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Preface

People increasingly use social networks to manage various aspects of their lives
such as communication, collaboration, and information sharing. A user’s network
of friends may offer a wide range of important benefits such as receiving online
help and support and the ability to exploit professional opportunities. One of the
most profound properties of social networks is their dynamic nature governed by
people constantly joining and leaving the social networks. The circle of friends may
frequently change when people establish friendship through social links or when
their interest in a social relationship ends and the link is removed.

This book introduces novel techniques and algorithms for social network-based
recommender systems. Here, concepts such as link prediction using graph patterns,
following recommendation based on user authority, strategic partner selection
in collaborative systems, and network formation based on “social brokers” are
presented. In this book, well-established graph models such as the notion of hubs
and authorities provide the basis for authority-based recommendation and are
systematically extended towards a unified Hyperlink Induced Topic Search (HITS)
and personalized PageRank model. Detailed experiments using various real-world
datasets and systematic evaluation of recommendation results proof the applicability
of the presented concepts.

Vienna, Austria Daniel Schall
June 2015
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Chapter 1
Overview Social Recommender Systems

Abstract This chapter gives an introduction to social network-based recommender
systems. The main recommendation techniques as presented in this book including
link prediction, follow recommendation, partner recommendation using reputation
evaluation, and social broker recommendation are highlighted.

1.1 Recommendations in Social Networks

In recent years considerable attention has been devoted to the analysis of social
networks structures. Social networks typically consist of nodes representing people
or other entities embedded in a social context and edges representing interaction,
collaboration, or some other form of linkage between entities. Examples of social
networks include personal social networks such as Facebook, Twitter, Google Plus
or professional social networks such as LinkedIn. Other social network based
systems are, for example, the set of organizations collaborating in the context
of research projects or organizations forming professional virtual communities.
The availability of large, detailed social network datasets has stimulated extensive
research of their basic properties. Social networks are highly dynamic and grow and
change quickly over time through the addition of new edges or removal of existing
edges.

Link formation techniques support the discovery and establishment of social
relations in social network based systems. The applications include:

• Establishment of New Social Relations. The emergence of new personal relations
is actively facilitated through link prediction techniques.

• Supporting the Formation of Expert Communities. Following recommendations
are based on community expertise and increase the cohesiveness of online
communities.

• Strategic Formation of Teams. The automatic discovery of community reputation
and structural holes helps in establishing competitive compositions of research
organizations.

• Bridging Online Communities. Fragmented communities are connected through
social brokers who act as intermediaries between communities and strengthen
information exchange.

© Springer International Publishing Switzerland 2015
D. Schall, Social Network-Based Recommender Systems,
DOI 10.1007/978-3-319-22735-1_1
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2 1 Overview Social Recommender Systems

The next section provides an introduction to main link formation techniques in
social network based systems as detailed in this book.

1.2 Recommendation Techniques

Figure 1.1 gives an overview of the presented recommendation techniques. The
techniques are structured into peer based recommendations (upper row in Fig. 1.1)
and group based recommendations (lower row in Fig. 1.1). Each recommendation
technique will be introduced in the following sections.
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Fig. 1.1 Recommendation techniques overview
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1.2.1 Link Prediction

In today’s online social networks it becomes essential to help newcomers as well as
existing community members to find new social contacts. In scientific literature this
recommendation task is known as link prediction [6]. Link prediction has important
practical applications in social network platforms. It allows social network platform
providers to recommend friends to their users. Another application is to infer
missing links in partially observed networks.

The meaning of a recommendation varies depending on the concrete social
network platform. In platforms such as Facebook a link between two people is
established if both persons agree to have a friendship relation. The resulting network
is thus undirected because both persons share mutual friendship. Another example
of a social network is Twitter. In Twitter a link between two persons is established if
a user is interested in news updates of another user. The link is thus directed because
there is no mutual agreement needed to establish a link. The resulting network is
directed and is also called follower network. User can follow an arbitrary number
of other users to receive news or activity updates. The shortcoming of many of
the existing link prediction methods is that they mostly focus on undirected graphs
only [7, 14].

1.2.2 Follow Recommendation

Open source development allows a large number of people to reuse and contribute
source code to the community. Social networking features open opportunities for
information discovery, social collaborations, and improved recommendations of
potential collaborators. Online community and development platforms rely on social
network features to increase awareness and attention among community members
for improved collaborations.

In networks such as LinkedIn or Facebook friendship is represented as recipro-
cated links in an undirected graph. Services such as Twitter and recently GitHub are
based on a directed network approach. A directed network approach allows users to
follow other users based on their interest without requiring them to reciprocate the
relationship. In traditional social networks, some users may be followed by many
people without following many peers themselves (“stars” or “celebrities”). Is this
also the case for online social collaboration networks such as GitHub? People in
GitHub are mostly followed because they work on interesting projects. Thus, this
difference between conventional social networks and online social collaboration
networks requires a novel “who to follow” recommendation approach [13].
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1.2.3 Partner Recommendation

Scientific collaborations commonly take place in a global and competitive environ-
ment. Coalitions and project consortia are formed among universities, companies
and research institutes to apply for research grants and to perform jointly collab-
orative projects. In such a competitive environment, individual institutes may be
strategic partners or competitors. Measures to determine partner importance have
practical applications such as comparison and rating of competitors, reputation
evaluation or performance evaluation of companies and institutes [10].

However, the success of research and innovation is based on the right balance
between cooperation and competition. Hence, formation of coalitions and consortia
is influenced by partner reputation, institutional constraints, and mechanism of self-
organization. Scientific collaboration can be analyzed at the level of researchers
through co-authorship and citation networks or at the level of organizations or
research institutions [5]. The former has been widely studied by existing research
while the latter lacks a principled approach for selecting and aggregating ranking
criteria that may be influenced by context [11].

1.2.4 Broker Recommendation

The rapid advancement of ICT-enabled infrastructure has fundamentally changed
how businesses and companies operate. Global markets and the requirement
for rapid innovation demand for alliances between individual companies. A vir-
tual organization can be defined as follows [4]: an inter-organizational virtual
organization is a temporary network organization, consisting of independent enter-
prises (organizations, companies, institutions, or specialized individuals) that
come together swiftly to exploit an apparent market opportunity. As such, virtual
organizations act in all appearances as a single organizational unit.

Principles found in social network theory are promising candidate techniques
to assist in the formation process and to support flexible and evolving interaction
patterns in cross-organizational environments. In social networks, relations and
interactions typically emerge freely and independently without restricted paths
and boundaries. Research in social sciences has shown that the resulting social
network structures allow for relatively short paths of information propagation [16].
While this is true for autonomously forming social networks, the boundaries of
collaborative networks are typically restricted due to organizational units and
fragmented areas of expertise. This demands for novel formation patterns such as
brokers [1, 12].
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1.3 Research Datasets

Most experiments performed in this research are based on real datasets. The main
datasets used in this research are all publicly available and include:

• A Twitter dataset has been obtained from [15] and has been used to perform
various experiments in the context of link prediction.

• A Google Plus dataset has been obtained from [15] and has also been used to
perform link prediction.

• A GitHub dataset has been obtained from [2] and event information from [3].
The resulting dataset has been used to perform link prediction, and follow
recommendations.

• A statistical report of research activities in the European’s ICT program has been
obtained from [8] and used to perform experiments in the context of strategic
partner selection and social broker discovery.

The rich set of data collections provides a solid basis for performing comprehen-
sive experiments to derive insights and key findings. In the following, an outline of
the book is given.

1.4 Book Outline

This book is organized as follows. In Chap. 2 we introduce link prediction methods
and metrics for directed graphs. We compare well known similarity metrics and
their suitability for link prediction in directed social networks. Chapter 3 introduces
our “who to follow” recommendation model. Link analysis techniques such as
PageRank and HITS provide the basis for a novel “who to follow” recommendation
model. In Chap. 4 we present a novel approach for measuring and combing
various criteria for partner importance evaluation. The presented approach is cost
sensitive, aware of temporal and context-based partner authority, and takes structural
information with regards to structural holes into account. Chapter 5 focuses on the
notion of brokers who act as intermediaries between segregated communities. We
introduce a broker discovery and ranking approach utilizing a link-based broker
importance model. Finally, the book is concluded in Chap. 6.

The work presented in this book is based on the author’s research performed
over the last years. Prior work of the author includes research in crowdsourcing,
online communities and social network analysis (see [9]). This work seamlessly
goes into similar fields of research and expands more deeply in social networks and
link formation techniques in social network based systems.

Some material has been adapted for this book based on the author’s journal
publications [11–14]. All material has been revisited, additional experiments have
been performed, and further enhancements in the concepts and implementation have
been done. Among others, new concepts include machine learning extensions in the
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link prediction framework, the notion of an app and service marketplace in hybrid
compute environments, and corporate policies in the context of partner discovery
and selection.
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Chapter 2
Link Prediction for Directed Graphs

Abstract In this chapter we introduce link prediction methods and metrics for
directed graphs. We compare well known similarity metrics and their suitability
for link prediction in directed social networks. We advance existing techniques and
propose mining of subgraph patterns that are used to predict links in networks such
as GitHub, GooglePlus, and Twitter. Our results show that the proposed metrics
and techniques yield more accurate predictions when compared with metrics not
accounting for the directed nature of the underlying networks.

2.1 Friendship Recommendation

Social networks have become ubiquitous in our everyday activities. People use
social networks to communicate, collaborate, and share information. One of the
most profound properties of social networks is their dynamic nature. People join
and leave social networks. Also, the circle of friends may frequently change when
people establish friendship through social links or when their interest in a social
relationship ends and the link is removed. Due to the large number of users being
part of today’s online communities, it becomes increasingly cumbersome to find
new contacts and friends. Many social network platform providers assist their users
in establishing new social relations by making recommendations. The meaning of
a recommendation varies depending on the concrete social network platform. In
platforms such as Facebook [11] a link between two people is established if both
persons agree to have a friendship relation. The resulting network is thus undirected
because both persons share mutual friendship. Another example of a social network
is Twitter [43]. In Twitter a link between two persons is established if a user is
interested in news updates of another user. The link is thus directed because there
is no mutual agreement needed to establish a link. The resulting network is directed
and is also called follower network. User can follow an arbitrary number of other
users to receive news or activity updates. The “follow” feature is in widespread
use in social networking services such as Twitter [43], Facebook [11], or Google-
Plus [14]. In Facebook, the users can follow (or unfollow) news updates of their
friends. The social (undirected) link between friends is maintained irrespective of
the follow relationship. Recently collaborative online platforms such as GitHub [12]

© Springer International Publishing Switzerland 2015
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offer also social network features (e.g., following). GitHub is an online “coding”
community. Users contribute code and share repositories with the community. The
“follow” feature in GitHub allows users to keep track of updates regarding various
software development activities such as coding or bug-fixing.

All of the before mentioned platforms have a large number of users and benefit
from “follow” recommendations. Such recommendations can be formulated as a
link prediction task. Link prediction in a directed follower network has the purpose
to give recommendations who a given user should follow. Despite of some existing
literature in the area of link prediction on Twitter (for example, see [8, 33]), or
prediction of positive/negative edges [23], there is relatively little work on link
prediction in directed social networks. As reported in a recent survey [26], the
existing studies on link prediction overwhelmingly focus on undirected networks.
This work specifically addresses the link prediction problem in directed social
networks.

The essential approach we follow in this work is to measure the similarity
between a pair of nodes using structural information. We assume that a social
network is modeled as a directed graph G(V,E) where vertices V in the graph
depict people and edges E between vertices relations between people. Structural
information is, for example, the number of common neighbors between two nodes.
Generally speaking, similarity of nodes can be measured as the number of common
features. The goal of link prediction is to predict whether a link between two users
will be established or if a link in a partially observed network is missing. The latter
case is a common problem when the social network is obtained through crawling.

Here we provide the following key contributions:

• We propose link prediction techniques using graph patterns (triads). Predictions
are then given based on the probability that a given type of triad pattern will be
closed.

• Here we introduce a metric called Triadic Closeness. The application of the
metric is discussed and evaluated.

• We have designed and implemented a link prediction framework. The main
elements of the framework are discussed.

• We present an analysis of our link prediction techniques. We use three different
social networks including GitHub, GooglePlus and Twitter to validate the
proposed approach.

This chapter is structured as follows: Sect. 2.2 discusses related work in the
context of social networks and link prediction. Standard similarity metrics are
introduced which will be compared against our proposed approach. In Sect. 2.3 the
link prediction framework is introduced followed by a discussion on our prediction
approach Sect. 2.4. The data collection is introduced in Sect. 2.5. The results and
experiments are discussed in Sect. 2.6. The conclusion with outlook to further work
is given in Sect. 2.7.
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2.2 Background in Link Prediction

We discuss related work by (1) highlighting literature and related approaches with
respect to link prediction and node similarity indices and (2) local structures and
patterns in social networks. Similarity indices are structured in local, global, and
semi-local indices.

• Local Similarity Indices. A wide range of similarity metrics exist that can be
used to predict links based on “local” information [1, 2, 10, 22, 31, 32, 34, 46].
Local information is typically obtained by comparing degree of overlap of
two individual friendship networks. Liben-Nowell et al. [24] systematically
compared a number of local similarity indices in many real networks. These
metrics focus on undirected graphs without considering directed relations. The
advantage of local indices is that they can be computed for large-scale networks
and do not require a huge amount of computational resources.

• Global Similarity Indices. Global metrics take the properties of the whole
social network into account. The Katz index [20] is based on the ensemble
of all paths between two nodes in the network. The index is computed as the
sum over the collection of all paths and is exponentially damped by length
to give the shorter paths more weight. Another class of metrics are random
walk techniques. Well-known algorithms such as PageRank [30] can be used
to compute global importance metrics. The prediction is than based on the
node’s PageRank importance score. PageRank can be personalized to perform
ranking with respect to a certain “contexts” or topics [36]. A direct application
of personalized PageRank are Supervised Random Walks (SRW). In [5], SRW
were proposed to recommend links in networks such as Facebook. SimRank [18]
is based on the idea that two nodes are similar if they are related to similar nodes.

Global similarity indices naturally require information regarding the whole
topology of the social network. Indeed, this information may not be available
due to, for example, partially observed networks or in cases where the platform
is decentralized. Another important aspect is performance and resource con-
sumption. The calculation of global indices may be very time-consuming and
for large-scale networks the computation may not be feasible.

• Semi-Local Indices. Instead of taking the whole topology into account, semi-
local indices omit information that makes little contribution to improve the
prediction algorithm’s accuracy. The Local Path Index [28, 46], for example,
provides a trade-off between computational complexity and accuracy. Local
Random Walks [5, 25] follow a similar idea by omitting information from very
distant neighbors in the network.

Further methods for link prediction include hierarchical models [9], stochastic
block models [3, 16, 45], probabilistic models [26], and methods considering
positive/negative links [42] (see [26] for details on models and methods).

• Patterns, Triads and Motifs. The approach as proposed in this work takes
the directed nature of follower networks into account. Triadic closure in social
networks is the hypothesis that the formation of an edge between u and v
is strongly dependent upon the degree of overlap of u’s and v’s individual
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friendship networks (for example, see [39, 44]). However, an important theory
in this context is the “strength of weak ties” [15] stressing the cohesive power
of seemingly less important ties. Holland and Leinhardt [17] developed many
important theories about social relations and how to detect structure in directed
networks. As a more general conceptual framework, network motifs [4, 29]
represent elementary elements in complex networks. Complex networks include
social, technological, or biological networks. We build upon these ideas and
propose link prediction considering triad patterns in social networks.

Finally, previously we stressed the importance of social networks and formations
of social groups (teams) in the context of collaborative environments and novel
crowdsourcing environments [35, 37, 38]. We foresee important applications of link
prediction in these areas.

2.3 Software Framework

One of the goals of the present work has been to design a modular and reusable
framework for link prediction in social networks. The framework must be able to
handle different social networks that can range from a few thousands to millions of
nodes in the social graph. This section gives an overview of the link prediction
framework architecture and a description of the evaluation methodology. The
framework is extensible with regards to prediction metrics and algorithms.

The main elements and layers are depicted by Fig. 2.1. The overall framework
is segmented into a multilayer architecture consisting of three layers: (1) Data
Layer, (2) Prediction Layer, and (3) Presentation Layer. Each layer has distinct
responsibilities and each block within a given layer provides a well-defined set of
interfaces. The central goal of the system is to provide an extensible framework that
can be enhanced with new metrics and prediction methods. In addition, it should be
easy to add new social networks (datasets) and to compare the results of different
experiments and algorithms. The architectural layers are described in the following.

Data Layer The bottom-most layer is concerned with low-level data handling
and persistence management. With regards to the basic link prediction task, the
Data Layer passes an instance of a social network graph to the upper layer. Our
framework has the ability to access data from (a) the Flat File Store and (b) the
Database. The Flat File Store is used for simple social network data files that are
small to medium in their size (e.g., 103–105 nodes) and is read-only. The Parser
reads and interprets files stored in the Flat File Store. The Parser performs the pre-
stage processing for the Graph Mapper, which creates the social network graph
including node and edge attributes (if available). The Database is able to manage
large social networks (large networks may consist of up to 5×107 nodes1) that may

1The upper bound for which the Data Layer has been tested was a network consisting of
approximately 5×107 nodes and 1.5×109 edges.
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Data Layer

File System

Prediction Layer

Presentation Layer

Parser Graph Mapper Import Library Update Handler Query Handler

Flat File Store Database

Link Predictor Experiment Manager

Evaluation Metrics

Iterative AlgorithmsSimilarity Metrics

Similarity Library

Triad Library

Graph Visualization Metric Visualization Matlab Export

Machine Learning

Fig. 2.1 Link prediction framework overview

also include details regarding user profiles and user activity. The Query Handler
interfaces with the database to retrieve the social networks graph structure, user
profile details, other social network related information and also information related
to patterns and experiments. The Update Handler is responsible for persistence
management and writes data to the database. The Import Library allows external
social networks and networks stored in the Flat File Store to be migrated to the
Database. Migration from the Flat File Store is needed if performance is insufficient
(read operations) or if the management of social network (meta)data through the Flat
File Store becomes impractical. Another source of information are external APIs of
social network or community platforms. GitHub, for example, provides an API [13]
to retrieve the follower network. The Import Library provides a rate-aware API
invocation scheduler to retrieve large social networks respecting the social network
providers’ API policies (e.g., number of invocations per hour).

Prediction Layer The middle layer groups the logic for metric calculation, pattern
mining (triad detection), prediction, and prediction result evaluation. The Similarity
Library is responsible for calculating various similarity indices including local
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Table 2.1 Similarity-based metrics

Metric Definition Description

Common Neighbors (CN) |Γ (u)∩Γ (v)| Intersection set size of joint
neighbors between nodes u
and v

Salton Index (SA)
|Γ (u)∩Γ (v)|√

ku × kv
The degree of u and v is
depicted by ku and kv

respectively. In literature, the
Salton index [34] is also
called the cosine similarity

Jaccard Index (JA)
|Γ (u)∩Γ (v)|
|Γ (u)∪Γ (v)| Jaccard similarity index with

Γ (u) �= /0 and Γ (v) �= /0

Sørensen Index (SO)
2|Γ (u)∩Γ (v)|

ku + kv
The Sørensen index [40] is
mainly used for ecological
data. The index is identical to
the Dice’s coefficient

Hub Promoted Index (HP)
|Γ (u)∩Γ (v)|

min(ku,kv)
The links adjacent to hubs
are likely to be assigned
higher scores since the
denominator min(ku,kv) is
determined by the lower
degree [31]

Hub Depressed Index (HD)
|Γ (u)∩Γ (v)|
max(ku,kv)

Similar to HPI but with the
opposite effect with regards
to adjacent hub links

Leicht-Holme-Newman Index (LHN)
|Γ (u)∩Γ (v)|

ku × kv
The denominator ku × kv is
proportional to the expected
number of common
neighbors [22]

Adamic-Adar Index (AA) ∑
z∈Γ (u)∩Γ (v)

1
log(kz)

The index assigns the
less-connected neighbors
more weight than CN [1]

Resource Allocation Index (RA) ∑
z∈Γ (u)∩Γ (v)

1
kz

Similar to AA, RA depresses
the contribution of the
high-degree common
neighbors [46]

similarity indices (see Table 2.1), global similarity indices, and semi-local indices.
The system block Similarity Metrics computes local similarity indices (including
TC) and semi-local indices including Local Path Index (see [26]) and the Shortest
Path Index (i.e., the average Dijkstra Shortest Path Index between, say, u and v’s
neighbors Γ (v) to measure similarity between u and v). Iterative Algorithms have
been designed to calculate metrics such as SimRank [18] and PageRank variants
such as personalized PageRank [19, 30, 36]. Note, the evaluation of global and semi-
local indices is not within the scope of this work. Here we focus on local indices in
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conjunction with triad patterns. The relationship between (local) triad patterns and
global or semi-local indices is a whole new subject of investigation itself. Next to
the Similarity Library, the Triad Library provides the capabilities for triad pattern
detection and caching. Clearly, scanning the entire social network graph for triad
patterns is a time consuming task with complexity O(m) where m is the number of
edges in the graph (see [6] for related triad detection algorithms).

Thus, triad pattern mining is usually performed once for a given social network
and subsequent metric calculations use the precomputed triad frequencies.

The Link Predictor is the main component that performs the prediction task. This
can be done to predict future links, which do not yet exist, or predict links, which
are “missing” (unobserved). Here we focus on the latter case where we assume that
certain links are missing between pairs of nodes. To test the metrics’ accuracy, we
divide the set of edges E randomly into the prediction (or training) set EP and the
validation set EV . The prediction algorithm basis its calculation upon the prediction
graph GP(V,EP) whereas the accuracy of the prediction results is determined by
inspecting the missing (randomly removed) edges in EV . Note, no information from
the set EV is allowed to be used for prediction so that EP∪EV = E and EP∩EV = /0.
Furthermore, to speed up computation of prediction results, the Link Predictor can
perform node sampling to calculate predictions for a subset of node pairs instead
of calculating predictions for all node pairs in the entire graph. For that purpose
the predictor samples a set of random nodes UP with k > 0 and divides the set into
two subsets UR and UT with UR ∪UT = UP, UR ∩UT = /0, and UP ⊂ U. The set
UP contains all nodes that are used for link prediction, the set UR contains the root
nodes (source vertices of predicted links) and UT contains the target nodes (target
vertices of predicted links). The set EV contains only directed links whose source
vertex is in UR and whose target vertex is in UT . For one given experiment the same
node set UP and edge set EV is used to be able to compare the results of different
metrics among each other.

The basic steps of the Link Predictor are straightforward. Algorithm 1 shows the
steps:

Algorithm 1 Link prediction algorithm
1: input: G(U,EP),UR,UT ,EV

2: for each User u ∈ UR do
3: for each User v ∈ UT do
4: // True Answer
5: answer ← HasEdge(u,v,EV )
6: // Calculate Similarity Scores
7: for each Metric m ∈ M do
8: suv ← CalculateScore(u,v,m,G)
9: // Save Result to Experiment Database

10: SaveResult(u,v,m, suv,answer)
11: end for
12: end for
13: end for
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The predictor loops through UR and UT and calculates similarity scores suv using
each metric m ∈ M provided by the Similarity Library. M can be configured dynam-
ically by enabling/disabling the desired metrics to be used in each experiment. The
prediction result suv and the actual true answer {0,1} (HasEdge is a binary classifier
that determines whether or not the set EV contains a directed edge between u and v)
are saved in the experiment database.

The Machine Learning component provides an additional approach to link
prediction by learning ensembles of decision trees. This technique is called random
forest2 for classifying if there will be link between two nodes from an input vector
of node features (e.g., number of common friends, age, interests, etc.). A detailed
discussion on random forest based link prediction is not provided in this book.

To compare the results of different similarity algorithms, the Evaluation Metrics
component provides standardized comparison methods. In particular, we compare
results using the Receiver Operating Characteristic (ROC) curve. ROC curves are
commonly used in the machine learning community for the link prediction task
[2, 9]. ROC curves are created by plotting the true positive rate over the false positive
rate. The area under the ROC curve (AUC) [7] can be interpreted as the probability
that a randomly chosen missing link (i.e., a link in EV ) is given a higher score than
a randomly chosen non-existing link [26].

Higher AUC values, which are in the range [0,1], indicate better prediction
performance. Another common metric to measure a prediction algorithm’s accuracy
is HitRatio (or recall). Generally, HitRatio is defined as the ratio of selected relevant
items to the number of relevant items. For example, the HitRatio is typically
measured at a threshold HitRatio@n where n is the number of selected items. In this
work, we focus on both ROC curves and AUC as well as HitRatio for experiment
evaluation and metric comparison. The Experiment Manager saves and retrieves
experiments results from the Database and computes aggregates of results.

