2ν (5.31)

as ν →∞, where C is the constant in Definition 5.2.2/200.

Proof. Since
N∗(hem; y) =

∑
k∈Z2

ζνkN
∗(hem/2ν ; y − hk/2ν)

and ∑
k∈Z2

N∗(hem/2ν ; y − hk/2ν) = 1,

we get

ζνl −N∗(hem; lh/2ν) =
∑
k∈Z2

(ζνl − ζνk )N∗(hem/2ν ; (l − k)h/2ν)

=
∑
k∈Z2

(ζνl − ζνk )N∗(hem; l − k) =
∑
k∈Z2

(ζνl − ζνl−k)N∗(hem; k).
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In the last term the summation over k can be restricted to (conv (G∗m))0, and we
conclude by Lemma 5.2.3/201 that

|ζνl −N∗(hem; lh/2ν)| ≤ Ch2−ν
∑
k∈Z2

N∗(hem; k) = Ch2−ν ,

which completes the proof.

5.2.2 Quadratic convergence

To establish quadratic convergence we need a lemma analogous to Lemma 5.2.1/198.

Lemma 5.2.5. If N∗(hem; y) is continuously differentiable, then∣∣∣∣12∆ei
∆ej

ζνk

∣∣∣∣ ≤ h2/4ν (5.32)

for all k ∈ Z2 and all i, j ∈ {1, 2, . . . ,m} with i �= j. If, in addition, ei may be
written as

ei =
∑
j:j 	=i

kjej , (5.33)

then ∣∣∣∣12∆2
ei
ζνk

∣∣∣∣ ≤ C̄ih
2/4ν , (5.34)

where C̄i is as in Definition 5.2.2/200.
If ei appears at least twice in the sequence em, then by (5.32)/202 the inequal-

ity (5.34)/202 is valid with C̄i = 1.

Proof. N∗(hem; y) is in C1(R2), and therefore m − 1 − α ≥ 1 where α is the pa-
rameter value in Theorem 3.3.2/111. Since α ≥ 2 we have m ≥ 4. That N∗(hem; y)
is piecewise polynomial and in C1(R2) implies that all second derivatives are con-
tinuous over all subdomains of polynomiality and that they have at most jump
discontinuities. The subset {e1, e2, . . . , em} \ {ei, ej} obtained by omitting any two
vectors ei and ej spans R2 and defines an (m− 2)-order box-spline nodal function
with at most jump discontinuities.

If ei �= ej , we conclude by Theorem 3.2.3/99 that

DeiDej
N∗(hem; y) =

1− z2ei

h

1− z2ej

h
N∗(hem(ij ); y).

We obtain then, similarly to Lemma 5.2.1/198,

4ν
1− zei/2ν−1

h

1− zej/2ν−1

h

∑
µ∈Z2

ζνµz
µ/2ν−1


=

1− z2ei

h

1− z2ej

h

(∑
k∈Z2

κνkz
k/2ν−1

)
. (5.35)
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For the coefficients this gives, after identifying powers of z,

∆ei
∆ej

ζνk =
h2

4ν
∆2νei

∆2νej
κνk.

In the case that ei appears at least twice in the sequence em, we have in the same way

∆2
ei
ζνk =

h2

4ν
∆2

2νei
κνk.

Similarly to the proof of Lemma 5.2.1/198, we now get that

max
k∈Z2

|∆2νei∆2νejκ
ν
k| ≤ max

k∈Z2
|∆2ν−1ei

∆2ν−1ej
κν−1
k | ≤ · · · ≤ max

k∈Z2
|∆ei

∆ej
κ0
k| ≤ 2

and we conclude that ∣∣∣∣12∆ei∆ejζ
ν
k

∣∣∣∣ ≤ h2/4ν (5.36)

and, if ei appears at least twice in the sequence em, that∣∣∣∣12∆2
ei
ζνk

∣∣∣∣ ≤ h2/4ν .

In this case, (5.34)/202 holds with C̄i = 1.
For the case that ei appears only once in the sequence em we argue as follows.

Equation (5.33)/202 can be rewritten as

ei =
M∑
j=1

uj ,

where ±uj ∈ em(i) and M is the number of terms in the sum. We then have

∆eiζ
ν
k =

M∑
j=1

∆ujζ
ν
l−lj , (5.37)

where l1 = 0 and

lj =
∑

1≤r<j
ur for 1 < j.

Operating with ∆ei in (5.37)/203 we get

∆2
ei
ζνk =

M∑
j=1

∆ei
∆uj

ζνl−li−lj ,

and since ∆uj = ∆±ej , we conclude from (5.36)/203 that∣∣∣∣12∆2
ei
ζνk

∣∣∣∣ ≤ C̄ih
2/4ν

with C̄i = M , which completes the proof.
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Lemma 5.2.6. If N∗(hem; y) is continuously differentiable and every ei ∈ em may
be written as an integer combination

ei =
∑

1≤j≤m,j 	=i
kjej , kj ∈ Z,

then for every k ∈ Z2 we have

1
2
|∆2

kζ
ν
l | ≤ C∗h2/4ν , (5.38)

where

C∗ = Ck(Ck − 1) + Ck max
i
C̄i .

If in particular k ∈ Z2 ∩ (conv(G∗m))0, then C∗ = C(C − 1) + Cmaxi C̄i.

Proof. Let k =
∑M

j=1 uj with ±uj ∈ em and Ck = M . Then

∆kζ
ν
l =

∑
1≤j≤M

∆uj
ζνl−lj

with l1 = 0 and lj =
∑

1≤r<j ur for j > 1. Operating with ∆k on both sides we get

∆2
kζ
ν
l =

∑
1≤i,j≤M

∆ui∆ujζ
ν
l−li−lj

and by Lemma 5.2.5/202 and the triangle inequality, we conclude that

1
2
|∆2

kζ
ν
l | ≤

1
2

∑
i	=j
|∆ui∆ujζ

ν
l−li−lj |+

1
2

∑
i

|∆2
ui
ζνl−2li | ≤

(
M(M − 1)+

M∑
i=1

C̄i

)
h2/4ν

from which (5.38)/204 follows.

Before formulating a result on quadratic convergence we recall the definition
of centered box splines:

N(hem; y) = N∗(hem; y + hē/2),

where ē =
∑m
i=1 ei. The centered box splines (see Section 3.5.2) have the symmetry

property
N(hem; y) = N(hem;−y).

We now make a change of notation, letting ζνk denote the corresponding coefficients:

ζνk := ζνk+(2ν−1)ē/2.

We then have the following theorem on quadratic convergence.
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Theorem 5.2.7. Assume that N(hem; y) is continuously differentiable and that
every ei ∈ em may be written as an integer combination

ei =
∑
j 	=i

kjej .

Then

|ζνl −N(hem; lh/2ν)| ≤ C∗h2/4ν ,

where C∗ = C(C − 1) + Cmaxi C̄i.

Proof. Similarly to the proof of Theorem 5.2.4/201, we get

ζνl −N(hem; lh/2ν) =
∑
k∈Z2

(ζνl − ζνk )N(hem/2ν ; (l − k)h/2ν)

=
∑
k∈Z2

(ζνl − ζνk )N(hem; l − k) =
∑
k∈Z2

(ζνl − ζνl−k)N(hem; k),

where the last summation can be taken over Z2∩(conv(G∗m))0. Changing summation
index k to −k in the last sum and using that N(hem;−k) = N(hem; k), we get

ζνl −N(hem; lh/2ν) =
∑
k∈Z2

(ζνl − ζνl+k)N(hem; k),

and taking sums,

ζνl −N(hem; lh/2ν) =
1
2

∑
k∈Z2

(2ζνl − ζνl+k − ζνl−k)N(hem; k), (5.39)

i.e.,

ζνl −N(hem; lh/2ν) = −1
2

∑
k∈Z2

∆2
kζ
ν
l+kN(hem; k).

In the last term the summation over k can again be restricted to (conv (Gm))0, and
we conclude by Lemma 5.2.6/204 and the triangle inequality that

|ζνl −N(hem; lh/2ν)| ≤ C∗h2/4ν
∑
k

N(hem; k) = C∗h2/4ν ,

and the proof is complete.

Example 5.2.8. The three-direction quartic box spline.
Taking e6 = {(1, 0)t, (−1, 0)t, (0, 1)t, (0,−1)t, (1, 1)t, (−1,−1)t}, we get the set

G∗6 as in Figure 3.19/133, and the following for the constants in Definition 5.2.2/200:

Ck = |k1|+ |k2| for any k ∈ Z2,

C = max{Ck : k ∈ Z2 ∩ (conv(G∗6))
0} = 2,

C̄i = 2 for all vectors ei ∈ e6.
Consequently, C∗ = C(C − 1) + Cmaxi C̄i = 2 + 2 · 2 = 6.
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The next proposition shows that for most subdivision methods defined by
subdivision polynomials, quadratic convergence is the best one can expect. This
proposition applies beyond the box-spline case.

Proposition 5.2.9. Assume that we are given a subdivision polynomial defining a
convergent subdivision procedure and a nodal function N(h; y) having the following
properties:

(i) N(h; y) = N(h;−y).
(ii) N(h; y) ≥ 0 everywhere.

(iii) There is at least one point y0 ∈ supp (N(h; ·)) such that N(h; y0) > 0, N(h; ·)
is twice continuously differentiable in a neighbourhood of y0, and the Hessian
H of N has the property that H(y0) is either positive or negative definite.

Then an inequality of the form

|pνl −N(h; lh/2ν)| ≤ ενh
2/4ν ,

valid for all l and with εν → 0 as ν → ∞, is impossible, unless pνl = N(h;hl/2ν)
for all l and ν (interpolating subdivision). Here we have used the notation

pν(z1/2ν−1
) =

∑
k∈Z2

pνkz
k/2ν−1

for the refined subdivision polynomials for N(h; y), so that |pνl −N(h;hl/2ν)| → 0
as ν →∞.

Proof. Arguing as in the proof of Theorem 5.2.7/205 we get, similarly to (5.39)/205,

pνl −N(h; lh/2ν) =
1
2

∑
k∈Z2

(2pνl − pνl+k − pνl−k)N(1; k), (5.40)

and indices other than k = 0 enter into this sum, since the subdivision is assumed
not to be interpolating. Inserting

pνl = N(h; lh/2ν) + δν,l (5.41)

in (5.40)/206, where |δν,l| ≤ ενh
2/4ν , we have

δν,l =
1
2

∑
k∈Z2

(
2N(h; lh/2ν)−N(h; (l + k)h/2ν)−N(h; (l − k)h/2ν))N(1; k)

+
1
2

∑
k∈Z2

(2δν,l − δν,l+k − δν,l−k)N(1; k).

Now, by Taylor’s theorem we get

2N(h; lh/2ν)−N(h; (l + k)h/2ν)−N(h; (l − k)h/2ν)
= −h

2

4ν
ktH(ξ)k,
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where H denotes the Hessian of N(h; y) and ξ = ξ(l, k, ν) is some point on the
segment {y ∈ R2 : y = (l + tk)h/2ν ,−1 < t < 1}. Consequently,

−h
2

4ν
1
2

∑
k∈Z2

ktH(ξ(l, k, ν))kN(1; k)

= δν,l − 1
2

∑
k∈Z2

(2δν,l − δν,l+k − δν,l−k)N(1; k). (5.42)

Now, since in (5.42)/207, k is in the bounded set supp (N(1, ·)), and since H(y0) is
definite, we may choose sequences ν, l in such a way that ξ(l, k, ν) → y0 and so that
|ktH(ξ(l, k, ν))k| ≥ c for some constant c > 0 if k �= 0. Using that |δν,l| ≤ εν

h2

4ν ,
N(1; k) ≥ 0,

∑
k∈Z2 N(1; k) = 1, and the triangle inequality, we get

c
h2

4ν
≤ εν

h2

4ν
+

1
2
4εν

h2

4ν
= 3εν

h2

4ν
,

i.e.,
0 < c ≤ 3εν → 0,

which is a contradiction.

It was mentioned, immediately before the statement of Theorem 5.2.7/205, that
the hypothesis (i) of Proposition 5.2.9/206 is satisfied for any centered box spline. In
fact, the Nodal-Function Computation principle mentioned in Section 4.1 ensures
more generally that if the subdivision mask is symmetric in the origin, then the
nodal function is symmetric.

A result corresponding to Theorem 5.2.9/206 is valid in the univariate case. In
this case the Hessian of N(h; y) is replaced by the second derivative N ′′(t) which is
assumed to be continuous and different from zero on some interval.

Corollary 5.2.10. For all univariate nodal spline functions Nm(h; t) with m ≥ 3
we have quadratic convergence, but not better.

Remark 5.2.11. For all interpolating subdivision methods with continuous nodal
functions, the convergence is perfect in the sense that pνl −N(h; lh/2ν) = 0 for all
l and ν.

5.3 Convergence and smoothness for general
subdivision polynomials

It was possible, in Sections 5.2 and 3.3, respectively, to give a very complete analysis
of the convergence and regularity properties of box-spline subdivision methods. In
contrast, a full analysis for General-subdivision-polynomial methods, which corre-
spond to the lower row of column 3 of Figure 1.30/33, is much more difficult. In this
section we present some useful sufficient conditions for convergence and smoothness
using elementary methods, and the results here probably represent the most we can
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do by using such methods. In Section 5.9 we give references to the literature, where
stronger results have been obtained using more elaborate analyses.

5.3.1 Convergence analysis

As always, it is sufficient to carry out the convergence analysis for an initial sequence
{p0
l }l∈Z2 with p0

0 = 1 and p0
l = 0 for l �= 0, where the limiting function, if it exists,

is the nodal function N .
In the ν th step we have a refined sequence pνl , l ∈ Z2, defining the polynomials

pν(z) =
∑
l p
ν
l z
l recursively by

pν+1(z) = s(z)pν(z2),

(see (5.5)/191) so that

pν+1
k =

∑
l∈Z2

sk−2lp
ν
l

and

pν+1(z1/2ν

) = s(z1/2ν

)s(z1/2ν−1
) · · · s(z).

Now, we introduce the piecewise bilinear and continuous function P ν de-
fined by

P ν(y) =
∑
l∈Z2

pνl1,l2N
2(h;u− l1h)N2(h; v − l2h), (5.43)

where N2(h; ·) is the first-degree univariate spline function with support in [−h, h]
and with N2(h; 0) = 1. Thus, P ν is the piecewise bilinear function which interpo-
lates the values pνl in the points y = hl/2ν . For the univariate case,

P ν(t) =
∑
l∈Z

pνl N
2(h; t− lh). (5.44)

In order to simplify notation we choose h = 1 in the following analysis. We
also use that N2(h2−ν ; t− lh2−ν) = N2(1; 2νt− l) := N2(2νt− l).

We have the following lemma.

Lemma 5.3.1. Assume that for some constants γ < 1 and c1 we have

|pνl − pνl−e| < c1γ
ν (5.45)

for all ν, where in the bivariate case e = (1, 0)t and e = (0, 1)t, and in the univariate
case e = 1. Then the subdivision process converges uniformly towards a continuous
limit function N(y) and

|N(y)− P ν(y)| ≤ cc1γ
ν/(1− γ) (5.46)

for some constant c depending only on the polynomial s(z).
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More generally, in the bivariate case the following is true. Let e1 and e2 ∈ Z2

be given and assume that they generate Z2, i.e., that every k ∈ Z2 can be written
as k = n1e1 + n2e2 for some integers n1 and n2. Also assume that the inequal-
ity (5.45)/208 is valid for e1 and e2. Then we obtain the same conclusion.

Proof. For simplicity we carry out the proof in the univariate case only. The
generalization to the bivariate case is straightforward. We have

P ν+1(t) =
∑
l∈Z

pν+1
l N2(2ν+1t− l)

=
∑
l∈Z

pν+1
2l N2(2ν+1t− 2l) +

∑
l∈Z

pν+1
2l−1N

2(2ν+1t− 2l + 1). (5.47)

Further, using (2.25)/62, with s(z) =
(
z1/2+z−1/2

2

)2
2 = z/2 + 1 + z−1/2, we have

the 2-scale relation

N2(t) = N2(2t+ 1)/2 +N2(2t) +N2(2t− 1)/2

and therefore,

N2(2νt− l) = N2(2ν+1t− 2l + 1)/2 +N2(2ν+1t− 2l) +N2(2ν+1t− 2l − 1)/2.

Inserting this into (5.44)/208 we get

P ν(t) =
∑
l∈Z

pνl
(
N2(2ν+1t− 2l + 1)/2 +N2(2ν+1t− 2l) +N2(2ν+1t− 2l − 1)/2

)
=
∑
l∈Z

pνl N
2(2ν+1t− 2l) +

∑
l∈Z

((pνl + pνl−1)/2)N2(2ν+1t− 2l + 1).

Consequently, using (5.47)/209,

P ν+1(t)− P ν(t) =
∑
l∈Z

(pν+1
2l − pνl )N2(2ν+1t− 2l)

+
∑
l∈Z

(pν+1
2l−1 − (pνl + pνl−1)/2)N2(2ν+1t− 2l + 1). (5.48)

Now, since
∑
l∈Z

sk−2l = 1 for all k, we have

pν+1
2k − pνk =

∑
l∈Z

s2k−2l(pνl − pνk) (5.49)

and

pν+1
2k−1 − (pνk + pνk−1)/2 =

∑
l∈Z

s2k−1−2l(pνl − (pνk + pνk−1)/2). (5.50)
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The values k − l in (5.49)/209 and (5.50)/209 range over a bounded set, defined by
the condition that 2k− 2l and 2k− 1− 2l should be coefficients of s(z). Therefore,

|pνl − pνk| ≤
∑
i∈Z

|pνk+i+1 − pνk+i| ≤ cc1γ
ν

and

|pνl − (pνk + pνk−1)/2| = |(pνl − pνk)/2 + (pνl − pνk−1)/2|
≤
∑
i∈Z

|pνk+i+1 − pνk+i| ≤ cc1γ
ν

for some constant c depending only on the support of s. Using the triangle inequality
in (5.48)/209, it then follows that

|P ν+1(t)− P ν(t)| ≤ cc1γ
ν .

Consequently,

∞∑
ν=0

|P ν+1(t)− P ν(t)| < cc1

∞∑
ν=0

γν = cc1/(1− γ)

and we conclude that the partial sums

P ν(t) =
ν−1∑
k=0

(P k+1(t)− P k(t))

converge uniformly on R towards a continuous limit function N(t). Further, we
have

|N(t)− P ν(t)| ≤
∞∑
k=ν

|P k+1(t)− P k(t)| ≤ cc1

∞∑
k=ν

γk = cc1γ
ν/(1− γ),

which completes the proof.

In the univariate case the conditions s(1) = 2 and s(−1) = 0 are necessary
for convergence. Consequently, for a convergent process, s(z) can be factorized as
s(z) = q(z)(1 + z) with q(z) =

∑
k qkz

k and q(1) =
∑
k qk = 1. We then have the

following theorem for the univariate case.

Theorem 5.3.2. Let s(z) be factorized as s(z) = (1 + z)q(z). Assume that the
coefficients of q satisfy the inequality∑

l∈Z

|qk−2l| ≤ γ < 1

for all k. Then, for some constant c1 depending only on the support of q, we have
|pνk − pνk−1| ≤ c1γ

ν for all k and ν, and the subdivision converges uniformly with a
convergence rate given by (5.46)/208.
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More generally, the following is valid. Assume that for some positive integer r
the coefficients of the polynomial

q̃(z) = q(z)q(z2)q(z4) · · · q(z2r−1
) =

∑
k∈Z

q̃kz
k

satisfy the inequality ∑
l∈Z

|q̃k−2rl| ≤ γ < 1 (5.51)

for all k. Then we have the same conclusion, with γ replaced by γ1/2r−1
.

Proof. We first deal with the case r = 1. We have

pν+1(z) = q(z)(1 + z)pν(z2)

and therefore

(1− z)pν+1(z) = q(z)(1− z2)pν(z2).

Since (1−z)pν+1(z) =
∑
l∈Z

(pν+1
l −pν+1

l−1 )zl and (1−z2)pν(z2) =
∑
l∈Z

(pνl −pνl−1)z
2l,

we conclude that

pν+1
k − pν+1

k−1 =
∑
l∈Z

qk−2l(pνl − pνl−1).

Then, if |pνl − pνl−1| < c1γ
ν , it follows that

|pν+1
l − pν+1

l−1 | < c1γ
ν+1,

and by induction, |pνl − pνl−1| < c1γ
ν is true for all ν. By Lemma 5.3.1/208 and the

estimate (5.46)/208 the first statement follows.
Next we turn to the second statement. To simplify, we carry out the proof

only for the case r = 2, i.e., for q̃(z) = q(z)q(z2). The general case is very similar.
We have

pν+2(z) = (1 + z)q(z)(1 + z2)q(z2)pν(z4)

and, multiplying by 1− z,
(1− z)pν+2(z) = (1− z4)q(z)q(z2)pν(z4) = q̃(z)(1− z4)pν(z4).

We conclude that

pν+2
k − pν+2

k−1 =
∑
l∈Z

q̃k−4l(pνl − pνl−1).

Then it follows that

max
k
|p2ν
k − p2ν

k−1| ≤ γmax
l
|p2ν−2
l − p2ν−2

l−1 | ≤ · · · ≤ γν max
l
|p0
l − p0

l−1|
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and

max
k
|p2ν+1
k − p2ν+1

k−1 | ≤ γmax
l
|p2ν−1
l − p2ν−1

l−1 | ≤ · · · ≤ γν max
l
|p1
l − p1

l−1|,

i.e., that

max
k
|pνk − pνk−1| ≤ c1(γ1/2)ν ,

which completes the proof.

For the analysis of convergence in the bivariate case, the following lemma is
useful.

Lemma 5.3.3. Let the polynomial s(z) be factorized as

s(z) = (1 + ze)q(z),

where e ∈ Z2 and q(1, 1) = 2. Assume that the coefficients of q satisfy the inequality∑
l∈Z2

|qk−2l| ≤ γ < 1. (5.52)

Then there exists a constant c1 depending only on the support of q such that

|pνk − pνk−e| ≤ c1γ
ν (5.53)

for all k and ν.
More generally the following is valid. Assume that for some integer r the

coefficients of the polynomial

q̃(z) = q(z)q(z2)q(z4) · · · q(z2r−1
) =

∑
k∈Z2

q̃kz
k

satisfy the inequality ∑
l∈Z2

|q̃k−2rl| ≤ γ < 1. (5.54)

Then we have the same conclusion with γ replaced by γ1/2r−1
.

The proof is very similar to the proof of Theorem 5.3.2/210 and is omitted.

Theorem 5.3.4. Let s(z) = (1 + ze1)q1(z) = (1 + ze2)q2(z), where e1 and e2 ∈ Z2

generate Z2. Assume that both factors q1 and q2 satisfy an estimate (5.52)/212,
or, more generally, that the corresponding polynomials q̃1 and q̃2 satisfy an es-
timate (5.54)/212. Then the process is convergent with a convergence rate given
by (5.46)/208, or the same rate with γ replaced by γ1/2r−1

.

Proof. By Lemma 5.3.3/212 we have

|pνk − pνk−ei
| ≤ c′1(γ

1/2r−1
)ν (5.55)
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for i = 1, 2 and some constant c′1. Then, using that

(1, 0) = n11e1 + n12e2,

(0, 1) = n21e1 + n22e2

with nij integers, we conclude that

|pνk − pνk−e| ≤ c1(γ1/2r−1
)ν (5.56)

for e = (1, 0) and e = (0, 1) with some constant c1 depending on c′1 and the numbers
nij . The convergence now follows by Lemma 5.3.1/208.

For tensor-product subdivision methods we have the following result.

Theorem 5.3.5. Assume that we are given two univariate subdivision polynomi-
als s1(z) and s2(z) defining uniformly convergent processes with nodal functions
N1(t), and N2(t), respectively. Then the subdivision process defined by the bi-
variate polynomial s1(z1)s2(z2) defines a convergent process with nodal function
N(u, v) = N1(u)N2(v).

Exercise 3/245 asks for a proof of this theorem.
By Remark 5.2.11/207, convergence of the generalized four-point method, and

the Butterfly method, is assured for all parameter values k/2k ∈ Z2/2ν , ν ≥ 0. But
in order to prove that we have convergence to a continuous limit function, which is
nontrivial, we need to use the results developed in this section, above. This is done
in the next two examples.

Example 5.3.6. Convergence for the generalized four-point method.
The generalized four-point method has the subdivision polynomial given by

(4.14)/150, i.e.,

s(z) = −wz−3 + (1/2 + w)z−1 + 1 + (1/2 + w)z − wz 3,

where w = 1/16 for the ordinary method, i.e., s(z) = (−z−3 + 9z−1 + 16 + 9z −
z3)/16. It is easy to verify that

s(z) = (−wz5 + wz4 + z3/2 + z2/2 + wz − w)(z + 1)/z3,

i.e., that s(z) = (1 + z)q(z) with

q(z) = (−wz5 + wz4 + z3/2 + z2/2 + wz − w)/z3.

We now have ∑
l

|q−2l| =
∑
l

|q1−2l| = |w|+ 1/2 + |w| = 2|w|+ 1/2,

and therefore we have uniform convergence if 2|w|+ 1/2 = γ < 1, i.e., if |w| < 1/4.
For w = 1/16 we have γ = 5/8. The convergence rate is given by the inequality
|N(t)− P ν(t)| ≤ c(1/2 + 2|w|)ν , where c is some constant.
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Example 5.3.7. Convergence for the Butterfly method.
The Butterfly method, presented in Section 4.2.1, has subdivision polynomial

given by (4.16)/153, i.e.,

s(z) = s(z1, z2) = 1 +
1
2
(z1 + z−1

1 + z2 + z−1
2 + z−1

1 z2 + z1z
−1
2 )

+ 2w(z1z2 + z−1
1 z−1

2 + z−1
1 z2

2 + z1z
−2
2 + z−2

1 z2 + z2
1z
−1
2 )

−w(z2
1z2 + z−2

1 z−1
2 + z1z

2
2 + z−1

1 z−2
2 + z−1

1 z3
2 + z1

1z
−3
2

+ z−2
1 z3

2 + z2
1z
−3
2 + z−3

1 z2
2 + z3

1z
−2
2 + z−3

1 z2 + z3
1z
−1
2 ). (5.57)

and can be factorized as

s(z) = (1 + z1)(−wz−2
1 z3

2 − wz−3
1 z2

2 + wz−2
1 z2

2 + wz−1
1 z2

2 − wz 2
2

−wz−3
1 z2 + 3wz−2

1 z2 + (1/2− 3w)z−1
1 z2 + 3wz 2 − wz 1z2

+ z−1
1 /2 + 1/2− wz−2

1 z−1
2 + 3wz−1

1 z−1
2 + (1/2− 3w)z−1

1

+ 3wz−1
1 z2 − wz−1

1 z2
2 − wz−1

1 z−2
2 + wz−2

2 + wz 1z
−2
2

−wz2
1z
−2
2 − wz1z−3

2 ), (5.58)

s(z) = (1 + z1)(1 + z2)(−wz−2
1 z2

2 − wz−3
1 z2 + 2wz−2

1 z2 + wz−1
1 z2 − wz 2

+wz−2
1 + (1/2− 4w)z−1

1 + 4w − wz 1 − wz−2
1 z−1

2

+ 4wz−1
1 z−1

2 + (1/2− 4w)z−1
2 + wz 1

1z
−1
2 − wz−1

1 z−2
2

+wz−2
2 + 2wz 1z

−2
2 − wz 2

1z
−2
2 − wz−3

1 z2), (5.59)

and

s(z) = (z1/2
1 + z

−1/2
1 )(z1/2

2 + z
−1/2
2 )(z1/2

1 z
−1/2
2 + z

−1/2
1 z

1/2
2 )

·((1/2− 6w) + 2w(z1 + z−1
1 ) + 2w(z2 + z−1

2 ) + 2w(z1z−1
2 + z−1

1 z2)

−w(z1z2 + z−1
1 z−1

2 )− w(z−2
1 z2 + z2

1z
−1
2 )− w(z−1

1 z2
2 + z1z

−2
2 )

)
. (5.60)

The factorizations in (5.59)/214 and (5.60)/214 are not needed until the next section.
By (5.58)/214 we have s(z) = (1 + z1)q(z) (defining q(z)), and it is straightfor-

ward to verify that the coefficients of q(z) =
∑
k qkz

k satisfy

max
k

∑
l∈Z2

|qk−2l| = max{1/2 + 6|w|, |1/2− 3w|+ 9|w|} = γ(w).

We find that γ(w) < 1 if and only if −1/24 < w < 1/12. In this case

γ(w) =
{

1/2 + 6w if w ≥ 0,
1/2− 12w if w < 0.

Consequently, by Lemma 5.3.3/212, maxk |pνk − pνk−e| ≤ cγν for some constant c,
where e = (1, 0). Due to the symmetry we get the same estimate for s(z) =
(1 + z2)q(z) and e = (0, 1). By Theorem 5.3.4/212 we have convergence with rate
given by (5.46)/208.
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5.3.2 Smoothness

The nodal function N(y) constructed in the previous section is continuous if the
convergence criteria are valid. In order to establish higher-order regularity, tech-
niques similar to those in the previous section may be used. We first give a theorem
for the univariate case.

Theorem 5.3.8. Assume that

s(z) =
(1 + z

2

)k
(1 + z)q(z)

with k a positive integer. Also assume that q satisfies the conditions of Theo-
rem 5.3.2/210. Then the subdivision process is convergent and N ∈ Ck(R).

Proof. We give the proof for the case that k = 1 and the parameter r in Theo-
rem 5.3.2/210 is equal to 1. Consider the differences{

pνl − pνl−1

2ν

}∞
ν=0

=
{

∆pνl
2ν

}∞
ν=0

,

where ∆ denotes a backward difference. Since

pν+1(z) =
(1 + z)2

2
q(z)pν(z2),

we have

(1− z)2pν+1(z) =
1
2
q(z)(1− z2)2pν(z2).

Now, if q(z) =
∑
i∈Z

qiz
i, it follows that

∆2pν+1
i =

1
2

∑
l∈Z

qi−2l∆2pνl ,

i.e.,

2ν+1(∆pν+1
i −∆pν+1

i−1 ) =
∑
l∈Z

qi−2l2ν(∆pνl −∆pνl−1).

Then, if

2ν |∆pνl −∆pνl−1| ≤ cγν ,

it follows (using the hypothesis of Theorem 5.3.2/210 with r = 1) that

2ν+1|∆pν+1
l −∆pν+1

l−1 | ≤
(∑
l∈Z

|qi−2l|
)
cγν ≤ cγν+1,
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and by induction that

2ν |∆pνl −∆pνl−1| ≤ cγν

for all ν.
It now follows from Lemma 5.3.1/208 that for some continuous function N1(t),

|N1(t)− 2ν∆pνl | → 0

uniformly as |t− l/2ν | → 0. Introducing the notation

pν(t) = pνl N
2(2νt− l),

we have, using (2.61)/81 with h = 2−ν , that

(pν)′(t) =
∑

l∈Z+1/2

(pνl+1/2 − pνl−1/2)2
νN1(2νt− l)

and we conclude that (pν)′(t)−N1(t) → 0 uniformly as ν →∞. Therefore, pν(t)−
pν(0)− ∫ t0 N1(s) ds→ 0 uniformly, i.e.,

pν(t) → pν(0) +
∫ t

0
N1(s) ds = N(t),

which proves that N ∈ C1(R).

Example 5.3.9. Smoothness for the generalized four-point method.
For the polynomial s(z) = wz−3 + (1/2 + w)z−1 + 1 + (1/2 + w)z − wz 3, we

have the factorization

s(z) = 2(−wz 4 + 2wz 3 + (1/2− 2w) + 2wz − w)(1 + z)2/2 =
1 + z

2
(1 + z)q(z)

with q(z) = 2(−wz 4 + 2wz 3 + (1/2 − 2w) + 2wz − w) =
∑
k∈Z

qkz
k. In order to

apply Theorem 5.3.2/210, we calculate∑
l∈Z

|q1−2l| = 2(2|w|+ 2|w|) = 8|w|

and ∑
l∈Z

|q−2l| = 2(|w|+ |1/2− 2w|+ |w|) = 4|w|+ 2|1/2− 2w|.

It is easy to see that 4|w|+2|1/2−2w| ≥ 1 for all w, which means that the simplest
smoothness criterion (r = 1) of Theorems 5.3.8/215 and 5.3.2/210 fails.

We then turn to the criterion of Theorems 5.3.8/215 and 5.3.2/210 with the
parameter r = 2. We compute the polynomial q(z)q(z2), and after simple (although
slightly tedious) calculations we get

q̃(z) = q(z)q(z2)
= 4(w2z12 − 2w2z11 − (w/2)z10 + 2w2z9 + (1/2− w)wz8 + wz7

+ (1/4− 2w)z6 + wz5 + (1/2− w)wz4 + 2w2z3 − (w/2)z2 − 2w2z + w2).
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Now∑
l

|q̃−4l| = 4(w2 + 2|(1/2− w)w|+ w2) = 8w2 + 8|(1/2− w)w|,∑
l

|q̃1−4l| = 4(2w2 + |w|+ 2w2) = 16w2 + 4|w|,∑
l

|q̃2−4l| = 4(|w|/2 + |1/4− 2w|+ |w|/2) = 4|w|+ |1− 8w|,∑
l

|q̃3−4l| = 4(2w2 + |w|+ 2w2) = 16w2 + 4|w|.

We see that w = 1/16 permits γ = 3/4 in (5.54)/212 with r = 2, and therefore the
nodal function is in C1(R) (see [176, p. 35]).

A closer analysis gives that

• γ ≥ 1 for w ≤ 0, and the smoothness criterion fails;

• γ = 1− 4w < 1 for 0 < w ≤ (
√

2− 1)/2, and we have N ∈ C1(R);

• γ = 16w2+4w < 1 for (
√

2−1)/2 ≤ w < (
√

5−1)/2, and we have N ∈ C1(R);

• γ ≥ 1 for w ≥ (
√

5− 1)/2, and the smoothness criterion fails.

The smallest value for γ(w) is obtained for w = (
√

2 − 1)/2 which gives the value
γ = 2−√2.

For the bivariate case it is more difficult to formulate general results. However,
Lemma 5.3.3/212 can be used as a tool, as demonstrated in the following smoothness
analysis of the Butterfly method.

Example 5.3.10. Smoothness for the Butterfly method.
By (5.60)/214 the nodal function N(u, v) for the Butterfly method is associated

with a polynomial

s(z) = (z1/2
1 + z

−1/2
1 )(z1/2

2 + z
−1/2
2 )(z1/2

1 z
−1/2
2 + z

−1/2
1 z

1/2
2 )q(z)

with q(1) = 1/2. Now, let N1(u, v) and N2(u, v) denote the nodal functions for the
subdivision methods associated with the polynomial subfactors

s1(z)
.= (z1/2

2 + z
−1/2
2 )(z1/2

1 z
−1/2
2 + z

−1/2
1 z

1/2
2 )2q(z) = (z1/2

2 + z
−1/2
2 )q1(z)

and

s2(z)
.= (z1/2

1 + z
−1/2
1 )(z1/2

1 z
−1/2
2 + z

−1/2
1 z

1/2
2 )2q(z) = (z1/2

1 + z
−1/2
1 )q2(z),

respectively, so that s(z) = (z1/2
1 + z

−1/2
1 )s1(z) and s(z) = (z1/2

2 + z
−1/2
2 )s2(z).

Here, q1(z) = q2(z) = (z1/2
1 z

−1/2
2 + z

−1/2
1 z

1/2
2 )2q(z). For the Fourier transforms of
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the nodal functions, we then have

N̂(ω1, ω2) =
sin(ω1/2)
ω1/2

N̂1(ω1, ω2)

and

N̂(ω1, ω2) =
sin(ω2/2)
ω2/2

N̂2(ω1, ω2).

We have the following lemma.

Lemma 5.3.11. If the functions N1 and N2 are continuous, then N ∈ C1(R2).

Proof. Let

F (u, v) =
∫ 1/2

−1/2
N1(u− t, v) dt.

Taking the Fourier transform we get

F̂ (ω1, ω2) =
∫ 1/2

−1/2
e−iω1tN̂1(ω1, ω2) dt

=
eiω1/2 − e−iω1/2

iω1
N̂1(ω1, ω2) =

sin(ω1/2)
ω1/2

N̂1(ω1, ω2) = N̂(ω1, ω2).

Consequently, iω1F̂ (ω1, ω2) = (eiω1/2 − e−iω1/2)N̂1(ω1, ω2), and it follows (see item
2 in Table A.1/311) that

∂uF (u, v) = N1(u+ 1/2, v)−N1(u− 1/2, v)

is continuous. In the same way it follows that

∂vF (u, v) = N2(u, v + 1/2)−N2(u, v − 1/2)

is continuous, and the proof is complete.

By this lemma we conclude that in order to prove that N ∈ C1(R2), it suffices
to prove that the subdivision processes associated with the polynomials

s1(z) = (z1/2
2 + z

−1/2
2 )q1(z)

and

s2(z) = (z1/2
1 + z

−1/2
1 )q2(z)

are uniformly convergent towards continuous limit functions. For this we use
Lemma 5.3.3/212.

By (5.59)/214 we have s1(z) = (1 + z2)q∗(z) where

q∗(z) = (z1/2
1 z

−1/2
2 + z

−1/2
1 z

1/2
2 )2q(z)

= 2(−wz−2
1 z2

2 − · · · − wz−3
1 z2)
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is equal to twice the last factor in (5.59)/214. We now apply Lemma 5.3.3/212 with
r = 1 and calculate maxk

∑
l∈Z2 |q∗k−2l|. We see then that∑

l∈Z2

|q∗−2l| = 16|w|

and ∑
l∈Z2

|q∗(−1,0)−2l| = |1− 8w|+ 8|w| ≥ 1 for all w.

Therefore, as for the generalized four-point method, the simplest version of the
smoothness criterion of Lemma 5.3.3/212 fails.

We then take the parameter r = 2 and compute

γ(w) = max
k

∑
l∈Z2

|q̃∗k−4l|

for the polynomial q̃∗(z) = q∗(z)q∗(z2), which can be done using symbolic compu-
tation. The result is the following (the details are left to Project 1/246). If

w ∈W = (0, (
√

17− 1)/2), (5.61)

then we have |γ(w)| < 1 and consequently

|pνk − pνk−(0,1)| ≤ c1(γ1/2)ν

for all k and ν, where pνk are the elements of the refined control sequence for the
nodal function N1(y). Moreover, explicit expressions for γ(w) when w ∈ W can
be obtained. Again, the calculations are long and tedious and are best performed
using symbolic computation. For w = 1/16 we get γ = 7/8.

Next, s1(z) may also be written as s1(z) = (1 + z1z
−1
2 )q∗∗(z) with q∗∗(z) =

(z1/2
2 + z

−1/2
2 )2q(z). We apply Lemma 5.3.3/212 for q∗∗. By the symmetry of the

problem, the values of γ(w) will be the same as for q∗. It follows that

|pνk − pνk−(1,−1)| ≤ c1(γ1/2)ν .

