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1 History

Before computer graphics ever existed there were engineers designing aircraft wings and au-
tomobile chassis by using splines. A spline is a long flexible piece of wood or plastic with a
rectangular cross section held in place at various positions by heavy lead weights with a protru-
sion called ducks, where the duck holds the spline in a fixed position against the drawing board
[2]. The spline then conforms to a natural shape between the ducks. By moving the ducks
around, the designer can change the shape of the spline. The drawbacks are obvious, recording
duck positions and maintaining the drafting equipment necessary for many complex parts will
take up square footage in a storage facility, costs that would be absorbed by a consumer. A not
so obvious drawback is that when analyzed mathematically, there is no closed form solution [3].

However, in the 1960s a mathematician and engineer named Pierre Bezier changed everything
with his newly developed CAGD tool called UNISURF. This new software allowed designers
to draw smooth looking curves on a computer screen, and used less physical storage space
for design materials. Beziers contribution to computer graphics has paved the road for CAD
software like Maya, Blender, and 3D Max. His developments serve as an entry gate into learning
about modern computer graphics, which spawned a relatively new mathematical object known
as a spline, or a smooth curve specified in terms of a few points.



2 Applications for Bezier curves and B-splines

To see why splines are important, lets consider the problem of designing an aircraft wing. Lets
assume that the Air Force is designing the latest and greatest jet fighter plane, and the wing is
currently being designed according to specifications that include and promote optimal behavior
under extreme turbulence due to mach speeds. To even complicate the design further, the wing
has to look nice on the rest of the jet so as to promote more military funding and generate
recruits into the Air Force. There are many different possible designs for a wing, some that are
more optimal than others, and some that are more aesthetically pleasing that others as well.
To find a balance between optimizing the air flow around the wing and how the shape looks is
quite a task.

Assume for a moment that your job as a visualization specialist is to make use of the computer
system that utilizes recorded data from an aircraft testing facility. Their system is able to relate
the flow of turbulence around the wing of an aircraft to the shape of the aircrafts wing. You are
asked to create a piece of software using their model to allow an efficient way for a designer to
specify an optimal and aesthetically pleasing shape for the wing. The relation between shape
and turbulence is already completed, so it is your job to give global control to the designer.
Mainly, a way of specifying smooth curves on a computer screen is required, and splines are the
natural way of completing the task.

In order to effectively represent a smooth curve on a computer screen, we need to somehow
approximate it. We come to this realization upon the simple fact that a computer can only
draw pixels, which have a predefined width and height. If you get really close to an LCD screen
and observe the tiny squares making up the outline of an image, it’s easy to understand that
everything represented in computer graphics is an approximation at best.

3 Bezier Curves

We start by letting the four points of a control polygon be the set P, where P = { Py, Py, P,
P3}. The position of these points in two or three dimensions determines the curvature of the
curve. Now let Q(u) be a parametrically defined vector valued function where 0 < u < 1. As
u varies from 0 to 1, the vector values of Q(u) sweep out the curve [3].

Recall the Bernstein polynomials of degree n (we will use this in the general case of degee-n
Bezier curves):
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Bezier curves use the special case of the Bernstein polynomial where n = 3. Since Bezier
curves use the Bernstein polynomial as a basis, it is ok to use the term ”Bezier/Bernstein
spline” when talking about these curves. Now we can mathematically define a degree three
Bezier curve. Let Q(u) be such a curve:



Qs(u) = B3(u)Py + B} (u)Py + B3(u)Py + B3(u)Ps (3)

, where each B3(u) term is scaler valued in R, and the control point P; is vector valued in
3. In matrix form we can also write:

Qs(w) = [B][P] (1)

Since we are using the Bernstein basis, several properties of Bezier curves are revealed: each
basis function is real; the degree of the polynomial defining the curve segment is one less than
than the number of points that compose the control polygon; the first and last points on the
curve are coincident with the first and last points of the control polygon; the tangent vectors at
the ends of the curve have the same direction as the first and last spans of the control polygon.