Presentation Layer The frontend of the prediction framework is a presentation
layer that has visualization and export capabilities. The Graph Visualization allows
to view typical graph properties by mapping node/edge features into a visual
representation. To do so, the correspondence between discrete or continuous values
and visual properties (color, node size, etc.) needs to be established. The Metric
Visualization is the most important tool for evaluating the results of the similarity
algorithms and link predictor. ROC curves help to identify which methods and
parameter settings are best suited for a given type of social network. The various
network idiosyncrasies such as average degree 〈k〉 may demand for metric tuning.
A detailed discussion regarding metric accuracy will follow in Sect. 2.6. The Metric
Visualization helps to understand the accuracy and suitability of different metrics.
The Matlab Export allows to export experiment results to a Matlab compatible
format to utilize various Matlab toolboxes.

2Web page: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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2.4 Predicting Friendship

2.4.1 Similarity-Based Metrics

The focus of this work are local similarity indices and their extension towards
link prediction using graph patterns. Table 2.1 lists a set of well-known similarity
metrics. The shared feature of the metrics is that computation of similarity is based
on the set of joint neighbors. These metrics provide the basis for the definition of
our Triadic Closeness (TC) similarity metric. The definition of the TC metric will
be provided in the following. Furthermore, the metrics in Table 2.1 will be used
in a comparative study to test the effectiveness of the proposed technique. Table 2.1
provides a mathematical definition along with a brief description of the given metric.
Given node u, the set of neighbors is depicted by Γ (u). The degree of node u is
depicted as ku = |Γ (u)|.

These metrics have the drawback that they do not account for the directed nature
of follower networks. In other words, the metrics in Table 2.1 do not allow for
differentiation whether a link will be established from, say, u to v or from v to u. As
a next step we introduce patterns to account for directed links in social networks.

2.4.2 Triad Patterns

In social network theory a basic unit of analysis is a dyad. In undirected networks, a
dyad is a pair of nodes who may share a social relation with one another. In directed
networks, a dyad consists of a pair of nodes who may share a social relation through
mutual links, an unreciprocated relation, or no relation. Unreciprocated means that
one node is interested in the other node but not vice versa. A triad is a set of three
parties, which consists of three dyads. A triad is “closed” if all nodes are linked with
each other in some manner. A closed triad is also called triangle.

Figure 2.2 shows triad patterns of the actors u, z, and v. Edges are directed
because our aim is to model patterns in directed social networks (e.g., follower
networks). All patterns are open triads with z being the common neighbor of u and v.
The questions with regards to link prediction can be stated as follows:

• What is the likelihood that u will establish a link towards v?
• In a partially observed network, is there a missing link pointing from u to v?

In Fig. 2.2 all possible connectivity configurations between u, z, and v are shown
with the condition that u and v are not directly connected. In this work, open triads
are labeled as T0X where X is the running index with X = [1,9]. The pattern T01
shows the case where u and z as well as v and z are mutually connected. According
to the theory of triadic closure, the chances are high that u will also connect to
v (i.e., z’s friends will likely become u’s friends). In a follower network, the pair
u and z and v and z would mutually follow each other. In T02, only u and z are
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mutually connected to each other. The node v is followed by z but the relationship
is not reciprocated. T03, T05, and T07 depict complementary cases where a mutual
relation among one dyad exists. The other cases depicted by T04, T06, T08, and T09
show patterns without mutual relations among the dyads. The goal of link prediction
is to determine which of the triads are or will be closed (i.e., becoming a triangle).
A triad can be closed as follows if u establishes a link to v, v establishes a link to u,
or if u and v establish a link mutually.

The following figures show closed triads based on T01 and T09 (the first and the
last pattern of Fig. 2.2 are shown for brevity). Figure 2.3 shows the patterns where
the triads are closed from u to v. The patterns are labelled similarly as in Fig. 2.2 but
with a base offset of 10. Thus, the label of triads that are closed via u to v is T1X
with X = [1,9].
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Fig. 2.4 Closed triads T2X.
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Fig. 2.5 Closed triads T3X.
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In the same manner, the label of triads that are closed via v to u is T2X with
X = [1,9] (see Fig. 2.4).

Finally, if the triads are closed by mutually connected u and v (see Fig. 2.5) the
labels T3X with X = [1,9] are applied. To summarize our discussions regarding
triad patterns, triads that are relevant for link prediction may have 36 different
configurations with regards to how nodes are connected to each other through
directed links. Open triads have 2 connected dyads and have 2 to 4 links. Closed
triads have 3 connected dyads and have 3 to 6 links.

The next step is to introduce a novel metric to calculate a score for link prediction
based on the presented triad patterns.

2.4.3 Triadic Closeness

When considering a given pattern T0X (open triads as depicted by Fig. 2.2) the
basic question is which of those patterns are likely closed triads (in the case of
missing links) or which of those patterns will likely be closed in the future. Here
we introduce Triadic Closeness (TC) to measure how close a pair of disconnected
nodes are in terms of how the pair is connected through triads. TC is based on the
following basic idea:

Triadic Closeness ∝
Number of closed triads

Number of potentially closed triads

Triadic Closeness is thereby based on the ratio of the number of closed triads
versus the number of potentially closed triads. Indeed, the chance that a given T0X
triad will be closed depends on the actual social network and is most likely not the
same for all follower networks. We define the TC score of the pair u and v in a
directed graph G as follows:
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TCuv = ∑
z∈Γ (u)∩Γ (v)

wP(u,v,z)×w(z) (2.1)

The score is calculated over all common neighbors. For a given neighbor z,
the product is calculated by the triad weight wP(u,v,z) times the neighbor specific
weight w(z). The triad weight wP(u,v,z) is defined as follows:

wP(u,v,z) =
F(T(u,v,z)+ 10)+F(T(u,v,z)+ 30)

F(T(u,v,z))
(2.2)

The function T(u,v,z) retrieves the triad pattern ID that matches the triad u, v, and
z. The term (T(u,v,z)+10) simply means that the ID of the closed triad counterpart
of T(u,v,z) is obtained (closed via u to v). Similarly, (T(u,v,z)+30) gets the closed
counterpart triad ID wherein T(u,v,z) is closed through mutual links between u
and v. The function F(·) retrieves the frequency of the given triad pattern. Prior
to performing the calculation of wP(u,v,z), the frequencies of triads in a particular
social network are computed by an algorithm and saved in a database. Afterwards,
F(·) simply retrieves the triad frequency from a database (zero if the given triad was
not detected in the graph).

The neighbor specific weight w(z) can be tuned to account for the characteristics
of specific social networks. For the basic case with w(z) = 1, TCuv is only based on
wP(u,v,z). We define the weight as w(z) = 1

kz
to give less connected neighbors more

weight and thus TCuv becomes:

TCuv = ∑
z∈Γ (u)∩Γ (v)

wP(u,v,z)× 1
kz

(2.3)

Neighbors that are unique to only a few users are weighted more with w(z) = 1
kz

than popular neighbors. Popular neighbors are those with a high degree kz and
especially in networks such as Twitter these neighbors may be celebrities that may
not have great significance for the triadic closure process. From a technical point
of view, TCuv’s behavior is comparable to Adamic-Adar Index (AA) [1] or the
Resource Allocation Index (RA) [46] (see also Table 2.1). Indeed, the indices lack
the notion of patterns and have been designed with undirected friendship networks
in mind.

2.4.4 Triadic Closeness Example

To give a concrete example, consider the artificial network as depicted by Fig. 2.6
and suppose triadic closeness TCgh shall be calculated between the nodes g and h.

The triad frequencies are listed in Table 2.2. Algorithm 2 shows the steps for
counting the frequency of patterns in graph G.
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Fig. 2.6 Example network
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Table 2.2 Triads in example
network

ID Pattern Frequency ↓
1 u ↔ z ↔ v 10

31 u ↔ z ↔ v ↔ u 6

2 u ↔ z → v 2

3 u → z ↔ v 2

4 u → z → v 2

5 u ↔ z ← v 2

7 u ← z ↔ v 2

8 u ← z ← v 2

12 u ↔ z → v ← u 2

27 u ← z ↔ v → u 2

36 u → z ← v ↔ u 2

11 u ↔ z ↔ v ← u 1

21 u ↔ z ↔ v → u 1

32 u ↔ z → v ↔ u 1

33 u → z ↔ v ↔ u 1

35 u ↔ z ← v ↔ u 1

37 u ← z ↔ v ↔ u 1

As shown in Fig. 2.6, the node f connects g and h via triad T01. Related to T01
for calculation are T11 and T31. The weight wP(u,v,z) for the network in Fig. 2.6
is given as wP(u,v,z) = 6+1

10 = 0.7. Thus, TCgh is given as TCgh = 0.7× 1
4 = 0.175.

Using the triadic closeness concept, with a probability of 0.17 T01 will be closed
from g to h.
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Algorithm 2 Pattern counting algorithm
1: input: directed graph G
2: for each Vertex u ∈ G do
3: for each Vertex z ∈ getNeighbors(G,u) do
4: for each Vertex v ∈ getNeighbors(G, z) do
5: if equals(v,u) then
6: continue
7: end if
8: id ← getPatternId(G,u, z,v)
9: count(id) // increment count by 1

10: end for
11: end for
12: end for

Fig. 2.7 Indegree
distribution of GitHub
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N(k) ~ k −1.49

2.5 Data Collection

The following datasets have been used for testing the link prediction techniques.

• GitHub. The first network is based on GitHub’s follower network [12]. The
graph was imported in our prediction framework through the GitHub API [13] in
December 2012. The basic network characteristic in terms of follower (indegree)
distribution is depicted by Fig. 2.7.

The plot shows a power-law distribution with the basic property N(k)∼ k−1.49

where N(k) is the number of nodes with indegree k. The follower graph counts
1,105,150 users and 1,898,034 following relations (edges). Nearly 70 % of users
(767,975) have no followers (zero indegree) and again about 70 % of users
(769,283) do not follow any other user (zero outdegree).
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Fig. 2.8 Indegree
distribution of GooglePlus

100 101 102 103 104 105100

101

102

103

104

Number of Followers

N
um

be
r 

of
 U

se
rs

• GooglePlus. The second network represents a subset of nodes and edges from
GooglePlus [14]. We have obtained the network (plain text files) from the
Stanford Large Network Dataset Collection [41]. A description of the network
is also given in [27]. The degree distribution is depicted by Fig. 2.8. The
network consists of 107,614 nodes and 13,673,453 edges. At a technical level,
the network is managed within the prediction framework’s Flat File Store.
The average degree 〈k〉 = 127 in this network is much higher than in the
GitHub-based follower network, which has only 〈k〉= 1.7.

A possible explanation for the high differences in the average degree 〈k〉
is the primary purpose of the platforms. GitHub is a platform for hosting and
sharing source code repositories and the “follow” feature is by many people used
to follow top-developers. In GooglePlus, many people follow other people they
personally know and use the platform to maintain social relations.

• Twitter. The third network is based on a subset of nodes and edges of Twit-
ter [43]. The network was also obtained from the Stanford Large Network Dataset
Collection [41] and is also managed within the Flat File Store. The network
counts 81,306 nodes and 1,768,149 edges, thereby making it the smallest network
in our experiments. The degree distribution is depicted by Fig. 2.9. The average
degree is given as 〈k〉 = 21.7. In addition, we show the degree of a much
larger Twitter-based network in Fig. 2.9 in the top-right corner to show how the
presented network subset relates to the large network. The large network was
obtained in July 2009 by [21] and counts roughly 5× 107 nodes and 1.5× 109

edges.
Both networks follow a similar distributional shape. In our experiments,

only the smaller network has been used. In combination with the other larger
networks (GitHub and GooglePlus), the smaller Twitter-based network provides
a sufficient basis to compare link prediction metrics.
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Fig. 2.9 Indegree
distribution of Twitter
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2.6 Evaluation

We obtained three directed social follower networks to compare different metrics
and to validate the suitability of TC. The networks (the whole follower network or
subsets thereof) include GitHub [12], GooglePlus [14], and Twitter [43].

2.6.1 Configuration

Here we discuss the link prediction configuration settings that were used to
perform experiments. Experiments have been performed using the three previously
introduced datasets: GitHub (GH), GooglePlus (GP), and Twitter (TW). Table 2.3
lists the prediction user set size |UP|, the validation set size |EV | and the root set
size |UR|.

For GitHub, the prediction user set UP consists of 10 % of the users which are
connected through 148,796 edges. From those edges we sampled 29,759 random
edges (20 %) and added them to EV . The root set UR is populated with 100 nodes.
The size of the prediction target set UT can be easily calculated as UT =UP−UR. In
GooglePlus, we use the entire user base for UP, which also results in approximately
the same size of UP as for GitHub’s prediction user set. EV consists of 2,709,731
edges (20 %) and the root set UR consists also of 100 nodes. The Twitter-based
dataset has the smallest number of nodes and, in the same manner as for GooglePlus,
we also select all nodes for UP. EV has 333,577 edges (again 20 %) and the same
root set size as for GitHub and GooglePlus is applied.

Using the configuration settings in Table 2.3, we obtain the graph GP(U,EP)
upon which triad pattern mining and prediction is performed. The relative frequency
of each triad pattern in GP is listed in Table 2.4. The total number of triad
patters in each network is 423,034,532 (GitHub), 14,402,457,330 (GooglePlus), and
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Table 2.3 Configuration
settings for link prediction

Configuration GH GP TW

|UP| 110,515 107,614 81,306

|EV | 29,759 2,709,731 333,577

|UR| 100 100 100

Table 2.4 Ratio of triads in
different social networks

ID Pattern GH (%) GP (%) TW (%)

9 u ← z → v 53.23 9.97 7.04

6 u → z ← v 39.09 18.79 39.96

8 u ← z ← v 1.50 12.71 5.95

4 u → z → v 1.37 12.71 5.95

7 u ← z ↔ v 1.22 5.69 4.36

2 u ↔ z → v 1.14 5.69 4.36

5 u ↔ z ← v 0.63 3.93 6.21

3 u → z ↔ v 0.63 3.93 6.21

1 u ↔ z ↔ v 0.23 1.44 4.07

28 u ← z ← v → u 0.10 2.74 0.86

29 u ← z → v → u 0.10 2.74 0.86

19 u ← z → v ← u 0.10 2.74 0.86

26 u → z ← v → u 0.10 2.74 0.86

16 u → z ← v ← u 0.09 2.74 0.86

14 u → z → v ← u 0.09 2.74 0.86

25 u ↔ z ← v → u 0.05 0.62 0.70

39 u ← z → v ↔ u 0.05 0.62 0.70

13 u → z ↔ v ← u 0.04 0.62 0.70

27 u ← z ↔ v → u 0.04 1.41 0.87

12 u ↔ z → v ← u 0.04 1.41 0.87

36 u → z ← v ↔ u 0.04 1.41 0.87

31 u ↔ z ↔ v ↔ u 0.03 0.29 0.97

11 u ↔ z ↔ v ← u 0.01 0.21 0.53

33 u → z ↔ v ↔ u 0.01 0.21 0.53

21 u ↔ z ↔ v → u 0.01 0.21 0.53

37 u ← z ↔ v ↔ u 0.01 0.21 0.53

32 u ↔ z → v ↔ u 0.01 0.21 0.53

35 u ↔ z ← v ↔ u 0.01 0.21 0.53

17 u ← z ↔ v ← u 0.00 0.15 0.27

23 u → z ↔ v → u 0.00 0.15 0.27

22 u ↔ z → v → u 0.00 0.15 0.27

38 u ← z ← v ↔ u 0.00 0.15 0.27

15 u ↔ z ← v ← u 0.00 0.15 0.27

34 u → z → v ↔ u 0.00 0.15 0.27

18 u ← z ← v ← u 0.00 0.10 0.13

24 u → z → v → u 0.00 0.10 0.13
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296,075,286 (Twitter). The patterns at the top in Table 2.4 are open triads T01–T09
followed by closed triads T11–T36. The patterns are sorted in descending order by
the column GH.

The most common triad pattern in GitHub with 53.23 % is where both u and v are
followed by z but neither u nor v follow z. This pattern has a relative frequency of
7.04 % in Twitter, thereby being the second most common pattern in Twitter, and a
relative frequency of 9.97 % in GooglePlus, thereby being the fourth most common
pattern in GooglePlus. The second most common pattern in GitHub, and the most
common pattern in GooglePlus and Twitter, is the pattern where both u and v follow
z but z follows neither of them. Triadic Closeness is defined as the likelihood that
a given open triad (T01–T09) will be closed in a given social network. Thus, the
triad patterns T01–T09 are seen in relation with the closed triads to determine the
closeness between two nodes.

In the following the prediction results are presented by plotting ROC curves and
calculating AUC for each metric. TC is based on the frequencies of respective triads
in Table 2.4.

2.6.2 Prediction Results

In all our experiments, we use the metrics as defined in Table 2.1 and the introduced
triadic closeness TC. The configuration settings for the experiments are given in
Table 2.3. As a general note, an AUC value above 0.5 indicates that a prediction
algorithm performs better than pure chance. Higher AUC indicates better prediction
accuracy. With regards to ROC curves, we group metrics into a single class if their
AUC values are identical.

GitHub As a first step we present the prediction results of GitHub-based experi-
ments. The ROC curves are depicted by Fig. 2.10. The metrics and class correspon-
dence is established in Table 2.5. We provide the AUC values along with the curves
in Fig. 2.10 and also in Table 2.5 for easier readability.

In GitHub, TC corresponds to C1 and an AUC value of 0.98. Thus, TC
outperforms the other methods and delivers the highest accuracy. RA delivers also
very good results with an AUC of 0.97. Metrics below 0.5 such as SA, LHN, JA, SO,
and HD are not suitable prediction methods for the GitHub-based social networks.
The HitRatio at different thresholds is shown in Table 2.6. The HitRatio until HitRa-
tio@50 is identical for CN, AA and TC. For HitRatio@100 and HitRatio@1000 TC
outperforms other methods. RA performs best at HitRatio@5000.

GooglePlus Next, we present the prediction results of GooglePlus-based experi-
ments. The ROC curves are presented in Fig. 2.11 and the class correspondence is
given in Table 2.7. TC has an AUC value of 0.96 followed by RA and AA with 0.94.
Also, the simple CN metric delivers quite good results with an AUC of 0.93. LHN
perform worst but still has an AUC above 0.5 thereby delivering acceptable results
but with low accuracy.
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Fig. 2.10 ROC curves for
GitHub-based results
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C1: AUC=0.98
C2: AUC=0.97
C3: AUC=0.93
C4: AUC=0.71
C5: AUC=0.54
C6: AUC=0.28
C7: AUC=0.26
C8: AUC=0.24

Table 2.5 AUC Classes for
GitHub-based results

Class Definition AUC

C1 TC 0.98

C2 RA 0.97

C3 AA 0.93

C4 CN 0.71

C5 HP 0.54

C6 SA 0.28

C7 LHN 0.26

C8 JA, SO, HD 0.24

The HitRatio for GooglePlus-based results is shown in Table 2.8. TC performs
best at all thresholds and delivers the best results compared with the other methods.
RA performs slightly better than AA in terms of HitRatio. LHN performed worst
in terms of AUC but slightly better than HP with regards to HitRatio. Overall, only
TC, RA and AA are suitable methods to perform link prediction in GooglePlus. All
other methods have no correct results at HitRatio@30.

Twitter Finally, we present the prediction results of Twitter-based experiments.
The ROC curves are presented in Fig. 2.12 and the class correspondence is given in
Table 2.9.

Again, TC performs best with an AUC value of 0.97. Second ranked are again
RA and AA with an AUC of 0.96. Note in this context that all three metrics, TC,
RA, and AA, give higher weights to those neighbors who have a lower degree (i.e.,
“hub-depressed” behavior). However, by considering triad patterns TC outperforms
all other metrics and delivers the most accurate results. Again, LHN ranks last with
an AUC of 0.71. None of the metrics have an AUC lower than 0.5. Here the lowest
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Table 2.6 HitRatio (%) for GitHub-based results

HitRatio HitRatio HitRatio HitRatio HitRatio HitRatio

Metric @10 @30 @50 @100 @1000 @5000

CN 12.5 12.5 12.5 12.5 12.5 50.0

SA 0.0 0.0 0.0 0.0 0.0 0.0

JA 0.0 0.0 0.0 0.0 0.0 0.0

SO 0.0 0.0 0.0 0.0 0.0 0.0

HP 0.0 0.0 0.0 0.0 0.0 0.0

HD 0.0 0.0 0.0 0.0 0.0 0.0

LHN 0.0 0.0 0.0 0.0 0.0 0.0

AA 12.5 12.5 12.5 12.5 37.5 62.5

RA 0.0 0.0 12.5 12.5 37.5 87.5

TC 12.5 12.5 12.5 37.5 62.5 75.0

Fig. 2.11 ROC curves for
GooglePlus-based results
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C1: AUC=0.96
C2: AUC=0.94
C3: AUC=0.93
C4: AUC=0.90
C5: AUC=0.88
C6: AUC=0.87
C7: AUC=0.82
C8: AUC=0.58

AUC is 0.71 making all metrics suitable methods for link prediction. As mentioned
before, this was not the case for GitHub where many metrics perform below an AUC
of 0.5.

The HitRatio for Twitter-based results is shown in Table 2.10. TC performs best
until HitRatio@100. For HitRatio@1000 and HitRatio@5000 RA performs slightly
better. However, TC still performs best with respect to AUC and true positive rate.
Also, the simple common neighbor (CN) methods provides acceptable results in
terms of HitRatio. LHN performs worst with regards to HitRatio (only 5.2 % at
HitRatio@5000) and also with regards to AUC.
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Table 2.7 AUC Classes for
GooglePlus-based results

Class Definition AUC

C1 TC 0.96

C2 RA, AA 0.94

C3 CN 0.93

C4 SA 0.90

C5 JA, SO 0.88

C6 HD 0.87

C7 HP 0.82

C8 LHN 0.58

Table 2.8 HitRatio (%) for GooglePlus-based results

HitRatio HitRatio HitRatio HitRatio@ HitRatio@ HitRatio

Metric @10 @30 @50 @100 @1000 @5000

CN 0.0 0.0 0.1 0.3 2.3 8.1

SA 0.0 0.0 0.0 0.0 0.1 1.4

JA 0.0 0.0 0.0 0.0 0.5 1.7

SO 0.0 0.0 0.0 0.0 0.1 1.5

HP 0.0 0.0 0.0 0.0 0.0 0.0

HD 0.0 0.0 0.0 0.0 0.1 1.7

LHN 0.0 0.0 0.0 0.0 0.0 0.2

AA 0.0 0.1 0.1 0.4 2.4 8.6

RA 0.1 0.2 0.3 0.6 3.4 12.8

TC 0.3 0.7 0.8 1.1 6.0 21.6

Fig. 2.12 ROC curves for
Twitter-based results
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C1: AUC=0.97
C2: AUC=0.96
C3: AUC=0.93
C4: AUC=0.91
C5: AUC=0.90
C6: AUC=0.85
C7: AUC=0.83
C8: AUC=0.71
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Table 2.9 AUC Classes
Twitter-based results

Class Definition AUC

C1 TC 0.97

C2 RA, AA 0.96

C3 CN 0.93

C4 HP 0.91

C5 SA 0.90

C6 JA, SO 0.85

C7 HD 0.83

C8 LHN 0.71

Table 2.10 HitRatio (%) for Twitter-based results

HitRatio HitRatio HitRatio HitRatio HitRatio HitRatio

Metric @10 @30 @50 @100 @1000 @5000

CN 2.6 6.1 9.2 13.1 44.1 72.1

SA 0.0 0.0 1.3 5.2 28.4 56.8

JA 1.7 3.1 3.1 7.9 34.1 56.8

SO 0.0 0.0 1.3 4.4 29.3 54.6

HP 0.0 0.0 0.0 0.0 0.4 40.2

HD 0.9 2.6 2.6 2.6 25.3 49.8

LHN 0.0 0.0 0.0 0.0 0.0 5.2

AA 2.6 6.1 9.6 14.4 48.9 78.6

RA 3.1 6.6 8.3 12.2 56.3 86.5

TC 3.9 8.7 11.8 14.8 55.5 86.4

2.7 Conclusions

The prediction of missing links and the prediction of future links is an important task
in the domain of social network analysis. The former helps to infer the “real” social
network structure while the latter is used to give friendship as well as following
recommendations to users. A wide range of local, global, and semi-local metrics
have been proposed by previous work. A large body of existing literature, however,
focuses on undirected networks only. This work closes this gap by focusing on
directed networks. Here we propose triad patterns to predict links between nodes
in directed graphs. Our approach is called Triadic Closeness. We designed and
implemented a link prediction framework that is able to perform predictions in
large-scale social networks. The framework’s architecture has been presented and
discussed in detail. We performed experiments in three different social networks.
First, we analyzed the effectiveness of our proposed approach in GitHub; a social
coding community. Second, we obtained a subset of the GooglePlus network and
third we performed experiments in a subset of the Twitter follower network.
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• The follower structure of GitHub and GooglePlus or Twitter is very different.
Thus, the average degree of GitHub is significantly lower than the average degree
in GooglePlus and Twitter.

