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Models and Methods in Social Network Analysis presents the most important developments
in quantitative models and methods for analyzing social network data that have appeared
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techniques for exploring network data, and software for the analysis of social networks.
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The series Structural Analysis in the Social Sciences presents approaches that explain social
behavior and institutions by reference to relations among such concrete entities as persons
and organizations. This contrasts with at least four other popular strategies: (a) reductionist
attempts to explain by a focus on individuals alone; (b) explanations stressing the causal
primacy of such abstract concepts as ideas, values, mental harmonies, and cognitive maps
(thus, “structuralism” on the Continent should be distinguished from structural analysis
in the present sense); (c) technological and material determination; and (d) explanation
using “variables” as the main analytic concepts (as in the “structural equation” models that
dominated much of the sociology of the 1970s), where structure is that connecting variables
rather that actual social entities.
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the series also draws on social science theory and research that is not framed explicitly
in network terms, but stresses the importance of relations rather than the atomization of
reduction or the determination of ideas, technology, or material conditions. Although the
structural perspective has become extremely popular and influential in all the social sciences,
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series hopes to encourage the use of this very fruitful approach.
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Introduction

Stanley Wasserman, John Scott, and Peter J. Carrington

Interest in social network analysis has grown massively in recent years. This growth
has been matched by an increasing sophistication in the technical tools available to
users. Models and Methods in Social Network Analysis (MMSNA) presents the most
important of those developments in quantitative models and methods for analyzing
social network data that have appeared during the 1990s. It is a collection of original
chapters by leading methodologists, commissioned by the three editors to review recent
advances in their particular areas of network methods.

As is well-known, social network analysis has been used since the mid-1930s to
advance research in the social and behavioral sciences, but progressed slowly and
linearly, until the end of the century. Sociometry (sociograms, sociomatrices), graph
theory, dyads, triads, subgroups, and blockmodels —reflecting substantive concerns such
as reciprocity, structural balance, transitivity, clusterability, and structural equivalence —
all made their appearances and were quickly adopted by the relatively small number of
“network analysts.” It was easy to trace the evolution of network theories and ideas from
professors to students, from one generation to the next. The field of network analysis was
even analyzed as a network (see, for example, Mullins 1973, as well as analyses by Burt
in 1978, and Hummon and Carley in 1993). Many users eventually became analysts, and
some even methodologists. A conference of methodologists, held at Dartmouth College
in the mid-1970s, consisted of about thirty researchers (see Holland and Leinhardt 1979)
and really did constitute a “who’s who” of the field — an auspicious, but rather small
gathering. Developments at this time were also summarized in such volumes as the
methodological collection edited by Linton Freeman and his colleagues (1989), which
presented a collection of papers given at a conference in Laguna Beach, California,
in the early 1980s, and the collection edited by Barry Wellman and the late Stephen
Berkowitz (2003 [1988]). Much of this early research has been brought together in a
recent compilation, together with some later contributions (Scott 2002).

However, something occurred in about 1990. It is not completely clear to us what
caused it. Interest in social networks and use of the wide-ranging collection of social
network methodology began to grow at a much more rapid (maybe even increasing)
rate. There was a realization in much of behavioral science that the “social contexts”
of actions matter. Epidemiologists realized that epidemics do not progress uniformly
through populations (which are almost never homogeneous). The slightly controversial
view that sex research had to consider sexual networks, even if such networks are
just dyads, took hold. Organizational studies were recognized as being at the heart
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of management research (roughly one-third of the presentations at the Academy of
Management annual meetings now have a network perspective). Physicists latched
onto the web and metabolic systems, developing applications of the paradigm that a
few social and behavioral scientists had been working on for many, many years. This
came as a surprise to many of these physicists, and some of them did not even seem to be
aware of the earlier work — although their maniacal focus on the small world problem
(Watts 1999, 2003; Buchanan 2002) has made most of their research rather routine
and unimaginative (see Barabasi, 2002, for a lower-level overview). Researchers in the
telecommunications industry have started to look at individual telephone networks to
detect user fraud. In addition, there is the media attention given to terrorist networks,
spawning a number of methodologists to dabble in the area — see Connections 24(3)
(2001): a special issue on terrorist networks, as well as the proceedings from a recent
conference (Breiger, Carley, and Pattison 2003) on this topic. Perhaps the ultimate
occurred more recently when Business 2.0 (November 2003) named social network
applications the “Hottest New Technology of 2003.” All in all, an incredible diversity
of new applications for what is now a rather established paradigm.

Sales of network analysis textbooks have increased: an almost unheard-of occurrence
for academic texts (whose sales tend to hit zero several years after publication). It has
been 10 years since the publication of the leading text in the area — Social Network
Analysis: Methods and Applications (Wasserman and Faust 1994) — and almost 15
years since work on it began. It is remarkable not only that is it still in print, but
also that increasing numbers of people are buying it, maybe even looking at parts
of it. Yet, much has happened in social network analysis since the mid-1990s. Some
general introductory texts have since appeared (Degenne and Forsé 1999; Scott 2000),
but clearly, there is a need for an update to the methodological material discussed in
Wasserman and Faust’s standard reference.

Consequently, we intend MMSNA to be a sequel to Social Network Analysis: Methods
and Applications. Although our view of the important research during the 1990s is
somewhat subjective, we do believe (as do our contributors) that we have covered the
field with MMSNA, including chapters on all the topics in the quantitative analysis
of social networks in which sufficient important work has been recently published.
The presentations of methodological advances found in these pages are illustrated with
substantive applications, reflecting the belief that it is usually problems arising from
empirical research that motivate methodological innovation. The contributions review
only already published work: they avoid reference to work that is still “in progress.”

Currently, no volume completely reviews the state of the art in social network anal-
ysis, nor does any volume present the most recent developments in the field. MMSNA
is a complement, a supplement, not a competitor, to Wasserman and Faust (1994). We
expect that anyone who has trained in network methods using Wasserman and Faust or
who uses it as a reference will want to update his or her knowledge of network methods
with the material found herein. As mentioned, the range of topics in this volume is
somewhat selective, so its coverage of the entire field of network methods is not nearly
as comprehensive as that of Wasserman and Faust. Nevertheless, the individually au-
thored chapters of MMSNA are more in-depth, definitely more up-to-date, and more
advanced in places than presentations in that book.
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We turn now to the individual chapters in MMNSA. Peter Marsden’s “Recent De-
velopments in Network Measurement” is a significant scene-setting chapter for this
whole volume. He explores the central issues in the measurement of social relations
that underpin the other techniques examined in the book. His particular concern is not
with measuring network structures themselves, but in the acquisition of relevant and
reliable data. To this end, he looks specifically at the design of network studies and the
collection of source data on social relations.

Marsden’s starting point is the recognition that whole network and egocentric ap-
proaches can be complementary viewpoints on the same data. Whole network studies
are concerned with the structural properties of networks at the global level, whereas
egocentric studies focus on the network as it appears from the standpoint of those sit-
uated at particular locations within it. Despite this complementarity, however, issues
of sampling and data selection mean that it is rarely possible to move with any ease
from the “structure” to the “agent,” or vice versa. Marsden examines, in particular,
the implications of the identification of network boundaries on the basis of positional,
event-based, and relational measures, showing how recent developments have moved
beyond the conventional, and often inadequate, approaches to boundary setting.

Data collection for network analysis, in whatever kind of study, has most typically
involved survey and questionnaire methods, and Marsden reviews the work of recent
authors on the specific response formats for collecting factual and judgmental data on
social relations. He considers in particular depth the problems of recall and recognition
in egocentric approaches, especially with the use of name-generator methods, and
he gives focused attention to studies that aim to collect data on subjective images
and perceptions of networks rather than merely reporting actual connections. A key
issue in both types of research is the meaning given to the relations by the actors —
most particularly, the meaning of such apparently obvious terms as “friend.” Marsden
shows that a number of issues in this area are significantly related to the position that
the respondent occupies in the network on which he or she is reporting. The chapter
concludes with some briefer remarks on archival and observational methods where the
researcher has less direct control (if any at all) over the nature of the raw data.

Marsden’s remarks on the sampling problem are further considered in Ove Frank’s
chapter, “Network Sampling and Model Fitting.” Frank has been the leading contributor
to work on network sampling for many years, and here he begins from a consideration
of the general issues in sampling methodology that he sees as central to the analysis
of multivariate network data. A common method in network analysis has been implicit
or explicit snowball sampling, and Frank looks at the use of this method in relation
to line (edge) sampling as well as point (vertex) sampling, and he shows that the
limitations of this method can be partly countered through the use of probabilistic
network models (i.e., basing the sampling on population model assumptions). These are
examined through the method of random graphs, especially the uniform and Bernoulli
models, and the more interesting models such as Holland-Leinhardt’s p;, p*, and
Markov random graphs.

Frank gives greatest attention, however, to dyad-dependence models that explicitly
address the issue of how points and lines are related. These are models in which network
structure is determined by the latent individual preferences for local linkages, and Frank
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suggests that these can be seen as generalizations of the Holland-Leinhardt p; model and
that they are equally useful for Bayesian models. He examines log-linear and clustering
approaches to choosing such models, arguing that the most effective practical solution
may be to combine the two. These general conclusions are illustrated through actual
studies of drug abuse, the spread of AIDS, participation in crime, and social capital.

The next group of chapters turns from issues of data design and collection to struc-
tural measurement and analysis. Centrality has been one of the most important areas of
investigation in substantive studies of social networks. Not surprisingly, many measures
of centrality have been proposed. The chapter by Martin Everett and Stephen Borgatti,
“Extending Centrality,” notes that these measures have been limited to individual ac-
tors and one-mode data. Their concern is with the development of novel measures that
would enlarge the scope of centrality analysis, seeking to generalize the three primary
concepts of centrality (degree, closeness, and betweenness) and Freeman’s notion of
centralization. They first show that it is possible to analyze the centrality of groups,
whether these are defined by some external attribute such as ethnicity, sex, or political
affiliation, or by structural network criteria (as cliques or blocks). A more complex
procedure is to shift the measurement of centrality from one-mode to two-mode data,
such as, for example, both individuals and the events in which they are involved. Al-
though such measures are more difficult to interpret substantively, Everett and Borgatti
note that they involve less loss of the original data and do not require any arbitrary
dichotomizing of adjacency matrices. Finally, they look at a core-periphery approach
to centrality, which identifies those sub-graphs that share common structural locations
within networks.

Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj, in “Positional Analyses
of Sociometric Data,” examine blockmodeling procedures, reviewing both structural
equivalence and regular equivalence approaches. Noting that few empirical examples
of exact partitioning exist, they argue that the lack of fit between model and reality can
be measured and used as a way of comparing the adequacy of different models. Most
importantly, they combine this with a generalization of the blockmodeling method that
permits many types of models to be constructed and compared. Sets of “permitted” ideal
blocks are constructed, and the model that shows minimum inconsistency is sought.
In an interesting convergence with the themes raised by Everett and Borgatti, they use
their method on Little League data and discover evidence for the existence of a center-
periphery structure. They go on to explore the implications of imposing pre-specified
models (such as a center-periphery model) on empirical data, allowing the assessment
of the extent to which actual data exhibit particular structural characteristics. They
argue that this hypothesis-testing approach is to be preferred to the purely inductive
approach that is usually employed to find positions in a network.

Thomas Valente’s “Network Models and Methods for Studying the Diffusion of
Innovations” turns to the implications of network structure for the flow of information
through a network. In this case, the flow considered is information about innovations,
and Valente reviews existing studies in search of evidence for diffusion processes. His
particular concern is for the speed of diffusion in different networks and the impli-
cations of this for rates of innovation. A highly illuminating comparison of available
mathematical models with existing empirical studies in public health using event history
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analysis shows that network influences are important, but that the available data prevent
more definitive conclusions from being drawn. Valente argues for the collection of more
adequate data, combining evidence on both information and network structure, and the
construction of more adequately theorized models of the diffusion process.

Katherine Faust’s “Using Correspondence Analysis for Joint Displays of Affiliation
Networks” convincingly shows the need for formal and strict representational models of
the joint space of actors and relational ties. Correspondence analysis (a scaling method),
she argues, allows a high level of precision in this task. Having specified the nature of
the method and its relevance for social network data, rather than the more typical “actors
x variable” data with which it is often used, Faust presents a novel analysis of a global
trading network, consisting of international organizations and their member countries.
This discloses a clear regional structure in which the first dimension separates South
American from Central American countries and organizations, whereas the second
dimension separates North American and North Atlantic countries from all others.

The exponential family of random graphs, p*, has received a lot of attention in
recent years, and in “An Introduction to Random Graphs, Dependence Graphs, and p*,”
Stanley Wasserman joins with Garry Robins to review this recent work. Wasserman and
Robins made the important generalization of the model from Markov random graphs
to a larger family of models. In this chapter, however, they begin with dependence
graphs to further clarify the models. They see the great value of p* models as making
possible an effective and informed move from local, micro phenomena to overall,
macro phenomena. Using maximum likelihood and pseudolikelihood (based on logit
models) estimation techniques, they show that the often-noted tendency towards model
degeneracy (the production of trivial or uninteresting results) can be offset by using
more complex models in which 3- or 4-star configuration counts are used. That is,
the model incorporates the first three or four moments of the degree distribution to
produce more realistic models. Evidence from simulation studies confirms the power
of this approach. Indeed, degenerate models may not always be trivial, but may point to
regions where stochastic processes have broken down. In making this point, they make
important connections with recent developments in small world networks.

Although analyses of two-mode, affiliation networks involve one significant move
away from the conventional one-mode analysis of relational, adjacency data, analyses
of multiple networks involves a complementary broadening of approach. Laura Koehly
and Philippa Pattison (“Random Graph Models for Social Networks: Multiple Relations
or Multiple Raters?”) turn to this issue of multiple networks, arguing that most real
networks are of this kind. Building on simpler, univariate p* models, they make a
generalization to random graph models for multiple networks using dependence graphs.
They examine both actual relations and cognitive perceptions of these relations among
managers in high-technology industries, showing that the multiple network methods
lead to conclusions that simply would not be apparent in a conventional single network
approach. Their work is the first step toward richer models of generalized relational
structures.

The idea of dependence graphs was central to the chapters of Wasserman and Robins
and of Koehly and Pattison. Garry Robins and Philippa Pattison join forces to explore
this key idea in “Interdependencies and Social Processes: Dependence Graphs and
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Generalized Dependence Structures.” They make the Durkheimian point that depen-
dence must be seen as central to the very idea of sociality and use this to reconstruct
the idea of social space. As they correctly point out, the element or unit in social space
is not the individual but the ties that connect them, and they hold that the exploration
of dependence models allows the grasping of the variety of ties that enter into the con-
struction of social spaces. From this point of view, dependence graphs are to be seen
as representations of proximity in social space, and network analysts are engaged in
social geometry.

The analysis of social networks over time has long been recognized as something of
a Holy Grail for network researchers, and Tom Snijders reviews this quest in “Models
for Longitudinal Network Data.” In particular, he examines ideas of network evolution,
in which change in network structure is seen as an endogenous product of micro-level
network dynamics. Exploring what he terms the independent arcs model, the reciprocity
model, the popularity model, and the more encompassing actor-oriented model, Snijders
concludes that the latter offers the best potential. In this model, actors are seen as
changing their outgoing ties (choices), each change aiming at increasing the value
derived from a particular network configuration. Such changes are “myopic,” concerned
only with the immediate consequences. A series of such rational choices means that
small, incremental changes accumulate to the point at which substantial macro-level
transformations of structure occur. He concludes with the intriguing suggestion that
such techniques can usefully be allied with multiple network methods such as those
discussed by Koehly and Pattison.

The final two chapters in the book are reviews of available software sources for
visualization and analysis of social networks. The visualization of networks began
with Moreno and the early sociograms, but the use of social network analysis for
larger social networks has made the task of visualization more difficult. For some
time, Linton Freeman has been concerned with the development of techniques, and
in “Graphical Techniques for Exploring Social Network Data,” he presents the latest
and most up-to-date overview. The two families of approaches that he considers are
those based on some form of multidimensional scaling (MDS) and those that involve
an algebraic procedure. In MDS, points are optimally located in a specified, hopefully
small, number of dimensions, using metric or non-metric approaches to proximity. In the
algebraic methods of correspondence analysis and principal component analysis, points
are located in relation to dimensions identified through procedures akin to the analysis
of variance. Using data on beachgoers, Freeman shows that the two techniques produce
consistent results, but an algebraic method produces a more dramatic visualization of
the structure. Importantly, he also notes that wherever a network is plotted as a disc
or sphere, it has few interesting structural properties. Freeman goes on to examine the
use of specific algorithms for displaying and manipulating network images, focusing
on MAGE, which allows points to be coded for demographic variables such as gender,
age, and ethnicity. The use of this method is illustrated from a number of data sets.
The longitudinal issues addressed by Snijders are also relevant to the visualization
issue, and Freeman considers the use of MOVIEMOL as an animation device for
representing small-scale and short-term changes in network structure. He shows the
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descriptive power of this technique for uncovering social change, but also shows how it
can be used in more analytical ways to begin to uncover some of the processes at work.

The final chapter turns to the issue of the software available for different kinds
of network analysis. Mark Huisman and Marijtje van Duijn, in “Software for Social
Network Analysis,” present what is the most up-to-date review of a continually chang-
ing field. A total of twenty-seven packages are considered, excluding the visualization
software considered by Freeman. Detailed attention is given to six major packages:
UCINET, Pajek, MultiNet, NetMiner, STRUCTURE, and StOCNET. Wherever pos-
sible, the packages are compared using the same data set (Freeman’s EIES network).
This is a true road test, with interesting and somewhat surprising results. The authors
conclude that there is no single “best buy” and that the package of choice depends very
much on the particular questions that are of interest to the analyst.
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Recent Developments in Network Measurement

Peter V. Marsden

Harvard University

This chapter considers study design and data collection methods for social network stud-
ies, emphasizing methodological research and applications that have appeared since an
earlier review (Marsden 1990). It concentrates on methods and instruments for measur-
ing social relationships linking actors or objects. Many analytical techniques discussed
in other chapters identify patterns and regularities that measure structural properties
of networks (such as centralization or global density), and/or relational properties of
particular objects/actors within them (such as centrality or local density). The focus
here is on acquiring the elementary data elements themselves.

Beginning with common designs for studying social networks, the chapter then
covers methods for setting network boundaries. A discussion of data collection tech-
niques follows. Survey and questionnaire methods receive primary attention: they are
widely used, and much methodological research has focused on them. More recent
work emphasizes methods for measuring egocentric networks and variations in network
perceptions; questions of informant accuracy or competence in reporting on networks
remain highly salient. The chapter closes with a brief discussion of network data from
informants, archives, and observations, and issues in obtaining them.

2.1 Network Study Designs

The broad majority of social network studies use either “whole-network™ or “egocen-
tric” designs. Whole-network studies examine sets of interrelated objects or actors that
are regarded for analytical purposes as bounded social collectives, although in practice
network boundaries are often permeable and/or ambiguous. Egocentric studies focus
on a focal actor or object and the relationships in its locality.

Freeman (1989) formally defined forms of whole-network data in set-theoretic,
graph-theoretic, and matrix terms. The minimal network database consists of one set of
objects (also known as actors or nodes) linked by one set of relationships observed at one
occasion; the cross-sectional study of women’s friendships in voluntary associations
given by Valente (Figure 6.1.1, Chapter 6, this volume) is one example. The matrix
representation of this common form of network data is known as a “who to whom”
matrix or a “sociomatrix.” Wasserman and Faust (1994) termed this form a one-mode
data set because of its single set of objects.

Elaborations of the minimal design consider more than one set of relationships, mea-
sure relationships at multiple occasions, and/or allow multiple sets of objects (which
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may change over occasions). Data sets with two sets of objects — termed rwo-mode by
Wasserman and Faust (1994) — are common; Table 7.4.1 of Chapter 7 in this volume
gives an example, a network of national memberships in trade and treaty organizations.
Many studies also measure multiple relations, as in Lazega’s (1999) study of collabora-
tion, advising, and friendships among attorneys. As Snijders (Chapter 11, this volume)
indicates, interest in longitudinal questions about social networks is rising; most extant
data sets remain single occasion, however. In addition to relationships, almost all net-
work data sets measure attributes (either time constant or time varying) of objects, but
this chapter does not consider issues of measurement for these.

A further variation known as a cognitive social structure (CSS) design (Krackhardt
1987) obtains measurements of the relationship(s) under study from multiple sources
or observers. Chapter 9 in this volume presents models for such data. The CSS design
is widely used to study informant variations in the social perception of networks. In
applications to date, observers have been actors in the networks under study, but in
principle the sets of actors and observers could be disjoint.

Egocentric network designs assemble data on relationships involving a focal object
(ego) and the objects (alters) to which it is linked. Focal objects are often sampled from
a larger population. The egocentric network data in the 1985 General Social Survey
(GSS; see Marsden 1987), for example, include information on up to five alters with
whom each survey respondent “discusses important matters.”

Egocentric and whole-network designs are usually distinguished sharply from one
another, but they are interrelated. A whole network contains an egocentric network
for each object within it (Marsden 2002). Conversely, if egos are sampled “densely,”
whole networks may be constructed using egocentric network data. Kirke (1996), for
instance, elicited egocentric networks for almost all youth in a particular district, and
later used them in a whole-network analysis identifying within-district clusters. Ego-
centric designs in which respondents report on the relationships among alters in their
egocentric networks may be seen as restricted CSS designs —in which informants report
on clusters of proximate relationships, rather than on all linkages.

Aside from egocentric designs and one-mode (single-relation or multirelational),
two-mode, and CSS designs for whole networks, some studies sample portions of
networks. Frank discusses network sampling in depth in Chapter 3 (this volume). One
sampling design observes relationships for a random sample of nodes (Granovetter
1976). Another, known as the “random walk” design (Klovdahl et al. 1977; McGrady
et al. 1995), samples chains of nodes, yielding insight into indirect connectedness in
large, open populations.

2.2 Setting Network Boundaries

Deciding on the set(s) of objects that lie within a network is a difficult problem for
whole-network studies. Laumann, Marsden, and Prensky (1989) outlined three generic
boundary specification strategies: a positional approach based on characteristics of
objects or formal membership criteria, an event-based approach resting on participation
in some class of activities, and a relational approach based on social connectedness.
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Employment by an organization (e.g., Krackhardt 1990) is one positional criterion. The
“regulars” at a beach depicted by Freeman (Figure 12.2.3, Chapter 12, this volume; see
also Freeman and Webster 1994) were identified via an event-based approach; regulars
were defined as persons observed 3 or more days during the study period.

Doreian and Woodard (1992) outlined a specific version of the relational approach
called expanding selection. Beginning with a provisional “fixed” list of objects deemed
to be in a network, it then adds objects linked to those on the initial list. This approach
is closely related to the snowball sampling design discussed by Frank in Chapter 3, this
volume; Doreian and Woodard, however, added a new object only after finding that
it had several links (not just one) to elements on the fixed list. They review logistical
issues in implementing expanding selection, and compare it with the fixed-list approach
in a study of social services networks. More than one-half of the agencies located via
expanding selection were not on the fixed list. Added agencies were closely linked to
one another, although the fixed-list agencies were relatively central within the expanded
network. The fixed-list approach presumes substantial prior investigator knowledge
of network boundaries, whereas expanding selection draws on participant knowledge
about them.

Elsewhere, Doreian and Woodard (1994) suggested methods for identifying a “rea-
sonably complete” network within a larger network data set. They used expanding
selection to identify a large set of candidate objects, and then selected a dense segment
of this for study. They adopted Seidman’s (1983) “k-core” concept (a subset of objects,
each linked to at least k others within the subset) as a criterion for setting network
boundaries. By varying k, investigators can set more and less restrictive criteria for
including objects.

Egocentric network studies typically set boundaries during data collection. The
“name generator’” questions discussed in this chapter accomplish this.

2.3 Survey and Questionnaire Methods

Network studies draw extensively on survey and questionnaire data. Surveys allow
investigators to decide on relationships to measure and on actors/objects to be ap-
proached for data. In the absence of archival records, surveys are often the most prac-
tical alternative: they make much more modest demands on participants than do diary
methods or observation, for example. Surveys do introduce artificiality, however, and
findings rest heavily on the presumed validity of self-reports.

Both whole-network and egocentric network studies use survey methods, but the
designs typically differ in how they obtain network data and in what they ask of respon-
dents. A whole-network study usually compiles a roster of actors before data collection
begins. Survey and questionnaire instruments incorporate the roster, allowing respon-
dents to recognize rather than recall their relationships. Egocentric studies, however,
are often conducted in large, open populations. The alters in a respondent’s network are
not known beforehand, so setting network boundaries must rely on respondent recall.

Whole-network studies ordinarily seek interviews with all actors in the population,
and ask respondents to report only on their direct relationships. (The CSS studies
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discussed later are an exception; they ask for much more data.) In egocentric stud-
ies, however, practical and resource considerations usually preclude interviewing a
respondent’s alters. Such studies ask respondents for data on their own relationships to
alters, and also often ask for information on linkages between alters; moreover, they
commonly request proxy reports about alters.

Surveys and questionnaires in whole-network studies use several response formats
to obtain network data: binary judgments (often termed sociometric choices) about
whether respondents have a specified relationship with each actor on the roster, ordinal
ratings of tie strength, or rankings. Binary judgments are least difficult for respondents;
ranking tasks are most demanding. Eudey, Johnson, and Schade (1994) found that a
large majority of respondents preferred rating over ranking tasks. Ferligoj and Hlebec
(1999) reported the reliability of ratings to be somewhat higher than that of binary
judgments.

Batchelder (1989) considered network data of different scale types (dichotomous,
ordinal, interval, ratio, absolute) and the inferences about network-level properties
(e.g., reciprocation, presence of cliques) that can be drawn meaningfully from them.
Among other things, Batchelder showed that findings may be affected if respondents
have differing thresholds for claiming a given type of tie when making dichotomous
judgments; Feld and Carter (2002) referred to this as expansiveness bias (see also
Kashy and Kenny 1990). Likewise, implicit respondent-specific scale and location
constants for rating relationship strength can complicate inferences. Eudey et al. (1994),
however, used both ratings and rankings in studying a small group, and found quite
high correlations between measures based on the two response formats.

Surveys sometimes include “global” items asking respondents about the size, density,
or composition of their egocentric networks. Such questions pose extensive cognitive
demands. To answer a global network density question, for instance, respondents must
decide who their alters are, ascertain relationships among alters, and aggregate (Burt
1987). Sudman (1985) measured network size using both a global item and a recognition
instrument; the measures had similar means, but the global item had a far greater
variance. Instead of global items, contemporary studies usually measure egocentric
networks using multiple-item instruments that ask respondents for only one datum at a
time.

(A) Name Generator Instruments for Egocentric Networks

Surveys have long collected data on a respondent’s social contacts and relationships
(Coleman 1958). Such egocentric network instruments typically include two types of
questions (Burt 1984): name generators that identify the respondent’s alters, and name
interpreters that obtain information on the alters and their relationships. Name gen-
erators are free-recall questions that delineate network boundaries. Name interpreters
elicit data about alters and both ego—alter and alter—alter relationships. Many indices
of network form and composition are based on such data.

Instruments for egocentric networks use both single and multiple name generators. A
single-generator instrument focusing on alters with whom respondents “discuss impor-
tant matters” first appeared in the 1985 GSS, and later in several other studies (Bailey
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and Marsden 1999). It tends to elicit small networks of “core” ties; Marsden (1987)
reported a mean network size of 3.0 for U.S. adults in 1985, whereas Ruan et al. (1997)
reported a mean of 3.4 for adults in a Chinese city in 1993. Hirsch’s (1980) Social
Network List (SNL) for social support networks is another one-generator instrument.
Respondents list up to twenty persons they regard as ““significant”” and have seen during
the prior 4 to 6 weeks.

Any given name-generating relationship elicits only a fraction of a respondent’s
social contacts. Moreover, many conceptual understandings of networks extend beyond
“core” ties to include more mundane forms of social support. Fischer (1982a), for
example, used name generators for instrumental aid and socializing, as well as confiding.
Fischer and Shavit’s (1995) U.S.—Israel support network comparison used a multiple-
generator instrument. Another example is the Social Support Questionnaire (SSQ;
Sarason et al. 1983), a twenty-seven-generator instrument eliciting persons to whom
respondents can turn and on whom they can rely in differing circumstances.

The first consideration in choosing between single and multiple name generator in-
struments must be a study’s conceptualization of a network. Single-generator methods
may be sufficient for core networks, but more broadly defined support networks al-
most certainly require multiple name generators. A practical issue is the availability
of interview time. Multiple-generator instruments that elicit many alters can be quite
long, and measuring egocentric networks must be a central focus of studies including
them.

More extensive definitions of “a network™ include alters and relationships that do
not provide even minor social support. McCarty et al. (1997) sought to measure fea-
tures of “total personal networks,” including all alters “known” by a respondent, those
who “would recognize the respondent by sight or by name” (p. 305). Networks thus
defined are too large to enumerate fully. McCarty et al. sampled total network alters
by selecting a series of first names and asking if respondents know anyone by those
names; they posed name interpreter questions about the sampled alters. The authors
acknowledge that age, gender, and race/ethnic differences in naming practices may
limit the representativeness of their samples. Nonetheless, their sampled total networks
are less dense and less kin centered than are core or support networks, as one would
anticipate. Further investigation of this technique as a means of measuring extensively
defined egocentric networks seems warranted.

Because name generator instruments are complex by comparison with conventional
survey items (Van Tilburg 1998), they often are administered in person so interview-
ers can assist respondents who need help completing them. Such instruments have,
however, appeared in both paper-and-pencil (Burt 1997) and computerized question-
naires (Bernard et al. 1990; Podolny and Baron 1997). Little research has examined
differences in data quality by data collection mode.

Methodological research on name generator instruments rarely addresses questions
of validity because criterion data from other sources are unavailable. Some test—retest
studies of instrument reliability are reviewed subsequently. Most research, however,
examines the in-practice performance of instruments: how name generators differ,
how respondents handle sometimes challenging tasks that instruments pose, and how
key terms are understood. Much of this research reflects attention to cognitive and
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communicative processes involved in answering survey questions (Sudman, Bradburn,
and Schwarz 1996).

Comparing Name Generators

Several studies systematically compare properties of name generators. Campbell and
Lee (1991), Milardo (1992), and Van der Poel (1993) highlighted conceptual differ-
ences between generators in criteria for including alters. Some refer to specific social
exchanges, such as discussing important matters or borrowing household items; oth-
ers use affective criteria (“closeness”); others specify particular role relations such as
kinship or neighboring; and still others measure frequent interaction. Also, some gener-
ators specify temporal (e.g., contact within the prior 6 months) or spatial/organizational
restrictions on eligible alters (Campbell and Lee 1991).

Varying name generator content influences egocentric network size, among other
features. Campbell and Lee (1991) and Milardo (1992) showed that intimate name
generators — whether affective or exchange based — elicit smaller networks than those
specifying less intense thresholds for naming alters. Mean network sizes reported in
seven intimate generator studies (all in North American settings) range between three
and seven. Multiple-generator exchange-based instruments produce appreciably larger
networks; across seven studies using such instruments, mean network size ranged be-
tween ten and twenty-two. Studies using exchange-based name generators tended to
produce networks having smaller fractions of family members than did those using
intimate generators.

Bernard et al. (1990) administered the GSS name generator and an eleven-generator
social support instrument within a single study. The GSS instrument elicited smaller
networks than did the social support instrument. These were core contacts: about 90%
of GSS alters were also named for the social support instrument.

Instruments with many name generators impose appreciable respondent burden.
Three studies suggest small sets of name generators for measuring support networks.
Van der Poel (1993) identified subsets of name generators that best predict the size and
composition of networks elicited using a ten-generator instrument. A three-generator
subset consists of items on discussing a major life change, aid with household tasks,
and monthly visiting; a five-generator version adds borrowing household items and
going out socially. Bernard et al. (1990) isolated questions about social activities, hob-
bies, personal problems, advice about important decisions, and closeness as a “natural
group” of name generators. Burt (1997) used a construct validity criterion — the asso-
ciation between network constraint and achievement — in an organizational setting. He
concluded that a minimal module of name generators should measure both intimacy
and activity; it might consist of the GSS “important matters” item, socializing, and
discussion of a job change.

Recall, Recognition, and Forgetting

Brewer (2000) reviewed nine studies that asked respondents first to freely recall lists
of persons, and then to supplement their lists after consulting an inventory listing all
eligible persons. For instance, Brewer and Webster (1999) asked dormitory residents to
recall their best friends, close friends, and other friends; the respondents then reviewed
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a dormitory roster and could add to each list of friends. Friends recognized on the roster
were deemed to have been “forgotten” in the recall task.

Across studies, Brewer reported an appreciable level of forgetting, although it varied
substantially across groups and relationships. In the dormitory study, one-fifth of all
friends were not named in the recall task. As in several other studies Brewer reviewed,
the likelihood of forgetting alters varied inversely with tie strength: students forgot
only 3% of best friends and 9% of close friends, but added 26% of other friends after
inspecting the dormitory listing.

Brewer’s review makes it clear that name generators elicit only a fraction of those
persons having a criterion relationship to a respondent, and that intimate name genera-
tors enumerate a larger fraction of eligible alters than do weaker ones. Implications of
these findings depend on the purposes for which network data are used. If one seeks to
describe a network precisely or to contact alters (e.g., partner notification concerning
an infectious disease; Brewer, Garrett, and Kulasingam 1999), then any shortfall in the
enumeration of alters is an obvious drawback. If instead a study seeks indices contrast-
ing the structure and composition of networks, then forgetting is more serious to the
extent that indices based on the recalled and recalled/forgotten sets of alters diverge.
Brewer and Webster (1999), for example, reported relatively high correlations between
measures of centrality, egocentric network size, and local density based on recalled
alters only, and the same measures based on recalled and recognized alters. They found
appreciable differences in some network-level properties, however.

Brewer (2000) suggested several steps toward reducing the level of forgetting. These
include the use of recognition rather than recall when possible and, if using recall
methods, nonspecific probes for additional alters. Using multiple name generators may
limit forgetting because persons forgotten for one generator are often named in response
to others.

Test—Retest Studies

Brewer (2000) also reviewed eight test-retest studies. These used a variety of affective,
support, and exchange name generators. Most test—retest intervals were 1 month or
less. In all but one study, more than 75% of first-occasion alters were also cited at the
second occasion. Brewer suggested that respondents may have forgotten the uncited
alters.

Two studies examine over time stability in network size for social support instru-
ments. Rapkin and Stein (1989) measured networks over a 2-month interval using both
closeness and “importance” criteria. Between-occasion correlations of network size
were 0.72 and 0.56, respectively. Size declined over time for both criteria, however,
suggesting that respondents were unenthusiastic about repeating the task on the second
occasion. Bass and Stein (1997) found higher 4-week stability in network size for the
support-based SSQ (Sarason et al. 1983) than for the affective SNL (Hirsch 1980).

Morgan, Neal, and Carder (1997) conducted a seven-wave panel study of widows,
using an importance criterion to elicit networks every 2 months. Core networks were
very stable — 22% of alters were named on all seven occasions. These were often
family members. There was also much flux at the periphery because 24% of alters were
named only once. Morgan et al. found network properties to be more stable across
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occasions than were alters. They suggest that between-occasion differences in alters
mix unreliability (or forgetting) and genuine turnover.

Patterns in the Free Recall of Persons

Several studies of social cognition have examined the free recall of persons under
different conditions. Their findings suggest strongly that social relationships organize
memories for persons. Understanding these principles of memory organization can
improve instruments such as name generators that seek to tap into such memories.

Bond, Jones, and Weintraub (1985) asked subjects to name acquaintances (“people
you know”) and recorded the order in which acquaintances were named. Successive
nominations tended to be clustered by affiliations with social groups, rather than by
similarity in physical or personality characteristics. Moreover, the time intervals sepa-
rating names within a given group tended to be short; subjects paused for longer periods
between names of persons in different groups. Social relations thus appear to be an im-
portant basis for remembering persons: Bond et al. concluded that “the person cognizer
is more a sociologist than an intuitive psychologist” (p. 336). Fiske (1995) reported
results for two similar studies; clusters of persons named by his subjects were grouped
much more strongly by relationships than by similarity of individual features such as
gender, race, or age.

Brewer (1995) conducted three studies asking subjects to name all persons within a
graduate program, a religious fellowship, and a small division of a university. He too
found that memory for persons reflects social relational structures: names of graduate
students, for example, tended to be clustered by entering cohort, and shorter time inter-
vals intervened between the naming of persons within a cohort than those in different
cohorts. More generally, perceived social proximity appears to govern recall of persons.
Brewer also found that subjects tended to name persons in order of salience. Those in
groups proximate to the subject tended to be named first, as were persons of high social
status and those frequently present in a setting.

These studies suggest that respondents recall alters in social clusters when answering
name generators. The basis for clustering likely varies across situations, but it is plau-
sible that foci of activity such as families, neighborhoods, workplaces, or associations
(Feld 1981) offer a framework for remembering others. Aiding respondent recall with
reminders of such foci might encourage more complete delineation of alters. Brewer’s
studies also indicate that respondents tend to order their nominations of alters by tie
strength (see Burt 1986).

The Meaning and Interpretation of Name Generators
Name generators always refer to a specific type of social tie, and researchers assume
that respondents share their understanding of this criterion. Fischer (1982b) questioned
this assumption for “friends” (see Kirke 1996, however). He and others suggested
that meanings are more apt to be shared for specific exchanges than for role labels or
affective criteria. This calls for studies of the meanings attributed to exchange name
generators.

Because it has been widely used, several studies have examined the GSS “impor-
tant matters” name generator. Respondents decide what matters are “important” while
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answering, so the content of the specific exchanges it measures may vary. Ruan (1998)
investigated the intersection between the sets of alters named for the GSS name gen-
erator and those for several subsequently administered exchange name generators.
In her Chinese urban sample, the GSS name generator elicited social companions
and persons with whom private issues are discussed, but not alters providing instru-
mental aid.

Bailey and Marsden (1999) used concurrent think-aloud probes to investigate how
respondents interpret the GSS name generator. Their convenience sample of U.S. adults
offered a variety of interpretations: some respondents referred to specific matters, but
others translated the question into one about intimacy, frequent contact, or role labels.
When probed about the matters regarded as “important,” most respondents referred
to personal relationships; health, work, and politics were other often-mentioned cate-
gories. Differences in interpretive framework or definitions of important matters were
not strongly associated with the types of relationships elicited, however.

Straits (2000) conducted an experiment: one-half of his student sample answered
the GSS name generator, whereas the other half answered a generator about “people
especially significant in your life.” The two question wordings produced virtually iden-
tical numbers of alters. Only modest compositional differences were observed: women
named a somewhat greater number of male alters for the “significant people” question
than for the “important matters” question. Overall, however, Straits concluded that the
“important matters” criterion also elicits “significant people.”

McCarty (1995) investigated respondent judgments of how well they “know” others.
Indicators of tie strength — closeness, duration, friendship, kinship — were associated
with knowing alters well. Frequent contact was linked to knowing others moderately
well. Low levels of knowing were distinguished by awareness of factual (but not per-
sonal) information and acquaintanceship.

Interview Context Effects

When name generators contain terms requiring interpretation, respondents may look to
the preceding substantive content of an interview for cues about their meaning. A context
experiment was embedded in the Bailey and Marsden (1999) study. One-half of the
respondents answered a series of questions about politics before the “important matters”
name generator; the other half began with questions about family. When subsequently
debriefed about what types of matters were “important,” family-context respondents
were considerably more likely to mention family matters than were political-context
respondents. Because this study is based on a small sample, these findings only suggest
the prospect that context influences the interpretation of a name generator.

Interviewer Effects

Three nonexperimental studies document sizable interviewer differences in the size
of egocentric networks elicited by name generator methods. Van Tilburg (1998) stud-
ied a seven-generator instrument with an elderly Dutch sample, reporting a within-
interviewer correlation of network size of more than 0.2. This fell only modestly
after controls for respondent and interviewer characteristics. Marsden (2003) studied
a single-generator instrument eliciting “good friends” administered in the 1998 GSS,
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finding a somewhat smaller (0.15) intraclass correlation than Van Tilburg’s. Straits
(2000) reported a similar figure (0.17) for the GSS “important matters” name generator
administered by his student interviewers.

These interviewer differences are much larger than typical for survey items (Groves
and Magilavy 1986). Large interviewer effects are, however, common for questions
like name generators that ask respondents to list a number of entities. One conjecture
is that interviewer differences reflect variations in the extent of probing. The findings
highlight the need for careful interviewer training to ensure standardized administration
of name generators. They also suggest the potential value of computer-assisted methods
for obtaining network data, which operate without interviewers.

Name Interpreters

Although name generators have attracted much methodological interest, name inter-
preter items provide much of the data on which measures of egocentric network form
and composition rest. Once alters are enumerated, most instruments follow up with
questions about each alter and about pairs of alters.

The survey research literature on proxy reporting (e.g., Moore 1988) includes many
studies comparing self-reports with proxy reports. In most of these, proxy respondents
report on others in their households, so findings may not apply directly to reports about
alters in an egocentric network. Sudman et al. (1994) observed that memories about
others (especially distant others) are less elaborate, less experientially based, and less
concerned with self-presentation than are memories of the self. This implies that self-
and proxy reporters use different tactics to answer questions. Proxy respondents are
prone, for example, to anchor answers on their own behavior, rather than retrieving
answers directly from memory (Blair, Menon, and Bickart 1991). Sudman et al. (1994)
hypothesized that the quality of proxy reports rises with respondent—alter interaction,
and offered supportive data from a study of spouses.

Studies in the network literature establish that survey respondents can report on
many characteristics of their alters with reasonable accuracy (Marsden 1990). White
and Watkins (2000) found that Kenyan village women could report observable data on
their alters — such as number of children or household possessions — relatively well.
Ego-alter agreement was much lower for use of contraception, something often kept
secret. Respondents often projected their own contraceptive behavior onto alters.

Shelley et al. (1995) studied networks of HIV* informants. Most sought to limit
knowledge of their HIV status to certain alters; only one-half of the relatives in these
networks were said to know the informant’s HIV status. Nonetheless, informants re-
ported that this was a better-known datum than several others, including political party
affiliation and blood type. Such findings call for caution in formulating name inter-
preters because respondents may often lack certain information about their alters.

In addition to proxy reports, important name interpreters refer to ego—alter and
alter—alter ties. Studies of network perception discussed subsequently are relevant to
understanding answers to such questions.

Providing name interpreter data about a series of alters can be a repetitive, tedious
task. White and Watkins (2000) noted that their respondents quickly became bored when
answering such questions, and they therefore asked about no more than four alters. A
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useful step toward limiting respondent burden is to ask some or all name interpreter
items only about a subset of alters (or dyads), as in Fischer (1982a) and McCarty
et al. (1997). Acceptably reliable measures of network density and composition are
often available from data on only three to five alters (Marsden 1993).

(B) Additional Instruments for Egocentric Networks

Many name generator instruments do not elicit weak ties that are crucial in extend-
ing network range. In addition, even single-generator instruments require substantial
interview time and pose notable respondent burdens. This section reviews alternative
instruments developed to address such limitations.

Instruments for Measuring Extensive Network Size

Estimating the size of extensive egocentric networks, including all alters someone
“knows,” is difficult in large, open populations. Several survey instruments have been
developed for network size. The “summation” method (McCarty et al. 2001) uses
global network questions to estimate the numbers of persons with whom respondents
have sixteen relationships (e.g., family, friendship, neighboring), taking the sum of a
respondent’s answers as total network size. Two U.S. surveys using this method estimate
that mean network size lies between 280 and 290.

Killworth et al. (1998b) developed “scale-up” methods that estimate extensive net-
work size using data on the known size of subpopulations, such as people named
“Michael” or people who are postal workers. These methods rest on the proposition
that egocentric network composition resembles population composition, that is,
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where m is the number of alters from some subpopulation in an egocentric network,
c is network size, e is subpopulation size, and ¢ is population size. Survey data on m,
together with data on e and ¢ from official statistics or other archives, lead to scale-up
estimates of network size c.

The previous proposition will not, of course, hold precisely for all persons and
subpopulations. Implementations of the scale-up approach estimate ¢ using data on m
and e for several subpopulations. Studies using the approach yield a range of values for
mean network size. Killworth et al. (1990) obtained a mean of around 1,700 for U.S.
informants, and one of about 570 for Mexico City informants; these estimates assume
a broad definition of “knowing” (“ever known during one’s lifetime”). Killworth et al.
(1998a) reported the mean size of “active networks” (involving mutual recognition and
contact within the prior 2 years) to be about 108 for Floridians; Killworth et al. (1998a)
obtained a mean active network size of 286 from a U.S. survey. The authors note that
scale-up methods depend heavily on a respondent’s abilities to report accurately on the
numbers of persons known within subpopulations.

The reverse small world (RSW) method (see, e.g., Killworth et al. 1990) is still
another approach to measuring extensive networks. It presents respondents with many
(often 500) “target” persons described by occupation and location, asking for an alter
more likely than the respondent to know each target. RSW identifies alters who could
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be instrumentally useful; it omits those who are known, but not judged to be useful.
Bernard et al. (1990) reported mean RSW network sizes of 129 for Jacksonville, Florida,
informants, and 77 for Mexico City informants.

Position Generators
Rather than identifying particular alters and later ascertaining their social locations us-
ing name interpreters, the “position generator” measures linkages to specific locations
directly. It asks respondents whether they have relationships with persons in each of a
set of social positions. For example, Lin, Fu, and Hsung (2001) asked respondents if
they have any relatives, friends, or acquaintances who hold fifteen different occupations.
Follow-up questions may ascertain the strength of links to locations. Position genera-
tor data allow construction of indices of network range (e.g., number of occupations
contacted) and composition (e.g., most prestigious occupation contacted).

Several empirical studies (e.g., Erickson 1996) use the position generator effectively.
It identifies weak and strong contacts, if the threshold for contact with locations is of
low intimacy; Erickson, for example, asked respondents to “count anyone you know
well enough to talk to even if you are not close to them” (1996: p. 227). Because posi-
tion generators do not ask about individual alters, they require less interview time than
do many name generator instruments. However, position generators measure network
range and composition only with respect to the social positions presented. Most appli-
cations focus on class or occupational positions; thus, the resulting data do not reflect
racial or ethnoreligious network diversity, for example.

Smith (2002) experimentally compared measures of interracial friendship based on
a one-item position generator, a name generator instrument, and a global approach in
the 1998 GSS. His global items asked for a respondent’s number of “good friends” and
the number who are of a different race. Percentages of respondents claiming interra-
cial good friends were highest for the position generator (whites, 42%; blacks, 62%),
intermediate for the global approach (whites, 24%:; blacks, 45%), and lowest for the
name generator instrument (whites, 6%; blacks, 15%). Smith suggested that the name
generator approach provides the most valid figures because it enumerates friends first,
and later determines their race. The other approaches focus attention on the particular
social location (race) of interest, encouraging respondents to inventory their memories
for anyone who might meet the “good friend” criterion. Respondents seeking to present
themselves favorably might alter their definition of “good friend” so they can report
an interracial friend. Smith’s findings may or may not apply to position generators
measuring contact with occupational positions. Further instrument comparisons like
this are needed.

The Resource Generator

Very recently, Van der Gaag and Snijders (2004) proposed the “resource generator”
as an instrument for measuring individual-level social capital, which they defined as
“resources owned by the members of an individual’s personal social network, which
may become available to the individual” (p. 200). Their instrument focuses on whether
a survey respondent is in personal contact with anyone having specific possessions or
capacities, such as the ability to repair vehicles, knowledge of literature, or high income.
The resource generator does not enumerate specific social ties: in its most elementary
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version it measures only whether a respondent “knows” anyone having each resource.
Follow-up questions may ask about the number of ties to each resource, or qualities of
the strongest tie to each resource. Using data from a Dutch survey, Van der Gaag and
Snijders identify four social capital subscales, which they label prestige, information,
skills, and support.

(C) CSS Data

As defined by Krackhardt (1987), CSS data consist of judgments by each of several
perceivers about each dyadic relationship in a whole network. Such data offer many
potential measurements of a network. Krackhardt called attention to three: a single
observer’s “slice” of judgments, a “locally aggregated structure” of judgments by the
two actors directly involved in each dyad, and a “consensus structure” based on all
judgments about a given dyad.

CSS data have been collected via several survey/questionnaire methods. Krackhardt
(1987) used a checklist of dichotomous items about the outgoing ties of each actor in
the network. Casciaro (1998) presented informants with a labeled matrix, asking that
they mark pairs linked by directed ties. Batchelder (2002) used a questionnaire about
outgoing ties, asking for dichotomous judgments at two thresholds of tie strength. A
third response task asked informants to rank the three closest contacts of each network
actor; some informants did not or could not complete the rankings, however. Johnson
and Orbach (2002) asked informants for the three most frequent ties of each actor, but
did not request a ranking.

These designs entail a considerable respondent burden that rises with network size,
as Krackhardt (1987) noted. For example, Krackhardt asked twenty-one workplace
informants for 400 dichotomous judgments about each of two types of tie (friendship
and advice). Batchelder’s ranking task or Johnson and Orbach’s “pick three” task make
fewer demands: each would require 126 judgments per informant for Krackhardt’s
group. Freeman and Webster’s (1994) pile sort — which first asks that informants identify
groups of closely related actors, and later permits them to combine groups linked at
lower-intensity thresholds — is another less burdensome approach. Freeman (1994)
suggested a graphic interface: informants position actors with respect to one another
within a two-dimensional space. This requires only as many judgments as there are
actors, albeit much more complex ones than those of other CSS tasks.

Batchelder (2002) found strong similarities among consensus structures based on
dichotomous ratings, trichotomous ratings, and her ranking task. She concluded that
dichotomous ratings may be sufficient for CSS data, given the volume of data in the
design. The high between-task similarity found in her study, however, may result in part
because informants could consult their responses on the rating tasks when providing
rankings.

(D) Informant Biases in Network Perception

Several patterns recur in studies based on CSS data. These findings hold both sub-
stantive and methodological interest. They advance substantive understanding of social
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perception by revealing schemas or models on which informants draw when describing
their social environments, and indicate tendencies to anticipate when informants report
on their own social ties and those of others.

Studying informants in an organizational department, Kumbasar, Romney, and
Batchelder (1994) compared individual CSS slices to a consensus structure. Infor-
mants occupied more central locations in their slices than in the consensus structure;
more than one-half placed themselves first or second in degree centrality, for example.
Johnson and Orbach (2002) replicated this finding of “ego bias” in their study of a
political network, finding it to be strongest among peripheral informants.

Kumbasar et al. (1994) also examined differences between reporting on relationships
among adjacent alters and on ties involving actors not directly linked to informants. Re-
ports about adjacent alters had higher density, reciprocity, and transitivity. The authors
concluded that informants experience cognitive pressures toward reporting balanced
local environments. This echoes Freeman’s (1992) claim that informants simplify obser-
vations of interaction, imposing a “group” or “balance” schema by selectively creating
or neglecting relationships among alters. His experimental evidence indicates that sub-
jects had difficulty recalling relationships in unbalanced structures. Krackhardt and
Kilduff (1999) too found that perceptions of relationships draw on a balance schema.
Their studies of four CSS data sets, however, found higher levels of reciprocity and
transitivity for both close and distant alters; perceived balance was lowest for alters
at intermediate geodesic distances from the informant. Krackhardt and Kilduff reason
that informants lacking detailed memories about distal relationships fill in details about
them using the balance schema as a heuristic.

Johnson and Orbach (2002) suggested that, when information about social ties is
limited, reports draw on a “status” schema giving positions of prominence to high-
status actors. Webster (1995) too suggested that status considerations influence reports
about relationships, and Brewer (1995) noted that high-status persons tend to be salient
within informant memories.

Notwithstanding the various perceptual biases isolated, Kumbasar et al. (1994:
p. 488) concluded that their informants were “fairly reliable” judges of the affilia-
tion pattern in the group studied. Findings that informants employ a balance schema
nonetheless suggest that relatively high local densities will be obtained using name
interpreter items about relationships among alters because informants overstate the
degree of closeness among alters they cite.

2.4 Informant Accuracy and Competence

Landmark studies by Bernard, Killworth, and Sailer (BKS; 1981) problematized the
validity of respondent reports on social ties, documenting a far-from-complete corre-
spondence between survey reports of interaction frequencies (“‘cognitive” data) and
contemporaneous observations (“behavioral” data). BKS drew pessimistic conclusions
about the utility of self-reported network data, stimulating many responses and much
further research. Freeman, Romney, and Freeman (1987), for instance, showed that
discrepancies between survey reports and time-specific observations of interaction
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were not random, but instead biased toward longer-term regularities. They argued that
informants can make largely accurate reports about enduring patterns of interaction
(see also Freeman 1992).

Research on the cognitive-behavioral correspondence continued throughout the
1990s. Closely related work examines variations in cognition about networks as a
phenomenon in and of itself, revealing variations in reporting “‘competence” that might
offer aid in selecting informants.

(A) Correspondence Between Reports and Observations

In a reexamination of the BKS data, Kashy and Kenny (1990) showed that actors
who received many cognitive citations had high observed interaction levels; moreover,
behavioral data tended — although not inevitably — to corroborate pairwise reports of
unusually high or low interaction. There was little correspondence, however, between
an actor’s number of outgoing citations and observed interaction levels. Thus, a major
source of inaccuracy lies in the different response sets or thresholds that respondents
use when making citations. Kashy and Kenny nonetheless concluded that cognitive
network data contain useful information about interactions.

Freeman and Webster (1994) compared cognitive data from a pile sort task with
observations of interaction. They too found substantial correspondence between the
two measurements. Freeman and Webster noted, however, that the structure of their
cognitive data was simpler than that of their observations; discernable clusters in the
observations were much more marked in the sort. They contended that cognitive data
are based on observed interactions, but reflect the use of a “group” schema storing
information about categorical affiliations rather than dyadic ties. Freeman and Webster
observed, moreover, that informants made more nuanced distinctions about proximate
actors, smoothing over details about ties among distant ones.

Corman and Bradford (1993) recorded interactions among participants in a simu-
lation game, and subsequently asked them to recall their interactions. Highly active
participants tended to omit observed interactions from their self-reports, an outcome
attributed to communication overload. Corman and Bradford theorized that participants
who are highly identified with a group will tend to overreport, but their study did not
measure identification directly.

These studies provide some confidence in self-reports as a valid source of network
data, albeit with caution. They also suggest that observing social ties is itself difficult.
Kashy and Kenny (1990), for instance, noted that time sampling introduces random
elements into observed interaction records. A limited cognitive-behavioral correspon-
dence, then, may reflect flaws both in observations and in self-reports.

(B) Studies of Informant Competence

In an early reexamination of the BKS data, Romney and Weller (1984) found that
reliable informants (whose cognitive data resemble those of other informants) tend
to be accurate (i.e., their cognitive data are close to aggregated observational data).
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They posited that some informants may be better sources than others in reporting on
interaction patterns. Romney, Weller, and Batchelder (1986) subsequently developed a
general model for inferring shared cultural knowledge from informant reports, in which
informants have differential “competence” to the extent that their reports correspond
with those of others. This notion of competence parallels Romney and Weller’s (1984)
“reliability.”

Several studies using CSS data investigate variations in informant competence in
reporting on a whole network. These studies often refer to an informant’s “accuracy.”
Their assessments of accuracy, however, do not compare cognitive data to an external
referent, as in the BKS studies or Romney and Weller (1984). Instead, they usually ex-
amine the difference between an informant’s slice of CSS data and some representation
(e.g., alocally aggregated or a consensus structure) based on data from all informants.
Such comparisons reflect what Romney et al. (1986) termed competence. To avoid
ambiguity, the following remarks refer to “competence” rather than “accuracy.”

These studies consistently find that centrally positioned informants tend to have
higher competence (Krackhardt 1990; Bondonio 1998; Casciaro 1998; Johnson and
Orbach 2002). Central informants have more opportunities to observe and to exchange
information with others. Casciaro’s (1998) finding that part-time workers are less com-
petent reflects similar considerations.

Bondonio (1998) pointed to proximity as a source of competence: informants were
more competent in reporting on the networks of close than of distal alters. Casciaro
(1998) suggested that individual differences in motivation might lead informants to be
differentially attentive to their social environments. High need for achievement was
associated with greater competence in her CSS study.

(C) Prospective Uses of Informants

Network researchers implicitly take reports by actors involved in a dyad to be more valid
than those by third-party informants. Apart from CSS data and name interpreters on
alter—alter ties in egocentric instruments, little use has been made of informant reports
about relationships of others. Torenvlied and Van Schuur (1994), however, suggested a
procedure for eliciting CSS-like data from key informants. Burt and Ronchi (1994) mea-
sured egocentric networks for a subset of managers in an organization, some of whom
offered data on the same relationships. Burt and Ronchi used this overlap in reports to
develop imputations for unmeasured relationships in the full managerial network.

Competence studies also suggest intriguing prospects for using informants. For
instance, a whole network might be measured by asking a small number of informants
to complete CSS-like instruments, rather than seeking self-reports from all participants.
This would be viable if CSS data reveal a strong correspondence between, for example,
a consensus structure based on reports by all informants and one based on reports of
some subset of highly competent informants. It would also require data — on likely
centrality or need for achievement, for example — with which to screen prospective
informants for competence.
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2.5 Archival Network Data

Network studies use much information residing in archives that were not created ex-
pressly for social research. Such data provide unobtrusive measures of social ties. They
sometimes trace relationships of actors who are reluctant to grant interviews. Archival
data are often inexpensive, especially when in electronic form; if maintained over time,
archives support longitudinal network studies. Archival materials are a mainstay source
for studying networks in the past.

Some recent examples illustrate the range of applications for archival network data.
Podolny (1993) measured the status of investment banks based on their relative posi-
tions in “tombstone” announcements of syndicated securities offerings. Using patent
citations, Podolny and Stuart (1995) developed indicators of niche differentiation for
innovations. Alexander and Danowski (1990) coded links between actors in Roman
society recorded in Cicero’s letters. Hargens (2000) depicted the structure of research
areas via citations linking scientific papers. Adamic and Adar (2003) mined homepages
on the World Wide Web for connections among university students. Two-mode data on
membership relations (e.g., Table 7.4.1, Chapter 7, this volume) often are to be found
in archives.

Relatively few explicitly methodological studies of archival data appear in the net-
work literature. Although properties surely vary from source to source, a few generic
issues and questions can be raised about such data.

The validity of archival data rests on the correspondence between measured connec-
tions and the conceptual ties of research interest. Sometimes this can be quite close;
Podolny’s interest in tombstone advertisements lies in the status signals (bank affilia-
tions) they convey to third-party observers, and observers see exactly the information
Podolny coded. In other cases, there may be slippage. Rice et al. (1989) observed that
researchers often assume that academic citations track the flow of scientific information,
but that in practice citations have many purposes, including paying homage to pioneers,
correcting or disputing previous work, and identifying methods or equipment, among
many others. Hargens (2000) conducted citation-context analyses revealing differences
in citation practices — and the possible meanings of citations — across research areas.

Attention to the conditions under which archives are produced may be helpful in
judging their likely validity with respect to any given conceptual definition of rela-
tionships. For example, Meyer (2000) reviewed the social processes underlying patent
citations. Such citations acknowledge “prior art” related to a given invention, thereby
distinguishing and narrowing an applicant’s legal claims to originality. Interactions
among applicants, patent examiners, and patent attorneys determine prior art citations.
Examiners can add citations to an application before a patent is granted; applicants
often claim to be unaware of the added works, although they do acknowledge other
materials not included among the examiner’s “front page” citations. Patent citations,
then, are not simple traces of the process leading to an invention.

Likewise, the conditions under which objects come to be included in an archive
merit attention. There are some reasons to anticipate that citation databases will be
relatively comprehensive: authors have clear incentives to publish their works, much
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as inventors have for guarding their claims. Rice et al. (1989), however, reminded us
that editorial policies determine what journals are tracked by abstracting and indexing
services, and thus what outgoing citations are recorded. In some instances, availability
of archival materials may be quite selective. Adamic and Adar’s (2003) homepage
study, for example, notes that students decide whether to maintain a page. Moreover,
some student pages exist, but reside in domains other than the one they examined.

Problems analogous to expansiveness bias in survey data (Feld and Carter 2002) arise
by virtue of varying criteria for recording relationships in archives. Many affiliation
data — such as corporate board memberships — may be relatively clear-cut. Patent
citations should satisfy a common standard of “relevance” (Meyer 2000), although
one might envision “examiner effects” on the number of outgoing citations. Academic
citation practices, however, may differ appreciably across authors and fields. Authors
of homepages have full discretion over page content, and pages almost certainly vary
greatly in whether and why they include links. Adamic and Adar (2003) reported
outgoing links for 14% and 33% of personal homepages in two universities.

Rice et al. (1989) also noted various mechanical problems that can introduce error
into archival network measures. Journal-to-journal citation counts, for example, may
be inaccurate if journal names change or if databases include “aberrant” journal abbre-
viations. Similar difficulties can affect author-to-author counts. Problems of this sort
are easily overlooked, especially for electronically available archives.

Computer-mediated systems (Rice 1990) offer potentially rich data on human com-
munication that network analysts have only begun to exploit. Such records are, how-
ever, medium specific: e-mail archives, for instance, exclude face-to-face communi-
cation that may be highly significant. The volume and detail of the data recorded in
some such sources raises important issues of how to protect the privacy of monitored
communication.

2.6 Observation

Observations made as part of extended fieldwork were important sources of data in
some early network studies (Mitchell 1969). Relatively fewer recent network studies
have drawn on such data, by comparison with survey and archival sources. Gibson’s
(2003) real-time observations of conversations in managerial meetings are one recent
example.

The difficulty of obtaining observational data should not be understated. Corman and
Bradford (1993) experienced problems in coding dyadic interactions from video- and
audiotapes; it was not always possible for coders to discern who was addressing whom.
Webster (1994) commented on problems in focal behavior sampling as an observational
method, remarking that the relevant behaviors must be readily visible in the context
studied and of sufficiently low frequency to allow an observer to record all relevant
instances. Corman and Scott (1994) added that observation of large groups may require
multiple observers positioned in all locations of group activity. They suggested that
wireless microphones might be used in place of human observers; using a small set
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of recordings, they illustrated a procedure for establishing dyadic communications by
matching digitized signal patterns.

2.7 Conclusion

Notable advances in network measurement have occurred since 1990, especially for
survey and questionnaire data. Instruments for measuring egocentric networks are now
much better understood, and much has been learned about cognitive processes and
biases involved in answering questions about social relationships.

Important questions of validity and reliability for survey/questionnaire data remain.
The number and range of network studies that draw on archival materials has risen.
Given the opportunities that archival sources present, it is important to scrutinize the
quality of such data as closely as data from self-reports. Assessments of data quality,
regardless of source, will be facilitated if researchers clearly articulate their concepts
of the “true scores” they seek to capture with empirical indicators of network ties.
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Network Sampling and Model Fitting

Ove Frank

Stockholm University

3.1 Introduction

Survey methodology has a tradition in statistics of focusing on populations and samples.
Samples of population units are selected according to probabilistic sampling designs.
By controlling the design, selection bias and uncertainty of estimators and tests can be
quantified so inference can be drawn with confidence. Early publications in the field
were dedicated to explaining the benefits of probability sampling designs as opposed
to convenience sampling of various sorts. Probability sampling is the term usually used
when the selection probabilities are known for all samples and each population unit has
a nonzero probability of being selected. The focus on controlled randomization can be
contrasted with probabilistic uncertainty modeling. In many surveys, sampling variation
is not the main source of uncertainty. There is variation due to measurement errors,
response imperfections, observation difficulties, and other repetitive factors that can be
specified by probabilistic assumptions. The superpopulation concept can also be seen as
a way to include probabilistic modeling for such uncertainty that is not a consequence
of imposed randomization or variation due to repetitive incidents. Modern statistical
survey methodology distinguishes between design- and model-based approaches, and
often uses an intermediate approach with model-assisted techniques in combination
with design-based inference. A pure probabilistic model approach focuses on data
and tries to imitate how data are generated. A good model fit is important for reliable
inference, but does not necessarily mean that the sampling design is an explicit part of the
model’s data generating mechanism. For further information, see Sérndal, Swensson,
and Wretman (1992) and Smith (1999).

Both the design and the pure modeling perspectives have been used in network
surveys. See, for instance, the review articles by Frank (1980, 1988a, 1997). As a back-
ground to the subsequent presentation of network sampling, Section 3.2 reviews some
central concepts and fundamental problems in survey sampling. Multivariate network
data comprising attributes of population units and relational structures between the
units are introduced in Section 3.3. Section 3.4 gives various examples of sampling
and data collection in networks. Snowball sampling and other link-tracing designs are
briefly discussed. When such designs get too involved, a model approach might be
necessary. There is a huge literature on basic random graph models of importance for
understanding structural properties of networks. Some standard models and some gen-
eral references are given in Section 3.5. Often the random graph models do not suffice
for applications with multivariate network data, and more elaborate multiparametric
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models are needed. In particular, the relational structure often implies that there is need
for a random graph model with specific dependence among the network variables. Sec-
tion 3.6 presents a class of network models for multivariate data with so-called dyad
dependence. Section 3.7 discusses such a model with normally distributed structural
attributes, and Section 3.8 specifies a version for discrete data. It is suggested that
network structure is governed by latent individual preferences for local structure, and
this new approach is shown to lead to interesting interpretations and generalizations
of the Holland-Leinhardt model (Holland and Leinhardt 1981). The local structure as-
sumption also makes the model very appropriate for Bayesian extensions. To fit the
discrete model to data, two exploratory tools are described in Sections 3.9 and 3.10.
Section 3.9 considers log-linear interaction analysis adapted to multivariate network
data. Section 3.10 presents a clustering method that could either be used separately or
as a preparation for interaction analyses. Finally, Section 3.11 briefly mentions some
fields of application for network surveys.

3.2 Preliminaries on Survey Sampling

Populations of many kinds are unknown or incompletely known, and survey methods
are needed to get information about them. Surveys that provide data about only parts
of the population can help us draw conclusions about the whole population, but these
conclusions are uncertain and we want to know how uncertain they are. By collecting
data from units in the population that are selected by controlled probability sampling
methods, it is possible to measure with what confidence population properties can be
assessed from sample data. Thus, probability sampling methods play a key role in
investigating populations with good surveys.

Much effort in survey sampling has been devoted to how auxiliary information can be
used to improve sampling designs. Auxiliary information is a concept of special concern
when populations are imbedded in networks of relationships between the population
units.

Other issues of relevance and possible importance in survey sampling are non-
sampling errors caused by nonresponse and response imperfections of various kinds.
Sérndal et al. (1992) provide a thorough discussion. In so-called total survey designs,
one is concerned with the sources of variation considered to be relevant for obtaining
the data to be investigated. It is customary to distinguish between design specifications
and model assumptions. Design specifications refer to the random sampling mechanism
only, whereas model assumptions are intended to provide a sufficiently accurate math-
ematical description of population data when all sources of nonsampling variation are
taken into account. According to the model approach, sample data can be conceived as
observations on random variables that explain the total uncertainty due to both sample
selection and other sources of variation.

To be more specific about concepts and terminology in survey sampling, the basic
setup is now introduced. This presentation also serves the purpose of pointing out the
specific features of data obtained by survey sampling that make it possible to apply
statistical methods that are not generally available for observations on random variables.
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Consider a finite population U of N units. The units are labeled by integers 1, ..., N,
and without restriction we identify the units with their labels and define the population as
U = {1, ..., N}. Thereis a variable of interest y defined for the units in the population,
and the value of y for unit i is denoted y; for i =1, ..., N. The variable y might
be univariate or multivariate. In the univariate case its values might be numeric or
categorical, and in the multivariate case they might be any combination of such values.
The variable y is observable, but its values are unknown prior to the survey. Auxiliary
information in the form of a variable x with values x; foruniti =1, ..., N is known
prior to the survey. This variable x might, like y, be a multivariate combination of
numeric and categorical variables.

Any probabilistic selection mechanism that does not depend on y can be used to
draw a sample of units from the population U. If the units are sequentially drawn, we
have random variables S;, S, ... that are the (labels of the) units selected at the first
draw, second draw, and so on. The sample is defined by a sequence

(81,82, ..., 8)

of randomly drawn units where the number of draws #n is generally a random variable
defined by the selection mechanism. Note that generally n, Sy, ..., S, are random
variables with a multivariate probability distribution not depending on the population
values of y, but possibly on those of x. If the selected units Sy, ..., S, are all distinct
with probability 1, the draws are said to be without replacement; otherwise, the draws
are said to be with replacement.

Instead of specifying the sample by the sequence (S, ..., S,), an equivalent repre-
sentation is given by the matrix of indicators

Sii=1(S; =J)

which are 1 or 0 according to whether the ith draw selects unit j fori = 1,...,n and
j=1,...,N.

The variable of interest y is observed for each selected unit in the sample. By writing
vj = y(j), we can define Y¥; = y(S;) fori =1, ..., n. The observation Y; is random
because it is a function of the random variable §;. If S; = j, then ¥; = y;. The sample
provides the sequence of y-values given by

(Yl, R Yn)

This sequence is a multivariate random variable with a probability distribution that
depends on the population values yy, ..., yy via the random selection mechanism that
does not depend on these values. The essential difference between standard statistical
data given by observations on random variables (Y7, ..., Y,) and survey sample data is
the knowledge of the labels of the units selected (S, ..., S,). This information is often
beneficial and can be used to improve inference on the population values yi, ..., yy.
In the survey sampling setup, we have data both on labels and y-values for the units
in the sample sequence. Moreover, we might have auxiliary information about labels
and x-values for all units in the population. Formally, survey sample data and auxiliary
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data consist of
(Si,Y)) for i=1,...,n and (j,x;) for j=1,...,N.

Note that knowledge of labels is required for proper matching of auxiliary data to
observed sample data.

There is obviously some redundancy in reporting y-values for the same unit more
than once, which occurs if selections with replications are made. However, the locations
in the sample sequence of such repetitions carry some sort of information, and it might
not be evident whether it is needed or not. Likewise, it is perhaps not clear whether the
order of selection carries some sort of useful information. To explore this, consider the
matrix of selection indicators S;; = I(S; = j) defined previously. The column sum

S;i=81;++ S8

reports how many times unit j is included in the sample sequence, and it is called the
multiplicity of unit j for j =1, ..., N. Define indicators I; = (S ; > 0), which are
1 or 0 according to whether unit j is included in the sample sequence (S, ..., S,). Let
s be the set of distinct units sampled, that is

s={jeU:85=j forsome i=1,....n}={jeU:I;=1}.

The sample set s is a subset of U. The indicator sequence ([, ..., Iy) has a sum m
equal to the size of s. The multiplicity sequence (S i, ..., S ) has a sum equal to the
number of draws 7 in the sample sequence (S, .. ., S,). If labels and y-values are given
for distinct units in the sample only, data reported consist of

{(]1yj)J GS}

and the information about selection order and multiplicity is missing. If multiplicities
are also given so

{(J, ;. 8))J s}

is given, then the information about selection order is still missing. It is a well-known
fact in survey sampling proved by Basu and Ghosh (1967) and Basu (1969) that neither
selection order nor multiplicity is needed and that

t=A{0.yj):J€s}

is a minimal sufficient statistic for (y, ..., yy). The statistic ¢ is sufficient and it is
a function of any other sufficient statistic. Moreover, any function of ¢ that is not a
bijection cannot be sufficient. Many convenient estimators used in survey sampling
are not functions of the minimal sufficient statistic z. For example, in simple random
sampling with replacement from a finite population of known size N, the ordinary
sample mean

it +Y) /=Y

is an unbiased estimator of the population mean. Because it depends on the multiplici-
ties, it is not a function of . Therefore, it is possible, in principle, to improve any such

yiS.j/n

jes
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estimator by Rao-Blackwellization, that is, by replacing it by its expected value condi-
tional on ¢. For the example considered, it is possible to show that the Rao-Blackwell
method leads to the unbiased estimator

er)y=7)_  vi/m

which is the mean of the y-values of the distinct sample units and consequently a
function of the minimal sufficient statistic ¢. For many sample selection procedures, it
is complicated to apply Rao-Blackwellization and it is convenient in special situations
to consider particular estimators based on the minimal sufficient statistic. For instance,
the so-called Horvitz-Thompson estimator of the population total y; + - - - + yy is an
unbiased estimator based on ¢ given by

DDPRCIED)

where 7; is the probability that the sample set s contains unit j. This probability is
called the inclusion probability of unit j. In the example considered, we have

mj=1—(1-=1/N)"
and the population mean has an unbiased estimator given by
ety =) (vj/N7)).

Thus, there are two distinct unbiased estimators of the population mean in this case,
e1(t) and e,(¢), and they are both based on the minimal sufficient statistic . From this
fact, and similar findings in other cases, implications are that the minimal sufficient
statistic ¢ is not complete. The lack of completeness of the minimal sufficient statistic
¢t makes it difficult in general to obtain optimal estimators in survey sampling without
turning to model assumptions for the y-values.

3.3 Variables in Network Surveys

Design-based survey sampling can be criticized for treating population values as if
they are fixed unrelated quantities, even if it is known that they are related for units
that are close in some sense. For instance, neighboring geographic units might have
similar characteristics in terms of natural resources, and people who are friends might
share certain values. Sometimes such similarities between population units can be
handled by auxiliary variables defined for the units themselves, but in a more general
setting it could be advantageous to consider relational variables defined for pairs of
population units. For instance, contact frequencies between people and amount of goods
transferred between different sites are examples of dyadic relationships. To take such
relationships into account, it is convenient to consider the population units as vertices
in a graph. Variables defined for population units and variables defined for pairs of
population units are then referred to as vertex variables and edge variables. A dyadic
relationship is symmetric if it never depends on the order of the population units in the
pair. It is sometimes important to distinguish between symmetric and unsymmetric (not
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symmetric for all pairs) relationships, and this can be done by referring to edge and arc
variables in the two cases, respectively. A special case of an unsymmetric relationship
is one that is not symmetric for any pair — it is called asymmetric.

