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Preface

A class of models for analysing social network data are described in this
work. The models are offered in response to two related needs arising
from current developments in social science research. Firstly, data on
social networks are being gathered much more commonly, a fact that
is reflected by the inclusion in 1985 of a set of network questions in the
General Social Survey (Burt, 1984). As a result, there is a growing need
for a variety of models that will enable the analysis of network data in
a number of different forms. Secondly, the role of social networks in the
development of social and psychological theory is increasingly prominent
and calls for the development of data models attuned to a variety of
theoretical claims about the nature of that role.

Arguments for the importance of social networks can be found in both
the psychological and sociological domains. Social psychologists have docu-
mented their dissatisfaction with the "differential" view of social behavi-
our embodied in many psychological theories (e.g., Cantor & Kihlstrom,
1981; Fiske & Taylor, 1990; Harre & Secord, 1972; Magnusson &
Endler, 1977; Moscovici, 1972) and have argued for an analysis of social
behaviour that is more sensitive to the "meaningful" context in which
it occurs. One aspect of that context is the network of social relations
in which the behaviour in question is embedded, a contextual feature to
which empirical studies of some kinds of behaviour have already given
explicit recognition (e.g., Henderson, Byrne & Duncan-Jones, 1981).

On the sociological side, the case for the importance of social networks
was initiated much earlier, and those studies that demonstrated the sali-
ence of social and personal networks have become classics (e.g., Barnes,
1954; Bott, 1957; Coleman, Katz & Menzel, 1957). Indeed, a consider-
able amount of attention has been devoted to the problems of obtain-
ing information about social networks and representing it in some explicit
form (e.g., Fischer, 1982; Harary, Norman & Cartwright, 1965;
Henderson et al., 1981; Laumann, 1973; White, Boorman & Breiger,
1976). Moreover, in addition to their role in making social context
explicit, social networks have played a significant part in the "aggregation"

XIX
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problem, a role that Granovetter (1973), in particular, has made clear.
The aggregation problem is the process of inferring the global, structural
implications of local, personal interactions (White, 1970). Granovetter
has demonstrated that the problem is not straightforward and has shown
in several instances how an understanding of the local social network
assists the task of inferring macro level social behaviour (Granovetter,
1973; also, Skog, 1986).

The models for which an analysis is developed in this book have
therefore been chosen to be sensitive to these two main themes for the
role of social networks in social theory: as an operational form of some
aspects of social context and as a vehicle for the aggregation of local
interactions into global social effects. The claim is not made that the
models selected are unique in filling this role, although it will be argued
that their properties are closely aligned with a number of theoretical
mechanisms proposed for them.

The starting point for the models is the characterisation of social net-
works in terms of blockmodels by White et al. (1976) and the subse-
quent construction of semigroup models for role structure (Boorman &
White, 1976; also, Lorrain &c White, 1971). In presenting the construct
of a blockmodel as a representation for positions and roles from multiple
network data, White et al. argued that it was necessary to develop a view
of concrete social structure that did not depend on the traditional a priori
categories or individual attributes in the sociologists' battery but rather on
the networks of relations among individuals. They claimed that blockmodels
provide a means for representing and ordering the diversity of concrete
social structures, and they showed how the semigroup of a blockmodel
provides a representation of its relational structure at a more abstract,
algebraic level.

Later, Winship and Mandel (1983) and Mandel (1983) extended the
blockmodel framework to include a representation for what they termed
"local" roles. In so doing, they decoupled the notion of local role from
the global role structure approach of Boorman and White, thus pointing
the way to an algebraic characterisation of role in incomplete or ego-
centred networks.

In this book, I have attempted to develop an integrated method of
analysis for these and some related algebraic characterisations of role
structure in social networks. I argue that the algebraic description of
structure is natural from the perspective of social theory and extremely
useful from the perspective of data analysis. In particular, it allows for a
general means of analysing network representations into simple compo-
nents, a property that greatly enhances the descriptive power of the rep-
resentations. A major theme of the work is that the provision of such a
means of analysis is a necessary precursor to adequate practical evaluation
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of the representations. Moreover, an eventual by-product of this form of
analysis should be a catalogue of commonly occurring structural forms and
the conditions under which they occur and, hence, a more systematic
development of projects initiated by Lorrain and by Boorman and White
in their accounts of simple structural models.

The first two chapters describe the algebraic representations adopted
for complete and local networks, respectively. The question of which
networks possess identical algebraic representations is addressed in chap-
ter 3, together with the more general question of how to compare the
algebraic representations of different networks. In chapter 4, a general
procedure for analysing the algebraic representations of complete and
local networks is described. The task of relating this analysis to aspects
of network structure is taken up in chapter 5, where a number of illus-
trative applications of the overall analytic scheme are also presented.
Chapter 6 contains an application of the scheme to complete and local
networks measured over time, while chapter 7 presents the algebraic
representations that can be constructed for valued network data. Finally,
chapter 8 discusses the contribution of the analysis to some important
issues for network analysis, including the description of positions and
roles, structural models for networks and the comparison of network
structures.

The work has benefited from the assistance of many people. Warren
Bartlett lent a great deal of encouragement and support in the early stages
of the work, and Harrison White and Ronald Breiger have given help in
many different ways over a number of years. Many of the ideas developed
here have their source in earlier work by Harrison White and Francois
Lorrain and also by John Boyd; the work also owes much to many
insightful commentaries by Ron Breiger. I am grateful, too, to Stanley
Wasserman for his helpful remarks on two drafts; and I am especially
indebted to my family - Ian, Matt and Alexander, my parents and my
parents-in-law - for their help and patience.





Algebraic representations for
complete social networks

Social networks are collections of social or interpersonal relationships
linking individuals in a social grouping. The study of social networks has
been gaining momentum in the social sciences ever since studies con-
ducted in the 1950s by Barnes (1954), Bott (1957) and others demon-
strated the important role of social networks in understanding a number
of social phenomena. Social networks have since come to span a diverse
theoretical and empirical literature within the social sciences. They have
been invoked in a variety of roles in different theoretical contexts and
have been conceptualised in a number of ways. The frequency of use of
the notion of social network is probably not surprising because an indi-
vidual's behaviour takes place in the context of an often highly salient
network of social relationships. Perhaps more striking is the range of
theoretical roles that have been proposed for the social network concept.
Social networks have been used to explain various characteristics and
behaviours of individuals; they have also been used to account for social
processes occurring in both small and large groups of individuals. In
addition, they have been viewed as dependent on individual attributes and
behaviours, as well as consequences of such aggregate social attributes as
the level of urbanisation of a community.

For example, in one type of network research, social scientists have
examined the nature of social networks as a function of structural vari-
ables such as occupation, stage in life, gender, urbanisation and indus-
trialisation (Blau, 1977; Coates, 1987; Feiring & Coates, 1987; Fischer,
1982; Fischer, Jackson, Stueve, Gerson & McAllister Jones, 1977; Wellman,
1979). In these discussions, the primary focus has been on describing the
consequent variation in network characteristics such as the density of ties
in a person's local social network, although some authors have expressed
the need for more structural concerns (e.g., Friedkin, 1981; Wellman,
1982). Others have considered the interrelationships between social net-
works and the more traditional sociological categories by examining the
distributions of social ties between persons in various categories (e.g.,
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Blau, 1977; Fararo, 1981; Fararo & Skvoretz, 1984; Rytina &c Morgan,
1982).

In a second type of network research, a more diverse group of research-
ers have used social networks as a means of explaining individual behavi-
our. The classic studies of Barnes (1954) and Bott (1957) fall into this
class of network studies, as do many more recent investigations (e.g.,
Kessler, Price and Wortaman, 1985; Laumann, Marsden & Prensky, 1983).
A growing body of work, for example, views psychological characteristics
such as mental health as dependent in part on features of an individual's
interpersonal environment (Brown & Harris, 1978; Cohen &; Syme,
1985; Henderson, Byrne & Duncan-Jones, 1981; Kadushin, 1982; Lin,
Dean &c Ensel, 1986). The network characteristics selected for study in
such investigations have included the density of one's local social net-
work (Kadushin, 1982), the availability of attachment in the network
(Brown &c Harris, 1978) and its perceived adequacy (Henderson et al.,
1981). Wellman (1983, 1988) has summarised the essence of this form
of network analysis as its emphasis on structural forms allocating access
to scarce resources. Social networks provide both opportunities and
constraints for social behaviour and are therefore a necessary part of
the background information required to explain behaviour (Campbell,
Marsden & Hurlbert, 1986; Granovetter, 1985; Marsden, 1983). A
variety of behaviours have been considered in this enterprise, including
not only indicators of physical, mental, economic and social well-being
(e.g., Campbell et al., 1986; Kadushin, 1982; Kessler &c McLeod, 1985;
Piliksuk 8c Froland, 1978) but also such diverse behaviours as option
trading (Baker, 1984), more general economic behaviours (Granovetter,
1985) and individual decision-making (Anderson &: Jay, 1985; Krack-
hardt & Porter, 1987).

A third type of network research examines the behaviour of a larger
group of individuals as a function of the social networks connecting them.
The theme in this work is the assessment of the large-scale, global or
"macro" effects of individual or "micro" behaviour constrained by the
local network structure. Some empirical illustrations of the approach have
been conducted in small- to medium-sized groups against a background
of a complete mapping of network links between all members of a
specified population of persons. Examples include Sampson's (1969)
documentation of a "blow-up" in a monastery and Laumann and Pappi's
(1976) description of collective decision-making as a function of network
links. In each of these cases, the social behaviour of the group was
claimed to be understood in terms of information about the structure
of the social relationships of its members.

On a larger scale, more direct mappings of the relationship between
network characteristics and population parameters have been attempted.
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For example, Granovetter (1974) characterised the local personal net-
works of a sample of individuals and assessed the relationship between
network characteristics and aspects of job-finding. Skog (1986) has argued
that network processes may underlie long-term fluctuations in national
alcohol consumption rates and has observed the need for a greater under-
standing of the topology of social networks, that is, of the patterns in
which network links are distributed in a population. Many social pro-
cesses occur as the result of micro interactions among persons con-
nected in a network, and the aggregation of these processes across an
entire population can clearly depend on the arrangement of links in the
network. Skog argued that the Law of Large Numbers may not hold for
certain kinds of network structure, so that the assessment of the impact
of network topology has far-reaching significance. Granovetter, also,
has stressed the need to take social structure into account for a wide
variety of social processes, and his arguments have inspired a good deal
of empirical study into the role of network structure in information trans-
mission and other processes (e.g., Friedkin, 1980; Granovetter, 1974,
1982; Lin, Dayton & Greenwald, 1978; Lin & Dumin, 1986; Lin, Ensel
& Vaughn, 1981; Murray & Poolman, 1982).

A rather different line of work has examined the mutual dependence of
individual and network characteristics in small- to medium-sized groups.
For example, Breiger and Ennis (1979) have examined the relationship
between individual characteristics and properties of the interpersonal
environment in which an individual is located (see also Ennis, 1982). In
two case studies, they have established a meaningful set of constraints
between individual and network features, so adding to our understanding
of how particular people come to hold particular network positions.
Oliveri and Reiss (1987) viewed characteristics of an individual's personal
network as markers for the individual's social orientation and preferences,
and they described the networks of mothers and fathers in a sample of
families. Leung, Pattison and Wales (1992) have also investigated the
relationship between individual and network characteristics by studying
the interdependence of the meaning that an individual ascribes to the
word friend and the network environment in which the ascription is
made. Investigations of these latter kinds may be helpful in preventing
personal characteristics of an individual and features of the individual's
social network becoming a confusing and imperfect proxy for one another
(Hall & Wellman, 1985; Wellman, 1982).

The range of theoretical uses of the concept of social network is there-
fore broad, but it can be argued that most conceptions of the role of social
networks fall into one or both of two main classes. The first includes
proposals of some kind of link between properties and/or behaviours of
an individual and the immediate or extended network environment in
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which that individual is located. The second class is characterised by the
view that social networks define paths for the flow of social "traffic",
so that an understanding of social network structure is essential to an
understanding of social processes occurring on that network structure.
These two views differ in their explanatory emphasis, and there is no
necessary inconsistency between them. For instance, it is reasonable to
argue for a mutual interdependence of the characteristics of individuals,
groups of individuals and the social relationships that connect them.

Nonetheless, it is perhaps surprising that similar features of social
networks tend to be evaluated in a variety of network studies. For exam-
ple, many of the empirical investigations inspired by these theoretical
concerns have described social networks in terms of such characteristics
as the size of the network, the density of network ties, the centrality of
individuals within the network and their integration into a cohesive unit.
Many investigators have relied upon a survey approach, constructing a
local network of individuals in the immediate network neighbourhood of
a randomly selected individual, whereas others have built a more complete
picture of the relationships among all persons in a relatively bounded
group.

Some evidence suggests, though, that characteristics of social networks
may relate to individual and group behaviour in complex ways and that
it may not be sufficient to measure features such as the density, size and
centrality of a social network, without regard to other structural charac-
teristics (e.g., Friedkin, 1981; Hall & Wellman, 1985). The argument is
particularly cogent where social processes are of interest, that is, where
the arrangement of network links has been argued to play a substantial
role in the development of the process under study (Granovetter, 1973;
Skog, 1986). Thus, in the work reported here, I have presented a repre-
sentation and a means of analysis for social network data that has some
structural complexity. The representation allows a unified approach for
both complete and local network data and is intended to be sensitive to
the two themes just identified for social network research. It is based on
the representations developed by Boorman and White (1976), Mandel
(1983), White, Boorman and Breiger (1976) and Winship and Mandel
(1983), as well as on various developments of them (including those by
Breiger & Pattison, 1986; Pattison, 1982; Pattison, 1989; Pattison &
Bartlett, 1982). In this chapter, the case in which network data are
obtained for each member of a well-defined group is considered. The
forms in which such "complete" network data may arise are reviewed,
and then the structural representation that is proposed for them is de-
scribed. Network data in the form of individual-centred local networks
are introduced in chapter 2, together with an analogous form of structural
representation.
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Figure 1.1. A directed graph representation of a friendship network
among four members of a work group

Complete network data

The most basic form of social network data can be described as a set of
social units, such as individuals, and a collection of pairs of units who
are linked by a social relationship of some kind (Freeman, 1989). For
example, a Friendship network among a group of individuals belonging to
a particular organisation comprises the members of the organisation and
the set of pairs of members who are linked by the relation of friendship.
An example of such a network for a small, hypothetical work group is
shown in Figure 1.1 in the form of a directed graph. Each member of the
group is represented as a point, or vertex, of the graph (labelled in Fig.
1.1 by the letters A, B, C and D), and a directed arrow, or edge, links a
member to each friend. For example, the link from A to B in Figure 1.1
indicates that A claims B as a friend. The set of group members forms the
vertex or node set X of the graph, and the links defined by pairs of
individuals who are friends form the edge set of the graph. In Figure 1.1,
the vertex set is X = {A, £, C, D}, and A -> J5, B -» A, C -> A, C -> B,
C —>  D and D ^ C are the directed edges of the graph. The same net-
work may also be represented in a closely related relational form. The
set of organisation members form a set of elements X, and a relation
F is defined as the set of ordered pairs of members who are linked by
a friendship relation. Each ordered pair in the relation F corresponds to
a directed edge of the graph of the network. For instance, for the
friendship network displayed in Figure 1.1, the relation F may be
written as F=[(A,B)9 (B,A), (C,A), (C,B), (C9D)9 (D, C)}.

A third common representation of this kind of network data is a binary
matrix. The organisation members again define a set of elements, and
these elements may be listed in any order and assigned an integer from 1
to «, where n is the number of members of the group. For instance,
A, B, C and D may be assigned the integers 1, 2, 3 and 4, respectively.
Then the kth individual in the list may be seen as corresponding to the
&th row and the kt\\ column of a square matrix. The cell of the matrix
at the intersection of the the ith row and the /th column (i.e., the (i, /')
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Table 1.1. The binary matrix of the friendship network in a small work
group

1
2
3
4

1

0
1
1
0

2

1
0
1
0

3

0
0
0
1

4

0
0
1
0

cell) may be used to record the presence or absence of a friendship link
from the /th individual to the /th individual. The cell is usually defined
to have an entry of 1 if the relationship of interest is present (i.e., if the
/th individual names the /th individual as a friend) and an entry of 0
if the relationship is absent (i.e., if individual / does not name individual
/ as a friend). The binary matrix corresponding to the friendship net-
work of Figure 1.1 is displayed in Table 1.1. (The matrix is termed
binary because each of its entries is either zero or one.)

It may be observed that the diagonal entries of Table 1.1 - that is,
the entries in cells (1,1), (2,2) and so on - are all zero. Correspond-
ingly, there are no links in Figure 1.1 from any vertex to itself. (A link
from a vertex to itself in a directed graph is often termed a loop.) In this
example, an investigator is likely to be interested only in friendship
relations between distinct individuals and may not even wish to consider
whether it makes sense to speak of an individual being his or her own
friend. Indeed, in many studies in which network data are generated, it
is assumed that the graphs of the networks have no loops, or, equiva-
lently, that the matrices of the networks have zero diagonals.

In some cases, though, loops and non-zero diagonals may possess useful
interpretations. If, for instance, the social units of the network are groups
of individuals rather than single persons, then it may be meaningful to
regard a group as having a friendship relation to itself as well as to other
groups. Certain forms of network analysis may also render the use of
loops appropriate (e.g., Arabie & Boorman, 1982; Pattison, 1988). In the
treatment of network data developed here, it is not assumed that loops are
forbidden, even though they do not occur in some of the examples that
are presented.

Symmetric and valued networks. A number of variations on this basic
account of a social network have been found useful. For instance, in some
cases it is reasonable to assume that every link of a network is recipro-
cated, that is, that if one individual is linked to a second, then the
second is also linked to the first. Networks of close friendships may
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0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

(a) (b) (c)

Figure 1.2. Representations for symmetric network relations:
(a) (symmetric) graph; (b) set of unordered pairs; (c) symmetric
binary matrix

have this character (e.g., Hammer, 1984). The viability of the assump-
tion is essentially an empirical question, but where it is plausible, the
representations described earlier may be simplified to some extent. For
a reciprocated network relation, the presentation of the network in
diagrammatic form need only indicate the presence of an edge and not
its direction. The diagram is then termed a graph. Also, the relation
corresponding to the network need only indicate the pairs of group
members who are related, and the ordering of elements within each pair
may be ignored. Finally, the binary matrix of the network may be
assumed to be symmetric, that is, have the property that the entry in cell
(/, /) of the matrix is the same as the entry in cell (/, /). For instance, if
i names / as a friend, the assumption of symmetry means that / also names
i as a friend. In this case, the entries in the row of the matrix corre-
sponding to an individual are identical to those in the column corre-
sponding to the same individual. These three ways of describing a
network having reciprocated links are illustrated in Figure 1.2.

Symmetric relations can also arise from networks whose links are
nondirected rather than directed and reciprocated. For instance, it may
be useful in some circumstances to define a (nondirected) link to exist
between two individuals in a network if one has contact with the other.
The relation may not necessarily be reciprocated, but the direction of
the link may be irrelevant for some questions. In fact, many network
data have been gathered in this form (e.g., Freeman, 1989). They may
be presented in exactly the same way as directed, reciprocated relations,
that is, in the form of a collection of unordered pairs, a symmetric
binary relation, a graph or a symmetric binary matrix. As a result, they
are not distinguished here from reciprocated, directed relations, although
it should be noted that, for some purposes, distinction may be advisable
(Wasserman & Faust, 1993).

In some other cases, it may be possible to make finer distinctions
among network links rather than simply determine their presence or
absence (also, Wasserman & Iacobucci, 1986). For instance, the links



1. Complete social networks

Z^IB
v(A,B) = v(C,D) = 4
v(B, A) = v(D, C) = 5
v(C, A) = v(C, B) = 3

v(B, C) = 2

0 4 1 1
5 0 2 1
3 3 0 4
1 1 5 0

Dl

(a) (b) (c)

Figure 1.3. Representations for a valued network relation:
(a) valued directed graph; (b) valued relation; (c) valued matrix
(The strength of friendship links was assessed on a 5-point scale,
with 1 = absent, 2 = a little, 3 = somewhat, 4 = quite strong,
5 = strong. Links of strength 1 have been omitted from the directed
graph and valued matrix representations.)

may be measured on a numerical scale, with the scale values indicating
the strength of the network link, such as the frequency of contact or the
strength of friendship. The nature of the numerical scale will depend on
the nature of the measurement procedures used to infer network links
and on the properties of the measurements themselves (e.g., Batchelder,
1989). We hope, however, that the scale is at least ordinal, that is, it
faithfully reflects orderings among network links in terms of strength.
Where such numerical information is available, the representations require
minor modification, as illustrated in Figure 1.3. The graphical repre-
sentation takes the form of a valued graph, in which each directed or
nondirected edge has a numerical value attached. The relational form
specifies a mapping v from each (ordered or unordered) pair of elements
to a possible value of the network link whereas the matrix representation
records the value of the link from node / to node / in the cell of the
matrix corresponding to row / and column /. For example, the value of
the friendship link from A to B in Figure 1.3 is 4, so that the edge
directed from A to B in the graph of the network has value 4; the
function v assigns the value 4 to the ordered pair (A, B) (i.e., V(A, B) = 4),
and the entry in cell (1,2) of the matrix of the network is 4.

In sum, a single network relation for a specified group of persons may
be constructed in any of the four ways implied by our description. That
is, it may be a symmetric or nonsymmetric binary relation, or a symmetric
or nonsymmetric valued relation.

Multiple networks. In many network studies, more than one type of
network relation is of interest, and it is necessary to construct more
complex representations. For instance, for the small work group whose
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F H

Figure 1.4. A multiple network W (F = friendship, H = helping)

Table 1.2. Binary matrix representation of the multiple network W

F

0
1
1
0

1
0
1
0

0
0
0
1

0
0
1
0

Relation

H

0
1
0
0

1
0
0
0

0
0
0
1

0
0
1
0

friendship links are displayed in Figure 1.1, information might also be
available for a different type of social relationship - for example, who goes
to whom for help with work-related problems. This second type of net-
work information is displayed with the first in Figure 1.4 and illustrates
a multinational social network. It is a network comprising a single set
of network members and more than one type of network relation. In the
example of Figure 1.4, two directed graphs are used to present the net-
work. We may also represent the network in terms of two sets of ordered
pairs, one set F for friendship links and one set H for helping links. The
set F is as before, whereas H = {(A, £), (B, A), (C, D), (D, C)}. The matrix
representation also requires two matrices, one for the friendship relation
and one for the helping relation; these are presented in Table 1.2. The
multirelational network is labelled W, and we may write W = {P, H}.

In a representation of this kind, the symbols F and H may actually be
used in two distinct ways. As we have just made explicit, each symbol
denotes the collection of ordered pairs of elements of X who are linked
by a relation of the specified type (either friendship or helping). The
symbols will also be used, though, as labels for network links; for in-
stance, we shall say that there is a link of type F from node / to node /
if (i,/) is an ordered pair in F. Since the context will always make the
intended meaning clear, we shall use the symbols for the relations in both
of these ways in what follows.
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Table 1.3. Types of complete network data

Binary

Valued

Single relation

Symmetric

Symmetric
network

Valued
symmetric
network

Nonsymmetric

Network

Valued
network

Multiple relations

Symmetric

Symmetric
(multiple)
network
Valued
symmetric
(multiple)
network

Nonsymmetric

(Multiple)
network

Valued
(multiple)
network

Each network of a multirelational network may be assessed as a relation
that is either symmetric or nonsymmetric, and binary or valued. For
simplicity of presentation, we shall describe the overall network in terms
of the minimum level of complexity needed to describe each constituent
network. Thus, if any of the networks in the multirelational network
is valued or nonsymmetric, we present each member of the network in
the form appropriate to valued or nonsymmetric relations. For instance,
if one relation in a multiple network is binary and another is valued,
then we report both relations in valued form. This convention leads to
the basic classification of multirelational networks summarised in Table
1.3. The table characterises network data as having either single or
multiple relations, and as having constituent networks that are either
symmetric or nonsymmetric, and binary or valued. It also identifies the
labels to be used for the various forms of network data. For most of the
work presented here, the basic form of network data that we shall
assume is that of multiple networks, but in chapter 7 we also consider
the case of multiple valued networks. The features of these two forms
of network data, and the nature of their representations, are summarised
in the following two formal definitions.

DEFINITION. Let X = {1, 2 , . . . , « } represent a set of social units, and let
Rk stand for a relation of some type k (e.g., "is a friend of"), where
k = 1, 2 , . . . , p. Let (/, /) eRk indicate that unit i is 1^-related to unit /
(e.g., "/ names / as a friend"), where / and / are elements of X. Rk is
a binary relation on the set X and may be formally described as a set
of ordered pairs of elements of X. (General algebraic definitions may be
found in Kurosh, 1963; definitions of some basic mathematical terms
are also given in Appendix A.) The collection R = {Ru R 2 , . . . , Rp] of
relations on X is termed a (multiple) network, and the relations
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Rl9 R29... 9 Rp are referred to as primitive relations or generators of R.
To each binary relation Rk there corresponds a directed graph G(Rk),
whose vertices are the elements of X and whose edges are defined by

i->/ is an edge of G(Rk) iff (/,;) eRk.
(As noted earlier, loops - that is, edges of the form i —>  i, for i e X -
are permitted in the generators of R.) Relations and their directed graphs
are used interchangeably with each other and with their equivalent
binary matrix representation. The latter is defined for a binary relation
Rk on the set X of n elements as the n x n square matrix whose entries
are given by

= 1 iff (/, /) e Rk9 or i -> / in G(Rk)
= 0 otherwise.

A valued network may be formally defined as follows.
DEFINITION. Let X represent a set of n social units, and let vk(i9 j) rep-
resent the "strength" of the relationship of type k from unit i to unit
/ in X. For each k, let V* represent the relation of type k. Vk can be
considered as

1 a valued, directed graph whose nodes are the elements of X and
whose edges are defined by the edge of type k directed from node
i to node / having value vk(i,j);

2 a valued relation, assigning the value vk(i9 j) to the ordered pair
(/,/); and

3 an n x n matrix with entries vk(i9 j) (Harary, Norman &:
Cartwright, 1965).

The collection V = {Vl5 V2,. . . , Vp] is termed a (multiple) valued net-
work.

Several forms of network data that have been considered in the lit-
erature are not covered by these general definitions of multiple networks.
Two of the most notable forms are those allowing time-dependent net-
work data and those expressing relations among two or more types of
social entities.

Time-dependent networks. Network data may be observed at a single
point in time or on multiple occasions (e.g., Freeman, 1989; Hallinan,
1978; Wasserman &: Iacobucci, 1988). In the case of a single point of
observation, the forms of network data just described are appropriate. For
multiple observations in time, however, the set of social units and/or the
relations of the network may be seen as time-dependent, and each obser-
vation point is associated with a multirelational network. Although
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we can think of the entire collection of relations over all time points as
constituting a large multirelational network, we do not, at this stage,
accommodate any temporal structure for the collection in the basic
representation that we consider. Nonetheless, an attempt to analyse
time-dependent data using the structural representations developed here
is presented in chapter 6.

Relations among two or more sets of social units. Some of the repre-
sentational forms that have been proposed in the literature also admit
data in the form of relations between two or more types of social units
(e.g., Freeman, 1989; Iacobucci & Wasserman, 1990; Wasserman &
Iacobucci, 1991; see also the survey in Wasserman & Faust, 1993). A
common example of such data are records of the relations among in-
dividuals and particular organisations, for instance, individuals and the
corporations of which they are directors. The data can be represented
in the form of a rectangular binary matrix, whose rows and columns
represent the individuals and the corporations, respectively. The (/,;) cell
of the matrix has an entry of 1 if the ith. individual is a director of the
;th corporation and an entry of 0 otherwise. Similar types of data arise
if we record the membership of a collection of individuals in any group
of formal or informal organisations or the participation of those indi-
viduals in some set of activities (e.g., Davis, Gardner & Gardner, 1941;
also Homans, 1951). One of the most widely applied class of models
admitting these types of data is derived from Atkin's (1977) application
of combinatorial topology to social relations (e.g., Doreian, 1980, 1986).
A related formalisation has been proposed in the form of bipartite and
tripartite graph representations for relations spanning more than one
type of social unit, for instance, both persons and groups (Breiger,
1974; Fararo & Doreian, 1984; Wilson, 1982). In part, relations between
network members and other entities can be incorporated in binary re-
lational representations by the construction of relations that represent
the presence of common relations to other entities, for example, mem-
bership in the same group. The representations that result, however,
may be more inefficient than those that give explicit recognition to
relationships between different types of entities. Moreover, they do not
necessarily have the same properties as the more general representations
admitting either relations among units of more than one set, or relations
that are ternary, quaternary, and so on, or both. Eventually, the methods
to be developed may need to be elaborated so as to apply to these more
complex representations. Initially, however, attention is confined to binary
relational representations because these include the vast majority of the
models that have been proposed and applied in the social network
literature to date.
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Sources of network data

Network data can come from a variety of different sources. In planning
a network study, many choices need to be made about how network
data are to be collected. In particular, decisions need to be made about
who are potential members of the network of interest, that is, where are
the "boundaries" of the network; what types of relations are of interest;
and how are the network relations to be measured? We briefly consider
each of these questions in turn (for more information, see Knoke and
Kuklinski, 1982; Marsden, 1990; Wasserman & Faust, 1993).

The boundary of a network

The question of which social units comprise a network clearly depends
on the nature and purpose of the network study. In one of the few
attempts that have been made to analyse the possible approaches to
answering this question, Laumann et al. (1983, 1989) presented a clas-
sification of possible frameworks. One of the distinctions they made
was between studies adopting a realist or a nominalist perspective. They
characterised a realist position by an attempt to identify networks whose
members possessed some shared subjective awareness of the network as
a social entity. Studies of the nominalist type were identified by a de-
liberate choice to define the boundaries of a network according to some
research purpose of the investigator, without regard to the subjective
status of the network on the part of network members. A cross-cutting
distinction was in terms of the focus of the definition of network
membership. Membership could be defined in terms of (a) attributes of
the potential members of the network, (b) properties of relations among
potential network members, (c) activities in which potential members
are involved, or (d) some mixture of these. These two distinctions lead
to the eight-fold classification of approaches to defining the boundary
of a network that Laumann et al. described. The implications of each
approach were discussed by Laumann et al., who also presented examples
of each approach that have arisen in the literature. A common approach
for complete network data appears to be a realist one, defining network
membership in terms of attributes of its members, for instance, collec-
tions of individuals who belong to the same clearly defined group such
as a work group or school class. Occasionally, a nominalist approach
is used, as, for example, in the study of relations among community
influentials by Laumann and Pappi (1973, 1976).

The boundary problem is particularly important for network studies,
as Laumann et al. (1983) argue. It is likely to be especially important
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for the kinds of representations of social network described here. There
have been relatively few systematic investigations of the effects of changes
in the boundary of a network on representations of its structure, but it
is possible that complex representations exhibit some sensitivity.

Relational content

It was observed earlier that many networks of interest are multirelational,
that is, they describe social relations among individuals of more than
one type. In designing a network study, how does an investgator de-
termine which social relations are of interest? We might expect the
content of relational ties in a network to bear an important relationship
to the structure of the network that they define. A network of close
friendship ties, for instance, might be expected to manifest a kind of
patterning that is different from a network of acquaintance relations.
Indeed, it was the predictable nature of these differences that gave force
to Granovetter's argument that paths of "weaker" acquaintance rela-
tions might be expected to link an individual to a broader social group
than paths of "strong" or close ties.

One important distinction among relations often used in network
studies is that between social relations perceived by observers or parti-
cipants of a network and more observable relations of "exchange"
among participants (Marsden, 1990). The former type of relations are
often termed cognitive, being cognitive constructions of the individual(s)
constituting the source of the network data. They are exemplified by
relations inferred from responses to questions such as "Who are your
friends?" and they are often assumed to have some continuity in time,
at least over short periods. Actual exchanges, however, are more
temporally bound. They are illustrated by network studies that are
based on reports or observations of some kind of exchange, such as
traces of the frequency and volume of electronic messages among network
members.

The question of which type of relational data is more appropriate for
a particular network study depends on the purpose of the study (Marsden,
1990). For example, exchange data may be better suited to a study
seeking to examine a process of diffusion of information, and cognitive
data may be more helpful in understanding the behaviour of a small
work group.

Types of relations. Relations in a multiple network are usually labelled
according to the type of interpersonal relation that they are intended to
signify. The labels are customarily terms of the kind "likes", "is a friend
of", "exerts influence upon" and "communicates with". The labels often
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Table 1.4. Relational content in a sample of network studies

Populations Relational content References

Davis-Leinhardt
sociogram bank,
classrooms, small
groups

Informal groups,
self-analytic
groups,
families

Personal networks

Organisations,
work groups,
novitiates,
church groups,
prison inmates,
inmate addicts

Deaf community,
ham radio operators,
research
specialties
Community networks

Corporate
structures,
social movements

Securities market,
world economy

Positive affect,
positive and negative affect

Influence, friendship,
esteem, liking, disliking,
similarity, closeness, notice
taken, notice given

Uniplex, multiplex
relations
Contacts, communication,
friendship, help seeking,
work advice, personal
advice, most dealings,
similar policy, friendship,
formal and informal ties,
liking, antagonism, helping,
job trading, arguing,
playing games,
instrumental, social ties,
affect, esteem, influence,
sanction
Teletype communications,
radio communication,
degree of contact and
awareness, citations
Business/professional ties,
community affairs, social
ties
Interlocking directorates,
interlocking memberships,
corporate relations

Trading relationships,
transnational relations

Davis (1970), Davis and
Leinhardt (1972), Hallinan
(1974), Leinhardt (1972),
Leung etal. (1992),
Newcomb (1961), Vickers &
Chan (1980), Vickers (1981)
Whyte (1943), Homans (1951),
Rossignol & Flament (1975),
Breiger&Ennis(1979),
Ennis (1982),
Kotler 8c Pattison (1977)
Boissevain (1974),
Mitchell (1969)
Arabie (1984), Bernard &
Killworth (1977), Thurman
(1979), Roethlisberger 6c
Dickson (1939), White (1961),
Kapferer (1972), Sampson
(1969), Curcione (1975),
Herman (1984)

Killworth & Bernard (1976a)
Bernard & Killworth (1977),
Breiger (1976), Friedkin (1980),
Mullins et al. (1977), Lievrouw
etal. (1987), Schott (1987),
Laumann & Pappi (1976),
Laumann et al. (1977)

Mintz & Schwartz (1981),
Mintz (1984), Rosenthal et al.
(1985), Mizruchi & Schwartz
(1987)
Baker (1984),
Snyder& Kick (1979)

follow the questions of an interview or questionnaire designed to elicit
the relational information, such as "Who are your friends?".

Some of the relational types selected by a number of researchers,
together with the type of populations to whose interpersonal relations
they have been applied, are listed in Table 1.4. The studies presented in
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Table 1.4 are only a sample of those that have been conducted, but it
is clear from the table that there is considerable variety in the content
of the relations that have been considered. It is also the case that the
content of relations selected for a study is contingent, at least in part,
on the formal approach to network description adopted by the study.

Some early work on network structure considered a single affective or
communication relationship defined on a group as the primary rela-
tional data (e.g., Bavelas, 1948; Davis and Leinhardt, 1972; Harary,
1959a; Holland and Leinhardt, 1970, 1975, 1978; Katz, 1953; Luce
and Perry, 1949). The interpretation of balance theory by Cartwright
and Harary (1956) and Flament (1963) pertained to relations of positive
and negative affect in small groups and led to the assessment of both
positive and negative affective relations in empirical studies. Mitchell
and his colleagues (e.g., Kapferer, 1969; Mitchell, 1969) distinguished
uniplex and multiplex relations, that is, relations based on a single
shared attribute (such as being co-workers) or a number of shared
attributes (such as being co-workers as well as kin). More recently, the
availability of methods of description for multiple networks has en-
couraged the use of a wider range of relation types (e.g., Breiger &
Ennis, 1979; Herman, 1984; Snyder & Kick, 1979).

Implicit in Table 1.4 is an inferred similarity of certain relational
terms. Studies employing questions eliciting sets of friends and those
seeking lists of persons "liked", for example, can be expected to gen-
erate similar, although not necessarily identical, types of patterns. There
is considerable overlap in the meaning of the two corresponding rela-
tional questions, whether the overlap is considered largely semantic in
origin or an empirical result.

An attempt to identify relatively independent components, or dimen-
sions, in terms of which relational terms might be described, is that of
Wish, Deutsch and Kaplan (1976; see also Bales & Cohen, 1979; Wish,
1976). In the spirit of the work of Osgood, Suci and Tannenbaum
(1957), Wish et al. undertook to "discover the fundamental dimensions
underlying people's perceptions of interpersonal relations" (p. 409) using
persons' evaluations of "typical" interpersonal relations as well as of
some of their own. On the basis of an INDSCAL analysis (Carroll and
Chang, 1970), they identified four major dimensions of relational content,
labelled thus: Cooperative and Friendly versus Competitive and Hostile,
Equal versus Unequal, Intense versus Superficial and Socioemotional
and Informal versus Task-oriented and Formal. The four relational dis-
tinctions between liking and antagonism, between equal and discrepant
amounts of interpersonal influence, between strong and weak relations
and between relations with formal and informal bases, to which the
four dimensions may be argued to correspond, are all distinctions that
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are represented somewhere in Table 1.4. Further, those four distinctions
encompass many of the relational terms appearing in Table 1.4; the
identified distinctions provide, in many instances, reasonable coverage
of relational content. Naturally, some relational distinctions are not
important for some groups whereas others not mentioned may be ex-
tremely so; the results of Wish et al. (1976) do indicate, however, the
nature of typical relational distinctions that individuals make.

Burt (1983) also attempted a different empirical analysis of redundancy
in relational terms. He analysed the extent to which similar persons
were named by a sample of individuals in response to a variety of
survey questions dealing with network relations in the domains of
friendship, acquaintance, work, kinship and intimacy. On the basis of
his analysis, he argued that five questions could be used to cover a
substantial portion of the relational information obtained from the much
larger set of survey questions. These five questions dealt with the do-
mains of friendship ("Who are your closest personal friends?" and "Who
are the people with whom you socialise and visit more than once in a
week?"), acquaintance ("Have you met any people within the last five
years who are very important to you but not close friends?"), work
("With whom do you discuss your work?") and kinship ("Have you
spent any time during the last year with any of your adult relatives;
relatives who are over the age of 21? Who are they?"; Burt, 1983, pp.
67-8).

Network measurement
There are a number of different methods by which network data may
actually be obtained. Thus a friendship network of the type portrayed
in Figure 1.1 may be constructed using a variety of approaches to the
measurement of network links. In a recent survey of network meas-
urement, Marsden (1990) observed that the most common methods
relied on self-report measures obtained from surveys and questionnaires
but that archival sources, diaries, electronic traces, and observation by
a participant or nonparticipant of the network group could also be
used. Methods using archival sources are illustrated in the work of
Padgett (e.g., Breiger &c Pattison, 1986), who traced financial and
marriage relations among 116 Florentine families of the fifteenth cen-
tury from an historical record (Kent, 1978), and in that of White and
McCann (1988), who constructed networks of citation among eighteenth
century chemists from published scientific papers. Mullins, Hargens, Hecht
and Kick (1977) examined relations of awareness, colleagueship, and
student-teacher ties in two biological science research fields and related
these to citation patterns among the scientists. Some investigators have
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also used published records of trade and other forms of exchange be-
tween nations to examine the structure of network relations among
nations (e.g., Breiger, 1981; Snyder & Kick, 1979). Rogers (1987)
described networks constructed from traces of electronic communica-
tions among individuals, and Bernard and Killworth (1977) analysed
the duration and frequency of communications among amateur radio
operators over a fixed period. Higgins, McLean and Conrath (1985)
describe the use of diary-based communication networks, as well as
some of the hazards associated with their use. Finally, two case studies
reported by Boissevain (197A) illustrate the use of participant observers
as the source of network data.

In many cases using self-report data, a single question is used to
define the network links of a particular type. The response to the ques-
tion by each network member defines the set of persons to whom that
person is linked by the relation in question. For example, each of a
group of members of an organisation may be asked the questions, "Who
are your friends in the organisation?" and "To whom in the organisation
do you turn for help when you encounter problems with your work?".
Krackhardt (1987), for instance, asked questions such as these in his
study of a small organisation. The responses to questions like these may
be used to construct a multiple network of the type illustrated in Figure
1.4. This method of obtaining network data is probably the most
common. For instance, Laumann and Pappi (1973) identified a group
of community influentials in a small West German city. They constructed
a list of the identified individuals and asked each of them to indicate on
the list (a) the three persons with whom they most frequently met
socially, (b) the three persons with whom they had the closest business
or professional contact, and (c) the three persons with whom they most
frequently discussed community affairs. Nordlie (1958) described two
studies in which 17 undergraduates lived together in a fraternity house
for a semester. Each week, every student ranked all of the others for
"favourableness of feeling", leading to a form of valued network in
which the value of a link from one individual to another was the first's
favourableness rating of the second. White et al. (1976) created two
binary matrices from each valued network by coding the two highest
rankings on "favourableness of feeling" as "liking" and the two lowest
rankings as "antagonism".

Reliability and validity of network data

No matter what the source of information about network links, it is
useful to ask whether the measurement is (a) reliable, that is, subject to
only very small amounts of random error, and (b) valid, that is, a
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measure of the intended relational content, and not something else. The
more unreliable a form of measurement, the greater the degree of random
error that it exhibits. As Holland and Leinhardt (1973) pointed out
some time ago, and as a number of authors have also recently observed,
the consequences of measurement procedures and errors in measurement
for network data are in need of further empirical and theoretical in-
vestigation (e.g., Batchelder, 1989; Bradley & Roberts, 1989; Hammer,
1984; Marsden, 1990; Pattison, 1988).

Batchelder (1989), for instance, has examined from a theoretical per-
spective the implications of some measurement properties of relational
observations for the assessment of network properties. He showed that
some important network properties could only be inferred when the
measurement of individual network links met certain criteria.

The question of the validity of network data is equally important and
has been the subject of some empirical attention. In one set of studies,
Kilworth, Bernard and others have reported consistent discrepancies
between "cognitive" reports of communication data and observed com-
munications and have concluded that relational data obtained by the
usual sociometric methods may have a more limited generalisability
than once thought (Bernard &C Killworth, 1977; Bernard, Killworth,
Kronenfeld & Sailer, 1984; Killworth & Bernard, 1976a, 1979). Others
have argued for less pessimistic positions, however, after showing that
informant accuracy depends, in part, on the informant's level of inter-
action (Romney & Faust, 1983) and is biased in the direction of long-
term patterns of interaction (Freeman & Romney, 1987; Freeman,
Romney & Freeman, 1986). It must be acknowledged, though, that
cognitive and exchange network data may be assessing different types
of network relations.

In a detailed study of network interview data, Hammer (1984) has
also obtained more positive findings. She found good agreement between
members of pairs of individuals who were interviewed about the existence
of a relationship between them, about the duration of the relationship
and about their frequency of contact. She found less agreement, how-
ever, on ratings of how well individuals knew each other, and she
argued that some known and unknown selection criteria were at work
when individuals decided which members of their personal networks to
mention in response to a particular interview question (also, Bernard et
al., 1990; Sudman, 1988).

In a different type of validity study, Leung et al. (1992) have examined
the meaning of the term friend and have shown that there is consid-
erable agreement among 15-year-olds about the attributes of the term,
despite some small but meaningful variations as a function of their
social network position. Such a finding lends essential support to the



20 1. Complete social networks

assumption of White et al. (1976) that "all ties of a given observed type
share a common signification (whatever their content might be)" (p.
734).

It seems from all this work that there may be systematic biases at
work in the reporting of network data by an individual, and that these
need to be taken into account in its interpretation. Marsden (1990) has
advocated the use of multiple measures of network relations for improved
quality of network data; he has also suggested that simulation might be
used to evaluate the effects of different types of measurement error on
inferred network properties. Krackhardt (1987) has elaborated the most
common observational scheme described above so as to ask each in-
dividual in a network about relations among all pairs of network
members. Such data may also be helpful in formulating questions and
methods in the assessment of network data.

So far, we have identified a number of questions to which we need
answers in any empirical study of social networks. These include: Who
are the members of the network? Which types of relations between
network members are of interest? How should they be measured? As we
have observed, considerable uncertainty may be attached to any answers
that are proposed to these questions, and the ramifications of mis-
specification at each stage are poorly understood. Indeed, the implica-
tions are probably best investigated with a particular representation of
a network in mind, and we now consider how to construct a represen-
tation of a network that captures some of its structural complexity.

Structure in social networks

One of the challenges facing researchers using social network concepts
is that of distilling the significant structural features from social networks
represented in one of the forms previously described. The challenge is
clearly a difficult one because it requires the resolution of a number of
substantial theoretical and empirical questions. For instance, what features
of a network are related to various types of individual and group be-
haviour and what are the mechanisms for these relationships? How
should networks be measured? What kinds of interpersonal relations
are involved in various social processes?

The question of constructing useful structural models for social net-
works is probably best addressed on both theoretical and empirical fronts.
On the one hand, one can assume a particular structural model and
investigate empirically the relationship between social networks re-
presented in this form and other individual or social characteristics
of interest. On the other hand, one can evaluate theoretically the
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consequences of a set of assumptions about structural form, in an at-
tempt to achieve a richer understanding of a particular structural model.
The work reported here is of this second kind and is based on the
premise that it is useful to know the implications of a set of assump-
tions about structure before empirical assessments are undertaken.

A number of structural models have been developed for social network
data arising in one of the forms described earlier. These models vary in
complexity from single indices summarising a particular structural feature
of a network to quite complex algebraic and geometrical representations.
Each is a means of obtaining simple descriptions from the representa-
tion by making use of the structural redundancy that it is presumed to
possess. The form of the assumed redundancy is critical in deriving that
substantive value and is generally motivated both substantively and
practically.

Many of the structural models that have been developed make use of
features of directed graphs. So, before the models are described, some
of the more widely used constructs for directed graphs are defined.

Directed graphs

A (directed) graph comprises a set X of vertices or nodes, and a set R
of (directed) edges of the form (x, y), where x, y eX. For example, the
graph of Figure 1.1 has node set X = {A, B, C, D} and edge set

R = {(A,B), (B,A), (C,A), (C,B), (C,D), (D9C)}.
An (induced) subgraph of a (directed) graph on a vertex set X is a subset
Y of the nodes from X, together with all of the edges linking elements
of Y. The set Y is said to span the subgraph. For the directed graph of
Figure 1.1, for example, the subgraph induced by the subset {A, C, D]
of nodes has edges {(C,A), (C,D), (D, C)}.

A path from a vertex x to a vertex y in a directed graph is a sequence
of nodes x = x0, x l 5 . . . , xk = y such that each pair (Xj_l9 xj) of adjacent
nodes in the sequence is an edge of the graph. The node x is termed the
source of the path, and y is termed the target. The length of the path
x0, x l 5 . . . , xk is k. For example, there is a path of length 2 from node
D to node A in Figure 1.1: the path comprises the nodes D, C and A.
There is also a path of length 3 from D to A, comprising the nodes
D, C, B and A.

A path x = x0, xl5 . . . , xk = x from a vertex x to itself is a cycle of length
k. The node C in Figure 1.1, for instance, lies on a cycle of length 2.
If for two nodes, x and y, in a graph, there is a path from x to y, then
y is said to be reachable from x. If y is reachable from x, then a geodesic
from x to y is any path of shortest length from x to y. The length of
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any shortest path from x to y is termed the distance d(x, y) from x to
y. If y is not reachable from x9 then the distance from x to y is usually
defined to be <*>. A graph is termed strongly connected if there is a path
from each node in the graph to each other node.

For example, in the graph of Figure 1.1, nodes A and B are reachable
from all other nodes. The distance from node D to node A is 2 because
the path from D to A through C is a geodesic. Nodes C and D are not
reachable from either of nodes A and £, so that the graph of Figure 1.1
is not strongly connected.

Paths in a directed graph that ignore the direction of the edges are
called semipaths. That is, a semipath in a directd graph from node x to
node y is a sequence of nodes x = x09 xl9 .. . , xk - y such that (xf _ l9 xf)
or (x;, Xj_i) is an edge in the graph for each / = 1, 2, . . . , k. A semipath
from a vertex to itself is termed a semicycle. If there is a semipath from
x to y for every pair of nodes x and y in the graph, then the graph is
said to be weakly connected. There is a semipath in Figure 1.1, for
instance, from node A to node D through node C; indeed, all pairs of
vertices in the graph are connected by a semipath. As a result, the graph
of Figure 1.1 is weakly connected.

Finally, the indegree of a vertex x is the number of distinct vertices
y for which (y, x) is an edge in the graph. The outdegree of x is the
number of distinct vertices y for which (x, y) is an edge in the graph.
In Figure 1.1, the vertices A, B, C and D have indegree 2, 2, 1 and 1,
and outdegree 1, 1, 3 and 1, respectively.

Some analyses for social network data

Table 1.5 contains a summary of the variety of approaches that have
been adopted for analysing single and multiple binary representations
for networks. Broadly, they may be classified as follows.

1. Graph indices. Some analysts have proposed one or more numer-
ical indices to represent particular properties of a network relation. The
indices apply most commonly to a single, binary symmetric or directed
relation; but some have also been developed for a single valued network
(e.g., Peay, 1977a). The indices include (a) the dyad census of the net-
work, that is, the number of mutual or reciprocated links in the net-
work, the number of asymmetric or unreciprocated links and the number
of null links (i.e., the number of pairs of unconnected individuals); (b)
the degree of hierarchy in the network, that is, the degree to which
network members can be fully or partially ordered in terms of connections
to other members (Landau, 1951; Nieminen, 1973); (c) the degree of
transitivity in the network, that is, the extent to which relations from
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Table 1.5. Some approaches to network analysis

1 Graph indices
hierarchy index
hierarchisation
gross status
status differentiation
influence concentration
graph centrality
integration
unipolarity
dimensionality
strength
density
degree
connectivity
average reachability
mean length of geodesies
connectedness
dyad census
balance
clusterability
transitivity
intransitivity
triad census

2 Vertex and edge indices
status
point centrality
strain
span
degree
arcstrain
range
density
reachability

3 Spatial representations
multidimensional scaling and
clustering of measures of vertex
similarity for instance:

structural equivalence
automorphic equivalence
regular equivalence

4 Collections of subsets
cliques
r-cliques
&-plexes
LS sets
clubs
clans
nested sets of partitions

5 Blocked matrix and
relational models
balance model
clusterability model
transitivity model
ranked cluster model
hierarchical cliques model
"39+" model
clique structures
semilattices
blockmodels
stochastic blockmodels

6 Probabilistic models
p1 model
stochastic blockmodels
biased nets
Markov graphs

individuals A to B, and from B to C, are accompanied by a relation
from A to C (Harary & Kommel, 1979; Peay, 1977a); and (d) the
degree to which the network is centralised, with all paths in the net-
work passing through one or more key network members (e.g., Freeman,
1979). Other indices that have been used include (e) the size of the
network, that is, the number of network members (e.g., Mitchell, 1969);
(f) the density of the network, that is, the ratio of the number of
network links that are present to the number of links that are possible
(e.g., Barnes, 1969a); (g) the heterogeneity of the network, defined in
terms of the variation among members in the number of other members
to whom they are connected (Snijders, 1981); and (h) the dimensionality
of the network, referring to the dimensionality of some space in which
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the network may be embedded (Freeman, 1983; Guttman, 1979). Hol-
land and Leinhardt (1970, 1978) suggested the triad census for the
network as a useful all-purpose collection of indices representing net-
work structure. The triad census of a network records the number of
occurrences in a network of each of 16 possible forms of relation among
three network members. Some more specific indices can be constructed
from the triad census; for instance, the degree of transitivity of the
network is reflected by the frequency of occurrence of transitive triads.
For multiple networks comprising relations of positive and negative
affect, indices assessing the degree to which the network conforms to
the predictions of balance theory have been proposed (e.g., Cartwright
& Harary, 1956; Peay, 1977a).

2. Vertex and edge indices. Indices representing properties of each
vertex or edge in a graph have also been proposed. For example, a
number of indices have been constructed to assess the "status" or
"prestige" of each member of a network, that is, the extent to which
a person receives interpersonal ties from other network members (taking
into account the positions of those members) (e.g., Harary, 1959b;
Katz, 1953; Langeheine &C Andresen, 1982; Nieminen, 1973). The
centrality of a vertex has been conceptualised in a number of ways
(Freeman, 1979), for instance, in terms of its "closeness" to other vertices,
the extent to which it lies on shortest paths between other vertices, and
the number of other vertices to which it is directly connected (Freeman,
1979; also, Bolland, 1988; Donninger, 1986; Gould, 1987). Stephenson
and Zelen (1989) have adopted an information theory approach to
measuring centrality. Faust and Wasserman (1993) present a survey and
synthesis of indices of centrality and prestige. The point strength of a
vertex is defined as the increase in the number of components in the
graph when the vertex is removed (Capobianco & Molluzzo, 1980),
and the arcstrain of an edge is a measure of its participation in triads
not conforming to the theory of structural balance (Abell, 1969).

3. Representations based on similarity of network members. Some
investigators have attempted to represent the structure of a social
network by mapping the network members into a multidimensional
space. The mapping is usually designed so that the proximity of net-
work members in the multidimensional space reflects their closeness, or
similarity, in the network. The closeness or similarity of individuals in
the network can be conceptualised in a number of ways. In a network
comprising a single symmetric relation, the graph distance between nodes
is often the starting point of the analysis (e.g., Doreian, 1988a). In
networks containing multiple relations, definitions of vertex similarity
are usually based on some measure of similarity of network position
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(Pattison, 1988). A number of models of network position have been
proposed (Pattison, 1988), but three important ones are based on the
notions of structural equivalence (Lorrain &: White, 1971), automorphic
equivalence (Borgatti, Boyd & Everett, 1989; Pattison, 1980; Winship,
1988) and regular equivalence (White & Reitz, 1983, 1989). These
three notions provide increasingly abstract definitions of what it means
for individuals to hold the "same" position in a network.

Two individuals A and B are structurally equivalent if they have exactly
the same network links to and from other network members. That is,
if individual C is related to A by some relation R, then C must also be
related to B by the relation R. Similarly, if A is related to a person D
by relation T, then B must also be linked to D by T. The condition is
illustrated in Figure 1.5a, where A and B are structurally equivalent, as
are C and D. For instance, A is related by R to A and B and by T to
C and D, and both C and B are linked by R to A. Exactly the same
relations hold for B; that is, B is related to A and B by R and to C and
D by T, and both A and B are linked to B by R.

Automorphic equivalence relaxes the condition by allowing auto-
morphically equivalent individuals A and B to be linked by a relation
R to the same kinds of individuals, rather than to the same individuals.
In particular, A and B arc automorphically equivalent if there exists a
re-labelling of the vertices of the network, with B re-labelled by A, so
that there is a link of type R from A to C in the original network if and
only if there is also a link of type R from the vertex re-labelled A to the
vertex re-labelled C. This condition also holds for links of type R from
D to A: such a link exists if and only if there is also a link of type R
from the vertex re-labelled D to the vertex re-labelled A. Figure 1.5b
illustrates the definition. The vertices A, JB, C, and D may be re-labelled
B, A, D and C (see Fig. 1.5c), and it may readily be verified that the
conditions on the re-labelling of links hold. That is, the network displayed
in Figure 1.5c has precisely the same links as the network displayed in
Figure 1.5b.

The notion of regular equivalence relaxes the condition of automorphic
equivalence further. Two individuals A and B are regularly equivalent
if (a) whenever A has a link of type R to an individual C, then B has
a link of type R to some individual D who is regularly equivalent to C,
and similarly for the links of type R from B to D; and if (b) whenever
an individual C is linked to A by R, then some individual D who is
regularly equivalent to C is linked by R to B. In Figure 1.5d, A and B
arc regularly equivalent, and so are C and D.

For each of these ways of defining the similarity of network ver-
tices, a distance measure can be constructed that assesses the extent to
which any pair of vertices are equivalent with respect to the specified
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Relation R Relation T

D

(b)

(c)

D

(d)

Figure 1.5. Structural, automorphic and regular equivalence:
(a) Partition (AB) (CD) is a structural equivalence; (b) partition
(AB) (CD) is an automorphic equivalence; (c) re-labelling nodes in
(b) establishes an automorphism (A —>  B, B —»  A, C -> D, D —»  C);
(d) partition (AB) (CD) is a regular equivalence

definition (e.g., Pattison, 1988; White & Reitz, 1989). Thus, a matrix
of distances between vertices with respect to a particular type of equiva-
lence may be computed; alternatively, a matrix of path distances between
vertices of a single network may be calculated. The distance matrix may
then be subjected to a general-purpose algorithm for obtaining a metric
or nonmetric mapping of the distance matrix into some multidimensional
space. The space itself may be metric, for instance, Euclidean, or it may
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be an ultrametric space constructed from a hierarchical cluster analysis
(Arabie, 1977; Breiger, Boorman & Arabie, 1975; Breiger & Pattison,
1986; Burt, 1976; Doreian, 1988a,b; Faust, 1988).

4. Collections of subsets. Procedures for identifying cohesive subsets
in a network have also attracted a great deal of attention. Intuitively,
a cohesive subset is regarded as a subset of network members for whom
network links within the subset are somewhat denser than network
links connecting members of the subset to individuals outside it. Attempts
at more explicit definitions of a cohesive subset include definitions per-
mitting nonoverlapping and overlapping subsets of X, such as cliques,
clubs, clans, r-cliques, &-plexes, and LS sets (Alba, 1973; Arabie, 1977;
Batchelder & Lefebvre, 1982; Luce, 1950; Mokken, 1979; Peay, 1980;
Seidman, 1983; Seidman & Foster, 1978). Other ways of defining
subgroups have also been investigated. For instance, Batchelder and
Lefebvre (1982) examined the "stratification" of the graph of a single
symmetric network, namely, the division of the nodes of the graph into
two distinct nonempty subsets such that a tie exists between every pair
of nodes from distinct sets. Partitions of network members reflecting
positional similarities in terms of network relations have also been of
interest. For instance, each of the notions of vertex similarity just de-
scribed - namely, structural equivalence, automorphic equivalence, and
regular equivalence - lead to partitions of the set of network members.
For each equivalence notion, we can partition the network members so
that every class of the partition contains a set of individuals who are
equivalent to each other. For example in Figures 1.5a,b,d the partition
(A, B) (C, D) divides the vertex set into classes that are structurally
equivalent, automorphically equivalent, and regularly equivalent, re-
spectively.

5. Blocked matrix and relational models. Some representations of net-
work structure have been expressed in a relational form. In addition to
various algebraic models for particular types of network data - such
as the balance model for positive and negative relations (Cartwright
& Harary, 1956), clique structures for a single relation (Boyle, 1969),
the semilattice model for informal organisations (Friedell, 1967) and
triad-based relational models (e.g., Johnsen, 1985) - this group of repre-
sentations contains blockmodels for multiple networks (e.g., Arabie,
Boorman & Levitt, 1978; White et al., 1976). A blockmodel for a
multiple network may be thought of as a hypothesis specifying (a)
"blocks" of individuals who possess identical network relations as well
as (b) the nature of the relations between these blocks. The notion of
identical network relations is made explicit in the definition of struc-
tural equivalence of persons. As outlined earlier, two persons in a multiple
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network are said to be structurally equivalent if they possess exactly the
same set of relationships to and from every other network member.
More precisely, whenever one of a structurally equivalent pair of per-
sons stands in a relationship of a given type to a third person, then so
does the other bear a relationship of that type to that third person. This
requirement governs relations directed both from and towards members
of a structurally equivalent pair.