• As expected, each follower network exhibits distinct triad frequencies. The
presented approach helps to give higher weights to triads that are more frequently
closed (resulting in closed triangles).

• The pattern-based prediction approach delivers the best results among the
compared local methods. TC consistently outperformed other approaches. Thus,
a pattern-based approach is better suited in directed social networks.

An important aspect will also be the extension of our approach towards global
and semi-local methods. As an example, the personalized PageRank method could
provide the basis for pattern-aware link prediction. We are currently working on
the design of this method. In addition, we will be comparing machine learning
techniques for link prediction such as random forest and support vector machine
(SVM) models.
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Chapter 3
Follow Recommendation in Communities

Abstract Follower networks provide means for informal information propagation.
In this chapter we introduce an approach for recommending relevant users to follow.
Our approach is based on the automatic analysis of user behavior and network
structure. Link-analysis techniques such as PageRank and HITS provide the basis
for a novel recommendation model.

3.1 Social Collaboration Platforms

Social networks have become a central part for many people in their everyday
activities. The type of network used for different activities often varies depending
on the desired purpose. Professional networks such as LinkedIn are used to stay
in touch with colleagues and coworkers. Personal social networks including the
popular Facebook platform enable people to engage with their friends and to follow
their news updates. News media and social network services such as Twitter allow
people to follow short news updates (tweets) of celebrities and friends. Recently,
another type of social network has become highly popular attracting millions
of users: online social collaboration networks. These networks enable people to
collectively work on projects. An example of such a social collaboration platform is
Github [1]. GitHub was launched in 2008 and enables people to work on public
(open source) or private projects. Indeed, open source development has a long
history (e.g., see [2]) and dates back to the 1950s and 1960s when IBM released
software sources of its operating systems and other programs [3].

A novel aspect of recent online social collaboration platforms on the World
Wide Web such as GitHub is that they provide improved support for social
networking features such as followers/followings or news feeds based on the
users’ social network. These online collaboration platforms enable users to discover
interesting projects and repositories more quickly and let people collaborate almost
instantaneously. An intriguing hypothesis was postulated by [4] arguing that GitHub
will be the next big social network driven by what people do instead of who people
know. In professional networks such as LinkedIn people are mainly connected
because they know each other from, for example, past work experience.
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In networks such as LinkedIn or Facebook friendship is represented as recipro-
cated links in an undirected graph. Services such as Twitter and recently GitHub are
based on a directed network approach. A directed network approach allows users
to follow other users based on their interest without requiring them to reciprocate
the relationship. In traditional social networks, some users may be followed by
many people without following many peers themselves (“stars” or “celebrities”).
Is this also the case for online social collaboration networks such as GitHub?
People in GitHub are mostly followed because they work on interesting projects.
Thus, this difference between conventional social networks and online social
collaboration networks requires a novel follow recommendation approach. One
important aspect in knowledge-intensive disciplines such as software engineering
is to promote the effective dissemination of knowledge [5]. The authors in [6] found
that formal routines should be supplemented by collaborative and social processes
to promote awareness and learning. In our opinion, follower networks provide
excellent means to address the need for effective dissemination of knowledge
through informal relations and information interest. Following the right person
is essential to get information updates from the community leaders and “gurus”.
Follow recommendations aim to solve the problem of selecting the right person to
follow.

Follower networks, information flows through re-tweets, and follow recom-
mendations have been analyzed in great detail for platform such as Twitter [7–9]
or in enterprise social media networks such as WaterCooler [10]. To our best
knowledge, there is no existing work that proposed context-sensitive following
recommendations in online development networks.

In this chapter we present the following key contributions:

• Who to follow recommendation. Here we propose a method and algorithm
for follow recommendations. Recommendations can be based on behavior,
network, or similarity. Our approach is based on network analysis techniques.
User relevance with respect to following recommendations is based on a novel
authority metric. Authority in this work means being an expert or guru in a
specific area (e.g., expert/guru in “javascript” programming). The approach is
specifically targeted at online software development communities but may be
applied to other types of collaboration networks as well.

• Social network metrics and evaluation. We analyze our approach by using
social network (follower network) and activity data from GitHub. We introduce
the used dataset and calculate various metrics such as reciprocity to support
our hypothesis that people in GitHub are mostly followed because they work
on interesting projects. The proposed authority-based follow recommendation
approach is evaluated by using the GitHub dataset.

This chapter is structured as follows: Sect. 3.2 discusses relevant related work.
Section 3.4 introduces our follow recommendation approach. The data collection
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is introduced in Sect. 3.5. Section 3.6 introduces social network metrics and our
evaluation. The chapter is concluded in Sect. 3.7 with an outlook on future research.

3.2 Background in Online Communities

We structure related work into relevant topics including analysis of online develop-
ment communities, and social network analysis.

Online Development Communities An online social network is a communication
and collaboration medium that connects a large number of people. People within
the social network stay together if their interaction dynamics leads to the emer-
gent property that is called “community”. Here we focus on online development
communities consisting of people developing collaboratively open source projects.
A topological analysis of the SourceForge community was presented in [11]. The
focus of the work was on role detection of users and cluster analysis. In [12],
metrics with regards to open versus private software development were analyzed
with the focus on source code aspects. Measures to investigate the social-technical
congruence in software development projects were established in [13]. The interplay
between network metrics, software failures and software evolution was investigated
in, for example [14–16]. Collaboration and influence on GitHub was analyzed in
[17] with the central focus on visualization techniques. Interesting directions with
regards to the analysis of GitHub were presented in [18]. The authors [18] showed
evidence for social collaboration on GitHub and proposed algorithms addressing the
team formation problem. Our authority-based recommendation approach can well
be used to create expertise profiles that can be used to assist in the formation of
expert teams [19, 20]. From a technical point of view, the basic structure of the
GitHub API and the event schema was described in [21].

In this work, we analyze the GitHub online development community but focus
on follower/following recommendations.

Social Network Analysis Social network analysis techniques offer a rich set of
theories (e.g., social network theory, small world phenomenon, power-laws, self-
organization, and graph theory) and tools to analyze the topological features and
human behavior in online communities [7, 22–27].

In many systems, including large-scale enterprises, mostly searchable directories
or databases that include descriptions of the employees’ knowledge and experience
are used to locate experts. The problem with this approach is that social networks
and also big companies are in a constant state of flux and change [28, 29]. In
large-scale online communities and dynamic organizations, it becomes infeasible
to constantly review and update the profile information of often rapidly changing
experience, skills, and rolls of experts. Specifically with respect to software
engineering, the authors in [30] found that a person with the most modifications
to the code may be an expert within a community, and that expertise depends on
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the area of the code that is being modified. Furthermore, the “degree of knowledge
model” [31], showed how that expertise decays with subsequent changes by other
authors.

We apply well-grounded theories and algorithms to the analysis of large scale
software development communities. Well known ranking algorithms to calculate
importance in linked environments include the HITS algorithm [32] and PageR-
ank [33]. Personalization techniques such as topic-sensitive PageRank [34, 35]
enable context-sensitive importance ranking. Link analysis algorithms have been
successfully applied to estimate actor importance in social and collaborative
networks [27, 36–38] as well as to online mass production systems such as emerging
crowdsourcing environments [39]. The authors in [37] proposed link analysis
techniques such as PageRank for expertise mining in online communities. However,
no personalization with regards to expertise areas has been performed by prior work.
In our previous work [27] we proposed context-sensitive link analysis algorithms for
expertise mining, but did not consider contributions of people to online communities
(e.g., contributing source code to online repositories).

We propose a network-based metric to capture authority for follow recommen-
dations. The proposed authority metric measures the relative community standing
(i.e., reputation) of a community member. The metric is based on how much a person
contributes to the community (e.g., repository commits) and on how many existing
follower relations a person has.

3.3 Recommendation Types

Following/follower recommendations can be performed according to different
strategies. The authors in [10] suggested three categories: behavioral, similarity,
and network. We structure recommendation types for online software development
communities in a similar manner but provide more strategies for network based
recommendations. The following recommendation types can be distinguished:

• Behavioral. This recommendation type is based on already observed interaction
between two people. For example, a person may have commented on code
checked in by some other person or a person may have replied to a question (e.g.,
usage of library, report of bug, etc.) posted by someone in a discussion forum.
Thus, based on the interaction between two people a follow recommendation can
be made.

• Similarity. As often observed in real life, people tend to have friends with
similar characteristics and interests [40]. This phenomenon is called homophily.
Homophily is the principle that a contact between similar people occurs at a
higher rate than among dissimilar people [41]. Shared characteristics include
follower degree and shared interests include watched repositories or interest in
programming language.
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• Network. The network based recommendation type can be based on various
techniques.

Collaborative filtering [42] is a technique for recommending content to users
based on other users with similar interest. Collaborative filtering techniques
are commonly seen on e-commerce sites. Applied to our problem domain, if
A watches the same software repositories as B, than A might be interested in
following B because both share similar interests.

Triadic closure [41] is another concept for network based recommendation.
Suppose three community members A, B, and C and social ties between A-C
and B-C. As suggested by Granovetter, in most of these social structures, a triadic
closure occurs such that A and B are likely to become friends (or connected to
each other) the more they associate with C [41].

Network centrality of various types of vertices in a graph can be computed
to determine the relative importance of vertices (e.g., methods such as PageR-
ank [33] and HITS [32]). In social networks, network centrality techniques can
be used to estimate the importance of users [27]. The application is, for example,
expert recommendation.

In the scope of this work, we focus on the network based recommendation
type. The first type (behavioral) and the second type (similarity) are not within the
scope of this work. With regards to network based recommendation, we focus on a
centrality based approach.

3.4 Follow Recommendation

3.4.1 Authority-Based Recommendation Model

The central concept in this work is user authority. Here we follow a social network
analysis approach that is based on well established techniques including HITS [32]
and PageRank [33]. In this work, somebody is considered to be an authority if s/he
has knowledge in a given area and is recognized by the community. These two
factors are combined in a novel authority metric. The presented techniques and
algorithms build upon our previous work [27, 39]. Our previous work introduced
a social network mining framework and context-sensitive expertise ranking algo-
rithms. Here we introduce new metrics suitable for online development communities
such as GitHub. Here, the basic follow recommendation model is established upon
a user-repository graph model (in contrast to our previous work in [27]).

To illustrate the basic idea of our follow approach, without going into details, we
show the most fundamental steps in Algorithm 3.

The input of the algorithm is a person P for whom follow recommendations shall
be computed. Thus, a personalization procedure to compute recommendations is
needed. The output of the algorithm is a top-k list of people to follow. The threshold
k can be dynamically adjusted. As a first step, a query Q is created from the person
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Algorithm 3 High level follow recommendation algorithm
1: input: Person P for whom recommendations should be computed.
2: output: Top-k list of recommended people.
3: Q ← createQueryFromProfile(P)
4: D ← getPrincipleInterestDomains(P)
5: for each User u ∈ U do
6: if matches(u,D) then
7: A(u)← computeAuthorityScore(u,Q)
8: end if
9: end for

10: return sortAndFilter(A)

P’s profile (function createQueryFromProfile() in line 3). As an example, if person
P is interested in “javascript” and “closure”, then s/he may want to follow people
who work with such languages. The query would therefore consist of the keywords
Q = {“javascript”, “closure”}. The detailed mechanisms for extracting the query Q
from P’s user profile is not detailed in this work.

The next step is to extract principle interest domains for person P. Principle
interest domains are, for example, “web engineering”, “automation”, “embedded
systems development”, “physics simulations”. A person with background web
engineering and interest in javascript-based web frameworks for e-commerce may
or may not be interested in following a person with background “automation” who
is working in javascript-based industry monitoring frameworks. The application
domains can be very versatile and it may also strongly depend on the person’s
interest to follow somebody from another domain. Here, we highlight the fact that
such filtering (see matches(u,D) in line 6 which evaluates to true or false) may be
needed to improve recommendations. However, it would be beyond the scope of this
work to elaborate on filtering by principle interest domains in detail.

The core focus of this work is depicted by the function computeAuthorityScore().
Here the authority scores are computed that are used to perform a ranking of
recommended users to follow. The function sortAndFilter() truncates the list (if
desired) and returns a sorted list of people (sorted by highest to lowest authority
score).

Models to compute authority such as the popular hubs and authority approach
[32] are rooted in the link analysis domain to rank Web pages. Here we apply
link analysis mechanisms to evaluate user authority with respect to community
contributions. Detecting authoritative users is not only important for follow recom-
mendations but also for identifying key players in the community. These users have
strong impact with regards to community cohesion and evolution. The following
sections details the context-sensitive authority ranking model.
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Fig. 3.1 User-repository
graph model
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3.4.2 Personalized Authority Ranking

Here we define the follow recommendation model that is based on link analysis
techniques. The basic idea is to compute user authority based on performed
repository actions (e.g., coding activities, bug fixing, etc.). The concepts are depicted
by Fig. 3.1.

Suppose the community consists of the set of users U = {a,b,c} and the set
of software repositories R = {e, f ,g}. The user-repository graph can be modeled
as a directed bipartite graph GB(VU,VR,EB) where VU represents the set of users
and VR the set of repositories. An edge (u,r) ∈ EB is established from u to r iff
u performs an action in r. An edge between u and r is weighted by wur based on
performed actions. Each repository is associated with a programming language. In
Fig. 3.1, e and f are associated with javascript and g is associated with java. A
user gains experience in a programming language if the user performs actions in
language-related repositories. The programming languages denote the context for
our personalized authority ranking approach.

The set of users {a,b} has gained experience in javascript because they have
performed actions in the repositories e and f whose language is javascript. The user
b is experienced in javascript and java because b has performed actions in {e, f ,g}.
The users a and c are only experience in javascript and java, respectively.

A quite natural and intuitive approach to rank users and repositories in GB is to
model importance using the notion of hubs and authorities1 as introduced in [32]:

A(u) = ∑
(u,r)∈EB

H(r) H(r) = ∑
(v,r)∈EB

A(v) (3.1)

1The algorithm introduced by Kleinberg [32] to compute the scores is called Hyperlink Induced
Topic Search (HITS).
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A user u ∈ VU has high authority if u contributes to important repositories.
The authority of u is depicted by the authority score A(u). A repository r ∈ VR

is important if authoritative users contribute to it. The repository importance is
depicted by the hub score H(r). Thus, an important “hub” attracts many authoritative
users. This recursive definition of user and repository importance provides the
basis for our ranking approach. Other centrality metrics such as PageRank [33]
cannot discriminate between two types of scores. However, when compared with
PageRank, HITS is less stable to small perturbations [43]. Thus, a combined model
would bring the advantage that one can compute two scores (property of HITS)
and that the algorithm is rank stable (property of PageRank). Here we follow the
randomized HITS approach as proposed in [43]:

A(u) = (1−λa)p(u)+λa ∑
(u,r)∈EB

H(r) (3.2)

H(r) = (1−λh)p(r)+λh ∑
(v,r)∈EB

A(v) (3.3)

Equations (3.2) and (3.3) show a natural way of designing a random-walk based
algorithm following the HITS model. However, the randomized HITS approach
is, like PageRank, stable to small perturbations [43]. The symbols p(u) and p(r)
depict personalization vectors that may be assigned uniformly for each node such
that p(u) = 1

|VU | and p(r) = 1
|VR| .

Non-uniform personalization vectors result in personalized rankings (cf. person-
alized PageRank [33]). The parameters λa and λh with 0≤ λ ≤ 1 allow for balancing
between authority/hub weights and personalization weights. A typical value for λ
is 0.85 [33]. Assigning lower values to λ means that higher importance is given to
the personalization weights; thereby reducing the “network effect” of the ranking
algorithm.

The idea of our personalized authority ranking approach is to compute ranking
scores with respect to certain interest areas. The demanded areas of interest are
passed via the keyword based query Q = {q1,q2, . . . ,qn} to the ranking algorithm.
Each query keyword qn corresponds to a desired area of interest. An interest area is
identified via the name of a programming language (for example, Q= {“javascript”,
“java”}). A query returns a ranked list of people based on the demanded set of
interest areas.

Based on the discussion on personalization techniques and the depicted graph
model in Fig. 3.1, we refine the hubs and authorities approach as follows:

A(u;Q) = (1−λa)p(u;Q)+λa ∑
(u,r)∈EB

wurH(r;Q) (3.4)

H(r;Q) = (1−λh)p(r;Q)+λh ∑
(v,r)∈EB

wvrA(v;Q) (3.5)
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Using this model, the authority of user u is computed with respect to a
specific context that is given by query Q. A central role in this model plays the
personalization vector p(u;Q). Notice, also the importance [“hubness” depicted by
H(r;Q)] of a repository r is computed with respect to Q. However, since A(u;Q)
is personalized by assigning non-uniform weights to p(u;Q) also H(r;Q) will be
influenced by p(u;Q). Thus, with λh = 1 we define H(r;Q) as:

H(r;Q) = ∑
(v,r)∈EB

wvrA(v;Q) (3.6)

We substitute H(r;Q) in Eq. (3.4) and have:

A(u;Q) = (1−λ )p(u;Q)+λ ∑
(u,r)∈EB

∑
(v,r)∈EB

wurwvrA(v;Q) (3.7)

The next step is to decompose the query Q as follows:

A(u;Q) =(1−λ ) ∑
q∈Q

wqp(u;q)+λ

∑
(u,r)∈EB

∑
(v,r)∈EB

∑
q∈Q

wurwvrwqA(v;q)
(3.8)

The weight wq is associated with a particular keyword q with wq = 1
|Q| for

uniform weights and ∑q wq = 1. In the next steps we apply some of the ideas of
the PageRank linearity theorem to our proposed ranking model in Eq. (3.8). This is
possible because Eq. (3.8) has a PageRank-like structure. The PageRank linearity
theorem has been originally introduced by [34] to create topic-sensitive importance
scores for Web-pages, but has not been applied in follow recommendations.

For constant λ we show that authority can be computed as A(u;Q) =

∑q∈Q wqA(u;q). We restructure Eq. (3.8) to first iterate over each q ∈ Q:

A(u;Q) = ∑
q∈Q

wq(1−λ )p(u;q)+ ∑
q∈Q

wqλ

∑
(u,r)∈EB

∑
(v,r)∈EB

wurwvrA(v;q)
(3.9)

The final step is shown in Eq. (3.10):

A(u;Q) = ∑
q∈Q

wq
[
(1−λ )p(u;q)+λ

∑
(u,r)∈EB

∑
(v,r)∈EB

wurwvrA(v;q)
]

= ∑
q∈Q

wq
[
A(u;q)

]

(3.10)
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The model as depicted by Eq. (3.10) brings the following important benefits:

• Ranking scores for individual interest areas can be precomputed and saved in a
database. This is typically done periodically in an offline manner.

• At query time, the precomputed ranking scores are retrieved and aggregated to a
composite score. This step is performed online at low computational cost.

The proposed model computes user authority with respect to a certain interest
area by using personalization techniques. This is a different mechanism than (1)
performing matching of users based on interest areas and then (2) computing
authority without using personalization techniques. In our approach, authority of
users is computed by considering all repositories the user has performed actions
and giving preference to those repositories by using interest specific personalization
weights. This mechanism better captures community-wide reputation by not only
computing authority based on a small portion of the user-repository graph but
instead using the entire user-repository graph. Thus, our approach follows a
PageRank-like model.

In addition, our proposed model is important due to the computational com-
plexity and the inability to compute personalized rankings in an online manner
only. For large social networks and collaborative platforms such as the GitHub,
the computation of ranking scores may take a long time depending on available
hardware and resources.

3.4.3 Weights and Personalization Metrics

The edge weight wur, which is not personalized or “context” dependent (cf. also
Fig. 3.1 and related discussions), is calculated as follows:

wur =
∑t∈T f (u,r, t)

∑z∈R(u)∑t∈T f (u,z, t)
(3.11)

The set T denotes event types (i.e., the type of user action). The set R(u) depicts
all repositories u is connected to in GB (u’s neighbors). The function f (u,r, t)
retrieves the event count of user u in repository r of event type t.

As mentioned before, personalization is done for individual interest areas and
ranking scores are precomputed offline. Assume α is an interest area and p(u;α) is
the corresponding personalization vector for users. Generally, we assign to p(u;α)
an interest area specific weight and non-interest area specific weight. For brevity, let
R(u;α) = match(u,α) be the set of u’s repositories matching the interest area α .
Equation (3.12) defines the personalization vector p(u;α):

p(u;α) = w1 ∑
r∈R(u;α)

wur +w2kin(u;G)/ ∑
v∈VU

kin(v;G) (3.12)
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with w1 +w2 = 1. The first part ∑r∈R(u;α) wur assigns interest area specific weights
to p(u;α). If a given user performs many actions in interest area related repositories
(i.e., R(u;α)) then also the area specific weight will be higher. The interest area
related weight will be more important than the other part and thus w1 > w2. The
second part kin(u;G)/∑v∈VU

kin(v;G) is the non-interest area specific weight where
kin(u;G) depicts u’s indegree (follower count) in the follower graph G. This weight
increases the likelihood that users with high reputation in terms of follower count are
ranked higher than users that are not followed. However, because higher importance
is given to the interest area specific weight, we ensure that users have primarily
relevant experience and not only many followers.

3.5 Data Collection

3.5.1 GitHub Community

At a high level, GitHub provides information regarding entities and events through
a REST-based API.2 Information regarding entities are, for example, user details
(followers, followings, personal user details) or details regarding repositories (e.g.,
watchers). Thus, entity information captures the current state of users, repositories,
and artifacts. GitHub also provides access to events that describe the dynamic view
and state changes. Events are generally generated by user actions. Technical details
regarding the REST API interface as well as the event structure can be found in
[21] and online at [44]. The GitHub archive [45] offers access to GitHub events.
Events can be downloaded in JSON format and inserted into a database for query
processing.

We collected GitHub data using the following two methods:

• We retrieved the entire follower/following graph using the GitHub API. The
graph was obtained in December 2012.

• We further downloaded all GitHub events between March 11, 2012 and Decem-
ber 12, 2012 from the GitHub archive [45] amounting for roughly 10 months of
event data. When performing this research, event data was available starting from
March 11, 2012.

Figure 3.2 gives an overview of the different event types3 captured in the
10-months time frame. The total number of events captured is 36,094,501. The
number of distinct users associated with these events is 1,052,916. The total number

2http://developer.github.com/v3/.
3Event Types: 1 PushEvent, 2 CreateEvent, 3 WatchEvent, 4 IssueCommentEvent, 5 IssuesEvent,
6 ForkEvent, 7 PullRequestEvent, 8 GistEvent, 9 FollowEvent, 10 GollumEvent, 11 CommitCom-
mentEvent, 12 PullRequestReviewCommentEvent, 13 MemberEvent, 14 DeleteEvent, 15 Down-
loadEvent, 16 PublicEvent, 17 ForkApplyEvent.

http://developer.github.com/v3/
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Fig. 3.2 Basic event statistics by type

of distinct software repositories is 2,334,921. The most common event is the
PushEvent amounting for 46 % of the overall number of events. A PushEvent is a
commit on a repository. Second is the CreateEvent with 14 % that is triggered when
an object (“repository”, “branch”, or “tag”) was created. WatchEvent, IssueCom-
mentEvent, IssuesEvent amount for 9 %, 8 %, and 5 % respectively. Detailed
descriptions regarding the semantics of event types can be found online [44]. As
expected, most events result from actual contributions such as repository commits
and the creation of objects.

Table 3.1 provides a list of most popular programming languages based on the
count of users watching repositories on GitHub. Language popularity is certainly
more biased towards the Linux community where the base technology Git emerged
from. However, this bias does not have impact on our follow recommendation
approach. On GitHub, javascript is the most popular language with most watchers.
It has more than twice as many watchers then the second ranked language.