Then, if we apply Lemma 5.3.1/208 with e1 = (0, 1) and e2 = (1,−1), we conclude
that the subdivision process associated with the polynomial s1(z) is convergent and
that the nodal function N1(u, v) is continuous.

Due to the symmetry of the problem, the analysis for s2 gives the same result
as for s1. We conclude by Lemma 5.3.11/218 that N ∈ C1(R2) if w ∈W .

5.4 General comments on the nonregular case
The first three sections of this chapter discussed the convergence and smoothness
of basic methods, i.e., methods corresponding to the lower row of Figure 1.30/33.
To illustrate, the Catmull–Clark method reduces to the LR(3×3) method when all
faces are quadrilateral with valence 4. The results of Section 5.2 apply, so we have
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quadratic convergence, and we know from Theorem 3.3.2/111 that the parametric
continuity of the limit function is C2. Similarly, the 4-8 subdivision method reduces
to the box-spline method with subdivision polynomial given in (3.59)/137 in the
regular case (which is illustrated in Figure 3.24/137). Again we have quadratic
convergence, and Theorem 3.3.2/111 guarantees C4 parametric continuity for the
limit functions. Finally, the Kobbelt method provides an example from the third
column of Figure 1.30/33: this method reduces to the 4pt × 4pt scheme in the
case of a quadrilateral mesh with all vertices of valence 4, and as discussed in
Example 5.3.9/216 the method converges to a function with C1 parametric continuity.

In the three sections following this one, we turn our attention to the variant
methods used for nonregular meshes. This corresponds to the upper row of Fig-
ure 1.30/33. In the nonregular case, the usual parametrization of the surface neces-
sarily has a singularity (the parametric expression for the surface normal vanishes,
and the expressions for the tangent vectors are linearly dependent), and special
methods of analysis must be used even to show that standard subdivision methods
produce locally well-defined surfaces in the neighbourhood of a nonregular point.
Similarly, for convergence and smoothness, the methods of analysis are quite dif-
ferent from those used in the regular case and depend on the properties of certain
local subdivision matrices.

In Section 1.4.3 we said that several different versions of the local subdivision
matrix S are used in the literature. The focus in that section was on local subdivi-
sion matrices defined in terms of a k-ring of vertices with k = 1 (for example, the
(2n+ 1)× (2n+ 1) matrix in the formula following (1.17)/44 for the Catmull–Clark
method, the middle 3× 3 submatrix of the matrix given in (1.16)/43 for the LR(3)
method, and the (n+ 1)× (n+ 1) matrix given in the solution to Exercise 12/49 in
Chapter 1 for the Loop method). In this chapter, however, we also use local subdi-
vision matrices corresponding to larger values of k. The choice of local subdivision
matrix is discussed in detail, below. For example, in the case of Catmull–Clark, the
matrix corresponding to a 1-ring is by itself only useful as a computational formula
implementing the subdivision process. To establish convergence and smoothness,
we need the matrix corresponding to a 2-ring, and to prove single sheetedness we
need the matrix corresponding to a 3-ring.

To give some intuition for the relevance of the eigenstructure of a local sub-
division matrix S, we give a short discussion involving some simplifying assumptions.

Suppose that 1 is a strictly dominant eigenvalue of S, and suppose also that S
is not defective, i.e., there is a nonsingular matrixX(K×K) with columns equal to the
eigenvectors ξj of S, j = 1, . . . ,K, so that SX = XD, where D(K×K) is a diagonal
matrix with the eigenvalues of S on its diagonal. We then have X−1S = DX−1:
the rows (ηi)t of X−1 are the left eigenvectors of S, i = 1, . . . ,K, and they satisfy
(ηi)tξi = 1, (ηi)tξj = 0, j �= i.

We denote the K control points to be transformed by S in a single subdivision
step by p1, . . . , pK , pi ∈ RN , i = 1, . . . ,K, written as usual as row vectors, and we
write

p =

 p1
...
pK


(K×N)

,
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pν
K

pν
K−1

pν
2

...

...

pν+1
K

S

pν+1
1pν

1

S c1

Figure 5.1. Intuitive illustration of the relevance of eigenanalysis.

possibly with a superscript ν indicating the iteration number. Then, a single sub-
division step can be written as

pν+1 = Spν , ν = 0, 1, . . . ,

where p0 is the initial control point p (see, for example, (1.17)/44). Now, p can be
expressed in terms of the basis of eigenvectors as

p = ξ1c1 + ξ2c2 + · · ·+ ξKcK , (5.62)

where p is (K×N), ξj is (K×1), and each cj is a (1×N) row vector of coefficients,
j = 1, · · · ,K. If the subdivision process is applied ν times, we have

Sνp = λν1ξ
1c1 + · · ·+ λνKξ

KcK ,

and since λ1 = 1 is a strictly dominant eigenvalue, the limit is

lim
ν→∞S

νp = ξ1c1.

This follows since all but the first term eventually become negligible relative to the
others.39 If the subdivision process is affine invariant, the row sums of S are equal
to 1, and the eigenvector ξ1 has all components equal to 1. Thus, each row of ξ1c1
is equal to c1, and all K points pi ∈ RN converge to c1. The geometric intuition is
given in Figure 5.1/221, where the points pν1 , p

ν
2 , . . . , p

ν
K form a cluster of some size.

At the next step, the points are normally clustered more closely, and in the limit
all K sequences of points converge to c1 ∈ RN .

If it is assumed further that the eigenvalues λ2 and λ3 are real, and that
1 > λ2 = λ3 > |λk|, k = 4, . . . ,K, and if c2× c3 �= 0, then the vectors c2 and c3 can
be interpreted as linearly independent tangent vectors of the surface at the point
c1. In fact, as ν →∞, the subdivision process approximates c1 by

ξ1c1 + λν2(ξ2c2 + ξ3c3),

and the second term can be viewed as a first-order error term in the plane tangent
to the surface.

In Section 5.5 the convergence of methods in the nonregular case is discussed,
and this is followed by an analysis of smoothness in Section 5.6. In the nonregular
case, however, even if we have guarantees of convergence and smoothness we are
still not quite done, and it is worth presenting an example immediately of the sort
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Figure 5.2. A surface that is not single sheeted.

of situation we wish to avoid. The danger is that the surface might be regular at
a point, in the sense that it is well defined with a continuous normal vector, but
it might not be single sheeted. An example similar to one given in [4] is shown
in Figure 5.2/222: the surface is defined by

(
r cos 2θ, r sin 2θ, 1

2 (1 + r3 sin θ)
)t for

0 < r < 1, 0 < θ < 2π, where r = (u2 + v2)1/2, θ = tan−1(v/u) if u > 0,
θ = tan−1(v/u) + π if u < 0, and on the boundaries of the domain defined by
0 < r < 1 and 0 < θ < 2π by continuous extension. Here, the components
(r cos 2θ, r sin 2θ)t correspond to the horizontal plane, and 1

2 (1 + r3 sin θ) to the
vertical axis in the figure. Note that when we go once around the circle in the
parametric domain defined by r = 1 and 0 ≤ θ < 2π, the projection of the surface
in the horizontal plane goes twice around the circle indicated in Figure 5.2/222. In
the limit, as r approaches 0 from the right, the surface has unit normal (0, 0, 1)t (see
Exercise 4/245), but however small a neighbourhood of (0, 0, 1)t, we consider there
is always a point, in the neighbourhood and on the surface, which is the image of
two different points in parameter space (r, θ). In fact, the distinct points (r, 0) and
(r, π) are both mapped onto the same point (r, 0, 1/2)t on the surface. This rules
out the possibility of a homeomorphism between an open neighbourhood of r = 0,
in the parametric domain, and the part of the surface which is its image.

The convergence and smoothness analysis in a neighbourhood of a nonregu-
lar vertex follows the same pattern for most methods. In subsequent sections we
illustrate the analyses with the example of the Catmull–Clark method in the neigh-
bourhood of a nonregular point, and in the figures we show the case n = 3. A
more general presentation is given in [124]: that presentation also focuses to some
extent on a small number of example methods, including Catmull–Clark, but the
presentation is generic and makes it clear for an arbitrary method exactly which
properties of which subdivision matrices must be verified. Similarly, [172] gives
general conditions for convergence that apply to classes of methods.

In the presentation we attempt to clarify certain aspects of the analysis that
are sometimes left unclear in the literature. These aspects are summarized in a
note.40
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Bj+1/2Aj+1

Ej+1

V Ej Aj

Ej−1 Fj−1/2

Aj−1 Bj−1/2

j

j − 1

j + 1
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l′

l′′

l′′′

λl′

λl′′

λl′′′

λl
Fj+1/2

Dj+1

Cj

Dj

Cj−1

Figure 5.3. Grid points around a nonregular vertex (n = 3).

5.5 Convergence for the nonregular case (example of
Catmull–Clark)

We consider the Catmull–Clark method in the neighbourhood of a point of valence
n, which is assumed to be the origin in parameter space. See Figure 5.3/223, where a
set of initial grid points in R2 is shown. The notation for individual grid points, the
significance of the different symbols used for different grid points, and the relevance
of the points with labels involving l, l′, l′′, and l′′′ are explained below. The grid
can be extended to an infinite grid G as will be described presently.

5.5.1 The parametric domain

We use the notation ej = (cos(2πj/n), sin(2πj/n))t, j = 0, 1, . . . , n− 1, for the unit
vectors defining the directions of the grid, shown in Figure 5.3/223 for the case n = 3.
We have ej = ej+n for all j. Then the set Gk defined as

Gk =
{
l ∈ R2 : l = εjej + εj+1ej+1, with εj = 0, 1, . . . , k, j = 0, 1, . . . , n− 1}
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is called a k-ring neighbourhood around the origin [76]. In Figure 5.3/223, the grid
points in G1 are indicated by black circles, the points in G2 are indicated by black
circles and white circles, and the points in G3 make up all the points in the figure
(the points in G3 \ G2 are indicated by black triangles). A 1-ring contains 2n + 1
grid points, and a k-ring contains nk(k + 1) + 1 grid points, Exercise 5/245 asks for
verification of the number of grid points and for verification of certain other facts.

The grids denoted by Gk are similar to those introduced in Definition 3.1.1/94

and (3.28)/116, although the directions ej are enumerated in a different way. For
example, in the case of the Catmull–Clark method and a regular vertex (see Exam-
ple 3.2.4/100), we have G8 = G2.

Let G =
⋃∞
k=1 Gk be the infinite extension of an initial grid, and define the

closed set

Ḡk =
{
y ∈ R2 : y = εjej + εj+1ej+1 with 0 ≤ εj ≤ k, j = 0, 1, . . . , n− 1

}
.

If we are given an initial set {p0
l }l∈G of control vectors, then the Catmull–Clark

method defines a parametric surface

x(y) =
∑
l∈G

p0
lNl(y), (5.63)

where Nl(y) denotes the nodal basis function centered around the point l, which is
defined by choosing p0

k = 1 if k = l and p0
k = 0 if k �= l. The parametric domain

(Ḡk)0 is the image X(U) corresponding to some chart (X,U), U ⊆ M , as defined
in Section 4.6. The mapping X is piecewise affine in the sense that X−1 maps each
parallelogram spanned by {kej , kej+1} onto a part of a square face F α ⊂ M .

From the theory for the regular case, it follows that we have local uniform
convergence towards a continuous function x(y) outside the origin, in the following
sense. For every δ > 0 and every bounded set A ⊂ R2 such that A∩{y : |y| < δ} = ∅,
we have

max
l/2ν∈A

|x(l/2ν)− pνl | → 0 as ν →∞.

After a piecewise-affine reparametrization, the nodal functions Nl(y) are C2 outside
the origin.

In Section 5.5.3, we prove that in fact the process converges uniformly towards
a continuous function x(y) in some closed sphere {y : |y| ≤ δ}. We also prove that
the process defines a well-defined surface in a neighbourhood of the origin, and that
we have tangent-plane continuity at the origin. This is done in Sections 5.6 and 5.7.
First, however, we need some spectral information about certain local subdivision
matrices.

5.5.2 Spectral analysis

The parametric surface (5.63)/224 is uniquely determined for y ∈ Ḡ1 \ {0} by the
vectors {p0

l }l∈G2 , i.e.,
x(y) =

∑
l∈G2

p0
lNl(y).
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More generally, the parametric surface is determined for y ∈ Ḡk−1 \ {0} by the
vectors {p0

l }l∈Gk
.

If we perform the first step of the Catmull–Clark process, the infinite se-
quences {p0

l }l∈G are mapped linearly onto infinite sequences {p1
l }l∈G. Also, the

finite-dimensional vectors p0,k = {p0
l }l∈Gk

are mapped linearly onto vectors p1,k =
{p1
l }l∈Gk

by some particular local subdivision matrix Sk (depending on the partic-
ular ordering of the indices l ∈ Gk which has been chosen). The dimension of Sk
is (nk(k + 1) + 1)× (nk(k + 1) + 1), i.e., S1 has dimension (2n+ 1)× (2n+ 1), S2
has dimension (6n+ 1)× (6n+ 1), and S3 has dimension (12n+ 1)× (12n+ 1). (In
[124, p. 97] it is found convenient to replace S3 by a 13n × 13n matrix involving
some redundancy.)

The matrices Sk are determined by the rules (1.17)/44. Defining

pν,k = {pνl }l∈Gk
, (5.64)

where pνl is related to the parameter value l/2ν ∈ R2, we have

pν,k = Sνkp
0,k. (5.65)

Since the subdivision procedure is affine invariant, the row sums of the matrices
Sk are equal to 1, and λ1 = 1 is an eigenvalue corresponding to the eigenvector
ξ1 = (1, 1, . . . , 1)t.

Also, we have the following block structure for the matrices Sk:

Sk+1 =
(
σ′k σ′′k
0 Sk

)
. (5.66)

This is true since the control vectors {pν−1
l }l∈Gk+1\Gk

do not affect the new control
vectors {pνl }l∈Gk

. Therefore, if we denote

pν,k+1 =
(
ρν,k

pν,k

)
,

where
ρν,k = {pνl }l∈Gk+1\Gk

,

then (
ρν+1,k

pν+1,k

)
=
(
σ′k σ′′k
0 Sk

)(
ρν,k

pν,k

)
, (5.67)

i.e.,

ρν+1,k = σ′kρ
ν,k + σ′′kp

ν,k,

pν+1,k = Skp
ν,k. (5.68)

Further, if k ≥ 2, then σ′k = 0, i.e.,

Sk+1 =
(

0 σ′′k
0 Sk

)
. (5.69)
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This follows from the fact that for k ≥ 2 the control vectors {pν−1
l }l∈Gk+1\Gk

do
not affect the new control vectors {pνl }l∈Gk+1 .

From (5.68)/225 we may conclude that the set of eigenvalues for Sk+1 is the
union of the set of eigenvalues for Sk and σ′k. This follows from the fact, shown
below, that Sk and σ′k have no common eigenvalues. Thus, if λ is an eigenvalue
of Sk with eigenvector pk, so that Skpk = λpk, then λ is not an eigenvalue of σ′k,
and the corresponding eigenvector pk+1 = (ρk, pk)t for Sk+1 can be obtained by
solving for ρk in the equation

(σ′k − λI)ρk = −σ′′kpk. (5.70)

Similarly, if ρk is an eigenvector of σ′k with eigenvalue µ, so that

σ′kρ
k = µρk, (5.71)

then (ρk, 0)t is the corresponding eigenvector of Sk+1.
Since σ′k = 0 for k ≥ 2, it also follows that, for k ≥ 3, the set of eigenvalues of

Sk consists of the eigenvalues of S2 (all of them simple) and the multiple eigenvalue
λ = 0. The eigenspace of λ = 0 consists of the vectors {pl}l∈Gk

having pl = 0 if
l ∈ G2.

Lemma 5.5.1. The eigenvalues λi of the matrices S1, S2, and S3 satisfy the
condition

1 = λ1 > λ2 = λ3 > |λi| for i ≥ 3, (5.72)

where λ2 = λ3 are equal for all three matrices. Moreover, all the eigenvalues are
real, and explicit expressions for them can be found for all valences n.

The proof does not lend itself to our usual format, since it is quite long and is
best divided into prominently labelled parts. It is therefore presented over the next
few pages as ordinary text.

Although the matrices Sk are of rather high dimension, the spectral analysis is
considerably simplified by the fact that they can be given a block-diagonal structure
by using discrete Fourier series [117]. See Section A.2.4.

The matrix S1 and its eigenstructure

We first investigate the matrix S1. By (1.17)/44 we have

V ′ =
4n− 7

4n
V +

3
2n

(
1
n

n−1∑
i=0

Ei

)
+

1
4n

(
1
n

n−1∑
i=0

Fi+1/2

)
,

E′j =
3
8
(V + Ej) +

1
16

(Ej−1 + Fj−1/2 + Fj+1/2 + Ej+1),

F ′j+1/2 =
1
4
(V + Ej + Fj+1/2 + Ej+1),

(5.73)

j = 0, . . . , n− 1, where the notation has been slightly changed: the subscript on F
has been shifted by 1/2, since this leads to real coefficients in the system (5.76)/227,
below. The grid points related to these values are illustrated in Figure 5.3/223.
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According to the theory of discrete Fourier transforms, any n-periodic discrete
sequence {Ej}n−1

j=0 can be represented as

Ej =
n−1∑
r=0

erw
jr ,

where w = ei2π/n and

er =
1
n

n−1∑
j=0

Ejw
−jr .

Similarly, the sequence {Fj+1/2}n−1
j=0 can be written as

Fj+1/2 =
n−1∑
r=0

frw
(j+1/2)r =

n−1∑
r=0

frw
r/2wjr .

Inserting into (5.73)/226, we get

V ′ = (1− 7/4n)V + (3/2n2)
∑
j,r

erw
rj +

1
4n2

∑
j,r

frw
r/2wrj


= (1− 7/4n)V + (3/2n)e0 + (1/4n)f0, (5.74)

E′j = 3V/8 +
∑
r

(
3/8 + (wr + w−r)/16

)
erw

rj

+
∑
r

(wr/2 + w−r/2)frwrj/16,

F ′j+1/2 = V/4 +
∑
r

(
er(wr/2 + w−r/2) + fr

)
wr(j+1/2)/4.

In (5.74)/227 we have used that
∑n−1
j=0 w

rj = n if r = 0 and
∑n−1
j=0 w

rj = 0 if
1 ≤ r ≤ n− 1.

WritingE′j =
∑n−1
r=0 e

′
rw

jr and F ′j+1/2 =
∑n−1
r=0 f

′
rw

(j+1/2)r =
∑n−1
r=0 frw

r/2wjr ,
we get, after identifying coefficients for each r, the following. For r = 0,

V ′ = (1− 7/4n)V + (3/2n)e0 + (1/4n)f0,
e′0 = 3V/8 + e0/2 + f0/8,
f ′0 = V/4 + e0/2 + f0/4, (5.75)

and for 1 ≤ r ≤ n−1, using that (wr+w−r)/2 = cos(2πr/n) and (wr/2+w−r/2)/2 =
cos(πr/n),

e′r = (3/8 + cos(2πr/n)/8)er + cos(πr/n)fr/8,
f ′r = cos(πr/n)er/2 + fr/4. (5.76)

Now, λ is an eigenvalue of S1 if and only if

V ′ = λV, E′j = λEj , F ′j+1/2 = λFj+1/2
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for some V , Ej , and Fj+1/2, j = 0, . . . , n− 1, not all equal to 0, i.e., if and only if
either

(1− 7/4n− λ)V + (3/2n)e0 + (1/4n)f0 = 0,
3V/8 + (1/2− λ)e0 + f0/8 = 0,
V/4 + e0/2 + (1/4− λ)f0 = 0 (5.77)

with V , e0, and F0 not all 0, and er = fr = 0 for 1 ≤ r ≤ n − 1; or, if for some r,
1 ≤ r ≤ n− 1, (

3
8

+
1
8

cos(2πr/n)− λ
)
er +

1
8

cos(πr/n)fr = 0,

1
2

cos(πr/n)er +
(

1
4
− λ

)
fr = 0 (5.78)

with er and fr not both 0, and V = e0 = f0 = 0 and es = fs = 0 for 1 ≤ s ≤ n− 1,
s �= r.

Computing the determinant for the system (5.77)/228, we get∣∣∣∣∣∣
1− 7/4n− λ 3/2n 1/4n

3/8 1/2− λ 1/8
1/4 1/2 1/4− λ

∣∣∣∣∣∣ = (1−λ)(λ2−(3/4−7/4n)λ+(1−3/n)/16) = 0,

and solving for λ,

λ1 = 1,
λ =

(
3− 7/n±

√
(3− 7/n)2 − 4(1− 3/n)

)
/8. (5.79)

For n = 3 we obtain, in the latter expression, λ = 0 and λ = 1/6. For λ1 = 1
we have, as mentioned earlier, the eigenvector defined by V = 1, Ej = 1, and
Fj+1/2 = 1 for 0 ≤ j ≤ n − 1. Similarly, computing the eigenvalues for the sys-
tems (5.78)/228, we have∣∣∣∣∣

3
8 + 1

8 cos(2πr/n)− λ 1
8 cos(πr/n)

1
2 cos(πr/n) 1

4 − λ

∣∣∣∣∣ = λ2− 1
4
(2+cos2(πr/n))λ+

1
16

= 0 (5.80)

and the eigenvalues

λ =
(
5 + cos(2πr/n)± [(1 + cos(2πr/n))(9 + cos(2πr/n))]1/2

)
/16. (5.81)

The largest of these eigenvalues are obtained with the plus sign and r = 1 or
r = n− 1, which gives a double eigenvalue

λ2,3 =
(
5 + cos(2π/n) + [(1 + cos(2π/n))(9 + cos(2π/n))]1/2

)
/16. (5.82)

It is straightforward to verify that λ2,3 < 1/2 for n = 3 and λ2,3 > 1/2 for n > 4.
For the regular case, n = 4, we have λ2,3 = 1/2. See Exercise 6/245.
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Equations (5.77)/228 and (5.79)/228 give three eigenvalues and linearly inde-
pendent eigenvectors defined by

V, Ej = e0, and Fj+1/2 = f0, j = 0, 1, . . . , n− 1, (5.83)

with V , e0, and f0 being the solutions of (5.77)/228. Similarly, (5.78)/228 and
(5.81)/228 give (taking the solutions er and fr of (5.78)/228 to be real with er = en−r
and fr = fn−r) n− 1 different real eigenvalues and 2(n− 1) (two for each eigenvalue)
linearly independent eigenvectors defined by

V = 0, Ej = erw
jr , and Fj+1/2 = frw

(j+1/2)r, j = 0, 1, . . . , n− 1.

Let

ξ = (. . . , Fj+1/2, . . . | . . . , Ej , . . . | 0)t

= (. . . , fr ω(j+1/2)r, . . . | . . . , erωjr , . . . | 0)t. (5.84)

Real-valued eigenvectors are obtained by taking real and imaginary parts, so that

Ej = er cos(2πjr/n), Fj+1/2 = fr cos(2π(j + 1/2)r/n)

and
Ej = er sin(2πjr/n), Fj+1/2 = fr sin(2π(j + 1/2)r/n),

respectively. Thus,

ξ2 = 	ξ
= fr(. . . , cos(2π(j + 1/2)r/n), . . . | 0, . . . , 0 | 0)t,

+ er(0, . . . , 0 | . . . , cos(2πjr/n), . . . | 0)t,
(5.85)

ξ3 = 
ξ
= fr(. . . , sin(2π(j + 1/2)r/n), . . . | 0, . . . , 0 | 0)t

+ er(0, . . . , 0 | . . . , sin(2πjr/n), . . . | 0)t.

To summarize, we have, for the local subdivision matrix S1, 3 + 2(n− 1) = 2n+ 1
linearly independent eigenvectors, spanning R2n+1.

The corresponding eigenvectors obtained by (5.78)/228 are given by, for exam-
ple, e1 = 1, f1 = cos(π/n)/2(λ − 1/4) = 2 cos(π/n)/(4λ − 1). Using (5.81)/228, we
get after some calculation

e1 = 1, f1 =
√

4 + cos2(π/n)− cosπ/n.

Considering the subdominant double eigenvalue λ2,3, where r = 1 or r = n−1,
we note the following:

for n = 3, f1/e1 = (
√

17− 1)/2 >
√

2, (5.86)

for n = 4, f1/e1 =
√

2, and

for n > 4, f1/e1 <
√

2.

All of the eigenvalues of S1 are given by (5.79)/228 and (5.80)/228, and all of the
eigenvectors except (1, . . . , 1)t are given by (5.83)/229 and (5.84)/229.
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The matrices S2 and S3 and their eigenstructures

Having completed the spectral analysis of the matrix S1, we consider the matrices
S2 and S3. The analysis involves a change of basis, using the discrete Fourier
transform, which leads to modified matrices Sk+1 in (5.66)/225. However, these
matrices have the same block structure, and the same eigenvalues, as the original
matrices: only the eigenvectors change due to the change in basis.

In Figure 5.3/223 the grid points related to G2 are depicted, together with the
corresponding values V , Ej , Fj+1/2, Aj , Bj+1/2, Cj , and Dj for the control points.
In addition to (5.73)/226 we now have by (1.17)/44

A′j = (1− 7/16)Ej + (Fj−1/2 + Fj+1/2 + V +Aj)3/32

+ (Dj + Cj + Ej−1 + Ej+1)/64,

B′j+1/2 = (1− 7/16)Fj+1/2 + (Ej + Cj +Dj+1 + Ei+1)3/32

+ (Aj +Bj+1/2 +Aj+1 + V )/64,

C ′j = (3/8)Fj+1/2 + (3/8)Ej + (Ej+1 + Cj + V +Aj)/16,

D′j+1 = (3/8)Fj+1/2 + (3/8)Ej+1 + (Ej +Dj+1 + V +Aj+1)/16.

(5.87)

Next, inserting the expansions

Aj =
n−1∑
r=0

arw
jr , Bj+1/2 =

n−1∑
r=0

brw
(j+1/2)r,

Cj =
n−1∑
r=0

crw
jr , Dj =

n−1∑
r=0

drw
jr

and the corresponding expansions for the primed variables into (5.87)/230 we get,
after identifying coefficients, the following. For r = 0, we have (5.75)/227 and

a′0 = (3/32)a0 + (c0 + d0)/64 + (19/32)e0 + (3/16)f0 + (3/32)V,

b′0 = (1/32)a0 + b0/64 + (3/32)(c0 + d0) + (3/16)e0 + (9/16)f0 + V/64,

c′0 = a0/16 + c0/16 + (7/16)e0 + (3/8)f0 + V/16, (5.88)

d′0 = a0/16 + d0/16 + (7/16)e0 + (3/8)f0 + V/16.

Similarly, for 1 ≤ r ≤ n− 1 we have (5.76)/227 and

a′r = (3/32)ar + (cr + dr)/64 + (9/16 + (wr + w−r)/64)er
+ (3/32)(wr/2 + w−r/2)fr,

b′r = (wr/2 + w−r/2)ar/64 + br/64 + (3/32)(w−r/2cr + wr/2dr)
+ (3/32)(wr/2 + w−r/2)er + (9/16)fr,

c′r = ar/16 + cr/16 + (3/8 + wr/16)er + (3/8)wr/2fr,

d′r = ar/16 + dr/16 + (3/8 + w−r/16)er + (3/8)w−r/2fr.

(5.89)
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(The notation cr used here conflicts slightly with the notation introduced in
(5.62)/221, which is used again below. But we will use the notation cr for Fourier
coefficients only in the next four paragraphs.)

In the formula (5.66)/225, with k = 1, the submatrix σ′1 represents the mapping
of ar, br, cr, dr onto a′r, b

′
r, c
′
r, d
′
r when er = fr = V = 0 for r = 0, . . . , n − 1. See

Exercise 7/245. The eigenvalues of σ′1 are therefore obtained from the following
equations for 0 ≤ r ≤ n− 1:∣∣∣∣∣∣∣∣

3/32− λ 0 1/64 1/64
cos(πr/n)/32 1/64− λ (3/32)w−r/2 (3/32)wr/2

1/16 0 1/16− λ 0
1/16 0 0 1/16− λ

∣∣∣∣∣∣∣∣ = 0.

After straightforward calculations we find that, independently of n and r, the de-
terminant has the zeroes 1/16 (double), 1/64, and (5 ±√21)/32. This shows that
the subdominant eigenvalues λ2,3 for the matrix S2 are equal to the subdominant
eigenvalues for S1 (the smallest subdominant eigenvalue of S1 occurs for n = 3,
when λ2,3 = (9 +

√
17)/32 > max{1/16, 1/64, (5±√21)/32}). Thus, the subdomi-

nant eigenvalues of S2 are given by the formula (5.82)/228. Also, these calculations
show that σ′1 and S1 have no common eigenvalues, which means that (5.70)/226 can
be solved.

It can be verified in a similar way that the subdominant eigenvalues λ2,3 for
the matrix S3 are also equal to the subdominant eigenvalues for S1.

In order to obtain the eigenvalues and eigenvectors for S2, we proceed as
follows. The eigenvalues and eigenvectors for S1 have already been found above
in (5.77)/228 and (5.78)/228 and are inserted into (5.88)/230 and (5.89)/230. We then get

(3/32− λ)ar + (cr + dr)/64 + (9/16 + (wr + w−r)/64)er
+ (3/32)(wr/2 + w−r/2)fr = 0,

(wr/2 + w−r/2)ar/64 + (1/64− λ)br + (3/32)(w−r/2cr + wr/2dr), (5.90)
+ (3/32)(wr/2 + w−r/2)er + (9/16)fr = 0,

ar/16 + (1/16− λ)cr + (3/8 + wr/16)er + (3/8)wr/2fr = 0,

ar/16 + (1/16− λ)dr + (3/8 + w−r/16)er + (3/8)w−r/2fr = 0.

Solving for ar, br, cr, and dr, we obtain eigenvectors for the matrix S2. This
step corresponds to solving (5.70)/226 with k = 1 and the right-hand side known.
The remaining eigenvalues and eigenvectors can be found by taking er = 0 and
fr = 0 in (5.90)/231 and solving the eigenvalue problem. This step corresponds to
solving (5.71)/226 for ρ1 and µ.

Finally, again using the block structure in (5.66)/225, the eigenvalues and eigen-
vectors for S3 can be calculated in a similar way as above. In this case the matrix
σ′2 is the zero matrix and (5.70)/226 takes the form

λρ2 = σ′′2p
2.
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The eigenvectors corresponding to the eigenvalues already known for S2 may,
however, be found in a simpler way, namely by interpolation using (5.73)/226. This
is illustrated by Figure 5.3/223, where the eigenvector components V , Ej , Fj+1/2,
Cj , and Dj+1 have been shown. The value indicated by l in Figure 5.3/223, which
is a component in the corresponding eigenvector for S3, can be obtained from

λl = (Fj+1/2 + Cj +Bj+1/2 +Dj+1)/4.

This results from the fact that in Figure 5.3/223, λl is equal to the value in a new
node in the middle of an old face, so that the expression just given follows by
direct substitution in the third line of (5.73)/226. Similar expressions for the other
components of the eigenvector when l ∈ G3 \G2 can also be given:

λl′ =
3
8
(Fj+1/2 + Cj) +

1
16

(Ej +Aj +Bj+1/2 +Dj+1),

λl′′ =
1
4
(Fj+1/2 + Ej +Aj + Cj),

λl′′′ =
3
8
(Ej +Aj) +

1
16

(Fj−1/2 +Dj + Cj + Fj+1/2).

We conclude that all eigenvectors and eigenvalues of S3 can be given explicitly, by
elementary means, and this completes our outline of the proof of Lemma 5.5.1/226.

Except for the dominant eigenvalue λ1 = 1, the calculation of the eigenvec-
tors is tedious and the resulting expressions are complicated. We therefore do not
give the complete result, but instead restrict ourselves to describing only the main
structure of the analysis.

5.5.3 Convergence

We have the following theorem for convergence at a nonregular point.

Theorem 5.5.2. For all choices of an initial sequence p0
l of control vectors, the

resulting surface representation

x(y) =
∑
l

p0
lNl(y)

is continuous at the origin. Moreover, the subdivision process has local uniform
convergence, in the following sense (see Definition 4.7.1/182). For every compact
(i.e., bounded and closed) set A ⊂ R2 and every ε > 0 there exists a ν0 such that

ν ≥ ν0 and l/2ν ∈ A implies |x(l/2ν)− pνl | < ε.

Proof. We already know from the results of Section 5.2 that x(y) is continuous
outside the origin, so we only have to verify continuity at the origin. From the
analysis in the previous section the eigenvectors {ξj}6n+1

j=1 of S2 form a basis for
R6n+1 with corresponding eigenvalues {λj}6n+1

j=1 . We then have S2ξ
j = λjξ

j and we
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can expand the vector p0,2 (see (5.64)/225) as

p0,2 =
6n+1∑
j=1

ξjcj .

Since p0,2 has coordinates which themselves are vectors in RN , the coefficients cj
are also vectors in RN . We now get, since λ1 = 1 and |λj | < 1 for 2 ≤ j ≤ 6n+ 1,

pν,2 = Sν2 p
0,2 =

∑
j

λνj ξ
jcj → ξ1c1 as ν →∞,

and consequently

pν,2l → ξ1l c1 = c1

for all l ∈ G2 as ν →∞.
Now let ε > 0 be given and choose ν such that |pν,2l − c1| < ε for all l ∈ G2.

Then choose δ > 0 such that {y ∈ R2 : |y| < δ} ⊂ Ḡ1/2ν . Then, if 0 < |y| < δ,

x(y) =
∑
l∈G

pνl N
ν
l (y) =

∑
l∈G2

pν,2l Nν
l (y),

where Nν
l denotes the nodal basis function at the ν th step of the process, centered

around the point l/2ν in parameter space. Using that Nν
l (y) ≥ 0 for all l and that∑

l∈G2
Nν
l (y) = 1, we get

x(y)− c1 =
∑
l∈G2

(pν,2l − c1)Nν
l (y)

and

|x(y)− c1| ≤
∑
l∈G2

|pν,2l − c1)|Nν
l (y) ≤ ε

∑
l∈G2

Nν
l (y) = ε.

We have shown that for an arbitrary ε > 0 there exists a δ > 0 such that

0 < |y| < δ =⇒ |x(y)− c1| < ε.

This proves that x(y) is continuous at the origin if we define x(0) = c1. We now
prove the local uniform convergence of the process. Let ε > 0 be given. Choose ν1
such that

ν ≥ ν1 =⇒ |pν,2l − c1| < ε/2,

and then choose δ > 0 such that {y : |y| < δ} ⊂ Ḡ1/2ν1 . Next choose ν0 ≥ ν1 such
that

|l/2ν | ≥ δ, l/2ν ∈ A
ν ≥ ν0

}
=⇒ |x(l/2ν)− pνl | < ε/2.

This is possible, since we know that the process has local uniform convergence
outside the set {y : |y| < δ}.
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We next observe that all control vectors pνl for ν ≥ ν1 and |l/2ν | < δ are convex
combinations of pν1l , l ∈ G2. This follows from the subdivision rules (5.73)/226 where
new values are convex combinations of old ones. Therefore,

|pν1l − c1| < ε/2
l ∈ G2

}
=⇒ |pνl − c1| < ε/2 for all l with |l/2ν | < δ and all ν ≥ ν1.

We conclude that

|x(l/2ν)− pνl | = |(x(l/2ν)− c1)− (pνl − c1)| ≤ ε/2 + ε/2 = ε

whenever |l/2ν | < δ and ν ≥ ν0. This completes the proof.

Note that the preceding proof makes use of spectral structure of the matrix
S2 only, and no further information regarding S3 is needed.

A similar convergence result can be proved in a much more general setting,
namely for any subdivision method where the restriction to the regular case is
known to converge uniformly, where the values in Ḡ1 \ {0} are determined by the
control vectors {pνl } with indices in the k-ring Gk and where the eigenvalues satisfy
1 = λ1 > |λj |, j = 2, 3, . . . . The particular valence n and the value of k determine
the size of the relevant local subdivision matrix.

We also make the following remark. Assume that we are given a subdivision
method that is a variant of some basic method, as in Figure 1.30/33, and that it is in
addition affine invariant and stationary. Then it can be shown that it is necessary
for convergence that λ1 = 1 is an eigenvalue of algebraic multiplicity one for all
local subdivision matrices (with the eigenvector (1, 1, . . . , 1)t) and that |λj | < 1 for
all other eigenvalues. See Exercise 8/245.

5.6 Smoothness analysis for the Catmull–Clark
scheme

First we introduce the concept of tangent-plane continuity for a parametric surface.
This property was first studied in the context of subdivision surfaces in [8, 9].
Assume that we have a locally uniformly convergent subdivision method with nodal
functions that are continuous at the nonregular point and at least C1 outside. As
before we let the nonregular point be the origin.

Definition 5.6.1. The subdivision surface is said to be tangent-plane continuous
at the origin if for the normal vector n(y) we have n(y) �= 0 for 0 < |y| ≤ δ, for
some δ > 0, and if the limit

lim
y→0

n(y)/|n(y)| = n̂(0)

exists.

Tangent-plane continuity does not necessarily mean that the surface is well
behaved in a neighbourhood of the origin. We also need conditions which guarantee
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that the mapping
R2 � y �→ x(y) ∈ R3

is one-to-one for 0 < |y| ≤ δ; otherwise the phenomenon of multiple sheetedness
might appear. For example, the surface in Figure 5.2/222 is tangent-plane continu-
ous. Conditions for single sheetedness are discussed below in Section 5.7.

For the analysis of tangent-plane continuity for the Catmull–Clark method
we need certain spectral properties of the matrix S3. In particular, we require
explicit expressions for two linearly independent eigenvectors ξ2 = {ξ2l }l∈G3 and
ξ3 = {ξ3l }l∈G3 for the subdominant double eigenvalue λ2 = λ3 < λ1 = 1. We have
the following result.

Theorem 5.6.2. For almost all choices of an initial sequence p0
l∈G

(in a sense to
be specified below in the proof) we have tangent-plane continuity at the origin.

Proof. A given initial subcontrol vector p0,3 ∈ RN(12n+1) can be expanded as

p0,3 =
12n+1∑
j=1

ξjcj , (5.91)

where S3ξ
j = λjξ

j . We now assume that the vector-valued coefficients c2 and c3
are linearly independent. This is the exact meaning of “for almost all choices of an
initial sequence” in the statement of the theorem. It is straightforward to prove that
the exceptional set M ⊂ RN(12n+1), defined by the condition that the coefficients c2
and c3 in the expansion (5.91)/235 are linearly dependent, has the following property.
If p0,3 ∈M with c2 �= 0 and c3 �= 0, then there exists a neighbourhood of p0,3 in M
which is a nonlinear manifold of dimension N(12n+ 1). In particular, this implies
that the Lebesgue measure of M ⊂ RN(12n+1) is zero.

In order to prove tangent-plane continuity we must show the following. There
exists a unit vector n̂(0) such that, for any given ε > 0, there exists a δ > 0 such
that

0 < |y| < δ =⇒
∣∣∣∣n̂(0)− n(y)

|n(y)|
∣∣∣∣ < ε.