DEFINITION. Let R = {Ru Rl9..., Rp] be a multiple network on a set X.
Elements / and / of X are structurally equivalent if, for any m e X,

1 (/, m) eRk iff (/, m) eRk, for any k = 1, 2 , . . . , p; and
2 (ra, /) eRk iff (mj) eRh for any k = 1, 2 , . . . , p.

Individuals who are structurally equivalent are argued to hold the same
position in the network (White et al., 1976), and it may be shown that
the members of a multiple network may be partitioned into groups, or
blocks, of persons such that all individuals assigned to the same block
are structurally equivalent. The block containing a set of structurally
equivalent people then becomes a representative of the (identical) social
position that each block member holds (White et al., 1976).

The other main feature of the blockmodel is the collection of relations
among the blocks of individuals. The interblock relations are represented
as binary relations among the set of blocks and serve to define the social
"roles" associated with the positions represented by the blocks. The
relations among the blocks may be inferred from the relations among
members of the blocks: one block bears a relationship of a given type
to another if the members of the first hold that relationship to members
of the second. That this rule for inferring relations among blocks is not
ambiguous follows from the properties of structural equivalence.

Blockmodels may be derived from sets of observed relational data or
they may be specified independently of data, on theoretical grounds. In
general, a blockmodel is defined as specifying

1 an assignment of persons (elements) to positions, or blocks, and
2 the relationships between the blocks.

That is, the blockmodel indicates which persons hold the same social
positions and whether a relationship of a given type between two po-
sitions is present or absent. Like the original network data, the
blockmodel may be represented as a set of multiple binary relations,
with the relations defined among positions or blocks rather than among
individual people. An empirical collection of multiple, binary relations
yields on exact fit to a given blockmodel if

1 persons assigned to the same block are, indeed, structurally
equivalent, and
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2 relations among blocks inferred by the procedure just outlined
are in agreement with those specified by the blockmodel.

Such a fit of data to a blockmodel is termed by Breiger et al. (1975)
a fat fit and is, of course, difficult to obtain empirically. The criteria for
determining the fit of a set of data to a blockmodel have accordingly
been relaxed to allow approximate fits. Two simple approximations are
a lean fit (Breiger et al., 1975) and a fit to an a-blockmodel (Arabie et
al., 1978). Both of these forms relax the requirement that if one block
has a relation of some type to another, then every individual in the first
block has that relation to every individual in the second. For a lean fit
it is only required that at least one individual in the first block is related
to at least one individual in the second block, whereas for an a-
blockmodel the proportion of pairs of individuals from the two blocks
for which the relation holds must be at least a.

DEFINITION. Let T = {Tl5 T 2 , . . . , Tp] be a blockmodel on a set B of blocks
(so that T is a multiple network on £), and let R = {Ru R2,... , Rp] be
a multiple network on a set X = {1, 2 , . . . , n}. Let f be a mapping from
the set X of members of the multiple network R onto the set B of blocks
in B. For each block b eB, let nb denote the number of elements / in X
for which f(i) = b. Then T is

1 a fat-fit to R if (b, c) e Tk iff (/, /) € Rk, for all /, / e X such that

2 a lean-fit to R if (b, c) e Tk iff (/, /) e Rk, for some z, j eX for which
f(i) = b andf(j) = c; & = 1, 2 , . . . , / ? ;

3 an a-blockmodel for R if (b, c) e Tk iff (i, j) e Rk, for at least anbnc
pairs of elements (/, /) for which f(i) = b and f(j) = c; k = 1, 2 , . . . ,
p (Arabie et al., 1978); and

4 an (au a2,.. . , ap)-blockmodel for R if (b, c) e Tk iff (/, /) e Rk,
for at least ocknbnc pairs of elements (i, /') for which f(i) = b and

A blockmodel, and multinational data sets for which it is a fat fit,
a lean fit and an a-blockmodel (a = 0.5), are illustrated in Table 1.6.
In the second panel of Table 1.6, the density of each network relation
for each pair of blocks in the blockmodel is presented. The density of
a relation for a pair of blocks is the proportion of existing to possible
links among block members on the relation and may be defined for-
mally as follows:

DEFINITION. Let R = {Rl5 R2> • • •  9 RP] be a multiple network on the set X,
and let f be a mapping from X onto a set B of blocks. If fc, c are blocks
in B, and if nb and nc are the number of elements mapped by f onto b
and c, respectively, then the density of the pair (b, c) for the relation Rk
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Table 1.6. A blockmodel and multiple networks for which it is a fat fit,
a lean fit and an a-blockmodel (a= 0.5)

Blockmodel B

K1 K2

10 01
01 00

Network U for
which B
a fat fit

^ i

111
111
111

000
000

00
00
00

11
11

U

is

000
000
000

000
000

11
11
11

00
00

Network V for
which B
a lean fit

011
000
110

000
000

00
00
00

11
00

is

* 2

000
000
000

000
000

Corresponding density matrices

1.00 0.00 0.00
0.00 1.00 0.00

V

Rl

1.00 0.44 0.00
0.00 0.00 0.50

R2

10
11
00

00
00

0.00 0.50
0.00 0.00

Network W for
which B is an
a-blockmodel (a

011
100
110

100
001

00
10
00

01
10

w
Rl
0.56 0.17
0.33 0.50

* 2

000
001
100

000
100

0.22

= 0.5)

10
01
11

00
00

0.67
0.17 0.00

is mk
bclnbnn where mbc is the number of pairs (*,/) for which f(i) = b,

f(j) = c and (/, /) e Rk; /, / e X. If there are no loops permitted in Rk, then
the density of the pair (b, b) for the relation Rk is defined as mk

bblnb (nb -
1) (Breiger et al., 1975).

Given this definition, it may be seen that a fat-fit blockmodel pos-
sesses pairs of blocks whose densities for relations in R are either 0 or
1, and that (b, c) e Tk if and only if the pair (b, c) of blocks has density
1 for the relation Rk. The block (b, c) e Tk for a lean-fit blockmodel if
the pair (b, c) for the relation Rk has density greater than 0. For an
a-blockmodel, the density corresponding to interblock links must be at
least a; and for an (au a2,..., a^-blockmodel, the pair (b, c) must have
density for the relation Rk of at least ak.

As noted, a blockmodel may be specified independently of data to
which it pertains, or it may be derived from it. An example of the first
approach is provided by Breiger's (1979) account of the blockmodels
predicted by various theories of the nature of community power struc-
tures. In this case, the algorithm BLOCKER (Heil and White, 1976)
may be used to assess whether (and if so, in what ways) a given set of
data provides a lean fit to a specified blockmodel. Permutation tests
(Hubert, 1987) may also be used to assess the fit of a blockmodel to
network data.
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In the case of deriving a blockmodel from the data, analysis has
typically been accomplished by the use of a hierarchical clustering algo-
rithm, such as CONCOR (Breiger et al., 1975) or STRUCTURE (Burt,
1976). More recently, Arabie, Hubert and Schleutermann (1990) have
investigated the identification of blockmodels using the Bond-Energy
approach. In the case of hierarchical clustering schemes, a matrix of
distances or similarities among people is generated, with persons being
at zero distance or possessing maximum similarity if, and only if they
are structurally equivalent. The resulting matrix is clustered to yield a
division of the group of persons into subgroups of almost structurally
equivalent people. (The usual problems attendant on cluster analysis,
such as the selection of the most appropriate proximity measure and
method of clustering and the most useful number of clusters in the
obtained solution, are also issues for blockmodel analysis; these matters
are discussed in some detail by Arabie & Boorman, 1982; Burt, 1986a;
Faust, 1988; Faust & Romney, 1985; Faust & Wasserman, 1992;
Pattison, 1988.) From the subgroups, or clusters, thus obtained, some
permutation of the group members is inferred and imposed upon the
original relational data matrices. The permuted data matrices may then
be partitioned according to the division of the group into clusters, or
blocks, so that the density of relational ties present within any submatrix
may be computed. Use of a cutoff-density of a then yields an
a-blockmodel for the data: interblock relations of a given type having
a density greater than a are coded as being present, those with a density
of a or less, as absent. (For example, the blockmodel B in Table 1.6 is
an a-blockmodel for the network shown on the right-hand side of Table
1.6, with a = 0.5.) More detailed accounts of blockmodelling and the
theoretical and practical issues that it raises have been given by Arabie
and Boorman (1982), Arabie et al. (1978), Breiger (1976, 1979), Breiger
et al. (1975), Faust & Wasserman (1992), Wasserman and Faust (1993)
and White et al. (1976).

6. Probabilistic models. Probabilistic network models express each
edge in a single or multiple network as a stochastic function of vertex
and network properties (e.g., Fararo, 1981, 1983; Fararo & Skvoretz,
1984; Holland & Leinhardt, 1981; Holland, Laskey & Leinhardt, 1983;
Wasserman & Galaskiewicz, 1984). For instance, Holland and
Leinhardt's (1981) px model for a single network relation expresses the
probability of a network tie between two members in terms of "den-
sity" and "reciprocity" parameters for the network and "productivity"
and "attractiveness" parameters for each member.

The preceding six categories of representation are not mutually exclu-
sive: for instance, blockmodels can sometimes be considered as belonging
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to categories 3 and 4 as well as to 5. Moreover, some representations
have now been constructed so as to take advantage of the structural
features of more than one category; for example, stochastic blockmodels
propose that each edge of a blockmodel is a stochastic function not only
of vertex and edge properties but also of relations between blocks
(Anderson, Wasserman & Faust, 1992; Fienberg, Meyer &: Wasserman,
1985; Wasserman & Anderson, 1987; Wang & Wong, 1987).

The representations listed in Table 1.5 also vary considerably in the
generality of the form of redundancy assumed to underlie them. Block-
models, for example, subsume balance models as a special case, and
overlapping clique models admit nonoverlapping cliques as particular
instances. A number of graph, vertex and edge indices may be derived,
or at least approximated, from knowledge of a blockmodel representation
for a given set of network data, and approximate spatial models may
often also be constructed. Indeed, a substantial empirical literature attests
to the high level of generality represented by the blockmodel approach
(e.g., Breiger, 1976, 1979; Mullins et al., 1977; Snyder & Kick, 1979;
Vickers & Chan, 1980; White et al., 1976) even though such possibilities
as overlapping blocks are proscribed by them. Moreover, promising
developments in the area of stochastic blockmodels mean that the ad-
vantages associated with probabilistic representations may eventually
come to be associated with this class of models (Holland et al., 1983;
Wang & Wong, 1987; Wasserman & Anderson, 1987).

Properties of a structural representation

For a particular research problem, an investigator using social networks
needs to select one or more representations of network structure from
the large array summarised in Table 1.5. We have noted that the rep-
resentations differ in their generality, so that in the absence of any clear
theoretical direction about an appropriate form, it is wise to choose a
more general representation. Moreover, we shall argue that to obtain a
general representation sympathetic to the two main themes for network
research that we have outlined, we should select a representation that
admits multiple relations and that is sensitive to paths in networks.

Multiple relations. It is now widely recognised that different types of
interpersonal connections operate in different ways to explain various
network phenomena (e.g., information flow; Granovetter, 1973; Kapferer,
1972; Lee, 1969; Mitchell, 1969). Few of the representations of Table
1.5 allow for the simultaneous consideration of multiple relations. In-
deed, the distinctive feature and rationale for many of the blocked
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matrix and relational representations listed under the fifth category of
Table 1.5 is their capacity for joint representation of multiple relations.
A goal of blockmodel construction, for instance, is the description of
groups of persons who have identical relations with other network
members across a number of different types of relations.

There are also grounds for making qualitative distinctions between
network ties on the basis of their strength. Granovetter (1973) argued
that a strong tie between a pair of individuals is involved in a different
set of social processes than a "weak" one and correspondingly is in-
terrelated with other ties in a different way. He reviewed a body of
evidence suggesting the power of weak ties to penetrate social boundaries
that are impermeable to stronger ties, and he attributed that power to
the transmission potential resulting from the open-ended, far-reaching
nature of the networks that they form. Similar conclusions followed
from Lee's (1969) study of networks of communication involved in
finding an abortionist, wherein weak ties provided the paths for the
process of information-seeking and strong ties were effectively excluded
from such paths. Thus, in some circumstances it may prove useful to
treat strong and weak social ties as distinct, rather than construct a
single, valued relation whose values signify the strength of the tie. Clearly,
this strategy is available only if a multirelational representation of the
data is being entertained.

Paths in networks. To some degree, a blockmodel can be seen as pro-
viding a formal representation for the local or interpersonal environ-
ment of a person in a network. The block to which a person is assigned
and the relations of the block with other blocks in the model idealise
the position and associated role of the person in the network. Thus, at
least one of the major theoretical requirements for a network repre-
sentation is satisfied by a blockmodel. The other main requirement is
the need to specify the paths for the flow of social traffic implied by the
network and hence to permit the calculation of the large-scale effects of
local network processes.

It is important to note first that the structural constraints implicit in
a network of interpersonal connections have important implications for
social processes. Network connections are avenues for the potential
flow of such social phenomena as information, influence, attitudes, hin-
drance and uncertainty. Consider, for example, a network in which
person B is an acquaintance of person A and person C is, in turn, an
acquaintance of person B. Then C is an acquaintance of an acquaint-
ance of A: that is, there is an acquaintance path of length 2 from A to
C. If A passes information to JB, then it is claimed that C is a potential
recipient of that information from B. In this sense, the path of length



34 1. Complete social networks

2 from A to C provides one possible channel for the spread of informa-
tion from A to C.

A number of empirical demonstrations of social processes flowing
along paths in networks have been made, including Bott's (1957) ac-
count of conjugal role performance, Barnes's (1954) analysis of social
behaviour in a Norwegian fishing village and the study of "hysterical
contagion" in a textile plant by Kerckhoff, Back and Miller (1965; see
also Boissevain, 1974; Boissevain and Mitchell, 1973; Kapferer, 1969;
Mitchell, 1969). Similar demonstrations have been made for the spread
of infectious diseases (e.g., Klovdahl, 1985). Some observers have even
documented social processes in action on previously measured networks.
Laumann and Pappi (1973, 1976), for example, showed how divisions
of opinion on local issues among members of a community elite were
consistent with properties of the interpersonal network, as did Doreian
(1988a) in a political network of a Midwestern county. Kapferer (1969)
recorded how a person's social network could be used to mobilise support
in a crisis.

Others such as Granovetter (1973, 1974) have established the signifi-
cance of network paths in understanding global social processes. In his
study of job finding, Granovetter (1974) reviewed a range of studies
undertaken in the United States, covering a wide selection of occupa-
tional groups, which demonstrated that approximately 60% of persons
found their jobs through personal contacts, principally friends and
relatives. Less than 20% obtained employment by formal means, that
is, by responding to advertisements and working through employment
agencies.

Such data illustrate the degree to which "local" events, occurring
within the local structural framework specified by the interpersonal
network, can have significant structural implications on a global scale.
Granovetter (1974) noted the disjunction between the micro-level
treatments of the topic of job-finding, that is, those studies which of-
fered plausible psychological and economic accounts of the motives of
job-finding and the macro-level analyses, which concerned the statistics
of persons flowing between various occupational categories. He argued
that the structure of an individual's personal network largely determined
the information available to a person and hence the possible courses of
action open to that person. Thus, he claimed, consideration of networks
of personal contacts is a potentially crucial link in the integration of
these two analytic levels.

The cognition of compound ties. Diffusion and contagion studies (e.g.,
Coleman, Katz and Menzel, 1957; Kerckhoff et al., 1965) illustrate the
real part played by paths in networks in the operation of social processes.
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A more subtle kind of reality is afforded them in some instances in the
form of an awareness of the paths by those whom they link. Kinship
relations provide some common examples: the path formed by tracing
the relation "is a brother of" followed by "is a mother of" is equivalent
to the relation "is a (maternal) uncle of". The path describes a compound
relation, "mother's brother", which is perceived, in general, and given
a single term of reference in recognition of its salience. Similarly, one is
cognisant, in general, of those to whom one bears a relationship such
as "daughter's sister's son". In principle, moreover, any composite re-
lation formed from the kin generator relations ("is a wife of" and its
transpose "is a husband of", and "is a father of" and its transpose "is
a child of") may be given meaning by those using such terms. In a
similar way, the composition of the relation "is a boss of" with "is a
friend of" is often perceived by both boss and friend, as is "is a friend
of" with itself. One's friend's friends often comprise a listable set, as do
one's friend's enemies, boss's boss's bosses, and so on. Perhaps a more
convincing argument for the conscious recognition of those to whom
one bears a compound tie is provided by studies such as that of Mayer
(1977) in which it was shown how a person in a given network position
sets out to manipulate those to whom that person bears a compound
relation, by calling upon intermediaries to influence those one step closer
to the target persons. Similarly, Granovetter's (1974) results demonstrated
the relatively high frequency with which employment is learnt of and
procured through the contacts of one's acquaintances. Whyte (1943)
documented a related phenomenon for Cornerville:

According to Cornerville people, society is made up of big
people and little people - with intermediaries serving to
bridge the gap between them. The masses of Cornerville
people are little people. They cannot approach the big
people directly but must have an intermediary to intercede
for them. They gain this intercession by establishing
connections with the intermediary, by performing services
for him and thus making him obligated to them. The
intermediary performs the same functions for the big man.
The interactions of big shots, intermediaries and little guys
builds up a hierarchy of personal relations based upon a
system of reciprocal obligations, (pp. 271-2)

An obvious restriction on the extent to which individuals are aware
of their compound relations is imposed by the length of corresponding
network paths. Compound relations may not be traced indefinitely by
the parties involved. The maximum length of traceable compounds might
be expected to vary as a function of structural constraints operating.
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Thus, for example, the ranks institutionalised in the army and the grade
structure of the public service make the tracking of quite long com-
pounds of the form "superordinate's superordinate's superordinate's ..."
a relatively easy task in their defining populations. In comparison, the
tracing of "friend's friend's friend's..." in seemingly less-structured
populations seems much more difficult, as the results of Bernard and
Killworth (1973, 1978) suggest.

The representations with which we deal here make no particular
assumptions about whether compound relations are transparent to the
individuals that they link. The extent to which such relations are
transparent, however, is a relevant consideration in the construction of
social process models and requires further empirical study in the longer-
term project of building network process models with plausible struc-
tural assumptions.

In sum, there is some evidence for the claim that paths in networks
can give rise to extremely powerful social phenomena. The description
of the form they may take is therefore essential to models of the social
processes with which they are associated. It might be expected that the
structural constraints presumed to obtain within a given social system
(as determined by the methods listed in Table 1.5) would have a
substantial impact on its path geometry and so on associated social
process models. Despite the critical nature of such constraints for process
models, however, most to date have assumed them to be extremely
strong. As Boorman (1975) observed, "formidable difficulties arise when
one attempts to deal in generality with networks of arbitrary topology"
(p. 220). Some limited progress has been made in the development of
contagion and diffusion models. For example, models characterised by
the well-mixedness assumption, that is, by the assumption that the
probability of contact between any pair of individuals from a specified
pair of states is a constant, have been extended by the introduction of
statistical biases towards symmetry, transitivity and circularity (Fararo
& Skvoretz, 1984; Foster &c Horvath, 1971; Foster, Rapoport & Orwant,
1963; Rapoport, 1957, 1983; Rapoport &c Horvath, 1961). A more
general basis for the exploration of such biases has been described by
Frank and Strauss (1986; also Strauss & Freeman, 1989).

Renewed interest in stochastic models promises new advances in models
for the flow of processes along network paths. To lay the groundwork
for such advances, it is helpful to consider what formal operations are
available for the representation of network flows.

An algebra for complete social networks
The key construction for the representation of network flows is widely
recognised to be some form of composition operation (e.g., Ford &
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Fulkerson, 1962; Lorrain, 1972; Peay, 1977b). Different network rep-
resentations have been associated with different definitions of a com-
position operation; for valued networks, Peay (1977b) has outlined the
various substantive interpretations that may be associated with a number
of them (also Doreain, 1974). A widely used operation for binary net-
works is that of relational composition (Boorman and White, 1976;
Breiger & Pattison, 1978; Lorrain, 1975; Lorrain & White, 1971).

The approach based on relational composition was introduced in
different formal terms and with somewhat different theoretical empha-
ses in Lorrain and White (1971) and Lorrain (1972, 1975) and in
Boorman and White (1976). The algebraic construction is, however,
essentially the same in each instance and operates upon a collection of
multiple networks. The networks may refer either to relations among
individuals or to relations among other social units, such as blocks in
a blockmodel. Two principles underlie the construction: (a) the salience
of compound relations or paths in networks and (b) a natural means of
comparing them. In what follows, we refer to the social units of the
network as individuals, but the definitions apply equally well to relations
among other types of social units, such as blocks or groups of individuals.

Compound relations and network paths

Consider three individuals A, B and C in the multiple network W of
Figure 1.4. It can be seen that individual C names B as a friend, and
B seeks help from individual A. Thus, A is a helper to a friend of C,
that is, A is one of C's friend's helpers. We say that C stands in the
compound relation FH to A, or that C is connected to A by the
compound relation, or compound path, FH. In fact, the compound
relation or compound role FH links C to A via a path of length 2, the
first step of which is a relationship of type F and the second, a rela-
tionship of type H. The relationship exists irrespective of any other
relations enjoyed by C and A: the defining feature of the compound is
the existence of some person to whom C bears the relation F and who,
in turn, is related by H to A. More than one such person may link C
and A in this way: the strategy of recording only the existence of a path
from C to A is a structural one; it is not designed to reflect the likeli-
hood of a path from A to C of this type being activated, only that
activation is possible. The set of all pairs of persons in a network
connected by the compound relation FH define a new network relation
among members of the network. The relation has the same form as the
original collection of binary relations and may be represented as a
directed graph, a binary relation or a binary matrix.

Now, to construct the compound relation FH, we may reason
as follows. Individual / is connected to individual / by the compound
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Figure 1.6. The compound relation FH

relation FH if a friend of / seeks help from /, that is, if / is a helper to
a friend of /, or / is one of I'S friend's helpers. For instance, if we con-
sider the elements of the network in turn, we see that A is related to B
by F, who is related to A by H. Thus, A is related to itself by the relation
FH. Element B is similarly related to itself by FH, whereas C is related
to A, B and D by F and hence to itself, A and B by FH. Element D is
related to C by F, and C is related only to D by H, so that the relation
FH links D only to itself. Thus, we obtain the compound relation

which is shown in Figure 1.6 in directed graph form.
The matrix of the compound relation FH may also be constructed

directly from the matrices of the relations F and H. The construction
relies on the operations of inclusive or, represented by the symbol v, and
and, represented by the symbol A. These operations act on the matrix
entries of 0 and 1, as follows:

0v0 = 0, Ovl = l, lvO = l, lvl = l

0 A 0 = 0, 0 A 1 = 0, 1 A 0 = 0, 1 A 1 = 1.

Both the inclusive or and and operations are associative. That is, for the
and operation, (x A y) A Z = x A (y A Z), where each of x9 y and z is either
0 or 1, and we may write both expressions as XAy /\z without am-
biguity. Similarly, for the inclusive or operation, (x v y) v z = x v (y v z),
and both expressions may be written as x v y v z. The Boolean product
of the matrices of relations F and H can then be expressed as

FHtj = (Ftl A Hv) v (F,2 A H2/) v . . - v (Fm A Hnj).
That is, cell (/, /') of FH has a unit entry if, for any element k, the (/, k)
cell of F and the (k, j) cell of H both have unit entries; otherwise, cell
(/, /') of FH contains an entry of zero. Thus, the Boolean product op-
eration leads to a product matrix FH that is also a binary matrix of the
same size as F and H.
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The expression of the Boolean product in the preceding form makes
clear its relationship to ordinary matrix multiplication, which may be
expressed in the form:

(FH)if = FnHv + Ft2H2j FmH
nj.

That is, in the ordinary matrix product of F and H, the (/, /) cell of the
product matrix is the sum of products of entries in cells (/, k) of F and
(k, j) of H, and because both F and H are binary, this is the number of
elements k for which both cells have a unit entry. In the Boolean product,
the operations of multiplication and summation in this expression are
replaced by those of and and inclusive or, so that the outcome is 1 if
there is at least one element k for which the (/, k) cell of F and the (&, /)
cell of H are both 1 and 0 otherwise. In other words, an entry in the
Boolean product of F and H is 1 if and only if it is at least 1 in the
ordinary matrix product of F and H; otherwise, it is zero.

We can construct an infinite set of compound relations from F and
H, each corresponding to a possible string of the relations F and H. For
example, from the relations F and H, we can construct the compound
relations

FF, FH, HF, HH, FFF, FFH, FHF, FHH, and so on.

Some of these compound relations are displayed in Figure 1.7 in di-
rected graph form and in Table 1.7 in binary matrix form. The first four
compound relations are constructed from two primitive relations in the
network and define paths in the network of length 2. For instance, FF
records the existence of paths comprising two friendship links among
members of the network. Similarly, FH records the existence of paths
of length 2 whose first link is a friendship relation and whose second
link is a help-seeking relation. Paths of length 3 may be constructed by
finding the composition of a compound relation corresponding to paths
of length 2 and a primitive relation. For instance, the relation FHF may
be constructed by finding the composition of the relation FH and the
relation F. In matrix terms, for instance, we obtain

1000
0100
1110
0001

0100
1000
1101
0010

0100
1000
1101
0010

The same relation may be constructed by finding the composition of the
relation F with the relation (HF) because it can readily be established
that the order of calculation of compounds in a string is not important;
we do not need to distinguish, say, (FH)F from F(HF) and so can write
both as FHF. This property of the composition operation is termed
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a
HH

aB A + B

FFF HFH

FHF FHH

Figure 1.7. Some compound relations for the network W

Table 1.7. Some compound relations for the network W in binary
matrix form

FF

1000
0100
1110
1101

FH

1000
0100
1110
0001

HF

1000
0100
0010
1101

HH

1000
0100
0010
0001

FFF

0100
1000
1101
1110

FFH

0100
1000
1101
1110

FHF

0100
1000
1101
0010

FHH

0100
1000
1101
0010

HFF

0100
1000
1101
1110

HFH

0100
1000
0001
1110

associativity. Note, though, that the order of each relation in the string
is important; so FHF is not necessarily the same relation as HFF.

The operation of forming compound relations is termed composition,
or concatenation; according to Lorrain and White (1971, it represents
"the basic logic of interlock" (p. 54) in the system of relationships. Its
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Table 1.8. The blockmodel N = {L, A}

110 0 10 11
1100 1010
0010 100 1
00 11 1000

construction permits one to take into account "the possibly very long
and devious chains of effects propagating within concrete social systems
through links of various kinds" (Lorrain and White, 1971, p. 50).

In other words, compound relations are claimed to define the paths
along which social processes flow: those whom they link may or may
not be aware of them. An awareness of compound relationships by the
individuals concerned, however, is not essential to their usefulness;
Lorrain (1972) argued that "any concatenation of social relationships is
itself a social relationship, whether perceived or not" (p. 9).

Formally, the composition of relations may be defined as follows:
DEFINITION. The composition of two binary relations R and T on a set
X is given by

(*,/) eRT iff there exists some keX such that (/, k) eR and
(kJ)eT; *,/,eX.

RT is termed a compound relation. (Composition is also referred to as
multiplication and the compound relation RT as the product of R and
T.) If R = {Ru R2,..., Rp] is a network defined on a set X, and if Th e R
for each h = 1, 2 , . . . , m, then T{T2- - -Tm is a compound relation of
length m. In particular, (/,/) eT^ • • •  Tm if and only if there exists a
sequence i - k0, ku . . . , km = j of elements of X, such that (kh _ l5 kh) e Th;
h = 1, 2 , . . . , m. We say that there is a labelled path of length m from
i to /, with the labels Tu T 2 , . . . , Tw, respectively.

As noted earlier, the definition applies to multiple networks defined
on any kind of social unit. In particular, it applies to networks defined
among individuals, as well as to blockmodels constructed from them.
As an example of the latter case, we construct compound relations for
the blockmodel reported in Table 1.8. The blockmodel is labelled N
and possesses two relations defined on four blocks. The blockmodel
was constructed by White et al. (1976) for relations of Liking (L) and
Antagonism (A) among the members of the fraternity reported by Nordlie
(1958; also Newcomb, 1961). All primitive and compound relations of
length 2 and 3 generated by L and A are reported in Table 1.9.
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Table 1.9. Primitive relations and compound relations of lengths 2 and
3 for the blockmodel N

L

1100
1 100
0010
0011

LLA

1011
1011
1001
1000

A

101
101
1 00
100

LAL

1 1 1
1 1 1
111
1 1 1

1
0
1
0

1
1
1
1

LL

1 100
1100
0010
001 1

LAA

1011
1011
10 11
1011

LA

10 11
1011
100 1
1000

ALL

1111
1110
1111
1 100

AL

1111
1110
1111
1 100

ALA

1011
10 11
1011
1011

AA

101
101
101
101

AAL

101
101
101
101

1
1
1
1

1
1
1
1

LLL

1100
1 100
0010
00 11

AAA

1011
1011
10 11
10 11

Comparing paths in networks and the Axiom of Quality

The second principle underlying the representation that we construct
is the notion that it is useful to make comparisons among the collection
of all primitive and compound relations defined on a network. If one
relation U links pairs of individuals who are all also linked by a relation
V, then we can think of the relation U as being contained in the relation
V. For instance, if individuals in a work group only approach their
friends for help with work-related problems, then we would represent
this state of affairs using the ordering

where F and H denote the Friendship and Help relations, respectively.
For instance, this ordering holds in the network W displayed in Figure
1.4 because each individual seeks help from an individual who is also
named as a friend.

In formal terms, this notion leads to a partial ordering among binary
relations on a set:

DEFINITION. Let W and V be binary relations on a set X. Define
W<V

if (/, /) G W implies (/, /) e V, for all /, / e X.
It is easy to establish that the relation < has the properties of a math-
ematical quasi-order, that is, it is reflexive (W < W, for any binary re-
lation W on X) and transitive (W< V and V< U imply W< 17). We may
also define the converse relation > by
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W> iff V<W.
Moreover, from the relations > and <, an equality relation can be con-
structed:

W= Viff W< Vand V< W.
From the relations < and =, in turn, the relation < may be defined, using

V iff W< V but not W= V.
The relation > is defined similarly.

Now, if W = V, then W and V link precisely the same pairs of indi-
viduals. Boorman and White (1976) termed the equation of two such
relations the Axiom of Quality:
DEFINITION (Axiom of Quality). Let W and V be binary relations on X.
Define

W= Viff W<V and V<W.
For example, the relation FFF and the relation F from the network W
are equated by the Axiom of Quality. Indeed, we can show that

F = FFF = FHF = HHF = FFFFF

all hold, as do many other equations to F. Similarly, FF = FFFF = FFFH,
and HHH = H; also HHHH = HH, HFHF = HF = HFHH and so on.
Now the collection of compound relations generated by a given collection
of binary relations among members of a network is infinite in number.
The Axiom of Quality states that any two relations (compound or
otherwise) that define exactly the same set of connections among per-
sons are to be equated. Thus, because there are only a finite number of
distinct binary relations that can be defined on a finite set X, there are
also only a finite number of distinct relations (compound or otherwise)
in the set generated by a given collection of multiple, binary relations.
In fact, at most there are 2*, where k = n2 and n is the number of elements
in X.

We can find the set of distinct binary relations by an iterative process.
We begin with the distinct primitive relations in the network and then
construct all compound relations corresponding to paths of length 2 in
the network. Beginning with F and H, for instance, we construct FF, FH,
HF and HH. We then compare these binary relations (FF, FH, HF and
HH) with the primitive relations and with each other and select any
that are distinct. Table 1.7 indicates that, in this case, all of the relations
are distinct. We then form a compound relation of length 3 from each
of these compound relations of length 2 and each of the primitive re-
lations and again examine the list for new distinct relations. That is, we
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construct FFF, FFH, FHF, FHH, HFF, HFH, HHF and HHH. In this
list, only FFF and HFH art distinct for the network W. The other
relations are equal to a relation already generated: that is, FFH = FFF,
FHF = F, FHH = F, HFF = FFF, HHF = F and HHH = H. In the next
round, therefore, we construct compound relations of length 4 from
distinct compound relations of length 3 and the primitive relations.
Hence, we compute FFFF, FFFH, HFHF and HFHH and find that no
new distinct relations are obtained. We have thus found the eight distinct
relations that may be generated from the relations F and H in the
network W.

The partially ordered semigroup of a network
The set of distinct relations that we find by this process defines an
algebraic structure termed a partially ordered semigroup. The compo-
sition operation acts as a binary operation satisfying an algebraic identity
known as the associative law (defined later). The equations among
(compound) relations, that is, the outcome of identifying all those re-
lations defining the same set of interpersonal connections in the group,
are translated into equations of the semigroup, encoding the specific
structural interrelations among the given collection of relations. The
semigroup equations and partial orderings record the relations between
the network relations and represent relational structure in a network in
a way that does not refer to specific sets of network links.

In fact, the distinct primitive and compound relations of the network,
together with the composition operation, possess the properties of both
a semigroup and a partially ordered semigroup.
DEFINITION. A semigroup is a set of elements S and an associative binary
operation on S. The binary operation is a mapping of ordered pairs of
elements of S onto a single element of S and is usually represented as
a product, with the pair of elements (17, V) from S being mapped onto
the single element UV of S. The binary operation is associative, that is,
it has the property

(UV)W=U(VW);
for any 17, V, WeS (e.g., Clifford & Preston, 1961).

In the case of the network relations, S is the set of distinct primitive
and compound relations and the binary operation on S is the com-
position operation. For the network W of Figure 1.4 the set S is
{F,H,FF,FH,HF,HH,FFFyHFH}. The composition operation is de-
fined for any pair of members of S, and the result of computing the
composition of any two elements in S is again an element in S (because
S contains all distinct primitive and compound relations). The outcome
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of all possible compositions of pairs of elements in S may be recorded
in a table, termed the multiplication table of the semigroup. The left
half of Table 1.10 contains the multiplication table for the semigroup
of the network W. The multiplication table has rows and columns cor-
responding to the primitive and compound relations in S, and the table
entry corresponding to a particular row and column records the distinct
relation obtained when the composition of the row relation and the
column relation is computed. For instance, the entry in the first row and
column contains the composition of F and F, namely FF; the entry in
the first row and second column contains the result FH of composing
the first row relation F with the second column relation H. Similarly, the
entry in the fourth row and second column, P, is the result of com-
posing FH with H and corresponds to the equation FHH = F, which was
previously found to hold.

As well as possessing the structure of a semigroup under the compo-
sition operation, the set S of distinct relations obtained from a network
may be shown to give rise to a partially ordered semigroup.
DEFINITION. A semigroup S together with a partial ordering < among its
elements is a partially ordered semigroup if U < V implies WU < WV, and
UW< VW, for any WeS (e.g., Fuchs, 1963).

It may be established that if U < V holds for two binary relations on
a set X, then WU< WV and UW< VW also both hold for any binary
relation W on X. Hence, the distinct relations generated by a multiple
network R also constitute a partially ordered semigroup S(R). The
partially ordered semigroup may be presented in the form of two tables,
a multiplication table, as before, and a partial order table.

The partial order table also has rows and columns corresponding to
the distinct relations generated by the network. The entry in the z'th row
and ;th column is 1 if the *th distinct relation is greater than or equal
to the ;th distinct relation and zero otherwise. The partial order table
for the partially ordered semigroup S(W) of the network W is presented
in the right half of Table 1.10. For instance, the ordering relation

FF > FH

for the network W is indicated by the unit entry in the third row and
fourth column of the partial order table for the relations of the network
W.

A partial ordering may also be conveniently represented by a partial
order diagram (e.g., Birkhoff, 1967; also known as a Hasse diagram,
e.g., Kim & Roush, 1983), constructed as follows.
DEFINITION. Let S be a partially ordered set (i.e., a set S and a partial
ordering <) and let s, teS. The element s covers the element t if t < s,



Table 1.10. The multiplication table and partial order for the partially ordered semigroup S(W)

F
H

FF
FH
HF

HH
FFF

HFH

F

FF
HF

FFF
F

FFF
F

FF
HF

H

FH
HH
FFF

F
HFH

H
FF

HF

Multiplication table

FF

FFF
FFF

FF
FF
FF
FF

FFF
FFF

FH

FFF
HFH

FF
FH
FF

FH
FFF

HFH

HF

F
F

FF
FF

HF
HF

FFF
FFF

HH

F
H

FF
FH
HF

HH
FFF

HFH

FFF

FF
FF

FFF
FFF
FFF
FFF

FF
FF

HFH

FH
FH

FFF
FFF

HFH
HFH

FF
FF

F
H

FF
FH
HF

HH
FFF

HFH

F

1
0
0
0
0
0
1
0

H

1
1
0
0
0
0
1
1

FF

0
0
1
0
0
0
0
0

Partial order

FH

0
0
1
1
0
0
0
0

HF

0
0
1
0
1
0
0
0

HH

0
0
1
1
1
1
0
0

FFF

0
0
0
0
0
0
1
0

HFH

0
0
0
0
0
0
1
1
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FFF

HFH

H HH

Figure 1.8. Hasse diagram for the partial order of 5(W)

and t<w<s implies w = s or w = t. The Hasse diagram or partial order
diagram of S is a graph whose vertices are the elements of S and in which
an edge is drawn between s and t, with s above t, if s covers t.
In other words, the Hasse diagram of a partial order suppresses any
orderings which are implied by other orderings. Consider, for example,
the Hasse diagram for the partial ordering of the semigroup S(W) of the
network W which is presented in Figure 1.8. It can be seen from Table
1.10 that FFF > F and also that F > H. Hence the ordering FFF > H is
implied by the transitivity of the partial order and no link is drawn
directly from FFF to H in the Hasse diagram. There is, however, a path
from FFF to H in the diagram, with FFF drawn above H, so that the
ordering FFF > H may be inferred. There are no relations x distinct from
FFF and F, however, for which FFF > x and x > F. That is, FFF covers
F and the Hasse diagram contains a direct link from FFF to P. The
direction of the links is indicated by their position on the page: any
relation above a second relation and connected to it is greater than the
second relation. It may be observed by examining Figure 1.8 that all
orderings appearing in Table 1.10 can be inferred from the Hasse dia-
gram; for instance, FFF is greater than all those elements to which it is
connected and lie below it, namely, F, HFH and H (and, of course,
FFF > FFF also holds).

As a second example, consider the blockmodel N = [L, A} of Table
1.8. It generates the distinct relations L, A, LA, AL, AA and LAL, which
are presented in Table 1.9 in matrix form. Equations generated by
equating compound relations with the same directed graph include

LL = L, LAA = AA, ALA = AA, AAL = LAL and AAA = AA,
whereas orderings include

L < LAL, AL < LAL, A<LA<AA< LAL and A < AL.
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The equations and orderings record interrelations among the rela-
tions. The equation LL = L, for example, claims that each block likes
those blocks liked by its friends, a claim that may be verified by examining
the L matrix in Table 1.8. Other equations may be similarly interpreted
in relational terms; the entire set of equations and orderings generated
by a given network provides a comprehensive statement of relational
interrelating in the network.

Some applications of the semigroup representation have made sys-
tematic use of the accompanying partial order (e.g., Fennell & Warnecke,
1988; Light & Mullins, 1979), some have used it occasionally (e.g.,
Boorman & White, 1976) and others have effectively ignored it (e.g.,
Bonacich &; McConaghy, 1979; Breiger and Pattison, 1978; Lorrain,
1975). Clearly, the information conveyed by the partially ordered semi-
group contains the information encoded in the abstract semigroup.
Indeed, the latter is obtained from the former by dropping the partial
order table. At this stage, no consensus has emerged on the role of the
partial order in the representation, but there are at least two reasons for
including it. Firstly, the comparison relation carries important substantive
information: it is useful to know, for instance, that the collection of
friends of one's business associates is contained in the set of one's
business associates. Secondly, the representation for local networks
presented in chapter 2 may be compared more directly with the partially
ordered semigroup representation for entire networks. Using the partially
ordered semigroup for entire networks therefore leads to a more unified
treatment of structure in local and entire networks.

In sum, the definition of the network R as the "raw data" for a
representation of social structure has been argued to be an appropriate
relational basis. In some cases, that relational basis may also be usefully
summarised in the form of a blockmodel B. It has then been proposed
that the composition operation, applied to either the original network
relations among network members or to relations among blocks in a
blockmodel, yields a suitable formalisation for the tracing of paths in
networks. The comparison of these paths or compound relations yields
an algebraic structure, the partially ordered semigroup S(R) for ob-
served network relations, or S(B) for blockmodel relations, that rep-
resents the interrelatedness of relations in R or B.

The decision about whether the partially ordered semigroup should
be constructed from the original network relations or from a blockmodel
derived from the network relations depends on a number of factors.
Firstly, it depends on the level of structural detail required by the analysis:
the detail is generally much greater for original data than for a derivative
blockmodel. Secondly, and perhaps most importantly, the measurement
characteristics of the network data need to be considered. A number of
researchers have suggested that the blockmodel for a multiple network
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may be more robust than the network itself (e.g., Pattison, 1981; White
et al., 1976), so that any derived algebraic structure for the blockmodel
is likely to possess a greater degree of robustness as well. For instance,
overlooking a member of a network, or mis-specifying a network relation,
may have no effect on the blockmodel of the network and hence on the
blockmodel semigroup; yet the partially ordered semigroup of the
network data may be affected (also Boyd, 1991). Thirdly, there are
practical considerations. The semigroup of a blockmodel is generally
very much smaller than the semigroup of an observed network, and as
a result it is usually easier to describe its equations and orderings.
Although techniques developed in chapter 4 go some way to resolving
this descriptive problem, most reported semigroup analyses have been
for blockmodels rather than raw network data (e.g., Boorman & White,
1976; Breiger & Pattison, 1978).

Some support for the usefulness of the semigroup representation comes
from studies of models of certain kinds of kinship systems, of which the
semigroup representation is a generalisation. White (1963) showed that
relations determining the clan of wife and child in certain marriage class
systems characteristic of some Australian aboriginal tribes lead to the
construction of permutation group models. He was able to classify
possible kinship structures according to their marriage and descent rules
and provide the foundation for a comparison of the various structures.
Boyd (1969) extended the representation by proposing that various
algebraic transformations relating different group representations be used
to assist the latter task, especially that part of it directed to the analysis
of the evolution of kinship structures over time. Boyd reviewed evidence
supporting the usefulness of permutation group models and claimed
that by using the mathematical analytical power afforded by the theory
of groups, in particular, and algebraic systems, in general, one could
investigate more fully both the relationships among various systems of
the same type (e.g., the marriage systems of various tribes) and the
interdependencies of such systems with those of a different type (e.g.,
componential analyses of their kinship terms).

An algorithm for semigroup construction

In practice, the finite semigroup S of a network R = {Rl5 R2, •  • •  > Rp) m&Y
be constructed by the following algorithm. Let Wx be the set of
primitive relations in R,

W1 = {Rl9R29...9Rp}9

and assume that the R, are distinct. Multiply each element of Wx on the
right (or dually, on the left) by R1 to form the collection {RiRi, RiRu • • • ?
RpRi}. Each time a new compound relation is computed, compare its
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Table 1.11. Generating the semigroup of the blockmodel N

World length Distinct compound relations Equations

2 W2 = {LA, AL, AA} LL =L
3 W3 = {LAL} ALL = AL

AAL =AA
LAA =AA
ALA =AA
AAA =AA

4 W4 = 0 LALL = LAL
LALA = AA

directed graph or binary matrix with those of preceding relations, that
is, with relations in Wx or compound elements generated thus far. If the
new compound is distinct, enter it into the set W2 of new distinct re-
lations formed from two primitive relations; if it is not distinct, record
the equation between the new compound relation and some preceding
relation. Similarly, multiply each element of Wj on the right by
R2, R 3 , . . . , Rp, storing distinct compound relations in W2 and noting
equations as they are generated. W2 then contains all distinct compound
relations formed from two members of R (i.e., all distinct compound
relations of length 2). If W2 is nonempty, multiply each element of W2
by the generator Ru then R2, and so on, up to Rpy placing distinct
compound relations of length 3 in W3 and retaining equations among
relations thus generated. Continue the process, multiplying elements
of Wk (distinct compound relations of length k) by the generators
jR1? R2,..., Rp until, for some word length m, Wm is an empty set; that
is, until no new distinct compound relations can be generated from
Wm _ j . That such a word length exists and is finite is guaranteed by the
finiteness of S (because there are no more than 2k distinct relations in
S, where k-n1 and n is the number of elements in X). Then the distinct
compound relations in

are the elements of the semigroup S, and equations generated in the
process of implementing the algorithm constitute a finite set of defining
equations for the semigroup. Once distinct semigroup elements have
been identified, they may be compared to construct the corresponding
partial ordering.

For example, the blockmodel N = {L, A} of Table 1.8 yields, when
subjected to the algorithm, the results set out in Table 1.11. The mul-
tiplication table of the semigroup is presented in Table 1.12. The as-
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Table 1.12. Multiplicaton table for the semigroup S(N)

L
A
LA
AL
AA
LAL

L

L
AL
LAL
AL
LAL
LAL

Symbolic form

A

LA
AA
AA
AA
AA
AA

LA

LA
AA
AA
AA
AA
AA

AL

LAL
LAL
LAL
LAL
LAL
LAL

AA

AA
AA
AA
AA
AA
AA

LAL

LAL
LAL
LAL
LAL
LAL
LAL

1
2
3
4
5
6

1

1
4
6
4
6
6

Numerical

2

3
5
5
5
5
5

3

3
5
5
5
5
5

form

4

6
6
6
6
6
6

5

5
5
5
5
5
5

6

6
6
6
6
6
6

LAL

Figure 1.9. Hasse diagram for the partial order of 5(N)

sociated partial ordering is displayed in Hasse diagram form in Figure
1.9. The multiplication table is presented in Table 1.12, in symbolic
form in a square table and in an equivalent numerical form. The two
forms are equivalent and, as the algorithm described earlier suggests,
a reduced form of each table, termed a right multiplication table, is
sufficient to specify the semigroup. That is, the first p columns of the
entire multiplication table (or, equivalently, the first p rows) are re-
quired to characterise the semigroup. A C program, PSNET, that imple-
ments the algorithm is available from the author on request. The
convention adopted by the program and in the presentation of semigroup
tables later, is that equations among the generators of the semigroup
{Rl5 R 2 , . . . , Rp] are recorded outside the semigroup table. Thus, if R, = R;,
with i not equal to /, then R, is included as a semigroup generator whereas
Rj is deleted and the equation R, = R; noted separately.
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Figure 1.10. The Cayley graph of the semigroup 5(N) (solid and
dashed edges are L and A, respectively)

Semigroup presentation. The program PSNET stores the multiplication
table of the semigroup of a network in the form of an edge table and
a word table. Following an algorithm described by Cannon (1971), it
constructs the Cayley graph of the semigroup (Grossman and Magnus,
1964). Distinct compound or primitive relations, generated in the manner
described by the semigroup construction algorithm, are vertices of the
Cayley graph. Labelled edges of the graph record the result of post-
multiplying distinct compound relations by the generators. Thus, the
edge directed from the distinct compound relation T and labelled by the
generator R{ is directed toward V, the distinct compound resulting from
the composition of T and R;. That is, the edge corresponds to the
equation

TRt = V.

The Cayley graph of the semigroup of Table 1.12 is presented in Figure
1.10. The edge table of the semigroup records the target of each labelled
edge emerging from each vertex (distinct compound relation) and cor-
responds to the first p columns of the multiplication table of the
semigroup. The word table lists, for each distinct relation, the vertex
from which an edge was first directed to it and the label of that edge.
It thus readily permits the reconstruction of a minimal path from the
generators to that vertex and speeds multiplication when only the ab-
breviated multiplication table (that is, the edge table) is stored. (As a
result, it is particularly useful when large semigroups are under inves-
tigation.) Edge and word tables for the semigroup presented in Table
1.12 are shown in Table 1.13, together with the partial order of the
semigroup. The latter form will be used frequently throughout the book.
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Table 1.13. Edge and word tables and partial order for the semigroup
S(N)

Semigroup
element

1
2
3
4
5
6

Word

L
A

LA
AL
AA

LAL

Word table

Node

—
1
2
2
3

Generator

—
2
1
2
2

Edge table
generators

1

1
4
6
4
6
6

2

3
5
5
5
5
5

Partial
order

1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 1 1 0 1 0
1 1 1 1 1 1

Network semigroups and the free semigroup of generator relations.
Finally, we present a slightly more formal approach to defining the
partially ordered semigroup of a multiple network. The purpose of the
presentation is to allow us to draw the close links between the algebraic
construction presented in this chapter for complete networks and that
for local networks developed in chapter 2.
DEFINITION. Let R = {Rl9 R2,.. . , Rp) be a set of primitive relations and
let FS(R) denote the collection of all finite strings of the form T{T2 •  • • Tk,
where T; e R. Define a binary operation on the strings in FS(R) by

(TtT2 • • •  Tk) {UXU2 • • • 17,) = T{T2 • • •  TkU,U2 • • •  17, (1.1)
where T, eR, U} eR, / = 1, 2 , . . . , k; / = 1, 2 , . . . , /. The operation is
termed juxtaposition and is clearly associative. The collection of rela-
tions FS(R), together with the binary operation of (1.1) define the free
semigroup on R. The compound relation T{T2' • •  Tk, where T,eR
(i = 1 , 2 , . . . , k) is c a l l e d a word of FS(R) of length k. Ru R2,...,Rp

are termed the generators of PS(R).

As we have already seen, each compound relation in the free semigroup
FS(R) corresponds to a binary relation on X. The ordering on binary
relations which was introduced earlier may also be seen as an ordering
relation on FS(R), with

W<V
if and only if (/, /) e W implies (i, /) e V, for all /, / € X. The relation <
is actually a quasi-order on FS(R), that is, a reflexive and transitive binary
relation on FS(R). It leads naturally to an equivalence relation £ on ES(R)
with the definition
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(W9V)eE iff W= V,
and it also induces an ordering on the classes of E by

ex <e2 if and only if W< V for all Weeu Vee2.
It may readily be seen that this induced partial ordering on the classes
of £ is precisely the same as the partial ordering defined on distinct
semigroup elements which was introduced earlier.

Moreover, the partial ordering has the property of being preserved by
multiplication on the right and left and hence yields a partially ordered
semigroup on the classes of £. Thus, there is a one-to-one correspond-
ence between the elements of the partially ordered semigroup S(R) of a
network R on a set X and the classes of an equivalence relation E
defined on the free semigroup FS(R) of generator relations. Conse-
quently, operations and orderings among the elements of S can also be
viewed as operations and orderings on the classes of E.

Summary

It has been argued in this chapter that social networks play an impor-
tant substantive role in the social sciences. In particular, they provide a
means of describing some salient features of the immediate and ex-
tended "social environment" of an individual, and they also allow the
tracing of paths along which social processes are likely to flow. In
constructing a formal representation for social networks, it was claimed
that a suitable representation should possess two important properties.
Firstly, it should be multirelational and so encompass different types of
network relations in the description of an individual's social environment.
Secondly, it should be concerned with the description of different kinds
of network paths.

The partially ordered semigroup of a network was introduced as an
algebraic construction fulfilling both of these requirements. The par-
tially ordered semigroup of a network records the relationships between
all possible labelled paths in the network and, as such, provides a
representation of its "relational structure". It may be constructed either
from network data describing links between individuals or from network
data describing links between aggregate social units, such as blocks in
a blockmodel. The choice of the relational data from which to construct
the algebra depends on the purpose of the network study.

In the next chapter, similar arguments are offered in support of an
algebraic representation of relational structure in local, or personal,
networks. That is, an algebra is constructed that is both multirelational
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and path-based and which is the local network analogue of the partially
ordered semigroup of a complete network. The problem of describing
and analysing these algebraic structures for networks is then considered
in chapters 3, 4 and 5.



Algebraic representations for local social
networks

Although a large number of significant network studies have involved
complete networks of the kind discussed so far, there is also considerable
interest in the analysis of personal, or ego-centred, networks arising from
survey research (e.g., Feiring & Coates, 1987; Fischer, 1982; Fischer
et al., 1977; Henderson et al., 1981; Laumann, 1973). An indication of
the extent of this interest was the decision to include a set of network
questions in the General Social Survey (GSS) from 1985 (Burt, 1984).
As a result of that decision, it is now easier for social scientists to
address a variety of questions about the links between network and
other personal and social characteristics using GSS data (e.g., Bienenstock,
Bonacich & Oliver, 1990; Burt, 1986b, 1987a, 1987b; Burt & Guilarte,
1986; Huang & Tausig, 1990; Marsden, 1986, 1988).

It is usual in survey studies to sample a number of individuals from
some population of interest and to enquire about characteristics of their
"local" networks. For instance, the GSS network questions seek informa-
tion about those people with whom an individual has discussed an impor-
tant personal matter in the preceding six months, as well as information
about the interrelations of those people. Symmetric relational data for two
types of relations in the local network are obtained: (a) who is acquainted
with whom (or, equivalently, who is a stranger to whom) and (b) who is
"especially close" to whom (Burt, 1984). For partial network data in this
form, the semigroup representation introduced in chapter 1 is not neces-
sarily appropriate. An implicit assumption of semigroup construction is
the existence of a meaningful network boundary. That is, we assume that
we have a complete record of the relationships of a given individual, a
complete record of the relationships of all those to whom he or she is
related, and so on. (We assume here, as before, that the types of rela-
tionships under consideration belong to a prespecified primitive set.) In
the case of personal or ego-centred networks, the record is truncated at
some point so that only a partial network may be constructed. The
form of this partial network varies from one study to another but, most
commonly, has taken one of the forms illustrated in Figure 2.1.

56
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single-stranded tie

multi-stranded tie

(a)

association

"especially close"
relationship

\ /
ego

(b)

/ / / \

r, \
\'< >
I / \1/
!/

association

"especially close"
relationship

(c)

Figure 2.1. Some partial networks: (a) a complete first-order zone;
(b) a restricted first-order zone (N = 5); (c) a two-stage snowball
sample L (restricted second-order zone, N = 5)
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Types of local networks

Figure 2.1a is typical of the literature on personal or ego-centred networks
instigated by Barnes (1954) and Bott (1957) and developed by Mitchell,
Barnes, Kapferer, Boissevain and others (e.g., Barnes, 1969a; Boissevain,
1974; Kapferer, 1969; Mitchell, 1969). The figure represents the first-
order zone of an identified individual (ego), that is, the set of persons
to whom ego has relations of some specified kind, together with all of
the relations obtaining among them. The set of individuals to whom ego
is linked by any relation is assumed to be unrestricted in size in this type
of network and may be generated by using a "free choice" format for
questions eliciting network information. Of major interest in such partial
networks have been the size and composition of the first-order zone of
the network, its density (the degree to which the associates of ego are
associated with one another) and the distribution of ties of various kinds,
such as uniplex (or single-stranded) and multiplex (or multi-stranded)
relations.

The partial network illustrated in Figure 2.1b is the same in form to
that of Figure 2.1a except that the size of the first-order zone has been
limited to a fixed number N of individuals (excluding ego, the re-
spondent). Such networks may result from a "fixed choice" format for
network questions, such as "Name up to five people to whom you feel
close". Typically, N is small, such as 5 (Burt, 1984; Fischer, 1982) or
6 (Wellman, 1979) or 9 (Kadushin, 1982), and may represent a small
fraction of the size of the actual first-order zone. The latter has been
estimated by Pool and Kochen (1978) to be in the range of 500 to 2,000
for the acquaintance networks of many individuals; whereas for networks
of persons with whom personal matters are discussed, Fischer (1982)
reported first-order zones ranging in size from 2 to 67 with a mean of
19. Some similar measures, such as density, also have usually been of
interest for networks of the form in Figure 2.1b, and a number of useful
results have followed from a classification of individuals in the first-
order zone in terms of other attributes (such as whether individuals
belong to the same neighbourhood or not; Wellman, 1979).

Figure 2.1c illustrates the snowball, or star, sampling procedure (Frank,
1979; Goodman, 1961). Starting with a single individual, such as the one
labelled ego in Figure 2.1c, we initiate a &-stage sampling process. At each
stage, for every individual added in the previous stage of sampling, up to
N of their associates are added to the sample. For example in Figure 2.1c,
the individuals labelled a, fc, c and d are added at the first stage of
sampling, together with all reported relations of association and close
relationships. At the second stage, individuals e, /", g and h are added,
together with any associations and close relations among the new and old



Types of local networks 59

members of the network identified so far. Goodman developed proce-
dures for estimating some parameters for the entire network from the
sample data, in the case in which each individual names exactly N
associates; others have developed the methods further (e.g., Frank, 1979).
Note that snowball sampling is distinct from other methods of network
sampling discussed by Granovetter and others (e.g., Erickson &
Nosanchuk, 1983; Frank, 1971; Granovetter, 1976). In some of these
other sampling schemes, pairs of individuals are sampled at random
from the entire population; and in other schemes, a random sample of
individuals, augmented by all of their network links, may constitute the
basic sampling unit. (In the latter case, information about network links
existing among sampled members of the network is complete. In principle,
therefore, the same methods for representing relational structure in the
sample as in the entire network may be applied in this case, but it will
be demonstrated in chapter 5 that the structure in the sample bears no
necessary relationship to the structure in the whole network population.
The question of the usefulness of the representation for the case in
which network boundaries are arbitrary therefore remains an open one.)

The it-stage process of the snowball sampling scheme leads to the
construction of a local network of an individual that has been termed a
feth-order zone. The second-order zone of an individual comprises the
individual's first-order zone augmented by the first-order zone of each
of its members. That is, it comprises persons to whom the individual is
linked by a path of length no greater than 2 and all the network links
between them. More generally, the kth-order zone of an individual is the
(k —  l)th-order zone augmented by the first-order zone of every person
in the (k - l)th-order zone. It therefore contains the collection of per-
sons to whom the individual is linked by a path of length k or less, and
all of their interrelations. For instance, Figure 2.1c represents the
second-order zone of the individual labelled ego. The first-order zone of
ego is the subgraph of Figure 2.1c spanned by the vertices ego, a, fc, c
and d.

Clearly, the various notions of partial network represented in Figure
2.1 are not all distinct. For instance, form Figure 2.1c with N very large
and k equal to 1 is similar to form (a), form (c) with fixed N and k
equal to 1 is identical to form (b), and form (b) with N large ap-
proximates form (a). Moreover, the ideal hypothetical case in which
both N and k are unbounded is that assumed, in principle, for an entire
network. Note that the decision to restrict N is usually made on prac-
tical grounds (e.g., Burt, 1984), and where the effects of restriction have
been studied, the practice has not been recommended (e.g., Holland &
Leinhardt, 1973).

Relations among the various types of partial and complete networks are
summarised in Table 2.1. The form of partial network illustrated in Figure
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Table 2.1. Types of local network

Maximum outdegree of each node, N
Order of local
network, k Unrestricted Restricted

Fixed Unrestricted Restricted
at 1 first-order zone first-order zone

(Fig. 2.1a) (Fig. 2.1b)
Fixed Unrestricted &th-order Restricted &th-order
at k > 1 zone (£-stage zone (&-stage snow-

snowball sample) ball sample
(Fig. 2.1c)

Unbounded Complete network Entire network
with restricted
outdegree

2.1b can be seen as a restricted case of all of the other network forms,
and we assume that this figure represents the minimum amount of
information available about a partial network. We shall refer to all
types of partial and complete networks that have an identified focal
individual or other social unit as the local network of the individual or
unit. The identified individual or unit will often be labelled ego. The
methods to be described have been developed to apply to all of these
forms of local network.