Finding expressions for each basis term is straightforward for the degree three case, but can
be very tedious for splines of degree greater than three. Knowing that n = 3 and we have 4
control points, by using (1) we compute:

By(u) = (1 - u)’ (5)
B (u) = 3u(1 - u)* (6)
B3(u) = 3u*(1 — u) (7)

Bj(u) = u® (8)

Putting these terms back into (3) gives us our polynomial Q(u):

Q3(u) = (1 —u)3Py + 3u(l — u)?Py + u*(1 —u)Py + u’Ps (9)

Hence, for each value of u, we find point on the Bezier curve. A computer graphics library
like OpenGl can take each point ad connect them with lines, making it easy to create a program
that allows for a designer to specify a control polygon with four clicks of a mouse. The program
can easily allow for repositioning of the points via drag and drop, thus giving a designer an
easy way to specify a smooth form (see Figure 1).

Figure 1: A Bezier curve of degree three. This curve was made using an interactive program
written by the author.



Like with many polynomials, the Bezier curve has ”"sweet” spots along the trajectory that
gives a maximum amount of "pull.” We usually don’t pull on the start and end points of a
curve, so lets just consider the degree three case for simplicity’s sake. A maximum value exists
for the basis functions B3(u1), and B3(uz). To find the maximum value for u;, we recall the
mean value theorem:

If f is a function that is continuous and differentiable on a closed interval [a,b], then there
exists a number c inside the interval (a,b) such that:

f®) = fa) = f'(c)(b—a) (10)

Let B3(u) be a Bernstein basis function that is continuous on the closed interval [0,1]. Then
the second and third control points corresponds to i=1,2, and by (6), B3 (u) = 3u(1 —u)?, and
by (7), B3(u) = 3u?(1 — u).

Since each basis function is continuous, they are differentiable, and we let B’ f’(u) denote the
derivative of the " basis function of Q(u). Set this derivative to zero, and then (10) implies:

Bi(1) = B}(0) = B'{(e1) = 0 (11)

B3(1) = B3(0) = B'3(cs) = 0 (12)

Using (1), We know for sure that (11) and (12) are true, since for an arbitrary i’ term of
Q(u):

B}(1) = B}(0) = 0 (13)

Hence, we can find a u;, ug €[0,1] such that B'3(uy) = B'>(uy). We start by letting the
four derivatives of Q(u)’s basis functions (5)-(8) be computed as:

B3 (u) = —3u® + 6u—3 (14)
B (u) = 9u? — 12u + 3 (15)
B'3(u) = —9u? + 6u (16)
B'3(u) = 3u? (17)

Setting (15) to zero we find u; = 1/3, and evaluating (6) at u;, we find that the maximum
value of the second basis function of Q(u) to be 4/9. Similarly, we set (16) to zero and find
that us = 2/3, and evaluating (7) at ug, we find that the value of the third basis function of
Q(u) to be 4/9. Hence, P; and P, have the most influence or "pull”, at u; = 1/3, and uy =
2/3, respectively; where the max value for both P; and P, is 4/9. It is no coincidence that the
max value for the second and third basis functions are both 4/9. It can be shown, although not
included here, that (5) and (6) are the same when evaluated at u=1/3, and (7) and (8) are the
same when evaluated at u = 2/3. This is due to the symmetry of the Bernstein basis.

Below are some examples of more Bezier curves:



Figure 2: A Bezier curve of degree five.

Figure 3: A Bezier curve of degree nine.



In general, a Bezier spline of degree k is defined on n = k + 1 control points, where the set
of control points P = { Py, P, ..., P} forms a control polygon with n vertices. Let Q(u) be
a parametrically defined degree k Bezier spline, then:

k
Qu(w) =>_ B (w)P, (18)
i=0
, where the basis BF(u) is defined using (1), the Bernstein polynomial, and u € [0,1].