As shown below, if N = 3, the limiting normal vector is n̂ = ±(c2 × c3)/|c2 × c3|.
Here × denotes the vector cross product in R3.

After the ν th step of the subdivision, we have

x(y) =
∑
l∈G3

pν,3l Nν
l (y) (5.92)

if y ∈ 2−νḠ2, and in particular if y ∈ 2−ν(Ḡ2 \ Ḡ1). Next,

pν,3 = Sν3 p
0,3 =

12n+1∑
j=1

λνj ξ
jcj

= ξ1c1 + λν2

ξ2c2 + ξ3c3 +
12n+1∑
j=4

(λj/λ2)νξjcj

 .
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Inserting into (5.92)/235 we get

x(y) =
∑
l∈G3

pν,3l Nν
l (y) = c1

∑
l∈G3

ξ1l N
ν
l (y)

+λν2

c2 ∑
l∈G3

ξ2l N
ν
l (y) + c3

∑
l∈G3

ξ3l N
ν
l (y) +

12n+1∑
j=4

(λj/λ2)νcj
∑
l∈G3

ξjlN
ν
l (y)

 .

Here the first term in the right-hand side simplifies to the constant c1 since ξ1l = 1
and

∑
l∈G3

Nν
l (y) = 1.

Using that Nν
l (y) = Nl(2νy) = N0

l (2νy), where Nl = N0
l denotes a nodal

function on the initial grid G, after changing scale we get

x(2−νy) =
∑
l∈G3

pν,3l Nl(y) = c1

+λν2

c2 ∑
l∈G3

ξ2l Nl(y) + c3
∑
l∈G3

ξ3l Nl(y) +
12n+1∑
j=4

(λj/λ2)νcj
∑
l∈G3

ξjlNl(y)


= c1 + λν2 {X(y) + αν(y)} , (5.93)

where the part

X(y) = c2
∑
l∈G3

ξ2l Nl(y) + c3
∑
l∈G3

ξ3l Nl(y)

of this expression41 defines a surface patch in RN for y ∈ Ḡ2.
(If the origin is a regular point with valence 4, then ξ2l and ξ3l are linear

functions of l, while
∑
l∈G3

ξ2l Nl(y) and
∑
l∈G3

ξ3l Nl(y) are linear functions of y
interpolating the functions ξ2l and ξ3l , i.e.,

∑
l∈G3

ξ2l Nl(k) = ξ2k and
∑
l∈G3

ξ3l Nl(k) =
ξ3k for all k ∈ Z2. Consequently, in this case X(y) is a linear function of y ∈ R2 with
values in the plane spanned by c2 and c3. Properties such as these, of polynomial
reproduction, are investigated in Section 6.4.)

Continuing the proof, we now formulate the following lemma.

Lemma 5.6.3. Let N = 3. Then the surface patch defined by

Ḡ2 \ Ḡ1 � y = (u, v) �→ X(u, v) ∈ RN

has a normal of the form ∂X
∂u × ∂X

∂v = n0(y)(c2×c3) with n0(y) continuous and either
n0(y) ≥ c > 0 or n0(y) ≤ −c < 0 for some constant c. If N = 2, the conclusion is
instead the following. Let X = (X1, X2) ∈ R2. Then

±
(
∂X1

∂u

∂X2

∂v
− ∂X1

∂v

∂X2

∂u

)
≥ c > 0

for some constant c and for some choice of sign (the same choice for all y).



book
2010/3/3
page 237

�

�

�

�

�

�

�

�

5.6. Smoothness analysis for the Catmull–Clark scheme 237

j − 1

Denotes a
grid point of Hj

j + 1

j

Pj ⊂ Ḡ2 \ Ḡ1 ⊂ Ḡ3

Ḡ2 \ Ḡ1

Figure 5.4. The subpatch Pj.

Proof. We outline the main ideas of a proof without giving all the details, and for
N = 3 only. Consider the subpatch given by the subset Pj ⊂ Ḡ2 \ Ḡ1 defined by

Pj = {y ∈ Ḡ3 : 0 ≤ εj−1 ≤ 1, 1 ≤ εj ≤ 2, 0 ≤ εj+1 ≤ 2, εk = 0, if |k − j| > 1}
in parameter space; see Figure 5.4/237. Due to the symmetry, it suffices to prove the
statement about n0(y) when y ∈ Pj for a single value of j. We have

X(y) = c1
∑
l∈Hj

ξ2l Nl(y) + c3
∑
l∈Hj

ξ3l Nl(y),

where

Hj = {l ∈ G3 : εj−1 = 0, 1, 2, εj = 0, 1, 2, 3, εj+1 = 0, 1, 2, 3}.
After a piecewise-affine transformation A of parameter space defined by letting

A(ej) = (1, 0)t, A(ej+1) = (0, 1)t, and A(ej−1) = −(1, 0)t, the sets Pj and Hj are
mapped onto sets

A(Pj) = P ′ = {y = (u, v) ∈ R2 : −1 ≤ u ≤ 2, 1 ≤ v ≤ 2}
and

A(Hj) = H ′ = {l = (l1, l2) ∈ Z2 : −2 ≤ l1 ≤ 3, 0 ≤ l2 ≤ 3};
see Figure 5.5/238.

If l′ = A(l) ∈ H ′, we define ξ2l′ by ξ2l′
.= ξ2l and similarly for ξ3l′ . Then in the

new local coordinates y = (u, v) ∈ P ′, we have the following representation of the
surface:

X(u, v) = c2
∑
l∈H′

ξ2l N
3
l1(u)N

3
l2(v) + c3

∑
l∈H′

ξ3l N
3
l1(u)N

3
l2(v), (5.94)
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u

v

H ′

P ′

Figure 5.5. Parameter space after piecewise-affine transformation.

where N3(u) and N3(v) are third-degree univariate nodal spline functions centered
at the origin. The expression in (5.94)/237 is a uniform third-degree tensor-product
representation of the surface patch.

Since the coefficients ξ2l and ξ3l in (5.94)/237 are known, the normal ∂X∂u × ∂X
∂v

can be explicitly calculated. We get, using (2.61)/81 and (2.62)/82,

∂X(u, v)
∂u

= c2
∑
l

∆1ξ
2
l N

2
l1(u)N

3
l2(v) + c3

∑
l

∆1ξ
3
l N

2
l1(u)N

3
l2(v),

where ∆1ξ
2
l = ξ2l+(1/2,0) − ξ2l−(1/2,0) and the summation is over those l for which

l ± (1/2, 0) ∈ H ′. Similarly, we get

∂X(u, v)
∂v

= c2
∑
l

∆2ξ
2
l N

3
l1(u)N

2
l2(v) + c3

∑
l

∆2ξ
3
l N

3
l1(u)N

2
l2(v),

where ∆2ξ
2
l = ξ2l+(0,1/2)− ξ2l−(0,1/2) is a central-difference operator and the summa-

tion is over those l for which l± (0, 1/2) ∈ H ′. Now, using that c2×c2 = c3×c3 = 0
and c3 × c2 = −c2 × c3 we get

∂X(u, v)
∂u

× ∂X(u, v)
∂v

(5.95)

= (c2 × c3)
∑
l,k

(∆1ξ
2
l ∆2ξ

3
k −∆1ξ

3
l ∆2ξ

2
k)N

2
l1(u)N

3
k1(u)N

3
l2(v)N

2
k2(v).

Since the nodal functions in the sum are nonnegative and since∑
k,l

N2
l1(u)N

3
k1(u)N

3
l2(v)N

2
k2(v) = 1,

the right-hand side of (5.95)/238 is a convex combination of the real numbers
∆1ξ

2
l ∆1ξ

3
k − ∆1ξ

3
l ∆2ξ

2
k. In order to prove the statement of the lemma, it suf-

fices to show that either ∆1ξ
2
l ∆2ξ

3
k − ∆1ξ

3
l ∆2ξ

2
k ≥ c > 0 for some c or that

∆1ξ
2
l ∆2ξ

3
k − ∆1ξ

3
l ∆2ξ

2
k ≤ −c < 0. In fact, after fairly tedious calculations this

can be verified, but we omit these calculations. Again, for a regular point, the
expressions ∆1ξ

2
l ∆2ξ

3
k −∆1ξ

3
l ∆2ξ

2
k are constant, i.e., independent of k and l, and

the factor n0(y) is constant.
This completes the proof of the lemma.
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Now returning to the expression (5.93)/236 with y replaced by 2νy, we have

x(y) = c1 + λν2

X(2νy) +
12n+1∑
j=4

(λj/λ2)νcj
∑
l∈G3

ξjlNl(2
νy)

 (5.96)

for y ∈ 2−νḠ2. Differentiating we get

∂x(u, v)
∂u

= (2λ2)ν


(
∂X

∂u

)
(2νy) +

12n+1∑
j=4

(λj/λ2)νcj
∑
l∈G3

ξjl

(
∂Nl
∂u

)
(2νy)


= (2λ2)ν

{(
∂X

∂u

)
(2νy) + γν(2νy)

}
(defining γν), where, if y ∈ 2−ν(Ḡ2 \ Ḡ1), then |γν | < C(|λ4|/λ2)ν for some con-

stant C. We also have a similar expression for ∂x(u,v)
∂v and we obtain, for the surface

normal,

n(y) =
∂x

∂u
× ∂x

∂v
= (2λ2)2ν

{(
∂X

∂u

)
(2νy)×

(
∂X

∂v

)
(2νy) + δν(2νy)

}
= (2λ2)2ν

{
n0(2νy)(c2 × c3) + δν(2νy)

}
, (5.97)

where |δν | < C(|λ4|/λ2)ν for some constant C, provided that y ∈ 2−ν(Ḡ2 \ Ḡ1).
Without loss of generality, we may assume that n0(y) > 0, so that n0(2νy) ≥ c > 0
if y ∈ 2−ν(Ḡ2 \ Ḡ1) . Then, if ε > 0 is given, we can choose ν0 so large that∣∣∣∣ n(y)

|n(y)| −
c2 × c3
|c2 × c3|

∣∣∣∣ < ε

if ν ≥ ν0 and y ∈ 2−ν(Ḡ2 \ Ḡ1).
Next choose δ > 0 so that {y : |y| < δ} ⊂ 2−ν0Ḡ2. Then, if y is given with

0 < |y| < δ, there exists a unique ν ≥ ν0 such that y ∈ 2−ν(Ḡ2 \ Ḡ1). Consequently,

0 < |y| < δ =⇒
∣∣∣∣ n(y)
|n(y)| −

c2 × c3
|c2 × c3|

∣∣∣∣ < ε.

This completes the proof of the theorem.

5.7 Conditions for single sheetedness
In order to prove that the subdivision method produces a locally well-defined surface
in a neighbourhood U � y0 of a point y0 in parameter space, one must verify that
the mapping

U � y �→ x(y) ∈ RN

is one-to-one. This is normally done by showing that the functional matrix[
∂x
∂u ,

∂x
∂v

]
is continuous and of full rank at y0 or, equivalently, that the normal
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vector n(y) = ∂x
∂u × ∂x

∂v is continuous and different from the null vector at y0. At
points in parameter space corresponding to a regular vertex this is true for almost
all choices of initial control vector sequences. The exceptional sequences are in a
lower-dimensional submanifold of the space of all possible choices, similarly to the
situation described in the proof of Theorem 5.6.2/235. Having established that the
mapping is one-to-one, it also follows that after introducing a new local Euclidean
coordinate system with the x3-axis parallel to the normal n(y0) and the origin
at x(y0), the surface has the equation x3 = f(x1, x2), where f is C1-continuous in
a neighbourhood of the origin.

In the nonregular case this approach is not possible, even if we have been
able to establish tangent-plane continuity. This follows from (5.97)/239 where y ∈
2−ν(Ḡ2 \ Ḡ1). If we let ν →∞, we see that limy→0 |n(y)| = 0 or limy→0 |n(y)| = ∞
unless λ2 = 1/2, in which case we have a regular point.

Instead we will rely on some results of functional analysis proved by using
the concept of topological degree, or winding number. The results needed will be
described below, but not their full proofs. The underlying theory of topological
degree and winding number is extensively analysed in [41, 70]. The necessary tools
for a proof of Theorem 5.7.1/241 below can also be found in [4] and in [124, Sec. 2.3].

Let the open sets Ωj , j = 0, 1, . . . , n− 1, be defined by

Ωj = {y : y = εjej + εj+1ej+1, 0 < εj , εj+1 < 2},
so that

Ḡ2 =
n−1⋃
j=0

Ω̄j ,

where Ω̄j denotes the topological closure of Ωj . Then the vector-valued function
x(y) is piecewise C1-continuous over this partitioning of Ḡ2 in the sense that the
restrictions x(y)|Ωj ,

∂x
∂u |Ωj , and ∂x

∂v |Ωj are continuous and can be extended to con-
tinuous functions on Ω̄j for all j (the extensions need not coincide on intersections
Ω̄j ∩ Ω̄j−1 of adjacent subpatches). Further, we can perform a piecewise-affine
change of variables on the union Ω̄j ∪ Ω̄j−1 so that x(y) becomes C1-continuous in
the interior of this union.

We begin by giving some more detailed information about the asymptotic
behaviour of n(y). From (5.97)/239 it follows that the component of n(y) which is
parallel to c2 × c3 is the dominant one as ν → ∞. We may estimate the order of
magnitude for this component when |y| → 0 in the following way. If y ∈ Ḡ2 \ Ḡ1,
then |y| ∼ 2−ν , i.e., ν ∼ − lg y and

(2λ2)2ν = 22ν lg(2λ2) ∼ 2−2 lg y lg(2λ2) = |y|γ ,
where γ = −2 lg(2λ2), and lg(·) denotes the logarithm base 2. For n = 3, 2λ2 > 1
and γ < 0. For n > 4, 2λ2 < 1 and γ > 0. For a regular point with n = 4 we have
2λ2 = 1 and γ = 0. So, for n = 3, |n(y)| → ∞ and for n > 4, |n(y)| → 0 as |y| → 0.

Next, we introduce a new Euclidean coordinate system x1, . . . , xN in RN with
the origin at the point x(0) = c1 and, if N = 3, with the x3-axis parallel to the
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vector c2×c3. In these new coordinates the surface has the representation (if N = 3)

R2 � y �→ (x1(y), x2(y), x3(y)) ∈ R3.

The c2 × c3 component of the surface normal is now given by the functional
determinant

n3(y) =
d(x1(u, v), x2(u, v))

d(u, v)
=

∣∣∣∣∣ ∂x1
∂u

∂x1
∂v

∂x2
∂u

∂x2
∂v

∣∣∣∣∣ .
Consider the mapping

R2 � y = (u, v) �→ (x1(u, v), x2(u, v)) = xp(y) ∈ R2,

where the notation xp is intended to suggest “projection” into the (x1, x2)-plane. It
has been proved above that if ν is large enough, then there exist positive constants
c and C such that

c|y|γ < d(x1, x2)
d(u, v)

< C|y|γ

for all y ∈ 2−νḠ2 \ {0}.
We now formulate the mentioned topological uniqueness theorem needed for

establishing single sheetedness. Let ∂ denote the boundary of a subset in R2.

Theorem 5.7.1. Let x : Ḡ2 → R2 be a mapping which is piecewise C1-continuous
over the partition Ḡ2 =

⋃n
j=1 Ω̄j as described above. Assume also that

d(x1, x2)
d(u, v)

∣∣∣
Ω̄j\{0}

> 0 for all j.

Then the mapping is one-to-one if and only if the restriction x|∂Ḡ2
to the boundary

is one-to-one.

Next, we give the main theorem guaranteeing single sheetedness (almost
everywhere) around a nonregular point, for the Catmull–Clark scheme.

Theorem 5.7.2. If the vector c2 × c3 is different from the null vector, then there
exists a δ > 0 such that the mapping R2 � y �→ x(y) = (xp(y), x3(y)) ∈ R3 is
one-to-one for |y| < δ. Moreover, the surface has a representation x3 = f(x1, x2)
in a neighbourhood of the origin, with f a C1-continuous function of (x1, x2).

Proof. By Theorem 5.7.1/241 it suffices to prove that, for some ν the mapping
x|2−ν∂Ḡ2

is one-to-one. Having done this we choose δ > 0 such that {y : |y| < δ} ⊂
2−ν∂Ḡ2.

By (5.93)/236 we have (since c1 = 0 is now the origin)

xp(2−νy) = λν2 {X(y) + αpν(y)}
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for all y ∈ Ḡ2, where αpν = (αν,1, αν,2) is the (x1, x2)-component of the vector αν .
On ∂Ḡ2, the functions X and αpν represent third-degree spline curves in R2 with
control polygons defined by ξil , l ∈ G3 \{0} and i = 2, 3 for X and 4 ≤ i ≤ n for αν .

We have the following lemma.

Lemma 5.7.3. If X|∂Ḡ2
is one-to-one and if the derivative of X|∂Ḡ2

along ∂Ḡ2
does not vanish at any point, then, if ν is chosen large enough, (X + αpν)|∂Ḡ2

is
one-to-one.

Proof. Let

ε(δ) = min{|X(y1)−X(y2)| : y1, y2 ∈ ∂Ḡ2, |y1 − y2| ≥ δ}.

Since X is continuous and ∂Ḡ2 is compact, ε(δ) > 0 for all δ > 0. Now X|∂Ḡ2

is a piecewise third-degree polynomial curve along ∂Ḡ2, and by assumption the
derivative along ∂Ḡ2 does not vanish anywhere. Therefore we have, for some δ > 0
and K1 > 0, that

y1, y2 ∈ ∂Ḡ2, |y1 − y2| ≤ δ =⇒ |X(y1)−X(y2)| ≥ K1|y1 − y2|.

Further, let C1 = max{|y1 − y2| : y1, y2 ∈ ∂Ḡ2}. Then

y1, y2 ∈ ∂Ḡ2, δ ≤ |y1 − y2| ≤ C1

=⇒ |X(y1)−X(y2)| ≥ ε(δ) = (ε(δ)/C1)C1 ≥ (ε(δ)/C1)|y1 − y2|.

Consequently, with c = min{ε/C1,K1} we have |X(y1)−X(y2)| ≥ c|y1 − y2|. Sim-
ilarly, αpν |∂Ḡ2

is a piecewise third-degree polynomial curve. The spline coefficients
of this curve are majorized by a factor (|λ4|/λ2)ν0 (see (5.96)/239) and therefore we
have

|αpν(y1)− αpν(y2)| ≤ C(|λ4|/λ2)ν |y1 − y2|

for some constant C. It follows that

|X(y1) + αpν0(y1)− (X(y2) + αpν0(y2))| ≥ (c− C(|λ4|/λ2)ν0)|y1 − y2|.

If we choose ν0 so large that the constant in the right-hand side is positive, then
(X + αν0)|∂Ḡ2

is one-to-one.

In order to complete the proof of Theorem 5.7.2/241, it suffices to show that
X|∂Ḡ2

is one-to-one and has nonvanishing derivative everywhere. This requires a
detailed analysis of this piecewise third-degree spline curve in terms of the coeffi-
cients ξ2l and ξ3l , l ∈ G3 \ {0}, which is omitted. We refer instead to Chapters 5
and 6 of [124].

We have proved that the mapping

2−νḠ2 � y = (u, v) �→ xp(y) = (x1(u, v), x2(u, v)) ∈ R2
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is one-to-one if ν is large enough. It follows that the inverse mapping

(u, v) = (u(x1, x2), v(x1, x2))

is uniquely defined on the image of 2−νḠ2. Therefore, the component x3(u, v) is a
well-defined function

x3 = f(x2, x3)

in a neighbourhood of the origin. The surface unit normal is given by

n̂(y) = (−fx1 ,−fx2 , 1)/
√

1 + f2
x1

+ f2
x2

in these coordinates. From the fact that n(y)/|n(y)| is continuous in a neighbour-
hood of the origin, it follows that fx1 and fx2 are continuous functions of (x1, x2)
in a neighbourhood of the origin and that fx1(x1, x2) and fx2(x1, x2) tend to 0 as
(x1, x2) → (0, 0).

The mapping

Ḡ2 � y = (u, v) �→ X(u, v) ∈ R2

is called the characteristic map of the subdivision method. The analysis above
shows that the invertibility of the characteristic map guarantees single sheetedness
and C1-continuity of the resulting surface for almost all choices of initial control
sequences.

5.8 Further reading on convergence and smoothness
The topic of convergence and smoothness of subdivision methods has been a subject
of intense research effort in recent years. The sections above gave the basic ideas on
the subject, including many facts that are often left unstated in the literature. On
the other hand, these sections gave only the basic ideas. Important references for
further reading include the thesis of Zorin [172], as well as related papers such as
[173, 174], and the book of Peters and Reif [124].

In this book we have adopted a point of view that is standard in computer
science for the study of subdivision surfaces: subdivision is viewed as a set of
operations applied to a two-dimensional cellular complex, which is essentially a
graph structure with the additional specification of which edges are connected to
which faces [10, 11]. In [124], however, there is a shift in point of view: subdivision
is viewed as generating a sequence of nested annular rings of surfaces, whose union
forms a generalized spline [124, Sec. 3.1, Sec. 4.4]. This change in point of view
permits application in a natural way of many concepts from differential geometry
and leads to an elegant presentation of the main known results about convergence
and smoothness of subdivision methods.

Shape and the spectral properties of subdivision matrices

It has been understood since the earliest modern papers on subdivision that the
distribution of the eigenvalues of local subdivision matrices, as determined by the
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choice of weights in stencils for nonregular points, is important in determining the
shape and smoothness properties of the limit surfaces. This is particularly evident
in the paper of Doo and Sabin [45], and in the choice of weights using empirical
criteria in the paper of Catmull and Clark [24]. Understanding of these issues
increased significantly over the three decades following these papers. Here we give
a brief summary, based on the two principal references mentioned above.

It was shown earlier in the chapter, for the example of the Catmull–Clark
method, that C1-continuity of the limit surface can be obtained by establishing reg-
ularity conditions (Lemma 5.6.3/236) and invertibility conditions (Lemma 5.7.3/242)
on the characteristic map. In [124, 172], these questions are studied in a general
context. What are necessary and sufficient conditions, for various classes of meth-
ods, in order to achieve C1-continuity? What are the conditions for C2-continuity
(curvature)? What is the general relationship between the spectral properties of
the subdivision matrices and the shape of the limit surfaces?

In Chapters 4 and 5 of [172] algorithms are given to test whether regularity
and injectivity of the characteristic map are satisfied for certain general classes of
methods, and a study of specific schemes, including the Loop, Butterfly, Catmull–
Clark, and Doo–Sabin methods, is given in [172, Ch. 6]. In particular, it is shown
that the Butterfly method satisfies necessary conditions for C1-continuity only for
the particular valences n = 4, 5, and 7, due to the clustering of eigenvalues for
large valences. Similarly, it is shown that although the standard Loop method is
formally C1, in practice it does not always produce visibly smooth surfaces, again
due to clustering of eigenvalues. Alternative weights for the Loop methods are
proposed [172, Sec. 6.6] in order to alleviate this problem. Similarly, the alternative
Modified Butterfly Method (see Section 4.2.3) is studied in [172, Sec. 6.4], and it is
shown how the enlarged stencil of Figure 4.6/154 permits the avoidance of clustered
eigenvalues and a proof of C1-continuity. (It is also shown that enlargement of the
Butterfly-scheme stencil is essential to achieve such results.)

In the book of Peters and Reif [124] a general presentation is given, for conver-
gence and smoothness, using the methods and terminology of differential geometry.
In Chapter 6 of [124] the results are applied to certain standard methods, including
Catmull–Clark, Doo–Sabin, Midedge (called “Simplest Subdivision” in [124]), and
variants of these methods. The necessary and sufficient conditions that we have
illustrated in the nonregular case are presented in a general setting, and it is shown,
for example, that a double subdominant eigenvalue is neither necessary nor sufficient
for tangent-plane continuity.

In [124, Ch. 7], different levels of what might be called geometric continuity,
parametrized by r ≥ 0 for certain classes of surfaces Ckr , are introduced. The case
r = 1 corresponds to tangent-plane continuity combined with single sheetedness.
Note that the subscript r = 1 here corresponds to the superscript 1 in C1, when
[172] refers to C1-continuity. The case r = 2 corresponds to what is called curvature
continuity . It is pointed out, however, that even this level of smoothness is not
necessarily sufficient to provide satisfactory surfaces. Other characteristics, related
to principal curvatures, convexity, ellipticity, hyperbolicity, and generalizations of
these concepts, are studied in the context of the spectral properties of subdivision
matrices. See also [123]. The relationship between second-order continuity and
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quadratic precision, in the nonregular case, is also examined in [124]. Quadratic
precision in the regular case is discussed in Section 6.4.

5.9 Additional comments
A fundamental reference related to Sections 5.1–5.3 above is the monograph [25]. In
particular, [25] gives stronger results than those of Section 5.3, using more elaborate
methods of analysis than those used in this book. See also the overview given by
Dyn in [124, Sec. 1.7].

Important early papers in the nonregular case were [8, 9], the paper [132]
which introduced the idea of the characteristic map, and the papers [91, 144] on
the Loop method. See also the more recent papers [57, 159].

A summary of the references [124, 172] was given in Section 5.8, immediately
preceding this one. Both of these references contain bibliographies. In particular,
bibliographic summaries are given at the end of each chapter of [124], most of which
pertain to the general questions of convergence and smoothness in the nonregular
case. See also the papers [122, 173, 174], mentioned above.

Estimates of the minimal degree necessary for Ck continuity were given in
[130, 133].

5.10 Exercises
1. Explain why (5.6)/191 implies (5.8)/192 if p0(z) ≡ 1. Also, explain in detail

why (5.10)/192 and (5.11)/192 follow from the statements preceding them.

2. Show that the trisection method defined by three times the first factor in
(4.19)/157 is not affine invariant.

3. Give the proof of Theorem 5.3.5/213.

4. Show that in the limit as r → 0+, the unit normal of the surface in Fig-
ure 5.2/222 is [0, 0, 1].

5. Using the inclusion-exclusion principle, show that a k-ring neighbourhood
contains nk(k + 1) + 1 grid points. Also, show that the dimension of σ′k
in (5.66)/225 is 2n(k + 1)× 2n(k + 1), and the dimension of σ′′k is 2n(k + 1)×
nk(k + 1) + 1.

6. Verify that λ2,3, given by (5.82)/228, satisfies λ2,3 < 1/2 for n = 3, λ2,3 = 1/2
for n = 4, and λ2,3 > 1/2 for n > 4.

7. Explain to which part of (5.67)/225 (with k = 1) equation (5.73)/226 corre-
sponds, and to which part of (5.67)/225 equations (5.88)/230 and (5.89)/230

correspond. Also, state to which variables in (5.67)/225 the primed variables
in (5.73)/226, (5.88)/230, and (5.76)/227 correspond, and to which variables the
unprimed variables correspond.

8. Prove the remark in the last paragraph of Section 5.5.
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5.11 Project
1. Algebraic verifications.

Using some symbolic-computation software, confirm the interval in (5.61)/219.
Similarly, many of the algebraic derivations in Section 5.5 were obtained using
such software: verify the results for which details were not given.
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Evaluation and Estimation
of Surfaces

In previous chapters we have usually assumed that subdivision surfaces are to be
evaluated using the subdivision process. An alternative approach, however, is exact
evaluation, i.e., the use of piecewise explicit formulas to evaluate the surface. For
example, in the regular tensor-product B-spline case, we might consider doing the
evaluation of x(u, v) for some range of values of the parameters (u, v) by using a
specialization of the algorithm of [127, Sec. 3.4], which simply evaluates the linear
combination (2.46)/74 using the explicit definitions of the B-spline nodal functions.
(We do not need the full generality of the algorithm in [127], which applies in the
more general case of nonuniform B-splines.) Another possibility is the use of the
methods in Section 2.5.5, generalized to the tensor-product case, again to evaluate
x(u, v) for some range of parameter values.

In this chapter we examine how exact evaluation of the surface x(u, v) can be
done in cases more general than regular tensor-product B-splines.

Related to exact evaluation of the surface for arbitrary values of the parameters
is the device of “pushing points to their limit.” This refers to the following. Suppose
that at some level of subdivision we have produced a refined sequence of control
vectors approximating the exact surface at the corresponding points in parameter
space. We then want to find the exact surface points for some, or all, of these
parameter values and the corresponding exact tangent vectors to the surface. The
process involves42 the use of evaluation stencils and tangent stencils.

Following the discussion of these stencils, we describe methods of de Boor and
Stam, for basic and variant methods, respectively, to evaluate the nodal functions
exactly for any parameter value.

Also included in this chapter is a quite detailed study of precision sets, and
the degree of polynomial reproduction, in both the univariate and bivariate cases.
We also discuss the Wu–Peters method for finding tight bounding envelopes for
the surface [75, 120, 169, 170]. The goal in this case is to find regions that tightly
enclose the surface, given the control points. The chapter concludes with a brief
discussion of adaptive subdivision, an application that requires good estimates of
the error in surface patches.

247
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6.1 Evaluation and tangent stencils for
nonregular points

6.1.1 Evaluation stencils

Assume that we are given a subdivision method that is a variant of some basic
method, as in Figure 1.30/33, and that it is stationary and affine invariant. We also
assume that the method is convergent in the sense described in Theorem 5.5.2/232.
The nonregular point is situated at the origin and the same notation is used as
in Sections 5.5 and 5.6. In particular, see Figures 5.3/223 and 5.4/237, and equa-
tion (5.63)/224: Nl is the nodal function associated with l ∈ G by application of the
Nodal-Function Computation principle, and l = 0 corresponds to the origin. To
simplify notation we take the parameter h = 1.

Assume that κ is the smallest number such that the set Ḡκ corresponding to
the κ-ring Gκ satisfies Ḡκ ⊇ supp (N0), for any valence (including the case that the
origin might be regular). Also let Sκ denote the corresponding local subdivision
matrix. Then after the ν th subdivision step we have, if 2νy ∈ Ḡ1, the surface
representation,

x(y) =
∑
l∈Gκ

pνl Nl(2
νy),

i.e.,

x(2−νy) =
∑
l∈Gκ

pνl Nl(y) =
∑
l∈Gκ

pν,κl Nl(y) (6.1)

if y ∈ Ḡ1. Here pν,κ is defined by (5.64)/225. We now expand p0,κ as

p0,κ =
∑
j

ξjcj ,

where ξj are the, possibly generalized, eigenvectors of Sκ [56]. The vectors cj are
given by

cj = (ηj)∗p0,κ =
∑
l∈Gκ

η̄jl p
0,κ
l ,

where the set of column vectors {ηj}j is the dual of the basis {ξj}j , with the
property that they are also, possibly generalized, eigenvectors of the transposed
matrix Stκ, with the same eigenvalues.43 The ∗-notation means transposition and
complex conjugation and η̄jl denotes the complex conjugate of ηjl . Then

pν,κ = Sνκp
0,κ =

∑
j

λνj ξ
jcj ,

where λj are the eigenvalues of Sκ. If we insert into (6.1)/248 and use that ξ1l = 1
for all l, we get

x(2−νy) =
∑
j≥1

cjλ
ν
j

∑
l∈Gκ

ξjlNl(y) = c1
∑
l∈Gκ

Nl(y) +
∑
j≥2

cjλ
ν
j

∑
l∈Gκ

ξjlNl(y)

= c1 +
∑
j≥2

cjλ
ν
j

∑
l∈Gκ

ξjlNl(y). (6.2)
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Theorem 6.1.1. For all j > 1 we have |λj | < 1.

Proof. Suppose that λ1 = 1 is of algebraic multiplicity at least 2 with a generalized
eigenvector ξ2 such that

Sκξ
1 = ξ1 and Sκξ

2 = ξ2 + ξ1.

It follows that Sνκξ
2 = νξ2 + ξ1. Then, if we choose the initial sequence of control

vectors such that p0,κ = ξ2c2 for some nonzero c2 ∈ RN , we get pν,κ = (νξ2 + ξ1)c2.
Consequently, if l ∈ G1, we have

x(l/2ν)− pνl = x(l/2ν)− (νξ2l + ξ1l )c2.

Here ξ2l �= 0 for at least one l ∈ G1, and letting ν → ∞ the first term in the
right-hand side converges, whereas the second tends to infinity, which contradicts
the convergence.

Similarly, we can exclude the possibility that |λ2| = 1 with an eigenvector ξ2

(possibly complex) linearly independent of ξ1 and the possibility that |λj | > 1 for
some j. The arguments are omitted.

If we now let ν → ∞ in (6.2)/248 and use that |λj | < 1 for j > 1, we have
x(0) = c1 and

c1 = (η1)∗p0,κ =
∑
l∈Gκ

η̄1
l p

0
l =

∑
l∈Gκ

η̄1
l p
ν
l

for any fixed ν. The last equality follows since (ηj)∗pν,κ = λνj cj . We have defined η1

as the eigenvector of the real matrix Stκ with eigenvalue λ1 = 1, and η1 is therefore
a real vector, possibly multiplied by a complex constant. From the requirement
(η1)∗ξ1 =

∑
l η̄

1
l = 1, it follows that η1 must be a real vector and the complex

conjugation can be dropped, i.e.,

x(0) = c1 = (η1)tp0,κ =
∑
l∈Gκ

η1
l p

0
l =

∑
l∈Gκ

η1
l p
ν
l . (6.3)

Similarly, it is clear that if λj is real, then the (possibly generalized) eigenvectors
ξj and ηj can be chosen to be real. Now, by (6.1)/248 with y = 0 we have

x(0) =
∑
l∈Gκ

pνl Nl(0) =
∑
l∈Gk

pνl N0(−l).

We conclude that Nl(0) = η1
l for all l ∈ Gκ. Since Nl(0) = N0(−l) = 0 for

l ∈ Gκ \Gκ−1, the same is true for η1
l and we may write

η1 =
(

0
η1,κ−1

)
.

Next, considering the structure of Sκ we have (compare with (5.67)/225)(
(σ′κ−1)

t 0
(σ′′κ−1)

t Stκ−1

)(
0

η1,κ−1

)
=
(

0
Stκ−1η

1,κ−1

)
=
(

0
η1,κ−1

)
,
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and we conclude that η1,κ−1 is the dominant eigenvector of Stκ−1 with λ1 = 1
the corresponding simple eigenvalue. Thus, the evaluation stencil at the possibly
nonregular point (the origin) is

{η1
l }l∈Gκ−1 = {Nl(0)}l∈Gκ−1 ,

where η1 is the unique dominating eigenvector of the local subdivision matrix Stκ−1.
For the case where we wish to evaluate (6.1)/248 at some other y ∈ Gκ \ {0}

we use the same procedure, but the matrix Sκ−1 may be different.
In the following example we derive evaluation stencils for the Catmull–Clark

method. Evaluation stencils for the Loop method are discussed as part of Exam-
ple 6.1.4/255, and stencils for the Doo–Sabin method are discussed in Section 7.2.1.

Example 6.1.2. The evaluation stencil for the Catmull–Clark method.
We use the notation of Figure 5.3/223. Here Ḡ2 ⊃ supp (N0) and N0(l) �= 0

only if l ∈ G2 (κ = 2). Therefore, in order to determine the evaluation stencil
around the origin, we must find the dominant eigenvector η1 of St1. We recall that
S1 is given by (5.73)/226 and that the eigenvectors are calculated using (5.83)/229

and (5.84)/229. Note that the eigenspaces corresponding to different values of r,
0 ≤ r ≤ n − 1, are orthogonal (they are three dimensional if r = 0 and two
dimensional if 0 < r ≤ n− 1).

Thus the eigenvector problem S1ξ
j = λξj when λ is given by (5.79)/228 reduces

to the eigenvector problem in (5.77)/228, i.e.,

A

 f0
e0
V

 = λ

 f0
e0
V

 , (6.4)

where

A =

 1/4 1/2 1/4
1/8 1/2 3/8
1/4n 3/2n 1− 7/4n

 .

Introducing the notation

ξ = (F1/2, F3/2, . . . , Fn−1/2 | E0, E1, . . . , En−1 | V )t,

for vectors in R2n+1 we recall from Section 5.5.2 that the eigenvectors of S1 have
the form

ξj = (f0, f0, . . . , f0 | e0, e0, . . . , e0 | V )t

if λj are given by (5.79)/228 and

ξj = (frwr/2, . . . , frwr(i+1/2), . . . , frw
r(n−1/2)| er, erwr, . . . , erwri , . . . , erw

r(n−1) | 0)t,

i = 0, . . . , n− 1, with er and fr solving (5.78)/228, for other eigenvalues.
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If we then solve the following eigenvector problem (with λ = 1) for the trans-
posed matrix:

At

 nf ′0
ne′0
V ′

 = λ

 nf ′0
ne′0
V ′

 , (6.5)

we have the orthogonality relations

nf0f
′
0 + ne0e

′
0 + V V ′ = 0 (6.6)

if (f0, e0, V )t solves (6.4)/250 with λ given by (5.79)/228 and λ �= 1. Now (6.6)/251

expresses that
η = (f ′0, f

′
0, . . . , f

′
0 | e′0, e′0, . . . , e′0 | V ′)t

has the property that (η1)tξj = 0 if ξj is the eigenvector corresponding to λj given
by (5.79)/228 and λ �= 1. It also follows that (η)tξj = 0 for all λj , j �= 1. Since the
vector η is orthogonal to all vectors ξj , j > 1, it is a multiple of η1.

Next, solving (6.5)/251 with λ = 1, we get the solution

η = V ′(1/n2, . . . , 1/n2 | 4/n2, . . . , 4/n2 | 1)t,

and inserting into the normalization condition (η)tξ1 = 1, we get

V ′(1/n+ 4/n+ 1) = 1,

i.e., that V ′ = n/(n+ 5) and

η = η1 =
n

n+ 5
(1/n2, . . . , 1/n2 | 4/n2, . . . , 4/n2 | 1)t. (6.7)

For n = 3 we have

η1 = (1/24, 1/24, 1/24 | 1/6, 1/6, 1/6 | 3/8)t (6.8)

and for n = 4 (the regular case),

η1 = (1/36, 1/36, 1/36, 1/36 | 1/9, 1/9, 1/9, 1/9 | 4/9)t.

Stencils such as these are usually illustrated by diagrams showing the weights to be
assigned to points around a central point, as shown in Figure 6.1/252 for the cases
n = 3 and n = 4.

For the regular case, n = 4, we have a tensor-product bicubic spline and in this
case the evaluation stencil can be derived in a simpler way by means of a univariate
subdivision polynomial. This is demonstrated below, in Example 6.2.1/257.