As for complete networks, personal or ego-centred networks can also
be distinguished in terms of the source from which information about ties
in the network has been obtained. In some sampling schemes, ego is the
source of all relational information present in the network (e.g., in the
General Social Survey, Burt, 1984); in others, individuals named by ego are
approached and asked to identify their perceived relations with persons
in their own personal network, and so on. The latter methodology, for
example, may be applied in the snowball sampling scheme of Figure 2.1c.
In other cases, a participant observer is the source of information for all
relational ties (e.g., Roethlisberger & Dickson, 1939). In every case, the
relational data obtained may be represented in one of the forms illustrated
in Figure 2.1, and the various methods of obtaining information about ties
are not distinguished in this representation. Clearly, though, knowledge of
this aspect of network methodology may bear heavily on the interpretation
of the representation obtained from the data and needs to be kept in mind.

As we observed in chapter 1, further clarification of the effects of
obtaining network data from various sources is likely to follow from
studies using the "cognitive social structures" introduced by Krackhardt
(1987). He advocates the gathering of information about all ties of
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specified kinds among all individuals in a specified group from each
member of the group. With such data, one may begin to examine the
relationships among representations constructed in different ways; these
investigations will be made more practical by the availability of analytic
methods developed in chapters 4 and 5.

It is worth stressing that the multiple network representations discussed
in chapter 1 assume networks in which both N and k are unbounded.
Implicitly, it was supposed that relational data had been gathered for every
member of a bounded population of persons of interest. The question of
whether a population X of persons is ever sufficiently circumscribed, in
practice, to make this assumption reasonable, is an empirical one. Does
the failure to include some individual(s) in a population under study lead
to substantial changes in the obtained representation of the network? The
question can be made more precise using definitions introduced later;
and like the question of the effects of methodological variations in data
collection, it can also be tackled more easily using the analytic methods
to be derived for them.

Representing local networks

Each local network relation can be presented in the same three forms as
a complete network relation, that is, as a directed graph, a binary relation
and a binary matrix. The vertices or elements of the representation are the
members of ego's &th-order zone (for some specified value of &), and an
edge or relation is directed from vertex a to vertex b if a stands in the
given type of relation to b. We shall adopt the convention of listing ego
as the first network element in the matrix version of the representation,
so that the first row and column of the matrix represent relations ex-
pressed by and towards the focal individual of the network.

Any given network relation may be symmetric or nonsymmetric and
binary or valued; moreover, local networks may be constructed using
single or multiple network relations. Thus, each of the forms of represen-
tation for complete networks summarised in Table 1.3 has a local network
analogue, and we shall generally assume local network data in the form
of multiple, binary, nonsymmetric relations. The case of valued relations
is considered in chapter 7.

The local network L presented in Figure 2.1c in the form of a graph
possesses multiple, binary, symmetric relations. It is presented in Table
2.2 in matrix form, with the elements ego, a, b, c, d, e, /", g and h assigned
the numbers 1 to 9, respectively. The relational representation is in terms
of two symmetric binary relations, A (representing "association") and
C (representing "especially close" relations), whose unordered pairs are
given by
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Table 2.2.

Element

The local network L in binary

Relation C

1 2 3 4 5 6 7 8 9

matrix form

1

Relation A

2 3 4 5 6 7 8 9

1 0001 10000 0 11110000
2 000010000 10001001 1
3 000000010 100100010
4 1 000 10000 101011010
5 1101 00000 110 100100
6 000000000 000100010
7 000000000 000010000
8 001000000 011101 000
9 000000000 010000000

A = {(ego, a), (ego, b), (ego, c), (ego, d), (a, d), (a, g), (a, h),
(b, c), (b, g), (c, d), (c, e), (c, g), (d, f), (e, g)}

and
C = {(ego, c), (ego, d), (a, d), (b, g), (c, d)}.

In the presentation that follows, the description of a representation for
local networks is introduced first for network data that assume some
completeness, that is, where neither N nor k has been restricted. The
representation is then generalised to the case in which the partial nature
of the relational information is included in the representation, that is, for
which restrictions on N or k or both are given explicit recognition.

An algebra for local social networks

In an innovative departure from blockmodel analysis, Mandel (1983; also
Winship and Mandel, 1983; Breiger &c Pattison, 1986) developed a method
of characterising the local relational structure associated with a social
position that is distinct from that implicit in the blockmodel approach
(White et al., 1976). The procedure is mindful, however, of the same
theoretical constraints as those underlying the construction of the partially
ordered semigroup of the network. That is, it preserves the distinctions
between relations of different kinds, it is concerned with variation in
patterns of relations associated with different positions and it emphasizes
the role of compound relationships in the flow of social processes
(Boorman & White, 1976; Lorrain & White, 1971).

The approach has been described in varying forms by Breiger and
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Pattison (1986), Mandel (1978, 1983), Pattison (1989) and Wu (1983),
and all of these forms rely on the constructions originally proposed by
Mandel (1978). In each case, the essential construction is the same and
may be presented as a local network analogue of the partially ordered
semigroup for a complete multiple network.

Paths in local networks

The major difference between a complete network and a local network is
that the latter has an identified individual, or ego, as the central focus
of the network. The links present in the local network are included
because of their relationship to this identified individual. The relationship
may be a direct one, in the sense that the link belongs to the individual's
first-order zone, or it may be indirect and hence a part of some &th-order
zone for the individual. The representation for structure in local networks
takes account of this focus on the identified individual in the local
network by constructing only those paths in the local network that have
ego as their source. That is, we trace a number of compound relations,
or paths, in the local network, but we restrict attention to those paths
beginning at the identified individual. Each path of a given type links
ego to a subset of elements in the network, and we may associate that
subset with the given path type. Then, as for complete networks, we
may make comparisons among the paths that we have constructed, and
the comparisons lead to the construction of an algebraic structure. In
particular, we may think of one path type as contained within another
if the subset of individuals associated with the first is contained in the
subset of individuals associated with the second. Two path types are
equivalent if they are associated with exactly the same subsets of in-
dividuals. Thus, in this way, we derive a set of statements about the
equalities and orderings among paths in the local network that emanate
from ego, and these statements define an algebraic structure for the
network. The algebraic structure is a localised representation of net-
work structure in that is deals only with relations emanating from the
focal individual of the network.

Consider, for example, the snowball network L of Figure 2.1c. The
relation A links ego to a, b, c and d, so we may associate the relation A
with the subset [a, b, c, d). The set of paths labelled C emanating from ego
have c and d as their endpoints; hence the relation C is associated with
the vertex subset [c, d}. The set associated with C is clearly contained in
the set associated with A, so that we may say that C < A. That is, in ego's
local network, close relations are a subset of acquaintance relations. Paths
of length 2 labelled AA link ego to every member of the network S; thus,
AA is associated with the subset [ego, a, b, c, d, e, f, g, h} and the orderings
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Table 2.3. Paths of length 3 or less in the network L having ego as
source

Path label

ego * C
ego * A
ego * CC
ego * CA
ego * AC
ego * AA
ego * CCC
ego * CCA
ego * CAC
ego * CAA
ego * ACC
ego * ACA
ego * A AC
ego * AAA

Subset

{c,d)
{a, b, c, d)
[ego, a, c, d]
[ego, a, b, c, d, e, f, g]
{ego, a, c, d, g]
[ego, a, b, c, d, e, f,g,h)
{ego, a, c, d}
{ego, a, b, c, d, e, f, g, h}
{ego, a, b, c, d, g)
{ego, a, b, c, d, e, f, g, h]
{ego, a, b, c, d)
{ego, a, b, c, d, e, f, g, h}
{ego, a, b, c, d, g)
{ego, a, b, c, d, e, f, g, h}

Binary vector

000110000
011110000
110110000
111111110
110110010
111111111
110110000
111111111
111110010
111111111
111110000
111111111
111110010
111111111

A < A A and C < A A both hold. Similarly, paths of type AC are associated
with the subset {ego, a, c, d, g}, and so on. Table 2.3 shows those to whom
ego is linked in L by all paths of length 3 or less. Each path type is
represented in the form of a subset, as well as in the form of a binary
vector. The latter has entries corresponding to the elements of the network
and has a unit entry corresponding to an element whenever there is a path
of the specified type from ego to the element concerned. All other
entries are zero. The binary vector recording the presence or absence of
relations of type R from an element x to other network elements is
denoted by x * R. Thus, for instance, the binary vector corresponding
to the relation AC for ego (network element l ) i s l * A C = [ 1 1 0 1 1
0 0 10] .

Comparing paths in local networks
We now examine systematically the subsets associated with paths of
length 3 or less in L for possible equations and orderings. (We see later
how to deal with longer paths.) We can see that a number of equations
and orderings hold among these subsets, including the equations
CCC = CC, CCA = AA = CAA = ACA = AAA and CAC = AAC, as well
as the orderings C < A, C < CC, C < CA and so on. As Table 2.3 makes
clear, only eight distinct subsets are associated with paths of length 3
or less in L, namely, those associated with C, A, CC, CA, AC, A A, CAC
and ACC. Indeed, the number of distinct subsets associated with paths
of any length in a local network is necessarily finite because there are
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only a finite number of distinct subsets of a finite set. In particular, for
a local network of n elements, there are at most 2n distinct subsets. Thus,
we may group all possible paths for a local network into a finite number
of classes.

Moreover, we may infer certain properties for these classes of paths.
Consider, for instance, the equation represented by CCC = CC. It corre-
sponds to the statement that paths comprising three close relations link
ego to exactly the same set of individuals as paths comprising two close
relations (namely, ego, <z, c and d). Now consider more complex paths
that we may construct from CC and CCC by adjoining on the right an
additional string of primitive relations, that is, a string of A and C
relations. Suppose that we select the string ACACC. The process of
adjoining this string to the right of CC or CCC to obtain the strings
CCACACC or CCCACACC has a direct interpretation in terms of the
tracing of paths in the network. The path CC links ego to a collection
of individuals in the local network. The path CCACACC also links ego
to a subset of individuals, and each path passes through one of the
individuals to whom ego is linked by the path CC. Indeed, we can think
of the path CCACACC as comprising two sections, one path labelled
CC from ego to a member of the subset associated with CC, and one
path labelled ACACC from the latter member to a member of the
subset associated with CCACACC. Now, since CC and CCC link ego
to the same subset of individuals, the paths CCACACC and CCCACACC
must also link ego to the same individuals. Thus, from the equation

CC = CCC
the equation

CCACACC = CCCACACC

must follow. Indeed, the equation

CCX=CCCX
must hold for any string X of the primitive relations A and C.

More generally, we can show that this property holds for any equation
among paths. That is, if R = T is an equation, then so is RX = TX, for any
string of relations X. Or, to put it another way, whenever a pair of
paths belong to the same class, then so does any pair constructed from
them by adjoining a string on the right. As a result, we can search for
distinct subsets associated with paths in a local network by adjoining
primitive relations to distinct representatives of classes. For instance, the
distinct subsets associated with paths of length 3 in L have repre-
sentative paths of CAC and ACC. By constructing the paths CACC,
CACA, ACCC and ACCA, we will discover any new and distinct
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Table 2.4. Right multiplication table for the local role algebra of ego in
the network L

Generator

Element

1
2
3
4
5
6
7

subsets of vertices associated with paths of length 4 in L. In fact, we
find that these four paths may be equated with CAC, A A, AC and A A,
respectively, so that there are only eight distinct classes of paths of any
length for the local network L.

We can record the class containing the result of adjoining primitive
relations to representatives of distinct classes in the form of a right multi-
plication table. For example, we label the eight distinct classes for the
snowball network L by the strings C, A, CC, CA, AC, A A, CAC and
ACC and then list them as the rows of a table. The columns of the table
may be assumed to stand for the primitve relations C and A, respec-
tively (see Table 2.4). The class that results when the ith class has
the ;th primitive relation adjoined on the right is represented in row i
and column / of the table. For instance, the outcome of adjoining C on
the right of CC is recorded in row 3 and column 1. To find the class
that is obtained by adjoining AC ACC on the right of CC, we first find
(a) the class resulting from adjoining A to CC, then (b) the class re-
sulting from adjoining C to the outcome of (a), and so on. From Table
2.4, for instance, we see that (CC)A = AA, that (AA)C = CAC, that
(CAC)A = AA, that (AA)C = CAC and that (CAC)C = CAC, and
therefore that (CC) (ACACC) = CAC.

We refer to the process of adjoining a string of primitive relations to
the right of a path label as right multiplication. The property just de-
scribed means that equations are preserved by right multiplication: if
R = T is an equation, then RX = TX must also be an equation for any
string of primitive relations X. We may also establish that orderings are
preserved by right multiplication. If R < T is an ordering in a local net-
work, then ego is linked by R to a subset of those to whom ego is linked
by T. Now if a path RX links ego to an individual z, then there must
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AA

CA

CAC

ACC

Figure 2.2. Partial ordering for the local role algebra of the
network L

be a path labelled R from ego to some individual x, and a path labelled
X from x to z. Therefore, there must be a path labelled T from ego to
x, and hence a path labelled TX from ego to z. In other words, from
R < T, it follows that RX < TX, for any string of relations X.

The local role algebra of a local network
As a result of this property, we may present the orderings among paths
of the local network emanating from ego as a partial ordering on the
classes of equivalent paths. This partial ordering is displayed for the
classes of the local network L in Figure 2.2. The right multiplication
table in Table 2.4 and the partial order in Figure 2.2 represent all of the
orderings and equations among paths from ego in the network L.
Together they define an algebraic structure termed a local role algebra,
and this is the proposed representative of structure in the local network.

We can formalise these constructions in the following way.

DEFINITION. Let X = {1, 2 , . . . , « } represent the set of members of a local
network of some individual and suppose that the identified individual
corresponds to element 1. Let R = {Ru R2> • • • •>  Rp\ be a set of primitive
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relations defined on X. The free semigroup FS(R) on R is the set of
all strings U1U2 * * * Uk of finite length of elements of R (i.e., Uf-e R,
1 = 1 ,2 , . . . , k), together with the operation of juxtaposition, given by

( U i U 2 - - - U * ) ( V 1 V 2 - - - Vh) = UXU2--- UkV1V2--Vh,

where U1U2- • •  Uk and V ^ • • •  Vh arc strings of elements of R (i.e.,
Ui? V} e R, i = 1, 2 , . . . , k, j - 1, 2 , . . . , h). Each string of relations A
from R corresponds to a labelled path on the local network beginning
at the identified element; the collection of individuals to whom the
identified element is linked by such a path may be denoted by 1 * A. We
may define a relation < on the paths by

A < B iff for each x e X there is a path labelled B from 1 to
x whenever there is a path labelled A from 1 to x, that is,
iff 1 * A is a subset of 1 * B,

where A,Be PS(R). We may also define an equivalence relation on the
paths of the local network by

A = Biff A<B and B< A.

Then it may be demonstrated that the number of distinct classes of the
equivalence relation is finite, and that if CA denotes the class containing
A we may define a partial ordering on the classes according to CA < CB
if and only if A < B for some As CA and B e CB. Furthermore, we may
define a right multiplication operation

CAR = CAR

(Re R) on the classes that satisfies
CA = CA> implies CAR = CAR.

The free semigroup FS(R), together with the relation <, comprise the local
role algebra Qi for element 1 in the local network. The local role al-
gebra may be presented in the form of a finite right multiplication table
and a partial ordering on the distinct equivalence classes of the local
role algebra.

An algorithm for constructing a local role algebra
In practice, the local role algebra for an element labelled 1 whose net-
work is described by a set of relations R = [Ru R2,. . . , Rp] on the set
X = {1, 2 , . . . , « } may be constructed as follows.

1 Construct the collection {1 * Rl9 1 * R2,..., 1 * Rp} and let Wx
be a set of distinct binary vectors in the collection. Record the
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Table 2.5. Constructing the local role algebra of ego in the network L

i

1
2
3

4

W.

{1*

0

C, 1 * A}
CC, 1 * CA, 1 * AC, 1 * AA)
CAC, 1 * ACC)

Equations generated

(1 * CC)C= 1 * CC
(1 * CC)A = 1 * AA
(1 * CA)A = 1 * AA
(1 * AC)A = 1 * AA
(1 *AA)C= 1 * CAC
(1 * AA)A = 1 * AA
(1 *CAC)C=1*CAC
(1 * CAC)A = 1 * AA
(1 * ACC)C= 1 * AC
(1 *ACC)A = 1 *AA

equality corresponding to any vector 1 * Rf omitted from the
list. (For instance, if 1 * R; = 1 * Rh then place 1 * Ri9 say, in Wx
and record the equation 1 * R;-= 1 * R, outside the table.) Set
Jfe = l .

2 Let Wk + l = $ . Multiply each binary vector in Wk on the right
by each matrix in R. If the operation of multiplying 1 * A by
Rj yields a binary vector that is different from all binary vectors
i n W = W 1 u W 2 U ' " U W 4 u W h l that have been constructed
so far, then place 1 * AR, in Wk + 1 and record the outcome as
(1 * A)R{=1 * AR;. Otherwise, 1 * AR; is equal to an existing
vector 1 * B in W, and the result may be recorded as the equa-
tion (1 * A)Rtf= 1 * B. Continue until all multiplications have
been performed for all vectors in Wk.

3 Set k = k + 1. If Wk = 0, go to step 4; otherwise, return to step 2.
4 Construct the right multiplication table for the local role alge-

bra from the equations recorded in step 2. The rows of the
table correspond to elements i n W = W 1 u W 2 u - " U Wk; these
may be numbered by integers from 1 to, say, w. The columns
of the table correspond to the p relations in R. The entry in row
h and column / of the table records the label of the vector in
W, which is the result of multiplying the ^th vector in W by the
ith relation in R.

5 Construct the partial ordering among the vectors in W.
A C program RANET that implements the algorithm for constructing

the local role algebra of an element is available from the author on
request. The outcome of applying the algorithm to the local network L
of Figure 2.1c is displayed in Table 2.5. The algorithm begins with
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Table 2.6. The blockmodel network N

L

1
1
0
0

l
l
0
0

0
0
l
l

0
0
0
l

Table 2.7. T/?e /octf/ role algebra/or block

A

1
1
1
0

1 in

0
0
0
0

the

1
1
0
1

1
0
l
l

network N

Right mult, table

Generator
Partial

Element Class L A order

1
2
3

L

AL

1
3
3

2
2
2

1 0 0
0 1 0
1 1 1

Wj = {1 * C, 1 * A} and when £ = 1, it generates the list of distinct
vectors W2 = [1 * CC, 1 * CA, 1 * AC, 1 * AA} and no equations. When
k = 2, we obtain W3 = {1 * CAC, 1 * ACC}, and the equations that
are generated include (1 * CC) C = 1 * CC, (1 * CC) A = 1 * AA, (1 * CA)
A = 1 * AA and so on.

The local role algebra for a block in a blockmodel may be obtained in
exactly the same way. Consider, for example, block 1 in the blockmodel
network N = {L, A} shown in Table 2.6; the local role algebra for block
1 generated by the algorithm is shown in Table 2.7.

The local role algebra of a subset in a local network
Wu (1983) pointed out that it is also possible to define a similar con-
struction that begins with a collection of identified vertices in a local
network, rather than with a single identified vertex. The construction
permits us to describe the local role algebra of social units intermediate
in size between a single social unit (a local role algebra) and an entire
network (a partially ordered semigroup). Instead of confining attention
to paths having a single identified vertex as their source, one deals with
paths beginning at each of a number of vertices in a selected subset of
the network. Then one may construct labelled paths corresponding to
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Table 2.8. The local role algebra for the subset {1, 2} in the network N

Element

1
2
3
4
5

Right mult, table

Class

L
A

LA
AL

LAL

L

1
4
5
4
5

Generator

A

3
3
3
3
3

Partial order

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 0 1 0
1 1 1 1 1

strings A of relations in R and compare the paths in the following way.
If, for every vertex x in the identified subset of vertices Y, the presence
of a path labelled A from x to a vertex z implies the presence of a path
labelled B from x to z, then we say that A < B. The resulting set of
comparisons among paths yields the local role associated with the subset
Y. Under this definition, A < B holds in the local role algebra QY for the
subset Y if and only if it holds for the local role algebra Qx of each
single element x in Y. If Y is equal to the set X of all elements in the
local network, then A < B in Qx if and only if A < B in the semigroup
S(R) of the network R.

Consider, for instance, the network N of Table 2.6. The local role
algebra for block 1 of the network is displayed in Table 2.7, and the local
role algebra corresponding to the subset Y= {1, 2} of blocks is shown
in Table 2.8. The latter local role algebra was constructed using a
modification of the algorithm presented earlier for the local role algebra
of a single element. The modification is achieved by replacing each
binary vector 1 * A by a corresponding binary submatrix Y * A
throughout. The submatrix Y * A has rows corresponding to elements
of Y and columns corresponding to elements of X. The (/, /) entry of
the matrix is 1 if there is a path labelled A from the z'th element of Y
to the ;th element of X, and 0 otherwise. For instance, the submatrices
Y * A for distinct members of QY are shown in Table 2.9.

A local role algebra may also be defined when the subset Y is equal
to the whole set X on which the local network is defined. For instance,
the local role algebra corresponding to the subset X = {1, 2, 3, 4} is shown
in Table 2.10. Comparison with Table 1.13 reveals that the right multi-
plication table and partial order for the local role algebra Qx are
identical to those for the semigroup of the network. We establish later
that, in general, the local role algebra defined on the whole of a net-
work is equivalent to the partially ordered semigroup of the network.
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Table 2.9. Distinct submatrices in the local role algebra for the subset
{1,2} of the network N

L

1100
1100

A

1011
1010

Submatrix

LA

1011
1011

AL

1111
1110

LAL

1111
1111

Table 2.10. Local role algebra for the subset [1, 2, 3, 4} of the
network N

Element

1
2
3
4
5
6

Right mult, table

Class

L
A

LA
AL
AA

LAL

L

1
4
6
4
6
6

Generator

3
5
5
5
5
5

Partial
order

1 0 0 0 0 0
0 1 0 0 0 0
01 1 0 0 0
0 1 0 1 0 0
0 1 1 0 10
1 1 1 1 1 1

DEFINITION. Let Y be a subset of X comprising nY elements, and let Y * A
denote the nY x n submatrix of the matrix of A whose rows correspond
to elements of Y. Then the collection {Y * A; A eFS(R)} defines a local
role algebra for the subset Y of X with the binary operation of juxta-
position as before, and the ordering in QY being given by

Y * B < Y * A iff (Y * B){j < (Y * A)tj for all i e Y, / eX.

This definition is equivalent to the earlier one for the local role algebra
of an element when Y= {1} is a single network element.

Incoming paths. The construction of a local role algebra, just outlined,
relies exclusively on comparison among paths emanating from ego. An
analogous construction may be developed for paths having ego as their
target rather than their source. The development is achieved by replac-
ing each network relation R, in the preceding derivation by its converse,
that is, by the relation R' defined by (x, y) e R' if and only if (y, x) e Rh
for x,y eX. Further, if the collection of converse relations R/ =
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{R(9 R2' , . . . , R'p] is added to the set R = {Rl9 R 2 , . . . , Rp} to give an
augmented set of network relations R" = {R1? R2, • • •>  RP, RU *2» • • • >  *ph
then one generates a local role algebra based on comparisons among
semi-paths having ego as their target or their source. (Recall that a
semipath in a network is a sequence of nodes x09 xl9..., xk such that
(*/-1> */) o r (*/> */ - 1) is a n edge in some network relation Wf e R, for each
/ = 1, 2, . . . ,& . The node x0 is the source of the semipath, and x* is its
target. The fc&e/ of the semipath is WXW2 • • •  W*.) Mandel (1978), for
instance, reported some applications of local role algebras with the
latter augmented set of network relations. Of course, if all the network
relations are symmetric, as in the example just described, then the
augmentation of the network by converse relations makes no difference
to the algebraic structure that is generated.

Role algebras

The local role algebra of an element in a local network or of a subset of
the local network is an instance of a general algebraic structure that may
be termed a role algebra (Pattison, 1989). As we see later, it is important
to characterise the properties of these structures when we come to make
comparisons among them. In fact, a characterisation may be constructed
from the following observations about the properties of local role algebras
drawn from the earlier discussion.

Firstly, the elements of local role algebras are labelled paths corre-
sponding to strings of generator relations in R. Secondly, the compo-
sition of a pair of paths corresponds to the juxtaposition of their
associated strings, so that the free semigroup FS(R) comprising all strings
of finite length and the juxtaposition operation is generated. Thirdly, an
ordering relation may be defined on the labelled paths by

[7< V iff (l,x)eU implies ( l ,*)eV,
for any x eX; 17, Ve FS(R); and the ordering relation is both reflexive
and transitive and hence a quasi-order. Fourth, the orderings among
paths are preserved by multiplication on the right, that is,

U<V
implies

UW<VW,
for any We FS(R).
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These properties are captured in the general definition:

DEFINITION. A role algebra [W, f, Q] is a set W, a binary operation f on
W and a binary relation Q on W satisfying

1 [W, f ] is a free semigroup, with the operation /"presented in the
form f(s, t) = s£, for any s,teW;

2 Q is a quasi-order (i.e., Q is reflexive and transitive); and
3 for any s>t,ue W, (s, £) e Q implies (sw, m)eQ.

The definition may be applied to local role algebras by setting W to
be the elements in the free semigroup PS(R), that is, all finite length
labelled paths constructed from the generator set R; f to be the com-
position operation for labelled paths; and Q to be the quasi-order

(U, V)eQ iff V<U.

In fact, in what follows, all role algebras considered pertain to the same
set W and the same binary operation /", so it is convenient to denote
the role algebra [W, f9 Q] simply by Q. Two notable examples of role
algebras have already been introduced. The first is the local role algebra
for a particular element of a network, and the second is the local role
algebra for a subset of network elements.

For the local role algebra for element 1 of a network, let

(A,B)eQ1 iff 1 *B<1 * A.

It may be verified that Qj is both reflexive and transitive, and hence is
a quasi-order, and that inclusions are preserved under right multiplica-
tion (i.e., 1 * B < 1 * A implies 1 * BC < 1 * AC for any C e FS(R);
Mandel, 1978), so that all the axioms for a role algebra are satisfied.
As observed earlier, the local role algebra may be presented in a finite
form as a right multiplication table and partial order on the set of
equivalence classes associated with Qlm

The local role algebra associated with a subset Y of individuals in a
local network is also a role algebra. As before, the binary operation fis
the composition of relations, and the binary relation Q is inclusion of
submatrices:

(A,B)eQY iff Y* B<Y* A.

When Y is equal to the set of all elements X of the local network, the
associated local role algebra Qx is clearly also a role algebra, in which
the binary relation Q is defined by

(A,B) eQx iff B< A
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(i.e., if and only if (/, /) e B implies (/, /) e A, for all /, / e X). In fact, when
Y is equal to the whole of the set X on which the local network is defined,
the associated local role algebra satisfies the additional property that,
for any A,BeQ, (A, B) e Q implies (CA, CB) e Q for all C e FS(R). That
is, as well as being preserved by multiplication on the right, equations
are preserved by multiplication on the left. This property is formalised
in the following definition.

DEFINITION. A two-sided role algebra is a role algebra [ W, f, Q] for which
(s, t) e Q implies (us, ut) e Q,

for any u e W, s, t e W.
Thus, a two-sided role algebra is one for which inclusions are preserved
by multiplication on both the right and the left: s < t implies su < tu and
us < ut, for any u. It may be seen that the role algebra for an entire set
X is a two-sided role algebra; moreover, it is straightforward to show that
the partially ordered semigroup of a network and its two-sided local role
algebra are equivalent in the following sense.

THEOREM 2.1. Let R = {Rl9 R 2 , . . . , Rpj be a network on X. For any
A, B e YS(R), the ordering B < A holds in the partially ordered semigroup
S(R) if and only if (A, B,) e Qx, the two-sided local role algebra of the
set X.

Relations among role algebras: The nesting relation
Given that we can generate a local role algebra from an element or from
a set of elements in a network, it is natural to ask how the resulting
constructions compare. One means of comparing role algebras is by com-
paring their quasi-orders: Is an ordering among the relations present in
one quasi-order always present in another? If this is the case for every
ordering present in the first quasi-order, then we may describe the second
quasi-order as nested in the first (Mandel, 1978). That is, role algebras
with the same set W and the same binary operation f may be partially
ordered by the nesting relation.

DEFINITION. A role algebra [ W9 f, Q] is nested in a role algebra [ W, f, T]
if, for any s,teW, (s, t) e T implies (s, t) e Q; that is, if Q contains T.
(Mandel, 1983.) We write

[W,f9Q]Z[W9f,T]
or, more simply,

Q<T.
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For example, the local role algebra for the element 1 of N is nested in
the local role algebra for the subset {1,2} of N. The equations and
orderings characterizing Qt are

1 * LL = 1 * L, 1 * LA = 1 * A, 1 * AA = 1 * A,
1 * ALL = 1 * A L, 1 * ALA = 1 * A, 1 * L < 1 * AL,
1 * A < 1 * AL

and those characterising Q{1 2} are
1 * LL = 1 * L, 1 * AA = 1 * LA, 1 * LAA = 1 * LA,
1 * ALL = 1 * AL, 1 * ALA = 1 * LA, 1 * LALL = 1 * LALy
1 * LALA = 1 * LA, 1 * L < 1 * AL, 1 * L < 1 * LAL,
1*A<1*LA, 1*A<1*AL, 1*A<1*LAL,
1 * LA < 1 * LAL, 1 * AL < 1 * LAL.

Because the orderings present in Q{i,2}^re also true in Ql5 then Qx is
nested in Q{i,2}- Indeed, more generally, the local role algebra QY of a
subset Y of X is nested in the local role algebra QT for the subset Y' of
X whenever Y is a subset of Y'. In particular, QY is nested in Qx for
every subset Y of X.

As a result, the local role algebra for a subset Y of X may be expressed
in terms of the (two-sided) local role algebra of X in which it is nested,
and this form of expression is often useful. We use the local role algebra
of Y to define an equivalence relation on the finite classes of the local
role algebra of X, and then an induced ordering on those classes. That
is, we define
DEFINITION. Let R be a network on a set X, and let Y be a subset of X.
Denote by QY the local role algebra of Y and by S the partially ordered
semigroup of R, that is, the two-sided role algebra on X. Define the
equivalence relation rY on the elements of S by

(s, t) e rY iff (s, t) e QY and (t, s) e QY.

It may be shown that rY has the property that
(s, t) erY implies (sw, tu) e rY, for all s, £, ueS.

As a result, rY is termed a right congruence on the partially ordered
semigroup S of the network R (Mandel, 1978; Wu, 1983). The classes
of rY may also be partially ordered by

s* < t* iff (t, s) G QY for some se s*, te t*\
where s*, t* are classes of rY.
It follows that the role algebra of a subset Y of X may be presented as
a quasi-order on the elements of the partially ordered semigroup S of
R.



Role algebras 11

Table 2.11. Quasi-orders on S(N) corresponding to the role algebras Qt
andQ(12)

Modified right
mult, table

Qj 100000 1 2
011010 4 2
011010 4 2
111111 4 2
011010 4 2
111111 4 2

Q{12} 10 00 00 1 3
010000 4 3
011010 6 3
110100 4 3
0 11010 6 3
111111 6 3

For instance, the local role algebra for block 1 in the network N gives
rise to the right congruence (1) (2, 3, 5) (4, 6) on the classes of the local
role algebra for X = (1, 2, 3, 4) (Table 2.10); the quasi-order on S(N) cor-
responding to the local role algebra Qj is presented in the upper panel
of Table 2.11 (left-hand side). The right congruence on the role algebra
for X corresponding to the local role algebra for the subset {1,2} of
blocks is (1) (2) (3,5) (4) (6), and the corresponding quasi-order on
S(N) is shown in the lower panel of Table 2.11. As expected, the local
role algebra for block 1 is nested in the local role algebra for the subset
of {1, 2}, and this is nested, in turn, in the local role algebra for X.

Because each local role algebra for a subset Y of a local network X is
nested in the two-sided local role algebra generated by X itself, it is often
convenient to compute the local role agebra Qy from the partially ordered
semigroup S(R) of the entire local network. The computation may be
performed in two steps, which is illustrated for the local role algebra of
the subset (1, 2} of the network N of Table 2.6. The distinct relations
in S(N) are displayed in Table 2.12; the right multiplication table and
partial order for S(N) are shown in Table 2.10. The first step is to
examine the submatrices corresponding to the subset Y of interest in
each relation R of S(N) for possible additional equations and orderings
not already represented in Table 2.12. In the case of the subset {1, 2},
this amounts to comparing the first two rows of relations in S(N), and
we find the additional orderings
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Table 2.12. Distinct relations in the semigroup S(N) of the network N

L

1100
1100
0010
0011

A

1011
1010
1001
1000

LA

1011
1011
1001
1000

Relation

AL

1111
1110
1111
1100

AA

1011
1011
1011
1011

LAL

1111
1111
1111
1111

Y * AA<Y* LA and Y* L<Y* AL.
From the first ordering, the equation

Y*AA = Y* LA
follows because the ordering

Y*LA<Y*AA

holds in S(N).
The second step is to impose the new orderings on the right multipli-

cation table and partial order for S(N). The new orderings applied to the
partial order of S(N) lead to the quasi-order presented in the lower
panel of Table 2.11. From this quasi-order, we see that the third and
fifth elements of S(N) belong to the same class of rY, so that the right
congruence corresponding to the subset Y is (1) (2) (3, 5) (4) (6). The
right multiplication table for S(N) may also be modified to reflect the
equation of the third and fifth elements, as in the right-hand side of the
lower panel of Table 2.11. The right multiplication table and partial
order tables for QY are then obtained by rewriting these tables, so that
the fifth element is combined with the third, and the classes are re-
labelled with consecutive integers: the result is Table 2.8. The same
intermediate tables for the local role algebra Qj of block 1 are pre-
sented in the upper panel of Table 2.11.

Presentation of role algebras

Just as local role algebras can be presented as a right multiplication table
and partial order on a finite set of equivalence classes of FS(R), so can
a role algebra, in general, be presented in this way. We define an
equivalence relation eQ on FS(R) according to

(s, t) e eQ iff (s, t)eQ and (t, s) e Q.
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The partial order Q* can then be defined on the equivalence classes of
eQ by

(s*9t*)eQ* iff (s,t)eQ

for some ses*,te £*, where s* and t* are classes of eQ. The partial order
Q* on the finite set of right congruence classes of the role algebra
corresponds to the quasi-order Q on the infinite set of elements of W.
The right congruence relation eQ on FS(R) may be represented in the
form of a right multiplication table with the rows of the table indexing
the right congruence classes of eQ and the columns corresponding to
members of R. The (i, /') entry of the table records the class containing
the product of any element in the ith class with the ;th member of R.
The role algebra Q can then be represented in finite form by the finite
quasi-order Q* and the finite right multiplication table for eQ.

In all of the examples to be discussed, the quasi-order Q* will be
presented rather than Q, and for convenience it will be identified with
Q. The right multiplication table for the right congruence relation eQ
will be referred to simply as the right multiplication table for the role
algebra.

Local role algebras and role-sets

Mandel (1978, 1983) described the local role algebra of an individual
constructed from the individual's local network as an abstract characteri-
sation of the individual's local role. A different approach to the represen-
tation of an individual's local role has been presented by Winship and
Mandel (1983). The relationship between the two approaches may be
described in the context of the relation plane of an individual.

DEFINITION. Let R = {R1? R2? • • • 5  Rp\ be relations defined on a set X = {1, 2,
. . . , « } representing the members of the local network of the element 1.
The relation plane RPX of element 1 is a binary matrix of dimension
oo x «, whose rows correspond to the elements of  FS(R), listed in some
fixed order, and whose columns correspond to the elements of X. The
ith row of the relation plane RPX is the relation vector 1 * R for the ith
relation R in JFS(R). The role-relation R1; is the ;th column of the re-
lation plane and is a binary vector whose ith entry is 1 if element 1 is
related to element / by the ith relation in FS(R), and 0 otherwise.

The relation plane RPX may also be presented as a finite binary matrix
of dimension wxn, where w is the number of distinct classes in the
local role algebra of element 1. In this case, the ith row of the matrix
corresponds to the ith distinct class of Qx. The two presentations are
equivalent because one form can be constructed from the other using
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Table 2.13. Relation plane for ego in the network L

Element

Relation

C
A

CC
CA
AC
AA

CAC
ACC

ego

0
0
1
1
1
1
1
1

a

0
1
1
1
1
1
1
1

0
1
0
1
0
1
1
1

c

1
1
1
1
1
1
1
1

</

1
1
1
1
1
1
1
1

e

0
0
0
1
0
1
0
0

0
0
0
1
0
1
0
0

g

0
0
0
1
1
1
1
0

h

0
0
0
0
0
1
0
0

Table 2.14.

Relation

L
A

AL

Relation plane for block

1

l
l
1

1 in th

2

1
0
1

ie network N

Block

3

0
1
1

4

0
1
1

the information contained in the right multiplication table for the local
role algebra of the element. The relation planes of ego in the network
L and block 1 in the blockmodel network N are displayed, in finite form,
in Tables 2.13 and 2.14, respectively.

The difference between the characterisations of local role described by
Mandel (1983) and Winship and Mandel (1983) is that they are based on
complementary subdivisions of the relation plane. Mandel (1983) used
orderings among the collection of relation vectors, or rows of RPU to
define a local role algebra. Winship and Mandel's (1983) approach to
local role definition, on the other hand, was through the collection of
n role-relations for element 1, that is, through the columns of RPV

DEFINITION. Let RPi be the relation plane of element 1 and let {R1;: /eX)
be the collection of role-relations for element 1. The role-set for element
1 is the set of distinct role-relations in [RyijeX] (Winship & Mandel,
1983).
Winship and Mandel (1983) characterised the role of an element by its
role-set. Mandel (1978) referred to the role-set definition of local role
as a concrete version of local role because it involves the actual role-
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Table 2.15. The role-set

Label

12

for

'14

block 1 in the

Role-relation

network N

Vector

( 1 1 1 )
( 1 0 1)
( O i l )

relations associated with the element. The local role algebra for an
element is, on the other hand, an abstract version. The local role alge-
bra is derived from a collection of relation vectors but does not refer to
them explicitly, and a given role algebra is consistent with a number of
realizations in the relation plane.

For example, the local role algebra for block 1 of X is characterised
by the right multiplication table and partial order of Table 2.6. The
representation is in terms of relationships between abstract relations (L,
representing Liking, and A, representing Antagonism) and makes no
reference to particular blocks in the set X. Instead, it contains infor-
mation of the form LA contains L; that is, if block 1 likes some other
block, then it also likes someone who is antagonistic toward that block.
The role-set representation, on the other hand, shown in Table 2.15,
lists the relationships that block 1 has with each other block in the set
X. The role-relation R12 = (1 0 1), for instance, indicates that in relation
to block 2, block 1 has relations of types L and AL. Block 1 has the
same role-relations with respect to blocks 3 and 4 - namely, R13 = R14 = (0
1 1) - in which relations of type A and AL are present, but not L.

Partial networks and partial role algebras

In the case of incomplete partial networks, we do not necessarily possess
useful information about long paths in the network. For instance, in a
network constructed from the feth-order zone of some ego, we may have
accurate information about all paths emanating from ego of length k or
less but much less certain information about paths of length greater than
k. Paths having lengths k + 1 or greater can reach outside of ego's £th-
order zone, whereas paths of length k + 2 or more can go outside of the
fcth-order zone and then return to terminate within it. Because we have
no record of these longer paths from ego's local network, it may be useful
to construct a representation of relational structure for ego that depends



1

1
1
1
1
1
1

2

1
0
1
0
1
0

3

0
1
0
1
1
1

4

0
1
0
1
1
1
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Table 2.16. Truncated relation plane of order 2 for block 1 in the
network N

Block

Relation

L
A

LL
LA
AL
AA

only on paths of length k or less. Indeed, it may sometimes also be useful
to restrict the length of paths under consideration for other reasons. For
instance, the strategy may be used to avoid the computational problems
that can arise when large local networks possess a large number of distinct
relation vectors. Mandel (1978, 1983), for example, considers paths of
length 3 or less in many of his illustrative applications of role algebras.

A representation of ego's relational structure that depends only on paths
of length k or less may be constructed from a "truncated" relation plane
for an individual. The truncated plane contains only those relation vectors
corresponding to paths of length no greater than k. It can be defined as
follows.

DEFINITION. Let RP1 be the relation plane for element 1 in a local net-
work R = {Ru R2,..., Rp] on a set X = {1, 2 , . . . , n] of dimension °°xn.
The truncated relation plane of order k is the submatrix of RPt whose
rows correspond to paths in the local network of length k or less. The
truncated relation plane has dimension Kxn, where K = p + p2 + • • •  +pk.

Because the truncated relation plane is necessarily finite when k is finite,
it may be presented both in an expanded form, showing the relation
vector for each path of length k or less, and in a compressed form,
displaying only distinct relation vectors. The expanded form is used in
Tables 2.16 and 2.17. Table 2.16 shows the truncated relation plane of
order 2 for block 1 in the network N; its relation vectors indicate the
paths of length 2 or less from block 1 to other blocks in N. Similarly,
Table 2.17 presents the truncated relation plane of order 2 corresponding
to paths of length 2 or less for ego in the network L.

Now the major difference between the full and truncated relation
planes constructed from a local network is that not all compound paths
are defined in the truncated case. Thus, the composition operation of a
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Table 2.17. Truncated relation plane of order 2 for ego in the
network L

Relation

C
A

CC
CA
AC
AA

ego

0
0
1
1
1
1

a

0
1
1
1
1
1

0
1
0
1
0
1

c

1
1
1
1
1
1

Element

1
1
1
1
1
1

e

0
0
0
1
0
1

f
0
0
0
1
0
1

0
0
0
1
1
1

h

0
0
0
0
0
1

local role algebra needs to be replaced by a partial composition op-
eration in an algebra based on a truncated relation plane. The ordering
relation, however, is defined for all relation vectors in the truncated
relation plane. Further, the orderings are necessarily preserved by right
multiplication whenever the right products are defined. That is, if we
find that

U<V
holds for a pair of relation vectors in the truncated relation plane of order
k for element 1 from X, and if the relation vectors for 17W and VW both
belong to the truncated plane as well, then it is necessarily the case that

UW<VW
holds. These considerations suggest the following definition of an alge-
bra for a truncated relation plane:

DEFINITION. Let R = {R1? R2? • • •  5 RP] be a local network for element 1 on
a set X. Define Sk to be the collection of all strings of elements of R of
length k or less (that is, each UeSk may be written as UiU2 • • •  Um9 where
I/,- eR, for each / = 1, 2 , . . . , m and m<k). The partial local role alge-
bra for element 1 of order k, denoted Qj, may be defined as

1 the set Sk; together with
2 the ordering relation

U< V
if and only if

(l,x)eU implies ( l ,*)eV,
for any x e X; 17, V e Sk; as well as



84 2. Local social networks

Table 2.18. Partial local role algebra Q\ for block 1 in the network N

Right mult, table

Generatora

Element

1
2
3

Class

L
A

AL

1

1
3
*

2

2
2
*

Partial order

1 0 0
0 1 0
1 1 1

a An asterisk in the right multiplication table indicates a product that is not defined.

3 the partial binary operation on Sk for which

(Ui U2-" Um) (V, V2 • • •  V,) = t /^2 • • •  UmVxV2 • • •  Vh
if m + / < k,

and is undefined if m + l> k.
We write (V, U) e Q if and only if U < V, and it may easily be shown
that Q is reflexive and transitive and hence a quasi-order. Further, if
(V,U)eQ and both VW and UW are defined, then it follows that
(VW, UW)eQ; for any WeSk.

For example, the partial local role algebra Q\ generated from the trun-
cated relation plane of order 2 for block 1 in network N is shown in
Table 2.18. A partial role algebra can be presented in the form of a right
multiplication table and a partial order on the distinct relation vectors
corresponding to members of Sk. For instance, for block 1, it can be seen
that the truncated relation plane of order 2 (Table 2.16) contains only
three distinct relation vectors, namely (1 1 0 0), (1 0 1 1) and ( 1 1 1 1 )
corresponding to L, A and AL, respectively. Hence the right multiplica-
tion and partial order tables for the partial algebra pertain to products and
orderings among the elements L, A and AL. Undefined products in the
right multiplication table of the partial algebra are indicated with an
asterisk. Comparing Tables 2.18 and 2.7 shows the effect of truncation at
path length 2 on the derived algebraic representation of local role. The
two representations share the equations and orderings

1 * LL = 1 * L, 1 * LA = 1 * A, 1 * AA = 1 * A,
1 * L < 1 * AL, 1 * A < 1 * AL,

whereas the representation based on the "full" relation plane for ele-
ment 1 has the additional equations
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Table 2.19. Partial local role algebra Q\ for ego in the network L

Right mult, table

Generator*

1
2
3
4
5
6

C
A

CC
CA
AC
AA

Element Class C A Partial order

3 4 100000
5 6 110000

101000
111110
1010 10
111111

An asterisk in the right multiplication table indicates a product that is not defined.

1 * ALL = 1 * AL, 1 * ALA = 1 * A,

namely, those pertaining to paths in the network of length greater than 2.
In the case of this local role algebra, the effect of truncation of the
relation plane at order 2 does not appear to be particularly great.

The partial local role algebra Q\ of order 2 for ego in the network L
is presented in Table 2.19. In this case, comparison of the full represen-
tation for ego in the network L with its partial counterpart constructed
from the truncated relation plane of order 2 yields some common order-
ings, such as ego * C < ego * A, ego * C < ego * CC and so on, but no
common equations. All of the equations in the "full" local role algebra
for ego in network L involve paths of length 3 or more, and none of these
are represented in the partial local role algebra of order 2. There is much
greater overlap, however, between the orderings and equations of the
"full" local role algebra for ego in L and the partial local role algebra
Ql of order 3, which is shown in Table 2.20.

Just as the algebraic properties of a local role algebra may be ex-
pressed in the formal terms of a role algebra, so the formal algebraic
properties of a partial local role algebra may be characterised by a
"partial role algebra". The essential properties of a partial local role
algebra that have been described lead to the definition:

DEFINITION. A partial role algebra is a set W, a partial binary operation
on W (that is, a binary operation defined for some ordered pairs of
elements (s, t) from W) and a binary relation Q on X satisfying

1 s(tu) = (st)u whenever all expressions are defined;
2 Q is a quasi-order (that is, Q is reflexive and transitive); and
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Table 2.20. Partial local role algebra Q\ for ego in the network L

Element

1
2
3
4
5
6
7
8

Right mult, table

Class

C
A

CC

AC
AA

CAC
ACC

Generatora

C

3
5
3
7
8
7
Si-

lt-

A 1

4
6
6 1
6
6 1
6 1
*
*

^artial order

L 0 0 0 0 0 0 0
L 1 0 0 0 0 0 0
L 0 1 0 0 0 0 0
L 1 1 1 1 0 1 1
I 0 1 0 1 0 0 0
L 1 1 1 1 1 1 1
L 1 1 0 1 0 1 1
L 1 1 0 0 0 0 1

a An asterisk in the right multiplication table indicates a product that is not defined.

3 (s, t) e Q implies (su9 tu) e Q for any u for which su and tu are
both defined.

The definition is useful for making the kinds of comparisons among
algebras that are described in chapter 3.

The nesting relation for partial role algebras

A nesting relation for partial role algebras can be defined in the same
way as for role algebras: we simply compare the quasi-orders of the
partial role algebras. We shall assume that each partial role algebra
refers to the same set W (that is, to strings in the same set Sk) and to
the same binary operation. Then we may define

DEFINITION. A partial role algebra Q is nested in a partial role algebra T
if for any s, t e W,

(s, t) € T implies (s, t) e Q.
We write Q<T.
We can also extend the definition of partial local role algebras to subsets
of network elements in the same way as for local role algebras. We can
then show that if Y and Z are subsets of X for a local network R on X,
with Y a subset of Z, then the partial local role algebra Qy of the subset
Y is nested in the partial local role algebra Qz of Z.

Analysis of local networks
For any given local network, we have presented a series of algebraic
structures that may be used to represent it. We could construct the partial
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local role algebra of order 1, or of order 2, or of order 3, and so on; we
could also construct the local role algebra. A natural question to ask is
how are these various structures related to one another and how should
we select a particular one in a given situation.

Firstly, we may observe that for some sufficiently high value ra, the
partial local role algebra Q™  of order m is identical to the local role
algebra Qv Indeed,
THEOREM 2.2, Let R be a local network on a set X with identified el-
ement 1. There is a finite value of m for which Qj is identical to Q^
for all h > m.
The proof follows from the fact that the full relation plane for an element
of a local network has only a finite number of distinct relation vectors,
so that there is some path length m beyond which no new distinct relation
vectors are generated. As a result, the distinct relation vectors are iden-
tical for all truncated relation planes of order greater than m and are equal
to those of the full relation plane.

The result is helpful in choosing amongst the alternative algebraic
structures, because it guarantees that the choice set is finite: namely,
{Qu Qu • • • 5  QD- From there, the choice depends on the kind of meth-
odological restriction on path length in the local network under consid-
eration, as well as on its size. For instance, if a local network gives rise
to a large number of distinct relation vectors, then computation of its
local role algebra may be difficult. It may then be convenient to deal
with representations of bounded sizes, purely on computational grounds.
In the examples presented earlier, it is useful to note that though the
algebraic precision of the full local role algebra is lost in the partial
representation, it is nonetheless the case that many of the relationships
captured in the full version are present in the partial one. A suitable
order for the partial local role algebra may then be chosen as a value
h for which the number of distinct relation vectors in Q? is not too large,
and the number of equations and inclusions is not too small.

The effect of methodological restrictions on path length on the choice
of an algebra is a little more complex. If the network has no restrictions
on path length, then the local role algebra Q : is a natural choice, provided
that it is not too large. However, in the case of a local network con-
structed as the fcth-order zone of some network member, as in snowball
sampling, the partial local role algebras of orders k and k + 1 can be
argued to have some special significance. Constructions based on the
truncated relation plane of order k may be interpreted with some con-
fidence because the truncated plane pertains to all paths of length k or
less in relation to all persons reachable by such paths. The truncated
relation plane of order k + 1 is also a defensible construction because it
should permit adequate comparison between paths of length k + 1 or less
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from ego to members of his/her fcth-order zone. For paths of length
k + 2 or greater, though, there is no guarantee of adequate comparison
among paths because there may be paths of length k + 2 from ego to
members of the &th order zone which pass through individuals out-
side the £th order zone and which are therefore omitted from the
representation.

It is important to note that restrictions both on path length and on
the outdegree of each network element in a local network influences the
adequacy of the (partial) local role algebra that can be constructed from
it. Thus, for example, none of the three partial networks of Figure 2.1
claim completeness in the way that a network with a meaningful boundary
does. As a result, a theoretical distinction remains between role algebras
defined according to Winship and Mandel and applied to networks with
clear boundaries, and the partial role algebras introduced here. Moreover,
we can distinguish the three kinds of partial network represented in
Figure 2.1 in terms of the quality of the relational information that they
afford for primitive and compound ties. From Figure 2.1c, for example,
a more complete record of paths of length 2 emanating from ego is likely
to be obtained than from either Figure 2.1a or 2.1b. Nevertheless, it is
an open question whether the difference is a practical one, and one that
is best answered by empirical investigation.

Partially ordered semigroups and role algebras:
A summary

Before we turn to a more complete discussion of the algebraic means for
analysing and comparing these representations of social networks, it is
useful to reflect on the relationship between the representations that
have been proposed for entire and partial networks.

A complete network and its partially ordered semigroup are "global"
entities for a network R because both refer to properties of relations on
the entire set X. Local networks, role sets and local role algebras are
"local" on the other hand, because they pertain only to relations emanat-
ing from a single individual. Relation vectors are slices of the relation
plane recording the presence of ties of particular types from an identified
individual to other individuals. Ordering relations between the relation
vectors define the abstract entity of local role algebra. The algebra is
abstract in the same sense as the semigroup of a network: distinct collec-
tions of relation vectors can give rise to the same local role algebra.

Indeed, as noted earlier, the orderings among relations giving rise to the
partially ordered semigroup of a network may also be considered as a role
algebra, namely, the role algebra for the entire set X. The orderings
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among relations for a given network are identical in both structures, that
is, any ordering between relations U and V in the partially ordered semi-
group is also present in the role algebra, and conversely.

We may therefore summarise the relationship between the partially
ordered semigroup of an entire network and the local role algebra of a
partial network in the following terms. Both structures are defined by
ordering relations among paths in networks, and the orderings are pre-
served in both cases when the paths are extended by adding a fixed
additional path starting at the endpoints of those paths. In particular, if
a path of type U from an individual / to any individual / implies a path
of type V from i to /, then the presence of a path of type UW from /
to some k implies the existence of a path of type VW from i to k also.
In the case of the entire network, the path orderings hold for paths
beginning with any individual / in the network, whereas for partial
networks, the orderings need only apply to paths whose source is the
identified ego for the network. In the complete network case, moreover,
because the orderings hold for paths with any starting point /, they are
also preserved when paths are augmented by path components added at
the beginning of a path. That is, if the existence of a path of type U
from any individual / to some individual / implies the existence of a
path of type V from / to;, then whenever there is a path WU from some
individual k to /, there is also a path of type WV.

Thus, the algebras representing structure in entire and local networks
are directly comparable: the partially ordered semigroup of an entire
network has all of the properties of the local role algebra of a partial
network and some additional ones. The analogy between these construc-
tions will be pursued in developing the analytic methods introduced in the
following chapters.



3
Comparing algebraic representations

For both complete and local social networks a two-level representation
of social structure has been defined. The first level constitutes the rela-
tional foundation; for entire networks it is a collection of network
relations, and for partial networks it is the ego-centred local network.
The second level is a derivative algebraic structure, a more abstract
representation describing relationships between relational components
from the first level. In the case of entire networks, this second-level
representation is the partially ordered semigroup of the network; in the
case of local or partial networks, it is the local role algebra.

In evaluating this algebraic level of representation, we are not restricted
merely to the task of establishing that the definition of the algebraic
level from the relational one is meaningful, useful though that is. Rather,
some additional mathematical investigation can provide extra information
about the usefulness of the representation. This mathematical exploration
has two major aspects. The first is a search for an exact account of the
way in which properties of the algebraic representation record properties
of the relational one. For example, the task of describing the relational
implications of equations or orderings in the partially ordered semigroup
or local role algebra falls into this class of mathematical problems. The
associated empirical problem is that of establishing the empirical sig-
nificance of relational features made explicit by the representation.

The second aspect is less direct but corresponds to a central issue in
the measurement of any phenomenon. It questions the theoretical and
substantive value of identifying those configurations whose representa-
tions are identical. More specifically, if we have two distinct relational
representations with identical algebras, we may ask whether there is an
empirical basis for claiming that they possess the same relational structure.
The mathematical component of this latter task consists of describing,
for any given algebra, the class of all relational configurations that
generate it. That is, we need to identify classes of complete networks
whose members generate the same partially ordered semigroup and
classes of local networks, each of which gives rise to the same local role
algebra.

90
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These two approaches to establishing the usefulness (or otherwise) of
the algebraic representations will be considered in turn. In this chapter,
we shall review some results pertaining to the second problem; that is, we
shall consider the description of classes of complete and local networks
that have the same algebra. The examination of the first question, which
seeks an account of the way in which algebraic properties record rela-
tional features of the underlying data, will then be introduced and con-
tinued in the following chapter. We shall consider results for complete
networks and semigroups first and then turn to local networks and local
role algebras.

Isomorphisms of network semigroups
Let R = {Ru R2y. . . , Rp} and T = {Tl5 T2,. . . , Tp] be two networks
consisting of p binary relations (not necessarily distinct). In what fol-
lows, we will often assume that relations in R and T have the same set
of relation "labels" and that the relations are listed in the same order.
That is, we will assume that the labels for Rt and Tx are the same, that
those for R2

 a n d T2
 a r e t n e same, and so on. The assumption is reason-

able, for example, if two networks have been constructed in different
organisations from self-report surveys asking the same questions, such
as "Who are your friends in the organisation?", and "To whom in the
organisation do you go for help and advice?". The networks possess
different sets of members, but the relations, "friend" and "goes to for
help and advice", may be assumed to have the same meaning, or re-
lational quality, in each network. Indeed, for some purposes, we may
be happy to assert that networks constructed in different ways and
possessing different labels are nonetheless sufficiently similar to be
comparable. For instance, it may sometimes be useful to compare a
network comprising self-report data on "liking" and "antagonism" with
a network reporting "positive" and "negative" affect that has been
constructed by an observer. In such a case, we would assign the same
label to the relations "liking" and "positive affect", and the same label
to "antagonism" and "negative affect".

DEFINITION. R and T are comparable networks if there exists a one-
to-one mapping (or bijection) f: R —»  T, assumed, without loss of gen-
erality, to be given by

f(Ri) = Th

where R, and T; are relations with the same label, for each /.
We are interested in describing the conditions under which distinct

networks give rise to the same semigroup. What, though, do we mean by
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Table 3

Network

N2

.1. Two comparable networks Nt

label Element

1
2
3
4

= {A,B}andN2

A

10
10
1 0
10

= {A,B]

Relation

B

1 1
1 1
0 1
0 1

two networks having the same semigroup? Given that the partially ordered
semigroup of a network comprises (a) a set of generator labels, (b) a
multiplication table and (c) a partial order table, then one reasonable
condition for identical semigroups is that all three of these entities must
be the same. That is, the partially ordered semigroups of two networks are
the same if they have the same labels (that is, if the networks are com-
parable) and if their multiplication and partial order tables are identical.
DEFINITION. Let S(R) and S(T) be the partially ordered semigroups of
comparable networks R and T. S(R) and S(T) are isomorphic partially
ordered semigroups if there exists a bijection 0 from S(R) onto S(T) such
that

1 0(R,.) = Tf for each i = 1, 2 , . . . , p ;
2 0(WV) = 0(W)0(V) for each W, Ve S(R); and
3 0(W)< 0(V) iff W< V.

The networks R and T have isomorphic (abstract) semigroups if con-
ditions 1 and 2 hold.

It follows from the definition that if the partially ordered semigroups
of R and T are isomorphic, then S(R) and S(T) are also isomorphic as
abstract semigroups. The converse does not necessarily hold, however, as
the networks in Table 3.1 demonstrate. The networks Nt and N2 have
isomorphic abstract semigroups, but their partial orders are not isomor-
phic (Table 3.2). In particular, it can be seen from Table 3.2 that A < B
holds in S(NX) but not in S(N2). Unless stated otherwise, the definition
adopted here is that which includes the partial order (that is, condition
3 of the preceding definition). For the reasons outlined in chapter 1, the
partial order of a network semigroup is considered an important part of
the structure of the semigroup. Note, though, that a number of the results
derived in this and subsequent chapters apply whether or not part 3 of
the preceding definition is included and that a number of earlier re-
searchers have excluded reference to the partial order in their definition
of isomorphism (e.g., Bonacich, 1980; Boorman & White, 1976).
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Table 3.2. The partially ordered semigroups S(Nj) and S(N2)
networks Nt <z« J N 2

Right mult, table

Generator

Semigroup Element Word A B Partial order

5(Nt)

S(N2)

1
2
1
2

A
B
A
B

1
1
1
1

2
2
2
2

1 0
1 1
1 0
0 1

Some networks with isomorphic semigroups
A primary result concerning networks with isomorphic partially ordered
semigroups identifies the semigroup of a network with the semigroup
of its "skeleton" (Lorrain & White, 1971). We observed in chapter 1
that two individuals are structurally equivalent in a network if they
possess identical relations to all other network members. We shall show
that the partially ordered semigroup of a network is unchanged if (a) we
replace a group of structurally equivalent elements by a single "block"
having the same relations as elements of the group, or if (b) we add to
a group of one or more structurally equivalent individuals, new indi-
viduals having the same relations as those in the existing group. The
first operation, replacing each group of structurally equivalent individuals
by a block representing them, leads to the construction of the skeleton
of the network (Lorrain & White, 1971). The second operation, adding
individuals who are structurally equivalent to existing network members,
defines an "inflation" of the network. The latter construction is formally
defined as follows:

DEFINITION. Let R be a network on a set X = {1, 2 , . . . , « }  and let
{Bl5 B 2 , . . . , Bn] be a collection of pairwise disjoint nonempty sets. (Thus,
each element / of X is associated with a distinct nonempty set Bt.) Let
B be the union of the sets B1? B 2 , . . . , Bn, and for each binary relation
R G R , define a binary relation R* on the set B, by

R*=u{(B,.xB,): (/,/)eR}.