Vertex, edge, and arc variables could be variables of interest to be investigated
in a survey or could be known prior to the survey and useful as auxiliary variables.
The variables could be multivariate combinations of numeric and categorical vari-
ables. Numeric variables could sometimes be formally treated as discrete variables
with a finite number of possible values. Regardless of the scales of the vari-
ables, it is for some purposes convenient to label their values by integers O, 1, .. ..
Binary variables have values in {0, 1}, trinary in {0, 1, 2}, etc. A bivariate variable
consisting of two trinary variables has nine possible values, which can be represented
as trinary numbers (0,0)=0,(0,1)=1,(0,2)=2,(1,0)=3,(1,1)=4,(1,2) =
5,12,0)=6,(2,1)=17,(2,2) = 8. Applying this labeling or coding principle in gen-
eral, a p-variate variable x = (x, x2, ..., x,,) consisting of variables x; having a; val-
ues0,1,...,a;, —1fori =1,..., phasa =ay...a, values0, 1, ..., a — 1 obtained
according to

X=XxX1ay...4p +x2a3...ap + -+ Xp.

Conversely, the p-variate representation can be obtained from the integer representation
x by first defining x; as the integer part of x/a, ... a,, then defining x, as the integer
part of (x —xjaz2...a,)/az...a,, and so on. When (ay, ..., a,) is specified, it is
convenient to use x interchangeably as a notation for the p-variate sequence and its
integer representation. Here x is said to be a p-variate variable of type (ai, ..., a,).

Consider a network with a p-variate vertex variable x of type (ai, ..., a,), a g-
variate edge variable y of type (by, ..., b,), and an r-variate arc variable z of type
(c1,...,cr). Let

a=aj...a,,b=by...b;, and c=ci... ¢

denote the numbers of values on x, y, and z. We can consider the network to be
a colored complete multigraph with N vertices, N(N — 1)/2 edges, and N(N — 1)
arcs having vertices of at most a different colors, edges of at most b different col-
ors, and arcs of at most ¢ different colors. The variable x takes value x; at vertex
i fori =1,..., N. The variable y takes value y;; = y;; at edge {i, j} with i # j for
i=1,...,Nandj =1,..., N.Thevariable z takes value z;; atarc (i, j) withi # j for
i=1,...,Nandj =1,..., N.Itisconvenienttoputy;; = z;; =0fori =1,..., N.
The notation here is in slight conflict with the multivariate notation x = (xy, ..., x,),
but it should be clear by context whether x; is a component variable in x or a value
of x at vertex i. In the latter case, we use notation x; = (xy;, ..., Xp;) and similarly
Yij = Vijs -+ Ygij) and z; = (2155 -+ 5 Zrij)-
The dyad involving vertices i and j is characterized by the five values

(Xis Xj, Yijs Zijs Zji)

representing the color type of the dyad. Frank (1988b) gave the number of distinct
color types when isomorphic dyads are not distinguished. There are a’bc? possible
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color types when isomorphic dyads are distinguished and they reduce to
d = abc(ac+1)/2

possible color types for nonisomorphic dyads. In particular, a network with two binary
vertex variables, no edge variable, and a binary arc variable has a =4,b =1, and
¢ = 2, which implies that there are d = 36 nonisomorphic dyads for a simple digraph
on vertices of four kinds. Note that » = 1 means that there is no edge variable.

3.4 Sample Selection in Network Surveys

Some early references to network sampling are the papers by Bloemena (1964), Capo-
bianco (1970), Frank (1969, 1970, 1971), Stephan (1969), Granovetter (1976), and
Morgan and Rytina (1977). Some more recent references are Jansson (1997), Karlberg
(1997), and Spreen (1998). Many references to various network sampling problems
can be found in the author’s review articles (Frank 1980, 1988a, 1997). The general
framework for network surveys in this presentation is defined as a multivariate complete
multigraph with N vertices of atmosta = a; ... a, different kinds, N(N — 1)/2 edges
of at most b = by ... b, different kinds, and N(N — 1) arcs of at most c =c¢;...c,
different kinds. The multivariate vertex, edge, and arc variables are denoted x, y, and z

with values x;, y;; = yj;, and z;; at vertex i, edge {i, j},and arc (i, j) fori =1,..., N
and j =1,..., N. Here for convenience y;; = z;; =0 fori =1, ..., N. The multi-
variate values are referred to as colors labeled by integers 0, 1, 2, ..., as explained in

the previous section. The vertices are also referred to as the population units.

Consider a probabilistic sampling mechanism for selecting vertices. Let s be the set
of distinct vertices in the sample. There are several different possibilities for making
observations in the network, and we consider just a few here. If the variables x, y, and
z are observed within the sample s, this means that data comprise

{(i,xi): i € S} and {(l, j, y,'j,Z,'j)Z i€ S,j S S}.

If y and z are observed not only within s, but also at all edges and arcs out from s, this
yields data

(G, j,yij,zij): 1 € s,jeU},
and if they are observed within and into s, data are given by
(G, j,yij.zij):i €U, jesh
For numeric variables, population totals
)IETD 3 DERTHEED 3) i

are estimated without bias by Horvitz-Thompson estimators. For instance, if arc values
are observed from and to a vertex sample s with inclusion probabilities

7 =P@Gies) and m; =P@ €s,j€ys),
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the arc value population total has the Horvitz-Thompson estimator

Z Z[Zij/(ﬂi +m; —mij)l,

where summation is over all pairs of vertices (i, j) having at least one of i and j
contained in s. Many different sampling designs and estimators of population totals
are treated by Frank (1977a, b, ¢, 1978a, b, 1979) and Capobianco and Frank (1982).
Properties of various estimators are investigated and comparisons are made between
estimators based on different sample designs.

Of particular interest are the designs in which the sample selection depends on
auxiliary edge or arc variables. Snowball sampling is such a design. We can describe
it in the following way. Let Z = (Z;;) be the adjacency matrix of a directed simple
graph on U. For any subset s of U, the subsets of vertices after and before s are defined
according to

A(s)={jeU:Z;=1 forsome i €s}
and B(s) ={jeU :Z;; =1 forsome i €s}.

A snowball vertex sample with one wave after an initial vertex sample s¢ is given by
s1 = So U A(so) provided s; # so. The vertices in s; that are not in sy constitute the
first wave. A two-wave snowball sample is given by s, = 51 U A(sy) provided s, # s7.
The second wave consists of the vertices in s, that are not in s;. If waves are joined
until no further increase of the sample size is possible, a total or full-wave snowball
sample is obtained. The inclusion probability of vertex i in the snowball sample s; can
be expressed as the probability that sy has at least one vertex in common with B(i). The
complementary event that so and B(i) are disjoint means that B(7) is excluded from
so. Thus,

PG €s1)=P(B@{i)Nsy# W) =1— P(B(i) excluded from s).

Exclusion probabilities can be obtained from inclusion probabilities according to the
general formula

P(B excluded) = Z (—1)¥2=) p(A included),

where A runs through all subsets of B and the inclusion probability of the empty set
is 1. It follows that if the graph given by Z is available as auxiliary information or
if the sets B(i) can be observed for i belonging to the snowball, then it is possible
to determine the inclusion probabilities for the snowball s; in terms of the inclusion
probabilities for the initial sample 5. Consequently, the Horvitz-Thompson estimator
e1 based on the snowball s; can be used to estimate any population total of a numeric
vertex variable. Frank (1977¢) compared this Horvitz-Thompson estimator e¢; with the
Horvitz-Thompson estimator ey based on the initial sample sy and showed that generally
neither of them dominates the other. Either ¢( or ¢; can have a strictly smaller variance.
It was also shown that e, is dominated by the estimator e, obtained as the expected value
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of ey conditional on the snowball. However, e, depends in a rather complicated way on
the sampling design of the initial sample and is computationally not very attractive.

So far, we have discussed vertex sampling. Edge and arc sampling can be alternatives
or even the only possibilities available. If a population of people is considered, and we
are interested in those who committed a crime together, it might be natural to sample
incidents of crime from some police records. Another example for which it could be
convenient to use edge or arc sampling is a situation when mail or phone calls are easy
to sample in order to get information from senders and receivers in a communication
network.

Consider a sampled set of edges from the population network. Data obtained could
be the values of the vertex variables at all vertices incident to the sampled edges. Such
data consist of

{(G,xi) 11 € U@},

where U (s) is the union of all edges in s considered as two-vertex subsets of U. Another
possibility is that data consist of the edge values at all edges that are contained in the
subgraph induced by the vertices that are incident to the sampled edges. This is generally
much more than just the values of the edge variables at the sampled edges. All edges
between any two vertices belonging to the sampled edges are included. Even more
information could be gathered if all edges incident to any of the vertices in the sampled
edges also provide their values of the edge variable. Formally this means that data are
given by

{(G, ], yij) i €Us), j e U}

These examples of data can be considered as obtained by some kind of snowballing
or link tracing in the population. When snowballing is generalized as it is here, and it
seems to be difficult to determine the inclusion probabilities of the design, likelihood-
based inference could still be possible if the data available make the design ignorable
in the sense discussed by Sugden and Smith (1984) and Thompson and Frank (2000).
Another possibility to avoid the complications due to an involved design could be to
adhere to a model approach.

3.5 Probabilistic Network Models

The lack of uniform optimality for the design-based estimators considered in the previ-
ous section is mainly due to their dependence on the vertex labels. This dependence is
even more pronounced in the network setting than in ordinary survey sampling. A way
to avoid these problems in ordinary survey sampling is to introduce population model
assumptions. A similar approach now requires probabilistic network models. We first
review some of the common random networks and discuss the need for multivariate
network models. In the following section, a flexible class of models is presented that
can fairly easily be fit to multivariate network data. If it is possible to get a good fit in
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an actual application, then this allows us to use the model approach in the data analysis
and avoid some of the complications caused by having an involved sampling design.

Some very simple, yet much used, random graph models are uniform models and
Bernoulli models. Palmer (1985) gave an elementary exposition. Bollobas (1985) and
Janson, Luczak, and Rucinski (2000) are more advanced texts. Uniform models assign
equal probabilities to all graphs in a specified class of graphs, for instance, all graphs
with N labeled vertices and M edges or all trees on N labeled vertices. Bernoulli
graph models on N labeled vertices select edges independently and with a common
probability p for all unordered vertex pairs. Bernoulli digraph models are defined
similarly for ordered vertex pairs. Slight generalizations are obtained by restricting the
edge selections to a subset G of the vertex pairs. In this way, a Bernoulli (G, p) graph is
obtained that can be considered as the random subgraph of G remaining when its edges
are independently kept or removed with probability p and 1 — p, respectively. A further
generalization to a Bernoulli (G, «, ) graph is obtained if edges in G are independently
removed with probability & and nonedges in G are independently replaced by new edges
with probability 8. The Bernoulli (G, «, ) graph can be considered as a version of G
perturbed by independent errors making present edges disappear and false edges appear
with probabilities « and g, respectively. Models like these have been used for reliability
problems and communication networks. Random graph theory is also much influenced
by problems in computer science. The use of martingales and other stochastic processes
in graph theory is a rapidly expanding area of research, which is also of importance
for the development of combinatorics in general. Alon and Spencer (1992) and Janson
et al. (2000) are modern monographs on probabilistic methods in combinatorics and
asymptotic properties of random structures.

In many applications from the social and behavioral sciences, multivariate network
data require models of another type. To handle survey data on multivariate network
variables, there is a general class of probabilistic network models available that includes
as special cases the Holland-Leinhardt model, the p*-model, Markov graph models, and
various block models. The models can be specified as log-linear models with the log-
likelihood function given as a linear combination of some chosen network statistics. The
Holland-Leinhardt model for a simple digraph has as statistics the out- and in-degrees
at every vertex and the total numbers of arcs and mutual arcs. The coefficients of the
statistics are the parameters of the model. The Holland-Leinhardt model on N vertices
has 2N degrees of freedom since the 2N + 2 parameters are subject to two restrictions
due to the fact that both the out-degrees and the in-degrees sum to the total number of
arcs. The parameters can be considered as individual effects of activity and attraction,
and as two overall effects of relation and reciprocity in the network. Block models are
generalizations of the Holland-Leinhardt model taking into account different effects for
units in different categories. When the categories are unknown latent characteristics, the
parameters are not so easily estimated as when categories are observable. Fienberg and
Wasserman (1981); Holland, Laskey, and Leinhardt (1983); Wasserman and Anderson
(1987); Wang and Wong (1987); Anderson, Wasserman, and Faust (1992); Snijders
and Nowicki (1997); Tallberg (2000); and Nowicki and Snijders (2001) treat block
models. Markov graph models introduced by Frank and Strauss (1986) are log-linear
with statistics based on dyad and triad counts. Frank (1989), Frank and Nowicki (1993),
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Robins (1998), and Corander, Dahmstrom, and Dahmstrom (1998) treat estimation for
Markov graphs.

The next section presents a class of network models defined by explicit assumptions
about how vertex, edge, and arc variables are related. An important feature of the class
is that it consists of multiparametric models allowing tie dependence. Sections 3.7
and 3.8 present examples of continuous and discrete versions of the dyad dependence
models. With many parameters, there might be too many degrees of freedom for fitting
the models to data. It is well-known that overfitting might lead to irrelevant models.
There should be a proper balance between the degrees of freedom and the goodness
of fit. To choose an appropriate model from the class, there are two main exploratory
methods available. The first method, which is based on log-linear representations of
discrete models, is described in Section 3.9, and the second method, which is based on
clustering of dyad distributions, is described in Section 3.10. Both log-linear interaction
testing and clustering are techniques that are widely available in standard statistical
computer packages for data analysis. The convenience of the methods in this context is,
to a large extent, dependent on that they work directly on the network variables without
any need for supplementary network programs.

3.6 A Class of Network Models with Dyad Dependence

To define the dyad dependence, we need to include latent or manifest vertex variables
that influence the dyad structure. A dyad dependence model is specified by giving a
probability distribution for the vertex variables x; fori = 1, ..., N, and, conditionally
on the outcomes of xi, ..., xy, the N(N — 1)/2 dyad variables (y;;, z;;, z;;) are as-
sumed to be independent. The conditional probability distribution of the dyad variable
(yij» zij, zji) may be dependent on i and j, but is independent of x; for all k different
from i and j. Formally, we write the probability or probability density function of all
network variables as follows

Sy xn) iy 8i(ijs zijs 2jilxi, X ).

In a graphical model representation (Whittaker 1990; Edwards 1995; Cox and
Wermuth 1996 or Lauritzen 1996), there are N(N + 1)/2 nodes (not to be confused
with the vertices in the network) for the N vertex variables and the N(N — 1)/2 dyad
variables. There are no links (not to be confused with the edges or arcs in the network)
between the dyad variables, but there are generally links between the vertex variables
themselves and between the vertex variables and the dyad variables. There are at most
3N(N — 1)/2 links in graphical models representing this type of dyad dependence
models on N vertices. Note that lack of links means not marginal, but conditional inde-
pendence. Therefore, the dyad variables are generally dependent. Figure 3.6.1 shows
a graphical model representation of a general network on N =5 vertices, and Figure
3.6.2 is a schematic diagram for four vertices drawn in a way that is easily adapted to
an arbitrary number N of vertices.

If the vertex variables are assumed to be independent, the graphical model is further
restricted, but the dyad variables can still be dependent. By introducing latent variables
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Figure 3.6.1. Graphical model of five vertex variables and ten dyad
variables.

Figure 3.6.2. Graphical model illustrating a set of vertex
variables with complete links, a set of dyad variables
with no links, and two links between each dyad variable
and its vertex variables.
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Figure 3.6.3. Graphical model with five vertex variables, ten dyad
variables, and a latent variable.

it is also possible to create dependence between any variables that are conditionally
independent. An example is given in Figure 3.6.3.

3.7 Continuous Dyad Dependence Models

We consider a dyad dependence model for continuous variables, which is of some
interest in connection with other log-linear models considered in network analysis and
deserves to be further investigated. Assume that x; = (xy;, x;) are independent vertex
variables with a common bivariate normal distribution

N(uy, 2, o1, 02, p).

The two components of the vertex variable represent out- and in-effects or out- and
in-capacities of the vertex. Conditionally on the vertex variables, the dyad variables
have a trivariate normal distribution that is given by

yij = oo+ on(x1; + x17) + (X + x25) + 03635,
zij = Bo + Bixii + Boxai + B3x1j + Paxaj + 04éaij,
zji = Po + Bix1j + Baxaj + Baxii + Paxai + 04€4ji,

where the e-variables are standardized normally distributed with covariances
C(e3ij, €4ij) = C(e3i), 4ji) = V3, C(€4ij, €4ji) = Va-

The edge variable is linearly dependent on the out- and in-effects of its two vertices,
and by symmetry the two vertices are equally weighted. The arc variables are also
linearly dependent on the out- and in-effects of their two vertices. Here the weights are
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allowed to differ, but by symmetry they are interchanged for the two arcs. The coeffi-
cients in front of the e-variables are conditional standard deviations. By symmetry,
two of them are equal. The distribution of the vertex variables is determined by five
parameters, and the conditional distributions of the dyad variables involve twelve more
parameters. From the assumptions, it follows that the dyad variables are marginally
normally distributed. The marginal distribution is determined by the expected values,
variances, and covariances, which are given by the following functions of the parameters

E(yij) = ap + 2141 + 20212,
E(zij) = E(z;i) = Bo + (B1 + B + (B2 + Ba)wa,
V(yij) = 2(05%012 + oz%orz2 + 201000102 0) + 032,
V(zi;) = V(z;)) = Bio} + B305 + 21201020 + B30] + Bioy
+2B3ps0102p + 07,
CWij» zij) = CWij, 2ji) = a1(B1 + B3)oi + aa(Ba + Ba)oy
+ o1 (B2 + Ba) + aa(B1 + B3)lo1020 + 0304Y53,
Clzij, 2ji) = 2lB1B307 + B2ac; + (BiBs + P23)0102p] + 05 v
The seventeen parameters can be estimated by the moment method. The required equa-
tion system with seventeen moment equations consists of six equations corresponding

to the previous parametric expressions, together with eleven equations corresponding
to the parametric expressions among the following moments:

E(x1;) = 1, E(x2i) = o,

V(xi) = of, V(xa) = 03,
C(x1i, x21) = 0102p,
C(x1i, yij) = C(x1}, yij) = @10} + 020102p,
C(x2, yij) = C(x2), yij) = 0205 + &10102p,
C(x11, 2ij) = C(x1}, 2ji) = P10} + Pao102p,
C(x2i, zij) = Clxzj, 2ji) = ,32(%2 + Bio102p,
C(x1, 2ji) = C(x1}, zij) = B307 + Pao102p,
C(x2i, 2ji) = C(x2j, 2ij) = Paos + P30102p.

The parametric expressions that apply to two different moments are equated to the aver-
age of the two moments. The others are just equated to their moments. For the resulting
equations, replace the expected values, variances, and covariances by empirical quan-
tities obtained from data and solve the equation system numerically for the parameters.

To derive the maximum likelihood estimates, one has to solve a similar equa-
tion system obtained by differentiating the log-likelihood function with respect to
the parameters. It should be noted that the seventeen parameters introduced via the
linearity assumptions for the conditional distributions correspond to the seventeen
parameters that determine a seven-dimensional normal distribution for (xy;, x2;, X1;,
X2j, Yij» Zij> Zji) when appropriate symmetries are taken into account. In fact, there
are seven means with three restrictions, seven variances with three restrictions,
and twenty-one covariances with twelve restrictions, so in total thirty-five moments
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with eighteen restrictions making the degrees of freedom equal to seventeen. Some
natural attempts to further simplify the model would be to test hypotheses like
Br=pB3=0,a1 > az, B > B2, and B; = B3, corresponding to easily interpreted
structural effects of the vertex variables on the edge and arc variables.

So far, we have considered networks that have simultaneously both edge and arc
variables. Without this combined occurrence of symmetric and unsymmetric relation-
ships, the degrees of freedom are reduced. If there is no edge variable but only vertex
and arc variables, twelve of the seventeen parameters remain. If there is no arc variable
but only vertex and edge variables, nine parameters remain. In all these cases, the model
is a log-linear network model with a log-likelihood function that is a linear function of
moment statistics of the types considered previously.

3.8 Discrete Dyad Dependence Models

A particular version of the dyad dependence model for categorical edge and arc variables
generalizes in a nice way the Holland-Leinhardt model for a simple digraph. At the
same time, it provides an interpretation of the model in terms of actor preferences
for local structure. It also suggests an extension of the Holland-Leinhardt model with
tie dependence, which is not so evident with the usual formulation of the model. To
demonstrate these results, we now consider the following dyad dependence model.
Let xq, ..., xy be independent identically distributed categorical variables of type
(ai,...,ap)witha = ay ...a, categories. Thus, their log-likelihood equals

log f(x1,...,xy) = Z;log f(x;) = L, N(x)log f(x),

where N(x) is the number of vertices with x; = x for i =1, ..., N. Conditionally
on (xi,...,xy) the N(N —1)/2 dyad variables (y;j, zij, zj;) are independent and
(3ij» zij, 2;i) has a distribution that does not depend on x; for any k different from
i and j. Assume first that the dyad distributions are also independent of the labels i and
Jj- Thus, the log-likelihood of the dyad variables is given by

XY jloggii(yij, zij, 2jil Xis Xj)
= Exx’yzz’R(x’ X/, v, 2, Z/) log g(yv 2, Z/| X, X/),
where R(x, x', y, z, 7’) is the number of dyads of category (x, x', y, z, z’). To count the
dyads in each one of the d nonisomorphic categories, it is convenient to list all the dyads
(xi, xj, yij, 2ij» 2ji) fori < j and denote by M (x, x’, y, z, z') the number of them equal
to (x, x', v, z, /) for each one of the a® bc? different categories. Then define
Rx,x',y,2,2)=Mx,x',y,2,2) + M, x, 9,7, 2)
- SXX’SZZ' M(.X, X, ¥, 2, Z)s

where 8,, = I(u = v) indicates whether u = v. Figures 3.8.4 and 3.8.5 illustrate the
transformation from M- to R-frequencies. Summing R(x, x’,y, z,z) over y, z, 7’
yields the number N (x, x”) of unordered pairs of vertices of categories x and x’. Thus,

N(x,x')=NxN(K" for x <x/,

N(x,x)= NX)[N(x)—1]/2.
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Figure 3.8.4. M-frequencies in 288 cells fora = 4,b =2
and ¢ = 3. The cells are arranged so neighboring cell
frequencies should be added as indicated.

The relative frequencies N(x)/N and R(x, x', y, z, z/)/N(x, x’) are the maximum like-
lihood estimators of f(x) and g(y, z, z'|x, x’) when the model has independent identi-
cally distributed vertex variables and conditional dyad distributions dependent on vertex
categories, but not on vertex identities.
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Assume now that we allow the dyad distributions to depend on vertex identities and
that there is a latent vertex variable 6; specifying preference weights for local structure
atvertex ifori = 1, ..., N.More specifically, 0; = (0;(y, z, z'|x;, x") forallx’, y, z, Z/)
consists of preference weights assigned to alternative dyad structures at vertex i. There
are abc®> weights for each vertex. Assume that the probability assigned to a dyad is
proportional to the preference weights of the two vertices involved so

8ij (v, 2. 2 xiy xj) = hij 6i(y, 2, 2'|xi, %) 0;(y, 2, zlxj, xi),
where 1;; is a normalizing constant. Note that dyad structure (y, z, z') viewed from i
is the same as (y, 7/, z) viewed from j. It follows that
EEi<j log gij(yij» zij» zjilXis X;j)
= X% log Ajj + Zi Xy Mi(x', y, 2, 2') log 6i(y, z, 2'|xi, x'),
where M;(x', y,z,2') is the number of j # i with (x;, yij, zij, 2ji) = (x', y, 2, 2).

Again, the model is a log-linear one with statistics N(x) and M;(x’,y, z,7) for
i =1,..., N and all values of the variables. The model has

dy=a—1+ Nabc*—-1)—1

degrees of freedom. If we assume for each x” a Dirichlet distribution for the preference
weights for different (y, z, z’), and these distributions may vary with x but not with i,
then degrees of freedom are further reduced to

di =a—1+a*bc’.

In particular, the case of a single digraph on vertices of different categories leads
tob=1,c=2,dy=a—1+3aN — 1, and d; =a — 1 +4a%. For a = 1, this is
dy = 3N — 1 and d; = 4. In this case, we have
EZ,’<]‘ IOg gij(zija Zji) = EZi<J~ lOg )"ij + E,’ EZZ’ Mizz’ IOg Qizz”

where

Moo = 2jui(l —z)(1 —z;)) = N — 1 —z; — 2 + 2,

Mo = Eﬁg,’(l — Z,'j)Zﬁ =2Zi— Z,-zi,

Mio =2z zij(1 — 2;) = 2. — 2,

Miy = Tz 2ij2ji = 5.

The four statistics M;,,, sum to N — 1 and can be replaced by the three statistics
Zi, zi, and z%, which are the numbers of out-arcs, in-arcs, and mutual arcs at vertex i.

i’

The log-likelihood function expressed with these statistics is equal to
A Zi(oizi + Bizi + J/iZiz,-)a

where
o; = log(6i10/6i00),

Bi = log(6i01/0i00),
vi = log(6i110i00/6i10/6i01),
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and A is a normalizing constant. The new parameters are the log-odds of out-arc with
no in-arc, the log-odds of in-arc with no out-arc, and the log-odds ratio of out-arc
with and without in-arc (or, equivalently, of in-arc with and without out-arc). We can
assume X;o; =0 and X; 8; = 0 if a new term wz  is added to the log-likelihood.
In this way, we have 3N + 1 parameters with two restrictions matching the 3N — 1
degrees of freedom. The Holland-Leinhardt model assumes all y; equal and has 2N
degrees of freedom. Without having to assume equal reciprocity effects, the number
of parameters can be reduced so the degrees of freedom do not depend on N. This is
achieved by introducing a Dirichlet distribution for the latent preference weights. As a
consequence, we get tie dependence governed by the Dirichlet parameters. For the case
a =1,b =1, ¢ = 2, there are four Dirichlet parameters (vy, Vo1, V10, V11) that control
the choice of preference weights at each vertex i. The Dirichlet parameters are positive,
and if their sum v__ is large, each preference weight 6;; is close to vy /v, If all vy = 1,
then all possible combinations of preference weights are given the same probability
density. Furthermore, each preference weight is expected to be 1/4 with a variance of
3/80, and any two preference weights at the same vertex have a correlation coefficient
of —1/3. This implies, for instance, that E(¢;) = 0 and V(¢;) = 3/5. It should be
interesting to investigate the prior on the parameters (i, «;, B;, ;) that is induced by
a general Dirichlet prior on the preference weights. It does not seem very natural to
start with a prior on (u, «;, B;, ¥;) and deduce the consequences for the preference
weights, but this could also be of interest. The reduction of the degrees of freedom
from 3N — 1 (or 2N for the Holland-Leinhardt model) to 4 might be too drastic in
many practical situations. A reduction to d; = a — 1 + 4a* might be more feasible
and could be achieved if different vertex categories are used to differentiate between
preference patterns.

3.9 Log-Linear Representations of Models with Dyad Dependence

The dyad dependence model with all variables categorical, the vertex variables inde-
pendent, and the dyad distributions independent of vertex labels has a log-likelihood
function given by

X, N(x) log f(x)+ T R(x,x', y,2,7) log g(y, z, Z'Ix, x'),

where the second sum is over the d nonisomorphic dyads (x, x’, v, z, z'). Consider now
the vertex variable as multivariate and expand the log-likelihood function of the vertex
variables according to

log f(x) = Zara(xa),

where A runs through all subsets of variables among the p vertex variables and x, is
the subsequence of x restricted to variables in A. The term corresponding to the empty
set A = (J is a normalizing constant and the other terms are interaction effects between
the variables in A. With

a=ay...ap = Tpllicala — 1)
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values of x, there are I[1;c4(a; — 1) free parameters for the a interactions corresponding
to the nonempty subsets A. This allows us to impose

Micaa; — icala; — 1)

restrictions on the interaction effects A 4(x4). It is customary to put XA 4(x4) = 0 for
summations over the values x; of any of the variables in A. If we assume that all
interactions with three or more variables are zero and keep only those with one or two
variables (main effects and second-order interactions), then the degrees of freedom are
reduced froma — 1 to

Si(ai — D+ XX (@ — Daj—1)

for the distribution of the vertex variables.
For the dyad variables, a similar approach leads to

log g(y,z,2'|x,x") = Zgccrpec(vB. 2cs 21X, X1),

where B runs through all subsets of variables among the ¢ edge variables, and C and
C’ both run through all subsets of variables among the r arc variables. Because only
nonisomorphic dyads are considered, there should be certain symmetries present in the
interactions. For x = x’, it holds that Agccr = Apc/c for all values of the arguments.
This implies that for x = x’ there are only

q+r 2r r r

(") <k>/2 (k) " (k/2>/2
k-order interactions, whereas for x < x’ there are (q“;zr). It may seem natural to
try to restrict attention to the models with main effects and second-order interac-
tions only. For x = x/, there are ¢ + r main effects corresponding to the variables
Visenovs Vg2 215 -+ 2r, and r?+ qr +q(g — 1)/2 second-order interactions corre-
sponding to the pairs of variables (y;, y;) for i < j, (y;,z;) for all i and j, (z;, z;)
for i < j, and (z,-,z}) for i < j. For x < x’, there are g + 2r main effects and
(g + 2r)(g + 2r — 1)/2 second-order interactions corresponding to all single variables
and all unordered pairs of variables. If the interactions are restricted in the ordinary way
to match the degrees of freedom, then for x = x’ the degrees of freedom are reduced
from be(c + 1)/2 — 1 to

d] = E(bl - 1) + E(Cj - 1)+ 22i<j(bi - 1)(b] - 1)+ EE(bl - 1)(Cj - 1)
+EXi (i —D(c; =D+ EZi<j(ci — D(cj — 1),

and for x < x’ the degrees of freedom are reduced from bc?> — 1 to

dy = S(b; — 1) +25(c; — 1)+ E8i_j(b; — D(b; — 1) +2E5(b; — Di(cj — 1)
+222,-<j(c,- - ])(Cj - 1)+ EZ(CI' - 1)(6'] - 1)

It follows that the saturated log-linear model with

dypax = abc(ac +1)/2 —ala —1)/2 — 1
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degrees of freedom is replaced by a model with
dy=a—14ad +a(a —1)d,/2

degrees of freedom if no more than second-order interactions are needed. This is
a substantial reduction in degrees of freedom. For instance, consider the case of
two binary vertex variables, one binary edge variable, and two binary arc variables.
Here, p=2,9g=1,r =2,ay =a, = b; =c; = ¢, = 2, and it follows that a = 4,
b=2,c=4,d =272, dy, =265, and dy = 129. In practice, there is no need to force
the degrees of freedom to be d; for all x and d; for all pairs (x, x’) with x < x’. The
formula for dj still applies if d; and d; are interpreted as the average degrees of freedom
among the dyad distributions for equal and unequal vertex categories, respectively.
Consider now univariate edge and arc variables. Then, g = r = 1. For x = x’

di=b—1+c—14+0B-1c—1D+cl—1))2,
and for x < x’
d=b—1+2c—1)+2b— -1+ — 1)
$O
dpar — do = a(b — 1)(c — 1)(ac —a + 1)/2.

There is obviously no reduction in degrees of freedom if b = 1 or ¢ = 1 because then
there are no third-order interactions. Otherwise, the reduction d,,,, — dy equals the
number of nonisomorphic dyads with a vertex categories, b — 1 edge categories, and
¢ — 1 arc categories.

3.10 Clustered Versions of Models with Dyad Dependence

The general dyad dependence model given by independent identically distributed

Xty ..., xy with P(x; =x)= f(x) for x=0,...,a—1 and P(y;; =y, z;; =2,
zi=lxi=x,x;=x)=gj(y,z,ZIx,x)Yfory=0,....,b—-1,2=0,...,c— 1,
and 77 =0,...,c — 1 consists of a(a + 1)/2 conditional dyad distributions, one for

each value (x, x") with x < x’. Those conditioned by two equal vertex categories have
be(c + 1)/2 distinct dyads, and the others have bc? distinct dyads.

Initially, we have N(N — 1)/2 conditional dyad distributions. By distinguishing
them by their two vertex categories only and not by the vertex labels, we merge
N(x, x") of the distributions into a cluster of distributions with relative dyad frequencies
R(x,x',y,z,7)/N(x, x"). If all numbers N (x, x") are positive, there are a(a + 1)/2
clusters. We can continue to merge distributions that are similar according to some
similarity measure. To apply cluster analysis with the distributions as objects to be
clustered, each distribution is represented by its sequence of relative dyad frequencies.
The dissimilarity between two distributions is defined as the Euclidean distance be-
tween their sequences of relative dyad frequencies. We calculate all pairwise distances
between the sequences

u(x) =(R(x,x,v,2,7)/N(x,x) forall y and z<Z)
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forx =0,...,a — 1, say D(x, x') is the distance between u(x) and u(x’) for x < x'.
Moreover, we calculate all pairwise distances between the sequences

v(x,x)=(R(x,x",y,2,7)/N(x,x’) forall vy,z,z7)

for all pairs (x, x") with x < x’, say D(x, x’, &, &’) is the distance between v(x, x’)
and v(€, &) forx <& andx’ < &',

Cluster analysis is applied separately to the u(x) and v(x, x’) sequences. By applying
hierarchical clustering methods such as single linkage, average linkage, or complete
linkage, we might be able to scan the dendrograms and select appropriate numbers of
clusters. We could also apply partitioning clustering methods such as k-means clustering
into k clusters. By trying different numbers of clusters and comparing the results, we
might be able to choose appropriate numbers of clusters. Assume that we find that
ki of the u(x)-sequences and k, of the v(x, x)-sequences are distinct. The distinct
distributions have relative dyad frequencies that are given by weighted averages of the
relative dyad frequencies for the distributions belonging to each cluster. These weighted
averages are generally not equal to the so-called centroids of the clusters if these are
given as unweighted averages. The clustered model has

dy=a—1+ki[bec+1)/2 — 11+ ka(bc® — 1)

degrees of freedom. Here, 1 < k; < aand 1 < k, < a(a — 1)/2. A total clustering into
one cluster for all dyad distributions between equal vertex categories and one cluster

for all dyad distributions between unequal vertex categories implies a minimal num-
ber of

dyin = a + 2bc 4+ 3bc(c — 1)/2 =3
degrees of freedom. Compared with no clustering with
dpax = abc(ac +1)/2 —a(a —1)/2 — 1

degrees of freedom, there is a substantial maximal reduction possible by clustering. For
instance, consider the case of two binary vertex variables, one binary edge variable,
and two binary arc variables. Here,a = 4,b = 2, ¢ = 4, d,yuc = 265, and d,,;;, = 53.
In practice, it may be beneficial to combine clustering and log-linear interaction anal-
ysis. We should first reduce the dyad distributions to a reasonable number of clusters,
say k; and k», and then try to eliminate high-order interactions within clusters. Note
that different interactions might be needed in different clusters. Say that the degrees of
freedom reduce from bc(c 4+ 1)/2 — 1 to an average of d; among the k; clusters, and
reduce from bc? — 1 to an average of d, among the k; clusters. As a consequence, the
combined procedures imply that the degrees of freedom are reduced from d,,,, to

do=a—1+kid| + kyds,.

Two illustrations of the clustering approach to dyad distribution modeling are found in
Frank, Komanska, and Widaman (1985) and Frank, Hallinan, and Nowicki (1985).
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3.11 Applications

There are numerous possibilities for applications of survey methods in a network con-
text. This section gives some flavor of the variety by giving references to various areas.
The selection of applications is heavily biased toward my own experience and work in
the field. There are certainly network areas of central importance not covered here.

Drug abuse populations provide a field of research that makes much use of network
methods. Populations of heroin users, multidrug users, drug injectors, or drug dealers
are examples of populations that are hard to access. They consist of individuals that are
not likely to be found in sufficient numbers by standard sampling procedures. Various
network methods have been applied. Initial samples from treatment centers or other
sites that drug users frequent are typically interviewed and asked to name friends or
acquaintances that are drug users. In such cases, the network has the role of helping the
investigator to find the hidden population. There could also be a direct interest in the
network structure itself or in some network variables. Examples are substance abusers’
recruiting routes and frequencies of needle sharing. Neaigus et al. (1995, 1996) and
Kaplanetal. (1999) investigated problems in this area. For more specific statistical prob-
lems related to drug abuse, see, for instance, Spreen (1992), Frank and Snijders (1994),
Spreen and Zwaagstra (1994), Jansson (1997), Spreen (1998), and Frank et al. (2001).

Network methods are common in social epidemiology (see Klovdahl 1985 and
Rothenberg et al. 1995). The epidemiology of sexually transmitted diseases and the
spread of HIV and other viruses is a vivid current area of research using network meth-
ods. Neaigus et al. (1995, 1996) and Klovdahl et al. (1994) reported on investigations
in this area. In particular, interesting statistical issues come up in the analysis of data
from a longitudinal data collection over 5 years in the latter study. Five samples of in-
dividuals followed from different starting years are interviewed every year about their
current contact patterns. The longitudinal dependencies between individual contacts
imply special difficulties. Proper modeling has to consider networks changing with
time. Some attempts by Frank (1991) and Frank and Nowicki (1993) to study network
processes used Markov graphs with parameters changing with time.

The social and behavioral sciences have long provided the theoretical framework for
problems that have been a major source of inspiration for developers of network survey
methodology. Well-known early examples include work by Heider (1946), Cartwright
and Harary (1956), Harary, Norman, and Cartwright (1965), Davis (1967), Holland
and Leinhardt (1971), Granovetter (1973, 1976), and Freeman (1979). More recent
examples are Wellman (1988), Wasserman and Faust (1994), and Friedkin (1998).

Sarnecki (1986, 1999) considered network surveys in criminology. Police crime
surveys usually do not report data on networks of offenders. There are special method-
ological challenges if one wants to use available data on crimes and offenders to infer
about joint participation in crimes (co-offending) and repeated criminal activity (re-
offending). Carrington (2000) and Frank (2001) discussed such issues.

Social capital is an important modern concept in sociology extensively treated by Lin
(1999). Ata more recent conference on social capital, van der Gaag and Snijders (2004)
and Frank (2004) considered measurement problems and other quantitative aspects of
social capital. The role, in this context, of centrality measurements in social networks
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was discussed. Freeman (1979) and Wasserman and Faust (1994) described various
centrality measures, and Snijders (1981), Hagberg (2000), Tallberg (2000), and Frank
(2002) studied some of their statistical properties. It should be interesting to investigate
how these statistics can be used for survey sample inference when manifest centrality
is modeled as stochastically generated from individual centrality characteristics. Such
models are similar in spirit to the preference models introduced in Section 3.8 and
should provide substantial alternatives to the null models of no centrality considered in
centrality testing by Hagberg (2000) and Tallberg (2000).
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4.1 Introduction

Centrality is one of the most important and widely used conceptual tools for analyzing
social networks. Nearly all empirical studies try to identify the most important actors
within the network. In this chapter, we discuss three extensions of the basic concept
of centrality. The first extension generalizes the concept from that of a property of
a single actor to that of a group of actors within the network. This extension makes
it possible to evaluate the relative centrality of different teams or departments within
an organization, or to assess whether a particular ethnic minority in a society is more
integrated than another. The second extension applies the concept of centrality to two-
mode data in which the data consist of a correspondence between two kinds of nodes,
such as individuals and the events in which they participate. In the past, researchers have
dealt with such data by converting them to standard network data (with considerable loss
of information); the objective of the extension discussed here is to apply the concept of
centrality directly to the two-mode data. The third extension uses the centrality concept
to examine the core-periphery structure of a network.

It is well-known that a wide variety of specific measures have been proposed in
the literature dating back at least to the 1950s with the work of Katz (1953). Freeman
(1979) imposed order on some of this work in a seminal paper that categorized cen-
trality measures into three basic categories — degree, closeness, and betweenness — and
presented canonical measures for each category. As a result, these three measures have
come to dominate empirical usage, along with the eigenvector-based measure proposed
by Bonacich (1972). Although many other measures of centrality have been proposed
since, these four continue to dominate, and so this chapter concentrates on just these.
In addition, for the sake of clarity and simplicity, we discuss only connected undirected
binary networks. However, it should be noted that much of the work can be extended
without difficulty to directed graphs, valued graphs, and graphs with more than one
component.
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Group 1 Group 2

Figure 4.2.1. Two equal sized groups with the
same degrees but different numbers of contacts.

4.2 Group Centrality

Traditionally, centrality measures have been applied to individual actors. However,
there are many situations when it would be advantageous to have some measure of the
centrality of a set of actors. These sets may be defined by attributes of the actors, such as
ethnicity, age, club membership, or occupation. Alternatively, the sets could be emergent
groups identified by a network method such as cliques or structural equivalence. Thus,
we can examine informal groups within an organization and ask which ones are most
central, and use that in an attempt to account for their relative influence.

In addition, the notion of group centrality can be used to solve the inverse problem:
how to construct groups that have maximal centrality. A manager may want to assemble
ateam with a specific set of skills; if the team were charged with some innovative project,
it would be an additional benefit if they could draw on the wider expertise available
within the organization. The more central the group, the better-positioned they would
be to do this.

The notion of group centrality also opens up the possibility of examining the mem-
bership of a group in terms of contribution to the group’s centrality. If an individual’s
ties are redundant with those of others, they can be removed from the group without
reducing the group’s centrality, creating more efficient groups in this respect.

Everett and Borgatti (1999) proposed a general framework for generalizing in this
way the three centrality measures discussed in Freeman’s paper. They noted that for
any group centrality measure to be a true generalization of an individual measure, when
applied to a group consisting of a single actor it should obtain the same result as the
standard individual measure. This immediately implies that a group centrality measure
is a measure of the centrality of the whole group, with respect to the individuals in the
rest of the network, rather than to other groups.

One simple approach that satisfies this condition would be to sum or average the
centrality scores in the group. Summing is clearly problematic. Larger groups will tend
to have higher scores, and when trying to construct a group of maximum centrality, we
would need to restrict the size or the method would always group the entire network to-
gether. Averaging solves this problem; however, it does not take account of redundancy
or, to put it differently, the fact that actors within the group may be central with respect
to or due to the same or different actors. For example, consider two groups of just two
actors each, as shown in Figure 4.2.1. In each group, both actors have degree four. In
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one group the pair are structurally equivalent (i.e., adjacent to exactly the same four
actors), whereas in the second group the pair are adjacent to four different actors. Sim-
ple aggregation methods would result in both these groups having the same centrality
score. Clearly the second group, with its larger span of contacts, should have a better
score. Thus, the problem is more complicated than simply choosing the k individuals
with greatest individual centrality because much of their centrality could be due to ties
with the same third parties or with each other.

(A) Degree

We define group degree centrality as the number of actors outside the group that are
connected to members of the group. Because it is a count of the number of actors as
opposed to the number of edges, then multiple ties to the same actors by different group
members are only counted once. If C is a group that is a subset of the set of vertices
V, then we denote by N(C) the set of all vertices that are not in C, but that are adjacent
to a member of C. This measure needs to be normalized so we can compare different
groups on the same set of actors. Clearly, the maximum possible is when every actor
outside the group is connected to an actor in the group (in graph theory, such a set is
said to be dominating). We can therefore normalize by dividing the degree of the group
by the number of actors outside the group. The formula in (4.1) provides expressions
for group degree centrality:

Group degree centrality = [N(C)|
N . . IN(O)]
ormalized group degree centrality = m 4.1)

As an example, we examine data collected by Freeman and Freeman (1979). These
data arose from an early experiment on computer-mediated communication. Fifty aca-
demics interested in interdisciplinary research were allowed to contact each other via
an Electronic Information Exchange System (EIES). The data collected consisted of
all messages sent plus acquaintance relationships at two time periods (collected via a
questionnaire). The data included the thirty-two actors who completed the study. In
addition, attribute data on primary discipline and number of citations was recorded.
The data are available in UCINET 6 (Borgatti, Everett, and Freeman 2002). We look
at the acquaintance relationship at the start of the study. Two actors are adjacent if they
both reported that they have met. The actors are divided into four primary disciplines,
namely, sociology, anthropology, psychology, and statistics. We use these disciplines
to form the groups. The results are given in Table 4.2.1.

Although sociology has the lowest (unnormalized) group degree centrality, it is a
dominating set and so has a normalized group degree centrality of 1.0. Normalization
is of greater significance in group centrality than in individual centrality. In individual
centrality, the primary purpose of normalization is to enable comparison of centrality
scores for individuals in different networks. Within the same network, normalizing cen-
trality makes little difference because normalization is (except in the case of closeness) a
linear transformation affecting all nodes equally. However, in group centrality, different
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Table 4.2.1. Group Degree Centrality for the EIES Data

Discipline Number of Actors Group Degree Normalized Group Degree (%)
Anthropology 6 21 81
Psychology 6 25 96
Sociology 17 15 100
Statistics 3 23 80

groups in the same network will have different sizes, so normalization is necessary to
compare scores.

Smaller groups need more connections to obtain the same normalized score as larger
groups. We can see that the extra connections the statisticians have over the anthropol-
ogists do not quite compensate for their smaller size. For small groups to be central,
they need to work harder than large groups; this has to be taken into consideration
when analyzing real data. The converse of this is that it is easier for large groups to
have higher centrality scores. There are two reasons for this. First, large groups contain
more actors so each actor requires fewer contacts outside the group in order for the
group as a whole to reach more of the outsiders. Second, the more actors there are in
the group the fewer there are outside, so the whole group needs to connect to fewer
actors to be a dominating set. This effect is particularly strong in small networks.

In the example given, the groups were identified by attributes rather than structural
properties. When using network methods to first find the groups and then analyze their
centrality, care needs to be taken in interpreting the results, particularly if this is done
on the same relation. Suppose we had searched the EIES data for factions, that is,
searched for groups of actors that are well-connected to each other, but the groups have
few connections between them. In this case, group degree centrality would have to
be carefully interpreted because the search method deliberately tries to minimize this
value.

It is interesting to note that an analysis of individual centrality in the EIES data set
shows that one particular sociologist has direct contact with all nonsociologists. In a
sense, then, the connections of the other sixteen sociologists are redundant in terms
of contributing to the degree group centrality. Similarly, two of the anthropologists,
two of the psychologists, and one of the statisticians do not directly contribute to the
group centrality measures of their respective groups. The presence of actors who do not
contribute to the group centrality score can be measured in terms of the efficiency of
the group. Efficient groups do not have redundancy in terms of supporting actors who
do not contribute. We now give a general formulation of this concept.

Let gpc be any unnormalized group centrality score, such as group degree centrality.
The contribution of a subset K of a group C to gpc(C) in a network G is the group
centrality score of K with respect to the nodes in G-C. With a slight abuse of notation,
we denote this by gpc(K). A group centrality score is monotone if, in any graph, for
every group C and subset K gpc(K) < gpc(C). In essence, monotone group centrality
means that each actor provides a nonnegative contribution. (Provided, that is, that we are
using measures in which larger values indicate more centrality; if the reverse were true,
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the inequality would need to be reversed.) A subset K of C in which gpc(K) = gpc(C)
is said to be making a full contribution. Let k be the size of the smallest subset of C
that makes a full contribution. The efficiency e of a group C with respect to a monotone
group centrality measure can be defined as:

k
e=—.
IC]

We can see from the EIES data and the previous observations that the sociologists have
an efficiency of 1/17 (0.06), whereas the efficiencies for the three other groups are 2/3
(0.67). The efficiency is a normalized measure of the maximum number of actors that
can be deleted before affecting the group centrality score. A low efficiency means that
quite a few actors can be deleted without changing the group centrality value (if they
are chosen with care).

4.2)

(B) Closeness

We can extend the measure of closeness to the group context in a similar way. That is,
our extension considers the group as a whole and does not try to reduce the group to a
single entity. Computationally, for degree centrality this would not make any difference,
but for closeness it does. We define group closeness as the normalized inverse sum of
distances from the group to all nodes outside the group. As is well-known in the
hierarchical clustering literature (Johnson, 1967), there are many ways to measure the
distance from a group to a node outside the group. Let D be the set of all distances
(defined in the graph theoretic sense as the length of the shortest path) from a node x
to a set of nodes C. Then we can define the distance from x to C as the maximum of
D, the minimum of D, the mean of D, the median of D, or any of a number of other
variants. Each gives rise to a different group centrality measure, and each is a proper
generalization of individual closeness centrality because, if the group were a single
actor, all of these would be identical to each other and to ordinary individual closeness.
We can then normalize the group closeness by dividing the summed distance score into
the number of nongroup members. This is given in (4.3). (This value represents the
theoretical minimum for all measures mentioned here; if a more esoteric distance is
used, then this should be replaced by the corresponding optimum value.)

D, ={d(x,c),ceC}xeV —C.
dy(x,C) = f(Dy)
where f = min, max, mean, or median.

Group closeness = Z dp(x,C)

xeV-C
V-C
Normalized group closeness = ¥ (4.3)
Y. ds(x,o)
xeV-C

The question as to which of these should be used in a particular application arises.
This, of course, is dependent on the nature of the data. It is worth noting that the
minimum and maximum methods share the property that the distance to a group is
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defined as the distance to an individual actor within the group. If the data are such
that the group can be thought of as an individual unit, then the minimum method
would be the most appropriate. As an example, consider the group of police informers
embedded in a criminal network. Assume that as soon as any one informer knows a bit
of information, the information is passed on instantaneously to the police. In this case,
it is reasonable to use the minimum distance formulation of group closeness because
the effectiveness of the group is a function of the shortest distance that any informer is
from the origin of any bit of information.

Now let us consider the maximum method. Using the maximum method means that
everyone within the group is a distance equal to or less than the group’s distance to a
given actor. Consider a communication network within an organization, and suppose
that everyone who manages a budget needs to know about a regulatory change. If
any one department head is unaware of the change, his or her department is not in
compliance and may make the organization as a whole liable for penalties. In this case,
the maximum method would be more appropriate because the performance of a group
is a function of the time that the last person hears the news. Alternatively, rumors may
travel through a network by each actor passing on the rumor to a randomly selected
neighbor. The expected time until arrival of the rumor to the group will be a function
of all distances from the group to all other actors. In this case, the average method
makes sense. The different methods also have some mathematical properties that in
different situations may make one more attractive than the others. For example, the
minimum method is not very sensitive and it is relatively easy for groups to obtain the
maximum value. However, of the closeness methods discussed here, it is the only one
that is monotone and can thus be used to define efficiency.

(C) Betweenness

The extension to betweenness is in the same vein as the extensions discussed previously.
Group betweenness centrality measures the proportion of geodesics connecting pairs
of nongroup members that pass through the group. Let C be a subset of nodes of a graph
with node set V, let g, , be the number of geodesics connecting u to v, and let g, ,(C)
be the number of these geodesics that pass through C. Then the group betweenness
centrality of C is given by (4.4):

u,v C
Group betweeness centrality = Z 8u.0(C) u,v ¢C. 4.4

u<v u,v

This value can then be normalized by dividing by ', (|V| — |C(|V| — |C| — 1), which
is the maximum possible.

2 Z 8u(©)

8uv

Normalized group betweeness centrality = — , (4.5)
¢ (VI=ICh(VI=ICT-1D)

where u, v ¢ C
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(D) Social Capital

The notion of group centrality provides a measure of the social capital of an embedded
group. Most discussions of social capital distinguish between individual capital and
group capital. Individual social capital is easily thought of in terms of centrality. Group
social capital is typically thought of in terms of the pattern of ties within the group
(e.g., cohesion). This is perhaps because theorists concerned with group social capital
typically regard the group as the social universe. However, in organizational theory, the
groups in which we are interested (e.g., teams, task forces, departments, divisions, whole
organizations) are typically embedded in a larger social network (e.g., the organization
as a whole, the industry, the economy). This means that the social capital of the group
could refer as much to the ties of the group to the network it is embedded in as it does
to the ties within the group. The new measures of group centrality provide an effective
way to measure this external form of group social capital.

4.3 Two-Mode Centrality

We now shift our attention to the application of centrality to a different kind of data,
namely, two-mode data. In two-mode data, there are two kinds of entities, which we
call actors and events, and a binary relation, such as membership or participation, that
connects the actors to the events. The data may be represented by a two-way, two-mode
affiliation matrix, in which the rows represent actors and the columns represent events,
and a 1 in row i column j indicates that actor i attended event j. Two-mode data can
also be represented as a bipartite graph — a graph in which the nodes can be divided
into two classes and the only ties in the network are between nodes of different classes.
This type of data is of interest to network analysts when it can reasonably be supposed
that two actors participating in the same event indicates the existence or potential for
some form of social bond between them.

Bonacich (1991) looked at two-mode centrality, but his methods were not direct
extensions of the traditional measures. Because the bipartite graph is simply a graph,
we can apply the traditional centrality measures directly to this graph. This approach
has been taken by a number of authors, particularly with respect to degree centrality, and
Faust (1997) discussed this conceptualization and suggested some alternatives using
Galois lattices. Here, we concentrate on the work of Borgatti and Everett (1997) and their
approach to normalizing these measures and developing indices of graph centralization.
We assume that the bipartite graph representation is of the form G(A + E, R), where
A and F are the sets of actors and events respectively, and R is the set of ties connecting
them. Let n be the size of the node set A and m be the size of node set E.

(A) Degree

In the two-mode context, the degree centrality for an actor is simply the number of events
they attend, and for an event, it is the number of actors attending that event. Clearly, the
maximum degree for an actor is the total number of events and the maximum degree for
an event is the total number of actors. These are given in equation 4.6. We can use this
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Table 4.3.2. Two-Mode Degree Centrality for the Davis Data

Normalized Two-Mode Normalized
Name Degree Degree Degree
Evelyn 8 25.81 57.14
Laura 7 22.58 50.00
Theresa 8 25.81 57.14
Brenda 7 22.58 50.00
Charlotte 4 12.90 28.57
Frances 4 12.90 28.57
Eleanor 4 12.90 28.57
Pearl 3 9.68 21.43
Ruth 4 12.90 28.57
Verne 4 12.90 28.57
Myrna 4 12.90 28.57
Katherine 6 19.36 42.86
Sylvia 7 22.58 50.00
Nora 8 25.81 57.14
Helen 5 16.13 35.71
Dorothy 2 6.45 14.29
Olivia 2 6.45 14.29
Flora 2 6.45 14.29
El 3 9.68 16.67
E2 3 9.68 16.67
E3 6 19.36 33.33
E4 4 12.90 22.22
E5 8 25.81 44.44
E6 8 25.81 44.44
E7 10 32.26 55.56
E8 14 45.16 77.78
E9 12 38.71 66.67
El10 5 16.13 27.78
Ell 4 12.90 22.22
El2 6 19.36 33.33
El3 3 9.68 16.67
El4 3 9.68 16.67

information to normalize the degree centrality scores. Davis et al. (194 1) collected data
on a series of social events attended by society women. The data consisted of eighteen
women and fourteen events so that n = 18 and m = 14:

Cplx
Actor x normalized centrality = p(x)
m
C
Event y normalized centrality = D(y). 4.6)
n

In Table 4.3.2, the second column is the raw degrees of the nodes, and the third column
gives the standard normalization proposed by Freeman for ordinary single-mode data.
The fourth column is the two-mode normalization. This is calculated by taking the
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women’s degree and dividing by the number of events (fourteen in this case) and
the event’s degree, and dividing by the number of women (eighteen in this case) and
expressing the answers as a percentage. The two-mode normalization takes account of
the special nature of the data and allows the centrality scores to take on the full range of
values from O to 100. It should be noted that the two-mode normalization is nonlinear in
the sense that actors and events can be scaled differently. As an example, actor Theresa
and event E5 both have degree 8, but Theresa has a higher normalized score reflecting
the fact that there are fewer events than women. Comparing these scores without the
normalization would have given a false impression, and the score for Theresa would
have been unrepresentative of the real situation.

(B) Closeness and Betweenness

We can take exactly the same approach for closeness and betweenness as we have
taken for degree — that is, apply the original measures as before, but change the way
they are normalized to reflect the fact that there are restrictions on which nodes can be
adjacent. For ordinary closeness, we take the raw score and divide this value into the
size of the network minus one. In the bipartite case, we have a theoretical minimum
value of m 4+ 2n — 2 for the actors and n + 2m — 2 for the events. We therefore take
an event node, calculate its raw closeness centrality score, and divide this value into
n + 2m — 2. For an actor node we do the same thing, but divide the raw score into
m + 2n — 2. Clearly, as in the degree case, this is a normalization procedure that is
nonlinear. These are given in (4.7):

. m—4+2n—2
Actor x closeness centrality = ————
Ce(x)
. 2m+n—2
Event y closeness centrality = ————. 4.7)
Ce(y)

Betweenness is treated in the same way, but the formulas are more compli-
cated. We normalize the events by dividing by [n*(p + 1)*4+n(p + DQ2r — p — 1) —
r(2p —r + 3)], where p is the integer portion of the result of dividing (m — 1)
by n, and r is the remainder. We normalize the actors by dividing by %
[m%(s + 1)*> + m(s + 1)2t —s — 1) — t(2s — t + 3)], where s is the integer portion
of the result of dividing (n — 1) by m, and 7 is the remainder. This is given in (4.8):

Actor x betweenness centrality

Cp(x)

e s 2
E[m s+ 1 —|—m(s+1)(2t—s—1)—t(2s—t+3)]

s=’r(n_1)—‘,t=(n—1)modm

m
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Event y betweenness centrality
Cr(y)

= < (4.8)
3 [7*(p+ D*+n(p+1DQ2r—p—1)—r2p—r+3)]
(m—1)

p:" " —‘,r:(m—l)modn

(C) Centralization

Freeman, in his original 1979 paper, proposed a general measure of centralization to try
and capture the extent to which a network consisted of a highly central actor surrounded
by peripheral actors. This measure is simply the sum of the differences in centrality
of the most central actor to all others, normalized by the maximum possible over all
connected graphs. This can be expressed as

Z [ex — il
max Y [c. —¢;]

where ¢; is the centrality of node i and ¢+ is the centrality of the most central node.
‘We can apply this formula directly to our two-mode centrality measures. Note that we
should only apply this to the normalized centrality measures because the formula takes
the difference between the centrality of one node and that of all other nodes, so we need
the scores to be comparable across modes. We also need to determine the denominator
in this formula because this is now the maximum over all connected bipartite graphs
and not over all connected graphs. In the one-mode case, the graph that achieved the
maximum was the star graph. For two-mode data, it is a little more complicated, but
in general the graphs on which the maximum centralities were achieved to obtain the
normalization can be used to construct this denominator. The following formulas give
expressions for the maximum and assume the centralities are on the scale of O to 1. If
percentages are used, then the formulas need to be multiplied by 100. The node that
achieves the highest centrality score could be either an actor or an event. We denote by
n, the size of the node set that contains the actor with the highest centrality score (this

value could be either n or m), and n; is the size of the other mode.

4.9)

Degree
(noni —nip —np + 1)(”1’ + no)‘ (410)
nin,
Closeness
((p+ Dni +r)—[(1+2p)n; + 2r]
pn; —r) n r(p+1)
2pQ2n; — 1) +4r +3n;, —2  2pQRn; — 1)+4(r — 1)+ 3n;

—[ni(p+2)+r—1]

n,—r r
X +
(nl-(3p+2)+3r —2p—1 n@Bp+2)+3@r— 1)—2p>

p=m,—1)divn;,r =@, —1) mod n;. 4.1
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Betweenness

_ P =r)@2ny+2n; — p =3) +r(p+ 121 + 21 — p —4)
n2(s + 12 +no(s + D2t —s — 1) —1(2s — 1 +3)

(no +n; — 1)

p=(m,—1)divn;,r=n, —1) mod n;,
s=(n; —1)divn,, t =@®m; — 1) mod n,. 4.12)

In the formulas for closeness and betweenness, parameters p, r, s, and f are used to
simplify the expressions. The parameter p is the integer result of dividing n, — 1 by n;,
and parameter r is the remainder. The parameters s and ¢ are defined analogously.

As an example, consider the betweenness formula for the Davis data. The highest
normalized score (24.38%) is achieved by event E§. Summing the difference between
0.2438 and the centrality of every other node gives us the numerator of the centralization
formula and equals 6.3686. The denominator, as given by the previous equation is
30.1236, yielding a graph centralization score of 21.14%.

It is interesting to note that it is possible for an event and an actor to have the
same centrality score and for this to be the highest score. In this case there are two
possible centralizations, one of an actor and one for an event, and these could be quite
different for the closeness and betweenness centralizations (they would agree for the
degree case). This fact suggests a fundamental problem with this approach, namely,
that the centralization measures the extent to which actors and events are peripheral to
the most central actor or event. It could happen that the events have similar centrality
scores, but there is a high degree of centralization among the actors taken on their own.
Borgatti and Everett (1997) proposed an extension called single-mode centralization.
For each mode, the difference between the most central node and the centralities of all
other nodes in that mode is calculated. This is exactly the same formula as for all the
centralizations, except we now restrict the calculation to each mode. Again, we need
to calculate the formula for the denominator, and these are given as follows. Note that,
because we restrict ourselves to a single mode, it is not necessary to use the normalized
centrality scores for degree and betweenness, but it is necessary for closeness because
the normalization is always nonlinear. Because the formula for the unnormalized cases
are much simpler, we present those here. We use the same notation as for the complete
centralization case.

Degree (unnormalized)
(n; — )(n, — 1). (4.13)
Closeness (normalized)
no—1—=1[(1+2p)n; +2r]
[ p(ni —r) rip+1) }

2pn — D) +4r +3m —2 1 2pCn — D)+ 40 — 1)+ 31,

Betweenness (unnormalized)

(o — DX (p+ D> +ni(p+ DQ2r —p— 1) —rQp —r +3)]/2.  (4.14)
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We now apply the formula for single-mode degree centrality. There are eighty-nine
edges in the data set so the sums of the degrees of the women and the events will both
be eighty-nine. The woman with the highest degree has degree 8 and, because there are
eighteen women, the numerator will be 8 x 18 — 89 = 55. The denominator is given
by the previous formula and is therefore 17 x 13 = 221. This gives a single-mode
centralization of 25%; a similar calculation for the events results in 47%. We can see
that the women in this case are far less centralized than the events.

The reason for preferring single-mode centralization over the traditional method
of converting to one-mode data is that this technique does not destroy information
on patterns of overlap. In addition, we are also able to apply methods that are only
valid on binary data to the network. In converting to one-mode, it is necessary to
dichotomize the data before applying some of the centrality calculations, and this
induces further information loss. As an example, suppose we convert to a single mode
for the previous example and look at the resultant women-by-women and event-by-
event matrices using the traditional methods. The matrices are now valued and need to
be dichotomized to look for degree centralization. If we run through the full range of
possible dichotomizations, that is, from zero to the maximum value in the new matrix,
then we never obtain results as we have here. In this case, the maximum centralization
for the women is 10% and for the events is 32%. These values seriously underestimate
the true centralization scores.

4.4 Core-Periphery Measures

The notion of core-periphery structures draws on elements from the previous sections
of this chapter. From the discussion of group centrality, we draw the basic notion of
extending centrality to apply to a group. From the discussion of two-mode data, we draw
on the notion of graph centralization, which we extend to the group case. The synthesis
of these concepts is the notion of a core-periphery structure, which is simultaneously a
model of a graph and a generalized measure of centrality. A graph has a core-periphery
structure to the extent that it lacks subgroups. Another way of putting it is that all nodes
can be regarded as belonging (to a greater or lesser extent) to a single group, either
as core members or peripheral members. The extent to which a node belongs to the
core can be thought of as the coreness of the node, and is an individual measure similar
to centrality. The approach taken here follows the work of Borgatti and Everett (1999).

Our starting model will be a simple partition of nodes into core and periphery classes,
in which the core is a complete subgraph and the periphery is a collection of actors
that do not interact with each other. This leaves a number of options for the relations
between core and periphery nodes, and each of these can give rise to different models.
One option is to assume that everyone in the periphery is connected to every member
of the core. Table 4.4.3 gives an adjacency matrix of this structure. The matrix has been
blocked to emphasize the pattern.

The pattern can be seen as a generalization of Freeman’s (1979) maximally cen-
tralized graph, the simple star (Figure 4.4.2). In the star, a single node (the center) is
connected to all other nodes, which are not connected to each other. To move to the
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Table 4.4.3. Idealized Core-Periphery Structure

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 0 0 0 0 0
6 1 1 1 1 0 0 0 0 0
7 1 1 1 1 0 0 0 0 0
8 1 1 1 1 0 0 0 0 0
9 1 1 1 1 0 0 0 0 0
10 1 1 1 1 0 0 0 0 0

core-periphery image, we simply add duplicates of the center to the graph and con-
nect them to each other (Figure 4.4.3). The core of a core-periphery structure can also
be seen as a group with maximum group centrality; in this case, the core is in fact a
dominating set.

The patterns in Table 4.4.3 and Figures 4.4.2 and 4.4.3 are idealized patterns that are
unlikely to be actually observed in empirical data. We can readily appreciate that real
structures will only approximate this pattern, in that they will have one-blocks with less
than perfect density, and zero-blocks that contain a few ties. A simple measure of how
well the real structure approximates the ideal is given by (4.15) together with (4.16).

p = Za[jSij (4.15)
i,j

ij:{11fc,-=COREOrcj=CORE}' (4.16)

0 otherwise

In the equations, a;; indicates the presence or absence of a tie in the observed data, ¢;
refers to the class (core or periphery) to which actor i is assigned, and §;; (subsequently
called the pattern matrix) indicates the presence or absence of a tie in the ideal image.
For a fixed distribution of values, the measure achieves its maximum value when and
only when A (the matrix of @;;) and A (the matrix of §;;) are identical, which occurs
when A has a perfect core-periphery structure. Thus, a structure is a core-periphery
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Figure 4.4.2. Freeman’s star.
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Figure 4.4.3. Core-periphery structure.

structure to the extent that p is large. This formulation can be used as the basis for a
procedure for detecting core-periphery structures in data. The procedure, which has
been implemented in UCINET (Borgatti et al. 2002) using a genetic algorithm, begins
with a random partition of nodes into two classes (core and periphery), then iteratively
reassigns the nodes to maximize a variant of (4.15).

We can think of the ¢; as a discrete coreness measure and assign a value of 1 to the
core actors and a value of O to the peripheral actors. In this case (4.16) can be written
as 8;; = c;c;. This can be extended further by allowing the cs to take on values from
a continuous range between 0 and 1. Thus, the pattern matrix A has large values for
pairs of node that are both high in coreness, medium-size values for pairs of node in
which one is high in coreness and the other is not, and low values for pairs of node that
are both peripheral.

Now that we have a continuous model, the simple matching count of (4.15) would
not be appropriate. (Nor, in fact, do we need to restrict the data matrix to contain
only binary values.) Two possible solutions have been extensively used although many
others are possible. The first is to simply correlate matrix A with matrix A. We can
then optimize the correlation of A and A over all values of the vector ¢, where the
elements of ¢ are constrained between zero and one. This is a continuous optimization
problem and has been implemented in UCINET (Borgatti et al. 2002) using the well-
known Nelder-Mead simplex optimization procedure. An alternative is to use the sum
of squared differences and optimize this. It is well-known that, if the diagonal is not
ignored, this equates to finding the principal eigenvector of A and therefore is simply an
eigenvector centrality measure. This gives us a new insight into eigenvector centrality
and helps us understand why the smaller separate components have an eigenvector
centrality of zero; they simply cannot be part of the core.

In a series of studies, Bernard, Killworth, and Sailer collected five sets of data
on human interactions in bounded groups and on the actors’ abilities to recall those
interactions (Killworth and Bernard 1976, 1979; Bernard and Killworth 1977; Bernard,
Killworth, and Sailer 1980, 1982). In each study, they obtained measures of social
interaction among all actors and ranking data based on the subjects’ memory of those
interactions. These data concern interactions in a technical research group at a West
Virginia university, again recorded by an “unobtrusive” observer. Observations were
made as the observer patrolled a fixed route through the work space every 15 minutes
during two 14-day periods. The coreness, using the correlation criterion, was calculated
using UCINET (Borgatti et al. 2002) (which contains the data as a standard data set),
and these have been placed in descending order of coreness in Table 4.4.4.
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Table 4.4.4. Coreness of Research

Workers
1D Coreness
23 0.62
2 0.31
16 0.30
27 0.29
3 0.27
10 0.26
22 0.20
30 0.19
31 0.16
1 0.15
8 0.15
12 0.14
28 0.11
34 0.08
13 0.08
5 0.06
32 0.05
7 0.05
14 0.02
24 0.01
9 0.00
15 0.00
33 0.00
11 0.00
25 0.00
17 0.00
26 0.00
4 0.00
6 0.00
18 0.00
21 0.00
29 0.00
20 0.00
19 0.00

We can also use the discrete form of the core-periphery model to compare these
results. The results are given in Table 4.4.5. This table gives a blockmodel image of
the core-periphery structure. We note that the seven actors identified in the core are
precisely the top seven actors in terms of continuous coreness.'

As noted in our discussion of two-mode data, a way to summarize the pattern of
centrality scores in a graph is the notion of centralization. Because the intuitive basis
for centralization is the graph in Figure 4.4.2, it would seem natural to extend this
concept to deal with the core-periphery structure given in Figure 4.4.3. We refer to this
extension as concentration. Because centralization looks at the difference in centrality
of the most central actor to all other actors, in order to extend this to the core-periphery
case, we need to compare the coreness of the actors in the core with the coreness of
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those in the periphery. If there is little difference in coreness, then the graph is not
highly concentrated.

Suppose that C is a coreness centrality measure on a collection of n actors, and that
the actors have been arranged in descending order based on C and the network relabeled
soc; < ¢y <--- <c¢,. Letthe first j actors comprise the membership of the core. Then
we define concentration as in (4.17):

n
(ci —max(Cj41,Cjq2, - -, c,,)) Z (min(cl, C2yees Cf) — Ck)
! : + = : @17
2j 2(n —j)

The first term measures the difference between each core actor and the peripheral
actor with the highest coreness centrality measure, whereas the second term com-
pares each peripheral actor with the core actor with the lowest coreness centrality
measure. Each term is then normalized so one does not dominate the other simply
by the number of actors it contains. Clearly, the formula could be simplified because
max(c;41, Cj42, ..., Cy)is just c; 41 given the way we have relabeled the network. Sim-
ilarly, min(cy, ¢a, ..., ¢;) is equal to ¢;. If we assume that the underlying coreness
measure can have a maximum value of 1 for every core member and a value of zero for
every peripheral member, then the concentration has a maximum value of 1.”

The concentration measure can be used to compare different networks, just as we
typically compare networks with respect to density or centralization. Borgatti and
Everett (2000) speculated that groups with high concentration may perform better
in certain contexts due to the short graph theoretic distances among actors and the lack
of subgroups that may develop antagonisms or alternative ways of thinking. Similarly,
Schenkel, Tiegland, and Borgatti (2001) argued that communities of practice will have
high concentrations.

The measure can also be used to find the best place to partition a continuous coreness
measure into a discrete core and a periphery. We do this by sorting actors in descending
order according to coreness, and then repeatedly calculating concentration, taking the
core initially to consist of just the top actor, then the top two actors, and so on, and
choosing the partition that maximizes concentration. Table 4.4.6 gives the concentration
measures for the coreness scores of Table 4.4.4. The ID gives the row number of the
next actor to be added into the core. Hence, row 4 of Table 4.4.6 shows that actors 23,
2, 16, and 27 as the core give a concentration score of 0.340. The maximum score is
0.461, and this indicates that the first twelve actors would give the best core. There is
also a local maximum of 0.430, which includes the first six actors, and this is close to
the division given by the discrete model.

e

1

4.5 Conclusion

We have discussed three extensions of the original centrality concept: one extends cen-
trality to groups, another extends centrality to two-mode data, and the third broadens
the concept to formulate a model of a core-periphery structure. Each has useful appli-
cation in empirical settings. As noted earlier, group centrality provides a natural way to
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Table 4.4.6. Sorted Concentration Measure of the
Research Workers

ID Conc

1 23 0.402
2 2 0.284
3 16 0.294
4 27 0.340
5 3 0.356
6 10 0.430
7 22 0.385
8 30 0.424
9 31 0.395
10 1 0.386
11 8 0.400
12 12 0.461
13 28 0.446
14 34 0.406
15 13 0.453
16 5 0.411
17 32 0413
18 7 0.452
19 14 0.425
20 24 0.425
21 9 0.387
22 15 0.376
23 33 0.370
24 11 0.361
25 25 0.354
26 17 0.348
27 26 0.341
28 4 0.335
29 6 0.330
30 18 0.324
31 21 0.319
32 29 0.314
33 20 0.309

measure the external aspect of the social capital of groups, thus providing an indepen-
dent variable in a study predicting group performance. In addition, the technique can be
turned around to provide a criterion for forming groups that have maximal centrality.
This could be used by organizations to staff teams or taskforces with maximum clout.

The extension to two-mode data serves a number of important functions. First, we
can compare the centrality of members of different modes using a comparable metric.
Second, it allows us to directly analyze two-mode data, using the tools and concepts
of network analysis, without resorting to structure-destroying transformations such as
multiplying the data matrix by its transpose and dichotomizing. The result is that we can
measure the extent to which, for example, an event serves as a unique bridge between
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different groups of actors. Two-mode tools allow us to mine a wealth of data that can
be obtained unobtrusively, such as participation in projects, group memberships, event
attendance, and so on. This is particularly useful in large networks where data collection
by survey is prohibitively expensive and yields unacceptable nonresponse rates.