6.1.2 Tangent stencils

Again we assume that we are given a subdivision method that is a variant of some
basic method, is stationary and affine invariant, and is locally uniformly convergent
outside the origin, as described in Theorem 5.5.2/232. With notation as in the
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1
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1
6

1
24 e0

1
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1
9

1
9

e1

e3

e2

Figure 6.1. Evaluation stencils (n = 3, 4) for the Catmull–Clark method.

previous section, we assume in addition that the local subdivision matrix Sκ+1 has a
double subdominant real eigenvalue λ2,3 with two linearly independent eigenvectors
ξj , j = 2, 3, and that λ1 > |λ2,3| > |λj | for j > 3. We also assume that the
characteristic map, with c2 and c3 linearly independent,

y = (u, v) �→ X(y) = c2
∑

l∈Gκ+1

ξ2l Nl(y) + c3
∑

l∈Gκ+1

ξ3l Nl(y),

is such that for its normal

n(y) =
∂X

∂u
× ∂X

∂v
= n0(y)c2 × c3

we have n0(y) ≥ c > 0 for some constant c if y ∈ Ḡ2 \ Ḡ1. Then, it follows in the
same way as in Lemma 5.6.3/236, which dealt with the Catmull–Clark method, that
we have tangent-plane continuity in the origin and that two linearly independent
tangent vectors there are

cj = (ηj)tpν,κ+1 =
∑

l∈Gκ+1

ηjl p
ν
l , j = 2, 3. (6.9)

The normal vector is given by c2 × c3. Thus, the tangent stencils are given by the
subdominant eigenvectors

{ηjl }l∈Gκ+1 , j = 2, 3,

of the transposed local matrix Stκ+1. In the case that the subdominant eigenvalue
λ2,3 is also a double eigenvalue of Sκ−1, which is true for the Catmull–Clark method
(with κ = 2), we have, for j = 2, 3, that ηjl = 0 if l ∈ Gκ+1 \ Gκ−1, and that the
values ηjl for l ∈ Gκ−1 are equal to the values of ηj,κ−1

l if we let ηj,κ−1 denote the
corresponding eigenvector of Sκ−1. In fact, by (5.66)/225 we have

Stκ =
(

(σ′κ−1)
t 0

(σ′′κ−1)
t Stκ−1

)
,
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and therefore Stκ−1η
j,κ−1 = λjη

j,κ−1 implies that

Stκ

(
0

ηj,κ−1

)
=
(

(σ′κ−1)
t 0

(σ′′κ−1)
t Stκ−1

)(
0

ηj,κ−1

)
= λj

(
0

ηj,κ−1

)
.

Similarly, it follows that

Stκ+1

 0
0

ηj,κ−1

 = λj

 0
0

ηj,κ−1

 ,

and since by assumption the eigenspace of Sκ+1 is two dimensional, it follows that

ηj,κ+1 =

 0
0

ηj,κ−1

 ,

where the size of the matrices denoted by 0 varies; see Section 5.5.2. Consequently,
in this case the tangent stencils are given by the subdominant eigenvectors

{ηjl }l∈Gκ−1 , j = 2, 3,

of the transposed local subdivision matrix Stκ−1.
Tangent stencils for the Catmull–Clark and Loop methods are discussed in

the following two examples. For the Doo–Sabin method, see Section 7.2.1.

Example 6.1.3. Tangent stencils for the Catmull–Clark method.
In Example 6.1.2/250 we noted that the eigenspaces of S1 corresponding to

different values of r were orthogonal. The eigenvectors ξj , j = 2, 3, corresponding
to the subdominant eigenvalue λ2,3 can now be found by solving the eigenvalue
problems (5.78)/228, for r = 1 and r = n− 1 and with λ2,3 given by (5.81)/228 with
the plus sign. We have

A

(
fr
er

)
= λ2,3

(
fr
er

)
, (6.10)

where

A =
(

1/4 1/2 cos(πr/n)
(1/8) cos(πr/n) 3/8 + (1/8) cos(2πr/n)

)
.

Consequently, from (5.84)/229, (5.85)/229, and (5.86)/229, taking r = 1 and e1 = 1,
we have, when n = 3,

ξ2 = 	ξ = f1(1/2,−1, 1/2 | 0, 0, 0 | 0)t,+(0, 0, 0 | 1,−1/2,−1/2 | 0)t,

ξ3 = 
ξ = f1(
√

3/2, 0,−
√

3/2 | 0, 0, 0 | 0)t + (0, 0, 0 | 0,
√

3/2,−
√

3/2 | 0)t,

where f1 = (
√

17− 1)/2.
Eigenvectors η of St1 are then found by solving

At
(
f ′r
e′r

)
= λ2,3

(
f ′r
e′r

)
(6.11)
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and forming the eigenvector

η = e′r(0, 0, . . . , 0 | 1, wr, . . . , wjr , . . . , w(n−1)r | 0)t

+ f ′rw
r/2(1, wr, w2r, . . . , wjr , . . . , w(n−1)r | 0, . . . , 0 | 0)t,

where j = 0, . . . , n− 1 and w = exp(2πi/n). A linearly independent eigenvector for
the same eigenvalue is obtained by taking the complex conjugate η∗.

If r < n, straightforward calculations give that

f ′r =
1
4
(
√

4 + cos2(πr/n)− cos(πr/n))e′r.

Taking r = 1 and e′1 = 1 and using that wn = 1, we get the eigenvectors

η2 = (0, 0, . . . , 0 | 1, w, . . . , wj , . . . , w−1 | 0)t

+ f ′1(w
1/2, w3/2, . . . , wj+1/2, . . . , w−1/2 | 0, 0, . . . , 0 | 0)t

and

η3 = (0, 0, . . . , 0 | 1, w−1, . . . , w−j , . . . , w1 | 0)t

+ f ′1(w
−1/2, w−3/2, . . . , w−(j+1/2), . . . , w1/2 | 0, . . . , 0 | 0)t,

where
f ′1 =

1
4
(
√

4 + cos2(π/n)− cos(π/n)).

Taking real and imaginary parts, we obtain the real eigenvectors

η2 = (0, 0, . . . , 0 | 1, cos(2π/n), . . . , cos(2πj/n), . . . , cos(2π/n) | 0)t

+ f ′1(cos(π/n), cos(3π/n), . . . , cos((j + 1/2)2π/n), . . . , cos(π/n) | 0, . . . , 0 | 0)t

and

η3 = (0, 0, . . . , 0 | 0, sin(2π/n), . . . , sin(2πj/n), . . . ,− sin(2π/n) | 0)t

+f ′1(sin(π/n), sin(3π/n), . . . , sin((j + 1/2)2π/n), . . . ,− sin(π/n) | 0, . . . , 0 | 0)t.

These are the vectors that serve as tangent stencils for the Catmull–Clark method.
If we take n = 3, we get the linearly independent tangent stencils

η2 = (0, 0, 0 | 1,−1/2,−1/2 | 0)t + f ′1(1/2,−1, 1/2 | 0, 0, 0 | 0)t

and

η3 = (0, 0, 0 | 0,
√

3/2,−
√

3/2 | 0)t + f ′1(
√

3/2, 0,−
√

3/2 | 0, 0, 0 | 0)t,

where f ′1 = (
√

17 − 1)/8. The stencil is illustrated for n = 3 in Figure 6.2/255. For
n = 4 we have f ′1 =

√
2/4 and

η2 = (1/4,−1/4,−1/4, 1/4 | 1, 0,−1, 0 | 0)t,
η3 = (1/4, 1/4,−1/4,−1/4 | 0, 1, 0,−1 | 0)t.

Since this is the regular case with a bicubic tensor-product spline surface, we can
also obtain these stencils by using (2.74)/90.

Using the expressions that we have just derived for n = 3, for example, it is
easy to verify, using (6.8)/251, that η1ξ2 = η2ξ1 = 0.
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e0

e1

e2

0

√
3/2

e0

e1

e2 f ′1/2− 1
2

−f ′1 0 0
0

f ′1
√

3/2f ′1/2

−√3/2 −f ′1
√

3/2

− 1
2

1

η2 η3

Figure 6.2. Tangent stencils (n = 3) for the Catmull–Clark method.

Example 6.1.4. Stencils for the Loop method.
We do not give a detailed analysis in this case, but state only the results, with

references.
Exercise 12/49 asked for the (n+1)× (n+1) subdivision matrix corresponding

to a 1-ring neighbourhood for the Loop method. The required matrix is given in
the solutions document, on the book’s Web site www.siam.org/books/ot120. We
also give it here, in concise form. The leading n×n submatrix of (S1)(n+1)×(n+1) is
band diagonal, with 3’s on the diagonal and 1’s on the two adjacent subdiagonals.
The remainder of the matrix S1 is defined as follows:

(S1)n+1,j = 8w(n)/n, j = 1, . . . , n,
(S1)i,n+1 = 3, i = 1, . . . , n,
(S1)n+1,n+1 = 8(1− w(n)).

It is easy to verify that the left eigenvector corresponding to the dominant
eigenvalue λ1 = 1 is (

1, . . . , 1 | (3/8)n/w(n)
)t

and this is the evaluation stencil for the Loop method (corresponding to η1 in
Example 6.1.2/250 for the Catmull–Clark method).

Similarly, it can be shown that there are two linearly independent eigen-
vectors corresponding to the subdominant eigenvalue λ2,3 = (3 + 2 cos(2π/n))/8,
and they are (c1, . . . , cn | 0) and (s1, . . . , sn | 0), where cj = cos( 2π(j−1)

n ) and
sj = sin( 2π(j−1)

n ). These vectors serve therefore as tangent stencils for the Loop
method. The details can be found, for example, in [144, pp. 15, 55]. (The notation
b in [144] corresponds to 8w(n) in our notation.) See also [172, Fig. 2.8, p. 31]
and [66, Fig. 2]. In the latter reference, a different pair of linearly independent
eigenvectors is given, but they span the same two-dimensional subspace.

6.2 Evaluation and tangent stencils for
subdivision-polynomial methods

For subdivision methods given by some subdivision polynomial, the computation of
evaluation and tangent stencils is done exactly as in the previous section, and since
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all points are regular, the stencils are the same at all control points. Sometimes,
however, we might want more detailed information about the basis nodal functions.

Assume that we have a subdivision process given by some subdivision poly-
nomial s(z) =

∑
k skz

k, as in Figure 1.30/33 (third column, lower row). The shift-
invariant nodal functions at the ν th step are denoted by N(h2−ν ; y − lh2−ν). Due
to the scaling properties we have N(h2−ν ; y− lh2−ν) = N(h; 2νy− lh), and to sim-
plify notation we can, without loss of generality, take h = 1 and N(1; y) := N(y);
see also Section 5.3.1.

After the ν th step of the subdivision we have the representation

x(y) =
∑
l

pνl N(2νy − l). (6.12)

Here the sum may be over l ∈ Z2 or possibly over l ∈ Z2 + ē/2 (with notation as in
Definition 3.5.1/116) with ē = (ε1, ε2) and εj ∈ {0, 1}, j = 1, 2. In a centered version
the vectors pνl of the refined control vector sequence are related to a parameter value
l/2ν ∈ R2, and if the process converges, then pνl is an approximation of x(l/2ν). We
now wish to calculate the exact value of x(l/2ν) at all or some of the grid points in
Z2/2ν .

6.2.1 Evaluation of nodal functions at grid points

We assume that the subdivision process, with initial control sequence p0
l = 1 if

l = 0 and p0
l = 0 if l �= 0, converges uniformly towards a continuous function N(y)

not identically zero; compare Definition 5.1.1/193 and Theorem 5.1.3/193. According
to this theorem the method must be affine invariant and, by Theorem 6.1.1/249,
λ1 = 1 is an eigenvalue of multiplicity one of all local subdivision matrices, and
the corresponding eigenvector is (1, 1, . . . , 1)t. All other eigenvalues have modulus
strictly less than one.

Taking y = k/2ν in (6.12)/256 we get

x(k/2ν) =
∑
l

pνl N(k − l) =
∑
l

pνk−lN(l), (6.13)

and it follows that the coefficients of the evaluation stencil are the values N(l),
l ∈ Z2, of the nodal basis function. With the previous notation we have η1

l = N(−l).
Letting G = {k : sk �= 0} we have (see Section 4.4) supp (N) = conv(G), and due
to the continuity of N , N(l) �= 0 only when l is in the interior of conv(G).

In order to find the values N(k) for k ∈ (conv(G))0 ∩ Z2 (without loss of
generality we can assume that ē = (0, 0)), we use the 2-scale relation from Theo-
rem 5.1.3/193,

N(y) =
∑
k∈G

skN(2y − k). (6.14)

Taking y = l ∈ (conv(G))0 we get, after a shift of summation variables,

N(l) =
∑
k∈G

skN(2l − k) =
∑
k

s2l−kN(k), (6.15)
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where the last sum extends over k ∈ Z2 ∩ (conv(G))0. Since N(y) = 0 outside
(conv(G))0, we see that (6.15)/256 is valid for all l ∈ Z2 with the summation taken
over all k ∈ Z2. If we introduce the vector {N(l)}l∈(conv(G))0 , then (6.15)/256 is
equivalent to the eigenvalue problem Stκ−1η

1 = η1 described in Section 6.1.1. There-
fore, the eigenvector problem (6.15)/256 has a one-dimensional solution space. The
values {N(l)}l∈(conv(G))0 are uniquely determined by the normalization condition∑

k

N(k) = 1.

Finally we may observe that, once the values N(k), k ∈ (conv(G))0 ∩Z2, have
been computed, the values N(k/2ν) can be found for all k and ν by the recursion
formulas

N(l + ē/2) =
∑
k

skN(2l + ē− k)

and
N(l + ē/2)/2ν) =

∑
k

skN((2l + ē)/2ν − k),

where ē = (ε1, ε2) with εj = 0, 1 and where, by the latter formula, N is determined
on Z2/2ν+1 from its values on Z2/2ν .

Example 6.2.1. Bicubic tensor-product splines
For bicubic tensor-product splines we have the nodal functions N(u, v) =

N4(u)N4(v) with evaluation stencil {N(l1, l2) = N4(l1)N4(l2)}l∈(conv(G))0 , where
G = {l : −2 ≤ li ≤ 2, i = 1, 2} contains the index set of the bivariate subdivision
polynomial. In the notation of Example 3.2.4/100, G is the set G8. The set G2
is the smallest ring with convex hull containing conv(G), i.e., Ḡ2 ⊇ conv(G), and
(conv(G))0 ∩ Z2 is equal to G1 = {l : −1 ≤ li ≤ 1, i = 1, 2}. We also observe
that it suffices to solve the eigenvalue problem above for the univariate case (we
have presented all analyses for the bivariate case, but the modifications needed for
the univariate case are obvious). For univariate cubic splines we have the sub-
division polynomial s(z) = (z1/2 + z−1/2)4/8 = (z2 + 4z + 6 + 4z−1 + z−2)/8,
G = {−2,−1, 0, 1, 2} ⊂ Z, G1 = {−1, 0, 1}, and the subdivision matrix S1 given by

S1 =

 1/2 1/2 0
1/8 3/4 1/8
0 1/2 1/2

 .

It is straightforward to verify that the eigenvalues of S1 are 1, 1/2, and 1/4.
The eigenvector of S1 corresponding to λ1 = 1 is ξ1 = (1, 1, 1)t. We also get that
the eigenvector η1 of St1 corresponding to λ1 = 1 is η1 = (1/6, 2/3, 1/6)t normalized
so that (η1)tξ1 = 1. This is in accordance with Table 2.1/90, where the same stencil
has been calculated by another method. (In Table 2.1/90, we are concerned with the
row corresponding to N4(l/2) for integral values of l/2, since this corresponds to
the primal grid.) The evaluation stencil for the cubic tensor-product spline (regular
Catmull–Clark) is therefore the same as Figure 6.1/252 (right), so that we also have
agreement with Example 6.1.2/250.
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6.2.2 Evaluation of derivatives of the nodal functions

We assume that the subdivisional polynomial is such that the nodal functions are
C1-continuous everywhere. Then, for any initial sequence of control vectors, we
have an expansion of the form (5.93)/236, i.e.,

x(2−νy) = c1 +
∑
j

cjλ
ν
j

∑
l

ξjlNl(y),

where ξj are, possibly generalized, eigenvectors. Differentiating, we get

∂ux(2−νy) = 2−ν
(
∂x

∂u

)
(2−νy) =

∑
j≥2

cjλ
ν
j

∑
l

ξjl ∂uNl(y),

i.e., (
∂x

∂u

)
(2−νy) =

∑
j≥2

cj(2λj)ν
∑
l

ξjl ∂uNl(y) (6.16)

and similarly for the v-derivative.
Now if, for example, 2λ2 > 1, then one could choose an initial sequence such

that p0
l = ξ2l , and then the derivatives would tend to ∞ as ν → ∞, contradicting

the assumption that the process is C1. Similarly, one can exclude that all but one of
the eigenvalues have modulus less than 1/2, or that λ = 1/2 has higher multiplicity
than two.

Consequently, for all local subdivision matrices S, we have a double subdom-
inant eigenvalue λ2,3 = 1/2 with two linearly independent eigenvectors ξ2 and ξ3.

Next, differentiating in (6.14)/256 we get

∂uN(y) =
∑
k∈G

2sk

(
∂N

∂u

)
(2y − k).

Again taking y = l ∈ conv(G)0 and shifting variables, we get

∂uN(l) =
∑
k∈G

2sk

(
∂N

∂u

)
(2l − k) =

∑
k

2s2l−k∂uN(k). (6.17)

It is now clear that (6.17)/258 is equivalent to the eigenvalue problems Stκ−1η
j =

λ2,3η
j , j = 2, 3, in Section 6.1.2 with λ2,3 = 1/2, where κ is defined as in Sec-

tion 6.1.1.
If we take {∂uN(k)} and {∂vN(k)} to be row vectors with k ∈ conv(G)0 and

some ordering of the indices, we see that these vectors can be found by solving
the eigenvector problem (6.17)/258. However, since the solution space of (6.17)/258

is two dimensional, we must use additional information if we wish to determine
the vectors {∂uN(k)} and {∂vN(k)} completely. This additional information can
most easily be found if, for example, we assume that the subdivision has generation
degree equal to one, a concept which is analysed below in Section 6.4 (no methods
used in practice fail to have this property). Thus, in addition to the assumption
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in the previous section, we assume that the nodal function N(y) is in C1(R2) and
that it has generation degree equal to one, i.e.,∑

l

lN(y − l) = y + a (6.18)

with a a constant vector. This means that if we sample the control vectors from a
linear function, then the subdivision produces the same linear function, modulo a
constant, in the limit.

Using (6.18)/259 we have, taking the first component
∑
l l1N(u− l1, v − l2) =

u+ a1 and differentiating,∑
l

l1∂uN(u− l1, v − l2) = 1 and
∑
l

l1∂vN(u− l1, v − l2) = 0.

Similarly, we get∑
l

l2∂uN(u− l1, v − l2) = 0 and
∑
l

l2∂vN(u− l1, v − l2) = 1.

Using that these relations are valid for (u, v) ∈ (conv(G))0 ∩ Z2, we get that
{∂uN(k)} and {∂vN(k)} are uniquely defined.

We might note that even if we do not make the a priori assumption of gener-
ation degree one, it is always possible to extract additional information, sufficient
to determine {∂uN(k)} and {∂vN(k)}, from (6.16)/258.

Evaluation of derivatives for box-spline nodal functions

For the evaluation of derivatives of box-spline nodal functions at integer points, it
is also convenient to use the differentiability properties given in Theorem 3.2.3/99.
If the subdivision polynomial is given by

s(z) = 4
m∏
i=1

zei/2 + z−ei/2

2
,

then the directional derivative along the direction em can be computed using

DemN(hem; y) =
1
h

(N(hem−1; y + hem/2)−N(hem−1; y − hem/2))

=
z−em − zem

h
N(hem−1; y);

see Theorem 3.2.3/99 (which is formulated for the uncentered case). Then, if

x(y) =
∑
l

pνl N(hem; y − lh) =

(∑
l

pνl z
2l

)
N(hem; y),



book
2010/3/3
page 260

�

�

�

�

�

�

�

�

260 Chapter 6. Evaluation and Estimation of Surfaces

we get

Dem
x(y) =

z−em − zem

h

(∑
l

pνl z
2l

)
N(hem−1; y)

=

(∑
l

pνl+em/2 − pνl−em/2

h
z2l

)
N(hem−1; y).

Taking h = 2−ν and y = k/2ν , we have

Demx(k/2
ν) =

∑
2ν(pνl+em/2 − pνl−em/2)N(em−1; k − l).

We conclude that the tangential directions Demx(k/2
ν) can be computed by first

taking the differences 2ν(pνl+em/2 − pνl−em/2) in the ν th control sequence and then
convolving with the stencil {N(em−1; l)}.

Finally, we remark that the vectors Dem
x(k/2ν) can be computed in the way

described above for every subdivision method with a subdivision polynomial con-
taining the factor zem/2 + z−em/2, so that s(z) = (zem/2 + z−em/2)q(z) with q(z) a
polynomial.

6.3 Exact parametric evaluation
In some situations one is interested in obtaining exact expressions for the nodal
functions. For box-spline nodal functions we know from Theorem 3.2.9/107 that the
nodal function N(hem; y) is piecewise polynomial and that the domains of poly-
nomiality are obtained as intersections of shadows of faces in the cube Cm. See
Sections 3.1 and 3.2. In Section 6.3.1, we give a brief description of a method of
de Boor which can be used to determine the piecewise polynomials for an arbitrary
box-spline nodal function.

For variants of box-spline methods, it was believed for a long time that exact
evaluation around a nonregular point was not possible. Stam disproved this in
[149, 150] and described, for the Catmull–Clark and the Loop methods, how to
evaluate the surface as a piecewise polynomial arbitrarily close to the nonregular
point. This is presented in Section 6.3.2.

6.3.1 A method of de Boor

As mentioned earlier, the recursion formula (2.68)/87 in Lemma 2.5.11/87 for univari-
ate splines can be used to determine recursively the piecewise polynomials defining
Nm(h; t). The formula (2.68)/87 is a special case of a formula given by de Boor [35].
This formula can also be generalized to arbitrary box splines [38, p. 17] and used
recursively to obtain explicit expressions for the piecewise polynomials defined on
the subdomains of polynomiality. The computations can, however, be complicated
and tedious. The procedure is illustrated in the case of the Zwart–Powell box spline
in [38, p. 17].
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de Boor’s formula in the bivariate case

In the bivariate case, (2.68)/87 generalizes to

(m− 2)N∗(hem; y) =
m∑
j=1

αjN
∗(hem(j); y) +

m∑
j=1

(1− αj)N∗(hem(j); y − hej), (6.19)

where, as in Section 5.2, em(j) denotes {e1, e2, . . . , em} \ {ej}, and N∗(hem(j); y) the
corresponding nodal function. Further, it is assumed that y = h

∑
j αjej . The

coefficients αj are in general not uniquely defined by this requirement, but if, for
example, we assume that all αj except two, say α1 and α2, are fixed, then α1
and α2 are coordinates for y with respect to the basis {e1, e2}. Consequently, as
in (2.68)/87, the coefficients in the right-hand side are polynomials of degree less
than or equal to one. The coefficients αj and 1 − αj , j = 1, 2, are of degree
one, and the others are constants. Thus, both (2.68)/87 and (6.19)/261 express a
box-spline nodal function of order m as a linear combination of nodal functions
or order m − 1 with coefficients that are polynomials of degree at most one. The
formula (2.68)/87 is, however, a unique representation of Nm

0 (h; t) of this kind,
whereas for the representation (6.19)/261 there are many degrees of freedom. We
also note that the constant m − 1 in the left-hand side of (2.68)/87 is replaced by
m− 2 in the bivariate case.

In order to emphasize the analogy between (2.68)/87 and (6.19)/261, we take,
in the univariate case, e1 = e2 = · · · = em = 1. In this case, N∗(hem; y) corre-
sponds to Nm

0 (h; t) and N∗(hem(j); y) to Nm−1
0 (h; t). Then, if we let t = α1h and

α2 = α3 = · · · = αm = 0 and insert these values in (6.19)/261 (with m− 2 replaced
by m− 1), we obtain

(m− 1)Nm
0 (h; t) = α1N

m−1
0 (h; t) + (1− α1)Nm−1

0 (h; t− h)

+
m∑
j=2

(1− αj)Nm−1
0 (h; t− h)

= α1N
m−1
0 (h; t) + (1− α1)Nm−1

0 (h; t− h)

+
m∑
j=2

(1− 0)Nm−1
0 (h; t− h)

= (t/h)Nm−1
0 (h; t) + (m− t/h)Nm−1

0 (h; t− h),
which is the formula (2.68)/87.

A recursion analogous to (2.70)/88 can also be found. See, however, [37] con-
cerning actual implementation.

Proof of de Boor’s formula

To simplify the presentation we give the proof for h = 1.

Proof. Taking the directional derivative of N∗(em; y) in the y-direction, we get

DyN
∗(em; y) = lim

ε→0
(N∗(em; y + εy)−N∗(em; y))/ε

= yt∇N∗(em; y) = u∂uN
∗(em; y) + v∂vN

∗(em; y).
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Since y =
∑m
j=1 αjej , we also have

u∂uN
∗(em; y) + v∂vN

∗(em; y) =

 m∑
j=1

αjej

t

∇N∗(em; y) =
m∑
j=1

αje
t
j∇N∗(em; y)

=
m∑
j=1

αjDej
N∗(em; y) =

m∑
j=1

αj(N∗(em(j); y)−N∗(em(j); y − ej)).

Next, taking the Fourier transform and using items 2, 5, and 9 of Table A.2/313,
we have

(i∂ω1(iω1) + i∂ω2(iω2))N̂∗(em, ω) =
m∑
j=1

αjN̂∗(em(j);ω)(1− exp(−iωtjej)),

and if we expand the operator i∂ω1(iω1) + i∂ω2(iω2), we get

(−2− ω1∂ω1 − ω2∂ω2)N̂∗(e
m, ω) =

m∑
j=1

αjN̂∗(em(j);ω)(1− exp(−iωtjej)). (6.20)

Now, by (A.26)/316,

N̂∗(em;ω) =
m∏
j=1

1− exp(−iωtej)
iωtej

and

∂ω1N̂
∗(em;ω) =

m∑
j=1

∂ω1

(
1− exp(−iωtej)

iωtej

) ∏
1≤r≤m,r 	=j

1− exp(−iωter)
iωter

=
m∑
j=1

∂ω1

(
1− exp(−iωtej)

iωtej

)
N̂∗(em(j);ω). (6.21)

Next,

∂ω1

(
1− exp(−iωtej)

iωtej

)
=
i exp(−iωtej)

iωtej
ej1 − 1− exp(−iωtej)

i(ωtej)2
ej1,

where ej = (ej1, ej2)t, and multiplying (6.21)/262 by ω1, we have

ω1∂ω1N̂
∗(em;ω) =

m∑
j=1

exp(−iωtej)
ωtej

ω1ej1N̂∗(em(j);ω)

−
m∑
j=1

1− exp(−iωtej)
i(ωtej)2

ω1ej1N̂∗(em(j);ω)

=
m∑
j=1

exp(−iωtej)
ωtej

ω1ej1N̂∗(em(j);ω)−
m∑
j=1

1
ωtej

ω1ej1N̂∗(em;ω).
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Using the similar expression for ω2∂ω2N̂
∗(em;ω), we now get

(−2− ω1∂ω1 − ω2∂ω2)N̂∗(e
m;ω) = (m− 2)N̂∗(em;ω)−

m∑
j=1

exp(−iωtej)N̂∗(em(j);ω),

and using (6.20)/262,

(m−2)N̂∗(em;ω)−
m∑
j=1

exp(−iωtej)N̂∗(em(j);ω) =
m∑
j=1

αjN̂∗(em(j);ω)(1−exp(−iωtjej)).

Rearranging the terms, we obtain

(m− 2)N̂∗(em;ω) =
m∑
j=1

αjN̂∗(em(j);ω) +
m∑
j=1

(1− αj) exp(−ωtej)N̂∗(em(j);ω),

and taking the inverse Fourier transform we have (6.19)/261.

6.3.2 Stam’s method

As mentioned in the introduction to this section, Stam [149, 150] has shown how
the surfaces generated by methods like Catmull–Clark and Loop can be evaluated
in closed form in a neighbourhood of a nonregular point. The idea behind the
method is fairly simply explained, and it is illustrated here for the Catmull–Clark
scheme [150]. The method can be implemented in conjunction with any subdivision
scheme for which we have explicit expressions for the nodal functions in the regular
case (including therefore 4-8 subdivision [164, Sec. 1]).

Let the origin be a nonregular point with valence n �= 4 (see Figure 6.3/264,
where n = 3). Here the nodes in G3 are depicted, the set Ḡ2 \ Ḡ1 is lightly shaded,
and certain subsets of the nodes, to be defined below, are marked with circles and
squares. The sets Ḡ1, Ḡ2, and G3 are those defined in Section 5.5.1. We also
introduce subsets Ωj+k/3 ⊂ Ḡ2 \ Ḡ1 of the parametric domain, with 0 ≤ j ≤ n− 1
and 0 ≤ k ≤ 2, defined by

Ωj = {y : y = γjej + γj+1ej+1, 1 < γj ≤ 2, 0 ≤ γj+1 ≤ 1},
Ωj+1/3 = {y : y = γjej + γj+1ej+1, 1 < γj ≤ 2, 1 ≤ γj+1 ≤ 2},
Ωj+2/3 = {y : y = γjej + γj+1ej+1, 0 ≤ γj < 1, 1 < γj+1 ≤ 2},

and
Yj = {y : y = γjej + γj+1ej+1, 0 < γj ≤ 1, 0 ≤ γj+1 ≤ 1}.

These subsets can be viewed as defining patches in RN .
Now, given an initial sequence of control vectors {p0

l }, the surface for y ∈
Ḡ2 \ Ḡ1 is given by

x(y) =
∑
l∈G3

p3,0
l Nl(y),
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j − 1

j

j + 1

Ωj+2/3

Ωj+1/3

Ωj

Yj
Denotes a

Denotes a

node in Γj

node in Hj \ Γj

Figure 6.3. Control points for Stam’s method.

where p3,0
l = p0

l , l ∈ G3, and where the restriction of the functions Nl to the
subdomains Ωj+k/3, 0 ≤ k ≤ 2, 0 ≤ j ≤ n − 1, are tensor-product bicubic polyno-
mials which are known and can be obtained explicitly from (2.68)/87. After the ν th
subdivision step we have, from (5.92)/235,

x(y) =
∑
l∈G3

p3,ν
l Nl(2νy)

if 2νy ∈ Ḡ2 \ Ḡ1, i.e.,

x(2−νy) =
∑
l∈G3

p3,ν
l Nl(y) (6.22)

if y ∈ Ḡ2\Ḡ1. Now, if {ξj}1≤j≤12n+1 denote the eigenvectors of the local subdivision
matrix S3 and {ηj}1≤j≤12n+1 those of St3, we may expand p0,3 as

p0,3 =
12n+1∑
j=1

ξjcj (6.23)

with cj = (ηj)tp0,3. Then we get

pν,3 =
12n+1∑
j=1

λνj ξ
jcj , (6.24)

and inserting in (6.22)/264, we get

x(2−νy) =
∑
l∈G3

12n+1∑
j=1

λνj cjξ
ν
l

Nl(y),

which gives the polynomial representation when 2−νy ∈ 2−ν(Ḡ2 \ Ḡ1).
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In the above analysis we used the entire (12n+ 1)× (12n+ 1) matrix S3, and
finding the expansions (6.23)/264 and (6.24)/264 above is equivalent to diagonalizing
the matrix S3 as

S3 = XDX−1

with D = diag(λ1, λ2, . . . , λ12n+1), X = (ξ1, ξ2, . . . , ξ12n+1), and the inverse of X
given by X−1 = (η1, η2, . . . , η12n+1)t. The vector pν,3 is computed as

pν,3 = XDνX−1p0,3.

Due to the particular structure of the subdivision matrices S2 and S3, the
diagonalization of S3 can be considerably simplified and the analysis need only
involve the initial vector p0,2. By (5.66)/225 we have

Sk+1 =
(
σ′k σ′′k
0 Sk

)
for k ≥ 1. Further, as pointed out in Section 5.5.2, the control vectors p3,ν

l with
l ∈ G3 \ G2 do not affect the vectors p3,ν+1

l with l ∈ G3, and therefore σ′2 = 0, so
that

S3 =
(

0 σ′′2
0 S2

)
.

This gives

Sν3 =
(

0 σ′′2S
ν−1
2

0 Sν2

)
,

and, with pν,3 =
( ρν,2

pν,2

)
,

pν,3 = Sν3 p
0,3 =

(
0 σ′′2S

ν−1
2

0 Sν2

)(
ρ0,2

p0,2

)
=
(
σ′′2S

ν−1
2

Sν2

)
p0,2 =

(
σ′′2
S2

)
pν−1,2

and pν,2 = Sν2 p
0,2, ρν,2 = σ′′2S

ν−1
2 p0,2 = σ′′2p

ν−1,2.
It follows that, in order to evaluate the vector pν,3 in (6.24)/264, it suffices to

diagonalize the (6n+ 1)× (6n+ 1) matrix S2 and compute

pν−1,2 = Sν−1
2 p0,2,

pν,3 =
(
σ′′2
S2

)
pν−1,2.

As shown in [150] the complexity of the calculations can be further reduced by
considering smaller local subdivision matrices which are submatrices of S2.

Assume that, for a fixed j, we wish to find a polynomial representation on the
subpatch Yj ⊂ Ḡ1\{0}. Let Γj be the set of nodes l such that supp (Nl(y))∩Yj �= ∅.
The nodes in Γj are denoted by circles in Figure 6.3/264. Also, let Hj be the set of
nodes such that supp (Nl(y)) ∩ (2Yj) �= ∅. The cardinality of Γj is 2n + 8 and the
cardinality of Hj is 2n+ 17.
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Next introduce vectors

πν,3 = {pνl }l∈Hj , πν,2 = {pνl }l∈Γj , and �ν,2 = {pνl }l∈Hj\Γj
,

so that

πν,3 =
(
�ν,2

πν,2

)
.

Now,

l ∈ Hj ⇔ supp (Nl(2νy)) ∩ (2−ν+1Yj) �= ∅.
Therefore, if y ∈ Yj and 2νy ∈ Ḡ2 \ Ḡ1, we have

x(2−νy) =
∑
l∈Hj

pνl Nl(y) =
∑
l∈Hj

πν,3l Nl(y),

so that in order to evaluate x(y) in Yj we need to compute the vectors πν,3.
Using that the control vectors pνl , l ∈ Hj , are affected only by pν−1

l , l ∈ Γj , it
follows, similarly to the analysis above, that

πν,3 = Sνπ0,3 =
(

0 σAν−1

0 Aν

)(
�0,2

π0,2

)
=
(
σAν−1

Aν

)
π0,2 =

(
σ
A

)
πν−1,2

and

πν,2 = Aνπ0,2,

�ν,2 = σAν−1ρ0,2 = σπν−1,2.

Here S is a submatrix of S3, A is a submatrix of S2 of order (2n + 8) × (2n + 8),
and σ is a submatrix of σ′′2 of order 9× (2n+ 8). We can now diagonalize explicitly
the lower-order matrix A and compute the vector πν,3.

Peters and Reif [124, p. 81 (note 6)] have remarked that it is not necessarily a
good idea to carry out the diagonalization of the matrices A above. In fact, for the
Catmull–Clark method it is numerically more efficient to compute the vector πν,3

by simple repeated multiplication by A unless ν is very large, e.g., ν > 16. This is
due to the fact that the matrix A is relatively sparse.

6.4 Precision sets and polynomial reproduction
In addition to bounds given in terms of global constants, such as those in the
convergence proofs in Section 5.2, other descriptions of the proximity of the control
points and the limit surface are of interest. In this section and the next we consider
two such descriptions. We begin in this section with a discussion of the concept
of precision of the subdivision process, and related concepts such as the degree of
polynomial reproduction.
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6.4.1 Conditions for given reproduction and generation degree

Two quantities that categorize the behaviour of a (stationary uniform) subdivision
scheme, when the control points lie on a polynomial, are the reproduction degree and
the generation degree, which were presented in the following way in the univariate
case in [67, Sec. 5]. Let d ≥ 1 be the maximal degree for which the following hold:

1. For all polynomials up to degree d, if the control points lie on the polynomial,
then the limit curve is the same polynomial. In this case d is called the
reproduction degree.

2. For all polynomials up to degree d, if the control points lie on the polynomial,
then the limit curve is a polynomial, of the same degree and with the same
leading term. In this case d is called the generation degree.

The reproduction degree is a measure of the precision of the subdivision
method: if the initial control-point data is obtained by uniform sampling of a poly-
nomial of degree less than or equal to the reproduction degree, then the subdivision
method converges to that polynomial. As mentioned in Section 1.3, the sets of
polynomials reproduced are referred to as precision classes. For example, a method
that reproduces polynomials up to degree 1 is said to have linear precision, up to
degree 2 quadratic precision, and up to degree 3 cubic precision. Such methods are
also called quasi-interpolation methods [28].

The generation degree is clearly at least as large as the reproduction degree.
If the generation degree is equal to d, then the subdivision method reproduces
polynomials of degree up to and including d, provided that we subject the initial
data to a preprocessing step involving the solution of an upper-triangular linear
system of equations. This is discussed below.

In this section we focus on the bivariate case. For consistency with the litera-
ture, results are stated and proved for h = 1. We also use the following notation for
bivariate derivatives and multi-indices in Z2. The notation ∂i denotes the partial
derivative ∂/∂ωi, i = 1, 2. If k = (k1, k2), then ∂k denotes ∂k11 ∂k22 . If k ∈ Z2, then
|k| = |k1|+ |k2|, and k ≥ 0 means that ki ≥ 0, i = 1, 2, while k > 0 means k ≥ 0 and
in addition k1 + k2 > 0. Further r ≤ k and r < k mean, respectively, that k− r ≥ 0
and k−r > 0. If z = (z1, z2) and l = (l1, l2) ∈ Z2, then zk = zk11 zk22 and lk = lk11 lk22 .
Further for binomial coefficients we use the convention that

(
k
r

)
=
(
k1
r1

)(
k2
r2

)
. Then

if a, b ∈ Z2, we have

(a+ b)k = (a1 + b1)k1(a2 + b2)k2 =
∑

0≤r≤k

(
k

r

)
ak−rbr.

We also use the notation

Πd and Π(d1,d2)

for, respectively,

• the linear space consisting of all polynomials in y = (u, v) of degree less than
or equal to d,
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• the linear space consisting of polynomials of bidegree less than or equal to
(d1, d2), i.e., of degree less than or equal to d1 in u and less than or equal to
d2 in v.

Let s(z) be a subdivision polynomial defining a convergent subdivision process
in the sense of Definition 5.1.1/193. Then for a given sequence of control vectors

{pl}l∈Z2 ⊂ RN , (6.25)

the subdivision process defines the parametric surface

R2 � y �→
∑
l∈Z2

plN(y − l) ∈ RN ,

where N(y) denotes the continuous nodal function obtained by choosing pl = 1 for
l = (0, 0) and pl = 0 for l �= (0, 0).

For the bivariate case we use the following definitions for reproduction degree
or bidegree, and generation degree or bidegree.

Definition 6.4.1. The subdivision process is said to have

• reproduction degree d (respectively, bidegree (d1, d2)) if∑
l∈Z2

p(l)N(y − l) = p(y)

for all p ∈ Πd (respectively, p ∈ Π(d1,d2));

• generation degree d (respectively, bidegree (d1, d2)) if for every monomial yk ∈
Πd (respectively, yk ∈ Π(d1,d2)), we have∑

l∈Z2

lkN(y − l) = yk +
∑

0≤r<k
ck,ry

r (6.26)

with ck,r constants.