(In other words, for any elements £, / eB, (k, I) e R* if and only if there
exist elements i, j eX such that k eBh IeB;, and (i,/) eR.) The relation
R* is called an inflation of R to B, and R* = {R* : R* is an inflation of
R to B, R GR} is termed the inflation of the network R (Schein, 1970).
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Table 3.3. The network B, which is an inflation of the network

Relation

Network label Element A B

B a 11000 11111
b 11000 11111
c 1 1000 1 1 1 1 1
d 11000 11111
e 11000 11111

For example, the network B shown in Table 3.3 is an inflation of the
network Nt of Table 3.1. Element 1 in Nt corresponds to the set B1 = {a, b],
and element 2 in Nt corresponds to B2 = {c, d, e}. That is, one obtains
an inflation of a network by replacing each element ieX by a set of
elements B{ that are structurally equivalent to one another, in the sense
of Lorrain and White, and that possess relations with other elements
determined by the relations of i.

The concept of an inflation is the converse of that of a skeleton as
defined by Lorrain and White. More specifically, if R* is an inflation of
R and there exists no network R# distinct from R of which R is an
inflation, then R is the skeleton of R*. Conversely, if R is the skeleton
of R*, then R* is an inflation of R.

Lorrain and White's theorem (1971, p. 63) may now be stated.

THEOREM 3.1. Let R* be an inflation of the network R. Then the par-
tially ordered semigroups S(R*) and S(R) are isomorphic.

Relational structure is therefore invariant under the operation of replac-
ing an element of the network by a collection of elements to which it
is structurally equivalent. Inflating a network does not change its structure
because no new types of relational interlock are introduced. In fact, it is
this property that is at the heart of blockmodel analysis. A blockmodel is
an approximation to a skeleton for the network: it is a simpler characteri-
sation of the network which is intended to have approximately the same
relational structure.

A second simple but important result concerns the disjoint union of
networks. Suppose that we observe the same network relations on two
distinct groups of individuals and suppose, further, that no links join
individuals in the two groups. Then the disjoint union of the two net-
works is simply the collection of network relations defined on the union
of the sets of group members.
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Table 3.4. The network N3, which is the disjoint union of the networks
Nt and N2 of Table 3.1

Network label Element

1
2
3
4

A

1 0 0 0
1 0 0 0
0 0 1 0
00 10

Relation

B

1 1 0 0
1 1 0 0
0 0 0 1
0 0 0 1

DEFINITION. Let R and T be comparable networks on disjoint sets X and
Y, respectively. Suppose, without loss of generality, that relations R, of
R and T, of T are of the same type, for each /. Define the network R u T
on the set X u Y with relations R, u Th given by

(«,  v) e R, u Tt if («, i/)  G R; or («, i/)  G T;.
R u T is termed the disjoint union of the networks R and T.
For instance, the network N3 shown in Table 3.4 is the disjoint union of
Nt and N2 of Table 3.1.

Now two networks are isomorphic if one is an exact "copy" of the
other, that is, if there is a one-to-one mapping of the elements of one
network onto the elements of the other such that a relation is present
between a pair of elements in the first network if and only if it is also
present for the corresponding pair in the second network.

DEFINITION. Let R = [Rl9 R 2 , . . . , Rp] and T = [Tl9 T2,. . . , Tp] be com-
parable networks defined on sets X and Y, respectively. R and T are
isomorphic if there exists a bijection /"from X onto Y such that (x, y) e R,
if and only if (f(x)9 f(y)) e T& for any i = 1, 2 , . . . , p and for any x,yeX.

It may be established that the disjoint union of isomorphic networks has
the same partially ordered semigroup as the constituent networks. Thus,
for instance, if two separate divisions of an organisation have isomorphic
networks, then the semigroup of the entire structure is the same as the
semigroup of each of the constituent networks. That is,

THEOREM 3.2. Let R u T be the disjoint union of isomorphic networks
R and T. Then the partially ordered semigroup S(R u T) is isomorphic
to S(R), which is isomorphic to S(T).

Indeed, Theorem 3.2 may be generalised to show that any finite number
of disjoint copies of a network has the same partially ordered semigroup
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Table 3

Network

.5. Two

label

comparable networks

Element

N1 = {A, B)

A

and N4 = {A, B)

Relation

B

Nj 1 10 11
2 10 11

N4 5 10 0 111
6 110 110
7 100 110

as the original network; as for the inflation operation, no novel modes
of interlock are imposed.

Theorems 3.1 and 3.2 are almost trivial in a mathematical sense; they
are important, however, in evaluating the usefulness of the semigroup
representation of relational structure. In both cases, we may argue that the
implied changes to network structure, from the operations of inflation
and disjoint copying, ought not to change the underlying relational
structure. That is, we may argue that the addition of persons to a group
in positions identical to some already occupied by existing group members
should not alter the pattern of relationships between group roles. Nor
should the existence of parallel structures in disjoint groups lead to
different patterns of interlock when viewed from a global perspective.

Some other classes of semigroups having identical partially ordered
semigroups are described in the later parts of the chapter. Such classes
may be argued to comprise networks having the same relational structure
because they possess the same orderings and equations among network
paths. It is also of interest, though, to make more general kinds of com-
parisons among networks than those establishing the identity or otherwise
of relational structure. In the next section, therefore, we consider the
question of how network semigroups may be compared when they are
not isomorphic.

Comparing networks: Isotone homomorphisms

An important step towards greater generality in our capacity to compare
network semigroups is achieved when we ask whether the equations and
orderings among paths in one network are a subset of those in another.
If so, the structure of the first network is more "complex" than that of
the second, in the sense of making more distinctions among different types
of paths. Consider, for example, the networks displayed in Table 3.5,
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Table 3.6. The partially ordered semigroups S(N1) and S(N4)

Semigroup

5(Nt)

S(N4)

Element

1
2

1
2
3
4

Right mult, table

Word

A
B

A
B

AB
BA

A

1
1

1
4
4
4

Generator

B

2
2

3
3
3
3

Partial order

1 0
1 1

1 0 0 0
1 1 0 1
1 1 1 1
1 00 1

whose semigroups are shown in Table 3.6. A set of equations and order-
ings characterising the semigroup S(N4) is

AA = A, BB = AB, ABA = BA, BAB = AB

and

A<BA<B<AB,
whereas a set describing the semigroup S(Nt) is

AB = BB = B, BA = AA = A

and

A<B.

All of the equations and orderings that hold in S(N4) also hold in ,
for instance, since A - BA in S(N1), it is also the case that A < BA in ;
The equations and orderings for S(N4) are therefore a subset of those
for SfNi), and there are fewer distinct paths in Nx than N4. Thus, in the
sense just described, S(Nt) has a simpler structure than S(N4).

This type of comparison among network semigroups leads to a partial
ordering in terms of complexity among them.

DEFINITION. Let R = {Rl5 R2y..., Rp] and T = {Tl5 T2,. . . , Tp} be com-
parable networks with partially ordered semigroups S(R) and S(T),
respectively. Let f: R -» T be the bijection from the generators of R on-
to those of T that preserves relation labels (that is, R, and f(Ri) = T,
have the same label). If, whenever UlU1 '"Uk< VaV2 • • • V m in S(R),
where Ui9 V; e R (i = 1, 2, . . . , k; / = 1, 2, . . . , m), it follows that
f(Vi)f(Ui)' • • f(Uk) < f(Vr)f(y2) • •  • f(Vm) in S(T), then S(T) < S(R). In
this case, S(T) is termed an isotone homomorphic image of S(R).
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In the preceding example, for instance, S(Nt) < S(N4). It is straight-
forward to demonstrate that the operation < in the definition is both
transitive and reflexive and hence is a quasi-order. The equality relation
that it induces - that is, S(R) = S(T) if and only if S(R) < S(T) and
S(T) < S(R) - is the relation of isomorphism of partially ordered semi-
groups. Moreover, the relation may also be expressed in terms of a
widely used algebraic construction called a homomorphic mapping.

DEFINITION. Let S and T be two semigroups. A homomorphism from S
onto T is a mapping 0: S —»  T satisfying

0(s1S2) = 0(s1)0(s2)
for all sl9 s2eS. T is said to be a homomorphic image of S. For partially
ordered semigroups, 0 is an isotone, or order-preserving, homomorphism
if, in addition,

Sj < s2 implies 0(sx) < 0(s2)
for all sl5 s2 eS.
The relationship between homomorphic mappings among semigroups and
the partial ordering we have defined for the semigroups of comparable
networks is summarised in Theorem 3.3.

THEOREM 3.3. Let S(R) and S(T) be the partially ordered semigroups of
comparable networks R and T. There is an isotone homomorphism from
S(R) onto S(T) if and only if S(T) < S(R).
A homomorphism can be described as a structure-preserving mapping; it
guarantees that the image under the mapping of the product of two ele-
ments of a semigroup is identical to the product of their separate images.
It differs from an isomorphism in not requiring that the mapping be a
bijection; thus, distinctions between elements in a semigroup S are not
necessarily made between their images in any homomorphic image 0(S).
Examples of a homomorphism and an isotone homomorphism are pre-
sented in Table 3.7. The semigroup S may be mapped onto the semigroup
T by mapping elements A, B, AA, AB and BA in S to elements a, b, a,
ab and ba in T, respectively. It may be verified that ^{sxs2) =
for all su s2 eS; for instance,

<j)(AAB) = 0(A£) = ab and 0(AA)0(B) = ab = ab.
Similarly, it may be verified that this mapping also preserves the partial
order in S: Si <s2 implies 0(Si) < 0(s2), for all sl5 s2 eS. Therefore, T is
an isotone homomorphic image of S.

The semigroup S of Table 3.7 may also be mapped homomorphically
onto the semigroup U by the mapping 0. Although products are pre-
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Table 3.7. The partially ordered semigroups S, T and U
(Tand U are homomorphic images of S, and T is an isotone image of S)

Semigroup

5

T

17

A
B

AA
AB
BA

A

AA
BA
AA
AA
BA

a
b

ab
ba

a
b

ab
ba

Full mult

B

AB
B

AB
AB

B
a

a
ba

a
ba
a

a
ba

a
ba

. table

AA

AA
BA
AA
AA
BA
b

ab
b

ab
b

b

ab
b

ab
b

AB

AB
B

AB
AB

B
ab

ab
b

ab
b

ab

ab
b

ab
b

BA

AA
BA
AA
AA
BA
ba

a
ba

a
ba
ba

a
ba

a
ba

A
B

AA
AB
BA

A

1
0
1
0
1

a
b

ab
ba

a
b

ab
ba

Partial order

B

0
1
0
0
1
a

1
0
0
1
a

1
0
0
0

AA

0
0
1
0
1

b

0
1
0
1

b

0
1
0
0

AB

0
1
1
1
1

ab

1
1
1
1

ab

0
0
1
0

BA

0
0
0
0
1

ba

0
0
0
1

ba

0
0
0
1

served by the mapping, the partial order on S is not; for instance, BA > B
in S but <j)(BA) = ba, (j>(B) = b and ba > b in [7. Thus, 17 is an abstract
homomorphic image of S but not an isotone homomorphic image.

The ^-relation of an isotone homomorphism

Now each isotone homomorphism 0 of a partially ordered semigroup
S corresponds to a unique binary relation n^ on S. The relation is de-
fined as follows.

DEFINITION. Let 0 be a homomorphism from the partially ordered
semigroup S onto the partially ordered semigroup T. Define the n-
relation corresponding to 0 to be the binary relation n^ on S given by

(s,*)€ff,iff 0W<0(s);s, teS.
It may be established that the relation /r0 is transitive and reflexive and
hence a quasi-order.

For instance, consider the partially ordered semigroups S and T of Table
3.7. The isotone homomorphism <j> from S onto T corresponds to the



100 3. Comparing algebraic representations

Table 3.8. The K-relation corresponding to the isotone homomorphism
from S onto T

A
B

AA
AB
BA

A

1
0
1
0
1

B

0
1
0
0
1

AA

1
0
1
0
1

AB

1
1
1
1
1

BA

0
0
0
0
1

Table 3.9. The n-relation corresponding to the isotone homomorphism
from S(N4) onto S(Nt)

1
2
3
4

1

1
1
1
1

2

0
1
1
0

3

0
1
1
0

4

1
1
1
1

^-relation shown in Table 3.8. It may be verified from Table 3.8 that
<t>(t) < 0(s) if and only if (s, *) e;r^.

Consider also the isotone homomorphism from the partially ordered
semigroup S(N4) onto S(N1) (Table 3.6). The ^-relation corresponding to
the mapping is presented in Table 3.9. Again it can be seen that (s, t) en
if and only if <f>(t) < 0(s) in the image semigroup S(Nt).

Now it was observed earlier that the ^-relation n^ corresponding to an
isotone homomorphism 0 on S is both reflexive and transitive. It may
also be readily established that any ordering present in S is also present
in n^; that is,

t < s in S implies (s, t) en^,
for any isotone homomorphism <f> of S. Indeed, n^ is identical to the partial
ordering in S precisely when 0 is an isomorphism.
DEFINITION. Let nmin be the relation on the partially ordered semigroup
S defined by

(s, t) e /rmin iff t < s in S.
The relation nmin is the ^-relation associated with an isomorphism of the
partially ordered semigroup S and is simply the partial order of S.
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For example, the relation nmin for the partially ordered semigroup of
Table 3.7 is the partial order relation displayed on the right-hand side
of the upper panel of Table 3.7.

We have seen, therefore, that the ^-relation corresponding to a
homomorphism 0 is a transitive, reflexive relation on S that contains the
partial order nmin of S. The ^-relation of Table 3.8, for instance, con-
tains the partial order of the semigroup of Table 3.7. Under what
conditions, though, is a reflexive, transitive relation containing nmin the
^-relation for some isotone homomorphism 0 of S? The answer to this
question is provided by Theorem 3.4.

THEOREM 3.4. Let Q be a reflexive, transitive relation defined on a par-
tially ordered semigroup S that contains the partial order nmin ofS. Then
Q 15 a n-relation corresponding to some homomorphism § on S if and
only if, for any s, t e S,

(s, t) E Q implies (su, tu) eQ and (us, ut) E Q for each UES .

Proof: The proof is contained in Appendix B.
For instance, it may be verified that the TT-relation displayed in Table
3.8 satisfies the conditions of the theorem.

A consequence of Theorem 3.4 is the following:

THEOREM 3.5. There is a one-to-one relationship between isotone
homomorphisms of a semigroup S and its n-relations.
Hence we may define:

DEFINITION. The homomorphism corresponding to the ^-relation n may
be denoted by </>a9 and the homomorphic image </>x(S) of S is termed the
quotient semigroup of S corresponding to the homomorphism </>n and the
^-relation n. We also write 0*(S) = Sin.
To construct the homomorphism corresponding to a given TT-relation of a
partially ordered semigroup S, we need only observe that

1 (j)(t) = 0(s) if and only if (s, t) e n and (r, s) e n;
2 (j)(t) < 0(5) if and only if (s, t) e n but (t, s) £ n.

The quotient semigroup Sin may then be derived in two steps. Firstly,
we re-write the multiplication and partial order tables of S to include
the orderings and equations among images of elements of 0(S). For the
isotone homomorphism 0 of S onto T of Table 3.7, for instance, we
obtain the re-written tables shown in the upper panel of Table 3.10.
Secondly, we delete the rows and columns of each table corresponding
to redundant elements, such as element A A in Table 3.10 (because
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Table 3.10. Constructing a homomorpbic image of the partially ordered
semigroup S

Full mult, table

Step 1

A
B

AA
AB
BA

Step 2

A
B

AB
BA

A

A
BA

A
A

BA

A

A
BA

A
BA

B

AB
B

AB
AB

B

B

AB
B

AB
B

AA

A
BA

A
A

BA

AB

AB
B

AB
B

AB

AB
B

AB
AB

B

BA

A
BA

A
BA

BA

A
BA

A
A

BA

Partial order

A

1
0
1
0
1

A

1
0
0
1

B

0
1
0
0
1

B

0
1
0
1

AA

1
0
1
0
1

AB

1
1
1
1

AB

1
1
1
1
1

BA

0
0
0
1

BA

0
0
0
0
1

A A = A). The outcome is the multiplication table and partial order table
of the quotient semigroup, as for example, in the lower panel of Table
3.10. By comparing the lower panel of Table 3.10 with the multiplication
and partial order tables for the semigroup T of Table 3.7, it can be seen
that 0(S) is isomorphic to T.

The concept of a homomorphism provides the basis for the comparison
of different semigroup structures. If a semigroup S may be homomorphically
mapped onto a semigroup T, then one may argue that the structure of the
semigroup T is consistent with, but simpler than, the structure of the
semigroup S. Equivalently, S is a more complex or structurally articulated
version of T, possessing additional structural distinctions to those of T.
As we have indicated, most of the time, we shall consider isotone homo-
morphisms between partially ordered semigroups because these preserve
equations and orderings under the homomorphic mapping.

Homomorphisms have been used to make comparisons for several types
of algebraic representation in the social sciences literature. For instance,
Boyd (1969) used the notion of homomorphism in his analysis of marriage
class systems, and Boyd, Haehl and Sailer (1972) applied the concept to
inverse semigroup models of kinship systems. Friedell (1967) and Pattison
and Bartlett (1975,1982) discussed the application of homomorphisms to
Friedell's semilattice model of hierarchical organisation, and Boorman
and White (1976), Breiger and Pattison (1978) and Pattison (1982) out-
lined some applications of homomorphisms to the semigroup representa-
tion of relational structure in networks.
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Partial orderings among homomorphisms and ^-relations
We have established that there is a one-to-one correspondence between
isotone homomorphisms of partially ordered semigroups and the class of
^-relations on the semigroup having the properties specified in Theorem
3.4. We have also defined a partial ordering on the collection of isotone
homomorphic images of a semigroup, with 0(S)<r(S)if and only if
T(S) < r(t) implies 0(s) < <j)(t), for any s,te S. This ordering may be ex-
tended to the isotone homomorphic mappings themselves:

DEFINITION. Let <p and T be isotone homomorphisms defined on a par-
tially ordered semigroup S. Define <p < r if and only if 0(S) < r(S).
The ^-relations defined on S may also be partially ordered by a contain-
ment relation:
DEFINITION. Let (j> and r be isotone homomorphisms of a partially or-
dered semigroup S. Define nx < n^ if (s, t) e nx implies (s, t) e n^, for any
s, £ e S. We say that nx is contained in n^.

Now it follows from the definition that nx < n$ if and only if 0 < T. This
relationship among the collection of ^-relations, on the one hand, and the
collection of isotone homomorphisms, on the other, is described as "dual".
DEFINITION. Two partially ordered sets hx and L2 are dual if there is a
bijection g from Lt onto L2 for which

x < y in Lj iff g(y) < g(x) in L2.

Hence we have established a one-to-one correspondence between the
collection of all isotone homomorphisms of a partially ordered semigroup
S and the collection of ^-relation on S, and the ordering defined among
^-relations is dual to that among isotone homomorphisms.

Abstract semigroups. An analogous set of definitions can be introduced
for abstract semigroups:

DEFINITION. Let S and T be two finite semigroups with the same set of
generator labels. Then we may define

T<aS
if and only if T is an (abstract) homomorphic image of S. We may also
define a relation n^ on S corresponding to each homomorphism 0 of S
by

Clearly, n$ is an equivalence relation on S and has the property that
(s, t) e nt implies (su, tu) e TT0 and (us, ut) e nt, for any u e S; s, t e S.
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It is also termed a congruence relation on S (e.g., Clifford &c Preston,
1961).
For example, for the abstract semigroups having multiplication tables
of those of S and T of Table 3.7, T<aS. The congruence relation on S
corresponding to the homomorphism onto T is the relation with equiva-
lence classes (A,AA) (B) (AB) (BA).

Lattices of semigroups and ^-relations

The concept of an isotone homomorphism of a semigroup is the funda-
mental construction for the comparison of different semigroups. If one
semigroup is a homomorphic image of the other, then the latter makes
structural distinctions not present in the former. More generally, no
semigroup is necessarily a homomorphic image of any other, but the
two semigroups are located in a partially ordered structure termed a
lattice. We may define a lattice as follows:

DEFINITION. Let L be a partially ordered set, that is, a set of elements
together with a partial order relation <. Let / be a subset of L. Then an
upper bound for / is an element x e L for which y < x, for every y e J.
A least upper bound for / is an element x' such that x' <x whenever
x is an upper bound for /. If a set / possesses a least upper bound, then
it is unique (because x<z and z<x implies x = z). Similarly, a lower
bound for / is an element z for which z < y, for every y e /. A greatest
lower bound for / is an upper bound for the set of lower bounds of /
and is unique, if it exists. A lattice is a partially ordered set L in which
every pair of elements x, y possess a greatest lower bound (gib), or meet,
denoted by glb(x,y), or meet(x, y), or x Ay, and a least upper bound
(lub), or join, denoted by lub(x, y), or join(x, y) or x v y.

We may display a finite lattice by drawing its Hasse diagram (see
chapter 1). Figure 3.1 presents the Hasse diagram of a finite lattice of
six elements. An upper bound of two elements is then any element that
is drawn above the two elements and is connected to them, and their
least upper bound is the unique upper bound that is below and connected
to all other upper bounds. For instance, the upper bounds for the pair
S4 and S5 in Figure 3.1 are Sj and S3, and because S3 is the minimal element
of the set {Su S3},S3 is the least upper bound of S4 and S5. A lower bound
of two elements in Hasse diagram is any element drawn below both of the
elements and connected to them, and a greatest lower bound is the highest
element in the set. In Figure 3.1, the element S6 is the only lower bound
for S4 and S5 and is therefore the greatest lower bound.
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Figure 3.1. The lattice Ls of isotone homomorphic images of 5(N4)

Network semigroups may be seen as elements in at least two different
lattices. The first comprises the collection of partially ordered semigroups,
partially ordered by isotone homomorphisms. The second is the set of
abstract semigroups partially ordered by homomorphic mappings.

DEFINITION. Let R be a set of generator labels, and let L(R) be the
collection of partially ordered semigroups with generator labels R. For
semigroups S: and S2 in L(R), define St < S2 if and only if there is an
isotone homomorphism from S2 onto Sx. Also, let A(R) be the collection
of abstract semigroups having generator labels R, partially ordered by
Sj <a S2 if and only if there is an (abstract) homomorphism from S2 onto
Sv Then:

THEOREM 3.6. The collection L(R) of partially ordered semigroups on a
set R of generator labels forms a lattice under the partial ordering
Sj < S2 if and only if there is an isotone homomorphism from S2 onto
S2. Similarly, the collection A(R) of abstract semigroups with generator
labels R is a lattice under the partial ordering Sj <a S2 if and only if there
is an (abstract) homomorphism from S2 onto S^ The set Ls of isotone
homomorphic images of a finite partially ordered semigroup S from h(R)
is a finite sublattice of L(R), and the set As of abstract homomorphic
images of a semigroup S e A(R) is a finite sublattice of A(R).

Proof: The proof is contained in Appendix B.
For example, the lattice Ls for the semigroup S = S(N4) of Table 3.6
is shown in Figure 3.1. The multiplication tables and partial orders for
each image of S identified in Figure 3.1 are presented in Table 3.11. The
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Table 3.11. Isotone homomorphic images ofS(N4)

Image

s4

ss

s6

Element

1
2
3
4

1
2
3

1
2
3
1
2

1
2

1

Right mult, table

Word

A
B

AB
BA

A
B

AB

A
B

BA

A
B

A
B

B = A

A

1
4
4
4

1
1
1

1
3
3

1
2

1
1

1

Generator

B

3
3
3
3

3
3
3

2
2
2

2
2

2
2

Partial order

1 0 0 0
1 1 0 1
1 1 1 1
1001

100
1 10
1 1 1

1 00
1 1 1
101

1 0
1 1

1 0
1 1

1

elements in L5 were obtained by systematically generating all possible
mappings 0 from S onto a set T such that 0 is an isotone homomorphism.
A computer program assisting the process is described in chapter 4; but
for this small example, the elements can also be constructed by hand. To
begin the construction, we observe that any isotone homomorphic image
of S must possess all of the equations and orderings of S and, possibly,
some additional ones as well. Now the orderings among the four distinct
elements of S are presented, in Hasse diagram form, in Figure 3.2. We
have already observed that the maximal element of Ls is S itself; it is the
image of S having precisely the same orderings and equations as S. Other
elements of Ls have additional orderings and/or equations, and they can
be generated in two steps. The first is to construct all possible collec-
tions of additional orderings to those of S. This step is equivalent to
generating all possible transitive and reflexive relations containing the
partial order 7tm[n of S. The second step is then to check whether each
such collection corresponds to an isotone homomorphism of S. This
amounts to checking whether the associated transitive and reflexive
relation on S satisfies the conditions of Theorem 3.4 and is therefore the
Vr-relation for some isotone homomorphism of S. It can be seen from
Figure 3.2, for example, that the following collections of orderings (and
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AB

BA

A

Figure 3.2. Hasse diagram for the partial order of 5(N4)

hence additional orderings and equations induced by the transitivity of
the ordering) can be added to those of S:

1 A>BA (and hence A = BA)
2 BA > B (and hence BA = B)
3 B > AB (and hence B = AB)
4 A > BA, BA > B (and hence A > B and A = BA = B)
5 BA>B, B>AB (and hence BA > AB and BA = B = AB)
6 A>BA, B>AB (and hence A = BA and B = AB)
7 A>BA, BA>B, B>AB (and hence A > B, A > AB, BA > AB

and A = BA = B = AB).

Checking each of these lists in turn, we find that list 1 corresponds to
a homomorphism <f> with 0(A) = (j>(BA) and other orderings as in S. List
1 leads, in fact, to the homomorphism from S onto S2. Similarly, lists
3, 5, 6 and 7 correspond to homomorphisms from S onto S3, S4, S5 and
S6, respectively. List 2 does not correspond to an isotone homomorphism
of S, because if <j>(BA) = 0(B), it follows that 0(ABA) = (j>(AB), that is,
0(J5A) = <f>(AB) as well - as in list 5 but not in list 2.

Figure 3.3 presents the lattice As for abstract homomorphic images of
the semigroup S(N4). The homomorphic images are presented in Table
3.12. They may be constructed in a similar manner to those of Table 3.11
except that we consider all possible additional equations to those of S.
The collections of possible additional equations are presented in Table
3.13, together with the corresponding abstract homomorphic image of
S, where appropriate.

Now recall that the collection Ls of all isotone homomorphisms from
a partially ordered semigroup S may be partially ordered by the relation
0! < 02 if> f°r 1̂1 x>yeS> (/>2(x) < (j>2(y) implies <f>x(x) < 0i(y). For the collec-
tion of ^-relations on S, we have
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Figure 3.3. The lattice As for the abstract semigroup with
multiplication table of S(N4)

DEFINITION. The collection of all ^-relations on a partially ordered semi-
group S, partially ordered by

nr < n^ iff (s, t) G nx implies (s, t) e n^
may be denoted Ln(S), and termed the n-relation lattice of S.

It has already been observed that nx < n^ in L^S) if and only if 0 < r
in Ls. Thus, because there is a one-to-one relationship between homo-
morphic images in Ls and ^-relations in LK(S), it follows that Ls and Ln(S)
are dual. We have already established that Ls is a lattice. Consequently,
the collection of ^-relations Ln(S) is also a lattice; indeed
THEOREM 3.7. The collection LJS) of n-relations on the partially or-
dered semigroup S is isomorphic to the dual of the lattice Ls.

The maximal and minimal elements of Ln(S)> denoted by nmzx and ;rmin,
respectively, are given by

(s , t) e n m a x f o r a l l s,teS;
(s, t) e ;rmin iff t < s in S; s, te S.

For example, the collection of all isotone homomorphic images and
corresponding ^-relations for the semigroup S(N4) of Table 3.6 are shown
in Tables 3.11 and 3.14, respectively. Each homomorphic image is the
quotient semigroup associated with exactly one ^-relation on S, and the
partial ordering among homomorphic images, displayed in Figure 3.1,
is clearly the dual of that among corresponding ^-relations illustrated in
Figure 3.4. (The homomorphic images and ^-relations are labelled in
Tables 3.11 and 3.14 so that S//r, is isomorphic to S,, for i = 1, 2 , . . . , 6.)



Table

Label

3.12. Abstract homomorphic images ofS(N4)

Right mult, table

Element Word L A Label Element

Right mult.

Word

table

L A Label Element

Right mult, table

Word L A

L
A

LA
AL

L
A

LA

L
A

L 1
A 3

AL 3

L
A

A = L

L
A

LA

L
A
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Table 3.13. Finding abstract homomorphic images ofS(N4)

Possible additional equations Homomorphism? Label

A = B No
A = AB No
A = BA Yes T3
B = AB Yes 7\
B = BA No
AB = BA Yes T2
A = B = AB No
A = B = BA No
A = AB = BA Yes T5
B = AB = BA Yes T4
A = B, AB = BA No
A = AB,B = BA No
A = BA, B = AB Yes T6
A = B = AB = BA Yes T7

Table 3.14. n-relations corresponding to isotone homomorphisms of
S(N4)

1000
1101
1111
100 1

1
1
1
1

00
10
11
00

1
1
1
1

n

1
1
1
1

•3

000
111
111
001

1
1
1
1

000
111
111
111

;z

1
1
1
1

'5

00
11
11
00

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

The joint homomorphism of two semigroups

Any two semigroups with the same set R of generator labels are not
necessarily directly comparable in the lattices L(R) and A(R), but they
possess both a unique least upper bound and a unique greatest lower
bound in each lattice. The greatest lower bound, termed the joint
homomorphic image or JNTHOM (Boorman &c White, 1976) of the two
semigroups, is the largest semigroup that is a homomorphic image of both
semigroups. It contains the finest set of equations or structural distinctions
consistent with the structure of both of the semigroups and, as such,
has been proposed as a precise record of the relational structure shared
by their corresponding networks (Boorman & White, 1976; Breiger &
Pattison, 1978). The joint homomorphic image of two network
semigroups S1 and S2 may be defined in either L(R) or A(R).

DEFINITION. Let Sj and S2 be two partially ordered semigroups with the
same set of generator labels R. The joint isotone homomorphic image, or
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TTj = TTm i n

Figure 3.4. The lattice Ln(S(N4)) of 7C-relations on 5(N4)

JNTIHOM(S^ S2), is the maximal semigroup that is an isotone homomorphic
image of Sj and S2. JNTIHOM(SU S2) is the greatest lower bound of St and
S2 in the lattice L(R). If Sa and S2 are abstract semigroups, then we may
define the joint homomorphic image of Sr and S2 denoted by JNTHOM
(Sl5 S2), as the maximal semigroup S that is a homomorphic image of
Sj and S2 (Boorman &c White, 1976). That is, it is the greatest lower
bound of Sx and S2 in A(R).
The JNTIHOM and JNTHOM for two partially ordered semigroups Sx
and S2 may be different, even as abstract semigroups, but each is uniquely
defined.

Table 3.15 presents an example of two partially ordered semigroups,
their joint isotone homomorphic image (JNTIHOM) and their joint
homomorphic image (JNTHOM), The mappings (/)1 and <p2 from V and
W, respectively, onto / = JNTHOM(V, W) are given by

and

y. A, AA, BA -> a and B, AB -> b

<l>2: A^a and B, BB ->

It may be observed that the homomorphisms (/)1 and 02 partition the
semigroup tables of V and W so that (a) the partitioned tables have the
same global structure, and (b) the partitioning is consistent within each
table, in the sense that any block in the partition contains only elements
mapped onto the same element of/ by the homomorphism. The mappings
03 and 04 from V and W onto K=JNTIHOM(V, W) map all of the
elements in each semigroup onto the one element. K is the largest semigroup
having all of the equations and orderings of both V and W.



112 3. Comparing algebraic representations

Table 3.15. The joint homomorphic image J and the joint isotone
homomorphic image K of two semigroups V and W

Semigroup Full mult, table Partial order

W

A
B

AA
AB
BA

A

AA
BA
AA
AA
BA

B

AB
B

AB
AB
B

A
B

BB

AA

AA
BA
AA
AA
BA
A

A
A
A

AB

AB
B

AB
AB
B

B

BB
BB
BB

BA

AA
BA
AA
AA
BA

BB

BB
BB
BB

A
B

AA
AB
BA

A

1
0
1
0
1

B

0
1
0
0
1

A
B

BB

AA

0
0
1
0
1

A

1
0
1

AB

0
1
1
1
1

B

0
1
1

BA

0
0
0
0
1

BB

0
0
1

Algorithms in the APL programming language have been developed
for the construction of the joint homomorphism of two arbitrary finite
semigroups with the same set of generator labels by White and Lorrain
(Boorman & White, 1976, note 23). A program for finding the joint homo-
morphic image of two abstract semigroups is also available in UCINET
4.0 (Borgatti, Everett & Freeman, 1991; also Heil, 1983).

For partially ordered semigroups, the JNTIHOM may be computed in
a similar fashion to the JNTHOM, but the partial order table as well as
the multiplication table must be taken into account. An algorithm for
finding the joint isotone homomorphic image of two partially ordered
semigroups S1 and S2 having the same set R of generator labels may be
constructed by adding the equations and orderings in one semigroup, say
S2, to the partial ordering of the other, say Sa. The result is a relation P
on the elements of Sl containing the partial order 7rmin of Sv The next
step is to compute the least /r-relation n on Sa that contains P. The isotone
homomorphic image of Sj corresponding to n is then the joint isotone
homomorphic image of Sx and S2.

The joint isotone homomorphic image of two network semigroups is the
"simplest" structure that the networks share. In many cases, it may also be
useful to be able to describe those aspects of structure that are unique
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to each network. Suppose that Sa and S2 are the semigroups of two
comparable networks, Rt and R2, so that Sr = S(Rj) and S2 = S(R2). Then
homomorphic images of St other than JNTHOM (Sl9 S2) or JNTIHOM
(Su S2) can provide a different set of simplifications or perspectives on
the semigroup St than those recorded by the JNTHOM or JNTIHOM.
If one could find images of Sr and of S2 that had no relational structure
in common with JNTHOM (Sl5 S2) or JNTIHOM (Su S2)9 then one would
be able to describe in quite fine detail the ways in which the two net-
works Rj and R2 are different, as well as the ways in which they are the
same.

The common structure semigroup

The JNTHOM is not the only choice for a representative of the structure
shared by two semigroups, and it is important to recognise that in pro-
posing the JNTHOM as a candidate for the role, we have indeed made
a selection. The decision point occurs when we choose to characterise a
homomorphic image T of a semigroup S as a simpler, or a more complex,
version of S. Do the additional equations in T, and thus the extra con-
straints on the interrelationships among elements of T, mean that T has
a more complex structure or a simpler one? As Gaines (1977) has ob-
served in the context of general systems, the choice is a substantive one
and not one that can be made on mathematical grounds. The argument
presented earlier, that the algebra making the greater number of relational
distinctions is the more complex, is the one that has been adopted by a
number of authors, including Boorman and White (1976), Boyd (1969),
Lorrain (1975) and Lorrain and White (1971). An alternative argument,
however, that the semigroup making fewer relational distinctions (and
so possessing more equations) is the more complex, has also been put
forward (Bonacich, 1980; Bonacich and McConaghy, 1979; McConaghy,
1981). In fact, Bonacich and McConaghy have argued that the greater
number of equations in the homomorphic image of a semigroup means that
the semigroup image has a more complex structure rather than a simpler
one. The logical consequence of this view is that the structure shared
by two semigroups St and S2 is the "least" semigroup that has all of the
equations of both S2 and S2, that is, the most "complex" semigroup that
is "simpler" than both of them (Pattison, 1981).

DEFINITION. The common structure semigroup (Bonacich & McConaghy,
1979) for two semigroups S1 and S2 having generator labels in R is the
least upper bound of Sx and S2 in the lattice A(R) and is denoted by
CSS(Sl5 S2). An analogous construction can be made in the lattice L(R) for
partially ordered semigroups: the common isotone structure semigroup
CISS(SU S2) of Si and S2 is the least upper bound of Sa and S2 in L(R).
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Table 3.16. Common structure semigroups for the semigroups V and W

a. Common

A
B

AA
AB
BA
BB

b. Common

A
B

AA
AB
BA
BB

A

AA
BA
AA
AA
BA
BA

structure semigroup

A

AA
BA
AA
AA
BA
BA

B

AB
BB
AB
AB
BB
BB

CCS(V, W)

Full mult.

AA

AA
BA
AA
AA
BA
BA

table

isotone structure semigroup CISS(V, W)

Full

B

AB
BB
AB
AB
BB
BB

mult, table

AA

AA
BA
AA
AA
BA
BA

AB

AB
BB
AB
AB
BB
BB

BA

AA
BA
AA
AA
BA
BA

BB

AB
BB
AB
AB
BB
BB

A
B

AA
AB
BA
BB

A

1
0
1
0
1
0

AB

AB
BB
AB
AB
BB
BB

B

0
1
0
0
0
1

Partial

AA

0
0
1
0
1
0

BA

AA
BA
AA
AA
BA
BA

order

AB

0
0
0
1
0
1

BA

0
0
0
0
1
0

BB

AB
BB
AB
AB
BB
BB

BB

0
0
0
0
0
1

The common structure semigroup was proposed by Bonacich and
McConaghy as an alternative representative of the structure shared by
two semigroups. The common structure semigroups for the semigroups
V and W of Table 3.15 are presented in Table 3.16. It can be seen that
CSS(V, W) and CISS(V, W) have the same multiplication table, and it
can be shown that this result holds for any pair of partially ordered
semigroups.

The issue of whether the JNTHOM (or JNTIHOM) or the common
structure semigroup is the more useful representative of common structure
is discussed in chapter 8, where more information is available on the
nature of the relationship between semigroup images and a network.

Lattices of semigroups: A summary

The structures that have been introduced so far in the chapter are pre-
sented in summary form in Table 3.17. It can be seen that we have
defined three different lattices for partially ordered semigroups and three
different lattices for abstract semigroups. For partially ordered semi-
groups, we have constructed (a) the lattice L(R) of semigroups with the
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Table 3.17. Lattices of semigroups and n-relations

Partially ordered semigroups

Label Description

Abstract semigroups

Label Description

L(R) Lattice of partially ordered A(R)
semigroups with generator
labels R

S1 < S2 if St is an isotone
homomorphic image of S2

JNTIHOM(SvS2)=glb(SvS2)

CISS(SV S2) = lub{Sv S2)

Ls Lattice of isotone homomorphic As
images of the partially ordered
network semigroup 5(R)
Ls is a finite sublattice of L(R)

LK(S) Lattice of ^-relations on the An(S)
partially ordered network
semigroup 5(R)

nx < n2 if
(s, t) e nx implies (s, t) e n2

Ln(S) is dual to Ls

Lattice of abstract
semigroups with generator
labels R

S1 < S2 if 5t is an abstract
homomorphic image of S2

JNTHOM(Sl,S2)=glb(SvS2)

CSS(SvS2) = lub(SvS2)

Lattice of abstract
homomorphic images of the
abstract network semigroup S(R)

As is a finite sublattice of A(R)

Lattice of symmetric ^-relations
on the abstract network
semigroup A(R)

An(S) is dual to As

same set R of generator labels, partially ordered by isotone homomorphic
mappings; (b) the lattice Ls of isotone homomorphic images of a partially
ordered semigroup S, also partially ordered by isotone homomorphic
mappings; and (c) the lattice Ln(S) of ^-relations on S, partially ordered
by a containment relation. The lattice Ls is a finite sublattice of L(R),
and Ln(S) is dual to Ls. For two partially ordered semigroups, S and T,
with the same set R of generator labels, their joint isotone homomorphic
image, JNTIHOM(S, T) is their greatest lower bound in L(R), and their
common isotone structure semigroup CISS(S, T) is their least upper bound
in L(R).

For abstract semigroups, a parallel set of structures has been defined.
The lattice A(R) is the collection of (abstract) semigroups with the same
set R of generator labels, partially ordered by (abstract) homomorphic
mappings. The lattice As is a finite sublattice of A(R), comprising all
(abstract) homomorphic images of S. The collection of all ^-relations on
the abstract semigroup S constitutes the lattice An(S) with partial ordering
by set containment; An(S) is the dual of As and is sometimes termed the
congruence lattice of the abstract semigroup S. For two abstract semi-
groups, S and T, with the same set R of generator labels, their joint
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homomorphic image JNTHOM(S, T) and common structure semigroup
GSS(S, T) are given by their greatest lower bound and least upper bound,
respectively, in the lattice A(R).

Local networks with isomorphic local role
algebras

In comparison with semigroups of networks, less is known of the relation-
ship between a local network and its local role algebra. One basic and
useful result has been established by Mandel (1978), however, and may
be expressed in the form of an identical role-set condition. We must first
define what we mean by identical role algebras. A natural definition
follows:

DEFINITION. Let Qj and Q2 be role algebras having the set R of generator
labels. Then Qx and Q2 are isomorphic if 17 < V in Qx if and only if 17 < V
in Q2, for any 17, Ve FS(R).
Thus, Qx and Q2 are isomorphic whenever Qx is nested in Q2 and Q2 is
nested in Ql5 that is, whenever Q : and Q2 have identical right multi-
plication and partial order tables.

Now, recall that each local network R defined on a set X of elements
gives rise to a relation plane. The columns of the relation plane, termed
role-relations, correspond to elements of X, and the rows of the relation
plane correspond to elements in the free semigroup ES(R). The role-set for
the local network is the set of distinct role-relations in the relation plane.
Then:

THEOREM 3.8 (Mandel, 1978). Two elements whose local networks possess
identical role-sets have the same local role algebra.

The result is established by noting that the role algebra of an element
is invariant under alterations to the relation plane that leave the role-set
unchanged.

A question that follows from this condition is that of the relational
conditions under which two elements have identical role-sets. Winship
(1988) discussed two cases in his original formulation of the role-set as
a characterisation of local role. The first is the familiar case of structural
equivalence: two elements that are structurally equivalent have identical
role-sets. The second is a generalisation of structural equivalence to the
case in which elements have the same type of relationships with the
same types of individuals, but not necessarily with the same individuals.
The idea may be captured formally by defining an automorphism on a
network. As outlined in chapter 1, an automorphism is a mapping that
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re-labels the elements of the network in such a way that the relations
among the elements appear unchanged. Then two elements may be
regarded as the same type if one can be re-labelled by the other in an
automorphism. Such elements possess the same "kinds" of relations.
For example, the network displayed in Figure 1.5b has an automorphism
corresponding to the re-labelling of A by £, B by A, C by D and D by
C. The re-labelling is displayed in Figure 1.5c and it can be seen that
the relations between elements in Figures 1.5b and 1.5c are identical.
Thus, the re-labelling constitutes an automorphism.

DEFINITION. Let R = [Rl9 R2> • • • >  RP] be a network on X. An auto-
morphism a of the network R is a bijection a of X onto itself such that
for any «, v e X and /  = 1, 2 , . . . , / ? ,

(u9v)eRi\ff(a(u)9a(v))eRi.
Elements x,y e X are automorphically equivalent if there exists an
automorphism a for which

a(x) = y.
Then:
THEOREM 3.9. Two elements that are automorphically equivalent have iden-
tical role-sets and hence identical local role algebras.
Proof: The proof follows from the observation that the role-relation Rxj
in the role-set for element x is identical to the role-relation Ra(x)a(/) in
the role-set for element y = a(x).

A further generalisation may be derived by considering the mapping
from a network R to an automorphically reduced network AE(R). The
mapping is obtained by noting that automorphic equivalence is an equiva-
lence relation and hence that the following mapping is well-defined:

1 AE(x) = ax, where ax is the equivalence class containing ele-
ment x9 and

2 (ax, ay) e AE(Rj) if and only if (JC, y) e R,- for some x e ax,
ye ay.

It should be noted that the role-set of the class ax in A£(R) is not
necessarily the same as that of x in R although the former is a subset of
the latter. It is possible, however, that distinct classes x, y of AE(R) will
be automorphically equivalent and therefore have identical role-sets, so
that one can define a further automorphic reduction of AE(R) to obtain
A£2(R). In general, Pattison (1980; also Borgatti et al., 1989) defined

AEh(R) = AE(AEh-1(R))
for integers h > 1.
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{G}

, S3, S4, S5}

8\ 82 83 #4 #5 8e 8i {81,82} {83} {84,87} {85, 8e} {81,82,83,84,85,86,87}

(a) (b) (c)

Figure 3.5. Extended automorphic equivalence: (a) the relation R;
(b) AE(R); (c) AE2(R) = AE*(R)

It may be observed that for some minimum integer h, AEh(R) is auto-
morphically irreducible (in the sense that the only automorphism is the
identity mapping).

For such an integer h, define
AE*(R) = AEh(R).

Then AE* induces an equivalence relation on X, termed extended auto-
morphic equivalence, and we have established the following relationship
among role-sets.

THEOREM 3,10. Let x and y be elements in a network R that are mapped
to the same element x by a sequence of AE mappings (i.e., x and y are
in the same equivalence class induced by AE*j. Then the role-sets of x
and y both contain the role-set of the AE* class containing them.
An illustration of the result is provided in Figure 3.5. The relation "is a
father of" is shown for four generations of family in Figure 3.5a; in
Figures 3.5b and 3.5c the reduced systems AE(R) and A£2(R) = AE*(R) are
presented. The example illustrates the manner in which AE* is a gener-
alisation of AE: elements are equivalent in AE* if they have the same types
of relationships but not necessarily the same number of each.

The problem of characterising those elements that have identical local
role algebras but different role-sets is an open one. Some examples of the
latter are shown in Table 3.18, which contains a list of the occurrence
of identical local role algebras for elements having different role-sets in
two-element two-relation networks (Lorrain, 1973). It can be seen in each
case that the egos of the local networks have the same local role algebra
but different role-sets.



Comparing local role algebras 119

Table 3.18. Some small local networks with identical role-sets

Element"

1
2

1
2

1,2 = 1

Local role algebra

Right mult, table

Gen. 1 Gen. 2

1 1
2 2

1 1
1 2

1

Partial order

10
1 1

10
1 1

1

Local

Gen. 1

00
01
00
1 1
01
0 1
00
1 1
1 0
01
1 1
10
00
01

networks

Gen. 2

0 1
01
1 1
01
1 1
01
1 1
00
1 0
00
1 1
1 1
00
1 0

Ego is element 1.

Comparing local role algebras:
The nesting relation

For semigroups of networks, it was suggested that comparisons among
partially ordered semigroups having generator labels R may take place
in the lattice L(R) of partially ordered semigroups on R. In particular,
it was claimed that if one semigroup is an isotone homomorphic image of
another, then the first is a simpler version of the second. This claim led
to the characterisation of the structure shared by two semigroups by
their joint isotone homomorphic image, JNTIHOM. In the case of role
algebras, an analogous lattice may be defined using the nesting relation
(Mandel, 1983; Pattison, 1989).

THEOREM 3.11. The collection M(R) of role algebras having the set R of
generator labels forms a lattice whose partial order is given by T<Q if
and only if T is nested in Q. For any local role algebra Q e M(R), the
collection LQ of role algebras nested in Q defines a finite sublattice of
M(R).
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Qo =

Figure 3.6. The lattice LQ of role algebras nested in Q

Table 3.19. Role algebras nested in the role algebra Q

Label

Qo

s,
Q2

e4

Element

1
2
3
1
2
1
2
3
1
2
1

Right mult, table

Class

L
A

AL
L
A
L
A

AL
L
A

A = L

L

1
3
3
1
1
1
3
3
1
2
1

Generator

A

2
2
2
2
2
2
2
2
2
2

Partial order

1 00
0 1 0
1 1 1

1 1
0 1

1 00
1 10
1 1 1

1 0
1 1

1

Proof: The proof is contained in Appendix B.
For instance, the lattice LQ for the role algebra displayed in Table 2.7

is presented in Figure 3.6. The role algebras nested in Q are presented
in Table 3.19.

Just as each isotone homomorphism of a partially ordered semigroup is
associated with a binary ^-relation on S, so is each nested role algebra of
Q associated with a unique binary relation on Q. That is, we may define
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Table 3.20. n-relations in LJQ) for the role algebra Q

100 111 100 100 111
010 010 110 111 111
111 111 111 111 111

a ^-relation nT on the classes of eQ corresponding to each role algebra
T nested in Q as follows.

DEFINITION. Let Q be a role algebra and let T be a role algebra nested
in Q. Define the n-relation nT corresponding to T on the classes of eg
by: (5*, t*) e /rT if there exist relations se s*,te t* such that (s, t) e T,
where s*, £* are classes of eg.

For instance, role algebras nested in the role algebra Q of Table 2.7 were
presented in Table 3.19. The corresponding ;r-relations are shown in
Table 3.20 and are labelled so that Qt corresponds to nt, (i = 0, 1 , . . . , 4).

In fact, just as for partially ordered semigroups, there is always a one-
to-one correspondence between nested role algebras of a given role alge-
bra and its TT-relations. The relationship is summarised in the following
theorem.

THEOREM 3.12. If T is a role algebra nested in the role algebra Q, then
7CT is a reflexive and transitive relation on eQ with the property that (s*, t*)
e nT implies (su*, tu*,) e nT, for any u e ¥S(R). Conversely, if n is a
transitive and reflexive relation on the classes of eQ with the property
that (s*, t*) e n implies fsu*, tu*V e n, for any u e ¥S(R), then n is the
n-relation corresponding to some role algebra nested in Q.

Proof: The proof is given in Appendix B.

As a result of Theorem 3.12 we may define the following:

DEFINITION. Let Q be a role algebra and let nT be a ^-relation on Q
corresponding to a role algebra T nested in Q. We may term T the
quotient role algebra corresponding to the ^"-relation /rT, and write T =
Q/nT.

For example, each role algebra displayed in Table 3.19 is nested in
the role algebra Q of Table 2.7. The corresponding ^-relations are dis-
played in Table 3.20. Observe that the partial order and multiplication
tables for each nested role algebra may be inferred from Table 2.7 and
the corresponding /r-relation (also see chapter 2).

Now we have already established that the collection of role algebras
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- '""min

Figure 3.7. The lattice Ln(Q) of Tt-relations on the role algebra Q

nested in a role algebra Q form a lattice LQ under the nesting relation
(with T< Q if T is nested in Q). A dual lattice may be constructed using
the ^-relations corresponding to nested role algebras, under the partial
ordering:

DEFINITION. Let nT and nP be ^-relations corresponding to role algebras
T and P nested in role algebra Q. Define

if and only if
(s*,t*)e nT implies (s*, t*) e 7TP, for any classes s*, t* of eg.

Denote by Ln(Q) the collection of all ^-relations corresponding to role
algebras nested in Q, with the preceding partial ordering. LK(Q) is termed
the n-relation lattice of Q.

For example, Figure 3.7 presents the 7r-relation lattice of the role al-
gebra Q of Table 2.7. (The ^-relations appearing in Figure 3.7 are listed
in Table 3.20.)

It may be observed that the minimal element of Ln(Q) is the TT-relation
corresponding to Q itself, which is simply the partial order for Q, pre-
sented on the classes of tQ. The maximal element of Ln(Q) is the universal
relation ;rmax on eQ, given by (s*, t*) e 7rmax for every pair of classes s*,t*
of eg. Further, the greatest lower bound of two relations, nT and nP, in
Ln(Q) is given by

that is, (5*, £*) e glb(nT, nP) if and only if (s*, t*) e nT and (s*, t*) e 7tP.
Now, if one local role algebra is nested in another, then all of the

orderings and equations in the second local role algebra are also in the
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first, and the first contains some additional orderings and/or equations.
The presence of additional constraints on the relationships of the first
local role algebra led Mandel to argue that the first is simpler (or more
constrained) than the second. His argument is consistent with Nadel's
(1957) portrayal of "coherent" role-systems as those that are most con-
strained; it is also a natural complement to that made earlier for semigroups
of networks. A natural consequence of this view is to characterise the
shared structure of two local role algebras as the most complex role
algebra that is simpler than both of them (Breiger & Pattison, 1986).

DEFINITION. Let Q and T be two role algebras defined on the same gen-
erator set R. Then

JRA(Q, T) = max {U: U is nested in Q and U is nested in T}
is the joint nested role algebra for Q and T. Clearly, JRA(Q, T) is the
greatest lower bound of Q and T in the lattice M(R).

The position adopted by Bonacich and others for semigroup algebras
(Bonacich, 1980; Bonacich & McConaghy, 1979; McConaghy, 1981) is
consistent with the alternative view that a nested role algebra is more
complex than the algebra in which it is nested because it possesses more
orderings than the latter. Such a view leads to the definition of shared
structure in terms of shared inclusions.

DEFINITION. Let Q and T be two role algebras defined on the same set
R of generator relations. Then the common role algebra CRA(Q, T) of
Q and T is defined as their intersection QnT - that is, QnT is the
intersection of the binary relations Q and T on FS(R). It may be shown
that CRA(Q, T) is the least upper bound of Q and T in M(R).
The issue of selecting a representative of common structure in local net-
works is discussed in detail in chapter 8, when the relationship between
a network and its algebra has been made clearer. For the moment, it may
be observed that more than one position can be argued from the repre-
sentations as they stand.

Other classes of networks with identical algebras
In the final section of this chapter, some additional conditions under
which comparable networks are known to have the same network algebra
are presented. The results are relevant to the task of evaluating the alge-
braic representations of network structure that have been proposed,
because they describe classes of networks in which we would expect
relational structure to be the same. Such expectations can, in principle
at least, be submitted to empirical investigation. The results described
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in this section are somewhat technical and are not central to the methods
developed in the remaining chapters of the book; those developments
are taken up again at the start of chapter 4.

Trees
An important class of networks that have been involved in many attempts
to model social relationships, especially those referring to influence and
power, may be described in graph-theoretical terms as (directed) trees
(e.g., Harary, 1959a; Harary et al., 1965; Oeser & Harary, 1964). Boorman
(1977), for instance, has constructed a model of structural information
about an authority hierarchy that various participants in the hierarchy
may infer, and Friedell (1967) has presented a critique of the basic tree
model and a suggested alternative.

Figure 3.8a presents a hypothetical network for the relation of being
a direct superordinate in a small work group. That is, an arrow is directed
from one individual to another if the first is the supervisor of the second.
The converse relation, of being a direct subordinate, is shown in Figure
3.8b; the relation is sometimes termed a "reporting" relation because it
indicates who reports to whom. It can be seen in Figure 3.8 that each
member of the group is the direct subordinate of no more than one other
group member. In addition, there is just one individual (labelled A in
Figure 3.8) who is directly subordinate to no one. Structures possessing
these two properties are termed out-trees.

DEFINITION. A weakly connected graph with edge set R is a (directed) out-
tree if it has a single source (i.e., exactly one element with zero indegree)
and no semicycles [i.e., no subset {/l5 ilr>..., if] of distinct elements of
X such that (ik, ik + 2) € R or (ik +19 ik) e R; k = 1, 2 , . . . , f- 1 with if= i j .
If R is an out-tree, then a path from element / to element / is unique if
it exists (e.g., Harary et al., 1965). The depth of an element in an out-
tree is the length of the path to the element from the source of the out-
tree; the depth of the source is defined to be zero. A minimal element
of an out-tree R is an element with zero outdegree.

Further, we can define the following:
DEFINITION. The class Un of out-trees of maximal depth (n - 1) comprises
all out-trees T for which the maximum length of a path to a minimal
element from the source of the tree is (n - 1). The class Tn of out-trees
of constant depth (n - 1) consists of all out-trees T for which the length
of the path to every minimal element from the source is (n- 1).

Some members of the classes U3 and T3 are illustrated in Figure 3.9.
In Boorman's (1977) terms, Tn consists of all out-trees of constant depth
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Figure 3.8. Some relations in a small work group: (a) direct
superordinate relation; (b) direct subordinate relation

(n - 1) with no constraints on the span of control of any of their elements.
(The span of control of an individual in a reporting relation is that
individual's indegree.) Clearly, the class Tn is a subset of the class Un.
Theorem 3.13 establishes that each member of the class Un generates the
same partially ordered semigroup.
THEOREM 3.13. For any T e Uw, S(T,J has distinct relations T, T2,...,
Tn and products in S(T) defined by

T T j = T i + j if i + j < n
a n d

TTj = Tn if i + j > n.
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E F G

(a)

(b)

Figure 3.9. Some directed out-trees: (a) some members of the class
U3; (b) some members of the class T3

The partial order in S(T) is given by
T1 < Tj iff i > n and j < n.

(In fact, Tn is the null relation; that is, no elements are linked by Tn.)
Proof: The proof is given in Appendix B.

A consequence of Theorem 3.13 is that all members of the class Un
generate the same partially ordered semigroup; that is, they all display the
same structure of relations. For the semigroup of an out-tree, the length
of the longest path in the tree determines its structure.

Another result on out-trees concerns the semigroup generated by an out-
tree of constant depth (n -1) and its converse, that is, the semigroup
generated by networks comprising a direct subordinate relation and a
direct superordinate relation.
THEOREM 3.14. Let Tu T2 e Tn. Then the multiplication tables of
S({Tl9 T[}) and S({T2, T'2}) are isomorphic, where T' denotes the con-
verse of the relation T [i.e., (i, \) e T / if and only if (\, i) e TJ

Proof: The proof is given in Appendix B.
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The result does not hold for the multiplication tables generated by
members of Un and their converses. Nor does it hold for the partially
ordered semigroups generated by members of Tn and their converses. That
is, although all members of Tn generate, with their converses, the same
semigroup multiplication table, the partial ordering among the distinct
semigroup elements is not always the same. It can easily be shown,
however, that the partial order for S({T,T'}) generated by any out-tree T
from Tn is contained in the partial order for the semigroup S({CW, QJ}),
where Cn is the unique element of Tn with exactly n elements and a single
maximal path of length (n- 1).

Thus, out-trees of a given constant depth interlock with their converses
in the same abstract way; the "boss" and "deputy" relations described by
members of Tn (Boorman, 1977) and their converses give rise to the
same distinct compound relations and the same equations among them.

The abstract semigroup table encodes a part of the relational structure
claimed to be common to members of Tn. It was noted earlier that the task
that naturally followed the identification of collections of binary rela-
tions with the same semigroup was that of finding some empirical basis
for the identity. In the case of members of Tn, the demand appears to
be reasonable. Trees in Tn are exactly the class of out-trees that lend
themselves to unambiguous categorisation in terms of n levels. Thus,
whether one proceeds to assign tree elements to levels beginning with
the unique maximal element, or source, or whether one starts from any
one of the minimal tree elements, the categorisation is the same. The
relational structure of the out-tree is equivalent to interlock among the
n ranks thus defined, providing a useful simplification of the problem
of describing it. Those ranks, in fact, have long been part of our lan-
guage for describing traditional authority structures as exist, for example,
in armies or bureaucracies. The reality of the ranks is suggested by the
relationship inferred among members of different rank from different
branches of an army tree; the person of higher rank is often presumed
to command the respect of the person of lesser rank.

In practice, it is probably the case that few kinds of relations give rise
to out-trees of constant depth. Examples include formal reporting relations
in organisations such as armies, bureaucracies, and corporations in which
policy prescribes chains of command of constant length. In other cases,
authority structures may contain branches of various lengths, as in the
relations in Un, and may even contain individuals with more than one
immediate superior (Friedell, 1967). Such structures may be approximated
by a system of ranks, in a sense to be made precise later. Aberrations from
the "ideal" constant-depth tree structures would then be translated into
relational complexities in the semigroup structure, but it would be pos-
sible to recover the pure form later as a simplification. Thus, provided
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that the networks considered are essentially tree-like in pattern, some
stratification of their elements may provide a reasonable approximation
to their relational structure.