To understand repository popularity, Fig. 3.3 shows repository watch distribu-
tions. Note, all scatter plots in this chapter have logarithmic scale on both the
x-axis and y-axis. The actual distribution of the number of repositories shown
against the number of users is depicted by Fig. 3.3a. The number of languages
watched by how many users is shown by Fig. 3.3b. The depicted distribution in
Fig. 3.3a follows a power law with N(k) ∼ k−1.97 with 132,446 users watching one
repository and one user watching 28,080 repositories. In total 406,376 repositories
are watched by 327,222 users. Figure 3.3b the number of users over the number of
watched languages. The basic characteristics are that 152,577 users watch exactly
one language type and the maximum number of languages is 73 watched by one
actor.
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Table 3.1 Top-20 watched
languages

Rank Language Watchers ↓
1 javascript 1,004,137

2 ruby 401,694

3 python 273,070

4 objective-c 243,615

5 php 212,604

6 java 170,359

7 c 128,394

8 c++ 92,470

9 shell 63,258

10 c# 49,934

11 coffeescript 44226

12 viml 42595

13 scala 26948

14 perl 26757

15 clojure 24525

16 go 20771

17 emacs lisp 13948

18 erlang 13834

19 actionscript 13339

20 haskell 11378
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Fig. 3.3 Watched repository and number of languages. (a) Watched repositories. (b) Number
languages

3.5.2 User Activity by Location

The next step in our analysis is to map user activity to geographic location. User
activity is observed through the number of events (regardless of event type). We
extract location information from events and group events by location and repository
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Fig. 3.4 Number of events by country

language. We obtained triples of location, programming language, and frequency
of event occurrence. Based on the resulting triples, we perform manual filtering
to remove invalid information. Incomplete information (e.g., missing country) has
been corrected where possible. The resulting data has been overlaid on a world map
and color-coded by frequency. This will be later shown in Fig. 3.5. In total, we have
collected 758 location, programming language, and frequency of event occurrence
triples based on 5,615,375 events with valid location information.4

First of all, we give a summary of activity by country. Figure 3.4 shows the
percentage of activity by country based on the aforementioned number of events
(about five million events). As shown in Fig. 3.4, the USA has the largest share with
38.3 % followed by three European countries—the UK, Germany and France—and
two Asian countries—Japan and China. India, an emerging market for software
development, still ranks only at place 14. The next step is to provide detailed
location information by showing a heatmap based on GitHub events. The heatmap is
weighted by event count (best viewed in color online). The resulting map is shown
by Fig. 3.5.

Most user activity clearly happens in the USA and in Europe (see Fig. 3.5).
Within these regions, activities span also the largest geographic location with events
originating from many different cities. In the USA, most events originate from cities

4Location information is valid if the location can be mapped correctly to a geographic place.
GitHub users may provide false location information which we are unable to control or validate.
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Fig. 3.5 Mapping user activities to location

located on either the east- or the west-coast. Events in Europe are scattered among
many different cities. In Russia, for example, events almost exclusively originate
from Moscow.

3.5.3 Programming Languages

In the following we compare the actor interest across programming languages.
The question we attempt to answer is whether actors prefer to watch a pair of
programming languages (e.g., java and c#) and what are the similarities between
languages. This is expressed as the overlap of watchers. Suppose the set of users Ul1
watches language l1 and the set of users Ul2 watches language l2, than the overlap
similarity of watchers by language is calculated as:

simwatchers(Ul1 ,Ul2) =
|Ul1 ∩Ul2 |

|Ul1 |
(3.13)

Figure 3.6 shows a matrix plot using a color grid to depict watcher similarities.
We selected the top-20 languages to compare the joint interest of watchers across
programming languages. Notice, the overlap similarity metric used in this context
[cf. Eq. (3.13)] is asymmetric and thus the matrix in Fig. 3.6 is also asymmetric.
Both axis show programming languages sorted by popularity: left-right (x-axis) and
top-down (y-axis).

Javascript-based repositories have the largest number of watchers and thus most
other languages share a high degree of similarity in terms of common watchers
with javascript (see first column). Scala and clojure have high similarities with java
(see column 6), which is not surprising due to their close relationships to java at
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Fig. 3.6 Overlap similarities of watchers per language

a technical level (both languages target the java virtual machine as an execution
platform). The languages go, erlang, and haskell have high similarities with the c
language (see column 7). Other languages have surprisingly low similarities with
the language c# and vice versa (see column and row 10).

Figure 3.7 shows the hierarchical clustering plot which was created based on
the overlap similarities of watchers per language. The “correlation” metric was
used to calculate the pairwise distance between pairs of objects. The agglomera-
tive hierarchical cluster tree was created through the average linkage method to
measure the distance between clusters. Cluster quality was evaluated using the
cophenetic correlation coefficient to compare quality against different metrics (e.g.,
“correlation” metric versus “city block metric”). The value of the coefficient using
the “correlation” metric and average linkage was 8.13, which denotes a suitable
configuration when compared with other configurations (i.e. metrics).

The observation in Fig. 3.7 are consistent with the previous discussions and
present a good clustering of languages. A low distance presents a high similarity
based on high watcher overlaps. The language with the lowest similarity (c#) is
shown at the bottom of the figure.

3.5.4 Follower Graph and Reciprocity

Follower Graph Not only user-repository relations are used in our recommenda-
tion model but also follower relations. Therefore, we analyze GitHub’s follower
graph. The follower graph counts 1,105,150 users and 1,898,034 following relations
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Fig. 3.8 Follower graph degree distributions. (a) Degree. (b) Followers/following

(edges). Figure 3.8 plots the degree, the indegree (how many followers a given
user has) as well as the outdegree (how many users a given user is following)
distributions of the graph G.

One can observe a typical power-law distribution with degree N(k) ∼ k−1.64,
indegree (Followers) with N(k) ∼ k−1.49 and outdegree (Followings) with N(k) ∼
k−1.77. Nearly 70 % of users (767,975) have no followers (zero indegree) and again
about 70 % of users (769,283) do not follow any other user (zero outdegree). Power-
law degree distributions are an indicator that the GitHub follower graph exhibits
similar structural characteristics as other social networks.



50 3 Follow Recommendation in Communities

Reciprocity is the concept in directed social networks that two actors are mutually
connected to each other (see for example [22]). In a network such as the follower
network of GitHub or also Twitter this means that the reciprocal relation between u
and v is given if u follows v and v follows u. In the following discussions we will call
the reciprocal neighbors of a given user “reciprocal friends”. We analyze reciprocity
in the context of our work because reciprocity information could be a valuable
source for the follow recommendation model. In addition, analyzing reciprocity
helps understanding the primary use of the following feature. The following feature
could be used to maintain personal relations or on the contrary to follow popular
community members (“stars” or “gurus” which are typically hubs in the social
network). Depending on the primary use, the recommendation model could be
adjusted to the needs of the platform.

The GitHub follower network has very low reciprocity. Only 13 % of user
pairs have a reciprocal relationship and 87 % of user pairs have an uni-directional
relationship. To compare GitHub’s reciprocity with other social network sites:
Flickr [26] has a reciprocity of 68 % and a social networking site for personal
communications operated by Yahoo! [28] has 84 %. These sites have much higher
reciprocity. Twitter has also a low reciprocity of only 22 % as reported in [7]. Also
on GitHub, 86 % of users are not followed by their followings.

These observations with regards to reciprocity yield the conclusion that the
GitHub follower graph is to a large degree comparable to an information service
such as Twitter rather than a typical social (friend) network. A possible explanation
for this behavior is that on GitHub many users follow other popular users to get
updates regarding their coding activity instead of maintaining personal relations.
Our recommendation model is well suited for such a social network because
it is based on the concept of authority and reputation. If reciprocity would be
higher, other recommendation techniques such as the triadic closure model utilizing
(existing) personal relations may be considered as well.

Based on the presented GitHub data, we performed various ranking experiments,
which are shown next.

3.6 Evaluation

We perform ranking experiments to analyze the quality of the follow recommenda-
tion approach. We use the previously developed recommendation model as detailed
Sect. 3.4. The goal of our evaluation is to understand the quality and impact of
the personalization techniques. This is done by comparing the top-k results of
differently personalized rankings and their results. Since all data and user profiles
are public available, we perform ranking and check the GitHub homepages and
activities of the top-ranked users. The results can also be easily verified by the
reader.

For λ we use a value of λ = 0.9 for all experiments. A usual value for λ is within
the range 0.8 ≤ λ ≤ 0.9. The metric weights w1 and w2 are set to w1 = 0.9 and
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Table 3.2 Top-10 follow
recommendations without
personalization

Rank User kout Followers

1 mojombo 9 8,570

2 torvalds 2 8,377

3 defunkt 21 8,373

4 schacon 19 5,748

5 paulirish 61 5,694

6 jeresig 3 4,925

7 pjhyett 1 4,509

8 ryanb 139 4,081

9 android 86 3,889

10 visionmedia 299 3,725

w2 = 0.1; thereby giving higher importance to expertise area specific personalization
weights. The weights and personalization are calculated based on the frequency of
the various GitHub events.

3.6.1 Recommendations Without Personalization

The first results are calculated without personalization (i.e., the interest area-specific
metrics and personalization weights are all zero). The top-10 results are shown by
Table 3.2. The actual GitHub user profile can be found online using the link: https://
github.com/User.

The top-10 list in Table 3.2 gives a list of distinguished software engineers and
community contributors. Users at rank 1 (mojombo), 3 (defunkt), 4 (schacon), and
7 (pjhyett) are GitHub staff members and, not surprisingly, rank among the top.
The Linux father torvalds ranks at position 2. At positions 5 (paulirish) ranks a
front-end developer and Google Chrome developer relations engineer. At 6 (jeresig)
ranks the creator of the jQuery javascript library. At 8 (ryanb) ranks a producer
of ruby on rails screencasts and at 9 (android) ranks the “android” user associated
with the android framework, kernel, and system core. At 10 (visionmedia) ranks a
javascript contributor. The third column in Table 3.2 shows the outdegree kout in GB

(i.e. the number of repositories the user is involved in). There is a correspondence
between rank and number of followers. It becomes already apparent that the
top-10 ranked users in Table 3.2 may have very diverse expertise areas with
regards to programming languages. We observe a mixture of “javascript”, “c”, and
“java” experts.

https://github.com/{User}
https://github.com/{User}
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3.6.2 Personalized Recommendations

Thus, as the next step we take full advantage of personalization and perform ranking
for the interest area “javascript”. Table 3.3 shows the top-10 ranking results. The
second column shows users and repositories. For each user we provide the top-5
repositories by number of user contributions.

The repository language (if available) is provided in parenthesis next to the
repository name. The actual number of repository actions has been omitted for
privacy reasons. Furthermore, kout depicts the outdegree of a user in GB (the number
of repositories a user has been working on), kin depicts the repository indegree
(the number of contributors), and the column Followers showing the numbers of
followers.

By looking at the results in Table 3.3, two aspects become immediately appar-
ent:

1. The top-10 list is populated by users that contribute to popular javascript
repositories.

2. The list is no longer correlated in a strict order by the number of followers.

Both observations demonstrate the intended behavior of our ranking algorithm.
Not only high reputation in terms of number of followers is a predominant factor,
but also the number of contributions to relevant repositories boosts user authority.
By doing so, users gain expertise in a given interest area and are thus ranked at high
positions by our ranking algorithm.

Looking at the actual ranked list, the users ranked at 1 (fat) and 2 (caniszczyk)
are employees at Twitter and provide contributions to the most popular javascript
repository. Ranked at position 3 (mdo) is a designer who is employed at GitHub.
What all users have in common is that they are actively engaged in javascript
development and are also mostly followed by many people. However, this is not
a requirement to be ranked at a top position (for example, see user ranked at 2 who
has 91 followers).

To evaluate other interest areas and combinations of languages, we have per-
formed ranking for the keywords {“java”, “scale”, “closure”} (see Table 3.4) and
also {“objective-c”, “c”} (see Table 3.5). Due to space constraints, we provide only
the top-3 ranked users as follow recommendation.

As clearly visible in Table 3.4, the top-rankings change in favor of the demanded
interest areas (i.e., java and related languages). All top-3 ranked actively contribute
to java-related repositories. The first ranked user is also popular in terms of
number of followers. Second ranked is the Apache Software Foundation, which
is clearly a top-authority in java software development. The GitHub user apache
can be regarded as a proxy for the real persons behind the account. The third user
contributes to similar or the same repositories (e.g., “storm”) as the first ranked
users. Storm is a distributed realtime computing system in some features similar to
Hadoop. Although present in the query, scala repositories are not listed among the
top-3 (top-listed) repositories. Finally, we show the results for {‘objective− c′, ‘c′}
in Table 3.5.
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Table 3.3 Top-10 follow recommendations for “javascript”

Rank User and top-5 repositories kout / kin Followers

1 fat 30 1,597

/twitter/bootstrap (js) 4

/twitter/bower (js) 8

/maker/ratchet js 3

/twitter/hogan.js (js) 3

/twitter/recess (js) 2

2 caniszczyk 34 91

/twitter/bootstrap (js) 4

/twitter/bower (js) 8

/twitter/ambrose (js) 4

/twitter/twitter.github.com (js) 1

/twitter/bootstrap-server (js) 3

3 mdo 6 879

/twitter/bootstrap (js) 4

/twitter/bootstrap-server (js) 3

/mdo/github-buttons 1

/mdo/code-guide 1

/mdo/sublime-snippets 1

4 paulirish 61 5,694

/h5bp/html5-boilerplate (js) 8

/twitter/bower (js) 8

/yeoman/yeoman js) 7

/h5bp/mobile-boilerplate (js) 4

/paulirish/infinite-scroll (js) 3

5 addyosmani 46 3,110

/addyosmani/todomvc (js) 3

/twitter/bower (js) 8

/addyosmani/backbone-fundamentals (js) 1

/addyosmani/jquery-ui-bootstrap (js) 3

/yeoman/yeoman (js) 7

6 visionmedia 299 3,725

/visionmedia/express (js) 1

/visionmedia/jade (js) 1

/visionmedia/mocha (js) 2

/senchalabs/connect (js) 1

/component/component (js) 2

7 jzaefferer 53 302

/jquery/jquery (js) 10

/jquery/jquery-mobile (js) 14

/jquery/jquery-ui (js) 9

/jzaefferer/jquery-validation (js) 2

/jquery/qunit (js) 5

(continued)
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Table 3.3 (continued)

Rank User and top-5 repositories kout / kin Followers

8 wycats 43 3,259

/jquery/jquery (js) 10

/rails/rails (ruby) 21

/emberjs/ember.js (ruby) 7

/wycats/handlebars.js (js) 3

/tildeio/rsvp.js (js) 3

9 scottgonzalez 47 261

/jquery/jquery (js) 10

/jquery/jquery-mobile (js) 14

/jquery/jquery-ui (js) 9

/jquery/qunit (js) 5

/jquery/plugins.jquery.com (js) 3

10 mbostock 17 1,477

/mbostock/d3 (js) 1

/square/cubism (js) 1

/square/crossfilter (js) 1

/square/cube (js) 2

/d3/d3-plugins (js) 6

Table 3.4 Top-3 follow recommendations for “java”, “scala”, and “clojure”

Rank User and top-5 repositories kout / kin Followers

1 nathanmarz 23 857

/nathanmarz/storm (java) 2

/nathanmarz/cascalog (clojure) 2

/nathanmarz/storm-starter (java) 1

/nathanmarz/storm-contrib (java) 9

/nathanmarz/storm-deploy (clojure) 2

2 apache 242 0

/apache/cassandra (java) 1

/apache/incubator-cordova-android (java) 1

/apache/mahout (java) 1

/apache/lucene-solr (java) 1

/apache/hadoop-common (java) 1

3 jasonjckn 9 21

/nathanmarz/storm (java) 2

/nathanmarz/storm-contrib (java) 9

/nathanmarz/storm-deploy (clojure) 2

/nathanmarz/storm-mesos (java) 2

/jasonjckn/storm 1
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Table 3.5 Top-3 follow recommendations for “objective-c” and “c”

Rank User and top repositories kout / kin Followers

1 soffes 45 1,100

/nothingmagical/cheddar-ios (objective-c) 2

/soffes/sstoolkit (objective-c) 1

/soffes/sspulltorefresh (objective-c) 1

/soffes/sskeychain (objective-c) 1

/soffes/ssziparchive (c) 1

2 torvalds 2 8,377

/torvalds/linux (c) 1

/torvalds/subsurface (c) 2

3 php-pulls 23 2

/php/php-src (c) 2

/php/systems (c) 2

/php/pecl-networking-mqseries (c) 2

/php/web-php (php) 2

/php/php-gtk-src (c++) 1

Here we see also a similar behavior as previously. Personalization results in
rankings of users who are experienced in the demanded interest areas. Top ranked is
a popular objective-c developer (according to his online user profile) who has also
many followers. Second ranked is torvalds who has undoubtedly high expertise in
“c”. Third is also a proxy-account php-pulls. Similar to apache, the account is a
proxy for the real people (experts) behind it.

To summarize the results of our follow recommendation model, users within the
top-k ranking results are very active in the context of the specified interest areas by
contributing to popular software repositories. This is the main goal of our authority-
based recommendation approach. Thus, we conclude that our model is well suited
for personalized, context-sensitive follow recommendations.

3.7 Conclusions

Online software development has taken a new path where social networking features
can be used to discover users and repositories. These features help users to stay
up-to-date regarding new development efforts and community activities. Here we
proposed a novel follow recommendation approach that is based on the concept
of user authority. Instead of simply matching users by static skill profiles, we
proposed a network-centric approach taking a user’s community engagement as well
as social metrics into account. We have systematically derived a mathematically
sound model to measure user authority based on activity (e.g., repository commits)
and community reputation (follower degree).
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The presented concepts have been evaluated using a real world dataset. To
date, GitHub is the most popular platform offering collaboration features, Wikis,
development related tools (e.g., issue tracking) and social networking features such
as following. We have obtained a GitHub-based dataset including the follower
graph and relevant user actions. Based on the dataset, we have performed a number
of experiments to test the proposed recommendation approach. Results show that
our personalized follow recommendation approach delivers better recommendations
than non-personalized recommendations.

In our future work, we will study more fine grained repository actions for
follower recommendations. This includes analyzing the detailed location of changes
in the source code as well as details regarding criticality of bugs fixes.
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Chapter 4
Partner Recommendation

Abstract In this chapter we present a novel approach for measuring and combing
various criteria for partner importance evaluation in scientific collaboration net-
works. The presented approach is cost sensitive, aware of temporal and context-
based partner authority, and takes structural information with regards to structural
holes into account. The applicability of the proposed approach and the effects
of parameter selection are extensively studied using real data from the European
Union’s research program.

4.1 Social Network-Based Collaboration

Scientific collaboration in an international environment takes place among partners
such as organizations, universities or research institutes to jointly perform projects.
The main motivation for organizations and individual research groups to collaborate
is to enable knowledge and resource sharing to effectively perform research projects.
Scientific collaboration can be defined as interaction taking place within a social
context among two or more scientists that facilitates the sharing of meaning and
completion of tasks with respect to a mutually shared, superordinate goal [1].

However, the success of research and innovation is based on the right balance
between cooperation and competition. Hence, formation of coalitions and consortia
is influenced by partner reputation [2], institutional constraints, and mechanism
of self-organization [3]. Scientific collaboration can be analyzed at the level of
researchers through co-authorship and citation networks [4–6] or at the level of
organizations or research institutions [7]. The former has been widely studied by
existing research while the latter lacks a principled approach for selecting and
aggregating ranking criteria that may be influenced by context. Generally, scien-
tific collaboration and endorsement can be analyzed according to three different
methods [8]: (1) qualitative methods such as using a questionnaire-based approach,
(2) bibliometric methods including publication and citation counting or co-citation
analysis, and (3) complex network methods including network centrality metrics
such as PageRank [9] or Hyperlink Induced Topic Search (HITS) [10]. Here we
focus on the analysis of scientific collaboration at the organizational or institutional
level. We apply complex network methods to automate the analysis of partner
importance in scientific collaboration. In this work, importance is a concept that

© Springer International Publishing Switzerland 2015
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is governed by multiple factors including average cost of a partner, temporal trend
and context of partner authority, and partner importance with regards to effective
size of the partner’s social network. Effective size in the context of structural holes
and social networks means low redundancy among social contacts thereby yielding
control benefits of individuals. Here we apply a similar principle but focus on the
organizational level rather than individuals in social networks.

In our previous work [11] we introduced an approach for measuring contextual
importance in scientific collaboration networks. In this work, we build upon our
previous work [11] but significantly expand the concepts. Here we provide the
following novel key contributions:

• We introduce a personalized partner authority model that is able to capture
context-dependent and time-aware partner reputation.

• We introduce a model to measure structural importance of organizations embed-
ded in scientific collaboration networks. The idea of our structural importance
metric is drawn from the notion of structural holes as established in a sociological
research context.

• To support partner selection using multiple-criteria, the factors contributing to
a partner importance are aggregated through a systematic approach to a single
partner importance ranking score. Here we apply analytic hierarchy process
(AHP) to derive the partner importance score.

• We present experimental results by providing a comprehensive study on the
influence of different parameters using real data from the EU’s Seventh Frame-
work Programme (FP7) for research in Information and Communication Tech-
nology (ICT).

This chapter is structured as follows. Section 4.2 gives an overview of related
work and literature in the context of network formation and network analysis. In
Sect. 4.3 our personalized partner authority model is introduced. Section 4.4 intro-
duces the structural importance model and Sect. 4.5 details the software framework
and the analytic hierarchy process to compute the final partner importance scores. In
Sect. 4.6 the evaluation results are presented followed by the conclusion and outlook
to future work in Sect. 4.7.

4.2 Background in Strategic Formation

We structure this background section into two basic areas: network formation
in the context of collaborative environments and network analysis methods with
particular emphasis on authority ranking. From a technique point of view, many
approaches found in both network formation and network analysis methods for
authority ranking are based on graph theory and algorithms. In this section, we
review literature in both areas as they will provide the foundation for our work.
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Network Formation The rapid advancement of ICT-enabled infrastructure has
fundamentally changed how businesses and companies operate. Global markets
and the requirement for rapid innovation demand for alliances between individual
companies [12]. It is widely agreed that knowledge of the structure of interaction
among individuals or organizations is important for a proper understanding of a
number of important questions such as the spread of new ideas and technologies
and competitive strategies in dynamic markets [13]. Work by [14] investigated
the evolutionary dynamics of network formation by analyzing how organizational
units create new linkages for resource exchange. The potential gains from bridging
different parts of a network were important in the early work of Granovetter [15]
and are central to the notion of structural holes developed by Burt [16, 17]. The
theory is based on the hypothesis that individuals can benefit from serving as
intermediaries between others who are not directly connected. A formal approach to
strategic formation based on advanced game-theoretic broker incentive techniques
was presented in [18]. In [19] group formation in social networks is studied.

Network Analysis We propose a model for importance that is based on well-
established techniques such as the notion of hubs and authorities [10] and PageR-
ank [9]. PageRank can be personalized [9] to estimate node importance with regards
to certain topics [20–22]. After the seminal work of [9] and the far-reaching
work of [21], related research (see also [23]) addressed, for example, efficient
computation of personalized PageRank [24, 25] and a generalization of personalized
PageRank towards bipartite graphs [26]. In [27], the authors proposed time-
aware authority ranking by considering temporal properties of scientific publication
activity. Our previous work addressed PageRank personalization techniques for
expertise ranking in a social network context [28, 29].

In this work, we propose a new framework which utilizes both information from
structural holes and authority importance scores to discover valuable collaboration
partners. Here we propose a unified HITS/PageRank model that is able to measure
network importance at the individual as well as the organizational or institutional
level with respect to a certain context. In contrast to existing rankings such as
the Shanghai academic ranking,1 our approach is able to capture importance at
a fine grained contextual level. Our approach is able to utilize various additional
ranking parameters including desirable partner properties (e.g., high topic-sensitive
authority) and low undesirable partner properties (e.g., partner costs). At the core
of this framework are link-based algorithms such as HITS and extensions towards
personalized, time-aware PageRank, structural metrics to measure the brokerage
potential of a given network node, and an analytic hierarchy process (AHP)
algorithm [30] to aggregate these metrics into a single ranking score.

1www.shanghairanking.com.

www.shanghairanking.com
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The proposed model is tested with data from the ICT research projects having
received grants under the EU’s FP7 program. The data as described in [31] and
covers a period from 2007 to 2011.

4.3 Reputation Model

Here we formalize the notion of organization authority as it will be used in
our ranking model. Authority is automatically calculated using network analysis
techniques. The novelty of the approach is that authority is put into context by
considering topic information. Well-established models provide the foundational
concepts and basis. Specifically, we base our approach upon the model of hubs and
authorities as developed by [10].

4.3.1 Basic Definitions

We start with a definition of basic concepts that are used throughout this work. Let us
consider a simple collaboration scenario in a scientific community where individual
partners (e.g., organizations, research institutes, and universities) collaborate in the
context of research projects.

Figure 4.1 shows a set of organizations {o1,o2,o3} and a set of research projects
{p1,p2,p3}. Each project is associated with a certain topic that determines the
context of the performed collaboration (for example, “services” or “internet”).
Organizations are involved in projects by having certain roles. Roles include
project coordinator and project partner. In addition to the involvement relation, a
weighted edge is created from the project to the organization to depict the degree
of involvement. For example, o1 is involved in projects p1 and p2 with weights

O1

Services internet

O2

O3

p1 p2
p3

weight
relation

collaboration
relation

involvement
relation

community
topic

project

organization

Symbols:

W11

W12
W21

W22 W23

W32

W33

a b

Fig. 4.1 Scientific collaboration environment and definitions. (a) Scientific collaboration environ-
ment. (b) Legend
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w11 and w21 respectively. In our work, the weight will be based on the funding an
organization receives in the context of a project. More funding typically means that
an organization is able to allocate more (human) resources to the project and thereby
performing more work. Finally, based on joint projects performed by organizations
we model collaboration relations among them. Since o1 and o2 have been involved in
the joint projects p1 and p2, a collaboration relation between o1 and o2 is established
as a dashed line. Similarly, o2 and o3 have been involved in the joint projects p2 and
p3 and therefore a collaboration relation between o2 and o3 is established. Also, a
collaboration relation between o1 and o3 exists because they jointly worked on p2.
A collaboration relation is a mutual (undirected) edge.