In this general case there are some immediate consequences of using the Bernstein basis:

Bf(u) € R (19)

B§(0) = Bi(1) = 1 (20)

zk:Bf(u) =1 (21)
1=0

Bf(u) > 0 (22)

By (20), the curve starts at Q(0) = Py, and ends at Q(1) = P;. By (21) and (22), it is
implied that each point on Q(u) is a weighted average of control points. Taken together, these
features force a Bezier curve to lie entirely in the convex hull of the control polygon.

A Bezier curve of degree k lies tangent to the first and last control points. To see how this
is true, we first formalize our definition of the Bezier derivative. Let Q(u) be a Bezier curve of
degree k with the set of k + 1 control points, P. Then its derivative Q’(u) is defined as:

k—1
Qk(w) =k B (u)(Pi1 — P) (23)
=0

We see that the degree is decreased by one and Q’(u) is also a Bezier curve with control
points k(P41 - P;)
Evaluating Q’(u) at 0 and 1:

Q'1(0) = k(P — Pp) (24)

Qs (1) = k(Py — Pp1) (25)

By (23), (24), and (25), we prove that the Bezier curve of degree k starts in the direction
of P; — Py, and ends in the direction of P, — P,_1.



4 Rational Bezier Curves

Now that we understand Bezier curves of degree k, we can consider the rational form of a
Bezier curve. Graphics Processing Units, or GPU’s actually need more information than just
a point {z,y,z} € R3. The problem with just a regular point is that there is no info on how
to project it. Homogeneous coordinates exist in order to make the projective transformation
easier to work with [5]. The rational form has advantages in that it can represent a wide range
of curves, and surfaces (more on surfaces in a little while). Curves could be in the form of
circles, ellipses, parabolas, and hyperbolas; surfaces can be in the form of spheres, ellipsiods,
cylinders, cones, paraboloids, hyperboloids, and hyperbolic paraboloids [1]. The only difference
in Rational Bezier curves is that the coordinates that specify the curve are in one dimension
higher than their nonrational counterpart.

For example, if we wish to express a Bezier curve in R3, we specify a control point as {x,
¥y, %, w}, where w is a weight that allows for the transition between regular and homogeneous
coordinate space. Let h be a map from homogenous coordinate space to regular space, then we
define h as

Wz, y, z,w) = (z/w,y/w, z/w) (26)

In computer graphics homogeneous coordinates allow the designer to work with normalized
points for w = 1, and also to define a point at infinity, saw when w = 0 [4].

Now we make a definition of a rational Bezier curves:

Let w; for i=0,..., k, be the k + 1 weights corresponding to the control points P;. The the
rational Bezier curve of degree k becomes:

Yo wiBE(u)P;
Ok = B ()

With some rearranging we can write (27) as linear combination of rational basis functions:

(27)

k k
w; Bi (u)
Qr(u) =) _F [21 (28)
;) Zf:o w, BF(u)
Where we denote the term in brackets by R¥(u),
iBf
Ri(w) = 2Pl (29

r=0 er!f (u)

And we now have a familiar looking form by replacing the terms in brackets in (28) by the
new term R¥(u) as defined in (29),

Qu(w) = - REWP, (30)

Hence we have the same curve equation as (18), but the univariate basis is rational. It
is immediately implied that all the rules for the nonrational Bezier curve carry over to the
rational Bezier curve [1]. Noting that if the denominator if the rational bezier curve is one, the
nonrational and rational curves are the same (except for the extra w in the coordinates).



5 Rational B-Splines

B-splines are like Bezier curves because they both use a control polygon to define the curve, and
are helpful due to their control points’ local control of the resulting shape. The B in B-spline
stands for ”basis,” and the basis is specified by the Cox-de Boor formula for computing the
basis function. What uniquely sets them apart from Bezier curves is that a vector of scalars
called a knot vector is figured in to the computation of the basis functions. When these knots
are spaced evenly, the B-spline is said to be uniform, and non-uniform otherwise. The basis
function considers the knot vector in every computation.