Idempotent relations
The simplest semigroup is the trivial one, that is, the semigroup consist-
ing of one element R that satisfies the equation R2 = R. Relations that
generate a one-element semigroup are termed idempotent: Boyd (1983)
proposed that idempotent relations are useful generalisations of equiva-
lence relations on networks. The class of all idempotent relations, that
is, the class of all binary relations with the simplest possible relational
structure, has been described independently by Schein (1970) and Schwarz
(1970a). Schein's formulation is followed here.

DEFINITION. Let Q be a quasi-order relation on a set X, that is, a
reflexive and transitive relation on X. Let eQ = Q n Q', where
Q' = {(/, /): (*, /) e X} is the converse of Q. Then an element x e X is called
Q-strict if the £g-class containing x is a singleton. The subset Y of X is
Q-permissible if each of its elements is Q-strict and there are no pairs
of elements x, y e Y such that x covers y or y covers x (an element /
covers an element / in Q if (i, k) e Q and (£, /') e Q implies k = / or k = /).
Define the relation WY by

(x, y) G WY iff x = y and x e Y.
Then a binary relation P is a pseudo-order relation if

where Q is a quasi-order relation and Y is a Q-permissible subset of X.
THEOREM 3.15. A binary relation is idempotent if and only if it is a
pseudo-order relation (Schein, 1970; Schwarz, 1970a).

Idempotent relations are therefore a class of transitive relations (satis-
fying R2 = R) that are constructed from inflations of order relations by
deleting subsets of reflexive ties according to the preceding definition.
The least complicated relations are those defining orderings on the ele-
ments of X in the specified way; traversing paths of lengths greater
than one provides no additional information to that contained within
the given relational ties. Figure 3.10 presents some examples of pseudo-
order relations. Pseudo-order relations are very unlikely to define the
prevailing structure in actual social networks, except in very small ones.
Despite the fact that social ties of groups of young children become
more transitive as children grow older (Leinhardt, 1972), strict transitivity
is rarely observed (e.g., Johnsen, 1985, 1986), and even then it applies
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Figure 3.10. Some pseudo-order relations on four elements

in approximate form to only some kinds of relationships (e.g.,
Granovetter, 1973, argued that only "strong" interpersonal relation-
ships tend to be transitive, and Hallinan and Felmlee, 1975, reported
evidence supportive of his proposition).

An interesting subset of the class of idempotent relations are those
relations that are the partial orders corresponding to the class of semilattices
(Friedell, 1967). All members of that subset generate (trivial) idempotent
semigroups but are not unique in doing so, as Lorrain and White (1971)
have observed. This observation illustrates the dependence of relational
structure in a network on the "content" of its relational constituents. In
this instance, the structure of the relation "is superordinate to" is differ-
ent from the structure of the relation "is directly superordinate to", as
one might expect.

Monogenic semigroups
Another simple class of semigroups consists of those possessing a single
generator; such semigroups are termed monogenic. Monogenic semigroups
result from networks possessing a single network relation, that is, from
networks of the form R = {R}. For instance, the semigroup generated by
the friendship network in the hypothetical work group shown in Figure
1.1 is monogenic. The distinct elements in the semigroup generated by the
friendship network are F and F2. The relation F3 is equal to F, F4 is equal
to F2, F5 is equal to F and so on. Indeed the structure of the multipli-
cation table of the semigroup is described completely by the equation

F3 = F,
because all other equations can be derived from it.

More generally, the structure of the multiplication table of monogenic
semigroups is described as follows.
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THEOREM 3.16 (e.g., Schwarz, 1970b). Powers of a binary relation follow
the sequence R, R2, . . . , Rj, Rj + \ . . . , Rj + d " \ Rj + d = Rj, Rj + d + 1 = R} + \
... for some minimal pair of natural numbers j and d. A monogenic
semigroup for which R, R2,..., Rj + d " 1 are distinct, but Rj + d = Rj is
said to be a monogenic semigroup (hereafter, semigroup) of type (j, d).
The natural numbers j and d are termed the index and period of the
semigroup, respectively.
For example, the friendship network of Figure 1.1 has index 1 and period
2.

Kim (1982) has reviewed some of the results relating the structure of
a network to the index and period of its semigroup. The findings are
summarised as follows.
THEOREM 3.17. Let R = {R} be a network on a set X, and let S = S(R)
be its semigroup with index j and period d.

1 If the network relation R contains no cycles, then d = 1 [and
R is equal to the null relation, that is, the relation N for which
(x, y) e N for no pair of elements x,ye Xj.

2 If R is strongly connected, then d is the greatest common di-
visor of the set of lengths of cycles in R.

3 The period d of S(R) is the least common multiple of the peri-
ods of the semigroups of the strong components of R.

4 The index j < (n - I)2 + 1, where n is the number of elements in
X.

Applying these results to the hypothetical friendship network of Figure
1.1, we may infer that the period of its semigroup is 2 (because the
network has two strong components {A, B] and {C, D} and each of these
components has a single cycle of length 2) and that its index is no greater
than 10. For the larger network of relations of association in the local
network L of Figure 2.1, there are cycles of length 2, 3, 4 and so on, so
that the period of the semigroup of the network is 1. The index of the
semigroup is no greater than (9 - I)2 + 1.

In the case of a particularly simple class of relations termed transition
graphs, we can describe the monogenic semigroup of a relation more
explicitly. A transition graph is a relation in which each individual in the
network is linked to no more than one other individual. Such graphs may
arise from self-report data if the question eliciting relational information
requires that at most one individual is named in response. Examples
include questions of the forms, "Who is the person in the group to whom
you feel most close?", "Whom do you respect most in this organiza-
tion?", and "To whom in your family are you least likely to turn for help
when you need it?".
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Figure 3.11. Two transition graphs T and U

DEFINITION. A transition graph is an irreflexive relation in which the out-
degree of each element is either 0 or 1. Transition graphs can take two
basic forms. A weakly connected transition graph is

1 a flower if every vertex has outdegree one, and
2 an in-tree (hereafter, tree) if exactly one vertex has outdegree

zero. (The definitions are from Meyer, 1972.)
Figure 3.11 presents two illustrative transition graphs. The second com-
ponent of the transition graph T is a tree; all other components in Figure
3.11 are flowers.

Because a connected transition graph can have at most one vertex with
outdegree zero, it follows that every weak component of a transition graph
is either a flower or a tree. If x and y are vertices of the same weak
component of a transition graph T, and if there is a path from x to y9
then there exists a unique shortest path [x, y] whose length can be denoted
by l[x9y].

Now, every component of a transition graph that is a flower has a
unique cycle (that is, a path from some vertex to itself); a cycle point
is any vertex that lies on a cycle. A tree point of an arbitrary transition
graph is any vertex that is not a cycle point. The period of a flower T
is the number of cycle points of T, that is, the length of its unique cycle.
DEFINITION. Let T be an arbitrary transition graph on n vertices. Define
the period sequence of T to be

n(T) = (rl9 r 2 , . . . , rn)
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where r; is the number of components of T that are flowers of period
/, and the depth sequence of T to be

where df is the number of tree points x e T such that

max{/[y, x]: [y,x] is a path in T} =/

(Meyer, 1972).

For the graphs presented in Figure 3.4,

n (T) = (0,1,0,0,0,0,0,0,0,0) and S(T) = (5,2,1,0,0,0,0,0,0,0);

n (U) = (0,0,1,1,0,0,0,0,0,0) and 8(U) = (2,1,0,0,0,0,0,0,0,0).

The monogenic semigroup of a transition graph can now be specified by
the following theorem:

THEOREM 3.18. Let T be a transition graph on n vertices, with period
sequence n(T) = (rl9 r2,..., rn) and depth sequence h(T) = (d0, du ...,
&n-i)- Then the monogenic semigroup generated by T is of type (h + 1, d),
where

I max {): d; > 0}

0, if dj = 0 for all j

and

{ I.cm. {iit, > 0}

1, if it = 0 for all i

Proof: The proof is contained in Appendix B.
Thus, the monogenic semigroup of a transition graph has a multipli-

cation table determined by its period and depth sequences. For example,
the semigroup generated by T of Figure 3.11 is of type (3,2) and U
generates a semigroup of type (2,12). The partial order of the semigroup
is not completely determined by the period and depth sequences; in-
stead, it depends on the presence (or otherwise) of tree points in flowers
of the transition graph.

The occurrence of transition graphs in natural social networks is
probably rare except where certain methodological restrictions prevail
(e.g., where respondents are limited to nominating at most one person
as the recipient of a particular kind of network tie, as in the previous
examples). Usually, networks are denser than that (e.g., Pool & Kochen,
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Table 3.21. Two-element two-relation networks with identical partially
ordered semigroups

Elements

1
2

1
2

1
2

Partially ordered semigroup

Right mult, table

Gen. 1

1
2

1
2

1
2

Gen. 2

2
2

2
2

2
2

Partial order

10
1 1

1 1
0 1

10
0 1

Network

1

10
0 1

10
0 1

10
1 1

10
0 1

10
1 1

1 1
0 1

10
0 1

10
0 1

relations

2

1 1
1 1

10
1 1

1 1
1 1

10
0 0

00
1 1

01
01

00
1 1

01
01

1978). Indeed, even if the average density of ties in a network is in the
range for transition graphs (less than or equal to 1), ties are usually dis-
tributed more unequally among pairs of elements (e.g., Bernard, 1973).
Nevertheless, the result is interesting: the interrelations among paths of
length 2 or more in transition graphs depend on the length of cycles in
the graph and the length of the longest chain in the graph.

Handbooks of small networks
An alternative approach to establishing classes of networks with the same
semigroup is computational in nature. Lorrain (1973), for example, has
constructed the semigroups generated by networks comprising two ele-
ments and two network relations and has thereby classified the set of
two-element two-relation networks according to their relational struc-
ture. The pairs of binary relations in the set giving rise to the same
partially ordered semigroup structure are presented in Table 3.21. Classes
of networks generating the same semigroup may be examined for features
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leading to their identical relational structure and so assist the evaluation
of the semigroup representation. Further, the techniques developed in
later chapters will demonstrate how such lists have a wider application
in the assessment process.

Summary

In this chapter, we have described some constructions that may be used
to compare network algebras. We have observed that the algebras of
comparable networks lie in a partially ordered structure termed a lattice,
with the partial ordering defined by either isotone homomorphic
mappings or the nesting relation. The greatest lower bound of two
algebras in the lattice is the largest algebra having all of the equations
and orderings present in either of the algebras, and the least upper
bound of two algebras is the smallest algebra whose orderings and
equations hold simultaneously in both of the algebras.

We have also seen that certain classes of networks can be shown to
give rise to the same algebra. In each case, it can argued that the mem-
bers of the class possess some salient features suggesting that they may
be associated with similar social implications. Whether they do, of course,
is a matter for empirical verification but, at this stage, the algebraic
constructions that have been proposed appear to hold some promise as
representations of social relational structure.



4
Decompositions of network algebras

The algebraic constructions that have been introduced to represent rela-
tional structure in complete and local social networks make few structural
assumptions in the hope of preserving the faithfulness with which they
represent the structure of network paths. A cost is associated with this
approach, however, in that the mathematical structures generated have
relatively weak and, generally, poorly understood mathematical and
numerical properties. Clyde Coombs summarised the trade-off between
the faithfulness of a model and its mathematical power when he asked
of measurement, "Do we know what we want, or do we want to
know?" (Linzell, 1975). Do we use what might be a poor representation
of the data but which nonetheless has strong numerical properties or do
we sacrifice mathematical power for a model whose mathematical rela-
tionships more adequately reflect known or, at least, plausible rela-
tionships among the social phenomena in question?

It is implicit in the structural representations that have been proposed
that the latter course is believed to be the wiser one. Detailed analyses
of social network data indicate that at this stage it is difficult to add
mathematical properties to those already assumed without seriously
misrepresenting at least some types of social network data. We are left,
therefore, with structures that are often complex and for which we have
no convenient methods of analysis. It is the aim of this chapter to describe
some useful analytic procedures for structures of this kind. Indeed, the
methods presented have been devised so as to apply to a wide range of
finite mathematical structures.

Most types of structural analysis are, in essence, methods for structural
decomposition. They attempt to identify simpler structural components,
or building blocks, in terms of which a structure can be described. For
instance, one well-known example of a structural analytic method is
principal components analysis. The analysis is a means of decomposing
a finite set of variables defining a multidimensional real space into a set
of orthogonal components. Calculations may be performed for each
component separately in the knowledge that the component is inde-

135
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pendent of all other such components. The analysis thus breaks down
a complex system into simpler parts, each of which may be dealt with
in turn. The problem of the complexity of the set of variables is thereby
addressed, and subsequent analysis is simplified as a consequence.

A second example of a useful analytic strategy comes from the decom-
position theory for finite-state machines (Krohn & Rhodes, 1965; Krohn,
Rhodes & Tilson, 1968). The theory deals with finite algebraic struc-
tures, termed finite-state machines, which bear some similarity to net-
work algebras. A finite-state machine is conceptualised as a finite set of
memory states with a finite input alphabet and a finite output alphabet,
and two functions relating them. The state-transition function deter-
mines the next memory state from the combination of present state and
current input, and the output function specifies the next output symbol
from present state and current input. Now each finite-state machine
may be represented at a more abstract level by a finite semigroup whose
elements are the input sequences to the machine, regarded as state-
transition functions on the set of memory states of the machine. The
composition of two semigroup elements corresponds to the concatenation
of the input sequences that they represent, and two distinct input
sequences are considered equal if they induce the same state-transition
function.

Krohn and Rhodes' (1965) fundamental theory is based on a Wreath-
product decomposition of the semigroup of a machine into simple com-
ponents. The decomposition is literal in the sense that the semigroup
decomposition induces a corresponding decomposition of the machine
itself into simple machines and gives a procedure for connecting these
simple machines to form a larger machine that can simulate the behaviour
of the original machine. In this way, the complexity of the original ma-
chine is resolved: its simple components of known structure are iden-
tified and, although the components are not independent of one another,
the nature of their interaction is well specified and well understood.

The analysis to be described draws some guidance from these examples.
From both, it draws the principle that the components should be as simple
as possible and that they should not be further reducible into simpler
components. From the second, it extracts the property that the higher-
level algebraic representation (semigroup level) should dictate the de-
composition of the lower-level relational representation (machine level).
Finally, from the first example, it derives the notion that the independence
of the components should be emphasised, although instead of insisting
on strict independence, we shall argue that it is more useful to maximise
the degree of independence subject to some other constraints.

In general terms, therefore, we present a means of analysing a math-
ematical structure into simple and maximally independent parts. By using
such a technique, we hope to overcome the problem of large and complex
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mathematical structures with which our insistence on representational
faithfulness has endowed us. In so doing, we are also concerned with "the
fundamental structure problem of algebra", namely, "analysing a given
[algebraic] system into simpler components, from which the given system
can be reconstructed by synthesis" (Birkhoff, 1967, p. 55).

There are many ways of approaching the problem of decomposing any
type of mathematical structure. In particular, the nature of a decomposi-
tion procedure depends on the synthesis rule implicit in it (Birkhoff,
1967) or, equivalently, on the nature of its implicit definition of inde-
pendence (Naylor, 1981, 1983). In the case of such structures as net-
work semigroups or local role algebras, moreover, the definition of
independence may be made at the relational level, for example, in terms
of specific network links or at the level of the algebra that the network
links define. Given that distinct networks may give rise to the same
abstract semigroup, there will not necessarily be a one-to-one corre-
spondence between definitions operating at the two levels.

In choosing the strategy to be described, we have followed two main
guidelines. Firstly, because the algebraic representations of the two types
of network structure are taken as the main focus of the analysis, only
decomposition procedures operating at the algebraic level have been con-
sidered. Secondly, generality has been deemed to be an important charac-
teristic of the resulting strategy, so that the method selected is based on
several quite general synthesis rules from the universal algebra literature.
From these rules, a decomposition strategy has been developed that is
applicable to finite algebras, in general, and network semigroups and
local role algebras, in particular. The technique we use is based on a
more general procedure described in Pattison and Bartlett (1982) and is
modified here to apply to partially ordered structures, of which partially
ordered semigroups and role algebras are examples. The technique is
presented first for finite partially ordered semigroup algebras and then
is generalised to role algebras. Mathematical definitions are adapted
from those of Birkhoff (1967), Fuchs (1963) and Kurosh (1963).

Decompositions of finite semigroups

The decomposition technique developed by Pattison and Bartlett (1982) is
applicable to a variety of algebraic structures. In general terms, an algebra
is a partially ordered set of elements and one or more operations de-
fined on that set. An operation is a mapping of an ordered sequence
of some fixed number of elements onto a single element of the set. For
example, a binary operation f maps an ordered pair of elements (x, y)
onto a single element denoted, say, by f(x, y). A partially ordered
semigroup is an algebra comprising a partially ordered set and a single
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Table 4.1. A partially ordered semigroup T

Element

1
2
3
4
5
6
7
8

Right mult, table

Word

a
b

ab
ba
bb

aba
abb
bba

a

1
4
6
4
8
6
1
8

Generator

3
5
7
5
2
7
3
2

Partial order

1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1

binary operation. The collection of all algebras of a specified type defines
a family of algebras, that is, a collection of algebras having the same set
of operations and satisfying a specified set of postulates. In the case of
partially ordered semigroups, members of the family may be characterised
as follows:

DEFINITION. A partially ordered semigroup comprises a partially ordered
set S and a single binary operation f that

1 satisfies the associative law

f(x,f(y,z)) = f(f(x9y)9z) and
2 is isotone:

x<y implies f(x,z) < f(y,z) and f(z,x) < f(z,y),
for any x9 y, z e S.

The operation f(x9 y) is usually written more simply as xy9 and each finite
partially ordered semigroup may be represented in the familiar form of
a multiplication table reporting the binary operation and a binary re-
lation recording the partial order. For instance, Table 4.1 reports a
partially ordered semigroup in the form introduced in chapter 1.

Direct representations

As we observed earlier, the nature of a decomposition procedure for an
algebraic structure depends on its implicit synthesis rule. That is, the way
in which the structure is broken down into smaller pieces depends on the
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Table 4.2.

Label

Label

TM/O partially ordered semigroups S1 and S2

Multiplication table

Element m

m m
n n

Multiplication table

Element x

X X

y z
z z
W X

n

m
n

y

y
w
w
y

z w

z w
x y
x y
z w

Partial order

1 0
1 1

Partial order

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

rules by which those pieces may be recombined to produce the original
structure. Different "re-synthesis" rules are generally associated with
different component pieces. One widely used synthesis rule is that of the
direct product. The direct product of two algebras is defined on the set
of all ordered pairs of elements from the two algebras. The operations in
the direct product are defined as the conjunction of operations in the
constituent algebras. For example, consider the partially ordered semigroups
Sx and S2 whose full multiplication tables and partial orders are presented
in Table 4.2. The direct product Sx x S2 of Sa and S2 is presented in Table
4.3. The elements of St x S2 are elements of the Cartesian product of the
sets of elements for Sx and S2; that is, they are formed by pairing each
element of S1 with each element of S2. The partial order in the direct
product Sa x S2 is defined so that an element (sl5 s2) < (tl912) if and only
if the ordering holds for each of the constituents, that is, if and only if
sa < tx and s2 < t2. The binary operation is similarly defined in terms of
the constituent operations in Sj and S2:

(sl9 s2) (tu t2) = (sttu s2t2),

for any sl9 tx eSt; s2, t2 eS2. More generally:

DEFINITION. Let Sl9 S2, . . . , Sr be a collection of partially ordered
semigroups. The direct product Sx x S2 x • •  • x Sr of Sl9 S 2 , . . . , Sr is the
partially ordered semigroup consisting of the set Sa x S2 x • •  • x Sr and the
binary operation

(sl9 s 2 , . . . , sr) (tl9 tl9...9 tr) = (sxtl9 s2t29..., srtr).

The partial order for St x S2 x • •  • x Sr is given by



Table 4.3. The direct product S1 x S2 of the semigroups S1 and S2

Element

(m9x)
{m,y)
(™,  z)
(m,w)
(n,x)
(n,y)
(n,z)
(n,w)

(m,x)

(m,x)
{m9z)
(m,z)
(m,x)
(n,x)
(n,z)
(n,z)
(n,x)

(m,y)

(m,y)
(m, w)
(m,w)
(m,y)
(n,y)
(n,w)
{n,w)
(n,y)

(m,z)

{m,z)
{m,x)
{m,x)
(*n,z)
(n,z)
(n,x)
(n,x)
(n,z)

Multiplication table

(m, w)

{m,w)
{m,y)
{m,y)
(m, w)
{n,w)
(n,y)
(n,y)
{n,w)

(n9x)

(m,x)
{m,z)
{m,z)
{m,x)
(n,x)
(n,z)
(»,z)
(n,x)

(«J)

{m,y)
(m,w)
{m,w)
(m,y)
(n,y)
{n,w)
{n,w)
(n,y)

{n,z)

{™,z)
(m,x)
{m,x)
(nt,z)
(n,z)
(n,x)
{n,x)
(n,z)

{n,w)

(m,w)
{m,y)
(m,y)
(m,w)
(n,w)
(n,y)
(n,y)
(n,w)

Partial order

1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1
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(sl9 s 2 , . . . , sr) < ( t u t29..., tr)

if and only if
Si<h

for each / = 1, 2 , . . . , r; s,, ^ e S, (/ = 1, 2 , . . . , r).
Some of the classical algebraic decomposition theorems (e.g., those

for finite Abelian groups and finite dimensional vector spaces) depend
on the direct product as their implied construction rule. That is, a
structure is decomposed in such a way that it can be represented as a
direct product of simpler structures. The direct product encodes a strong
principle of independence or orthogonality: the elements of the compound
structure are the members of the Cartesian product of the elements of
the components, and operations in the compound structure are performed
as the conjunction of their independent operations in component
structures. If a partially ordered semigroup is isomorphic to the direct
product of nontrivial partially ordered semigroups (i.e., of semigroups
whose sets contain more than one element), then we term it directly
reducible. For instance, the partially ordered semigroup T presented in
Table 4.1 is isomorphic to S1 x S2 in Table 4.3, as can be seen by map-
ping elements a, b, ab, ba, bb, aba, abb and bba of T onto (ra, x), («,  y)9
(m, y), («,  z), (w, w), (ra, z)9 (m, w) and (n, x) of S1 x S2, respectively. Thus,
T is directly reducible. The task of understanding the structure of T may
now be replaced with that of understanding the structure of the simpler
components of T: the two components operate independently of one
another, and their conjunction is isomorphic to T.

The notion of direct reducibility can be captured with the following
definition.
DEFINITION. A partially ordered semigroup S is termed directly reducible
if it is isomorphic to a nontrivial direct product of partially ordered
semigroups (i.e., as the direct product of semigroups, at least two of
which are not one-element semigroups). Otherwise, S is directly irre-
ducible. The representation of S as the direct product Sj x S2 x • • •  x Sr
is termed a direct reduction or direct representation of S, and the
semigroups Sl9 S 2 , . . . , Sr are termed its direct components.

Existence of direct representations
The direct decomposition of the partially ordered semigroup of Table 4.1
illustrates the useful descriptive role that direct decompositions may play.
We may ask, though, for which semigroups do such decompositions exist
and, where they exist, how can they be found? In answer to these ques-
tions, some results from universal algebra may be invoked.
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Table 4.4. The n-relation corresponding to the isotone homomorphism
from T onto S1

1
2
3
4
5
6
7
8

1

1
1
1
1
1
1
1
1

2

0
1
0
1
1
0
0
1

3

1
1
1
1
1
1
1
1

4

0
1
0
1
1
0
0
1

TT-relation

5

0
1
0
1
1
0
0
1

6

1
1
1
1
1
1
1
1

7

1
1
1
1
1
1
1
1

8

0
1
0
1
1
0
0
1

For algebras in general, it has been shown that the form and existence
of direct product representations may be characterized by the lattice of
homomorphisms of the algebra (e.g., Birkhoff, 1967) or, equivalently, by
the lattice of its 7r-relations. Recall that an isotone homomorphism from
a partially ordered semigroup S onto a partially ordered semigroup T
is a mapping <j> from S onto T such that, for all st, s2e S,

(s2), and
2 Sj <s2 in S implies 0(5X) < <j>(s2) in T.

The semigroup T is termed an isotone (homomorphic) image of S, and
we write T= 0(S).

Now each isotone homomorphism 0 defined on a partially ordered
semigroup S corresponds to a unique ^-relation n^ on S:

(S, t) EKf iff 0(t) < 0(S).
For instance, consider the partially ordered semigroups T and Sx of Tables
4.1 and 4.2, respectively. There is an isotone homomorphism from T
onto Sa in which

0(<j) = <j)(ab) = <t>(aba) = <j)(abb) = m

and

= <p(bb) = 0(6fea) = n.
The corresponding ^-relation is shown in Table 4.4, and it may be
verified that 0(f) < 0(s) if and only if (s, f) e;r0.

It was established in chapter 3 that the collection Ls of isotone
homomorphic images of a partially ordered semigroup S defines a
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lattice, as does the collection Ln(S) of ^-relations on S. Further, the lattice
Ln(S) is dual to the lattice Ls.

For example, the collection of all homomorphic images and correspond-
ing ^-relations for the semigroup T of Table 4.1 are shown in Tables
4.5 and 4.6, respectively. Each homomorphic image is the quotient
semigroup associated with exactly one 7r-relation on S, and the partial
ordering among ^-relations, displayed in Figure 4.1, is clearly the dual
of that among corresponding homomorphic images illustrated in Figure
4.2. (The homomorphic images and ^-relations are labelled in Tables
4.5 and 4.6 so that T/n, is isomorphic to Th for / = 1, 2 , . . . , 7.)

The manner in which the ^-relation lattice Ln(S) - or, equivalently,
the homomorphism lattice Ls - of a partially ordered semigroup S
determines the existence and nature of its direct product representations
may now be expressed as follows:

THEOREM 4.1. The partially ordered semigroup S is the direct product of
partially ordered semigroups Sl9 S2,. . . , Sr // and only if there exist n-
relations nun2,..., nTeLJS) such that

1 S/ftj is isomorphic to Si5 for each i;
2 glb(rc,, TC2, . . . , 7cr) = nmin;
3 lub(7Ci, glb(7C1, n2,...,nl_1))= nmax, for each i; and
4 the n-relations are permutable, that is,

for all i = 3 , 2 , . . . , r;j = l, 2 , . . . , r.

Proof: The proof is given in Appendix B (also Birkhoff, 1948, p. 87).

Thus, to find a direct product representation of a partially ordered
semigroup, it is necessary and sufficient to identify permutable n-
relations in the lattice LK(S) that satisfy conditions 2 and 3 of Theorem
4.1. If such a collection can be found, then the partially ordered semi-
group is isomorphic to the direct product of the corresponding quotient
semigroups. The identified quotient semigroups become the components
of the partially ordered semigroup S, that is, the collection of semigroups
of simpler structure from which it can be exactly reproduced.

For example, we can illustrate the procedures and theorem just
described by considering the partially ordered semigroup T presented
in Table 4.1. The ^-relations n2 and ns displayed in Table 4.6 satisfy
(a) glb(n2, n5) = nmin, (b) lub(n2, n5) = /rmax, and (c) n2n5 = n5n2 = ;rmax.
Theorem 4.1 thus establishes that the semigroup T of Table 4.1 can be
expressed as the direct product of the quotient semigroups Tln2 and Tln5.
It may be seen that the quotient semigroups Tln2 and Tln5 are isomorphic



Table 4.5. Isotone homomorphic images of the partially ordered semigroup T

Label Element

1
2
3
4
5
6
7
8

1
2
3
4

1
2

1
2

Right mult.

Word

a
b

ab
ba
bb

aba
abb
bba

a
b

ba
bb
a
b

a
b

table

Generator

a

1
4
6
4
8
6
1
8

1
3
3
1

1
1

1
2

&

3
5
7
5
2
7
3
2

2
4
4
2

2
2

2
1

Partial order

10000010
01100000
00100000
01110100
00001010
00100100
00000010
10001011

1001
0100
0110
0001

11
01

10
01

Label Element

1
2
3
4

Right mult.

Word

a
b

ab
ba

table

Generator

a

1
4
1
4

b

3
2
3
2

Partial order

1010
0110
0010
1111

1
2
3
4

1
2

a
b

ab
bb

a
b

1
2
3
4

1
2

3
4
1
2

1
2

1000
0110
0010
1001

10
11
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Table 4.6. n-relations in Ln(T)

Label TT-relation Label TT-relation

10000010
01100000
00100000
01110100
00001010
00100100
00000010
10001011

10001011
01100000
01100000
01110100
00001010
01110100
00001010
10001011

11111111
01101010
01101010
11111111
01101010
11111111
01101010
11111111

10001011
01110100
01110100
01110100
10001011
01110100
10001011
10001011

10100110
01101010
00100010
11111111
01101010
10100110
00100010
11111111

10000010
01110100
00100100
01110100
10001011
00100100
10000010
10001011

10100110
11111111
10100110
11111111
11111111
10100110
10100110
11111111

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

to S2 and Sx in Table 4.2, respectively, and that T is isomorphic to the
direct product displayed in Table 4.3.

Where they exist, direct product representations are clearly of great
use. Few partially ordered semigroups admit direct product representa-
tions, however. For instance, no partially ordered semigroup having an
odd number of distinct elements is directly reducible. For semigroups with
an even number of distinct semigroups, the proportion of semigroups
which are directly reducible is not known, but it is probably small. For
instance, of the 126 distinct semigroups with four elements and a partial
order equal to the identity relation (Forsythe, 1955) only nine possess
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Figure 4.1. The ^-relation lattice Ln(T) of the partially ordered
semigroup T

7VIT

7Vir7

Figure 4.2. The lattice LT of isotone homomorphic images of T

nontrivial direct reductions. There is some value, therefore, in also con-
sidering other forms of decomposition.

Subdirect representations

A universal algebraic construction that generalises the direct product to
allow some overlap in the structural content of components of associated
decompositions is that of the subdirect product. A subdirect product of
semigroups is defined as any subsemigroup of their direct product for
which the projection mapping into each component semigroup is a
surjection.
DEFINITION. A partially ordered semigroup T is a subsemigroup of the
partially ordered semigroup S if
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1 T is a subset (possibly empty) of S;
2 for any sl5 s2 eT, sa <s2 in T if and only if s2 <s2 in S (i.e.,

T has the partial order induced from S); and
3 T is a partially ordered semigroup (so that sl5 s2eT implies

Sls2eT).
DEFINITION. A partially ordered subsemigroup S of a direct product
Sj x S2 x • • •  x Sr of partially ordered semigroups Sl9 S 2 , . . . , Sr is called
a subdirect product of the S* (& = 1, 2 , . . . , r) if, given sk e S*, there exists
an element s sS having sk as its component in Sk. US is isomorphic to
a subdirect product of two or more nontrivial partially ordered
semigroups (i.e., partially ordered semigroups having more than one
element), then S is termed subdirectly reducible and the collection
{Sl9 S 2 , . . . , Sr] defines a subdirect reduction or subdirect representation
of S; otherwise, S is subdirectly irreducible. The semigroups S* in a
subdirect reduction of S are termed its subdirect components.

For example, the semigroups Ul and U2 displayed in Table 4.7 have the
direct product also shown in Table 4.7. The subsemigroup U of the direct
product presented in Table 4.8 is a subdirect product of l^ and U2
because each element of U1 and U2 appears in some element of the
subsemigroup 17. That is, elements x and y of U1 each appear at least once
as the first component of elements in U; similarly, elements a, b, c, <i, e, f
and g of U2 each appear at least once as the second component of an
element in 17. The semigroup V appearing in Table 4.9 can be seen to be
isomorphic to the semigroup 17 of Table 4.8 by mapping elements 1 to 8
of V onto (x, a), (x, b), (y, c), (y, d)9 (y, e), (y, /"), (*, c) and (*, g) of 17.
The semigroup V of Table 4.9 is therefore subdirectly reducible, with
subdirect components isomorphic to Ux and 172.

The definition of subdirect product guarantees that the projection
mapping

<t>k- S-^Sk

from a semigroup onto any of its subdirect components given by

0*(S1 5 S2, . . . , Sr) = Sk

is an isotone homomorphism, for each k = 1, 2 , . . . , r. For example, the
^-relations nx and n2 appearing in Table 4.10 are associated with
homomorphisms from the semigroup Vonto Ux and U2. (Table 4.10 presents
all ^-relations in LK(V).)

It may be observed that the operations in a subdirect product of semigroups
are performed as the conjunction of their independent operations in the
subdirect components, just as for the direct product. The sense in which
the components of a subdirect product fail to be independent is not in
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Table 4.7. Two partially ordered semigroups U1 and U2 and their direct
product Ut x U2

Label

Label

U2

Label

UtxU2

Element

X

y

Element

a
b

aa = c
ab = d
ba-e
bb = f

bab = g

Element

(x,a)
(x,b)
(x,c)
(x,d)
(x,e)

(x,f)
(x,g)
(y,a)
(y,b)
(y,c)
(y,d)
(y,e)

(y,f)
(y,g)

Right mult, table

Generator

X

y
X

Right mult, table

y

X

y

Generator

a

c
e
c
a
c
a
e

Right mult, table

b

d
f
c
a
g
b
e

Generator

(x,a)

(y,c)
(y,e)
(y,c)
(y,a)
(y,c)
(y,a)
(y,e)
(x,c)
(x,e)
(x9c)
(x,a)
(x,c)
(x,a)
(x,e)

(x,b)

(y,d)
(y,f)

(y,c)
(y,a)
(y,g)
(y,b)
(y,e)
(x,d)

(x,f)
(x,c)
(x,a)
(x,g)
(x,b)
(x,e)

Partial order

1 0
0 1

Partial order

1 1 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 1 0 1 0
0 0 0 0 1 10
0 0 0 0 0 1 0
0 1 0 0 0 0 1

Partial order

11000000000000
01000000000000
11111110000000
00010100000000
00001100000000
00000100000000
01000010000000
00000001100000
00000000100000
00000001111111
00000000001010
00000000000110
00000000000010
00000000100001

terms of the operations in the component structures. Rather, it is the
inability of the components to be independently realisable in the com-
pound structure, that is, the failure of the compound algebra to exhibit
the full Cartesian product structure from the components, which renders
the components nonindependent. (For further discussion of these two
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Table 4.8. A subsemigroup UofU1x U2 that defines a subdirect
product of U1 and U2

Element

(x,a)
(x,b)
(x,c)
(x,g)
(y,c)
(y,d)
(y,e)
(y,f)

Right mult, table

Generator

(x,a)

(y,c)
(y,e)
(y,c)
(y,e)
(x,c)
(x,a)
(x,c)
(x,a)

(x,b)

(y,d)
(y,f)
(y,c)
(y,e)
(x,c)
(x,a)
(x,g)
(x,b)

Partial order

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

Table 4.9. A partially ordered semigroup V isomorphic to the
semigroup U

Element

1
2
3
4
5
6
7
8

Right mult, table

Word

F
H

FF
FH
HF

HH
FFF

HFH

F

3
5
7
1
7
1
3
5

Generator

H

4
6
7
1
8
2
3
5

Partial order

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 00
0 0 0 0 0 1 0 0
1 1 0 0 0 0 11
0 1 0 0 0 0 0 1

aspects of independence, both of which are usually required, see Krantz,
Luce, Suppes & Tversky, 1971, pp. 246-7.)

Existence of subdirect representations

As for direct product representations, the existence and nature of
subdirect representations of a given partially ordered semigroup S are
also determined by its ^-relation lattice, Ln(S) (e.g., Birkhoff, 1967).
THEOREM 4.2. A partially ordered semigroup S is isomorphic to a
subdirect product of partially ordered semigroups Sl9 S 2 , . . . , Sr if and
only if there exist n-relations nu n2,..., nr e L^S,), such that
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Table 4.10. n-relations in LK(V)

Label ^-relation Label ^-relation Label ^-relation Label ^-relation

K0 11000000 nx
01000000
00111100
00010100
00001100
00000100
11000011
01000001

KA 11111111 K5
01000000
11111111
11111111
11111111
00000100
11111111
11111111

1 S/7Ci is isomorphic
2 glb(KlyK2,...y Kr]

11000011 K2
11000011
00111100
00111100
00111100
00111100
11000011
11000011

11111111 K€
01000100
11111111
11111111
11111111
01000100
11111111
11111111

to Si5 and
) = ^min'

11000000 TC3
01000000
11111111
00010100
00001100
00000100
11111111
01000001

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

11000011
01000000
00111100
00111100
00111100
00000100
11000011
11000011

Proof: See, for example, Birkhoff (1967, p. 193).

From Theorem 4.2, it follows that a partially ordered semigroup S is
subdirectly irreducible if, and only if, its lattice Ln(S) of ^-relations has
a unique element covering its minimal element.
DEFINITION. An atom of a lattice L with minimal element z is an element
a > z satisfying the condition:

a > b and b > z implies a = fc, for any b e L;
that is, it is an element that covers the minimal lattice element.
Hence:

THEOREM 4.3. A partially ordered semigroup S is subdirectly irreducible
if and only if its n-relation lattice L f̂Sj has exactly one atom.
As a result of Theorem 4.3, inspection of Ln(S) determines whether S
is subdirectly irreducible or not. In many cases, it also reveals that there
exist a large number of possible choices for the components of the sub-
direct reduction, through the many possible combinations of choices for
the nk satisfying condition 2 of Theorem 4.2.

For example, the partially ordered semigroup Vof Table 4.9 is subdirectly
reducible. Its ^"-relations are listed in Table 4.10 and the diagram of its
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Figure 4.3. The ^-relation lattice Ln(V) of the partially ordered
semigroup V

Figure 4.4. The ^-relation lattice Ln(U2) of the semigroup U2
(^-relations of U2 are presented as ^-relations on V; see Table 4.10)

^-relation lattice is shown in Figure 4.3. The /r-relation lattice clearly
contains more than one atom. The ^-relations nx and n2 satisfy the con-
ditions of Theorem 4.2, and so {S/nu Sln2] defines a subdirect repre-
sentation of V, as we have observed. Consider now, however, the
partially ordered semigroup U2 whose ^-relation lattice Ln(U2) is shown
in Figure 4.4. (Because U2 is an isotone homomorphic image of V, the
^-relations can be presented as ^-relations on V, as in Figure 4.4.) The
lattice contains just one atom, and as a result, U2 is subdirectly irre-
ducible (Theorem 4.3).

If a partially ordered semigroup is subdirectly reducible, it usually
admits a number of different subdirect representations, and the problem
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is raised of how to select one subdirect representation from the often large
set of possibilities. For example, the semigroup V may be written as a
subdirect product of quotient semigroups associated with each of the
following sets of ^-relations:

2 {n^nj;
3 {n2, n3, n5};
4 {nl9n29n4};

6 { n u 7T2, 7T4, 7T5};
7 {7Tl5 7T2, ^3> K4-> ^ 5 } -

Some means of ordering the various subdirect representations in terms
of efficiency would clearly be useful, a claim that is illustrated by com-
paring the subdirect representation of V in terms of nx and n2 with that
in terms of 7T2, /T3, n4 and 7t5. The representation based on {nu n2} is in
terms of a subsemigroup of the direct product of two subdirectly irreduc-
ible semigroups. The subsemigroup has eight elements from the direct
product of order 14. In the case of the representation based on {TT2, TT3,
#45 5̂}? V is represented as a subdirect product of four semigroups, not
all of which are subdirectly irreducible, and the size of the direct product
semigroup of which V is a subsemigroup is 168. Indeed, of the subdirect
representations of V just listed, only the second, fourth and sixth are
representations in terms of subdirectly irreducible semigroups. The ex-
ample suggests that one useful way of restricting candidate subdirect
representations is to exclude those whose components are subdirectly
reducible.

Factorisation

We define a special form of subdirect decomposition of a partially
ordered semigroup, termed a factorisation, in two steps. In the first
step, we eliminate subdirect representations with reducible components.
In the second, we define a partial ordering on the remaining subdirect
representations in terms of efficiency and eliminate all those represen-
tations that are not of maximal efficiency.

For convenience of expression, the subdirect representation correspond-
ing to the equation

( 7 c u n 2 9 . . . , nr)

is identified with the collection of ^-relations {nu /r2,.. . , 7tr}.
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Figure 4.5. A ^-relation lattice admitting two irredundant subdirect
decompositions

DEFINITION. An element n of a lattice L is meet-irreducible (hereafter,
irreducible) if

n - glb(7tu n2) implies n - nx or n - n2,

A subdirect decomposition {nly n2,..., nr] is irredundant if

1 nx is irreducible, for each i = 1, 2 , . . . , r, and
2 g/fe^, ; r 2 , . . . , ^ _!, ^ + ! , . . . , ;rr) > ;rmin, for each / = 1 , 2 , . . . , r.

For instance, in Figure 4.3 the elements nl9 n2, n* and 7t5 are irreducible,
but ^3 is not because n3= glb(nu n4). The representation [n^ K2] is
irredundant because it comprises two irreducible ^-relations, each lying
above nmin. The representations {;r2, /r3} and {nu n2, n5} are not
irredundant, however, because the first contains a reducible element and
the second contains an element n5 whose omission leaves a subdirect
representation. Thus, in an irredundant subdirect decomposition of a
semigroup, no component is reducible (condition 1) and no component
can be removed from the collection to leave a set still serving as a
subdirect representation (condition 2). In the interests of efficiency,
therefore, it is useful to restrict attention to irredundant subdirect rep-
resentations.

In general, however, irredundant subdirect representations are not
necessarily as parsimonious as possible. The ^-relation lattice dia-
grammed in Figure 4.5, for example, indicates the existence of two
irredundant subdirect reductions, {nl9 K2) and [nl9 n3}. In such a case, the
quotient semigroup Sln2 is a homomorphic image of Sln^ indicating that
{#!, n2) is the more concise irredundant subdirect representation of S.
Relative parsimonies of this kind may be captured by the following
definition.
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DEFINITION. Let Fj = {7Tl5 /r2, . . . , 7Cr] and F2 = {5i, 5 ^ , . . . , 8q] be irredundant
subdirect representations of a partially ordered semigroup S. Define a
partial ordering on irredundant subdirect representations according to
Fx < F2 iff, for each / = 1 , 2 , . . . , g, there exists some i (/ = 1 , 2 , . . . , r) such
that

in L^(S). Further, given a collection F of irredundant subdirect repre-
sentations of S, define F e F to be minimal if G < F and G G F implies
G = F.

Then the following definition is proposed as characterising a useful
class of subdirect decompositions.

DEFINITION. A factorisation of a partially ordered semigroup S is any
minimal irredundant subdirect representation of S. Each component of
a factorisation of S is termed a factor of S; the factors may be said to
constitute a factorising set.

For example, a semigroup with Figure 4.5 as its ^-relation lattice has
a unique factorisation, corresponding to the factorising set F = {/rl5 K2).
For the subdirect representations of the semigroup V listed earlier, only
{̂ ij ^2} is irredundant, so that V also has a unique factorisation.

In general, the collection of factorisations of a partially ordered
semigroup is claimed to define a particularly useful class of subdirect
representations of the semigroup. Any factorising set of a semigroup is
sufficient to describe all of its structural content; moreover, the algebraic
conditions of the factorisation definition provide an operationalisation
for the intuitively useful requirement that the factors be maximally
independent of one another. Hence, the structural complexity implicit
in a full algebraic representation, recorded in the multiplication table
and partial order of a semigroup, may be resolved by identifying col-
lections of structurally simpler components of the semigroup that are
known to combine in reasonably independent ways to produce the
original semigroup. Such collections permit the structural content of
the semigroup to be manipulated in a manageable way. Thus, the iden-
tification of all factorisations of a partially ordered semigroup may be
seen as a first step in reducing the possible complexity of an algebraic
description.

Some more examples of factorisation are presented later in the chapter
after an algorithm for constructing factorisations is described. Before
describing the algorithm, though, the question of whether a semigroup has
just one or a number of possible factorisations is briefly discussed.
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Uniqueness of factorisations

Some partially ordered semigroups have unique factorisations, as in all the
examples shown so far, but for others there is more than one possible
factorisation. In part, the question of the uniqueness of irredundant reduc-
tions of a partially ordered semigroup is resolved by knowing the type of
structure that the ^-relation lattice of the semigroup possesses.

DEFINITION. A distributive lattice L is one in which

glb(x, lub(y, z)) = lub(glb(x, y)9 glb(x, z))

for all x9 y, z e L. A modular lattice L is one in which

x < z implies lub(x, glb(y> z)) = glb(lub(x, y)9 z)

for all y e L; for any x,zeL.

Note that any lattice that is distributive is necessarily modular, but the
converse does not hold. The lattices displayed in Figures 4.1 and 4.4 are
both distributive and therefore modular; the lattices of Figures 4.3 and
4.5 are nonmodular. In fact, the lattices displayed in Figures 4.3 and 4.5
are the only nondistributive lattices of five elements (e.g., Birkhoff,
1967).

THEOREM 4.4. If the n-relation lattice hn(S) of a partially ordered semi-
group S is distributive, then S possesses a unique irredundant subdirect
representation.

Proof: For example, see Birkhoff (1967, p. 58); the theorem is implied
by the dual of the corollary to Lemma 1.

For example, because the lattice of Figure 4.1 is distributive, Theorem 4.4
guarantees that the factorisation of any partially ordered semigroup whose
^-relation lattice is isomorphic to Figure 4.1 is unique. In particular, the
semigroup T necessarily possesses a unique factorisation.

If the /r-relation lattice is modular but not distributive, then irredundant
subdirect representations are not necessarily unique, but it is at least
guaranteed that all irredundant reductions have the same number of com-
ponents. Specifically:

THEOREM 4.5 (Kurosh-Ore Theorem). If the n-relation lattice l^(S) of a
partially ordered semigroup S is modular, then the number of compon-
ents in any irredundant subdirect representation of S is independent of
the representation.

Proof: See, for example, Birkhoff (1967, pp. 75-6).



156 4. Decompositions of network algebras

Figure 4.6. A nondistributive, modular lattice

An example of a modular lattice that is not distributive is presented
in Figure 4.6. A ^-relation lattice isomorphic to Figure 4.6 has three
irredundant subdirect representations, namely, {nu n2], {KU n3] and
{TT2, n3}. On grounds of parsimony, there appears no reason to choose
one of the three representations as optimal.

Lattices that are not even modular give rise to nonunique irredundant
subdirect representations in a different way, as Figure 4.5 illustrates. The
^-relation lattice presented in Figure 4.5 is actually the critical sublattice
for nonmodularity. That is, a lattice is nonmodular if, and only if,
it contains the lattice of Figure 4.5 as a sublattice (where a subset M
of a lattice L is a sublattice if, for any x ,yeM, glb(x, y) eM and
lub(x,y) eM). The nonmodular lattice of Figure 4.5 possesses two
irredundant subdirect representations, corresponding to {/r1? n2\ and
{nu /r3}. The factorisation definition selects the unique representation in
terms of {nu K2\, because {/rl5 K2] < {7tu n3}. In this case, we have argued
that the representation using [nu n2] is more efficient than that in terms
of {nl9 n3).

An algorithm for factorisation

Like direct and subdirect representations of a semigroup, the existence
and form of factorisations is determined by its ^-relation lattice. However,
as for direct and subdirect representations also, the definition of a fac-
torisation is of the existence type. That is, the discovery of the complete
set of factorisations of the semigroup involves (a) examination of the
^-relation lattice to ensure that all irredundant subdirect decomposi-
tions have been considered as potential factorisations and (b) verifica-
tion of whether any proposed irredundant subdirect decomposition is
minimal. For many partially ordered semigroups of interest, however,
the ^-relation lattice is quite large, and the implied search of the ^-relation
lattice is a demanding task. For a partially ordered semigroup S of n
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elements, the number of elements in the ^-relation lattice of S can be as
large as the number of distinct quasi-orders on n elements. Thus, even
for a semigroup with a small number of elements, the ^-relation lattice
may have a large number of ^-relations. As a result, an algorithm that
identifies precisely the collection of all factorisations of a given finite
partially ordered semigroup is of considerable use and will be described.

Let M = {zl9 z2, • . . ,  za] be the set of atoms of the ^-relation lattice Ln(S)
of a partially ordered semigroup S.

DEFINITION. Let neLK(S). Define a meet-complement (hereafter, com-
plement) ointo be any element 8 e LK(S) such that

1 8 > ;rmin, and
2 glb(89 n) = ;rmin.

Further, for any atom z G Ln(S), define the set of maximal complements
of z by

C(z) = {z* eL^S): (a) z* is a complement of z and (b)
glb(w, z) = ;rmin and w > z* implies w = z*}.

For instance, the lattice displayed in Figure 4.3 has atoms n2 and 7T3, and
their corresponding sets of maximal complements are {nx} and
respectively.

Now consider sets of the form

F " = {yf-GQZ,.); 1 = 1 , 2 , . . . , * } . (4.1)
Each set F* * comprises a collection of complements, exactly one from
the set of maximal complements for each atom in the set M. We can
show that each set F* * corresponds to a subdirect representation of S.
LEMMA 4.1. Each F** defines a subdirect representation ofS in terms of
irreducible components.
Proof: The proof is given in Appendix B.

Further, the collection of factorisations of a partially ordered semigroup
may be constructed from the collection of subdirect representations of the
form F**. First, we define F* to be the family of irredundant subdirect
representations derived from the i7**; that is, let

F* = {F* : F* is a subset of F** defined by equation (4.1)
and F* is an irredundant subdirect representation}.

Second, let F be the collection of minimal members of F*; that is, let
F = {F* e F* : F < F* and F eF* implies F = F*}.

That is, the set F is constructed from the set of maximal complements
of the form F* * in two stages. In the first stage, all possible subsets of
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F** that are irredundant subdirect representations are constructed. In
the second, minimal members of that collection are identified as mem-
bers of the set F.
THEOREM 4.6. F is the set of factorisations of S.
Proof: The proof is given in Appendix B.

Thus, to construct the collection of all factorisations of a partially
ordered semigroup S, one may proceed by

1 finding all atoms of its ^-relation lattice Ln(S); then
2 finding the set of maximal meet-complements of each atom;

then
3 selecting irredundant sets of elements, obtained by deleting

redundant members of sets of the form defined by (4.1); and
finally,

4 deleting any nonminimal members of that collection.

For example, consider first the partially ordered semigroup V of Table
4.9. The ^-relation lattice Ln( V) of V (Figure 4.3) possesses two atoms, /r3
and n2. Each of these atoms has a unique maximal complement, so that
{nu n2] is the only set of the form F**. It may quickly be seen that
{nly n2] is irredundant, so that {7rl5 n2] constitutes a unique factorisation
of the semigroup V.

Consider also the semigroup S(N4) of Table 3.6. The ^-relation lattice
of S(N4), shown in Figure 3.4, indicates that S(N4) has two atoms, n3
and n2. Each of the atoms has a unique maximal complement: n4 is a
unique maximal complement for n2, and n2 is a unique maximal
complement for n3. Hence [n2, nA] is a unique factorisation of S(N4).

In fact, if the maximal complement of an atom of the ^-relation
lattice of a partially ordered semigroup happens to be unique, then an
explicit expression for it may be given without constructing LJ^S). Rather,
it may be expressed in terms of readily generated ^-relations.

DEFINITION. Let nst be the least ^-relation including the partial ordering

s>t
for s, teS. nst is termed the n -relation generated by the ordering s > t.
Let z be an atom of the TT-relation lattice Ln(S). Define a relation n(z)
by

n(z) = {(s, t): glb(nst, z) = ;rmin; s, t e S}.

For example, consider the partially ordered semigroup V of Table 4.9.
The semigroup does not contain the ordering 1 > 6, and the 7i-relation
nl6 has the form shown in Table 4.11. Table 4.12 records the
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Table 4.11. The n-relation nl6 generated
by the ordering 1 > 6 on the semigroup V

11111111
01000000
11111111
11111111
11111111
00000100
11111111
11111111

Table 4.12. n-relations generated by each possible additional ordering
i > j on the semigroup V

/

1
1
2
3
4
5
6
6
7
8

/ Relation

3 *4
Q

6 7T5

7 ;r2

3 n3

2 n
o ,_

D 7T-

I

1
2
2
3
4
5
6
7
8
8

;

4
1
7
8
7
4
3
3
1
7

Relation

^4

K2
K4

K

n3

* 3

/

1
2
2
4
4
5
6
7
8

/ Relation

5 KA

o _

1 ^4
Q

7 ^4
4 ^
3 /^
3 ^4

1
2
3
4
5
5
6
7
8

/

6
4
1
2
1
8
5
4
4

Relation

* 4
n6
K2

K4
K4
K\

K4

i

1
2
3
4
5
6
6
7
8

i

7
5
2
3
2
1
7
5
5

Relation

n6
K2

K4

n
n2
K4

^-relations generated by each potential additional ordering on V, using
the labelling of ^-relations appearing in Table 4.10. It can be seen from
Table 4.12 that the relation #(7^) constructed according to the preced-
ing definition is 7T2, whereas n(n3) = nx. In fact, it can be established
more generally that:

THEOREM 4.7. If z has a unique maximal complement, then n(z) is a
n-relation and C(z) = {n(z)}. Conversely, if n(z) is a n-relation, then it is
the unique maximal complement of z.
Proof: The proof is given in Appendix B.

Theorem 4.7 establishes that a check on whether 7t(z) is a 7r-relation is
equivalent to a check on whether z has a unique maximal meet-
complement; if so, it identifies that maximal meet-complement as n(z).
Furthermore:
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THEOREM 4.8. Let M - (zu z2, . . ., z j be the set of atoms of the
n-relation lattice of a partially ordered semigroup S. If, for each zx e M,
Zj has a unique maximal complement n(zj, then the factorisation of S
is unique and (ufa), n(z2),..., n(za)} is the factorising set.
Proof: The proof is given in Appendix B.
For example, Theorem 4.8 establishes that {/rl5 n2] is a unique factori-
sation for the semigroup V of Table 4.9. We may also attempt to apply
Theorems 4.7 and 4.8 to the ^-relation lattice Ln(T) of the partially
ordered semigroup T of Table 4.1. The lattice Ln(T) possesses three
atoms, nu n2 and n3. The relations / r ^ ) , n{n2) and n(n3) corresponding
to the atoms are ^-relations and are equal to n6, ns and TT4, respectively.
Thus, each atom has a unique maximal complement, and {/r6, TT5, n4}
defines a unique factorisation of T. The quotient semigroups for the
factorisation are presented in Table 4.5.

Each of these steps is potentially programmable, but at this stage, only
a partial implementation has proved necessary. The latter takes the form
of a program that (a) generates the /r-relation nst induced by adding each
possible additional ordering s > t not already present in S, (b) identifies
from the list the atoms of the ^-relation lattice of the semigroup and (c)
determines which of the ^-relations generated in step (a) are complements
of each atom. In the case of an atom possessing a unique maximal com-
plement, that complement is constructed according to Theorem 4.7. For
semigroups whose atoms all possess unique maximal complements, the
factorisation of the semigroup is found explicitly. The C program
PSFACT performing these steps is available from the author on request.

As another example of the application of the program, consider the
partially ordered semigroup S(N) generated by the blockmodel N = {L, A]
of Table 2.6. The semigroup is displayed in Table 1.13 (also Table 2.10).
PSFACT identifies that its TT-relation lattice Ln(S(N)) has the atoms shown
in Table 4.13. It also establishes that each of the atoms has a unique
maximal complement and hence constructs a unique factorisation of
S(N) in terms of those maximal complements. The maximal comple-
ments are also shown in Table 4.13 together with their corresponding
isotone homomorphic images.

Using factorisation to analyse network semigroups

So far in this chapter, it has been proposed that factorisation is a useful
procedure for breaking down a partially ordered semigroup into simpler
structural components. It has been shown how the lattice of ^-relations
of the semigroup determines the existence of factorisations, and an
algorithm for finding all factorisations has been presented.
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Table 4.13. Atoms in L^(S(N)) and their unique maximal complements
and corresponding factors

Isotone homomorphic image
corresponding to maximal complement

Right mult, table

K2

K

Atom

1 0 0 0 0 0 )
0 1 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1

1 0 0 0 0 0 ;
0 1 0 0 0 0
0 1 1 0 0 0
1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 1 1 1

1 0 0 0 0 0 )
0 1 0 0 0 0
0 1 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 1 1 1 1 1

Maximal
complement

T4 1 1 1 1 1 1
0 1 1 0 1 0
0 1 1 0 1 0
1 1 1 1 1 1
0 1 1 0 1 0
1 1 1 1 1 1

z5 1 0 0 0 0 0
0 1 0 1 0 0
1 1 1 1 1 1
0 1 0 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1

z6 1 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Element

1
2

1
2
3

1
2
3

Word

L
A

L
A

LA

L
A

AL

L

1
1

1
2
3

1
3
3

A

2
2

3
3
3

2
3
3

Partial
order

1 1
0 1

1 00
0 1 0
1 1 1

1 0 0
1 10
1 1 1

The factorisation procedure is presented as a first step in the analysis
of the partially ordered semigroup of a network. By determining the
factors of a number of different but comparable network semigroups, we
can begin to identify the algebraic components that arise commonly in
network semigroups. We can therefore begin to describe commonly occur-
ring simple structural forms for networks comprising the given set of
relation types. The second step in the proposed analysis of a network
semigroup is that of determining which features of network relations
give rise to any factor of its semigroup. This step is discussed in detail
in the next chapter and is followed by a general procedure for describing,
or "interpreting", network semigroups using the factorisation procedure.

The reduction diagram
The factors of any factorisation of a partially ordered semigroup cor-
respond to ^-relations that are irreducible. That is, each factor of a fac-
torisation is subdirectly irreducible and possesses a unique (nontrivial)
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V/TT4

V/TT5

Figure 4.7. Reduction diagram for the factorisation of V

maximal isotone homomorphic image. That maximal image is either
factorisable or is itself subdirectly irreducible, and in the latter case, it
has a unique maximal homomorphic image.

One may systematically find the unique images of all factors appearing
in a factorisation, their factorisations or unique images and so on. The
procedure results in a subset of the lattice Ls of homomorphic images of
S and, together with the partial ordering among its elements, it summarises
the structure of the partially ordered semigroup. The diagram illustrat-
ing this summary statement of the structure of Ls and, hence, of S is called
a reduction diagram; the following conventions are adopted in its pres-
entation:

1 The elements of the reduction diagram of a partially ordered
semigroup S are selected members of Ls and include S itself.

2 A single arrow directed from an element of the reduction dia-
gram represents a mapping of that element onto a unique
maximal (nontrivial) homomorphic image.

3 A collection of arrows directed from an element of the reduc-
tion diagram connect that element to the homomorphic images
appearing in its factorisation.

4 If no arrow is directed from an element of the reduction dia-
gram, then that element has only trivial homomorphic images.

For example, the reduction diagram for the factorisation of the partially
ordered semigroup V of Table 4.9 is presented in Figure 4.7.

Co-ordination of a partially ordered semigroup

Direct product decompositions may be constructed to provide a means
of finding a set of "co-ordinates" of the structure in question. A system
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Table 4.14. Co-ordinates for elements of the partially ordered
semigroup V in the subdirect representation corresponding to [KV n2]

Element of V

1
2
3
4
5
6
7
8

Co-ordinates

(x,a)
(x,b)
(y,c)
(y,d)
(y,e)
(y,f)
(x,c)
(x,g)

of co-ordinates may be obtained from the set of projections of a par-
tially ordered semigroup onto its components: the set of images of an
element under the projection set are its co-ordinates. For instance, in the
direct decomposition of the semigroup T of Table 4.1, the element a is
mapped onto the element (ra, x) in the representation of T by S1 x S2 so
that (ra, x) is a pair of co-ordinates for the element a of T.