The generalization to core-periphery structures represents an advance along several
different fronts. First, it extends Freeman’s concept of centralization to the case of
multiple actors. Centralization measures the extent to which a network revolves around
asingle highly central actor. However, what if there are two or more actors occupying the
same central position and playing that same structural role? The centralization measure,
by design, gets a lower score in such a case. In contrast, our concentration measure
yields the same high score regardless of how many people are in the core. Second,
with the core-periphery notion, we bring a modeling perspective to the measurement of
centrality. We make clear, for example, that the measure of individual coreness is only
interpretable when the core-periphery model fits the observed network data (Borgatti
and Everett 1999).

Our objective has been to present the concepts underlying three classes of general-
ization of centrality. A limitation of our study is that we have only specifically discussed
the generalization of a few of the dozens of extant centrality measures. This should not
be taken to imply that only the measures we discuss are generalizable. Others can and
should be generalized along the lines we have presented here.

Endnotes

1. However, because it is a combinatorial algorithm, other runs can produce slightly different results.
In such cases, it is wise to identify the core as the intersection of all the core members over a
number of runs and move the rest into the periphery (or define a category of “semiperiphery”).

2. It should be noted, however, that core-periphery measures such as the principal eigenvector are
usually normalized in such a way that values as extreme as 0 and 1 are not attainable. Hence, a
smaller maximum concentration should be used, or alternatively, the coreness measure should be
renormalized.
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One of the major goals of social network analysis is to discern fundamental structure(s)
of networks in ways that (1) allow us to know the structure of a network and (2) facilitate
our understanding of network phenomena. One of the most used tools for doing this
is blockmodeling, a collection of methods for partitioning networks according to well-
specified criteria.

Initially, we use the term “blockmodeling” or “conventional blockmodeling” to
characterize the usual approach to blockmodeling, one based on the concepts of struc-
tural equivalence (Lorrain and White 1971) and regular equivalence (White and Reitz
1983)" using indirect methods. Our intent here is to use an optimizational approach
to blockmodeling to generalize blockmodeling to consider indefinitely many types of
blockmodels. Refer to Batagelj et al. (1992a,b) for an account of optimizational meth-
ods applied to blockmodeling, Doreian et al. (1994) for the extension to generalized
blockmodeling, and Batagelj et al. (1998) for prespecified blockmodeling. Integral to
this approach is the use of a built-in measure of the adequacy of the fit of a blockmodel
and the use of direct methods. We use the term “generalized blockmodeling” for the
generalized version of blockmodeling described later in this chapter. See also Doreian
et al. (2005) for a more complete treatment.

5.1 Introduction

Letld = {x1, x2, ..., x,} be afinite set of units representing actors. The units are related
by a binary relation

RCUxU,
which determines a network

N= U, R).

77
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Figure 5.1.1. The Everett Network.

The network can be represented by a graph with units as vertices. In general, the
statement can be extended to include several relations { R, } and valued networks. The
location of an actor in a network is given by the row and/or column corresponding to
that actor in the relational matrix. This extends to multiple relations. The location is
the set of ties to and from all other actors in the network.

A clustering (partition) C = {Cy, C», ..., Ci}, where @ C C; C U are clusters (also
called positions), partitions the relation R into blocks

R(C,',Cj)=RmC,' XCj.

Each cluster, C;, is a position occupied by all the vertices in the cluster, C;. Each block
is defined in terms of the units belonging to clusters C; and C;, and all the arcs leading
from cluster C; to cluster C;. If i = j, a block R(C;, C;) is called a diagonal block.

Each partition C = {C;},i # j = C; N C; = PandU;C; = U, determines an equiv-
alence relation ~

u~v<<di uved
and each equivalence relation ~ determines a partition C = {C(u) : u € U}
Cu)={veld:u~ v}

A blockmodel consists of structures obtained by identifying all units from the same
cluster of the clustering C and can be presented by a reduced graph or by a relational
matrix, called an image matrix. The vertices in the reduced graph represent the positions.

Blockmodeling, as a set of empirical procedures, is based on the idea that units
in a network can be grouped according to the extent to which they are equivalent, in
terms of some meaningful definition of equivalence. In general, different definitions
of equivalence usually (but not always) lead to distinct partitions. Regardless of the
definition of equivalence used, there are two basic approaches to the equivalence of
units in a given network (Faust 1988):

e The equivalent units have the same connection pattern to the same neighbors.
e The equivalent units have the same or similar connection pattern to (possibly)
different neighbors.

The first type of equivalence is formalized by the notion of structural equivalence,
and the second by the notion of regular equivalence, with the latter a generalization of
the former.

As a simple example, we consider the Everett Network (Borgatti and Everett 1989)
shown in Figure 5.1.1 where all of the ties are reciprocated.
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(A) Structural Equivalence

Lorrain and White (1971) provided one definition of an equivalence: units are equivalent
if they are connected to the rest of the network in identical ways. Such units are said
to be structurally equivalent. A permutation ¢ : /{ — U is an automorphism of the
relation R if and only if

Vx,y €U : (xRy = ¢(x)Rp(y)).

The units x and y are structurally equivalent, we write x = y, if and only if the per-
mutation (transposition) 7 = (xy) is an automorphism of the relation R (Borgatti and
Everett 1992).

In other words, x and y are structurally equivalent if and only if:

sl. xRy & yRx s3. VzelU\{x,y}: (xRz < yR2)
s2. XRx & yRy s4. VzelU\{x,y}:(zZRx & zRy)

On the left in Figure 5.1.1, a and c are structurally equivalent as are » and d. On
the right, g and i are structurally equivalent and % and j form a structurally equivalent
pair. Note that a and ¢ are not structurally equivalent to / and j, and b and d are not
structurally equivalent to g and i.

From the definition of structural equivalence, it follows that only four possible blocks
can appear (Batagelj et al. 1992b).

Type 0. bjj =0 Type?2. bijj=1-4¢;
Type 1. bij = 3[] Type 3. b,’j =1

where §;; is the Kronecker delta function” and i, j € C. The blocks of types 0 and 1
are called the null blocks, and the blocks of types 2 and 3 the complete blocks.
Examples of these structural blocks are:

00 0O00O0 1 000 01 11 1 11 11
00 0O00O0 0100 1 01 1 I 11 11
00 0O00O0 0 010 I 1 01 I 11 11
00 0O00O0 0 0 0 1 1 110 I 11 11

For the nondiagonal blocks R(C,, C,), u # v, only blocks of type 0 and type 3 are
admissible. In general, specifying a set of permitted block types defines a blockmodel
type and, in this section, we consider only the structural equivalence type. An exact
structural equivalence partition

C = {a,c}, {n, j}. {b.d}. {g. 1}, {e}. {f}},

of the Everett Network is shown in Table 5.1.1 with the corresponding image matrix
below it. The positions are C; = {a, b}, C, = {h, j}, C3 ={b,d}, C4 ={g,i}, C5 =
{e}, and C¢ = { f}. Note that the blocks are either null or complete.
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Table 5.1.1. A Structural Equivalence Partition of the Everett Network with Its Image Matrix

a c h j b d g i e f
a 0 1 0 0 1 1 0 0 0 0
c 1 0 0 0 1 1 0 0 0 0
h 0 0 0 1 0 0 1 1 0 0
] 0 0 1 0 0 0 1 1 0 0
b 1 1 0 0 0 0 0 0 1 0
d 1 1 0 0 0 0 0 0 1 0
g 0 0 1 1 0 0 0 0 0 1
i 0 0 1 1 0 0 0 0 0 1
e 0 0 0 0 1 1 0 0 0 1
f 0 0 0 0 0 0 1 1 1 0

C C, C; Cy Cs Cs

C 1 0 1 0 0 0

C 0 1 0 1 0 0

C; 1 0 0 0 1 0

Cy 0 1 0 0 0 1

Cs 0 0 1 0 0 1

Ce 0 0 0 1 1 0

(B) Regular Equivalence

Attempts to generalize structural equivalence date back at least to Sailer (1978) and have
taken various forms. Integral to all formulations is the idea that units are equivalent if
they link in equivalent ways to other units that are also equivalent. Regular equivalence,
as defined by White and Reitz (1983), is one such generalization.

The equivalence relation & on U is a regular equivalence on network N = (U, R) if
and only if for all x, y, z € U, x &~ y implies both

Rl. xRz=3Jweld:(yRwArw~=7z)
R2. zZRx=3wel:(wWRy Aw = 7)

Another view of regular equivalence comes from using colorings. Consider a clus-
tering C = {Cy, C,, ..., Ci} of the vertices, where all vertices in a cluster, C;, are
colored the same and all vertices are colored. The clustering C determines a coloring,
c:x i <% x e, and vice versa. The clustering C is regular if and only if

c(x) = c(y) = (c(R(x)) = c(R(y) A c(R™'(x)) = c(R™' (1)),

where equivalent vertices have identically colored neighbors — both use exactly the
same colors (Everett and Borgatti 1996).

As was the case with structural equivalence, regular equivalence implies the existence
of ideal blocks. The nature of these ideal blocks follows from the following theorem
(Batagelj et al. 1992a):

Theorem 1: Let C = {C;} be a partition corresponding to a regular equivalence ~ on
the network N = (U, R). Then each block R(C,,, C,) is either null, or it has the property
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Table 5.1.2. A Regular Equivalence Partition of the Everett Network with Its Image Matrix

a c h j b d g i e f
a 0 1 0 0 1 1 0 0 0 0
c 1 0 0 0 1 1 0 0 0 0
h 0 0 0 1 0 0 1 1 0 0
j 0 0 1 0 0 0 1 1 0 0
b 1 1 0 0 0 0 0 0 1 0
d 1 1 0 0 0 0 0 0 1 0
g 0 0 1 1 0 0 0 0 0 1
i 0 0 1 1 0 0 0 0 0 1
e 0 0 0 0 1 1 0 0 0 1
f 0 0 0 0 0 0 1 1 1 0

G G G

C 1 1 0

C, 1 0 1

Cs 0 1 1

that there is at least one 1 in each of its rows and in each of its columns. Conversely, if for
a given clustering C each block has this property, then the corresponding equivalence
relation is a regular equivalence.

From this proposition, it follows that regular equivalence produces two types of
blocks:

e Null blocks, which have all entries 0
e [-Covered blocks, which have in each row and in each column at least one 1

We use the term “regular” for these 1-covered blocks. Specifying only null and regular
blocks for a blockmodel defines a regular equivalence type of blockmodel.
Examples of the ideal blocks for regular equivalence are:

S = O O
- o O O

—_—0 O =
—_— O = =
o O = O

[l e e Ne)
[l o)
[l Ne)
[l e N e)
[l e e i)

An exact regular equivalence partition,

C=Ha.c.h j}{b.d g i} {e f}},

of the Everett Network is shown in Table 5.1.2 together with its image matrix under-
neath it. The three positions are C| = {a, ¢, h, j}, C» = {b,d, g, i}, and C3 = {e, f}.
Note that the blocks are either null or regular and that this partition has the struc-
tural equivalence partition of Table 5.1.1 nested within it. Every structural equivalence
partition is also a regular partition.
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Figure 5.1.2. A Little League baseball team network.

(C) Ideal Blocks and Measures for Blockmodels

In the empirical world, few exact partitions based on structural or regular equivalence
ideas exist. In general, such blockmodels fit approximately in the sense that there
is a nonzero number of inconsistencies when an empirical blockmodel is compared
with a nearest ideal blockmodel. As an example, consider the network of the Little
League team shown in Figure 5.1.2 in terms of structural equivalence. In this figure, and
for all other empirical networks considered in this chapter, thick solid lines represent
reciprocated ties between pairs of actors.’ Thin lines represent unreciprocated ties,
with the arrow indicating the direction of the relational tie. The only actors that are
structurally equivalent are {jay, jeff, sandy }, and any clustering together of other actors
yields a blockmodel with inconsistencies when compared with an ideal blockmodel, in
this case, structural equivalence.

In broad terms, blockmodeling tools are empirical partitioning (clustering) proce-
dures. Usually, in conventional blockmodeling, there are few formal assessments of
how well the blockmodels fit the data. In the approach taken here, we present ways
of blockmodeling that incorporate measures of adequacy. We do this in the following
fashion.

Assume, as before, that we have a single relation network N = (4, R). Let ® denote
the set of all equivalence relations of a selected type (for example, regular or structural
equivalence) over N. Every equivalence relation ~ on I/ determines a partition C of I/,
and vice versa.

Let @ denote the set of all partitions into k clusters corresponding to the relations
from ®. This is also called the set of feasible clusterings. If we are able to construct a
criterion function P(C) with the properties:

PI1. P(C)>0
P2. P(C) =0« ~€ 0,

then we can express the problem of establishing a partition of a network, in terms of a
specific type of equivalence, as a clustering problem where the task is to determine the
clustering(s) C* € @ for which P(C*) = ming_, P(C). If there are exact equivalences
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in @, then (by P2) the minimal value of P(C) is 0. In the case where there is no
exact equivalence, then VC € &, P(C) > 0, and the optimization approach provides
those solutions that differ the least from some ideal blockmodel. There can be multiple
equally well-fitting partitions for a well-defined blockmodel type.

One of the possible ways of constructing a criterion function that directly reflects
the considered equivalence is to measure the fit of a clustering by comparing it to an
ideal one having perfect relations within each cluster and between clusters (i.e., ideal
blocks), given the specified type of equivalence.

Given a clustering C = {Cy, C», ..., Ci}, let B(C,, C,) denote the set of all ideal
blocks corresponding to block R(C,, C,). Then the global inconsistency of the clus-
tering C can be expressed as

P(C)= ) mingepc,.c)8(R(Cy, Cy). B),
c..c,eC

where the term, 8, measures the inconsistency (difference) between the block R(C,,, Cy)
and the corresponding ideal block B. The function § has to be compatible (Batagel;
et al. 1992b) with the selected type of equivalence — it is nonnegative and is 0 exactly
when R(C,, C,) is itself an ideal (permitted) block for the selected equivalence. The
term §(R(C,, C,), B) is the local inconsistency (in block B) and the sum of the local
inconsistencies gives the total, or global, inconsistency.

(D) A Criterion for Structural Equivalence

For the structural equivalence type of blockmodel, the term §(R(C,, C,), B) can be
expressed as

8(R(Cy, Cy), By =" Y |rey — byl
xeC,,yeC,
In this expression, r,, is the observed tie and by, is the corresponding value in an ideal
block. For binary data, this criterion function counts the number of 1s in erstwhile null
blocks and the number of Os in otherwise null blocks.* It is easy to verify that a criterion
function P(C) defined in this fashion is sensitive (Batagelj et al. 1992b) to structural
equivalence:

P(C) = 0 < C defines structural equivalence.

(E) A Clustering Algorithm

In the direct clustering approach, an appropriate criterion function to capture the selected
equivalence is constructed, and a local optimization clustering procedure (a relocation
algorithm) is used to solve the given blockmodeling problem (Batagelj et al. 1992a):

Determine the initial clustering C;
repeat:
if in the neighborhood of the current clustering C
there exists a clustering C’ such that P(C') < P(C),
then move to clustering C'.

Usually, the neighborhood is determined by two transformations: moving a unit from
one cluster to another, and interchanging two units between different clusters.
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Table 5.1.3. Little League Structural Equivalence Partitions

Transatlantic Industries

1 3 4 51216 10 11 12 13 (7 8 9

C Ron 1 0 1 1 1 0|0 0 0 0 0 0O 0 O
Frank 3 1 0 1 o0|O0]O 0 1 0 0 0O 0 O

Boyd 4 1 1 0 0 1 0 0 0 0 0 0O 0 O

Tim 5 1 1 1 0|00 0 0 0 0 0O 0 O

C, Tom 2 1 1 0O 0|01 O 0 1 0 0 0o 0 O
Cz | John 6| 0 0 0 1 0|0 0 0 1 1 0O 0 O
Jerry 10 1 0O 0 01O 1 0 0 0 0 0O 0 O
Darrin 11 1 0o 0 O 1 0 1 0 0 0 0O 0 O

Ben 12 1 0 0 01O 1 1 0 0 0 0o 0 O

Arnie 13/]0 0 0 1 0 1 0 0 0 0 0O 0 O

Cy | Jeff 710 0 0 O 1 0 0 0 0 0 0 1 1
Jay 810 0O 0 O 1 0 0 0 0 0 1 0 1

Sandy 910 0 0 O 1 0 0 0 0 0 1 1 0

To obtain a “good” solution and some impression of its quality, we repeat this
procedure with different (random) initial partitions C. If the procedure is repeated
many times (some hundreds of times or thousands of times, depending on the size
of the network), all or most of the partitions of a selected type of equivalence (e.g.,
structural or regular) in a given network can be found.

The Little League Network
We use the Little League network of Figure 5.1.2 to illustrate the clustering algorithm
with the criterion function for structural equivalence.

The unique best-fitting partition of the Little League network (for four positions
based on structural equivalence) is shown in Table 5.1.3. Note that the four positions
define the sixteen blocks in the blockmodel. The pattern of block types is:

complete null null null
null null null null
null null null null
null complete null complete

One product of the direct partitioning approach is a count of the inconsistencies, by
block, of the partition. Corresponding to Table 5.1.3, the distribution of inconsistencies
is:

=RV N )
O = o =
R R
cooco

There are eight empirical blocks with zero inconsistencies. Put differently, they are
also ideal blocks. There is a total of twenty inconsistencies that are distributed across
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Table 5.2.4. Block Types

null nul all 0*

complete com all 1* -
regular reg 1-covered rows and columns l:>
row-regular re each row is 1-covered >
column-regular cre each column is 1-covered >
row-dominant rdo Jall 1 row* _‘
column-dominant cdo Jall 1 column* H
row-functional rfn 3! one 1 in each row E
column-functional cfn 3! one 1 in each column <>
non-null one J at least one 1 _

* Except for diagonal blocks, which may differ slightly.

the other eight blocks. For Cy, there are two inconsistencies in its block. There are no
ties from Frank and Boyd to Tim in what should be a block of type 2. For the link
from C; to C,, there is one inconsistency: Boyd sends a tie to Tom in what, otherwise,
would be a null block (type 0). Similarly, the lone link from Frank in C; to Darrin in
C3 is an inconsistency. For the ties from Tom (in C,) to boys in Cy, either the two Os
or the two s can be viewed as contributing two inconsistencies to the total count of
inconsistencies. When we treat the corresponding ideal block as null, the ties from Tom
to Ron and Frank are the inconsistencies. The tie from Tom to Darrin (in cluster Cs)
is another inconsistency. There are five ties from boys in C3 to boys C; and they are
all inconsistent with a null block. In a similar fashion, the seven ties among the boys
in cluster C3 are all inconsistencies. There are no inconsistencies among the ties from
boys in cluster Cy4. For now, we note that twelve of the errors are concentrated in two of
the cells. It seems reasonable that, for the model as a whole, the errors are distributed
across the cells in roughly the same fashion (controlling for block size). Having the
errors piling up in a small number of cells suggests that we take a closer look at the
partition and the distribution of inconsistencies.

5.2 The Generalized Blockmodeling Approach

The logic and history of blockmodeling took the form of defining types of equivalences
and then searching for partitions that were believed to be consistent with the speci-
fied equivalences. Under the so-called indirect approach (for example, in Burt 1976
and Breiger et al. 1975), a relational matrix is turned into a matrix of (dis)similarities
and clustered. The direct approach to blockmodeling (Batagelj et al. 1992a,b) takes
advantage of the result that structural and regular equivalence each implied a (small)
set of permitted blocks in an ideal blockmodel image. In this way, it was straightforward
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Table 5.2.5. Examples of Blocks with Types of Connections

C; C; C;
1 1 1 1 1 0o 1 0 0 O 0o 0 1 0 O
G |1 1 1 1 1 G |1 1 1 1 1 ;|10 0 1 1 0
1 1 1 1 1 0o 0 0 0 O 1 1 1 0 0
1 1 1 1 1 0o 0 0 1 O 0o 0 1 o0 1
complete row-dominant column-dominant
C; C; C;
o 1 0 0 O 0o 1 0 0 O 0o 1 0 1 0
G |1 0 1 1 0 G |0 1 1 0 0 G |1 0 1 0 0
o 0 1 0 1 1 0 1 0 O 1 1 0 1 1
1 1 0 0 O 0o 1 0 0 1 0o 0 0 0 O
regular row-regular column-regular
C;
C; C; 1 0 0 O
o 0 0 0 O o 0 o0 1 0 0o 1 0 O
¢ |10 0 0 0 O ¢G |10 0 1 0 0 ¢G |10 0 1 0
o 0 0 0 O 1 0 0 0 O 0 0 0 O
o 0 0 0 O 0o 0 o0 1 0 0 0 0 1
null row-functional column-functional

to specify a criterion function that captured the difference between an empirical block-
model and a (or the) nearest ideal blockmodel. Doreian et al. (1994) presented evidence
that shows that blockmodeling partitions established with the direct approach are usu-
ally better — and are never worse — than those established with indirect methods.

The logic of generalized blockmodeling is to start with sets of permitted ideal blocks.
An appropriate generalization of the equivalence idea is one where each block of a
particular blockmodel is free to conform to its own block type. This led Batagelj (1997)
and Doreian et al. (1994) to the definition of several types of connection inside and
between the clusters as different types of blocks. Some of them are characterized in
Table 5.2.4, where the right-hand column shows a pictorial way of representing blocks
as connections when image diagrams are drawn. Table 5.2.5 shows these block types in
more detail. The measures of inconsistency §(R(C,, C,), B; T) are defined specifically
for each type, T, of ideal blocks.

(A) Revisiting the Little League Network

With this expanded set of block types in mind, reconsider the partition shown in
Table 5.1.3. We could recode the nearest ideal block types as:

reg column-regular null null
row-regular null row-regular null
row-regular column-regular row-regular null

null complete null complete




5.2 The Generalized Blockmodeling Approach 87

Table 5.2.6. A Generalized Partition of the Little League Network

1 2 5 6 10 11]12 13[7 8 9[3 4
C;  Ron 1 0o o0 1 0 0 0 0 0 0 0 0|1 1
Tom 2 1 0 0 O 0 1 0 0 o o o1 O
Tim 5 1 0 0 0 0 0 0 0 0 0 0|1 1
John 6 0o o 1 0 0 0 1 1 o o 0|0 O
Jerry 10 1 0 0 1 0 0 0 0 o o 0|0 O
Darrin 11 1 1 0 0 1 0 0 0 0o o 0|0 O
C, Ben 12 1 0 0 1 1 0 0 0 o o 0|0 O
Arnie 13 0o 0 1 1 0 0 0 0 o o 0|0 O
C;  Jeft 7 o 1 0 0 0 0 0 0 0 1 110 O
Jay 8 0o 1 0 O 0 0 0 0 1 0 110 O
Sandy 9 o 1 0 O 0 0 0 0 1 1 0|0 O
Cs  Frank 3 1 0 0 0 0 1 0 0 0O 0 0|0 1
Boyd 4 1 1 0 O 0 0 0 0 o o o1 o0
regular row-dominant  null row-dominant
column-dominant  null null null
column-dominant  null complete  null
column-dominant  null null complete

and the pattern of inconsistencies becomes:

o O OO
o O OO
S o O
o O OO

Of course, we do not advocate that blockmodels obtained under one set of permitted
block types then be reinterpreted with a different set of block types. We use this
example as a simple way of thinking about alternative block types.

As another example, consider the set of permitted block types as complete, regular,
row-dominant, column-dominant, and null. This specification leads to the generalized
blockmodel in Table 5.2.6, where there are no inconsistencies with the specified ideal
blockmodel.

Pictorially, we have the partitioned network as shown on the left of Figure 5.2.3
and the image network as shown on the right side of Figure 5.2.3. This image provides
an alternative (generalized) blockmodel with a different interpretation compared with
the blockmodel image in Table 5.1.3. (Note that the ties representing block types in
this figure come from Table 5.2.5.) Figure 5.2.3 reveals a very clear center-periphery
structure defined in terms of row dominance and column dominance. The core of the
team is found in cluster C;, whose diagonal block is regular. The row-dominant link
from C; to C, comes from john’s ties to arnie and ben, and the column-dominant link
from C; to C; comes from the ties from arnie and ben (in C3) to john (in C;). The
tie from C; to C; is null because there are no ties from boys in C; to boys in C;. The
column-dominant tie from C; to C; comes from all the boys in C; choosing tom in C;.
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Figure 5.2.3. Generalized partition of the Little League network and its image graph.

The row-dominant link from C; to C; comes from ron choosing both frank and boyd
(as does Tim). The column-dominant link to C; from C; comes from frank and boyd in
C,4 both choosing ron in C;. Finally, both C; and C, form complete (diagonal) blocks.

We note an additional feature of generalized blockmodeling. In generating
Table 5.2.6, we gave preference to row and column dominance as block types. It is
possible to view the ties from C; to both C, and C4 as row-regular. Similarly, all the
ties from C,, C3, and Cy4 to C| can be viewed as row-regular. If preference was given to
those block types and if the same partition was returned, we could interpret these blocks
as row- and column-regular blocks. However, the “if” in the previous sentence should
be noted — the generalized blockmodel as a whole is specified prior to an analysis given
that specification. It is not reinterpreted after some other analysis.

5.3 Prespecified Blockmodels

In revisiting the Little League baseball team network, we began doing more than just
specifying block types. In addition to such a specification, it is possible to also require
that particular block types go in particular places in the blockmodel. This can vary
between specifying the location of every block type and specifying the location of only
some of them. When a blockmodel (conventional or generalized) has this additional
specification, we call it a prespecified blockmodel. Refer to Doreian et al. (in press) for
an extended discussion of prespecification. Our first illustration of this takes the form
of a baboon grooming network.

(A) A Baboon Network as a Center-Periphery Structure

Table 5.3.7 (in permuted form) shows a two-cluster (four blocks) partition of a baboon
grooming network. An initial examination of these ties provided a strong clue as to
how to partition this network: males do not groom other males. This suggests that the
grooming structure is centered on the females, and this observation is a first step in
constructing a blockmodel as a “center-periphery” structure. We retain the idea of a
core as a block whose ties are sufficiently dense. One operationalization of this could
be that a core block is complete. However, this may be too stringent if belonging to a
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Table 5.3.7. Permuted Grooming Ties for a Two-Cluster Model

1 3 4 6 8 10 11 2
1 . . . 1 1
1 1 1
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regular or complete column-regular
row-regular null

core does not require that all core actors are mutually linked. For social cohesion in the
core, enough pairs need to be in mutual ties. Another possible specification is that the
core block is regular — in the sense of regular equivalence — so each member of the core
is linked to at least one other member of the core. Hence, the specification of a regular
diagonal block for the female baboons. The males in the periphery do not groom each
other so their diagonal block is null.

For the specification of the off-diagonal blocks, we note that the males are linked
to the females in the core in such a way that each male baboon is groomed by at least
one female baboon. Consistent with this, the upper off-diagonal block is specified as
column-regular and the lower off-diagonal block is specified as row-regular. Table 5.3.7
shows the prespecified model implied by this argument below the empirically fitted
blockmodel. The distribution of ties in Table 5.3.7 conforms exactly to the pattern
of the prespecified blockmodel. In this sense, the prespecified blockmodel has been
“tested” and supported as an empirical hypothesis.

It is possible to fit a finer-grained partition (with more positions). Both the female
and male baboons show some internal variation. Some of the females do not groom
males, and there is a pair of males that are each groomed only by a single female
baboon. The finer-grained prespecified blockmodel is:

regular column-regular or null column-regular or null column-regular or null
row-regular or null regular or null column-regular or null column-regular or null
row-regular or null row-regular or null null null
row-regular or null row-regular or null null null

With this specification in mind, fitting the generalized blockmodel resulted in the parti-
tion shown in Table 5.3.8. The fitted blockmodel has two inconsistencies in the diagonal
block for C;. The females, f; and f;, groom each other in an otherwise null block. We
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Table 5.3.8. A Four-Position Model Fitted to Baboon Network

3 4 10 1 6 8 11 5 7 12 2 9
I 3 . 1 1 . 1 1 1 1 1
f3 4 1 . 1 1 1 . 1 1 1
fe 10 1 1 1 1
fi 1 1 1 1 1 1
fa 6 1 1 1 1 1
fs 8 . 1 . 1 1 1
f 11 1 1 .
my 1 1 1 1 1
ms 7 1 1 . 1
ms 12 1 1 1 1
n; 2 1
nmay 9 1
C C, Cs Cy

Ci regular column-regular column-regular null

Cy row-regular null column-regular column-regular

Cs row-regular row-regular null null

Cy null row-regular null null

note also that the off-diagonal blocks for C; and C, happen to be regular. As a regular
block is both row-regular and column-regular, this does not violate the prespecifica-
tion. However, we think that a prespecification of regular is too strong for a general
specification of core-periphery models. A more extended discussion of core-periphery
models is provided in Doreian et al. (2005).

(B) Ranked-Clusters Models of Stratified Sociometric Systems

A line of research was started by Davis and Leinhardt (1972) when they formulated a
“ranked-clusters” model for stratified sociometric systems. In their formulation, there
are distinct patterns in the location of mutual, asymmetric, and null ties in a ranked-
clusters model. The mutual ties are only in cliques (as maximal complete subgraphs).
These cliques are distributed across ranks so asymmetric ties always go in one direction
(usually up) and never occur in the opposite direction. Null ties can be anywhere except
within cliques. Put differently, diagonal blocks are complete, blocks above the diagonal
are always null, and only blocks below the diagonal have asymmetric ties.

A classical result from Harary et al. (1965) states that any directed graph factored by
its strong connectivity relation gives an acyclic structure (model). Based on this, Doreian
etal. (2000) proposed a slightly more general blockmodel for ranked-clusters systems.
All that differs in their version is the specification of symmetric diagonal blocks as a way
of weakening the requirement of complete cliques in the diagonal blocks. Formally, the
new symmetric block is specified as follows. A block’ is symmetric if

Vx,y € C; x C; : (xRy & yRx).
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Table 5.3.9. Social Relation as a Ranked-Clusters System

a b c|d e|j k I |\m n off g h i|p q r s
a 1T 1! -1 - 17 . 1. 1
b |1 1
c |1 1
d | R |
e 1] 1 .
Jj 1 1 1
k | O R |
l 111 1
m 1|1 . 1 1
n 1 1 ) B
o | - . 1 I
f11r 1 1 .
g |1 -1 1
h |1 1 1 1
i |11 1 . -1 1 1
p 1 1 1 . 1 .
q 1 1 1 1 1
r 1 1 1 1 1 1
s 1 1 1 1 1

The new blockmodel type specifies symmetric or null blocks on the diagonal and null
blocks above the diagonal. The bulk of Doreian et al.’s paper was devoted to symmetric-
acyclic decompositions of networks with generalized blockmodels in a complementary
(but secondary) role. The acyclic requirement is captured by having null blocks above
the diagonal. We emphasize that using more block types expands the number of block-
model types. The ranked-clusters blockmodel is defined by a distinctive pattern of the
location of block types.

A hypothetical ranked-clusters blockmodel is given in Table 5.3.9 and blocked in
a way to show the ranked-clusters structure. The italicized elements in the diagonal
blocks are ties that are inconsistent with the symmetric diagonal block requirement.
The bolded ties above the diagonal are inconsistencies with the acyclic requirement
that there be no cycles linking nondiagonal blocks.

Another departure with regard to generalized blockmodeling is illustrated by the
ranked-clusters model used here. We can view the two types of inconsistencies as
differentially important and weight them accordingly. Inconsistencies with the strict
ranking (acyclic) requirement seem more consequential and are weighted more heavily
than inconsistencies with the symmetry requirement.’

A Trust Relation in an Organization

Figure 5.3.4 shows an exact ranked-clusters model taken from Doreian (2001). The data
come from a study by French (1963) of salesmen in a competitive working environment
where trust was of great importance. The relation depicted is trust ties for the first of
three time points. [As before, the heavy lines depict the symmetric (mutually trusting)
ties and the thin lines represent unreciprocated trust ties.] The actors linked only by
symmetric ties go into a set of six positions whose (diagonal) blocks are symmetric.’
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blumberg beere holzer

71

lerner
solomon morgenstern

atkinson morgan

simmons
isaacs

callahan

‘ meister )—( zellner ‘ ‘ howell )—( wolff

Figure 5.3.4. An exact ranked-clusters model of a trust relation.

These are shaded in Figure 5.3.4. The overall structure can be described roughly as one
with parallel ranked-clusters subsystems. One has {blumberg, beere, plotkin} as its
top, whereas {holzer, murphy, brim} tops the other. Multiple ranked-clusters systems
are possible. For example, {meister, zellner} and {howell, wolff} can be merged into
a single cluster without violating the acyclic requirement. We have reported the finest-
grained ranked-clusters system in Figure 5.3.4 for the trust network that is possible.

A Children’s Network
Figure 5.3.5 shows a network for a group of girls in a sixth-grade children’s network
where the data come from Jennings (1948). Although there are boys in the classroom,
there are hardly any ties going between children of different genders. So, for this class-
room, focusing on just the girls does not distort their network. As for the trust example,
the thick lines depict symmetric ties, whereas the thinner lines (with arrows) represent
unreciprocated ties. There are two inconsistencies with a ranked-clusters model. One is
the unreciprocated link from g4 to g2 within a diagonal block, whereas the other is the
link from g5 in a high-ranking cluster to g, in a low-ranking cluster. Figure 5.3.5 shows
the ranked-clusters model, where G| = {g12, g13, g14, 818}; G2 = {g19, 820, 821}; G3 =
{g6, g3}; G4 = {g3. g15, 816, g17}; and G5 = {g1, g»}. These clusters having more than
one member are represented as circles in the image graph on the right of Figure 5.3.5.
To keep the image simple, we have omitted the self-loops for these positions. The
remaining clusters are singletons and have been represented as squares in Figure 5.3.5.
We suggest the use of ranked-clusters models as an effective way of characterizing
ranked or hierarchical sociometric systems (when they fit).
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Figure 5.3.5. A network of ties for girls and its ranked-clusters model.

5.4 Formalization of Blockmodeling

We finish by providing a formal statement of generalized blockmodeling that is appli-
cable to all types of blockmodels. The point of departure is, as before, a network with
a set of units, U, and a relation R C U x U. Let Z be a set of positions or images of
clusters of units. Let u : i/ — Z denote a mapping that maps each unit to its position.
The cluster of units C(¢) with the same position ¢ € Z is

CHy=p')={xel:pnkx)=1}.
Therefore,
Clw)={C@):1eZz}

is a partition (clustering) of the set of units /. This is illustrated in Figure 5.4.6, where
clusters C; and C; are mapped under u to their positions in the image. The general
problem is to determine the nature of the tie between the positions i and j (to which
C; and C; are mapped in the image). To do this, we have to determine the type, 7,
of tie that reflects the structure of the block R(C;, C;) and the value a of the tie that
summarizes the values {a,,}.

A (generalized) blockmodel is an ordered quintuple M = (Z, K, 7, 7, ), where:

e Zis aset of positions.

e K C Z x Zisasetof connections between positions.

e T isasetof predicates used to describe the types of connections between clusters
in a network; we assume that nul € 7.

* A mapping 7 : K — 7 \ {nul} assigns predicates to connections.

* A mappingo : K — Q, where Q is a set of “averaging rules.”
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Figure 5.4.6. Generalized blockmodeling.

A (surjective) mapping u : Y — Z determines a blockmodel, M, of a network N iff
it satisfies the conditions:

V(t,w) e K : m(t, w)(C(t), C(w))
and
V(it,w)e Zx Z\ K :nul(C(t), C(w)).

For each connection, (¢, w), the corresponding block, R(C(¢), C(w), is of the type
7(t, w), and if positions ¢ and w are not linked, then the corresponding block,
R(C(t), C(w)), is a null block.

Let ~ be an equivalence relation over /. It partitions the set of units ¢/ into clusters

[x]={yeld:x~y}
We say that ~ is compatible with T or a T -equivalence over a network N iff
Vx,yelU,IT e T : T([x], [yD

It is easy to verify that the notion of compatibility for 7 = {nul, reg} reduces to the
usual definition of regular equivalence. Similarly, compatibility for 7 = {nul, com}
reduces to structural equivalence.

For a compatible equivalence ~, the mapping p:x + [x] determines a blockmodel
with Z =U/ ~.

(B) Criterion Functions

One possible way of constructing a criterion function that directly reflects the selected
type of equivalence is to measure the fit of a clustering to an ideal one with perfect
relations within each cluster and between clusters according to the selected type of
equivalence. Notationally, this is the same as described in Section 5.1 (C). For general-
ized blockmodels, we add the following specification: given a set of types of connection
7T and a block R(C,, C,), C,, C, C U, we can determine the strongest (according to
the ordering of the set 7) type t € 7, which is satisfied the most by R(C,, C,). In this
case, we set

7 (u(Cu), u(Cy)) = 1.
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Given the specification of a generalized blockmodel and the specification of an
appropriate criterion function, as written in Section 5.1 (C), but with a richer set of
connection types, the blockmodeling problem is solved by the use of a local optimization
procedure [in the form of a relocation algorithm as described in Section 5.1 (E)]. For a
general approach to clustering relational and multivariate data, see Batagelj and Ferligoj
(2000).

5.5 Conclusion

Starting with new block types (and hence new blockmodel types) and allowing each
block to have its own characterization means that the number of blockmodel types can be
increased indefinitely. New block types can be defined formally (as done in Table 5.2.4)
or can have substantive foundations (as is the case with the ranked-clusters model).
Structural balance theory provides an example of a substantively based (generalized)
blockmodel, where an ideal blockmodel takes the form of having diagonal blocks
containing only positive and null ties and off-diagonal blocks having only negative and
null ties (Doreian and Mrvar 1996). The way is clear for using a much richer set of
blocks and blockmodel types and the construction of richer social theories.

There are two broad caveats to this sweeping claim. First, the choice of block types
and blockmodel types must be specified on substantive grounds prior to an analysis. This
specification can take a weak form where only the block types are specified or a strong
form where both the block types and their locations in a generalized blockmodel are
specified. In this context, we use the term “prespecified” (generalized) blockmodel to
emphasize that in this strong specification, more is involved than selecting block types.
The weak specification corresponds to an inductive use of generalized blockmodeling,
whereas strong specification corresponds to a deductive use of generalized blockmod-
eling where the blockmodel is prespecified and fitted. In this sense, the prespecified
blockmodel is viewed as a hypothesis and is tested. If there are too many inconsistencies
when this blockmodel is fitted, the hypothesis is not supported in the relational data.
Second, with a rich array of block types available, it is always possible to locate/fit a
generalized blockmodel that fits exactly (with zero inconsistencies). When generalized
blockmodels are established “blindly” (i.e., with many block types switched on), it
seems that this is an analogue to “capitalizing on chance” in fitting statistical relations.
We doubt that generalized blockmodels established blindly have any substantive or
practical value. We acknowledge that we do not have a “theory of errors” in fitting
generalized blockmodels at this time. As a result, the boundary between generalized
blockmodels that fit and those that do not fit is fuzzy. However, we argue that placing
substance first goes a long way in protecting us against the risk of fitting nonsense
generalized blockmodels. Establishing a procedure for fitting generalized blockmodels
with a well-founded theory of errors is a future task. For now, our attention is on the
substantive gains that become available with an expanded set of block and blockmodel
types.

In general, for a given network, a set of ideal blocks is selected, a reduced graph
(image) is formulated, and partitions are established by solving a clustering problem
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through the minimization of a criterion function. The use of the optimization procedure
is crucial and provides some additional benefits that include:

e For conventional blockmodels in inductive mode, it permits the establishment
of empirical blockmodels with a measure of fit.

e Given a specific type of blockmodel, and through time data, the value of the
criterion function can be tracked to measure the quality of fit of the blockmodel
through time. Structural balance theory provides an obvious application of this
idea (see Doreian and Mrvar 1996, and Doreian et al. 1997, for examples.)

*  When prespecified models are used in deductive mode, optimizational methods
permit the testing of these models as discussed previously. The prespecified
blockmodeling starts with a blockmodel specified on the basis of substance
and/or empirical knowledge prior to the analysis.

All fitted blockmodels discussed in this chapter were obtained by using Pajek, a
program for network analysis and visualization that was developed by Batagelj and
Mrvar (2003). A key feature of the design of Pajek is its ability to handle large networks.
An accessible introduction to network analyses using Pajek is provided by de Nooy
et al. (2004).

Endnotes

1. Included here are variants like automorphic equivalence (Faust 1988; Pattison 1988). See also

Everett and Borgatti (1994).

This is defined as §;; =0if i # jand §;; = 1ifi = j.

We leave both arrowheads out of the figures for these ties.

These two types of inconsistencies can be weighted differently. See Batagelj et al. (1992b).

Although this can be extended to include nondiagonal blocks, this extension is not relevant here.

We are experimenting with different weighting regimes but, in the main, have weighted the

inconsistencies with the acyclic requirement at ten times the weight for the inconsistencies with

symmetry. In essence, we solve a two-criteria clustering problem by reducing it to a single criterion

problem.

7. In this specific blockmodel, the clusters happen to be complete. Of course, a complete diagonal
block is consistent with the symmetric specification. In the French (1963) data, for a subsequent
time point, there are diagonal blocks that are not complete.
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Network Models and Methods for Studying
the Diffusion of Innovations

Thomas W. Valente

University of Southern California

6.1 Introduction

Diffusion of innovations theory attempts to explain how new ideas and practices spread
within and between communities. The theory has its roots in anthropology, economics,
geography, sociology, and marketing, among other disciplines (Higerstrand 1967;
Robertson 1971; Brown 1981; Rogers 2003), and has in some ways been adapted
from epidemiology (e.g., Bailey 1975; Morris 1993). The premise, confirmed by em-
pirical research, is that new ideas and practices spread through interpersonal contacts
largely consisting of interpersonal communication (Ryan and Gross 1943; Beal and
Bohlen 1955; Katz, Levine, and Hamilton 1963; Rogers 1995; Valente 1995; Valente
and Rogers 1995).

In their pioneering study, Ryan and Gross (1943) laid the groundwork for the diffu-
sion paradigm by showing that, among other things, social factors rather than economic
ones were important influences on adoption (Valente and Rogers 1995). Hundreds of
diffusion studies were conducted in the 1950s and early 1960s to examine the diffusion
process in more detail across a variety of settings (Rogers 2003). Many studies sought
to understand how information created in government or otherwise sponsored programs
could be disseminated more effectively. Diffusion research peaked in the early 1960s,
but has been reinvigorated more recently with the advent of more sophisticated net-
work models and technology making it possible to study the diffusion process more
explicitly.

Most diffusion studies focus on trying to understand the factors that lead some
members of a population to adopt a new idea and others do not. Further, studies try to
understand why some people adopt the behavior early, whereas others wait a substantial
amount of time before accepting the new practice. For example, Ryan and Gross (1943)
wanted to know why some farmers purchased hybrid seed corn almost immediately upon
its availability, whereas others waited until almost all the farmers in the area purchased
it before they were willing to do so. Similarly, Coleman, Katz, and Menzel (1966)
wanted to know why some physicians began prescribing tetracycline as soon as it was
available, whereas others waited until most physicians prescribed it before they were
willing to do so.

This chapter describes a variety of mathematical and network models used to study
the diffusion of these and other innovations. The Coleman and others (1966) study

98



6.1 Introduction 99

provided a conceptual leap from other diffusion studies by explicitly measuring who
talked to whom within the community about the innovation. (NB: Rogers also collected
such data in his dissertation on the diffusion weed spray in lowa.) Burt (1987) unearthed
the Coleman and other (1966) data and made it available to the network community so
scholars could debate various models used to describe the network diffusion process.
Although having data has been useful for clarifying diffusion models, the limitations of
these data and this study make it a poor choice for studying adoption behavior. Rather,
scholars should have focused on collecting better data or reanalyzing diffusion network
data in which contagion are more likely.

This chapter chronicles the development of network diffusion models and indicates
where such progress is being made. I first present macro models used to estimate the
speed of diffusion and, with the Bass (1969) model, to estimate rates of innovation
and imitation. Next, spatial autocorrelation is presented that is used to estimate the
degree to which contiguous nodes adopt innovations. Spatial autocorrelation led to
the network autocorrelation model, which is presented statically (cross-sectional data
only) and then with one time lag. I then discuss event history analysis applications of
network autocorrelation and its extension by including time-based network interaction
terms. Throughout the chapter, I attempt to provide a review of more recent research
conducted in a variety of domains, but mostly drawn from the public health field.

(A) Macro Models

One consistent finding of diffusion research has been that the cumulative pattern of
diffusion follows a growth pattern approximated by a simple one-parameter logistic
function such as:

yr =bo + (6.1)

where y is the proportion of adopters, b the y intercept, ¢ is time, and b, the rate param-
eter to be estimated. This simple model can be used to compare growth rates for various
innovations, but is extremely limited in its applicability. A considerable improvement
was advanced by Bass (1969) and many others (see Hamblin, Jacobsen, and Miller
1973; Mahajan and Peterson 1985; Valente 1993) by creating a two-parameter model:

Yo = bo + (b1 — bo)Yi—1 — bi(Y,—1)?, (6.2)

where y is the proportion of adopters, by a rate parameter for innovation, and b; a
rate parameter for imitation (the degree of adoption due to prior adopters). The Bass
model incorporates the percentage adopters at each time point and thus makes a better
estimate of the growth attributable to personal network persuasion. The mathematical
model in (6.2) can be used to (1) forecast expected levels of diffusion (Mahajan and
Peterson 1985), (2) estimate the rate of diffusion attributed to different theoretical
aspects of the diffusion processes, by, external influence or innovativeness, and by,
internal influence or interpersonal persuasion (Bass 1969; Hamblin et al. 1973; Valente
1993). This model can be used to estimate rate of disease spread from a central source
such as contaminated food or from infections spread through interpersonal contact. In
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Table 6.1.1. Diffusion Rate Parameter Estimates and Moran’s 1 Estimates for Two

Data Sets

Medical Innovation

Cameroon Tontine 1
Simulation

One-parameter model
Coefficient (95% CI)*

N

RZ

Two-parameter (Bass) model
Innovation coefficient (95% CI)
Imitation coefficient (95% CI)
N

R2

Moran’s

z-Score

0.23 (—.053-0.51)
17
0.76

—0.43(—0.83-0.03)
4.09 (3.05-5.12)

16

0.89

13

—6.73

0.06 (.01-0.12)
50
0.71

—0.20 (=0.30-0.09)
2.96 (2.58-3.34)

49

0.89

—.08

—7.80

4 (I, Confidence Interval.

the social realm, one can use the model to estimate rate of adoption from a mass media
advertisement or from interpersonal influence. Rate parameter estimates from both
models for two diffusion data sets are provided in Table 6.1.1. Interpretation of these
estimates is highly dependent on the time scale used to measure diffusion.

These rate parameter estimates can be used as outcomes to study factors associated
with diffusion at the macrolevel by comparing rates between groups and/or populations.
For example, parameter estimates for different countries can be compared in order to
study factors associated with the spread of behaviors in different countries. Modeling at
this macrolevel, however, is imprecise at best because it assumes perfect social mixing,
everyone interacting with everyone else (Granovetter 1978; Van den Bulte and Lillien
1997). These macro models do not measure whether people who are connected to one
another engage in the same behaviors. Geographers have devoted considerable attention
to trying to determine whether innovations spread between contiguous areas.

(B) Spatial Autocorrelation

Rather than just estimate rate of diffusion, spatial models measure whether artifacts,
diseases, farming practices, and other behaviors spread between contiguous areas
(Hégerstrand 1967; Cliff and Ord 1981; Griffith et al. 1999). Proximity data are easy
to obtain and are relatively unambiguous, thus providing a network of connections
based on distance. Moran’s / (1956) was an early model developed to test for spatial
association, geographic clustering of adoption:

LN SN Dy = ;=)
SV (i — 3

) (6.3)
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where N is the sample size, D a distance matrix (as proximities), y indicates adoption,
and S the sum of the distances in the distance matrix. Moran’s / measures the degree
to which nodes that are connected to one another deviate from the average behavior in
the network similarly or differently. Moran’s [ is high when connected nodes (positive
elements of D) are either positively or negatively different from the average score. The
statistical significance of Moran’s I can be calculated in two ways — via permutation
methods or analytically.

To use a permutation method to calculate the significance of Moran’s I, assume adop-
tion (y;) is randomly distributed and calculate / repeatedly to get a sample of estimates
based on D and the number of adopters. If Moran’s I calculated is significantly different
than the random sample generated, Moran’s [ is considered significant (z-scores can
be obtained). The logic then is to calculate the degree to which neighbors (however
defined) have similar adoption behavior compared with that expected if adoption were
distributed randomly. Variance estimators for Moran’s / can be found in spatial statis-
tics textbooks (Cliff and Ord 198 1; Bailey and Gatrell 1995) and used to calculate exact
significance tests. Moran’s [ is useful and has been extended considerably (Nyblom,
Borgatti, Roslakka, and Salo 2003), yet this approach often assumes that geographic
proximity equates with communication and influence, which may not be true.

The spatial autocorrelation methodology was seen as a useful approach to measuring
network autocorrelation, the bias inherent in a regression model when y appears as both
the dependent and independent variable. Erbing and Young (1979) wrote an influen-
tial paper on measuring network effects and using network autocorrelation methods.
Dow (1986) demonstrated the effects of network autocorrelation on estimate errors,
and Doriean, Teuter, and Wang (1984) found considerable bias in the point estimates
and their standard errors. Exactly how network autocorrelation applied to diffusion
of innovations was not clear because spatial autocorrelation measured diffusion at the
macrolevel, but did not show whether specific individuals were more or less likely to
adopt based on their network position. Further, spatial autocorrelation did not show
how network structure influenced diffusion. To do so, we turn to network models.

(C) Network Models

Figure 6.1.1 displays two networks from a study conducted in Cameroon among women
in voluntary organizations (Valente et al. 1997). Women were asked to name their
friends in the organization in an attempt to determine if friendship ties were associated
with contraceptive choices (they were). The diffusion network model posits that initial
contraceptive choices would be made by some women based on their innovativeness and
exposure to outside sources of influence such as their cosmopoliteness, media use, or
greater need for the innovation. The new idea, and its practice, then spreads through the
network as users persuade nonusers to adopt either by exhortation, entreaty, enticement,
or example.

Network influences are captured by an exposure or contagion model (Figure 6.1.2),
and each individual’s likelihood of adoption increases as the proportion (or number)
of users in his or her personal network increases. Personal network exposure is the
proportion or number of adopters in each person’s network that provide information



6. Network Models and Methods for Studying the Diffusion of Innovations

102

J

7 ( Z20N —/”v 3
[ x”/ -»vn%v‘i
A ‘A,—./

N\

!

|
y

J

Pajek

)

e

s
—

</

2
/

——

=<

Y

4

/”,/w b

X 2
AN
- .««‘ﬂ.tdw ‘A\i.,nﬂ .

R

e

Pajek

Figure 6.1.1. Networks 1 and 2 from the Cameroon Voluntary Association Study.



6.1 Introduction 103

Q = Nonadopter ‘ = FP Adopter

— O/Q Q\Q/‘ @ Q/’
¢ © o

PN Exposure = 33% PN Exposure = 66% PN Exposure = 100%

Figure 6.1.2. Personal network exposure from direct contacts.

and influence with regard to some behavior. The equation for nonrandom mixing, or
personal network exposure, is:

E;, = M (6.4)

Ywi

where w is the social network weight matrix and y is vector of adoptions. For an
individual who reported three contacts, network exposure (E;) is the proportion of
those contacts that have adopted (Figure 6.1.2). When network exposure is measured
on direct contacts, it captures social influence conveyed through overt transmission of
information, persuasion, or direct pressure. Alternatively, exposure can be calculated
by transforming the social network, W, to reflect other social influence processes.
For example, W can be transformed to represent the degree of structural equivalence
(similarity in network position) among people in the network. Exposure calculated on
this network captures social influence conveyed via comparison to equivalent others
by social comparison or competition (Burt 1987). Exposure can also be weighted by
network properties such as centrality to reflect social influence by opinion leaders.

These three social influence processes are modeled with three different classes of
network weight matrices (relational, positional, and central) constructed from the same
social network data (Table 6.1.2). All three can be justified theoretically as sources of
influence on adoption behavior, and all three can be calculated various ways (there are
at least ten centrality measures). It is possible that all three operate for different people
or at different times during the diffusion process.

In addition to the social influence process, a second dimension to these influence
mechanisms is the weight attached to each based on social distance. For example, in
relational influence models, different weights can be assigned to direct ties, ties of ties,
and even the ties of ties of ties; in positional equivalence models, different weights can
be assigned to those that are more equivalent than others (Valente 1995). A potential
line of diffusion network research then is to compare different network weighting
mechanisms in order to model and compare different social influence processes.
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Table 6.1.2. Social Network Influence Weightings

Relational Positional Central
1. Direct ties 1. Percent positive matches (tie overlap) 1. Degree
2. Indirect ties 2. Euclidean distance 2. Closeness
3. Joint participation in 3. Regular equivalence 3. Betweenness
groups or events
4. Flow
5. Integration/radiality
6. Information
7. Power

Diffusion was simulated through the two Cameroon networks in Figure 6.1.1 to il-
lustrate how network exposure and network structure influence diffusion. At each time
period, adoption occurred for the nonadopter with the most nominations received, then
network exposure was calculated, all nodes with exposure of 50% or higher were cate-
gorized as adopters, and the process repeated. We compared diffusion in this network
with that simulated in a network of the same size and density, but with links allocated
randomly. Both conditions were averaged across 1,000 runs. Figure 6.1.3 shows that, in
network 1, initially the diffusion trajectories are similar, but at about time 10, diffusion
in the actual network accelerated.

The network accelerated diffusion because it is somewhat centralized (in-degree
21.7%), and once diffusion reaches the center of the network it can propagate rapidly.
Notice that at about time 20 diffusion slowed, accelerated again at about 25, and then
slowed from about time 30 to 40. These “fits and starts” are a product of the network
structure: diffusion reaches pockets of interconnectivity and spreads rapidly within
these dense pockets, but slows between groups. Network 2 (Figure 6.1.3) had more
rapid and sustained diffusion because it was even more centralized (in-degree, 47.2%).
Note that, in the spatial autocorrelation model, adoptions were randomized to measure
statistical significance, and in this simulation, the network structure was randomized
to illustrate its influence on the rate of diffusion.

Simulation assumptions regarding influences on adoption could easily be changed
to achieve different outcomes. For example, when adoptions were assigned randomly,
diffusion was constant in network 1 (and saturation lower) and similar to the random
network in network 2. The validity of these diffusion models rests partly on determining
whether network exposure influences adoption. To that end, a number of empirical
studies have been conducted to measure the degree to which social network exposure
is associated with adoption.

6.2 Empirical Studies

Empirical support for an association between one’s own behavior and that of one’s peers
can be found throughout the behavioral sciences literature. Although many scholars
assume adoption is associated with network exposure, few studies have traced an in-
novation through a network of social contacts to empirically validate this proposition.



6.2 Empirical Studies 105

Network 1

—e— Network

Percent

—m— Random

0 rTTrTrr T T T T T T T T T T T T T T T T T T T T T T T T T T T Tl

I I S T - X R G N RS

Time

Network 2

—o— Network

Percent

—m— Random

No 9 PR A N PR

Time

Figure 6.1.3. Simulated diffusion in two networks, each compared with random
networks of the same size and density. Network 2 is more centralized.

The lack of data on diffusion within an entire network stems largely from the diffi-
culty of trying to collect data over a time period long enough for diffusion to occur.
Consequently, most studies have relied on retrospective data that introduces some but
not much bias (Coughenour 1965; Nischan et al. 1993). It has also meant that several
scholars have reanalyzed two studies that collected network and adoption data: (1)
medical innovation study (Coleman et al. 1966), reanalyzed by Burt (1987), Marsden
and Podolny (1990), Strang and Tuma (1993), Valente (1995, 1996), and Van den Bulte
and Lillien (2001); and (2) Korean family planning study (Rogers and Kincaid 1981),
reanalyzed by Dozier (1977), Montgomery and Chung (1999), Kohler (1997), and
Valente (1995, 1996). More recent studies in the fields of reproductive health
(Casterline 2001) and substance abuse (Neaigus et al. 2001) have provided new data,
but these classics remain classic.

Because collecting complete network data is difficult, most empirical research has
been egocentric (Marsden 1987, 1990), based on respondent reports of their behavior
and that of their network peers who are not necessarily connected to one another and
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not interviewed. Social influence is often based on respondent reports of perceptions of
peer behavior or perceptions of peer influence (Valente and Saba 1998, 2001; Valente
and Vlahov 2001). Comparison of exposure scores based on respondent perceptions
with alters’ reports in one study found that perceptions were more strongly related to
behavior than exposure based on alter reports (Valente et al. 1997; also see Urberg,
Degirmencioglu, and Pilgrim 1997; Montgomery and Chung 1999).

Sociometric studies interview members of a bounded community and attempt to
gather information from everyone in the community (typically conducted in schools,
organizations, and small communities) and record their time of adoption (Coleman et al.
1966; Becker 1970; Rogers and Kincaid 1981; Wasserman and Faust 1994; Scott 2000).
Sociometric studies are useful for understanding how an innovation flows within the
community and how certain network structural variables influence the diffusion process.
Sociometric data capture network influences by the alters’ reports because they were
also interviewed. For example, sociometric studies can determine whether structural
positions such as centrality are associated with adoption and/or whether centralization
is associated with more rapid diffusion (Valente 1995).

A number of more recent diffusion network studies have been cross-sectional and,
in many cases, retrospective involving only one time point. For example, a study in
Thailand by Entwisle and others (1996) found that contraceptive choices made by early
adopters contributed significantly to the contraceptive choices made by later adopters
(also see Rogers and Kincaid 1981). Valente and others (1997) collected sociometric
data on contraceptive use among women in voluntary associations in Cameroon and
showed that perceptions of these friends’ behavior, and in particular, perceptions that
these friends encouraged contraceptive use, were significantly associated with behavior.
In general, these statistical analyses use the following model:

Pr(y, = 1)

P =D BeXy + Bus oy, 6.5
T pgy =1y O 2 Bt B ©

where y is a binary vector of adoption behavior, « is the intercept, B; are parameter
estimates for vectors of K sociodemographic characteristics (Xs), and w represents the
social network matrix. The wy, term represents the calculation of contemporaneous
network exposure, and this vector is usually divided by a count of the number of
nominations sent (alternatively, the number of nominations can be entered into the
regression separately).

Significant estimates for B, indicate contagion effects by showing that network
exposure is associated with adoption. The variances for these estimates, however, are
usually biased because the observations are not independent; hence, the errors in predic-
tion are not independent. One partial solution is to obtain robust estimates by controlling
for clustering. Clustering is the degree that elements from the same cluster are sim-
ilar compared with those of different clusters. For example, two individuals chosen
at random from the same organization are more likely to be similar than two chosen
at random from different organizations. Table 6.2.3 reports regression results of the
Cameroon data with and without correction for clustering. Without correction, network
exposure is strongly and significantly associated with adoption, but with the correction
it is only marginally statistically significant (p = .04). Controlling for clustering is
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Table 6.2.3. Logistic Regression on the Likelihood of Contraceptive Behavior on Controls and
Network Exposure with and without Correction for Clustering (N = 555; Groups = 9)

Contraceptive Method Use

Without Correction With Correction
Adjusted Adjusted
Odds Ratios P-Value Odds Ratios P-Value
Age 0.97 0.001 0.97 0.010
Education 0.91 0.247 0.91 0.184
Possessions 1.39 0.000 1.39 0.000
Network exposure 1.14 0.005 1.14 0.047

particularly important in network exposure models because network choices are often
restricted to the cluster.

Even with clustering controlled, social influence as measured through social net-
works seems to be strongly associated with behavior. For example, a school-based
sociometric study was conducted by Alexander and colleagues (2001) using adoles-
cent health data (Bearman, Jones, and Udry 2000) to show that students with a majority
of network ties who were smokers were almost two times as likely to smoke them-
selves, with an additional two times greater likelihood of smoking for those with best
friends who smoke. Intra-school clustering was controlled and the multilevel model
accurately captured microlevel effects within the context of macrolevel influences. The
study measured the influence of peers on smoking, while conditioning on the smoking
rate within the school (Alexander et al. 2001).

Estimating the network exposure (autocorrelation) term with a multilevel model can
provide contagion estimates across settings and estimate the degree it varies between
settings (i.e., communities, schools, organizations, etc.). The models are incomplete,
however, because there may be factors that influence both adoption and choice of
social network contacts. For example, the decision to smoke and to nominate friends
who smoke may both be a function of delinquency or rebellion. Hence, an association
between behavior and peer behavior can be spurious. Testing social influence with
network methods then requires longitudinal data involving at least two time points.
Boulay and Valente (in press) collected data among women in three villages of Nepal and
found that having discussion partners who used contraception influenced information-
seeking behavior and contraceptive choice. Having data from two time points allows
testing of a simple dynamic model on adoption:

Pr(y, = 1)

o8 T iy = 1)

=o+ Z By Xy + Butnwiyi + Bary@u—1)Yi-1ys (6.6)

where y is a binary indicator of behavior, « is the intercept, 8 are parameter estimates
for vectors of K sociodemographic characteristics (Xs), and w represents the social
network matrix. A positive and significant S, indicates that respondents with high
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network exposure at baseline were more likely to adopt at time two. A positive and
significant B indicates that change in network exposure is associated with change
in behavior. This may indicate contagion, but still may be a product of some omitted
factor. Panel data collected at two time periods are adequate for most research needs
and can provide evidence of network influences on behavior. However, because there
is often a considerable time between the two measures, many factors may account for
simultaneous change in behavior and network exposure. To cope with this threat, data
can be collected on time of adoption, expanding the microlevel dynamic analysis by
using event history analysis (Tuma and Hannan 1984).

(A) Event History Analysis

Eventhistory analysis techniques have been developed to analyze data with a substantive
number of time points, estimating coefficients with maximum likelihood estimators
(Bartholomew 1982; Allison 1984; Tuma and Hannan 1984; Strang and Tuma 1993;
Teachman and Hayward 1993). There are two types of event history analysis, discrete
time, in which the outcome is binary, and continuous time, in which the outcome is time
to an event. Because diffusion occurs over time, there is an explicit time dimension in
diffusion studies captured by both discrete and continuous time models. The time of
adoption variable is the dependent variable and may be influenced by both time-varying
and time-constant factors. Some individuals may not have adopted by the time of data
collection giving rise to time-censored observations (right censoring occurs when the
data are collected before the innovation has finished diffusing or does not diffuse to all
members of the community or study).!

There are a variety of event history techniques, including hazard models developed
in epidemiology, used to understand the hazard or risk to disease or injury over time.
Hazard and/or event history analysis generally requires that the data are reshaped from
simple observations to a case—time format, such that there is a case in the data for
each individual at each time period of study up to and including that person’s time of
adoption (Table 6.2.4). The time-varying and time-constant independent variables are
included in each case, as well as a binary indicator for whether the individual adopted
the behavior (or got sick).

Maximum-likelihood estimation can determine whether the independent variables
are associated with the dependent variable (adopt/not adopt) (Eliason 1993). A study
of 100 people with an average adoption time of seven translates into 700 person—time
cases. Each person—time case has a variable for the network exposure at that time
period plus an indicator for whether the person adopted (plus additional time-constant
and time-varying covariates as desired). The event history model is:

Pr(y, = 1)

o8 Ty, = 1)

=a+Y BiX;+ Y BuXu+ ) Bunoy. (67
where y is a binary indicator of behavior, « is the intercept, 8; are parameter estimates
for vectors of J sociodemographic characteristics (X;), Bi, are parameter estimates
for the matrix of time-varying sociodemographic characteristics (Xy;), @ represents the
social network weight matrix, and ¢ a time indicator. Note here we have assumed a
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Table 6.2.4. Event History Analysis of Factors Associated with Adoption for the Three Diffusion
Network Datasets (Coefficients Are Adjusted Odds Ratios for Likelihood of Adoption).

Medical Innovation Brazilian Farmers Korean Family Planning

(N=947) (N =10,092) (N =17,103)
Time (recoded as proportion) 0.21 0.72 0.31
Time logistically transformed 0.68 1.94 0.67
Infection 11.8 10.9" 9.26™
Susceptibility 2.31 2.24" 2.44"
Number sent 0.91 0.90% 0.96
Number received 1.06 1.021 1.06™
Exposure via direct contacts 0.64 1.07 1.19
Exposure via structural equivalence 0.93 247 1.12
Attitude toward science 0.65™
Journals 1.84"
Income 17
Visits 1.00
No. of children 1.25™
Campaign exposure 1.031

Tp<.10;"p<.01;" p <.001.

static (constant) network. Standard statistical packages allow testing of event history
or survival data in a relatively straightforward manner, once the data are reformatted.
Event history analysis requires the construction of exposure matrices for each time
period, which can be a formidable task, particularly if one uses more than one network
weight matrix (Valente 1995).

Marsden and Podolny (1990) used event history analysis and tested network expo-
sure’s association with adoption in the medical innovation data. Results showed that
exposure was not associated with adoption in that study. Strang and Tuma (1993) revis-
ited the issue with the same data by postulating time variance in network influence (i.e.,
how much lag time, if any, is there in the influence). Strang and Tuma (1993) found
evidence of contagion. Van den Bulte and Lillien (2001) supplemented the medical
innovation data with archival data on media promotion by pharmaceutical firms at the
time of the original study and showed that network contagion effects disappear once
these data are added. Their analysis demonstrates the importance of omitted variables
when studying diffusion through networks. The rapid diffusion measured in the medical
innovation study indicates that contagion was probably not the primary factor driving
diffusion.

To illustrate, I conducted event history analysis of three classic diffusion network
data sets. The analysis controlled for within village and within person covariation, as
well as terms for time and a logistic transformation of time, were included to control
for macrolevel effects. Terms for infection and susceptibility (Strang and Tuma 1993;
Myers 2000) were included to measure whether adoption by central individuals (high
in-degree) influenced subsequent adoption — infection — and whether centrality (out-
degree) influenced a person’s likelihood to adopt as diffusion occurred — susceptibility.
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In- and out-degree were also included in the model. Two network exposure terms
were computed — direct ties and structural equivalence.” For this analysis, network
exposure was calculated using contemporaneous measures because two of the data sets
recorded adoption in 1-year intervals. Two control variables representing individual
characteristics were included. Analysis was conducted only on those who adopted. The
following model was estimated:

log(Pr(y, = 1) = + Y BimXim + Y _ Bimt Vi + Y Bimi 05 ¥
+ Am1Cp(y4+) + Aim2Cp(y4), (6.8)

where y is a binary indicator of behavior; « is the intercept; Xs are vectors or time-
constant sociodemographic and network characteristics; V represents vectors of time-
varying terms, in this case, time and its transformation; w, represents the social network
matrices; and A estimates the effects of centrality degree variables multiplied by the
time-varying proportion of adopters in the network (infection and susceptibility). Re-
sults are mixed, but seem to indicate that both infection and susceptibility effects are
present. In all three data sets, infection is positively associated with adoption indicating
that, as those with high in-degree adopt, it increases the likelihood others in the network
will adopt. In two studies, Brazilian farmers and Korean women, susceptibility is asso-
ciated with adoption, indicating that those with a high number of nominations sent are
more likely to adopt as the innovation diffuses. Ties sent and received are marginally as-
sociated with adoption, and only for the Brazilian data is exposure, through structural
equivalence, associated with adoption. These results, however, change dramatically
when nonadopters are included or when a term for the average exposure at each time
period is included such that infection and susceptibility effects disappear.

The event history analysis approached has also been used by Montgomery and others
(2001) using egocentric data to study network exposure’s influence on contraceptive
use in Ghana. Current analysis of four rounds of data over 2 years has shown that con-
traceptive use is strongly associated with use by social network peers. The Ghana field
study provides some of the most conclusive evidence of the magnitude of social influ-
ence on behavior change by showing that, as the number of social network contacts who
use contraceptives increases, the likelihood of contraceptives use by ego also increases.
Of all variables, the network exposure variables were the most significant influences on
contraceptive adoption. Another longitudinal field study in Kenya found similar results,
again based on egocentric network data (Behrman, Kohler, and Watkins 2003).

Montgomery and others (2001) also reported preliminary analysis of network influ-
ences weighted by tie characteristics, such as the frequency of communication. They
found that adding these weights did not change the strength of peer influence. Similar
results have been reported in Valente (1995) and Valente and Saba (1998: p. 109).
Consequently, it seems that the influence of social networks on behavior (contraceptive
use in these cases) seems broad in nature and is not conditioned on specific factors
such as the frequency of communication between dyads or their sociodemographic
similarity. These factors may play a strong and even pervasive role in determining who
is connected to whom (White and Watkins 2000), but they do not seem to determine
the degree of influence social contacts provide.
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Network exposure and adoption may not always be strongly correlated for a number
of reasons. First, exposure may not be associated with adoption for everyone, but may be
most influential during the middle stages of diffusion, when awareness and uncertainty
about its relative advantages are both high (Carley 2001). Exposure may have less of
an effect early in the process when there are few adopters and obvious advantages
to waiting, and late in the process when most people have a majority of adopters in
their personal network anyway. Second, individuals may have varying thresholds to
adoption, such that some are innovative and others are not (Granovetter 1978). Valente
(1995, 1996) posited a social network threshold model in which contagion (majority
rule) is a special case. Most simulation models assume majority influence on adoption
decisions as was done in the beginning of this chapter. It is reasonable, however, to
expect that individuals vary in the amount of network exposure needed to adopt an
innovation. Disproving thresholds may not be possible, but construct validity for the
concept has been demonstrated (Valente 1996). Valente and Saba (1998) replicated
the threshold model using egocentric data and showed that people with a minority of
network members using contraception had higher campaign recall, indicating that the
media campaign could substitute for interpersonal sources of influences. If thresholds
vary, network exposure is needed for people to reach those thresholds; if they do not and
the special case of contagion exists, network exposure will determine when individuals
adopt.

In spite of the impressive list of studies showing some support for an association
between one’s own behavior and network exposure, and the theoretical simulations of
network structure and thresholds, significant work remains to be done. Most scholars
and lay people would agree that social networks influence behavior. The barriers to
demonstrating this effect, however, have been challenges of data collection and agree-
ment on appropriate statistical methodology. The most commonly analyzed data set,
Medical Innovation, is 50 years old, consists of only 125 respondents, and arguably
is not a diffusion study at all. Further, and perhaps most damaging, is that we have
probably approached the problem wrong all along.

Although the distinction between dimensions of social influence (Table 6.1.2) repre-
sents a rich sociological map of influences on behavior, empirical investigations to date
have found little variation in their role in the adoption process. Most network studies of
diffusion are small bounded communities and hence do not differentiate much between
cohesive and structurally equivalent alters. Therefore, measuring the influence of direct
ties on adoption is probably sufficient for most studies, although future research com-
paring social network influence mechanisms could still be quite interesting, particularly
in business settings where positional equivalence is likely to be a stronger influence,
the majority of attention will still be paid to understand how direct contact influences
adoption decisions.

6.3 Network-Based Interventions

Debate concerning network tie selection and the difficulty of specifying the time order of
adoption will be hard to resolve. In addition, many behavioral scientists will argue over
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the meaning of any associations between network exposure and adoption. Specifying
the direction of causal influences is likely to be difficult, no matter how complete the
data. It may be that the best use of network data and the best way to demonstrate
network influences on adoption is to design behavior change interventions. If these
network-based interventions are successful, the value in understanding network models
of diffusion will be apparent.

Several studies (Lomas et al. 1991; Latkin 1998; Soumerai et al. 1998; Kincaid
2000; Sikkemma et al. 2000) have identified opinion leaders using network data and
had these leaders implement successful behavior change programs. Valente and Davis
(1999) further suggested that leaders could be matched to others in the network based on
minimum distances, and a randomized trial using this technique for preventing smoking
among middle school students found it to be successful (Valente et al. 2003). Broadhead
etal. (1998) and Latkin (1998) demonstrated the utility of networks for recruitment into
behavioral change programs. Given the challenges inherent in collecting full diffusion
network data, using networks as intervention points may present the best opportunity
for understanding how networks influence behavior change.

A second network-based intervention is to target promotional programs to subgroups
defined by social network affiliations. The subgroup becomes a source of social support
and behavioral reinforcement not available if behavior change is spread out among
people in the larger group. Critical mass is more likely to be achieved in the subgroup
than in the community as a whole. A third approach would be to locate network bridges —
linking agents — between organizations and subgroups, and to provide the support they
need to transport new ideas and procedures between groups. A fourth approach is to
locate isolates who may be at risk of not receiving information through the network
or who may feel “left out” of activities. Finally, promotional programs might try to
match structurally equivalent individuals and groups so messages and programs are
appropriately tailored. In sum, most marketing programs have segmented audiences
on demographic characteristics, and some on psychographic ones, but a new era of
sociometric segmentation is now possible.

6.4 Conclusion

Much progress has been made since 1943 when Ryan and Gross first laid the foundation
for diffusion of innovations theory. Rogers (2003) chronicled the many studies con-
ducted since then and helped create a general diffusion model with wide applicability
now being renewed and reinvigorated with fresh theory and analytic models. Over-
all, results indicate that social network influences on behavior are important and have
consequences for the health and well-being of populations and individuals. These new
insights have shed light on important aspects of how new ideas and practices spread
within and between communities.

Along with new insights have come new questions and new perspectives to be
addressed. It is clear that a lack of data on both time of adoption and network influences
has hampered developments. Few diffusion or behavioral studies collect information
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on networks, and conversely few network studies record time of adoption. There are
advantages to marrying these two ideas, however, and future research will hopefully
try to collect both types of data.

It is also clear that our understanding of how diffusion occurs is still somewhat lim-
ited. The Medical Innovation data have often been used to demonstrate the importance
of networks in adoption, yet analyses by Valente (1995) and Van den Bulte and Lillien
(2001) have shown that contagion via social influence in this setting was unlikely.
Given the number of confounding factors and some of the data requirements, it may be
prohibitively difficult to substantiate the role of social networks in innovation adoption
via survey methods alone. Purposively intervening on social networks, however, may
prove to be a fruitful avenue of research. If network-based interventions can be used to
accelerate innovation diffusion, then a stronger case can be made for the importance of
social contagion in the diffusion process.