4.3.2 Hubs and Authorities

Let us apply the notion of hubs and authorities to a collaboration environment as
depicted by Fig. 4.1. A project is regarded to be important if the organizations
contributing to it are also regarded to be important (e.g., knowledgeable and
reputable). In turn, the importance of an organization is based on its involvement in
important projects. This is a recursive definition of importance and can be modeled
by using the intuitive notion of hubs and authorities as proposed by [10].

A(o) = ∑
(p,o)∈EP

H(p) H(p) = ∑
(p,u)∈EP

A(u) (4.1)

In the model, an organization o obtains an authority score depicted by A(o) and
a project p obtains a hub score denoted by H(p). The drawback of this model is
the “stability” of rankings. A ranking algorithm is stable if the algorithm returns
similar results upon small disturbances. We follow the randomized HITS approach
as proposed in [32] and expand the equations in Eq. (4.1) as follows:

A(o) = (1−λa)δO(o)+λa ∑
(p,o)∈EP

H(p) (4.2)

H(p) = (1−λh)δP(p)+λh ∑
(p,u)∈EP

A(u) (4.3)

This adjusted model is a natural way of designing a random-walk based algorithm
following the HITS model. The randomized HITS approach is, like PageRank, sta-
ble to small perturbations [32]. The symbols δO(o) and δP(p) depict personalization
vectors that may be assigned uniformly for each node such that δO(o) = 1

|VO| and

δP(p) = 1
|VP| . Non-uniform personalization vectors result in personalized rankings.

The parameters λa and λh with 0≤ λ ≤ 1 allow for balancing between authority/hub
weights and personalization weights. A typical value for λ is 0.85 [9]. Assigning
lower values to λ means that higher importance is given to the personalization
weights; thereby reducing the “network effect” of the ranking algorithm.
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4.3.3 Query-Sensitive Personalization

Let us define the query-sensitive authority score:

A(o;Q) = (1−λa)δO(o;Q)+λa ∑
(p,o)∈EP

wpoH(p;Q) (4.4)

Similarly, let us define the query-sensitive hub score:

H(p;Q) = (1−λh)δP(p;Q)+λh ∑
(p,u)∈EP

wpuA(u;Q) (4.5)

The edge weights wpo and wpu are based on the organizations’ degree of project
involvement. Particularly, the weight wpo is based on the funding received by
organization o in project p and is calculated as

wpo =
funding(p,o)

∑v∈adj(p) funding(p,v)
(4.6)

where adj(p) depicts the set of nodes adjacent to p (i.e., the set of organizations
involved in project p). To compute authority scores using a single equation, which
is the desired goal of our approach, we substitute H(p;Q) in Eq. (4.4) by Eq. (4.5)
and have:

A(o;Q) = (1−λa)δO(o;Q)+λa(1−λh) ∑
(p,o)∈EP

wpoδP(p;Q)

+λaλh ∑
(p,o)∈EP

∑
(p,u)∈E

wpowpuA(u;Q)
(4.7)

Based on Eq. (4.7), let us define the personalization vector δ ′
O(o;Q) as follows:

δ ′
O(o;Q) =

1−λa

1−λh
δO(o;Q)+λa ∑

(p,o)∈EP

wpoδP(p;Q) (4.8)

If we use the same parameter values for λa and λh [due to symmetry of Eqs. (4.4)
and (4.5)] such that λa = λh, Eq. (4.8) simplifies to:

δ ′
O(o;Q) = δO(o;Q)+λ ∑

(p,o)∈EP

wpoδP(p;Q) (4.9)

In the following step we rewrite Eq. (4.7) by using the personalization vector
p′(u;Q) as defined in Eq. (4.9).

A(o;Q) = (1−λ )δ ′
O(o;Q)+λ 2 ∑

(p,o)∈EP

∑
(p,u)∈EP

wpowpuA(u;Q) (4.10)
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As one can see, Eq. (4.10) has a PageRank-like structure. An important concept
for personalization based on the PageRank model is the linearity theorem as
introduced in [21]. The theorem states that for any personalization vectors δ1,δ2

and weights w1,w2 with w1 +w2 = 1, the following equality holds:

PPV(w1δ1 +w2δ2) = w1PPV(δ1)+w2PPV(δ2) (4.11)

The linearity theorem states that personalized PageRank vectors PPV can be
composed as the weighted sum of PageRank vectors. Equation (4.12) shows how to
derive the weighted sum of personalized authority ranking scores using Eq. (4.10).
The goal is to obtain a structure as depicted by the right part of Eq. (4.11). The
weight wq is associated with a particular keyword q with wq = 1

|Q| for uniform
weights and ∑q wq = 1.

A(o;Q) =(1−λ )δ ′
P(o;Q)+λ 2 ∑

(p,o)∈EP

∑
(p,u)∈EP

wpowpuA(u;Q)

=(1−λ ) ∑
q∈Q

wqδ ′
P(o;q)+λ 2 ∑

(p,o)∈EP

∑
(p,u)∈EP

∑
q∈Q

wqwpowpuA(u;q)

= ∑
q∈Q

wq(1−λ )δ ′
P(o;q)+ ∑

q∈Q

wqλ 2 ∑
(p,o)∈EP

∑
(p,u)∈EP

wpowpuA(u;q)

= ∑
q∈Q

wq
[
(1−λ )δ ′

P(o;q)+λ 2 ∑
(p,o)∈EP

∑
(p,u)∈EP

wpowpuA(u;q)
]

= ∑
q∈Q

wq
[
A(o;q)

]

(4.12)

As stated before, the benefit of the model is the ability to precompute authority
scores for particular topics, save them in a database, and aggregate the precomputed
authority scores later at query time. Suppose the set of topics, as extracted
by the Topic Analyzer, is given as T = {T1,T2, . . . ,Tn}. For each topic
authority scores are calculated A(o;T1),A(o;T2), . . . ,A(o;Tn) and utilized by the
Authority Aggregator to compute

A(o;Q) = ∑
q∈Q

wqA(o;Tq) (4.13)

where Tq is the topic matching query keyword q. Next, we describe the time-aware
authority model.

4.3.4 Time-Aware Authority

We have extensively discussed the notion of authority and the idea of computing
authority scores for individual topics that can be aggregated at query time. Now
we turn to the definition of the personalization vectors δP and δO. Recall, δP
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holds personalization weights for projects and δO holds personalization weights for
organizations. For δP we use a straightforward model to calculate personalization
weights

δP(p) =
funding(p)

∑proj∈VP
funding(proj)

(4.14)

where funding(p) depicts the monetary funding received by project p. For simplicity,
we do not consider the query context Q for the project-based personalization vector.

The next discussion is related to the concept of time-aware and topic-based
authority ranking. Thus, we establish metrics to calculate the personalization
weights of δO. Here topic-based personalization and time-aware weighting is
applied. Recall that a topic is identified by a single keyword. Organizations typically
perform numerous projects that are related to one or more topic(s). Thus, each
organization has a set of topics including topic frequency associated with it.
Furthermore, frequencies of topics are counted by year. An example for such data
would be (“OrgA”, 2011, “services”, 5) where “OrgA” is the organization name,
2011 the specific year, “services” the given topic and the number 5 an example
of a frequency count. As a first step let us define the weight function WT (o,y;Tx)
that obtains the frequency count of organization o in year y for some topic Tx.
The frequency count is based on how many projects related to the given topic the
organization has started in the year (i.e., the year when signing the project contract).
To establish the notion of positive or negative change in topic specific weights, we
define the weight deviation function WT

Δ (o,y;Tx) as follows:

WT
Δ (o,y;Tx) = WT(o,y;Tx)− 1

|Y| ∑
y′∈Y

WT (o,y′;Tx) (4.15)

Deviation in this context means the weight WT(o,y;Tx) in year y minus the
average weight with regards to topic Tx. Straightforwardly, a positive sign means
increasing topic-based weight, a negative sign means decreasing topic-based weight
as a result of being below the average, and 0 means no change in topic-based
weights (i.e., through constant rate of projects related to topic Tx). This definition is
quite simple and captures already a notion of “trend” by analyzing the temporal
project history of an organization. The positive/negative sign shows increasing
or decreasing trend. However, WT

Δ (o,y;Tx) just analyzes the trend with respect
to organization o without considering the weights and thus performance of other
organizations. Personalization for authority ranking in collaboration networks must
be performed by considering weights in relation to all other organizations. For
brevity, let us define the set α = {WT(o1,y;Tx),WT (o2,y;Tx), . . . ,WT(on,y;Tx)}
with {o1,o2, . . . ,on} ∈ VO. Let us define the trend Tr(o;Tx) of organization o with
respect to topic Tx as:

Tr(o;Tx) = ∑
y∈Y

wy

[
WT(o,y;Tx)

max(α)
×WT

Δ (o,y;Tx)

]

(4.16)
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Tr(o;Tx) is based on the trend for topic Tx over the years Y = {y1,y2, . . . ,yn}
where yn is the most recent year, yn−1 the previous year and so forth (ordered by
recency). The first term within the square brackets measures the topic based weight
in relation to the community performance in Tx by dividing WT(o,y;Tx) by max(α).
For the top-performing organizations having the most numbers of projects related to
Tx in year y the term becomes 1. The term is multiplied by the organization specific
weight deviation function WT

Δ (o,y;Tx). The weight wy puts more emphasis on recent
years (recency factor) by being calculated as wy ∈ { 1

|Y| ,
1

|Y|−1 ,
1

|Y|−2 , . . . ,1}.
Finally, the personalization vector δO needs to be assigned by matching orga-

nizations having performed projects related to Tx and trend values Tr need to be
mapped to a positive interval. This is done because δO represents a probability
distribution (for theoretical foundations related to personalized PageRank see, for
example, [20]). Let us define the set β = {Tr(o1;Tx),Tr(o2;Tx), . . . ,Tr(on;Tx)} with
{o1,o2, . . . ,on} ∈ VO.

δO(o;Tx) =

{
1− max(β )−Tr(o;Tx)

max(β )−min(β ) , if matches(o;Tx)

0 , otherwise
(4.17)

The function matches(o;Tx) checks if o has performed projects related to Tx and
evaluates to true or false. To evaluate a query Q = {T1,T2} a simple aggregation is
performed

A(o;{T1,T2}) = w1A(o;T1)+w2A(o;T2) (4.18)

where A(o;T1) is personalized for T1 and A(o;T2) is personalized for T2. In other
words, both A(o;T1) and A(o;T2) hold topic-based and time-aware authority scores
for all o ∈ VO.

4.4 Structural Importance Model

The previous section explained in detail the authority model and ranking approach.
Here we turn to the second criteria used in our overall ranking model. We define the
notion of structural importance and detail a metric to calculate the importance. The
obtained ranking scores for structural importance are used as a second parameter
in the AHP-based aggregation [i.e., the AHP parameter SI(o;Q)]. By following
the notion of structural holes as coined by Burt [16, 17], structural holes are an
opportunity to broker the flow of information between people in an organizational
or social network. As an example, managers often act as information brokers as they
talk to many people in the project.

Structural importance captures the ability of a network node to broker infor-
mation between its neighbors (in our context organizations). A node can do so
if potential “information gaps” (or buffers) arise in the network. A broker can
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also be seen as a mediator that helps establishing communication between other
nodes. A project partner with “brokerage” capabilities is often important in project
consortia to help establish and facilitate communication among other partners. As
an example, a project consortium may be lead by an academic partner who is in
charge of coordinating the project from an administrative and scientific point of
view. Typically, exploitation and further use of project results is an important issue in
research projects. However, the consortium leader may not be the optimal partner for
transferring (or “translating”) scientific results to business. Thus, there may be a gap
between technical/scientific results and exploitation of results within an industrial
context (e.g., implementing novel solutions within an industrial environment).
With regards to this example, an organization may act as a broker by mediating
communication and transferring the knowledge to an industrial partner within the
project.

Thus, structural importance essentially focuses on mediation capabilities of
an organization as opposed to expertise/authority. Such mediators help running
projects more effectively and efficiently by (a) establishing communication between
potentially disconnected network segments that have not communicated before and
(b) help making communication more fluid and efficient. To be able to act as a
broker, gaps must exist in the network because otherwise a node looses its ability
to establish communication. The notion of redundancy provides means to express
the existence of such gaps. If there is high redundancy in terms of network edges
and communication paths in a network, the need to fill structural gaps may be very
limited. On the contrary, if a network is highly segmented and only few nodes
connect individual segments, the need for brokers and mediation opportunities may
be very high.

Let us consider a graph as depicted by Fig. 4.2. Here the graph model GOC is
used that consists of organizations and collaboration relations as undirected edges.
Each node depicts an organization with {a,b,c,o,r,u,v,z}⊂ VO. A circle surrounds
nodes that belong to a particular expertise area or community identified through A
and B. A query may be formulated to match the nodes and edges in either QA or

Fig. 4.2 Network structure
to illustrate structural
importance metric

a

c

o

u

z v

r

QA QB

b



4.4 Structural Importance Model 69

QB or both Q = QA ∪QB = {TA,TB}. An edge (v,u) ∈ GOC has a weight which
is based on the number of performed projects between v and u. The weight is
dynamically assigned depending on the query context Q. For example, the weight
of the edge (o,z) ∈ GOC may be different in QA and QB depending on the joint
projects performed by o and z (i.e., if the projects match QA or QB or both). Suppose
Q=QA∪QB, the node o has the highest number of non-redundant edges in the graph
because it connects the node sets {a,b,c} and {u,v,z} which are only reachable
via o. Thus, o has a unique position within the network because o is able to control
the information flow between both node sets. Furthermore, only o and z belong to
both expertise areas A and B but only o is connected to {a,b,c} in A. Let us define
SI(o;Q) as

SI(o;Q) = ∑
u∈N(o)

[

1− ∑
v∈N(u)

WQ
N (o,v;Q)WQ

M(u,v;Q)

]

(4.19)

where v �∈ {u,o} and N(o) the set of o’s neighbors. For SI(o;Q), we follow
Burt’s measure of the effective size of a node’s network [17]. Here the notion of
structural holes is not applied to people-based social networks, but to organization
collaboration networks (i.e., GOC). Conceptually, the effective size is the number of
nodes o is connected to, minus the redundancy in the network.

In contrast to Burt’s definition of effective size, we compute structural impor-
tance with respect to the query Q. As an example, while o in Fig. 4.2 is structurally
important in Q = QA ∪QB to establish a flow between {a,b,c} and {u,v,z}, o is
less significant if only QB is considered. Actually, within QB u has a unique position
because r is only reachable via u.

The weight WQ
N (o,v;Q) in Eq. (4.19) shows the query-sensitive normalized edge

weight between o and v and is calculated as

WQ
N (o,v;Q) = ∑

q∈Q

wq
ov

∑u∈N(o)wq
ou

(4.20)

where wq
ov is the weight associated with (o,v) ∈ EO and calculated as the number

of joint projects between o and v matching the query keyword q. Furthermore, the
weight WQ

M(u,v;Q) in Eq. (4.19) depicts the query-sensitive marginal edge weight
between u and v and is calculated as follows:

WQ
M(u,v;Q) = ∑

q∈Q

wq
uv

max({wq
un|∀n ∈ N(u)}) (4.21)

The marginal weight of u with neighbor v is the weight wq
uv (also based on the

number of matching joint projects between them) divided by u’s strongest weight
with anyone of its neighbors N(u). If none of the projects match q, the weight is
assigned to wq

uv = 0.
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4.5 Framework and Ranking Algorithm

4.5.1 Software Framework

As already outlined before, our solution approach to support multi-criteria partner
selection in scientific communities utilizes heavily graph-based models. Graph-
based models are widely used in complex- and social-network analysis. Figure 4.3
shows the solution framework as a layered view.

Data Management The layer underneath the top-layer shows the data management
that is responsible for retrieval of project relevant data, managing the needed graph
structures to perform analysis and ranking, and persistence management of analysis
and ranking results. From the top-layer (Offline analysis) point of view, the data
management can be access via the Data Manipulation Handler in a CRUD
(Create-Read-Update-Delete) manner. The Data Provider offers read access to
graph structures and offline mining and ranking results. The Project Database
contains information such as organizations, projects, project involvements, roles,
funding, project descriptions, date of project contracts, and project duration. Let
us define some basic graph structures that are obtained from information in the
Project Database and then managed in the Graph Database.

The Corporate Policies database can only be queried but not modified by
the framework. Essentially, it contains white and black list information with respect
to preferred or denied partners. The lists are influenced by mid to long-term business
strategy.

Based on projects, organizations, and involvement relations we define two
types of graphs. First, let us define the directed project-organization graph
GPO(VP,VO,EP) that is composed of the set projects VP and the set of organizations
VO (VP and VO depicting the vertices in the graph) and the project involvement
relations denoted by the edge set EP where an edge (p,o) ∈ EP points from the
project p to organization o. Each edge (p,o)∈ EP has a weight wpo associated with it
depending on the funding the organization o receives in project p divided by the total
project funding. This type of graph is being used for organization authority ranking.
Let us define the second type of graph as the undirected organization-collaboration
graph GOC(VO,EO) consisting of the set of organizations VO depicting the vertices
in the graph and the set of collaboration relations EO. Whereas the edges EP in GPO

are based on project involvement relations pointing from projects to organizations,
the edges EO in GOC are undirected and connect two organizations. This type of
graph is being used for structural importance ranking. Details regarding these two
types of graph structures will be provided in the following.

Offline Analysis This layer deals with components that are invoked in an offline
manner (e.g., triggered by changes in the Project Database). The Topic
Analyzer extracts relevant topics from project descriptions by filtering stop words
and combining synonyms to single topics. Essentially, each topic is identified by
a single keyword that has a frequency associated with it to identify popularity of
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Fig. 4.3 Software framework

topics. Typical topics in the context of ICT research are, for example, “services” and
“internet”. Sophisticated topic models such as cross-topic relations or hierarchical
structures are not within the focus of this work (e.g., see [29] for hierarchical
topic models and topic clustering techniques). The Topic Analyzer saves topic
information in the Analysis & Ranking Database. If new topics are added,
other components such as the Authority Ranker are triggered (see later).
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The Trend Analyzer calculates trends with regards to organizations’ activities
in topics. The historical project information is used to calculate a trend in increasing
or decreasing number of projects for given topics. In a steady state (neither
increasing nor decreasing activity), the trend equals 0. Trend information is utilized
by the Authority Ranker to create topic and time-aware authority scores.
The detailed mechanisms will be discussed in later sections. The Authority
Ranker calculates numeric values for authority scores. To explain the notion of
authority as used in this work, participation of an organization in a research project
(i.e., involvement relation) is understood as a carrier of authority. By being involved
in certain projects, we assume that organizations develop knowledge with regards
to the projects’ topic(s). An organization is considered to be an authority if it has
extensive or specialized knowledge about a topic. In other words, an organization
must have collaborated in the context of a topic to be considered as an authority for
a given topic.

Online Analysis Previously, the offline analysis components were responsible
for preparing the information needed to perform online analysis and ranking.
Our decision to divide functionality into online and offline analysis was due to
computational complexity of link-based authority ranking algorithms. Computation
of authority at query time without having performed offline computation would
result in unacceptable response times at magnitudes of hours or even longer.
All information from the previous steps is made available in the Analysis
& Ranking Database. The Cost Ranker is a simple ranker that provides
a scoring function based on organizations’ average costs. The Structural
Ranker calculates numeric values for structural importance scores. The idea of
our structural importance metric is drawn from the notion of structural holes as
established in a sociological context. To detail the difference between structural
importance and authority, the notion of authority captures the importance of
an organization with regards to knowledge drawn from past project experience.
Structural importance captures a different notion of importance that is based on
the lack of information flow and connectedness of parts of the network. As stated
by Burt [16], structural holes are an opportunity to broker the flow of information
between people and control the projects that bring together people from opposite
sides of the hole. Here the notion of structural holes is not applied to people-based
social networks, but to organization collaboration networks (i.e., GOC). The goal
of our ranking approach is to identify those organizations who have the ability to
bridge structural holes and to allow for the emergence of novel innovative ideas
through brokerage of information. The Authority Aggregator combines the
authority results of offline computed authority scores.

Query Processing Suppose a coordinator attempts to establish a new consortium
and thus wants to find collaboration partners who are able to join the consortium.
Often, previous collaborators are known from first hand collaboration experience
but in today’s vibrant and fast-paced research environment it is also useful to see
the current community standing of known collaboration partners and to discover
potential new collaborators. The coordinator is able to specify a keyword-based
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query Q = {q1,q2, . . . ,qn} (using the Query Frontend) with the goal of finding
matching organizations that are ranked according to a set of criteria (i.e., cost,
structural importance and authority). The idea of our ranking approach is to compute
ranking scores with respect to certain areas of expertise. The demanded areas of
expertise are specified via the query Q and matched with topics. Each query keyword
qn corresponds to a desired area of expertise. A query returns a ranked list of
organizations based on the demanded set of expertise areas. The AHP Ranker
is used to create a composite ranking score S(o;Q) of organization o. The score
S(o;Q) is given as

S(o;Q) = AHP(A(o;Q),SI(o;Q),C(o)) (4.22)

where A(o;Q) is the organization’s authority score and SI(o;Q) the structural
importance score with respect to the query Q, and C(o) the cost score. The following
section shows the calculation steps.

4.5.2 Ranking Algorithm

Here we discuss the computation of the final ranking score. Recall that the
composite ranking score S(o;Q) of organization o is obtained through the function
AHP(A(o;Q),SI(o;Q),C(o)). Previously we have defined the authority A(o;Q) and
the structural importance SI(o;Q). Cost C(o) is calculated as the average funding
organization o receives:

C(o) =
1

num_projects(o) ∑
(p,o)∈EP

funding(p,o) (4.23)

The final aggregation and computation of a composite ranking score is done
using the AHP algorithm. AHP is a technique for making complex decisions
in a structured way. AHP has been successfully applied in a number of fields
including transportation [33], maintenance and configurations [34], and service
quality assessment [33]. The theoretical background will not be covered in this
work since AHP is a well explored technique. We refer the reader to [30] for details
regarding AHP as a decision making technique.

Algorithm 4 shows the main steps at a high level. The input of the algorithm is
given as the query Q and the organization-collaboration graph GOC. The graph GOC

is used to compute the structural importance scores in an online manner. Next four
essential steps are performed: (1) create map with criteria input scores, (2) setup
AHP, (3) perform AHP ranking, and (4) assign final AHP ranking scores to output
map.

First, the ranking criteria scores are obtained as described in the previous sections
(authority Sect. 4.3 and structural importance Sect. 4.4 respectively). These include
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Algorithm 4 Multi-criteria ranking algorithm
Input: The query Q and the undirected organization-collaboration graph GOC.
Compute:

1. Create map for org with individual scores. For each organization o ∈ VO do:

• A(o)← au_score(o,Q)) // authority
• SI(o)← si_score(o,GOC ,Q) // struct. imp.
• C(o)← avg_cost(o) // cost
• Add to map (o,{A(o),SI(o),C(o)})

2. Setup AHP attributes weights and desirability.

• Auth. attributes (“authority′′ ,{wau,+1})
• Struct. attributes (“structure′′ ,{wsi,+1})
• Cost attributes (“cost′′,{wcost,−1})

3. Perform AHP ranking using output from previous steps.

• Compute the vector of criteria weights.
• Compute the matrix of organizations scores.
• Rank the organizations.

4. Assign final AHP ranking scores to map S. For each organization o ∈ VO do:

• S(o)← ahp_score(o)) // final score

Output: Ranked organizations based on query Q and according to composite AHP ranking
score.

authority, structural importance and cost. Using a map, each criteria score is
associated with an organization. The map generated in this step is passed as an
argument to the AHP ranking in step 3.

Second, AHP attributes are setup by assigning the weights wau,wsi,wcost to each
criteria with [∑w w] = 1. In addition, the desirability attribute is assigned to denote if
a certain criteria is desired or not. In particular, authority and structural importance
should be high (desirability = +1) to obtain a better AHP ranking score whereas
cost should be low to obtain a better ranking score (desirability =−1).

Third, AHP ranking is performed by using the previously setup attributes and the
output map of step 1. The step 3 of Algorithm 4 is decomposed into the following
steps:

• Compute the vector of criteria weights: In this step rating of the relative priority
of the criteria is done by assigning a weight value to the more important criteria.
The weight values are taken from the previous step of the algorithm (step 2). The
weight assignment is done through a pairwise comparison of the criteria. After
that, the resulting weights are normalized and the average is computed for each
criteria.