The same procedure for co-ordination may be applied to subdirect
representations of a partially ordered semigroup. The co-ordinates for an
element are given by its images under projection mappings onto the com-
ponents, and operations on a set of elements can be determined from
operations on their co-ordinates. An example of a system of co-ordinates
from a factorisation is given in Table 4.14. The co-ordinates are for the
elements of the partially ordered semigroup V of Table 4.9 and are
obtained by the mapping of each element onto elements of the semigroups
U1 and U2, respectively. For example, element 1 of the semigroup V is
mapped onto element x of U1 and element a of U2 and is therefore assigned
the co-ordinates (x, a). Element 2 of V is mapped onto x in U1 and b in
U2 and so has co-ordinates (x, b). Note that multiplication of elements can
be computed from multiplication in the component structures; the product
of elements 1 and 2 from V, for example, is given by

(x, a)(x9 b) = (xx9 ab) = (y, d),
and (y, d) corresponds to element 4 in V.

Relationships between factors
A factorisation of a partially ordered semigroup was observed earlier to
give rise to a set of maximally independent irreducible components of the
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Table 4.15. Association indices for factors of the semigroups T and V

Factor

T/n4
TIK5

Tin,

Semigroup

T/7t4

1.00
0.00
0.00

T

Tln5

0.00
1.00
0.00

T/K6

0.00
0.00
1.00

Factor

Vlnx
V/n2

Semigroup V

VlKx

1.00
0.46

V/K2

0.46
1.00

semigroup. The extent of the dependence among components can, in fact,
be quantified by an association index such as the one defined here:

DEFINITION. Let SIKX and Sln2 be quotient semigroups of a partially
ordered semigroup S. The association between the quotient semigroups
may be indexed by

r(nl9n2) =

s

s

5
n2

S
n2

-

S
glb(nhn2)

S

lub(ffi,w2)
where \Sln\ is the number of distinct classes in the congruence relation
on corresponding to n - that is, the relation given by (s, t) e on if and
only if (s, t) en and (t, s) e n. The index may also be written as r(S/nu S/
TT2), understood to have the same meaning as r(nu n2).

The properties of the index are summarised in Theorem 4.9.

THEOREM 4.9. The association index just defined for quotient semigroups
of a partially ordered semigroup satisfies

1 0<r(nl9 n2) < 1, and r(nl9 n2) = r(n2, nt)9 for all nl9 n2 eLre(S);
2 r(nu n2) = 0 if and only if S/glb(7C1, TC2) is isomorphic to SMj x

S/TC2; and
3 if TCj = n29 then t(nl9 n2) = 1.

Proof: The proof is given in Appendix B.

Thus, the index takes values in the range 0 to 1 and achieves its lower
bound precisely when the quotient semigroups are independent in the
full sense (Krantz et al., 1971). The upper bound of 1 is obtained when
the ^-relations coincide, as well as under the condition of nonequal
^-relations having associated congruence relations that are equal.

The association indices for every pair of factors of the semigroups T
(Table 4.1) and V (Table 4.9) are presented in Table 4.15. For instance,
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Table 4.16. Multiplication table for a semigroup S

1
2
3
4
5
6

1

1
4
6
4
6
6

2

3
5
5
5
5
5

3

3
5
5
5
5
5

4

6
6
6
6
6
6

5

5
5
5
5
5
5

6

6
6
6
6
6
6

to calculate the value of the index for VI nx and V/n2y we determine that
glb(V/nl9 V/n2) is VI n0 (i.e., V) and lub(V/nl9 V/n2) is V/̂ :6 (see Figure
4.3), and that the semigroups V/nu V//r2, glb(Vlnu VIn2) and lub{Vlnly
Vln2) have 2, 7, 8 and 1 elements, respectively. Consequently, the value
of the index of association between the factors V/n1 and V/n2 of V is
(2x7-8)7(2x7-1) , or 0.46.

Factorisation of finite abstract semigroups
It was observed in chapter 2 that some authors have confined their
attention to the multiplication table of the semigroup of a network and
have ignored the partial order of the semigroup. In such a case, the
scheme of analysis previously outlined may be readily modified to yield
an analysis of an abstract semigroup into abstract semigroup compo-
nents. The modification takes the form of a condition on the partial
order of a semigroup, namely, that it is symmetric (so that if s > t in a
semigroup S, then it must be the case that t > s and thus that s = t). We
then construct ^-relations on the semigroup S corresponding to
homomorphisms, as before, but we add the requirement that ^-relations
must be symmetric. For instance, consider the abstract semigroup S of
Table 4.16. (S is the abstract semigroup generated by the blockmodel
N of Table 2.6.) To construct relations on S corresponding to
homomorphisms of S(N), we first replace the partial order of the
semigroup S(N) with the identity relation (so that i<j in S if and only
if /=/ ; /, jeS). We then generate ^-relations containing the identity
relation, which not only are reflexive and transitive and satisfy the
condition

(s, t) en implies (#s, ut) e n and (su, tu) e/r, for any u eS,
but also are symmetric. Each such ^-relation generated corresponds to
an (abstract) homomorphism of the semigroup S, and any homomorphism
of S is associated with such a ^-relation.
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THEOREM 4.10. Let§ be a homomorphism on a semigroup S. Then the
relation n^ on S given by

); s , teS
is reflexive, symmetric and transitive and has the property:

(s, t) e 7t0 implies (us, utj e n^ and (su, tuj e n^, for any u e S.
The property is equivalent to the substitution property, namely:

(s^t^en^ and (s29t2)en^
implies

The relation n^ is termed the congruence relation corresponding to the
homomorphism ty. Conversely, any reflexive, symmetric and transitive
relation having the substitution property corresponds to a homomorphism
ofS.
Proof: The proof is contained in Appendix B.
The collection of all such ^-relations generated for a semigroup S form
a lattice AK(S) that is the dual of the lattice As of abstract homomorphic
images of S (see chapter 3). Direct representations, subdirect represen-
tations and factorisations may all be constructed from the lattice An(S).
For example, the list of all such ^-relations on the semigroup S(N) is
presented in Table 4.17. Each ^-relation is presented in the form of a
partition on the elements of S because each 7i-relation is reflexive,
symmetric and transitive, and therefore is an equivalence relation (or
partition) on S. The atoms of the lattice An(S) are the relations ;r14, n15
and nl€. Each atom has a unique maximal complement, which are,
respectively, ns, n3 and n9. The latter relations, therefore, give rise to a
factorisation of the abstract semigroup S.

A FORTRAN program MINLATT, which is the abstract semigroup
analogue of the program PSFACT for partially ordered semigroups, is
available from the author on request.

A decomposition procedure for role algebras
A similar procedure to that just outlined for partially ordered semigroups
also yields a useful decomposition procedure for structures such as role
algebras.

Recall, firstly, that a role algebra comprises a set R of generator re-
lations, a free composition operation on R giving rise to a free semigroup
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Table 4.17. n-relations in AK(S), presented as partitions on S

^-relation Partition on S

nx (123456)
n2 (1) (23456)
n3 (146) (235)
n4 (13456) (2)
K5 (146) (2) (35)
n6 (1) (2) (3456)
n7 (1) (235) (46)
*8 (1) (24) (356)
/r9 (1) (23) (456)
jcw (1) (23) (46) (5)
*n ( 1 ) ( 2 ) ( 3 ) ( 4 5 6 )
nn (1)(2)(35)(46)
*„ (1)(2)(356)(4)
*14 (1) (2) (3) (46) (5)
nX5 (1) (2) (3) (4) (56)
KU (1)(2)(35)(4)(6)
;r17 (1) (2) (3) (4) (5) (6)

FS(R) and a binary relation Q on FS(R) satisfying the conditions (a) Q
is reflexive and transitive (i.e., a quasi-order) and (b) (s, t) eQ implies
(sw, tu)eQ, for any MGFS(R), S, £GJFS(R). Each role algebra may be
presented in a finite form as a partial order and right multiplication
table on the equivalence classes of the relation eQ defined by

(s, t) e eQ iff (s, t)eQ and (*, s) e Q.
Tables 2.7, 2.8 and 2.10, for instance, present role algebras in such a
form.

Secondly, we may recall that the nesting relation for role algebras has
been introduced as a means of comparing role algebras. A role algebra
T is nested in a role algebra Q if whenever (s, t) eQ, then also (s, t) eT
(s, teFS(R)). That is, if T is nested in Q, T contains all of the orderings
present in Q plus some additional ones. Thus, the nesting relation is an
analogue for role algebras of the homomorphic mapping for partially
ordered semigroups: one partially ordered semigroup is a homomorphic
image of another if it contains all of its orderings and, possibly, some
additional ones.

Thirdly, we observed in chapter 3 that a unique ^-relation nT on the
classes of eQ is associated with each role algebra T nested in Q. The
relation nT is given by:

(s*, t*) enT if there exist relations s es*9 tet* such that (s, t)
eT, where s*, t* are classes of eQ.
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For instance, the role algebras nested in the role algebra Q of Table 2.7
were presented in Table 3.19, and their corresponding ^-relations were
given in Table 3.20.

Fourthly, we established in chapter 3 that the collection LQ of role
algebras nested in Q is a lattice under the nesting relation (T<Q if T
is nested in Q). The lattice Ln(Q) of ^-relations of Q is dual to LQ and
has the partial ordering: nT < nF if and only if (s*,t*) enT implies
(s*, t*) € nP, for any classes s*, t* of eQ. For example, Figure 3.7 presents
the ^-relation lattice of the role algebra Q of Table 2.7.

Finally, we noted that the minimal element of Ln(Q) is simply the
partial order for Q itself and that the greatest lower bound of two
^-relations in Ln(Q) is their intersection.

The factorisation procedure of this chapter establishes that the mini-
mal element amin of a lattice L may be expressed as the meet of lattice
elements

2,..., ar),

where the set F = {au a2,..., ar] has the following properties:

1 it is irredundant - that is, (a) each a{ is irreducible (so that
ai = glb(d\, d2) implies a{ - dx or a{ - d2), and (b) for each /,
glb(au . . . , a,; _ l5 at•,  +15..., ar) > amin - and

2 it is minimal - that is, F <G where G = [bl9 b2,. . . , bs] is any
other irredundant representation.

The set F has been termed a factorising set and may be identified by the
algorithm described earlier.

Because the minimal element of Ln(Q) is Q itself, and because the
greatest lower bound of elements in Q is their intersection, the fac-
torisation technique can be applied to Ln(Q) to give an expression for
the ^-relation nmin corresponding to the role algebra Q as the inter-
section of ^-relations corresponding to role algebras nested in Q:

tfmin = nTnnvn" • n 7rv.

The collection {T, 17, . . . , V} of nested role algebras, which is not nec-
essarily unique, is a set of maximally different role algebras nested in Q;
as such, it defines a decomposition of the role algebra Q into a col-
lection of "simpler" (Mandel, 1983) role algebra components.

Potential factorisations of a role algebra may be identified using the
algorithm described earlier. Where maximal meet-complements of at-
oms of Ln(Q) are unique, a unique factorisation of Q may be con-
structed explicitly. As for partially ordered semigroups, we may define
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Table 4.18. The n-relations n$t for each possible additional ordering s> t
onQ

s t nst Label in Table 3.20

L A 1 1 1 nx
0 1 0
1 1 1

L AL 1 1 1 nx
0 10
1 1 1

A L 10 0 /r2
1 10
1 1 1

A AL 1 0 0 TT3

1 1 1
1 1 1

DEFINITION. Let nst be the least ^-relation on the classes of Q for which
(s, £) G nst; it is termed the n-relation generated by the ordering s>t. Let
z be an atom of Ln(Q) and define n{z) by

;r(z) = {(s, t): glb(z9 nst) = ;rmin; s, * are classes of Q}.
A C program RAFACT, which constructs the relations ;rs, for all pairs
of classes s, t for which s ^ t, is available from the author on request.
The list of relations nst for the role algebra of Table 2.7 is presented in
Table 4.18.

It may be established that if TT(Z) is a ^-relation for each atom z e Ln(Q),
then the factorisation of Q is unique. That is,
THEOREM 4.11. Let M = {zl9 z2,..., z j be the set of atoms ofLJQ). If
Zj has a unique maximal complement, then that maximal complement
is n(zj. If each z{ e M has a unique maximal complement, then
{n(zt), n(z2),..., n(za)} defines a unique factorisation of Q.

Proof: The proof follows the same steps as the proofs for Theorems 4.7
and 4.8, and is omitted.

As an illustration of Theorem 4.11, consider the role algebra Q of
Table 2.7 whose relations Kst for classes s, t of Q, with s^t t are shown
in Table 4.18. The atoms of the lattice are Z\ = nx and Z2 = 7C2. The
relations n(z\) and n(z2) constructed from the preceding definition are
equal to n3 and nu respectively (and so, clearly, are ^-relations). Hence
{n(Z\), 7t(z2)} corresponds to a unique factorisation of Q, a conclusion
that can be verified by examination of the ^-relation lattice Ln(Q) of Q
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Table 4.19. Atoms z of the n-relation lattice of the local role algebra of
the network L and their unique maximal complements K(Z)

10000000
11100000
10100000
11111011
10101000
11111111
11101011
11100001

n(zx)

11000000
11000000
11111111
11111111
11111111
11111111
11111111
11111111

*2

10000000
11000000
10100000
11111111
10101000
11111111
11101011
11100001

Atoms
*3

10000000
11000000
10100000
11111011
10101000
11111111
11111011
11100001

Maximal complements

10000000
11111011
11111011
11111011
11111011
11111111
11111011
11111011

n(z3)

11101011
11101011
11101011
11111111
11101011
11111111
11101011
11101011

*4

10000000
11000000
10100000
11111011
11101001
11111111
11101011
11101001

x(z4)

10100000
11100001
10100000
11111111
10101000
11111111
11111111
11100001

in Figure 3.7. The right multiplication tables and partial orders corre-
sponding to the factors Qln^ and Q/n3 of Q are presented in Table 3.19.

Theorem 4.11 may also be used to establish that the local role algebra
presented in Table 2.4 and Figure 2.2 for the network L (Table 2.2)
possesses a unique factorisation. The program RAF ACT was used to
find the atoms zl5 z25 ̂ 3 a n d %4 of the ^-relation lattice of the role algebra
and the corresponding relations n(zi)9 7c(z2)9 ^fe) and ^(z4); all of the
relations are presented in Table 4.19. The factors of L are described in
detail in chapter 5.

The correspondence between the factorisation procedure for role
algebras and partially ordered semigroups establishes the link between
the proposed analyses of the algebraic representatives of network structure
in entire and partial networks. The only difference between the two
analyses is that, for entire networks, the definitions require relational
consistency for compound relations obtained by multiplying other re-
lations on the left, as well as on the right. At the network level, this
distinction amounts to the difference between comparisons among paths
with a fixed source, ego, and comparisons among paths with all pos-
sible elements as starting points. Apart from this distinction, though,
the analyses are the same.
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Summary

The outcome of this chapter is a decomposition procedure that yields
an efficient collection of maximally independent and simple components
of both partially ordered semigroups and local role algebras. We have
seen in detail how the procedure may be applied to some simple struc-
tures. More examples of the application of the factorisation technique
to semigroup and role algebra structures are given in subsequent chap-
ters. Next we describe how it can be used to develop a detailed scheme
of analysis for both of these representations of network structure.



An analysis for complete and
local networks

In chapter 4, a method for analysing the algebra of a complete or local
network into simple components was described. In this chapter we de-
velop a means for relating that analysis of the algebraic representation of
a network to decompositions at the relational or network level. In particu-
lar, we explore the question of whether each component, or factor, of the
algebraic representation corresponds to any component of the associated
network.

The importance of such a question is both mathematical and substan-
tive. Not only is it relevant to a more complete mathematical understand-
ing of the relationship between a network and the algebra that it defines
(and hence of the theoretical value of the representation), but it also plays
a significant interpretative role. More specifically, it enables us to deter-
mine whether each algebraic component has concrete relational refer-
ents and, if so, to identify them explicitly. These referents, if they exist,
provide data for the assessment of the representation in terms of the
original network data and so provide useful complementary evidence for
the value, or otherwise, of the representation.

In particular, the factorisation procedure decomposes the algebra of a
network into isotone homomorphic images in the case of partially ordered
semigroups, or nested role algebras in the case of local role algebras. In
each case, the components of the factorisation are "simpler" algebraic
representations than the algebra of the network, in the sense of making
fewer distinctions among labelled paths in the corresponding network.
It is natural to ask, therefore, whether there is any simplification of the
network that corresponds to this algebraic simplification. That is, can
we identify any means of reducing a complete or local network so that
the resulting structure has an algebraic representation equal to some
component of the factorisation of the original network? Because if we
can, then we are more likely to be able to link algebraic components of
the factorisation to specific features of the network in question. Such
a facility adds to the descriptive account of network structure made

172
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possible by the factorisation technique, and thereby assists in the evalu-
ation of the algebraic representations that have been proposed.

We consider these questions for complete and local networks in turn.

An analysis for complete networks
There are two general approaches to the problem of understanding the
relationship between reductions of a network and homomorphic images of
its semigroup. Firstly, when and how can we obtain a reduction of a
complete network corresponding to a given isotone homomorphic image
of its partially ordered semigroup? Secondly, under what conditions does
a given abstraction of a network induce an isotone homomorphism of the
network semigroup?

These two questions are examined in two stages. In the first, we
review known conditions under which simplifying a network leads to a
homomorphism of its semigroup. In the second, we develop an empirical
solution to the problem of identifying simplifications of the system
consistent with a given homomorphic image of its semigroup. Finally,
we show how the latter technique may be used in conjunction with
the factorisation procedure of chapter 4 to produce a systematic and
efficient analysis of the network.

Relational conditions for semigroup
homomorphisms

The graph-theoretical operation in terms of which correspondences be-
tween the semigroup and relational levels have generally been sought is
that of a homomorphism of the network, in the sense of Heil and White
(1976) and White (1977); Boyd (1991) also discusses a number of other
types of homomorphism. A network homomorphism of the type consid-
ered here is illustrated in Figure 5.1. The network displayed in Figure
5.1a may be mapped homomorphically onto that in Figure 5.1b. Each
node in the image network is the image of one or more nodes in the
original network. For instance, node a in the network T is the image of
nodes 1 and 2 in R, node b is the image of node 3, and node c is the
image of node 4. There is a link of a particular type between two nodes
a and b in the image network whenever a link of that type existed between
some node that is mapped onto a and some node that is mapped onto b.
The link need not exist for every pair of nodes in the original network
mapped onto nodes a and fo, respectively; rather, it need only have been
present for one or more such pairs. Thus, for instance, node 1 is con-
nected by the relation B to node 4 in R; hence the image a of node 1



174 5. Analysis, complete and local networks

(a) (b)

o a
(c) (d)

Figure 5.1. Some network mappings: (a) a network R on a
set X = {1, 2, 3, 4}; (b) a network T o n Y= {a, b, c} [T is a
homomorphic image of R under the mapping JJL(\) = jn(2) = a,
/i(3) = b, JU(4) = c]; (c) a network U on Z = {1, 2, 3} (U is a
subnetwork of R); (d) a network V on W = {a, b} [V is a derived
network of R under the mapping jx(\) = /*(2) = a, //(3) = 6, /i(4) is
undefined]

is linked by B to the image c of node 4. Note, however, that node 2,
which also has the image a, is «o£  linked to node 4 by J3 even though
their images are connected by B.

Formally, a network homomorphism can be defined in the following
way.

DEFINITION. The network T = {Tl5 T 2 , . . . , Tp] on the set Y is a
homomorphic image of the network R = {Ru R2,..., Rp] on the set X
if there exists a surjection ji from X onto Y such that

(yi> 3̂2) e Ti iff there exist nodes xu x2eX such that
ju(*i) = yi, ju(*2) = y2 and fo, *2) e R,; /= 1, 2 , . . . , / ? ,
yi, y2 e Y.

The mapping û is termed a network homomorphism.

It may be observed that the preceding definition also contains an im-
plicit mapping between relations in the two networks. In particular, it
is assumed that the networks are comparable in the sense described in
chapter 3, that is, there is a one-to-one mapping from relations in the
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first network to relations in the second. The relation Ra is mapped onto
Tl9 R2 is mapped onto T2 and so on. The mapping is left implicit in the
definition to avoid notational complexity; indeed, it is usually also the
case that corresponding relations in the two networks have the same
label. For instance, in Figure 5.1, the relation A has the same meaning
in each network displayed, and so does the relation B.

It may also be observed that each partition of the node set X of a
network may be associated with a homomorphism of the network. If P is
a partition of X and [x] = ji(x) denotes the equivalence class of P contain-
ing x9 then a homomorphism from R = [Ru R2, • • • > Rp)  is induced onto
T = {Tl5 T 2 , . . . , TP} on the equivalence classes of P with ([x]9 [y]) e T, if
and only if there exists some x e [x] and y e [y] such that (x9 y) e R,. We
write Tj = RJP and call the derived network T, the induced derived
network under the partition P. For instance, the homomorphism from
R onto T represented in Figure 5.1 is associated with the partition (12)
(3) (4) on the node set X of R.

Another kind of simplification of a network is a "subnetwork", also
illustrated in Figure 5.1. The network U on the node set {1, 2, 3} shown
in Figure 5.1c is a subnetwork of the network R of Figure 5.1a. The node
set {1, 2, 3} of U is a subset of the node set {1, 2, 3, 4} of R, and links are
present in U whenever links between the nodes {1, 2, 3} are present in R.
DEFINITION. The network T = {Tl5 T 2 , . . . , Tp] on the set Y is a subnetwork
of the network R = {R1? R2,.. . , Rp] on the set X if there exists a partial
one-to-one function fi from X onto Y such that

(yi* Ji) e T; iff there exist nodes xl9 X 2 G X such that
M(*i) = Vu M(*2> = Ji and (xl9 x2) e R,; i = 1, 2 , . . . , /?, yl9 y2 e Y.

Clearly, any subset Y of a node set X possesses a corresponding partial
one-to-one function jiy from X to Y and so defines a subnetwork of the
network on X. The function is given by

fi(x) = x if x e Y; otherwise /i(x) is not defined.
For instance, the mapping fi for the network U of Figure 5.1c maps
node 1 in R onto node 1 in U, node 2 in R onto node 2 in U, node 3
in R onto node 3 in U and is undefined for node 4.

More generally, one can define simplifications of a network that are
combinations of homomorphic images and subnetworks. An example is
presented in Figure 5.Id. The network V is a subnetwork of the
homomorphic image T of R; it can also be seen as a homomorphic
image of the subnetwork U of R. We shall refer to the network V as
a derived network of R, and it may be defined formally as follows.
DEFINITION. The network T = {T1? T 2 , . . . , Tp] on the set Y is a derived
network of the network R = {Rl5 R2,. . . , Rp] on the set X if there exists
a partial function \x from X onto Y such that



176 5. Analysis, complete and local networks

(yi? Ji) eT; iff there exist nodes xl9 x29 eX such that
A*(*i) = Vu M(*2) = yi a n d (*i> x2) e R,; i = 1, 2 , . . . , p;
y» yi e  Y.

Y is referred to as a derived set of X.
If the function \x is a surjection, then T is a homomorphic image of R,
as previously defined. If ju is a partial one-to-one function, then T is
a subnetwork of R. For example, in Figure 5.1, V is a derived network
of R under the partial function 11 on X, where

H(l) = a = n(2); fi(3) = b; /x(4) is undefined.
The mapping from R onto T identified in Figure 5.1 is associated with
the surjection [i given by

li(l) = a = li(2); 11(3) = b; fi(4) = c;
whereas the mapping from R onto U is induced by the partial one-to-one
function:

11(1) = 1; ii(2) = 2; n(3) = 3; ^(4) is undefined.
Now let S' be an isotone homomorphic image of the partially ordered

semigroup S(R) of the network R on the node set X. Then the correspond-
ence sought between the homomorphic image S' of S(R) and some de-
rived network T of R may be characterised as being of the form

S(T) = S'. (5.1)
That is, given a homomorphic image S', can one find a set Y derived
from X whose induced derived network T has a semigroup isomorphic
to S'? The questions posed earlier take the form:

1 Given a homomorphic image S' of S(R), under what conditions
does there exist a derived network T with S' isomorphic to S(T),
and how can such derived networks be found?

2 Given a derived network T of R, under what conditions is S(T)
a homomorphic image of S(R)?

In general, the answer to the question of the existence of correspond-
ences of the kind represented by equation (5.1) is that only some
homomorphisms of the semigroup of a network correspond to derived
networks and only some derivations of the network have counterparts
in the collection of images of its semigroup (e.g., Bonacich, 1983, 1989).
Some of the relational conditions under which the correspondence is
known to exist are now presented. The first was described in chapter 3;
it is a condition guaranteeing the iosomorphism of the semigroup of a
network and the semigroup of a derived network.
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A. Structural equivalence
THEOREM 5.1 (Lorrain & White, 1971). Let R be a network on a node
set X, and let \i: X —> Y  where Y is a set of classes of a partition SE on
X satisfying the structural equivalence condition (Lorrain & White,
1971; see chapters 1 and 3). Let T be the network derived from R by
the mapping \i. Then the partially ordered semigroups S(R) and S(T) are
isomorphic.
Proof. Lorrain and White (1971).
White and Reitz (1983, 1989) termed the relation SE a strong
equivalence.

The next nine results describe conditions under which S(T) is not
necessarily isomorphic to S(R). The first, that of automorphic equiva-
lence, was described by Winship (1988), and it has been introduced in
chapter 3 in relation to local role algebras.

B. Automorphic equivalence. Recall that an automorphism a of a network
R on X is a bijection a from X onto itself for which (#, y) e R, if and
only if (cc(x), a(y)) eR,, Two nodes x and y are automorphically
equivalent if and only if there exists some automorphism a of the
network for which a(x) = y. The relation AE on X defined by (x, y) eAE
if and only if x and y are automorphically equivalent is an equivalence
relation on X, and it has been argued to define a partition of nodes into
classes possessing the same abstract social "role" (Borgatti et al., 1989;
Winship, 1988). If a network has no automorphically equivalent nodes,
then AE is the identity relation. Two leaders of distinct small groups
with the same structure are automorphically equivalent, for instance,
because one may be mapped onto the other by an automorphism of the
network comprising the two groups. Consider, also, the network dis-
played in Figure 5.2a. Nodes 5 and 6 are automorphically equivalent,
as are nodes 3 and 4, and nodes 7 and 8. Each of these pairs of nodes
relates to other types of nodes in the same way and with the same
frequency and so may be said to play the same network role. They do
not necessarily relate to the same other nodes, though, as structural
equivalence requires. Hence automorphic equivalence is a generalisation
of structural equivalence.

Now we consider the derived network induced by the automorphic
equivalence relation.

THEOREM 5.2 (Winship, 1988). Let \i be the surjection on the node set
X of a network R associated with the partition of X into automorphic
equivalence classes. That is, \i: x —>  [x], where [x] is the class of
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(a)

[1]
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[1] [1]
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[5] [5]

(c)

(d)

Figure 5.2. Automorphic, extended automorphic and regular
equivalences in a network: (a) a network R = {A, B] on a set
X = {1, 2, 3, 4, 5, 6, 7, 8} [the partition AE = (1) (2) (34) (56) (78) is
an automorphic equivalence]; (b) the derived network T induced by
the automorphic equivalence partition AE; (c) the derived network
U induced by the extended automorphic equivalence AE* on X,
where AE* = (1) (234) (5678); (d) the network V = {A, B) on
Y={1, 2, 3, 4, 5, 6, 7, 8} [the partition (1) (234) (5678) is a regular
equivalence on V]
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elements automorphically equivalent to x, and ([x], [y]) e R{ if and only
if (x, y) e Rj, for some x e [x] and some y e [y]. Then the derived net-
work T induced on the classes of X has a partially ordered semigroup
S(T) which is an isotone homomorphic image of S(R).
For example, the network displayed in Figure 5.2b is derived from the
network of Figure 5.1a by the automorphic equivalence relation and
represents relations among the classes of nodes possessing the same
role. Theorem 5.2 establishes that the relational structure of the derived
network is an isotone homomorphic image of that of the original net-
work.

It can be seen from Figure 5.2 that the structure of the derived network
T is simpler than that of the original network R. For instance, in R, the
paths BBB and B are distinct, whereas in T they are not.

C. Extended automorphic equivalence, or iterated roles. Pattison (1980)
and Borgatti et al. (1989) extended the notion of automorphic equivalence
to a more general type of equivalence. They observed that the derived
network induced by the AE relation sometimes possessed a nontrivial
AE relation and so could define a further derivation of the network.
For example, the network in Figure 5.2c is derived by the AE relation
from the network in Figure 5.2b, and so from Figure 5.2a. It possesses
no nontrivial AE relation, and the partition of nodes of X to which it
corresponds is the coarsest partition of X that may be obtained by a
succession of AE relations. In chapter 3, such a partition was termed
extended automorphic equivalence and denoted by the relation AE*.
Nodes that belong to the same class of the relation AE* may also be
argued to possess similar social roles: they possess the same kinds of
relations to the same other types of nodes, and these relations may vary
only in their frequency. The AE and AE* relations depicted in Figure
5.2 illustrate the difference between the two. Nodes 3 and 4 are
automorphically equivalent, because they have the same number and
types of relations to nodes 7 and 8, which are also automorphically
equivalent. Nodes 2, 3 and 4 are combined by the extended automorphic
equivalence, however, even though they have different numbers of re-
lations to nodes 5, 6, 7 and 8. Thus, the distinction between the relations
AE and AE* is in terms of the "quantity" of relations, and both may
be said to indicate nodes whose relations possess the same "quality".
THEOREM 5.3. Let JLL be the mapping from the node set X of a network
R onto the classes of the relation AE* on X:

\l: x -> [x],
where [x] is the AE* class containing x. Then the induced derived net-
work T on the classes of X has a partially ordered semigroup that is an
isotone homomorphic image of the semigroup of R.
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The network U in Figure 5.2c has a simpler structure again than that
of R or T in Figure 5.2. In U, paths labelled BB are the same as those
labelled B, whereas in both R and T, they are distinct.

D. Regular equivalence. An even more general operationalisation of
the notion of similar social roles has been described by White and Reitz
(1983, 1989). They defined a relation termed regular equivalence, which
directly partitions nodes into classes having similar relations with other
classes. It may be defined formally in the following way.

DEFINITION. Let R = {Rl5 R2> • • • 9  RP] be a network on a set X. Let RE be
a partition on X satisfying the condition:

(x, y) e RE implies

1 (x, z) e Rj implies that there exists some w e X such that
(y, w) € R{ and (z, w) e RE; for any z € X, and any Rt e R; and

2 (z9x)eRj implies that there exists some weX such that
(w, y) e Rj and (z9 w) e RE; for any z e X, and any R{ e R.

RE is termed a regular equivalence.
For example, consider the networks displayed in Figures 5.2a and 5.2d.
In each case, the partition (1) (234) (5678) defines a regular equivalence
on the node set X. Nodes 2, 3 and 4 are regularly equivalent because
(a) each receives an A relation from the class [1]; (b) each expresses an
A relation to the class [5]; (c) each expresses and receives a B relation
from its own class; and (d) each receives a B tie from class [5].

Borgatti and Everett (1989) showed that there is a unique maximal
regular equivalence relation for any network. Further, White and Reitz
(1983, 1989) established that any regular equivalence on a network is
associated with a homomorphism of its semigroup.

THEOREM 5.4. Let RE be a regular equivalence relation on a node set X
of a network R. Then if T is the derived network induced by the re-
lation RE, S(T) is an isotone homomorphic image of S(R).

Regular equivalence may be seen as a generalisation of extended
automorphic equivalence because if two elements are in the same class
of an extended automorphic equivalence, then they are also regularly
equivalent. The relationship is illustrated in Figure 5.2. In Figure 5.2a, the
partition (1) (234) (5678) is both an extended automorphic equivalence
and a regular equivalence, whereas in Figure 5.2d, the same partition is
only a regular equivalence.

White and Reitz (1989) describe an algorithm REGE that identifies
the maximal regular equivalence of a network. It may also be used to
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identify approximations to regular equivalence. Exact regular equivalences
other than the maximal one may also be found using algorithms described
by Borgatti and Everett (1989) and Everett and Borgatti (1988). A number
of these algorithms are implemented in UCINET IV (Borgatti, Everett
& Freeman, 1991).

E. Outdegree and indegree equivalence conditions. Two immediate fur-
ther generalisations of regular equivalence may be derived by considering
the two defining conditions for regular equivalence separately. The first
condition ensures that regularly equivalent nodes have similar outgoing
or "expressed" network ties. The second requires that they have similar
incoming or "received" network relations. By considering these two
conditions separately, we can define partitions of nodes whose incoming
or outgoing ties are similar, so that they have similar roles with respect
to either expressed or received relations. As an example, consider the
network of Figure 5.3a. Node 2 has a pattern of outgoing relations
similar to that of node 3; hence nodes 2 and 3 can be argued to have
a similar role in terms of outgoing relations. Nodes 2 and 3, however,
do not have similar patterns of incoming ties because only node 3
receives B ties from nodes 4 and 5. Nodes 4 and 5, though, are the
recipients of similar types of relations and therefore have similar roles
with respect to incoming relations.
DEFINITION. Let R = {Rl9 R 2 , . . . , Rp] be a network on X, and let OE and
IE be partitions on X satisfying

1 (x, y) e OE implies that if (x, z) eRh then there exists some weX
such that (y> w) e R, and (z, w) e OE, for any z e X, and any
R,eR; and

2 (x, y) eIE implies that if (z,x) eRh then there exists some we X
such that («/,  y) e R, and (z9 w) e IE, for any z e X, and any R, e R.

The partition OE is termed an outdegree equivalence and IE an indegree
equivalence.
For instance, the partition (1) (23) (4) (5) is an outdegree equivalence
in the network of Figure 5.3a and (1) (2) (3) (45) is an indegree equiva-
lence. The derived networks induced by the two partitions are displayed
in Figures 5.3b and 5.3c.

The indegree and outdegree equivalence conditions were originally
described by J. Q. Johnson (Seiyama, 1977), who also established the
following result.
THEOREM 5.5. Let T be a derived network of the network R induced by
either an outdegree or an indegree equivalence on the node set X of R.
Then S(T) is an isotone homomorphic image of S(R).
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Relation A Relation B

1

(a)

(b)

(c)

Figure 5.3. Indegree and outdegree equivalences in a network: (a)
the network R = {A, B)9 in which the partition OE = (1) (23) (4) (5)
is an outdegree equivalence and the partition IE = (1) (2) (3) (45) is
an indegree equivalence; (b) the network induced by the OE
relation; (c) the network induced by the IE relation

Of course, if all relations in a network are symmetric, then the collec-
tions of indegree, outdegree and regular equivalences on the network
coincide.

F. Kim and Roush conditions. An even more general set of conditions,
of which all of the preceding equivalences are special cases, has been
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developed by Kim and Roush (1984). They have defined a quite general
condition on relations between classes of a partition of the node set of
a network that guarantees that the semigroup of the derived network
associated with the partition is an isotone image of the network semi-
group. The condition may be described as follows.

DEFINITION. Let R be a network on X, and let KR{ be an equivalence
relation on X satisfying Kim and Roush's condition G,:

Let Cj and C2 be any two equivalence classes in KRh and let
the number of their elements be nx and «2> respectively. Let
D be any subset of Q consisting of i elements, or if / > nl9
let D = Q. Then KR{ satisfies the condition G, if, for any
such equivalence classes Q and C2, and for any
; = 1,2,.. . ,/?, the set {z: zeC2 and (y, z) e Rf for some
yeD] has at least min(*, n2) elements.

The condition Gj is equivalent to the outdegree condition, and the con-
dition Gn (where n is the number of elements in X) is equivalent to the
indegree condition. The relationships between the requirements of these
and some other conditions are illustrated schematically in Figure 5.4. The
condition G, specifies that if there are links of a particular kind between
one class and another, then any i elements in the first class must be
linked to at least i distinct elements in the second (or all of them if the
second class contains fewer than i elements). As such, it ensures that the
"range" of relations expressed from one class to another is sufficient to
guarantee that any compound relations between classes of KR{ are also
observed for at least some of the individual members of those classes.

Then Kim and Roush (1984) proved the following theorem.

THEOREM 5.6. Let T be the derived network of a network R on a node
set X induced by a partition KR; of X that satisfies Kim and Roush s
condition Q. Then S(T) is an isotone homomorphic image of S(R).

G. Central representatives condition. A different kind of partition induc-
ing a semigroup homomorphism was described by Pattison (1982) and
is illustrated in Figure 5.5. In Figure 5.5, the incoming and outgoing
relations of node 3 are a subset of those of node 2, and we can think
of node 2 as the more "central" or "prominent" of nodes 2 and 3.
Indeed, compared with node 3, node 2 is as close or closer to other
nodes in the network; it has indegrees and outdegrees in each relation
at least as high as those of node 3; and for any geodesic path connecting
other network nodes and passing through node 3, there is a corresponding
path between the same nodes that passes through node 2. Thus, node
2 is more central than node 3 in each of the senses of centrality described



Structural equivalence (SE)

(a)

Automorphic equivalence (AE)

(b)

Regular equivalence (RE)

(c)

Indegree equivalence (IE)

(d)

Figure 5.4. Some conditions for semigroup homomorphisms
(elements are shown as small squares, blocks as boxes and relations
as directed arrows): (a) structural equivalence (SE): i and / are SE
if i and / have identical relations with any other element k; (b)
automorphic equivalence (AE): i and / are AE if they belong to
"parallel" positions in the same or different structures; (c) regular
equivalence (RE): i and / are RE if, whenever the block containing
/ and / is connected to another block, each / and ; is connected to
some element in the latter block (true for both incoming and
outgoing connections); (d) indegree equivalence (IE): i and ; are IE
if, whenever the block containing i and / receives a tie from
another block, then each element in the block receives a tie from
that block; (e) outdegree equivalence (OE): i and / are OE if,
whenever the block containing i and / sends a tie to another block,



Outdegree equivalence (OE)

(e)

Kim and Roush conditions G;

•—
-Mi—

(0

Central representatives condition

(g)

Kim and Roush condition Gim

(h)

then each element in the block sends a tie to that block; (f) Kim
and Roush condition G, (KRt): a partition of X satisfies the
condition KR{ if, whenever there is a connection from one block to
another, then any i elements in the first block are connected to i
distinct elements (or all elements) in the second block; (g) central
representatives condition: a partition of X satisfies the central
representatives condition if each block in the partition has a central
representative whose ties include the ties of all other block
members; (h) Kim and Roush condition Gim: a partition of X
satisfies the condition Gim if each block of the partition possesses a
central subset whose ties include the ties of all other block
members and relations between central subsets satisfy the condition
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Figure 5.5. The central representatives condition (the partition
(1) (23) (45) satisfies the CR condition, with nodes 1, 2 and 5
the central representatives of the three classes)

by Freeman (1979). (Freeman actually defined centrality for nondirected
graphs, but the properties he described may also be defined for directed
relations.) Similarly, node 5 is the more central of nodes 4 and 5, and
the relations of node 4 are a subset of those of node 5. Now consider
a partition of nodes such that each class of nodes possesses a node
whose relations are a superset of the relations of all other nodes in the
class. Then Pattison (1982) showed that such a partition was associated
with an isotone homomorphism of the network semigroup.

DEFINITION. The partition CR on X satisfies the central representatives
condition for the network R on X if, for each class C of CR, there exists
some node x* e C, such that, for any x e C,

1 (x, y) eR; implies (x*y y) eR,; and
2 (y, x)eR{ implies (y, x*) eR,; x, y eX; i = 1, 2, . . . , p.

The node x* is termed the central representative of class C.

The condition requires that there be an element in each class of C
(a central representative) that possesses all of the connections of other
class members. The elements to whom the other class members are
linked are thus a subset of those to whom the central representative is
connected. (Note that if any class contains two central representatives,
then they must be structurally equivalent.)

THEOREM 5.7. Let P be a partition on X satisfying the central repre-
sentatives condition for the network R on X, and let T be the derived
network ofR induced by P. Then S(T) is an isotone homomorphic image
ofS(R).

Proof: The proof is contained in Appendix B.
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H. Kim and Roush's condition Gim. Finally, Kim and Roush (1984) have
described the most general condition known on partitions of the node set
of a network that guarantees the semigroup of the associated derived
network to be an isotone homomorphic image of the original network
semigroup. The condition is a generalisation both of the Central Repre-
sentatives condition and Kim and Roush's condition G,.
DEFINITION. The partition P on X satisfies Kim and Roush's condition
Gim for the network R on X if, for each class C of P,

1 there exists a central subset S of C such that (a) (x, y) eR;for
somexeC implies (x*, y) e R7for somex* eS, and (b) (y,x) eR;
for some xeC implies (y, Jc*)eR; for some x* eS; x, yeX,
; = 1,2,... ,/?; and

2 if 17 denotes the union of the central subsets S, then the central
subsets S for the classes of P satisfy Kim and Roush's condition
G; for relations on 17.

The condition is equivalent to the central representatives condition when
each subset S is constrained to consist of a single element. When each
class C comprises a single node, it is equivalent to the condition G,. Then
Kim and Roush (1984) showed the following.
THEOREM 5.8. Let P be a partition on the node set X of a network R
that satisfies Kim and Roush's condition Gim, and let T be the derived
network induced by P. Then the partially ordered semigroup S(T) is an
isotone homomorphic image of S(R).

Relations of generality among the conditions that we have described on
partitions of the node set of a network are summarised in Figure 5.6,
where a condition lies below and is connected to another condition if
the first is a generalisation of the second.

Finally, we review several conditions on subsets of the node set of a
network that also lead to semigroup homomorphisms.

/. Corollary to the condition Gim. A corollary of Kim and Roush's result
for the condition Gim is that the subset 17 of X, consisting of the union
of the central subsets for some partition P satisfying the condition G/w,
also leads to a network U of R whose semigroup is an isotone homomorphic
image of S(R).
DEFINITION. Let P be a partition on X satisfying the condition Gim for a
network R on X. Then if 17 is the union of a set of central subsets for
P, U is termed a collection of central subsets corresponding to P.
THEOREM 5.9. The semigroup of the network induced by the subset U
is an isotone homomorphic image of the semigroup of R.
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Proof: The proof is contained in Appendix B.

/. Receiver subset and sender subset conditions. A subnetwork may also
be shown to possess a correspondence with an isotone homomorphic
image of S(R) in the following case.
DEFINITION. The subset Y of X is a receiver subset for the network R on
X if, for each z e X\Y and for each / = 1, 2 , . . . , / ? , (w, z) e R, implies w
eX\Y. [Alternatively, a receiver subset may be characterised as a subset
of X for which YR{ is contained in Y, for all /, where YR, = [x e X:
(y, x) e Rj for some y e Y}.]

THEOREM 5.10. Let T be the derived network induced by a receiver
subset Y of X. Then S(T) is an isotone homomorphic image of S(R).
Proof: The proof is given in Appendix B.

Dually, it may be established that if the subset Y satisfies the sender
subset condition (defined next) then the induced subnetwork T of R is
also such that S(T) is an isotone homomorphic image of S(R).
DEFINITION. The subset Y of X is a sender subset for the network R on
X if, for each xeXXY and i = 1, 2 , . . . , p, (x, w) eR, implies w eX\Y.
[That is, a sender subset Y satisfies the condition that RjY is contained
in Y for all /, where RjY = [x eX : (x, y) eR, for some y e Y}.]

Generalisations of structural equivalance

The equivalence conditions we have described may all be viewed as
different generalisations of structural equivalence. Each can be seen to
yield descriptions of network nodes whose relations with other nodes
possess some similar relational features. The nature of the similarity of
relational features is determined by the condition and varies from one to
another. For instance, two nodes belonging to the same class of an outdegree
equivalence relation OE possess similar kinds of relations expressed to
individuals in any other class. For an indegree equivalence IE, the
similarity holds for relations received from individuals in other classes.
For two individuals belonging to the same class of a partition satisfying
the central representatives condition, a different property holds, namely,
that their relations are a subset of those of some single member of their
class.

The usefulness of any one of these algebraic conditions in determining
the similarity of the relational features of network members depends on
the context in which relational similarity is being assessed. One major
distinction in the literature to date is that which has been drawn between
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Structural equivalence
(Lorrain & White, 1971)

Automorphic equivalence
(Winship, 1988)

Extended automorphic
equivalence

(Borgatti et al., 1989;
Pattison, 1980)

Regular equivalence
(White & Reitz, 1983)

Central representatives
condition (Pattison, 1982)

Indegree Gn_x • •
condition

(Gn) (Kim&Roush, 1984)

Figure 5.6. Relations among equivalence conditions

concrete and abstract equivalences (e.g., Winship, 1988) or between
structural and "general" equivalences (Faust, 1988). The distinction is
a basic one because it contrasts the notion of identity of social relations
with every member of a population with that of parallel relations with
similar types of members of a population. Indeed, many useful analyses of
network positions have been made on the basis of this distinction (e.g.,
Doreian, 1988a; Faust, 1988). As Pattison (1988) has argued, however,
other useful distinctions may be made in Figure 5.6, and only a limited
exploitation of these has been accomplished. For instance, the indegree
or outdegree condition might be used to analyse similarities in the receiv-
ing or sending of ties. Or the central representatives condition could be
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used to identify a set of central representatives whose interrelations
model relational flows in the network in a more efficient way.

A different approach to generalising structural equivalence has been
taken by Wasserman and colleagues (Anderson, Wasserman &c Faust,
1992; Fienberg & Wasserman, 1981; Holland et al., 1983; Wasserman &
Anderson, 1987). Their approach is stochastic and relies on the speci-
fication of some probability distribution over the class of networks on
some set X of nodes. Their basic unit of analysis is dyadic, and refers
to D;;, the random vector of network links of each type from node i to
node /, and from node / to node i. They define two nodes / and / from
X to be stochastically equivalent if the random dyadic variables Dkl are
all statistically independent of each other and if Dik and D,* have the
same probability distribution, for all nodes k distinct from / and /.

The definition thus relaxes the requirement that nodes i and / must
have identical observed incoming and outgoing ties in order to be
structurally equivalent. It is replaced by the requirement that they have
identical probabilities of incoming and outgoing ties with each node: it
is, in this sense, a stochastic version of the strict algebraic requirement
of structural equivalence. Indeed, a "stochastic" version of the other
algebraic equivalences could also be formulated. For instance, "stochastic
automorphic equivalence" of two nodes i and / would require the exist-
ence of some permutation a of the node set X mapping / onto / such that
Dik and D^^ have the same probability distribution, for all nodes k.

The stochastic approach is clearly an important one for the development
of strategies of analysis for network data subject to random variation, and
it is to be hoped that the algebraic framework outlined here may serve as
the basis for a useful class of stochastic models.

The correspondence definition

The conditions we have listed account for all known conditions under
which a derived network has a partially ordered semigroup that is a
homomorphic image of the semigroup of the original network. For the
purposes of data analysis, though, it is useful to propose, in addition,
some general conditions that should be satisfied if we wish to associate
a derived network of R with a homomorphic image of S(R). Our aim
is a simple means of verifying whether an association between a derived
network and a homomorphic image is plausible. Consider, for example,
the network X of Table 5.1. The derived network Y associated with the
mapping
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Table 5.1. The network X on [1, 2, 3} and the derived network Y on
{a,b}

Network Element

Relation

e
100
110
100

10
1 0

1 1 1
I 0
10
I1
10

Table 5.2. The partially ordered semigroup S(X) and the factors A and
B ofS(X)

Label

S(X)

A

B

Element

1
2
3
4
1
2
3
1
2

Right mult, table

Word

P
Q

PQ
QP

P
Q

PQ
p
Q

p

l
4
4
4

1
1
1
1
2

Generators

Q

3
3
3
3

3
3
3

2
2

Partial order

1 0 0 0
1 100
1111
1001

100
1 10
1 1 1

10
1 1

is also displayed in Table 5.1. In Table 5.2, the semigroup S(X) is
presented, and Figure 5.7 presents the lattice Ln(S(X)) of ^-relations of
S(X). It can be seen from Figure 5.7 that Ln(S(X)) has two atoms, nx
and TT2, and that each of these atoms has a unique maximal comple-
ment, 7t3 and nl9 respectively. Hence {TTJ, TT3} defines a unique factorisa-
tion of S(X). The isotone homomorphic images corresponding to nx and
7r3 are presented in Table 5.2 and are labelled A and £, respectively. (Thus,
A - S(X)/^ and B = S(X)/n3.) The question we wish to be able to an-
swer is this: Is there an association between the network Y and the image
A of S(X)?

There are at least two means of investigating whether a derived network
is associated with an isotone homomorphism of its semigroup. The first
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7T2

10 0 0
1 1 1 1
1 1 1 1
10 0 1

Figure 5.7. The lattice LX(S(X)) of ^-relations of 5(X)

Table 5.3. Distinct relations in S(X)

Relation

Element

1
2
3
a
b

P

1 0 0
1 1 0
1 0 0

1 0
1 0

Q

1 1 1
1 1 0
1 1 0

1 1
1 0

PQ

11 I
1 1 1
1 1 1

11
1 1

QP

1 1 0
1 10
1 10

10
10

is to determine whether the distinctions among relations made by the
homomorphic image can also be seen when the relations are examined in
the derived network. Consider, for instance, the distinct relations in the
semigroup S(X) for the network X of Table 5.1. The relations are listed
in Table 5.3. Now, in the image A of S(X), the relations P and PQ are
distinguished. Are these relations also distinguished when we examine
the derived relations induced by the mapping jU? The induced relations are
presented in the second panel of Table 5.3. As Table 5.3 indicates, the
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distinctions among relations made in A are also made when attention is
restricted to the relations induced by ̂ u, so that there is some evidence of
association of the derived set and the image. It can also be seen from
Table 5.3 that P and QP are not distinguished when attention is restricted
to relations induced by jii; similarly, P and QP are not distinguished in
the image A (Table 5.2).

More generally, we can define the following partial order on a net-
work semigroup in association with a derived network and its corre-
sponding derived set. (In the following definitions, it is assumed that
isotone homomorphisms are under consideration, but the definitions are
easily modified to refer to homomorphisms more generally. Pattison,
1982, presented the analogous definitions for general homomorphisms.)

DEFINITION. Let R be a network defined on the node set X, and let Y be
a set derived from X by the partial function ji. Also, let /J,(S) denote the
image under the partial function fi of the compound relation s (i.e., (&, /)
es implies (/i(k), fii(l)) e/j,(s)), where s, t eS(R). Define a partial ordering
<, on S(R) by:

s<^ t ii (/,/) €JU(S) implies (*,/) GJU(*),

for all 1, / G Y. The partial ordering <̂  is termed the partial order on S(R)
induced by 11.

We may observe that s < t in S implies s <M t, for any partial function û,
so that the partial order <M always contains the partial order of the
semigroup. In fact, we can describe relations between the partial orderings
on S(R) using the nesting relation defined in chapter 2 for role algebras.
DEFINITION. Let <j and <2 be two partial orders on a set P. Define <a to
be nested in <2 if p <2 q implies p <x q, for all p, q e P.
According to the definition, the partial order <̂  is nested in the partial
order of S(R) for any partial function JI on the node set X of the network
R.

We can also identify any isotone homomorphism 0 of the semigroup
S(R)with the ^-relation n^ on S(R) introduced in chapter 3. It is con-
venient to define a partial order <̂  on S(R) that is the converse of n^.
DEFINITION. Let <f> be an isotone homomorphism on the partially ordered
semigroup S. Define the partial order <0 by

t<f s iff (j)(t)<<l)(s),
for s,teS.
Clearly, s <̂  t if and only if (£, s) e nr The partial order <̂  is also nested
in the partial order for the semigroup S, for all isotone homomorphisms
0 of S.
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Table 5.4. The partial orderings <^ and <0 associated with the mapping
II on the node set of X and the isotone homomorphism 0 ofS(X)

100 1 1001
110 1 110 1
1111 1111
1001 100 1

Now the partial order corresponding to the derived set Y can be con-
sidered to preserve distinctions among relations made by 0 whenever the
partial order <̂  is nested in the partial order <M, that is, whenever,

t <^ s implies t <0 s

for all s,teS. For example, the partial ordering <̂  associated with the
function ju given by

H(l) = a = v(2); ii(3) = b
is shown on the left of Table 5.4. The right-hand side of the table contains
the partial ordering <̂  associated with the isotone homomorphism from
S(X) onto the factor A. (The ordering is the converse of the ^-relation
nx which corresponds to factor A, as in Figure 5.7.) It can be seen in
this case that the partial orders <̂  and <̂  are identical, and we can assert
that the derived network associated with the mapping fi preserves the
distinctions among relations encoded in the factor A.

A second means of assessing whether a derived set is associated with
a homomorphic image of the semigroup of a network is to ask whether
the corresponding derived network generates an algebra containing the
image. That is, is the partially ordered semigroup corresponding to the
homomorphism 0 an isotone homomorphic image of the semigroup of
the derived network?

In the approach to be outlined, we apply both of these considerations
simultaneously. The necessity of the first condition, that the derived set
should preserve distinctions among compounds made by the image, can
be seen by considering the network R = {A} presented in Table 5.5. The
semigroup S of R is shown in Table 5.6 together with its factors. The
derived network associated with the subset {1, 2} of nodes - jii(l) = 1;
H(2) = 2; jU(3); JLL(4); ^(5) undefined - generates the second factor of the
semigroup, yet its corresponding partial order on S does not preserve
distinctions made by the factor. In particular, A2 = A in <,,, whereas A2 < A
in the first factor of the semigroup. The derived set {1, 2} is an integral
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Table 5.5. A network R = [A] on five elements

The relation A

0 1000
00100
10000
00001
00000

Table 5.6. The partially ordered semigroup S(R) of the network R = {A}
and factors ofS(R)

Label

S(R)

X

y

Element

1
2
3
4
1
2
1
2
3

Right mult, table

Word

A
AA

AAA
AAAA

A
AA

A
AA

AAA

Generator

A

2
3
4
2
2
2
2
3
1

Partial order

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1 1
01

100
0 1 0
00 1

part of the cyclic structure displayed by the nodes {1, 2, 3} and repre-
sented by the second factor of the semigroup S(R), and it cannot be
separated from that structure in deriving associates of the factor corre-
sponding to the single tie between nodes 4 and 5.

The second condition introduced is necessary to ensure that the iden-
tified derived set can generate the image in question; if it does not have
that capacity, it is difficult to argue that the image characterises rela-
tional structure present in the derived network.

If the two conditions are taken together, associations of the following
kind between derived sets Y of X and an isotone homomorphism 0 of
S(R) can be proposed.
CORRESPONDENCE DEFINITION. Define an isotone homomorphism <j> of S(R),
and its image 0(S(R)), to be associated with a derived set Y of X if
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1 there is a partial function fj,:X^>Y;
2 t <n s implies t <0 s, for all s, t e S(R); and
3 there is an isotone homomorphism from the partially

ordered semigroup S(T) of the derived network T induced by
li onto 0(S(R)).

The definition asserts that a homomorphic image is associated with a
derived set if the derived set generates an algebra containing the image and
if all of the equations and orderings made on the derived set are also made
in the image. It also requires that any distinctions among relations made
in the image are also made on the derived set.

Now, in general, any particular image of a semigroup S will be asso-
ciated with a number of different derived sets under the conditions of the
Correspondence Definition. For instance, the derived set Y = X is always
associated with any image of S. It is useful, therefore, to seek minimal
derived set associations of an image, where derived sets may be ordered
according to the following definitions:

DEFINITION. Let jUj: X -»  Y1 and /z2: X —»  Y2 be partial functions. Then
define a partial ordering on derived sets according to

Y2 < Y1 if there exists a partial function fi3: Yx —>  Y2 with
fh(x) = ju3(//i(*)), for all x e X .

DEFINITION. The minimal derived set associations of an image <f> (S) of S
are those sets Y for which

1 0 is associated with Y and with every Y' for which Y<Y' < X;
and

2 if 0 is associated with Y' and Y' < Y, then Y = Y'.
For instance, the derived network associated with the mapping
//(I) = a = jU(2) and fi(3) = b is an example of a minimal derived set
association for the factor A of S(X) in Table 5.2. All further derivations
of the derived network associated with [i lead to networks that fail to
satisfy the requirements of the Correspondence Definition. The factor B
of S(X), on the other hand, has minimal associations with the subset
{1,2} as well as with the derived sets {(13) (2)} and {(1) (23)}.

As a second illustration of the definitions, consider the network
N = {L, A] whose partially ordered semigroup S(N) was analysed in chap-
ter 4. The distinct compound relations in S(N) are presented in Table S.7.
It was established in chapter 4 that S(N) has three factors, corresponding
to the ^-relations n4, n5 and n6 (Table 4.13). The isotone homomorphism
corresponding to the first factor S(N)/n4 of S(N) has the partial order <̂
displayed in Table 5.8; the partial orderings corresponding to the derived
sets {1, 2} and {(134) (2)} are shown in Table 5.9. It can be seen that all
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Table 5.7. Distinct relations generated by the network N

L

1 1
1 1
0 0
0 0

0 0
0 0
1 0
1 1

A

1
1
1
1

01 1
0 1 0
0 0 1
0 0 0

LA

1 0 1 1
1 0 1 1
1 0 0 1
1 0 0 0

AL

1 1
1 1
1 1
1 1

1 1
1 0
1 1
0 0

AA

1 0
1 0
1 0
1 0

1
1
1
1

1
1
1
1

LAL

1 1 1
1 1 1
1 1 1
1 1 1

1
1
1
1

Table 5.8. The partial order <0 corresponding to the factor S(N)/K4 of
S(N)

Element

1
2
3
4
5
6

1

1
0
0
1
0
1

2

1
1
1
1
1
1

3

1
1
1
1
1
1

Element

4

1
0
0
1
0
1

5

1
1
1
1
1
1

6

1
0
0
1
0
1

Table 5.9. The partial orders corresponding to the derived sets {1, 2}
and {(134), (2)} for the network N

{1,2} {(134), 2}

1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

three partial orders are identical; moreover, each of the corresponding
derived networks generates a semigroup isomorphic to S(N)/TT4. Both
derived sets are therefore associated with the factor according to the
Correspondence Definition. Some other associations of the factor S(N)/
7t4 with derived sets of X are listed in Table 5.10. Derived networks
corresponding to minimal associations are shown in Table 5.11. Clearly,
the factor describes the interrelations between block 2 and block 1 or
between block 2 and block 1 in combination with other blocks. Those
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Table 5.10. Derived sets associated with the factor S(N)/n4 of the
semigroup S(N)

Derived sets"

{1,2,4}
{1,2,3}
{(13), 2, 4}
{(14), 2, 3}
(1,2,(34)}

{(134) (2)}*
{1,2}*
{(13) (2)}*
{(14) (2)}*

a Those that are minimal are marked by an asterisk.

Table 5.11. Derived networks corresponding to minimal derived set
associations for the factor S(N)/n4 ofS(N)

Relation

L

A

134

1
1
1
1

2

1
1
0
0

1

1
1
1
1

Derived

2

1
1
0
0

set

13

1
1
1
1

2

1
1
0
0

14

1
1
1
1

2

1
1
0
0

interrelations are described by the equations and orderings that charac-
terise the factor, namely,

LL = L = LA, AA = A = AL and A<L.
Examination of the derived networks corresponding to minimal derived
set associations of the factor suggests that the network features corre-
sponding to these algebraic relations are (a) the universality of Liking
relations L in the region of the network defined by blocks 1 and 2 and
(b) the distinction between block 2 and other blocks in the receiving of
A ties: block 2 is the only block to receive none whereas block 1, for
instance, receives A ties from all other blocks. This link between the
factor of the partially ordered semigroup S(N) and features of the
network from which S(N) was constructed is a quite precise statement
of the network features giving rise to a particular algebraic feature.