Thus, for example, the reproduction degree is d, if whenever the control vectors
are samples in Z2 of some polynomial function of degree less than or equal to d,
then the subdivision process reproduces exactly the same polynomial.

From the definition, it follows fairly easily that if the generation degree is d,
then for every p ∈ Πd there exists exactly one polynomial q ∈ Πd such that∑

l∈Z2

q(l)N(y − l) = p(y),

and similarly for the bidegree case. In fact we have the following proposition and
its bidegree counterpart.
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Proposition 6.4.2. Assume that the generation degree is d. Then (6.26)/268 defines
a mapping of monomials Πd � yk �→ yk +

∑
0≤r<k ck,ry

r ∈ Πd and, extending
linearly, a linear mapping S : Πd → Πd. This mapping S is one-to-one, and since
the dimension of Πd is finite, it is onto and invertible.

Proof. Since S is linear, it fails to be one-to-one only if there exists a nonzero
polynomial such that S(p) = 0. Now if p ∈ Πd and p �= 0, then the terms in p with
maximal degree remain unchanged in S(p), and therefore S(p) �= 0.

Therefore every polynomial p can be produced, or generated, by the subdivi-
sion process by choosing the control vectors as samples of some polynomial with
the same leading terms. This is the reason for the terminology.

We now want to find conditions on s(z) and the nodal function N giving a
certain reproduction or generation degree. In Chapter 2 we introduced the concept
of partition of unity for a nodal function N(y), meaning that∑

l∈Z2

N(y − l) = 1.

For the analysis of reproduction and generation degree for arbitrary subdivision
processes defined by subdivision polynomials, we need to analyse partition of unity,
and generalizations thereof, for more general functions F ∈ L1(R2) having compact
support.

We now have the following theorem, where equalities involving F are only
claimed to hold almost everywhere.

Theorem 6.4.3. We have partition of unity, i.e.,∑
l∈Z2

F (y − l) = 1

if and only if

F̂ (0) = 1, and F̂ (2πl) = 0 for all l �= 0. (6.27)

Next, let yk = uk1vk2 be a monomial. Then∑
l∈Z2

lkF (y − l) = yk

if and only if F satisfies condition (6.27)/269 and in addition satisfies

∂rF̂ (2πl) = 0 for l �= 0 and 0 < r ≤ k, (6.28)
∂rF̂ (0) = 0 for 0 < r ≤ k. (6.29)

Further, ∑
l∈Z2

lkF (y − l) = yk +
∑

0≤r<k
cry

r,

with cr constants, if and only if F satisfies conditions (6.27)/269 and (6.28)/269.
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Proof. In order to prove the first statement in the theorem, we note that the
function g(y) =

∑
l F (y−l) is doubly periodic in y = (u, v) with periods 1. Therefore

(see Section A.2.4 in the Appendix) it can be expanded in a two-dimensional Fourier
series

g(y) =
∑
k∈Z2

ck exp(i2πkty),

where ck =
∫
D
g(y) exp(−i2πkty) dy and D = (0, 1) × (0, 1). We have g(y) = 1 if

and only if c0 = 1 and ck = 0 for k �= 0. We now get

ck =
∑
l

∫
D

F (y − l) exp(−i2πkty) dy.

Since∫
D

F (y − l) exp(−i2πkty) dy = exp(−i2πktl)
∫
D−l

F (y) exp(−i2πkty) dy

=
∫
D−l

F (y) exp(−i2πkty) dy,

we get, after summing over l,

ck =
∫

R2
F (y) exp(−i2πkty) dy = F̂ (2πk),

which shows that the first statement in the theorem is equivalent to (6.27)/269.
Now let yk = uk1vk2 be a monomial. To prove the second statement of the

theorem we let g(y) =
∑
l l
kF (y − l). Using the binomial theorem we expand lk as

lk = ((l − y) + y)k =
∑

0≤r≤k

(
k

r

)
(l − y)k−ryr.

Consequently,

g(y) =
∑

0≤r≤k
yr
∑
l

(
k

r

)
(l − y)k−rF (y − l) =

∑
0≤r≤k

yrgr(y)

with

gr(y) =
∑
l

(
k

r

)
(l − y)k−rF (y − l). (6.30)

It is clear that the functions gr(y) are doubly periodic with periods 1. It also
follows that g(y) = yk if and only if gr(y) = for 0 ≤ r < k and gk(y) = 1. Arguing
as in the previous step, it follows that gk(y) =

∑
l F (y − l) = 1 if and only if

condition (6.27)/269 is satisfied. Also, gr(y) = 0 for 0 ≤ r < k if and only if all its
Fourier coefficients vanish, i.e., if and only if

(yk−rF (y))̂(2πl) = (−i∂)k−rF̂ (2πl) = 0 for 0 ≤ r < k and for all l ∈ Z2,
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where (yk−rF (y))̂ denotes the Fourier transform of yk−rF (y). The displayed con-
dition is equivalent to conditions (6.28)/269 and (6.29)/269.

To prove the third statement of the theorem we note that the functions gr(y),
0 ≤ r < k, are constant exactly when ĝr(2πl) = 0 for l �= 0, i.e., when

(yk−rF (y))̂(2πl) = (−i∂)k−rF̂ (2πl) = 0 for all l ∈ Z2 \ {(0, 0)},
i.e., when condition (6.28)/269 is valid.

This completes the proof.

Since the subdivision process was assumed to be convergent, we have by The-
orems 4.5.1/172 and 5.1.3/193 that

s(1, 1) = 4, s(1,−1) = s(−1, 1) = s(−1,−1) = 0. (6.31)

With Ŝ(ω) =
∑
k sk exp(−iωtk/2) denoting the Fourier transform in (4.37)/167 we

conclude that this is equivalent to

Ŝ(2π, 0) =
∑
k

sk(−1)k1 = s(−1, 1), (6.32)

Ŝ(0, 2π) =
∑
k

sk(−1)k2 = s(1,−1), (6.33)

Ŝ(2π, 2π) =
∑
k

sk(−1)k1(−1)k2 = s(−1,−1), (6.34)

Ŝ(0, 0) =
∑
k

sk = s(1, 1). (6.35)

Using the fact that Ŝ(ω) is doubly periodic with periods 4π we conclude that
(6.31)/271 is also equivalent to the condition that

Ŝ(0) = 4 and Ŝ(2πl) = 0 for all l with l1 or l2 odd. (6.36)

Further, from (4.47)/168 it follows that any zero of Ŝ is a zero of N̂ . We claim that
N̂(2πl) = 0 for all l �= 0. By (6.36)/271 this is clear if l1 or l2 is odd. If both l1
and l2 are even, then for some r > 0, (2−rl1, 2−rl2) ∈ Z2 with 2−rl1 or 2−rl2 odd,
and we conclude from (4.46)/168 that N̂(2πl) = 0. Consequently, for a convergent
process, (A.15)/312 and (5.15)/194 in Theorem 5.1.3/193 imply that

N̂(0) =
∫

R2
N(y)dy = 1,

and N̂ must satisfy conditions (6.27)/269, i.e.,

N̂(0) = 1, N̂(2πl) = 0 for l �= (0, 0). (6.37)

Now let us introduce the conditions Ad, A(d1,d2), Bd, and B(d1,d2) for a function
F̂ (below, F̂ is typically N̂ or Ŝ). These conditions, which are additional to the basic
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conditions (6.31)/271–(6.37)/271 guaranteed by convergence, permit characterization
of various levels of precision, and this is the main goal of this section.

Ad (A(d1,d2)) : ∂rF̂ (2πl) = 0 for l �= 0, and 0 < r, |r| ≤ d (r ≤ (d1, d2)),

Bd (B(d1,d2)) : ∂rF̂ (0) = 0 for 0 < r, |r| ≤ d (r ≤ (d1, d2)).

When we do not need to specify the particular degree or bidegree, we use the simpler
notation A and B for these conditions.

We immediately get the following theorems.

Theorem 6.4.4. The process has reproduction degree d if and only if the function
N̂ satisfies conditions Ad and Bd. It has reproduction bidegree (d1, d2) if and only
if N̂ satisfies conditions A(d1,d2) and B(d1,d2).

Theorem 6.4.5. The process has generation degree d if and only if N̂ satisfies
condition Ad. It has generation bidegree (d1, d2) if and only if N̂ satisfies condition
A(d1,d2).

We now formulate some results that are slightly weaker than Theorems 6.4.4/272

and 6.4.5/272, involving only the function Ŝ(ω). These results are useful when no
explicit expression for N̂(ω) is known.

By (4.47)/168, i.e.,

N̂(ω) =
Ŝ(ω)

4
N̂(ω/2),

we get

∂1N̂(ω) =
∂1Ŝ(ω)

4
N̂(ω/2) +

Ŝ(ω)
4

1
2
∂1N̂(ω)|(ω/2)

and taking ω = 0, we get

∂1N̂(0) =
∂1Ŝ(0)

4
+

1
2
∂1N̂(0).

So ∂1N̂(0) = 0 if and only if ∂1Ŝ(0) = 0. By repeated differentiation and induction
one can prove that N̂ satisfies condition B if and only if Ŝ does.

Next, for a convergent process we have Ŝ(2πl) = 0 for all l ∈ Z2 with l1 or l2
odd. By repeated differentiation we conclude that if Ŝ satisfies the condition

A′d (A′(d1,d2)) : ∂rŜ(2πl) = 0 if l1 or l2 is odd and 0 < r, |r| ≤ d (r ≤ d1, d2),

then N̂ satisfies condition Ad (A(d1,d2)). This gives the following corollaries.

Corollary 6.4.6. The process has reproduction degree d if the function Ŝ satisfies
conditions A′d and Bd. It has reproduction bidegree (d1, d2) if Ŝ satisfies conditions
A′(d1,d2) and B(d1,d2).

Corollary 6.4.7. The process has generation degree d if Ŝ satisfies condition A′d.
It has generation bidegree (d1, d2) if Ŝ satisfies condition A′(d1,d2).
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Because the corollaries give only sufficient conditions, they are weaker than
Theorems 6.4.4/272 and 6.4.5/272. Exercise 1/284 gives an example to illustrate this.

Before proceeding we reformulate conditions A, A′, and B on N̂ and Ŝ. By
Table A.2/313, item 9 we have that

(i∂)kN̂(ω) =
∫

R2
N(y)yk exp(−iωty) dy.

Consequently,

∂kN̂(0) = 0 if and only if
∫

R2
N(y)yk dy = 0.

Similarly, since, from (4.37)/167, Ŝ(ω) =
∑
l sl exp(−iωtl/2) we get

(i∂)kŜ(ω) =
∑
l

sl(l/2)k exp(−iωtl/2) (6.38)

and, using that

(z∂)ks(z) =
∑
l

sll
kzk and (z∂)ks(1, 1) =

∑
l

sll
k,

we get
∂kŜ(0) = 0 if and only if (z∂)ks(1, 1) =

∑
l

sll
k = 0.

Thus, condition B on N̂ may be reformulated as

B:
∫

R2 N(y)yk dy = 0,

i.e., as moment conditions on N , and condition B on Ŝ as

B:
∑

l sll
k = 0,

i.e., as moment conditions on s. In the same way, if we take ω = 2πν in (6.38)/273,
we get

(i∂)kŜ(2πν) =
∑
l

sl(l/2)k exp(−iπνtl) =
1

2k1+k2
∑
l

sll
k(−1)ν1l1(−1)ν2l2 ,

and it follows that

(i∂)kŜ(2π, 0) =
∑
l

sl(l/2)k(−1)l1 = (z∂/2)ks(−1, 1), (6.39)

(i∂)kŜ(0, 2π) =
∑
l

sl(l/2)k(−1)l2 = (z∂/2)ks(1,−1), (6.40)

(i∂)kŜ(2π, 2π) =
∑
l

sl(l/2)k(−1)l1(−1)l2 = (z∂/2)ks(−1,−1), (6.41)

(i∂)kŜ(0, 0) =
∑
l

sl(l/2)k = (z∂/2)ks(1, 1). (6.42)

This may be compared with (6.31)/271–(6.35)/271.
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Further we note that, when z �= (0, 0), (z∂)ks(z) = 0 for all k ∈ Id (k ∈
I(d1,d2)) if and only if ∂ks(z) = 0 for all k ∈ Id (k ∈ I(d1,d2)). Consequently, for s
and Ŝ conditions A′ and B have the equivalent forms

A: (i∂)kŜ(2π, 0) = 0, ∂ks(−1, 1) = 0, (z∂)ks(−1, 1) = 0,

(i∂)kŜ(0, 2π) = 0, ∂ks(1,−1) = 0, (z∂)ks(1,−1) = 0,

(i∂)kŜ(2π, 2π) = 0, ∂ks(−1,−1) = 0, (z∂)ks(−1,−1) = 0,

and

B: (i∂)kŜ(0, 0) = 0, ∂ks(1, 1) = 0, (z∂)ks(1, 1) = 0.

We now look at some applications and examples.

6.4.2 Polynomial precision for box splines

Consider a general box spline with the (centered) subdivision polynomial

s(z) = 4
m∏
i=1

zei/2 + z−ei/2

2
.

From (4.37)/167 the function Ŝ(ω) is obtained by replacing zl by exp(−iωtl/2), and
from Table A.2/313, item 15, the function N̂(ω) is given by

N̂(ω) =
m∏
i=1

sin(ωtei/2)
ωtei/2

. (6.43)

(Exercise 2/285 asks for verification of item 15 of the table.) We now have s(z) =∑
l slz

l with sl ≥ 0, s(1, 1) =
∑
l sl = 4, and, because of the symmetry, sl = s−l.

Further, from (6.43)/274, N̂(ω) = N̂(−ω) and therefore N(y) = N(−y). Then
obviously

∫
R2 N(y)yk dy = 0 for k = (1, 0) and k = (0, 1). Consequently, condition

B1 is satisfied. On the other hand, by (3.3)/95 we have N(y) ≥ 0. Provided that
α ≤ m− 1, N is continuous and does not vanish. (Here α denotes the parameter of
Definition 3.3.1/111, with the property that any subsequence of em = {ei}mi=1 with
α elements must span R2.) It follows that

∫
R2 N(y)yk dy > 0 for k = (2, 0) and

k = (0, 2) and that N does not satisfy condition Bd for any set Id with d ≥ 2.
Therefore, by Theorem 6.4.6/272, a box spline can have at most bilinear precision.
More precisely, we have the following result.

Theorem 6.4.8. If α ≤ m − 1, then the box-spline subdivision process has repro-
duction degree equal to 1.

Proof. We have shown that condition B1 is satisfied. We now show that under the
hypotheses of the theorem, condition A1 is also satisfied. Differentiating (6.43)/274,
we get

∂1N̂(ω) =
m∑
j=1

 ∏
1≤i≤m,i	=j

sin(ωtei/2)
ωtei/2

 ∂1
sin(ωtej/2)
ωtej/2

,
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and taking ω = 2πl,

∂1N̂(2πl) =
m∑
j=1

 ∏
1≤i≤m,i	=j

sin(πltei)
πltei

 ∂1

(
sin(ωtej/2)
ωtej/2

)∣∣∣∣
ω=2πl

.

If l = 0, then all second factors in this sum are equal to zero, and consequently
∂1N̂(0) = 0. If l �= 0, then by assumption for each j the vectors ei, 1 ≤ i ≤ m,
i �= j, span R2 and therefore there exists at least one vector ei, i �= j, such that
ltei �= 0, i.e., so that ∏

1≤i≤m,i	=j

sin(πltei)
πltei

= 0.

Consequently, ∂1N̂(2lπ) = 0 for all l. That ∂2N̂(2lπ) = 0 follows in the same way
and we have verified conditions (6.37)/271 and A1.

As in the preceding proof, it can be proved that condition Am−α is satisfied,
and therefore we also have the following result for the generation degree of a box
spline.

Theorem 6.4.9. The generation degree of a box-spline subdivision process is at
least equal to m− α.

We recall now that, by Theorem 3.3.2/111, N is in Cm−α−1(R2).

Example 6.4.10. Zwart–Powell (Midedge) method.
Take e1 = (1, 0)t, e2 = (0, 1)t, e3 = (1, 1)t, e4 = (−1, 1)t. Then the cen-

tered subdivision polynomial is

s(z1, z2) =
1

z1z2
(1 + z1)(1 + z2)(1 + z1z2)(1 + z−1

1 z2);

see (3.58)/136. We have α = 2 and m = 4, so by Theorem 6.4.8/274 the reproduction
degree is equal to 1. Further,

N̂(ω1, ω2) =
sin(ω1/2)
ω1/2

sin(ω2/2)
ω2/2

sin((ω1 + ω2)/2)
(ω1 + ω2)/2

sin((ω2 − ω1)/2)
(ω2 − ω1)/2

.

Using that sin t/t = 1− t2/6 + · · · , we get the following power series expansion:

N̂(ω1, ω2)

=
(
1− ω2

1

24
+ · · ·

)(
1− ω2

2

24
+ · · ·

)(
1− (ω1 + ω2)2

24
+ · · ·

)(
1− (ω1 − ω2)2

24
+ · · ·

)
= 1− ω2

1/8− ω2
2/8 + · · · ,

where the dots denote terms of degree 4 or higher. Since terms ω1ω2 are missing in
the expansion, we conclude that

∂1∂2N̂(0, 0) = 0,
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i.e., condition B(1,1) is satisfied. Condition A(1,1) is also satisfied, since condition A2
is satisfied. Therefore we have in addition bilinear precision, i.e., bilinear polynomi-
als are reproduced. Since m−α = 2, Theorem 6.4.9/275 implies that the generation
degree is at least 2.

Further examples are considered in the exercises. Exercise 3/285 discusses
bivariate subdivision polynomials arising from tensor products, Exercise 4/285 dis-
cusses the Loop method, and Exercise 5/285 discusses constant subdivision. Exer-
cise 6/285 examines another box-spline method.

6.4.3 Polynomial precision for non-box-splines

The example to be presented now illustrates by means of the univariate four-point
scheme that, if we are given a box spline, then it can be modified, by attaching
some factor, so that for the new polynomial the reproduction degree becomes equal
to the generation degree. This is interesting because box splines cannot produce
more than bilinear precision, and if we want more, we must do something else. This
example shows one way to do so.

Increasing precision by attaching a factor to the subdivision polynomial

Consider third-degree univariate splines with the subdivision polynomial

s(z) = 2
(z1/2 + z−1/2

2

)4
= (z2 + 4z + 6 + 4z−1 + z−2)/8.

It follows by substitution into the middle expression (see (4.37)/167) that Ŝ(ω) =
s(− exp(iω/2)) = 2 cos4(ω/4). By Corollaries 6.4.6/272 and 6.4.7/272, the reproduc-
tion degree is 1 and the generation degree is 3. Now consider a polynomial

q(z) = a+ b(z + z−1) with q(1) = 1, i.e., a+ 2b = 1,

so that

Q̂(ω) = q(eiω/2) = a+ 2b cos(ω/2) and Q̂(0) = 1.

Also, define the products

s4(z) = s(z)q(z) and Ŝ4(ω) = Ŝ(ω)Q̂(ω).

(The reason for the choice of subscript in s4 will become clear shortly.)
Since Ŝ/2 satisfies the conditions Ŝ(0) = 1, Ŝ(2πl) = 0 if l is odd, B1, and A′3,

it is easy to see that Ŝ4/2 does too. We now try to choose the coefficients in q such
that in addition Ŝ4(ω) satisfies B3. Since Ŝ4 is an even function, all derivatives of
odd order are zero at the origin, and we need only verify that ∂2Ŝ4(0) = 0. We get

∂2Ŝ4(0) = ∂2Ŝ(0)Q̂(0) + ∂2Q̂(0)Ŝ(0) = 0,
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and using that Ŝ(0) = 2 and Q̂(0) = 1, we get

∂2Ŝ(0) + 2∂2Q̂(0) = 0.

Since ∂2Ŝ(0) is known, this uniquely determines ∂2Q̂(0). Differentiating Ŝ(ω) (or
expanding it in power series), we get ∂2Ŝ(0) = −1/2, i.e., ∂2Q̂(0) = 1/4. Differen-
tiating Q̂(ω) = a+ 2b cos(ω/2), we get

∂2Q̂(0) = −b/2 = 1/4, i.e., b = −1/2,

and, since a+ 2b = 1, a = 2. Consequently,

Q̂(ω) = 2− cos(ω/2) and q(z) = −z/2 + 2− z−1/2.

We have determined the coefficients so that the reproduction degree is equal to 3
for the process defined by

s4(z) = (z2+4z+6+4z−1+z−2)(4−z−z−1)/16 = (−z3+9z+16+9z−1−z−3)/16.

This is the well-known four-point subdivision polynomial which is interpolating,
since all terms with even powers vanish, except the constant term. It does not
follow from our analysis that the process is convergent, but this can be proved. It
follows that the four-point subdivision process has the property that, if we start
with a control sequence sampled from some cubic polynomial, exactly the same
polynomial curve is reproduced, and the refined sequences of control vectors all lie
on the same curve, i.e., the four-point method has cubic precision. According to
Exercise 3/285, it also follows that the Kobbelt method has bicubic precision in the
regular case.

In [67] the univariate polynomials

sm(z) = 2
(z1/2 + z−1/2

2

)m
Km(z),

where Km(z) = (−mz + (8 + 2m) − mz−1)/8, are studied and it is shown that
the precision is cubic for m ≥ 4 and quadratic for m = 3. This can be derived in
the same way as in the example above, which is exactly the case m = 4. Calcula-
tions similar to those above give the values a = (8 + 2m)/8 and b = −m/8. See
Exercise 7/285.

We state the following theorem, valid also in the bivariate case.

Theorem 6.4.11. Assume that we are given a subdivision polynomial ψ(z) with
reproduction and generation degree dr and dg, respectively, where dg > dr. Also
assume that the Fourier transform Ψ̂(ω) corresponding to ψ(z) satisfies conditions
Adg and Bdr . Then there exists a polynomial q(z) such that the product s(z) =
ψ(z)q(z) defines a subdivision process which, if it is convergent, has generation and
reproduction degree equal to dg.

The proof, which parallels the analysis of the previous example, is omitted.
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Increasing precision by preconvolution

We now describe a method to increase polynomial precision which differs from
the one just presented. Assume that we have a process, defined by a subdivision
polynomial, having generation degree dg. Then according to Proposition 6.4.2/269

we can, for a given polynomial p ∈ Πdg , find a polynomial p′ ∈ Πdg such that the
sequence p′(l) generates the original polynomial p(y). Here we show a little more,
namely that the inverse image p′ can be determined by a simple convolution with
a suitably chosen finite mask {ql}l∈Z2 . Thus, instead of changing the subdivision
polynomial, we only preprocess the initial sequence of control vectors by convolving
it with a given mask. This is less time consuming than changing the subdivision
polynomial since only the first step in the process is changed.

Assume that we are given a subdivision polynomial with generation degree dg
and reproduction degree dr < dg. Also assume that an initial sequence of control
vectors {pl}Z2 is sampled uniformly in Z2 from some polynomial p ∈ Πdg

, i.e.,
pl = p(l). We show that if we preconvolve {pl}l∈Z2 by some suitably chosen finite
sequence {qk}k∈Z2 , i.e., if we replace44 the sequence {pl}l∈Z2 by {p′l}l∈Z2 where

p′l =
∑
k

qkpl−k, (6.44)

then the subdivision applied to the new sequence will produce the polynomial p(y)
in the limit.

We note that the new control points are sampled from the polynomial p′(y) =∑
k qkp(y − k) which is of degree less than or equal to dg. Next, we use that the

limiting surface has the parametric representation∑
l

plN(y − l) =
∑
l

plz
2lN(y) = pg(z2)N(y),

where we have introduced the generating function pg(z) =
∑
l plz

l for the initial
sequence of control vectors. The limiting surface given by the modified sequence is
similarly ∑

l

p′lN(y − l) =
∑
l

p′lz
2lN(y) = p′g(z

2)N(y),

where p′g(z) =
∑
l p
′
lz
l. Now (6.44)/278 is equivalent to p′g(z) = q(z)pg(z), and the

parametric surface y �→∑
l p
′
lN(y − l) is given by

p′g(z
2)N(y) = pg(z2)q(z2)N(y) = pg(z2)

(∑
k

qkN(y − k)
)
.

Thus, the preconvolution is equivalent to replacing N(y) by
∑
k qkN(y − k), or

equivalently N̂(ω) by ∑
k

qk exp(−iωtk)N̂(ω) = Q̂(2ω)N̂(ω),

where Q̂(ω) =
∑

k qk exp(−iωtk/2). See Table A.1/311, item 5.
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By Theorem 6.4.4/272, it suffices to prove that Q̂(2ω)N̂(ω) satisfies condi-
tions (6.37)/271, Adg , and Bdg .

By assumption N̂(ω) satisfies conditions (6.37)/271 and Adg
. If Q̂(0) = 1, it

follows immediately that Q̂(2ω)N̂(ω) also satisfies (6.37)/271 and Adg . Now, the
condition that Q̂(2ω)N̂(ω) should satisfy Bdg gives conditions on the derivatives of
Q̂ at the origin, and a trigonometric polynomial solution can always be found. The
details are quite similar to those in the analysis of the four-point scheme, above,
and are omitted. We also note that a similar result is valid for the bidegree case
when (dg1 , dg2) and (dr1 , dr2) are the generation and reproduction bidegrees and
dg1 + dg2 > dr1 + dr2 .

Example 6.4.12. Preconvolution using a mask.
Consider again univariate cubic splines, with

N̂(ω) =
(

sin(ω/2)
ω/2

)4

.

We again want to find a polynomial q(z) = a + b(z + z−1) such that Q̂(ω) =
q(eiω/2) = a+ 2b cos(ω/2) satisfies Q̂(0) = 1 and condition B2:

∂2(Q̂(2ω)N̂(ω)|ω=0 = 0. (6.45)

(Condition A2 is satisfied, since ∂2N̂(2πl) = 0 for l �= 0 and 0 ≤ r ≤ 2. Also,
since Q̂(ω) and N̂(ω) are even functions, the derivatives vanish at the origin, which
means that if we find the polynomial q(z) we seek, we will have cubic precision.)

Using that sin t
t = 1− t2/6 + · · · , we get

Q̂(2ω)N̂(ω) = (a+ 2b cosω)
(

sin(ω/2)
ω/2

)4

=
(
a+ 2b− (2b)

ω2

2
+ · · ·

)(
1− (ω/2)2

6
+ · · ·

)4

= (1− bω2 + · · · )(1− ω2/24 + · · · )4
= (1− bω2 + · · · )(1− ω2/6 + · · · )
= 1− ω2(b+ 1/6) + · · · .

Consequently, (6.45)/279 is satisfied if and only if b = −1/6, a = 4/3, i.e., q(z) =
(8− z − z−1)/6. This gives the convolution mask

[−1/6, 4/3, −1/6 ],

which produces cubic precision. Thus, if we apply the mask to the sequence {l2}l∈Z,
we get

(4/3)l2 − (1/6){(l + 1)2 + (l − 1)2} = l2 − 1/3,



book
2010/3/3
page 280

�

�

�

�

�

�

�

�

280 Chapter 6. Evaluation and Estimation of Surfaces

so ∑
l∈Z

(l2 − 1/3)N4(t− l) = t2.

Similarly, if the mask is applied to the sequence {l3}l∈Z, we get

(4/3)l3 − (1/6){(l + 1)3 + (l − 1)3} = l3 − l,
and so ∑

l∈Z

(l3 − l)N4(t− l) = t3.

This example is taken from [67].

6.5 Bounding envelopes for patches
In this section we describe a method of Wu and Peters [169, 170] for finding tight
bounding envelopes for surface patches. This method can be viewed as an extension
and improvement of an earlier method proposed by Kobbelt [75]. Like the method
of [18], it uses pretabulated basis functions, although for a different purpose. Also, it
makes use of an extension, to the nonregular case, of the concept of linear precision.
The method is described in the context of Loop subdivision, but the same approach
can be used for other subdivision methods.

The bounding envelopes discussed here have application in collision detection,
and also for adaptive subdivision, which is discussed in Section 6.6.

According to (4.74)/181, the spline surface can be expressed as

x(y) =
∑
�

p�N�(y), (6.46)

where � ranges over all vertices in the logical mesh, and y is in some appropriately
defined two-dimensional manifold M . The functions N�(y) are defined on M with
their supports located in some neighbourhood of the corresponding point [�] ∈M .

In the case of the Loop subdivision method, in a neighbourhood of an isolated
extraordinary vertex of valence n the manifold M can be defined locally to be a
portion of the plane, laid out according to the illustrations in Figure 6.4/281. (The
vertex labelled [0] is the vertex of valence n, and the direct neighbours of this vertex
form a regular unit n-gon; the vertices [1] and [2] are the other vertices of a typical
triangle incident at the extraordinary vertex. The case n = 5 < 6 is illustrated in
Figure 6.4/281 (left), and the case n = 7 > 6 is illustrated in Figure 6.4/281 (right).
The regular case n = 6 is also permitted. More details on the geometric layout are
given below.) There are n+ 6 vertices indicated in the examples in the figure, and
these are exactly the vertices for which the support of the centered basis function
N�(y) extends to the centre triangle [0]-[1]-[2], which we denote by T . The sum
in (6.46)/280 can therefore be viewed as running over n + 6 vertices and defining a
patch corresponding to the triangle T . In the case n = 6, this corresponds to the
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Figure 6.4. Geometric layout of parametric domain.

patch illustrated in Figure 3.11/111. To simplify the presentation, we refer to the
logical vertices [�] embedded in the plane by the integers 0, 1, 2, . . . , n+5. The n+6
nodes in parameter space are denoted by yi = (ui, vi) for i = 0, 1, . . . , n + 5, the
nodal functions centered around yi are denoted by Ni, and the control vectors by
pi, so that we have the parametric surface representation

x(y) = x(u, v) =
n+5∑
i=0

piNi(u, v) =
n+5∑
i=0

piNi(y)

when y = (u, v) is in the triangle T .

6.5.1 Modified nodal functions

In an infinite regular grid with equilateral triangles and all nodes of valence 6, the
nodal functions Ni have the property that they reproduce linear functions, which
means that

l(y) =
∑
i

l(yi)Ni(y) (6.47)

for all linear functions l : R2 → R (see Section 6.4). However, for a nonregular finite
grid, the equality (6.47)/281 is no longer valid. To apply the techniques of Wu–Peters
we need to introduce auxiliary nodal functions bi(u, v) having such a linear precision
property. To simplify the presentation, we make the temporary assumption that
the initial grid is extended to an infinite grid in R2 and that we wish to define the
functions bi so that

l(y) =
∑
i

l(yi)bi(y) (6.48)

for all linear functions l : R2 → R.
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The functions bi are defined in the following way. For a fixed i, 0 ≤ i ≤ n+ 5,
we consider the parametric surface

R2 � y′ �→
∑
j 	=i

(yj , 0)Nj(y′) + (yi, 1)Ni(y′) ∈ R3, (6.49)

which is the result of applying Loop subdivision to a set of control vectors (uj , vj , xj) ∈
R3, xi = 1, and xj = 0 if j �= i. This representation may be rewritten as

R2 � y′ �→ (Π(y′), Ni(y′)) ∈ R3, (6.50)

where Π(y′) =
∑
yjNj(y′). Now, if we assume that the location of the nodal points

have been chosen so that the mapping Π : R2 → R2 is invertible (this assumption
is relaxed below), we may define

bi(y) = Ni(Π−1(y)), y = Πy′,

so that the surface in (6.50)/282 has the representation w = bi(u, v) in an orthogonal
(u, v, w)-coordinate system, or more compactly, w = bi(y). We also have Ni(y′) =
bi(Π(y′)). Further, any surface with a representation x(y′) =

∑
i piNi(y

′) is the
same surface as that represented by x(y) =

∑
i pibi(y).

For the functions bi, we now have the crucial linear-precision property (6.48)/281.
Assume that we start with an initial set of control vectors (yj , cj) = (uj , vj , cj) =
p0
j ∈ R3, all lying in some plane with the equation w = l(y), so that cj = l(yj).

After one subdivision we obtain a refined set of control vectors pνj which, by the
affine invariance, must be located in that same plane. (See Exercise 8/285.) The
same is true at all refinement levels and therefore the limiting surface patch lies in
the same plane. Using the definition of the functions bi and linear superposition,
we conclude that in an orthogonal (y, w)-coordinate system, the equation of that
plane is w =

∑
i cibi(y) and, since ci = l(yi), that l(y) =

∑
i l(yi)bi(y).

Remark 6.5.1. All the nodal functions Ni : M → R are well-defined functions on
the two-dimensional manifold M , whereas the functions bi are not. These functions
depend on the location of the nodes in parameter space R2: if we choose different
locations, the functions bi will change.

6.5.2 Bounding linear functions

For each coordinate of x = x(y′) =
∑
i piNi(y

′), two linear functions are computed
defining a lower and an upper bound over the triangle T . For component j of x we
write

λj(y′) ≤ xj(y′) ≤ Λj(y′) if y′ ∈ T.
The error in the component is ej = Λj − λj , and the total error for the subdivision
patch (used, for example, to guide an adaptive subdivision process) is the maximal
value of the norm of the vector e ∈ RN . Since the analysis is the same for each
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component, we drop the superscript j and denote a typical component by x = x(y′).
We then have, for y′ ∈ T ,

x(y′) =
n+5∑
i=0

ciNi(y′) =
n+5∑
i=0

ciNi(Π−1(y)) =
n+5∑
i=0

cibi(y), (6.51)

where ci is the corresponding scalar component of pi and y′ = Π−1(y).
If we let l(y) be the linear function that interpolates the three points (y0, c0),

(y1, c1), and (y2, c2), then we can rewrite (6.51)/283 as

x(y) = l(y) +
n+5∑
i=3

dibi(y) for y ∈ Π(T ),

where di = ci − l(yi). We then have the upper and lower bounds

λ(y) = l(y) +
n+5∑
i=3

(max{di, 0}b+i (y) + min{di, 0}b−(y)),

Λ(y) = l(y) +
n+5∑
i=3

(max{di, 0}b−i (y) + min{di, 0}b+(y)),

where b+i and b−i are precomputed linear upper and lower bounds for the basis
functions bi(y). These bounds must be valid when y = Π(y′) and y′ ∈ T , i.e., for
y ∈ Π(T ). Therefore, we must require that the domain of Π contain the triangle T ,
that Π|T is one-to-one, and that T ⊂ Π(T ), or equivalently, Π−1(T ) ⊂ T .

These properties can be verified provided that the locations in the parameter
space of the points yj , j = 0, 1, . . . , n + 5, are carefully chosen. Some details are
given in [169, 170]. The set Π−1(T ) ⊂ T is shaded in Figure 6.4/281 and is denoted
by Ωn in [169, 170]. We also note that the subpatch corresponding to the triangle
T is defined completely by the expression

x(y′) =
n+5∑
j=0

cjNj(y′) = l(y) +
n+5∑
j=3

djbj(y)

for y′ ∈ T and y = Πy′ ∈ Π(T ). Therefore, only the restrictions Nj |T and bj |Ωn ,
j = 3, 4, . . . , n+5, are needed when computing λ(y) and Λ(y), and there is no need
to introduce the infinite grid above, nor to define the functions bi everywhere.

If the locations of the points yj , j = 0, 1, . . . , n + 5, are chosen so that
T �⊂ Π(T ), then the functions bi to be used are not well defined in Ωn using only
information from nodes 0, 1, . . . , n+5 and additional information must be supplied.
One may, for example, extend the domains of bj by introducing additional nodal
points in parameter space. See [170, Sec. 3].

The details of the geometric form of the parametric grids are given in [169, 170]
and in the statement of Exercise 9/286. These include the definition of the constant
kn, which is the length of the segment y1-y4. The exercise asks for a proof of the
fact that for n ≥ 6, Loop subdivision maps yi into yi, i = 0, 1, 2.
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6.6 Adaptive subdivision
One application of the bounding envelopes discussed in Section 6.5 is adaptive sub-
division. As observed in Section 1.1, time and memory requirements for subdivision
methods increase exponentially if subdivision is applied uniformly across the mesh,
and it is therefore of interest to vary the depth of subdivision depending on the
accuracy of the surface approximation in different parts of the mesh.

To exploit this idea, several problems must be solved. First of all, faces from
different levels of refinement have to be joined together in a consistent way, to obtain
a conformal mesh. For example, if the splitting of one face involves an edge which is
shared with another face that is not split, then a crack may appear between the two
corresponding limit patches. This is a well-known problem in the general context of
meshing, and it is also mentioned often in the specific context of subdivision-surface
methods. For example, the advantages of 4-8 subdivision and

√
3-subdivision in

this respect are discussed in [164, Sec. 2.2.3] and [76, Sec. 4], respectively, and
the problem is discussed in the context of the bounds in Section 6.5, above, in
[170, Sec. 4]. See also [20, 180]. Another problem is that, unless the method is
interpolating, the geometric location of a control point in the refined mesh is not
well defined if faces from different refinement levels share the vertex [76, Sec. 4].

A remaining problem is the elaboration of measures to use as a stopping
criterion, when subdividing a certain part of the mesh. Various measures of error,
and various flatness criteria, have been proposed for different methods [27, 68, 69,
94, 103, 104, 105, 133, 134]. The bounds in Section 6.5 have been used to control
adaptive subdivision for the Loop method (see [120] and [170, Sec.4]).

6.7 Additional comments
The use of evaluation and tangent stencils is a very widely used technique. It is
often referred to using the terminology “evaluation and tangent masks,” or “pushing
points to the limit.”

The method of de Boor [35], [38, p. 17], described in Section 6.3.1, has been
rediscovered in more recent papers. Stam’s method [150] is important in graphics
applications. See [116] for the use of these and other methods on graphics cards.

The methods related to polynomial precision are widely known in the wavelet
community, but less well described in the subdivision-surface literature. Some recent
papers in the latter category are [28, 67, 86].

The question of estimating the appropriate depth (number of iterations) for
subdivision has recently received much attention, with many heuristic methods
(based, for example, on “flatness” criteria) suggested, as mentioned in Section 6.6.

6.8 Exercises
1. Consider the univariate subdivision process with centered subdivision poly-

nomial

s(z) = 2
(
z−1/2 + z1/2

2

)(
z−1 + z

2

)
.
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Show that for this method we have Ŝ(ω) = 2 cos(ω/4) cos(ω/2) and N̂(ω) =
f(ω/2)f(ω), where f(ω) = sin(ω)/ω, and that Ŝ satisfies condition B1, which
means that N̂ does too. Show also that N̂ satisfies condition A1, so that by
Theorem 6.4.4/272 the reproduction degree is equal to 1.

Show, however, that Ŝ does not satisfy A1, which means that Corollary
6.4.6/272 misses the fact that the method has linear precision.

2. Using (A.26)/316 and item 5 of Table A.2/313, verify item 15 of the table.

3. Suppose that the nodal functions for two univariate subdivision processes
satisfy conditions Ad1 and Ad2 , respectively. Show that the nodal function for
the corresponding bivariate tensor-product process satisfies condition A(d1,d2).
Similarly, show that the corresponding statement for condition B is also true.
(This is relevant in the context of Theorems 6.4.4/272 and 6.4.5/272 for methods
such as tensor-product B-splines and the Kobbelt method.)