• Compute the matrix of organizations scores: Here the score for each organization
is determined by computing how well organization o meets some criteria Y.
Afterwards, the organizations’ scores are normalized and averaged.
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• Rank the organizations: In a final step the organizations’ scores are combined
with the criterion weights to produce an overall score for each organization. The
extent to which the organizations satisfy the criteria is weighted according to
the relative importance of the criteria. The final score is simply computed as a
weighted sum.

Note, in our case criteria are contrasting by demanding that organizations should
have high authority but low cost. In general, the organization that is recommended
for selection (top-ranked in final output S) is not necessarily the one which optimizes
each single criterion, but rather the organization which achieves the most suitable
trade-off among the different criteria. This behavior makes AHP a very flexible and
powerful tool for multi-criteria partner selection.

Forth, the AHP scores are saved in a final score map S. Organizations are ranked
in descending order by ranking score.

4.6 Evaluation

Here the evaluation of the proposed concepts and model is presented. We have
selected a dataset of a scientific collaboration environment to test the concepts.

4.6.1 Description of Dataset

The data is based on ICT research projects having received grants under the EU’s
Seventh Framework Programme (FP7). The data as described in detail in [31] and
covers a period from 2007 to 2011. Research projects have multiple partners and an
organization can be the partner of multiple projects. To date, the FP7 ICT program
has allocated funding to 1,469 projects for a total Union funding of 4,979,301,152
Euro. This results in 14,781 participations by 4,718 distinct legal entities. The
Fig. 4.4 (Source: European Commission2) shows a clear geographic concentration,
across and within the member states.

Our evaluation is performed as follows. First we select the top-20 organizations
(ranked by degree and given in Table 4.2) and compute metrics for those 20
organizations with regards to popular topics. This evaluation is called top-k rank
evaluation and is presented in Sect. 4.6.2. Second we compute cross topic ranking
statistics such as overlap similarity and Kendall’s τ rank difference. This evaluation
is presented in Sect. 4.6.3 along with the definition of relevant ranking metrics.

Table 4.1 gives an overview of popular (project) topics extracted from project
information (see [31] for details). Frequency is measured by counting appearance

2http://observatory.euroris-net.eu/euroris/files/download/261-316.

http://observatory.euroris-net.eu/euroris/files/download/261-316
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> EUR 50 mln.

> EUR 20 mln.

> EUR 10 mln.

Fig. 4.4 Location of organisations the top 50 for EC funding from FP7-ICT

Table 4.1 Popular project
topics and frequencies

Topic Frequency

Systems 4126

Internet 2729

Networks 1771

Services 1247

Software 1224

Health 1115

Embedded 1054

Transport 890

Efficiency 849

Energy 849

of the topic string within project names and project short descriptions of each project
partner involvement record (association of organization to project including received
funding). In total, we extracted 170 topics after performing some automatic and
manual processing of the data. Table 4.1 shows the top-10 topics with the highest
frequencies among the 170 topics.
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Table 4.2 Top-20 organizations ranked by degree

PNr Name Cost Degree Struct. rank score

1 Fraunhofer-Gesellschaft zur Foerderung der
Angewandten Forschung E.V

524,515 272 516

2 Centre National De La Recherche Scien-
tifique

159,983 153 175

3 Commissariat A L Energie Atomique Et
Aux Energies Alternatives

235,911 137 201

4 Ecole Polytechnique Federale De Lausanne 290,827 97 146

5 Consiglio Nazionale Delle Ricerche 455,650 96 154

6 Valtion Teknillinen Tutkimuskeskus 293,240 95 190

7 Institut National De Recherche En Informa-
tique Et En Automatique

799,995 94 127

8 Interuniversitair Micro-Electronica Centrum
Vzw

964,195 90 140

9 Eidgenoessische Technische Hochschule
Zurich

389,544 90 89

10 Telefonica Investigacion Y Desarrollo Sa 636,818 76 131

11 Katholieke Universiteit Leuven 711,085 69 98

12 SAP AG 1221,665 68 168

13 Universidad Politecnica De Madrid 331,315 65 136

14 Atos Origin Sociedad Anonima Espanola 628,296 62 215

15 Imperial College Of Science, Technology
And Medicine

286,930 61 56

16 Politecnico Di Milano 531,975 61 98

17 Kungliga Tekniska Hoegskolan 415,684 59 85

18 Technische Universiteit Delft 622,286 58 88

19 Karlsruher Institut Fuer Technologie 250,599 56 76

20 Technische Universitaet Wien 287,363 55 87

4.6.2 Top-k Rank Evaluation

Table 4.2 shows the top-20 organizations ranked by their degree in GPO (project-
organization graph). The first column (PNr column) is a unique key associated with
an organization and used throughout this section to identify a top-20 organization.
The second column (Name column) shows the organizations’ legal name. The third
column (Cost column) shows the average organization cost using Eq. (4.23). The
organization indegree (Degree column) is analog to the project count as projects
p ∈ VP point to organizations o ∈ VO. The degree-based rank will be used as a
baseline ranking. This baseline results will be compared with AHP-based rankings.
We have selected the degree-based rank as a baseline algorithm to show the impact
of personalization based on topic information and time-aware authority ranking.
Notice, the degree-based rank has no topic bias. In addition, the degree-based rank
was selected because it already captures some notion of importance with regards to
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organization reputation. The last column (Structural Rank Score column) shows
the structural rank score [using Eq. (4.19)] over all topics in Table 4.1. A higher
score is better.

It is noticeable that the organization 14 has a particular high structural rank
score in relation to its degree-based rank position. Organization 1 has an exceptional
high structural rank score but has also the most projects within the ICT framework
program. Notice, however, the degree is calculated using GPO and the structural rank
using GOC.

To compare AHP results with the rankings in Tables 4.2, 4.3 and 4.4 list detailed
metrics for selected topics. We have selected eight out of the ten topics from
Table 4.1 due to space reasons. Each metric is computed for each topic in Tables 4.3
and 4.4 respectively. Using GPO, the degree D is based on matching projects only.
Projects are matched against the given topic as depicted in the headings of Tables 4.3
and 4.4. The authority A is calculated for respective topics. The position P is the
rank position index as obtained by the AHP rank using Eq. (4.22).

AHP is setup with the weights 0.4 for authority, 0.2 for the structural importance
rank and 0.4 for cost. Thus, authority and cost are given slightly higher weights than
structural importance. We regard authority as highly desirable but at the same time
cost should be kept at an acceptable level. After that structural importance is also
a desirable property but not equally important as the other criteria. However, since
our approach is flexible weights can be adjusted as demanded.

The position change Ch is computed between degree-based ranking positions
and authority based ranking positions in the following manner

Ch(o) = pos(A(o;Tx))− pos(degree_rank(o)) (4.24)

where pos() retrieves the position index by ranking score. This lets us show how
rankings are influenced by authority. Finally, the trend Tr is computed by using the
Eq. (4.16). As state before, the sign has the following meaning:

Tr =

⎧
⎨

⎩

positive sign , if trend is increasing
negative sign , if trend is decreasing
0 , otherwise

To show the relationship between two metrics, at the bottom of Tables 4.3
and 4.4 we show the correlation coefficient among various metrics. As usual,
the correlation coefficient takes a value between [−1,1], with 1 or −1 indicating
perfect correlation. A positive correlation shows a positive association between
the variables. Thus, increasing values of one variable correspond to increasing
values of the other variable. On the other hand, negative correlation indicates a
negative association between the variables. Thus, increasing values of one variable
correspond to decreasing values of the other variable. A correlation value close to 0
indicates no association between the variables.
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Table 4.3 shows the results for the topics “networks”, “systems”, “software”,
and “services”. The organization PNr 1 has been ranked by AHP at position 1 in
“networks”, position 1 in “systems”, position 2 in “software”, and position 5 in
“services”. With regards to “services”, a negative trend is shown for PNr 1 and
thus the position has dropped in this topic. In the other topics, positive trend can be
observed and thus the ranking position was mostly preserved. With regards to the
topic “systems”, a very good trend of 7.97 can be observed and highest authority
score of 0.86 within the table. As one can see, by applying our approach, much
more fine-grained ranking can be performed by considering topic information.

With regards to correlation, A always correlates perfectly with Tr because time-
aware authority takes trend through personalization in account. D shows good
correlation with Tr in the topic “systems”. This is a result of the broad scope of
“systems” and the high frequency of the topic within projects (see also Table 4.1).

Table 4.4 shows the results for the topics “health”, “embedded”, “internet”, and
“energy”. The organization PNr 1 was only ranked in “energy” at position 1 but
not for the other topics. One exceptional high change in the ranking position can
be seen for organization PNr 10 in “internet” which ranks by AHP at 1044. PNr 10
had some substantial amounts of projects with regards to “internet” in the past (54
matching projects as indicated by D) but the trend is highly negative (Tr is −1.41,
which is the lowest in the table) and time-aware A is 0.00. Thus, we believe that
negative trend and limited recent activity in the context “internet” justifies a change
in the rank position.

With regards to correlation, A only correlates perfectly in “embedded” and
“internet” but not for the other topics (although a high correlation is still achieved).
D shows good correlation with Tr in the topic “energy”. Like in Table 4.3, A shows
good correlation with P. Indeed, authority is part of AHP’s ranking criteria so a
correlation can be expected. Recall, higher authority yields better positions. Thus,
negative correlation means increasing values of authority correspond to decreasing
values of the rank position (lower position value is better).

Based on the data in Tables 4.3 and 4.4, average values of degree, position,
and change are depicted in Fig. 4.5 and average values of authority and trend are
shown in Fig. 4.6. Average values are based on the metric values of the top-20 list of
organizations. Again, the baseline algorithm for ranking is the degree-based rank.

The topic “networks” has the highest average value with regards to change. Thus,
AHP rankings based on topic information have significant impact on the ranking
position of organizations and a lot of changes are observed within the top-20 list.
Also the topics “health” and “internet” yield high changes on average. However,
only “health” yields also high average values with regards to position. This means
that organizations ranked within top-20 positions by the degree-based rank would be
ranked at much higher positions by AHP in the “health” topic. As mentioned before,
since “systems” is a very broad topic also the positions by AHP are quite similar
when compared with the degree-based rank (the lowest average value as depicted by
Fig. 4.5). The average degree does not significantly change across topics. Generally,
topic based personalization has the effect that significant changes of rank position
can be expected.
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Fig. 4.5 Average degree, position, and change

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

ne
tw

or
ks

sy
st

em
s

so
ftw

ar
e

se
rv

ic
es

he
al

th

em
be

dd
ed

in
te

rn
et

en
er

gy

Authority Trend

Fig. 4.6 Average authority score and trend

Next, Fig. 4.6 shows the average values for authority and trend. The topic
“systems” shows the highest average authority and the highest average trend. This
observation is also consistent with the previous discussion. The topic “software”
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shows the lowest trend and also a low average value for authority. In general,
deviations in authority across topics is very high.

To summarize the main observations in this section:

• Our proposed model enables more fine-grained ranking by considering topic
information.

• Authority correlates to a high degree with trend because time-aware authority
takes trend through personalization into account.

• Generally, topic based personalization has the effect that significant changes of
rank position can be observed.

• Topics that play a role in many projects (having a broad scope) correlate better
with degree-based ranking. Thus, no significant changes through personalization
can be expected.

• As a consequence of the previous observation, by focusing on narrow and more
specialized topics organizations with fewer projects are able to build up authority
and are thereby ranked at better positions in those topics.

4.6.3 Statistical Comparison

Here a statistical comparison of ranking techniques is performed. In the previous
section, a top-20 list of organizations was selected (as ranked by the organizations’
degree) and evaluated by using different metrics. In this section we use a set overlap
and distance based ranking metric to compare the AHP based results with non-
personalized rankings including the degree-based rank, a funding based rank, and
the structural rank.

The funding based rank uses the total amount of funding received by an
organization to perform ranking (the higher the total funding the better the rank).
The structural importance rank is used in isolation of AHP and compared with the
regular AHP using the criteria authority, structural importance, and cost. After that
a cross topic comparison is performed by using AHP and authority based rankings
and AHP-based rankings personalized for different topics. AHP is setup with the
weights 0.4 for authority, 0.2 for the structural importance rank and 0.4 for cost.

To systematically compare results of two ranking algorithms, let us define two
standard ranking metrics.

OSim@k To measure similarity of top-k sets, let us define overlap similarity as
follows:

OSim@k =
Ok1 ∩Ok2

k
(4.25)

OSim@k defines the overlap similarity of the top-k sets Ok ranked by algorithm
1 and algorithm 2. Each set consists of organizations such that Ok ⊂ VO. The first
algorithm is always AHP, which has been parameterized using the same weights as
defined previously.
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Kendall’s τ The next ranking metric used in this work is the well-known Kendall’s
τ metric (for example, see [28]):

Kendall’s τ =
2(num_concordant− num_disconcordant)

|VO|(|VO|− 1)
(4.26)

Consider the pair of nodes o,u. The pair is concordant if two rankings agree
on the order and disconcordant if both rankings disagree on the order. Denote
the number of these pairs by num_concordant and num_disconcordant respectively.
The total number of pairs is given as |VO|(|VO|−1)

2 . Kendall’s τ is defined between the
interval τ ∈ [−1,1]. Kendall’s τ helps analyzing if two ranking algorithms are rank
similar. If τ equals 1, there are no cases where the pair o,u is ranked in a different
order.

Table 4.5 shows the comparison results of AHP-based rankings (for the top-10
topics in Table 4.1) and the degree-based, funding-based, and structural importance
rank. The highest values for OSim and Kendall’s τ are depicted as bold-face
numbers. The topic “systems” clearly shows the highest overlap with the other
(non-topic based) rankings. OSim@10, OSim@20, and OSim@50 show the highest
overlap in each topic. This observation is again in line with the previous discussion.
Previously “systems” showed the highest average authority and the highest average
trend within the top-20 list of organizations. The structural importance rank shows
the highest overlap of 0.70 in the top-10 segment (depicted as OSim@10). However,
an higher agreement in the rank order as measured through Kendall’s τ is given in
the topic “software”. Kendall’s τ is calculated by using the whole list of ranked
organizations. Whereas the highest overlap of AHP-based rankings with the degree-
based, funding-based, and structural importance rank is given in “systems”, higher
agreement in terms of Kendall’s τ is given in “software”.

Figure 4.7 shows the comparison results of AHP-based rankings (again for the
top-10 topics in Table 4.1) and the authority-based rankings. Here, for each topic
ranking is performed using AHP as defined in Eq. (4.22) and authority as defined
in Eq. (4.18). The results are then compared using OSim and Kendall’s τ . Further
details are provided in Table 4.6. The first set of rows (1–10) shows OSim@10, the
second set of rows (11–20) depicts OSim@20, the third set of rows (21–30) depicts
OSim@50, and the forth set of rows (31–40) shows Kendall’s τ .

The values below the matrix diagonal (from top-left to bottom right corner) are all
set to 0 because of symmetry. For example, overlap similarity OSim for the topics
“networks” and “systems” yields the same results as “systems” and “networks”.
At the diagonal values comparison of AHP and authority rankings for the same
topic was performed. Thus, high overlap and agreement with regards to OSim and
Kendall’s τ , respectively, can be observed.

Figure 4.8 shows the average values of OSim@10, OSim@20, OSim@50, and
Kendall’s τ for each topic. With regards to OSim@10, “health” yields the lowest
average overlap similarity. The topics “efficiency” and “energy” have the highest
overlap similarities in the top-10 segment.
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Fig. 4.7 OSim and Kendall’s
τ for comparison of AHP
with authority-based rankings
(detailed numbers are
available in Table 4.6)
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Figure 4.9 shows the comparison results of AHP-based rankings for the top-10
topics in Table 4.1 across topics. This comparison shows how ranking results change
by considering different topics. Further details are provided in Table 4.7.

Rows are segmented in the same manner as already described previously. Values
at the matrix diagonal (from top-left to bottom right corner) are all 1. The values
below the matrix diagonal are all set to 0 for the before mentioned reason.

Figure 4.10 shows the average values of OSim@10, OSim@20, OSim@50, and
Kendall’s τ for each topic. In OSim@10 the topic “health” results in the lowest
average overlap similarity followed by the topic “embedded”, which has also low
overlap similarity. In general, higher average values of OSim@10, OSim@20,
OSim@50 as well as Kendall’s τ can be observed when compared with the previous
discussion. Higher values are the result of the same ranking technique being used
(AHP-based rankings) and results being compared across topics. Before the AHP-
based rankings were compared with authority, which is only one of the ranking
criteria being used in AHP.

Overall, the overlap in the top-10 segment is on average 42 %, in the top-20
segment 49 %, and in the top-50 segment 69 %. This means that around six out
of ten organizations in the top-10 would be ranked differently across topics. Thus,
personalization using topic information has a strong impact on ranking results. For
the topic “health”, for example, it has the largest impact with average OSim@10
being 23 %. We observe changes of more than 49 % in some topics by looking at
OSim@10.

4.7 Conclusions

This work introduced various metrics for importance ranking in scientific collabo-
ration environments. We proposed a novel topic-sensitive authority model that is
based on well-establish ranking techniques. We systematically derived a unified
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Fig. 4.8 Average values of OSim@10, OSim@20, OSim@50, and Kendall’s τ based on Table 4.6

Fig. 4.9 OSim and Kendall’s
τ for comparison of
AHP-based rankings across
topics (detailed numbers are
available in Table 4.7)
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HITS/PageRank-based model that can be fully personalized. The second metric
measures organizations’ structural importance based on the notion of structural
holes. In our approach structural importance is computed with respect to certain
topics of interest. Thus, structural importance helps identifying organizations that
may be valuable partners for strategic alliances. Combined with authority, this
provides a powerful approach for ranking and discovering new partners. Finally,
authority and structural importance are systematically combined with cost. For that
purpose we utilize AHP to achieve a trade-off among various ranking criteria. The
proposed approach delivers very good results and provides more accurate, topic-
sensitive results when compared with other ranking techniques.
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Fig. 4.10 Average values of OSim@10, OSim@20, OSim@50, and Kendall’s τ based on
Table 4.7

In our future work we will study the application of online formation algo-
rithms [35] to scientific collaboration networks to suggest competitive alliances and
consortia. The metrics used in the formation algorithm to rank partners will be based
on the techniques as presented in this work.
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Chapter 5
Social Broker Recommendation

Abstract In this chapter we propose novel socially-based models for the composi-
tion of Professional Virtual Communities (PVC). We focus on the notion of brokers
who act as intermediaries between separated communities. We introduce a broker
discovery and ranking approach utilizing a link-based broker importance model. We
evaluate our approach through a service-oriented testbed and real community data
obtained from the European Union’s FP7 research program.

5.1 Virtual Organizations

The rapid advancement of ICT-enabled infrastructure has fundamentally changed
how businesses and companies operate. Global markets and the requirement for
rapid innovation demand for alliances between individual companies [9]. Virtual
Organizations (VO) are an important concept in such dynamic environments. Based
on [18], a virtual organization can be defined as follows: an inter-organizational
virtual organization is a temporary network organization, consisting of independent
enterprises (organizations, companies, institutions, or specialized individuals) that
come together swiftly to exploit an apparent market opportunity. The enterprises
utilize their core competencies in an attempt to create a best-of-everything organi-
zation in a value-adding partnership, facilitated by Information and Communication
Technology (ICT). As such, virtual organizations act in all appearances as a single
organizational unit.

Web services and service-oriented computing offer well established standards
and techniques to model and implement interactions spanning multiple organi-
zations. Collaborative service-based systems are typically knowledge intensive
covering complex interactions between people and software services. In such
ecosystems, flexible interactions commonly take place in different organizational
units. The challenge is that top-down composition models are difficult to apply in
constantly changing and evolving service-oriented collaboration system. There are
two major obstacles hampering the establishment of seamless communications and
collaborations across organizational boundaries:

• the dynamic discovery and composition of resources, people and services, and
• flexible interactions between people located in different departments or

companies.
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Principles found in social network theory are promising candidate techniques
to assist in the formation process and to support flexible and evolving interaction
patterns in cross-organizational environments. In social networks, relations and
interactions typically emerge freely and independently without restricted paths
and boundaries. Research in social sciences has shown that the resulting social
network structures allow for relatively short paths of information propagation (the
small-world phenomenon [46]). While this is true for autonomously forming social
networks, the boundaries of collaborative networks are typically restricted due to
organizational units and fragmented areas of expertise.

We propose social network principles to bridge segregated collaborative net-
works. The theory of structural holes is based on the idea that individuals can benefit
from serving as intermediaries between others who are not directly connected [7, 8].
Thus, such intermediaries can potentially broker information and aggregate ideas
arising in different parts of a network [21, 38, 40]. The novelty of the present work
is the combination of social principles for the discovery of brokers and service-
oriented collaboration infrastructure through Human-Provides Services (HPS) [34,
39]. HPS supports a flexible interaction model suitable for cross-organizational
collaboration.

In this chapter, the following key contributions are presented:

• We introduce concepts and techniques for the discovery of brokers in virtual
communities. Here we present SBQL, a query language for discovering and
ranking brokers. SBQL evolved from our initial definition of social network
query language (see [40]). SBQL provides a better integration into our mining
and ranking framework and allows for fuzzy matches with ranked results, which
was not possible in our previous query language.

• In this work we present a novel link-based broker importance model. The
importance model is based on the idea of hubs and authorities in Web-based
environments as introduced by [20]. Our proposed model can be personalized to
account for topic-sensitive rankings.

• We performed various experiments and tests including performance tests of our
BrokerQL implementation using an integrated Web services test environment. In
addition, we obtained data from the EU FP7 ICT research program (see [27]) to
test the broker ranking approach in a real virtual collaboration environment.

To address the challenges related to broker discovery and compositions in PVCs,
we apply the following overall methodology:

• We model a PVC as a community consisting of experts who interact and
collaborate by the means of ICT to perform work. Service-oriented technologies
(Web services, RESTful services, etc.) provide the technical infrastructure to
perform collaborations.
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• The emergence and evolution of social trust is modeled by considering various
metrics. In contrast to a common security perspective on trust, we define social
trust to rely on the interpretation of previous collaboration behavior. Considering
social trust is essential to effectively guide interactions.

• We define patterns for broker discovery in virtual communities. The notion of
brokers is derived from the well-established theory of structural holes. We define
the persistent exogenous interaction pattern and the triadic exogenous interaction
pattern.

• To actually discover brokers in VOs and PVCs, we define the BrokerQL language
and its syntax. A set of BrokerQL applications and examples are discussed to
illustrate the features of BrokerQL.

• BrokerQL includes a novel broker importance ranking algorithm that is mathe-
matically modeled and discussed in depth. Thus, not only matching of relevant
brokers is performed, but also ranking based on social/collaborative network
information.

• All presented concepts are implemented in software and tested through rich
experiments. In addition, the quality of broker rankings is validated by using
a real dataset reflecting collaborations in virtual environments.

This chapter is structured as follows. Discussion regarding existing literature is
presented in Sect. 5.2. In Sect. 5.3, we introduce supporting concepts to realize flex-
ible interactions and the selection of brokers. In Sect. 5.4, we present a motivating
scenario for the discovery of brokers. We introduce the social broker query language
in Sect. 5.5 followed by the definition of the broker ranking model in Sect. 5.6. Our
evaluation results are discussed in Sect. 5.7. Finally, the chapter is concluded in
Sect. 5.8.

5.2 Background in Distributed Organizations

Here we review background literature and cluster discussions into relevant topics.
We start with discussions related to virtual organizations and communities.

• Virtual Organizations (VO) can be studied from various angles. From a
management point of view, the concept of virtual organizations that are supported
by ICT has been widely studied (for example, see [9]). The central goal if
this work is to study VOs and the formation thereof from a social network
point of view. One of the most interesting ideas in the social sciences is the
notion that entities are embedded in webs of social relations and interactions [6].
The same holds true for today’s VO landscape where a globally distributed
organizations form temporary alliances to work on joint projects. Collaborative
non-hierarchical business networks enable, for example, the execution of com-
plex product manufacturing processes [42]. Formation of globally distributed
teams or VOs is an important and challenging problem [4]. It has been reported
that, for example, team assembly mechanisms determine both the structure of the
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collaboration network and performance for teams [14]. In addition, social model
for socio-technical performance have been presented [47]. Thus, it is important to
select a formation strategy carefully according to constraints and objectives [29].
An interesting application of socially-based formation principles is social product
development in VOs [5].

• Structural Holes. Here we adopt the theory of structural holes as developed
by [7]. The theory is based on the idea that individuals can benefit from serving
as intermediaries between others who are not directly connected [8]. Such
intermediaries can potentially broker information and aggregate ideas arising in
different parts of a network [21]. A number of studies have shown that structural
holes positively relate to a range of social success indicators [1, 7, 8, 31]. Lou and
Tang [23] define the problem of mining top structural hole spanners in large-scale
social networks.