The minimal derived set associates of the other factors of S(N) are
presented in Table 5.12, together with corresponding derived networks.
The relational features giving rise to the factor S(N)//r5 clearly depend
on network ties involving block 3. In particular, it can be seen from
Table 5.12 that block 3 expresses liking only among its own members



L

1 1
0 1
1 1
0 1
1 0
1 1
1 0
1 1

A

1 1
1 0
1 1
1 0
1 1
1 0
1 1
1 0
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Table 5.12. Minimal derived set associations and corresponding derived
networks for other factors ofS(N)

Derived network

Factor Minimal derived set associations

S(N)/7t5 {(14), 3}

{(124), 3}

S(N)/K6 {(13), 4}

{(123), 4}

and there are no antagonistic relations amongst the members of block
3. For the factor S(N)/TT6, the ties of block 4 to other blocks are clearly
paramount. As Table 5.12 indicates, block 4 is not liked by any other
block although its members express liking among themselves, and it
receives and expresses antagonistic ties with other blocks.

Searching for minimal derived set associations

The definition of minimal derived set associations may be used to define
a search strategy for the minimal associations of any semigroup image.
Suppose that we are seeking the minimal derived set associations of the
isotone homomorphic image 0(S(R)) of the semigroup S(R). Because X
itself is always associated with 0(S(R), the search may begin at X.
Consider all derived sets Y that are covered by X (i.e., for which Y < X
and for which Y<Z<X implies Z = Y or Z = X). Each such set Y may
be checked for association with 0(S(R)) according to the Correspond-
ence Definition. Define a path from X to any of the covered derived sets
Y that is associated with 0(S(R)). Repeat the process for the endpoints
of each path until no extensions to any of the existing paths can be
found. The endpoints of the paths are then the minimal derived set
associations for 0(S(R)). For instance, the outcome of the process for
the factor S(N)/x4 of S(N) is illustrated in Figure 5.8.

Analysing entire networks

The factorisation technique for finite partially ordered semigroups iden-
tifies a collection of maximally independent homomorphic images of the
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X = {\, 2, 3, 4}

{1,2,3} {(13), 2, 4}

{1,2} {(14), 2} {(13), 2} {(134), 2}

Figure 5.8. Searching for minimal derived set associations

Lattice L^(S) of
iT-relations on S

Semigroup S = 5(R)
of the network R

Sk factors of
semigroup 5"

Network R- simplified networks
corresponding to

factors of S

Figure 5.9. Analysis of a complete network

semigroup sufficient to describe its structure. The problem of describing
features of the semigroup may, by use of the technique, be exchanged for
that of describing features of its identified homomorphic images, or
factors. In conjunction with the application of the Correspondence De-
finition, therefore, it may be used to provide an analysis of a network
or blockmodel of the kind illustrated in Figure 5.9. The dashed arrow
marks an interpretative path by which distinctive relational features of
a network may be described. Though the path to that description is
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dependent upon the partially ordered semigroup representation (denoted
by the solid arrows of Figure 5.9), its results may be reported in purely
relational terms. The analysis suggested by Figure 5.9 thus produces a
comprehensive but nonredundant account of the structural content of
the system in terms of the original relational data. By contrast with
many analytic strategies, the proposed analysis attempts to determine
ways in which the data may be aggregated so as to emphasize its sig-
nificant structural features. Like blockmodelling, therefore, it endorses
"the philosophy that aggregation is to be inferred at the end of the
analysis, not imposed at the beginning" (Arabie et al., 1978, p. 22).

In combination with the factorisation technique, the Correspondence
Definition enables one to search for the "concrete" structural analogues
of the abstract algebraic factors, or components, of the structure and so
to identify the irreducible forms of relational interlock at the relational
level. More importantly, perhaps, it yields a method by which to examine
the ways that the various primary relational features are combined to
provide an overall representation of relational structure.

An example: Relational structure in a
self-analytic group

As part of a study demonstrating how one can integrate the concrete
representation of social structure afforded by the blockmodel approach
and the dimensional description of interpersonal relations developed by
Bales and his collaborators (Bales & Cohen, 1979), Breiger and Ennis
(1979) described a blockmodel for relations of Liking, Disliking and
perceived Similarity among members of a self-analytical group. The
blockmodel is reported in Table 5.13. Breiger and Ennis characterised the
four blocks of the blockmodel in terms of their ratings on Bales and
Cohen's SYMLOG dimensions and hence in terms of their typology of
interpersonal behaviour. The dimensions are described as (a) Upward-
Downward (f/-D), reflecting a person's tendency towards dominant or
submissive behaviour; (b) Positive-Negative (P-N), referring to the
friendly or hostile orientation of a group member; and (c) Forward-
Backward (F-B), indicating an orientation on a continuum from task-
oriented instrumental behaviour to emotional, expressive behaviour.
Block 1 was described as "type" UP, a group of members who were
both ascendent and sociable and who were identified by Breiger and
Ennis as the "positive kernel" of the group. Block 2 was of type UN
and consisted of individuals who were dominating and hostile. Block 3
was identified as type P; it comprised a collection of positive but modest
individuals who valued egalitarianism. Block 4 was of type DN, the
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Table 5.13. The Breiger-Ennis blockmodel for a self-analytical group

Liking

1 1 0 0
1 1 0 0
1 0 1 0
1 1 0 0

Relation

Disliking

0 1 0 1
0 1 1 0
0 1 0 0
0 1 1 0

Similarity

1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1

From Breiger & Ennis, 1979.

opposite of block 1, and was characterised by resentment of others and
the rejection of social success as a salient value.

In their analysis of the relationship among the types of the four blocks
and their social interrelationships, Breiger and Ennis (1979) demonstrated
the usefulness of combining Bales and Cohen's (1979) dimensions with
empirical data on social relations between group members. In particular,
they showed that there was considerable interlocking between the descrip-
tion of types generated by Bales's generalised approach and the social
relationships between the types summarised in the blockmodel. In the
following discussion, the analysis of the partially ordered semigroup of
the blockmodel is used to augment their account of the constraints
between the type of a block and its embedding in a pattern of social
relationships.

The partially ordered semigroup BE\ generated by the blockmodel of
Table 5.13 is presented in Table 5.14. The /r-relation lattice Ln(BEl) of
BE1 has three atoms, nl9 n2 and TT3. Both n2 and n3 have unique
maximal complements, n6 and 7T7, respectively and nx has the two pos-
sible maximal complements 7t4 and n5. The homomorphic images A, B,
C2 and Cl corresponding to /r6, %, K4 and K5 are all displayed in Table
5.15. The full reduction diagram for BE1 is shown in Figure 5.10, and
images of BE1 appearing in the diagram are reported in Table 5.16.
The minimal derived set associations for some of the images in Figure
5.10 are shown in Table 5.17, and some derived networks corresponding
to factors of BE1 appear in Table 5.18.

Table 5.17 indicates that the first factor of BE1 is associated with
relations among blocks 1, 2 and 3, and the other factors are associated
essentially with blocks 1, 2 and 4. From this it may be argued that the
two dominant blocks 1 and 2 play a central role in defining the global
relational structure in the blockmodel and that they interrelate with blocks
3 and 4 in essentially different ways. For instance, for blocks 1, 2 and 3,
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Table 5.14. The semigroup BEl of the Breiger-Ennis blockmodel

Element

L =
D =
5 =

LL =
LD =
DL =
DD =
DS =
S5 =

LLD =
LDL =
LDS =

DDL =
LLDS =

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Right mult.

1

4
6
4
4

11
6

13
6
4

13
11
11
13
13

table

Generator

2

5
7
5

10
7

10
7

10
10

7
10
10
10
10

3

4
8
9
4

12
6

13
8
9

14
11
12
13
14

Partial order

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.15. Factors of BEl

Factor

A

B

C2

Cl

Element

1,3
2,6 ,8

4 ,9
5,11,12

7,10,13,14

1,4,6,11,13
2

3,9
5,10

7
8

12,14
1,2,4-14

3

1,4,6,8,9,11-14
2, 5, 7,10

3

Right mult.

= 1
= 2
= 4
= 5
= 7

= 1
= 2
= 3
= 5
= 7
= 8
= 12
= 1
= 3

= 1
= 2
= 3

table

1

4
2
4
5
7

1
1
1
1
1
1
1

1
1

1
1
1

Generator

2

5
7
7
7
7

5
7
5
7
7
5
5

2
2
2

3

4
2
4
5
7

1
8
3

12
1
8

12

1
1

1
1
1

Partial order

1 0 0 0 0
0 1 0 0 0
10 1 0 0
0 1 0 1 0
1 1 1 1 1

1 0 0 0 1 0 0
0 1 0 0 1 0 0
1 0 1 0 1 0 0
0 1 0 1 1 0 0
0 0 0 0 1 0 0
1 1 0 0 1 1 0
1 1 1 1 1 1 1

11
0 1

1 1 1
0 1 0
0 1 1
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BEX

Figure 5.10. Reduction diagram for the Breiger-Ennis semigroup
BE1

the Liking and Similarity relations are identical but intransitive, with
blocks 1 and 2 forming a nucleus of individuals liked and perceived as
similar. Members of block 3 like and perceive as similar other members
of their own block, but they also like and see themselves as similar to the
members of block 1. Thus, block 3 is somewhat peripheral to the nucleus
comprising blocks 1 and 2. For blocks 1, 2 and 4, on the other hand, the
relations Liking and Similarity are distinct; and Liking is a transitive
relation with blocks 1 and 2 forming the "upper" level of a two-level
hierarchy and block 4 the "lower" level. Though block 4 expresses
Liking to blocks 1 and 2, its members do not express internal Liking ties,
even though they recognize their similarities. Further, none of the positive
relations expressed by block 4 to other blocks are reciprocated.

Further down the reduction diagram lie the isotone homomorphic im-
ages K\ and K2. The image K2 lies in the branch containing factor A and
corresponds to relations among blocks 2 and 3. It records the property
that blocks 2 and 3 have only internal Liking and Similarity ties, but that
paths of Disliking ties link the members of each block to each other and
to the members of the other block. Thus, in the region of blocks 2 and
3, Liking and Similarity ties are strong and are expressed only internally,
whereas Disliking ties are expressed across the block boundaries as well



Table 5.16. Other images of BEl appearing in Figure 5.10

Semigroup

D

E

F

G

H

I

J

XI

K2

Right mult.

Elements

1,3 = 1
2,6,8=2

4,9=4
5,11,12 = 5

7,10,13,14 = 7
1,3,4,6,8,9,11-14 = 1

2=2
5,10 = 5

7 = 7
1,3 = 1

2,6,8=2
4,9=4

5,11,12 = 5
7,10,13,14 = 7

1,3,4,9 = 1
2,6,8=2

5,7,10-14 = 5
1,3 = 1

2,6,8=2
4,9=4

5,7,10-14 = 5
1,3 = 1

2,4-14=2
1,3,4,9 = 1

2,6,8=2
5,7,10-14 = 5

1,3,4,6,8,9,11-14 = 1
2,5,7,10=2

1,3,4,9 = 1
2,5-8,10-14=2

table

1

4
2
4
5
7
1
1
1
1
4
2
4
5
7
1
2
5
4
2
4
5
2
2
1
2
5
1
1
1
2

Generator

2

5
7
7
7
7
5
7
7
7
5
7
7
7
7
5
5
5
5
5
5
5
2
2
5
5
5
2
2
2
2

3

4
2
4
5
7

Partial order

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
1 1 1 1 1

1 1 1 1
0 1 0 1
0 1 1 1
000 1

1 0 0 0 0
1 1 1 0 0
1 0 1 0 0
1 1 1 1 0
1 1 1 1 1

100
0 10
111

1 0 0 0
1 1 1 0
1 0 1 0
1 1 1 1

10
11

100
1 10
111

11
01
10
11

Table 5.17. Minimal derived set associations for some images of BEl
shown in Figure 5.10

Image Minimal derived set associations

A
B
C\
C2
Kl
K2

{1,2, 3} (1,(24), 3}
{1,2, 4} (1,(23), 4}
(1,2, 4} {1,(23), 4} {1,2, (34)}
{1,2, 4} {1,(23), 4} {1,2, (34)} {(13), 2, 4}
(1,(234)} {1,2} (1,(23)} (1,(24)} (1,(34)}
{2, 3} {(124), 3} {(12) (34)} {(24), 3}
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Table 5.18. Derived networks for associations with factors ofBEl

Factors Derived set

(1,2,3)

(1,(24), 3)

(1,2,4)

(1,(23), 4)

(1,2,(34))

((13), 2,4)

Derived network

1 10
1 10
1 0 1
1 1 0
1 10
1 0 1
1 10
1 10
1 1 0
1 10
1 1 0
1 10
1 10
1 10
1 1 1
1 10
1 10
1 1 0

0 10
01 1
0 1 0
0 1 0
01 1
0 1 0
01 1
0 1 0
0 10
01 1
0 1 0
0 1 0
01 1
01 1
01 1
01 1
1 10
1 1 0

1 10
1 10
1 0 1
1 10
1 10
1 0 1
1 1 0
1 10
1 0 1
1 10
1 10
1 0 1
1 10
1 10
1 0 1
1 10
1 10
1 0 1

B, Cl, C2

B, Cl, C2

C1,C2

C2

as within block 2. The image K\ lies in the branch containing factor B
and has a "Last Letter" (Boorman & White, 1976; Lorrain, 1975) struc-
ture, with equations

LL = L = DL, LD = D = DD.
Its relational referents indicate that it reflects the absence of received
Disliking ties for block 1, in accordance with its positive status on the
P-N dimension.

Thus, the description of relational structure in the blockmodel sug-
gested by the analytic scheme of Figure 5.9 may be related in a useful way
to the account of the blocks given by Breiger and Ennis (1979).

Local networks

The questions that we have addressed for complete networks and their
partially ordered semigroups may also be posed for local networks and
their local role algebras. Under what conditions can simplifications of
a local network be associated with structures nested in its local role
algebra? When and how can a component of the factorisation of a local
role algebra be associated with some derived local network?
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As for complete networks, we examine these questions in turn. We
first consider what conditions on simplifications of a local network
guarantee that the resulting network has a role algebra nested in that
of the original network. Then we describe a local network analogue of
the Correspondence Condition, so that general associations between
derived local networks and nested role algebras may be sought.

Derived local networks

Derived local networks can be constructed in a similar way to derived
complete networks. Suppose that R is a local network on a set X, in
which element 1 of X is the identified ego. Then a derived local network
is associated with any partial function /n on X for which there is an image
of element 1. Consider, for example, the network of Figure 5.1a, and
think of it as a local network with node 1 as the identified ego. Each
of the networks of Figures 5.1b, c and d may be seen as derived local
networks of that of Figure 5.1a because each is a derived network in
which node 1 has an image under the associated partial function fi.
Figures 5.1c and d may not, however, be seen as an image of the local
network of node 4 because node 4 does not have an image under the
corresponding partial function.

DEFINITION. Let Y be a derived set of X corresponding to the partial
function jU, and let jU be such that the identified ego of the local net-
work, corresponding to the node 1 of X, has a non-null image under
ji. Then the derived local network T on Y with identified element fi(l)
is the network derived from R on X by \i.
Let nY be the number of nodes in Y. Then we may observe that the
derived local network has relation vectors 1 * R{ of length nY with

(1 * R,)[y] = 1 iff (1,x) eRj for some x such that

The conditions under which a derived local network has a local role
algebra nested in that of the original algebra have not been well studied.
It is perhaps not surprising, however, to find that a number of the
conditions reviewed earlier and appearing in Figure 5.6 lead to nested
role algebras when applied to local derived networks. In particular, the
result holds for regular equivalences and all of the conditions of which
it is a generalisation.

THEOREM 5.11. Let P be a partition on a set X on which a local network
R is defined, and let ji be the partial function on X associated with P.
If P is a regular equivalence, then the local role algebra of \i(l) in the
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derived local network T is nested in the local role algebra of node 1 in
R.
Proof: The proof is given in Appendix B.

It is interesting to observe that the nesting of role algebras was used
by Mandel to determine whether derived networks constituted acceptable
simplifications of a network. His condition was termed the global/local
criterion and was defined as follows.
GLOBAL/LOCAL CRITERION. Let / i b e a surjection of the node set X of a
network R, and let T be the corresponding derived network. The partial
function ji satisfies the global/local criterion if the local role algebra of
the node ji(x) is nested in the local role algebra of x9 for each x eX.

For instance, the condition holds for the partition (12) (3) (4) of nodes of
X = {1, 2, 3, 4} in Figure 5.1, because the local role algebra Qa of node a
in Figure 5.1b is nested in the local role algebra Qx of node 1 in Figure
5.1a.

A correspondence definition for
local role algebras

For local role algebras, a parallel approach to defining associations
between factors of the local role algebra and regions of the local net-
work can be constructed. That is, we can formulate a two-part corre-
spondence definition of which one part requires that the identified region
of the local network makes all of the relational distinctions character-
ising the factor and the other part ensures that the local region can
generate an algebra containing the factor.

DEFINITION. Let Q be a local role algebra on a set X and let Y be a derived
set of X associated with the partial function ji on X. Define a partial
order <̂  according to

s <M t iff (1 * s)[y] = 1 implies (1 * t)[y'] = 1 for some y' such
that fi(y') = /i(y); for all y eY; and for any 5, t e Q.

Also, let T be a role algebra nested in Q. Define a partial order <T by

s<Tt iff s<t in T.

Both <̂  and <T are necessarily nested in the partial order of the role
algebra Q. For instance, the local role algebra of block 1 in the network
N (Table 2.7) has nested role algebras presented in Table 3.19. The
partial order associated with the nested role algebra T = Qx of Table 3.19
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Table 5.19. The partial orders < and <T for the local role algebra of
block 1 of the network N

ill i ll
0 1 0 0 1 0
111 1 11

is presented in Table 5.19, together with the partial order <M correspond-
ing to the partial function

Now the derived set Y preserves distinctions among relations in T if
<T is nested in <^ and we can formalise a Correspondence Definition.
CORRESPONDENCE DEFINITION FOR LOCAL NETWORKS. Define a role algebra T
nested in the local role algebra Q of a local network on a set X to be
associated with a derived local network corresponding to the partial
function jx and the derived set Y if

1 5 < ^ implies s <Tt, for all s,teQ; and
2 T is nested in the local role algebra generated by the derived

local network on Y.
One consequence of the definition is that, for each role algebra nested
in a given local role algebra for a particular ego, the entire set X of
members of ego's local network satisfies the requirements of the Cor-
respondence Definition. Indeed, one can partially order possible derived
sets Y in exactly the same way as that described for the analysis for
entire networks. Hence, one can search for minimal derived set asso-
ciations of the factors of a local role algebra with the only procedural
variation from the search outlined for entire networks being the restriction
to derived sets in which ego has some representation.

For example, factors of the role algebra of block 1 of the network N
may be identified with minimal derived sets of X as shown in Table
5.20. Some corresponding derived local networks are reported in Table
5.21. Factor A corresponds to the local network defined by block 1
(possibly in combination with blocks 3 and 4) and block 2, whereas
factor B is associated with the local network comprising blocks 1 and
4, or blocks 1 and 3, as well as with some related combinations.

The analysis of a local network implied by the procedure is illustrated
in Figure 5.11. Observe that the proposed scheme of analysis presented
in Figure 5.11 bears considerable formal resemblance to that of entire
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Table 5.20. Derived set associations for the factors of the local role
algebra of block lofN

Factor Derived set associations

A {1,2} {(134), 2} {(13), 2}
{(14), 2}

B {1,3} {1,4} {1,(34)}
{(14), 3} {(13), 4}
{(12), 4} {(12), 3}
{(12), (34)} {(123), 4}

Table 5.21. Derived local networks corresponding to some minimal
derived set associations for the factors of the local role algebra of
block 1

Factor Derived set

{1,2}

{(134), 2}

{1,3}

{1,4}

{(12), (34)}

Derived

L

1 1
1 1
1 1
1 1

1 0
0 1
1 0
0 1
1 0
0 1

local network

A

1 0
1 0
1 0
1 0

1 1
1 0
1 1
1 0
1 1
1 1

networks portrayed in Figure 5,9. Differences between the two schemes
stem largely from the application of the global analysis to the entire
network and of the local analysis to a single relation plane derived
from the local network. Thus, although entire collections of matrices,
representing all possible paths among all pairs of nodes, are implicitly
analysed in the former scheme, the induced analysis in the latter case is
of the set of role-relations in a relation plane, corresponding to paths
emanating from a single fixed individual.

Several features of the analysis deserve comment. Firstly, the relation-
ship between Mandel's (1978) two definitions of local role, elaborated
separately in Mandel (1983) and Winship and Mandel (1983), is made
apparent. The Mandel (1983) definition, which divides the relation plane
into relation vectors (or path types), is the one adopted here for role
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The TT-relation lattice

The local role
algebra Q of the
local network

Q\ Qi — Q k Factors
oiQ

The local
network

Local networks
on minimal
derived sets

Figure 5.11. Analysis of a local network

algebra. The Winship and Mandel (1983) definition, on the other hand,
characterises a relation plane in terms of its distinct role-relations; that is,
it partitions the relation plane according to the relations between ego
and other network members, recording for each member the collection of
path types from ego to the member. The scheme proposed here relates
to both of these characterisations, with an analysis of one inducing an
analysis of the other.

Secondly, a comparison between Figures 5.9 and 5.11 demonstrates
again the analogous analytic roles played: firstly by networks and local
networks and secondly by partially ordered semigroups and role algebras.
Mandel (1978) termed the role-set of an individual a "concrete" repre-
sentation of local role and termed the local role algebra of an individual
an "abstract" representation of role; his labelling is consistent with the
idea of networks being concrete relational representations and algebras
being abstract representations of role structures. Moreover, just as we
have argued that both levels of representation are useful in the analysis of
an entire network, so it can be argued that both local role formulations
are useful. The essence of the claim is that an analysis at the more abstract
level provides a means of selecting analyses at the concrete level, without
which the analytic possibilities are too numerous. The search for in-
dependent components at the abstract level has the further advantage of
making the concrete-level analysis an efficient one.
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Thirdly, the analysis of local role algebras that we have developed makes
it possible to describe local roles in terms of a number of elementary
relational features. Different local roles may be compared by listing the
features that they possess and thus by assessing their similarities and
differences in terms of those features.

Some applications

The scheme of analysis for local networks portrayed in Figure 5.11 is
illustrated in several ways. Firstly, a local role analysis is presented for
each block in the Breiger-Ennis blockmodel. Then an analysis of the
structure of two genuinely local networks is undertaken: the snowball
network L introduced in chapter 2 and an example of a network iden-
tified by the General Social Survey network questions (Burt, 1984).
Finally, the analysis is applied systematically to a class of "small" net-
works: namely, two-element two-relation networks.

Local roles in the Breiger-Ennis blockmodel
The local role analysis described in the preceding section is illustrated
by its application to the four-blockmodel reported by Breiger and Ennis
(1979) and analysed earlier from the global point of view. Here that
analysis is augmented with one from the local perspective.

The local role algebras for each of the four blocks are presented in
Table 5.22, and Table 5.23 identifies the factors of each local role
algebra. Subsets of the block set X, corresponding to partial functions
/i, for which the partial order of a factor is nested in <^ are shown in
Table 5.24.

Several conclusions may be drawn immediately from Table 5.24. Firstly,
for each block, the local role algebra has a factor describing relations
between itself, on the one hand, and blocks 1 and 4, on the other. That
is, a component of the local role for each block is taken up with the
pattern of relations to the two blocks of opposing type, and that compon-
ent cannot be broken down further into a relational pattern for each
block separately. Thus, the position of a block in relation to block 1 (of
type UP) is inextricably linked with its position in relation to block 4 (of
type DN), a finding that serves to reinforce further the conclusion by
Breiger and Ennis (1979) of the strong relationship between the type of
a block and its local social environment.

Secondly, all blocks except block 3 have a separate and independent
component describing relations with block 3 (type P). Thus, for all blocks
except block 3, relations with block 3 appear to be unconstrained by
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Table 5.22. Local role algebras for blocks in the Breiger-Ennis
blockmodel

Local role
algebra

Ax

A2

A3

A4

Elements

L , S = 1
D = 2

LD = 3
DD = 4
DS = 5

LDL = 6
LDD = 7

L,S=1
D = 2

LD = 3
DL = 4

LDS = 5

L , S = 1
D = 2

LL = 3
LD = 4
DL = 5
DD = 6

LLD = 7
LDS = S

LLDS = 9

L= 1
D = 2
S = 3

LD = 4
DL = 5
SS = 6

LDS = 7

Right mult.

1

1
1
6
6
1
6
6

1
4
4
4
4

3
5
3
5
5
3
3
5
3

1
5
1
5
5
1
5

table

Generator

2

3
4
4
4
3
3
3

3
2
2
3
3

4
6
7
6
7
6
6
7
7

4
2
4
2
4
4
4

3

1
5
7
6
5
6
7

1
4
5
4
5

3
5
3
8
5
3
9
8
9

1
5
6
7
5
6
7

Partial order

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 1 0 0 0
0 0 0 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 0 1 0
1 1 1 1 1 1 1

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 0 1 0
1 1 1 1 1

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0 0
0 1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 1 1 1 1 1 1

relations with other blocks. For block 3 itself, its internal relations are
tied to its relations to block 2, suggesting a special relationship between
blocks 2 and 3, which was also inferred by Breiger and Ennis (1979). This
link between block 2 and block 3 relations is identified only in the local
role algebra for block 3; in the local role algebras for blocks 1 and 2,
block 2 is seen in the same undifferentiated terms, and block 4 has a
separate component describing its relations to block 2.

Thirdly, some common components appear in the local role algebras for
the four blocks. Blocks 2 and 3 have identical components describing
their relations with blocks 1 and 4 (factor D). Thus, the blocks of type
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Table 5.23. Factors of the local role algebras of Breiger-Ennis blocks

Local role
algebra Factor

A

B

C

D

D

E

C

F

Ga

Right mult.

Elements

1,6=1
2,3 = 2

4 = 4
5,7 = 5

1,2,5 = 1
3,4,6,7 = 3

1 = 1
2-5 = 2
1,4=1

2 = 2
3 = 3
5 = 5

1,3,5 = 1
2,6 = 2
4,7 = 4
8,9 = 8

1 = 1
2,4,5,8 = 2
3, 6, 7, 9 = 3

1,3,6 = 1
2, 4, 5, 7 = 2

1,5 = 1
2 = 2

3,6,7 = 3
4 = 4

1,2,4-7=1
3 = 3

1

1
1
1
1
1
3
1
2
1
1
1
1
1
1
1
1
3
2
3
1
2
1
1
1
1
1
1

table

Generator

2

2
4
4
2
3
3
2
2
3
2
2
3
4
2
2
4
2
3
3
2
2
4
2
4
2
1
1

3

1
5
1
5
1
3
1
2
1
1
5
5
1
1
8
8
3
2
3
1
2
1
1
3
3
1
1

Partial order

1 0 1 0
0 1 1 0
0 0 1 0
1 1 1 1

10
1 1
10
1 1

1 1 0 0
0 1 0 0
0 1 1 0
1 1 1 1
1 1 0 0
0 1 0 0
0 1 1 0
1 1 1 1

1 0 0
0 1 0
1 1 1

10
1 1

1 1 0 0
0 1 0 0
1 1 1 1
0 10 1

11
01

a The factor G was not unique.

UN and of type P appear to relate to the blocks of opposing types UP and
DN in the same way. Similarly, it can be seen that blocks 2 and 4 have
the same component describing their relations to block 3 (factor C). From
Table 5.24, the nature of these common components may be inferred. In
relation to blocks 1 and 4, blocks 2 and 3 do not distinguish between
Liking and Similarity, but for Disliking, they do not distinguish between
blocks 1 and 4. (Thus, blocks 2 and 3 like and claim similarity to block
1 but not block 4, but they express dislike to neither block.) For the
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Table 5.24. Minimal subsets for which factors of the Breiger-Ennis
local role algebras are nested in the subset partial order

Local role
algebra Factor Subset

A, A {1,4}
B {1,3}

A2 C {2,3}
D {2,1,4}

A3 D {3,1,4}
E {3,2}

A4 C {4,3}
F {4,1}
G {4,2}

relations from blocks 2 and 4 to block 3, Liking and Similarity ties are
both absent and Disliking ties are present. In other words, blocks 2 and
4 adopt a similar stance in expressing resentment of the friendly and
sociable role of block 3.

The other local role algebras in Table 5.23 may also be examined to
add descriptive detail to the nature of other inter-block relations. Factor
A deals with the relations of block 1 to itself and its opposite type and
shows the disjunction between Liking and Similarity relations (expressed
to itself and not block 4) and Disliking relations (expressed to block 4 and
not itself). Factor B shows that block 1 ignores block 3 and is connected
with it only through third parties. Factor £ describes the relations of
block 3 to itself and to block 2. In particular, Liking and Similarity ties
are expressed to its own block members and not to those of block 2,
whereas the reverse is true of Disliking ties. Block 2 can be reached by
Liking ties through a third party, however, a feature that distinguishes this
local role algebra component from factor A.

The relations of block 4 with block 2 and with block 1 are described
by factors G and F, respectively. Block 4 does not claim Similarity with
block 2 but expresses both positive and negative affect towards it. In
relation to block 1, block 4 feels similar to itself and to block 1 members,
and expresses Liking ties to only block 1 members and Disliking ties to
neither.

From this description of local role algebras in the Breiger and Ennis
(1979) blockmodel, several general points can be adduced. Firstly, the
identification of similar components in different local role algebras
can be made readily and is a useful feature of the descriptive procedure.
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Table 5.25. A local network from General Social Survey items

ego
A
B
C
D
E

ego

0
1
1
1
1
1

Relation A

A

1
0
0
1
1
0

B

1
0
0
0
0
0

(association)

C

1
1
0
0
1
0

D

1
1
0
1
0
1

£

1
0
0
0
1
0

ego
A
B
C
D
E

egc

0
1
0
1
0
1

Relation

1
0
0
0
0
0

C (close relation)

B

0
0
0
0
0
0

c
1
0
0
0
1
0

D

0
0
0
1
0
0

£

1
0
0
0
0
0

Adapted from Burt, 1984.

Secondly, the interdependence of role-relations is made explicit (e.g., the
relations of each block with blocks 1 and 4 are linked with each other
but are relatively independent of other role-relations). Thirdly, each local
role algebra component is associated with a partial right multiplication
table, a partial order and a collection of role-relations, all of which may
be used to describe the component in considerable detail. This detail can
be used to document further the relationship between social role and
behavioural type initially demonstrated by Breiger and Ennis.

A General Social Survey network

Table 5.25 reports a local network similar to one used by Burt (1984) to
illustrate some of the network data generated by the General Social Survey
network items. The network reports associations and "especially close"
relationships among a respondent (ego) and up to five of the first-named
members of his or her local network. The local role algebra generated
by the network of Table 5.25 is given in Table 5.26, and its reduction
diagram is shown in Figure 5.12. Factors of the local role algebra and
other role algebras mentioned in Figure 5.12 are listed in Tables 5.27
and 5.28, and minimal subsets having factors of the role algebra nested
in their corresponding partial orders are given in Table 5.29.

It can be seen from Table 5.29 that ego and network members C and
D feature in most of the minimal derived set associations, and that the
interrelations of these three with members £, B and A arc associated with
the three respective factors. The third factor is also associated with rela-
tions among ego, A, C and B.

The factors U and W have the property that ego * AA is the maximal
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Table 5.26. The local role algebra of the General Social Survey network

Elements

A = l
C = 2

AA = 3
AC = 4
CA = 5
CC=6

AAA = 7

Right mult, table

Generator

1

3
5
7
7
7
7
7

2

4
6
3
3
3
2
3

Partial order

1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 1 1 1 0
0 0 0 1 0 1 0
0 0 0 1 1 1 0
0 0 0 0 0 1 0
1 1 1 1 1 1 1

Figure 5.12. Reduction diagram for the local role algebra of the
GSS network

relation vector. Ego is associated directly with each of D and C and
indirectly with each of E and A through an intermediary; thus, ego has
associates in common with any of D, C, £ and A. Indeed, in factor W,
each of ego's associates is also an associate of one of ego's close friends.
In factor V, however, ego * AAA is the maximal relation vector; ego and
B have no other associates in common.
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Table 5.27. Factors for the role algebra of the GSS network

Role algebra

U

V

W

Elements

1
2

37
45

6

1
2

345
6
7
1

26
357

4

Right mult, table

Generator

1

3
4
3
3
3

3
3
7
7
7

3
3
3
3

2

4
6
3
3
2

3
6
3
2
3

4
2
3
3

Partial order

1 1 0 0 0
0 1 0 0 0
1 1 1 1 1
0 0 0 1 1
0 0 0 0 1

1 1 0 0 0
0 1 0 0 0
0 1 1 1 0
0 0 0 1 0
1 1 1 1 1

1 1 0 0
0 100
1 1 1 1
1 1 0 1

Factor W is also distinguished by the equation

ego * CC = ego * C

and by the distinction between the relations ego * AC and ego * CA. So,
for instance, for the subnetworks corresponding to factor W, namely,
{ego, C, D, £} and {ego, C, D, B}, the same members of the network can be
reached for close friends of associates as for associates of close friends.
Member A, however, is an associate of a close friend but not a close
friend of an associate, hence the distinction of ego * AC and ego * CA
in the factor corresponding to subnetworks containing member A.

Thus, we can distinguish these three overlapping regions of the network
in terms of at least three properties:

1 the denseness of associates in the network: are ego's associates
also associates of some of ego's associates (as in factors U and
W)?

2 the closure of close ties: do close ties exist among ego's close
associates (as in factor W)?

3 the interlocking of associations and close ties: do the close ties
of associates of ego define the same group of network members
as associates of ego's close friends (as in factors U and V)?
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Table 5.28. Other role algebras in the reduction diagram of Figure 5.12

Right mult, table

Generator

Role algebra Elements Partial order

D

H

1
2
37
45
6

1
2

345
6
7

137
2
45
6

1
2

3457
6

13457
2
6

1
2

3457
6
1
26

3457

13457
26

4
6
3
3
2

3
6
3
2
3

4
6
1
2

3
6
3
2

1
6
2

3
6
3
2

3
2
3

3
2

1 1000
01000
11111
0 10 11
00001

1 1000
01000
11110
00010
1 1 1 1 1

1111
0 100
0 111
0001

1 100
0100
1111
000 1
111
010
001

1101
0 100
1111
000 1
1 10
010
111

11
01

Table 5.29. Minimal subset associations for role algebras appearing in
the reduction diagram of the GSS network

Factor Minimal subset associations

U
V
W

{ego,C,D,E}
[ego, B, C, D]
{egoiA,C,B}{ego,AiCiD}
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Table 5.30. The local role algebra generated by the snowball network L

Elements

C = l
F = 2

CC = 3
CF = 4
FC = 5
FF=6

CFC = 7
FCC =8

Right mult, table

Generator

1

3
5
3

- 7
8
7
7
5

2

4
6
6
6
6
6
6
6

Partial order

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 1 0 11
1 0 1 0 1 0 0 0
1 1 1 1 1 1 1 1
1 1 1 0 1 0 1 1
1 1 1 0 0 0 0 1

Such features identify structural properties of a local network, and their
presence or absence can be assessed in a large number of local networks.
It remains to be seen what kinds of structural properties of local networks
have some substantive significance, but the method of analysis that has
been developed allows that question to be addressed with some care.

The snowball network L

The network L shown in Figure 2.1 in graph form and Table 2.2 in matrix
form has the local role algebra reproduced in Table 5.30; the local role
algebra has the reduction diagram shown in Figure 5.13. (Factors of the
role algebra and other role algebras reported in Figure 5.13 are shown in
detail in Table 5.31, and some derived sets whose partial orders contain
the partial order of each factor are given in Table 5.32.)

Factor A describes the property that ego can reach all members of the
network by a path of length 2, but not by a path of length 1. Factor
B is associated with the network domain {ego, b, g, h}, in which ego's
associate (node b) is also the associate of one of ego's close friends. The
factor is distinguished by the equation ego * A AC = ego * A, reflecting
the fact that node b, who is the only associate of ego in this region of
the network, can also be reached as the close friend of one of ego's
associate's associates. Paths comprising two association relations define
maximal connections in this (as well as all other) regions of the network.
Factor C is identified with the network region including members c, d,
e and f, where associates of close friends and associates of associates
define maximal connections, distinct from all others. Close friends of
associates, however, are also close friends; so that adding a "close friend"
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Figure 5.13. Reduction diagram for the local role algebra of the
network L

Table 5.31. Role algebras identified in Figure 5.13

Role algebra

A

B

C

D

E

F

G

H

Right mult.

Elements

1,2 = 1
3-8 = 3

1 = 1
2-5, 7, 8 = 2

6 = 6
1-3, 5, 7, 8 = 1

4,6 = 4
1,3 = 1
2,8 = 2

4,6,7 = 4
5 = 5
1 = 1

2-8 = 2
1,3 = 1

2, 5, 8 = 2
4, 6, 7 = 4

1,3 = 1
2,4-8 = 2

1-3, 5, 8 = 1
4, 6, 7 = 4

table

Generator

1

3
3
2
2
2
1
1
1
5
4
2
2
2
1
2
4
1
2
1
4

2

3
3
2
6
6
4
4
4
4
4
4
2
2
4
4
4
2
2
4
4

Partial order

1 0
1 1

100
1 1 0
1 1 1

10
1 1

1 0 0 0
1 1 0 0
1 1 1 1
1 0 0 1

10
1 1

100
1 10
1 1 1

10
1 1
10
1 1
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Table 5.32. Some derived set associations for factors of the network L

Factor Associated derived sets

A [ego, {a, b, c, d, e, f, g, h)}
B lego, b, g, h}
C [ego, (c, d), (e, f)}
D {(ego, a, c, d, e, f, h), b, g}

link to a path in this region of the network does not extend the set of
persons to whom ego is already linked by a "close friend" tie (because
ego * CC = ego * C and ego * AC = ego * C). The corresponding net-
work region can be seen as having three components: (a) ego, the focal
individual in the local network; (b) nodes c and d, who are close friends
of ego as well as close friends with each other; and (c) nodes e and /",
who are associates of c and d, but not directly tied to ego. This region
of the network has the algebraic properties already described: close
friend links are unable to connect ego to anyone other than his/her close
friends, in contrast to the weaker links of association. Factor D is
associated with relations of ego to members b and g and others. As-
sociates of associates again define maximal connections in this region,
as do associates of close friends; close friends of associates, however,
do not.

Local role algebras for two-block two-generator models

Finally, we consider the application of the local role analysis to the
collection of all two-element two-relation networks, also termed two-
block two-generator (TBTG) models (Lorrain, 1973). The TBTG models
systematically record all possible interrelationships between two nodes of
two distinct types and so correspond to the simplest class of nontrivial
interrelationships between two individuals or blocks. As such, one might
expect the local role algebras for TBTG models to be largely irreducible,
although cases in which they are not will present useful data for under-
standing how local role components can act independently.

The 57 TBTG models give rise to 114 local role algebras, 63 of which
are distinct. Of these 63 distinct local role algebras, 59 are irreducible
and a further 38 of those have no nontrivial nested role algebras. It is
indeed the case, therefore, that for most of the elemental interaction
patterns, local role algebras are indecomposable.

The four TBTG models giving rise to reducible local role algebras are
presented in Table 5.33. In each case, the reduction of the local role
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Table 5.33. Reducible role algebras from two-element two-relation
local networks

Local

00
01

10
1 1

0 1
01

1 0
01

network"

1 1
0 1

0 1
0 1

1 0
10

0 1
0 1

Elements

1
2

21 = 3

1
2

21 = 3
1
2
1
2

Right mult, table

Generator

1

1
3
3
1
3
3

1
1

1
2

2

1
2
3

2
2
2

2
2

2
2

Partial order

1 0 0
1 1 1
1 0 1

1 0 0
0 10
1 1 1

1 0
0 1

10
0 1

a Ego for the local network is the first network member.

algebra is associated with a decomposition of the role-set, with each role-
relation being associated with exactly one factor. It is interesting to note
that for all reducible local role algebras from TBTG models, the relation
vectors for the two generators are complementary ones. Such a condition
is not sufficient to give rise to a reducible role algebra, but it would be
of interest to determine whether some analogue of it is necessary in the
case of multiple blocks and/or multiple generators.

Summary

In this chapter, we have considered the question of how features of a
complete or local network are related to components of the network
algebra. We have reviewed some algebraic conditions under which useful
connections are known to exist and we have developed a definition with
which to investigate the association between components of the algebra of
a network and its derived networks. The definition may be used in
conjunction with the factorisation procedure of chapter 4 to obtain an
efficient analysis of a complete or local network. The procedure was
applied to several complete networks in the form of blockmodels, as
well as to a number of local networks; and, in each case, it led to a
detailed description of structure in the network.



6
Time-dependent social networks

Formal methods for dealing with change in social networks have been the
subject of increasing interest among social scientists (e.g., Doreian, 1979,
1980, 1986; Hallinan, 1978; Holland & Leinhardt, 1977; Hunter, 1978;
Iacobucci & Wasserman, 1988; Killworth & Bernard, 1976b; Runger
& Wasserman, 1979; Wasserman, 1980; Wasserman & Iacobucci, 1988).
Two distinct approaches to the development of these methods have emerged.
In one, a social network is represented as a single relation matrix, and
explicit "process" models for change in the constituent social relation-
ships have been sought; for example, Wasserman's (1980) reciprocity
model represents a relationship between any pair of network members as
a stochastic function of characteristics of the relationship at an earlier
time. In the other approach, a more complex structural representation of
the social network is constructed, and the more modest goal in relation
to change has been a language for the description of structural "evolu-
tion"; Doreian (1980), for example, presents an analysis of the changing
structure in a group that is implied by Atkin's (1977) representation of
structure using combinatorial topology.

The coupling of more complex structural representations for social
network data and more descriptive approaches to accounts of their chang-
ing structure is not accidental. Not only are the analytic difficulties in
developing complex structural models for change much more forbidding
- because, in general, potential models are more numerous and un-
doubtedly less tractable - but also the structural models are usually
constructed on the basis of some continuity in time. As a result, explicit
structural models for change would need to be set within a macro rather
than a micro time scale (Nadel, 1957). They would therefore need to
reflect the impact of a number of influences external to the social system
that cannot be assumed to be constant over long periods (Granovetter,
1979). Moreover, in practice, the primary objective of a structural model
has been conceived as a representation of the "pathways" or "orbits" for
social events (Nadel, 1957, p. 129), that is, as the "backcloth" for the
flow of social "traffic" (Atkin, 1977; Doreian, 1980). The structure of
the social system is not assumed to be invariant over long periods nor
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unchanged by the processes or traffic that it supports. Mechanisms for
structural change are therefore best sought in the processes as well as in
the prevailing structural patterns, so models for change require great
complexity. As White, Boorman and Breiger (1976) argued, one must
eventually be able to show how concrete social processes "shape and are
shaped by" structure.

The aim of this chapter is to explore some descriptions of structural
change that follow from the partially ordered semigroup and local role
algebra representations for structure in social networks. In view of the
difficulties in constructing models for structural change, which have just
been outlined, a descriptive approach is adopted. It is one, however, that
is intended to be sensitive to the long-term demands of a joint account of
changing structure and process. Thus, in the first instance, the goal is
simply a language for change, but it is a language in terms of which
questions about the mechanisms of structural change may usefully be
posed.

An example of such a question of change is the problem of "recruit-
ment" of persons into roles and relationships (Nadel, 1957): how does a
person with a particular set of characteristics and experiences come to
adopt a particular pattern of relationships with those around? A related
question is "the ancient problem of descent", that is, the problem of
establishing the mechanisms for assimilating persons new to a social or-
ganization into "the social identities of their predecessors" (White, 1970,
p. 329). One may hope that any useful description of change would be
one in which these questions can be both framed and empirically ad-
dressed.

A language for change
The language for change that is associated naturally with the methods of
analysis developed in the preceding chapters may be described in general
terms as follows. Suppose that the representation of a structure at time 1
is the algebra Sx and that the corresponding representation of structure at
time 2 is S2 (where Sa and S2 may be either partially ordered semigroups
or local role algebras). Then, at each time, the algebraic structure may be
decomposed into its components, and the relational referents of each
component may be identified. The set of algebraic components that the
two structures share yields a detailed description of those features of
the structure that have remained invariant from time 1 to time 2, and
the relational referents of those components locate the source of that
invariance. Correspondingly, those components that are unique to one
of the two structures provide a description of structural features that
have been lost (in the case of Sa) or gained (in the case of S2), and the
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relational source of the change is also made explicit. We may note a
number of features of this proposed description of change.

Firstly, change is not assumed to occur uniformly throughout a network
system; instead, it can be traced to a particular collection of network
links. The fine-grained description of change that ensues is a necessary
first step in the task of relating aspects of social processes and external
events to structural change.

Secondly, change in a network link does not necessarily produce struc-
tural change. The results of earlier chapters document some of the con-
ditions under which distinct systems at the relational level have identical
algebraic structures. For example, increasing the size of a system by
adding individuals who are structurally equivalent to individuals al-
ready in the system has no effect on the semigroup of the system.
Similarly, adding individuals to a network so that their role-relation
with respect to a given individual is the same as that of an existing
individual, leaves that given individual's local role algebra unchanged.
The identification of all such relational changes for which the algebraic
representation is invariant is one of the mathematical tasks raised by the
models and has been considered in chapter 3.

Thirdly, the language for change is defined by isotone homomorphic
mappings in the case of semigroup algebras and by the nesting relation in
the case of role algebras. In both cases, the relevant mappings between
structures provide a way of comparing a more complex structural repre-
sentation with a simpler one.

Such mappings have played a part in a number of speculations about
structural change. Boyd (1969), for example, hypothesised in relation to
group representations of marriage class systems that "if a group Gl
evolves into a group G2, then Gl will be a homomorphic image of G2"
(p. 139). For more general systems of social relations, he offers a rela-
tional mechanism that might prompt such structural "growth" (Boyd,
1980). White (1970) suggested a related but somewhat more general
perspective on the development of structure when he argued

One plausible hypothesis is that a structure of positions
emerges as the skeleton deposited by, that is the residue in
cultural terms from, repetitive enactment of orderly networks
of relations among men.. . . Homomorphic images of relation
mappings on a population may constitute the essential
skeleton of social processes (pp. 329-30).

Some relational conditions for smooth change

Another mathematical task associated with this description of change is
the enumeration of conditions under which change is smooth. Here smooth
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may be defined in a number of ways, but one possibility is that smooth
change is reflected by algebraic extension, that is, by the structure at
time 1 being a homomorphic image of the structure at time 2 (as Boyd,
1969, argued for marriage class systems). In chapter 5, we reviewed
some of the relational conditions under which the semigroup of one
network is a homomorphic image of the semigroup of another. For
instance, the indegree and outdegree conditions, regular equivalence
and the central representatives condition were interpreted as generali-
sations of the structural equivalence condition. If we think of one of the
networks as preceding the other in time, then we can obtain from these
conditions some useful schematic descriptions of smooth structural
change.

Suppose, for example, that a network on a set X is expanded by adding
new members to X and/or new ties between members. If the additions
are made so that the new network is structurally equivalent to the old,
then the relational structure of the two systems is the same; that is, no
structural change has occurred. If, however, the changes occur so that
the new system satisfies any of the indegree, outdegree or central rep-
resentatives conditions and that the associated derived relational structure
is isomorphic to the old one, then the structure of the new system is
guaranteed to be an extension of that of the old. That is, the semigroup
of the new system contains the semigroup of the old as an isotone
homomorphic image. Thus, the conditions describe some of the ways in
which elements and ties between elements can be added to a network
without destroying its prevailing structural distinctions, although with
the possible creation of new ones.

Moreover, the various conditions distinguish different ways in which
this type of change may occur. In the indegree and outdegree cases, for
instance, elements may be added so that their relationships are consistent
with those of some existing element (in the sense described by the con-
ditions). In the central representatives case, though, the new elements are
added in ways that are strictly constrained by the ties of existing elements,
that is, by their central representatives.

Similarly, conditions that guarantee the nesting of the role algebras of
two role-sets can be interpreted as conditions for smooth structural change.
The conditions include the local analogue of the regular equivalence
condition, as well as any condition that leaves the original role-set as an
intact subset of the new one.

All of these conditions provide descriptions of the ways in which
structural change can be smooth, if the meaning of smooth is derived from
the particular structural description that we have constructed. The ques-
tion of whether change is, in fact, smooth in this sense is an empirical
one, and in the next section we examine how the question may be
addressed in empirical terms by illustrating how the analytic methods that
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have been developed may be applied to some time-dependent relational
data.

An analysis of time-dependent blockmodels

Boorman and White (1976) described a partition of participants in
Newcomb's (1961) fraternity study, into four blocks. The group (termed
"Newcomb's Fraternity, Year 1" by Boorman & White) consisted of 17
male undergraduate students of the University of Michigan who shared
a house for 16 weeks and, during that time, supplied information that
included weekly interpersonal attraction ratings of each person for all
of the others. The exact types of data obtained, as well as accounts of
the original analyses performed upon them, may be found in Nordlie
(1958) and Newcomb (1961); see also the summary description in
Boorman and White (1976).

The partition of the group into four blocks described by Boorman and
White (1976) was produced by application of the CONCOR algorithm
(Breiger et al., 1975) to Newcomb's (1961) data. (Week 13 data were
chosen by Boorman and White; as they argued, any of the later weeks
could have been chosen for analysis with little change in results.) The
resulting blockmodel images are labelled L (Liking) and A (Antagonism),
respectively, and those for Weeks 1 to 15 are presented in Table 6.1.
The blockmodels were constructed by Boorman and White (1976) by
using the Week 13 blocking and a cutoff density of 0.20 throughout.
(No data were collected for weeks 3, 4 and 10.)

The semigroup S = S15 = S({L, A}), generated by the blockmodel for
Week 15, is the semigroup S(N) analysed in chapter 4 (Table 4.13). Its
factorisation yielded three unique factors corresponding to the ;r-rela-
tions TT4, n5 and n6. The factors are shown in Table 4.13, and their
minimal derived set associations are given in Tables 5.11 and 5.12.

S/7i4 is the Last Letter semigroup of order 2 (LL), whereas Sln6 and
S/n5 have multiplication tables isomorphic to Boorman and White's
(1976) target tables Tl and T2, respectively. Features of the relational
structure in the Newcomb Fraternity, Year 1, Week 15 may be de-
scribed by these factors and hence as follows.

Factor SlnA. The Last Letter factor S/TT4 may be broadly interpreted as
an indication that compound ties are determined by the connections of
intermediaries (e.g., Breiger, 1979). More specifically, block 2 receives
no antagonistic ties; hence compound ties with last letter A may be
directed only to the aggregate block containing blocks 1, 3 and 4.
Boorman and White (1976) argued that block 2 consists of the core



Time-dependent blockmodels 229

Table 6.1. Blockmodels for Newcomb Fraternity, Year 1, Weeks 1
to 15

Week

Blockmodel

L

1
1
1

L 1 1
L 1 1
L 1 1

001 1

1 1

1 1
01

L 1 1
L 1 1
L 1 1

1011

1 1
1 1
01
0(

1 *
0^

L 1 1
I 1 0
L 1 1
)1 1

L 1 1
L 1 0

0011
1011

11

11
L 1 0
LOO

0010
0011

11
11
01

L 1 0
LOO
L 10

0 0 1 1

A

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

101
1 1 1
001
101

01 1
001
001
001

001
001
001
101

001
001
00 1
100

01 1
001
00 1
100

011
01 1
001
1 00

Week

Blockmodel

L

1 1
1 1
00
00

1 1
1 1
00
10

11
11
00
00

11
11
00
00

11
11
00
00

11
11
00
00

00
00
10
11

00
00
10
11

00
00
11
11

00
00
1 0
11

00
00
1 0
11

00
00
10
11

1011
1001
1001
1 100

110 1
1011
100 1
1 100

1111
10 11
100 1
1 100

10 11
1011
1001
1100

00 11
10 11
1001
1000

1011
1010
100 1
1000

11

12

13

14

15

Data based on Nordlie, 1958.

group of leaders of the dominant clique (whose members are persons in
blocks 1 and 2). Their proposition, based upon a nonalgebraic analysis,
is well supported here. Block 2 is the only block to whom no antago-
nism is directed; this fact clearly emerges from the complementary pair
of basic structural units: the semigroup factor S/n4 and the blockmodel
images of L and A induced by the corresponding minimal derived sets.

Factor Sln6. The Tl factor S/n6 is characterised by the equations LL-L
and LA = A and by the behaviour of AA as a left and right zero element.
L is, in fact, idempotent and so is transitively closed, in the original
semigroup S15. Boorman and White (1976) discussed the implications of
the equation LA = A although their discussion was abstract in the sense
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that the equation was discussed independently of its associated network
features. Table 5.12 shows the network features giving rise to this equa-
tion. Specifically, it suggests that the equation LA = A results at least
partially from the combination of facts that

1 block 3 sends no L ties to the aggregate block and no A ties to
itself, and

2 block 3 sends L ties to itself and A ties to the aggregate block.
Together, (1) and (2) suggest the relatively high standing of block 3

in the group (Boorman and White's other core group of leaders). A
comparison of the blockmodels corresponding to the partitions (134)
(2) and (124) (3) indicates the major differences in the social operations
of the two leader blocks: block 2 directs L ties to blocks other than
itself and receives no A ties, whereas block 3 sends no L ties to blocks
other than itself and receives a number of A ties. Block 2 has wider
involvement in the positive affective aspects of the group life and is
more generally popular.

Factor Sln5. The T2 factor is characterised by the equations LL = L and
AL = A and by the behaviour of AA as a zero element. The derived
network associated with Sln5 is, in fact, the converse of that associated
with S/n6 (see Table 5.12). The sole distinction between the two networks
lies in the direction of the interblock L tie. Block 3 likes only itself, and
the only block to like block 4 is itself. Black 4, therefore, is socially
peripheral, consistent with Boorman and White's (1976) characterisation
of its members as the "hangers-on to the subordinate clique" (p. 1432).
The joint isotone homomorphic image of S/n6 and Sln5 is isomorphic to
the semigroup comprising an identity element and a zero element. It is the
semigroup that was argued by Breiger and Pattison (1978) to represent the
interrelationship between strong and weak ties (Granovetter, 1973). In
this image, L acts as the identity and A as the zero, pointing to the
strength of L ties relative to A ties. In fact, this image has a minimal
derived set association with the block partition (12) (34), which is the
clique division to which Boorman and White (1976) refer: when consid-
ered from the perspective of the clique structure of the group, L indeed
appears in its strongest form.

The development of relational structure

Boorman and White (1976) reported the occurrence of their eight target
tables, Tl to T8, as images of the semigroups for Weeks 1 to 15 of the
Newcomb, Year 1, data. Their analysis is extended here to examine how
the "surface" structural, or relational, analogues of the factors of the
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Table 6.2. Incidence of factors of Week 15 semigroup as images of
semigroups for earlier weeks

Week

15
14
13
12
11
9
8
7
6
5
2
1

X

X
_

_

-

-

-

-

X

X

X

-

Semigroup image"

S//r5

X

x
X

X

X

X

X

X

-

-

-

-

S/n6

X

X

X

X

X

X

X

X

-

-

-

-

Sln7

X

X

X

X

X

X

X

X

-

-

-

-

x, image present; - , image absent.

Week 15 semigroup vary over the same time span. The occurrence of
the factors S/n4, Sln5 and S/n6 of the Week 15 semigroup as images of
the semigroups of earlier weeks is summarised in Table 6.2, and corre-
sponding minimal partitions and their derived networks are presented
in Table 6.3. Data are also presented for the image S/^7, where n7 is the
greatest lower bound (intersection) of ns and 7t6. As Table 6.2 indicates,
n5 and n6 always occur together and hence so does their intersection.

One immediate conclusion may be drawn from Tables 6.2 and 6.3.
The stability of the factors over time is indeed a deep structural phe-
nomenon; small surface realignments occur, but in a way entirely
consistent with the underlying equations. Results of this kind will
hopefully encourage tentative suggestions about the mechanisms of
change. Once descriptions of structure and its development are of
sufficient and relevant detail, consistent patterns associated with change
might be expected to emerge.

Table 6.3 indicates that, with one exception, the factor S/n5 is associ-
ated with the configuration corresponding to the partition (123) (4) in
Week 15. It appears, therefore, that the position of block 4 in the group
and its effect upon the total group structure is quite stable from Week 7
onward. By contrast, however, there is considerable variation among the
relational associates of the factor S/n6. Block 3, whom this factor largely
concerns, could be the cause, a proposition that is not inconsistent with
its position as the nondominant leader group. The negotiability of its
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Table 6.3. Minimal partitions associated with identified images ofS15
and corresponding derived networks

Image

* 4

* 4

K5

K5

* 6

\

K7

K7

K7

K7

Minimal
associated
partition

(134)(2)

(124)(3)

(123)(4)

(12)(3)(4)

(124)(3)

(14)(2)(3)

(13)(2)(4)

(12)(3)(4)

(12)(3)(4)

(13)(2)(4)

(12)(3)(4)

(12)(3)(4)

(134)
(2)

(124)
(3)

(123)
(4)

(12)
(3)
(4)

(124)
(3)

(14)
(2)
(3)

(13)
(2)
(4)

(12)
(3)
(4)

(12)
(3)
(4)

(13)
(2)
(4)

(12)
(3)
(4)

(12)
(3)
(4)

Corresponding
derived
network

1 1
1 1
1 1
1 1

10
1 1

1 0 0
O i l
O i l

1 1
01

1 1 1
1 1 0
00 1
1 1 0
1 1 0
10 1
1 0 0 1
0 11 1
0 1 1 1

1 0 0 1
0 10 1
0 11 1

1 1 0 1
1 1 0 1
10 1 1
1 0 0 1
0 11 1
0 11 1
1 1 0 1
0 1 0 1
0 11 1

1 0
1 0
1 0
1 0

11
1 0

L 1 1
L 0 1
L 0 0

1 1
1 0

L 1 0
L 0 1
L 0 0

L 0 1
L 0 1
L 1 0

L 1 1
L 0 1
LOO

L 1 1
L 0 1
LOO

L 0 1
L 0 1
L 1 0

L 1 1
L 0 1
LOO

L 1 1
L 0 1
LOO

Weeks

2, 14, 15

5,6

7 , 8 , 9 , 1 1
13, 14, 15

12

7, 9, 13,
14, 15

1 1

8

12

9, 13, 14
15

7, 8, 9, 13

12

7

standing is also reflected by the partition connected to the factor S/K4
for Weeks 5 and 6: for those weeks, but only those, block 3 received
no antagonistic ties.

For the image Sln7r> which is reducible to S/n6 and S/ns, there exist
variations not only in the partitions with which it is associated but also
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in the relational configurations corresponding to a given partition. For
example, the partition (12) (3) (4) has three different corresponding net-
works between Weeks 7 and 15. Some of the deviations in the relations
are the same as those responsible for fluctuations in Tl configurations;
others are not. It can be seen, incidentally, that the consideration of
factors has permitted the separation of at least one invariance (the position
of block 4) from the much less clear picture associated with the semigroup
S/n7 and has also identified the detailed relational features connected
with the latter.

An interesting feature of the three configurations associated with the
partition (12) (3) (4) is that each has the same pattern. Variations occur
only in the L relation and, moreover, only in L connections involving
block 3. One may conjecture, therefore, that block 3 is the most active
participant in the process of change during the later weeks, but that the
types of change in which it is involved appear to be regulated by the
invariant semigroup image Sln7. Further, the Antagonism between blocks,
from the perspective of the partition (12) (3) (4), is negotiated by Week
7, whereas Liking relationships undergo additional change. Antagonism is
an invariant for this partition and Liking is more fluid, but the fluidity
of the latter is once again bounded by the semigroup Sln7 (with the
exception of Week 11). All changes in Antagonism from Week 7 may
thus be referred to the individual blocks 1 and 2; the only significant
change is associated with the appearance of the factor S/n4 at Week 14.