Nonetheless, it is clear that networks are important influences on behavior because
most people acknowledge that they receive information and influence via their social
networks and that they model the behavior of others. What is less clear is how to
capture that influence in quantitative terms that mimic the theoretical progress made
in the network field. Further, verbal accounts on how people make decisions and adopt
behaviors usually reveal nonlinearities, chance circumstances, and whims that are not
independent of networks, but not easily captured in social influence models.

The link between micro- and macrolevels of analysis represents an opportunity for
study of diffusion processes. The opportunity lies in the fact that multilevel model-
ing techniques enable the separation of microlevel network exposure influences from
macrolevel contextual factors. Yet both are social network influences and both repre-
sent elements of the diffusion paradigm. It is hoped that by controlling for contextual
effects we do not “throw the baby out with the bathwater” by eliminating the microlevel
influences that provide expressions for those contextual effects.

In spite of controls for macrolevel contextual effects, microlevel associations be-
tween peer network behavior and those of respondents are still sometimes strong.
Debate remains about the meaning of these associations; is it peer influence, peer se-
lection, or further contextual effects? More rigorous studies may eventually tease this
out; in the interim, better study designs and interventions will need to be created. This
review has attempted to point out some of the challenges diffusion scholars face and
some of the promising new directions it may take. It is hoped that such organization
will clear the way for promising new studies to be conducted. Social networks are
fundamental influences on human behavior and conduits for the diffusion of ideas and
practices, yet their roles are varied and complex and defy easy categorization.
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Endnotes

1. Left censoring occurs when the data are incomplete at the beginning of the process. For example,
adoption data for the period 1993 to 2000 may have some people who adopted in 1989 to 1992
classified as 1992 adopters.

2. Structural equivalence was computed as in Burt’s (1987) measure, and Euclidian distance was
raised to the sixteenth power.
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Using Correspondence Analysis for Joint
Displays of Affiliation Networks

Katherine Faust

University of California, Irvine

This chapter describes and illustrates methods for studying affiliation networks, with
special attention to methods for spatial representations that jointly display the actors
and events in the network. Although affiliation networks have been the focus of method-
ological research for decades (Levine 1972; Breiger 1974; Seidman 1981; McPherson
1982; Wilson 1982), more recent analyses of affiliation networks have raised a number
of issues concerning appropriate methods for their study. At the same time, research
has pointed to the empirical and theoretical generality of this perspective (Freeman
and White 1993; Wasserman and Faust 1994; Borgatti and Everett 1997; Faust 1997,
Skvoretz and Faust 1999; Breiger 2000; Mische and Pattison 2000; Roberts 2000;
Brazill and Groffman 2002; Faust et al. 2002; Pattison and Breiger 2002).

7.1 Background

Representing the two modes in the affiliation network in a “joint space” in which both
actors and events are depicted simultaneously is of particular interest in both earlier and
more recent work on affiliation networks. Such graphic displays commonly use scaling
(e.g., correspondence analysis) or algebraic approaches (e.g., lattices). An important,
but often neglected, aspect of some applications is clear specification of the formal
relationships embodied in the configuration and explicit description of how the result
corresponds to the original data. These omissions produce rather casual depictions and
consequent ambiguity in interpretation. They also contribute to misunderstanding and
fuel debate about the usefulness of the approach. The following passages are typical of
such descriptions for affiliation networks or similar two-mode data arrays.

In describing correspondence analysis for the joint display of actors and events
in an affiliation network of Chinese political actors’ involvement, Schweizer (1991)
interpreted the result in terms of a “preference” model: “In this application of the model
to an actor-by-event matrix, actors are placed as points into their region of maximal
involvement (‘preference’) for certain events” (p. 33). However, he neglected to reveal
what scores were used for the display.

Similarly, in their reanalysis of the classic Davis, Gardner, and Gardner (1941)
observations of southern women’s attendance at social events, Borgatti and Everett
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(1997) described the joint display as follows:

Applied to the Davis, Gardner and Gardner data, a correspondence analysis results in a map in which
(a) points representing the women are placed close together if the women attended mostly the same
events, (b) points representing the social events are placed near each other if they were attended by
mostly the same women, and (c) women-points are placed near event-points if those women attended
those events. (p. 246)

However, as with the previous example, the authors failed to reveal which scores were
used for the display, so we are left with no precise understanding of what “near” means
in the plots.

Admittedly, these passages are intended as simplified descriptions to aid substantive
interpretation of the results, but their informality and the absence of information about
exactly which sets of scores are used in the figures prevent precise interpretation of the
results. In addition, absence of formal specification contributes to debate about potential
problems with correspondence analysis for studying affiliation networks. Criticisms
have included application of the approach to dichotomous data, possible inadequacy
of representations in two dimensions, and proper interpretations of distances in the
displays (see the exchange between Borgatti and Everett 1997, and Roberts 2000).

This chapter takes the modest step of laying out some aspects of the formal basis for
joint representations of actors and events in an affiliation network using correspondence
analysis. The goal is to provide the precise formal specification of the model and
of the relationship between the model and the input data in such a way that users
can select among some possible alternatives and interpret the results appropriately.
This chapter describes and illustrates some of the methodological issues using both a
small hypothetical affiliation network and an affiliation network of Western Hemisphere
countries and their memberships in regional trade and treaty organizations.

7.2 Affiliation Networks

Many social situations bring together actors in sets of two, three, or more in collectivities
of arbitrary size. Corporate boards of directors, scientists attending sessions at a profes-
sional meeting, members of voluntary organizations in a community, activists gathered
in protest demonstrations, fans watching sporting events, countries forging alliances
through membership in trade and treaty organizations, and members of committees in
a university are all examples of this sort of social situation. These situations are varied
in nature. Some are quite informal social gatherings, whereas others are well-defined
assemblages. In some situations people can be expected to interact quite intensely
with one another, whereas in other situations direct interaction among all members is
unlikely. Some situations are fleeting one-time events, whereas others are recurrent.
Nevertheless, all the examples mentioned previously share a number of common fea-
tures. In each, joint social participation brings together sets of actors rather than simply
linking pairs or dyads. Thus, joint participation constitutes a social relation among
collections of actors. Moreover, when actors participate in multiple interaction occa-
sions, the social occasions themselves are linked to one another through their common
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participants. Finally, all the situations involve two different kinds of social entities: the
individuals (referred to as actors) and the social occasions (referred to as events).

Affiliation networks have been used to study a wide range of social situations, and a
partial list highlights their generality. A classic example is Davis et al.’s (194 1) study of
southern women’s participation in informal social gatherings (see also Homans 1950
Breiger 1974; Doreian 1979; Freeman and White 1993; Freeman 2002). Many studies
of corporate interlocks have used affiliation networks (Levine 1972; Mariolis 1975;
Mariolis and Jones 1982; Mizruchi 1982), as have studies of corporate CEOs and their
memberships in civic, cultural, and corporate boards (Galaskiewicz 1985). Participation
in community ritual celebrations has been studied by Foster and Seidman (1984) and
Schweizer, Klemm, and Schweizer (1993). Affiliation networks have also been used to
study social movements (Rosenthal et al. 1985; Mische and Pattison 2000; Osa 2003)
and other political situations, including roll call votes (Stokman 1977), opinions by U.S.
Supreme Court justices (Breiger 2000; Brazill and Groffman 2002), winners and losers
in Chinese political struggles (Schweizer 1991), and the participation of Soviet polit-
ical elites in official and social occasions (Faust et al. 2002). Academic associations
have been the focus of a number of affiliation network studies, including sociolo-
gists’ memberships in disciplinary specialty sections (Cappell and Guterbock 1992;
Ennis 1992).

The situations mentioned previously can be viewed as instances of affiliation net-
works (also called membership networks, dual networks, or hypernetworks). Affiliation
networks are a general class of networks with several important properties. In particu-
lar, three characteristics distinguish affiliation networks from the more standard social
network in which relations are measured on pairs of actors from a single set. Linkages
in an affiliation network occur between two different kinds of social entities, referred to
as “actors” and “events.” As with all social networks, the actors may be any meaningful
social unit, including individual or collective entities. The events in an affiliation net-
work are collections of actors. The events may either be well-defined collectivities with
official membership lists, or they may be less formal gatherings. Each of these kinds of
entities constitutes a “mode” of the network. Thus, affiliation networks are two-mode
networks. A second important characteristic is that the affiliation relation links collec-
tions of entities — actors belong to multiple events, and events may include multiple
actors. Thus, affiliation networks are nondyadic. These two characteristics permit a
third important property — the duality of perspectives in the relation between actors and
events (Breiger 1974). Viewed from the perspective of actors, participation in events
links actors to one another. Viewed from the dual perspective of events, the actors mul-
tiple memberships link events together. Putting these together gives a joint perspective
of the simultaneous linking of actors through events and events through actors.

The distinction between social ties based on membership relations (seen in affiliation
networks) and social relations (the typical one-mode network linking pairs of actors)
is nicely discussed in Breiger’s foundational work on membership networks (Breiger
1974). Both of these kinds of social ties give rise to networks, but networks with
rather different properties. Social relations are dyadic — they link pairs of actors in a
single mode directly to one another. However, membership relations link individuals
to collectivities, and then indirectly to each other through these shared memberships.
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These considerations provide the foundation for affiliation network methodology and
highlight why methodology for affiliation networks deserves special attention, beyond
that for standard one-mode networks.

Of particular importance in analyzing affiliation networks is producing an in-
terpretable simultaneous or joint model of actors, events, and the relationships be-
tween them. This chapter describes how to do this appropriately using correspondence
analysis.

7.3 Example

This chapter uses as an example the memberships of twenty-two Western Hemisphere
countries in fifteen regional international organizations. The actors in this example are
sovereign nations in North, Central, and South America. The events are regional interna-
tional trade and treaty organizations. These organizations primarily promote economic
interests or political, social, or cultural cooperation among member nations. The list
of organizations and their members was compiled from Keesing’s Record of World
Events, and consists of the regional organizations listed for the Americas, excluding
the Caribbean (East 1996). Membership in these organizations includes all countries
that are full members, but excludes observers, nations outside the hemisphere, and
territories. Organizational memberships were verified using information from the CIA
Yearbook (CIA 2000) and publications of the individual organizations, when available.
Brief descriptions of the organizations are presented in the Appendix. This substantive
example illustrates the political and economic alliances among countries in one part of
the world, and reveals the more local basis for some of these alliances.

7.4 Notation

An affiliation network is presented in a two-mode sociomatrix. The rows of the matrix
index actors and the columns index events. The set of actors is denoted by N, with g
being the number of actors, and the set of events is denoted by M, with & being the
number of events. We use the notation A for the matrix, with entries a;;, where g;; = 1
if actor i is in event j and O otherwise. The sociomatrix for the twenty-two countries
and fifteeen organizations is presented in Table 7.4.1. In this table, both countries and
organizations are listed in alphabetical order.

In this form, it is difficult to see any patterns that might be present in the network.
Representational and graphic methods can help reveal and communicate patterns in the
data.

7.5 Bipartite Graph

Visualization is an integral part of social network analysis (McGrath, Blythe, and
Krackhardt 1997; Freeman 2000). Well-drawn graphs or diagrams bring attention to



7.5 Bipartite Graph 121

Table 7.4.1. Sociomatrix of Western Hemisphere Countries and Memberships in Regional Trade and
Treaty Organizations

8 - ﬁ o 22 ?

5 S § S d 2 &) ﬁ hst §; <

g 3 £ 2 % & 2 ¢ 2 E 2 2 % % 4

T < < £ 3 v & v B 5 zZ S & & @

Argentina 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1
Belize 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1
Bolivia 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1
Brazil 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1
Canada 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
Chile 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1
Colombia 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1
Costa Rica 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1
Ecuador 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1
El Salvador 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1
Guatemala 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1
Guyana 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1
Honduras 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1
Mexico 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1
Nicaragua 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1
Panama 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1
Paraguay 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1
Peru 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1
Suriname 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1
United States 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
Uruguay 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1
Venezuela 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1

important features of the network, such as the presence of subgroups, the relative im-
portance or centrality of actors (McGrath et al. 1997), and often convey descriptive
information in a form that is more easily appreciated than are numeric summaries or
matrices.

Because the affiliation relation always links actors to events and vice versa, all ties
in an affiliation network are between entities from different sets — the two modes of the
network. This means that an affiliation network can be represented as a bipartite graph.
In a bipartite graph, the nodes can be partitioned into two mutually exclusive sets and
all edges link nodes from different sets.

Figure 7.5.1 presents a graph of the network of countries and their memberships
in regional organizations. In this figure, the points are located to highlight the fact
that the graph is bipartite. Countries are roughly arrayed from south to north in terms
of their geographic position, calling attention to the regional basis for many of the
organizations. Consistent with the fact that a number of organizations have regional
economic or political interests as their express intent, it can be seen in the graph that
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Figure 7.5.1. Bipartite graph of countries and organizations.

some organizations only have as members countries from within one region. Notably,
MERCOSUR, Andean Pact, and Amazon Pact are all composed entirely of South
American countries; San José Group and Parlacén include only Central American
countries; and NAFTA consists entirely of North American countries. In contrast,
other organizations clearly span the entire hemisphere (for example, IDB, OAS, and
SELA); in fact, all countries in the set belong to IDB and OAS. (See Appendix for
descriptions of these organizations.) We can also see differences among the countries
in their level of participation. Some countries (for example, the United States and
Canada) belong to relatively few of these organizations, whereas others belong to more
than one-half of them (Ecuador, Peru, Bolivia, Colombia, Venezuela, and Mexico, for
example).

In Figure 7.5.1, locations of the points are arbitrary in the sense that the formal
information represented in the figure consists only of the nodes and the edges between
nodes. Locations of points and the proximity of pairs or sets of points are not related in
any specifiable way to the input data, nor do distances in the figure relate in an explicit
way to associations between the countries and the organizations.

Alternatively, one can construct a graphic display in which location of points and
distances between them convey precise information about properties of the network.
The next section discusses how to accomplish this using correspondence analysis for
joint graphic displays.
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7.6 Joint Representation of Actors and Events

The goal is to represent the affiliation network graphically so both actors and events
are presented in the same display. The problem is to find locations for points represent-
ing both actors and events so the resulting configuration provides a low-dimensional
approximation to the input data and the locations of the points in the configuration
correspond in an explicit way to specified aspects of the data. In the configuration, the
proximity of points can show relationships among actors, among events, or between
actors and events. More generally, a representation for two-mode data that include en-
tities from both modes is called a joint space because it jointly displays entities from
two different sets (Jacoby 1991; Coombs 1964). An important feature of the models
described here is that they explicitly specify the relationship between the input data and
the locations of points in the resulting configuration.

Affiliation networks are often analyzed using correspondence analysis and the result-
ing coordinates used in graphic displays. There is great appeal in this approach because
it does provide a joint representation of the two modes in the network. Nevertheless,
this approach has been the topic of considerable recent discussion and debate (Borgatti
and Everett 1997; Breiger 2000; Roberts 2000; Faust et al.).

This section presents the formal basis for correspondence analysis, with special
attention to how this model can be used for a joint representation of an affiliation
network when interpretable distances between points from different modes are desired.
Three alternatives are illustrated, first using a small hypothetical example and then using
data on Western Hemisphere countries’ memberships in trade and treaty organizations.

Correspondence analysis (Weller and Romney 1990; Greenacre and Blasius 1994;
Blasius and Greenacre 1998) is a scaling approach usually used for studying rela-
tionships between variables in two-way arrays. It is one of a number of closely related
approaches, including dual scaling (Nishisato 1994), homogeneity analysis (Gifi 1990),
and optimal scaling. There are numerous articles and monographs describing the gen-
eral approach. A few useful references include Weller and Romney (1990), Greenacre
(1984), Greenacre and Blasius (1994), Blasius and Greenacre (1998), Nishisato (1994),
Claussen (1998), and Gifi (1990).

Correspondence analysis is often used to study relationships between categorical
variables in contingency tables or incidence matrices, but it has also been used to model
social networks, particularly affiliation networks (Noma and Smith 1985; Wasserman
and Faust 1989, 1994; Wasserman, Faust, and Galaskiewicz 1990; Schweizer 1991,
1993; Faust and Wasserman 1993; Nakao and Romney 1993; Kumbasar, Romney, and
Batchelder 1994; Breiger 2000; Roberts 2000; Faust et al. 2002).

To appreciate and interpret correspondence analysis as a way of providing a joint
display of an affiliation network, it is useful to clearly describe several aspects of the
approach. In particular, the following points are important:

1. Decomposition of a matrix into its basic structure using singular value decom-
position

2. Geometric features of correspondence analysis, especially as they pertain to the
relationship between the resulting configuration and the input data
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3. Alternative “scalings” that may be used for a joint representation and implica-
tions of the alternatives
4. Dimensionality of the result

Each of these issues is described and illustrated in turn.

7.7 Matrix Decomposition

Correspondence analysis is accomplished through the decomposition of a matrix into
its basic structure (Digby and Kempton 1987; Weller and Romney 1990; Clausen 1998).
In general, singular value decomposition is defined as the decomposition of a matrix,
A, of size g by h, as:

A = XAY, (7.1)

where A is a diagonal matrix of singular values, {A;}, X is the matrix of left singular
vectors, and Y is the matrix of right singular vectors. If A has g rows and A columns
(with £ less than or equal to g), then X is of size g x hand Yissize s x h.Both Xand Y
are orthonormal. In other words, rows of X and similarly columns of Y are orthogonal
and of unit length. Formally,

XX =1 (7.2)
YY =1, (7.3)

where I is an identity matrix.
The same relationships can be expressed in terms of the elements of X and Y:

w

w
Yoxk=) yi=1 (7.4)
k k

W W
inkxi’k = Z yikyjk = 0. (7.5
% %

The number of singular values and singular vectors, and hence the dimensionality of
the matrix, is equal to rank of the matrix A. Generally, this is the number of nonnegative
singular values, which is no greater than the minimum of the number of rows (g) or
columns (#). We denote the rank of A as W. When the full set of W dimensions are
used, then A, X, and Y perfectly reproduce the entries in A. When fewer than the full
set of W dimensions are used, the result approximates the entries in A.
Correspondence analysis is a singular value decomposition not of A, but of a “nor-
malized” version of A. Entries in the original matrix are divided by the square root of the
product of the row and column marginal totals prior to singular value decomposition.
Let A be a rectangular matrix of positive entries with g rows and 4 columns (where

g > h). Two diagonal matrices R~z and C™2 have entries equal to reciprocals of the
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Table 7.7.2. Hypothetical Affiliation Network

Event 1 Event 2 Event 3

Affiliation matrix, A

Actor 1 1 0 1
Actor 2 0 0 1
Actor 3 0 1 1
Actor 4 1 1 0
“Normalized” matrix, R~12 AC~12

Actor 1 0.500 0.000 0.408
Actor 2 0.000 0.000 0.577
Actor 3 0.000 0.500 0.408
Actor 4 0.500 0.500 0.000

row and column totals of A, respectively:

C: = diag ( ; ) (7.6)
v J

R :diag( Lll ) (7.7)
i+

Correspondence analysis consists of a singular value decomposition of the matrix
Iy L
R72AC™? defined as:

R IAC™? = XAY/, (7.8)

where A is a diagonal matrix of singular values, {A;}, and X and Y are the left and right
singular vectors (Digby and Kempton 1987; Weller and Romney 1990; Clausen 1998).
To illustrate, consider a hypothetical example of an affiliation network of four actors
and three events. The matrix, A, is presented in Table 7.7.2, panel A. The “normalized”
version of this matrix, R_%AC_%, is in panel B of Table 7.7.2.
The singular values, A, and the left and right singular vectors, X and Y, are presented
in Table 7.7.3.

7.8 Relationship Between Scores and Input Data

One important feature of the decomposition is that the resulting scores (the right and
left singular vectors) are explicitly related to the input data. As seen in (7.8), the
decomposition XAY' reproduces the matrix, R~ TAC 2. Rearranging terms shows that
it also reproduces the original matrix, A:

A = RIXAY'CE. (7.9)
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Table 7.7.3. Singular Value Decomposition of “Normalized” Affiliation

Matrix
Dimension

Left singular vectors, X 1 2 3
Actor 1 —0.535 0.120 0.707
Actor 2 —0.378 0.676 0.000
Actor 3 —0.535 0.120 —0.707
Actor 4 —0.535 -0.717 0.000
Right singular vectors, Y

Event 1 —0.535 —0.463 0.707
Event 2 —0.535 —0.463 —0.707
Event 3 —0.655 0.756 0.000
Singular values, A 1.000 0.645 0.500

Or, in terms of the elements of A:

W
Aij = /i1 A+ | ink)»k)’jk- (7.10)
k=1

When the number of dimensions and, hence, sets of row scores, column scores,
and singular values are equal to the rank of the matrix, W, then the data are perfectly
reproduced. When fewer than W dimensions are used, the data are approximated in the
lower dimensional solution. Using only the first singular value and first singular vectors
reproduces the expected frequencies under the model of statistical independence in the
matrix A. Formally,

Qivdy ;
i S AP JaivayjxitAryji. (7.11)

A+
Consequently the first “trivial” dimension is usually ignored because it is simply a

function of the marginal totals and does not represent the pattern of relationship between
rows and columns.

7.9 Scores for Correspondence Analysis

Correspondence analysis uses one of a number of possible rescalings of the right and left
singular vectors, X and Y. The first alternative, referred to as optimal scores, standard
scores, or standard coordinates, multiplies values in each left singular vector X by the
square root of the reciprocal of its row proportion and multiplies each right singular
vector Y by the square root of the reciprocal of its column proportion. These new scores,
which we denote ii;; and ¥, are:

e = x| (7.12)
ai+
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for row scores, and
- a4+
Vik = Yjk,| —— (7.13)
Cl+j

for column scores. On each dimension, these scores have weighted means equal to 0.0
and weighted variances equal to 1.0:

g h
~ it - A4

E fljg—— = Ujy—=> =0 (7.14)

=1 9+ I G4t

g h
aj+ a+;

Y=y L =1 (7.15)
a Vikg

i=1 =1 ++

Because the variance is equal to 1.0 on each dimension, standard scores do not
express the relative importance of each dimension in accounting for the data (Weller and
Romney 1990). An alternative, referred to as principal scores or principal coordinates,
and which we denote u;; and v j;, are given by:

Uik = Mg, | = (7.16)
ai+
for row scores, and
a
Vit = MYk | —— (7.17)
a+j

for column scores. On each dimension, these scores have weighted means equal to 0.0
and weighted variances equal to the singular value squared:

h

a; ay;
Zu,k =N L =0 (7.18)
i=1 i=1 G+t

2 Qi+ 2 A4j _ 32

Wiy = vy = (7.19)
S ==

On each dimension, the principal coordinates, u;; and v i, express the importance of
the dimension in terms of the singular value squared, )»%. As follows, we show how the
singular values are related to the inertia or total variation in the data.

In summary, correspondence analysis results in three sets of information: a set of g
scores for rows of the matrix, U = {u;},fori = 1,2,...gandk =1,2,... W;asetof
h scores for columns of the matrix, V= {v;},for j =1,2,...handk =1,2,... W;
and the singular values A = {A;} for k = 1,2, ... W, expressing the importance of
each dimension.
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7.10 Asymmetric Duality

An important feature of correspondence analysis is the inherent duality in the relation-
ship between scores for rows {u;;} and scores for columns {v}. This relationship is
critical for the “asymmetric” interpretation of some correspondence analysis displays
that use {u;;} and {v;;}, or some rescaling of them, as coordinates for joint display of
row and column entities. The duality can be seen in that, on each dimension, the score
for an object in one set is the weighted average of the scores for all objects in the other
set, where the weightings are the marginal row or column proportions. This duality is
expressed in the following set of equations:

a;i
Mt =Y = (7.20)
j=1 dit
and
W T 721
kvjk—za Uik (7.21)
i=1 "t

For an affiliation network, the score for an actor is the weighted average of the scores for
the events with which it is affiliated and the score for an event is the weighted average
of the scores of its constituent actors.

7.11 Chi-Square Distance Interpretations

Scores for row and column objects may be used as coordinates in graphic displays, but
appropriate interpretation of the display depends on the formal relationship between
distances between points representing row and/or column entities and chi-square dis-
tances calculated on the input data. This relationship is at the heart of the interpretative
debate about which of a number of alternative correspondence analysis scores should be
used for graphic displays. The chi-square distances also express the overall variability
(inertia) in the data and are used to measure how well the configuration fits the input
data.

Distances in correspondence analysis displays represent the chi-square distances
between row or column profiles. The profile for a row is defined as the entry in each
cell divided by its corresponding row total, {Z’%}, for j =1,2,...h. A column profile
similarly is defined as the entry in each cell divided by the column total, {%}, for
i =1,2,...g.The row and column profiles for the hypothetical example are presented
in Table 7.11.4. Profiles of different rows (or different columns) can be compared with
each other to measure the distances between rows (or between columns). The chi-square
distance between profiles for rows i and i, denoted, d(i, i’) is given by:

2
r (2 - )
di, i = |~ (7.22)
j=1 apy

at+
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Table 7.11.4. Row and Column Profiles for Hypothetical Affiliation Network

Row profiles

Event 1 Event 2 Event 3 Sum
Actor 1 0.500 0.000 0.500 1.000
Actor 2 0.000 0.000 1.000 1.000
Actor 3 0.000 0.500 0.500 1.000
Actor 4 0.500 0.500 0.000 1.000
Average row profile 0.286 0.286 0.429

Column profiles

Average Column

Event 1 Event 2 Event 3 Profile
Actor 1 0.500 0.000 0.333 0.286
Actor 2 0.000 0.000 0.333 0.143
Actor 3 0.000 0.500 0.333 0.286
Actor 4 0.500 0.500 0.000 0.286
Sum 1.000 1.000 1.000

A parallel definition for the chi-square distance between two column profiles, j and j’,
is:

()
dGj. jh= |~ (7.23)
i=1 aiy
These are the interpoint distances depicted in graphic displays of correspondence anal-
ysis. The formal relationship between the chi-square distances and the row and column
scores is presented in detail as follows (7.29 and 7.30).

Chi-square distances are also used to compare row or column profiles to the
“average,” or marginal, row or column profile to assess the total variation in the data. The
average row profile is defined as the set of marginal column proportions, i ™ = {Zﬁ'} for
j =1,2,...h,and similarly the average column profile is defined as the set of marginal
row proportions, j* = {Zi—:}i =1, 2,...g,. The chi-square distance between an indi-
vidual row (or column) and the average row (or column) profile is defined as:

@ _ h)
i, ity = | (% (7.24)
\ =t a
and
()
i, jH= >~ (7.25)
\ i=1 ayy
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Table 7.11.5. Chi-Square Distances Between Row Profiles and Between Column Profiles, and
Distances Between Profiles and Mean Profile on Diagonal

Chi-square distances between row profiles

Actor 1 Actor 2 Actor 3 Actor 4
Actor 1 0.677
Actor 2 1.208 1.155
Actor 3 1.323 1.208 0.677
Actor 4 1.208 2.021 1.208 0.866

Chi-square distances between column profiles

Event 1 Event 2 Event 3
Event 1 0.866
Event 2 1.323 0.866
Event 3 1.462 1.462 0.745

Table 7.11.5 presents the chi-square distances between row profiles and between column
profiles for the hypothetical example. These are the distances that are represented in
correspondence analysis displays. On the diagonals of the arrays, Table 7.11.5 presents
the distances between rows (and columns) and the average row (and column) profile.

7.12 Inertia

In correspondence analysis, inertia quantifies the total amount of variation in the data
(Greenacre 1984; Greenacre and Blasius 1994; Clausen 1998). Inertia is calculated as
the weighted sum of the squared chi-square distances between the row profiles and
the average row profile, where the weights are marginal row proportions, or similarly,
the weighted sum of the squared chi-square distances between the column profiles and
the average column profile, where the weights are the marginal column proportions
(Greenacre 1984; Greenacre and Hastie 1987). The total inertia is given by the following
equations:

8 .
> G, ity (7.26)
i=1 94+
or
h
S S ag, (7.27)
=1 Gt

These expressions show that total inertia can be decomposed into the contributions
from each of the entities (rows or columns) in the data. The total inertia is also equal
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to the sum of the squared singular values:

w
Zxﬁ. (7.28)

k=1
This allows another decomposition of the total inertia into the amount of variation

that is accounted for by each dimension in the model by considering each k,%, for
k=1,2,...W.

7.13 Within-Set Distance Comparisons

Distances between points in graphic display using correspondence analysis scores are
interpretable with respect to specific patterns in the input data, but proper interpretation
requires both correct selection of scores and recognition that the distances are chi-
square distances. First, consider the distance between two rows, i and i’. This distance
is the chi-square distance between the profiles for rows i and i’ (7.22). The reproduced
or fitted distance, d (i, i"), is calculated from the correspondence analysis row scores,
{uir} and {u;} as:

w
D (e = uin)?. (7.29)
k=1

Similarly, the distance between two columns, j and j' (7.23), is calculated from the
column scores {v;;} and {v;} as:

4
dG, jh= | D — v (7.30)
k=1

When the full set of W dimensions is used, the chi-square distances between row
profiles and between column profiles are perfectly reproduced, so di,i") =d(,i")and
cf(j, Jj) =d(j, j) for all pairs of rows and all pairs of columns. When fewer than W
dimensions are used, the fitted distance approximates the chi-square distance between
row or column profiles in the original data. These distance interpretations hinge on
correct selection of scores. The relationship between chi-square distances between row
(or column) profiles and fitted distances (7.29 and 7.30) holds when scores are scaled
as principal coordinates (7.16 and 7.17).

7.14 Between-Set Comparisons

Equations (7.29) and (7.30) express distances between entities within the same set.
The problem of interpreting distances arises when comparing locations of points from
different sets. The general problem has been widely discussed in the correspondence
analysis literature (Carroll, Green, and Schaffer 1986, 1987, 1989; Greenacre 1989).
In fact, some authors argue that interset distance comparisons are not even justified
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(Nishisato 1994: p. 113). Unfortunately, these are the distances between actors and
events in an affiliation network, and are exactly the comparisons of most interest if we
take seriously the duality argument and the goal of constructing an interpretable joint
space. Under what conditions are these interset relationships interpretable?

Returning to (7.16) and (7.17), suppose we want to express the score for an actor,
ujx, as function of the scores for the events to which it belongs, v, for j = 1,2, ...h.
This is accomplished by using actor scores expressed in principal coordinates paired
with events expressed as standard coordinates. The relationship between row scores,
ujk, and column scores, ¥y, is:

h
aij
ik =y a_-’ Bjx. (7.31)
j=1 7t

With the row scores in principal coordinates, u;, and the column scores in standard
coordinates, ¥, the score for a row point is the weighted average of the scores for the
column points. However, the reverse is not true. If one wants to express the score for a
column point, v j, as the average of the scores for the rows, u j;, fori = 1,2, ...k, then
columns in principal coordinates,v ;, are paired with standard coordinates for rows.
The relationship between column scores, v j;, and row scores, i, is:

g

aij .
ik =) — il (7.32)

i=1 9+i

With column scores in principal coordinates, v, and row scores in standard coordi-
nates, ii jx, the score for a column point is interpreted as the weighted average of the
scores for the row points.

In summary, for an asymmetric joint display there are two possible sets of scores that
might be used: row scores, u;;, paired with column scores, @ j;, or column scores, v,
paired with row scores, ii j;. Either of these gives an “asymmetric” depiction of the
relationship between entities from the two modes. The choice of which to use depends
on which relationships in the data one wants to highlight. Unlike distances within sets,
interset comparison is only legitimate when the location of a single point from one set
is compared with the locations of all points in the other set, but not when two individual
points from different sets are compared.

7.15 Symmetric Representation

An alternative approach, which permits a “symmetric” view of the distances between
row and column points, and in which interset distance comparisons are interpretable,
has been proposed by Carroll et al. (1986). Carroll et al. viewed the problem as one
of multiple correspondence analysis. Using this approach, observations in a two-way
contingency table are reexpressed as a cases-by-variables data array called a pseudo-
contingency table. In the pseudocontingency table, a two-way contingency table with r
rows, ¢ columns, and N observations is transformed into an array in which each row in
the new array is an observation in the original table, and the row and column entities in
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Table 7.15.6. Pseudocontingency Table for Hypothetical Affiliation Network

Actor 1 Actor 2 Actor 3 Actor 4 Event 1 Event 2 Event 3
1 0 0 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 1 0 0
0 0 0 1 0 1 0

the new array are coded as indicator variables for the variables in the original table. The
pseudocontingency table has N rows (one for each observation) and r + ¢ columns (the
total number of categories of the row variable plus the total number of categories of the
column variable). This arrangement is standard in multiple correspondence analysis
where more than two variables can be studied by including additional sets of indicator
variables. For an affiliation network, the pseudocontingency table, which we denote by
F, has g + h columns, one for each actor and one for each event, and as many rows as
there are entries of 1 in the affiliation network, a, ;.

Table 7.15.6 shows the pseudocontingency table for the hypothetical example of four
actors and three events. This table has seven columns (four actors plus three events) and
seven rows (the number of 1s in the affiliation matrix). Notice that the first row of the
table codes actor 1 attending event 1, the second row codes actor 1 attending event 3, and
so on. Each row in the table has exactly two entries equal to 1 and the remaining entries
equal to 0. The column totals are the marginal row and column totals from the original
affiliation network — for actors the totals are a;;, and for events the totals are a ;.

Correspondence analysis of this array results in two sets of scores: one for each
column of the table and one for each row of the table. Usually, the scores for the
rows will not be of interest. As in correspondence analysis of a two-way table, scores
for categories of the column variables represent the chi-square distances between the
column profiles. Because all row totals in the pseudocontingency table are equal to
the number of variables (two in our case) and there are as many rows as there are
observations (a4 ), the total number of Is in the table is equal to 2 x a,, and all
marginal row proportions are equal:

fo _ 1 (7.33)
f++ agt

As a consequence, the chi-square distance between two column profiles simplifies and
is equal to:

d(j.j) = a++2Nj(f"’ - f"”) (7.34)
= \Sfri S

(also see Carroll et al. 1986: p. 275).



134 7. Using Correspondence Analysis for Joint Displays of Affiliation Networks

The approach proposed by Carroll, Green, and Schaffer uses correspondence analysis
of the matrix, F, through a singular value decomposition of the matrix R:FC? =
XAY'. The scores for rows and columns using Carroll, Green, and Schaffer’s approach,
which we denote ii;; and ¥, are then scaled as principal coordinates. Because the
columns of F index both actors and events, using these scores, distances between
points from different sets are interpretable as chi-square distances between columns of
the pseudocontingency table.

These scores are related to the principal coordinates and standard coordinates for a
correspondence analysis of A by the following equations:

i = (14 A0)? %(1 + a0} (7.35)
k

Y
Bje = Dl 0)? = (14 202, (7.36)
k
The singular values, A, from the Carroll et al. (1986) approach are related to the
singular values for the original two-way contingency table as:
M+ 1

b= = (7.37)

The Carroll, Green, and Schaffer coordinates have weighted means of zero on each
dimension:

8 h

. dit .o 04
i =Y ij—" =0. (7.38)
= R

On each dimension, the weighted variances are equal to the squares of the singular
values of the normalized pseudocontingency table. Carroll et al. (1986) demonstrated
that for an array with two variables this is equal to “; L where the A are the singular
values of the original contingency table. Thus, for the Carroll, Green, and Schaffer

coordinates, the weighed variances on each dimension are:

£ a; h a4+ 1
Do ip =y vy = S (7.39)
=1 Y+ T G4t 2

There is now a symmetric interpretation of distances between objects from different
sets. However, this symmetry comes at a cost. The chi-square distances between objects
in the same set are completely determined by the row and column marginal totals in the
original matrix, A (Carroll et al. 1986; Greenacre 1989). For example, the chi-square
distance between rows i and i’ of the original matrix is equal to:

di,i’) = (7.40)

ar s
a4+ at+
(Carroll et al. 1986: p. 275; Greenacre 1989: p. 359). A similar result holds for the
distance between two columns of the original matrix. As Greenacre (1989) observed,
because these within-set distances are fundamental to correspondence analysis of a
two-way array, the fact that they are completely determined by the marginal totals
in the pseudocontingency table limits the usefulness of this approach. Nevertheles,
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Table 7.16.7. Correspondence Analysis Scores for Hypothetical Network

Principal Coordinates Standard Coordinates Carroll, Green, Schaffer
1 2 1 2 1 2
Actor 1 —0.144 0.661 —0.224 1.323 —0.203 1.146
Actor 2 —1.155 0.000 —1.789 0.000 —1.623 0.000
Actor 3 —0.144 —0.661 —0.224 —1.323 —0.203 —1.146
Actor 4 0.866 0.000 1.342 0.000 1.217 0.000
Event 1 0.559 0.661 0.866 1.323 0.786 1.146
Event 2 0.559 —0.661 0.866 —1.323 0.786 —1.146
Event 3 —0.745 0.000 —1.155 0.000 —1.047 0.000

because of the interpretability of interset distances, it remains an option when a joint
representation is desired.

7.16 Comparing Solutions

Letus now compare the results of these three possible scalings of correspondence analy-
sis scores, beginning with the small hypothetical example. Table 7.16.7 provides sets of
scores for the hypothetical example using each of the three approaches. Figures 7.16.2,
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Figure 7.16.2. Correspondence analysis of hypothetical network: actors in principal coordinates
and events in standard coordinates.
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Figure 7.16.3. Correspondence analysis of hypothetical network: actors in standard coordinates
and events in principal coordinates.
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Figure 7.16.4. Correspondence analysis of hypothetical network: actors and events in Carroll,
Green, and Schaffer coordinates.
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7.16.3,and 7.16.4 present the first two nontrivial dimensions for each approach. Because
there are four rows and three columns in the hypothetical network, the two-dimensional
solution perfectly accounts for the data. The edges in the affiliation network are drawn
on each figure to highlight the relationship between point locations and ties in the
original network. Figure 7.16.2 shows the actors in principal coordinates and the events
in standard coordinates. In this figure, the score for an actor (row) is the weighted
average of the scores for the events (columns) to which it belongs. Because the two-
dimensional solution perfectly fits the data, this interpretation is perfectly reflected
in the two-dimensional graph, as can be seen from the fact that actors are literally
“between” the events to which they belong. Notice that in this figure actor 2 and
event 3 are in the same location because actor 2 only belongs to event 3. If a higher-
dimensional solution were required to reproduce the data, the interpretation would only
be approximated in a lower dimensions. Notice that in this figure the points for events
(in standard coordinates) are around the perimeter of the figure, and points for actors
(in principal coordinates) do not fall outside this polygon defined by the event points.
This is generally the case because points in standard coordinates define the space onto
which the other set of points are plotted (Greenacre and Hastie 1987). In contrast,
Figure 7.16.3 reverses the roles of actors and events, presenting the events in principal
coordinates and actors in standard coordinates. In this display, events are at the centroids
of their constituent actors. The actors (in standard coordinates) are on the perimeter
of the display, and events do not fall outside the polygon defined by the actor points.
In both Figures 7.16.2 and 7.16.3, interpretation of the distances between actors and
events is asymmetric and depends on which scaling is used. Distances relating points
from different sets require situating a point from one set (in principal coordinates) in
relation to all points from the other set (in standard coordinates). Figure 7.16.4 uses the
Carroll, Green, and Schaffer scaling to produce display with a symmetric interpretation.
In this figure, distance between a pair of points from different sets is interpreted as the
chi-square distance between their respective column profiles in the pseudocontingency
table.

7.17 Distances Versus Dimensions

Figures 7.16.2, 7.16.3, and 7.16.4 appear to provide rather different depictions of the
affiliation network. Certainly, their mathematical properties and the distance interpre-
tations allowed by the three are different. Nevertheless, it is useful to explore more
fully the formal relationships among the three approaches and also to display these re-
lationships graphically. First, notice that the principal coordinates, u;; and v j;; standard
coordinates, i;; and ¥ ;; and the Carroll, Green, and Schaffer coordinates, ii;; and ¥ jy,
are, on each dimension, linear functions of one another. These relationships are:

Uik

= ik 7.41
ik I (7.41)

fige = (14 g (7.42)
Ak
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Figure 7.17.5. Three different scalings of correspondence analysis scores for hypothetical
affiliation network.

D = % (7.43)
k
vV 1
Djk = (1 + M) (7.44)
Ak

All three sets of scores have weighted means equal to 0, but they differ in their
variances. Scores in principal coordinates have weighted variance equal to the square
of the singular value on each dimension (7.19). Standard coordinates have weighted
variance equal to 1 on each dimension (7.15). Finally, the Carroll, Green, and Schaffer
coordinates have weighted variances equal to the squares of the singular values of the
normalized pseudocontingency table (7.39). The implication of these relationships is
that when the scores are used to define coordinate axes for graphic displays, the effect
is a “stretching” or “shrinking” of each axis, as a function of the singular values on the
various dimensions (Weller and Romney 1990). The overall impact of this stretching
depends on how far the singular values depart from 1.0. For the hypothetical example,
A1 = 0.645 and A, = 0.5. The variances of principal coordinates, standard coordinates,
and Carroll, Green, and Schaffer coordinates on the first dimension are 0.416, 1.0, and
0.822, and on the second dimension they are 0.25, 1.0, and 0.75, respectively.

The graphic impact of these alternatives is shown in Figure 7.17.5. In this figure,
points for both actors and events in the hypothetical example are presented using all
three alternatives in the same plot. By focusing on the positions of a single point across
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the different scalings, the stretching and shrinking effect is clear. Points in standard
coordinates (variance of 1.0 on each dimension) are on the outside, points using the
Carroll, Green, and Schaffer scores are next (variances of 0.822 and 0.75 on first and
second dimensions), and the points in principal coordinates are on the inside (variances
0of 0.416 and 0.25).

7.18 Correspondence Analysis of Western Hemisphere Countries

Let us now return to the example of Western Hemisphere countries and their member-
ships in trade and treaty organizations. The affiliation network matrix for this example
was presented in Table 7.4.1. Scores from the three different approaches are presented
in Tables 7.18.8 and 7.18.9. Figures 7.18.6, 7.18.7, and 7.18.8 display the first two
dimensions of each solution. Figure 7.18.6 uses principal coordinates for organizations
and standard coordinates for countries. In this figure, each organization is the centroid
of its member countries. In Figure 7.18.7, countries are presented in principal coor-
dinates and organizations in standard coordinates. In this figure, each country is at
the centroid of the organizations to which it belongs. Figure 7.18.8 uses the Carroll,
Green, and Schaffer scores for coordinates. In this figure, the distance between a coun-
try and an organization is the chi-square distance between their respective columns in
the pseudocontingency matrix (which is not presented).

Table 7.18.10 provides the squared singular values and percents of inertia for the first
eleven dimensions. Using correspondence analysis of the affiliation matrix, A, the first
five dimensions together account for 88.47% of the total inertia. In the Carroll, Green,
and Schaffer approach the first five dimensions account for 94.66% of the variance.
Table 7.18.10 also presents the contributions to the total inertia by each country and
by each organization. Countries whose organizational memberships differ from the
marginal profile (notably United States and Canada, but also Belize and Guyana) make
larger contributions to the total inertia than do countries whose memberships are more
similar to the marginal profile (notably, Chile, Bolivia, Ecuador, and Peru). Recall that
this is measured as the chi-square distance between each profile and the marginal profile
(7.22 and 7.23). Similarly, organizations whose memberships differ from the marginal
distribution of members (e.g., CARICOM and NAFTA) contribute more to the total
inertia than do organizations whose memberships are more similar to the marginal
profile (e.g., SELA, OAS, and IDB).

Comparing Figures 7.18.6, 7.18.7 and 7.18.8, it can be seen that the major patterns
are strikingly similar. Each has three clear branches reflecting the regional organization
of this network. The first dimension contrasts South American countries and organiza-
tions on the one hand and Central American countries and organizations on the other
hand. On the right are Parlacén and the San José Group, both organizations of Central
American countries, along with El Salvador, Guatemala, and other Central American
countries. On the lower left of each figure are Andean Pact, MERCOSUR, ALADI,
Group of Rio, and Amazon Pact, organizations whose members are primarily in South
America, along with Paraguay, Uruguay, Peru, Ecuador, and other South American
countries. In all three figures, the second dimension clearly distinguishes Canada and the
United States (both North American countries) along with NAFTA from other countries
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Figure 7.18.6. Correspondence analysis of Western Hemisphere countries and memberships in trade
and treaty organizations. Countries in standard coordinates and organizations in principal
coordinates.
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Figure 7.18.7. Correspondence analysis of Western hemisphere countries and memberships in
trade and treaty organizations. Countries in principal coordinates and organizations in standard
coordinates.
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Figure 7.18.8. Correspondence analysis of Western Hemisphere countries and memberships in
trade and treaty organizations, both countries and organizations in Carroll, Green, and Schaffer
coordinates.

and organizations. Recall that Canada, the United States, and NAFTA all contributed
substantially to the total inertia in the data. In all three figures, organizations whose
members span the hemisphere (SELA, OAS, and IDB) are in the center at the bottom
of the figure. As noted previously, SELA, OAS, and IDB all have membership profiles
that are similar to the marginal profile, and their contributions to the total inertia are
relatively small. The three figures do differ in minor details, which can be understood
by recalling that the different approaches essentially stretch or shrink axes relative to
one another.

7.19 Conclusion

In conclusion, let us return to the issue raised at the beginning of this chapter, in
particular, the formal basis for an interpretable joint display of actors and events in
an affiliation network. As the illustrations in this chapter demonstrate, joint graphic
displays using correspondence analysis are possible, but require careful specification
of which of a number of possible solutions is used for the display. The problem resides
in appropriate interpretation of within-set and between-set distances between points.
These interpretations require clear specification of which scores are used in order to
avoid improper conclusions. That said, when viewed in concert, the various approaches
are strikingly similar, at least for within-set comparisons.

When studying an affiliation network, the choice of which sets of scores should be
used depends on theoretical and interpretative considerations. In an affiliation network,
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one might view the social position of an actor as being defined by the social events
in which it participates. With respect to the current example of Western Hemisphere
countries, one could view a nation as described by the international organizations to
which it belongs. Such a theoretical interpretation suggests that in a graphic display
the location of an actor should be a function of the events with which it is affiliated.
Alternatively, one could view the social location of an event as a function of its members.
Again, for the current example, one would view an organization as defined by its
constituent countries. A third possibility is that neither set of entities has precedence
and that the relationships should be interpreted symmetrically. Correspondence analysis
approaches exist for all three of these interpretations.
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Appendix: List of Western Hemisphere Organizations

1. Association of Caribbean States (ACS): Trade group sponsored by the Caribbean
Community and Common Market (CARICOM).
2. Latin American Integration Association (ALADI): Free trade organization.
3. Amazon Pact: Promotes development of Amazonian territories.
4. Andean Pact: Promotes development of members through economic and social
integration.
5. Caribbean Community and Common Market (CARICOM): Caribbean trade
organization; promotes economic development of members.
6. Group of Latin American and Caribbean Sugar Exporting Countries
(GEPLACEA): Sugar-producing and exporting countries.
7. Group of Rio: Organization for joint political action.
Group of Three (G-3): Trade organization.
9. Inter-American Development Bank (IDB): Promotes development of member
nations.
10. South American Common Market (MERCOSUR): Increases economic cooper-
ation in the region.
11. North American Free Trade Agreement (NAFTA): Free trade organization.
12.  Organization of American States (OAS): Promotes peace, security, economic,
and social development in the Western Hemisphere.
13.  Central American Parliament (PARLACEN). Works for the political integration
of Central America.
14.  San José Group. Promotes regional economic integration.
15. Latin American Economic System (SELA): Promotes economic and social de-
velopment of member nations.
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We begin with a graph (or a directed graph), a single set of nodes N, and a set of
lines or arcs L. It is common to use this mathematical concept to represent a social
network. We use the notation of Wasserman and Faust (1994), especially Chapters 13
and 15. There are extensions of these ideas to a wide range of social networks, includ-
ing multiple relations, affiliation relations, valued relations, and social influence and
selection situations (in which information on attributes of the nodes is available). Later
chapters in this volume discuss such generalizations.

The model p* was first discussed by Frank and Strauss (1986), who termed it a
distribution for a Markov random graph. Further developments, especially commentary
on estimation of distribution parameters, were given by Strauss and Ikeda (1990).
Wasserman and Pattison (1996) further elaborated this family of models, showing how
a Markov parametric assumption provides just one of many possible sets of parameters.
This family, with its variety and extensions, was named p*, a label by which it has come
to be known. The parameters reflect structural concerns, which are assumed to govern
the probabilistic nature of the underlying social and/or behavioral process.

The development of p* presented here is different from that found in Wasserman
and Pattison (1996) and Anderson, Wasserman, and Crouch (1999), but similar to
the presentation in Pattison and Wasserman (1999). Rather than looking at p* as an
approximate autologistic regression model, we begin with dependence graphs and show
how this family of models follows naturally from such graphs. Dependence graphs are
quite useful when distinguishing among a variety of different random graph types,
with unique dependence assumptions — which is one of the goals of this chapter. This
chapter provides an introduction to dependence graphs, with more detail discussed in
later chapters.

8.1 Some Notation

A social network is a set of n actors and a collection of r social relations that specify
how these actors are related to one another. As defined by Wasserman and Faust (1994,
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Chapter 3), a social network can also contain a collection of attribute characteristics,
measured on the actors. Such actor attribute variables can be important “explanatory”
variables for relational “response variables”; due to the introductory nature of this
chapter, such variables, as well as the social influence (Robins, Pattison, and Elliot
2001) and social selection (Robins, Elliot, and Pattison 2001) models, are discussed in
later chapters.

Here, we let r = 1, focusing just on networks with single relations and assuming
that relational ties take on just two values (see also Frank and Strauss 1986; Strauss and
Ikeda 1990; Strauss 1992; Rennolls 1995). Extensions to multiple and valued relations
(more recently presented by Pattison and Wasserman 1999, and Robins, Pattison, and
Wasserman 1999) are also possible (see also Frank 1991, 1997, and Frank and Nowicki
1993).

Welet N = (1,2, ..., g} denote the set of actors, and X denote a particular relation
defined on the actors. Specifically, X is a set of ordered pairs recording the presence or
absence of relational ties between pairs of actors. This social relation can be represented
by a g x g matrix X, with elements

o _|1ifa e,
Y710 otherwise.

We use a variety of graph characteristics and statistics throughout this chapter; such
quantities are defined in the early chapters of Wasserman and Faust (1994). We assume
throughout that X and its elements are random variables. Typically, these variables are
assumed to be interdependent, given the interactive nature of the social processes that
generate and sustain a social network. In fact, one of the new ideas for social network
analysis used by the p* family of models is a dependence graph, a device that allows one
to consider which elements of X are independent. We define this graph in the next
section.

One of the “tricks” that allows the basic p* model to be extended to multivariate and
valued relations is the creation of new relations that are the converses, compositions, or
intersections of the measured relations. Here, we define three new arrays for each rela-
tional tie, X;;, Xl._j, and ij, which will be useful for the estimation of model parameters.

Let X;; be the array formed from X where the tie from i to j is forced to be present:

— 1,if(m, n) = G, j).

Thus, X:; differs at most from X by the (i, j)th entry, which is forced to be 1. Define
X;; as the array formed from X where the tie from i to j is forced to be absent:

(Xi))mn = Xij, i (m, n) # (@, j)
=0,if(m,n) = (, j).
Last, define Xj] as the matrix for the complement relation for X of the tie from i to j:

(XiDmn = Xij, if (m, n) # @, j)
undefined, if (m, n) = (i, j).
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The complement relation has no relational tie coded from i to j — one can view this
single variable as missing. These arrays are used when estimating the parameters of p*
via an approximate, maximum pseudolikelihood estimation.

8.2 Dependence Graphs

Recall that we have defined a set of random variables based on the relational ties in
the network. The first step for any probabilistic model of a network is to consider
the statistical dependencies among the elements of this set. To do this, we construct
a dependence graph. Such a device allows us to distinguish among the many possible
graph probability distributions, which can often be characterized by considering which
relational ties are assumed to be statistically independent.

We define a dependence graph (as it applies to network relational variables) and then
show how it can distinguish among basic graph distributions (such as those described
in Wasserman and Faust 1994, Chapter 13). This dependence graph is also the starting
point for the Hammersley-Clifford theorem (Besag 1974), which posits a very general
probability distribution for these network random variables using the postulated de-
pendence graph. The exact form of the dependence graph depends on the nature of the
substantive hypotheses about the social network under study; we briefly discuss several
such hypotheses.

(A) Theory

Any observed single relational network may be regarded as a realization x = [x;;] of a
random two-way binary array X = [X;;]. In general, the entries of the array X cannot be
assumed to be independent; consequently, it is helpful to specify a dependence structure
for the random variables {X;;}, as originally suggested by Frank and Strauss (1986).

The dependence structure for these random variables is determined by the depen-
dence graph D of the random array X. D is itself a graph whose nodes are elements of
the index set {(i, j);i, j € N,i # j} for the random variables in X, and whose edges
signify pairs of the random variables that are assumed to be conditionally dependent
(given the values of all other random variables).

More formally, a dependence graph for a univariate social network has node set

Np =1, j)i, j e N.i# j}.
The edges of D are given by £p = {((i, j), (k, [)), where X;; and X}, are not condi-
tionally independent}. This specific dependence graph is a version of an independence
graph, as it is termed in the graphical modeling literature (for example, Lauritzen

1996; Robins 1997); see Robins (1998) for an extended discussion of the application
of graphical modeling techniques to social network models.

(B) Applications

As Frank and Strauss (1986) observed for univariate graphs and associated two-way
binary arrays, several well-known classes of distributions for random graphs may be
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specified in terms of the structure of the dependence graph. Pattison and Wasserman
(2001) and Wasserman and Pattison (2000) noted that there are three major classes —
Bernoulli graphs and conditional uniform graph distributions, dyadic dependence dis-
tributions, and p*. Other probabilistic graph models are described by Bollobas (1985),
although a primary issue in the mathematics literature is on asymptotic behavior of
various graph statistics as the size of the node set increases (whereas typically in social
network analysis we want to analyze social networks on a fixed-node set). We briefly
focus on the first two classes mentioned previously, describing the third at length later
in this chapter.

The assumption of conditional independence for all pairs of random variables rep-
resenting distinct relational ties (that is, X;; and Xy, are independent whenever i # k
and j # ) leads to the class of Bernoulli graphs (see Frank and Nowicki 1993). The
dependence graph for such a distribution has no edges; it is empty. A Bernoulli graph
assumes complete independence of relational ties; the probability that the tiei — j is
present is P;;. If the P;; = 0.5 for all ties, the distribution is often referred to as the
uniform random (di)graph distribution, U. All (di)graphs are equally likely to occur;
hence, the uniform probability aspect of the distribution. A more general Bernoulli
graph distribution fixes the P;; at P; each edge can be viewed as the outcome of a
biased coin toss, with probability P of a “success.”

The uniform distribution U conditions on no graph properties, whereas the uniform
distribution U|L statistically conditions on the number L of edges in the graph. All
(di)graphs with L = [ lines (arcs) are equally likely; (di)graphs with L # [ lines (arcs)
have probability 0. There are many other conditional uniform distributions, including
the classic U|M AN distribution, which fixes the counts of the dyad states and assumes
that all digraphs with the specified dyad census are equally likely, and U |{X;}, {X4;},
which fixes the out-degrees and in-degrees. Many such conditional uniform distributions
are described in Chapter 13 of Wasserman and Faust (1994). Some of these distributions
have simple dependence graphs; for example, the U |{X,} distribution, which fixes
only the out-degrees, has a dependence graph with edge set £p = {((i, j), (i, k)), for
all j # k for every i}.

The assumption of conditional dependence of X;; and Xy, if and only if {k, [} =
{J, i}, leads to the class of dyad dependence models (see Wasserman 1987; Holland &
Leinhardt 1981), the second family of graph distributions mentioned previously. These
“multinomial dyad” distributions assume all dyads are statistically independent and
postulate substantively interesting parameterizations for the probabilities of the various
dyad states. The dependence graph for such distributions has an edge set with edges
connecting only the two random variables within each dyad: £, = {((i, j), (J, i)), for
all i # j}. This class of models was termed p; by Holland and Leinhardt (1977, 1981)
and has a long history (see Chapters 15 and 16 of Wasserman and Faust 1994). Although
for some parameterizations it is easy to fit, its assumption of independence across dyads
is not terribly realistic.

Consider now a general dependence graph, with an arbitrary edge set. Such a de-
pendence graph yields a very general probability distribution for a (di)graph, which
we term p* and focus on as follows. One dependence graph, for which this dis-
tribution was first developed, assumes conditional independence of X;; and Xy, if
and only if {7, j} N {k, [} = 0. This dependence graph links any two relational ties
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involving the same actor(s); thus, any two relational ties are associated if they involve
the same actor(s). This type of dependency resembles a Markov spatial process, so these
dependencies were defined as a Markov graph by Frank and Strauss (1986). This p*
family of distributions has been extended in many ways, and estimates of its parameters
scrutinized.

Of course, if the dependence graph is fully connected, then a general class of random
graphs is obtained. We note, however, that any model deriving from a fully connected
dependence graph is not identifiable. Later chapters introduce more complex depen-
dence structures that permit models more general than Markov random graphs, but
avoid fully connected dependence graphs.

8.3 p*

For an observed network, which we consider to be a realization x of a random array X,
we assume the existence of a dependence graph D for the random array X. The edges
of D are crucial here; consider the set of edges, and determine if there are any complete
subgraphs, or cliques, found in the dependence graph. [For a general dependence graph,
a subset A of the set of relational ties N is complete if every pair of nodes in A (that
is, every pair of relational ties) is linked by an edge of D. A subset comprising a single
node is also regarded as complete.] These cliques specify which subsets of relational
ties are all pairwise, conditionally dependent on each other.

The Hammersley-Clifford theorem (Besag 1974) establishes that a probability model
for X depends only on the cliques of the dependence graph D. In particular, application
of the Hammersley-Clifford theorem yields a characterization of Pr(X = x) in the form
of an exponential family of distributions:

PV(X:X) = (%) exp(Z )‘-A 1_[ xij) y (81)

ACNp (i,j)eA

where:

o k=2 exp{d scprallijjeaXij} is a normalizing quantity.

e D is the dependence graph for X; the summation is over all subsets A of nodes
of D.

* [l j)ea xij is the sufficient statistic corresponding to the parameter 2 4.

¢ Xa = 0 whenever the subgraph induced by the nodes in A is not a clique of D.

The set of nonzero parameters in this probability distribution for Pr(X = x) depends
on the maximal cliques of the dependence graph (a maximal clique is a complete
subgraph that is not contained in any other complete subgraph). Any subgraph of a
complete subgraph is also complete (but not maximal), so if A is a maximal clique of
D, then the probability distribution for the (di)graph will contain nonzero parameters
for A and all its subgraphs.

Clearly, the number of parameters can be overwhelming. Thus, it is wise to limit
these numbers by either postulating a simple dependence graph or making assumptions
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about the parameters. Our usual assumption is homogeneity, in which parameters
for isomorphic configurations of nodes are equated. As defined by Pattison and
Wasserman (1999), this assumption equates parameters for the various isomorphic sub-
graphs that arise. For example, there can be two parameters for the isomorphic dyads
(null, asymmetric, and mutual), up to fifteen parameters for the isomorphic triad states,
and so forth (there is a loss of one parameter for each class of subgraph due to redun-
dancies). See Figure 10.3.2 in Robins and Pattison (Chapter 10, this volume). Detailed
definitions and consequences of homogeneity can be found in Pattison and Wasserman
(1999). It is also possible to equate parameters by relying on the common practice of
assuming a priori stochastic blockmodels (Anderson, Wasserman, and Faust 1992).

Even with homogeneity imposed, models may not be identifiable. Typically, param-
eters for higher-order configurations (for example, higher-order stars or triads) are set
to zero (equivalent to setting higher-order interactions to zero in general linear models).
An interpretation of the resulting model in terms of constrained social settings is given
in later chapters.

Tables of parameters, and associated minimal sufficient statistics, can be found in the
trilogy of p* papers: Wasserman and Pattison (1996), Pattison and Wasserman (1999),
and Robins et al. (1999).

The interpretation of parameters can be complicated given that higher-order config-
urations contain within them lower-order configurations (see Robins et al. 1999). At its
simplest, a substantial positive parameter estimate for a triangle (for instance) suggests
that, given the number of other configurations in the observed graph, there are more
triangles present than would be expected by chance.

(A) Estimation

The probability distribution arising from the Hammersley-Clifford theorem, (8.1), can
be written in the general form:

PrX = x) = 7‘3”‘1’/{{?02)(")}

where @ is a vector of model parameters and z(x) is a vector of network statistics.
k(0) is a normalizing constant, which guarantees that the distribution is proper. Which
network statistics appear in the model depends on the structure of the hypothesized
dependence graph, and on whether any homogeneity constraints have been proposed.
One could view this model as an autologistic regression, as described by Wasserman
and Pattison (1996). Regardless of the motivation, the elements of 8 are unknown and
must be estimated.
The likelihood function for the distribution is quite simple:

(8.2)

exp{0'z(x)}

Lo =—""%

Even though it has a simple expression, the function is not easy to work with, due to
the dependence of k (6) on the unknown parameters. Direct, exact differentiation of the
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log likelihood is difficult, if not impossible. Some exact results can be found in Walker
(1995), but are specific to very small (di)graphs.

Two approaches have been used to date: (1) a maximum pseudolikelihood estimation
technique, pioneered by Besag (1975, 1977a, 1977b) and refined and applied by Strauss
(1986) and Strauss and Ikeda (1990); and (2) Markov chain Monte Carlo maximum
likelihood estimation, being applied to p* by Crouch and Wasserman (1998), Snijders
(2002), and Handcock (2003).

(B) Pseudolikelihood Estimation

For probabilities to be computed, one must be able to calculate x, which is just too
difficult for most networks. Hence, alternative model formulations and approximate
estimation techniques are important. One such alternative, which we now describe,
uses log odds ratios of the conditional probabilities of each element of X.

The Logit Model
We can turn model (8.2) into a autologistic regression model, not for the probability of
the (di)graph, but for the conditional probabilities of the relational ties. This produces
an approximate likelihood function that is much easier to deal with than the likelihood
function described previously.

We first condition on the complement of X;;, defined earlier in this chapter, and con-
sider just the probability that the dichotomous random variable X;; is unity. Specifically,
consider

i PrX =x)
Pr(X; = 11X = e
J PrX=x)+ PrX=x;)
exp{0'z(x;h)}
= - +p D (8.3)
exp{6 z(xij)} + exp{0 z(xij)}
The odds ratio, which simplifies model (8.3), is
Pr(X;; =11X5)  exp{0z(x})}
Pr(X;; =0IX{;)  exp{0'z(x;)}
= exp(/[2(x}) — 2(x;)]) (8.4)
yielding the simple “linear” model
i‘mzl —_— :0/ B — ] 8.5
i o8 { Pr(X;; = 01X} } [206) —20)] 63

If we define 6(x;;) = [z(X;;) - z(xi; )], then the logit model (8.5) simplifies succinctly
to w;j = 0'6 (x,-j).

The important quantities here are the elements of 6 (x;;), thatis, the vector of network
statistics whose elements measure the changes in the statistics when the relational tie
x;j changes from 1 to 0. These odds ratios form the basis of an approximate likelihood
function, which is constructed by assuming they are conditionally independent.
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Estimation

An approximate estimation approach, proposed by Besag (1975, 1977b), and adopted
by Strauss (1986), Strauss and Ikeda (1990), and the trilogy of p* papers, uses a
pseudolikelihood function

PL(O) = 1_[ Pr(X;; = 1X{)" Pr(X;j = Olej)l_X"f. (8.6)
i#]

A maximum pseudolikelihood estimator (MPLE) is the value of 8 that maximizes (8.6).
This approach assumes conditional independence of the random variables representing
the relational ties. Details on the literature on approximate likelihood estimation can
be found in Pattison and Wasserman (1999). Estimation of @ for single, dichotomous
relations can be accomplished via logistic regression. Maximizing the pseudolikelihood
given in 8.6 is equivalent to maximizing the likelihood function for the fit of logistic
regression to the model (8.5) (for independent observations {x;;}).

In practice, pseudolikelihood estimation is not overly complex because standard
logistic regression techniques can be used. To set up the data file for pseudolikelihood
estimation, each possible binary tie (X;;) becomes a “case,” with the “independent
variables” constituted by the parameters in the model (the isomorphic configurations —
for instance, stars and triads of various types). For each case, the statistic associated
with a variable is the difference in the number of the relevant configurations between
the graph with x;; = 1 and the graph with x;; = 0. Standard logistic regression can then
be applied to this data file, with the observations on the ties as the dependent variable.
Nevertheless, this is not a standard logistic regression because of the dependencies
within the data, and the usual tests of model fit do not strictly apply. For instance, the
pseudolikelihood deviance (which a standard logistic regression package will normally
compute) is not necessarily an asymptotic chi-square random variable. Accordingly,
measures of fit are usually taken as heuristic guides. The pseudolikelihood deviance
is often presented, along with simple goodness-of-fit statistics, such as mean absolute
residual.

(C) Maximum Likelihood Estimation: Simulating p* Models and
Model Degeneracy

Maximum pseudolikelihood estimation was suggested by Besag (1975) for dealing
with data in spatial statistics. It has the virtue of being relatively easy to fit, even for
complicated models. Moreover, the maximum pseudolikelihood estimator satisfies un-
biased estimating equations, is consistent, and is asymptotically normal under suitable
conditions (Baddeley and Turner 2000; see also Geys, Molenberghs, and Ryan 1997,
1999; Le Cessie and van Houwielingen 1994). Nevertheless, because the properties of
the pseudolikelihood estimator are not well-understood, a more recent body of work has
developed Monte Carlo techniques for maximum likelihood estimates for p* models.
Various approaches to Monte Carlo estimation are available. For the particular case
of p* models, the central idea is to simulate a distribution of random graphs from a
starting set of parameter values, and then to refine these estimated parameter values by
comparing the distribution of graphs with the observed graph. The process is repeated
until the parameter estimates stabilize. Simulation procedures establish a Markov chain
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of graphs that, under suitable conditions, will converge to a stationary graph distribution.
Two of the most popular algorithms that can produce such a Markov chain are the Gibbs
sampler (Geman and Geman 1984) and the Metropolis-Hastings algorithm (which
includes the Gibbs sampler as a special case; see Chib and Greenberg 1995). Geyer and
Thompson (1992) presented a general Markov chain Monte Carlo maximum likelihood
method (see also Besag 2000). Crouch and Wasserman (1998) described how this
technique could be applied specifically to p* models (see also Snijders 2002, and
Corander, Dahmstrom, and Dahmstrom 2002).

Studies on Monte Carlo techniques have thrown new light on an important issue,
that of model degeneracy. For certain parameter values, a p* model may produce a
distribution of graphs in which only a handful of graphs (sometimes only one) have
nonzero probability; moreover, these graphs are often uninteresting, such as the full or
empty graph. Such a model is termed degenerate. For degenerate models, estimation
techniques will not perform well, irrespective of method.

Strauss (1986) was the first to use the Metropolis-Hastings algorithm to simulate
Markov random graph distributions. Strauss observed a variation on the problem of
degeneracy, by noting that asymptotically there may be no finite normalizing constant
for a distribution with certain parameter values. For these regions of the parameter
space, simulations are thus not adequate in producing a stationary distribution.

Based on the results in Besag (2000) and Handcock (2000), Hoff, Raftery, and
Handcock (2002) suggested that commonly used p* models may have model degener-
acy and instability problems that are not resolved by alternative forms of estimation, but
rather may represent defects in the models themselves. This is a strong judgment that is
not necessarily borne out in subsequent work. However, a similar point is also implied
by Snijders (2002), who presented a Monte Carlo estimation technique for p* models
using the Gibbs sampler and the Munro-Robbins algorithm to estimate the moments
of the sufficient statistics. Snijders presented several examples of simple Markov graph
models that involved degeneracy and instability. For certain parameter values, sufficient
statistics had bimodal distributions. Snijders’ suggestions to overcome these problems
worked satisfactorily for some data sets, especially for small graphs, but the bimodality
remained a limitation. Snijders and van Duijn (2002) suggested that to address bi-
modality, model estimation might be conditional on the number of observed edges in
the graph.

The most extensive study on degeneracy for these models has been conducted by
Handcock (2003). Handcock defined “near degeneracy” of a graph model as occurring
when the model places disproportionate probability mass on only a few of the possible
graphs (often empty or full graphs). He examined in detail the simplest Markov model
for very small nondirected graphs — the two-star model with only edge and two-star pa-
rameters. He delineated the region of parameter space in which nondegeneracy occurs,
where Monte Carlo estimation techniques will operate satisfactorily and the models are
statistically well-behaved. This work also makes clear that the bimodality observed by
Snijders (2002) is to be expected for certain parameter values that are on the edge of
the nondegenerate area.

Simulation studies by Robins, Pattison, and Woolcock (in press) suggested that
nondegenerate graphs may be more readily achieved with more complex models, in



8.3 p* 157

particular with a parameterization that includes three and four stars, that is, at least the
first three moments of the degree distribution. Triangle, transitivity parameters are also
desirable in a “realistic” model. Robins et al. showed that by varying values for such
a parameter set, it is possible to simulate Markov graph distributions with properties
akin to “small worlds” (Watts 1999), or with other global features such as long paths
or a high proportion of four cycles.

Following Grenander (1993), Robins et al. (in press) demonstrated that increasing
all parameter values by the same factor results in movement toward degenerate regions.
Contrary to Handcock (2003), who argued that degenerate regions imply uninteresting
models, Robins et al. noted that some degenerate models result in graphs of theoretical
import, such as graphs of disconnected complete components (the so-called caveman
graphs of Watts 1999) or complete bipartite graphs. Robins et al. interpreted degenerate
regions as areas where “stochasticism’ breaks down and deterministic structures emerge
(see also Pattison 2002). Their simulation technique permits examination of how “close”
an observed graph is to this phase transition. Most human social structures are indeed
stochastic, but because of tendencies toward transitivity and structural balance, it is
possible that stochastic social systems may be not too “far” from determinism (Robins
2003). Such a conclusion would accord with the small world simulation results of Watts
(1999), who showed that the addition of only a small random component to a highly
structured graph resulted in small world properties.

In summary, Monte Carlo estimation techniques for these models are now well-
established and their development has shed new light on model behavior, particularly
on model degeneracy. Itis important for any estimation procedure that the model be non-
degenerate; otherwise, there will not be satisfactory convergence of parameter estimates.
Programs for Monte Carlo estimation are now available or becoming available; one
example being the estimation procedures in the StOCNET suite of network programs
(Snijders 2002). This program estimates Markov random graph models for directed and
nondirected graphs with a choice of parameterizations, including reciprocity, triadic,
and higher-order star parameters. Output from the program includes an assessment of
convergence and reliable standard errors of parameter estimates.

(D) Comparing Pseudolikelihood and Monte Carlo Maximum
Likelihood Estimation

Maximum likelihood estimation is undoubtedly optimal in the sense of having a prin-
cipled statistical basis and producing reliable standard errors from which statistical
inferences can be made. These are not qualities of pseudolikelihood estimation. How-
ever, Monte Carlo approaches to maximum likelihood estimation can be computer
intensive, so estimation for networks with a large number of nodes, or for a complex
model, may not be possible or may take an unacceptably long time. One very important
question is “in what, if any, circumstances might pseudolikelihood be an acceptably
approximate technique to obtain parameter estimates?”

There have been some interesting studies comparing the methods of estimation.
Corander, Dahmstrom, and Dahmstrom (1998) used a Metropolis-Hastings algorithm,
together with formulae for the first three cumulants (moments) of the sufficient statistics,
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to obtain maximum likelihood estimates for simple Markov random graph models (see
also Corander et al. 2002). Comparing these estimates with pseudolikelihood estimates,
they concluded that for graphs of up to approximately 40 nodes, the maximum likelihood
estimator performed better in the nondegenerate regions of the parameter space. The
pseudolikelihood estimator was more biased. In larger graphs, of 40 to 100 nodes, they
concluded that the two estimators were nearly equivalent, although they showed that
pseudolikelihood estimates could vary for different graphs with the same values of the
sufficient statistics. Their simulation approach, however, fixed the number of edges in
the graph, so it is not clear how to interpret their comparison of the two estimators
because the pseudolikelihood estimation presumably included an edge parameter.

In other comparative studies, using models from Wasserman and Pattison (1996),
Besag (2000) showed that a Monte Carlo goodness-of-fit test can lead to different
conclusions from those that would apply if fits based on maximum pseudolikelihood
estimates were treated as distributed as chi-square random variables. These results em-
phasize that standard hypothesis tests are simply not appropriate for pseudolikelihood
estimates. Snijders (2002) presented examples where pseudolikelihood estimates were
close to maximum likelihood estimates, as well as other examples where they were not.

One of the problems with assessing the performance of the maximum pseudolikeli-
hood estimator is that of model specification. The simulation results of Robins, Pattison,
and Woolcock (in press), noted previously, suggest that more complex models may have
better properties in terms of avoiding degeneracy and instability. It might be expected
that the maximum pseudolikelihood estimator performs less well for models that are
close to degeneracy so the complexity of the models may affect the performance of the
estimator. These results stress the potential importance of specification.