In general, a B-spline can be rational or non-rational, depending on the use of homogeneous
coordinates. Let Cj,(u) denote a uniform rational B-spline of order k (degree k — 1), where
k < n. Let w; for i = 1, ...,n be the n weights corresponding to homogeneous control points
{P1,P>...P,}. Let & be a knot vector such that z; < 9 < ... < x4k, then the rational
B-spline becomes:

_ ?:1 wlNzk(u)‘Pl
e S NI ) o

where the basis functions N are defined using the Cox-de Boor algorithm [6]:

Set le(u) = 1lif z; <u < xj41, and zero otherwise.

Let the order k = p+ 1, then Nf(u) becomes Nf“(u), where

NP () = T Ljtptl =W np 39
J () Tjpp —xj 7 (u) + Tjtp+1 — Tjt1 JH(U) (32)

We may regroup the terms in (31) as we did in the previous sections as

- wiNF(u)
Cin(u) =) B lnl] (33)
; r=1 wTNik (u)
where we denote the term in brackets by UF(u), where
iNF
U = ) 3

?:1 Wr Nzk (U)
And substituting (34) back into our equation (33), we get the compact expression for C, ,, (u),

n
Crn(u) =Y UF(u)P; (35)
i=1
Hence the B-spline is defined by its basis, where the basis is heavily influenced by the knot
vector. If the knots were not evenly spaced apart, the curve would be a non-uniform rational
B - spline, a.k.a. NURB.

Computing a B-spline is a formidable task. And we explain below the computation in detail
to have a good understanding of it.



5.1 B-spline Computation

Normally, the B-spline is computed by a computer, since a smooth curve needs small time
steps. To make comprehension easier for the novice in computer graphics, or non-programmer,
my best attempt at describing how the computation is in terms of a regular uniform B-spline.

We start by choosing an order for the spline. In our case, let the order be k. We specify a
set of n control points. We call this set the control set. Depending on desired smoothness, the
number of points on our curve can vary, and denote this set of points to be the curve set. With
this information we may now begin computing.

The first thing we need to do is specify a uniform knot vector Z of length n+k. We compute
it as follows. Set each knot x; to be zero. Then for each 1 < ¢ < n + k, check to see if both
conditions, ¢ > n and i < n+2 hold. If they do, set x; to the value of x; 1 +1. If the conditions
do not hold, just set x; to the value of x;_1. As an example, If we choose k = n = 4, we find
that our knot vector & = {0,0,0,0,1,1,1,1}, which also happens to be the correct knot vector
to make a Bezier curve out of a B spline.

Before we can calculate the points in the curve set, we need to decide on an appropriate step
value for the parameter u. The proper step is found by dividing the value of knot x,,11 by
one less than the number of points on the curve set (19 steps plus the zero step is 20 steps)
. Using the knot vector from the previous example, if we had 20 points in our curve set, and
n + k = 8, then the step would be 1/19 which is about 0.052632.

We now begin the task of computing the curve set points on the B-spline. We need to keep
in mind that the number of basis functions we compute for each time step is going to equal
that of the number of points in the control set. So for the entire spline, the number of basis
computations is going to be equal to the product of the magnitudes of the control and curve
sets. So in our running example, we have 20 points on the curve set to compute and four control
points, so there is 80 basis functions to compute!

At each step, use the Cox-de Boor algorithm to compute the value of the basis function.
During each iteration of the steps, the entire knot vector Z is considered in with the step value
u. We see that the Cox-de Boor algorithm is recursive, so when using this system special care
has to made in order to compute the basis correctly. Once we have a set of n basis functions for
the control points at a specific step u, we find the coordinates for the curve point at the step by
multiplying the i*” basis function to the i*” control point. The resulting values are inserted into
the curve set, and we generate a collection of points that when plotted together, and connected
with line segments can aesthetically resemble a curve.