• Social Trust. In addition to the notion of brokers in collaborative networks, we
build upon research in the area of social trust. A wide range of computational
trust models have been proposed by, for example, [2, 19, 26]. Here we focus on
social trust [11, 44, 48] that relies on user interests and collaboration behavior. A
social network of people connected by trust relations is a fundamental building
block in many of today’s most successful e-commerce and recommendation
systems [13].

• Human Provided Services. Based on social principles such as brokers and social
trust, we provide technical concepts to support the discovery and ranking of bro-
kers. We go beyond social concepts only and propose the (semi-)automatic for-
mation of broker-based communities and service-oriented interactions. Service-
oriented concepts help to rapidly setup and operate VOs. Here the concept of
Human-Provided Services (HPS) [34, 39] is adopted which supports flexible
service-oriented collaboration across multiple organizations and domains. HPS
not only enables flexible interactions but also provides the base infrastructure
for interaction mining and link-based ranking techniques [35, 36]. In contrast to
our previous work, we propose a domain specific query language that is geared
towards the requirements of broker discovery and ranking. Here we introduce
BrokerQL, which is a query language specifically suited for broker discovery
in socially-based collaboration networks. BrokerQL is based on an SQL-style
syntax targeted at social and collaborative networks.

• Querying Social Network Data. To date, to the best of our knowledge there is no
generic solution to query, rank, and select brokers for assembling VOs or groups
in social networks. Some proposals for graph databases (e.g., GraphDB [15])
have features to deal with social network data [41], but lack advanced features
for broker discovery. SPARQL [45] is a generic language to query semantic data
such as RDF graphs, but lacks some important capabilities. SPARQL (1) does not
support negation (“A does not know B”), which is fundamental in VO formation
(competition or conflicting interests), (2) expressing network properties such as
path-length is not straightforward, (3) predicates cannot have properties (e.g. “A
trusts B with trust level high”) and finally (4) fuzzy matches with ranked result
is difficult. A query language for social networks has been proposed in [32].
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The language in [32] has some similarities with SBQL (e.g., path functions),
however, without supporting the discovery of complex sub communities based
on metrics and interaction mining techniques.

5.3 Hybrid Compute Environment

We adopt various concepts to realize the aforementioned flexible collaboration
communities, and consider various mechanisms to enable brokering of requests,
including flexible collaboration models, automatic management of social trust
relations and modeling of broker patterns and behavior.

5.3.1 Human-Provided Services

An activity model attempts to structure loosely coupled collaborations in service-
oriented systems (see [34] for details). Examples of collaborative activities at
various levels of granularity are “sending emails”, “reviewing a paper”, “organizing
a workshop”, and “managing a multi-national research project”. A single activity
provides the basic collaborative data. It describes the work to be done and lists
the involved people. This data is often sufficient in static collaborative settings
where all members are aware of the overall working environment. In dynamic and
distributed collaborative environments, one has to explicitly model the embedding
of a single activity in the overall collaboration context. The context contains
the structure of activities, dependencies between activities, the temporal flow of
activities, and history of activity changes. This provides the core structure of
collaborative work. In addition, the collaboration context describes the involvement
of members, their roles, required and applied skills, work artifacts, and resources.
An expressive activity model needs to support such relations. Existing activity-
based tools provide limited means to connect activities, members, and resources.
Web services play a fundamental role in supporting flexible, cross-organizational
collaboration scenarios.

To support human interactions in a service-oriented manner, we have designed
and implemented the HPS framework [34]. HPS enhances the traditional “SOA-
triangle” approach by enabling people to provide services using the very same
technology as implementations of software-based services (SBS) use. In contrast
to technologies such as BPEL4People [3], HPS treats people in SOA as first-
class citizens letting people define their own services and provide these services
to the community. HPS closely resembles a crowdsourcing approach [36] where the
collective power of people is used to solve problems that services implemented in
software cannot yet solve.

The three essential steps performed when using the HPS framework are illus-
trated in the following. The conceptual model is also depicted by Fig. 5.1.
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(3) unified 
interactions

Providers

HPSSBS

Requesters

SBS

Service and App 
Marketplace

(1) publish services (2) discover services

Fig. 5.1 HPS discovery and interaction model overview: (1) publish HPS or SBS to service
registry, (2) search and discover HPS and/or SBS, and (3) interact with service provider

1. Publish services. The user can create an HPS and publish the service in a Service
and App Marketplace. Publishing a service is as simple as posting a blog entry
on the Web. It is the association of the user’s profile with an activity depicted as
a service.

2. Discover services. The requester can perform a search query to find Human-
Provided Services or Apps that are based on Human-Provided Services. Recom-
mendations are given to find the most relevant HPS based on, for example, the
expertise of the user providing the service [35].

3. Unified interactions. The framework supports both “machine interactions”
between SBS and HPS (a human computation scenario) and human interactions
between a human requester and an HPS. Apps offer the interfaces to support
such kind of interactions.

5.3.2 Emergence and Evolution of Social Trust

In contrast to a common security perspective on trust, we define social trust to rely
on the interpretation of previous collaboration behavior and additionally consider
the similarity of dynamically adapting interests [11, 44]. Especially in collaborative
environments, where users are exposed to higher risks than in common social
network scenarios [10], and where business is at stake, considering social trust is
essential to effectively guide interactions [24].



5.3 Hybrid Compute Environment 101

In this work, we define social trust as follows [11, 12, 26, 44]:

Trust reflects the expectation one actor has about another’s future behavior to perform given
activities dependably, securely, and reliably based on experiences collected from previous
interactions.

Not only service interactions, but also human interactions may rely on standard
protocols such as SOAP (e.g., see HPS [34] and BPEL4People [3]). These protocols
are well supported by a wide variety of software frameworks. This fact enables the
adoption of various available monitoring and logging tools to observe interactions in
service-oriented systems. Various metrics can be calculated by analyzing interaction
logs. Relation metrics describe the links between actors by accounting for (1)
recent interaction behavior, (2) profile similarities (e.g., interest or skill similarities),
(3) social and/or hierarchical structures (e.g., role models). However, we argue
that social trust relations largely depend on personal interactions. We model a
community of actors with their social relations as a directed graph, where the nodes
denote network members, and edges reflect (social) relations between them. Since
interaction behavior is usually not symmetric, actor relations are represented by
directed links.

The fundamental approach to automatic interaction-based trust inference is
depicted in Fig. 5.2. As motivated in the introduced use case, people interact to
perform their tasks. This work is modeled as activities, that describe the type
and goal of work, temporal constraints, and used resources. As interactions take
place in the context of specific activities (Fig. 5.2a), they can be categorized and
weighted. Interaction logs are used to infer metrics that describe the relation
between individual actors (Fig. 5.2b), such as their behavior in terms of availability
and reciprocity.

Our approach considers the diversity of trust by enabling the flexible aggregation
of various interaction metrics that are determined by observing ongoing collabora-
tions. Finally, available relation metrics are weighted, interpreted, and composed
by a rule engine. The result describes trust between the actors with respect to
scopes (Fig. 5.2c). For instance, trust relations in a scope “scientific dissemination”

Fig. 5.2 Trust emerging from interactions: (a) interaction patterns shape the behavior of actors in
context of activities; (b) rewarding of behavior and calculation of interaction metrics; (c) inference
in scopes by interpretation of metrics
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could be interpreted from interaction behavior of actors in a set of “paper writing”
activities. For detailed mechanisms on trust modeling and inference see [44].

5.4 Expert Communities

Here we discuss a PVC environment to introduce our concepts and to demonstrate
the role of social relations and the emergence of social trust. Also, we motive
the need for brokers in PVC environments. A PVC is a virtual community
consisting of experts who interact and collaborate by the means of information
and communication technologies to perform work [9]. In today’s collaboration
environments, service-oriented technologies (Web services, RESTful services, etc.)
are increasingly used to realize a collaboration infrastructure suitable for PVCs. An
important aspect is the availability of a wide variety of tools and frameworks to
implement service-oriented systems.

5.4.1 Collaboration Scenario

The support of loose coupling, advanced discovery, dynamic binding and various
composition mechanisms makes SOA the ideal grounding for Web-enabled PVCs.
Let us discuss an actual collaboration scenario in PVCs as depicted in Fig. 5.3.

Various member groups collaborate in the context of five different activities
a1,a2,a3,a4 and a5 (see Fig. 5.3a). These groups intersect because group members
may participate in different activities at the same time. The color of the activity
determines the context and expertise areas an activity is related to. Such activities
are, for example, the creation of new design specifications or the discussion of
emerging technology standards. Activities are a concept to structure information

Fig. 5.3 Collaboration model for service-oriented PVCs: (a) interactions between PVC members
are performed in the context of activities; (b) social relations and profile areas emerge based on
interactions; (c) concepts in the model
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in flexible collaboration environments [25], including the goal of the ongoing tasks,
involved actors, and utilized resources such as documents or services [34]. Activities
are either assigned from the outside of a community, e.g., belonging to a higher-level
business process, or emerge by identifying collaboration opportunities.

To achieve the goals of activities, the PVC members use SOA technology
to interact in the context of the currently performed activities. In the depicted
scenario, we the concept of Human-Provided Services (HPS) [39] and the HPS
framework [34] is used is used to allow human participation in a service-oriented
manner. That is, humans can provide their capabilities and skills as services to
enable human interactions through a standardized message exchange format (i.e.,
SOAP). Instead of implementing services in software, services are provided by
human actors. The novelty of the approach is that HPS enables a seamless service-
oriented infrastructure consisting of human and software services. At the technical
level, all messages including SOAP-based messages are logged for later analysis of
communities and broker discovery.

Relations emerge from interactions as illustrated in Fig. 5.3b and are bound
to particular scopes. We model the interaction context with tags and keywords
and compose similar activities to build trust scopes. To infer trust, we aggregate
interactions that occurred in a pre-defined scope, calculate metrics (numeric values
describing prior interaction behavior), and interpret them in terms of reliability,
dependability and success. In the given scenario, a scope comprises trust relations
between PVC members regarding help and support in different expertise areas
(reflected by tags of exchanged messages). Through analyzing the interaction
context (i.e., using message tags), we determine a user’s centers of interests.
Frequently used keywords are stored in the actors’ profiles (see symbol P) and later
used to determine their interests and expertise areas.

5.4.2 Brokerage and Composition

Consider a scenario in the given PVC in Fig. 5.3b where u wants to set up an activity
that requires at least one additional expert from the brown {u,v,w} and blue domain
{j,k, l,m}. Since u personally knows v and w from previous collaborations (reflected
by social relations), u is well-connected to the brown expertise area; but u does not
know any member of the blue domain. However, in the scenario u collaborated
with b in the green domain, who is connected to j. Hence, b could act as a broker
and forward requests or invitations to join u’s current activity to j. We argue that
establishing personal contacts in socially-based environments is of high importance
compared to the traditional SOA domain, where services are mostly composed
based on their properties (i.e., features and QoS) only.

Interaction mining techniques support the discovery of emerging social relations.
These relations have major impact on future collaborations such as:
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• Supporting the Formation of Expert Groups. Successful previous formations of
actors should by “recorded” to actively facilitate future collaborations. Thus,
tight trust relations based on interactions can be converted to social relations.

• Controlling Interactions and Delegations. Discovery and interactions between
members can be based on social relations. People tend to favor help and support
requests from well-known members instead of receiving requests from any third
(personally unknown) parties.

• Establishment of new Social Relations. The emergence of new personal relations
is actively facilitated through brokers. The introduction of new partners through
brokers (e.g., b introduces u and j to each other) leads to future trustworthy
compositions.

5.4.3 Broker Patterns and Policies

Brokers as outlined in the beginning of Sect. 5.4 differ from the other actors in
the environment by their mediation capabilities. A broker acts as an intermediary
between two previously separated collaboration teams. It is thus essential that
it gathers frequently demanded contacts and maintains its relations. However, if
demand decreases the broker must find and establish new relations.

Broker Patterns The remainder of this section describes the broker patterns to
establish connections between requesters and third-party services. Brokers can
typically have different behavior when delegating requests. In particular, as shown
in Fig. 5.4, we distinguish:

• Persistent Exogenous Interaction Pattern (Fig. 5.4a) where any requests and
responses are forwarded by the broker and the actually interacting nodes are
shielded from each other.

• Triadic Exogenous Interaction Pattern (Fig. 5.4b) where the broker encourages
receivers of messages to establish direct connections to the initially requesting
nodes, and therefore, actively facilitates the emergence of trust relations.

b

u

wv

j k

lm

I. II.

III.IV.

b

u

wv

k

lm

I. II.

III.
j

a b

Fig. 5.4 Exogenous broker behavior patterns. (a) Persistent interaction pattern. (b) Triadic
interaction pattern
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We argue that both types of interaction patterns are applied in today’s social and
collaborative environments. The broker may favor one over the other pattern due
to various reasons. On the one side, controlling the flow of interactions between
personally unknown actors can strengthen a broker’s reputation. On the other side,
establishing direct relations can significantly reduce a broker’s working load.

Behavior Policies Policies along with the queries provide general or explicit rule-
sets to define expectations on path requests and responses. While the queries in the
presented scenario are limited to more static lookup properties such as, competences
and knowledge fields a policy-driven management of the interactions also allows
to consider the relation between a query and the current context. A request policy
limits the request and result by an according rule-set. Rules include a condition part
possibly matching both current query and context and a decision part that filters
the results. Thus, a request triggered policy could state that a requester wishes,
e.g., a maximum/minimum path length to the knowledge source, a minimum trust
relation from her/his side to the broker or also from the broker to the expert,
hard completion deadlines for the subsequently delegated work, etc. Thereby, rules
or entire policies can by mandatory or depending on the importance and context
desirable for the issued query. Response policies at the broker comprise filter rules
for the original query’s response paths. Depending on the situation the broker might
want to adapt the response. The history of past interactions with the requester,
contracts, or independent from those, current changes and events, e.g., interest
shifts at or availability of the requested experts require dynamic adaptations of
the response paths. These dynamics might also require that the policies’ rules are
updated accordingly. In order to solve the challenge of updating these situation
dependent policies means of querying the network structure are necessary.

Our proposed Social Broker Query Language (SBQL) helps to solve the issues
by providing a syntax that can find paths to resources connected to query and policy
constrains. We introduce the technical details of SBQl in the following section.

5.5 SBQL Syntax

In this section we define the key elements of the SBQL. The language is inspired by
an SQL-like syntax. It is important to note that SBQL operates on a graph structure
composed of a set of nodes and edges.

• Select: A Select statement retrieves nodes and edges in graph G as well as
aggregates of graph properties (for example, properties of a set of nodes).

• From: While traditional relational databases operate on tables, SBQL uses the
From clause to perform queries on a graph G.

• Where: A Where clause specifies filters and policies upon nodes, edges, and
paths.
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Table 5.1 Important SBQL language elements

Element Description

satisfy Requires that a given condition is fulfilled by a set of nodes or edges

as Creates an alias for groupings of nodes, edges, or paths

<all> Retain all nodes/edges/subgraphs satisfying a given condition

[ ] An expression to satisfy conditions for exactly one [1], one to m
[1..m], or one to many [1..*] nodes or edges

1 Input: Graph G, var source = {n1,n2, . . . ,ni},
2 var target = {n j ,n j+1, . . . ,n j+m}
3 Output: List of brokers
4
5 Select node From (
6 ( Select distinct(node) From G
7 Where
8 /* At least one in source ‘knows’ node */
9 ( [1..*] n in source ) satisfy

10 Path (n to node) as P1 With P1.length = 1 ) as G1,
11 ( target ) as G2
12 )
13 Where
14 /* Retain all nodes that satisfy path filter */
15 ( <all> n in G1.nodes ) satisfy
16 /* Path to any in G2.nodes */
17 Path (n to [1..*] G2.nodes) as P2 With P2.length = 1
18 and
19 /* Retain all edges that satisfy edge filter */
20 ( <all> e in G1.edges ) satisfy
21 (e.relation = EPredicates.BIDIRECTIONAL) and
22 (e.trust >= MTrust.MEDIUM)
23
24 Order by node
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Fig. 5.5 SBQL query: find broker to connect two predefined communities

Note that SBQL is not a general purpose graph (social network) query language
but rather a domain specific language to discover and rank brokers in PVCs as
well as social and collaborative networks. Table 5.1 lists important SBQL language
elements to query and filter graphs.

To give intuitive examples, we present a set of SBQL queries along with their
meaning considering a graph G and a set of subgraphs G′ ⊆ G. We structure
discussions related to a query into four essential steps:

• R the basic requirements/goal of a query
• A the approach that is taken
• O the output of the query
• D the detailed description of the query

5.5.1 Connecting Predefined Communities

Consider two initially disconnected communities (sets of nodes in Fig. 5.5)
depicted as variables var source = {n1,n2, . . . ,ni} and var target =
{nj,nj+1, . . . ,nj+m} residing in the graph G.
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R1: The goal is to find a broker connecting disjoint sets of nodes (i.e., not having
any direct links between each other).

A1: Two subgraphs G1 and G2 are created to determine brokers which connect
the source community {u,v,w} with the target community {g,h, i} (i.e., see From
construct).

O1: The output of the query is (the example shown in Fig. 5.5) a list of brokers
connecting {u,v,w} and {g,h, i}. The lines 1–3 specify the input/output parameters
of the query.

D1: As a first step, a (sub)select is performed using the statement as shown by the
lines 6–10. The statement distinct(node) means that a set of unique brokers
shall be selected based on the condition denoted as the Where clause with a filter
(lines 9–10).

The term “[1..*] n in source”, where source is the set of nodes
passed to the query as input argument, means that at least one node n ∈ G must
satisfy the subsequent condition. Here the condition is that the node n has a link
(i.e., through knows relations) to the source set of nodes. This is accomplished
by using the Path function that checks whether a link between two nodes exists
(the argument “(n to node)”). The path alias is used to specify additional
constraints such as the maximum path length between nodes (here “P1 With
P1.length = 1”). The second step is to create an alias G2 for the target
community {g,h, i}.

By using the aliases G1 (line 10) and G2 (line 11) further filtering can be
performed using the Where clause in line 13. The same syntax is used as previously
in the sub-select statement (lines 9–10). The construct <all> retains nodes “n in
G1.nodes” (G1 holding the set of candidate brokers) that are connected to at least
one node in the target community G2 with direct links (“P2 with P2.length
= 1”). Further filtering is performed by defining lines 18–20. Here, the target
community {g,h, i} must have edges between each other that are bidirectional. In
our graph representation, this means that each relation has to be interpreted as, for
example, h knows g and g knows h. A set of different metrics is established in our
system. A specific type of metric (e.g., trust) is denoted by the namespace MTrust.
In the specified query, each actor in the target community must share a minimum
level of trust depicted as “e.trust >= MTrust.MEDIUM”. Trust metrics are
associated to edges between actors. The term MTrust.MEDIUM is established
based on mining data to obtain linguistic representations by mapping discrete values
(metrics) into meaningful intervals of trust levels.

The last statement “Order by node” in Fig. 5.5 implies a ranking procedure
of brokers. This can be accomplished by using eigenvector methods in social
networks such as the PageRank algorithm [30] to establish authority scores (the
importance or social standing of a node in the network). The detailed mechanisms
of this procedure will be discussed in the following section.
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Fig. 5.6 SBQL query: find ranked communities based on search criteria and load metrics

5.5.2 Finding Communities

The broker discovery example in the previous section (depicted by Fig. 5.5) is
straightforward because the target community is already specified and passed to
the query as var target = {nj,nj+1, . . . ,nj+m}. However, in most cases (as
highlighted in the introduction example) the target community may not be known
beforehand. The next example query eliminates this assumption by showing an
approach to find suitable communities based on search criteria (e.g., activity or skill
tags).

R2: The goal of the query as specified in Fig. 5.6 is to find sub-communities (or
subgraphs) in G that match search criteria.

A2: Search is performed by using a set of distinct tags specified as input
parameter var search = {t1, t2, . . . , tn}.

O2: The output of the query is a list of communities.
D2: The first step is to perform a (sub)select of distinct communities (see

distinct(nodes) as G’ in line 5) to obtain non-overlapping groups of
community members specified by the lines 5–14. For example, Fig. 5.6 shows four
groups of nodes [{d,e, f },{g,h, i},{l,m, j,k},{u,v,w}] each of them satisfying the
constraints specified in the query. Each node in a specific community must be linked
to at least one community member (“Path (n to [1..*] G’.nodes) as
P1”). Furthermore, at least one path between nodes with “length = 1” satisfy-
ing trust requirements (MTrust.HIGH) must exist in order to consider a node as
a community member. Finally, a path must contain the tags specified by the search
query (lines 11–12) to ensure that a member has interacted (collaborated) with other
members in the context of certain activities.

The alias SG1 provides access to each community. The Where clause applies
filtering of communities based on load conditions measured by graph metrics
(GMLoad). For example, load conditions G’.load are measured by the number
of inbound requests and the number of pending tasks within the community.
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1 Input: Graph G, var source = {n1,n2, . . . ,ni},
2 var search = {t1, t2, . . . ,tn}
3 Output: List of brokers and communities
4
5 Select node, nodes from (
6 /* Select brokers */
7 ( /* ... */ ) as G1,
8 /* Select communities */
9 ( /* ... */ ) as SG1

10 )
11 Where
12 ( <all> n in G1.nodes ) satisfy
13 /* To one in SG1 */
14 Path (n to [1] SG1) as P1 With P1.length = 1
15
16 Order by node
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Fig. 5.7 SBQL query: find exclusive brokers to connect two communities

5.5.3 Finding Exclusive Brokers

The final SBQL example is depicted by Fig. 5.7 to combine previously introduced
concepts for broker discovery.

R3: The basic idea of this example is to find brokers that are connected to exactly
one candidate (target) community.

A3: Communities are retrieved along with brokers. Filtering is applied based on
paths to obtain exclusive brokers.

O3: The output of the query are brokers along with communities they are
connected to (e.g., b1, {d,e, f }).

D3: First, a set of candidate brokers is retrieved and made available via the alias
G1 (line 6). This is the same procedure as introduced before (see Fig. 5.5). Second,
communities are retrieved and stored in SG1 (line 8). Again, this is based on the
same principle as introduced previously in Fig. 5.6. We call brokers connecting
exactly one community exclusive brokers. This is accomplished by the statements in
11–13 demanding for “n to [1] SG1”. The broker b2 is a non-exclusive broker
because it connects multiple communities {d,e, f } and {g,h, i}, thereby making
{g,h, i} unreachable from the {u,v,w} community perspective.

5.6 Broker Ranking

5.6.1 Community Profiles

In contrast to common top-down approaches that apply taxonomies and ontologies
to define certain interest and expertise areas, we follow an interest mining approach
that addresses the inherent dynamics of flexible collaboration environments. Skills
and expertise as well as interests change over time, but are rarely updated if
they are managed manually in a registry. Hence, we determine and update them
automatically through mining. As discussed before, interactions, e.g., delegation
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t1 t1 t1 . . .
Pc1 fc1(t1) fc1(t2) fc4(t3) . . .
Pc2 fc2(t1) fc2(t2) fc4(t3) . . .
Pc3 fc3(t1) fc3(t2) fc4(t3) . . .
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Fig. 5.8 The concept of hierarchical tag clustering: (a) tag matrix to determine the co-occurrence
(and thus potential similarity) of tags; (b) clustering of tag vectors with varying similarity
thresholds creates a tag tree

of tasks or requests, are tagged with keywords. As delegation receivers process
tasks, our system is able to learn how well people cope with certain tagged tasks;
and therefore, able to determine their centers of interests. We calculate community
profiles by aggregating individual (tag-based) interest profiles.

The community profile Pc in Eq. (5.1) describes the frequencies fc of the tags
T = {t1, t2, t3 . . .} that are applied in collaborations in a community c.

Pc = 〈fc(t1), fc(t2), fc(t3) . . . 〉 (5.1)

Combining multiple community profiles leads to a tag matrix as shown in
Fig. 5.8. Tag vectors tx describe the usage of a certain tag tx from a global
perspective, i.e., spanning all communities ci. A common assumption is that co-
occurrence of tags reflect their similarity and closeness respectively [22, 43]. We
cluster tags based on their similarity. Clustering tags has two major advantages:

• When someone is searching for a particular tag, all similar tags (e.g., synonyms
in the same cluster) can be considered in the search process as well to increase
the number of results.

• Since our ranking approach uses personalization techniques when searching for
brokers, we can significantly reduce the time effort by pre-calculating topic-based
broker importance (see later for details).