In summary, pseudolikelihood estimates have convenience, but are at best approxi-
mate. Whenever possible, Monte Carlo maximum likelihood approaches should be pre-
ferred. If pseudolikelihoods are to be used, estimates should be treated as exploratory,
giving some possible evidence for effects that may be substantial in the network, with
a clear recognition that point estimates are probably not precise. (For many research
purposes, this may be sufficient.) Formal statistical inferences should not be made with
pseudolikelihood estimation. Standard errors and other statistical results from the lo-
gistic regression procedure used for pseudolikelihood estimation should be treated with
caution. Standard errors are likely to be too small, and at best should be viewed as very
rough indicators of “scale” for the parameters. Wald statistics should not be regarded
as reliable. The pseudolikelihood deviance remains a valid measure of model fit, in
that models that better predict the data will have lower deviance, but it will not be dis-
tributed, even asymptotically, as chi-square; thus, statistical inference is not available.
In terms of model specification, our current suggestion is that Markov random graph
models should carry rather complicated parameterization, including at least a three-star
parameter (three-in-star and three-out-star for directed graphs). If the highest-order star
parameter has a positive estimate, beware of the possibility of degeneracy. In that case,
even higher-order star parameters may be necessary.

In conclusion, an important focus for future work should be the specification of
regions of degeneracy relative to model specification. Such a research approach may
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permit a better understanding of when pseudolikelihood procedures can be considered
adequate. The outcome may be a clearer idea of the type of parameters required for
sensible p* model formulation. The notion that a simple Markov parameterization
sufficiently models social networks is also being taken up through more substantive
discussion of social settings and of construals of social space in general (see Robins
and Pattison, Chapter 10, this volume; also Hoff et al. 2002, and Pattison and Robins
2002). This may be an instance where substantive considerations on the one hand and
technical estimation requirements on the other hand could jointly lead to better model
formulation.
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Random Graph Models for Social Networks:
Multiple Relations or Multiple Raters!

Laura M. Koehly
Texas A&M University

Philippa Pattison
University of Melbourne

9.1 Introduction

Several chapters in this book outline some of the significant advances that have been
made in modeling networks and network-based processes (see, for example, Chapters
6, 7, 10, and 11). These models generally presuppose a single network of interest,
such as a network of acquaintance ties or a network of advice-seeking ties, and they
represent the interdependence of such ties with actor characteristics and other ties
in some local network neighborhood (see, for example, Chapter 10). Yet, there are
compelling theoretical and methodological reasons to extend these models to the case
of multiple networks, and in this chapter we discuss the rationale and nature of these
extensions, as well as a number of issues to which they give rise.

From a theoretical perspective, it is more than likely that network processes involve
different kinds of relational ties; indeed, some well-known hypotheses about the nature
of local network processes involve multiple types of tie. Cartwright and Harary’s (1956)
adaptation of Heider’s (1946) balance model, for example, proposes a strong form of
interdependence among positive and negative ties within triadic network structures,
and Granovetter’s (1973) “strength of weak ties” thesis involves an interdependence
between strong, weak, and null ties. In addition, there is an impressive body of empirical
work that points to the importance of multiplex ties, that is, those ties in which several
types of relationships come together — such as friend and coworker, or advisor and
supervisor — and also to the consequences of such ties for interpersonal processes.
Indeed, theoretical arguments about such forms of interdependence are supported by
a number of empirical studies. For example, Lazega and Pattison (1999) identified a
number of separable forms of interdependence among three different types of ties —
coworker, advisor, and friend — linking members of a law firm. Their results suggested
the simultaneous presence not only of strong multiplexity and generalized reciprocity
effects, but also of more complex triadic forms of interdependence involving several
types of ties.

From a methodological perspective, there are also compelling reasons to develop
models for multiple relational observations among network members. In insightful
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analyses of the problems of measuring network ties and of the impact of such mea-
surement problems on network analyses, Marsden (1990; Chapter 2, this volume)
and Batchelder (1989) identified some significant questions for network analysis that
are still unresolved. For example, how can we establish the validity of network tie
measurements? How can we establish the validity of more complex network substruc-
tures (such as paths and cliques) that involve multiple observations of network ties? As
Batchelder observed, there are particularly strong measurement assumptions implicit
in the construction of network substructures, and the plausibility of these assumptions
is rarely examined. Although we can adapt more widely used psychometric approaches
to address questions about the reliability and validity of network measurement (e.g., see
Calloway, Morrissey, and Paulson 1993), there are particular difficulties created both
by the interdependent nature of network observations, as well as by interest in more
complex structural forms. The capacity to develop models for multiple observations on
a single relation affords considerable leverage in evaluating such questions of validity
and, to some extent, in bypassing them. Thus, we can not only investigate the degree
of, say, consensus and bias in various sources of relational information, but we can also
incorporate information from multiple sources into a single probabilistic model for an
entire set of multiple observations.

In this chapter, therefore, we describe random graph models for multiple networks.
We begin by introducing some notation and terminology, as well as an example used for
illustrative analyses. We then present the general extension of the random graph models
reviewed in Wasserman and Robins (Chapter 8) and Robins and Pattison (Chapter 10)
to the case of multivariate random graphs. We discuss the application of this general
framework to the analysis of multiple networks, as well as to multiple rater networks
and cognitive social structures.

9.2 Notation and Basic Terminology

We are interested in a collection of r social relations that specify relationships of various
types among members of a specified set of g social actors. We denote the set of actors by
N =1{1,2,3,..., g} and the social relation of type m by X,,. The set of relation types
are denoted by R = {1, 2, 3, ...r}. The rrelations, X, X,, X3, ... X, are assumed to
be measured on the same set of actors. We let x;j,, be the value of the tie from actor i
to actor j on relation m; the collection of ties of type m form a g x g adjacency matrix,
denoted by X,,,. We can view each of these matrices as a layer of a g x g x r array that
represents all relational measurements among all ordered pairs of actors. We denote
this three-way array by X. Although it is possible to develop models for measurements
with discrete values (see Robins, Pattison, and Wasserman 1999), we assume here that
all observations are dichotomous, with x;;,, = 1 if there is a tie of type m from actor i
to actor j, and x;;,, = 0 otherwise.

As indicated in Chapter 8, it is possible to distinguish between directional and
nondirectional relations. The orientation of relational ties is relevant for directional
relations. A tie is directed from one actor, the “sender” of the tie, to another actor,
the “receiver” of the tie; in this case, X;;,, is distinct from X j;,,. Nondirectional ties
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do not have a direction; we cannot distinguish between a “sender” and a “receiver.”
For nondirectional ties, X, = X j;;, and the corresponding adjacency matrix X, is
symmetric.

Multiple social networks can also be represented in graphic form. For a nondirec-
tional relation, each actor is represented by a node and lines connect any pair of nodes
that are connected by a tie. A directional relation can be represented by a directed
graph, or digraph, in which the node corresponding to the sender of a tie is connected
by an arc, or directed arrow, to the receiver of the tie. A (directed) multigraph allows
for more than one set of arcs: an arc with the label m is directed from node i to node j
if x;;,, = 1. For ease of expression, we use the general term multigraph to refer to both
directed and nondirected multigraphs.

(A) Example: Krackhardt’s High-Tech Managers

Krackhardt (1987) assessed two types of network ties among managers of a small
high-tech manufacturing firm. The network is comprised of the twenty-one individu-
als employed by the firm at the managerial level (g = 21). The median organizational
tenure for the managers was 9.33 years. The organization consisted of four depart-
ments, and each manager was at one of three hierarchical levels in the firm (CEO,
vice president, manager). Each manager was asked two questions, “Who would [you]
go to for advice at work?” and “Who are [your] friends?” Each manager was given a
roster of names of all the managers in the organization and asked to check the names of
those individuals to whom they go for advice and regard as friends. Both relations are
directional. This is a multirelational data set where N = {1,2,3,...,21}, R = {1, 2},
and the two relations are advice (X;) and friendship (X;). These data are available to
the reader in Krackhardt’s (1987) original article, UCINET 5.0 for Windows (Borgatti,
Everett, and Freeman 1999), and also Appendix B of Wasserman and Faust (1994).
Thus, the applications presented below can be readily replicated.

9.3 Random Graph Models for Multiple Relations

As we observed in the introduction, theoretical questions about network structures
and network processes often pertain to multiple types of relations. For example, among
coworkers in an organization, we might expect to see different patterns and pathways for
different forms of network ties (e.g., friendship, advice seeking, and cooperation). In-
deed, hypotheses concerning a set of multiple network ties often center around questions
of multiplexity, exchange, and interlock. Table 9.3.1 provides graphic representations
for these configurations of interest. Multiplexity refers to the tendency for two or more
ties of different types to occur together (that is, to link the same pair of actors). For
example, in support networks, one may want to investigate whether there is a tendency
for multiple support relations (e.g., emotional, informational, material) to come from
the same individual; among coworkers, one might be interested in whether friends also
offer work-related advice. Exchange structures are those in which a network tie that
flows in one direction (say from actor i) is accompanied by a tie of a different type in
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Table 9.3.1. Configurations of Interest for Multivariate Networks

Theoretical Construct Graphic Configuration Network Statistic”
Multiplexity i .-_t_ —>¢ D XijmXijh
. io g - Pe;
Restricted exchange +— > jmX jih
ie~ = Pe
Role interlocking (two-path) / D Xikm Xk jh
o
J
i~~~ Pe
>
Generalized exchange (three-cycle) 3 XikmXk JhXjip
o
J
iom——Pek
Transitivity j D XikmXkjnXijp
<4
o
J

¢ Network statistics assume homogeneity of 14 based on isomorphic configurations.

the other direction (toward actor §). It is common to distinguish direct, or restricted,
exchange from indirect, or generalized, exchange. Restricted exchange involves the
direct interchange of resources among members of a dyad (e.g., actors i and j offer sup-
port to one another). Generalized exchange systems, however, involve substructures
larger than the dyad; there is no need for immediate reciprocity. Rather, the exchange
of relations may pass through several others before returning, or cycling back, to the
source (e.g., Bearman 1997). More generally, if the patterns of transfer of multiple re-
sources or relations involve contingencies within one or more network pathways, then
the resource transfers or relations are said to be interlocked. Thus, interlocking is seen
as a more general form of relational interdependence, with restricted and generalized
exchange as special cases.

(A) Assumptions

As in Chapter 8, the set of network actors is assumed to be fixed, and the network ties
X;jm linking those actors are regarded as potentially interdependent random variables.
The interdependencies are likely to vary in distinctive ways according to the type of
relations involved and according to various attributes of the individuals, including per-
sonal and sociodemographic characteristics and social position. Following the approach
originally adopted by Frank and Strauss (1986) and described in detailed in Chapter 8,
a dependence graph is proposed that specifies hypothesized conditional dependencies
among the X;;,,. By applying the Hammersley-Clifford theorem (Besag 1974) to these
postulated dependencies, a general probability model is derived for the set of random
variables X,
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In applying this general modeling framework to the modeling of multiple network
relations, it is also assumed that there are systematicities in the patterns of interdepen-
dence across the network; these systematicities are assumed to arise from regularities in
the local social processes by which network ties evolve. However, because these local
processes are not entirely regular, a stochastic modeling framework is appropriate.

(B) Dependence Graphs

The dependence graph is a formal representation of hypothesized conditional dependen-
cies among the tie variables X;,,. The problem of choosing an appropriate dependence
graph in any application is a substantive and potentially difficult one. To provide as-
sistance in the choice, we discuss several dependence graphs that relate to specific
structural themes commonly encountered in the literature (Pattison and Wasserman
1999). The simplest of these dependence graphs is presented first; subsequent de-
pendence graphs incorporate additional complexity by positing additional conditional
dependencies.

The dependence graph, D, is a graph whose nodes are the set of all possible ties (the
random variables, X;;,,) and whose edges specify the pairs of random variables that are
assumed to be conditionally dependent, given the values of the other random variables.
Formally, the node set for the dependence graphis Np = {X;j, :i # j;i, j € N,m €
R} and the edge setis Ep = {(X;jm, Xun): Xijm and Xy, are conditionally dependent
given the rest of X}.

Bernoulli Multigraphs

The simplest dependence graphs are for the class of Bernoulli multigraphs (see
Frank and Nowicki 1993; Pattison and Wasserman 2002). Bernoulli multigraphs as-
sume conditional independence for all pairs of random variables representing distinct
pairs of individuals; that is, X;j,, and Xy are assumed to be independent whenever
i #kor j#I. In other words, X;;, and X;;, are assumed to be interdependent and
the dependence graph contains edges connecting nodes X;;, and X;;;. This depen-
dence graph allows us to pose theoretical questions concerning role sets or multi-
plexity. The literature on role sets suggests that there is a likely dependence between
different relational ties linking any given pair of actors: the presence of one type
of relation between two individuals is likely to affect the presence of other types
of relations. Thus, the ties connecting a pair, i and j, of individuals are likely to
occur in characteristic bundles, termed role sets, and the pattern of interpendencies
among tie variables leads to a characterization of the tendencies for these bundles to
arise.

Dyad-Independent Random Multigraphs

Multivariate dyadic independence models (see Wasserman 1987; Pattison and Wasser-
man 2002) assume that relations from i to j are conditionally dependent on relations
from j to i(X;j,, and X j;;, are interdependent). Thus, in the multivariate dyadic inde-
pendence model, one can investigate hypotheses concerning restricted exchange and
reciprocity in addition to multiplexity hypotheses.
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Path-Dependent Random Multigraphs

Path-dependent multigraph models are a more restricted case of the Markov models
described in this chapter. These models allow one to investigate hypotheses concerning
certain forms of role interlocking and generalized exchange processes that involve
contingencies among adjacent ties in labeled paths in a network (see Pattison 1993). The
dependence graph for a path-dependent multigraph (constrained to paths of two edges)
places anedge between X ;,, and X j;, forany i, j, k € N;m, h € R.Labeled paths trace
the sequence of relational ties that connect a pair of individuals through other network
actors. Paths are important network configurations in that they provide the conduit for
the flow of social processes or diffusion of information. The dependence graph for
path-dependent multigraphs has complete subgraphs that correspond to multiplexity
effects, restricted exchange effects, and generalized exchange effects involving three
actors.

Markov Random Multigraphs

In a Markov random multigraph, X;;, and X, are assumed to be conditionally in-
dependent if and only if {i, j} N {k, [} = @. Many forms of interdependence among
network actors can be investigated on the basis of a multivariate Markov dependence
assumption. In addition to the investigation of hypotheses concerning role sets, role
interlocking, and generalized exchange for three actors, multivariate Markov random
graphs allow one to investigate hypotheses concerning various triadic effects that may
be of interest, such as generalized transitivity or intransitivity. Markov random multi-
graphs are more general than path-dependent multigraphs by assuming that two ties
forming a semipath are conditionally dependent. (A pair x;;, and xy; of ties form a
semipath if {i, j} N {k, 1} £ 0.)

Realization-Dependent Random Multigraphs

A Markov dependence assumption constrains our investigation of role interlocking
to paths of two edges and cycles of three edges. To investigate the possibility of role
interlocking beyond paths and semipaths of two edges and generalized exchange beyond
cycles of three edges, we note that it is necessary to move beyond Markov dependence
to partial conditional dependence assumptions. For example, we might assume that
Xijm and Xy, are conditionally dependent for distinct i, j, k, /, but only if a tie of some
type is actually observed from actor j to actor k, or from actor / to actor i, that is, only if
Xjkg = 1 orx;, = 1 for some type g of tie (see Pattison and Robins 2002; also Chapter
10, this volume).

(C) The Random Multigraph Model

The Hammersley-Clifford theorem (Besag 1974) provides the important link between
the dependence graph and the structure of the model that encapsulates its dependence
assumptions. The theorem establishes that the probability model for the random multi-
graph, X, depends on the complete subgraphs of the dependence graph, D. A complete
subgraph, or clique, is a subset of nodes in the dependence graph, every pair of which
is linked by an edge. A subset consisting of a single node is also regarded as complete.
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Each complete subgraph corresponds to a configuration of possible ties in the network.
There is a model parameter corresponding to each complete subgraph in the dependence
structure (and so to each corresponding configuration of possible ties). The parameter
for a particular configuration reflects the effect of observing that configuration on the
likelihood of the network.

The random multigraph model is of the following exponential form:

PX=x)=«"exp ( > ,\AZA(x)> , 9.1)

ACNp

where X is a realization of the random multigraph, X, x = > _exp {Z Acp MAZA (x)}
is a normalizing quantity; the summation is over all subsets A of nodes of Dj;z4(x)
is the network statistic in X corresponding to the subgraph A of D and is given by
z2ax) =1] XymeA Xijm> A4 1s the parameter corresponding to the subgraph A of D; and
A4 = 0 whenever the subgraph induced by the nodes in A is not a complete subgraph
of D.

For many of the dependence graphs that have been postulated, the model may not
be identified due to the large number of parameters. It is often useful to define cer-
tain equality constraints among parameters or to set certain parameters equal to zero.
Generally, the hypotheses in which we are interested impose some sort of regularity
condition on the model. In other words, we are not necessarily interested in the effect
of a specific configuration, but in the general effect of configurations of a particular
type. Therefore, it is often useful to impose homogeneity constraints on the model
parameters. Accordingly, we assume that certain effects are the same for all or at least
large parts of the network.

One approach is to equate parameters corresponding to isomorphic configurations
or subgraphs. Two subgraphs, A and A’ are isomorphic if there is a one-to-one map-
ping, ¢ from the nodes of A to the nodes of A’ that preserves the adjacency of nodes.
Formally, A and A’ are isomorphic if there exists a mapping ¢ on the node set N
such that (i, j, m) € A if and only if (¢(i), ¢(j), m) € A’ fori, j € N,m € R. To ap-
ply homogeneity constraints based on isomorphic configurations, we set A4 = A4,
then

PX=x)=«"exp (Z A[A]Z[A](x)) , 9.2)

[A]

where [A] is the isomorphism class of the complete subgraphs in the dependence graph
D that contains A and zj4)(x) = ) Ac[A] zA(X) is a count of the number of observed
configurations in x corresponding to the isomorphism class [A]. This approach assumes
that the effect of configurations on the probability of the realization x does not depend
on the identity of the actors involved. For example, the effect of a multiplex relation
between advice and friendship on the likelihood of the multigraph might be assumed
to be constant for all 7, j pairs.

It may be the case, however, that we want to hypothesize differential effects of
multiplexity due to demographic attributes or social positions of the individuals. For
example, we might suppose that it is more probable for women than for men to seek
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advice from their friends. In this case, equality constraints would need to take node
attributes such as gender into account. Similarly, if we had classified each node into
social positions based on an a priori blockmodeling we might want to examine po-
sition effects through more restricted homogeneity constraints. These more restricted
equality constraints can be achieved by ensuring the mapping ¢ on the node set N just
introduced also preserves the relevant node attributes. That is, assume that A and A’ are
isomorphic configurations as defined previously, and set A4 = A4 only when nodes i
and ¢ (i) are in the same block or attribute category and nodes j and ¢(j) are in the
same block or attribute category, for all i, j € N. Pattison and Robins (2002; see also
Chapter 10) discuss further constraints that can be implemented based on local social
neighborhoods. These neighborhood constraints may take the form of setting struc-
tures such as sociocultural space, geographic space, temporal constraints, or formal
organizational constraints.

(D) Estimation

Estimation of the parameters of equation 9.1 is generally not straightforward. For sim-
ple models based on Bernoulli or dyad-independent multigraphs, maximum likelihood
methods are available (e.g., see Wasserman 1987; Frank and Nowicki 1993). To esti-
mate models with more complex dependence assumptions, however, direct estimation
using maximum likelihood techniques may not be viable. The likelihood function for
the model parameters depends on the complicated normalizing quantity, «, which im-
pedes direct estimation except for simple models (e.g., Bernoulli, dyad-independent
models) and for small multigraphs. Thus, indirect methods need to be used to esti-
mate model parameters. Currently, Markov chain Monte Carlo (MCMC) methods are
being investigated for estimating parameters for the univariate models discussed in
Chapters 8 and 10 (Snijders 2002). Although MCMC approaches hold great promise
for estimation of random graph models and, in principle, can be extended readily to
the multirelational case, there are likely to be a number of practical problems to be
resolved before these procedures can be used to fit the model defined in (9.1). Pseu-
dolikelihood techniques, however, have proven to be useful in estimating the model
parameters and can be easily implemented in the case of multigraphs (Pattison and
Wasserman 1999). The pseudolikelihood approach is only approximate and, unfortu-
nately, the statistical properties of the pseudolikelihood estimators are only partially
understood.

To estimate model parameters using the pseudolikelihood approach as described by
Besag (1975, 1977), Strauss and Ikeda (1990), and Pattison and Wasserman (1999),
we can use the dichotomous nature of the random variables (X;;,,) to respecify model
(9.2) into a generalized autologistic model. To specify the conditional logit form of the
model, we define

X,»ij = {Xun : Xun € Np and (k, [, h) # (i, j, m)}

L=, s xd, = xun forall (k, 1, k) # (i, j,m)and x;\ =1}

Xiim ijm

Xiim = X * Xy = Xun forall (k, 1, h) # (i, j,m) and x;;,, = 0}.
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Then, the conditional probability that the random variable X;;, = 11is
— <+
P(X=x; ]m)

ljm) + P(X - 1_jm)

exp (Z )"[A]Z[A](X?j_'m)>

P(Xijm =1X

im) = P(X =

[A]

E)

exp (Z A z[A](X,Jm)> + exp ({% )L[A]Z[A](Xijm))

which does not depend on the normalizing constant, k. The conditional probabilities
can be used to construct the log-odds of a relational tie of type m from actor i to actor
Jj- The logit model can be expressed as

P( i = 1|x5m)

P ( i = 0|Xum)

_Z)‘ [ () = f,m)] ZA[A](d[A 42 9.3)

The (dja));} specifies the difference in the number of subgraphs of class [A] that would
be observed in the network x if the tie of type m from actor i to actor j is present rather
than absent.

The pseudolikelihood function for the multivariate random graph model is

Wijm = 10g

PLOY =[] 1'[ P(Xijm = 11X5,)"" P(Xjm = 0]XG,)! 0.
i#j m=

The maximum pseudolikelihood estimator (MPLE) is the value of A that maximizes
PL(}), where A is the vector of the parameters Ap4). Strauss and Ikeda (1990) showed
that the MPLEs can be obtained by fitting the logit model in (9.3) using any standard
logistic regression program; see Pattison and Wasserman (1999) for details. The re-
sponse variable for the logistic regression is the vector of the observed network ties and
the explanatory variables are the change statistics, (d[4));;, computed for each class of
complete subgraphs in the hypothesized dependence graph. For the models fitted to the
first example, SPSS (2000) commands for computing values of the change statistics
are set out in the Appendix.

Because estimation techniques are only approximate, assessments of the importance
of structural characteristics and of model fit are based on heuristics that compare the
observed values, x;;,,, with the fitted values, %;,,. The fitted values are defined as %;;,, =
P(X ijm =1 |Xl ]m) Commonly, the model “deviance” (G,%L), or pseudolikelihood ratio
statistic, and comparison of deviance values for nested models are used to evaluate the
importance of hypothesized network configurations. The mean of the absolute value of
the difference between the observed values, x;j,,, and the fitted values, £;;,,, (or mean
absolute residual [MARY]) is another index that provides information with regard to
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model fit. Both of these indices are used in the examples discussed in this chapter. To
evaluate whether a particular parameter or set of parameters is statistically important,
the difference in deviance values for two nested models are often compared. For a
single parameter, Robins, Pattison, and Woolcock (2002a) suggested that a parameter
contributes little if removing the parameter leads to an increase in model “deviance”
of no more than —2¢ log(1 — §), where ¢ = n(n — 1)r is the number of tie variables
and § is a small, tunable parameter, say 0.005 or 0.001, that allows the researcher
to exert control over the size of effects regarded as large. It should be emphasized
that we use heuristic approaches such as these in evaluating the importance of model
parameters because the distributional properties of the pseudolikelihood ratio statistic
are not currently well-understood.

9.4 General Framework for Model Construction

To summarize, the general framework for constructing a random graph model for
multivariate social network data is:

1. Regard each possible tie of each possible type as a random variable. All possible
X;jm are random variables.

2. Formulate hypotheses about the interdependencies of the ties of different types.
Which pairs of random variables are conditionally dependent given the other
random variables? Are we interested in hypotheses about role sets? Role
reciprocity? Role interlocking?

3. Construct a dependence graph where the nodes are the random variables (X;;,,)
and the edges link pairs of random variables hypothesized to be conditionally
dependent in step 2.

4. Invoke the Hammersley-Clifford theorem to obtain a joint probability model for
the set of random variables. Each model parameter corresponds to a complete
subgraph in the dependence graph.

5. Consider homogeneity constraints. Should some parameters be expected to be
equal (e.g., based on isomorphism classes, actor attributes, social positions, or
geography)?

6. Estimate model parameters (e.g., using MPLE).

9.5 Example: Krackhardt’s High-Tech Managers

To illustrate the models just described, we obtain pseudolikelihood estimates for a
number of these models for the multigraph comprising advice (X;) and friendship
(X3) relations for Krackhardt’s high-tech managers. For univariate models, there are
specialized programs, such as MultiNet (Richards and Seary 2000) and STENA (Snijders
2002) that can be used to fit random graph models using pseudolikelihood and maximum
likelihood estimation, respectively (see Chapter 13, this volume).” Unfortunately, there
are no specialized programs available for multivariate random graph models. However,
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as mentioned earlier, MPLESs can be obtained using any standard logistic regression
procedure. To fit the models discussed here, we used SPSS 10.1 for Windows (SPSS,
Inc. 2000). A program in the SPSS matrix language was written to set up the explanatory
variables ((d| A])l’.'}) for the logistic regression. The matrix program is provided to the
reader in the Appendix and can be followed immediately by a logistic regression in
SPSS with response variable “yklm” and potential explanatory variables from the list
t15a, t15f,.. ., t9faa. The labeling of terms is explained in the following paragraphs.

Multiplexity

Suppose we were interested in multiplexity effects for the high-tech managers. For
instance, we might be interested in the question: do managers tend to go to their friends
for advice? If we assume that multiplexity is the only possible effect of interest, we
could propose a Bernoulli multigraph dependence structure. In this case, the complete
subgraphs in the dependence graph take the form of single nodes corresponding to
each possible advice or friendship tie ({X;;1} and {X;;»}), or of pairs of connected
nodes corresponding to each possible multiplex tie ({X;;1, X;j2}). We impose homo-
geneity constraints so isomorphic configurations have equal parameters. Attributes,
social positions, and other possible setting structures among the managers are therefore
not incorporated into the analysis. Parameters associated with the individual advice
and friendship ties control for the overall density in the two networks. We fitted the
following three models:

(D) PX=x =k "exp{h X xiji + 22 Y xi0)
Q) P(X=x) =k""exp{rim (X xij1 + X xip2) )
B)P (X =x) =«""exp{h X xiji + 22 Y xijo + A3 Y xij1xij2 ) -

Model (1) fits separate parameters for the degree of choice in the advice relation and the
friendship relation. Model (2) equates these choice parameters. Thus, if we compare
model (1) with model (2) we can evaluate whether the advice and friendship relations
differ with respect to network density. Model (3) adds the multiplexity parameter to
model (1). If we compare model (1) with model (3), we can evaluate, after controlling
for density, whether there is a tendency for managers to go to their friends for advice
in this organization (a positive multiplexity parameter), or whether they avoid going to
their friends for advice (a negative multiplexity parameter). Table 9.5.2 provides the
heuristic fit statistics for these three models. We note that the number of tie variables
is ¢ = 840, and if § is set at 0.005, then —2¢q log(1 — §) = 8.42.

Comparing model (1) with model (2), we observe a change in G%L of 41.1 for a
difference of just one parameter; in addition, the average absolute residual increases
substantially when we equate the two choice parameters. Thus, the two indices suggest
that the choice parameters differ. The density for the advice relation is 0.45 and the
density for the friendship relation is 0.24: there are almost twice as many advice-seeking
relationships as friendship ties among the managers in the organization. The parameter
estimates are —0.19 for advice and —1.14 for friendship. The negative values indicate
that the density for both networks is less than 0.50.
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Table 9.5.2. Fit Statistics for Multivariate Models

Model GfDL df MAR
(1) Advice choice, friend choice 1044.083 2 4316
(2) Advice choice = friend choice 1085.213 1 4536
(3) Model (1) + multiplexity 1024.051 3 4213
(4) Model (1) + advice reciprocity, friend 1014.226 4 4173

reciprocity
(5) Model (4) + multiplexity 995.594 5 4078
(6) Model (5) + restricted exchange 995.525 6 4078
(7) Model (5) + advice two-paths, friend 2-paths 955.507 7 .3861
(8) Model (7) + role interlocking(AF), role 947.324 9 3822
interlocking(FA)
(9) Model (8) + advice three-cycles, friend three 943.540 11 .3801
cycles

(10) Model (9) + generalized exchange (AFA), 933.240 13 3752

generalized exchange (AFF)

(11) Model (7) 4+ two-in(A), two-out(A), two-in(F), 700.434 11 .2686

two-out(F)

(12) Model (11) + two-in(AF), two-out(FA) 687.185 13 2622

(13) Transitivity model 651.911 23 2476

If we compare the fit statistics for model (1) and model (3), we find a change in Gf,L
of 20.0 for a single parameter, suggesting that the multiplexity parameter makes a useful
contribution to the model. The mean absolute residual reduces to 0.421 from 0.432.
Although this is not a large reduction, there does appear to be a tendency for multiplex
ties in the network. The estimate of the multiplexity parameter is 0.73; managers exhibit
an enhanced tendency to express one type of tie if they also express the other. Managers
are more likely, in other words, to list their friends as advisors and their advisors as
friends.

Restricted Exchange (Role Reciprocity)

The second set of models examines restricted exchange within the organization. If
restricted exchange alone was in operation, then there would be a tendency for in-
dividuals to exchange resources, but only within dyads. For example, if manager i
says that manager j is a friend, we would expect an increased tendency for man-
ager j to seek advice from manager i. This second set of models assumes dyad inde-
pendence. The complete subgraphs of the dependence graph correspond to possible
ties for advice and friendship ({X;;1}, {X;j2}), possible multiplex ties ({X;;1, X;j2}),
reciprocity within the advice and friendship relation ({X;;1, X i1}, {Xij2, Xji2}), and
restricted exchange between advice and friendship ({X;;1, X;i2}). We fitted the
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following models:
4) PX=x)=k""exp {)\1 injl + A2 injz + A injlxjil
+ As injzxjiz}
(5) PX=x)=«"exp {M injl + A2 injz + A3 injlxijz
+ A4 injlxjil + As inﬂxjiz}
(6) PX =x) =k 'exp {)»1 injl + A2 injz + A3 injlxiﬂ

+ X4 Z Xij1Xji1 + As injzxjiz + X6 Z Xijlxjiz}-

Fit statistics for these models are presented in Table 9.5.2.

If we compare model (4) to model (1) from the previous set of analyses, the change
in the pseudolikelihood ratio statistics is 29.9, for two additional parameters. Further,
there appears to be a moderately large reduction in the MAR (from 0.432 to 0.417).
The parameter estimates for reciprocity are 0.16 for advice and 1.35 for friendship.
Both estimates are positive, suggesting a reciprocity tendency for both types of tie,
but the effect appears to be considerably stronger for friendship than for advice. In
fact, removing the reciprocity parameter for advice ties is associated with a very small
change in G2, (of 0.7) and a small change in the MAR (from 0.417 to 0.418). The
resulting model indicates that the reciprocity effect for friendship makes an important
contribution and should not be omitted from the model.

From the first set of analyses, there appeared to be a moderately strong multiplex-
ity effect for advice and friendship. By comparing model (5) with model (4), we can
evaluate whether the multiplexity parameter is still important after controlling for reci-
procity within each relation. The pseudolikelihood is reduced by 18.6 with inclusion of
the multiplexity parameter, and the MAR for model (5) is 0.408, suggesting a moderate
improvement in fit. Thus, the multiplexity effect is still evident after controlling for
reciprocity within relations. Model (6) introduces the restricted exchange parameter
(A¢). The change in Gf,L and MAR from model (5) to model (6) is negligible. Thus,
there is no evidence for restricted exchange between advice and friendship in this or-
ganization. The parameter estimates for model (5) are presented in Table 9.5.3 and
suggest a tendency for multiplex ties, as well as a tendency for friendship ties to be
reciprocated within dyads.

Role Interlocking and Generalized Exchange

Hypotheses concerning role interlocking and generalized exchange can be investigated
by assuming at least path dependence among ties. The complete subgraphs in the
dependence graph for the path-dependent model include those configurations in-
vestigated under dyadic independence, plus two-paths for advice and friendship
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Table 9.5.3. Parameter Estimates and Approximate Standard Errors for Selected
Multivariate Models

Model (5) Model (7) Model (12a) Final Transitivity Model

Parameter/construct Estimate Estimate Estimate Estimate
Choice — advice (1) —0.424 1.380 —4.719 —4.635
Choice — friend (A;) —1.896 —1.345 —3.655 —2.414
Multiplexity (13) 0.714 0.589 1.532 1.606
Reciprocity — advice (A4) 0.127 1.041 1.531 0.981
Reciprocity — friend (As) 1.336 1.621 2.223 1.552
Two-path — advice (A7) —0.129 —0.078

Two-path — friend (Ag) —0.062 —0.098

Out-star — advice 0.310 0.186
Out-star — friendship 0.324 0.283
In-star — advice 0.282 0.273
In-star — friendship 0.189

Two-path — AF —0.155
Out-star — AF —0.080 —0.082
In-star — AF —0.119
Transitivity — AFA 0.289

({Xij1, Xjr1}, {Xijo2, X jra}), three-cycles for advice and friendship ({X;;1, X k1, Xki1},
{Xij2, X jr2, Xri2}), two-paths involving both advice and friendship ties ({X;;1, X ji2},
{Xij2, X jr1}), and three-cycles involving both advice and friendship ties ({X;;1, X jx2,
Xri1}h {Xij1> Xjra, Xrin})-

To investigate role interlocking, we fitted two models that built on model (5). Model
(7) adds the two-path subgraphs for advice and friendship and model (8) adds the two
role-interlocking structures in addition to the advice and friendship two-paths. Table
9.5.2 provides the fit indices for these models. A comparison of the fit statistics for
models (5) and (7) suggest that the advice and friendship two-paths are important
structures in the network. The change in G3, is 40.1 for two additional parameters,
and we observe a moderate reduction in the MAR (from 0.408 to 0.386). Model (8)
adds the two role-interlocking structures. These two parameters appear not to make a
substantial contribution to the model (AG3, = 8.18).

To examine generalized exchange hypotheses, we fit a further sequence of mod-
els that included three-cycles. Even though the role-interlocking parameters provided
a minimal improvement to the model, we included these structures in the following
analyses because they are marginal to the generalized exchange subgraphs. Model (9)
includes the three-cycles for advice and friendship and model (10) adds the two other
structures with three-cycles. Table 9.5.2 provides the fit indices for these models. The
inclusion of the three-cycles and generalized exchange structures does not appear to
contribute significantly to the model. Thus, there appears to be a limited amount of
role interlocking and generalized exchange among the advice-seeking and friendship
relationships of managers in this organization. Table 9.5.3 provides the pseudolikeli-
hood estimates for model (7). Based on the parameter estimates, there appears to be a
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tendency against two-paths for advice, when choice, reciprocity, and multiplexity are
controlled for. The size of the two-path parameter estimate for friendship appears to be
small, suggesting that this structure provides a negligible contribution to the model.

Markov Dependence
Under the Markov dependence model, the complete subgraphs of the dependence graph
include those configurations examined in previous analyses along with a number of tri-
adic and star effects. A subset of these structures will be examined in the next set of
models. The two-path structures examined in the previous set of analyses are marginal to
the transitive triad configurations that will be examined under the Markov model depen-
dence assumption. Therefore, these configurations will be included in the analysis. The
first set of models examines the contribution of in-stars and out-stars of size two to model
(7). First, we fitted a model with the unirelational in-stars, {X;;1, X1}, {Xij2, X2}
and out-stars {X;;1, Xix1}, {Xij2, Xix2} (model (11)); then, in model (12), we add the
multirelational versions {X;;1, X x>}, {Xij1, Xik2}. The inclusion of the unirelational
in-stars and out-stars for the advice and friendship relations resulted in a very large
reduction in the pseudolikelihood ratio statistic (AG%; = 255.1 for four additional pa-
rameters) and average absolute residual (from 0.386 to 0.269). The parameter estimates
for all four of these effects are positive and large, suggesting that managers are differ-
entiated in their propensities to nominate and receive both advice and friendship ties.
Such differentiation is consistent with “preferential attachment™ hypotheses of the type
proposed for network structures more generally (e.g., see Albert and Bardbasi 2002):
ties are likely to emanate from (and be directed toward) those nodes who are already
active in nominating and receiving ties. When the multirelational in- and out-stars are
entered into the model, the change in G, is a moderate 13.2. Removing the multire-
lational in-star parameter had a negligible effect on G, ; parameter estimates for the
resulting model are shown in Table 9.5.3.

The final set of models examine the eight possible transitivity effects corresponding
to:

{Xijt, Xjk1, Xiod, AXij1, Xjeo, Xirr}s AXij1, Xjro, Xiko}, {Xij2, Xju1, Xiko)s
{Xij2, Xjia, Xixr}s AXij2, Xjer, Xi ), AXij1, Xjers Xk},

and {X;;>, X jx2, Xix2}. Multivariate two-paths (role interlocking) are marginal to the
multivariate transitive triads, thus these structures were entered into the analysis as well,
even though they did not appear to be statistically important in earlier analyses. The
transitivity model included the unirelational versions of choice, reciprocity, in-stars,
out-stars, two-paths, and transitive triads, the multiplexity effect, multirelational in-
stars, out-stars, and two paths and the six multirelational transitive triads. We evaluated
the importance of each transitivity effect in turn and eliminated those effects whose
omission increased G, by less than 8.42. This approach led to the retention of only
a single transitivity effect (that associated with triads of the form {X;;1, X jx2, Xix1}).
Further successive consideration of effects associated with maximal complete graphs
in the dependence graph using the same criterion resulted in a model with twenty-
three parameters; the pseudolikelihood estimates for parameters in the final model are
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presented in Table 9.5.3. The heuristic fit indices for this final transitivity model are
G2, = 688.6 and MAR = 0.263.

As in most of the previous models, there is evidence in this final model for strong
multiplexity and reciprocity effects, as well as for differentiation among nodes in their
propensities to express advice and friendship ties, and to receive advice ties. (Note that
the reciprocity parameter for advice ties is also large, now that differentiation among
nodes in expressing and receiving advice ties is taken into account.) In addition, the pos-
itive transitivity parameter estimate suggests an enhanced probability for networks that
have a large number of triads in which a manager’s advisors are linked by a friendship
tie. It is impossible to infer from cross-sectional data such as these what mechanisms
might give rise to such structures, but one plausible hypothesis is that friendship ties
build bridges for the creation of advice ties. For example, advisors might recommend
their friends as further sources of advice, or a manager might be more comfortable
approaching for advice the trusted friend of an advisor. These interpretations are sup-
ported by the large negative value of the parameter for two-paths comprising an advice
and friendship tie: such paths are relatively unlikely in the network. We note that effects
such as these illustrate the potential importance of a multirelational perspective: it may
be difficult to understand the emergence of advice ties without taking into account their
dependence on friendship ties.

9.6 Multiple Rater Networks/Cognitive Social Structures

As we discussed in Section 9.1, models of multiple rater networks have important
implications in network measurement. Theoretical questions concerning the same re-
lation from multiple rater perspectives might include questions about consensus and
bias in perceptions, or about individual differences in perceptions of social structure.
Consensus refers to the agreement between two or more perceivers. Thus, consensus
hypotheses allow one to evaluate whether two or more raters agree in their assessment
of the social relationships within an organization or whether individuals with similar
attributes or who share relational ties agree on their perceptions of the social structure.
Accuracy and bias questions relate perceptions of social structure to some criterion net-
work. The criterion network may have been obtained via direct observation or through
some function of the perceptions of relationships (see Krackhardt 1987, and Chapter 2,
this volume). One might be interested in assessing whether perceptual accuracy is re-
lated to actor attributes or network location. These models allow one to account for
individual differences in perceptions of structure. Thus, we can evaluate who perceives
a balanced structure, who perceives a hierarchical structure, and whether there is a
tendency for structural agreement if perceivers share certain attributes, positions, or
relations.

The multiple rater random graph models provide one of the few statistical ap-
proaches available for examining the structure within a set of cognitive or perceptual
networks. These models allow one to incorporate interdependencies between raters
within the model. Furthermore, the models provide a mechanism for model-based
inference about an interrelated set of cognitive networks, allowing us to investigate
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questions involving perceptual congruence, accuracy, and bias, and more complex ques-
tions concerning perceptions of structure within a network. The structural analysis of
perceptual networks has important implications in biobehavioral research, particularly
in the areas of epidemiology, social support, quality of life, intervention, and prevention;
organizational communication and research concerning job satisfaction, workplace ef-
ficiency, and diffusion of new technologies; social cognition and research concerning
relational recall; and, perhaps one of the most important applications, in the arena of
network measurement.

(A) Notation and Terminology

The models that we discuss in this section involve data where several individuals
provide their perceptions of the relational ties of a single type among members of a
bounded group. Thus, each perceiver provides their perceptual map of the relational
ties on the node set, N, which can be represented ina g x g sociomatrix, denoted by X,.
The perceiver set is denoted by P = {1, 2, 3, ... r}. We assume that the sociomatrix
represents the respondent’s perceptions of directed binary relations where

X — 1 ifrespondent p perceives a relational tie from i to j
YP" 10 ifrespondent p does not perceive a relational tie from i to j.

We can combine this set of perceptual networks into a three-way g x g x p array
XP?. Note that the multiple rater networks are similar to the multirelational network
presented in the previous section. However, in the current setting the third way refers
to a particular respondent, or perceiver, rather than to a particular type of relation. The
respondents may be a set of outside raters or judges providing their perceptions or
observations of the interactions of a group of actors or the respondents may be the set
of actors in M. If the set respondents are the actors in the network under study, then the
data represent a cognitive social structure (CSS) (Newcomb 1961; Krackhardt 1987).

A CSS is a set of networks reflecting each network member’s perceptions of the
relationships between all actors in the network. The data can be represented in a g x
g x g array. The perceptual network for perceiver p represents actor p’s perception of
the entire network. It should be noted that the unirelational network data commonly
collected is embedded in the CSS. The p™ row of perceiver p’s perceptual matrix, X >
is the p™ row of the unirelational network; Krackhardt (1987) referred to this as the row
locally aggregated structure (RLAS). A column locally aggregated structure (CLAS) is
the matrix that is obtained by aggregating each respondent’s perception of the relational
ties they have received. In other words,

Xpias = {Xl-ji} and Xcas = {Xijj} .

The intersection and union of the row and column LAS are sometimes of interest. A tie
exists between 7 and j in the intersection if both respondent i and respondent j perceive
a tie from i to j. For the union, there is a tie between i and j if either respondent i or
respondent j perceives a tie from i to j.
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(B) Example: Krackhardt’s High-Tech Managers

Again, we use relational data obtained from Krackhardt’s high-tech managers. The net-
work consists of relationships and perceived relationships among twenty-one managers
in a high-tech, machine manufacturing firm on the West Coast. In addition to the multire-
lational data that we examined earlier, CSS data were obtained for the advice-seeking
relation and the friendship relations. Each manager was asked to evaluate the perceived
or observed ties between all managers in the firm, not just their own relationships.
Every manager in the organization answered the following questions for themselves
and each of their colleagues: “Who does [actor] go to for advice and help with work?”
and “Who are [actor]’s friends?” The RLAS for the advice and friendship relations
was used in the multivariate random graph examples presented previously. These data
are available to the reader in Krackhardt’s (1987) original article and UCINET V for
Windows (Borgatti et al. 1999).

9.7 Multiple Rater Random Graph Models

The specification of the multiple rater model follows Koehly’s (1996) work on random
graph models for CSSs. Assumptions underlying the model are similar to those as-
sumptions specified for the multivariate random graph models; however, we now have
to consider the interdependencies between the perceivers or raters.

(A) Dependence Graphs

The dependence graph for the multiple rater model is a graph, D, where the node
set is defined by all possible ties (the X;;,) in the array X” and the edge set
specifies the pairs of random variables that are assumed to be conditionally depen-
dent, given the values of the other random variables. Formally, the nodes set for
the dependence graph is Np, = {X;jm : i # j;i,j € N,m € P} and the edge set is
Ep, = {(Xijm» Xun) : Xijm and Xy, are conditionally dependent given the rest of X Ly
There are two components to the dependence graph for multiple rater networks: the
dependence structure within each “slice” — the perceived structure for each individual
rater — and the dependence structure between “slices” or perceivers. Again, there are a
large number of parameters that can be fit with these models, thus the questions investi-
gated using these models should be defined a priori and driven by theory. Dependence
graphs for several theoretical questions are illustrated here.

Consensus

The dependence graph for questions concerning consensus or congruence among per-
ceivers does not specify acomplex dependence structure between perceivers. Consensus
dependence graphs focus on the agreement or concordance of ties between perceivers.
The simplest dependence graph is similar to the dependence graphs used to investigate
multiplexity for multivariate relations — the Bernoulli multigraph. Thus, the Bernoulli
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consensus graph assumes conditional independence for all pairs of random variables
representing distinct pairs of individuals; that is, X;;; and X;,,, are assumed to be in-
dependent whenever i # [ or j # m. In other words, X;j; and X;;, are assumed to be
interdependent. The Bernoulli consensus graph does not investigate whether there is
agreement at a structural level among perceivers.

Accuracy

Accuracy, and individual differences in accuracy, refer to the agreement between an
individual’s perception of the social structure and some criterion network. The cri-
terion network may be based on some objective measurement (e.g., phone records,
e-mail archives) or observation of the social relationships among actors. We denote the
objective representation of the network by Y, which is assumed to be exogenous. The
simplest accuracy model, given an objective criterion, assumes that the respondents are
independent and that the ties are independent. However, X j; is assumed to depend on
Y;; (see Chapter 10 for a general discussion on the inclusion of exogenous variables in
random graph models).

Another approach to the accuracy question is to define the criterion network by
aggregating the information in the CSS (e.g., RLAS, CLAS, intersection or union of
the RLAS and CLAS). This approach leads to a more complicated model because the
criterion network is a function of the CSS, which we are modeling. If we assume that
the criterion is based on the intersection or union of the RLAS and CLAS, then we
assume that X;;;, X;;;, and X;;; are interdependent. However, given the unresolved
questions in network measurement, we prefer to consider the agreement between an
individual’s perception of the social structure and the RLAS, CLAS, or some function
of these two aggregated structures under the consensus models. We discuss this further
in the points of view analysis.

Structure
There are several structural themes that might be of interest. Many of the structures
discussed in the previous chapter can be extended to describe the perceived structure
of multiple raters. For example, balance theory (Heider 1958) is a cognitive theory that
proposes that an individual will perceive the others to whom the individual is positively
linked to be positively linked to each other. Such a pattern of perceived ties is termed
balanced, and the theory predicts that if relationships between triples of individuals
are not balanced, then the respondent will alter his or her perceptions of these rela-
tionships in order to achieve cognitive balance. This suggests that balance is exhibited
through the existence of transitive triads within each respondent’s perceptual network.
The dependence graph assumes conditional dependencies within each perceptual net-
work — balance theory would suggest a Markov dependence within each X,,. Further,
we might want to assume some interdependencies among the respondents using the
RLAS, CLAS, or intersection or union of the two to define the dependence structure.
Clearly, there is the potential for a lot of parameters to be entered into a structural
model.

Structural questions can also be asked within a consensus framework. We may
want to extend the consensus and accuracy questions to include specific structural
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characteristics of the network. Do the respondents appear to agree with each other with
respect to reciprocal or triadic relationships? How accurate are respondents with respect
to clique memberships? Are respondents more accurate about the social structure “close
to home”? These questions move beyond the individual ties to organized structures,
and thus extend the dependence graph to include these structural characteristics. For
example, to examine consensus in reciprocity, the dependence graph would include
edges between X;jx, Xijp, Xjix, and X j;,.

(B) Multiple Rater Random Graph Model

Again, we apply the Hammersley-Clifford theorem. The multiple rater model takes on
the following exponential form:

PXP =xPy=«""exp Z razax") |, 9.4)
ANy,

where x” is the realization of the multiple rater random graph, X”, « is a normalizing
constant defined similarly to that for the multigraph model, the summation is over all
subsets A of nodes of Dp, z4(x") is the network statistic in x” corresponding to the
complete subgraph A of Dp, z4(x) = [ | Xymea Xijm is the sufficient statistic correspond-
ing to the parameter A4, and A4, = 0 whenever the subgraph induced by the nodes in A
is not a complete subgraph of Dp.

Homogeneity constraints are necessary for the models to be identified, particularly
if there are a large number of respondents and a complex structural model. One ap-
proach would be to equate model parameters for isomorphic configurations within each
perceiver’s cognitive network. If we equate parameters across perceivers’ networks,
however, we lose some of the strength in these models — the ability to investigate in-
dividual differences in perception. However, we might have particular attributes of the
perceivers that we want to investigate as individual differences variables. If this is the
case, we can constrain parameters across perceivers to be equal if the perceivers share
particular attributes of interest.

Homogeneity constraints might also be defined according to the point of view of the
perceiver. Let A be a subset of tie variables, and let N4 denote the set of nodes induced
by A; thatis, Ny = {k: X3;; € Aor Xj;; € Aor X;j € A, forsomei, j € N,k € P}.
(For instance, the set A = {X 23, X124, X234} has an induced node set {1, 2, 3, 4}.) The
subset A can be regarded as a labeled configuration in a random graph: labels are from
the set N4 and the configuration has a tie labeled m from the node labeled i to the node
labeled j if and only if X;;,, € A. Let A and A’ be two subsets of tie variables and let
¢ be a one-to-one mapping from N,y to Ny . We say that an isomorphic mapping ¢
between A and A’ preserves the relative identity of actors if X;j,, € A if and only if
Xoiypiypm) € A" If such a mapping exists, then the labeled configuration for A" can
be obtained from the labeled configuration for A by replacing the label k in A by (k)
in A’. Such mappings preserve relative identities in the configuration, but not specific
identities (hence the term). For example, there is an isomorphism that preserves relative
identities between the sets { X 23} and {X»14} (induced by mapping 1, 2, and 3 to 2, 1,
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and 4, respectively), but not between the sets {X 23} and {X»;} (because the induced
node sets are not even of the same size). We refer to this homogeneity constraint as the
points of view assumption.

Estimation and the evaluation of model fit are performed just as discussed in the pre-
vious section for random multigraphs. MPLE is currently the only reasonable estimation
approach for these models, particularly if there is a large number of respondents and a
complex model. Pseudolikelihood estimation (see previous discussion for specifics) is
implemented using any standard logistic regression program. The response variable is
the vector of gp(g — 1) perceived ties. The explanatory variables are the change statis-
tics computed for each complete subgraph in the hypothesized dependence graph, Dp.

As was the case with the random multigraph models, pseudolikelihood estimation
is an approximate estimation technique. Thus, model fit and the relative importance of
particular structural characteristics are based on heuristics that compare the observed
values, x;j,,, with the fitted values, %;;,,. We suggest using the pseudolikelihood ratio
statistic and conditional pseudolikelihood ratio statistic and the change in the MAR to
evaluate model fit and the importance of particular structural characteristics. It should
be emphasized that these are being used as heuristics, the distributional properties of
these statistics is not understood at this time.

(C) Example: Krackhardt’s High-Tech Managers

We obtained pseudolikelihood estimates for a number of models for the cognitive so-
cial structures comprising perceived advice and friendship relations for Krackhardt’s
high-tech managers. To fit the models discussed here, FORTRAN programs were
used to set up the data for the logistic regressions. SPSS 10.1 for Windows (SPSS,
Inc., 2000) was used to obtain the pseudolikelihood estimates, model deviances, and
MAREs.

Consensus

We hypothesize that individuals who share common attributes or who are relation-
ally tied to each other will share similar cognitive representations of the advice and
friendship network within the organization. The attributes that were investigated in-
clude tenure — based on a median split (median = 9.33 years) — and organizational
level (upper management, comprising the CEO and vice-presidents, compared with
middle management). The complete subgraphs of the dependence graph include each
perceiver’s individual tie {X ,-j,,}, and the interdependencies, or consensus, between
each pair of perceivers {X ijl> Xijp } Homogeneity constraints were made based on iso-
morphic configurations, although individual differences in the perceived density of the
network were also permitted. Further, to examine individual differences due to tenure
or organizational level, homogeneity constraints were made for the consensus statistics
based on subgroup membership. To investigate whether there is consensus among re-
spondents who are relationally tied, we equate the parameters across respondents who
reciprocate friendship and advice ties. The following models were fitted:
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P
) PX" =x")=x"exp{) 2, Zx,»j,,}
p=1  ij

P
(2) P(XP = XP) = K_l exXp Z)Lp injp + )LU Zx,-jkxij,,}
p=1 iJ

P
3) P(XP = XP) =k exp Z)\,p injp + Ao injkxij,,
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+ A Z XijkXijp + A2 Z xijkxijp}
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P
(4) P(XP = XP) = K_1 exp {Z)up Z)C,’jp + Ao Zx,-jkxij,,
p=l1 ij
+ A injkxijpykp} .

The importance of specific structural features was guided by the change in model
deviance between two nested models and the change in MAR. Consensus was in-
vestigated for the friendship CSS. We use the criterion suggested by Robins et al.
(2002a) to evaluate the importance of a single structural parameter. The criterion is
—2qlog(1 — &) = 17.65, based on ¢ = 8820 and 6 = 0.001. To evaluate whether there
is overall consensus among the respondents, model (2) was compared with model (1).
The change in the model deviance when the overall consensus statistic is added is
1299.4, MAR = 0.118, suggesting that consensus in an important structural feature.
Individual differences in consensus due to tenure and organizational level were inves-
tigated via model (3). For tenure, G2, = 3674.21, which is a reduction of 12.2, for
two additional parameters. For organizational level, G%,L = 3670.90, MAR = 0.1172,
which is a reduction of 15.6 for two additional parameters. Neither tenure nor organiza-
tional level appear to be important predictors of consensus. Relational consensus was
investigated for mutual friendship, mutual advice, and the supervisor—subordinate rela-
tion. For each of these relations, model (4) was fitted and compared with model (2). The
friendship has the largest reduction in deviance (AG%, = 68.90) and the MAR = 0.115.
Based on our criterion of 17.65, mutual friendship is an important predictor of consen-
sus. The parameter estimate for friendship (A = 0.25)is positive, suggesting that there is
apropensity for perceivers to agree with each other if they name each other as friends. A
similar conclusion can be drawn for mutual advice (AG%, = 26.40, MAR = 0.117, i =
0.17) and the supervisor—subordinate relation (A G%,L =22.21, MAR = 0.117,
A =0.39).

Points of View Analysis
The following models impose homogeneity on model parameters using the points of
view homogeneity assumption. In all the following models, the parameters A4 and 14/
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are assumed to be equal if and only if there is an isomorphism between A and A’ that
preserves the relative identity of managers. The analysis is presented for the advice
CSS.

Points of View — Bernoulli Models: The following Bernoulli models were fitted:

(1) PXP=xP)=«"lexp{iri X Xijm+ra 2 Xiji + A3 > Xij;
m#i, i#] J#i

2) P(XPZXP)ZK_IGXP{M D Xijm F A2 D Xiji A3 ) Xij

m#i, j i#] J#
+ha D XijmXijk +As D XijiXijm
ki m'Eij
i#j
+Xe Z XijmXijj + A7 Z XijiXijj ( -
mZi iZ
J#

The first model examines the propensity for ties to be perceived by third parties (A;),
by tie senders (X,), and by tie receivers (13). In this case, the tie senders or sources are
advice seekers and the tie receivers or fargets are advisors. The second model adds three
consensus parameters to the model: consensus between two third parties (14), consen-
sus between the sender (advice seeker) and a third party (As), consensus between a
third party and the receiver (advisor) (1¢), and consensus between the sender (advice
seeker) and receiver (advisor) (A7). Note that parameters involving x;;; are examin-
ing consensus or “accuracy” based on how we usually measure network ties (RLAS).
Thus, As indicates the propensity for outside observers to agree with the sender (i)
whether there is a relationship between i and j, and A7 examines the propensity for the
sender (i) and receiver (j) of a relational tie to agree whether there is a relationship
between i and j (RLAS N CLAS). The model deviance and MAR for model (1) is
10798.9 and 0.422, respectively. The parameter estimates for model (1) suggest that
the respondents perceive themselves to be advisors (receivers) more than they actu-
ally ask for advice (iz = —0.199, i3 = 0.048), and they are relatively less likely to
perceive ties involving distinct others (j\x] = —0.886). If we add in the consensus pa-
rameters, the change in model deviance is 2452.5 for an additional four parameters.
The MAR for model (2) is 0.307. All the pseudolikelihood estimates are positive, indi-
cating that there is consensus. The largest parameter estimate is for the sender-receiver
consensus ():7 = 0.486), suggesting that consensus is strongest among advisees and
advisors. Interestingly, the consensus parameters involving third parties are all posi-
tive ()14 =0.244, 5 =0.185, is = 0.272), suggesting that third parties also have a
tendency to agree with one another and with sender and receivers; thus, there is a
bias effect. These results have interesting implications for measurement models for
networks.
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Points of View — Dyadic Independence: The dyadic independence model adds re-
ciprocal structures onto the Bernoulli consensus model (2). Seven reciprocal structures
were added to the model, based on the points of view of the perceivers:

(D i, j XijmXjim) — perceived reciprocity by a single third party;

(Q_m#k  xijmxijx) —areciprocal tie whose constituent ties are perceived by
mok#i,j ’
distinct third parties;

Q- 2j XijiXjii) —a reciprocal tie perceived by one of the tie partners;

Q- 2j i jiXjij) — reciprocity as usually defined;

Q- 2j XjiiXijj) — one respondent perceives a tie from a second, who in turn
perceives a tie from the first;

Qi ;;j,'m X jiiX;jm) — one respondent perceives a tie from an actor with a third
m# j
party perceiving an outgoing tie to the same actor; and

(Q_i#j.m xjjixjim)—onerespondent perceives an outgoing tie to an actor with
j#m
a third party perceiving an incoming tie to the same actor.

The model deviance for this dyadic independence model was 7843.3 with an MAR =
0.286. The change in deviance values was 503.1, for an additional seven parameters. All
the pseudolikelihood estimates are relatively small and negative except for reciprocity
perceived by a single third party (A = 1.494) and reciprocity as perceived by one
of the tie partners (A = 1.110). The latter two parameter estimates were both large
and positive. This suggests that the third parties tend to perceive reciprocal ties, that
managers involved in an advice tie tend to perceive them to be reciprocated, and that
these effects are to some extent separable from each other.

Points of View — Markov: Finally, we constructed a Markov model that contained
six transitivity effects of interest. The six effects were of three types. The first
was a transitivity effect involving a triple of managers as it is perceived by
a fourth party (3, 2ij.n XijmX inmXinm)- The second was a transitivity effect per-
ceived by one of the actors involved in a transitive triple (namely, ) X;j; X jpiXini,
Y XijjXjnjXinj, and D X;jnXjpnXinn)- The third type was for transitive structures in
which the constituent ties are perceived by either the senders or the receivers of the ties
(that is, the effects ) x;jixjnjxini and Y x;;; X jnnXinn). Effects were also incorporated
for the twelve star configurations that are subgraphs of these six transitive configu-
rations. Because the model incorporating these effects, as well as the consensus and
dyad-independent effects, had thirty-two parameters in all, we successively removed
higher-order effects that failed to contribute 17.65 to the model deviance, using a back-
ward elimination strategy. (In other words, at each step, the higher-order term whose
elimination increased the deviance by the smallest amount was removed, provided that
the deviance did not increase by more than 17.65.) The resulting model had sixteen
parameters, a deviance of 5712.2 and an MAR of 0.203.
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The only transitivity effect to remain in the model was the first one
Q.. 2i,j.n XijmX inmXinm), and the corresponding positive parameter estimate of 0.099
suggested a substantial tendency for perceivers to view other parts of the advice net-
work as transitive. Interestingly, such a perceptual tendency was not evident for the
participants within a transitive triple: rather, such patterns appear to be explained by
simpler lower-level effects.

Of the star configurations included in the final model, three were constituent sub-
graphs of the transitive triple included: an out-star effect (3 _,, 2i,j.h XijmXi hm); an in-star
effect (3, Zijh XjnmXinm); and a mixed-star effect (D, £ijh XijmX jnm)- The estimates
for these three terms were 0.256, 0.173, and —0.122, respectively, and suggest, first, that
perceivers tended to view network members as being differentiated in their tendencies
to seek and to be sought out for advice and, second, that perceivers tend not to see
indirect advice paths that are unaccompanied by direct ties. In addition to these, two
other types of star effects were retained in the model. From the first type, we see that
the managers exhibited an enhanced tendency to see themselves as both the sources
and targets of multiple advice ties [with estimates of 0.326 and 0.253, respectively, for
the effects () x;jixin; and ) x;j;xp;)]. From the second type, we can infer a tendency
for managers to see their nominated advisees as seeking advice from multiple sources
(0.252 for ) _ x;j;xi), as well as their advisors as advisors to multiple others (0.143 for
D XijiXni)-

Only two of the exchange effects described in the dyad-independent model were
retained in the current model: a substantial third-party reciprocity effect (with an esti-
mate of 1.14 for ), ” XijmXjim); and a weaker tendency for exchange to be perceived
by distinct third parties (with an estimate of .043 for Zm i, ] h XijmXjin). The final

h#1i,
model also excluded one of the consensus effects descrlbed earher namely, the ef-

a curious exclusion on first sight, but in fact, it is not surprising (1ndeed, somewhat
reassuring) that confirmed ties are perceived more broadly than by the tiepartners
alone.

Taken together, the effects in this model suggest some interesting albeit tentative
conclusions about cognitive network structures. First, they demonstrate substantial con-
sensus effects. The conditional odds of a tie being reported are increased by 30% to 40%
for each other report of the same tie. Moreover, these consensus effects are not simply
a matter of agreement with either the sender or the receiver of a tie; rather both of these
effects, as well consensus among separate third parties, are in evidence. Second, it is
striking that so many “third-party” effects were retained in the model. These effects sug-
gest that managers perceive a variety of structural effects — reciprocity, transitivity, and
differentiation among managers in their tendencies to seek and be sought for advice —
that are not necessarily confirmed by the sources of the ties involved in the effects. One
possible interpretation of this pattern is a structural bias on the part of observers: we
tend to see other parts of a network as more structured than the tie partners themselves.
Interestingly, Kumbasar, Romney, and Batchelder (1994) came to the same conclusion
using scaling methods to analyse CSS data. A third general effect is the tendency for
actors to be seen as differentiated in their tendencies to seek and be sought for advice,
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but the presence of a number of such effects suggests that it is not necessarily the same
differentiation perceived by all. Putting all these effects together, we obtain a view of
the cognitive social structure as grounded in common perceptions, but subject to subtle
cognitive biases.

9.8 Conclusion

The two applications that we have presented illustrate the importance of developing
effective methods for modeling complex relational data structures. In both cases, we
found evidence for interesting multirelational and/or multisource effects that would be
overlooked by methods for the analysis of a single network. Indeed, there is mounting
evidence that it would be valuable to contextualize models for networks by taking
account of the social, geographic, and cultural settings of network ties (e.g., Pattison
and Robins 2002). The development of models for three-way relational arrays of the
type analyzed here can be seen as a first step in this more general program of modeling
generalized relational structures. Such a program presents significant theoretical and
methodological challenges. Theoretically, we need rich conceptualizations that can
guide model development; methodologically, we need to extend the advances that have
been made in fitting (e.g., Snijders 2002) and evaluating (e.g., Robins, Pattison, and
Woolcock 2002b) models for complex and interdependent observations.

Endnotes

1. This chapteris based on a series of workshops presented at the annual meetings of the International
Network of Social Network Analysis in Charleston in February 1999, and Vancouver in April
2000, and at the “Perspectives on Spatial Analysis in the Social Sciences” Workshop held at the
University of Washington, Seattle, in June 2000. We are indebted to our various copresenters
(Noshir Contractor, Martina Morris, Garry Robins, and Stanley Wasserman) for comments on
these earlier presentations.

2. Multinet is available for download from (www.sfu.ca/~richards/Multinet/Pages/multinet.htm).
Multinet can be used to fit random graph models for single relations assuming edge independence,
dyadic independence models, or Markov dependence (constrained to subgraphs with three or
less nodes). Homogeneity constraints based on actor attributes and social position can also be
implemented relatively easily in the program.
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Appendix: Krackhardt Multivariate Random Graph - Advice, Friendship

set mxloop = 10000.
show workspace.

data list file = ‘C: \ socnet \ setup \ krack.af” free/cl to c21.
* Set up network statistics
matrix.

get x/variables=all.

compute g=ncol(x).

compute h=nrow(X).

compute a=x(1:21,1:21).

compute f=x(22:42,1:21).

compute gg=g*g.

compute rgg=h*g.

compute za=make(g,g,0).

compute zf=make(g,g,0).

compute onea=make(g,g,1)-ident(g).
compute onef=make(g,g,1)-ident(g).
compute ya=transpos(a).

compute yf=transpos(f).

*choice

compute ua={onea;za}.
compute uf={zf;onef}.

compute t15a=reshape(ua,rgg,1).
compute t15f=reshape(uf,rgg,1).

*multiplexity

compute mp={f;a}.
compute t15af=reshape(mp,rgg,1).

*reciprocity and direct exchange

compute reca={ya;za}.
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compute recf={zf;yf}.

compute recaf={yf;ya}.

compute t1 laa=reshape(reca,rgg,1).
compute tl 1ff=reshape(recf,rgg,1).
compute tl laf=reshape(recaf,rgg,1).

*two stars — in and out

compute ina={onea*a;za}.
compute t14a=reshape(ina,rgg,1).
compute inf={zf;onef*f}.

compute t14f=reshape(inf,rgg,1).
compute inaf={onea*f;onef*a}.
compute t14af=reshape(inaf,rgg,1).

compute outa={a*onea;za}.
compute t12a=reshape(outa,rgg,1).
compute outf={zf;f*onef}.

compute t12f=reshape(outf,rgg,1).
compute outaf={f*onea;a*onef}.
compute t12af=reshape(outaf,rgg,1).

* 2-paths (role-interlocking)

compute mixa={onea*ya-+ya*onea;za}.
compute t13a=reshape(mixa,rgg,1).
compute mixf={zf;onef*yf+yf*onef}.
compute t13f=reshape(mixf,rgg,1).
compute mixaf={onea*yf;ya*onef’}.
compute t13af=reshape(mixaf,rgg,1).
compute mixfa={yf*onea;onef*ya}.
compute t13fa=reshape(mixfa,rgg,1).

*three cycles (generalized exchange)

compute cyca={ya*ya;za}.

compute t10a=reshape(cyca,rgg,1).
compute cycf={zf;yf*yf}.

compute t10f=reshape(cycf,rgg,1).
compute cycaaf={ya*yf+yf*ya;ya*ya}.
comopute t10aaf=reshape(cycaaf,rgg,1).
compute cycaff={yf*yf,ya*yf+yf*ya}.
compute t10aff=reshape(cycaff,rgg,1).

*transitive triads

compute tta={a*ya+ya*a+a*a;za}.
compute t9a=reshape(tta,rgg,1).
compute ttf={zf;f*yf+yf*f+f*f}.
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compute t9f=reshape(ttf,rgg,1).
compute ttffa={f*f;a*yf+yf*a}.
compute t9ffa=reshape(ttffa,rgg,1).
compute ttaaf={f*ya+ya*f,a*a}.

compute t9aaf=reshape(ttaaf,rgg,1).

compute ttaff={f*yf;a*f+ya*f}.
compute t9aff=reshape(ttaff,rgg,1).
compute ttafa={a*yf+a*f;ya*a}.

compute t9afa=reshape(ttafa,rgg,1).

compute ttfaf={yf*f;f*ya+f*a}.
compute t9faf=reshape(ttfaf,rgg,1).
compute ttfaa={yf*a+f*aja*ya}.

compute t9faa=reshape(ttfaa,rgg,1).

*row and column labels.

compute r=make(g,g,0).
compute c=make(g,g,0).
loop k=1 to g.

.loop l=1to g.

. compute r(k,l)=k.

. compute c(k,])=I.

. end loop.

end loop.

compute x=reshape(x,rgg,1).
compute rr={r;r}.

compute cc={c;c}.

compute r=reshape(rr,rgg,1).
compute c=reshape(cc,rgg,1).

compute

newmat={x,r,c,t15a,t15f,t15af,t1 laa,t1 1ff,t1 1af,t1 laaf,t11faf,t14a,t14f,
t14af t12a,t12f,t12af,t13a,t13f,t13af,t13fa,t10a,t10f,t10aaf,t10aff t9a,tof,

t9ffa,t9aaf,t9aff,t9afa,t9faf,t9faa } .

*write file in a form suitable for logistic regression.

save

newmat/outfile=‘temp.Ir’/variables=yklm,k,I,t15a,t15f,t15af,t1 1aa,t1 1ff,t1 1af,
t11aaf,tl 1faf,t14a,t14f t14af t12a,t12f,t12af,t13a,t13f,t13af,t13fa,t10a,t10f,t10aaf,
t10aff,t9a,t9f,t9ffa,t9aaf t9aff,t9afa,t9faf, t9faa.

end matrix.

191



10

Interdependencies and Social Processes:
Dependence Graphs and Generalized
Dependence Structures

Garry Robins and Philippa Pattison
University of Melbourne

In this chapter, we discuss the importance of the concept of dependence in social net-
work data. Dependence is usually treated as a technical statistical issue, but in the case of
social networks, the type of dependencies that might be expected in the data reflect un-
derlying social processes that generate network structures. Consequently, we argue that
possible dependencies need to be thought about explicitly when modeling social net-
works. We present a hierarchy of increasingly more complex dependence assumptions
and show how to represent these in terms of dependence graphs. We show how depen-
dence graphs are used in exponential random graph (p*) models for social networks.
The most commonly used dependence assumption for p* models is that of Markov
random graphs, but we summarize new developments that introduce higher-order de-
pendence structures, Markov assumptions constrained within social settings, and de-
pendencies involving individual-level attributes. We conclude by conceptualizing our
general approach in terms of social space, with different types of dependence structures
construed as forms of abstract proximity between elements of that social space.

10.1 Social Phenomena, Networks, and Dependence

An event or process is a social phenomenon precisely because behaviors by the individ-
uals involved are interrelated. The form of interrelation may be particularly complex. As
Solomon Asch argued half a century ago, social phenomena have the reflexive quality of
being psychologically represented in each of the participating individuals. Individuals
see themselves and others as sharing the same social environment, and perceive others
as also perceiving themselves as within that shared environment. Yet the very same
environment is principally constituted by the actions of those individuals in response
to those perceptions (Asch 1952; see also Weick and Roberts 1993).

Such a series of recursive perceptions and behaviors is necessarily implicated in
any human social process. Such a recursive series implies a fundamental interdepen-
dence among the actions of the individuals concerned. So when we make observations
about human social phenomena, some form of dependence is inevitable among those
observations because of the mere fact that the phenomena are social.
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Dependence can be taken as a statistical concept, and we often do so here. However,
dependencies among observations imply substantive processes underpinning social
happenings. The precise nature of the dependence will vary according to the kinds of
observations that we make, and will reflect the interactive nature of the social processes
that generate the observations.

The interdependent nature of social observations is a potential problem when we
come to construct statistical models. In many familiar modeling contexts, we can plau-
sibly assume that observations made on one sampled unit are independent of observa-
tions made on another. Indeed, where such independence cannot be assumed, we often
treat the resulting dependence as a nuisance and seek to remove it (Baron and Kenny
1986; Snijders and Bosker 1999). Yet, in the case of social observations, the interde-
pendence of observations is intrinsic to what we seek to model, so it is essential to build
models that allow us to investigate hypotheses about forms of interdependence. In what
follows, we demonstrate how to build and use such hypotheses in the development of
models for interdependent social observations.

In the context of social networks, we can distinguish at least two ways in which net-
works might be involved in the modeling of interdependent social observations. The first
underlies some well-known models for social influence (e.g., Erbring and Young 1979;

Doreian 1982; Friedkin and Johnsen 1990, 1997; Friedkin 1993, 1998) and regards
network ties as indicators of which pairs of actors are associated with interdependent
observations. For example, the status of each actor on some attribute (e.g., an attitude)
might be seen as dependent on the attribute status of all other actors to whom he or she
is tied. This approach permits us to construct models for the distribution of attributes
across a set of actors and is discussed further in Section 10.5. Another approach, and
the one that we discuss first, is to build models for network ties themselves, recognizing
that each network tie is itself an observation arising from interdependent social pro-
cesses. So, in what follows, we introduce methods for modeling interdependent social
observations by first considering models for the collection of network ties observed on
some fixed set of actors.

The method we describe has its origins in a quite general approach to the modeling
of interdependent systems of variables (Besag 1974) and was adapted for the case of
social networks by Frank and Strauss (1986). Needless to say, in building models for
interdependent systems of variables, we require some hypothesis about the general
form of interdependencies. In what follows, we describe how to represent hypotheses
about interdependence in the form of a dependence structure (or dependence graph),
and we discuss various proposals for the nature of these structures.

The Hammersley-Clifford theorem (Besag 1974; see Chapter 8, this volume) pro-
vides the means for expressing the most general probability model for a system of
interdependent variables that is consistent with its hypothesized dependence structure.
As described in Chapter 8, the parameters of this model correspond to local subgraphs
of potential network ties. In other words, hypothesizing a dependence structure leads
to a model for the probability of a network in terms of certain configurations of ties.
More complex dependence structures (i.e., those involving more extensive interdepen-
dencies) lead to network models that are expressed in terms of larger and more complex
configurations. In Section 10.3, we consider a simple hierarchy of dependence structure
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hypotheses and the resulting hierarchy of network models to which they give rise. In
Section 10.4, we elaborate this hierarchy of dependence assumptions by introducing
setting structures and partial dependence structures. In Section 10.5, we describe mod-
els that permit directed dependence assumptions, which are particularly useful where
we want to model systems of network ties together with systems of node attributes,
leading to models for social influence and social selection. Finally, in Section 10.6, we
argue that the hierarchy of dependence structures that we have introduced can be seen
as a hierarchy of hypotheses about the nature of social space."