The number of computations required to make a B-spline are really large, so it is obvious
that a computer is needed for the computation of splines. As a concrete example, let a set of
four control points be as follows: P, = {(1,1,1),(2,3,1),(3,3,1),(5,1,1)}. Lettingn = 4, k =4,
knot vector Z = {0,0,0,0,1,1,1,1}, we use a computer program for computing the following
basis functions for 20 points on the control set using the previously mentioned step (see screen
shot from my computer).



bbertkas-computer:program bbertka$ ./ a.out
Basis Calculaticn

step: 0.052632

u: 0.000000, basis: 1.000000 0.000000 0.000000 0.000000
u: 0.052632, basis: 0.850270 0.141712 0.007873 0.000146
u: 0.105263, basis: 0.716285 0.2532807 0.029742 0.001166
u: 0.137895, basis: 0.397172 0.335909 0.062983 0.003936
u: 0.2105326, basis: 0.492054 0.393643 0.104972 0.009331
u: 0.263158, basis: 0.400058 0.428634 0.153084 0.018224
u: 0.315789, basis: 0.320309 0.443505 0.204695 0.031491
u: 0.368421, basis: 0.251932 0.440881 0.257180 0.050007
u: 0.421053, basis: 0.194052 0.423385 0.307917 0.074646
u: 0.473684, basis: 0.14579%94 0.393643 0.354279 0.106284
u: 0.326316, basis: 0.100284 0.354279 0.393043 0.145794
u: 0.578947, basis: 0.074646 0.307917 0.423385 0.194052
u: 0.631379%, basis: 0.030007 0.257180 0.440881 0.231932
u: 0.684210, basis: 0.03149%1 0.204695 0.443505 0.320309
u: 0.736842, basis: 0.018224 0.153084 0.428634 0.400058
u: 0.789474, basis: 0.009331 0.104972 0.393643 0.492054
u: 0.842105, basis: 0.003936 0.062983 0.335%909% 0.397171
u: 0.894737, basis: 0.001166 0.029742 0.252807 0.716285
u: 0.947368, basis: 0.000146 0.007873 0.141712 0.83026%9
u: 1.000000, basis: 0.000000 0.000000 0.000000 1.000000

Control Set

1.000000 1.000000 1.000000
2.000000 3.000000 1.000000
3.000000 3.000000 1.000000
5.000000 1.000000 1.000000
curve Set
1.000000 1.000000 1.000000
1.158041 1.299169 1.000000
1.316956 1.565097 1.000000
1.477621 1.797784 1.000000
1.640910 1.997230 1.000000
1.807698 2.163435 1.000000
1.978860 2.296399 1.000000
2.155271 2.396122 1.000000
2.337804 2.462604 1.000000
2.527337 2.495845 1.000000
2.724741 2.495845 1.000000
2.930894 2.462604 1.000000
3.146668 2.396122 1.000000
3.372941 2.296399 1.000000
3.610584 2.163435 1.000000
3.860475 1.997230 1.000000
4.123487 1.797784 1.000000
4.400495 1.565098 1.000000
4.692374 1.299170 1.000000
5.000000 1.000000 1.000000
bbertkas-computer:program bbertkas D

Figure 4: Computing 20 points on a B-spline for n=4, k=4, ¥ = {0,0,0,0,1,1,1,1}
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6 Tensor Product Surfaces

Now that we have discussed rational Bezier curves and B-Splines, it is time to introduce tensor
product surfaces. For both the rational and non rational case, properties of their cohabitant
curves apply. A tensor product surface is defined by a control net, similar to that of a control
polygon for a curve, only we parameterize in two different directions, namely u €[0,1] and
v €[0,1]. This control net is specified by a set of points, where if we use homogeneous coordinates
the surface is referred to a rational tensor product surface. For simplicities sake, we use the
rational form of the tensor product surface with a Bernstein basis for our definition.