4. Using Theorem 6.4.4/272 show that the Loop method does not have bilinear
precision.

5. (a) Constant subdivision clearly does not have linear precision: such a method
cannot reproduce all linear functions and cannot have reproduction degree
equal to 1. State why this does not contradict the statement of Theorem
6.4.8/274, even though constant subdivision is a box-spline subdivision process.
(Similarly, this fact does not contradict the statement of Corollary 6.4.6/272

even though condition B1 is satisfied, since the other hypothesis of the corol-
lary, condition A1, is not satisfied.)

(b) Show that condition B1 is satisfied, that condition A1 is not satisfied, and
show exactly where the proof of Theorem 6.4.8/274 fails in the case of constant
subdivision.

6. Consider the box-spline method defined by e1 = (1, 0)t, e2 = (0, 1)t, e3 =
(1, 1)t, with centered subdivision polynomial 1

2z1z2
(1 + z1)(1 + z2)(1 + z1z2).

Show, using the results of this chapter, that the method has linear precision,
but does not have bilinear precision.

7. Consider the subdivision polynomial

sm(z) = 2
(
z1/2 + z−1/2

2

)m
q(z)

where q(z) = a+ b(z+ z−1). Proceeding as in Section 6.4.3 in the book, show
that the choice a = (8 + 2m)/8 and b = −m/8 gives quadratic precision for
m = 3 and cubic precision for m ≥ 4.

8. Show that if an affine-invariant subdivision method is applied to the vertices
(ui, vi) of the parametric plane, embedded in R2, at the same time as it is
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applied to the control points pi, as described in Section 6.5, then linearity is
preserved even in the case of nonregular meshes. That is, if at step ν of the
process we have that pνi = αuνi +βvνi +γ for each control point i, then at step
ν + 1 we will have pν+1

k = αuν+1
k + βvν+1

k + γ for each control point k in the
refined mesh.

9. The layout of the points in Figure 6.4/281 is as follows [169, 170]:

(a) Set y0 = 0, the origin of the (u, v) plane.

(b) Choose the direct neighbours yi of y0 to form a regular unit n-gon.

(c) Extend the edge y0-y1 and y0-y2 by kn to get y4 and y6.

(d) Choose y5 to be the average of y4 and y6.

(e) Choose y3 and y7 to be the reflection of y5 across y0-y4 and y0-y6, re-
spectively.

The constant kn is defined by

kn =
{ −4(c2 − 2)/(1 + 2c2)− 1, n ≥ 6,
−6(2c2 − 7)/(15 + 2c2)− 1, n < 6,

where c = cosπ/n.

Show that in the case n ≥ 6, yi is mapped by Loop subdivision into yi,
i = 0, 1, 2.

Similarly, for 3 ≤ n ≤ 5, let ym be the edge point between y1 and y2 computed
after one step of Loop subdivision: ym = 3

8 (y1 + y2) + 1
8 (y0 + y5). Show that

the limit position of ym is 1
2 (y1 + y2).

6.9 Projects
1. Implementation of Stam’s method.

Obtain the papers [149, 150] and implement the method of exact evaluation
of Catmull–Clark or Loop surfaces.

2. Implementation of the method of Wu–Peters.

Implement the method described in Section 6.5 and compare it with the strat-
egy of omitting the linear function l(u, v), i.e., taking l(u, v) ≡ 0.
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Shape Control

There has been considerable research over the last two decades on methods for
shape control, in order to design tools more powerful than simple trial-and-error
interaction with the user. Of fundamental importance is the treatment of bound-
aries, and the definition of crease and sharp edges on the boundary or in the interior
of the surface. These topics are discussed in the first two sections of this chapter.
Primal methods have achieved more prominence than dual methods in this context,
but some of the earliest work [106] was related to the Doo–Sabin method, a dual
method. We discuss the primal case first, and then we give an example for the dual
case.

Another important problem is surface fitting (again, both in the interior and
boundary cases), including the problem of interpolation of points and curves subject
to various continuity requirements. There is a large number of cases to deal with:
an overview is given in the papers [114, 115]. Here we only give some examples to
illustrate the main ideas.

The final section of the chapter gives further references for surface fitting, and
references for further reading in areas related to shape control that are not covered
in detail in the book, including the topic of free-form editing [175].

A major approach to free-form editing is multiresolution editing and, although
we do not present a complete description, we give some detail on this topic. One way
to obtain multiresolution is wavelet decomposition, and this provides an interesting
link to the theory of wavelets [33, 156]. We also mention two other methods for
multiresolution editing, one based on a smoothing approach, and another which is
similar but outside the field of subdivision surfaces.

7.1 Shape control for primal methods
We first discuss methods to model sharp features such as crease edges, darts, corners,
and boundary edges, and then we consider the question of interpolation.

287
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7.1.1 Surface boundaries and sharp edges

An important early paper [66] on this topic was written by eight researchers at the
University of Washington, and the work was extended in [144]. For convenience
we refer to these two papers as the Seattle work : this work describes the basic
ideas necessary to deal with sharp features in the case of Loop subdivision. We
present these ideas, and similar ideas for the Catmull–Clark method, followed in
Section 7.1.2 by modifications that rectify deficiencies in the original methods.

We begin by defining the terms introduced above and by describing a prelim-
inary set of crease-edge rules for the two primal methods most commonly used in
practice, the Loop and Catmull–Clark methods. For the Loop method we may use
the rules described in the Seattle work. For the Catmull–Clark method, a natural
approach to crease and boundary edges is simply to apply the degree-three curve al-
gorithm LR(3) along the boundary or crease, as outlined for example in [95]. These
rules for Catmull–Clark can also be viewed as deriving from the Seattle work [42,
Appendix A]. We call these two sets of rules “preliminary” because modified rules
were later proposed in [15], to deal with certain shortcomings of the original rules.
The modified rules are presented later in the section.

The first step is to identify a subset of the edges {(�, �′)} in the logical mesh M
as tagged edges. (This identification is done interactively by the user of the system.)
Tagged edges are also called sharp edges, or crease edges, in the literature: the three
terms are synonymous, but from now on, we always use the term sharp edge.45 All
boundary edges, in a mesh with boundary, are sharp. In addition, other edges
may be sharp, at the discretion of the user. Edges that are not sharp are called
smooth.

In addition to sharp edges, certain vertices in the mesh are tagged as non-
smooth. The set of tagged vertices is completely determined by the set of sharp
edges, but with some schemes, the user may also be able to use interactive tagging
to change the type of a tagged vertex (for example, tagging a vertex with only two
incident sharp edges as a corner, when normally three would be required).

Sharp edges for Loop subdivision

The Loop subdivision method produces tangent-plane-continuous surfaces [91] (see
Definition 5.6.1/234), but in the Seattle work, modified subdivision rules were intro-
duced that relaxed the requirement of tangent-plane continuity across sharp edges,
while maintaining a well-defined tangent plane on each side of the crease. Similar
considerations apply to corners and darts, which are special types of vertices that
are defined now.

As mentioned, first a subset of edges in the logical mesh is tagged as sharp.
This subset must include all boundary edges in a mesh with boundary. Then,
vertices in the logical mesh are classified [66] as being of one of five types, including
two types of a crease vertex.

• smooth vertex (0 incident sharp edges);

• dart vertex (1 incident sharp edge);
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Figure 7.1. Regular and nonregular crease vertices (Loop method).

Table 7.1. Type of sharp-edge stencil, given the types of incident vertices.

Vertex types ↓ → dart
regular
crease

nonregular
crease corner

dart 1 1 1 1
regular crease 1 2 3 3
nonregular crease 1 3 2 2
corner 1 3 2 2

• crease vertex (2 incident sharp edges);

– regular crease vertex;

– nonregular crease vertex;

• corner vertex (3 or more incident sharp edges).

The nonsmooth vertices are said to be tagged ; the tagged vertices, and their types,
are determined by the set of sharp edges. In the list just given, crease vertices
are split into two subcategories, regular and nonregular. An interior crease vertex
is defined as regular if it has valence 6 with exactly two smooth edges on each
side of the sharp edge; a boundary crease vertex is regular if it has valence 4.
All other crease vertices, whether interior or boundary, are nonregular . Regular
and nonregular crease vertices are illustrated in Figure 7.1/289. It follows from the
definition of a smooth vertex that both vertices � and �′ incident at a sharp edge
(�, �′) are nonsmooth vertices.

The stencil shown in Figure 1.29/32 (left) is modified, for sharp edges, as
illustrated in Figure 7.2/290. The first stencil (Edge stencil 1) shown in Figure 7.2/290

is for the case of a sharp edge with one or both incident vertices a dart vertex; in
this case the stencil used is the same as the one for a smooth edge. Edge stencil 2
and Edge stencil 3 treat the other cases of incident nonsmooth vertices. The stencils
used are defined in Table 7.1/289. In Figure 7.2/290 and subsequent figures, we do
not distinguish carefully between smooth edges and edges of unspecified type.

The vertex stencil shown in Figure 1.29/32 (right) is also modified, as illustrated
in Figure 7.3/290, where heavy lines again denote sharp edges. The first stencil shown
in Figure 7.3/290 is the case of a dart vertex, where the stencil is the same as the one
for a smooth vertex. The second and third stencils treat the other cases of tagged
vertices. Continuity of the resulting surfaces is discussed in [144]. See also [172,
Sec. 6.7].
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Edge stencil 1

3
8

Edge stencil 2 Edge stencil 3
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vertex

Regular

New edge point
Nonsmooth0 0

1
8

1
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3
8

3
8

1
2
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Figure 7.2. Stencils for sharp edges (Loop method).
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Figure 7.3. Stencils for nonsmooth vertices (Loop method).

Evaluation and tangent stencils (see Section 6.1) were also given in [66] for
crease vertices.

The vertex rules in Figure 7.3/290 are designed so that sharp features converge
to uniform B-splines except near nonregular crease and corner vertices. The ze-
roes in these stencils completely decouple the behaviour of the surface on the two
sides of a sharp edge. On the other hand, note that the behaviour of the surface
at the boundary depends on the number of internal points incident to a boundary
vertex (Figure 7.1/289, right), and clearly this may lead to cracks if we attempt,
after subdivision, to join two surfaces that originally had a common boundary [15].
Further, when we refer to the “side” of a sharp edge, we mean topologically (within
the topological mesh), but this does not decouple the two geometric sides: conse-
quently, undesirable folding may occur. These two shortcomings are remedied in
Section 7.1.2. (Exercise 1/304 gives a simple example to illustrate the possibility of
a surface folding back on itself if the preliminary Loop rules are used. It is worth
looking at this exercise before reading Section 7.1.2.)

Sharp edges for Catmull–Clark subdivision

The idea behind the rules for sharp edges for the Catmull–Clark method [42, Ap-
pendix A], [95] is to use the LR(3) algorithm for curves along sharp edges. This
includes, as always, all boundary edges.
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Figure 7.4. Modified stencils for certain tagged vertices (Catmull–Clark method).
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γn βn γn

γn

Figure 7.5. Standard stencils for Catmull–Clark.

Recall from Figure 1.27/29 that the Catmull–Clark method produces, at each
step, new edge points E′i and new face points F ′i , i = 0, . . . , n − 1, as well as a
modified value V ′ of a control point V . From (1.16)/43 the use of LR(3) implies
that the stencils shown in Figure 7.4/291 (left and middle) should be used along sharp
edges, which are shown by heavy lines. In addition, an existing vertex may be of
type corner, in which case the control point is interpolated (Figure 7.4/291, right).
Apart from these cases, the standard Catmull–Clark rules are used.

In [42] the Catmull–Clark rules are presented using the formulation of (A.8)/309.
Sometimes, however, these rules are presented using the Ball–Storry formulation
given in (A.5)/308 and (A.6)/309 (see [95]). In this case, the stencils for the standard
rules are shown in Figure 7.5/291. These stencils should be compared with those
shown in Figure 1.28/29. Here the constants are αn = (4n− 7)/(4n), βn = 3/(2n),
and γn = 1/(4n), as in (A.6)/309, rather than α∗n, β

∗
n and γ∗n, as in Figure 1.28/29,

and the points to which they are applied are the Ei and Fi of Figure 1.27/29, rather
than the EL

i and FL
i of (1.5)/28.

Similarly to the presentation above for the Loop method, the method may be
summarized as follows. For Catmull–Clark the vertices are classified as being of one
of four types:

• smooth vertex (0 incident sharp edges);
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• dart vertex (1 incident sharp edge);

• crease vertex (2 incident sharp edges);

• corner vertex (3 or more incident sharp edges).

Again, the nonsmooth vertices are said to be tagged , and the type of each vertex is
completely determined by the set of sharp edges. In contrast to the Seattle work,
there is no distinction made between regular and nonregular crease vertices. Op-
erations involving vertices that are not on sharp edges, or on an existing vertex
that is the endpoint of a lone sharp edge (i.e., a dart vertex), use the standard
Catmull–Clark stencils shown in Figure 7.5/291. Operations involving an existing
vertex with two or more incident sharp edges use the modified stencils of Fig-
ure 7.4/291. Creation of a new edge point on a sharp edge uses the modified stencil
of Figure 7.4/291 (left).

Semisharp edges

The rules just described for sharp edges for the Catmull–Clark method were ex-
tended to the case of semisharp edges in [42]. This is important in practice since
real-world surfaces can seldom be modelled as infinitely sharp: edges are usually
rounded to some extent. Introduction of semisharp edges therefore introduces a
higher level of realism, or permits the same level of realism with a smaller number
of faces in the mesh [42, Fig. 10].

The methods used in [42] are conceptually simple. Sharpness of an edge is
parametrized by a variable s ∈ [0,∞], where s = 0 is a smooth edge, and s = ∞ is
an infinitely sharp edge. Integer values of s are obtained by using hybrid subdivision:
the rules for sharp edges discussed previously in this section are applied for the first
s subdivision steps, ν = 1, . . . , s, after which the standard (smooth) Catmull–Clark
edge rules are used. This can be described intuitively by saying that the surfaces
are sharp at coarser scales, but smooth at finer scales.

To obtain sharpness s for noninteger values of s, two sets of vertices along a
soft crease (a sequence of semisharp edges) are computed. The first set of vertices is
obtained by �s� applications of the rules for sharp edges, followed by one application
of the smooth edge rules. The second set of vertices is obtained by �s� applications of
the rules for sharp edges. The final values of the vertices are obtained by linear
interpolation between the pairs of vertices so obtained.

A further generalization of this heuristic is suggested in [42, Appendix B], for
the case when the crease is made up of a sequence of edges, each with a different
value of s. In this case the values of s themselves are smoothed as subdivision
proceeds, using Chaikin’s method LR(2).

7.1.2 The Biermann–Levin–Zorin rules for sharp edges

The rules for the Loop and Catmull–Clark methods, described in the previous sec-
tion, were modified by Biermann, Levin, and Zorin in [15]. The purpose of these
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modified rules is to prevent the possibility of folding of the surface, in the case
of concave corners, and to permit the introduction of flatness and normal control.
The modified rules are the basis, in particular, for a feature-editing method [17]
mentioned in Section 7.3.1.

We mention three ways in which the modified rules are different from those
presented above. The first is minor: in [15], a tagged vertex with only two incident
sharp edges may be designated by the user to be a corner. This has the consequence
that the type of a tagged vertex is no longer completely determined by the set of
sharp edges, but this is no inconvenience. A second difference is that in the Loop
case, the distinction between the two subtypes (namely, regular and nonregular) of
crease vertex is abandoned. Consequently, there are only three possible types of
(nonsmooth) vertices, as in the Catmull–Clark case in Section 7.1.1. The reason
for this modification is that making the distinction between regular and nonregular
crease vertices leads to subdivision rules for boundary edges that depend on the
neighbouring topology. This means that two separate meshes, originally with com-
mon boundary, may no longer have a common boundary after subdivision. In [15],
in contrast to the use of both stencils 2 and 3 (Figure 7.2/290 and Table 7.1/289),
new vertices on sharp edges are always introduced as the average of two adjacent
vertices.

The third difference between the preliminary rules of the previous section and
the rules of [15] is that the edge rule is modified for a smooth edge adjacent to a
tagged vertex. To do this, the concept of sectors, surrounding a tagged vertex, is
introduced. At a tagged vertex, the sharp edges meeting at the vertex separate the
ring of triangles around the vertex into sectors. Each of these sectors can be tagged
as convex or concave, at the discretion of the user, subject to the restriction that
concave sectors must consist of at least two faces.

Now, given a logical vertex �, two adjacent sharp edges in the logical mesh are
separated by a certain angle α, 0 ≤ α ≤ π, which can be obtained by examining the
geometric information associated with the sharp edges. If there are k faces within
a given sector, the angle θk is defined as follows. If � is

• a dart vertex, then θk = 2π/k, k ≥ 1;

• a crease vertex, then θk = π/k, k ≥ 1;

• a concave corner vertex, then θk = (2π − α)/k, k ≥ 2;

• a convex corner vertex, then θk = α/k, k ≥ 1

(see Figure 7.6/294). Then, the standard rules of Figure 1.29/32 (left) and Fig-
ure 7.5/291 (left) are modified as shown in Figure 7.7/294, where γk is defined
to be

γk =
1
2
− 1

4
cos θk (Loop),

γk =
3
8
− 1

4
cos θk (Catmull–Clark).
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concave corner vertex (k = 3)

convex corner vertex (k = 3)crease vertex (k = 3)

dart vertex (k = 5)

θk = α/kθk = π/k

θk = 2π/k
αθk = (2π − α)/k

Figure 7.6. Definition of the angle θk.

1
16

1
16

1
16

1
161

8

1
8

γk
3
4 − γk γk

Loop method Catmull-Clark method

�
(tagged vertex)

3
4 − γk

Figure 7.7. Modified stencils for new edge points.

Flatness and normal control are discussed in [15, Sec. 6.3]. An example show-
ing how folding can occur if only the standard rules of Section 7.1.1 are used is
given in Exercise 1/304.

7.1.3 Interpolation of position and normal direction

In [63], the evaluation and tangent stencils are used to generate a control mesh
that interpolates some or all of the control points of a given input polyhedral mesh,
and, possibly, to constrain the surface to have a specified normal at certain points.
The method is described in the context of Catmull–Clark surfaces, expressed as
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in (A.8)/309 and (A.9)/309 by

F ′j = FL

j =
1
4
[V + Ej + Fj + Ej+1], j = 0, . . . , n− 1,

E′j =
1
4
[V + Ej + FL

j−1 + FL

j ], j = 0, . . . , n− 1,

V ′ =
n− 2
n

V +
1
n2

n−1∑
j=0

Ej +
1
n2

n−1∑
j=0

FL

j ,

where V is a control point at a vertex of valence n.
The new control mesh is taken to have the same topology as the input mesh,

i.e., the same number and connectivity of vertices, faces, and edges. Position con-
straints are defined by (6.3)/249, where η1 is given by (6.7)/251. This leads to a global
system of linear constraints, where x(0) in (6.3)/249 corresponds to the control-point
data to be interpolated (the given mesh), and p0

l in (6.3)/249 corresponds to the con-
trol mesh being generated. If p0

l is written as a (2n+ 1)×N matrix

(F0, . . . , Fn−1, E0, . . . , En−1, V )t, (7.1)

then the constraint (6.3)/249 requires that the inner product of η1 with each column
j of the displayed matrix in (7.1)/295, 1 ≤ j ≤ N , should be equal to the jth
component of the value to be interpolated at vertex l. If N = 3, the number of
unknowns and the number of constraints are each equal to 3 times the number of
control points in the input polyhedral mesh. Since the matrix of constraints may
be singular, a least-squares solution was used in [63].

To impose a given normal direction at specific point on the surface, corre-
sponding to the limiting value of a control point, it is sufficient to require that c2
and c3, given by (6.9)/252, are orthogonal to the given normal vector. This cor-
responds to 2 linear constraints, so that the total number of constraints is equal
to 3 times the number of positional constraints plus 2 times the number of nor-
mal constraints. In [63], interpolation of normal directions was put aside, and the
position-interpolation problem was solved with the incorporation in addition of a
“fairness norm” to reduce the amount of undulation in the interpolating surface.

The interpolation guaranteed here occurs only in the limit, and the nonsingu-
larity of the coefficients matrix is not guaranteed [115, Sec. 6].

The problem of interpolation of boundary curves is discussed in the context
of a dual method in the next section. Further references on surface fitting are given
in Section 7.3.

7.2 Shape control for dual methods
One of the first discussions of interpolation for subdivision surfaces was in a paper
of Nasri [106]. This paper and subsequent papers [107, 108, 109, 110, 111] by the
same author were focused on the Doo–Sabin method, a dual method. Intuitively,
one might expect that boundary control would be more difficult for dual methods
than for primal methods, because dual methods abandon the initial polyhedron
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p′
l3

pl1

pl0

Figure 7.8. Polyhedron modification for four-sided faces.

boundary at the first subdivision step. At least in the case of the Doo–Sabin
method, however, it is possible to devise interpolation methods in the dual case,
since the quadratic nature of the limit surface in the regular case leads to simple
linear constraints defining interpolation.

The papers [114, 115] give a taxonomy of interpolation constraints for shape
control in a general context, but with some emphasis on the case of dual methods.

7.2.1 Control-point modification

One approach to designing interpolation methods in the dual case involves only the
modification of control points.

We saw in Chapter 1 that methods based on dQ4 splitting cause an extraor-
dinary vertex to be transformed into an extraordinary face at the first subdivision
step, and that subsequently no extraordinary faces other than those originally in
the mesh are created. Here we suppose for simplicity that the original mesh had no
extraordinary vertices, so that the only extraordinary faces in the subdivided mesh
are those in the original mesh.

An important fact about the Doo–Sabin method is that the limiting surface
contains the centroids 1

e

∑e−1
j=0 plj of all faces at all refinement levels. Also, given

some face with control points plj , j = 0, . . . , e − 1, at some refinement level, local
subdivision of that face produces a unique sequence of faces, with the same number
of edges, and where the control points of the faces converge to the centroid of the
original face. To prove this, note that from (1.3)/27, the local subdivision matrix for
the Doo–Sabin method is the e× e symmetric matrix with elements Wij , 0 ≤ i, j ≤
e − 1. From the symmetry of the matrix,

∑e−1
i=0 Wij = 1 (compare (1.4)/28), and

a normalized eigenvector is η = (1/e, . . . , 1/e)t. This vector defines the evaluation
stencil for any control point in the face. Thus, each point pli begins a sequence that
converges to 1

e

∑e−1
j=0 plj .

Nasri [106] used this fact to modify the control points of a given polyhedral
meshM so that the Doo–Sabin method converges to prescribed values along bound-
ary edges and at corners. Consider, for example, a four-sided face pl0-pl1-pl2-pl3 , as
illustrated in Figure 7.8/296 (see [106, Fig. 4]). In the case when the face has two
nonboundary vertices, as in Figure 7.8/296 (left), the control points pl2 and pl3 can
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be reflected in pl1 and pl0 to give p′l1 and p′l0 , respectively, so that the centroid of
the polyhedron p′l0-p

′
l1

-pl2-pl3 is equal to 1
2 (pl0 + pl1). The boundary of the limiting

surface is a quadratic B-spline curve with pl0 and pl1 in the control polyhedron, and
1
2 (pl0 + pl1) is a point on this curve. Similarly, in the case when the face has only
one nonboundary vertex, and the middle boundary vertex has no internal link, as
in Figure 7.8/296 (right), then we can take

p′l1 = 2pl1 − pl2 ,
p′l3 = 2pl3 − pl2 ,
p′l0 = 4pl0 − 2pl1 − 2pl3 + pl2

to obtain a modified face p′l0-p
′
l1

-pl2-p
′
l3

with centroid pl0 . In the limit surface, two
separate boundary curves interpolate pl0 , and they are tangential to pl0-pl3 and
pl0-pl1 , respectively.

In [106], extensions of these methods are proposed for the case of extraordinary
faces, and for the solution of generally stated interpolation problems, including (in
our terminology) the following: “Given a polyhedral mesh M, construct a new
mesh, based on the same logical mesh, that interpolates (in the limit under Doo–
Sabin subdivision) some or all of the geometric vertices of M.” Both the cases
with and without interpolation along the boundary are considered. The solutions
to these problems involve large but sparse systems of linear equations.

It is clear, also, that by using the tangent stencils for the Doo–Sabin method, it
is possible to devise algorithms that adjust the initial control points of a polyhedral
mesh in order to match given surface normal vectors. Tangent stencils for the
Doo–Sabin method can be obtained by finding eigenvectors corresponding to the
eigenvalues λ2 = λ3 = 1/2. Two such eigenvectors can be obtained by taking
the real and imaginary parts of the complex eigenvector (1, w, w2, . . . , we−1)t, where
w = e2πi/e, since this eigenvector corresponds to the eigenvalue 1/2. Exercise 2/304

asks for the verification. See also [108].

7.2.2 Other approaches

Other methods have also been developed to achieve interpolation in the case of
dual methods. Thus, in [109, 110] it is shown how to modify the topology of M in
order to construct strips of panels interpolating predefined curves in the limit. For
example, in [109] it is shown how to use this type of construction to interpolate
predefined closed quadratic curves.

Methods involving modification of the subdivision process itself (as was done
in the primal case) have also been devised. A classification of the various approaches
is given in [115].

7.3 Further reading on shape control
We conclude this chapter (and the main text of the book) with some brief descrip-
tions of other important methods for shape control and give some references for
further reading.
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A A A

B BB

Figure 7.9. A subdivision surface at four levels of resolution.

We begin, in Sections 7.3.1 and 7.3.2, with a summary of an important
paradigm for shape control, multiresolution editing. Then, in Section 7.3.3, we
give references to work on other aspects of shape control, including further ref-
erences for subdivision-surface fitting (already discussed to some extent in Sec-
tions 7.1 and 7.2), variational design, and Boolean operations on subdivision-surface
solids.

Only the methods of Section 7.3.1, on subdivision-based multiresolution edit-
ing, are treated in any detail. In particular, we give a fair amount of detail for the
wavelet-decomposition method, in order to show the interesting connection with
wavelets. It turns out, however, that due to the computational cost of the asso-
ciated algorithms, this method is of less practical importance than the smoothing
approach presented immediately afterward.

7.3.1 Subdivision-based multiresolution editing

Subdivision-based multiresolution methods can be used for mesh compression, level-
of-detail display, progressive transmission, and multiresolution editing, among other
applications [62, 92]. Here we focus on multiresolution editing, where two principal
methods have been proposed. The goal of multiresolution editing, as the name
suggests, is to permit editing at any level of resolution, and to have the changes
appropriately reflected in models corresponding to other levels of resolution.

The first of the two methods [92] is based on a wavelet decomposition of the
mesh in the spatial domain, while the second [131, 180] can be viewed as imitating
the wavelet-decomposition process. In both cases the reconstruction step that takes
us to higher levels of resolution can be viewed as a combination of a subdivision
step and a correction step [19, Sec. 4.2].

The wavelet-decomposition method

Our presentation of this method follows [92] quite closely, although we change the
notation to correspond to that used in this book. A similar presentation can be
found in [156, Ch. 10]. See also [50, Appendix A].

Consider the triangular mesh shown in Figure 7.9/298 (left). The figure is simi-
lar to [92, Fig. 1]. This surface can be viewed as a parametric function on the sphere,
and parametrized over any surface homeomorphic to the sphere. The function is
decomposed into a low-resolution part (second illustration in Figure 7.9/298) and a
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detail part defined in terms of wavelet coefficients. The wavelet coefficients are spec-
ified as a function of the control points of the original triangular mesh, Figure 7.9/298

(left), as described below. Similarly, the control points of the low-resolution part
are specified as a function of the control points of the original triangular mesh; in
fact, they are computed as certain weighted averages of these control points. These
weighted averages can be viewed as defining a low-pass filter, denoted A, while the
wavelet coefficients can be viewed as defining a high-pass filter, denoted B. This
decomposition (or analysis) process can be used to decompose the surface into an
even lower-resolution version, with corresponding wavelet coefficients, as illustrated
in Figure 7.9/298 (middle and right).

Now, moving instead from right to left in Figure 7.9/298, the original trian-
gular mesh can be recovered from the lowest-resolution version and the wavelet
coefficients corresponding to all levels. This reconstruction (or synthesis) process
involves subdividing each coarse-level triangle by means of, say, a pT4-type sub-
division process, followed by a perturbation of the control points using the wavelet
coefficients.

If an edit involving modifications of control points is made at some level of
resolution, it will be reflected in objects of lower or higher resolution, and these
modified objects can be found by analysis or synthesis.

In [92], the analysis and synthesis processes were defined in terms of a spatial-
domain wavelet formulation. In general, such a formulation involves an infinite
chain of linear function spaces

V 0 ⊂ V 1 ⊂ · · ·

and an inner product 〈f, g〉 defined for any pair of functions f, g ∈ V j , 0 ≤ j. We
think of V j as containing the functions of resolution j, with detail increasing as j
increases. The inner product defines the orthogonal complement spaces

W j = {f ∈ V j+1 : 〈f, g〉 = 0, g ∈ V j},

and f j+1 ∈ V j+1 can be written uniquely as an orthogonal decomposition f j+1 =
f j + hj , where f j ∈ V j and hj ∈ W j . The function f j corresponds to the low-
resolution part, and hj corresponds to the detail part. It should be noted, however,
that in [92] the orthogonality requirements are dropped.

Let the lowest-resolution subdivision surface (Figure 7.9/298, right) be denoted
by the polyhedral mesh M0. The final surface is parametrized over M0, which
therefore plays the role of the manifold M in Section 4.6, above. (Since in the
present case the manifold is assumed to be a well-defined subset of R3, there is no
need to introduce charts.) Now, given a polyhedral mesh Mν−1, a subdivision step
can be viewed as composed of two substeps. The first is a splitting step, which
uses pT4 splitting to produce an auxiliary mesh M̂ν with the same logical mesh
as Mν , i.e., with four subfaces for each face in Mν−1, but with the new control
points defined to be the midpoints of edges in Mν−1 (Figure 7.10/300, middle).
The second is an averaging step, which uses the subdivision rules to produce the
polyhedral mesh Mν (Figure 7.10/300, right). The subdivision process can now be
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pT 4

a b

cMν−1 M̂ν−1

xν−1(y)

Averaging
Mν−1

xν(y)

Figure 7.10. A subdivision step viewed as two substeps.

used to define, for each j, a collection of functions N j
� (y), y ∈M0, satisfying

x(y) =
∑
�

pj�N
j
� (y), (7.2)

as in (4.74)/181. Here, the index j corresponds to the level of resolution; in particular,
j = 0 corresponds to the lowest-resolution surface M0, and the summation is over
the control points in Mj . (Equation (7.2)/300 corresponds to [92, eq. (4)].) Each
function N j

� lies in the span of the functions with superscript j + 1. Note that, as
in the case of (4.74)/181, in the case of a nonregular mesh, the functions N j+1

� are
not necessarily related to the functions N j

� by a 2-scale relation.
The functions N j

� are obtained in the following way. The subdivision process,
from (1.13)/39, is defined by

pj+1 = Σjpj , j = 0, 1, . . .

(see (1.13)/39 in Chapter 1; this corresponds to [92, eq. (1)]). Now, define xν(y) as
follows. First, x0(y) = y, y ∈ M0. Then, if xν−1(y) lies in the triangle (p̂νa, p̂

ν
b , p̂

ν
c )

of M̂ν with barycentric coordinates (α, β, γ), the function xν(y) is defined as

xν(y) = αpνa + βpνb + γpνc ,

where (pνa, p
ν
b , p

ν
c ) is the triangle of Mν corresponding to (p̂νa, p̂

ν
b , p̂

ν
c ) in M̂ν . See

Figure 7.10/300.
It is then shown in [92, Lemma 4.2.1] that xν(y) can be written as

xν(y) =
∑
�

pj�N
ν←j
� (y),

where
Nν←j(y) = bν(y)Σν−1Σν−2 · · ·Σj .

Here, bν is a (1 × Lν) row vector with zeroes everywhere except at the indices
corresponding to vertices a, b, and c in Figure 7.10/300 (middle). Recall that Σj is
(Lj+1 × Lj), pj is (Lj ×N), and xν(y) is (1×N).
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Next, taking N j
� (y) = limν→∞Nν←j

� (y), Theorem 4.2.1 in [92] gives

x(y) =
∑
�

pj�N
j
� (y)

for meshes of arbitrary topology, as desired. The row vector composed of the nodal
functions N j

� (y) can be obtained by multiplying the corresponding row vector of
functions N j+1(y) on the right by Σj . This permits the definition of a chain of
nested linear spaces V j(M0) defined by the span of the functions N j

� (y).
To obtain a computational algorithm, the functions N j

� (y) are separated into
two groups corresponding to old and new vertices, and wavelets are defined [92,
eqs. (17)–(18)] as the difference between N j+1

� (y) and a certain linear combination
of the functions N j

� (y). The wavelets are chosen so that the number of nonzero
coefficients in the linear combination is a fixed constant, so that the analysis and
synthesis processes (and in particular the calculation of wavelet coefficients) can be
realized by inverting a sparse matrix [92, Sec. 6.3]. Unfortunately, for methods like
the Loop method, the inversion of the sparse matrix leads to nonlinear computation
times for each step in the analysis process. This is the main drawback of the wavelet-
based approach, relative to the more heuristic approach described next.

A smoothing approach to subdivision-based multiresolution models

A simpler and somewhat heuristic multiresolution scheme can be obtained by replac-
ing the analysis step in the wavelet approach by a smoothing procedure [180]. Then,
further heuristics, obtained by ignoring details below a certain threshold (intuitively,
in flat regions of the mesh, there are no significant details), can be introduced to
obtain interactive speeds. To make these heuristics work, the detail vectors are
defined in a local coordinate frame, as suggested in a different hierarchical-editing
context in earlier work by Forsey and Bartels [55]. See also [131].

In the following presentation, we continue to use the notation of this book.
Also, we continue to use the global subdivision matrix Σj to represent subdivision
of the surface defined by the control points pj , although these matrices are replaced
by a single linear operator S in [180]. The more explicit notation makes clear how
many control points are being transformed and produced at each stage: we again
recall that Σj is (Lj+1 × Lj).

As in the wavelet-decomposition method, the object to be edited is defined
at several levels of resolution, which are represented here by the polyhedral meshes
Mj , j = 0, . . . , k. We can again make use of Figure 7.9/298, where k = 3, and the
polyhedral meshes illustrated are now named, in order, M3, M2, M1, and M0.

The meshes in the sequence {Mj}k≥j≥0 are very closely linked. We begin with
the topology of the meshes, defined by the associated logical meshes {M j}k≥j≥0.
The coarsest-level mesh is a well-formed mesh (we restrict our attention to the
case of triangulated locally planar meshes). Further, the logical mesh M j is ob-
tained from the mesh M j−1 by pT4 subdivision, j = 1, . . . , k. A mesh Mk with
topology obtained in this way is said to have subdivision connectivity , or is said
to be a semiregular mesh. As discussed below, the requirement of subdivision
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connectivity is sometimes cited as a drawback of subdivision-based multiresolu-
tion methods.

The control vectors corresponding to the meshes {Mj}k≥j≥0 are also closely
related. These control sequences are denoted here by qj to distinguish them from
the sequences pj in (4.75)/182, where pj+1 is obtained exactly from pj by subdivision.
Here we have an initial sequence of control vectors in RN , namely

q0 = q0(L0×N),

which corresponds to the coarsest-level representation. The finer levels of resolution
are represented by the control vectors

qj = qj(Lj×N),

but these vectors are not related exactly by subdivision. Rather, they are related
to each other by a smoothing operator Hj = Hj

(Lj−1×Lj)
:

Hj+1qj+1 = qj , j = k − 1, . . . , 0. (7.3)

Thus, the operators Hj completely define the analysis process: given qj+1, we can
compute qj .

The synthesis process is defined by subdivision plus correction. To simplify the
discussion, we temporarily omit the orthogonal matrix F j which defines the change
to the local coordinate frame, mentioned above. At the end of the discussion,
however, the equations defining the synthesis will be displayed with F j included.

To obtain qj+1 from qj (synthesis) we must also have available detail vectors dj ,
j = 1, . . . , k, where dj is an additive correction to be applied following subdivision
at level j. They are defined by

dj+1 = qj+1 − ΣjHj+1qj+1, j = 0, . . . , k − 1.

The synthesis step is in turn defined by

qj+1 = Σjqj + dj+1, j = 0, . . . , k − 1,

which is consistent with (7.3)/302. The analysis and synthesis processes are illus-
trated in Figure 7.11/303.

An orthogonal matrix F j is introduced at each step in order to permit the
transformation into a local system of coordinates, as mentioned above. Tangent
stencils (Section 6.1.2) are used to find this local coordinate system. The equations
for the detail vectors, and for synthesis, become

dj+1 = (F j+1)t(qj+1 − ΣjHj+1qj+1), j = 0, . . . , k − 1,

and

qj+1 = Σjqj + F j+1dj+1, j = 0, . . . , k − 1,

respectively.
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. . .

q1 − d1

+d1 Σ0

qk − dk

+dk Σk−1

qk qk−1 q1 q0

Hk H2Hk−1 H1

Figure 7.11. Analysis and synthesis processes.

When an edit level, say level j, is chosen by the user, the surface is repre-
sented at this level as an approximation defined by qj and the finer-level details
dj+1, . . . , dk. If the control points qj are modified by the edit, the system can use
the synthesis algorithm to render the modified object, with the finer-level details
added in unchanged. At the end of a sequence of edits at level j, the analysis
algorithm must be used to update the values of qj−1, . . . , q0 and dj , . . . , d1.

Storage of all of the meshes Mk,Mk−1, . . . ,M0 increases memory require-
ments, beyond those for Mk alone, by only a third; see Exercise 3/305. As already
mentioned, heuristics are introduced in [180] in order to achieve computation times
suitable for interactive use. The heuristics are based on lazy evaluation and the use
of thresholds for the detail vectors.

Subdivision-based multiresolution editing has been integrated into more gen-
eral feature-editing systems that include the possibility of editing sharp features
using the methods of Section 7.1.2 [13, 16, 17].

7.3.2 Mesh-decimation multiresolution editing

It was noted in the previous section that subdivision-based multiresolution methods
depend on the fact that the meshes Mj in the hierarchy, k ≥ j ≥ 0, have subdivi-
sion connectivity. Since in practice that finest-level mesh may have been obtained
directly as a triangular mesh, it may well happen that the topology of the mesh
Mk does not satisfy this requirement. Remeshing algorithms have therefore been
devised to resolve this problem. In particular, [50] gives a remeshing algorithm that
produces a new polyhedral mesh that approximates Mk to any desired precision,
and such that the logical mesh Mk has subdivision connectivity relative to a simple
base mesh found by Delaunay triangulation. See also [61, 82].