(A) Social Networks and Dependence Graphs

When we represent aspects of human social structure in network form, we have partially
made the step of thinking in terms of dependencies. By adopting a network perspec-
tive in investigating a particular social process, we are taking the theoretical ground
that an understanding of that process requires an understanding of the pattern of social
connections or network ties among individuals. This is an implicit recognition that the
dependencies arising through the process are in some way captured by a network rep-
resentation, rather than through other possible dependence structures, for example, by
nested data within multiple levels (Bryk and Raudenbush 1992; Snijders and Bosker
1999 — of course, both network and multiple levels approaches are not mutually exclu-
sive, see van Duijn, van Busschbach, and Snijders 1999). A decision about the type of
analytical strategy to use is an implicit decision about a form of dependence structure,
with consequent theoretical and conceptual implications. We need a method to represent
this dependence structure, thereby makeing explicit our dependence assumptions.

To begin, let us consider a directed network. A directed tie is an observation on an
ordered pair of individuals. Sometimes ties are not possible for certain ordered pairs.
Within a network, we term a couple as an ordered pair for whom a tie is possible.” We
see a substructure or a network configuration, then, as a subgraph of ties observed on
sets of couples.

The patterning of certain configurations may be observable across several parts of the
network, suggesting that the ties themselves may be interdependent in ways that give rise
to such patterns. More formally, there are dependencies among couples that may lead
to the observation or nonobservation of a tie or ties that are part of a configuration. Our
argument is this: if a network represents the dependencies implicit in social happenings,
then to understand the network requires an understanding of the dependencies within
the network, expressed as dependencies among couples. The network is represented
as a graph; the dependencies among couples can also be represented as a graph, a
dependence graph.

Dependence structures of a sufficient complexity to represent plausible social pro-
cesses have a number of difficult features. No particular couple in a network is privi-
leged, so there is no exogenous point from which to hypothesize a type of causal chain.
In that sense, dependencies among couples have a form of circularity, and in the most
general representations any couple may be dependent on any other couple, a situation
too undifferentiated to be useful. Accordingly, to construct dependence graphs, we use
the notion of conditional dependence between couples. Two couples may or may not
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be dependent, conditional on the observations on all other couples in the network. The
dependence graph D for a network can be defined as follows: the vertices of the graph
comprise the set of all couples (equivalently, the set of all network variables), and there
is an edge between a pair of vertices if the two couples are conditionally dependent
(we elaborate this definition below in various ways). By postulating different forms of
conditional dependence among couples, the researcher is in effect hypothesizing dif-
ferent social processes that give rise to particular network substructures. For instance,
dyadic independence models imply a dependence graph where the only edges are be-
tween couples that share both actors, that is, between couples of the form (7, j) and
(j, 1). The Markov random graph dependence structure of Frank and Strauss (1986),
however, postulates conditional dependencies (edges in the dependence graph) when
couples share at least one actor.

The Hammersley-Clifford theorem (Besag 1974; see also Chapter 8, this volume)
provides the link between the dependence structure as represented by the dependence
graph and a distribution of random graphs from which an observed network is an in-
stance. In effect, the theorem translates the dependence structure into a set of parameters
that represent various substructures in the network. This parameterization describes the
distribution of graphs. Parameter estimation then allows us to understand the importance
of the various substructures in the overall network.

Much of what we describe here derives from the statistical graphical modeling lit-
erature. Good introductions to the area are provided by Cox and Wermuth (1996),
Edwards (1995), Lauritzen (1996), and Whittaker (1990). Graphical modeling under-
pins the statistical basis for our approach, but the peculiar importance of dependence
in social phenomena presents both a number of substantive issues in interpretation and
model development, and a number of technical issues in implementation.

In the next section, we begin by describing some aspects of graphical modeling that
will be helpful in ensuing sections. (Readers not interested in the technical details may
skip this section.) We then turn to a more detailed description of dependence structures
for networks. We follow this with a presentation of more recent work on higher-order
dependence structures that may provide a more appropriate basis for modeling human
social behavior. For this purpose, we need to generalize some of the technical aspects of
graphical modeling. We follow with a description of dependence graphs that incorporate
both network couples and individual attributes, permitting the development of social
influence, social selection, and discrete time models. We conclude with an interpretation
of dependence structures in relation to abstract social space.

10.2 Some Aspects of Graphical Modeling

This section summarizes some technical results from the field of graphical modeling
that are not specific to networks, but are useful in what follows.

In a graphical model, the dependencies among the variables of a data set are rep-
resented in graphic form. Whittaker (1990) defined an independence graph, or more
properly a conditional independence graph, of a set of random variables as an undi-
rected graph with the variables represented as vertices. (Graphical modeling uses the
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term independence graph; the network literature uses the term dependence graph. From
this point, we follow the latter practice.) An edge exists between two vertices in the
dependence graph, unless — conditional on the remaining variables — the two variables
corresponding to the vertices are independent.

Formally, Whittaker’s (1990) definition is as follows: Let X = (X, X», ... X}) de-
note a vector of random variables and K = {1, 2, ..., k} the corresponding set of
vertices. The conditional dependence graph of X is the undirected graph G = (K, E)
with vertices from K and edge set E, where (i, j) ¢ E if and only if X; L X; | Xx\i,j}-
Here, following Dawid (1979), the notation X L Y | Z signifies that variables X and Y
are independent conditional on Z, a set of variables. (Also, A L B | Z signifies that for
all A € Aandall B € B, A_L B|Z.) In the definition, X\ y; ;) represents the set of all
variables excluding X; and X ;.

(A) Markov Properties

The dependence graph, as defined by Whittaker (1990), reflects one of three possible
Markov properties on undirected graphs.” Lauritzen (1996) defined the three Markov
properties in the following terms. For an undirected graph G = (K, E) with a collection
of random variables X = (X, X, ... X}), a probability measure is said to obey:

1. The pairwise Markov property, relative to G, if for all nonadjacent vertices i and
Jo Xi L X 1 Xk )

2. The local Markov property, relative to G, if for every vertex i, X; 1 Xg\c) |
Xbd(i)» Where bd(i), the boundary of i, is the set of all vertices adjacent to i,
or the set of neighbors of i (Besag 1974), and cl(i), the closure of i, is the set
bd(i) U {i} so K\cl(i) is the set of all vertices that are neither i nor neighbors
of i

3. The global Markov property, relative to G, if for all disjoint subsets, A, B, and
S of K, such that S separates A from B in G (that is, any path in G from a vertex
in A to a vertex in B passes through a vertex in S), then X L X3 | X5, where
X4 specifies the subset of variables {X; : i € A}

Equivalence between the three conditions basically implies that the dependence graph
is a coherent representation of conditional dependency structures. Lauritzen (1996)
showed that the global property implies the local property, which in turn implies the
pairwise property. The reverse implications only hold under more limited conditions
set out by Pearl and Paz (1987). Importantly, for the three Markov conditions to be
equivalent, all probabilities have to be nonzero; that is, all observations have to be
possible. A positive density precludes logical relations among variables (for instance,
it precludes logical relations of the form X; =Y, X, = Z, and X3 = Y + Z for then
the density is zero whenever X| + X, # X3).

(B) Factorization and the Hammersley-Clifford Theorem

Equivalence of the Markov properties and factorization of the probability density are
closely related. Lauritzen (1996) defined factorization along the following lines: the
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probability P is said to factorize according to a graph G if for all cliques of vertices
A C K there exist nonnegative functions ¥4 that depend on X only through X4, and
there exists a factorization of the probability density f(X) =[], ¥a(X).* As fac-
torization implies the global Markov property, it also implies the local and pairwise
Markov properties. So, a well-behaved graph that represents a coherent dependence
structure will have a factorization of a probability density that can be expressed in
terms of functions relating solely to the cliques of the dependence graph. There is one
and only one function for each clique. Moreover, the variables will not be logically
related.

Factorization for the discrete case amounts to the Hammersley-Clifford theorem,
first presented by Besag (1974). For networks, the factorization takes the form:

PriX=x)= %exp (Z or [T xs (10.1)

TCcC steT

where X is the random graph with x as a realization [so X, is a binary variable on
couple (s, t) expressing the presence or absence of a tie, with x;, as a realization]; C is
the set of couples; « is a normalizing quantity; and the parameters 67 are nonzero only
if T is a clique of the dependence graph. The cliques represent local configurations of
possible network ties. There is one and only one parameter for each clique, and the suffi-
cient statistic pertaining to each clique ([ [,,.; x,) indicates whether the corresponding
configuration of possible ties is actually observed in the network. The factorization
in (10.1) is the basis of the p* class of models for social networks (Wasserman and
Pattison 1996).

Of course, for even quite simple dependence structures, the dependence graph has
many cliques and so the resulting network model has many parameters. For both practi-
cal and theoretical reasons, therefore, we often consider further hypotheses that lead to
areduction in the number of model parameters. For example, if we have no information
about the network actors apart from their ties, we often assume that model parameters
are independent of the particular identities of the actors. Each parameter then corre-
sponds to an isomorphism class, that is, to a collection of all local configurations that
become identical once the node labels are removed. The sufficient statistic correspond-
ing to the class is a count of the number of observed configurations in the class. This
homogeneity assumption leads to a considerable reduction in the number of model
parameters and amounts to an assumption that the interactive processes underlying the
interdependencies among ties are universal ones. As we discuss in Section 10.5, where
we have doubts about the universality of such processes, we can observe character-
istics of individuals that might relate to variations in interactive effects. We can then
use these individual measures to restrict homogeneity assumptions according to the
measured characteristics of the actors.

Our approach to exponential random graph (or p*) modeling of networks is to pos-
tulate a dependence structure in the form of a dependence graph. From the dependence
graph, cliques can be derived. The Hammersley-Clifford theorem then provides a fac-
torization with parameters based on the cliques. Imposing homogeneity and restricting
the order of terms in the factorization (i.e., concentrating on lower-order effects) results
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in identifiable models. These models then have parameters and statistics relating to the
presence of local network configurations.

There are two important aspects to note here. First, if a set of vertices constitute
a clique of the dependence graph, then any subset of vertices will also be a clique.
Accordingly, if there is a parameter in the model for a higher-order configuration (such
as a triad), then the model would normally include parameters for configurations lower
order to that parameter (such as various stars) so models are hierarchical. Here, the
order of the configuration is taken as the number of couples it contains. Second, the
fact that there is one and only one parameter per clique leads to a need for care in model
development. Often, effects that may suggest separate parameterization in fact need to
have the same parameters because they pertain to the same clique of the dependence
graph.

We now examine some network dependence graphs and the models to which they
give rise.

10.3 Dependence Graphs for Networks

(A) Bernoulli Dependence Structures

The simplest dependence hypothesis is that possible network ties are independent of one
another; more properly, that there are no (conditional) dependencies among couples.
The dependence graph takes a particularly simple form: the set of vertices is, as before,
the set of couples, but there are no edges between vertices. The only cliques in the
dependence graph relate to single vertices so the corresponding network configuration
is a single tie for each vertex (couple). If homogeneity is imposed across isomorphic
configurations, we have a single parameter model, with the sufficient statistic equal
to the number of observed ties (i.e., reflecting the density of the graph). The resulting
model is the Bernoulli graph model, with the probability of any tie being the same
across the graph (see Erdos and Renyi 1959; Frank and Nowicki 1993),

1 1 1
P X: = — 91-- i = — 9 ii = — QL’
r( X) - exp ( E jxj> - exp( E xj) - exp(@L)

ijeC ijeC

where 6 is the density parameter and L is the number of observed ties in the graph.
Note how this model is achieved by imposing homogeneity such that 6;; = ¢ for all
couples.

(B) Dyadic Dependence Structures

A somewhat more complex, but still very simple, dependence hypothesis is that couples
are only (conditionally) dependent when they share both actors, that is, the couple
(i, j) is dependent only on couple (j, 7). The dependence graph is of the form in
Figure 10.3.1a. With homogeneity imposed across isomorphic configurations, there
are only two types of cliques here: those of the form {(Z, j)} — that is, single vertices as
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Figure 10.3.1. Dependence graphs for couples

@ ) (J, 1), (. k), (k, 1), (j, k), (k, j): (a) dyadic
independence models; (b) Markov random
graphs.

in the Bernoulli graph case — and those of the form {(i, j), (J, i)} — that is, reciprocated
ties. So we have a two-parameter model, with one parameter (6) relating to density as
in the Bernoulli case and the other a mutuality parameter (p) relating to the presence
of reciprocated ties:

1 1
Pr(X=x)= —exp|0 Xii +p Xijxii | = —exp(OL + pM),

where M is the number of reciprocated ties in the graph.

The best known dyadic independence model in the network literature is the p; model
of Holland and Leinhardt (1981), with expansiveness and popularity effects at the actor
level. The p; model can be derived through our approach by loosening homogeneity
constraints so the single density parameter in the previous model is replaced by a series
of parameters. Rather than imposing homogeneity in the form 6;; = 6, one might choose
constraints of the form 6;; = 6 + «; + B;, with the node level effects «; and B; relating
to expansiveness and popularity, respectively. This illustrates how the imposition of
different homogeneity constraints on the same dependence structure results in different
models. Some form of homogeneity of course is required for identifiable models, but
decisions on actual constraints are ultimately a theoretical choice.

Usually, Bernoulli and two-parameter dyadic independence models are used as base-
line models against which more complex models may be compared. Most social pro-
cesses are sufficiently complex to make dyadic independence a somewhat inadequate
assumption (see Robins, Elliott, and Pattison 2001a, for a discussion.) Both models,
however, have the virtue that, because of their relative simplicity, they can readily be
estimated using maximum likelihood procedures. Although we continue to use the ter-
minology conditional dependence in describing dependence graphs, the dependence
structure is not conditional in these cases (at the node level for the Bernoulli case and
at the dyad level for the dyadic independence case).

(C) Markov Random Graphs

The dependence structure for Markov random graphs was proposed by Frank and
Strauss (1986). For dyadic independence models, dependencies are assumed to be
only between couples with the same actors. For Markov random graphs, conditional
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Figure 10.3.2. Triadic configurations. (Note: The
configurations are depicted in rows of decreasing order.
Parameters relating from Ty to T}s configurations pertain to
transitive triad, cyclic, mutuality, out-star, mixed-star,
in-star, and density effects, respectively.)

dependencies are assumed between couples who share at least one actor. In other words,
in the dependence graph, there will be an edge between vertices (i, j) and (s, ¢) if and
onlyif{i, j} N {s, ¢} # #. The dependence graph is represented in Figure 10.3.1b. Frank
and Strauss (1986) showed that for Markov graphs, cliques of the dependence graph
related to edges, mutual dyads, triadic configurations, and various starlike configura-
tions. Some of these configurations are depicted in Figure 10.3.2. If we consider that
part of the dependence graph that involves the couple (i, j), then the dependence struc-
ture immediately implies two maximal “star” cliques: one “star” clique that includes
all couples that have i as an actor, and one that includes all couples that have j as an
actor. These two maximal cliques intersect at {(i, j), (J, I)}, but are otherwise distinct.
However, we may also infer additional maximal cliques: one “triadic” clique for each
actor k # i, j of the form {(i, j), (j, i), (i, k), (J, k), (k, i), (k, j)}. For each k, the tri-
adic clique is maximal because any other edge — such as (i, s), where s # i, j, k — may
be conditionally dependent on some of the edges in the clique, but is not dependent on
all of them — for example, (i, s) is not conditionally dependent on (j, k) because the
two couples do not have an actor in common.

The “star” cliques give rise to various types of stars. In a two-mixed-star (or two-
path) clique of the form {(k, i), (i, j)}, it is tempting to try to parameterize to describe
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an effect for the first path of a two-path — that is, for an observed tie on (k, i) when
attempting to predict a tie on (i, j) — in contrast to an effect for the second path of
a two-path — that is, for an observed tie on (i, j) when attempting to predict a tie on
(k, i). This temptation seems particularly strong when using pseudolikelihood methods
of estimation (see Chapter 8, this volume) because the data file is set up in such a
way as to suggest the possibility. It is, however, an error to do so. As noted previously,
the condition that there be one and only one parameter for each clique often requires
the equating of parameters relating to such apparently different effects. The clique
{(@, j), (k, i)} obviously contains both a first and second path in a possible two-path;
there is one parameter for this clique; there are no grounds for privileging either (i, j)
or (k, i) in a desire to examine first and second path effects.

The “triadic” cliques pertain to a variety of triadic configurations, the various forms
of which are depicted in Figure 10.3.2 (readers will recognize that these are simply the
various nonempty configurations from the triad census — see, for instance, Wasserman
and Faust 1994). Note that the triadic forms include all three forms of two-stars because
these cliques are in the intersection of the star maximal cliques and the various triadic
cliques. If we impose homogeneity across isomorphic configurations, then there are
parameters for each of the triadic configurations and every higher-order star (i.e., of
higher order than 2). Typically, such a large number of parameters will still lead to
unidentifiable models despite the homogeneity constraints. There are various sugges-
tions in the literature to restrict the order of parameters. Until more recently, practice
has been to ignore the effects of higher-order stars (see Robins, Pattison, and Elliott
2001b) and to fit models with just the triadic configurations of Figure 10.3.2. The model
then becomes:

1 15
PrX=x)=—¢ T,N(T),),
r( ) pr;pw)

where 7, is the parameter pertaining to configuration 7}, and N(7},) is the number of
such configurations observed in the graph. There may still be insufficient data to fit
models with the higher-order configurations so models with only density, mutuality,
two-star, transitive triad (7y), and cyclic (77¢) effects have been popular.

An alternative, discussed in a slightly different context here, is to fit configu-
rations of a given order or less, for instance, configurations of order three. The
relevant configurations are those in the bottom three rows of Figure 10.3.2, plus three-in-
star, three-out-star, and various three-mixed-star configurations. See Lazega and
Pattison (1999) for an example of a hierarchy of models based on a maximum order
of configurations. The relevance of including higher-order stars (e.g., three-stars) in
the model arises from simulation studies, which suggest that models may exhibit more
stable and less degenerate behavior if they include at least three stars (Chapter 8, this
volume).

The Markov random graph dependence structure can also be generalized to deal with
multiple networks (Pattison and Wasserman 1999), valued networks (Robins, Pattison,
and Wasserman 1999) and bipartite networks (Skvoretz and Faust 1999).
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10.4 Higher-Order Dependence Structures

Markov dependence structures have a sensible intuitive basis in regard to many triads
of individuals, and since being introduced by Frank and Strauss in 1986, the Markov
dependence structure has become a mainstay of exponential random graph (p*) mod-
eling. Network analysts have adopted it with enthusiasm because it allows progress
beyond the restrictive assumptions of dyadic independence.

In fact, there is little evidence to indicate one way or the other whether Markov
dependence structures are an adequate representation of social processes in general.
However, as Pattison and Robins (2002) argued, it is simple to conceive of hypothetical
situations where Markov dependence is either too broadly or too narrowly specified.
Pattison and Robins postulated that social processes arise within particular social locales
or social settings. Their theoretical development here is sympathetic to the notion of
network domain of White (see Mische and White 1998, and White 1995) and the notion
of focus of Feld (1981). Accepting that social processes take place within social locales,
as Pattison and Robins argued, it is quite possible that ties X;; and X}, could arise within
a common locale — even though couples (i, j) and (k, /) contain distinct actors — and
these couples might be appropriately modeled as conditionally dependent. In contrast,
the couples (i, j) and (i, k) may never occupy the same settings, even though individual
i is common to the two possible ties, in which case the couples might appropriately be
modeled as conditionally independent of one another.

The possibility that couples involving the same actor could occupy different settings
presents particular problems for Markov dependence structures in large networks. Ac-
tors i and j may not even be aware of each other’s presence in the network and may have
no common locale through which they could possibly meet, yet the standard Markov
graph assumption gives as much weight in conditional dependence structure to the
couple (i, j) as to any other couple.

Accordingly, there are two variations on Markov dependence structures that Pattison
and Robins (2002) examined: how to limit Markov dependencies within a given pattern
of settings (or setting structure), and how to elaborate possible dependencies between
couples that share no actor at all. In the second case, a simple generic extension of the
Markov dependence is problematic for exponential random graph models. In particular,
if we allow dependence between couples (i, j) and (k, ) when {i, j} N {k, I} = 0 (as
well as when {i, j} N {k, [} # (), then the dependence graph is complete. In this case,
every subset of nodes in M corresponds to a clique, and even with a general homogeneity
assumption, the resulting model is not identified.

(A) Setting Structures

The first approach of Pattison and Robins (2002) is to hypothesize a setting structure
directly and to constrain a broader dependence structure to apply only within settings.
Each setting is assumed to correspond to some subset of possible network ties. Pattison
and Robins deliberately leave the notion of setting abstract and general. They suggest
as possible examples settings based on a spatiotemporal context, such as a group of
people gathered together at the same time and place; settings based on a more abstract
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sociocultural space, such as pairs of persons linked by their political commitments;
and settings that reflect external “design” constraints, such as organizational structure,
task requirements in organizational settings, or hardware capabilities in communication
networks. In dependence graph terms, settings are proposed to create boundaries among
couples. They may overlap, with couples occupying many settings simultaneously.
However, conditional dependencies among a set of ties are assumed to be realized only
within common settings. Pattison and Robins start with a generic dependence structure
(for instance, a Markov dependence structure) and then constrain it, through a setting
structure, by assuming that the generic dependence only applies within settings.

Formally, this can be described as follows. A setting s is defined as a subset of couples
and a setting structure S as a collection of settings on N, such that if s is a setting in S,
then so is any subset of 5. Formally, a setting structure is a closed hypergraph on the
set C of couples. Suppose that random network X has generic dependence structure D
whose edge set is E. If H denotes the set of all cliques of D, then H is also a closed
hypergraph on E (Robins 1998). An exponential random graph model confined by the
setting structure S has the setting-restricted clique set Hg = H N S; Hg is also a closed
hypergraph on E. A setting structure hypothesis thus provides one approach to setting
parameters in a model to zero: by restricting the clique set of the dependence graph to
Hg, in equation 10.1, 67 = O forany T ¢ Hy.

Pattison and Robins (2002) noted several different forms for possible setting struc-
tures. If S comprises a single setting corresponding to the set C of all couples, then
it is termed universal. In this case, the setting-restricted clique set Hg is simply the
clique set H associated with the generic dependence structure D. Setting structures for
disjoint groups can also be defined. Suppose that N = U, N, is a disjoint union of the
node set N, and let S, be the universal setting structure defined on N,. Then § = {S,}
defines a disjoint subgroup structure and the factorization in (10.1) decomposes into
the form I, P(X, = x,), where X, denotes the random network on the node set N,
and x, is its corresponding realization. (See Anderson, Wasserman, and Crouch 1999,
for an example involving different school classes, with dependencies applying within
but not between classes.)

More generally, Pattison and Robins (2002) proposed settings as grouplike in struc-
ture, but potentially overlapping. In particular, if a setting is conceptualized in terms
of the potential links among a subset N,, of individuals, then settings take the form
sm=1{(0,j): i,j € N, and i # j} and a potentially overlapping subgroup setting
structure results. Versions of overlapping subgroup setting structures can also be used
to explore the interaction between the proposed generic dependence structure and prox-
imity as defined by regions in physical space.

Pattison and Robins (2002) also noted that an overlapping structure arises if settings
are assumed to be restricted to a maximum of & individuals so each setting comprises
ties among a subgroup of individuals of size no greater than k.’

(B) Partial Dependence Structures

The second approach of Pattison and Robins (2002) is to examine non-Markov depen-
dencies so as to permit the interactive social processes that give rise to network ties
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Figure 10.4.3. Some higher-order configurations in a three-path nondirected
random graph model.

themselves being a source of settings. In other words, new settings are created as net-
work ties are generated: for instance, couples (7, j) and (k, I) may become conditionally
dependent if there is an observed tie between at least one of the actors in one couple
and at least one of the actors in the other couple. Such “longer-range” dependencies
might be incorporated into the dependence graph D by imposing such conditions as an
edge being present between (i, j) and (k, /), only if at least one tie is observed between
iorjand k or [. (For a similar approach in other statistical applications, see Baddeley
and Moller 1989.)

A Markov dependence assumption introduces conditional dependencies among cou-
ples comprising possible semipaths of length two. The condition in the previous para-
graph extends the assumption of conditional dependence to couples comprising possible
semipaths of length 3 (or three-paths in nondirected networks). In general, Pattison and
Robins (2002) termed such a condition as partial conditional independence, whereby
network variables X;; and X}; are conditionally independent given certain observed
values of other variables (e.g., in nondirected networks if xj; = x;; = xjx = x;; = 0),
but conditionally dependent for certain other observed values (e.g., if one of x;z, x;,
X jk, OF X j; iS nonzero).

Formally, Pattison and Robins (2002) defined a partial dependence structure Dy for
asubset B C C of couples. The node set of Dy is the set C\ B of couples not in B and
the edge set of Dy is given by {((i, j), (k, ])): X;; and X}; are conditionally dependent,
given that X,,, = x,,, for (m, h) € C\B and X,,;, = 0 for (m, h) € B}. In other words,
two possible ties are linked by an edge in Dy if they are assumed to be conditionally
dependent even when all the possible ties in the set B have observed values of 0. Note
that if ((i, j), (k,[)) € Dg, then ((i, j), (k, 1)) € D; thus, Dy is a subgraph of D for
all B C C. It is possible though that ((i, j), (k,])) may be an edge in D but not in
D3, signifying that X;; and Xy, are conditionally independent when x,,, = 0 for all
(m, h) € B. With these dependence structures defined, Pattison and Robins go on to
show that in equation 10.1 the parameter A7 is nonzero if and only if 7'is a clique in D
and in all Dg for which 7 N B = (/.

One innovation arising from partial dependence structures is the development of
models investigating the presence of configurations of higher order than the stars and
triads of Markov random graphs. For instance, the three-path condition expressed previ-
ously permits connected configurations comprising four or more nodes that satisfy the
condition that every pair of edges lie on a path of length 3. Pattison and Robins (2002)
referred to this model as the three-path random graph model. For nondirected graphs,
configurations on four nodes satisfying this condition are shown in Figure 10.4.3.
For directed graphs, the full set of such configurations include all possible combi-
nations of arrows in the configurations in Figure 10.4.3. As is seen in Section 10.5,
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partial conditional independence is also important in developing meaningful models
that incorporate actor attributes.

The partial dependence step allows the embedding of Markov random graph models
in classes of models with more complex dependence structures. It thereby becomes
possible to examine the sufficiency of Markov models by comparing them with models
that make plausible but more complex assumptions. Moreover, complex dependency
structures are postulated in several theoretical claims, for instance, the presence of
generalized exchange instantiated in cyclic patterns of network ties (e.g., Bearman
1997); arguments about the nature of strategic activity in networks, including brokering
and mediating behaviors; and arguments for indirect social influence and social selection
effects. We now turn to social influence and social selection models, which involve actor
attribute variables, to illustrate such theoretical claims.

10.5 Attribute Variables in Dependence Graphs for Networks

There are two important processes that have often been hypothesized to relate attribute
and network variables. First, in social selection processes, actors create or alter ties on
the basis of the attributes of other actors; that is, actor attributes may contribute to the
formation or change of network ties. Second, in social influence processes, network
ties may help to shape actor characteristics, in that individuals may be influenced by
others with whom they have network ties. Clearly the two processes are not necessarily
mutually exclusive, but the two classes of models described here ignore the effects of
one process while examining the other.

In social selection models, we examine network ties as depending in part on the
distribution of actor attributes. For social influence models, however, we examine the
distribution of actor attributes as an outcome of a given set of network ties. In either case,
we have a dependence structure that goes beyond what has been hitherto discussed:
we have two types of variables and the dependence structure is directed from one
type to another, in the sense that one set of variables is explanatory and the other set
comprises outcome variables. (Outcome variables may still be interdependent, just as in
the earlier cases.) To manage dependence structures of this nature, we need to return to
the graphical modeling literature, in particular to dependence structures that are known
as two-block chain graphs.

(A) Two-Block Chain Graph

Our exposition here follows Robins et al. (2001b), which first adapted the chain graph
approach to the network literature in developing exponential random graph social in-
fluence models.

Directed edges in a dependence graph, represented by arrows, relate explanatory to
response variables (Cox and Wermuth 1996). So, a directed edge from a to b in the graph
can be used to represent the situation where Z,, is assumed to be a variable in response
to explanatory variable Z,. Here, Z,, is referred to as a parent of Z;, and Z,, as a child of
Z, (Lauritzen and Spiegelhalter 1988). The particular dependence graph of interest here
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is a directed graph to model the distribution of one set of variables (the child block of
variables), given the values of another set of variables (the parent variables). There may
well also be nondirected dependencies (e.g., of the various types discussed previously)
within the two blocks. The dependence graph has the set of vertices partitioned into
the two blocks; there are directed dependencies only from parent variables to child
variables, and the only nondirected dependencies are within blocks. This type of graph
is known as a two-block chain graph (Wermuth and Lauritzen 1990). Not all graphs
with directed and nondirected edges can represent a coherent probability structure and
so function as dependence graphs. However, any chain graph can represent coherent
dependence relationships among the variables.

For the nondirected dependence graphs discussed earlier, the Hammersley-Clifford
theorem provides the necessary link from the dependence graph structure to model
parameterization. It is not immediately clear how to apply the Hammersley-Clifford
theorem in the case where some of the edges in the dependence graph are directed. How-
ever, the graphical modeling literature provides some valuable results about converting
directed to nondirected dependence graphs in such a way as to preserve the Markov
properties of the original directed dependence graph. The resulting nondirected graph
is often referred to as a moral graph (Lauritzen and Spiegelhalter 1988) because it
involves introducing edges between parents of the same child (the so-called marrying
of the parents). For the two-block chain graphs, where the interest is in the distribution
of one set of variables given the distribution of another set of variables, the moral graph
of a directed dependence graph can be defined as the nondirected graph with the same
vertex set, but with edges between two vertices a and b in the moral graph if they are
connected by an edge or an arrow in the original graph, or if they are both parents of the
same child. The Hammersley-Clifford theorem can then be applied to the moral graph
just as before.

(B) Social Influence Models

For social influence models, Robins et al. (2001b) presented a two-block chain graph,
with attribute variables Y = (Y;), i € N in the child block (response variables) and
network variables X in the parent block (explanatory variables), with the interest in
a conditional probability description P(Y =y | X = x), modeling the probabilities of
observing particular attributes as a function of the network ties. In the first instance,
they assume binary attribute variables and binary network variables. They show that
the analogue of equation 10.1 for this dependence structure is:

Pr(Y=ylX=x) = %exp Y veoo [ [] *« (10.2)

RCZ QCPA(R) keR  steQ

where ¢ is the set of maximal cliques among the attribute variables, pa(R) denotes
the particular network variables that are parents of the attribute variables in R, and
the parameters ygy¢ are nonzero only when R U Q is a clique in the moral graph. As
before, « is a normalizing quantity.

Because the parameters relate to both attribute and network variables, they represent
network configurations with “colors” on the nodes. Consider a clique R U Q in the
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Figure 10.5.4. Two-block chain graph and moral graph for a
simple social influence model, together with configurations for a
model of order 2. (Note: For configurations, filled circle
indicates actor with the attribute, whereas dotted empty circle
indicates actor who may or may not have the attribute.)

moral graph. Social influence arises because the distribution of attributes among the
actors in R is affected in some way (depending on the parameter value and sign) by the
network ties in Q.

A simple starting model that Robins et al. (2001b) considered assumes that there
are no conditional dependencies among the attribute variables and that an attribute for
actor i has network variables involving i as parents. They consider directed networks,
but for the sake of a simple exposition, we only consider nondirected networks. The
directed dependence graph and the moral graph are presented in Figure 10.5.4. Cliques
of the moral graph have the form {Y;}, {Y;, X;;}, {Yi, X;;, Xit}, and so on. Each clique
pertains to an actor i “having” the binary attribute Y; as well as being involved in a
certain number of ties (i.e., i is the focal point of stars of various order.) As there
is one parameter for each clique, the resulting parameter-related configurations for a
homogeneous model of order 2 are represented in Figure 10.5.4. The result is a simple
three-parameter model. Here, the colored circles represent actors who “have” the binary
attribute.

The top configuration in Figure 10.5.4 represents an actor without ties; the second
configuration, an actor with one tie; and the third configuration, an actor with two
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Figure 10.5.5. Two-block chain graph and moral graph for
a partial dependence social influence model, together with
configurations for a model of order 2. (Note: Dotted line
indicates partial conditional dependence.)

ties (because there are no stars of higher order than 2 in the model, the parameter
pertaining to this last configuration should be interpreted as a parameter pertaining to
actors with the attribute and with two or more ties). Examination of parameter estimates
allow interpretation of the relative importance of these configurations in the network.
Accordingly, judgments can be made about the importance of having a tie (or several
ties) with others to possession of the attribute. For instance, such a simple model could
investigate the hypothesis that an individual has high self-esteem if he or she has one
or more close friends.

Robins et al. (2001b) proceeded to examine models with dependencies among at-
tributes that allow for particular social influence effects. They develop models for
attributes that are trichotomous, rather than binary, and for attributes that are measured
by a multiple item scale.

In contrast, here we present a simple model for dependent attributes based on a
partial dependence assumption. In addition to the dependencies in Figure 10.5.4, we
assume a partial conditional dependence between attribute variables Y; and Y; if there
is an observed network tie between i and j. The dependence graph and moral graph,
with the partial conditional dependency represented, is presented in Figure 10.5.5. The
cliques of the moral graph are as before, with the addition of cliques of the form {Y;, Y}
when X;; = 1. Figure 10.5.5 also presents the resulting configurations for a model that
again restricts parameters to those containing at most two ties.

There is an additional configuration, and hence an additional parameter in this model,
depicted at the bottom of the configurations in Figure 10.5.5. It represents the situation
where two actors both possess the attribute and have a tie between them. Robins et
al. (2001b) argued that this parameter represents social influence: if the estimate for
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Figure 10.5.6. Two-block chain graph and moral graph
for Markov attribute/Markov network dependencies
social selection model for a nondirected network,
together with configurations for a model of order 3.

this parameter is large and positive, then network partners are more likely to share the
attribute, from which might be inferred that network partners influence one another
toward possession of the attribute.

(C) Social Selection Models

Social selection models investigate claims that people construct social ties, in part, on the
basis of certain attribute matches. For both social selection and social influence models,
the dependence among ties interacts with attributes. In the case of social selection, we
have a shaping of ties not just by the presence of other ties, but also by the distribution
of the attributes of actors involved.

Technically, the approach to social selection models is similar to social influence
models, but here the network variables are in the child block and the attribute variables
in the parent block. Using this basic dependence structure, Robins et al. (2001a) de-
veloped a series of increasingly complex social selection models for binary attributes.
For the most part, they adopt a Markov attribute assumption where a network variable
X;j is a child to a parent attribute variable Y} if and only if k € {i, j}. They discuss di-
rected networks, but for ease of exposition we concentrate on nondirected graphs here.
With Markov attributes and Markov graph dependencies among the network variables,
Figure 10.5.6 provides a representation of that part of the dependence graph and moral
graph that contains X;;, as well as a resulting set of configurations. In a model limit-
ing configurations to order 3, there are six configurations and hence six parameters in
the model. The top three parameters in Figure 10.5.6 relate to standard Markov graph
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Figure 10.5.7. Additional configurations in a partial
dependent attribute model.

parameters. The bottom three configurations (reading, respectively, from left to right
in Figure 10.5.6) pertain to an actor with the attribute expressing a tie to another actor
(possibly without the attribute); an actor with the attribute expressing ties to two other
actors; and two actors, each with the attribute, forming a tie between them. The last
parameter can be used to test a similarity or homophily hypothesis, that actors with
similar attributes form social ties.

The limitation of the Markov attribute assumption is apparent here. The model
contains a parameter for a triad, but not for triadic configurations that include attributes.
For such parameters, we need to invoke a partial dependence attribute assumption,
whereby attribute variable X} is a parent of network variable Y;; if a tie is observed on
either the couple (i, k) or (i, j). As Robins et al. (2001a) explained, this step results in
additional parameters that incorporate attributes in triadic configurations. The additional
parameters are represented in Figure 10.5.7.

An interesting technical difference between social influence and social selection
models is that social influence models require at best ordered polytomous attribute
measures, whereas social selection models can accommodate continuous attribute mea-
sures. Also, social selection models can incorporate a variety of additional functional
forms. Robins et al. (2001a) fit both binary and continuous attribute measures in dif-
ferent illustrations of social selection models.

(D) Temporal Models

The two-block chain graph approach may also be applied to discrete time models for
network change. Robins and Pattison (2001) developed a variety of models along these
lines, including models that incorporate partial dependence assumptions. For instance,
Robins and Pattison suggested that for certain temporal processes, network substruc-
tures might be created based on constant ties, ties that remain in place across time and
from which new ties may develop into more complex patterning. They assume a cross-
time dependence structure based on the constant tie assumption, whereby dependencies
arise from constant but not transitory ties. This assumption is another example of a
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partial dependence approach, whereby a time 2 dependency is assumed when certain
time 1 ties are observed.

In general, the complexity of network temporal models illustrates clearly that theo-
retical thought needs to be given to dependence assumptions. To a degree, a hierarchy
of models — from Bernoulli-type models, through dyadic independence and Markov
models, and then partial dependence models — can be usefully fitted to gain insight
into the network data. However, the partial dependence approach allows new classes
of models, usually with a complex parameterization. In this circumstance, perhaps the
most powerful way to proceed is to develop particular dependence assumptions from
theoretical claims and then examine the resulting models.

10.6 Social Space: An Interpretation of Social Dependence

We started this chapter with a description of dependence as a fundamental feature of
sociality, not just as a statistical phenomenon. We conclude with an interpretation of
the dependence hypotheses of Pattison and Robins (2002) in terms of “social space.”
Intuitively, the notions of social proximity and social space are appealing. Individuals
occupy locations in geographic space in a way that often shapes social behavior: an
extension to more generalized notions of proximity in social space is not unreasonable.
In a social network, a tie represents a form of social proximity. For instance, we might
use the term proximity to refer to a tie between two social elements; for instance, two
individuals are socially proximate if they have a relationship.

Yet, abstractly, what is to count as an element in a social space? As social scientists,
we are often accustomed to considering individuals as elements, or perhaps depending
on context, groups, or organizations may be the elements represented by the nodes
in the graph of our network. However, as we have noted previously, the variables of
interest for us typically pertain not just to the individuals, but also to the ties between
them. A more abstract construal of sociality, then, would consider possible ties (what
we called couples previously) as elements. Frank and Strauss (1986) implicitly did so
when they developed Markov random graph models. Yet, to use couples as elements
requires a notion of proximity, not just for individuals, but also for ordered pair of
individuals (i.e., couples).

This conceptual step permits an interpretation of dependence graphs as representing a
form of social proximity. We propose that two possible ties are proximate when they are
mutually contingent. This contingency can be represented as conditional dependence in
a dependence graph. To consider couples as elements in social space does not supplant
the notion of individuals as elements. The two representations coexist. The social space
of individuals is represented by the network. The social space of ties is represented
by the dependence graph. As we have seen, the two representations are not mutually
exclusive, and attribute-based models give us a means to develop representations of
social space in which proximity interpretations pertain to both individuals and couples
simultaneously.

Nevertheless, it is the set of individuals that constitute acfors within the system
and we propose that proximity can only be instantiated through actors. Accordingly,
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we propose a hierarchy of possible hypotheses about tie proximities, based on various
relations between the individuals who constitute the nodes of those particular ties.
Different assumptions here have different modeling implications:

1. Tie proximities do not exist at all. This results in the class of Bernoulli random
graph models.

2. Two couples are proximate if they share the same actors. This assumption results
in the class of dyadic independence models.

3. Two couples are proximate if they share one actor. This assumption results in
Markov random graph models.

4. Two couples are proximate if they have at least one pair of actors that in turn
are proximate (i.e., are tied). This assumption results in partial conditional de-
pendence models.

This interpretation of conditional dependence as proximity among ordered pairs of
individuals in social space suggests further possible elaborations. For instance, it may be
useful in certain contexts to develop notions of proximities among triples of individuals,
perhaps to differentiate circumstances when three people meet simultaneously, rather
than a series of dyadic transactions. Setting structures may be seen as such multiperson
proximities.

An interpretation of dependence structures in terms of abstract social proximity
certainly highlights the importance of theoretical considerations in proposing depen-
dencies in particular contexts. We now have techniques to assess the effects of complex
dependence structures, but there is often limited theoretical guidance as to which de-
pendencies should best be examined. For instance, in what circumstances do we need
to collect settings information in addition to network data? In other words, when do
multiperson proximities count? To be able to raise such clearly pertinent questions sug-
gests that the abstract notion of social space presented here, together with its potential
for further generalization, may have value beyond a construal of some of the results in
this chapter.

As network analysts, in our more ambitious moments we might cast ourselves as the
geometers of social space. Dependence structures are central to whatever we construe
social space to be, and we need to be explicit in the theoretical claims that we make for
the dependencies that underpin networks and drive the behaviors of their actors.

Endnotes

1. Throughout this chapter, our intent is to summarize the modeling implications of particular
dependence structures, so we do not provide fully elaborated detail on each of the models or
describe methods of fitting them. Readers interested in this level of detail are referred to the
various cited articles, or to Chapter 8 of this volume, for general information on model estimation
techniques.

2. Inthis chapter, we introduce network variables to indicate the presence or absence of a tie. For each
couple, there is one network tie variable, so the two may be loosely thought of as interchangeable.

3. These Markov properties should not be confused with Markov random graphs, discussed later in
this chapter.
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4. A clique is a single vertex or a subset of vertices adjacent to each other in the dependence graph.

5. One substantive interpretation for such a setting structure might be the hypothesis that persons
can cognitively represent their relationships with no more than & individuals simultaneously, so
people respond to their social world in terms of overlapping settings involving k others.
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Models for Longitudinal Network Data

Tom A. B. Snijders

University of Groningen

This chapter treats statistical methods for network evolution. It is argued that it is most
fruitful to consider models where network evolution is represented as the result of
many (usually nonobserved) small changes occurring between the consecutively ob-
served networks. Accordingly, the focus is on models where a continuous-time network
evolution is assumed, although the observations are made at discrete time points (two
or more).

Three models are considered in detail, all based on the assumption that the observed
networks are outcomes of a Markov process evolving in continuous time. The inde-
pendent arcs model is a trivial baseline model. The reciprocity model expresses effects
of reciprocity, but lacks other structural effects. The actor-oriented model is based on
a model of actors changing their outgoing ties as a consequence of myopic stochastic
optimization of an objective function. This framework offers the flexibility to represent
a variety of network effects. An estimation algorithm is treated, based on a Markov
chain Monte Carlo (MCMC) implementation of the method of moments.

11.1 Some Basic Ideas About Longitudinal Social Network Data

The statistical modeling of social networks is difficult because of the complicated
dependence structures of the processes underlying their genesis and development. One
might think that the statistical modeling of longitudinal data on social networks is more
difficult than modeling single observations of social networks. It is plausible, however,
that in many cases, the rules defining the dynamics of network evolution are simpler
than the rules required to describe a single network because a network is usually the
result of a complex and untraceable history. This chapter on the statistical modeling
of network dynamics focuses on models assuming that the network is observed at a
number of discrete time points, but there is an unobserved network evolution going
on between these time points. The first observation of the network is not modeled but
regarded as given, so the history leading to this network is disregarded in the model
construction. Hopefully, this will provide a better insight into the rules of network
evolution than modeling the first network observation. Further, it is not assumed that the
network process is in a steady state. Equilibrium assumptions are mostly unwarranted
for observations on network processes, and making such assumptions could lead to
biased conclusions.

215
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The treatment of methods for analyzing longitudinal network data presupposes that
such data are available. It is evident that the collection of such data requires even more
effort than the collection of network data on a single moment because, in most types
of network data collection, the researcher will have to retain the collaboration of the
network members.

As data, we suppose that we have M repeated observations on a network with the
same set of g actors. The observed networks are represented as digraphs with adjacency
matrices X(t,,) = (Xij(tm)) form =1,..., M, where i and j range from 1 to g. The
variable X;;(¢) indicates whether at time  there is a tie from i to j (value 1) or not (value
0). The diagonal of the adjacency matrix is defined to be 0, X;;(¢) = O for all i. The
number M of repeated observations must be at least 2.

Various models have been proposed for the statistical analysis of longitudinal social
network data. Earlier reviews were given by Wasserman (1978), Frank (1991), and
Snijders (1995). This chapter does not provide a general review of this literature, but
focuses on models based on the assumption of continuous-time network evolution. The
motivation for this choice is the following.

When thinking of how to construct a statistical model for the network dynamics that
lead to the change from X(#1) to X(#,), then on to X(#3), and so on, a first question is
whether these changes are represented by one “jump,” or are the result of a series of
small changes. Itis a natural idea to conceive of network dynamics as not being bound in
a special way to the observation moments, but as a more or less continuous process that
feeds back on itself because at each moment the current network structure is an important
determinant of the likelihood of the changes that might occur next. The idea of regarding
the dynamics of social phenomena as being the result of a continuous-time process, even
though observations are made at discrete time points, was already proposed by Coleman
(1964). Several methods have been proposed for analyzing repeated observations on
social networks using models where changes are made in discrete steps from one
observation moment to the next (Katz and Proctor 1959; Wasserman 1987; Wasserman
and lacobucci 1988; Sanil, Banks, and Carley 1994; Banks and Carley 1996; Robins
and Pattison 2001). This chapter does not treat these models, but focuses on models that
assume that the network X(¢) is evolving in continuous time, although being observed
only at the discrete moments t,,, m = 1,..., M.

In this class of models, the ones most directly amenable to statistical analysis are
those postulating that the network X(¢) is a continuous-time Markov chain. For cat-
egorical nonnetwork data, such models were proposed by Coleman (1964) and the
statistical treatment was elaborated by Kalbfleisch and Lawless (1985). Modeling the
evolution of network data using continuous-time Markov chains was proposed by
Holland and Leinhardt (1977a, 1977b) and Wasserman (1977). The first authors pro-
posed the principle, but did not work it out in practical detail. Wasserman (1977, 1979,
1980), followed by Leenders (1995a), elaborated the so-called reciprocity model, which
is a continuous-time Markov model that represents only reciprocity as a network effect.
Leenders (1995a, 1996) also included similarity effects (as a function of covariates)
in this model. Snijders and van Duijn (1997) and Snijders (2001) elaborated the so-
called stochastic actor-oriented model, which is a model for network dynamics that can
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include arbitrary network effects. This chapter treats some earlier models, such as the
reciprocity model, and focuses on the actor-oriented model.

11.2 Descriptive Statistics

Any empirical analysis of longitudinal network data should start by making a basic
data description in the form of making graphs of the networks or plotting some basic
network statistics over time. These can include the density or average degree, degree
variance, number of isolates, number of components of given sizes, parameters for
reciprocity, transitivity, segmentation, and so on.

Next to sequences of statistics for the M observed networks, it is instructive to give
a description of the number and types of changes that occurred. This can be done in
increasing stages of structural complexity. The simplest stage is given by the change
counts, indicating how many tie variables changed from % to k from observation moment
tm 1O Ly,

Nir(m) = ¢{(i, j) | Xij(tw) = h, Xij(tmy1) = k} (IL1)

for h, k = 0, 1, where §A denotes the number of elements of the set A, and the corre-
sponding change rates

Np1(m)
Npo(m) + Npi(m)

rp(m) = (11.2)

This idea can also be applied at the dyadic level (see Wasserman 1980, Table 5). The
added complication here is that there are two ways in which a dyad can be asymmetric
at two consecutive observation moments: it can remain the same, or the two tie variables
can interchange their values. Triadic extensions are also possible.

11.3 Example

As an example, the network of thirty-two freshmen students is used that was studied
by Van de Bunt (1999) and also by van de Bunt, van Duijn, and Snijders (1999).
These references give more detailed background information on this data set. It was
collected in 1994 to 1995. The network consists of thirty-two freshmen students in
the same discipline at a university in The Netherlands, who answered a questionnaire
with sociometric (and other) questions at seven times points during the academic year,
coded 1y to ts. Times 1y to t4 are spaced 3 weeks apart, 74 to t, 6 weeks. This data set
is distributed with the SIENA program (Snijders and Huisman 2003). The set of all
students majoring in this discipline started with fifty-six persons. A number of them
stopped with the university studies during the freshmen year and were deleted from
this data set. Of the remaining persons, there were thirty-two who responded to most
of the questionnaires; they form the network analyzed here. The relation studied here
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Table 11.3.1. Basic Descriptives

Time to h 12} t3 ty t5 te

Average degree 0.19 3.78 4.63 5.60 6.95 7.73 6.96
Mutuality index 0.67 0.66 0.67 0.64 0.66 0.74 0.71
Transitivity index - 0.44 0.51 0.44 0.45 0.56 0.46
Fraction missing 0.00 0.06 0.09 0.16 0.19 0.04 0.22

is defined as a “friendly relation”; the precise definition can be found in van de Bunt
(1999).

Figures of the changing network are not presented because these are not very illumi-
nating due to the large numbers of arcs. Table 11.3.1 presents some descriptive statistics.
Each statistic is calculated on the basis of all available data required for calculating this
statistic.

The average degree, starting at virtually nil, rises rapidly to a value of about 7. The
mutuality index (defined as the fraction of ties reciprocated) is remarkably constant at
almost 0.7. The transitivity index (defined as the number of transitive triplets divided
by the number of potentially transitive triplets) is also rather constant at almost 0.5.

The change counts (11.1) are indicated in Table 11.3.2. The total number of changes
between consecutive observation moments is 104 in the first period, and 51 to 80 in all
further periods.

11.4 Continuous-Time Markov Chains

This section introduces the basics of continous-time Markov chains. These stochas-
tic processes are treated extensively in textbooks such as Taylor and Karlin (1998)
and Norris (1997). Introductions aiming specifically at social networks are given by
Leenders (1995b) and Wasserman (1979, 1980).

This section is phrased in terms of an arbitrary finite outcome space X, which
in the case of network dynamics is the set of all directed graphs — equivalently, all
adjacency matrices. The observation times #; to f); are embedded in an interval of time

Table 11.3.2. Change Frequencies Ny (m) for the Periods t,, — t,.1 (Only for Arc Variables
Available at t,, and t,,, 1)

m
h, k 0 1 2 3 4 5

0to0 820 716 590 530 546 546
Oto1 104 43 47 31 50 35
1to0 0 22 13 20 30 30

ltol 6 87 94 98 140 130
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points 7 = [#,ty] = {t € R | f; <t < ty}. Itis assumed that changes can take place
unobserved between the observation moments.

Consider a stochastic process {X(¢) | t € 7} with a finite outcome space X, where
the time parameter ¢ assumes values in a bounded or unbounded interval 7 C IR. Such
a stochastic process is a Markov process or Markov chain if for any time 7, € 7,
the conditional distribution of the future, {X ()|t > 1,} given the present and the past,
{X()|t <t,},1safunction only of the present, X (z,). This implies that for any possible
outcome X € &, and for any pair of time points #, < #,

P{X(t,) = ¥ | X(t) = x(t) forall t < 1,,}
=P{X(#) =X | X(t,) = x(1)}. (11.3)

The Markov chain is said to have a stationary transition distribution if the probability
(11.3) depends on the time points 7, and f, only as a function of the time elapsed in
between, f, — t,. It can be proven that if {X(¢)|¢ € 7} is a continuous-time Markov
chain with stationary transition distribution, then there exists a function ¢ : X> — R
such that

P{X(t+dt)=5%| X(t) = x}

qx, %) = }iltlir(l) T for X # x
. PIXt+dt)y=x|X@t)=x}—1
q(x,x) = }lltrir(l) 7 . (11.4)

This function g is called the intensity matrix or the infinitesimal generator. The interpre-
tation is that for any given value x, if X(¢) = x at some moment ¢, then the probability
that the process changes to the new value X in the short time interval from ¢ to ¢ + dt is
approximately g(x, X¥) dt. The element g (x, X) is referred to as the rate at which x tends
to change into ¥ (for x # ¥). More generally, an event is said to happen at a rate 7, if
the probability that it happens in a very short time interval (¢, t 4 dt) is approximately
equal to rdt. Note that the diagonal elements g (x, x) are negative and are defined such
that the row sums of the matrix Q are 0.

More understanding of what the intensity matrix means for the distribution of X(z)
can be obtained by considering how the distribution could be simulated. A process X (¢)
for t > 1y with this distribution can be simulated as follows, given the current value
X(ty) = x:

1. Generate a random variable D with the exponential distribution with param-
eter —g(x, x) (it may be noted that the expected value of this distribution is
_1/q (.X, X))

2. Choose a random value Y € X', with probabilities

pry =5} = IV p g Py = x) =0,
—q(x, x)
3. Define X(¢) =xforty <t <ty+ Dand X(tp + D) =Y.
4. Setty:=ty+ D and x := Y and continue with step 1.
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The simultaneous distribution of the Markov chain {X(¢) | ¢ > t,} with stationary
transition distribution is determined completely by the probability distribution of the
initial value X(z,), together with the intensity matrix. The transition matrix

Pty — 1) = (P{X(1p) = % | X(ta) = XD zen (11.5)
must satisfy
dP(t)— QP() (11.6)
T = . .
The solution to this system of differential equations is given by
P(t)=¢'?, (11.7)
where Q is the matrix with elements ¢(x, X¥) and the matrix exponential is defined by

Oothh
10 _
oy L

h=0

If the Markov chain has a stationary transition distribution, and starting from each
state x it is possible (with a positive probability) to reach each other state ¥, then the
random process X (¢) has a unique limiting distribution. Representing this distribution
by the probability vector & with elements 7, = P{X = x}, this means that

tlim P{X#)=X%| X(0)=x}=m; forallX,x e X.
—00
This is also the stationary distribution in the sense that

7' P(t)=n" forallt

[i.e., if the initial probability distribution is 7, then this is the distribution of X(¢) for
all 7]. It can be shown that the stationary distribution also satisfies

7'Q =0.

It can be hard to find this limiting distribution for a given intensity matrix. Sometimes,
it can be found by checking a convenient sufficient condition for stationarity, the so-
called detailed balance condition. The probability vector 7 and the intensity matrix Q
are said to be in detailed balance if

Ty q(x,X) =mz q(%,x) forall X # x. (11.8)

This can be understood as follows: assume a mass distribution over the vertex set X’
and a flow of this mass between the vertices; if there is a mass 7, at vertex x, then the
rate of flow is , g(x, X) from x to any X # x. Then (11.8) indicates that as much mass
flows directly from X to x as directly from x to X, so the flow keeps the mass distribution
unchanged. If each state ¥ is (directly or indirectly) reachable from each other state x and
the detailed balance equation holds, then indeed 7 is the unique stationary distribution.

In this chapter, this theory is applied to stochastic processes where X is the set of
all digraphs, or adjacency matrices, with elements denoted by x. The models discussed
here have the property that, at most, one tie changes at any time point (a model where
several ties can change simultaneously is the party model of Mayer 1984). All transition
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Figure 11.5.1. Transition rates in the independent
arcs model.

rates g (X, X) for adjacency matrices x and X differing in two or more elements then are
0. A more convenient notation for such models is obtained by working with the rate at
which X;;(¢) changes to its opposite (0 to 1, or 1 to 0), defined by

qij(x) = q(x, X) (11.9)
where

Xhk if (h, k) # (i, J)

MEN 1 —xy itk =G )

The value g;;(x) can be interpreted as the propensity for the arc variable X;; to change
into its opposite (1 — X;;), given that the current state of the network is X = x.

11.5 A Simple Model: Independent Arcs

The simplest network model of this kind is the total independence model, in which all
arc variables X;;(¢) follow independent Markov processes (Figure 11.5.1). This may
be an uninteresting model for practical purposes, but it sometimes provides a useful
baseline because it allows explicit calculations. It is also a simple illustration of the
theory of the preceding section. For each arc variable separately, the model applies with
X = {0, 1}, and the rates at which the two states change into each other are denoted
)»() and )\1 .

The value X;; = 0 changes into 1 at a rate Ao, whereas the value 1 changes into 0 at
arate A;. The intensity matrix for the tie variables is equal to

(=2 o
o=(7 )
This means that the intensity matrix (11.9) for the entire adjacency matrix is given by

qij(x) Z)LX[,/' (1110)

The transition probabilities can be derived from (11.6) as follows. (These results are
also given in Taylor and Karlin 1998, pp. 362-364.)

Denote &,(t) = P{X;;(t) = 1| X;;(0) = h}forh = 0, 1. The transition matrix (11.5)
is equal to

C1—a0) &0
P (’)_<1—sl(t> sm)'
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This implies that (11.6) can be written as
(1) = ko — (ho + ADE(1) (h=0,1).

This differential equation has the solution

&) =

Ao —exp(—Ag + A1(t +0))},
A0+k1{0 p(—Xo + A1 ( N}

where ¢ depends on the initial condition X;;(0). With the initial conditions &,(0) = &,
we obtain the solutions

Ao
§o(t) = " {1 —exp(—A41)},
+

1
&1(1) = o {Ao + A1 exp(=A41)},
+

where A, = Ao + A;. Note that this implies 0 < &y(7) < Ao/As+ < & (t) < 1. These
equations imply that, for all 7,

P{X;;(t) = 1] X;;(0) = 0} _ 50 M (11.11)
P{X;;(t) =01 X;;(0) = 1} 1—&@ A '

For t — oo, the probability that X;;(t) = 1 approaches the limit Ao/A . irrespective
of the initial condition. The stationary probability vector 7 = (A1 /Ay, Ao/Ay) satisfies
the detailed balance equations (11.8), given here by

7T0)\.() =7T|)\.].

Maximum likelihood estimators for the parameters in this model are discussed by
Snijders and van Duijn (1997).

11.6 The Reciprocity Model

The reciprocity model (Wasserman 1977, 1979, 1980) is a continuous-time Markov
chain model for directed graphs where all dyads (X;;(¢), X ;;(t)) are independent and
have the same transition distribution, but the arc variables within the dyad are dependent.
This model can be regarded as a Markov chain for the dyads, with outcome space
X = {00, 01, 10, 11}. The transition rates can be expressed by

q,’j(X)=)\.h—|—pLhin forh:xij. (11.12)

These transition rates are summarized in Figure 11.6.2.
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Figure 11.6.2. Transition rates between dyads.

The stationary distribution for the dyads can be derived by solving the detailed
balance equations. It is given by

— A(Ay + p1) ’
ro(ho + o) + (A1 + 1)(2Ao + A1)
S Ao(ro + (o) , (11.13)
ro(ho + o) + (A1 + 11)(2Ao + A1)
mor =m0 = 5(1 — 700 — 7T11) (11.14)
ro(Ar + p1)

= 0o + 10) + (M1 + 21)2Ro + A1)

(cf. Wasserman 1979; Snijders 1999).

The transition matrix P(¢) has a rather complicated form. It was derived by
Wasserman (1977) (whose result contains a minor error) and Leenders (1995a) from
(11.7) by an eigenvalue decomposition of Q, and by Snijders (1999) by solving the
differential equation system (11.6). The reader is referred to the latter two publications
for the precise expressions.

This model can be extended by making the change rates (11.12) dependent on
covariates. This was done by Leenders (1995a, 1996), who combined the effects of
reciprocity and covariate-dependent similarity. However, such extensions are limited
by the fact that the reciprocity model postulates that all dyads are independent, which
is a severe restriction that runs counter to many basic ideas of social network analysis.

11.7 The Popularity Model

A model in which transition rates depend on in-degrees was proposed by Wasserman
(1977, 1980). He called this the popularity model because it expresses that the popularity
of actors, as measured by their in-degrees, is determined endogenously by the network
evolution. The transition rates of this popularity model are given by

qij(xX) = Ay + 1y x4 forh = x;j. (11.15)

A mathematical equivalent model is the expansiveness model, in which the transition
rates depend on the out-degrees (see Wasserman 1977). Under the popularity model,
the columns of the adjacency matrix follow independent stochastic processes. The in-
degrees X ;(r) themselves follow so-called birth-and-death processes, which property
was exploited by Wasserman (1980) to derive the stationary distribution.
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11.8 Actor-Oriented Models

In models for network dynamics that represent the effects of current network structure on
the ongoing changes in the network, the probabilities of relational changes must depend
on potentially the entire network structure. This generalizes the models presented in the
preceding two sections, where only one effect (reciprocity or popularity, respectively)
is considered, isolated from other effects. This more encompassing approach may be
regarded as a kind of macro-to-micro modeling, where the entire network is the macro
level and where the micro level is the single tie, or the collection of ties of a single actor.
The model will be a stochastic process on the set of all digraphs, which from now on
will be the set denoted by &X'.

An actor-oriented approach to this type of modeling was proposed by Snijders (1995,
1996), Snijders and van Duijn (1997), and Snijders (2001). The elements of the actor-
oriented approach are listed in Snijders (1996, Section 2). Some applications were
presented by van de Bunt et al. (1999), de Nooy (2002), and van Duijn et al. (2003).
This actor orientation means that, for each change in the network, the perspective is
taken of the actor whose tie is changing. It is assumed that actor i controls the set of
outgoing tie variables (X1, ..., X,g), collected in the ith row of the adjacency matrix.
The network changes only by one tie at a time. Such a change is called a ministep. The
moment when actor i changes one of his ties, and the particular change that he makes, can
depend on the network structure and on attributes represented by observed covariates.
The “moment when” is stochastically determined in the model by the rate function, and
“the particular change to make” by the objective function and the gratification function.
First, we discuss the roles of these three ingredients of the model; second, we discuss
how they can be specified.

(A) Rate Function

The rate function indicates how frequently the actors make ministeps:

The Rate Function ).;(x) for actor i is the rate at which changes occur in this actor’s
outgoing ties.

The rate function can be formally defined by

.1 .
ri(x) = (111&% ’ P{Xij(t +dt) # X;j(t) forsome j € {1,..., g} | X(¥) = x}.
(11.16)

The simplest specification of the rate of change of the network is that all actors have
the same rate of change p of their ties. This means that for each actor, the probability
that this actor makes a ministep in the short time interval (¢, ¢ 4 dt) is approximately
pdt, and in a short time interval there is independence between the actors in whether
they take a ministep. Then A;(x) = p for all i. The waiting times D between successive
ministeps of each given actor then have the exponential distribution with probability
density function pe=*? for d > 0, and the expected total number of ministeps made
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by all actors between time points ¢, and 1, is go(f, — t,). As is intuitively clear, this
expected number is proportional to the total number of actors g, proportional to the rate
of change p, and proportional to the time length #, — 7,.

Sometimes it can be theoretically or empirically plausible to let these change rates
differ between actors as a function of covariates, or to let them depend dynamically on
network structure. This is elaborated in Section 11.9(B).

(B) Objective Function

The basic idea of the actor-oriented model is that, when actor i has the occasion to
make a change in his or her outgoing tie variables (X;1, ..., X;,), this actor selects the
change that gives the greatest increase in the so-called objective function plus a random
term.

The Objective Function f;(x) of actor i is the value attached by this actor to the
network configuration X.

Thus, the objective function represents the preference distribution of the actor over the
set X of all possible networks. It will be assumed that if there are differences between
actors in their objective functions, these can be identified on the basis of covariates; in
other words, the objective function does not contain unknown actor-specific parameters,
but it can contain known actor-specific covariates.

When actor i makes a change in (X;y, ..., X;¢) (i.e., makes a ministep), he or she
changes how he or she is tied to exactly one of the g — 1 other actors. From one of the
X = Z j X;; other actors to whom i is tied, he or she could withdraw the tie; or to
one of the g — 1 — X, others to whom he or she is not tied, he or she could extend
a tie. Given that the present network is denoted by x = X(#), the new network that
would result by changing the single tie variable x;; into its opposite 1 — x;; is denoted
X(i ~ j) (to be interpreted as “the digraph obtained from x when i changes the tie
variable to ;). The choice is modeled as follows. Denote by U(j) a random variable
that indicates the unexplained, or residual, part of the attraction for i toj. These U () are
assumed to be random variables distributed symmetrically about 0 and independently
generated for each new ministep (this is left implicit in the notation). The actor chooses
to change his or her tie variable with that other actor j (j # i) for whom the value of

Jix@@ ~ j)+U()

is highest. This can be regarded as a myopic stochastic optimization rule: myopic be-
cause only the situation obtained immediately after the ministep is considered, stochas-
tic because the unexplained part is modeled by means of a random variable.

A convenient and traditional choice for the distribution of U(j) is the type 1 extreme
value distribution or Gumbel distribution with mean 0 and scale parameter 1 (Maddala
1983). Under this assumption, the probability that i chooses to change x;; for any
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particular j, given that i makes some change, is given by

exp(fi(x(i ~ j)))
> r 1 hi XP(fi(X( ~> h)))

pij(x) = (J #1), (1L.17)

which can also be written as
exp(fi(x(i ~ j)) — fi(x))
> XPUfi (X~ 1)) — fi(x))

This probability is also used in multinomial logistic regression, cf. Maddala (1983:
p. 60).

pij(x) = (11.18)

(C) Gratification Function

Sometimes the order in which changes could occur makes a difference for the desirabil-
ity of the states of the network. For example, if reciprocated ties are generally preferred
over nonreciprocated ties, it is possible that the difference in attractiveness between a
reciprocated and a nonreciprocated tie is greater for canceling an existing tie than for
extending a new tie (i.e., for actor i the existence of the tie from j to i will make it more
attractive to extend the reciprocating tie from i to j if it did not already exist, but if the
latter tie does exist, the reciprocation will have an even stronger effect, making it very
unattractive to withdraw the reciprocated tie from i to j). Such a difference between
creating and canceling ties cannot be represented by the objective function. For this
purpose, the gratification function can be used as another model ingredient.

The Gratification Function g;(x, j) of actor i is the value attached by this actor (in
addition to what follows from the objective function) to the act of changing the tie
variable x;; from i to j, given the current network configuration x.

Thus, the gratification function represents the gratification to i obtained — in addition to
the change in objective function — when changing the current network x into x(i ~> j).

When a gratification function is included in the model, actor i chooses to change x;;
for that other actor j for whom

JixG@ ~ j) + gi(x, ))+U()

is largest. Under the assumption of the Gumbel distribution for the residuals U (), this
leads to the conditional choice probabilities

exp(fix(i ~ ) + &%, J))
S eXPfi(X(i ~> 1)) + gi(x, h))
Again, it can be convenient to subtract f;(x) within the exponential function, cf. the

difference between (11.18) and (11.17).
The dissolution and creation of ties work in precisely opposite ways if

pij(x) = (J #1). (11.19)

gi(X(i ~ ), j) = —g&i(X, j);
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note that g;(x(i ~» j), j) is the gratification obtained for changing x(i ~» j) back into
x. If this condition holds there is no need for a gratification function, because its effects
could be represented equally well by the objective function. The gratification function
will usually be a sum of terms, some of which contain the factor (1 — x;;), whereas
the others contain the factor x;;. The first-mentioned terms are active for creating a tie
(where initially x;; = 0), whereas the others are active for dissolution of a tie (where
initially x;; = 1). Such effects cannot be represented by the objective function. The
specification is discussed further in Section 11.9(c).

(D) Intensity Matrix

The ingredients of the actor-oriented model, described previously, define a continuous-
time Markov chain on the space X of all digraphs on this set of g actors.
The intensity matrix in the representation (11.9) is given by

1
g() = lim —P(X( +d1) =x(i ~ ]) | X() =x)

= Ai(X) pij(X), (11.20)

where p;;(x) is given by (11.19), or by (11.17) if there is no gratification function.
Expression (11.20) is the rate at which actor i makes ministeps, multiplied by the
probability that, if he or she makes a ministep, he or she changes the arc variable X;;.

This Markov chain can be simulated by repeating the following procedure. Start at
time ¢ with digraph x.

1. Define
8
A () = hi(x)
i=1

and let At be arandom variable with the exponential distribution with parameter
}\,+(X).

2. The actor i who makes the ministep is chosen randomly with probabilities
Ai (X) /A4 (X).

3. Given this i, choose actor j randomly with probabilities (11.19).

4. Now change 7 to ¢ + At and change x;; to (1 — x;;).

11.9 Specification of the Actor-Oriented Model

The principles explained previously have to be filled in with a specific model for the
objective, rate, and gratification functions. These functions will depend on unknown
parameters like in any statistical model, which are to be estimated from the data. When
modeling longitudinal network data by actor-oriented models, it will often be useful
to start by fitting models with only an objective function (i.e., where the rate function
is constant and the gratification function is nil). In a later stage, nonconstant rate and
gratification functions may be brought into play. At the end of Section 11.9(B), some
instances are discussed where it may be advisable to specify a nonconstant rate function
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A

Figure 11.9.3. Transitive triplet.

right from the start of modeling. A wide range of specifications could be given for the
three functions. In the next section, specifications are given — most of which were
proposed in Snijders (2001) and that are implemented in the SIENA software (Snijders
and Huisman 2003).

(A) Objective Function

The objective function is represented as a weighted sum dependent on a parameter

13 :(.313"'7/3L)s
L
[i(B.X) = Bisik(x). (11.21)
k=1

The functions s;;(x) represent meaningful aspects of the network, as seen from the
viewpoint of actor i. Some potential functions s;;(x) are the following:

1. Density effect, defined by the out-degree
si1(X) = xiq = inj-
J
2. Reciprocity effect, defined by the number of reciprocated ties

8i2(X) = Xj(r) = Z Xij Xji-
j

3. Transitivity effect, defined by the number of transitive patterns in i’s ties,
as indicated in Figure 11.9.3. A transitive triplet for actor i is an ordered
pairs of actors (j, #) to both of whom i is tied, and j is also tied to h. The
transitivity effect is given by

5i3(x) = inj Xin Xjh.
i

4. Balance, defined by the similarity between the outgoing ties of actor i and the
outgoing ties of the other actors j to whom i is tied,
g
xij Y (bo— | xin = xj ), (11.22)

g
Jj=1 h=1
h#i,j

sia(X) =

where by is a constant included to reduce the correlation between this effect and
the density effect. Given that the density effect is included in the model, the
value of by only amounts to a reparametrization of the model (viz., a different
value for the parameter of the density effect). The proposed value is such that
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it yields a zero average for (11.22) over the first M — 1 observed networks

X(t,)m =1,..., M — 1) and over all actors, and is given by
1 M—-1 g g
bO = | xih(tm) - x'h(tm) | .
(M —1)g(g —1)(g —2) = ,-;1 ,12:1: /
h#i,j

5. Number of geodesic distances two effect, or indirect relations effect, defined by
the number of actors to whom i is indirectly tied (through one intermediary, i.e.,
at geodesic distance 2),

sis(x) = 8{j | x;; = 0, max;(xip x5j) > 0}.

6. Popularity effect, defined by the sum of the in-degrees of the others to whom i

is tied,
Si6(X) = E Xij Xyj = E Xij E ) Xhj
J J

7. Activity effect, defined by the sum of the out-degrees of the others to whom i is
tied, which is equal to the number of actors 2 who can be reached from i by a
pathi — j — h of length two,

si7(X) = E Xij Xj+ = E xijE Xjp-
J J h

The conceptual interpretations of effects 3 to 5 are closely related, and some further
discussion may be helpful for their explanation. The formula for balance is motivated
by writing it as the sum of centered similarities between i and those to whom he or she
is tied. The similarity between the ties of actors i and j to the same third actor 4 can
be expressed as (1— | x;;, — x;jp, |), which is 1 if x;, = x;, and O otherwise. Formula
(11.22) can be written as

8
inj (ri;j(x) — 7),
j=l1

where r;; is the number of equal outgoing tie variables of i and j,

8
) = > (=] xin—xj ) (11.23)
h=1

h#i,j
1 M-1

8 8
" T D =2 A 2y 2 O

m=11i,j=1 h=1
hi, j

[The average 7 is not calculated for the current network x, but over all M — 1 networks
that figure as initial observations for time periods (¢,,, ty+1)-]

It is more customary in network analysis to base balance on a similarity measure
defined by the correlation or Euclidean distance between rows and columns of the
adjacency matrix (cf. Wasserman and Faust 1994). This would be possible here, too,
but the number of matches is used because correlations or Euclidean distances are not
very appropriate measures for vectors with only 0 and 1 entries.
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Positive transitivity and balance effects, and negative number of distances two effects,
all represent some form of network closure. This can be seen from the fact that local
maxima for these effects are achieved by networks consisting of several disconnected
complete subgraphs, which are maximally closed networks, where a local maximum is
defined as a digraph for which the said function decreases whenever one arc is shifted
to another location (which keeps the density constant). These three effects differ in
the precise representation of network closure. To glean some more insight into their
differences, it may be instructive to write them in ways that exhibit their similarities.
The number of transitive triplets can be written as

si3(x) = E Xij E Xih Xnj»
J )
and the number of distances two as

51500 = D (1 = xij) max(xip 1),
J
The structure of these two functions is similar, a sum over other actors j of a variable
involving third actors h, with the following differences. First, the factor x;; in the
definition of s;3(x) implies that the summation over other actors j is made only over
those to whom i has a tie, whereas the factor (1 — x;;) in the definition of s;5(x) means
that values are summed over those j to whom i does not have a tie — this accounts for the
fact that s;3(x) indicates a positive and s;5(x) a negative network closure effect. Second,
for the third actors /4 in s;3(X), the number of actors h is counted through whom there is
a two-path {i — h, h — j}, whereas in s;5(x) only the existence of at least one such
two-path counts.
The basic component of the balance function is

g
inj rij(x) = Z Xij (14 2x00 X0 — Xin — Xjn);
J j.h=1
J#h
some calculations show that this is equal to
253(X) + 511 (x)(g — 1 — 5i1(X)) — 5i7(X).