Let us define a rational tensor product surface Qj ;(u, v) as being a degree k in the u direction
and degree [ in the v direction. Then our rational tensor product surface becomes

029 OlePZJB (u )Bl'( )
Z OZS owrsB ( )Bl( )

where each control point in the set P of three dimensional points that make up the control
net will be denoted in homogeneous coordinates as Py; = = {wijxij, wijYij, wijzij - And the basis

Qr(u,v) = (36)

finction BF(u) is the Bernstein polynomial from (1).
Just like we rearranged the rational curve in (28), we rearrange the rational surface to be

wij B (u) Bt (v)

Qi (u,v) Pj (37)
12(:)32;) =0 Zs owrs BF (u) BL(v)
where the term inside the brackets is denoted by Rf]l (u,v)
By (u) B} (v)
K _ Wij

]::0 Zs:O wys BF (u) BL(v)
Thankfully we are able to make the replacement of expression (34) within (31), and Qj(u, v)
is rewritten in a way that highlights the bivariate basis function Rf} (u,v)

Qr,i(u,v) ZZPURM (u,v) (39)
=0 7=0

Hence, rational Bezier curves and tensor product surfaces provide an intuitive way of approx-
imating a designer’s models based on control polygons, and control nets. By merely changing
the weights, we can make a Bezier curve become a rational curve, and a rational tensor product
surface a Bezier surface. A potential problem with Bezier curves and surfaces is that their
control points have global control. While computing is efficient, just moving one control point
has a radical effect on the shape’s image. This can be bad when only minor adjustments may

be needed when trying to create a certain shape.

If we choose local control, we would want a B-spline surface. A B-spline tensor equation is
going to look very similar to the Bezier tensor equations so it is omitted. However, if we wished
to translate a Rational Bezier surface into a Rational B-spline surface, we would have similar
parameterization in ”"u-v” space, use uniform knot vectors, and homogenous coordinates, hence
creating an URB. If the knots are not evenly spaced, we would have a NURB, an industry
standard for use in surface representation.
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7 Sample Data Structure

The images in this paper were generated by a computer program written by the author. This
program was written in C++ and uses OpenGL libraries, and specifically glMap1() and glE-
valuate() helper commands to create the curve (see OpenGL documentation for more detailed
explanation). The data structure to handle the Bezier object is in the form of a display list,
and illustrates the ease at which a curve is generated. While the interactive program is too
long to include in this paper, the vital part of the generation of the curve is shown here.

void struct_Bezier{void)f
int i; AAfuzed for indexing through control sets

AfopenGl specific code for evaluating baziz
gLMaplf {GL_MAPL_VERTEX_3, A.8, 1.8, 3, VertexCount, SControlSet[B][E]);
glEnab le{GL_MAPL_VERTEX_3%;

Afbegin the Bezier object
glMewList{bezier, GL_COMPILE};

Srset color to REGE black
glColor3f{A.B, 6.8, B.8%;

AAdraw control points
glPointSizels.0);
glBegin{GL_POINTSY;
for {i = B; 1 = YertexCount; i++)
gl¥ertex3fvi{tControlSet [1][8]);
glEnd{;

AAdraw the control polwgon
glBeginiGL_LINE_STRIF);
for (i = B; i < VertexCount; i+s+)
gl¥ertex3fy{tlontrolSet [1][A]);
alEnd{};

Sfaet color to red
glColor3f{l.A, A.A, A.A);

Adcompute and draw the 38 segmentz of the curve
glBegin{GL_LINE_STRIP);
for §i = @5 1 == 38; i++)
glEva |Coordlf { (GLf loat )i 368.87;
glEnd{};

glEndLi=t( ;

Figure 5: A Bezier object in the form of a display list. Understanding the mathematics helps
us better understand the helper functions.
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8 Conclusion

A brief history of Bezier curves and B-splines was presented, and in the context of Computer
Aided Geometric Design, real world applications were proposed. We have reviewed the Bern-
stein polynomial and detailed Bezier curves in both the rational and non-rational case. Using a
computer program created by the author, various images of Bezier curves were generated and
screen captures included as examples. We have covered the rational and non rational, uniform
and nonuniform, cases of B-splines. The Cox-de Boor algorithm was presented and computa-
tion of B-splines discussed in a detailed manner. A computer program was created and run
to show the step by step computations performed by a B-spline computation. Tensor product
surfaces were detailed in the Bernstein case, and the B-spline surface introduced. A sample
data structure in the form of a display list from the author’s OpenGL program was shown.
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