The requirement of subdivision connectivity is still sometimes seen as a draw-
back, however, and analogous algorithms based on mesh decimation have been
proposed as alternatives [78]. Like subdivision-based multiresolution, these algo-
rithms have application beyond editing, such as those described at the beginning
of Section 7.3. Good discussions of the trade-offs between the subdivision-based
approach and the alternatives can be found in [77, 175].
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7.3.3 Other aspects of subdivision-surface shape control

Surface fitting can be viewed as one aspect of free-form editing [175, Sec. 3.1], and
it has been discussed to some extent in the first two sections of the chapter. In
particular, the overview [115] was mentioned. One way of dealing with the problem
is described in [84, 85, 90], where surfaces are trimmed to an externally specified
boundary curve c : [0, 1] �→ R3. Thus, a surface with boundary is represented by
a Loop-subdivision geometric mesh, in conjunction with parametric curves defin-
ing the boundary. In [90] this approach is called Combined Loop subdivision. See
also [89]. Whether it is reasonable to assume that patch-boundary trimming curves
are available depends on the application context. One application area where they
are certainly assumed available is in solid-modelling systems [1, 154]. This approach
provides one way to represent the boundaries of what are called nonmanifold ob-
jects46 in solid modelling [65, p. 61], [136].

A good survey for shape control in the context of subdivision surfaces is [175].
One important topic is variational design, which attempts to optimize fairness of
the surface; see for example [74]. Other topics include the problem of specifying
a region of interest when making edits, in order to avoid modification of parts of
the surface that have already been carefully defined, and the problem of topological
modifications (as opposed to modifications of the control points). More gener-
ally, the problem of computing Boolean operations on solids defined by subdivision
surfaces is of great interest [139]; see in particular [14]. Many of the problems men-
tioned here, and the proposed solutions, take us outside the realm of affine-invariant
subdivision.

7.4 Additional comments
The practically oriented literature dealing with shape control is very large, and we
have cited a relatively small number of papers. Good starting points for further
reading are the surveys already mentioned [115, 175].

7.5 Exercises
1. Show that for the concave corner illustrated in Figure 7.12/305, the first step

of Loop subdivision, using the edge rules suggested in Section 7.1.1, causes
the triangle (−1, 1, 0)t—(−1,−1, 0)t—(0, 0, 0)t to flip upside down, so that
folding of the surface occurs. (The example uses triangles with large aspect
ratios so that the folding will appear immediately.)

2. The Doo–Sabin local subdivision matrix has elements Wkj , 0 ≤ k, j ≤ e − 1,
as defined in (1.3)/27. Show that (1, w, w2, . . . , we−1), where w = e2πi/e,
is a complex left eigenvector of this matrix, with corresponding eigenvalue
λ = 1/2. (Since the matrix is symmetric, the transpose of the vector is also a
right eigenvector.) Taking real and imaginary parts gives two real eigenvectors
of the subdivision matrix. These real eigenvectors can be used as tangent
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(7, 2, 0)

(7,−2, 0)

(8, 1, 0)

(8,−1, 0)(−1,−1, 0)

(−1, 1, 0)

R2

Figure 7.12. Simple example of folding.

stencils for the Doo–Sabin method, and these stencils can in turn be used to
define equations prescribing normal vectors on the surface.

3. Show that the memory requirements for a multiresolution method, like the
one described in Section 7.3.1, are only about one third above those for the
storage of the highest-resolution mesh.

7.6 Projects
1. Implementation of soft creases.

Implement a user interface that permits input of wire-frame objects, with
interactive tagging of edges with sharpness s ∈ (0,∞], and in association
with this, implement also the Catmull–Clark method with semisharp edges
described in [42, Appendix B].

2. Empirical verification of folding.

Implement a simplified version of Loop subdivision for coplanar control points
in the neighbourhood of a concave corner such as that illustrated in Fig-
ure 7.12/305 (see also Figure 7.6/294, upper right).

Confirm empirically that folding eventually occurs if α < π, independently of
the triangle layout near the corner.
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The first section of this appendix summarizes equivalent formulations of the
Catmull–Clark method. Later sections give details concerning the Fourier trans-
form, the Fourier series, and certain proofs that were omitted in the main text.

A.1 Equivalence of Catmull–Clark rules
There are three major formulations of the Catmull–Clark method. Here we show
their algebraic equivalence.

Catmull–Clark/Repeated Averaging formulation

In the original form [24] of the method, the new vertex point was defined as(
n− 3
n

)
S +

(
2
n

)
R+

(
1
n

)
Q.

In the notation of Section 1.3.1,

S = V,

R =
1
n

n−1∑
j=0

1
2
(V + Ej),

Q =
1
n

n−1∑
j=0

F ′j ,

and it was shown in that section that, except for variable names and the order of
computation, the original form is equivalent to the “in-place formulation” described
there.

We write the new vertex point in an inner-product–like notation:[
n−3
n

2
n

1
n

] · [ S R Q
]
, (A.1)[

n−3
n

2
n

1
n

] · [ V 1
n

∑n−1
j=0

1
2 (V + Ej) 1

n

∑n−1
j=0 F

′
j

]
, (A.2)

307
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or [
α∗n β∗n γ∗n

] · [ V 1
n

∑n−1
j=0

1
2 (V + Ej) 1

n

∑n−1
j=0 F

′
j

]
, (A.3)

remembering that each component of the 3-tuple on the right in (A.2)/307 is a vector
in RN . Here,

α∗n =
n− 3
n

, β∗n =
2
n
, γ∗n =

1
n
.

Except for the range of the subscript on the variables, the notation Ej , Fj , E′j , and
F ′j is that of [8, 9]. We use it in this section to describe the various formulations.

In [24, p. 353], the alternate possibility of using the weights corresponding to
n = 4 for every vertex, independently of its valence, is mentioned. This would mean
computing the new vertex point from[ 1

4
1
2

1
4

] · [ S R Q
]
. (A.4)

This choice of weights was rejected as unsatisfactory because it produced objects
that were too “pointy.” See the second part of Exercise 7/48 in Chapter 1.

The modified face points are given by

F ′i = FL

i =
1
4
(V + Ei + Fi + Ei+1), i = 0, . . . , n− 1,

and the modified edge points by

E′i =
3
8
(V + Ei) +

1
16

(Ei−1 + Fi−1 + Fi + Ei+1), i = 0, . . . , n− 1,

as in (1.6)/29 and (1.7)/29.
It was also shown in Section 1.3.1 that the Repeated Averaging formulation

of Catmull–Clark is equivalent to the original Catmull–Clark formulation [24].

Ball–Storry formulation

It is often convenient to express the new control-point values as a linear combi-
nation of the averages of the original points Ej and Fj , j = 0, . . . , n − 1. For
example, this was done in (1.17)/44, in the discussion of subdivision matrices, and
in Figure 7.5/291, in the discussion of sharp edges. The new values F ′i and E′i are
expressed as before, but (A.2)/307 is now written as[ 4n−7

4n
3
2n

1
4n

] · [ V 1
n

∑n−1
j=0 Ej

1
n

∑n−1
j=0 Fj

]
, (A.5)

the formulation given by Ball and Storry [8, 9]. It was shown in Section 1.4.3
that (A.2)/307 and (A.5)/308 are equivalent: this is a straightforward algebraic veri-
fication. See Exercise 11/49 in Chapter 1.

In [8, 9] the definitions

αn =
4n− 7

4n
, βn =

3
2n
, γn =

1
4n
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are made, so that the Ball–Storry formulation for the evaluation of the new vertex
point V ′ can also be written as[

αn βn γn
] · [ V 1

n

∑n−1
j=0 Ej

1
n

∑n−1
j=0 Fj

]
. (A.6)

A similar notation is used in [124, Chap. 6].
The alternate weights corresponding to n = 4 result in the evaluation rule[ 9

16
3
8

1
16

] · [ V 1
n

∑n−1
j=0 Ej

1
n

∑n−1
j=0 Fj

]
, (A.7)

as mentioned in [8]. This is equivalent to (A.4)/308.
The coefficients α∗n, β

∗
n, and γ∗n were denoted by αn, βn, and γn in [151]. This

notation is inconsistent with the earlier and frequently used notation of [8, 9]. To
remove the inconsistency, we have renamed the coefficients in [151] as α∗n, β

∗
n, and

γ∗n, i.e., we have added a star to the names of the coefficients in [151].

Cohen–Riesenfeld–Elber formulation

Sometimes, as in [30, 42], (A.2)/307 is rewritten as[
αn − γn βn − 2γn 4γn

] · [V 1
n

∑n−1
j=0 Ej

1
n

∑n−1
j=0

1
4 (V + Ej + Fj + Ej+1)

]
,

an equivalence that is easily verified algebraically. This reduces to[
n−2
n

1
n

1
n

] · [ V 1
n

∑n−1
j=0 Ej

1
n

∑n−1
j=0

1
4 (V + Ej + Fj + Ej+1)

]
, (A.8)

as stated in [30, eq. (20.12)], and in the case n = 4 to[ 1
2

1
4

1
4

] · [ V 1
n

∑n−1
j=0 Ej

1
n

∑n−1
j=0

1
4 (V + Ej + Fj + Ej+1)

]
,

as mentioned in [30, Sec. 20.1.3]. This last is equivalent to (A.4)/308. The 3-tuple
on the left is different from that in (A.4)/308 (there is no typographical error here).
The 3-tuple on the right is denoted [C V p ] in [30, eq. (20.12)].

The face-point and edge-point updates in [30, eq. (20.12)] are also consistent,
with the following correspondences: pi ↔ FL

i and vi ↔ E′i. In fact, the overall
formulation can be summarized as

F ′i = FL

i =
1
4
[V + Ei + Fi + Ei+1], i = 0, . . . , n− 1,

E′i =
1
4
[V + Ei + FL

i−1 + FL

i ], i = 0, . . . , n− 1, (A.9)

and (A.8)/309, above, and these correspond exactly to [30, eq. (20.12)]. Note
that (A.9)/309 follows from (1.5)/28 and (1.7)/29.
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A.2 The complex Fourier transforms and series
In this section we define the complex Fourier transform in one and two dimensions
and summarize its most important properties [21, 47, 54, 153]. We also summarize
discrete Fourier series [117].

A.2.1 The Fourier transform: Univariate case

If f : R → R, or alternatively f : R → C, is a real- or complex-valued function and
if f ∈ L1(R), i.e.,

∫
R
|f(t)| dt <∞, then we have the following definition.

Definition A.2.1.

f̂(ω) =
∫

R

f(t)e−iωt dt. (A.10)

Although in this book we are usually concerned with real-valued functions, it
is most convenient to present the theory using complex-valued functions.

Inversion formula: If, in addition, f is piecewise continuously differentiable for
−∞ < t <∞, then

1
2

(f(t+) + f(t−)) =
1
2π

lim
A→∞

∫ A

−A
f̂(ω)eiωt dω.

If f̂ ∈ L1(R), then f(t) is continuous for all t and we have

f(t) =
1
2π

∫
R

f̂(ω)eiωt dω.

The following is often useful.

Parseval’s formula: If f ∈ L2(R), then f̂ ∈ L2(R) and∫
R

|f(t)|2 dt =
1
2π

∫
R

|f̂(ω)|2 dω,

where L2(R) denotes the class of functions such that
∫

R
|f(t)|2 dt < ∞, and where

f̂(ω) is defined for f ∈ L2(R) as

f̂(ω) = lim
A→∞

∫ A

−A
f(t)e−iωt dt.

Here, the limit in the right-hand side has to be interpreted in the sense of mean-
square convergence [47]. More generally, if f and g ∈ L2(R), then∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫
R

f̂(ω)ĝ(ω) dω,

where the bar denotes complex conjugation.
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Table A.1. Table of Fourier transforms.

1. f(t) =
1
2π

∫
R

f̂(ω)eiωt dω f̂(ω) =
∫

R
f(t)e−iωt dt

2. f ′(t) iωf̂(ω)

3. f (k)(t) = Dkf(t) (iω)kf̂(ω)

4. f(ax), a �= 0
1
|a| f̂ (ω/a)

5. f(t− h) e−ihω f̂(ω)

6. (f ⊗ g)(t) f̂(ω)ĝ(ω)

7. eihtf(t) f̂(ω − h)

8.
∫ t

−∞
f(s) ds f̂(ω)/iω, if f̂(0) =

∫
R

f(t) dt = 0

9. tf(t) i
df̂(ω)
dω

10. e−at
2
, a > 0

π

a
e−ω

2/4a

11. e−a|t|
2a

a2 + ω2

12. te−a|t|, a > 0
−4iaω

(ω2 + a2)2

13. N1(h; t)
2 sin(hω/2)

ω

14. N2(h; t)
4 sin2(hω/2)

hω2

15. Nm(h; t)
(

2 sin(hω/2)
ω

)m 1
hm−1

16. δ(t− h) e−ihω

17. δ(t− h) + δ(t+ h) 2 coshω

18. δ(t− h)− δ(t+ h) −2i sinhω

Table A.1/311 gives, in the right column, the Fourier transforms of the corre-
sponding functions listed in the left column. All the formulas in this table can be
verified easily from the definition of the Fourier transform. Some of the transforms
listed are not explicitly used in this book but are included in the table because for
some reason it seems natural to do so; for example, item 7 is dual to item 5.
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The Fourier transform is closely related to the concept of periodic Fourier se-
ries, which can be described as follows. Consider a real- or complex-valued function
f in L1(R). Let fT denote the truncated function which is equal to f(t) for |t| < T/2
and to zero for |t| ≥ T/2. Then there exists, for |t| < T/2, a series expansion

fT (t) =
∑
n∈Z

cne
int2π/T , (A.11)

where the coefficients cn are given by the formula

cn =
1
T

∫ T/2

−T/2
fT (t)e−int2π/T dt. (A.12)

The convergence properties for the Fourier series are similar to those for the Fourier
transform. Using (A.12)/312 the formula (A.11)/312 may, for |t| < T/2, be rewrit-
ten as

fT (t) =
∞∑

n=−∞
f̂T (n2π/T )ein2πt/T 1

T
, (A.13)

where f̂T (ω) denotes the complex Fourier transform of fT .
We now observe that the formula (A.13)/312 is a Riemann sum for the inversion

formula

fT (t) =
1
2π

∫
R

f̂T (ω)eiωt dω

sampled at the points ω = n2π/T , n ∈ Z. If f̂ ∈ L1(R) and if f is piecewise
continuously differentiable, one can prove that the right-hand side of (A.13)/312

converges to the function f(t) as T → ∞. Therefore, the Fourier transform is a
generalization of the concept of periodic Fourier series to functions f that are not
periodic.

A.2.2 The Fourier transform: Bivariate case

The Fourier transform has a straightforward generalization to functions of several
variables. For simplicity we restrict our attention to the case of two variables. Let
f(y) = f(y1, y2) be a real- or complex-valued function in L1(R2), i.e., in the class
of functions such that

∫
R2 |f(y1, y2)| dy1dy2 <∞. (Note that often in the main text

we have used the notation (u, v) in place of (y1, y2).)
We have the following definition.

Definition A.2.2.

f̂(ω1, ω2) =
∫

R2
f(y1, y2)e−iω1y1e−iω2y2 dy1dy2. (A.14)

Using a more compact notation, this may be rewritten as

f̂(ω) =
∫

R2
f(y) exp(−iωty) dy , (A.15)
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Table A.2. Modified table of Fourier transforms (bivariate case).

1. f(y) =
1

(2π)2

∫
R2
f̂(ω)eiω

ty dω f̂(ω) =
∫

R2
f(y)e−iω

ty dy

2.
∂f

∂yk
iωkf̂(ω)

3. ∂jf(y) (iω)j f̂(ω)

4. f(ay), a �= 0
1
a2 f̂ (ω/a)

5. f(y − h), ht = (h1, h2) e−ih
tω f̂(ω)

6. (f ⊗ g)(y) f̂(ω)ĝ(ω)

7. eih
tyf(y), ht = (h1, h2) f̂(ω − h)

9. yjf(y) i
∂f̂(ω)
∂ωj

15. N(hem; y), h ∈ R h2
m∏
i=1

sin(hωtei/2)
hωtei/2

16. δ(y − h), ht = (h1, h2) e−ih
tω

17. δ(y − h) + δ(y + h) 2 coshtω
18. δ(y − h)− δ(y + h) −2i sinhtω

where t denotes transposition, ω = (ω1, ω2)t, y = (y1, y2)t = (u, v)t, and ωty =∑2
i=1 ωiyi. Under certain regularity conditions the following inversion formula is

valid:
f(y) =

1
(2π)2

∫
R2
f̂(ω) exp(iωty) dω. (A.16)

Parseval’s formula (bivariate case): If f ∈ L2(R2), then f̂ ∈ L2(R2) and∫
R

|f(y)|2 dy =
1

(2π)2

∫
R

|f̂(ω)|2 dω.

More generally, if f and g ∈ L2(R2), then∫
R2
f(y)g(y) dy =

1
(2π)2

∫
R

f̂(ω)ĝ(ω) dω.

For the bivariate case we have a modified set of transforms, as shown in
Table A.2/313. In item 3 of that table, the left-hand entry ∂jf(y), with j = (j1, j2),
denotes the partial derivative

∂j1+j2f

∂yj11 ∂y
j2
2

,

and the right-hand entry denotes

(iω)j = ij1+j2ωj11 ω
j2
2 .
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In items 5, 16, 17, and 18 of the table, the translate is ht = (h1, h2). Item 6 is
referred to as the convolution theorem. In item 15, h is a scalar. Exercise 2/285 of
Chapter 6 asked for a verification of item 15.

A.2.3 Complex Fourier series

Under certain regularity conditions on the T -periodic function F (t), i.e., F (t) =
F (t+ T ) for all t ∈ R, we have the following complex Fourier series expansion:

F (t) =
∞∑

k=−∞
cke

2πikt/T ,

where the coefficients ck are determined by

ck =
1
T

∫ T

0
F (t)e−2πikt/T .

We also have Parseval’s relation,

1
T

∫ T

0
|F (t)|2dt =

∞∑
k=−∞

|ck|2.

In the bivariate case, if F (y) is doubly periodic with period T , i.e., if F (u, v) =
F (u+ T, v) = F (u, v + T ) for all (u, v)t ∈ R2, then we have

F (y) = F (u, v) =
∑
k∈Z2

cke
2πikty/T dy

=
∑

(k1,k2)∈Z2

ck1,k2e
2πi(k1u+k2v)/T dudv ,

where

ck = c(k1,k2) =
1
T 2

∫ T

0

∫ T

0
F (y)e−2πikty/T dy

=
1
T 2

∫ T

0

∫ T

0
F (u, v)e−2πi(k1u+k2v)/T dudv .

Again, we have Parseval’s relation,

1
T 2

∫ T

0

∫ T

0
|F (y)|2dy =

∑
k∈Z2

|ck|2.

A.2.4 Discrete complex Fourier series

Let {Fj}n−1
j=0 ⊂ C be a finite sequence of complex numbers (for convenience, the

sequence is sometimes extended periodically so that Fj+n = Fj for all n). Let
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w = e2πi/n. Then we have the following expansion of {Fj}n−1
j=0 and its inverse:

Fj =
n−1∑
r=0

frw
jr , (A.17)

fr =
1
n

n−1∑
j=0

Fjw
−jr . (A.18)

Proof. Let us define {fr}n−1
r=0 by (A.18)/315. Then

n−1∑
r=0

frw
jr =

n−1∑
r=0

(
1
n

n−1∑
k=0

Fkw
−kr

)
wjr =

1
n

n−1∑
k=0

(
n−1∑
r=0

wr(j−k)
)
Fk. (A.19)

Now, if j − k = l ∈ Z, and if −(n− 1) ≤ l ≤ n− 1, l �= 0, then

n−1∑
r=0

wrl =
1− wnl
1− wl = 0.

If l = j − k = 0, then
∑n−1
r=0 w

rl = n. It follows that
∑n−1
r=0 frw

rj = Fj .
In the same way we can show that (A.17)/315 implies (A.18)/315. Consequently,

any sequence {Fj}n−1
j=0 can be expanded as in (A.17)/315 in a unique way, with

coefficients determined by (A.18)/315.

A.3 Regularity for box-spline nodal functions
The regularity of box-spline nodal functions is determined by the parameter α in
Definition 3.3.1/111 and Theorem 3.3.2/111. In this section we prove this theorem,
beginning in Section A.3.1 with a derivation of the Fourier transform of box-spline
nodal functions.

A.3.1 Fourier transforms of box-spline nodal functions

As described in Section A.2.2, the two-dimensional Fourier transform is defined for
f ∈ L1(R2) as

f̂(ω) =
∫

R2
f(y) exp(−iωty) dy , (A.20)

where t denotes transposition, ω = (ω1, ω2)t, y = (y1, y2)t = (u, v)t, and ωty =∑2
i=1 ωiyi. If f̂ ∈ L1(R2), we have the following inversion formula:

f(y) =
1

(2π)2

∫
R2
f̂(ω) exp(iωty) dω.

Introducing the convolution f ⊗ g defined by

(f ⊗ g)(w) =
∫

R2
f(w − s)g(s) ds,
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we have the following formula (the convolution theorem):

(f ⊗ g)̂ (ω) = f̂(ω)ĝ(ω). (A.21)

Further, we may note that

f̂(0) =
∫

R2
f(y) dy .

For the functions N1(h; t) defined in (2.8)/55 we have, from item 13 of Ta-
ble A.1/311, the (one-dimensional) Fourier transforms

N̂1(h;ω) =
sin(hω/2)
ω/2

, ω ∈ R. (A.22)

Also, from (A.21)/316 we have

N̂m(h;ω) =
1

hm−1

(
2

sin(hω/2)
ω

)m
=
(

sin(hω/2)
hω/2

)m
· h. (A.23)

For the shifted functions N1(h; t − h/2) and Nm(h; t − m
2 h), we have the Fourier

transforms

1− exp(−ihω)
iω

(A.24)

and

1
hm−1

(
1− exp(−ihω)

iω

)m
, (A.25)

respectively. These last can be verified by multiplying (A.22)/316 by exp(−ihω/2).
See Exercises 1/323 and 2/323 in Section A.5.

We now have the following theorem.

Theorem A.3.1. For 2 ≤ k ≤ m we have

N̂∗(hek;ω) =
1

hk−2

k∏
j=1

1− exp(−ihetjω)
i(etjω)

. (A.26)

Proof. We first calculate the Fourier transform N̂∗(he2;ω).
Using that y = hc1e1 + hc2e2, we get, with

T = (e1, e2) and T t =
(
et1
et2

)
,

that y = hTc.
Further, introducing the characteristic function χ(c) = χ(c1, c2) defined by

χ(c) = χ(c1, c2) =
{

1 if 0 ≤ c1, c2 ≤ 1,
0 otherwise,
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we have

N∗(he2; y) = N∗(he2;hTc) = d2χ(c).

We recall that by Remark 3.1.6/96,

d2 |det(T )| = 1.

Next, it is straightforward to verify that

χ̂(ω) =
1− exp (−iω1)

iω1

1− exp(−iω2)
iω2

.

Further,

N̂∗(he2;ω) =
∫

R2
N∗(he2; y) exp(−iωty) dy

= |det(hT )|
∫

R2
N∗(he2;hTc) exp(−iωthTc) dc

= h2|det(T )|d2

∫
R2
χ(c) exp(−ih(T tω)tc) dc

= h2χ̂(hT tω) = h2χ̂(het1ω, he
t
2ω),

and therefore

N̂∗(he2;ω) =
1− exp(−ihet1ω)

iet1ω

1− exp(−ihet2ω)
iet2ω

.

Next, using the relation (3.7)/97 we get

N̂∗(hek;ω) =
∫

R2
N∗(hek; y) exp(−iωty) dy

=
1
h

∫
R2

∫ h

0
N∗(hek−1; y − tek) exp(−iωty) dt dy

=
1
h

∫ h

0

∫
R2
N∗(hek−1; y − tek) exp(−iωt(y − tek)) exp((−iωtek)t) dy dt

=
∫

R2
N∗(hek−1; y) exp(−iωty) dy 1

h

∫ h

0
exp((−iωtek)t) dt

= N̂∗(hek−1;ω)
1− exp(−iωtekh)

ihωtek
.

By induction, the proof is complete.

A.3.2 Proof of Theorem 3.3.2

We can now prove Theorem 3.3.2/111.
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Proof. By (A.26)/316 in Theorem A.3.1/316, we conclude that there exists a constant
C such that

|N̂∗(hem;ω)| ≤ C

m∏
j=1

1
1 + |etjω|

.

We introduce polar coordinates ρ and ϕ in the ω-plane by{
ω1 = ρ cosϕ,
ω2 = ρ sinϕ.

Next, for the vectors {ej}mj=1 we consider the polar representation

etj = |ej |(− sinϕj , cosϕj),

so that the vector (cosϕj , sinϕj)t is orthogonal to ej . Then

etjω = |ej |ρ(− sinϕj , cosϕj)(cosϕ, sinϕ)t

= |ej |ρ(− cosϕ sinϕj + sinϕ cosϕj) = |ej |ρ sin(ϕ− ϕj).

We conclude that for some C,

|N̂∗(hem;ω)| ≤ C

m∏
j=1

1
1 + ρ| sin(ϕ− ϕj)| .

Now, with the notation y = (u, v)t, β = (β1, β2)t, and

Dβ =
∂β1

∂uβ1

∂β2

∂vβ2
,

we have

(DβN∗(hem; y))̂ (ω) = (−iω1)β1(−iω2)β2N̂∗(hem;ω),

and by Fourier’s inversion formula, we have

DβN∗(hem; y) =
1

(2π)2

∫
R2
eiω

ty(−iω1)β1(−iω2)β2N̂∗(hem;ω) dω.

Thus, with the notation

F (ω) =
1

(2π)2
(−iω1)β1(−iω2)β2N̂∗(hem;ω) dω,

we have

DβN∗(hem; y) =
∫

R2
eiω

tyF (ω) dω, (A.27)
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provided the conditions for use of Fourier’s inversion formula are satisfied. By well-
known results from integration theory [153], the function DβN∗(hem; y) on the
left-hand side of (A.27)/318 is continuous if∫

R2
|F (ω)| dω <∞. (A.28)

Now

|F (ω)| ≤ Cρ|β|
m∏
j=1

1
1 + ρ| sin(ϕ− ϕj)| ,

where |β| = β1 + β2. Let us introduce the notation

G(ρ, ϕ) = ρ|β|
m∏
j=1

1
1 + ρ| sin(ϕ− ϕj)| .

Now, if we can prove that ∫ ∞
0

∫ 2π

0
G(ρ, ϕ)ρ dϕdρ <∞

for |β| ≤ m − α − 1, then the inequality (A.28)/319 follows and the proof will be
complete.

We first carry out the integration in the angular variable ϕ. To begin, we
consider the following subintervals of (0, 2π):

Ij = (ϕj − ε, ϕj + ε).

If ej and ek are parallel, then Ij = Ik. However, ε may be chosen so small that
Ij ∩ Ik = ∅ if ej is not parallel to ek. The complement of these intervals is denoted
by I so that

I = (0, 2π)
∖ m⋃

j=1

Ij .

Now, we observe that if ϕ ∈ Ij , then for some constant C,

G(ρ, ϕ) ≤ C
ρ|β|

1 + ρm−(α−1)

1
1 + ρ| sin(ϕ− ϕj)| .

Further, if ϕ ∈ I, then

G(ρ, ϕ) ≤ C
ρ|β|

1 + ρm
. (A.29)

Now ∫
Ij

G(ρ, ϕ) dϕ ≤ C
ρβ

1 + ρm−(α−1)

∫ ϕj+ε

ϕj−ε

1
1 + ρ| sin(ϕ− ϕj)| dϕ.
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Performing the substitution t = sin(ϕ− ϕj) in the last integral, we get∫ ϕj+ε

ϕj−ε

1
1 + ρ| sin(ϕ− ϕj)| dϕ = 2

∫ sin ε

0

1
1 + ρt

dt√
1− t2

≤ 2
cos ε

∫ sin ε

0

1
1 + ρt

dt =
2

cos ε
1
ρ

ln(1 + ρ sin ε).

We conclude that∫
Ij

G(ρ, ϕ) dϕ ≤ C
ρ|β|−1

1 + ρm−(α−1) ln(1 + ρ sin ε).

On the set I the sharper inequality (A.29)/319 is valid. It follows that for some
constant C,∫ ∞

0

∫ 2π

0
G(ρ, ϕ)ρ dϕdρ ≤ C

∫ ∞
0

ρ|β|−1

1 + ρm−(α−1) ln(1 + ρ sin ε) ρ dρ.

Now, the integral in the right-hand side of this equation is finite if m − (α − 1) −
|β| ≥ 2, i.e., if |β| ≤ m− α− 1, and the proof is complete.

A.4 Products of convergent subdivision polynomials
In Section 5.1, Theorem 5.1.4/195 was stated without proof. The proof is given here.

We begin by formulating a purely algebraic lemma concerning products of
subdivision polynomials.

Lemma A.4.1. Let s(z) and w(z) be bivariate polynomials defining affine-invariant
subdivision procedures. Then the product polynomial ψ(z) = s(z)w(z)/4 also defines
an affine-invariant subdivision procedure. Moreover, if s(z) and w(z) have the re-
fined subdivision polynomials

pν(z1/2ν−1
) =

ν−1∏
j=0

s(z1/2j

) =
∑
i∈Z2

pνi z
i/2ν−1

(A.30)

and

κν(z1/2ν−1
) =

ν−1∏
j=0

w(z1/2j

) =
∑
i∈Z2

κνi z
i/2ν−1

, (A.31)

respectively, then the product polynomial ψ(z) = s(z)w(z)/4 has the refined sub-
division polynomial

ζν(z1/2ν−1
) =

ν−1∏
j=0

ψ(z1/2j

) =
∑
µ∈Z2

ζνµz
µ/2ν−1

, (A.32)
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where

ζνµ = 4−ν
∑
i∈Z2

pνi κ
ν
µ−i. (A.33)

In the case that s(z) and w(z) are univariate polynomials, the same conclusion is
valid if the factor 4−ν in (A.33)/321 is replaced by 2−ν and all summations are over
Z instead of Z2.

Proof. We carry out the proof for the bivariate case.
By Theorem 4.5.1/172, it is clear that the product ψ(z) = w(z)s(z)/4 defines

an affine-invariant process.
Now the product ψ(z) = w(z)s(z)/4 gives the generating function

ζν(z1/2ν−1
) = 4−νw(z1/2ν−1

)w(z1/2ν−2
) · · ·w(z1/2)w(z)

· s(z1/2ν−1
)s(z1/2ν−2

) · · · s(z1/2)s(z)

= 4−ν
∑
i∈Z2

κνi z
i/2ν−1 ∑

j∈Z2

pνj z
j/2ν−1

= 4−ν
∑
i,j∈Z2

κνi p
ν
j z

(i+j)/2ν−1

= 4−ν
∑
µ∈Z2

(∑
i∈Z2

κνi p
ν
µ−i

)
zµ/2

ν−1
. (A.34)

We conclude that the coefficients in (A.32)/320 are given by

ζνµ = 4−ν
∑
i∈Z2

κνi p
ν
µ−i,

and the proof is complete.

Lemma A.4.1/320 expresses that the product of two subdivision polynomials
has, for nodal functions, refined generating polynomials whose coefficient sequence
is the discrete convolution of those for the factors. The proof above relies on the fact
that multiplying generalized polynomials corresponds to convolving their coefficient
sequences.

The following theorem restates Theorem 5.1.4/195.

Theorem A.4.2. Assume that we are given two subdivision polynomials s(z) and
w(z) defining convergent subdivision processes in the sense of Definition 5.1.1/193.
Then in the bivariate case, the polynomial ψ(z) = s(z)w(z)/4 also defines a con-
vergent process producing the continuous nodal function

Nψ(h; y) =
1
h2N

s(h; y)⊗Nw(h; y). (A.35)

In the univariate case, the same conclusion is valid with ψ(z) = s(z)w(z)/2 and with
the factor 1

h on the right side of (A.35)/321. Further, the convergence for the subdivi-
sion associated with the polynomial ψ is uniform in the sense of Definition 5.1.1/193.
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Proof. We carry out the proof for the bivariate case and for h = 1. We have to
prove that

max
µ∈Z2

|ζνµ −Ns ⊗Nw(µ/2ν)| .= εψν → 0 as ν →∞,

where Ns⊗Nw(µ/2ν) =
∫

R2 N
s(y)Nw(µ/2ν−y) dy, given that εsν → 0 and εwν → 0.

First, we present some preliminaries. We note that the number of points in
supp(Ns)∩ (Z2/2ν) is bounded by C4ν for some constant C. Further, the function
Ns(y)Nw(x− y) .= F (x, y) is continuous as a function of (x, y) ∈ R2 × R2 and has
compact support. Therefore, if we let

δ(ε) .= max{|F (x, y)− F (x, y′)| : |y − y′| ≤ ε, x ∈ R2}, (A.36)

it follows by the uniform continuity that δ(ε)→ 0 as ν →∞.
By the assumptions |pνk − Ns(k/2ν)| ≤ εs and |κνk − Nw(k/2ν)| ≤ εs, it also

follows that

|pνk| ≤ ‖Ns‖∞ + εsν and |κνk| ≤ ‖Nw‖∞ + εsν . (A.37)

Here ‖Ns‖∞ = maxy |Ns(y)| and ‖Ns‖∞ = maxy |Ns(y)|.
We also introduce some further notation. The rectangles D and Dk are de-

fined by

D = {(u, v) ∈ R2 : |u|, |v| ≤ 1/2} and Dk = k/2ν + 2−νD

and vol2(Dk) = 4−ν , where vol2(A) is the area of a subset A ⊂ R2.
Now

ζνµ −Ns ⊗Nw(µ/2ν)

= ζνµ −
∫

R2
Ns(x)Nw(µ/2ν − x) dx

= ζνµ −
∑
k∈Z2

∫
Dk

Ns(x)Nw(µ/2ν − x) dx

= ζνµ −
∑
k∈Z2

∫
Dk

(Ns(x)Nw(µ/2ν − x)−Ns(k/2ν)Nw((µ− k)/2ν) )dx

−
∑
k∈Z2

Ns(k/2ν)Nw((µ− k)/2ν).

The last term is equal to

−
∑
k∈Z2

(Ns(k/2ν)− pνk)Nw((µ− k)/2ν)4−ν

−
∑
k∈Z2

pνk(N
w((µ− k)/2ν)− κνµ−k)4−ν −

∑
k∈Z2

pνkκ
ν
µ−k4

−ν .
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By Lemma A.4.1/320 we get

ζνµ −Ns ⊗Nw(µ/2ν)

=
∑
k∈Z2

∫
Dk

(F (x, µ/2ν)− F (k/2ν)) dx

−
∑
k∈Z2

(Ns(k/2ν)− pνk)Nw((µ− k)/2ν)4−ν

−
∑
k∈Z2

pνk(N
w((µ− k)/2ν)− κνµ−k)4−ν .

Using the triangle inequality we get

|ζνµ/2ν −Ns ⊗Nw(µ/2ν)| ≤
∑

k∈supp(Ns)∩(Z2/2ν)

δ(2−ν)4−ν

+
∑

k∈supp(Ns)∩(Z2/2ν)

εsν‖Nw‖∞4−ν +
∑

k∈supp(Ns)∩(Z2/2ν)

εwν (‖Ns‖∞ + εsν)4
−ν

≤ Cδ(2−ν) + εsν‖Nw‖∞ + εwν ‖Ns‖∞ + εwν ε
s
ν) → 0 as ν →∞.

This completes the proof.

A.5 Exercises
1. Verify items 5, 8, and 13 in Table A.1/311.

2. Verify (A.24)/316 and (A.25)/316.
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Chapter 1

1. The terminology “nodal functions” is used, for example, in [124]. In [176,
Sec. 2.4.1], these functions are called “fundamental solutions.” They are sometimes
inaccurately called “basis functions” even in cases where they do not form a basis.

2. An informal estimate, in the context of graphics applications, might be obtained
as follows. Suppose that the characters in a scene require the storage of 1,000
triangles. This is a very modest number in the context of current practice (2009).
If this data is to be treated (such “treatment” may be quite elaborate on a modern
graphics card) at 60 frames per second, as is not unusual in animated graphics, then
this corresponds to 60,000 triangles per second.

The number of triangles increases by a factor of 4ν if subdivision is carried
out using a standard quadrilateral splitting technique, where ν is the number of
subdivision iterations. Thus, if ν = 4, such an application would require the storage
of the information related to 256,000 triangles, and (if subdivision is to be done
uniformly over the whole object, and on the fly) treatment by the graphics card
of 15 million triangles per second. If we suppose that this is at the limit of the
capability of a given graphics card, even quadrupling the card performance would
permit only an increase from ν = 4 to ν = 5. Considerations such as these help
to explain the interest in adaptive techniques, where subdivision is not applied
uniformly over the whole mesh.

On the other hand, another reason for the small number of iterations in prac-
tice is that even four subdivision steps may be more than enough for many graphics
applications. Except for animated-film applications, and cinematic sequences within
computer games, even fewer iterations may be sufficient. This is especially true in
contexts (such as character animation) where perfectly smooth surfaces are not the
goal.

3. The practical question of ensuring that polyhedral meshes are well formed is
not a simple one. For example, if it is desired to ensure that the logical structure

325
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corresponds to a two-manifold without boundary embedded in ordinary Euclidean
three-dimensional space, as is often required in solid-modelling systems [98], then
the usual tools used in such systems can be used [2, 3, 65, 98]. Among these tools are
the so-called Euler operators, designed to ensure that a generalized version of the
Euler–Poincaré formula remains true with each modification of the logical structure
[98, p. 139]. Even the question of ensuring that just the logical data structure is
valid is a large topic, and crucially important for practical implementations. We
content ourselves here with the remark that a logical mesh is a collection of records,
stored in the computer and linked together by the mechanism of a data structure.
At the level of the logical data structure, a programmer has great freedom, and
there is nothing to prevent the creation of a logical data structure that corresponds,
say, to the surface referred to as a “Klein bottle” [3, p. 351], [98, p. 43]. Such
nonorientable surfaces cannot form the boundary of an object realizable in three-
dimensional space. See Exercise 1/47.

4. See, however, [168, Sec. 7.2.1] and [171], where nonmanifold subdivision is de-
scribed, and [97], where subdivision is extended to three-dimensional deformation
lattices of arbitrary topology.

Also, in practical implementations, it is important that the program react
to non-locally-planar cases in a stable way, even if the result of the computation
has not been mathematically characterized a priori. Examples of such degeneracy
are two opposing tetrahedra (mentioned in Section 1.2.1), cubes sharing an edge,
2-gons and 1-gons in the logical mesh, or two or more triangles in the mesh that
are disjoint except at a single shared vertex.

The term “arbitrary topology” is sometimes taken to mean also that vertices
of arbitrary valence are permitted [176, p. 20].

5. The dual mesh is a generalization of the concept of dual graph [138, p. 509].
The definition depends crucially on the fact that the faces of the mesh, and their
topological relationship with the edges and vertices of the mesh, are specified. It
is quite possible, for example, that the same abstract graph can be drawn in two
different ways in the plane, and that its dual is not uniquely specified. Similarly,
it is possible that the same abstract mesh, having no “dangling edges” but viewed
only as a graph made up of vertices and edges, can be drawn on a sphere in two
different ways, so that the dual mesh is not uniquely specified [64, p. 114].