This demonstrates that the balance effect includes the number of transitive triplets
and, in addition, a quadratic function of the out-degree s;;(x), which is maximal if the
out-degree is equal to (g — 1)/2, and the negative activity effect.

Nonlinear functions of the effects s;;(x) could also be included. For example, to
represent more complicated effects of the out-degrees, one or more of the following
could be used in addition to the density effect.

8. Out-degree truncated at c, where c is some constant, defined by
sig(X) = max(x;, ¢).
9. Square root out-degree — ¢ x out-degree, defined by

5i9(X) = /Xi1 — CXiq,
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where c is a constant chosen by convenience to diminish the collinearity between
this and the density effect.

10. Squared (out-degree — c), defined by
sito(®) = (xir — ),

where again c is a constant chosen to diminish the collinearity between this and
the density effect.

The squared out-degree has a graph-theoretic interpretation, which can be seen as
follows. The number of two-stars outgoing from vertex i is

g
% Z Xij Xin = (x,;)’
Jj.h=1
J#h
aquadratic function of the out-degree x; . Therefore, including as effects the out-degree
and the squared out-degree of actor i is equivalent to including as effects the out-degree
and the number of outgoing two-stars of this actor.
When covariates are available, the functions s;;(x) can be dependent on them. For
network data, a distinction should be made between actor-bound covariates v; and
dyadic covariates w;;. The main effect for a dyadic covariate w;; is defined as follows.

11. Main effect of W (centered), defined by the sum of the values of w;; for all others
to whom i is tied,

sit(x) = inj (w;; —w),
J

where w is the mean value of w;;.
For each actor-dependent covariate V the following three effects can be considered:

12. V-related popularity, defined by the sum of the covariate over all actors to whom
iis tied,

si12(X) = inj v;.
J

13. V-related activity, defined by i’s out-degree weighted by his or her covariate
value,

5i13(X) = v; Xiy

14. V-related dissimilarity, defined by the sum of absolute covariate differences
between i and the others to whom he or she is tied,

si14(X) = inj |vi—v;|.
J

Of course actor-dependent covariates can be represented by dyadic covariates (e.g., the
three preceding effects can be represented, respectively, by main effects of the dyadic
covariates W;; = V;j, Wij = Vj, and Wi =| Vi —V; |)
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(B) Rate Function

The time scale at which networks change may well be quite different from the physical
time scale of clocks. Therefore, physical time elapsed between observations will usually
have a tenuous relation with the amount of change between observed networks. If there
are more than two observation moments, a natural first specification is to treat the rate
of change within each period (¢,,, t,,+1) as a free parameter p,,, without an a priori
relation to the time difference (#,,+1 — t,,)-

When actor-bound covariates are available, they could have an effect on the rate of
change. An important class of examples is the following. In some cases, there are size
differences between actors associated with differences in change rate of their networks.
For example, in studies of relations between companies, big companies may have more
ties but also change ties more quickly than small companies. Another example is that
individuals who are socially very active may have many outgoing ties and may also
change these more quickly than those who are less active. Therefore, if some measure
of size or activity is available, this could be used as an explanatory variable both in the
objective function (as an activity effect) and in the rate function.

Because the rate of change is necessarily positive, a covariate must be related to the
rate function in such a way that the rate function will always stay positive. Often, it
will be suitable for this purpose to use an exponential link function (where this term is
used as in generalized nonlinear modeling; cf. McCullagh and Nelder 1989). The rate
function then can be defined as

pi(et, X) = pm €XPp (Zahvm>,
h

where the sum extends over one or more covariates Vj,.

The rate of change can also depend on positional characteristics of the actors. A
primary positional characteristic is the degree, which can be distinguished in the out-
degree, the in-degree, and the number of reciprocated ties

Xi(ry = E :xij Xji-
J

The latter statistic is called the reciprocated degree of actor i. The dependence of the
rate function on the degrees can be defined in such a way that the reciprocity model is
obtained as a special case of the actor-oriented model.

As the simplest case, consider the independent arcs model, where the intensity matrix
is defined by

ql] (X) = )\‘X,'j .

This model can be obtained as an actor-oriented model with the objective function
defined by only the density effect,

fi(B,x) = Brxiy

for which

Ji(B.x( ~ j)) = fi(B,X) = B1(1 — 2x;j).
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When the rate function is defined by
pl(g =1 —xipel +xipe ™), (11.24)

formulae (11.18) and (11.20) show that the intensity matrix is given by

qij(x) = pelt 172,

which can be reformulated to expression (11.10) by defining Ay = pef', 1| = pe#1.
This shows that this simple actor-oriented model is the same as the independent arcs
model.

More generally, Snijders and van Duijn (1997) demonstrated that the reciprocity
model is obtained as a special case of the actor-oriented model when the rate function
is a linear combination of the in-degree, out-degree, and reciprocated degree. This is a
motivation for letting the rate function depend on the degrees by a function of the form
(11.24) if only one of the three degree types is implicated, and by averages of such
functions in the case of dependence on two or three of the degree types. An alternative
would be, of course, to also use the exponential link function for the degrees.

Summarizing, it is proposed to define the rate function as a product of three factors

3i(p, @, X, m) = po {exp (D vhi)} i (11.25)
h

where the first factor represents the effect of the period, the second the effect of actor-
bound covariates, and the third the effect of actor position. This latter effect has the
form

Az = !x’;e‘“ + we‘“'} (11.26)
g—1 g—1

if the rate depends on the out-degrees, which can be replaced by the same function of

the in-degrees or reciprocated degrees. If the rate function depends on two or all three

types of degree, A;3 is defined as an average of such functions (cf. Snijders and van

Duijn 1997).

The discussion motivating formula (11.24) implies that the actor-oriented model
specified by the rate function (11.26) —a reparametrization of (11.24) —and an objective
function (11.21), including the density effect 8;x;,, subsumes as a special case the
independent arcs model (viz., for «; = —f, and B; = O for all k£ > 2). Because the
independent arcs model is suitable as an “empty”’ reference model, this gives a special
theoretical role to the rate function (11.26).

A model with a constant rate function (i.e., a rate function not depending on covari-
ates or positional characteristics) is usually easier to explain and can be simulated in a
simpler and therefore quicker way. The latter is an advantage given the time-consuming
algorithm for estimation. Therefore, in many cases it is advisable to start modeling us-
ing a constant rate function and to add the complexity of a nonconstant rate function at
a later stage. However, exceptions can occur, for example, if there are important size
differences between the actors in the network — which can be reflected by exogenously
given covariates but also by, for example, the out-degrees as an endogenous network
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characteristic. The effect of such a size measure on the rate of change can be so pre-
dominant that modeling can be biased, and even the convergence of the estimation
algorithm can be jeopardized, if such an indicator of size is not included as an effect
on the rate function.

(C) Gratification Function

The gratification function can also be defined conveniently as a weighted sum

H
&% ) =Y varijn(). (11.27)
h=1

Some possible functions 7;;;(x) are the following. Recall that when r;;;(x) includes
a factor x;; it refers to the gratification experienced for breaking a tie, whereas the
inclusion of a factor (1 — x;;) refers to gratification for creating a tie.

1. Breaking off a reciprocated tie:
riji(X) = Xij Xji.
2.  Number of indirect links for creating a new tie, representing the fact that indirect

links (at geodesic distance 2) to another actor may facilitate the creation of a
new tie:

Fijp(x) = (1 — x;) Zh XinXpj-
3. Effect of dyadic covariate W on breaking off a tie:

rij3(X) = Xij wjj.

11.10 MCMC Estimation

The network evolution model is too complicated for explicit calculation of probabilities
or expected values, but it can be simulated in a rather straighforward way. This is
exploited in the method for parameter estimation that was first proposed in Snijders
(1996) and elaborated for the present model in Snijders (2001). Here, we sketch only
the estimation method for the actor-oriented model with a constant rate function p,,
between #,, and 7,11, and without a gratification function. This sketch is restricted to
the so-called conditional estimation method. A more precise and general treatment,
background references, and a motivation of the estimation method are presented in
Snijders (2001).

(A) Method of Moments

The observed networks are denoted x°*(t,,), m = 1, ..., M. Suppose that the objective
function is given by (11.21),

L
F(B.X) = Brsik(x).
k=1
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Then greater values of f; are expected to lead for all actors i to higher values of the
statistics 5;x(X(t,,41)), when starting from a given preceding network x°*(t,,). The
principle of estimation is now to determine the parameters fS; in such a way that,
summed over i and m, the expected values of these statistics are equal to the observed
values. These observed target values are denoted

s = Z Zslk<x°b*(tm+1» (k=1,...,L) (11.28)

m=1 i=

and collected in the vector s°*. For historical reasons, this approach to estimation
by fitting “observed” to “expected” has in statistical theory the name of method of
moments (Bowman and Shenton 1985). Because in our case the expected values cannot
be calculated explicitly, they are estimated from simulations.

The simulations in the conditional estimation method run as follows.

1. For two digraphs x and y define their distance by

Ix —yll =Z|xij = yijl, (11.29)
i,j
and form =1, ..., M — 1 let ¢,, be the observed distances
cm = X (tng1) — X (@)l (11.30)

This method of estimation is called “conditional” because it conditions on these
values c¢,,.

2. Use the given parameter vector 8 = (8, ..., Br) and the fixed rate of change
Ai(x) = 1.

3. Make the following steps independently form =1,..., M — 1.
(a) Define the time (arbitrarily) as O and start with the initial network

X, (0) = x°P(2,,). (11.31)
(b) Simulate, as described in Section 11.8(D), the actor-oriented model X,,,(¢)
until the first time point, denoted R,,, where
X (R) = X (1)l = Cin.

4. Calculate for k =1, ..., L the generated statistics

- Z Zm(x (Rin)- (11.32)

m=1 i=

This simulation yields, for the input parameter vector 3, as output the random variables
(S, R)=(S1,...,SL, Ry, ..., Ry—1). Note that the time parameter within the mth
simulation runs from O to R,,,.
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For the estimation procedure, it is desired to find the vector ,[§ for which the expected
and observed vectors are the same,

£pS =™ (11.33)

This is called the moment equation.

(B) Robbins-Monro Procedure

The procedure of Snijders (200 1) for approximating the solution to the moment equation
is a variation of the Robbins-Monro (1951) algorithm. Textbooks on stochastic approx-
imation contain further explanations and particulars about such algorithms (e.g., Pflug
1996; Chen 2002). It is a stochastic iteration method. Denote the initial value by 8©.
This could be a value obtained from fitting an earlier, possibly simpler, model, or the
initial estimate mentioned in Section 11.13(B). This procedure consists of three phases.
The first phase is of a preliminary nature, with the purpose of roughly estimating the
sensitivity of the expected value of S; to variations in Bj; in the second phase, the
estimate is determined; and the third phase is for checking the resulting estimate and
calculating the standard errors.

1. From a relatively small number (we use n; = 7 + 3L) of simulations, estimate
the derivatives

0

EgS
ape Pt

in B = B© by the averages of the corresponding difference quotients, using
common random numbers. Denote by Dy the diagonal matrix with these esti-
mates as diagonal elements.
2. Setp® = B9 4 =0.5, ny = L +207.Repeatafew times (advice: four times)
the following procedure.
(a) Repeatforn =1, ..., ny:
for the current 8 simulate the model in the way indicated previously, and
denote the resulting value of S by S®. Update 8 by

BUHD = B —aDy! (5™ — 5

(b) Update 8 by

()] B (n)
pU == B

(c) Redefine a = a/2, ny = 2*3(n, — 200) + 200.

3. Define the estimate f as the last calculated value V. From a rather large (e.g.,
n3 = 500 or 1,000) number of simulations with 8 = B estimate the covari-
ance matrix > of S and, using common random numbers, the partial derivative
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matrix D with elements

J
dye = —E3S).
hk aﬂkﬂh

Finally, calculate the estimation covariance matrix by

cov(B)= D7 'E(D7"Y. (11.34)

Step 2(a) is called a subphase of phase 2. Note that from one subphase to the next the
initial value BV changes, the updating factor a decreases, and the number of simulations
n, increases.

The standard errors of the elements of 3 are the square roots of the diagonal elements
of cov(B) in (11.34). The simulations of phase 3 can also be used to check if, for this
value 8, the moment equation (11.33) is indeed approximately satisfied. The procedure
is an instance of MCMC estimation because it is based on Monte Carlo simulations
and the provisional estimates 8 in each subphase are a Markov chain.

The parameter a is called the gain parameter and can initially have any value between
0 and 1. Values closer to 0 will lead to a less mobile value for 8 and consequently
may require more steps for going from the starting value to a good final estimate, but
will lead to a more stable procedure. When the algorithm has come close to the solution
of the moment equation (which often happens rather quickly), the provisional values
B during the steps in 2(a) carry out a random dance about this solution. The reason
for taking the average in step 2(b) is that the average of such a collection of random
positions is a better estimate than the last value.

The parameters p,, are usually of minor substantive importance. They can be esti-
mated by

5 = Fn (11.35)
Pm = tm+l —Im .

where R,, is the average of the simulated time lengths for period m during phase 3.

(C) Missing Data

It is hard to collect complete network data at multiple repeated occasions, and therefore
it is of practical importance to have a reasonable procedure for dealing with missing
data. There can be several reasons why data are missing.

If the composition of the set of actors in the network has changed during the obser-
vation period, with some actors joining and/or some actors leaving the group, this can
be dealt with by reflecting this changing composition in an appropriate specification of
the network evolution model, where only the actors present at the given moment can
be involved in tie changes. This is elaborated by Huisman and Snijders (2003).

For other cases, when the composition of the network is constant and it is reasonable
to assume that the missing data are due to random nonresponse, the following procedure
is proposed. The procedure is designed to be simple and to minimize the influence of
the missing data on the results.
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1. For the initial networks (11.31) used in the simulations, missing arc variables
xi‘}bs(tm) are replaced by the value.

2. For the observed statistics s°® in (11.28), as well as for the simulated statistics
Sin (11.32) used in the estimation algorithm, an arc variable x;; is replaced by
0 if it is missing for at least one of the observations x°*(z,,) or X°*(#,,41).

This procedure is implemented in SIENA (Snijders and Huisman 2003) and used in the
example of Section 11.12.
11.11 Testing

Standard statistical theory about estimation by the method of moments (e.g., Bowman
and Shenton 1985) yields the expression given in (11.34) for the estimation covariance
matrix,

cov(B) = D7 's(D7YY.

If the parameter estimates j  are approximately normally distributed, the null hypoth-
esis that a single element of the parameter vector is zero,

H() . ,Bk = 0,
can be tested by the r-statistic
f = —PE (11.36)
s.e. (By)

in the standard normal distribution. The same procedure can be followed for the pa-
rameters oy of the rate function and y; of the gratification function.

It is plausible that the parameter estimates are indeed approximately normally dis-
tributed, but at this moment a proof is not available. It would be useful to conduct
simulation studies supporting the validity of this z-test.

11.12 Actor-Oriented Model Results for the Example

The example introduced in Section 11.3 was analyzed using SIENA version 1.92
(Snijders and Huisman 2003).

In addition to the structural effects, effects of three covariates were considered: gen-
der, program, and smoking. Gender and smoking are dummy variables coded 1 for
female and 2 for male and, respectively, 1 for smoking and 2 for nonsmoking. Program
is a numerical variable coded 2, 3, and 4 for the length in years of the program followed
by the students. Greater similarity on this variable indicates a greater opportunity for
interaction. All covariates are centered by SIENA (i.e., the mean is subtracted), includ-
ing the dissimilarity variables defined as (| v; — v; | — ¢), where c is the average of all
| vi —v; | values.



11.12 Actor-Oriented Model Results for the Example 239

Table 11.12.3. Parameter Estimates for Model with (Except Rate
Parameters) Constant Parameters Throughout Period t,—tg

Effect Estimate Standard error

Rate function

00 Rate parameter #y—t; 24.84 4.57
01 Rate parameter -, 5.43 0.93
02 Rate parameter #,—13 5.82 0.99
03 Rate parameter 1314 4.01 0.67
04 Rate parameter 74—t5 4.62 0.59
s Rate parameter #s—t¢ 3.77 0.53
a) Out-degree effect on rate 1.15 0.44
Objective function

Bi Density —1.26 0.09
B2 Reciprocity 242 0.25
B3 Number of distances 2 —0.85 0.08
Ba Gender popularity 0.45 0.13
Bs Gender activity —0.02 0.15
Be Gender dissimilarity —0.36 0.14
B Program dissimilarity —0.35 0.07
Bs Smoking dissimilarity —-0.33 0.09

Several models were fitted provisionally to explore which are the most important
effects. Next to the reciprocity effect, the distance two effect appeared to be the main
structural effect. Of the covariate effects, all three similarity effects and the gender ac-
tivity effect seemed important. To avoid misspecifying the gender effect in the objective
function, the gender popularity effect was also retained. The rate function seemed de-
pendent on the out-degrees. There seemed to be no strong gratification function effects.
Therefore, Table 11.12.3 presents the results for a model including these effects; for the
sake of simplicity, this model further assumes that — except for the constant factors in
the rate function — all parameters are constant throughout the period from ¢, to #,. For
the definition of the rate parameters, the numerical values of the time lengths 7,11 — t,,
are arbitrarily set equal to 1.0.

As a check on the assumption of constant parameters, Figure 11.12.4 gives the
parameter estimates obtained for each period separately, with approximate confidence
intervals extending two standard errors to either side of the parameter estimate. For the
period #p—t,—t, a common vector of parameters was estimated because the period 7y—t;,
due to the very sparse network at ¢y (average degree 0.2), led to unstable results. In view
of the widths of the error bars, the graphs in this figure show that there is no strong
evidence for parameter differences. Adding to the model of Table 11.12.3 the other two
network closure effects, transitivity and balance, led to nonsignificant #-tests for these
parameters, while this did not make the number of distances two effect disappear. Also,
the other effects mentioned in Section 1 1.9 were not significant. It can be concluded that
Table 11.12.3 may be regarded as a reasonable representation of the network evolution
in the whole observation period.
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B2

4.0
3.0
2.0
1.0
0123456 0123456 0123456

Effect out-degrees Density effect Reciprocity effect

on rate

0123456 0123456 0123456
Number of distances Gender popularity Gender activity
two effect effect effect
Bs Br Bs
0.5 0.0
0.0
-0.5
—0.5
-1.0 ~1.0
0123456 0123456 0123456
Gender dissimilarity Program dissimilarity Smoking dissimilarity
effect effect effect

Figure 11.12.4. Parameter estimates (with bars extending two standard errors
to either side) separately for periods fy—t,, tr—t3,13—14, t4—ts, and t5—ts. The

dotted lines indicate the corresponding parameter estimates from Table 11.12.3.
The upper left figure does not show bars because these would all extend outside
the figure.

The table shows, judging by the z-ratios of parameter estimate divided by standard
error, that there is strong evidence for the reciprocity effect and the network closure
effect expressed by a relatively low number of distances two. The fact that the latter
effect is significant and not the transitive triplets effect (see Figure 11.3) indicates
that what drives the network closure is not an extra attraction for individual i to other
individuals j based on the number of indirect connections i — h — j, but rather the
attraction to others j to whom i has at least one such indirect tie. The covariate effects
show that male students tend to attract more choices than females, and similarity on
gender, program, and smoking behavior leads to a higher likelihood of a tie; male and
female students do not differ in the propensity to make choices. An interpretation of
the numerical values of the parameter estimates is given in Section 11.13(C).
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11.13 Parameter Interpretation in the Actor-Oriented Model

The interpretation of the quantitative values of the parameters in the actor-oriented
model is given here with the help of some rough approximations. This section only
treats the model where the change rates are constant.

(A) Rate of Change Parameter

The expected number of changes per time unit during the period (¢,,, t,,+1) iS p, for
each actor. However, two subsequent changes in the same arc variable X;; will cancel
each other. In the unobserved interval between ¢, and ¢,,;, some of the changes will
therefore be reversals to the situation observed at #,,. This implies that for each actor,
the expected number of observed tie differences between the two observations will be
a bit less than p,,(t,,+1 — t,,). The extent to which it falls below the latter value will
be considerable when p,, is so large that the stochastic process is getting near to the
equilibrium distribution. Therefore, if p, (f,,+1 — t,;) is small compared with g — 1, the
expected value of the average number of changes observed per actor per unit of time,

—— IX 1) — X@) I, (11.37)
8 (tm+1 - tm)

where ||.|| is defined in (11.29), will be close to p,,. As p,;(ty+1 — t,,) increases, this
expected value will increase less than proportionately. The consequence is that p,, will
be close to (11.37) if this results in a small value of p,,(t,,+1 — t,), and the ratio of p,,
to (11.37) will increase as a function of the observed number of changes.

(B) Density Parameter

As a prologue to the interpretation of the other parameters, note that if all parameters
of the objective and gratification functions are zero and the rate of change is p, then
the variables X;;(¢) follow independent arc processes and (11.20) implies that the
parameters are Ao = A; = p/(g — 1). The limiting digraph distribution of this process
is the random graph with density 0.5. This is the “null process” of the actor-oriented
model.

For the interpretation of the parameter B, for the density effect s;1(x) = ) i Xijs
consider the actor-oriented model that contains just this effect, with constant change
rate p and without a gratification function. In this model, the rows (X;1(?), ..., X;,(?))
follow independent stochastic processes. The intensity matrix (11.20) is given by

peﬂl(l—zxij)

i (X) = .
4 %) (8 — 1 —xip)ePr + xjpe P
If the number g of actors is large and the out-degrees are small relative to the number
of actors, this can be roughly approximated by

e~ 2B xij

qij(x) ~ 1

s
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which is the intensity matrix of the independent arcs model for
_ p . pe_2 :31
g—1 ! g—1"

Using the results of Section 11.5, this implies that, for each actor i, the log-odds will
tend to 28; and the out-degree will for t — oo fluctuate about the asymptotic value

(g—Dro (g — e
Mo+ Ar 1 4e2h

Ao

(11.38)

For example, if 81 = 0, the out-degrees will tend to be (g — 1)/2 on average. (Symmetry
considerations imply that the latter result is true, even though in this case the out-degrees
are not small relative to g.) An exact analysis (not further discussed here) shows that
for t — oo and fixed g, the asymptotic expected value of X, is

Qg — 3?1 +1
2 4 2%
which is quite close to (11.38). All this suggests that, for the usual cases where network
densities are much lower than 0.5, a negative density parameter is expected.
Now suppose that this process is observed at times #; and #,. Then (11.2) and (11.11)
imply that

(11.39)

r

, (11.40)
l—l"o

the fraction of X;; = 0, which turned into 1, divided by the fraction of X;; = 1, which
turned into 0, is expected to be Ag/A; = e?#1. Therefore, an estimate for f; is one-half
the corresponding log odds,

llog( Noi (N10+N11)>
(No1 + Nyo) Nio ’

2
where Ny is defined as in (11.1).
This can be used for an initial estimate for the estimation method of Section 11.10(B)
in the case where M observations are available, even when more effects than just the
density are included. This initial estimate is given by

A lg(Z 3t Noi(m) Zy’zll(Nm(m)JrN“(m))) (11.41)

B, = =lo
: Y1 (Nor(m) + NooGm)) 3= Nio(m)

2
for the density effect and B « = 0 for all k£ > 2 (the other effects).

The interpretation of f; as approximately one-half the log-odds for the set of arc
variables X;; in an equilibrium situation, and the interpretation based on (11.40), do not
hold any more for models that include other effects in addition to the density effect. The
difference in interpretation will depend on the extent to which the parameters for the
other included effects lead to lower or higher overall densities of the network. However,
in many practical applications, we still observe negative estimates for B as a reflection
of the fact that the network density in a hypothetical equilibrium situation would be
clearly less than 0.5.
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Network Boundary Effects

What happens with these models if they are applied to networks for which the network
boundary has been defined in a rather generous way — so the number g of actors is
large and only a small fraction of the network members would be candidate relational
partners for any actor? Such a situation can be modeled by letting g tend to infinity,
while keeping the out-degrees X, finite. This is just the assumption made previously
for the approximation of the actor-oriented model by the independent arcs model. In
the approximating limiting distribution, the log-odds was found to tend to 23, which
corresponds for the out-degrees to a binomial distribution with a mean of

(g — De
1+ e2h

which tends to infinity with g. This is at odds with the assumption that the out-degrees
X, remain finite. However, if we let

1
Br=n— EIOg(g =1,

for some fixed number 7, the limiting distribution tends to the Poisson distribution with
mean ¢, which does remain finite and is independent of g.

This suggests that if we first consider a certain network with gy actors, and then
add further actors, most of which are not relevant to the actors present earlier, so the
number of ties from the earlier present actors to the new actors is quite small, we
should expect the density parameter slowly to decrease, by a term slightly less than

Iog ((g — 1)/(go — D).

(C) Other Parameters

Section 11.13(B) shows that, already for an objective function consisting only of the
density effect, quite crude approximations are required to make descriptive statements
about the probability distributions corresponding to certain parameter values, and these
descriptions do not take us very far.

Another way to obtain insight into the parameter values is to consider the implied
objective function, which indicates the preferences of the actors. For the example as
presented in Table 11.12.3, this function is

fl(X) = Z { —1.26 + 2.42)6(,‘,’ + 0.45U1j —0.36 | Vi — Vi
J

—035 | vy — vy | —033 | vy; — vy; | |

—0.85) (1 —x;)) max(xis ),
J

where (due to the centering applied) v;; = —0.25 for female and 0.75 for male students;
the program variable vy; has values —1.3, —0.3, and 0.7; and v3; = —0.6 for smokers
and 0.4 for nonsmokers. The contribution of the gender activity effect was set to 0.
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This expression can be brought into clearer shape by some recoding. Denote z;; = 1
for male and O for female students, s;;; = 1 if students i and j have the same gender
and O otherwise, the program similarity variable sy;; =2 — | v; — v; |, and s3;; = 1
if students i and j have the same smoking behavior and 0 otherwise. Then the s;,; are
similarity variables, equal to O in the case of the greatest dissimilarity. The objective
function then is

fl(X) = Z { —2.78 + 2.42)(?]',' + 0.85 m;lx(x,-h xhj) + 0.4521]' + 0.36S1,‘j
J

+ O.35S2,’j + 0~33S3ij }x,»j —0.85 thax(x,»h th).
J

The first two lines show that, for example, for a male actor i in program v,; = 2, creating
a new tie to a female student who did not already choose i as a friend, of different
smoking behavior and in program v,; = 4, to whom no length two path exists, leads to
an objective function loss of 2.78. The third line implies that for each student 4 chosen
by j who was not already chosen by any of i’s present friends, creating the new tie from
i to j leads to an additional loss for i of 0.85. Such students # would point to a lack
of embeddedness of j in i’s current network. However, if j already chose i as a friend,
while the other characteristics are as mentioned, the first two lines imply a loss of only
2.78 — 2.42 = 0.36. This loss is approximately nullified if the potential friend j has
the same smoking behavior or is in program v,; = 3. A very crude summary of the
preceding is that a tie to another student is worthwhile only if the tie is reciprocated
and there also is similarity on at least one variable.

The total contribution of gender for male students is nil for choosing a female friend
and 0.45 + 0.36 = 0.81 for choosing a male friend; for female students, it is 0.36 for
choosing a female and 0.45 for choosing a male friend. Thus, for female students the
value of a friendship with a male or a female other student is about the same, whereas
male students have a clear preference for friendships to other males.

The value of already being chosen by the other (equal to 2.42) is about thrice as
large as the value of already having at least one indirect tie to the other (0.85); the
latter value is about the same as the advantage, for males, that males have over females
(0.81) and slightly larger than the advantage of following the same program compared
with following the most different programs (2 x 0.35 = 0.70); and about two and a
half times the value of having the same smoking behavior (0.33).

11.14 Discussion

Longitudinal network data can yield important insights into social processes, but these
insights can be obtained only when using adequate models for data analysis. There
exist many models for network evolution that are not accompanied by methods for
statistical data analysis, and recently there has been quite a surge in publications about
such models stimulated, for example, by applications to the growth of the World Wide
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Web. However, to know how strong and how uncertain the conclusions are that we
may draw from empirical data, and to know the extent to which our models are, or are
not, supported by the empirical data — which will steer the development of extended
or new models in directions that are empirically fruitful — it is desirable to have a
statistical component in models for network evolution. The requirement of statistical
evaluation leads to parsimony and modesty in model building. The complexity of
network dynamics, in which everything seems to depend on everything else, implies
that even modest models are mathematically quite complex, as is demonstrated by the
models of this chapter. These models are (as far as I know) the first statistical models
for network evolution that allow a variety of endogenous network effects, of which the
various types of network closure effects (transitive triplets, number of pairs at a geodesic
distance equal to 2, balance, as presented in Section 11.9(A)) are primary examples. I
hope that the availability of these models and of the software to analyze data according to
these models (the SIENA program that is included in the StOCNET system, which can
be downloaded from http://stat.gamma.rug.nl/stocnet/; see Snijders
and Huisman 2003; and see also Chapter 13 in this volume) will be a stimulus for the
collection and statistical evaluation of longitudinal network data.

One of the assumptions in the actor-oriented model is that actors optimize myopi-
cally, considering only the situation to be obtained immediately after the next change
they are going to make. It would be theoretically interesting to elaborate models with
more farsighted actors, but the risk is that such models would be less robust and more
limited to specific applications than the simpler myopic models. The interpretation of
the myopic models is that the effects in the objective and gratification functions rep-
resent what the actors try to achieve in the short run, and do not directly reflect their
goals in the long run.

The further application of these models should also indicate the points where they
must be further extended and modified to provide a better fit to empirical data and to
be better aligned with the theoretical questions that researchers may have. The actor-
oriented approach explained here, and its implementation using the rate, objective, and
gratification functions, is quite flexible and open for extension by a variety of effects in
addition to those mentioned here, but other models can also be proposed. One example is
the alternative actor-oriented model of Snijders (2003) in which the focus is on giving
a good fit to the observed out-degrees. Another example would be a tie-oriented or
dyad-oriented model, driven not by changes made by optimizing actors, but by changes
in tie variables, which would be closely compatible with the exponential random graph
models proposed by Frank and Strauss (1986) and Wasserman and Pattison (1996) and
treated in Chapters 8 to 10 of this volume; these tie changes could be according to
Gibbs or Metropolis-Hastings steps as described in Snijders (2002). Testing goodness-
of-fit of network evolution models, which will give empirical indications for model
modifications and extensions, is the topic of Schweinberger (2004).

The approach presented here can also be extended by considering more complex
data sets. A multilevel approach to network evolution, in which the data is composed
of multiple parallel networks that evolve according to a similar model, but with dif-
ferent parameters, was initiated by Snijders and Baerveldt (2003), and may be further
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extended. As the mutual influence between networks and behavior is theoretically and
practically important, research is also under way about modeling the simultaneous
evolution of networks and individual behavior. The models presented in this chapter
have a rich potential for applications, but perhaps an even richer potential for further
extensions.
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Graphic Techniques for Exploring Social
Network Data

Linton C. Freeman

University of California, Irvine

Social network analysts study the structural patterning of the ties that link social actors.
For the most part, they seek to uncover two kinds of patterns: (1) those that reveal
subsets of actors that are organized into cohesive social groups, and (2) those that
reveal subsets of actors that occupy equivalent social positions, or roles.

To uncover patterns of those kinds, network analysts collect and examine data on
actor-to-actor ties. Such data record who is connected to whom and/or how closely
they are connected. Typically, the data are organized into square, N-dimensional, V-
by-N matrices, where the N rows and the N columns both refer to the social actors
being studied. Cell entries in these matrices indicate either the presence/absence or the
strength of some social relationship linking the row actor to the column actor. In this
chapter, we deal only with symmetric relationships where, given a connection from
actor i to actor j, actor j is also connected to i in the same way.

Network analysts sometimes use standard statistical procedures in examining their
actor-by-actor matrices. Although there are several statistical modeling tools that have
been developed specifically for network data (Holland and Leinhardt 1981; Wasserman
and Pattison 1996), these tools were designed primarily for testing hypotheses. They
do not provide a simple direct way to explore the patterning of network data — one that
will permit an investigator to “see” groups and positions.

Visual images can be used to examine the patterning of network data. In an earlier
paper (Freeman 2000), I reviewed the history of the use of visual images in social
network analysis. In this chapter, I show how to use images in an exploratory way to
learn something about the properties of a network data set. The next section introduces
some ways to create visual images that can be used to display the kinds of structure of
interest to network analysts. Then the following section will show how those images can
be adapted to help to uncover both the antecedents and the consequences of observed
network structure.

12.1 Visual Images

Moreno (1932, 1934) was the first to use visual images to display the patterning of
linkages among social actors.! In Moreno’s images, each actor was represented by a
point, and each link was shown by a line connecting a pair of points. One of his earliest

248
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Figure 12.1.1. Moreno’s early image.

images (Moreno 1932: p. 101) is reproduced as Figure 12.1.1. He characterized that
image as showing “a group in which two dominating individuals are strongly united both
directly and indirectly through other individuals.” Thus, Moreno viewed that picture
as a display of both cohesiveness (“strongly united”) and social roles (“dominating
individuals™).

In this early work, Moreno demonstrated “that variations in the locations of points
could be used to stress important structural patterns in the data” (Freeman 2000).
Figure 12.1.2, for example, shows his image of friendship choices among fourth graders
(Moreno 1934: p. 38). He used triangles to designate boys and circles to designate girls.
He also used directed lines with arrowheads to show which child was the chooser and
which the chosen. The important point, however, is that in order to stress the enormous
tendency for children of that age to generate same-gender choices, Moreno located all
the boys on the left of the picture and all the girls on the right.

Moreno developed many procedures for arranging points that succeeded in em-
phasizing the structural features of the data that he wanted to stress. However, those
procedures were all essentially ad hoc. Moreno did not introduce any systematic general
procedure for locating points in images. Instead, he developed different procedures —
each tailored to the demands of each new data set. In any particular image, the placement
of points depended on the idea Moreno wanted to communicate about the particular
data set being examined.

Later analysts continue to use visual images and to develop procedures for placing
points in ways designed to reveal structural patterning. However, a central aim of this
newer work has been to develop principled procedures — procedures that are specified
in exact terms and that will produce the same results when they are applied repeatedly
or by different investigators.

Most of this newer work embodies a fundamental assumption. It assumes that a
display of a social pattern should preserve the pattern. Thus, the points in a visual
image should be located so the observed strengths of the inter-actor ties are preserved.
Those pairs that are socially closest in the observed data should be spatially closest in
the graphic image. Those pairs that are the most socially remote in the data should be
the farthest apart in the image.
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Figure 12.1.2. Moreno’s image of fourth-grade friendship choices.

This aim raises a nontrivial problem. I indicated previously that network data come
in the form an N-by-N matrix of observed social proximities. Such a matrix is N-
dimensional. That is, each social actor in the data set is at some specified closeness or
social proximity to every actor in the set. We can assume that the actors are all closest
to themselves. An actor’s proximity to each of the N—1 other actors will take some
smaller numeric value, based on reports or observations. Thus, it is clear that each actor
is assigned a score on each of N variables, and each of these scores specifies an inter-
or intra-actor social proximity.

In general, then, to specify all these proximities exactly, we need to use N
dimensions — as many as there are actors. However, if we are dealing with more than
three actors, this might raise a problem. We can actually view a picture of spatial prox-
imities in a collection of points only if they are arrayed in one, two, or three dimensions.
Thus, to create a visual display, we need a way of simplifying the social proximities
recorded in the data — a way of reducing its dimensionality. What we are seeking,
therefore, is some systematic procedure that will specify a location for each point in a
picture with no more than three dimensions. Moreover, the pattern of spatial proximities
of the points in that picture must reflect, as closely as possible, the pattern of social
proximities of the actors in the original N-dimensional data matrix.
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Two main approaches are used to construct such images. The first is based in a search
algorithm. It is called multidimensional scaling, smallest space analysis, or spring
embedding. These are simply variations on a common approach. They all involve the
search for an optimal location for points. So, here I will lump them all together and
refer to them simply as multidimensional scaling (MDS).

MDS requires that the investigator specify a desired dimensionality — typically, one,
two, or three. Then, given that specified number of dimensions, MDS uses a search
procedure to try to find optimal locations at which to place the points. Optimal locations
are either (1) those that come closest to reproducing the pattern of the original N-
dimensional social proximities contained in the data matrix (metric MDS), or (2) those
that come closest to reproducing the order, but not necessarily the exact magnitudes,
of the original proximities (nonmetric MDS).

A number of different procedures have been developed to search for optimal locations
for points (Krempel 1999). There are several ways to evaluate how closely the pattern
of a given set of MDS proximities corresponds to the pattern of proximities in the
original data matrix (Kruskal and Wish 1978).” However, all the MDS procedures
share a general approach; all involve a search for an optimal arrangement.

The second approach is determinate. It is based on an algebraic procedure, singular
value decomposition (SVD).> SVD transforms the N original variables into N new
variables, or dimensions. These new dimensions are ordered from largest to smallest in
terms of how much of the variance, or patterning, in the original data is associated with
each. The most variance is always associated with the first dimension. Each succeeding
dimension is, in turn, associated with progressively less of the variance.

If a one-, two-, or three-dimensional visual image is going to be useful, the hope is
that the first or the first two or three of these new dimensions will be associated with
virtually all the variance contained in the original data (Weller and Romney 1990). If, in
contrast, the first few dimensions are associated with very little of the original variance,
SVD will not yield useful results.

As was the case with MDS, there are several ways of getting SVD solutions. SVD
itself is always calculated the same way, but there are differences in the ways the data
are preprocessed before SVD is run. One standard preprocessor removes the effects of
differences in the sizes of the row and column totals. When that approach is taken, the
results are said to be produced by correspondence analysis. Another preprocessor —
perhaps the best-known one — removes the effects of differences in means and the
variances in rows and columns. When that is done, the results are described as produced
by principal components analysis.

12.2 The Search for Structure

In every case, whether we use MDS or SVD to explore data, the first problem will
always be to determine whether the data embody any interesting patterning at all. To
examine this question, I will draw upon a data set collected on a beach by Freeman,
Freeman, and Michaelson (1988). We asked forty-three regular beach goers to sort cards
naming beach people into piles in terms of who was socially close to whom. These sorts
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Figure 12.2.3. MDS of Freeman, Freeman, and Michaelson’s beach data.

were used to produce a matrix in which each cell contained a tally of the number of
times the row person had been grouped together with the column person. This matrix
of judged social proximities was used as input to MDS, and the two-dimensional image
in Figure 12.2.3 was produced.

The arrangement of points in Figure 12.2.3 divides most of them into two fairly
dense clusters on the right and the left. Each cluster has core members located near
the center of the cluster. Each has peripheral points that surround the core. In addition,
several points (27, 30, 32, 40, and 43) fall in the center, between the two main clus-
ters. Thus, this image seems to display social groups as clusters. Moreover, it places
individuals in core and peripheral positions within each group, and it suggests that
some actors occupy “bridging” positions between the two groups. This arrangement
is completely consistent with the ethnographic data and the systematic observations
originally reported by Freeman, Freeman, and Michaelson.

Beyond shape, another feature of this MDS output is important. Most MDS programs
report an index of “stress.” Higher values of stress indicate that the proximities calcu-
lated by MDS do not correspond very well to the original N-dimensional proximities.
In this case, the stress = .17. This is reasonable for a 43-by-43 data matrix.

Now let us compare that image with one in which there is no systematic social
patterning. We can construct such an image from the data that produced Figure 12.2.3.
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Figure 12.2.4. MDS of randomized data.

We first remove all the entries from the 43-by-43 data matrix and save them. Then we
return each frequency to a randomly chosen cell, preserving symmetry. The result is
a new matrix in which the overall distribution of cell entries is identical to that of the
original data. However, in this new matrix actors are paired at random.

The result of applying MDS to this new matrix is shown in Figure 12.2.4. There,
the points form into an almost circular disk. This shape is critical. Generally, any MDS
image that is shaped like a disk in two dimensions or a sphere in three, suggests that
the links are unpatterned. Moreover, the stress index is .36. This high value confirms
that there is little patterning here.

SVD can be applied to the same data with similar results. See, for example, the
image in Figure 12.2.5. The same beach data that produced Figure 12.2.3 were used
to produce Figure 12.2.5.They were preprocessed (using correlations) to remove the
effects of differences in means and variances. Then they were processed using SVD.
The result is called principal components analysis.

This SVD image of the beach data yields an even more dramatic display of the two
main groups of beach goers. Core and peripheral group members are still shown, as
are the bridging members. Note that, on the horizontal dimension, which actors are
clustered together and which are pulled apart is consistent with the MDS image.



254 12. Graphic Techniques for Exploring Social Network Data

1
i
8
2’:‘}3 19,418
87 3 +2042 9
41 v 1079
5 + 30 + 328
6%_6 % 2630 27 13
151’;fF + Y 49+
+
+ 3 11
4 2 *t
+ +
11
N
34
+
35
a3

Figure 12.2.5. SVD of the beach data using principal components.

The proportion of variance associated with the first two dimensions here provides
further evidence that structure is present. For these data, the first two dimensions are
associated with 36% of the variance. This is a substantial proportion. Clearly, SVD has
captured the structure in these data.

When the random data are entered into SVD we again see a disklike pattern. This
time the pattern is somewhat more irregular than the one produced by MDS, but it is
still essentially an amorphous disk. In the present case, somewhat less than 11% of the
total variance is displayed in the two dimensions shown in the figure. This is a relatively
small proportion and, because it is so small, it provides further evidence that the image
contains little important structural information.

Thus, in the general case — using either MDS or SVD - it is relatively simple to
determine whether a data set has, or does not have, interesting structural properties.
If the plot produces an image that is shaped like a disk or a globe, it is generally not
interesting from a structural perspective. However, to the degree that it departs from
these forms, it displays important structural properties. This approach, then, can be
used for the first step in the exploratory analysis of network data.

12.3 Finding Correlates of Structural Patterns

When we uncover a data set that has an interesting structural form, we are just beginning.
We are simply ready for the next step in exploratory analysis. The really interesting
questions involve finding the antecedents and the consequences of observed structural
patterns.
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Figure 12.2.6. SVD of the randomized beach data.

The basic approach I will use to finding these features is not new. Bock and Husain
(1952) used it to show how a class of ninth graders chose partners for an assignment.
They asked each of the sixteen members of a ninth-grade class to rank all of the others
in terms of their desirability as collaborators on a joint research project. Then they
calculated principal components and produced the image shown in Figure 12.3.7.

Bock and Husain plotted the student’s partner choices in two dimensions. Moreover,
they used gender symbols to emphasize the differences between the choices made by
females and those made by males. In this case, the males and females formed distinct
clusters in which males chose other males and females chose other females. The point
of the labeling was to call attention to the fact that the main basis for partner choice
was gender.

In the 1950s, this device of identifying subsets of points in a structural display
according to the various characteristics of the actors involved was difficult. It involved
manually specifying the locations of points, hiring a draftsman, and photographically
reproducing the final drawing for printing.
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Figure 12.3.7. Bock and Husain’s ninth graders.

Today, the whole process has been simplified with the use of personal computers.
Using standard computer programs, we can automatically produce images that call at-
tention to particular subsets of points by assigning distinct symbols or colors to identify
them. In the work described here, I have used a program called MAGE (Richardson
and Richardson 1992).* It is excellent for exploratory work in social network analysis
(Freeman, Webster, and Kirke 1998). Like the picture produced by Bock and Husain,
images produced by MAGE can be used to communicate findings in published reports.’
However, more important, they can be generated with such ease that investigators can
use them for exploratory work. Images in which subsets of points are identified can be
used to explore the impact of any number of external variables on a structural pattern.

In the next three sections, I show how MAGE has been used to explore these ques-
tions. These sections illustrate three applications of visual analysis. They show how
graphic techniques can help in (1) pure exploratory research, (2) examining an a pri-
ori hunch, and (3) validating a model. Finally, in the last section, I illustrate another
approach. There I will show how animation can be used to generate new post hoc
structural insights.

12.4 Exploratory Research

One of my students, Marbella Canales, worked in the cosmetics department of an
upscale department store. She asked each of her fellow employees to list any of the
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Figure 12.4.8. MDS of department store data.

others with whom he or she spent leisure time. This produced a binary, on/off, matrix
of social links. That matrix was used to calculate the lengths of the shortest paths —
from actor, through social link, to actor, through link, and so on — linking each pair of
employees. Those distances were entered into the MDS program. A three-dimensional
MDS produced the arrangement shown in Figure 12.4.8.

Figure 12.4.8 is not a disk. It shows that patterning is present in these data. That
patterning is even more evident when we add the actor-to-actor ties reported by the
employees (Figure 12.4.9). The pattern of linkages forms a horseshoe shape. This is
commonly seen in MDS; it indicates that the actors are laid out into an almost linear
string.

Figure 12.4.9. MDS of department store data showing ties.
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Figure 12.4.10. MDS of department store data showing actors with
Middle-Eastern ethnic backgrounds.

Canales had collected the usual sociological “face sheet” data from her coworkers.
She was interested in the degree to which age, gender, ethnicity, and so on might
be entailed in the choices of partners for leisure time interaction. To answer these
questions, she colored points in the display so she could pinpoint the locations of actors
who possessed particular attributes. In Figure 12.4.10, for example, all the actors who
had Middle-Eastern ethnic backgrounds were shaded gray. Clearly, the gray points are
distributed all over the figure, and partner choices are not based on that ethnic factor.

The same was true for other ethnicities. In Figure 12.4.11, the two employees with
Asian backgrounds are shaded gray. They are widely separated. Marital status seems

Figure 12.4.11. MDS of department store data showing actors with
Asian backgrounds.
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Figure 12.4.12. MDS of department store data showing married
actors.

also to have had very little effect. In Figure 12.4.12, married actors are shaded yellow.
They may be slightly clustered on the left side of the figure, but they are still found all
over the image. Similarly, the single actors cluster slightly on the right, but they too are
found everywhere in the image.

Age, however, turned out to be important. In Figure 12.4.13, those actors who were
age 30 or younger are dark gray, those older than 30 but 40 or less are white, and
those older than 40 are light gray. These three categories are distinctly separated in the
image. Thus, age turns out to be one characteristic that is important to these individuals

Figure 12.4.13. MDS of department store data showing actors’ age
grades.
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Figure 12.5.14. SVD of athletes.

when it comes to choosing partners for interaction. It was the only face sheet variable
to display a systematic patterning. Using strictly visual techniques, then, Canales was
able to discover an important correlate of interaction among her coworkers.

12.5 Examining an a priori Hunch

Another of my students, Laticia Oseguera, was a collegiate basketball star. She had
an intuitive idea that athletes would confide in their teammates more or less according
to whether theirs was a team sport like basketball or an individual sport like tennis.
Coparticipants in individual sports, she believed, would be more willing to confide in
teammates.

Oseguera collected data from 191 athletes in thirteen sports at her university. All
members of the men’s and women’s basketball teams, the men’s and women’s soccer
teams, the men’s water polo team, the women’s volleyball team, the men’s and women’s
tennis teams, the men’s and women'’s track teams, the men’s and women’s swimming
teams, and the men’s golf team were surveyed. Each was asked to name any other
athletes with whom he or she had discussed important personal problems. Then the
resulting matrix was used as input for the principal components version of SVD. The
two-dimensional result is shown in Figure 12.5.14.

Although there is a somewhat globelike clump in the center, the three long arms
show a dramatic structural patterning in this data set. Athletes on these arms chose
one another along the arm; those near the center were apparently less exclusive. If
Oseguera’s idea is correct, athletes from all individual sports should fall along the arms
and the team sport athletes should cluster near the middle of the image. She explored
this notion by coloring individuals in terms of their sport.

In Figure 12.5.15, members of the men’s tennis team are white. Tennis is an in-
dividual sport and their position at the extreme periphery suggests that Oseguera’s
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Figure 12.5.15. SVD of athletes; male tennis players are white.

idea was correct for them. Most of their confidants are fellow tennis players, but they
are also adjacent to another cluster of athletes with whom they apparently sometimes
communicate.

That other collection is shaded light gray in Figure 12.5.16. They turn out to be
members of the female tennis team. Like their male counterparts, they are involved in
an individual sport and are peripheral. Among the tennis players, the women are not
as peripheral as the men, but they are still distinctly separated from the main body of
athletes. This provides further support for Oseguera’s idea.

However, the really interesting feature here is that the female tennis players are in a
position where they bridge between their male tennis counterparts and the rest of the
athletes. Certainly their bridging position is consistent with the common observation
that women often provide the links between otherwise unconnected social networks.

3

P N

Figure 12.5.16. SVD of athletes; female tennis players are light gray.
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Figure 12.5.17. SVD of athletes; male soccer players are light gray.

In Figure 12.5.17, the light gray points are the male soccer players. They are involved
in a team sport and their position, at the end of an arm, contradicts Oseguera’s idea.
Apparently, they confide in one another.

The white points in Figure 12.5.18 are the members of the women’s soccer team.
Like the male soccer players, they contradict Oseguera’s idea by being both involved
in a team sport and confiding in their fellow team members. However, like the female
tennis players, they occupy an intermediate position on the same arm as their male
counterparts and they are a bridge between the members of the men’s soccer team and
the center.

The light gray points in Figure 12.5.19 are members of the men’s golf team. They
are involved in an individual sport and their peripheral position is, again, consistent
with Oseguera’s original idea.

Figure 12.5.18. SVD of athletes; female soccer players are white.
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Figure 12.5.19. SVD of athletes; male golfers are light gray.

Finally, the white points in Figure 12.5.20 are members of the men’s water polo
team. This is another team sport and its position contradicts Oseguera’s original idea.
Moreover, because there is no female golf team, the bridging position with respect to
the golfers is occupied by the water polo players.

The remaining athletes, male and female basketball players, members of the men’s
and women’s swimming team, the male and female track team members, and the
women’s volleyball team are all clustered closely together in the center. Because some
of these athletes are involved in team sports and some in individual sports, and because
the athletes found in peripheral positions also represent each category, Oseguera ended
up rejecting her intuitive idea.

However, after a look at the data, she was able to come up with a new post hoc idea.
She was able to demonstrate a tendency for female athletes to bridge between the male
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Figure 12.5.20. SVD of athletes; male water polo players are white.
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Figure 12.6.21. SVD of friendships in a residence hall.

athletes who were involved in the same sport and the main body of athletes from other
sports.

12.6 Validating a Model

Cynthia Webster had been working on the development of a new procedure for uncover-
ing small close-knit cliquelike groups in social network data. She wanted to determine
how well it worked when applied to data. She had already collected a large data set
on friendship in an Australian residential college. In that study, she had interviewed
all 217 residents individually and asked them to name their friends within the college.
The residents had also indicated the strength of each friendship tie. In all, five levels of
friendship were designated (5 = best friend, 4 = close friend, 3 = friend, 2 = friendly
acquaintance, 1 = acquaintance).

Webster symmetrized that original matrix and then applied her new method to un-
cover all the tightly connected subsets of residents. She assigned each group a name
based on her ethnographic experience in the setting.

Webster reasoned that in order to validate her new procedure she had to demonstrate
that her groups were tightly knit when the data were analyzed using an independent
procedure. She set about, then, to determine the relation between the proximity structure
of her data as displayed by SVD and the groups she had uncovered using her new
method.

She preprocessed the data to remove the effects of means and variances, and calcu-
lated a three-dimensional SVD (Freeman et al. 1998). The first two axes are shown in
Figure 12.6.21.

The points in the image are clearly arranged into a four-pronged propeller-like object.
Webster reasoned that if her method agreed with the SVD result, each of her groups
would be found together in a tight cluster of points in the image. In particular, the four
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Figure 12.6.22. The outlying points in the residence hall.

outlying clusters in the image would correspond to distinct groups she had uncovered
with her new method.

So she marked points according to group memberships and discovered that the
outlying clusters were easily identifiable in terms of her groups. In Figure 12.6.22 in light
gray at the top are the points included in a group she named “the grunges.” They were
a collection of rebellious “hippie” students. A group of students who were preoccupied
with religion are shaded dark gray at the bottom of the figure. The interesting feature is
that they are bipolar to the grunges. This polarity makes a certain amount of sense. A
group on the left shaded black identifies a third extreme in the image. Webster called
these students “the women.” They were the somewhat proper female social leaders in
the community. Finally, the fourth extreme in the image is occupied by the students
Webster called “math heads.” They are marked with an X. These were the nonsocial
“nerds” in this student residence. Again, it makes sense that these “math heads” would
fall at the opposite pole from “the women.”

All in all, then, this exercise shows that, at least so far as the extremes are concerned,
Webster’s grouping method produces groups that are consistent with the spatial patterns
displayed by SVD.

12.7 A Post hoc Analysis

The final example involves a network study by Freeman and Freeman (1980). In the
late 1970s, we examined the impacts of EIES, a computer communication system
that worked much as the Internet does today. It facilitated an e-mail-like message
transmission and the development of conferences, or discussion groups. Subjects were
from the United States and Canada, and all were involved in the study of social networks.

Before the computer hookup was inaugurated, the participants were given a ques-
tionnaire in which they identified those others whom they knew about, those they had
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Figure 12.7.23. Initial proximities among network investigators.

met, those who were friends, and those they considered to be close personal friends.
Then, after eight months of computer connection, they were queried again.

The fact that we had two waves of data permitted us to study the changes in interper-
sonal ties during the eight months of computer communication. So we stacked the two
matrices — before and after, normalized to remove the effects of differences in row and
column totals, and entered the combined data into SVD. The resulting image showed
the changes in the proximities between pairs of network analysts that occurred during
the eight-month period.

To examine these changes, I used an animation program, MOVIEMOL.® The initial
proximities are shown in Figure 12.7.23. They are patterned in a way that suggests the
presence of two main clusters.

However, in this case, I was primarily concerned with change. So I examined the
before—after transition using MOVIEMOL animation. I began to see a pattern; the
points could be divided into four distinct categories according to the direction of their
movement. Some moved greater distances and some smaller distances, but the directions
were patterned. These directions are shown in Figure 12.7.24.

SoIshaded those points according to their directions of movement. Those that moved
up and to the left were shaded light gray. Those that moved down and to the right were
dark gray. Those that dropped toward the lower left were made white. The remaining
two points that did not move were made black. You can see their final locations in
Figure 12.7.25.

After identifying the points of various colors, it was clear what the various directions
of movement implied. The white points were individuals who did not participate and
who dropped out of network research during the experimental period. The black pair
did not participate in the Internet at all, but they did remain in the network research
area. The light gray points represented individuals from several fields who at that time
were in the process of organizing an interdisciplinary social networks specialty. And
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Figure 12.7.24. Directions of movement among network
investigators.

the dark gray points were sociologists who objected to forming a new specialty and
who were anxious to define network research simply as a subarea of sociology. In this
case, then, watching the animation yielded a new post hoc insight that helped to make
sense of a data set.

12.8 Conclusion

In this chapter, I demonstrate a simple and straightforward approach to exploratory
analysis of social network data. This approach uses a search procedure (MDS) and/or an
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Figure 12.7.25. Movement classes among network investigators.



268 12. Graphic Techniques for Exploring Social Network Data

algebraic data reduction scheme (SVD) along with easily available programs for graphic
display (MAGE and MOVIEMOL). With these tools, an investigator can determine
whether a given data set contains any interesting structural features. These features
are revealed simply by looking at visual images. This approach makes it simple to
develop new insights based on characteristics of the data. In addition, it can be used
to conduct preliminary tests of a priori ideas, to explore the fit of models to data and,
using animation, to examine dynamic processes.

Endnotes

1. Similar graphic images were produced earlier by investigators working on problems of genealogy.
However, these early images were oriented from top to bottom to represent descent, so they were
not the nonoriented images used by contemporary social network analysts.

2. In this chapter, I used the procedures built in to the MDS program that is part of the UCINET
5 package (Borgatti, Everett, and Freeman 1999). Similar MDS programs are included in many
standard statistical packages.

3. TIhave used the SVD program in UCINET 5 (Borgatti et al. 1999). However, any other standard
statistical package might just as well have been used.

4. This program can be downloaded at no cost from: ftp://kinemage.biochem.duke.edu/.

5. MAGE is designed to make it easy to construct and manipulate network images on a computer
screen, butitis limited in its ability to produce images for the printed page. Therefore, although the
work described here was done using MAGE, it is presented here using bitmap images produced
another program that generates XML.

6. MOVIEMOL can be downloaded at no cost from: http://www.fos.su.se/moviemol.html.
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13.1 Introduction

This chapter reviews software for the analysis of social networks. Both commercial and
freely available packages are considered. Based on the software page on the INSNA
website (http:// www. insna.org/INSNA/soft_inf.html), and using the main topics in the
book on network analysis by Wasserman and Faust (1994), which we regard as the
standard text, we selected twenty-seven software packages: twenty-three stand-alone
programs, listed in Table 13.1.1, and five utility toolkits given in Table 13.1.2.

Software merely aimed at visualization of networks was not admitted to the list
because this is the topic of Chapter 12 of this book (Freeman 2004). We do review a
few programs with strong visualization properties. Some were originally developed for
network visualization, and now contain analysis procedures (e.g., NetDraw; Borgatti
2002). Other programs were specifically developed to integrate network analysis and vi-
sualization (e.g., NetMiner, Cyram 2004, and visone; Brandes and Wagner 2003). Two
other programs for network visualization are worth mentioning here because some of the
reviewed software packages have export functions to these graph drawing programs,
or they are freely distributed together with the social analysis software: KrackPlot
(Krackhardt, Blythe, and McGrath 1994) and Mage (Richardson 2001).

The age of the software was not a criterion for selection, although the release dates
of the last versions of the majority of the reviewed software were within the last one or
two years.

Tables 13.1.1 and 13.1.2 describe the main objective or characteristic of each pro-
gram. The data format distinguishes three aspects: (1) type of data the program can
handle, (2) input format, and (3) whether there is an option to indicate missing value
codes for network relations. Next, the functionality is described. For each program, we
indicate whether the software contains (network) visualization options; for a toolkit,
its environment (software package or operating system other than Windows); and for
both groups of software, the kind of analyses it can perform. We use the network ter-
minology and categorization of Wasserman and Faust (1994) for the different types
of analysis: structural and locational properties, roles and positions, dyadic and triadic

270



(panujuod)

SA ON 931 drp ON - ul 2 sytomiau drysursy LT HdVd9d
SOR ON 1 s ‘p ON SOA w b) $159) uonEINWIdJ $6°0 1oNwWJIed
ON ON 1q p ‘d1‘[s ‘p SOA §SOX uf ‘w [‘®D uoneZI[ensIA Blep 9318 00'1 oled
SOX ON 191 Is‘p SOX ON uf ‘w e 9 suoneiofdxa [ensip 0C SINION
SOR SOX Riie) s9p ‘di‘s ‘p SOR ON uf ‘w B9 SISATeu® [ensip 0T 1] JSUINION
ON SOA 1q Is‘p SOA SOA uf ‘w B9 UONRZI[BNSIA 01 meiqieN
SOX SOA Rliilve) drs ‘p SOA SOA up 5 sdnoi3qns aA1s940D) 0€ AdODAN
SOX YON 1] s ‘d1‘p SOk SOK up [ SISA[eUR [BNIXAIU0D) 8¢V IBNINA
ON SOA — SIS ON ON uf ‘w 5 sdnoi3qns aA1soyo) S0°0 Japui4biy
SOX. SOX. wo)) dr‘s ‘p SOX. ON uy 9 Surddew yIomioN 0¢ MO|4u|
SOA SOA 1 Is‘p SOA — u E) SYI0MIQU 2 PI[MOUS] — Mouy|
ON RN 2oy PSP ON SA ul 2 sisAeue ydein 20C dvavdo
SOX ON 2991 s‘p SOA SOA u| 5 SISATeUR [BNIXaJU0D) TV 1VD1V4
SOA SOA 1g uone[nwIg SOA ON w b) SOIWRUAD JI0MION S9Y ayoue|g
SOA SOA 1q [enuanbag ‘Is ‘p SOA ON w 5 [eI0UID) 1'Te euby
dioHg [enuejy pTeAY LsasATeuy ‘Tensip “SSTIA Sndug LRdAT, aA1d2[qO UOTSIOA weIgold
yroddng Kypeuonoun,g vIR(

JDULIO DID(T ‘S2A1J22[qO) A12Y ] ‘PINIINIY SUA JDY [ UOISAIA Y] JO LdQUINN Y} YIIM ‘SISKIDUY YLOMJIN [D100S L0f SWDIE0L P2JIa]aS JO Ma1a424) 1'1°€] [qRL

(djog aunquQ puv nuvp wnidoiq ayi Jo £11qoway)
11oddng puv (spoyiapy sisppuy ‘sanbiuyoay uoynznonsip ) Kppuonoun,y (sanjpp Sussip ‘wutio] mduj adKy)

271



“UONBASIZOI JOYE S[qR[IBAR SI [enuew dY], ,
"3[QE[IBAE ST SO[NPOW JUIOS JO [ENUBW A,

"O[qE[IBAR ST UOISIOA UOT)EIISUOWAP/UONEN[BAD UY

*(A)TeuOnOUNY PONPAI YIIM JWOS) JOUIAIUT ) UO [QISSAOIE A[9I]

‘sounnoi Surmelp ydeis oN

'SINQIINIE 10J SOPOJ anfeA Julsstu AU

"arem)jos 221nos uadQ

‘payepdn 1o3uof ou st yoym weisord SO
*OIEMATRYS/AIRMIIJ=321] 1onpoId [BIOIOWOI=TIO0D
“TeonsSTIRIS=S ‘Spojaw dIpeLr) pue orpeAp=1p ‘suonisod pue sajor=dI ‘Uoneo0[ puk dIMONNS=Ts ‘dANdLIOsIp=p

"opou=

U QpouUI[=U][ ‘XLjeW=uI

"SYI0M)QU TIB[=] ‘UOTRI[JJE=E ‘PAIIUID 039=23 ‘9)o[dw0d=>

U
E

f

=

SRS

ON ON 1] Is‘p SOX ON uf ‘w ER) uornelo[dxa [ensIp I'T BUOSIA
SOX SOX o) s 9p ‘d1‘[s ‘p 4SO SOX uf ‘wr LIl arsuayaIdwo) SS9 13NION %
ON SOX 2991 dr‘s ON $SOR w 5] sIsA[eue [RINONIS TV JHNLONYILS ®
S SO 93l S9pp ON BN w ) sisA[eue [eonsnelg Sl 13NOOIS *
ON SOX 2991,] s ON — uy 9 suonjerndod uappry — |legmous
ON ON Jo91d Is ‘P SOA ON up ‘w 2 JSOOEIN 10] [BIoUaD) 0¢ N4VNS
SIA SIA oy % S9A - uf ° suone[ndod uappry I'c JazAiwurm NS
SOX SOX — p SOx. — uy 9 SUTeyd [RIIDJOY 07 gap\[elieley
dieg [enuejn pTeAY RN 144 RN “SSTIAL pndug LRdAT, 2A192[q0 UOISIOA wei3old
y1oddng Aypeuonoun,j elR(q

(panuinos) 1°1°¢1 1qeL,

272



*AIEMATRYS/TRMIIJ=2321] 1onpoId [BIOISWOI=T0D

‘UOTJRZI[ENSIA=SIA ‘[EONSIIL}S=S ‘SPOYIoU JIpELI} pue dIpeAp=1p ‘suonisod pue so[oi=dI ‘UoNELI0[ pue 2IONNS=[s ‘VANdLIdSIp=p

"OPOU=U ‘dPOuUI[=U] ‘XLHeW=uI

<

"SYI0M)QU dTIR[=] ‘UONRI[JJE=E ‘PaIauad 030=2a ‘@)o[dwoo=o ,,

— SOX wo) SIA ‘[S P vAR[ — uf b uoneso[dxa [ensip 1'7¢ salI4A

— SO wo) sp ‘d1‘[s ‘p ssnen) ON w 2 [eIoURD) Sz dVNS

— SOX L] STA ‘s ‘1p ‘d1“[s ‘p S/q ON w b jLARLETS) 0 VNS

SOX SOX wo) [eo13oroyig ‘Is ‘p [99xq ON w LA SISA[eue [eINONNS I'1 ueieN

— SO BRI | SIA ‘[S ‘P BAR[ — uf 2 sydei3 Surjopojy [l ONAOP

dieyg [enuey pIeAY LsasATeuy TIAUH *SSTIAL Hndur LRdAT, aA1dRI[qO UOISIOA weidoid
10ddng Kjeuonoun,j Bleq

(djoH aunuQ puy nuvpy ‘wnisodd Y[ Jo G11qvivay)
roddng puy {(spoyiapy SISKIpUY TUUWUOLIAUT dADMIJOS/2UDNPIDE ) K11]0U01OUNL] (SonJuA SulsSIN Iputio] mnduf odK] ) iouLiog

DID(] ‘S2A1322[(q() 412Y [ ‘PIMIIAIY SUM IDYL UOISAIA Y JO A2QUINN dY [ ‘SISKIDUY YLOMIDN [DIIOS A0 SIY]OOL 2ADMIJOS Paida]as JO Ma1a124a0) “7'1°€1 SqeL

273



274 13. Software for Social Network Analysis

methods, and statistical dyadic interaction models. The theoretical background of al-
most all the obtainable output can also be found there. Where necessary, additional
references are given. The amount of support is the final characteristic mentioned in the
table, distinguishing availability of the program (free or commercial, not listing prices),
presence and availability of a manual, and presence of online help during execution of
the program.

Section 13.2 provides an extensive review of six programs (indicated by an asterisk in
Table 13.1.1). These programs are either regarded as general and well-known (UCINET,
Pajek, NetMiner) or as having specific features worth mentioning and illustrating
(MultiNet, STRUCTURE, StOCNET). We examine the properties of these packages
with respect to data entry and manipulation, visualization, and social network analysis.
The software is illustrated by applying a selection of routines to an example data set.
A complete reference to a program is given only once, either at the start of the section
in which it is reviewed or, for nonreviewed software, at the first mention.

We consider the remaining software to be more specialized and discuss their objec-
tives and properties to a limited extent in Section 13.3." In this section, we also review
some routines that were developed to perform social network analysis in general soft-
ware or on operating systems other than Windows.

The chapter concludes with a section comparing the routines and support offered by
the various programs discussed in Section 13.2, and some general recommendations.
This section is by no means final because by definition a chapter like this becomes
outdated with publication.

13.2 Social Network Software — A Closer Look

In this section, the programs UCINET, Pajek, NetMiner Il, STRUCTURE, MultiNet,
and StOCNET are investigated in more detail with the help of an example data set.
The order in which the packages are presented is based on age, as well as on general-
ity. We start with three general packages, covering a wide range of analysis methods.
They are presented according to age: UCINET, Pajek, and NetMiner Il. Next, the pro-
gram STRUCTURE is presented. We consider STRUCTURE as a general program
featuring a limited number of methods. Although it has become somewhat outdated,
STRUCTURE has some unique features worth presenting. Finally, two more special-
ized packages are presented: MultiNet and StTOCNET.

In the presentation, we focus on five groups of procedures the software does or does
not possess:

1. Data entry and data manipulation
2. Visualization techniques
3. Social network analysis routines, divided into three types of methods:
(a) Descriptive methods to calculate (simple) network statistics (e.g., centrality
or transitivity)
(b) Procedure-based analysis based on more complex (iterative) algorithms (e.g.,
cluster analysis or eigendecompositions)
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(c) Statistical modeling based on probability distributions (e.g., exponential ran-
dom graph models or Quadratic Assignment Procedure (QAP) correlation)

The choice of social network analysis routines that were inspected is based on the
categorization of methods given by Wasserman and Faust (1994) explained in the
introduction, and on the analysis methods presented in earlier chapters in this book.

e Structure and location: centrality (Everett and Borgatti 2004) and cohesive sub-
groups (cliques)

* Roles and positions: structural equivalence, blockmodeling (Doreian, Batagelj,
and Ferligoj 2004), eigendecompositions

*  Dyadic and triadic methods

e Statistical methods: exponential random graph models (Wasserman and Robins
2004), QAP correlation, statistical analysis of network evolution (Snijders 2004)

(A) Example Data

The example data used are Freeman’s Electronic Information Exchange System (EIES)
network (Freeman and Freeman 1979), three one-mode networks with two relations
on a set of actors (n = 32) that is frequently used by social network researchers. The
data come from a computer conference among social network researchers and were
collected as part of a study of the impact of the EIES. Two relations were recorded:
the number of messages sent and acquaintanceship. The acquaintanceship relation is
longitudinal, measured at two time points, ranging from 0 (did not know the other) to 4
(close personal friend). For some analysis procedures, the data need to be binary (rela-
tion absent or present). The following dichotomization is used for the acquaintanceship
networks: 1 for values larger than 2 (friend, close friend), O for other values (not know-
ing, not having met, having met). The data set contains two actor attribute variables:
primary disciplinary affiliation (sociology, anthropology, statistics and mathematics,
psychology), and the number of citations (social science citation index). The complete
data set can be found in Wasserman and Faust (1994) and is one of the standard data
sets distributed with UCINET.

(B) UCINET

UCINET 6 (Version 6.55; Borgatti, Everett, and Freeman 2004) is a comprehensive
program for the analysis of social networks and other proximity data. It is probably
the best-known and most frequently used software package for the analysis of social
network data and contains a large number of network analytic routines. The program is
a commercial product, but a free evaluation version is available, which can be run for
30 days without registering. The manual consists of two parts: a user’s guide (data man-
agement and manipulation) and a reference guide (network analysis). It also available
online through the help function.

UCINET is a menu-driven Windows program, and, as the developers say themselves,
“is built for speed, not for comfort” (Borgatti et al. 1999). Choosing procedures from the
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Dutput Log 114 M=1E3
File Edit

B | 38 B e | Lo e ¢

Statistics

1 2 3 4
inFarness ocutFarness  inCloseness outCloseness

1 Hean 164.031 164.031 27.502 22.363
2 5Std Dev 214 256 149 830 7.887 4. 579
3 Sun 5249000 5249 000 880,067 715 628
4 Wariance 45905719 22449154 62.208 20.969
5 S50 2329983.000 1579373.000 26194 344 16674.875
£ HCE50 14689832 . 000 718372 938 1990 .642 671.017
7 Euc Norm 1526428 1256.731 161 847 129.131
8 Minimum 64000 104 000 3.125 3.125
9 Mamimum 992.000 992.000 48.438 29.808

Hetwork in-Centralization = 43 94%
Hetwork out-Centralization = 15.63%

Output actor-by-centrality measure matriz saved as dataset D:“-Data“Hetwork“Eies»Ucinet“Closeness

Funning time: 00:00:01
Output generated 11 Dec 03 15:22:57
Copyright {c) 1999-2000 Anslvtic Technologies

i o

Figure 13.2.1. UCINET log file presenting the results of centrality analysis of the EIES
acquaintanceship data (first observation).

menus usually results in opening a parameter form where the input for the algorithms
is specified. Speedbuttons are available for data management, export to Pajek and
Mage, and launching NetDraw; these three programs are distributed with UCINET.
Two kinds of output are generated: textual output, saved in log files and displayed on
the screen (see Figure 13.2.1 for an example), and data sets that can be used as input
for other procedures.

Data Entry and Manipulation

UCINET is matrix oriented, that is, data sets are collections of one or more matrices. A
single UCINET data set consists of two files: one containing the actual data (extension
##D) and one containing information about the data (##H). UCINET data sets can be
created by importing data or by entering data directly via the built-in spreadsheet. The
spreadsheet editor, containing the EIES data, is shown in Figure 13.2.2. The import
function can process several types of network data: raw ASCII data, ASCII data saved in
DL format, Excel data sets, and data formats from the programs KrackPlot, NEGOPY,
and Pajek.

UCINET provides a large number of data management and transformation tools
like selecting subsets, merging data sets, permuting, transposing, or recoding data. It
has a full-featured matrix algebra language; it can handle two-mode (affiliation) data
as well as derive one-mode data sets from two-mode data. There is an option to enter
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Figure 13.2.2. UCINET spreadsheet editor containing the EIES data.

attribute data and to specify missing values. It should be noted, however, that only a
few procedures can handle missing values properly. UCINET is distributed with a large
number of example data sets, including Freeman’s EIES data.

Visualization Techniques

UCINET contains graphic tools to draw scatterplots, dendrograms, and tree diagrams
(Figure 13.2.3), which can be saved as bitmap files (BMP). The program itself does not
contain graphic procedures to visualize networks, but it has a speedbutton to execute
the program NetDraw (Borgatti 2002), which reads UCINET files natively. NetDraw,
developed for network visualization, has advanced graphic properties and is further
discussed later in this chapter. In addition to export functions to Pajek and Mage, data
can be exported for visualization in KrackPlot.

Descriptive Methods

The program contains a large number of network analytic routines for the detection of
cohesive subgroups (cliques, clans, plexes) and regions (components, cores), for central-
ity analysis, for ego network analysis, and for structural holes analysis. As an example,
the output of a centrality analysis is presented in Figure 13.2.1. For each node, it contains
the in- and out-farness (the sum of the lengths of the geodesics to and from every other
node), and the in- and out-closeness centrality (the reciprocal of farness times g — 1,
with g the number of actors), some descriptive statistics, as well as Freeman’s group
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Cluster Diagram =10] ]

« OK | I save | % E"nt Zoom Scale: X |-|_ £ r

Figure 13.2.3. UCINET tree diagram for the single link hierarchical clustering of the clique overlap
matrix (first observation of the EIES acquaintanceship data).

closeness index (Freeman 1979). The in-closeness for the EIES acquaintanceship data
is 43.9% and 68.6%, and the out-closeness is 15.6% and 53.7% for time points 1 and
2, respectively. The data were dichotomized (see Section 13.2(A)) before the analysis.
If the user does not dichotomize and symmetrize the network, default options are used
(all entries larger than O are given value 1, and the data are symmetrized by using the
maximum value in a dyad). The default symmetrization was used here.