By comparing the similarity of tag vectors, e.g., using cosine similarity, with
varying thresholds, a tree structure is created as depicted in Fig. 5.8. That tree
reflects the closeness of single tags and created clusters. For instance tags t1 and t2
are merged in cluster T1. Details are described in [44]. The benefit of this approach
in the context of SBQL is that fuzzy matches of communities and/or brokers are
possible and topic-based broker importance scores can be calculated at various topic
levels (at different levels in the hierarchical topic/tag tree).
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5.6.2 Trust Weights

Interactions such as delegations are aggregated to metrics that are interpreted by
rules to infer trust. Trust scores are associated to edges (i.e., e.trust) and mapped
to trust intervals (e.g., MTrust.MEDIUM). To calculate metrics, the edge weight
wuv can be interpreted as how much u trusts v in processing tasks or help and support
requests in a reliable manner [Eq. (5.2)]. Specifically, experts’ behavior in terms
of reliability and task processing successes, are periodically updated with recent
captured interaction data.

wuv ≡ succ. delegations from u to v

∑z∈N(u) succ. delegations from u to z
(5.2)

Reliability and processing success (and thus social trust) of tasks/delegations are
based on a task rewarding schema. Let us assume a human task ht. The task has
states such as accepted, inprogress, finished or aborted. Rewards are automatically
associated with ht to measure the degree of success. For example, fast and reliable
processing of tasks yields higher rewards, thereby resulting in higher trust in a
collaboration partner.

To model task rewards based on temporal task properties (processing time), we
use a mathematical function belonging to the family of sigmoid functions with the
general form f (t) = 1

1+e−t (see Fig. 5.9). Sigmoid functions are typically used to
model systems that saturate at large values of t, for example, the processing time of
tasks. Let us define the essential properties of the model in the following. The task
rewarding function RW based on the task processing time PT(ht) for a given task ht
is defined as follows:
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Fig. 5.9 Task rewarding model. (a) Initial rewarding model. (b) Refined rewarding model
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Table 5.2 Rewarding model and related parameters

Symbol Description

RW(PT(ht)) Rewarding function based on the task processing time PT(ht). The output of
the function is a percentage value between 0 % and 100 %. 100 % is given if
the task is processed very fast. 0 % reward is given is given if the task expires
and thus fails

ψ Saturation of RW : [0,τ ]→ [0,ψ], ψ ∈ [0,1]

σ Parameter to define the horizontal displacement of RW

δ Parameter to define the “steepness” of RW’s slope. Steepness means that the
reward changes more quickly depending on task processing time

M Depicts a rewarding model for different parameters

RW(PT(ht)) =
ψ

1+EXP(−PT(ht)−σ
δ

)

(5.3)

A description of the model’s parameters is given in Table 5.2:
Figure 5.9a visualizes the output of RW depending on different parameters

(Table 5.2). The horizontal axis shows the task progression in terms of processing
time. Progression 0 means that the task has not yet started. Progression 1 means
that the task has expired (maximum processing time has been reached). Thus, a
reward is given between 0 < PT(ht)/MAX(ht) < 1. The function MAX(ht) returns
the maximum processing time of ht.

The basic idea is to use different models (e.g., M1,M2,M3) to account for
the risk that a particular type of task will not be processed in a timely manner.
Risk is automatically calculated based on finished versus aborted tasks within the
community (the parameter δ in Table 5.2). The task rewarding function RW should
fall less steeply if a particular type of task tends to be aborted by the community.
To model risk for the task progression spectrum that is based on the task processing
time, RW needs to be refined as a stepwise function RW ′:

RW ′(PT(ht)) =

⎧
⎨

⎩
RW(PT(ht)) , if

PT(ht)
MAX(ht)

< 0.5

RW(PT(ht);M) , otherwise
(5.4)

Figure 5.9b shows RW ′. Progression (based on processing time) towards a
particular point (see 0.5 on horizontal axis) results in equal rewards regardless of the
model (M1,M2,M3). Beyond this point, tasks are differently rewarded depending
on the risk modeled by a given model M. For example, given M3 that models tasks
with higher risks, higher rewards are given because a successfully processed task
becomes more valuable for the task creator. The detailed calculation of the risk
factor in the model (the parameter δ ) is not explained in detail in this work. The
detailed mechanism is explained in [33, pp. 85].

The benefit of this approach is that the rewarding function RW undergoes a
self-configuration process by selecting a particular model M automatically based
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on monitored interactions. For example, if many tasks are aborted and the risk of
unsuccessful task processing increases, also the reward function RW can be updated
and a different model M is selected.

5.6.3 Broker Importance

Here we introduce our broker ranking approach. As mentioned before, the goal of
broker importance ranking is to implement the SBQL statement Order by (cf.
Fig. 5.5). The basic idea of the approach is derived from the concept of hubs and
authorities wherein the hub importance of a node in a network is influenced by
the authority of the nodes the hub is connected to. This method is also known
as the concept Hyperlink-Induced Topic Search (HITS) as introduced by [20]. A
node’s authority is influenced by the hub importance of the node’s neighbors. Let
us denote the importance of broker b as B(b) and the importance of community c as
C(c). Communities are sets of nodes that are matched and grouped using SBQL. A
community/broker graph can be depicted as a graph G(V,E) where V depicts the set
of nodes that may be either brokers or communities and E the set of edges to depict
links between brokers and communities. Utilizing the idea of hubs and authorities,
the broker and community importance is defined as follows:

B(b) = ∑
c∈N(b)

C(c) C(c) = ∑
b∈N(c)

B(b) (5.5)

The set of neighbors (either community or brokers neighbors) is depicted by N(c)
for the set of brokers that are connected to c and N(b) for the set of communities
that are connected to broker b. Hence, b’s importance is directly influenced by the
importance of the community it is connected to. Similarly, the importance of c is
based upon the importance of brokers that are attached to c.

We make some important extensions to the basic model:

• We expand the models for B(b) and C(c) towards a PageRank-like model that is
more robust with regards to rank stability to small perturbations (see also [28])
and can be personalized to topics of interest.

• Personalization relates to the previously discussed hierarchical tag clustering
since broker or community importance scores can be calculate for certain interest
areas (clusters).

• We additionally use broker and community weights. A broker may not equally
engage in all communities and thus weights propagate importance scores based
on the strength of the broker’s community involvement.

The resulting model is depicted by the following two equations (see also
Table 5.3):
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Table 5.3 Description of symbols

Symbol Description

p(b;T) The topic-sensitive broker personalization vector for topic T. The parameter
λb is used to balance between personalization and “network importance”

p(c;T) The topic-sensitive community personalization vector for topic T. Similarly,
the parameter λc balances between personalization and network importance

wT
bc The topic-based broker community weight that is based on how much b

engages in c (e.g., number of interactions between b and c)

B(b;T) = (1−λb)p(b;T)+λb ∑
c∈N(b)

wT
bcC(c;T) (5.6)

C(c;T) = (1−λc)p(c;T)+λc ∑
b∈N(c)

wT
bcB(b;T) (5.7)

The broker and community scores, B(b;T) and C(c;T) respectively, can be
calculated at various levels in the hierarchical tree depending on the topic of
interest. However, it is important to note that the topic of interest depends on the
actual query and its associated keywords. Therefore, these scores would need to be
calculated for every query that is used to discover and rank brokers. For large social
and collaborative networks such an approach is not feasible due to computational
complexity. For example, for a large network computation of broker scores could
talk some days or even weeks (depending on hardware resources). Clearly, these
scores need to be computed in an offline manner.

The ultimate goal is that topic-sensitive importance scores are computed offline
and at query time aggregated into a composite ranking score. We propose the PageR-
ank linearity theorem to solve the problem of topic-sensitive broker importance
ranking. The linearity theorem [16] is defined as:

Theorem 5.1 (Linearity). For any personalization vectors p1,p2 and weights
w1,w2 with w1 +w2 = 1, the following equality holds:

PPV(w1p1 +w2p2) = w1PPV(p1)+w2PPV(p2) (5.8)

The above equality states that personalized PageRank vectors PPV can be
composed as the weighted sum of PageRank vectors. To utilize the theorem, we need
to arrive at a different mathematical representation of the broker importance B(b;T).
In its current form the linearity theorem cannot be applied. First, we substitute
C(c;T) [see Eq. (5.7)] in B(b;T) [see Eq. (5.6)] so that we have:

B(b;T) =(1−λb)p(b;T)+λb(1−λc) ∑
c∈N(b)

wT
bcp(c;T) (5.9)

+λbλc ∑
c∈N(b)

∑
b′∈N(c)

wT
bcwT

b′cB(b′;Q) (5.10)
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Let us define the personalization vector p′(b;T) as follows:

p′(b;T) =
(1−λb)

(1−λc)
p(b;T)+λb ∑

c∈N(b)

wT
bcp(c;T) (5.11)

The personalization vector p′(b;T) can be simplified and rewritten if the λ
parameters are set to λb = λc:

p′(b;T) = p(b;T)+λ ∑
c∈N(b)

wT
bcp(c;T) (5.12)

The personalization vector in Eq. (5.12) has two components: p(b;T) shows the
topic specific personalization for broker b and ∑c∈N(b)wT

bcp(c;T) the topic-based
personalization of each community the broker b is connected to. Equation (5.13)
shows B(b;T) using p′(b;T).

B(b;T) = (1−λ )p′(b;T)+λ 2 ∑
c∈N(b)

∑
b′∈N(c)

wT
bcwT

b′cB(b′;T) (5.13)

Equation (5.13) has a PageRank-like structure and thus the linear theorem can
be applied. The following Eq. (5.14) shows the query-based aggregation of broker
importance scores B(b;Q).

B(b;Q) = w1B(b;T1)+w2B(b;T2) with Q = {T1,T2} (5.14)

The symbol Q in B(b;Q) depicts the SBQL query that contains the set of
demanded topics T1 and T2, which are used to match communities and brokers. The
result of the computation in Eq. (5.14) is a composite broker importance score that is
used to rank brokers. Computing composite scores requires only two database read
operations to obtain the topic-based scores and aggregation of the respective scores.
This greatly reduces the time needed to rank brokers.

5.7 Evaluation

5.7.1 Overview

We performed two kinds of experiments to evaluate SBQL and its broker importance
ranking approach.

• Performance tests to evaluate the suitability of SBQL and its implementation
to query data obtained from a real service-based testbed environment. The
testbed generates instances of services communicating over real WS-stacks
and allows for simulation of service behavior (response time, generated faults,
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etc.) Our evaluations were gathered using the logging features of the Genesis2
framework [17].

• Evaluation of the broker importance ranking approach using real data from a
virtual collaboration environment. We used data from the ICT research projects
having received grants under the EU’s Seventh Framework Programme (FP7)
[27]. The data covers a period from 2007 to 2011. Research projects have
multiple partners and an organization can be the partner of multiple projects.

These experiments help to evaluate both efficiency of SBQL and quality with
respect to broker ranking. First, the performance results are discussed and second
the broker ranking results.

5.7.2 Performance Tests

Here we discuss results related to SBQL performance tests obtained by using the
Genesis2 service testbed. The setup is described in the following.

• Testbed environment. Genesis2 has a management interface and a controllable
runtime to deploy, simulate, and evaluate SOA designs and implementations. A
collection of extensible elements for these environments are available such as
models of services, clients, registries, and other SOA components. Each element
can be set up individually with its own behavior, and steered during execution of
a test case.

• Backend deployment. For the experiments in this work we deployed Genesis2
Backends to the Amazon Elastic Compute Cloud. We launched depending on
the amount of involved services instances of two or three Community AMIs of
the type High-Memory Extra Large Instance (17.1 GB of memory) running a
Linux OS. In the following we provided each instance with the same Genesis2
Backend snapshot via mountable volumes from the Elastic Block Store. Finally,
we deployed the following environment setup from a local Genesis2 Frontend. It
included SOA-based PVCs established by Genesis2 Web services equipped with
simulated behavior and predefined relations to provide communication channels
and instantiate online communities.

Services act like HPSs when delegating each other new tasks, processing
tasks, re-delegating existing tasks, or reporting tasks’ progress status. In other
words, by following the HPS concept, services are provided by human actors
and thereby exhibit human behavior. Tasks are not delegated arbitrarily but must
match the receivers capabilities. Therefore, they are tagged by three keywords
one of which must match the picked receivers capabilities. As an intermediate,
a broker combines capabilities of the two communities it connects. The broker
avoids task processing and only forwards tasks. The finally deployed environ-
ments are variable in number of services, number of participants per group
(2–5 services) and consequently also in number of communities and required
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brokers that connect at least each community with another. Task processing and
delegation decisions happen individually and in random time intervals (1–8 s).

• Client setup. We simulated environments with different numbers of nodes
and interactions to obtain insights in performance aspects. SBQL tools and
related graph libraries have been implemented in state-of-the-art technology
using .NET/C# and have been deployed on our lab-based server infrastructure.
The blade servers are equipped with 3.2 GHz quad core CPUs and 10 GB RAM.
Interaction logs are managed by MySQL databases. A client request pool is
created on a separate machine (Intel Core2 Duo CPU 2.50 GHz, 4 GB RAM)
to perform parallel invocations of the SBQL query Web service. Clients are
connected with the server via a local 100 MBit Ethernet.

We performed several experiments to test the performance of our SBQL imple-
mentation under varying characteristics such as number of nodes and groups.
The results are summarized in the following. We performed a set of concurrent
queries (50 concurrent queries) time by launching multiple threads. For each load
experiment, the total number of requests was 100 requests to be processed. By
processing a larger amount of requests, say 200, the total processing time linearly
increases with the number of requests.

We increased the number of nodes and interactions to understand the scalability
of SBQL under different conditions. The first experiment comprises 198 nodes, 200
edges, and a total number of ten distinct tags applied to interactions between nodes.
In experiment 2, we simulated 579 nodes, experiment 3 comprising 774 nodes,
and experiment 4 with 1029 nodes in the tested. HPSs in the testbed have been
deployed equally on multiple hosts, e.g., three cloud hosts in experiment 4 to achieve
scalability. The cloud deployments have been done on Amazon’s cloud. The SBQL
processing time for this environment is shown in Fig. 5.10.

To compare the experiments 1–4, we query the graph data using the query
keywords “Robustness” and “Logging” to obtain a set of matching brokers that are
able to broker tasks related to those keywords. Increasing the number of nodes by
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Table 5.4 SBQL queries using the data from experiment 4, number of discovered brokers
and MIN processing time

ID SBQL query keywords Num. brokers MIN time

Q1 “Robustness”, “Log” 105 3993

Q2 “Robustness”, “Log”, “DB”, “Testbed” 134 3666

Q3 “Robustness”, “Log”, “DB”, “Testbed”, “Similarity” 146 3478

a factor of ≈ 3 (see the experiments 1 and 2), the processing time of SBQL queries
increases by 30 %. Comparing the experiments 2 and 3 (node addition of ≈ 30%),
the processing time increases by a factor of 10 %. By comparing the experiments 3
and 4 (node addition of ≈ 30%), the SBQL processing time increases by a factor of
20 %. These experiments show that SBQL scales with larger testbed environments
linearly.

To test the effect of using various query keywords, we used different keyword
combinations as shown in Table 5.4. The first column shows the query ID, second
the SBQL query keywords are shown, third the number of brokers are depicted, and
forth the minimum SBQL processing time in milliseconds is shown.

The number of discovered brokers increases if multiple keywords are specified.
However, the average SBQL processing time is not significantly influenced by the
number of used keywords.

5.7.3 Ranking Experiments

The second set of experiments is based on research projects and partners having
received grants under the EU’s Seventh Framework Programme (FP7). Detailed
statistical information regarding the ICT community is described in [27] and covers
a period from 2007 to 2011. Research projects have multiple partners and an
organization can be the partner of multiple projects. In prior research, we have used
this dataset already to rank the importance of organizations using novel link mining
techniques [37]. In contrast, here we focus on broker discovery issues.

A total of 4747 organizations participated in the program contributing to a
total number of 1451 projects. There are 107 distinct strategic objectives, which
will be regarded as communities in our experiment. Objectives are, for exam-
ple, “Embedded Systems Design” and “ICT for Environmental Management and
Energy Efficiency”. Let us suppose that a broker shall be found to connect these
two communities. Notice in this context, for all broker discovery and ranking
experiments we selected 2 to 3 communities randomly. An organization needs
to have performed projects in both “Embedded Systems Design” and “ICT for
Environmental Management and Energy Efficiency” to qualify as a broker. We
first match all relevant organizations that qualify as brokers to connect these
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Table 5.5 Matched and top-10 ranked brokers for “ICT for Environmental Management and
Energy Efficiency” and “Embedded Systems Design”

Rank Organization (broker) PC Score

1 FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V

4 0.1928

2 ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 6 0.1395

3 POLITECNICO DI MILANO 5 0.1268

4 COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES
ALTERNATIVES

6 0.1225

5 UNIVERSITY OF SOUTHAMPTON 2 0.1015

6 INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS 2 0.0994

7 UNIVERSITEIT TWENTE 2 0.0889

8 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND
MEDICINE

3 0.0883

9 TECHNISCHE UNIVERSITAET GRAZ 4 0.0771

10 DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV 2 0.0661

communities and then perform ranking using the introduced link based broker
importance model [cf. Eq. (5.13)].

The parameter λ is set to λ = 0.85 (this is the suggested value by the
PageRank model [30]), the broker personalization vector is assigned uniformly to
p′(b;T) = 1

numOrgs where numOrgs depicts the number of organizations (in this

case numOrgs = 4747), and the weight wT
bc = 1

|N(b)| is based on the number of

communities |N(b)| (i.e., the number of neighbors in the graph) the broker b is
connected to.

The top-10 ranking results are detailed in Table 5.5. The first column shows the
rank (1. . . 10), the second column shows the organizations’ names, the third column
shows the number of projects (project count PC) that the organization has performed
in the two objectives (“Embedded Systems Design” or “ICT for Environmental
Management and Energy Efficiency”), and the last column shows the numerical
broker ranking score. The brokers are sorted according to the ranking score from
high to low.

In addition to the description in Table 5.5, Fig. 5.11 visualizes all brokers
connecting the two communities. The node size of the top-10 ranked brokers
is based on their rank. The organization Fraunhofer-Gesellschaft has in general
(within the ICT framework) the largest number of projects and receives the highest
amount of funding. Since it is involved in many project, Fraunhofer also has the
highest importance because it is connected to many communities. With regards
to the topic-sensitive results, it is specifically involved in four projects relevant
to the demanded objectives “ICT for Environmental Management and Energy
Efficiency” and “Embedded Systems Design”. The combination of high reputation
and involvement in relevant communities makes Fraunhofer the top-ranked broker.
The second ranked broker is Ecole Polytechnique Federale de Lausanne (EPFL)
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Fig. 5.11 Ranked brokers connecting “ICT for Environmental Management and Energy Effi-
ciency” and “Embedded Systems Design”

Table 5.6 Matched and ranked brokers for “Flexible, Organic and Large Area Electronics
and Photonics” and “Embodied Intelligence”

Rank Organization (broker) PC Score

1 CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 2 0.1398

2 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND
MEDICINE

2 0.0883

with many relevant projects with regards to the objectives but with less “global”
importance (within the entire ICT framework) than Fraunhofer. Also, Politecnico di
Milano is involved in many relevant projects and thus ranks at position 3.

The broker ranking approach delivers the expected results and combines success-
fully topic-relevant importance with global network importance.

Another example is shown in Table 5.6 where communities “Flexible, Organic
and Large Area Electronics and Photonics” and “Embodied Intelligence” can be
reached via two brokers. Both have two projects (one in each objective) and thus
qualify as brokers.

A final example is shown by Table 5.7 where brokers need to connect three
communities. Indeed, the number of discovered brokers varies depending on
community (objective) popularity. To conclude the discussion on ranking results,
the proposed broker importance model delivers expected results by combining
global network importance of organizations with topic-based relevance. Thus, our
approach is able to (a) identify brokers that formally match the search criteria and
(b) rank brokers according to importance.
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Table 5.7 Matched and ranked brokers for “ICT for Environmental Management and
Energy Efficiency” and “Intelligent information management” and “Micro/nanosystems”

Rank Organization (broker) PC Score

1 FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V

14 0.1928

2 ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 9 0.1395

3 POLITECNICO DI MILANO 3 0.1268

4 UNIVERSIDAD POLITECNICA DE MADRID 5 0.1186

5 UNIVERSITY OF SOUTHAMPTON 5 0.1015

6 STIFTELSEN SINTEF 3 0.0813

5.7.4 Lessons Learned

This section provides some additional discussions with regards to lessons learned
and recommendations for theory and practice.

• SBQL provides a rich set of language features to state complex queries for
broker discovery. Distributed queries need to be considered also in future SBQL
activities. Currently it is assumed that logs are collected in a central repository
and that SBQL queries are executed on a single instance database. In this regard,
distributed log repositories and databases should be considered in SBQL queries.

• The performance tests showed that our SBQL implementation offers sufficient
performance for mid- to large-scale environments. In truly open ultra large-
scale environments with potentially millions of people and services performance
and scalability need to be revisited. Aspects include distribution of queries and
federation of results.

• The broker importance ranking approach delivers excellent results and allows for
full personalization. The mathematical models and theories, as presented in this
work, provide mature concepts and the basis for further work on personalization
techniques.

• Further personalization may include the long-term stability of social relations,
for example, or the frequency of changes of collaboration partners. The weight
assignment of social relations is an important issue and should be further
analyzed by considering various VO datasets.

5.8 Conclusions

This work introduced a number of principles to support service oriented collab-
oration in professional virtual communities. The problem in today’s collaborative
networks is the fragmented nature of expertise areas and boundaries imposed by
organizational structures. Principles found in social network theory are suitable
for assisting in the formation process of socially-based compositions of human
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and software services. Specifically, we adopted the well-established theory of
structural holes to support the formation of such compositions. In this work,
brokers help connecting independent communities by forwarding tasks and help and
support requests to individual community members. Here we proposed a socially-
based approach to discover brokers based on interaction mining and monitoring
techniques. Technically, we proposed SBQL to discover suitable brokers based on
query constraints and ranking criteria. SBQL introduces a domain specific language
to construct and execute complex queries specifically for the discovery of brokers
in socially-based virtual communities. Here we introduced a broker importance
model not only to match brokers but also to rank them according to their topic-
based and community-wide relevance. Periodically updated metrics are used to
weight interaction links and paths between actors. The proposed techniques and
technical concepts have been implemented and validated through a services testbed
and through experiments using real world data.

In our future work we will further work on tool support for broker query
modeling and debugging. Furthermore, we plan to use further additional social
network data sources to perform broker ranking experiments. Also, we plan to
support the execution of distributed SBQL queries.
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Chapter 6
Conclusion

Online social networks have become an integral part of our daily personal and work
related activities. People use social networks not only to maintain relationships with
friends but also to communicate, collaborate, and share information. One of the most
profound properties of social networks is their dynamic nature due to people joining
and leaving networks. This book introduced novel techniques for link formation in
social network based systems.

First, this book introduced link prediction in directed social networks. The
prediction of missing links and the prediction of future links is an important task
in the domain of social network analysis. The former helps to infer the “real” social
network structure while the latter is used to give friendship as well as following
recommendations to users. A wide range of local, global, and semi-local metrics
have been proposed by previous work. A large body of existing literature, however,
focuses on undirected networks only. This work closes this gap by focusing on
directed networks. The approach is based on local network information wherein
prediction is performed based on node similarity.

The following two chapters introduced link formation through recommendation
based on global network information. Recommendation is based on the concept of
authority and also structural holes. We proposed a novel follow recommendation
approach that is based on the concept of user authority. Instead of simply matching
users by static skill profiles, we proposed a network-centric approach taking a
user’s community engagement as well as social metrics into account. We have
systematically derived a mathematically sound model to measure user authority
based on activity (e.g., repository commits) and community reputation (follower
degree). Furthermore, this work introduced various metrics for importance ranking
in scientific collaboration environments. We proposed a novel topic-sensitive
authority model that is based on well-establish ranking techniques. We systemat-
ically derived a unified HITS/PageRank-based model that can be fully personalized.
The second metric measures organizations’ structural importance based on the
notion of structural holes. In our approach structural importance is computed with
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respect to certain topics of interest. Thus, structural importance helps identifying
organizations that may be valuable partners for strategic alliances. Combined with
authority, this provides a powerful approach for ranking and discovering new
partners. Finally, authority and structural importance are systematically combined
with cost. For that purpose we utilize AHP to achieve a trade-off among various
ranking criteria. The proposed approach delivers very good results and provides
more accurate, topic-sensitive results when compared with other ranking techniques.

The notion of brokers is a hybrid (semi-local) formation approach wherein local
information is used to constraint which nodes may act as brokers and global infor-
mation to rank brokers based on their reputation. Technically, we proposed SBQL
to discover suitable brokers based on query constraints and ranking criteria. SBQL
introduces a domain specific language to construct and execute complex queries
specifically for the discovery of brokers in socially-based virtual communities. Here
we introduced a broker importance model not only to match brokers but also to rank
them according to their topic-based and community-wide relevance. Periodically
updated metrics are used to weight interaction links and paths between actors. The
proposed techniques and technical concepts have been implemented and validated
through a services testbed and through experiments using real world data.

Future work will focus more on deep learning techniques including adaptive
random forest models that can be incrementally improved.
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