Definitions of the dual mesh given in the subdivision-surface literature often
apply, strictly speaking, only to meshes without boundary.

The “dual mesh” used in [177] would be described, in our (and the usual)
terminology, in terms of the dual of a linearly subdivided version of the original mesh.

6. The direct sum is also sometimes called the connected sum. The connected sum
of two surfaces is formed “by cutting a small circular hole in each surface, and then
gluing the two surfaces together along the boundaries of the holes” [100, p. 9].

7. Note, however, that any polyhedral mesh can be embedded without self-
intersections in R4.
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8. The notation used to name regular tilings, such as those illustrated in Fig-
ure 1.12/16, is explained in [60, p. 59].

9. This terminology corresponds therefore to the standard terminology for tilings
of the plane [60, p. 95]. A vertex of a tiling of the plane is called regular if the angle
between each consecutive pair of edges incident at the vertex is 2π/n. The triangular
tiling [63] of the plane using equilateral triangles has n = 6 and angle π/3 = 2π/6,
and the tiling [44] of the plane using squares has n = 4 and angle π/2 = 2π/4.

10. The terminology “extraordinary face” is employed less frequently in the liter-
ature than “extraordinary vertex,” but it is natural to use the former. There is a
clear duality between extraordinary vertices and extraordinary faces. Some authors
refer to “irregular faces,” which is quite consistent provided “irregular vertices” is
used in place of “extraordinary vertices.” In [106] extraordinary faces are called
“anomalous regions.”

11. Dual subdivision can also be described in terms of “vertex splitting” (see for
example [176, Ch. 4], [177]).

12. Strictly speaking, an extraordinary face or vertex will not remain in the mesh;
rather, it will be replaced by successor faces or vertices, similarly extraordinary, as
the subdivision proceeds.

13. It is shown in Section 4.2.1, however, that the
√

3-subdivision method can be
interpreted as operating alternately in triangular and hexagonal dual meshes. See
also [7].

14. This terminology is used, for example, in [151]. It derives from the Jacobi
method [160] for iteratively solving linear equations; this method may be contrasted
with the Gauss–Seidel method [160], which uses, at each substep of the iteration,
the most recent updated values of solution components.

15. We do not claim that our description is historically accurate, i.e., that the Doo–
Sabin and Catmull–Clark algorithms were discovered in this way. In fact, these
algorithms were published before the paper of Lane–Riesenfeld [81]. The description
in terms of the generation of subdivision algorithms is, however, a convenient way
to look at things.

16. These aspects are not completely independent: for example, a triangular or
quadrilateral mesh in the form of a sphere in R3 must contain extraordinary ver-
tices. See Exercise 4/48. Meshes defining other kinds of surfaces may be regular,
however. For example, the following types of meshes may be regular: any finite
mesh without boundary in R3 other than the sphere; meshes without boundary,
such as the Klein bottle, embedded in RN for N > 3 (recall that meshes do not
necessarily represent physical position); meshes with boundary in R3; and meshes
corresponding to infinite grids, such as a tiling of the plane.
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17. In [45], pnewi is denoted ai, and p�j is denoted Aj .

18. Alternative weights are sometimes used [15, Sec. 6.2], [96, 168].

19. The {√3 }2 method indicated in the third column of Figure 1.30/33 appears in
both the upper and lower rows: it is applicable in a triangular mesh with vertices
of arbitrary valence n ≥ 3 (upper row of the table), and in the special case of a
regular mesh having vertices with valence n = 6 (lower row of the table), the method
can be viewed as a General-subdivision-polynomial method based on trisection (see
Section 4.2.1).

The Butterfly method could similarly be shown in both the upper and lower
rows, since it is also applicable in the nonregular case. In Figure 1.30/33, however,
it has been shown only in the lower row of the third column. The reason is that,
as mentioned in Section 4.2.3, the method may produce undesirable surfaces at
nonregular vertices, and it is therefore replaced by the Modified Butterfly method
in the nonregular case.

20. The vector is a vector of row vectors in RN , so that N separate ordinary
matrix-vector multiplications are involved.

21. Although we do not study this possibility here, there may be situations where
it is useful to replace affine combinations by alternative interpolation operations.
For example, two distinct points p0, p1 ∈ R3, both at distance 1 from the origin,
can be viewed as describing a circular arc of radius 1 lying in the plane defined by
the three points p0, p1, and the origin. Let Ω be the angle subtended by that arc:
cos Ω = p0p1. Then spherical linear interpolation (slerp) can be used to replace a
linear interpolation (1− t)p0 + tp1:

slerp(p0, p1; t) =
sin((1− t)Ω)

sin Ω
p0 +

sin(tΩ)
sin Ω

p1,

which is a vector of length 1 making the angle tΩ with p0 and the angle (1 − t)Ω
with p1. This idea is based on quaternions [148].

Similarly, the process of normal specification, in the context of joining piecewise-
smooth subdivision surfaces [13, p. 20], [15, Sec. 6], involves replacement of scalar
subdivision coefficients by matrices.

22. Nonstationary processes of various kinds have, however, been studied, in par-
ticular in the context of exponential B-splines [168, Sec. 4.3] and schemes capable of
representing general surfaces of revolution [101], [168, Sec. 7.2.3]. For these meth-
ods, the subdivision rules depend on the iteration index ν. Another example of
nonstationary subdivision is Quasi 4-8 subdivision [162]. The subdivision rules for
this method are “geometry sensitive” in the nonregular case, i.e., the rules depend
on metric qualities of the control points at a given step.
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23. It may be, however, that the nonuniform case of the classical spline theory
will lead to useful methods for feature insertion in the subdivision-surface case [23,
34, 58, 145, 166]. Also, NURBS have been adapted to the subdivision-surface con-
text [102, 145] to produce rational subdivision surfaces. This permits representation
of spheres, surfaces of revolution, and similar surfaces. This approach has been crit-
icized, however, because of the nonuniform nature of the subdivision [168, p. 212],
and because of inconvenient complexity [15]. There are alternative ways [101] to
obtain objects such as surfaces of revolution without using nonuniform methods.
See also [112].

24. Most of the subdivision methods discussed in the text can, however, be viewed
as performing knot insertion at the midpoints of uniform parametric intervals.

25. The generating-function technique is used in computer science for the analysis
of algorithms [72, Sec. 1.2.10], the enumeration of binary trees [72, Sec. 2.3.4.4],
and other applications.

26. One manifestation of this principle, in this book, is the following. Subdivision
often involves repeated averaging, and the binomial coefficients and the binomial
theorem often give relevant information about the corresponding generalized poly-
nomial.

27. To prove the multiplication property, multiply the two polynomials and compare
coefficients.

28. The support of a function is the closure of the subset of the domain of the
function on which the function is nonzero. It is denoted supp. If the support of
a function is compact, it is said to have compact support . In the case when the
domain of the function is in R2, the support is compact if and only if it is bounded.

29. Methods withm odd are examples of dual methods, of which the most important
are the Chaikin method, its generalization to nonregular surface meshes (the Doo–
Sabin method), and a box-spline method that we denote {Midedge}2.

30. Thus, for example, at the beginning of [34] it is stated that “. . . the main idea
behind subdivision is to iterate upsampling and local averaging to build complex
geometric shapes.”

31. The values given in (2.41)/69 are evident from Figure 2.8/70, but they can also
be derived explicitly. First, j is either even (j = 2l) or odd (j = 2l + 1), l ∈ Z. If
j = 2l, we can write j − 1

2 = [2(l − 1) + 1] + 1
2 , and using (2.40)/69 with l replaced

by l − 1, q1
j− 1

2
= p(l−1)+1 = pl. Since q1

j+ 1
2

is also equal to pl, we have q2j = pl. On

the other hand, if j = 2l + 1, we can write j − 1
2 = 2l + 1

2 and j + 1
2 = 2l + 1 + 1

2 ,
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from which it follows that q1
j− 1

2
= pl and q1

j+ 1
2

= pl+1, so that q2j = (pl + pl+1)/2.

These values are associated with h
2 Z.

Note that the multiplicative factor corresponding to substeps 1 and 2 is(
z1/2 + z−1/2

2

)2

=
1
z
· 1
2
(1 + z) · 1

2
(1 + z). (1)

Each of the factors 1
2 (1 + z) corresponds to an averaging, and the factor 1

z corre-
sponds to a shift of one index value in the refined grid. In the case of substeps 1
and 2, the first averaging results in the cancellation of the factor of 2 introduced by
upsampling, by averaging 2pl with 0 to produce the control points . . . , pl, pl+1, . . .;
the second factor 1

2 (1+z) corresponds to linear subdivision, producing the averages
1
2 (pl + pl+1) at new nodes in the refined grid.

Equation (1)/330 illustrates the advantage of having used centered basis func-
tions. The right-hand side of (1)/330 corresponds to a process that remains in the
primal grid. The factors 1

2 (1 + z) correspond to averaging to the left (staying in
the primal grid): at each substep, qj is replaced by (qj−1 + qj)/2 for all indices j.
The shift of index corresponding to the factor 1

z is necessary to correct the effect
of doing two such averagings “to the left.” In contrast, the left-hand side of (1)/330

corresponds to two averagings, where the result of the first averaging is placed in
the dual grid, and the result of the second averaging is placed in the dual of the
dual grid, i.e., the primal grid. This corresponds to linear subdivision, as illustrated
in Figure 2.8/70.

The operations corresponding to the right-hand side of (1)/330 can be described
in more detail. The process corresponding to 1

2 (1 + z) corresponds to replacing qj
by (qj−1 + qj)/2 for all indices, always remaining in the primal refined grid. This
operation is performed twice on the sequence

q02l−2 = 2pl−1, q02l−1 = 0, q02l = 2pl, q02l+1 = 0, q02l+2 = 2pl+1,

producing after the first substep the sequence

q12l−2 = pl−1, q12l−1 = pl−1, q12l = pl, q12l+1 = pl, q12l+2 = pl+1

(this corresponds to “constant subdivision”), and after the second substep,

q22l−2 = (pl−2 + pl−1)/2, q22l−1 = pl−1, q22l = (pl−1 + pl)/2,

q22l+1 = pl, q22l+2 = (pl + pl+1)/2

(this corresponds to “linear subdivision”). Finally, multiplying by 1
z gives the se-

quence

q22l−2 ← q22l−1 = pl−1, q22l−1 ← (pl−1 + pl)/2, q22l ← pl,

q22l+1 ← (pl + pl+1)/2, q22l+2 ← pl+1,

which corresponds to linear subdivision.
It is not incorrect to describe the process in this way, but it is more natural

to think of the averages as being placed in the dual grid, and, at the next substep,
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in the dual of the dual grid, etc. Thus, in actual implementations, if the number of
substeps is odd, we have a dual subdivision method, with the revised control points
at the end of a full step stored in a mesh that is dual to the mesh existing at the
beginning of the full step.

Note that the shifting of indices, associated with the use of uncentered nodal
functions, gets worse as the number of substeps increases.

32. What we have called the “unit-impulse function” is also referred to as the “Dirac
polygon” [75].

33. The following technical remark, concerning the presence of the factor z−m/2 in
(2.20)/61, may be useful in the context of the evaluation of s(−1) and s(1).

The factor z−m/2 was introduced in (2.20)/61 by the centering of the subdi-
vision polynomial. This and similar factors, introduced later, do not lead to any
mathematical difficulty, when we evaluate s(z), since we never have to consider val-
ues near z = 0. We may define z = reiα, −π/2 < α < 3π/2, so that (−1)1/2 = i,
and (−1)k/2 = ik for all k ∈ Z. With this definition, −1 is well defined as a zero of
z−1/2((1+ z)/2) = r−1/2e−iα/2((1+ z)/2). We may also note for later use that z1/2

is infinitely differentiable away from the branch point z = 0. In the case discussed
here, this means that −1 is an m-fold zero of z−m/2((1 + z)/2)m, and therefore all
derivatives of order less than or equal to m− 1 vanish at z = −1.

Chapter 3

34. It will be observed from the proof of Theorem 3.2.9/107 that when we talk about
functions that are piecewise polynomials, we ignore their values on the boundaries
of the pieces. In fact, since they are polynomials, the function values and derivatives
are well defined as we approach the boundary, although these limits can be different
if we approach the boundary from different subdomains. The overall regularity of
the box-spline nodal functions is discussed in Sections 3.3 and A.3.

Chapter 4

35. Such a change in normalization factor will always be necessary if we decompose
methods in this way.

A box spline with a subdivision polynomial that is the product of two sub-
division polynomials, each of which corresponds to a box spline, can be viewed as
corresponding to consecutive applications of the two constituent box splines. The
normalization for achieving affine invariance, however, is done once at the end, and
the normalization factor is not just the product of the normalization factors for the
two constituent box splines applied separately.

A transparent example to illustrate this can be described in terms of Fig-
ure 2.8/70. We may start with the sequence . . . , 0, p�−1, 0, p�, 0, p�+1, . . . corre-
sponding to p(h; z2) and apply linear subdivision, represented by the subdivi-

sion polynomial s(z) = 2
(
z

1
2 +z− 1

2

2

)2, as in (2.42)/70. Note that s(1) = 2, as
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required for affine invariance: the total weight of points in the refined grid has
doubled.

On the other hand, we could define another box spline (let us call it double
dual averaging), which places a value in the refined dual mesh by taking twice the
average of the adjacent control points. The subdivision polynomial corresponding

to double dual averaging is sd(z) = 2
(
z

1
2 +z− 1

2

2

)
, and it is affine invariant since

sd(1) = 2. If we apply double dual averaging once to the sequence corresponding
to p(h; z2), we obtain constant subdivision, as illustrated by the black squares in
Figure 2.8/70: the boxes preceding and following the grid point with value p� are
both assigned the value 2(0 + p�)/2 = 2(p� + 0)/2 = p�.

Now, having defined the methods linear subdivision and double dual averaging,
we may decide to view the former as two consecutive applications of double dual
averaging (constant subdivision followed by an averaging; see Figure 2.8/70). We
must, however, renormalize by dividing by two: simply taking twice the average at
both substeps would give a value two times too large.

Expressed in terms of the subdivision polynomials, s(z) = 1
2sd(z)sd(z). We

may view linear subdivision as two applications of double dual averaging if we wish,
but a renormalization is necessary to get affine invariance.

36. The lemma is true for arbitrary distributions with compact support. In the theo-
rem, we actually need the result for arbitrary linear combinations of delta functions,
in order to apply the result to S = S(y), but we give a proof only for continuous
functions.

37. A parametric domain can also be described in general terms by appealing to
a theorem which states that any polyhedron can be embedded in R4 [176, p. 52].
Again, however, it is more convenient for our purposes to have an explicit represen-
tation of the parametric domain.

38. A subset of a topological space is compact if every open covering of the set has
a finite subcovering.

If the space is RN , then compactness is equivalent to boundedness and closed-
ness. If we consider the two-dimensional manifold M in Section 4.6, a set is compact
if and only if it is closed and a subset of a finite union of faces F α.

Chapter 5

39. The principle here is also the basic principle of the power method for finding
the eigenvectors of a matrix.

40. One aspect of the analysis that is sometimes left unclear is the exact choice of
parametric domain. In our presentation we make the link with the definitions of
charts and atlases given in Section 4.6. This is similar to the parametric domain used
in [124] (see Example 4.7.5/184). An alternative approach is used in [172, 173, 174].

A second aspect of the analysis that we attempt to clarify is the relation-
ship amongst the eigenstructures of various subdivision matrices relevant for one
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specific method. We remarked early in the book that the literature often refers to
“the” subdivision matrix, without specifying which of several possibilities has been
chosen. The confusion is accentuated by the fact that spectral properties of the sub-
division matrix may be described, still without specifying which matrix is involved.
The explanation of this riddle is that the eigenstructures of the relevant choices of
subdivision matrix are related, and the crucial properties needed for analysis are
common to them all. Schweitzer [144] provides a clarification similar to ours, in the
context of the Loop method.

A third aspect of the analysis that should be clear from our presentation is
the use of the discrete Fourier transform in the spectral analysis of local subdivision
matrices.

Finally, we have tried to show clearly which tools are necessary to accomplish
which tasks. In particular, spectral analysis of subdivision matrices, correspond-
ing to a certain neighbourhood of the nonregular point, is used to show simple
convergence. Spectral analysis of subdivision matrices corresponding to a larger
neighbourhood is used to show smoothness. Injectivity of the characteristic map is
used to guarantee that the limit surface is single sheeted .

41. In the literature, the functions f j(y) =
∑
l∈G3

ξjlNl(y) are called eigenbasis
functions [172]. They are the result of applying the subdivision process to an initial
sequence of control points being equal to the eigenvector coordinates ξjl , l ∈ G3.
By (5.93)/236, it is clear that they satisfy the scaling relation f j(y/2) = λjf

j(y).
See [172, p. 51] and also [150] (discussed in Section 6.3.2).

Chapter 6

42. Authors who use “mask” where we have used “stencil” (see Section 1.2.3) refer,
of course, to evaluation stencils and tangent stencils as “evaluation masks” and
“tangent masks,” respectively.

43. If {ξj}j is a basis of generalized eigenvectors [56] of a real matrix S, and {ηj}j
is the dual basis, then the vectors ηj are generalized eigenvectors of the transposed
matrix St.

More precisely, let {ξj}j∈I be a basis of generalized eigenvectors and {ηj}j∈I
the dual basis defined by the condition that (ηi, ξj) is equal to 1 if i = j, and 0
otherwise. Here we use the notation (η, ξ) = η∗ξ for the possibly complex inner
product.

For a fixed eigenvalue λ, we consider a cycle C(λ) = {ξ1, ξ2, . . . , ξm} of gener-
alized eigenvectors (for convenience we assume that they are enumerated from 1 to
m) so that ξi = (S−λI)i−1ξ1 �= 0, 1 ≤ i ≤ m, and (S−λI)ξm = (S−λI)m+1ξ1 = 0.

We claim that the vectors {η1, η2, . . . , ηm} in the dual basis have the property

ηm−i = (St − λ̄I)iηm �= 0, 0 ≤ i ≤ m− 1,

where λ̄ is the complex conjugate of λ, and

(St − λ̄I)η1 = (St − λ̄I)mηm = 0.
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To prove these statements, it suffices to prove
(i) ((St − λ̄I)iηm, ξj) = 1 if m = i + j and 0 otherwise, for 1 ≤ i, j ≤ m,
and
(ii) ((St − λ̄I)iηm, ξj) = 0 for j > m and 1 ≤ i ≤ m.

Now

((St − λ̄I)iηm, ξj) = (ηm, (S − λI)iξj)
= (ηm, (S − λI)i+j−1ξ1) = (ηm, ξi+j),

which is equal to 1 if m = i+ j, and 0 otherwise, and (i) is proved. Next,

((St − λ̄I)iηm, ξj) = (ηm, (S − λI)iξj).
Now, the linear subspace spanned by each Jordan cycle is invariant under multipli-
cation by S. Consequently, if ξj ∈ C(µ) with C(µ) �= C(λ), then (S−λI)iξj ∈ C(µ)
and it follows that (ηm, (S − λI)iξj) = 0, and (ii) is proved.

Conditions (i) and (ii) now imply that ((St − λ̄I)iηm − ηm−i, ξj) = 0 for all
j, i.e.,

(St − λ̄I)iηm − ηm−i = 0, 1 ≤ i ≤ m− 1.

For i = m we get ((St − λ̄I)mηm, ξj) = 0 for all j, i.e.,

(St − λ̄I)mηm = (St − λ̄I)η1 = 0.

We conclude that the dual basis {ηj}j∈I consists of generalized eigenvectors of St.
Thus, for each cycle C(λ) = {ξ1, . . . , ξm}, there is a corresponding cycle C(λ̄) =
{η1, . . . , ηm} for the transposed matrix, with the order of the cycle reversed and the
eigenvalue replaced by its conjugate.

44. The dimension of the linear system to be solved here is d+ 1 in the univariate
case, d(d+ 1)/2 in the bivariate case, and (d+ 1)2 in the case of bidegree d.

Chapter 7

45. The use of the words “crease,” “tagged,” “sharp,” and “smooth” is fairly con-
sistent in the literature, but not perfectly so, and there is sometimes the possibility
of confusion. Within this book, we have tried to use terminology that is both
consistent and very close to the language used in the various papers cited.

As stated in the text, the terms “crease edge,” “tagged edge,” and “sharp
edge” are synonymous, in this book and in most of the literature. We have mostly
avoided the use of “crease edge,” however, because of the danger that the adjectives
“crease” and “tagged” themselves might be considered synonyms. They are not: a
“crease vertex” is only one among several kinds of “tagged vertex.” Thus, we have
used “sharp edge” or “tagged edge” throughout the technical description, rather
than “crease edge.”

46. Nonmanifold objects include, for example, an object formed by the union of two
tetrahedra sharing only a single edge, or sharing only a single point. The boundary
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of a nonmanifold object can be rigorously defined using homology theory [10, 11],
[136, Appendix B]: in the language of this theory, the boundary must be made up
of faces forming a 2-cycle. In practical terms, this means that the number of faces
(or patches) sharing a single edge must be even. The special case of a “manifold
object” corresponds to the situation when a single edge is always shared by two
incident faces.





book
2010/3/3
page 337

�

�

�

�

�

�

�

�

Bibliography

[1] ACIS, The ACIS 3D Toolkit Guide, Spatial Technology, 1999.

[2] M. K. Agoston, Computer Graphics and Geometric Modeling: Implemen-
tation and Algorithms, Springer, Berlin, New York, 2005.

[3] , Computer Graphics and Geometric Modeling: Mathematics, Springer,
Berlin, New York, 2005.

[4] L.-E. Andersson, N. F. Stewart, and M. Zidani, Conditions for use
of a non-selfintersection conjecture, Computer Aided Geometric Design, 23
(2006), pp. 599–611.

[5] , Error analysis for operations in solid modeling in the presence of un-
certainty, SIAM Journal on Scientific Computing, 29 (2007), pp. 811–826.
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2-scale relation, 60, 62, 146–149, 167,
193, 209, 256, 300√

2-subdivision, 137√
2-subdivision methods, 35, 137, 140√
3-subdivision method, 8, 33–38, 153–

158, 161–162, 186
affine invariance, 156
compare 4-8 subdivision, 159

4-8 subdivision method, 33, 35–38,
136–140, 187, 196

compare
√

3-subdivision, 159
4pt× 4pt method, 33, 151, 164, 277

adaptive subdivision, 7, 140, 162, 282,
284, 325

affine combinations, 39
affine invariance, 28, 33, 39, 118, 156,

161, 183, 187, 282, 331, 332
(see also other entries under
particular methods)

equivalence to invariance under
translation, 39

equivalent conditions on subdivi-
sion polynomial, 172–173

necessary for convergence, 193
analysis (multiresolution editing),

299–303
approximating method, 36–37

interpolation using, 294–297
quasi-interpolation method, 267

Arbitrary-degree method, 28, 32
atlas, 174, 178, 186, 332

attributes, 6, 28, 32
averaging, xviii, 24–26, 121, 299

B-spline
dual and semidual grids, 122
interpretation of subdivision-

polynomial factors, 123
precision, 274–275, 285
special case of box spline,

100–102, 117
tensor-product uniform, 2–3, 22,

51, 74, 90–91
univariate uniform, 55–58,

80–90
B-spline methods, 33, 58–80
basic block (4-8 subdivision), 137
basic method, 8, 22, 33
basis function, 2, 51, 55, 85–86

centered, 3, 22, 42–43, 51–52,
55–58, 116–117, 147, 330

pretabulated, 280
recursion formulas for, 58–63, 116

Bernstein form, 5
Bézier curves and surfaces, 5, 111
binomial theorem, 270, 329
Biquartic subdivision, 24
bisection, 148, 157, 173
bisection substep (4-8 subdivision),

137–139
Boolean operations, 304
boundary, 11

subdivision rules for, 288–297
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boundary edge, see exterior edge
boundary vertex, 290, 297

also, see exterior vertex
bounding envelope, 280–283
box spline, 3, 5, 7, 14, 38, 93–143

convergence, 197
precision, 274–275

box-spline methods, 33, 116–122
Butterfly method, 33, 35, 151–153,

162, 328
10-point stencil version, 153
convergence, 214
smoothness, 217

Catmull–Clark method, 5, 14, 22,
28–31, 33, 48

affine invariance, 39–40
convergence (nonregular case),

223–234
general characteristics, 36–38
sharp edges and corners, 290–292,

308
folding (edge rules), 292

subdivision matrix, 44–45, 225
summary of equivalent formula-

tions, 307–309
surface patch, 79–80, 236

centre of coefficient grid, 116
centroid

in
√

3-subdivision method, 155,
160–161

in 4-8 subdivision method, 139,
160

in Catmull–Clark method, 30
in Doo–Sabin method, 296
in Kobbelt method, 166
in LR(2× 2) method, 23–25
in Repeated Averaging method,

25
Chaikin’s algorithm, 1, 5, 46

modified to produce fractals, 50
relation to Doo–Sabin method, 329
relation to LR methods, 70, 92
smoothing semisharp edges, 292

characteristic map, 243, 244–245, 252,
333

chart, 174, 178–181, 186, 224, 332
classification of subdivision methods,

33
classification theorem for compact sur-

faces, 15
coefficient grid, 94, 147

also, see grid
colour, 6, 15, 28, 32
Combined subdivision, 304
compact support, 35, 168, 183, 190,

195, 269, 322, 329
complex conjugation, 248
compression of meshes, 298
computation time/operation

counts, 6
connected sum, 326
connectivity, see subdivision connec-

tivity
constant subdivision, 70, 76, 123, 136,

142
precision, 285

continuity
curvature, 244
geometric, 244
of box splines, 111–112
parametric, 37, 111
possibility of singularity, 82
tangent-plane, 224, 234–239

control point, 2–4, 9–10, 14–16, 22
defining Generalized-spline

surface, 181–183
in definition of convergence, 182,

193
modification for interpolation,

296–297
recursion formula for,

for B-spline curves, 63–65
for box-spline surfaces, 117–122
for general-subdivision-

polynomial curves and
surfaces, 146–148

use in stencils, 248–256
convergence, 39, 189–214

locally uniform, 182, 224
necessary conditions, 193
nonregular case, 223–234, 243



book
2010/3/3
page 351

�

�

�

�

�

�

�

�

Index 351

of box-spline methods, 197
linear, 198–202
quadratic, 202–206

of General-subdivision-polynomial
methods

Butterfly method, 214
four-point method, 213
limit on rate of convergence,

206–207
sufficient conditions, 207–212

product theorem, 195, 320–323
uniform, 193, 195, 210

convex hull, 39, 94, 98, 170–172
convolution, 5, 54–55, 55–58, 97–98,

166–169, 187
discrete convolution, 53, 65, 321
increasing precision by, 278

convolution theorem, 168, 314, 316
coordinate system on surface, local,

302
corner cutting, 46
corners, 287

concave, 293, 305
convex, 293

countably infinite domain, 40
crease edge, see edge
crease, soft, see soft crease
criteria for subdivision methods, 5
curve defined by spline, 55

recursion formulas for, 59, 63–65

darts, 287
de Boor method, see exact values
de Casteljau algorithm, 5
definite, positive or negative, 206
deformation lattice, 326
degree (also see order)

generation degree, 267
of tensor-product B-spline, 22,

100–101
reproduction degree, 37, 267

delta function, 166
Fourier transform of, 311–313

derivative
of a curve, 81–82

of box-spline nodal function,
259–260

of tensor-product B-spline, 90–91
detail vectors, 299–303
difference operator

backward, 197, 215
central, 238

Dirac polygon, 331
direct sum, 15, 326
Doo–Sabin method, 5, 14, 22, 26, 33

affine invariance, 39–40
boundary rules, 295–297
Catmull–Clark variant of, 48
general characteristics, 36–37
subdivision matrix, 296, 304

dQ4, see splitting schema, dQ4 schema
Dual, 24, 31, 49
dual graph, 326
dual mesh, see mesh
dual method, 4, 6, 16–20, 38
dyadic numbers, 41

edge, 10, 178–186
crease, sharp, boundary, tagged,

287–297, 334
exterior, see exterior edge
interior, see interior edge
semisharp, 292, 305

edge point (new, old), 30, 44, 151
eigenbasis functions, 333
eigenvector, generalized, see general-

ized eigenvector
estimation of surfaces, 8

bounding envelope, 280–283
Euler–Poincaré formula, 48, 326
evaluation of surfaces, 8

nonregular case, 248–251, 296
regular case, 255–257

exact values, 44, 86–90
nonregular case, 248–251
regular case, 255–257
LR(3× 3) method, 257
parametric evaluation (de Boor

method), 88, 260–263
parametric evaluation (Stam’s

method), 263–266
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exterior edge, 11, 178
in 4-8 subdivision, 137

exterior vertex, 11, 178
extraordinary face/vertex, 16–19

isolation of, 26

face, 10, 178–186
extraordinary, see extraordinary

face/vertex
ordinary, see ordinary face/vertex

face point (new, old), 27, 30, 44, 164
fairness, 295, 304
fitting, see surface fitting
flatness, 284, 293–294
folding, 293, 305
four-direction box splines, 33, 35,

104–106
four-point method, 35–36, 149, 169

generalized, 150, 213, 216–217
precision, 277

four-point method: tensor product with
itself, see 4pt× 4pt method

Fourier series
discrete fourier series, 227, 314
for periodic functions, 314

Fourier transform, 310–313
analysis of box splines, 315–320
general analysis of nodal functions,

166–170, 187
fractal-like objects, 40, 45–47
fundamental solution, 325

general position, 82
General-subdivision-polynomial method,

33, 149–166
convergence, 207–214

generalized eigenvector, 248, 333–334
generalized polynomial, 53–55
generalized splines, 35, 181–186
Generalized-spline subdivision method,

8, 33, 35–36, 182
generating function, 52–53, 65, 146,

191–193, 278, 321
generation degree, see degree
geometric information, 9

graphics cards, 7, 284, 325
grid, 2–3, 8, 22–24, 26, 32, 41, 70–72,

76, 91, 136
dual, 38, 68, 76
grid point, 2, 10
grid-size h, resolution, 2, 40,

56–57, 67, 94
indexing, 10, 66, 78
primal, 38, 68, 76
quadrilateral/rectangular, 2–3,

22–26, 34
refined, 58–63, 66, 68, 76, 120
semidual, 38, 121–122
triangular, 22, 34, 124

hat function, 57
Hessian, 206–207
hybrid subdivision, 40, 292
hyper-rectangle (box), 34

in-place computation, 7, 21, 30–31
interior edge, 11, 178

in 4-8 subdivision, 137
interior vertex, 11, 178
interpolating method, 36–37, 206

quasi-interpolation method,
37, 267

interpolation by approximating
method

Catmull–Clark method, 294–295
Doo–Sabin method, 296–297

irregular face, 327
irregular vertex, 327

Jacobi manner, 21, 28, 30, 49,
73, 327

jump discontinuity, 58, 81–82, 197,
202

k-ring, 43, 49, 220, 224
Klein bottle, 326, 327
knot insertion, 3, 51
Kobbelt method, 8, 33, 35–37,

163–166
precision, 277, 285
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Lane–Riesenfeld, LR(d), LR(d × d),
5, 14, 22–26, 33, 51, 67–71,
75–79

lattice, see deformation lattice
lazy evaluation, 303
level-of-detail display, 298
linear function space, 85–86, 299
linear independence, 59, 84–85,

126–130, 142
linear subdivision, 23–25, 36, 46, 70,

76–77, 123
LinSubd, 24
local influence, 22, 24, 41–43
locally planar, 11–15, 16, 24, 34, 38,

47–48, 134, 140, 161
associated manifold, 173–182
compare regular planar grid, 26
local refinement of, 43–44
non-locally-planar examples, 326
transformation to triangulated quadri-

lateral mesh, 137
logical information, 9, 326
Loop method, 5, 22, 32, 33, 45

affine invariance, 39–40
bounding envelope, 280–283
extension to higher orders, 37,

131–133, 142–143
general characteristics, 35–37
nonsmooth vertices, 289
precision, 285
sharp edges, 288–290, 292
subdivision matrix, 49
surface patch, 106–111

LSS variant, LSS Odd, LSS Even, 31, 49

manifold (two-dimensional parametric
domain), 173–181, 224, 237,
280–282

oriented, 184
Peters–Reif version, 184

mask, 7, 78
distinguished from stencil, 7, 21
evaluation mask (in this book

called a stencil), 333
subdivision mask, 66, 133, 140,

152, 156

tangent mask (in this book called
a stencil), 333

memory utilisation, 6–7, 38
mesh, 3–4, 8–15

dual, 12–14, 19–20, 26, 48
finite, 3, 24, 40
hexagonal, 19, 38, 103, 155, 327
infinite, 3, 40
logical, 8–11
one-dimensional, 14, 41
polyhedral, 3, 8–10, 15
primal, 14, 19–20, 48
quadrilateral, 4, 10, 16, 20,

22–25, 31, 34–38, 44, 48
refined, 9, 19, 120–121
regular, 8, 16, 20, 24–26, 48, 124,

136–137, 151–161, 327
semiregular, 301
triangular, 4, 10, 16, 32, 34,

37–38, 48
triangulated quadrilateral,

137–140
with/without boundary, 11, 15,

48
mesh decimation, 303
Midedge method, 33, 36–37, 134–136,

196
precision, 275

Minkowski sum, 170
Modified Butterfly method, 8, 33,

35–37, 162, 328
affine invariance, 163

multiplication property, 53, 329
multiresolution editing

mesh-decimation approach, 303
reconstruction in, 299
smoothing approach, 301–303
wavelet decomposition, 298–301

new vertex (Catmull–Clark method),
44

nodal function, 2, 35, 51, 325
B-spline basis function, 55–63
box-spline nodal function, 94–95,

97–111
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for general subdivision polynomial,
146

for Generalized spline, 181
support of, 57–58, 158, 170–172

Nodal-Function Computation princi-
ple, 71–73, 78, 122–123, 150,
170, 181, 248

nonmanifold objects, 304
nonmanifold subdivision, 326
Non-Uniform Rational B-Splines

(NURBS), 1–4, 51, 329
normal control, 293–297, 304–305

oblique coordinate system, 124, 156
old vertex (Catmull–Clark method),

44
order (= degree+1) of B-spline, 22
order (total order) of box spline, 37,

95, 101
ordinary face/vertex, 16
Oslo algorithms, 3

Parseval’s formula, 310–314
partition of unity, 83–84, 91, 126–127,

183, 269–271
periodic

discrete sequence, 227
Fourier series, 312
function, 270–271, 314

persistent naming problem, 6,
28, 32

piecewise polynomial, 35, 107–111,
331

particular methods producing, 67,
103, 105, 106

Polynomial Coefficient principle,
71–74, 78, 123, 148, 170

for
√

3-subdivision method, 155
for 4-8 subdivision method, 139
for Butterfly method, 152
for Loop subdivision method, 126,

142
for LR(3) method, 73
for LR(d× d) method, 142

polynomiality, domain of, 106–111
nonpolynomial methods, 45, 186

power method, 332
pQ4, see splitting schema, pQ4 schema
precision classes, 37, 267

for box splines, including
B-splines, 274–275

for General-subdivision-
polynomial methods,
276–280

primal method, 4, 7, 16–18, 38
progressive transmission, 298
pT4, see splitting schema, pT4 schema
pulse function, 55–57
pushing points to the limit, 247–251,

284

quadrilateral face, 10, 18, 21, 25, 30
quadrilateral mesh, see mesh, quadri-

lateral
quartic box spline, see three-direction

quartic box spline
Quasi 4-8 subdivision method, 5, 35,

137, 328
quasi-interpolation methods, 37, 267

rational subdivision surfaces, 329
regular crease vertex, see vertex
regular mesh, see mesh
regular part of mesh, 16, 26
regular tiling, see tiling
remeshing, 303
Repeated Averaging method, 24–32,

33, 36, 37, 48, 307–308
reproduction degree, see degree
rotations

invariance with respect to, 39
round of subdivision, 9

scalar function defined by spline, 55
sector, 293
sharp features, 287
shift-invariant methods, 149
shifting operator, see translation

operator
single sheeted surface, 222, 235, 239–

244
singularity, 82
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slerp (spherical linear interpolation),
328

Smooth, 31, 49
smoothing rule, 16, 21, 28–31, 48–49,

77, 155
smoothness

fractal-like objects, 45
nonregular case, 234–239, 243
of box-spline methods, 111–112
of General-subdivision-polynomial

methods, 215–219
of Butterfly method, 217
of four-point method, 216

possibility of singularity, 82
soft crease, 292, 305
solid modelling, 5, 9, 47, 50, 51, 326
spectral analysis, 189, 224–232,

243–244, 333
sphere, 7, 15, 26
splitting schema, 17√

3 schema, 153, 161
dQ4 schema, 18, 26
pQ4 schema, 18, 26, 184
pT4 schema, 17, 154

Stam’s method, see exact values
stationary, 9, 35, 40, 44, 328
stencil, 7, 20–21, 45

Catmull–Clark method
case of tagged vertices, 290
evaluation, 250–251
tangent, 253–254

Doo–Sabin method
evaluation, 296
tangent, 304

Loop method
case of nonsmooth vertices, 289
case of sharp edges, 289
evaluation and tangent, 255

tangent stencils in multiresolution,
302

subdivision connectivity, 301–303
subdivision equation, 65, 121, 148
subdivision mask, see mask
subdivision matrix, 38

global, 38, 41, 49, 59, 150, 186,
298–303

local, 38, 41–44, 220
eigenvalues, 226
spectral analysis of Sk, 224–232
spectral properties of S1

(summary), 229
spectral properties of S2, 231
spectral properties of S3, 232

subdivision polynomial, 62, 66
for box spline, 112–117
general, 146
interpretation of factors, 123–124
refined, 197, 206, 320

support of a function, 329
of nodal function, 57–58, 96,

170–172
surface fitting, 295, 304
surface of revolution, 328, 329
synthesis (multiresolution editing),

299–303

tangent vectors, evaluation of, 44, 81,
90

nonregular case, 251–255
regular case, 259–260

tangent-plane continuity,
see continuity

tension parameter, 150, 153
tensor product

4pt× 4pt method, 35, 151
B-spline surfaces, 74–80

texture, 6, 15, 28, 174, 186
three-direction quartic box spline, 33,

34, 103, 205
tiling, 16, 38

Laves, 16
regular, 16, 327

topological degree, 240
topological information, 9, 326
torus, 7, 15, 26
translation operator, 53–54
translations

invariance with respect to,
39, 172

triangulated quadrilateral mesh,
see mesh

trisection, 148, 155, 157, 173
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two-position shift, 62–63
two-scale relation, see 2-scale relation

unique representation, 86
unit-impulse function, 71, 122, 148,

331
upsampling, 69, 121, 329

valence, 16
variant method, 8, 22, 33, 35
variational design, 304
vertex, 10, 178–186

exterior, see exterior vertex
extraordinary, see extraordinary

face/vertex
interior, see interior vertex
ordinary, see ordinary face/vertex
smooth, dart, crease, corner, 291

wavelet, 47, 298
winding number, 240

Zwart–Powell element, 105, 196, 260,
275
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