Group centrality options have been added more recently (Everett and Borgatti 2004).
The program finds the most central subgroup of fixed size or tests the (degree) cen-
trality of a specified group. For the dichotomized and symmetrized EIES data (first
observation), the most central subgroup of six actors consists of sociologists and an-
thropologists (centrality 87.5%). The degree centrality of the group of sociologists is
twenty-four. These results differ from the results of Everett and Borgatti (2004), due
to the different transformations applied. The mean, standard deviation, and p-values
based on permutation tests are given: 27.6, 1.54, and 0.97, respectively.

Analyzing the dichotomized and symmetrized (reciprocal relations) EIES data to
detect cohesive subgroups based on complete mutuality (i.e., cliques) results in finding
eight and fifteen cliques in the EIES data at the first and second time point, respectively.
The cliques are presented in Table 13.2.3 (the cohesion index is provided by NetMiner,
see Section 13.2(D)). UCINET provides the opportunity to further inspect the cliques
by calculating the clique overlap with a single link hierarchical cluster procedure (which
is presented in the next paragraph as an example of a procedure-based technique). The
cliques found at the second observation are the same or combinations of those found
at the first observation.
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Table 13.2.3. Cliques in the EIES Acquaintanceship Data Obtained with UCINET

First Observation Second Observation

Cline Actors Cohesion” Clique Actors Cohesion”
1 14,20,22,24 7.000 1 1,2,31,32 6.222
2 14,16,22,24 7.467 2 1,11,31,32 6.588
3 14,22,24,29 8.000 3 1,13,31 5.118
4 14,20,24,25 9.333 4 1,18,31 5.800
5 2,9,32 14.500 5 1,29,31 4.143
6 1,2,31 10.875 6 1,8,11,32 10.182
7 1,18,31 29.000 7 1,2,9,32 8.615
8 16,21,22 7.909 8 3,14,23 9.667
9 10,20,29 6.692
10 14,20,22,24,29 8.438
11 14,20,24,25 8.615
12 14,16,22 6.214
13 14,15,29 5.800
14 15,29,31 6.214
15 16,21,22 10.875

¢ Cohesion index of Bock and Husain (1950), provided by NetMiner.

Procedure-Based Analysis

UCINET contains a number of routines for procedure-based analysis. One procedure,
cluster analysis, was already mentioned. Other procedures are multidimensional scal-
ing (metric or nonmetric), two-mode scaling (singular value decompositions, factor
analysis, and correspondence analysis), analysis of roles and positions (structural, role,
and regular equivalence) and fitting core-periphery models.

There are hierarchical and nonhierarchical procedures to perform a cluster analysis
of the relational data. Using the adjacency matrix as input, the actors are clustered
on the basis of their relations. In the analysis of clique overlap mentioned previously,
the so-called clique overlap matrix is used as input. This matrix indicates for each
pair of actors the number of times they occur in the same clique. The result for the first
observation of the EIES data —that is, a tree diagram showing the progress of the cluster
analysis — is presented in Figure 13.2.3 (single link procedure; average and complete
link are also available). It shows the level of overlap between the cliques (e.g., actors
14 and 24 are most often together in one clique, followed by the combination of actors
14, 22, and 24).

Several types of structural equivalence procedures can be performed based on the
measurement of equivalence (Euclidean distances, correlations, cost functions). The
equivalence of the actors is given in a so-called equivalence matrix, which is the in-
put of a hierarchical cluster procedure to find clusters of actors. For example, using
the procedure based on comparisons of actor profiles (rows or columns in the adja-
cency matrix) measured by Euclidean distances (Burt 1976), actors 12 and 23 are most
equivalent, with the minimum distance of 5.8 between them (first observation of the
acquaintanceship data). These actors are the first ones to be joined in one cluster. Actor
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Table 13.2.4. QAP Correlations Obtained with UCINET in the EIES Data
(p-Values in Parentheses; 2,500 Permutations)

Acquaintanceship
Time 1 Time 2
Acquaintanceship time 2 0.809 (0.00) — —
Messages sent 0.240 (0.00) 0.347 (0.00)

1 joins this cluster at one of the last stages of the process, having an equivalence value
of 16.3 and 15.9 with actors 12 and 23, respectively.

Statistical Modeling

Various statistical routines are available in UCINET, ranging from simple statistics to
fitting the p; model (Holland and Leinhardt 1981). There are autocorrelation methods,
QAP correlation and regression procedures, and univariate vector methods combined
with permutation tests. An example of the latter group of methods is analysis of vari-
ance (ANOVA) with attribute vectors and/or rows or columns of the adjacency matrix,
representing a sending or receiving actor, as variables. This is different from procedures
where all incoming and outgoing links in an adjacency matrix are used as input for an
ANOVA (e.g., MultiNet).

Fitting the p; model to the first observation of the dichotomized EIES acquaintance-
ship data gives estimates of the “density” and “reciprocity” parameters (—3.45 and
4.39), and for each actor the expansiveness and popularity parameters (not presented).
Expected values and residuals to inspect the fit of the model are also given. Computation
of QAP correlations between the three EIES matrices gives the correlations as presented
in Table 13.2.4, with p-values indicating the percentage of random correlations that are
as large as the observed correlation in 2,500 permutations (see Krackhardt 1987). Be-
sides Spearman correlations, the simple matching coefficient, the Jaccard coefficient,
and Goodman-Kruskal’s gamma are calculated.

(C) Pajek

Pajek (Version 1.00; Batagelj and Mrvar 2004) is a network analysis and visualization
program, specifically designed to handle large data sets. The main goals in the design of
Pajek are (1) to facilitate the reduction of a large network into several smaller networks
that can be treated further using more sophisticated methods, (2) to provide the user
with powerful visualization tools, and (3) to implement a selection of efficient network
algorithms (Batagelj and Mrvar 1998). The program can be downloaded free of charge,
and its developers are continually updating it. There is no online help, however, and
the available documentation is not sufficiently detailed for users who are not experts in
network analysis.”

Pajek can handle multiple networks simultaneously, as well as two-mode networks
and time event networks. Time event networks summarize the development or evolution
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of networks over time in a single network (using time indicators). In Pajek, very large
networks can be analyzed, with more than 1 million nodes. (The available memory
on the computer sets the actual limit. To save memory, names and labels of nodes
are not kept for extremely large networks, but these can be attached later to smaller
subnetworks.)

Large networks are hard to visualize in a single view. Therefore, meaningful sub-
structures have to be identified, which can be visualized separately. The algorithms
implemented in Pajek are especially designed for this purpose (see Batagelj and Mrvar
2003). Pajek uses six different data structures: (1) networks (nodes and arcs/edges),
(2) partitions (classifications of nodes, where each node is assigned exclusively to one
class), (3) permutations (reordering of nodes), (4) clusters (subsets of nodes), (5) hierar-
chies (hierarchically ordered clusters and nodes), and (6) vectors (properties of nodes).
Partitions contain discrete attributes of nodes, whereas vectors contain continuous
attributes.

The structure of the program is entirely based on these six data structures and on
transitions among these structures. The main window presents six drop lists — one for
each data object — as well as buttons to open, save, and edit the data objects in these
lists. The program is menu driven, where the menu items are ordered according to the
data objects to which they apply. The results generated by the procedures are usually
presented using the data structures (instead of graphic or tabular output), and can be
used as input in other procedures such as visualization methods.

Data Entry and Manipulation

Network data can be entered in four ways: (1) by defining a (small) network inside the
program, (2) by importing ASCII network data from network files (extension NET),
(3) by importing data from software packages with other formats (e.g., UCINET DL
files and formats of some visualization programs), and (4) by opening a Pajek project
file (PAJ), which combines all different data structures into a single file. The NET
files consist of a node list and arcs/edges list, aimed at entering large networks more
efficiently, specifying only the existing ties. For small networks, the link list can be
replaced by an adjacency matrix. Other data objects can be imported from ASCII data
files or generated inside the program. For example, attribute data have to be entered as
partitions in ASCII data files (CLU) or as vectors in ASCII data files (VEC). All data
objects together can be saved in a PAJ file.

Pajek contains manipulation options for all its data structures. For example, networks
can be transposed, directed graphs changed into undirected graphs and vice versa, lines
can be added or removed, or the network can be reduced by shrinking classes or
extracting parts. The program also contains basic network operations such as recoding
or dichotomization. There is no option to specify missing relations, whereas it is possible
to specify missing values for attributes (partitions and vectors). Also, there are ample
transformations for attributes and options to create other data objects on the basis of
the attributes (hierarchies, clusters).

Pajek offers facilities for longitudinal network analysis. Time indicators for the
actors’ presence in the network at certain observations can be included in the data
files, and the user can generate a series of cross-sectional networks. Analyses can be
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performed on these networks, and the evolution of the network can be examined (e.g.,
the evolution of balance in a network). These analyses are nonstatistical; for statistical
analysis of network evolution, the module SIENA of the StOCNET package can be
used (Section 13.2(G); see also Snijders 2004).

Visualization Techniques

The graphic properties of Pajek are advanced. The Draw window gives the user many
options to manipulate the graphs (layout, size, color, spin, etc.). Moreover, graphic
representations of partitions, vectors, and combinations of partitions and vectors can
be obtained. The network drawing is based on the principle that distances between
nodes should reveal the structural patterning of the network (see also Freeman 2004).
Besides simple layouts (circle, random), Pajek has several automatic procedures to find
optimal layouts: procedures using eigenvectors, special procedures for layer drawing of
acyclical networks, and spring embedders. The latter procedures are so named because
in those algorithms it is assumed that the nodes are connected by springs, whose stress
is to be minimized.

Pajek uses two spring-embedding algorithms to visualize network data: the Kamada-
Kawai and the Fruchterman-Reingold algorithms. The former one produces more stable
results, but is slower and less suited for large networks. The latter algorithm is faster
and can handle large networks. Both are optimization procedures that do not yield the
same mapping each time they are run. The graphs, however, should resemble each other
largely.

The Kamada-Kawai algorithm is used to draw a graph of the EIES acquaintanceship
data at the first observation point, which is presented in Figure 13.2.4. In the network
drawing, partitions (here actor’s discipline) are depicted by colors and shapes: a blue
diamond is sociology, a red circle is anthropology, a magenta circle is statistics, and a
green box is psychology. Vector values (here number of citations) are represented by
the size of the nodes, where larger nodes indicate higher citation rates. The nodes can be
dragged and dropped to improve the graph, and right-clicking a node shows (textually)
to which other nodes it is tied. The programs NetDraw, distributed with UCINET, and
NetMiner have the same functionalities.

By creating a super matrix that combines the two acquaintanceship matrices (at
the two time points), a visualization of the (dichotomized) EIES data over time can
be created (see Everton 2002). Such a super matrix can be created in, for instance,
UCINET, and can be exported to Pajek or opened in NetDraw. Using the Fruchterman-
Reingold algorithm to draw the network results in a visualization of the evolution of the
network, presented in Figure 13.2.5. Networks can also be drawn manually by dragging
and dropping nodes with the mouse, as was done to improve the graph in Figure 13.2.5.
Pajek also supports three-dimensional (3D) visualization. The visualizations can be
saved using several formats, among others (encapsulated) postscript file (EPS), scalable
vector graphics file (SVG), kinemages file (KIN), bitmap file (BMP), and virtual reality
file (VRML).

Descriptive Methods
Each data object in Pajek has its own descriptive methods. The largest number of
methods is available for networks, for instance, computation of degrees, depths, cores,
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Figure 13.2.4. Pajek Draw window presenting the graph of the dichotomized EIES acquaintance-
ship network (first observation) using the Kamada-Kawai spring embedder.
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Figure 13.2.5. Pajek Draw window presenting the simultaneous drawing of the dichotomized EIES
acquaintanceship networks (both observations) using the Fruchterman-Reingold spring embedder.
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Figure 13.2.6. Pajek Draw window presenting the subnetwork consisting of triads (cliques) in the
first observation of EIES acquaintanceship network.

or cliques (output is a partition), centrality (closeness, betweenness), detection of com-
ponents (weak, strong, biconnected, symmetric), paths (or flows), structural holes, and
some binary operations on two networks. The menu Info gives general characteristics
of each data structure.

Computing closeness centrality with Pajek is straightforward. The network has to
be dichotomized before calculating the closeness. For directed graphs, the in- or out-
closeness can be calculated, as well as the closeness for the symmetrized network
(default using the maximum of the two links), by choosing the command All. This
latter option gives 0.390 and 0.515 for closeness for time points 1 and 2, respectively.

Identifying cliques in large networks is difficult because of the large number of
cliques. Therefore, unlike UCINET, Pajek has no direct procedures for detecting
cliques. There is, however, an indirect way of finding cliques by looking for complete
triads (cliques of size 3) in a network (De Nooy, Mrvar, and Batagelj 2004). Using the
option to search for particular fragments (in this case triads) in the first observation of
the dichotomized and symmetrized (based on reciprocated relations) acquaintanceship
network, cliques of size 3 are found. The output, presented in Figure 13.2.6, consists
of several data objects, one of them being a subnetwork made of the desired cliques.
Figure 13.2.6 shows the triads (cliques of size 3), as well as the cliques of size 4, which
were also found with UCINET (see Table 13.2.3). In addition, a hierarchy is generated
to inspect the overlap of triads, as well as a partition to identify the number of triads to
which a node belongs (not shown here).
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Figure 13.2.7. Dendrogram of the hierarchical cluster analysis (Ward linkage) of the
EIES acquaintanceship data (first observation) obtained with Pajek.

Instead of a clique procedure, Pajek contains the procedure p-cligues. This procedure
results in a partition of the network nodes into clusters such that the nodes within one
cluster have at least a proportion of p neighbors inside the cluster (cf. NEGOPY).
For large networks, it is preferable to use k-cores instead of cliques, because of the
computing time. Dense parts of large networks can be found using k-cores.

Procedure-Based Analysis
Pajek contains several procedure-based methods, for instance, for detecting structural
balance and clusterability, hierarchical decomposition, and blockmodeling (structural,
regular equivalence). For the analysis of structural equivalent actors, dissimilarities be-
tween nodes can be computed in several ways. In its pull-down menu, Pajek indicates
if the network is too large for calculating dissimilarities, in view of the computational
complexity and the amount of time involved. For the first observation of the acquain-
tanceship data, dissimilarities between actors are calculated using Euclidean distances,
and the resulting matrix is used in a hierarchical cluster analysis, using Ward’s linking
method to combine clusters (the default option out of six). The resulting clusters are
presented as a hierarchy and the corresponding dendrogram is saved in an EPS file.
The dendrogram, presented in Figure 13.2.7, shows two very dissimilar clusters: one
containing the actors 1, 2,6,7,9, 13, 18, 26, 27, 30, 31, and 32, that is, few sociologists,
and actors with low citation rates, who were all positioned on the right side of the graph
in Figure 13.2.4, the other containing the remaining actors. An almost identical solution
was found with UCINET that employs the single linkage method.

Blockmodeling the dichotomized acquaintanceship data in which the block types are
defined using structural equivalence does not yield statisfactory results. Starting from
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random partitions, the final, best-fitting partitions (in two, three, or four blocks) still
had large associated error scores (125, 115, and 111, respectively). Besides blockmod-
eling based on structural and regular equivalence, Pajek can be used for generalized
blockmodeling, where combinations of permitted block types can be defined by the
user (see Doreian, Batagelj, and Ferligoj 2004).

Statistical Modeling

The program contains only a few basic statistical procedures. Attributes of nodes (in-
cluding structural properties that can be expressed as attributes), which are available as
partitions and vectors, can be included in statistical analyses: computation of correla-
tions, linear regression, and cross-tabulation (including some measures of association).
However, the statistical packages R and SPSS can be called with Pajek data structures
(networks and vectors) and the statistical procedures available in these packages can
be used (see Section 13.3(C)).

(D) NetMiner Il

NetMiner Il (Version 2.4.0; Cyram 2004) is a software tool that combines social network
analysis and visual exploration techniques. It allows users to explore network data
visually and interactively, and helps to detect underlying patterns and structures of the
network. Two versions of the program are available for users: NetMiner Il for Windows
(commercial) and NetMiner Il for Web (online freeware with reduced functionality
compared with the commercial product). Both versions are Java-based applications. A
free evaluation version is available, which can be used for 21 days without registering.
NetMiner offers good support providing online help, and a user’s manual that can be
downloaded from the Cyram website.

The program is especially designed for the integration of exploratory network anal-
ysis and visualization. To facilitate this integration, the main window of the program
contains a map frame in which the results of the analysis are graphically presented and
a separate map control toolbar (apart from the main toolbar). Moreover, the Explore
panel can be activated to inspect the results of the analysis. In Figure 13.2.8, the main
NetMiner window and its features are presented.

Data Entry and Manipulation
NetMiner adopts a network data model that is optimized for integrating analysis and
visualization. It combines three types of variables: adjacency matrices (called layers),
affiliation variables, and actor attribute data. The data can be entered in three ways:
(1) directly via the built-in matrix editor (a spreadsheet editor similar to the one that is
available in UCINET; see Figure 13.2.2), (2) by importing Excel datasheets, comma-
separated ASCII values files (CSV), or UCINET DL files, or (3) by opening a NetMiner
data file (NTF), which contains the values of the three types of variables. Data sets are
saved as NTF files or can be exported in Excel, CSV, or UCINET DL format.

The program contains ample data manipulation options (transformation, recoding,
symmetrizing, dichotomizing, selection, normalization, etc.), facilitated by the data
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Figure 13.2.8. NetMiner Il user interface presenting the graph for the dichotomized EIES
acquaintanceship network (first observation) using the Kamada-Kawai spring embedder.

manager that contains the transformation history. It is possible to create random graphs
(including scale-free networks) and to edit text files. A drawback, however, is that the
program does not allow the specification of missing values.

Visualization Techniques

Like Pajek and NetDraw, NetMiner has advanced graphic properties. Moreover, al-
most all results are presented both textually and graphically, contrary to both other
programs, where the user needs to request visualization of the results of a certain anal-
ysis. In NetMiner, graphic and textual results are directly obtained via the Explore
function of the main menu. The other two functions of the main menu produce either
textual results in report form (Analyze) or graphs (Visualize) with various options.

The Analyze function has reduced computing time in comparison to the Explore
function and contains more analysis methods. Network drawing can be based on spring-
embedding algorithms, multidimensional scaling, so-called applied procedures based
on analysis procedures (e.g., centrality vectors or clustering combined with spring
embedders), and simple procedures (circle, random).

The Kamada-Kawai and Fruchterman-Reingold algorithms are the spring embedders
that are implemented in NetMiner, as well as two algorithms based on the spring em-
bedder by Eades. In Figure 13.2.8, the user interface of NetMiner is presented, in which
the map frame contains a graph of the first observation of the EIES acquaintanceship
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network obtained with spring embedding algorithm of Kamada-Kawai. The aim of
the Kamada-Kawai algorithm is to find a set of coordinates in which, for each pair of
nodes, the Euclidean distance is approximately proportional to the geodesic distance
between two nodes (e.g., see Everton 2002; Freeman 2004). Although the procedure
does not produce exactly the same mapping each time it is used, the graphs obtained
with the Kamada-Kawai algorithm in Pajek (Figure 13.2.4) and NetMiner (Figure
13.2.8) largely resemble each other.

NetMiner has the functionality to set node shape, color, and size according to three
attribute variables (both categorical and continuous), like Pajek and NetDraw. In
Figure 13.2.8, the nodes are colored and shaped according to the attribute discipline: a
blue diamond is sociology, a red circle is anthropology, a magenta triangle is statistics,
and a green box is psychology. The size of the nodes reflects the value of the second
attribute, the number of citations, where larger nodes reflect higher citation rates.

The multidimensional scaling algorithms for drawing graphs in NetMiner can be
metric or nonmetric. For instance, Torgerson-Gower’s classical metric multidimen-
sional scaling (principal coordinate analysis), based on an eigenvalue decomposition
of which only the first two positive eigenvalues and eigenvectors, can be applied.

NetMiner supports various 3D visualizations and contains a graph editor that can
be used to generate new graphs (random placement of nodes or positioning by user) or
edit existing graphs (adding new nodes or links). All visual displays can be saved in a
wide variety of formats (including EPS, GIF, JPEG, PDF, PNG, EMF, etc.).

Descriptive Methods

The network statistics available in NetMiner include methods to analyze the connec-
tion and neighborhood structure of the network (e.g., influence, structural holes) and
subgraph configurations (dyad and triad census), to calculate centrality measures (e.g.,
closeness, betweenness), and to analyze subgroup structures (cliques, clans, cores). To
show the integration of standard network methodology and visualization in NetMiner,
the closeness centrality index was calculated for the dichotomized EIES acquaintance-
ship data (first observation). NetMiner, like Pajek, has the option to calculate the in-
and out-closeness of directed graphs. UCINET only calculates closeness for undirected
graphs.

Via the Explore menu, the in-closeness centrality was calculated. The output consists
of two parts: a report containing the closeness indices (at actor and network level) and a
graphic presentation of the calculated closeness, the so-called centrality map, presented
in Figure 13.2.9. The figure shows the NetMiner user interface and the visual presen-
tation of in-closeness statistics in the map frame, in which also the centralization index
(the in-closeness for directed graphs) is given: 0.439. The out-closeness is given in the
textual output (obtained by clicking the Report button): 0.156. For the second obser-
vation of the EIES data, the in- and out-closeness equal 0.686 and 0.537, respectively.
The same values were found with UCINET and Pajek.

Figure 13.2.9 shows one of the interactive features of NetMiner: right-clicking a
node opens a context-sensitive menu with which network properties of the node can
be obtained (in-degree, out-degree, egonet size and density) or the neighborhood of
the selected node can be drawn (in a new submap window). For actor 6, the network
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Figure 13.2.9. NetMiner |l user interface showing the closeness index and centrality map for the
EIES acquaintanceship data (first observation).

properties are presented (note that the egonet density cannot be calculated because node
6 is only connected to one other node).

Figure 13.2.10 displays the result of the analysis of cohesive subgroups: the vi-
sualization of cliques in the EIES data, dichotomized and symmetrized as before. It
presents the cliques labeled G1 to G8 and its members. The cliques found by NetMiner
are shown in Table 13.2.3, and are the same as those found by UCINET. In addition,
NetMiner reports for each clique the cohesion index by Bock and Husain (1950). This
index measures the degree to which strong ties are within rather than outside the clique.
If the index is equal to 1, the strength of ties does not differ within the subgroup com-
pared with outside the subgroup. If the ratio is larger than 1, the ties within the subgroup
are more prevalent than the ties outside the subgroup.

Right-clicking a clique in the map opens a menu with which properties of the group,
group member lists, or group networks can be obtained. In Figure 13.2.10, the member
list of clique G7 is shown, as well as the group network of clique G3. Previous versions of
NetMiner (Version 1.x) had the option to draw directly bipartite, comember, and overlap
maps of the cliques. Unfortunately, in NetMiner these features can only be obtained
indirectly. For example, the clique bipartite map can be obtained by adding the clique
affiliation matrix to the data set (via the analysis report), selecting the affilition mode
(in the Transform menu), and choosing the bipartite method. The node-clique bipartite
graph for the EIES data is presented is Figure 13.2.11. The cliques are represented by
yellow boxes labeled K1 to K8.
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Figure 13.2.10. NetMiner |l user interface showing the cliques (at least size 3) for the EIES
acquaintanceship data (first observation).
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Procedure-Based Analysis

NetMiner contains routines for multidimensional scaling, correspondence analysis,
cluster analysis, and matrix decompositions (eigen, singular, spectral). These proce-
dures are integrated in the Explore/Analyze submenus and are available as separate
options in the Statistics menu. The program also contains some procedure-based rou-
tines to explore the role-set structure of a network (structural, role, and regular equiv-
alence). Finally, blockmodel routines are available, including goodness-of-fit statistics
and permutation tests of significance.

The structural equivalence procedure is used to analyze the first observation of
the acquaintanceship network, based on the similarity of tie profiles among the actors.
For all pairs of actors, the structural equivalence is computed using Euclidean distances
(Burt 1976). The diagonal values are specified to be ignored. The mean distance between
pairs is 11.75 (SD 2.39).

Subsequent hierarchical clustering of the equivalence matrix gives a cluster diagram
and the possibility to show the different clusters in a map. NetMiner provides four pos-
sible cluster linkage methods (single, complete, average, and Ward), whereas UCINET
provides three, and Pajek six. For the comparison of different linkage methods, a hi-
erarchical cluster analysis with average linkage is performed. The equivalence map is
presented in Figure 13.2.12. In this map, the different clusters are shown by giving
them different colors (the number of clusters is chosen to be 4; the colors are assigned
by the program). In the top of the map, actors 1 and 31 form one cluster, whereas actor
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2 constitutes a cluster by itself; on the right a cluster of nine actors is found, whereas
on the left a cluster of twenty actors.

Comparing the cluster methods of the three packages UCINET, Pajek, and Net-
Miner, similar results are found (given the different linkage methods). In all programs,
the equivalence measure was based on Euclidean distances, and actors 12 and 23
were found to be most equivalent, and actor 1 least equivalent with these two actors
(UCINET, Section 13.2(B)). Inspecting Figure 13.2.12 confirms this finding, where
NetMiner locates actors 12 and 23 on one side and actor 1 on the other side of the map.
The dendrogram presented by Pajek (Figure 13.2.7) shows a similar clustering.

Statistical Modeling

NetMiner supports a number of standard statistical routines: descriptive statistics,
ANOVA, correlations, and regression. All these routines can be applied to both at-
tribute vectors and (adjacency) matrices. The statistics are given with conventional
significance tests (based on independence and normality, which may not always be
appropriate) and random permutation tests. For adjacency matrices, QAP permutation
is adopted (see Krackhardt 1987). Besides, NetMiner provides Markov chain Monte
Carlo simulation tests for several network measures based on the on the U/ | X;, X ;
and U | Xit, Xj, M distributions (cf. the module ZO in StOCNET).

The QAP correlation found between the two time points of the acquaintanceship data
is 0.809 (significant at p = 0.001 level, 1,000 simulations). This is the same result as
found by UCINET, but, unlike UCINET, NetMiner provides no additional information
on the test.

(E) STRUCTURE

STRUCTURE (Version 4.2; Burt 1991) is a program “providing sociometric indices,
cliques, structural and role equivalence, density tables, contagion, autonomy, power
and equilibria in multiple network systems” (Burt 1991, p. 1). It is a command-driven
DOS program that needs an input file containing commands for data management
and network analysis. After opening the input file, the program executes the required
routines without the possibility of user interaction. The program can be downloaded free
of charge together with a comprehensive manual including introductions to network
analysis, network data, and network models.

STRUCTURE supports network models within five types of network analysis.
These are autonomy (analysis of structural holes), cohesion (detection of cliques),
contagion, equivalence (analysis of structural or role equivalence and blockmodeling),
and power (analysis of network prominence and equilibrium). The programs UCINET,
Pajek, and NetMiner contain procedures to perform analyses of one or more of these
types. Most procedures in STRUCTURE, however, are unique and cannot be found in
the other general programs. These procedures are discussed here.

Data Entry and Manipulation
STRUCTURE distinguishes four types of data: (1) direct measures of relations, (2)
binary choice data (obtained with a name generator), (3) sociometric rank order data
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(where actors ranked their relations with others), and (4) (two-mode) joint involvement
data (actors’ involvement in the same events or affiliations with the same groups). The
first three types have to be presented as adjacency matrices in ASCII data files with
fixed positions. For the joint involvement data, networks are created by reading events
in each network and aggregating the weight of events in which each pair of actors is
involved. Actor attributes are entered as ASCII values. Output data files are written in
ASCII fixed-column format (WRT).

The program has a few data manipulation options, which are only available for di-
rected relations: using diagonal elements as measures of strength of self-relations, sym-
metrizing relations, and transforming relations (converting to row or column marginals,
eliminating negative relations, making networks row and/or column stochastic). For
joint involvement data, the weights can be defined in different ways.

Visualization Techniques
STRUCTURE has no procedures to visualize networks.

Descriptive Methods
The analysis of structural holes is the single descriptive method available.

Procedure-Based Analysis

The procedure-based analysis methods offered by STRUCTURE are hierarchical clus-
ter analysis (detection of cliques, structural equivalence) and eigenvalue decomposition
(to compute power measures). STRUCTURE can detect different kinds of cliques, de-
pending on how relations are measured from the raw data and how cohesion is defined
from the relations (Scott 1991). Detection of cliques by STRUCTURE is based on
hierarchical clustering of the matrix of cohesion, and is therefore different from clique-
finding procedures in UCINET, Pajek, and NetMiner.

In STRUCTURE, cohesion can be defined in several ways. If cohesion is defined
by the weakest relation between actors (default) and if cohesion between clusters is
defined by the minimum cohesion between the actors in the clusters (cliques), then the
clustering procedure will merge clusters if the minimum cohesion within the clusters
remains positive. Thus, cliques are found in which the actors are completely connected
and have reciprocated relations. This also holds for cliques found by other programs,
but the difference in STRUCTURE is that an actor can appear in only one clique. Other
definitions of cohesion and other clustering methods result in different kinds of cliques
(see Scott 1991).

Applying the algorithm to the acquaintanceship data (first observation) without di-
chotomizing and symmetrizing the network, results in the detection of seven cliques.
These cliques are presented in the left part of Table 13.2.5, which also gives the min-
imum cohesion within the clusters, here equal to two for all cliques. As a result of
the clustering procedure, there is no clique overlap. Applying the algorithm to the di-
chotomized and symmetrized (only reciprocated relations) EIES data again results in
seven cliques, presented in the right part of Table 13.2.5. Comparing these results with
the cliques in Table 13.2.3 shows that the solution is different, although cliques 5, 6,
and 7 are found in both analyses.
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Table 13.2.5. Cliques in the EIES Acquaintanceship Data (First Observation)

Obtained with STRUCTURE
Valued, Unsymmetrized Dichotomous, Symmetrized
Clique Actors Cohesion Clique Actors Cohesion
1 11,16,21 2 1 4,19 1
2 10,20,23,25 2 2 10,23 1
3 3,14,18,26 2 3 21,25 1
4 4,19,22,24,28,29 2 4 13,27 1
5 8,13,27,30 2 5 14,22,24,29 1
6 1,2,15,17,31 2 6 1,18,31 1
7 5,9,32 2 7 2,9,32 1
Statistical Modeling

STRUCTURE contains two routines for statistical modeling of the network data:
contagion analysis and analysis of network equilibrium. The analysis of contagion in
STRUCTURE is based on the principle that the structure of the network is such that
the behavior (attribute) of one actor is influenced by other actors. This means that
attribute values of actors are correlated, due to the structure of the network. Stated
otherwise, an attribute that is affected by contagion results in network correlation. In
STRUCTURE, this is modeled with a regression equation in which the dependent
variable is the attribute value of one actor (ego) and the independent variable is the
weighted average of the values of the same attribute of the other actors (alters), where
the weights reflect the structure of the network. This kind of contagion analysis is not
directly available in the programs described earlier.

The program has two options to define the network weights: by equivalence (Eu-
clidean distances) or by cohesion (relation values). Given these weights, the regression
equation is estimated with ordinary least-squares (OLS). If the input data are a random
sample from a population, OLS gives inconsistent and inefficient estimates, and other
estimation procedures must be used (Ord 1975; Doreian 1980). If the data are popula-
tion data, however, then OLS is accurate. This is typically the case in network analysis
(Scott 1991). The significance of the contagion effect (the slope of the regression equa-
tion, i.e., the network correlation) is tested with a jackknife 7-test. A contagion analysis
was performed on the acquaintanceship data (first observation), with citation as the
attribute affected by contagion and the weights defined by structural equivalence. The
results are presented in Table 13.2.6.

The observed (ego) and expected (alters) citation rates are given together with the
results on contagion. The network correlation of 0.323 is not significant according to the
jackknife z-test (with g — 1 = 31 degrees of freedom), which indicates that structurally
equivalent actors (researchers) do not tend to have the same citation rates.

The analysis of network equilibrium in STRUCTURE is based on the distribution of
power, which is obtained with eigenprocedures (Katz 1953; Bonacich 1972). An actor
is defined to be powerful if he or she receives many exclusive relations from powerful
others. The scores range from 1 (most powerful) to O (weakest). Analysis of the first
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Table 13.2.6. STRUCTURE Output of the Contagion Analysis for the EIES
Acquaintanceship Data (First Observation) with the Attribute Citation

Observed responses mean: 22.906

S.D.: 31.737
Expected responses mean: 24.088
from contagion S.D.: 8.129

Contagion effect (32

observations)
regression intercept: —7.426
regression slope: 1.259
correlation: 0.323
jackknife t-test (31 df): 1.508

observation of the acquaintanceship data reveals that actor 1 is the most powerful (1.00)
and actor 6 (0.05) is the weakest actor (see the graph of the network in Figures 13.2.4
or 13.2.8).

Network equilibrium is analyzed by predicting how relations in a network will change
if powerful actors could initiate any relation they want. This prediction is based on a
linear regression model that predicts the value of equilibrium relations from observed
relations (Scott 1991). The equilibrium relations from actor i to j are defined by ZU(Z_i)’
where z;; is the relation from i to j divided by the row sum (row stochastic adjacency
matrix), and p; is the power of actor i. The analysis of the first acquaintanceship network
results in a regression equation that predicts 42.4% of the variation in the equilibrium
relations (the correlation is 0.65). A high correlation means that equilibrium relations
and observed relations are alike, which implies that the inclination to change relations
is small.

The program gives a so-called turnover table to equilibrium (presented in Table
13.2.7), showing the association between observed relations and equilibrium relations.
It is used to determine stability and locate unstable classes of relations. The relations
are divided into four classes. From the table it follows that change is primarily zero

Table 13.2.7. Turnover Table to Equilibrium in the EIES Acquaintanceship Data
(First Observation) Obtained with STRUCTURE

Equilibrium
Observed None Weak More Strong Total
None (z = 0) 222 120 0 0 342
Weak (z < 0.1) 112 496 17 0 625
More 8 8 8 1 25
Strong (z > 0.5) 0 0 0 0 0
TOTAL 342 624 25 1 992
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Figure 13.2.13. MultiNet user interface showing a normal eigendecomposition for the dichotomized
EIES acquaintanceship data (first observation).

strength relations becoming weak and vice versa. This indicates that the network is
relatively stable.

STRUCTURE provides an option for Monte Carlo network analyses. In such analy-
ses, networks can be simulated according to the uniform, (nearly) normal, or lognormal
probability distribution. With these simulated networks, studies of any of the network
models in the program can be carried out.

(F) MultiNet

MultiNet (Version 4.38 for Windows; Richards and Seary 2003) is a program suitable
for the analysis of large data sets and sparse network data. The program is designed
for contextual analysis, that is, analyzing network data with nodal attributes. Besides
network data, the program contains some methods to analyze attribute data (cross-
tables, ANOVA, correlations). It is menu-driven, where higher level menus and extra
menu items become available after the necessary options are specified. It has context
sensitive-online help and, like NetMiner, gives both graphic representations of the
results and textual output. An example of the MultiNet user interface (including an
example of some graphic output) is presented in Figure 13.2.13.
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The program is available from the authors. There is no complete user’s manual,
which makes it difficult to use and explore MultiNet to its full extent, but the authors
provide useful information and some papers on MultiNet modules (Seary and Richards
2000; Seary 2003).

Some of the network analysis methods and procedures in MultiNet were originally
contained in separate programs. FATCAT (Version 4.2, Richards and Seary 1993), for
instance, performs the same type of categorical social network analysis and produces the
accompanying contingency tables and panigrams as MultiNet. Although incorporated
in MultiNet, FATCAT is still freely available as a stand-alone DOS program that runs
under Windows. The program is interactive and menu-driven and it provides context-
sensitive online help. Another program integrated in MultiNet is PSPAR (Seary 1999),
which estimates the p* model (Wasserman and Pattison 1996) for sparse matrices.

Data Entry and Manipulation

Because MultiNet is designed for the analysis of large networks, like Pajek it uses
node and link lists as data input instead of adjacency matrices. The former is a list of
all actors in the network together with the values of the available attributes; the latter
is a list of the (existing) relations between the actors. There are three options to enter
the data: (1) by opening a MultiNet system file (MNW), (2) by importing ASCII data
from node (NOD) and link (LIN) files, or (3) by opening data in comma-delimited files
(CSV). In the link file, nonexisting relations (e.g., the relations with value O in the
acquaintanceship data) do not have to be specified. Multiple link variables, like the two
observations of the EIES data, have to be included in one link file. Data are saved in
MNW files or exported to ASCIT NOD and LIN files. Distributed with the program are
the two stand-alone utilities ADJ2NEG and FREEFIX to create node and link import
files.

The program contains some data manipulation options (recoding, grouping variables
together) and has a simple data manager. It is possible to specify a value for missing
observations, which has to be the same for all network and attribute variables. There is
also an option to treat missing links as zero values (no links) and vice versa.

Visualization Techniques

MultiNet contains procedures to provide graphic representations of almost all output
generated by the analysis routines. It has graphic tools to draw histograms, cumulative
distribution functions, and line diagrams. Networks are visualized using eigendecom-
positions (Figure 13.2.13). Cross-tables are visualized with so-called panigrams (Figure
13.2.14). Adjacency matrices can be presented visually (Figure 13.2.15), which can be
useful to display large networks. To detect clustering, one can permute the adjacency
matrix according to actor attribute.

All graphic representations are interactive, which means that the user can click
on displays to inspect attribute values or probability levels, explore effects, permute
displays, or find information on nodes and links. The program also has several options
to improve the displays (rotation, translation, magnification). The graphs can be saved,
either as postscript (PS) or bitmap (BTM) files.
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Figure 13.2.14. MultiNet user interface presenting the panigram of discipline and the first
observation of the EIES acquaintanceship network (incoming links).

Descriptive Methods

For network data, the degree, betweenness, closeness, and components statistics can be
computed, together with frequency distributions of these statistics. Frequency distribu-
tions and corresponding descriptives, like mean and standard deviation, of the network
data (the links) and the attribute data (nodes) can also be obtained.

Procedure-Based Analysis

With MultiNet, one can analyze the structure of networks with several eigenspace
methods. The methods create visual displays of the network such that the location
of the actors reveals the structure of the relationships and their patterns (Richards
and Seary 2000; Freeman 2004). Thus, the eigenmethods pursue the same goal as
the spring-embedding algorithms (used in NetDraw, Pajek, and NetMiner) and the
multidimensional scaling procedures (used in NetDraw and NetMiner). Pajek also
contains some eigenmethods.

Eigenprocedures require dichotomized and symmetrized data. The result of an eigen-
decomposition is an eigenspace that can be used to visualize the network structure
(Seary 2003). In the visual displays, the coordinates of the nodes are based on the co-
ordinates of the first two or three eigenvectors, yielding two-dimensional (2D) and 3D
displays, respectively. Between the nodes, lines are drawn based on the link variable
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Figure 13.2.15. MultiNet user interface with the p* graphic display window showing the results for
the EIES acquaintanceship data (first observation).

(i.e., the dichotomized and symmetrized links in the original network). Associated with
each dimension is a certain amount of variance in the original data, where the largest
amount of variance is associated with the first dimension, and so on. A one-dimensional
display of the network can also be generated, based on the first eigenvector. This is a
so-called virtual adjacency matrix in which only the existing links are shown (using
sparse methods; see Seary 2003).

The results can be rotated, resized, and rescaled to obtain a better presentation of
the data. The eigenspace methods can also be used to partition the actors on the basis
of the network structure. In Figure 13.2.13, the 3D normal eigendecomposition of the
dichotomized EIES acquaintanceship data (first observation) is presented. The actors
are colored according to their discipline (1-4: sociology—psychology). For every eigen-
decomposition, a textual report is generated that includes details about the current
eigenspace.

Statistical Modeling

MultiNet contains four statistical techniques to analyze network data, of which the first
three can also be used for the standard analysis of actor attribute data: (1) cross-tables
and x>-tests, (2) ANOVA, (3) correlations, and (4) the p* exponential random graph
model (Wasserman and Pattison 1996; Seary and Richards 2000).
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Table 13.2.8. ANOVA Results for the EIES Acquaintanceship
Data (First Observation) Obtained with MultiNet

Mean Citation of

Relation n Receiver Sender
Did not know 342 15.0 20.6
Had not met 137 29.8 23.2
Had met 360 27.8 23.5
Was friend 111 22.5 23.3
Was close friend 42 24.1 34.6
ANOVA: p-value <0.01 >0.10

Cross-tables are visualized using panigrams. An example is presented in Figure
13.2.14. The tables and panigrams are used to explore the association within networks
(out- and in-degrees, i.e., sender and receiver effects) or the association between net-
works and an attribute. In Figure 13.2.14, a panigram of discipline and incoming links
(receiver effects) of the first observation of the acquaintanceship network is presented.
The links can take the values O to 4 (“have not met” to “close friends”), discipline
the values 1 to 4. Interactive help is available, explaining the meaning of the “cells.”
For example, 20.5% of the links with value 0 (“have not met”) come from actors with
discipline value 2 (anthropology) and 9.4% from members of discipline 3 (statistics).
The x?-statistic equals 23.4 (df = 12, p < 0.05), which indicates a significant associ-
ation between the variables (with sociologists receiving more friendship choices). The
association between discipline and outgoing links (sender effects) of the first acquain-
tanceship network is also significant (results not reported here).

In Table 13.2.8, the results of two analyses of variance for the first observation of the
acquaintanceship data are presented. The independent grouping variable is the nature
of the relation between two actors (sender and receiver) at the first time point. The
dependent variables are the mean citation rates of the senders and the receivers. A
graphic display of the citations per relation group is also produced (not shown). From
the table, it follows that there is a significant difference between the mean citation rates
of receivers, but not between the senders. The means show that receivers are on average
less often cited in the “did not know” relation group.

The analyses differ from those performed by UCINET, where only one row or col-
umn of the adjacency matrix is used in an ANOVA. By using all links in the analyses,
MultiNet assumes independence between all relations, whereas UCINET assumes in-
dependence between actors. The former will generally not be the case, and the user
should therefore be very cautious in interpreting the results.

MultiNet comprises PSPAR, an earlier program by Seary (1999), designed to fit p”
models to large networks by pseudolikelihood based on sparse methods. The method
fits the model parameters to triad statistics selected by the user. Blockparameters can
be obtained by fitting models of which the blockstructure is defined by one or more
(categorical) actor attributes. Figure 13.2.15 shows the p* graphic display window ob-
tained for the EIES acquaintanceship data (first observation). The effects included in
the model are density, reciprocity, transitivity, and the blockparameter “choice within



13.2 Social Network Software — A Closer Look 301

= = SHOCMET - D:AData\Network\Eies\Stocnet\St_eies.sns

Session Files Stlep Options Help

o i £
Ejzinild =) Data Transformation  Selection Model Fesults
- Data =] e
£+ Transformation S
I Network(s) odel chaice
é-Recodings
= o SIEMNA SliL?
5 EES ol dat {StOCNETModeI. [ |[&

Model Specific User Interface:

—Specify network type

Available network(s): Digraphs in seq. order: Ay &y |

- Missing values

[ Actar attributes «<| > acquaintancel

= Selection

Fun model type

acquaintance?
" Bimulation

& Estimation
- hs inseq. orde ; ]
5---gacpuaintange1 Dyyadic cavariates:
: q M messages

Specify...
L acfuaintance?
= Dyadic covariates
. emessoges Eunl |
=8 Maon-varying atirib. file_|

L Filel

- Fiesults =
4] | »

STOCNET Sessioninfo.. |
| 4

Notes.. | Examine... iew | Jépp\yl X Cancel 7 Help |

Figure 13.2.16. StOCNET user interface of the SIENA module for longitudinal analysis of the
EIES acquaintanceship data.

blocks” with the blocks defined by the attribute discipline. All estimates were significant
and are reported in Table 13.2.10 in Section 13.2(G) together with the estimates ob-
tained in StOCNET. The p” graphic display shows the adjacency matrix with correctly
predicted links (green), the false negatives (blue), and false positives (red).

(G) StOCNET

StOCNET (Version 1.5. Boer et al. 2004) is an open software system, in a Windows
environment, for advanced statistical analysis of social networks. It provides a platform
to make available a number of statistical methods, presented in separate modules, and
allows new routines to be easily implemented (Huisman and Van Duijn 2003). The
program is freeware and can be downloaded from the StOCNET website. A user’s
manual describing the operation of the StOCNET system is available, as well as a
programmer’s manual, which describes the main procedures and functionalities of the
system to facilitate the inclusion of new statistical methods. On the website, user’s
manuals of all modules and programmer’s manuals together with source codes of some
modules can be found.

Analyses take place within sessions. A session consists of (a cyclical process of)
five steps: (1) data definition, (2) transformation, (3) selection, (4) model specification
and analysis, and (5) inspection of results. A typical SSOCNET window is presented
in Figure 13.2.16 showing the user interface for the module SIENA for longitudinal
network data (see Snijders 2004).
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Table 13.2.9. Estimated (Significant) Effects for the Evolution of
the EIES Acquaintanceship Data Obtained with the SIENA
Module in StOCNET

Effect Est. SE
Constant change rate 247

Density (out-degree) —1.80 0.52
Reciprocity 2.06 0.39
Indirect relations -0.27 0.13
Popularity 6.40 1.05

Data Entry and Manipulation

Network data have to be presented as adjacency matrices saved in ASCII format with
the values separated by blanks. Actor attributes also have to be presented as ASCII
files, with blanks separating the values. Data sets are saved as ASCII data files and
StOCNET sessions are saved in session files (SNS). Export functions to MultiNet,
NetMiner, Pajek, and STRUCTURE are available. StOCNET contains a recoding,
symmetrizing, and selection option. Missing values can be specified, both for network
data and attributes. The handling of missing observations depends on the statistical
model selected in the modeling step.

Visualization Techniques
StOCNET does not contain procedures for the visualization of networks.

Descriptive Methods

In four of the five steps in a STOCNET session, descriptive analyses of the available
data can be performed by clicking the Examine button. This button is available in the
main windows of all steps (Figure 13.2.16), except in the last step (i.e., inspection of
results). Degree variances, index of heterogeneity, dyad and triad census, degree of
reciprocity and transitivity, and segmentation are some of the network statistics that are
calculated for separate network data sets. For longitudinal analysis of networks, change
statistics are calculated.

Procedure-Based Analysis
There are no procedure-based routines available in StOCNET.

Statistical Modeling

StOCNET contains six statistical modules: (1) BLOCKS, for stochastical blockmodel-
ing (Nowicki and Snijders 2001); (2) ULTRAS, for estimating latent transitive structures
using ultrametrics (Schweinberger and Snijders 2003); (3) P2, for fitting the exponen-
tial random graph model p, (Van Duijn, Snijders, and Zijlstra 2004); (4) SIENA, for the
analysis of longitudinal network data (Snijders 2001, 2004); (5) ZO, for determining
probability distributions of statistics of random graphs based on the I/ | X;;, X, and
U | Xit, X4j, M distributions (Snijders 1991; Molloy and Reed 1995) and (6) PACNET,
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Table 13.2.10. Pseudolikelihood Estimates Obtained with MultiNet and Markov Chain Monte
Carlo Robbins Monro p*-estimates Obtained with StOCNET for the EIES Acquaintanceship
Data (First Observation)

MCMC Robbins Monro
Pseudolikelihood Conditional on Ties
Effect Est. SE Est. SE Est. SE
Density -3.61 0.22
Reciprocity 1.94 0.23 2.15 0.31 2.20 0.30
Transitivity 0.32 0.036 0.17 0.01 0.17 0.01
Dissimilarity discipline 0.55 0.22 0.25 3.32

for constructing and fitting of structural models based on partial algebraic structures
(Pattison and Wasserman 1995; Pattison, Wasserman, Robins, and Kanfer 2000). Other
exponential random graph models can also be fitted in StOCNET: the p; model
(Holland and Leinhard 1981) as Examine option in P2, and the p* model (Wasserman
and Pattison 1996) in SIENA where MCMC estimation with the Robbins-Monro al-
gorithm is applied to a single network observation, instead of repeated observations
(Snijders 2002; Snijders and Van Duijn 2002).

The results of applying modules SIENA and P2 to the EIES data are shown in
Tables 13.2.9 through 13.2.11. Figure 13.2.16 shows the model-specific user interface
for the SIENA module. Both time points of the acquaintanceship networks are analyzed
with the dynamic actor-oriented model of Snijders (2001, 2004). The first observation
of the network is analyzed with the p, model and with the p* model. For all models,
the dichotomized data were used.

The estimated effects of the SIENA model are presented in Table 13.2.9 (see also
Snijders 2004, for a discussion on the interpretation of the parameters). The rate pa-
rameter shows that on average, the actors made about 2.5 relationship changes in the
period between the observations. In the evolution of the acquaintanceship network, a
clear reciprocity effect and a transitivity-type effect are present, the latter being spec-
ified as a tendency away from indirect relations. There is also a tendency for popular
others (i.e., others who receive many choices). No significant attribute effects were
found.’

In the SIENA module, MCMC estimation with the Robbins-Monro algorithm of p*
model is implemented. As Snijders (2002) noted, both the pseudolikelihood estimation
(as implemented in MultiNet, but which can also be done with standard software for
logistic regression), and MCMC estimation using the Geyer and Thompson (1992)
method are unsatisfactory. The pseudolikelihood estimate is not a function of the com-
plete statistic and has unknown properties. This leads in any case to underestimation of
the standard errors of the estimates. MCMC estimation is not satisfactory either because
the simulation of random graph distributions turns out to be a complicated matter due
to bimodality and poor mixing properties of the Metropolis-Hastings and Gibbs algo-
rithms, which leads to convergence problems. See Wasserman and Robins (2004) for
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Table 13.2.11. p,-estimates for the EIES Acquaintanceship Data (First Observation;
Only Significant Effects) Obtained with StOCNET

Effect Parameter Est. SE
Density nw —-2.79 0.29
Dissimilarity citation (abs. dift.) —-0.017 0.005
Dissimilarity citation (diff.) —0.013 0.003
Similarity discipline 0.64 0.18
Reciprocity P 2.36 0.32
Sender Variance o3 1.01 0.24
Citations 0.028 0.0082
Receiver Variance aé 0.98 0.23
Sender—receiver Covariance o4 p —0.40 0.18

an extended discussion of pseudolikelihood and MCMC estimation of p* models. Snij-
ders (2002) and Snijders and Van Duijn (2002) proposed several alternative simulation
methods to improve convergence, based on single relations, dyads, and triplets, using
Gibbs or Metropolis Hastings steps, making small or large updates (through inversion
steps), and/or on conditional simulation (fixing the number of relations, or the in- and
outdegrees and thus limiting the outcome space). More developments in this area are
expected.

In Table 13.2.10, the results are given of fitting the p* model to the first observation of
the EIES data. Maximum pseudolikelihood estimates were obtained with MultiNet (see
Section 13.2(F)). MCMC estimates with the Robbins-Monro algorithm were obtained
with the SIENA model in StTOCNET. It was not possible to estimate the p* model
unconditionally. As soon as the transitivity effect was added to the model, no conver-
gence was obtained. It was possible to obtain estimates of the p* model conditional on
the number of ties, which means that no density effect is estimated. The convergence
of the model with the dissimilarity (or block) effect of discipline was also unsatisfac-
tory, which shows in the large standard error for this effect, given in Table 13.2.10.
The convergence of the conditional model with only reciprocity and transitivity was
acceptable. The estimates for reciprocity and even their standard errors are similar for
pseudolikelihood and MCMC. The estimates for transitivity and the similarity (block)
effect of discipline are quite different.

The p, model is a random effects model with the dyadic ties as the dependent
variables (Van Duijn et al. 2004). The sender and receiver parameters, fixed in the p,
model, are regressed on available — categorical or continuous — nodal attributes (actor
covariates). If no attributes are available, the regression model reduces to random sender
and receiver effects. Likewise, the density and reciprocity parameters can be linked to
other available networks (dyadic covariates), without a random component. Dyadic
covariates can also be computed from the nodal attributes, for instance, by taking their
difference or absolute difference, which are both standard options in the P2 module.
Thus, dissimilarity matrices are created. If the nodal attribute is categorical, one can
construct dichotomous (dis)similarity matrices, comparable to the blockparameters in
MultiNet. Unlike the p* model, the p, model does not contain network effects other
than reciprocity.



13.3 Social Network Software — Other Packages and Routines 305

Table 13.2.11 contains the parameter estimates for the fixed and random effects of the
model. Dissimilarity with respect to citation has a significant negative effect on density,
in two ways: expressed as the absolute difference of the actors’ number of citations, and
expressed as the simple difference of the actors’ number of citations. The first effect
implies that the probability of an acquaintance relation decreases the more actors differ
with respect to their citations; the second indicates a directional effect that actors whose
citations are high tend to choose less often actors whose citations are low. The second
effect can be viewed as a refinement of the positive sender effect for citation, which
indicates that the probability of an outgoing acquaintanceship relation (irrespective of
the receiver attributes) increases with the number of citations. The positive effect of
similarity with respect to discipline indicates that actors tend to choose more within
their own discpline group, which effect was also found for p* model in MultiNet. There
is a general reciprocity effect, but this is not differentiated according to dyadic attributes.

Analysis of the first observation of the acquaintanceship data with the stochastic
blockmodeling routine BLOCKS (results not shown here) reveals some classes of
stochastically equivalent actors (i.e., they have the same probability distribution of
their relations to other actors). The fit of the models, like the blockmodeling results
obtained with Pajek, however, is not very good. The blocks found do not coincide with
the partitions based on actor attributes.

ULTRAS, aimed at finding groups according to a latent structure based on ultra-
metrics (i.e., triadic distances between actors), was also applied to the first network
of the valued acquaintanceship network, using a Poisson distribution for the network
ties. The groups can be presented as a tree, branching further with larger distances.
The number of ultrametrics needs to be determined using a Bayesian model selection
process. The analysis shows that a solution with less than three ultrametrics is certainly
inferior to a model with at least four ultrametrics, whereas the distinction between four
or more ultrametrics is less clear. The solution with four ultrametrics (not shown here)
resembles to some extent the dendogram of the hierarchical cluster analysis found by
Pajek (presented in Figure 13.2.7).

More examples of statistical analyses with the STOCNET modules are given by
Huisman and Van Duijn (2003).

13.3 Social Network Software — Other Packages and Routines

In this section, other available software for social network analysis is briefly discussed,
without illustrations. We distinguish general packages and five types of special pur-
pose packages: for identification of subgroups, for knowledge networks, for hidden
populations, for kinship networks, and for statistical testing. Only the most important
features are mentioned. The final subsection treats routines and utilities for the analysis
of social networks developed to be used in a general statistical software package or in
a programming language.

(A) General Packages

In this section, seven general packages are mentioned (in alphabetical order). One of
them, GRADAP, is well-known because it has been around for more than 15 years. We
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consider GRADAP, although outdated, worth mentioning because it contains routines
and statistics not available in packages like UCINET or Pajek. The other programs are
quite new and regularly updated. We distinguish two kinds of general programs: pro-
grams intended for data analysis that have visualization options (Agna and SNAFU),
and programs intended for network visualization that feature analysis procedures (so-
called visual exploration; InFlow, NetDraw, NetVis, and visone).

Agna (Version 2.1.1; Benta 2004): The platform-independent application Agna (Ap-
plied Graph & Network Analysis) is designed for social network analysis and sequential
analysis. Sequential analysis deals with behavioral chains, which are modeled in or-
der to find rules that govern the inner structure of behavior. This inner structure is
represented by dyad transitions. Agna is designed to study communication relations
in groups, kinship relations, and the structure of animal behavior. The analysis meth-
ods include general descriptives, shortest path analyses, and centrality and sociometric
coefficients. The program has ample visualization options.

GRADAP (Version 2.0; Sprenger and Stokman 1989): The software package
GRADAP (GRAph Definition and Analysis Package), an environment for analyzing
graphs and networks, is an organized set of programs explicitly developed to analyze
network data represented as graphs, and includes a wide range of cohesive subgroup
and centrality methods, and models for the distribution of in- and out-degrees. It is only
available as a DOS application and will not be updated to a Windows environment.

SNAFU-MacOS (Version 2.0; Hagen 2003): SNAFU (Social Network Analysis
Functional Utility) is a general-purpose network analysis tool for MacOS systems,
which is distributed “as-is” with no warranties or support beyond reasonable requests.
It imports and exports to UCINET, InFlow, and some visualization programs, and is
generally oriented toward connected graphs of a few hundred nodes. It includes network
editing features, descriptive techniques, some matrix algebra, visualization tools, and
multiple example data sets.

Visual Exploration

InFlow (Version 3.0; Krebs 2002): InFlow is a commercial software package for
network mapping, especially aimed at organizational applications. It was originally
developed for Macintosh, but has been updated to Windows. Interactively, it carries out
network analysis and network visualization simultaneously (with ample graphic export
options). Thus, it is possible to express changes in the network directly in terms of
network measures. It features a number of descriptive and procedure-based routines,
but no statistical methods.

NetDraw (Version 1.0; Borgatti 2002): NetDraw is a program for drawing networks.
It is a free, stand-alone program, but is also distributed together with UCINET. This
reflects its close relation with UCINET: it can be executed within UCINET and reads
UCINET files natively without the need for import and export functions.
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NetDraw uses several different algorithms for displaying nodes in a 2D space, using
a circle layout or layouts obtained with multidimensional scaling or spring embedding.
These layouts are based on geodesic distance (see Freeman 2004, and Sections 11.2(C)
and 11.2(D)). It has tools for grouping and automatically recoloring, resizing, or re-
shaping of nodes, ties, and labels to represent these groups. Graphs can be rotated,
flipped, resized, and saved in several formats, among others, as BMP and JPEG files.
Export functions to Mage and Pajek are available. NetDraw includes some analysis
procedures, for example, identification of isolates, components, or k-cores, the results
of which are displayed graphically.

NetVis (Version 2.0; Cummings 2003): With advances in open source software, so-
cial network researchers have new opportunities for analyzing and visualizing network
data. One such possibility is the NetVis module, a web-based tool to analyze and visual-
ize social networks using data from CSV files, online surveys, and dispersed teams. It is
available online, where data can be uploaded, analyzed, and output and (3D) graphs are
generated, which can be downloaded. For all algorithms, the source code is available.

visone (Version 1.1; Brandes and Wagner 2003): The visone project team is de-
veloping models and algorithms to integrate and advance the analysis and visualization
of social networks. It facilitates the visual exploration of network data by experts and
novices. Its origins lie in an interdisciplinary cooperation with researchers from math-
ematics, computer and information science, and political science. visone is a research
platform that is not intended to become a standard tool, and is in development and
therefore subject to change.

visone contains several different algorithms for drawing graphs and representing
results of analyses. It uses spring embedders, spectral layouts, layered layouts, and radial
layouts to present networks. It has many options to improve the (layout of the) graphs
and visualizations can be exported in SVG or postscript format. The analysis methods
include local measures (degrees), distance measures (e.g., betweenness, closeness), and
feedback measures (e.g., status, eigenvector, authority).

(B) Special Purpose Packages

In this section, we discuss nine packages, divided into five specific areas of social
network analysis: identification of subgroups, knowledge networks, hidden populations,
kinship networks, and statistical testing.

Identification of Subgroups

KligFinder for Windows (Version 0.05; Frank 2003): KligFinder is the Windows
version of the FORTRAN and SAS-based program KliqueFinder (adapted for Windows
by Richard Congdon). It is aimed at identifying cohesive subgroups and produces a so-
called crystallized sociogram representing the subgroups and their relations within and
between the clusters. The subgroups are identified in an iterative algorithm maximizing
the log-odds of a tie within the group (Frank 1995, 1996). For the graphic representation
of the subgroups, the program SAS is called from within KligFinder.
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NEGOPY (Version 4.30; Richards 1995): The main purpose of the DOS-based pro-
gram NEGOPY is to find cohesive subgroups. To this end, it defines a number of role
categories, such as groups, isolates, or participants on the basis of their linkage with
other nodes, more or less similar to the p-cliques discussed in the section on Pajek.
The reader is referred to the manual for exact definitions and how these definitions may
be adapted, and short references in Wasserman and Faust (1994). The result is a dis-
crete categorization of the nodes in the network. NEGOPY uses partial decomposition
methods to approximate eigendecomposition methods unfeasible for large networks,
whereas MultiNet calculates exact eigenpairs (see Richards and Seary 2000).

Knowledge Networks

Blanche (Version 4.6.5; Hyatt et al. 2004): Because knowledge of the knowledge
network causes changes and further evolution of the knowledge network, the program
Blanche was designed to create and simulate models of network dynamics. It uses a
system of nodes and links, as well as (nonlinear difference) equations that describe how
the strengths of links and the attributes of nodes change over time. It consists of three
modules to create models, to create data, and to run the model and output the results,
respectively.

lknow (Contractor, O’Keefe, and Jones 1997): Iknow is specialized Java-based
software that collects and presents data on communication and knowledge networks.
In this kind of knowledge networks, the nodes are actors (individuals or organizations)
and the links the knowledge or information they have about characteristics of the
other actors. These characteristics typically concern knowledge of various domains.
The software either collects interactively or automatically, from the web, information
about the network actors and their links, and then presents this information in various
ways.

Referral Web (Version 2.0; Kautz, Selman, and Shah 1997): This Java-based soft-
ware was developed in the area of artificial intelligence. It is aimed at research com-
munities and helps users, that is, researchers explore the social networks in which they
participate (such that they can quickly find short referral chains between themselves
and experts on arbitrary topics). It either shows the neighborhood of a specified re-
searcher (the node), the path to some specified other node or to an unknown expert on
a specified topic. The program operates by automatically generating representations of
social networks based on evidence gathered from publicly available documents on the
Internet. For instance, nodes who are found to be coauthors, are linked. The definition
of association on which the linking is based may be difficult, and therefore the resulting
networks may be incorrect and/or incomplete.

Hidden Populations

SNOWBALL (Snijders 1994): SNOWBALL is a DOS program for estimating the
size of a hidden population from a one-wave snowball sample, implementing the es-
timates proposed by Frank and Snijders (1994). Snowball sampling is a term used for
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sampling procedures that allow the sampled units to provide information not only about
themselves, but also about other units. This is advantageous when rare properties are
of interest.

SocioMetrica LinkAlyzer (Version 2.1; MDLogix 2002): SocioMetrica Link-
Alyzer is aimed at constructing a network from data obtained from (a sample from)
a difficult or hidden population. The program was developed to investigate HIV links
between drug users. The typical problem is that many actors in the network are difficult
to identify because of their use of, possibly various, nicknames. To construct a network
from the data that are usually collected as egocentric networks (by interviewers), it is
necessary to find out which nominees are the same. The software tries to identify these
actors by matching them on various possible attributes such as gender, age, appearance,
location(s), and so on. Although the software is commercial (available in two versions
for smaller and larger networks), a demo version can be downloaded from the web. It
is possible to work with example data or with other data (containing not more than fifty
actors) and thus to get an impression of the features of the program that also provides
some standard network measures like centrality. It has import and export possibilities
to common other packages such as UCINET, SPSS, and Excel.

Kinship Networks

PGRAPH (Version 2.7 for Windows; White and Skyhorse 1997): PGRAPH is
software for kinship and marriage networks, where P stands for parent or parental.
On the webpage, the authors call it a “toolkit for structural analysis of genealogical
data and kinship and marriage data.” The p-graph is a concept for a representation of
networks in which the vertices are not individuals, but intersections between individuals
(as in marriage), or between groups and individuals, where graph theoretic cycles and
blocks are relevant units of analysis (see also Harary and White 2001). Networks can
be analyzed using p-graphs with either the PGRAPH package, or with Pajek software
in combination with some utility programs that preanalyze the data and convert it to
Pajek input format (White, Batagelj, and Mrvar 1999).

Statistical Testing

PermNet (Version 0.94; Tsuji 1997): The program PermNet (PERMutation NET-
works) contains a set of permutation tests for social network data. It provides symmetry
tests, transitivity tests for real-valued data, and a triad census test for binary data (cf.
NetMiner and the module ZO of the StOCNET software).

(C) Utilities and Routines

We mention five software toolkits with utilities available for programming, either in
general software (Excel, Gauss, R/S) or in a common programming language (Java).
The routines developed for Gauss and especially those developed for R are the most
general and complete. The Excel routines are specifically aimed at ethological appli-
cations, and the Java-based libraries of procedures are largely aimed at visualization.
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Next to these routines, some other data preparation utilities are available. Some of
them (ADJ2NEG and FREEFIX) were already mentioned in Section 13.2(F). An-
other, PREPSTAR (Version 1.0; Crouch and Wasserman 1998) has been developed to
perform p* analyses in SPSS or SAS.

JUNG-Java Library (Version 1.4.3; White et al. 2004): The Java Universal Net-
work/Graph (JUNG) framework is a software library that provides a common and
extendible language for the modeling, analysis, and visualization of data that can be
represented as a graph or network. JUNG supports a variety of representations of
graphs (e.g., directed, undirected), and the current version includes algorithms for clus-
tering, decomposition, random graph generation, statistical analysis, and calculating
of network distances, flows, and importance measures. It also provides a visualization
framework to construct tools for data exploration.

MatMan—Microsoft Excel (Version 1.1 for Windows; Noldus Information Technol-
ogy, 2004): An add-in for Microsoft Excel, MatMan is aimed at performing specific
matrix manipulations, common in ethologic research, for sociomatrices, behavioral
profile data, and transition matrices. Furthermore, social dominance and correlation
analyses can be performed.

SNA-R-routines for S (Version 0.44; Butts 2004): This collection of routines to be
used in R or S (“Carter’s archive”), contains many well-documented procedures for
performing various kinds of social network analyses ranging from general analyses
such as mutuality, betweenness, or centrality to specific analyses such as QAP and p*
analyses, or blockmodeling. It also contains visualization routines. The R routines can
be called from the program Pajek (see Section 13.2(C)).

SNAP-GAUSS (Version 2.5; Friedkin 2001): Like SNA, a collection of network
analysis routines that include procedures for calculating many graph theoretical prop-
erties of graphs and nodes, and for fitting social influence models.

yFiles—Java Library (Version 2.2.1; yWorks 2004): The Java class package yFiles
provides efficient and effective visualization algorithms. It is a class library for view-
ing, editing, optimizing, layouting, and animating graphs. Because it is written in Java,
yFiles is fit for platform independent applications. It has a graph viewer and supports
many functionalities, like labels for nodes and edges or multiple views of a graph. Fur-
thermore, yFiles has some routines for exploration and descriptive analysis of networks
(e.g., bipartitions, shortest paths, transitivity).

13.4 Recommendations

We conclude this section with a summary of the packages presented in Section 13.2.
We scored the software at (1) functionality, using the earlier-defined categorization
of procedures: data manipulation (data entry was found not to be a problem for any
program), network visualization, descriptive methods, procedure-based methods, and
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Table 13.4.12. Scores for the Packages Presented in Section 13.2

Functionality Support

User
Data Visual. Descr. Proc. Stat. Manual Help Friendliness

MultiNet +- + +- + +- +- ++ +
NetMiner ++ ++ ++ ++ +— + + +4
Pajek + ++ + ++ 0 - 0 +—
StOCNET +— 0 +- 0 ++ + + +
STRUCTURE - 0 +— ++ + ++ 0 +—
UCINET ++ +a ++ ++ +- + + +

4 The program NetDraw for network visualization is distributed with UCINET.

statistical methods; (2) support: the availability of a manual and a online help-function;
and (3) user friendliness. The scores are given in Table 13.4.12. A + is used to indicate
that it is good (or at least sufficient), ++ that it is very good or strong, a — that it
has shortcomings, a O that it is lacking, and a +— that it is undecided (having both
good and bad parts). We explain the scores, especially the negative ones, later in this
section.

Obviously, we try to present an objective, substantiated view, but we admit that we
cannot give a completely unbiased opinion. We also stress that it is impossible to make
a fair comparison between the packages because their objectives are different, which
leads to different functionalities. For instance, the aim of STOCNET is not to compete
with but to be an addition to existing software, and therefore it contains no procedure-
based methods. Likewise, STRUCTURE is too old to offer any visualization.

Therefore, we advise also reading the table vertically: for instance, if one is looking
for a package with the primary aim to obtain many descriptive network measures,
UCINET or NetMiner would be a good candidate. However, if network visualization
is an important objective, Pajek and NetMiner are competing packages.

In two of the six programs, MultiNet and StOCNET, data manipulation obtained
the score +— because they contain relatively few options. STRUCTURE received a
negative score because it contains hardly any options for data manipulation.

The visualization aspect of UCINET is meager, but this is compensated by export
possibilities to specialized network visualization software and the option to call Net-
Draw within UCINET. StOCNET does not have any visualization options, but this is
compensated via export possibilities to NetMiner and Pajek that score very well with
respect to visualization.

The scores for the descriptive, procedure-based, and statistical methods, are in-
dicative of the number of different features. The descriptive methods are rather
sparse in MultiNet, StOCNET, and STRUCTURE. They are most comprehensive
in NetMiner and UCINET. These programs also contain many procedure-based meth-
ods, whereas STRUCTURE has some unique procedures. StOCNET does not contain
any procedure-based methods, but has many statistical methods, more, and more ad-
vanced, than the other programs. The statistical methods in Pajek are so limited that
they score a 0 (although there is the possibility to call statistical routines in R). The
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statistical methods in STRUCTURE are also limited, but exclusive. The other three
programs do contain a number of — sometimes exclusive — statistical methods, but they
are presented uncritically, whereas some warning would definitely be warranted for the
ANOVA procedures, estimation of the p* model, and QAP regression.

In our opinion, the manual of STRUCTURE is the best because it contains both
good practical information and a theoretical background. The completeness of the
manual shows that it was developed in the pre-Internet era, and that it was — and
still is — used for educational purposes. MultiNet’s manual is, at the time of writing,
incomplete, but the program has good, interactive, online help. Pajek’s manual is
so poorly instructive, that we scored it negatively. Without additional information,
provided via the book by De Nooy et al. (2004), it is very difficult to use Pajek to
its full extent. The fact that Pajek does not have an online help function is a further
drawback.

We see some connection between the support offered in the various packages and
their authors and development period. Except for NetMiner, the developers of all
packages are or were rather active in the social network analysis community. Authors
with a social science background (UCINET, STRUCTURE) are very able and ex-
perienced in communicating their methods and incorporating them in social theo-
ries. Packages with authors with a mixed background (both social and mathematical/
computational; MultiNet, StOCNET) offer less social theory. The more mathemat-
ical orientation of the authors shows in Pajek, where the user is supposed to know
what he or she wants. The most commercial — nonacademic — developers of NetMiner
have been able to profit from the experience of previously developed software to join
completeness and user friendliness.

The insufficient manual and lack of online help is the reason of the +— score for
Pajek’s user friendliness. STRUCTURE obtains a +— score because of its age. We
find that it would be worthwhile to upgrade STRUCTURE or to incorporate it into
one of the existing programs. The same applies to GRADAP. With respect to user
friendliness, NetMiner stands out because of its interface where visualization, data,
and procedures are integrated.

It remains, however, hard to compare the different packages, as we already pointed
out at the beginning of this section. We leave it to the reader of this chapter to decide
which software to use for the social network analysis he or she wants to do.
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Table 13.4.13. URLs of All Reviewed Programs and Software Toolkits

Program Ver. URL

Agna 2.1.1 http://www.geocities.com/imbenta/agna/index.htm

Blanche 4.6.5 http://www.spcomm.uiuc.edu/Projects/TECLAB/BLANCHE/
FATCAT 4.2 http://www.sfu.ca/ richards/Pages/fatcat.htm

GRADAP 2.0 http://www.assess.com/Software/GRADAP.htm

Iknow — http://www.spcomm.uiuc.edu/Projects/TECLAB/IKNOW/

InFlow 3.0 http://www.orgnet.com/

KligFinder 0.05 http://www.msu.edu/ kenfrank/software.htm

MultiNet 438 http://www.sfu.ca/ richards/Multinet/Pages/multinet.htm
NEGOPY 430 http://www.sfu.ca/ richards/Pages/negopy4.html

NetDraw 1.0 http://www.analytictech.com/downloadnd.htm

NetMiner Il 240 http://www.netminer.com/NetMiner/home0l.jsp

NetVis 2.0 http://www.netvis.org/

Pajek 1.00 http://vlado.fmf.uni-17j.si/pub/networks/pajek/default.htm
PermNet 094 http://www.meijigakuin.ac.jp/ rtsuji/en/software.html
PGRAPH 2.7 http://eclectic.ss.uci.edu/ drwhite/pgraph/

ReferralWeb 2.0 http://www.cs.washington.edu/homes/kautz/referralweb/
SM LinkAlyzer 2.1 http://www.md-logic.com/id142.htm

SNAFU 2.0 http://innovationinsight.com/networks.html

Snowball — http://stat.gamma.rug.nl/snijders/socnet.htm

StOCNET 1.5 http://stat.gamma.rug.nl/stocnet/

STRUCTURE 42 http://gsbwww.uchicago.edu/fac/ronald.burt/teaching/
UCINET 6.55 http://www.analytictech.com/ucinet.htm

visone 1.1 http://www.visone.de/

JUNG 143 http://jung.sourceforge.net/index.html

MatMan 1.1 http://www.noldus.com/products/index.html?matman/index
PREPSTAR 1.0 http://kentucky.psych.uiuc.edu/pstar/index.html

SNA 044 http://legba.casos.ri.cmu.edu/R.stuff/

SNAP 2.5 http://www.soc.ucsb.edu/faculty/friedkin/Software/Software.htm
yFiles 22.1 http://www.yworks.com

KrackPlot 3.0 http://www.andrew.cmu.edu/ krack/

Mage 2.1 http://kinemage.biochem.duke.edu/kinemage/kinemage.html

1. Except FATCAT.

Endnotes

2. A very helpful and well-written textbook by De Nooy, Mrvar, and Batagelj on using Pajek for
exploratory network analysis is forthcoming.

3. Snijders and Van Duijn (1997) analyzed another dichotomization of the EIES data: not know-
ing/having met versus having met/being friends. They found different effects (especially effects
of the attribute citation) influencing the evolution of the “meeting” network.
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