Thus, it has been possible to analyse in some detail the evolution of the
factors appearing at Week 15. It has been demonstrated that relational
fluctuations occur, though not uniformly, and that they may be con-
strained by underlying structural considerations. The significant changes
have been able to be identified and those with structural import separated
from those that appear to have a more homeostatic character. Contrast, for
example, the A relations directed to block 2 for Weeks 13 and 14 with
the A relations received by block 3 for the same weeks. Changes in the
first case are associated with the appearance of the factor Sln^ but in
the second with only small and concrete alterations in the realization of
the images S/n5 and Sln7. The analysis illustrates the detail with which
relational changes may now be described and establishes the means for
investigating the relationship between relational change and other
individual- and group-related indicators of change (such as changes in
attitudes).

A similar analysis has been conducted by Vickers (1981) for the social
structure of a school classroom over three consecutive years. Vickers
(1981) gathered relational data on Liking and Antagonism among members
of an essentially intact classroom group in their seventh, eighth and ninth
years of schooling. By a detailed analysis of the composition of blocks in
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Table 6.4. Local role algebras for blocks in the Newcomb blockmodel
at Week 15

Block

1

2

3

4

Elements

L = 1
A = 2

AL = 3

L= 1
A = 2

LA = 3
AL = 4

LAA = 5

L = l
A = 2

AL = 3
AA = 4

L = 1
A = 2

LA = 3
AL = 4
AA = 5

LAL = 6

Right mult, table

Generator

1

1
3
3
1
4
5
4
5
1
3
3
3
1
4
6
4
6
6

2

2
2
2
3
3
3
3
3
2
4
4
4
3
5
5
5
5
5

Partial order

1 0 0
0 1 0
1 1 1

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 0 1 0
1 1 1 1 1

1 0 0 0
0 1 0 0
1 1 1 1
1 1 0 1

1 0 0 0 0 0
0 1 0 0 0 0
01 1 0 0 0
0 1 0 1 0 0
1 1 1 0 10
1 1 1 1 1 1

the blockmodel for each year, and by an analysis of the changing structure
of the semigroup of the blockmodels over the three years, Vickers estab-
lished the existence of a substantial number of structural features that
were invariant over the three years. She also identified several instances
of structural change, instances that were plausible in the light of addi-
tional interview data from members of the classroom.

A local role analysis of time-dependent
blockmodels

A local role analysis of the blockmodel for Week 15 of the Newcomb
fraternity data just analysed yields some similar conclusions to the analysis
of the semigroup representation but serves to emphasize relations between
individual blocks to a greater extent. It is presented in summary form to
provide an additional comparative base for the local and entire network
frameworks. The local role algebras for blocks of the Week 15 blockmodel
are presented in Table 6.4, and their factors are shown in Table 6.5.
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Table 6.5. Factors of the local role algebras for the Week 15
blockmodel

Block

1

2

3

4

Factor

A

B

A

B

C

D

E

Da

E

F

Right mult.

Elements

1,3 = 1
2 = 2
1 = 1

2,3 = 2

1,4,5 = 1
2,3 = 2

1 = 1
2-5 = 2

1,2,4 = 1
3,5 = 2

1 = 1
2 = 2

3,4 = 3
1 = 1

2,4 = 2
3 = 3

1 = 1
2,3 = 2

4, 5, 6 = 4
1 = 1

2, 3, 5 = 2
4,6 = 4

1,3,5,6 = 1
2,4 = 2

table

Generator

1

1
1
1
2

1
1
1
2
1
3

1
3
3
1
3
3

1
4
4
1
4
4
1
2

2

2
2
2
2

2
2
2
2
3
3

2
3
3
2
2
2

2
4
4
2
2
4
1
1

Partial order

1 1
01
10
1 1

1 1
01
10
1 1
10
1 1

100
0 1 0
1 1 1
100
110
1 1 1

100
0 1 0
1 1 1
100
1 1 0
1 1 1

1 1
01

The factor D was not unique.

Table 6.6 presents the incidence of factors of the Week 15 local role
algebras as algebras nested in those at earlier times.

The correspondences of the factors with network regions is not pre-
sented in detail, but the analysis reinforces the conclusions drawn from
the preceding analysis. Firstly, as before, minor relational variations are
observed in the presence of greater structural stability, giving some weight
to the algebraic representation as a robust description of interblock
relations.
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Table 6.6. Incidence of Week 15 role algebra factors in earlier weeks"

Week

1
2
5
6
7
8
9

11
12
13
14
15

Block 1

A

_
X

X

X

-

-

-

-

-

-

-

X

factors

B

_
-
-
-
X

X

X

X

X

X

X

X

A

_
X

X

X

-

-

-

-

-

-

X

X

Block 2 factors

B C

_ _
- -
- -
-
x -
x -
x -
x -
X

x -
x -
X X

Block 3

D

_
-
-
-
X

X

X

X

-

X

X

X

factors

E

_
-
-
-
-
-
-
-
-
-
X

X

Block 4 factors

D E F

_ _ _
_ _ _

_
_
X X -

- x -
- x -
— X —

- X -

— X —

— X —

X X X

x, factor present; - , factor absent.

Secondly, the relations between each block and the block of "hangers-
on to the subordinate clique" (White et al., 1976), block 4, remain
relatively stable from Week 7 onward, indicating that positions with
respect to that block were in place at an early time.

Thirdly, it can be demonstrated that block 1 and, to a lesser extent,
block 2 have similar positions in relation to blocks 3 and 4 between
Weeks 7 and 15: the relations between block 1 and block 3 are associated
with the same factor as those between blocks 1 and 4 for five of the
eight observations during that time. Thus, individuals in blocks 1 and
2 tend not to distinguish blocks 3 and 4 in terms of their relations.
Block 3, on the other hand, tends to relate to block 4 in the same way
that it does to block 1; from its position, blocks 1 and 4 stand in similar
roles. It may be conjectured from this pattern of relations that the
superordinate clique and its hangers-on see the other main faction in a
similar and antagonistic light whereas the subordinate clique views the
hangers-on to both cliques as having a similar unfavourable group
position. This picture is not unlike that for the dominant and hostile
block described for the Breiger-Ennis blockmodel, a suggestion that
may be verified by comparing the local role algebra description of the
two blocks.

Fourthly, some changes occur in the last few weeks in the relations
between all blocks and blocks 1 and 2. Neither block 1 nor block 2
distinguishes Liking and Antagonism in relation to block 1, and relations
with block 2 emerge in their final form only in the penultimate or final
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week. Blocks 3 and 4 tend to relate to block 1 in a manner that is linked
with their relations to block 2, although, as noted earlier, blocks 1 and
4 are interchangeable from the perspective of block 3.

In all, a pattern of positions is found that is consistent with previous
descriptions of the group. The local role analysis and the tracing of its
features over the weeks preceding Week 15 give some additional support
to the description and highlight the similarity of block relations from the
perspectives of different block members. The analysis is clearly useful in
identifying salient aspects of the Liking and Antagonism relations among
different members of the group and their stability in time.



7
Algebras for valued networks

The partially ordered semigroups and local role algebras analysed in
earlier chapters were constructed for complete and local networks of
binary relations. In chapters 1 and 2, though, we also described complete
and local networks that have valued links. In valued networks, a link
from node i to node / on relation R has a value vR (/,;') indicating the
value, or strength, of the relation of type R from / to /. For many date
collection procedures, the values vR (/,/) may take only a finite set of
possible values (and, of course, if the number of distinct possible values
is just 2, the relations are binary). Both partially ordered semigroups
and local role algebras may be defined for network data arising in this
form, and in this chapter, we describe how to construct them. We also
discuss the relationship between the algebraic structures derived from
valued network data and the algebraic structures introduced in chapters
1 and 2 for binary data.

The semigroup of a valued network
For complete networks, valued relational information may be generated
directly as a result of the methodology used in the network study, or it
may arise as a result of some preliminary processing of the network data.
The first type of data is generated when network ties are measured
using a procedure that allows for ordinally scaled responses, with more
than two possible response values. For instance, valued data may be
obtained from questions eliciting information about network ties of the
form "Indicate on the following four-point scale the degree to which
you regard X as a friend", where the response scale values may be
0 = not at all, 1 = somewhat, 2 = quite strongly, 3 = strongly.

The second type of data may be obtained when a network is defined
at an aggregated level, for example, at the level of "blocks" in a blockmodel.
A valued network link between a pair of blocks may then be calculated
as the density of the links from one block to the other. Thus, a valued
network is defined by the collection of density matrices that form the

238
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intermediate stage between the original binary network data among per-
sons and some final binary relational data among groups of persons (or
blocks), as in a blockmodel. In most applications of blockmodelling, these
density matrices are converted into binary relations by imposing a cutoff
density value, above or equal to which densities are coded as 1 (tie
present) and below which they are coded as 0 (tie absent). A cutoff value
can also be used more generally to convert data in valued relational form
to binary form. In either case, the binary relations produced may be used
as generators of a semigroup (as in Boorman and White, 1976), provid-
ing a description of relational structure that is clearly contingent on the
faithfulness of the binary relations from which it was constructed. The
latter is dependent upon the existence and use of an appropriate cutoff
value; in the case of blockmodel analysis, it is also contingent upon the
validity of the blocks, in both their composition and number.

Although it may sometimes be appropriate to convert a valued network
into a binary one using a single cutoff value, it is clearly also useful to
consider whether such a simplification of the data is actually necessary
for algebraic representation. Indeed, we show here that it is not. In
particular, we show that we need only change the way in which we
define paths in networks (i.e., the way we define the binary operation
of relational composition) in order to construct the same kinds of
algebraic structures as before.

Recall that the binary operation of composition in a network semigroup
corresponds to the tracing of paths in the network. If R and S are two
network relations, then we define a link RS from node / of the network
to node / if and only if there is a path labelled RS from / to / through
some node k. There may be a number of different nodes k through which
such a path exists, and hence a number of different paths RS from / to
/. In defining the composite relation RS, however, we simply record
whether such a path exists, rather than the number of such paths. In the
binary case, this procedure is consistent with recording only the presence
or absence of primitive paths (i.e., paths of length one) in the network.

When the labelled links in network paths are valued, we find that
labelled paths through intermediate nodes have a string of values attached.
How, then, do we assign a value to the labelled and valued path RS
from node i to node /? In fact, there are several ways in which the
values can be assigned, and two that have been proposed in the literature
(e.g., Boyd, 1989; Doreian, 1974; Peay, 1977b):

1 The value of the path RS through node k is equal to the
minimum value of any link in the path - that is, min (vR (/, k),
vs(K /)) - and the value of the path RS over all k is equal to the
largest value of path RS through any k. (Thus, vRS (/,/) =
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max*{min (vR(i, k), vs(k> j))}.) This rule for determining the value
of a labelled, valued path may be termed a max-min product
rule.

2 The value of the path RS through node k is equal to the
product of the values of links in the path; and over all k, the
path has value equal to the sum of these values (so that
VRs(h j) = £* VR(*, k)vs(K /))• This rule may be termed an ordinary
product rule.

Other rules are also possible (e.g., Dubois & Prade, 1980; Peay, 1977b),
but rules 1 and 2 are the ones most commonly proposed (e.g., Boyd, 1989;
Doreian, 1974). The two rules differ in both their assumptions and their
properties. More specifically, rule 1 assumes only ordinally scaled re-
sponses and is equivalent to relational composition when the values of
the links are restricted to the set {0,1} (i.e., when the data are binary).
Rule 2, on the other hand, assumes responses on an interval scale (so
that equal differences in scale scores signify equal differences in relational
values) and is equivalent to a path-counting measure when the data are
binary. In addition, if we define a comparison relation among complex
labelled valued paths U and V of the form

U < V iff i/yd', /) < vv(i, /), for all /, / e X,
and an equivalence relation by

U= Viff U< Vand V<17,

then rule 1 generates a finite number of distinct labelled valued paths
in a network, whereas rule 2 may generate an infinite number. In the
following development of algebraic structures for valued networks, rule
1 is selected because (a) it assumes only ordinal measurements of relation
values, (b) it is equivalent to relational composition when the data are
binary and (c) it can be used to generate finite algebraic structures. It
should be noted, though, that for some applications, the ordinary product
rule 2 may be preferred. For instance, if the values are frequency-based
measures, such as densities, then the assumption of interval measurement
may be reasonable and the ordinary product rule may, with some addi-
tional assumptions, be given a probabilistic interpretation.

More formally, we will assume that the complete network data com-
prise a collection of valued relations V = {Vl5 V2,. . . , Vp] on a set
X = {1, 2 , . . . , n}; we denote by vk(i,j) the value of the tie of type k
directed from node i to node / (/,/eX) and assume that vk(i9j) is
nonnegative. The max-min product VkVl of two valued relations V* and V,
is then defined as

vkl(ij) = max{min[i/*(i, 1), i>/(l,/')],...
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Table 7.1. A valued network V = {A, B]

0.83 0.17 0.33 0.67
0.33 1.00 0.17 0.00

Table 7.2. Some max-min products for the valued relations A and B of
the valued network V

AB BA BB ABB

0.33 0.67 0.33 0.67 0.33 0.33 0.33 0.33
0.33 0.33 0.17 0.17 0.17 0.17 0.33 0.33

It can be argued that the max-min product of Vk and Vt represents the
largest potential "flow" of paths labelled V^V, in the valued network.
In particular, vkl(i, j) may be interpreted as the value of the strongest
path from node i to node / in any one path labelled by relation k and
relation / (in that order), where the value of a path is defined as the
value of its weakest constituent link. That is, if one had to choose the
path whose weakest link was strongest, a path leading to a maximal
value in the preceding definition would be selected and the value of the
path equated to the "weakest" value. For example, the valued relations
A and B of the valued network V of Table 7.1 are the density matrices
for a blockmodel comprising two blocks and two relations. The com-
pound relation AB generated using the max-min product rule is shown
in Table 7.2, together with some other compound relations.

Given this composition rule, we may now proceed to define a partially
ordered semigroup for the network in exactly the same way as before.
That is, we define

1 the collection FS(V) of all labelled paths of finite length con-
structed from elements of V, with the values for each path U
in FS(V) calculated using the max-min rule;

2 a comparison relation among labelled paths, namely:

U < V iff !/„(!, /) < vv(i, /), for all i, ; e X
as well as an equivalence relation:

17= V iff LT<Vand V<U;
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Table 7.3. The partially ordered semigroups S(V) and S(B) generated by
the valued network V and the blockmodel B

S(V)

5(B)

Element

1
2
3
4
5
6

1
2
3

Right mult, table

Word

A
B

AB
BA
BB

ABB
A
B

BB

Generator

A

1
4
3
4
5
6
1
2
3

B

3
5
6
5
5
6
2
3
3

Partial order

1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 10
0 0 0 0 11

1 0 1
0 1 1
0 0 1

3 a binary operation
= Cjjy

and a partial ordering
Q;<Cviff U<V

on the classes of the equivalence relation, where Cv denotes the
class containing U.

Then it can readily be established that the max-min composition rule is
associative (e.g., Kaufman, 1975) and that it has the property that

U<V implies UW< VW and WU < W , for any WeFS(V).
As a result,
THEOREM 7.1. The classes of the equivalence relation just defined for
valued labelled paths, together with the associated binary operation and
partial ordering, form a partially ordered semigroup S(V).

In practice, the semigroup S(V) may be constructed using an algo-
rithm very similar to that presented in chapter 1 for the partially ordered
semigroup of a complete binary network. The only modification to the
binary network algorithm that is required is that Boolean products of
relations need to be replaced by max-min products. For example, the
valued network of Table 7.1 yields the distinct valued relations presented
in Table 7.2. Hence the partially ordered semigroup S(V) generated by
V is that shown in Table 7.3.
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Binary network semigroups from valued networks
The semigroup S(V) represents the structure of labelled valued paths in the
network V. It does so without the loss of information entailed by convert-
ing the valued network data into binary form; consequently, it is likely to
be complex. It is of some interest, therefore, to determine the relationship
between the semigroup S(V) and the semigroup that we would have
obtained if the valued data had been converted to binary form using a
cutoff of a. That is, we investigate the relationship between S(V) and
the partially ordered semigroup S(a) generated by the binary network

05*

DEFINITION. Let V = {Vl9 V29. • •,  Vp] be a valued network on a set X. For
each k = 1, 2, . . . , p, define the binary relation (Vk)a obtained from V*,
using the cutoff a:

(iJ)e(Vk)aifiVk(iJ)>a.

We write (Vk)a (i,/) = 1 if (/, /) e(Vk)m and (Vk)a(i, /') = 0, otherwise. The
binary relation (Vk)a obtained by applying the cutoff a to the valued
relation V* is termed the component of Vk at level a. The binary network
Voisgivenby{(V1)B,(V2)B,...,(Vp)B).

We may express a valued relation V* in terms of its components in
the following way.
THEOREM 7.2. Decomposition Theorem for Fuzzy Relations (e.g.,
Kaufman, 1975). A valued relation Vk may be decomposed into binary
relations according to

Vk = u a((VJJ
where a(WJ indicates that elements ofYa are multiplied by a, and where
u denotes the fuzzy union of valued relations, given by

(A u B)(i, \) = max{A(i, \)9 Bfi, ])}.

The union is over all distinct nonzero values a taken by relations in V.

For example, the relations A and B of the valued network V of Table 7.1
have the components presented in Table 7.4.

Now if we apply the cutoff value a to all relations in S(V), we induce
a binary relation na on the elements of the semigroup S(V). The relation
is defined as follows:
DEFINITION. Define a relation na on S(V) by

(U,V)enaiiiVa<Ua.
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Table 7.4. Components of the valued relations A
and B of the valued network V

a

1.00

0.83

0.67

0.33

0.17

A

00
01
1 0
01
10
01
10
1 1
1 1
1 1

B

00
00
00
00
01
00
11
00
11
10

Table 7.5 Components of the valued relations in S(V) /or £̂ e valued
network V

a

1.00

0.83

0.67

0.33

0.17

A

00
01
10
0 1
10
0 1
10
1 1
1 1
1 1

£

00
00
00
00
01
00
11
00
11
1 0

AB

00
00
00
00
01
00
11
11
11
11

00
00
00
00
0 1
00
11
00
11
11

00
00
00
00
00
00
11
00
11
11

ABB

00
00
00
00
00
00
11
11
11
11

The relation is termed the filtering relation at level a.
For instance, the components at each possible level of a of the elements
of S(V) for the valued network of Table 7.1 are presented in Table 7.5.
The corresponding filtering relations at each level are shown in Table
7.6.

Now it may readily be established that the relation na is actually a n-
relation on S(V) (chapter 3) and is consequently associated with an isotone
homomorphism of S(V). Indeed, the isotone homomorphic image to which
it corresponds is simply S(a). That is,



Semigroup of a valued network 245

Table 7.6. Filtering relations for the semigroup S( V)

n

1.00 1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

0.83 1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 0 0 0 0 1

0.67 10 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 0 0 0 11
0 0 0 0 1 1

0.33 10 0 0 0 0
0 10 110
1 1 1 1 1 1
0 10 110
0 1 0 1 1 0
1 1 1 1 1 1

0.17 1 1 1 1 1 1
0 1 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

THEOREM 7.3. The collection fSfoĉ  a > 0} of semigroups generated by
the binary networks {(Vt)a, (V2)a> •  • • > (VP)J derived from {Wl9W2>
Vpj using cutoff values a> 0 comprise a set of isotone homomorphic
images of the semigroup S(\) of the valued network generated by the
max-min product rule. The collection of binary networks generating
these homomorphic images ofS(V) are derived from the Decomposition
Theorem for Fuzzy Relations (Kaufman, 1975).

For instance, the filtering relation n67 presented in Table 7.6 leads to
an isotone homomorphism from S(V) onto S(B), the partially ordered
semigroup of the binary network B (obtained from V by using a cutoff
value of a = 0.67). The semigroup S(B) is presented in Table 7.3.
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Algebra of the Filtering Algebra of the
valued network —: • binary network

S(V) or Q, r e l a t l o n *«  5 (v a ) or Q, (a)

Valued complete C u t o f f v a l u e a B i n e t w o r k
or local network •  J

V V«

Figure 7.1. The decomposition theorem for valued network
semigroups

Indeed, it is clear that the partial order nmin for the semigroup S(V) of
a valued network V may be expressed as the intersection of the relations
na, for a> 0. This may be established by observing that each relation
na is nested in /rmin and if (U, V) e ;ra for all values of a, then ((7, V) e /rmin.
It follows, therefore, that the following result holds.
THEOREM 7.4. S(V) is a subdirect product of the semigroups S(Va), a > 0.
The representation of S(V) in terms of the subdirect components S(\a)
may not be as efficient a representation as a factorisation of the full
partially ordered semigroup S(V) of the valued network V. Nonetheless,
the result establishes that all of the structural distinctions among labelled
and valued paths in the valued network V are represented in the
semigroups S(Va) of the binary components of V.

Theorems 7.3 and 7.4 are illustrated in Figure 7.1. Each semigroup
S(a), corresponding to a cutoff, or filtering, value a, is an isotone
homomorphic image of the full semigroup S; furthermore, the class of
semigroups {S(a); 0<a < 1} thus induced is the class of images of S
corresponding to the collection of relational components of the valued
network identified by the Decomposition Theorem for Fuzzy Relations.
In the case of valued networks that are the density matrices for relations
among blocks, these relational components are the collection of all
possible a-blockmodels for the set of blocks. Consequently, the use of
a filtering density to convert valued matrices into binary ones is consistent
with the generation of a semigroup from the valued matrices using max-
min composition. The later procedure for semigroup generation maintains
a great deal more relational information, namely, ordinal relations among
ties of a given type; but it is useful to know that a clearly defined and
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comprehensive set of abstractions of its complex structure, in the form of
homomorphic images S(a), may be obtained without its prior construction.

Local role algebras in valued local networks

For valued local networks, the same valued composition operations may
be defined, including the max-min and ordinary product rules. As for
complete networks, the max-min rule is adopted here because it general-
ises the binary composition rule in a manner that assumes only ordinally
scaled values, and it yields a finite algebra.

To construct the local role algebra of a valued local network, we need
only replace the binary composition or path construction operation by
the max-min composition operation for valued networks. That is, the
path of a particular type from the ego of a valued local network to
some other network member i is assigned a value in the following way.
The value of a particular labelled path from ego to node i is assigned
the minimum value of its constituent links, and the value of a labelled
path of a certain type from ego to a member of the network is defined
as the maximum value of all such paths with that label from ego to node
/. Consider, for instance, the valued network presented in Table 7.7.
The identified ego of the network (node 1) has an F relation of value
4 to node 2, which in turn has an N relation of strength 4 to node 4.
Hence the path FN from ego to node 4 through node 2 has a minimum
value of 4. There is also a path labelled FN from node 1 to node 4
through node 3. The F link has value 2, and the N link has value 3;
hence the value of the FN path from node 1 to node 4 through node
3 is 2. Thus, the maximum value of any path labelled FN from ego to
node 4 is 4, and this is the value entered into the relation vector 1 * FN
in the position corresponding to node 4. Other values may be computed
in the same way to obtain 1 * FN = (0 0 0 4).

Indeed, relation vectors may be computed in this way for any possible
path label, and the collection of all possible paths emanating from ego
may be partially ordered according to

A<B
if and only if

1/(1 * A)[i]< v(l *B)\i],

for each ieX (where v(l * A)[i\ is the value of the ith entry of the
relation vector 1 * A, and where v(l * A)[i] = vA(l9 i). As a result, a local
role algebra for the valued local network may be defined. That is,
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Table 7.,7 A valued local network

F

0 4 2 0
3 3 3 0
3 3 3 0
0 0 0 0

Relation

N

0 0 0 4
0 0 0 4
0 0 0 3
3 3 0 0

THEOREM 7.5. Let V be a valued local network on a setX = {1,2,..., n},
where element 1 is the identified ego of the network. Then, defining the
value of a labelled path UV by

vm(l, i) = max} e x{min vv(l, ]), vvfj, i)h

and an ordering on labelled paths by

U < V iff vv(l, i) < vv(l, i), for all ieX

leads to a role algebra Ql9 termed the local role algebra of the local
valued network V.

The algorithm described in chapter 2 for constructing local role algebras
may be modified for valued local networks: the Boolean products of the
algorithm are simply replaced by max-min products. For example, the
valued local network of Table 7.7 yields the distinct relation vectors
presented in Table 7.8 and the corresponding local role algebra shown in
Table 7.9.

There is also a simple relationship between the algebra constructed
from valued local network data and the algebra obtained when a cutoff
value of a is used to convert the valued data into binary form. The
relationship is similar in form to that for complete networks and is
summarised in Theorem 7.6.

THEOREM 7.6. The local role algebra QI(OL) constructed from the binary
local network Va = {(Wt) a, (V2) a> • •  • > (VP)J is nested in the local role
algebra Q^ constructed from the valued local network V. The n-relation
on Q2 corresponding to the nesting is given by

(U, V) G na iff vV(a)(l, i) < V l w f l , i), for all i eX;

where vu w(X i) = 1 if Vv(l, i) > a, and 0, otherwise.

It may similarly be shown that
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Table 7.8. Distinct relation vectors from the valued local network of
Table 7.7

Relation vectors

1 *F
1 '
1 '
1 •
1 »
1 •
-̂  ,
^ >
\ >
1 '
1 •
-̂  >
\ >
1 *
1 J

1 *

>N
>FF
>NF
>NN
>FFF
>FFN
>NNF
>NNN
>FFFN
>FFNF
>FFNN
- FFNFF
- WNFN
••  FFNFFN
- FFNFNN

0 4 2 0
0 0 0 4
3 3 3 2
0 0 0 0
3 3 0 0
3 3 3 3
2 2 0 3
3 3 3 0
0 0 0 3
3 3 0 3
2 2 2 0
3 3 0 2
2 2 2 2
0 0 0 2
2 2 0 2
2 2 0 0

Table 7.9. The local role algebra of node 1 in the valued local netwok
of Table 7.7

Element

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Right mult, table

Class

F
N

FF
NF

NN
FFF

FFN
NNF

NNN
FFFN
FFNF

FFNN
FFNFF

FFNFN
FFNFFN

FFNFNN

Generator

F

3
4
6
4
8
6

11
6
4
8

13
8

13
4

11
11

N

2
5
7
4
9

10
12

9
5

10
14

7
15
16
15
14

Partial order

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1
0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
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THEOREM 7.7. The local role algebra Qj of a valued local network V is
a subdirect product of the local role algebras Q1(a) constructed from the
binary components Va of the local network V.

Using valued network algebras

We have shown in this chapter how valued networks give rise to algebraic
structures in a way that generalises the constructions for binary network
data. In these valued network algebras, two labelled paths U and V are
equated if, for every relevant pair of network nodes, the values of U and
V coincide. For complete networks the condition applies to all pairs of
nodes, whereas for local networks it applies to all pairs having ego as
their first member. The condition for the equation of two labelled paths
is therefore a strict one; as a result, relatively small valued networks can
give rise to large and complex algebraic structures. To make practical use
of valued network algebras, it is likely that we need to follow one of
several possible courses of action in order to deal with this complexity.

If the algebra is not too large, then it can be analysed using the pro-
cedures described in chapters 4 and 5. That is, its factors can be obtained,
and the relational referents of each factor can be sought in the binary
components of the network relations. If factorisation is precluded by the
size of the semigroup concerned, then other analytic strategies must be
adopted. One possibility is provided by Theorems 7.3 and 7.6: the valued
data may be converted to binary form, perhaps using several different
cutoff values a, and an algebra can be constructed from the binary data.
Theorems 7.3 and 7.6 guarantee that the algebras thereby obtained are
approximations to the valued network algebras in a well-defined math-
ematical sense. Further, Theorems 7.4 and 7.7 ensure that all of the
structure of the valued networks can be described if we use all possible
cutoff values a in the process.

Another possible strategy, which is yet to be fully developed, is that
of defining a partial algebra from valued network data. A partial multi-
plication table and a partial order table may be constructed for only
those paths that do not exceed some predetermined length. This strat-
egy was illustrated in chapter 2 for local networks, and it was shown
that many of the algebraic constructions that have been useful for ana-
lysing network algebras may also be invoked for partial algebras.
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Issues in network analysis

Two major themes have guided the development of the representations of
structure in social networks that we have been considering. One is the
search for an account of the relational context in which individual
behaviour takes place; the other is the need to describe the structural
framework on which a variety of social processes occur. In this chapter
we review the progress towards these goals afforded by the represen-
tations and the analytic methods that have been developed for them.

Describing social context: Positions and roles
In describing the relational context for behaviour, we have attempted to
characterise the patterns of relations that exist in a local network or in
an entire group. How far do the representations enable us to describe the
patterns of relations surrounding an individual, and what form do the
descriptions take? The representations themselves are expressed in terms
of orderings and equations among paths in networks. In the case of entire
networks, the orderings and equations hold for any paths in the network
with the same source and endpoint. For local networks, the orderings and
equations pertain only to paths having the identified ego as their source.
The representations make no reference to specific individuals in the
network and so can be used to make comparisons from one network to
another. In fact, a consequence of the representation is that two indi-
viduals or groups have the same relational context if the orderings and
equations among their paths are the same. That is, if the existence of
one type of path between two individuals always entails the existence
of a path of another particular type, and if all such entailments are the
same in the two networks, then we assert that the relational patterns in
the two networks are the same. More generally, we can compare two
networks by comparing their collections of orderings and equations:
this procedure will be described in greater detail later.

Thus, the form of the description of relational context is in terms of
path comparisons: it is precisely those orderings among paths that hold

251
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for all relevant paths in the network that are included in the description.
This descriptive form is modified in an important way by the suggested
means of analysing the representation. In particular, the analysis leads
to a description of relations among paths in terms of a collection of
simpler sets of path comparisons with more limited domains of appli-
cation. Factorisation of the algebraic representation yields sets of path
comparisons that do not hold universally in the network but apply
instead only to certain regions of the network that are identified using
the Correspondence Definition. Taken together, these various simplified
sets are sufficient to define the path orderings that hold everywhere, but
it is deemed useful to work with the collection of simplified sets for two
major reasons. The first is a practical one: the components or factors
are more simply described, and it is quite easy to decide whether two
networks share any particular component. The second is more theoretical
in flavour: it is a useful step to admit the possibility that relational
structure is not everywhere constant. Heterogeneity in relational context
is an important motivation for the descriptive exercise on which we are
embarked, and it is therefore helpful to construct a representation that
recognizes it explicitly. Of course, it is also useful to describe those
relational forms that do hold universally in a network: such forms may
have cultural significance, as Bonacich (1980) has argued. But for many
of the situations in which descriptions of relational context are required,
we need to recognise and then describe the variations that do occur. I
would argue that the scheme of analysis that has been proposed admits
this goal by obtaining a representation of relational context as the
intersection of maximally heterogeneous relational forms.

Positions and roles

Intertwined with this discussion of the nature of relational context re-
vealed by a local or entire network are notions that are relevant to the
description of positions and roles. The representations that we have con-
sidered for both local and entire networks have often been seen as pro-
viding relational operationalisations of the notions of position and role
(White et al., 1976; Winship & Mandel, 1983). A position is usually
associated with a niche in the network, and as many authors have
suggested, two positions are similar to the extent that they share inter-
relations of the same kind with the same or similar other positions
(Burt, 1976; Faust, 1988; White et al., 1976; White & Reitz, 1983;
Winship & Mandel, 1983). The social role associated with a position
is usually deemed to include the pattern of relations obtaining in the
vicinity of the position, that is, its associated relational forms. Following
Mandel (1983), we have characterised this pattern by the collection of
path comparisons relevant to the position.
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In an entire network, the analysis that has been proposed provides an
implicit description of positions and their associated roles. Each com-
ponent of the partially ordered semigroup identifies a simple relational
form, and by virtue of the Correspondence Definition, this form can be
identified with a region of the original network. The simple relational
form describes an interlocking of the roles associated with the positions
in the region. The role of each individual position is decribed by the
relational patterns linking the position to other identified positions. If
a particular network element is identified with a position in two or
more such regions, then its social position overall is described as the
aggregate of positions participating in multiple forms of role interlock.
Thus, implicitly, the analysis of an entire network identifies, for each
network member, a potential multiplicity of positions and associated
roles in the network.

For a local network of an individual, the role of the individual is
identified explicitly with the network's local role algebra. Factorisation
of the local role algebra yields a collection of simple components of that
potentially complex role, and each role component is associated with a
restricted local network domain. The relations of ego to other network
members in this domain give a relational basis to the role component. One
way of viewing this analysis of the role of the individual is as a decom-
position into maximally heterogeneous relational forms, and so as the
expression of the multiple positions and roles held by an individual in
terms of their simple constituents.

Thus, the proposed analysis has the capacity to provide substantial
structural detail in the description of positions and roles in networks. It
allows the identification of "elemental" forms of role interlocking in
entire networks and of role components in local networks. The realisation
of these forms in terms of actual network relationships can also be de-
scribed, and there is clearly a need for the analysis of much network data
in these terms.

The structure and content of relations
The application of the proposed analyses to a variety of empirical net-
works of different kinds will yield a catalogue of the relational forms that
occur for relations of different types, together with some indication of the
conditions under which they occur. If relations of particular types inter-
lock frequently and almost universally in particular relational forms, then
there is evidence for a strong link between the content of relations and
their structure. Such a link suggests the presence of a culturally defined
relational form. Indeed, an early motivation underlying the construction of
a representation of the "relationships between social relations" was the
notion that relationships of specified types may, in certain circumstances,
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interrelate in similar ways (Lorrain, 1975; Lorrain & White, 1971; Nadel,
1957). The argument was made that, if in variances of relational structure
were expected to exist, then it would be at the level of relational interlock
that they would be likely to be found.

In fact, a number of invariances in relational form for particular types
of network relations have been suggested in the literature, and they are
summarised in Table 8.1. They take the form of models for relational
structure in different network types. The occurrence and domain of appli-
cation of any proposed model can be determined for a given empirical
network using the procedures that have been developed here. The analysis
yields not only a detailed account of whether, and in what regions of
the network, a particular model applies, but also what alternative re-
lational forms are found. This is in contrast to many of the previous
attempts to investigate the fit of such models. In earlier work, model fit
has mainly been evaluated either by calculating indices of the fit of
model to data, such as balance and transitivity indices (e.g., Harary &c
Kommel, 1979; Peay, 1977a) or by comparing such an observed index
with its expected distribution in a particular random graph population
(Frank, 1980; Frank & Harary, 1980; Holland &c Leinhardt, 1970,
1978). In either case, the outcome of the analysis was an indication of
the level of fit of the model, with no information about where in the
network the model failed to fit, nor what a useful alternative model
might be. Of course, the analysis that has been proposed here really
requires error-free data. Pattison, Caputi and Breiger (1988) have at-
tempted to recast the problem of fitting models of the kind listed in
Table 8.1 to network data in a way that admits error but also identifies
regions of lack of fit. Boyd (1991) has also demonstrated how a simulated
annealing algorithm (e.g., Press, Flannery, Teukolsky & Vetterling, 1986)
can be applied in some cases to fit a model expressed in algebraic terms.

Models for relational interlock can be derived in some instances on
theoretical grounds. Such an undertaking has been illustrated by Breiger
and Pattison (1978) for pairs of relations whose content is conceptualised
as strong and weak, using the relational arguments originally proposed by
Granovetter (1973). An extension of their model is derived in the next
section as an illustration of the approach, and similar pursuits for other
relational types are also summarised.

There are at least two ways in which a knowledge of the empirical
constraints between the content of relations and their structure might be
applied. One is to use predictions about the structural form that the
interrelating of particular types of relations is likely to take in the devel-
opment of models for social processes. A second is to derive hypotheses
about the content of relations from their structure. The meaning of a given
relation may be seen as at least partially defined by the context in which
it occurs. Thus, one may use the existence of a particular empirical form



The structure and content of relations 255

Table 8.1. Some models for networks

Model

Transitivity

Classical
balance

Complete
clustering
model

Complete
ranked
cluster
modela

Complete
ranked
2-cluster
modelb

Strong-
Weak tie
model
(version 1)

Strong-
Weak tie
model
(version 2)

Element

R = 1

? = 1
N = 2

P = l
N = 2

NN=3

M = l
A = 2
N=3

NN = 4
AA = 5

AAA = 6

Ak~3 = k

M = l
A = 2
N = 3

AA = 4

Ak~2 = k

5 = 1
W=2

WW=3

W*'1 = k

5 = 1
W = 2

Right mult.

1
1

1
1
2

1
1
2
3

1
1
2
3
4
5
6

1
1
2
3
4

&

1
1
2
3

&

1
1
2

table

Generator

2
2
1

2
2
3
3

2
2
5
2
2
6
7

2
2
4
2
5

£
2
2
3
4

&

2
2
2

3
3
2
4
4
5
6

k

3
3
2
1
4

Partial order

1 0 0 0 0 0 . .
0 1 0 0 1 1 . .
0 0 1 0 0 0 . .
1 0 1 1 0 0 . .
0 0 0 0 1 1 . .
0 0 0 0 0 1 . .

0 0 0 0 0 0 . .

1 0 0 0 0
0 10 11
0 0 1 0 0
0 0 0 1 1

0 0 0 0 0

1 0 0
1 1 0
1 1 1

1 1 1

1

10
0 1

1 0 0
0 10
1 1 1

. 0 0 1

. 1 1 1

. 0 0 1

. 0 0 1

. 1 1 1

. 1 1 1

. 0 0 1

. . . 0 1

. . . 1 1

. . . 0 1

. . . 1 1

. . . 0 1

. . . 0 0

. . . 0 0

. . . 0 0

. . . 1 1

10
11

a Assuming at least 3 clusters per level and &-3 levels.
b Assuming exactly 2 clusters per level and k-2 levels.
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of relational interlock to generate hypotheses about the substantive nature
of the relations themselves. Speculation of this kind was undertaken by
Breiger and Pattison (1978) and demonstrated how "the cultural content
of the social structure becomes a question for empirical research rather
than a matter of definition" (White et al., 1976, p. 770).

Some models for relational structure

The models appearing in Table 8.1 are expressed in a form applicable to
entire networks: they assert that the orderings and/or equations among
relations by which they are characterised apply to all network members.
They may equally well be seen as appropriate models for the analysis of
local networks. Indeed, a useful analysis for an entire network in relation
to a particular model is the investigation of model fit in the collection
of local networks generated by taking each network member as a local
network ego. For the sake of simplicity, though, the models are described
here in relation to entire networks only.

We may observe that the relational expression of the model given in
Table 8.1 is not necessarily equivalent to the form in which it was first
introduced. For example, while the original formulation of the balance
model implies the partially ordered semigroup representation of Table 8.1,
the two forms are not equivalent. Rather, the form presented in Table 8.1
is a generalisation of the original model, in that there exist networks
whose semigroups are identical to that presented in the first panel of the
table but which do not conform to the original model. Table 8.1 should
therefore be seen as a summary of proposals for particular relational
interpretations of the models concerned.

We may also note that the collection of semigroup structures for which
the establishment of a structure-content link has been attempted is rather
limited. Part of the methodological and substantive challenge of the
semigroup representation is the extension of this list, perhaps in the
manner illustrated for networks of strong and weak relations.

Strong and weak ties

The way in which the form of relational interlock may be theoretically
derived is illustrated by considering Granovetter's (1973) account of the
configurations that one might expect relationships of strong and weak
ties to form. Granovetter presented a persuasive argument for the
inference of certain network properties of interpersonal ties from a
knowledge of their "strength". His basic contention was that the stronger
the tie between two individuals, the larger the proportion of individuals
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to whom they are both connected by either a strong or weak tie. A
consequence of this claim is that strong ties should tend to be densely
concentrated within groups whereas weak ties should be less densely
concentrated but more likely to link members of different groups.

Taking S to represent a strong tie and W a tie that is at least weak,
Breiger and Pattison (1978) argued that the Granovetter hypothesis implies
the approximate truth of the equations

SW=W, (8.1)

WS=W, (8.2)

S2 = S, (8.3)

because individuals A and B linked by a strong tie S have most of their
ties in common, and strong ties tend to exhibit inbreeding. It may also be
argued that the following equations and orderings are consistent with
Granovetter's hypothesis:

V^ + ̂ W*, for some k > 1, (8.4)

because at some point, very long paths constructed from weak ties are
likely to create no new ties among individuals; and

S<W<W2<W3 < - - - < W \ (8.5)

because (a) for small £, weak ties tend to create new connections among
individuals, and (b) provided there is a sufficient distribution of W ties,
it is reasonable to assume that any W tie may be replaced by a pair of
W ties.

In their original formulation, Breiger and Pattison (1978) suggested
the equation

W2 = W

in place of equations 8.4 and 8.5; this equation emerges in an isotone
homomorphic image of the Strong-Weak tie structure implied by equa-
tions 8.1-8.5. The Breiger and Pattison version of the Strong-Weak tie
model may therefore be seen as an approximation of the more general
model in Table 8.1. Both models are consistent with the banning of
Granovetter's forbidden triad, that is, a triad of elements in which two
elements are connected to a third by a strong tie but have no strong or
weak relation to one another. Hypothesising that this triad does not
occur is equivalent to asserting that the ordering

S2< W

holds. The ordering is consistent with both formulations of strong and
weak tie structure.
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Equations 8.1-8.5 describe a partially ordered semigroup with an
identity element S and a zero element equal to some power of W (W*).
The relations written in the order

S, W, W2, . . . W*

are increasingly "weak"; taken in the reverse order, they are increasingly
"strong". The identification of the weak tie W with the semigroup zero
Wk induces the homomorphism from the semigroup of Table 8.1 onto
the Breiger and Pattison model.

It may be observed that this model predicts that compounds con-
structed from weak ties are increasingly weak as path length increases.
In many empirical network semigroups, certain compound ties act as
semigroup zeros, and others nearly so; compound ties are almost always
weak in relation to primary ties because few observed network relations
are strong in Granovetter's strict sense.

The balance model
The original application of the balance model to social networks was to
relations describing positive and negative affect among individuals
(Cartwright & Harary, 1956). This application was later considered in
relation to networks of positive and null relations by Davis, Holland and
Leinhardt in a series of comparisons of the balance model with more
general models (e.g., Davis, 1979). The model predicts that a set of
network members can be divided into two groups in such a way that
positive relations exist only between members within a group and nega-
tive relations exist only between members from different groups. If all
individuals within a group are linked by positive relations and if all
individuals from different groups are linked by negative relations, then
the network structure for positive and negative relations presented in
Table 8.1 ensues. If some of the predicted within- and between-group
relations are absent, then a structure containing that of Table 8.1 as a
homomorphic image is generated, provided that a sufficiently rich set of
connections are present. For instance, if the division of the network into
two groups is a partition satisfying one of Kim and Roush's (1984)
conditions and if the derived network has positive ties linking each
group to itself and negative ties linking each group to the other, then
the balance model of Table 8.1 emerges as a homomorphic image.

The complete clustering model
Analyses of empirical networks of positive and negative relations led
Davis (1967) to generalise the balance model to the clustering model. The
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clustering model predicts that a network can be partitioned into two or
more groups so that positive ties occur only within groups and negative
ties occur only between groups. In the complete version of the clustering
model, all possible positive and negative ties conforming to this condition
are present (e.g., Johnsen, 1986). The complete clustering model for a
network with three or more groups has the network structure shown in
Table 8.1. As for the balance model, Kim and Roush's (1984) conditions
may be used to derive conditions under which the general clustering
model gives rise to a network structure that can be mapped homomorphically
onto that for the complete clustering model.

The transitivity model
Holland and Leinhardt (1970, 1971, 1972) and Johnsen (1985) have also
developed a series of models that generalise the balance and clusterability
models further. Most of these models are expressed in terms of a single
network relation and its partitioning into mutual, asymmetric and null
components. All of the models can be described by listing those triads in
the triad census of the graph that are permitted to occur (e.g., Johnsen,
1985). They are usually aligned with the balance and clustering models by
the assertion that mutual or asymmetric ties are "positive" and that null
ties are "negative". In fact, different decompositions of a single relation
are clearly possible, so that different statements of predicted network
structure are also possible. For instance, the transitivity model may be
expressed in the form

(R*)2 = R*,
where R* is the union of the identity relation, the mutual ties in a
relation R and the asymmetric ties. Alternatively, taking the mutual and
asymmetric components of R separately, we obtain

(M*)2 = M* and M*A = AM* = A2 = A,
where M* is the union of the mutual component M of R and the identity
relation, and where A is the asymmetric component of R. Note that the
multiplication table for the latter form of the model is the same as that
for the Breiger and Pattison (1978) version of the Strong-Weak tie
model; its partial order is different, though, as the relations M and A
have a null intersection.

Other triad-based models
The derivation of the network structure of other triad-based models, such
as the ranked-cluster model (Davis & Leinhardt, 1972), the hierarchical



260 8. Issues in network analysis

cliques model (Johnsen, 1985) and the "39+" model (Johnsen, 1985) is
yet to be generalised, but some special cases are presented in Table 8.1.
They are the complete ranked-cluster model with at least three clusters
per level, and the ranked 2-cluster model with exactly two clusters per
level.

The First and Last Letter laws

Lorrain (1975) discussed the First and Last Letter semigroups for network
structure; they have occurred quite commonly in data analyses (e.g.,
Boorman & White, 1976; Breiger, 1979; Lorrain, 1975). In the First
Letter table, compound relations have paths identical to those of their
first relational constituent; and in the Last Letter table, the compound
is equal to the last relation in the path. In the First and Last Letter table,
any compound relation is determined by both the first and the last
relation in the chain. Several interpretations of these patterns have been
attempted, but none has taken into account the partial orderings among
the relations, and so they can probably be elaborated by the additional
information. For example, Boorman and White (1976) suggested that
the First Letter table (FL) is associated with interlock between an ob-
jective (though positive) sort of tie and a positive affect tie ("thus one's
ties to any kind of contact of one's business associate take on the colour
of a business association, whereas one views in affective terms any kind
of contact through a friend", p. 1414).

Lorrain established differences in receiver characteristics for structures
manifesting the Last Letter (LL) structure and differences in emitter char-
acteristics for configurations having the FL structure. In the context of
business relations and community affairs relations, the LL table was in-
terpreted by Breiger (1979) as indicating the ability of network members
to assimilate their contact's quality of tie to a third party in their own ties
with third parties.

Permutation models for kinship structures

White (1963) described permutation group models for kinship struc-
tures and assessed their fit in a number of Australian aboriginal groups.
The network relations he used were marriage and descent rules: in his
model, societies were partitioned into clans, and the marriage and descent
rules specified the clan membership of the wife of men in each clan and
the clan membership of the children of men in given clans. The network
structure generated by these relations describes the structure among kin-
ship relations in the society; particular versions of the structures can be
used as models for kinship relations in a society.
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Some other models

Other cases that have been discussed in the literature include structures
whose multiplication tables are some kind of inverse semigroup. Some of
these structures are generated by out-trees and their converses (Pattison,
1980), and others may be described as possessing a centre-periphery
structure.

Describing common structure

The appropriate means of describing the relational structure common to
two networks has been the subject of considerable debate. On the one
hand, Boorman and White (1976) have proposed the joint homomorphic
image of the semigroups of two networks as the representative of shared
structure. Breiger and Pattison (1978) adopted this definition in an
analysis of the structure shared by two community elites. In chapter 3,
a joint isotone homomorphic image was also defined for the partially
ordered semigroups of two networks, and it was shown how this
construction is the analogue of the JNTHOM for partially ordered
structures.

Bonacich and McConaghy (1979; Bonacich, 1980; McConaghy,
1981), however, have claimed that the common structure semigroup
records the shared structure in two networks, and like the JNTHOM,
the common structure semigroup can be defined for both abstract and
partially ordered semigroups. In the partially ordered case, the lattice
L(R) of semigroups with generators R = {Ru R2> • • >  p̂K partially ordered
by the relation

if and only if there is an isotone homomorphism from S2 onto Sl5 the
JNTIHOM of two semigroups is their greatest lower bound, and the
common isotone structure semigroup (CISS) is their least upper bound. An
analogous lattice A(R) may be constructed for abstract homomorphisms,
and Boorman and White and also Bonacich and McConaghy introduced
their definitions in the lattice A(R). For consistency with earlier discus-
sions, though, we will refer to the lattice L(R) based on isotone
homomorphisms.

Each of these alternatives is a useful construction, but the interpreta-
tions accompanying them are very different. In particular, the common
structure semigroup records equations and orderings that hold universally
for every element in each network. That is, it specifies orderings and
equations among paths that are true for relations linking any pair of
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elements in either network. The common structure semigroup is the
semigroup generated by the network constructed as the disjoint union of
the two separate networks (the formal definition of network union was
given in chapter 3). If universally or culturally shared forms of relational
structure are a focus, then the common structure semigroup is clearly a
useful construction. Because the equations and orderings that define it
apply everywhere in both networks, they take the form of relational
"laws" for the networks concerned. The common structure semigroup
ignores, however, those relational forms that occur in only some parts of
the combined network: information about heterogeneity in relational form
is lost.

The joint isotone homomorphic image has complementary properties.
Its equations and orderings do not necessarily hold for all elements in
both networks, but they do enable us to identify the simple relational
forms that occur in both networks. Consider, once more, the analysis of
a network that has been developed. It describes a network as a collection
of simple relational forms, each associated with a restricted network
domain of application. The JNTIHOM of two networks has components
that are simple relational forms of this kind, and the Correspondence
Definition may be used to identify the restricted domain in which those
components apply in each network. The result is a statement of the simple
forms that occur in both networks and a matching of the relational do-
mains for which they hold. Where heterogeneity in relational structure is
of interest, this is clearly a useful result. The JNTIHOM therefore enables
us to identify regions in the two networks that have some forms of
interrelating in common, as well as the nature of those common forms.

We now illustrate this application of the JNTIHOM: first, in relation
to the blockmodels for two self-analytic groups, one of which was ana-
lysed in detail in chapter 5, and then in relation to two community elite
blockmodels, which have been analysed from both perspectives in the
literature (Breiger & Pattison, 1978; McConaghy, 1981; Pattison, 1981).

Common relational forms in two self-analytic groups

Ennis (1982) reported the analysis of data from a self-analytic group of a
type similar to that described by Breiger and Ennis (1979). In each of the
cases reported by Breiger and Ennis (1979) and Ennis (1982), a group of
individuals reported ties of Liking, Disliking and perceived Similarity
among them; also, they were all assessed in terms of Bales and Cohen's
(1979) three dimensions of interpersonal behaviour. The blockmodel
described by Breiger and Ennis was analysed in some detail in chapter
5; here, we outline briefly the blockmodel reported by Ennis and use the
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Table 8.2. The Ennis blockmodel

From Ennis,

Table 8.3.

Element

L = l

LD = 3
DL = 4
DD = 5

LDL = 6
DDL = 7

Liking

100
1 10
1 0 1

Relation

Disliking

01 1
0 0 1
0 1 0

1982

The semigroup BE2 of the Ennis

Right mult. table

1

1
4
6
4
7
6
7

Generator"

2

3
5
3
3
2
3
3

Similarity

1 0 0
1 10
1 0 1

blockmodel

Partial order

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
1 1 1 1 1 1 1
1 0 0 0 1 0 1

The third generator S is equal to L.

joint isotone homomorphism of the semigroups of the two blockmodels
to illustrate the analysis of their common relational forms.

The blockmodel reported by Ennis (1982) has three blocks and is
shown in Table 8.2. Its partially ordered semigroup BE2 is given in Table
8.3. The joint isotone homomorphic image of BE\ and BE2 is the
semigroup K presented in Table 8.4; K has two factors Kl and K2 also
reported in Table 8.4. The minimal derived set associations for Kl and
K2 in each of the two blockmodels are listed in Table 8.5. The full
reduction diagram for BE2 appears in Figure 8.1; images of BE2 in Figure
8.1 are reported in detail in Table 8.6.

The relations of Liking and perceived Similarity are equated in the joint
isotone image K and are contrasted with the Disliking relation (as they are
in BE2). The factor XI is the Last Letter semigroup (Table 8.1) and
records the tendency for paths ending in Liking (or Disliking) relations to
resemble simple Liking (or Disliking) relations. In the Breiger-Ennis
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Table 8.4. The joint isotone homomorphic image K ofBEl and BE2
and its factors Kl and Kl

Semigroup

K

Kl

K2

Element

L = l
D = 2

DL = 3

L= 1
D = 2

L = l
D = 2

Right mult, table

Generator"

1

1
3
3

1
1

1
2

2

2
2
2

2
2

2
2

Partial order

1 0 0
0 1 0
1 1 1

1 1
0 1

10
1 1

a The third generator S is equal to L.

Table 8.5. Derived set associations ofKl and Kl in the Breiger-Ennis
and Ennis blockmodels

Semigroup Blockmodel Minimal derived set associations

Kl Breiger-Ennis

Ennis

Breiger-Ennis

{1,(234)} {1,2} {1,(23)}
{1, (24)} {1, (34)}

{1, (23)}
{2, 3} {(124), 3} {(12), (34)}
{(24), 3}

Kl

Ennis {(12), 3} {(13), 2} {1,(23)}

blockmodel, this feature may be traced to that region of the blockmodel
describing relations of block 1 with other blocks and especially with the
more hostile block 2. More specifically, Liking relations are expressed
universally within and between blocks 1 and 2, but Disliking relations are
expressed only towards block 2. In the Ennis blockmodel, K\ may be
associated with the derived set {1, (23)}, that is, with the relations between
the "leader" block 1 and the other two blocks. Block 1 is characterised
in the Ennis blockmodel also by the absence of received Disliking ties; it
is a common feature of the two blockmodels that the two positive and
somewhat dominant blocks receive no Disliking relations from other group
members.
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BE2

Figure 8.1. Reduction diagram for the Ennis semigroup

Table 8.6. Images ofBEl appearing in Figure 8.1

Semigroup

Kl

B

C

D

E

K2

Right mult.

Element

1,4,6 ,7=1
2, 3, 5 = 2

1
2

3,6 = 3
4
5
7
1
2

3,6 = 3
4,7 = 4

5
1, 3, 4, 6, 7 = 1

2
5

1, 3, 4, 6, 7 = 1
2,5 = 2

1
2, 3, 4, 5, 6, 7 = 2

table

1

1
1
1
4
3
4
7
7
1
4
3
4
4
1
1
1
1
1
1
2

Generator

2

2
2
3
5
3
3
2
3
3
5
3
3
2
1
5
2
1
2
2
2

Partial order

1 1
01

1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 0
0 0 0 0 10
1 0 0 0 11

1 0 0 0 0
0 1 0 0 0
1 1 1 1 1
1 1 0 1 1
0 0 0 0 1

1 1 1
0 1 0
0 0 1

11
01
1 0
11
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The factor K2 records the strength of Liking and Similarity ties in
relation to Disliking ties. In the Breiger-Ennis blockmodel, the factor
may be traced principally to relations between the dominant and hostile
block 2 and the more positive and egalitarian block 3. Liking relations
among these two blocks occur only within blocks, whereas block 2 ex-
presses Disliking for block 3. The feature occurs more commonly in the
Ennis blockmodel; indeed, it occurs in the relations between any block
and the other pair of blocks. The strength of the Liking relation comes
from the occurrence of Liking ties that are expressed only internally or
towards block 1; Disliking relations, one the other hand, are expressed
by other blocks to both blocks 2 and 3. In both blockmodels, this factor
reflects the tendency of the more dominant blocks to express Disliking
rather than Liking for the less dominant ones.

We may observe that this analysis of relational forms common to the
two blockmodels is somewhat consonant with the description of the blocks
in terms of Bales and Cohen's (1979) dimensions of interpersonal be-
haviour. In particular, it seems to describe forms of interrelating that
are characteristic of the positive leader blocks as similar in the two
blockmodels. More data are required before we can achieve a clearer
understanding of the constraints between the typical modes of interacting
in a group that an individual adopts and the actual social relations that
the individual comes to hold; the kinds of results illustrated by the
preceding analysis, however, demonstrate the usefulness of the proposed
analysis in assessing these data. It is particularly important for an enter-
prise of this kind that we assess the common relational forms in a way
that does not assume homogeneity of relational form. Features of the
two blockmodels that are distinctive can be ascertained by examining
the reduction diagrams for the semigroups of the blockmodels, that is,
Figure 5.10 for BE1 and Figure 8.1 for J5E2.

Common relational forms in two community elites

Laumann and associates (Laumann, Marsden & Galaskiewicz, 1977;
Laumann & Pappi, 1973, 1976; Laumann, Verbrugge &c Pappi, 1974)
have studied the community influence systems in two small regional
cities of comparable industrial composition, one in West Germany and
one in the United States of America. As part of their investigations, they
undertook a network analysis of the identified influential persons in
each town, asking each elite member to indicate the three others in the
town with whom the member had the closest business or professional
relations, the most frequent discussion of community affairs and the
most frequent social meetings. [A detailed account of the survey
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Table 8.7. The Altneustadt blockmodel

Block

Al
A2
A3
A4

Table 8.8.

Block

Tl
Tl
T3
T4

Business/Professional ties

1 0 0 0
0 1 0 0
0011
0001

Community Affairs ties

1 0 0 0
1 1 0 0
0 0 1 0
1 0 0 0

The Towertown blockmodel

Business/Professional ties

1 1 0 0
1 1 0 0
1 0 0 1
0 1 0 1

Community Affairs ties

1 1 0 0
1 1 0 0
0 0 1 1
0 10 1

Social ties

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

Social ties

1 0 0 0
1 1 0 0
0 0 1 1
0 1 0 0

procedures may be found in Laumann and Pappi (1976) and Laumann
et al. (1977).]

The three resulting networks in each community elite have been subject
to a number of blockmodel and related analyses (Breiger, 1979; Breiger
& Pattison, 1978; Burt, 1977; Laumann & Pappi, 1973, 1976;
McConaghy, 1981; Pattison, 1981). The analysis reported here is of the
CONCOR-generated blockmodels for the Altneustadt and Towertown
elites adopted by Breiger and Pattison (1978) and McConaghy (1981);
the blockmodels are reported in Tables 8.7 and 8.8. Altneustadt and
Towertown blocks are identified as Al, A2, A3, A4 and 71, T2, T3,
T4, respectively.

The semigroups generated by the Altneustadt and the Towertown
blockmodels are presented in Tables 8.9 and 8.10 and are labelled A
and T, respectively. The joint isotone homomorphism L of the two
semigroups is reported in Table 8.11 and is associated with the n-
relations na on A and nT on T reported in Table 8.12. The minimal
derived sets associated with the joint image L are listed in Table 8.13,
together with corresponding derived networks. The joint image L is
subdirectly irreducible and may be interpreted, using the arguments
previously advanced in relation to the interlocking of strong and weak
ties, as indicating the strength of Social ties in relation to Business/
Professional or Community Affairs ties. The domain of the Altneustadt
blockmodel corresponding to this relational form is in the boundary
between blocks Al and A4, on the one hand, and blocks A2 and A3,
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Table 8.9. The Altneustadt semigroup A

Element

B =
C =
5 =

BC =
BS =
CB =
SB =

BCB =

Tabk

1
2
3
4
5
6
7
8

s 8.10.

Element

B
C
S

BB
BS
CC
CS
SB
SS

CCC :
CCS
SSS:

= l
= 2
= 3
= 4
= 5
= 6
= 7
= 8
= 9
= 10
= 11
= 12

Right mult, table

1

1
6
7
8
5
6
7
8

The Towertown

Right mult, table

Generator

2

4
2
2
4
4
4
4
4

semigroup

Generator

1

4
4
8
4
5
4
8
8
8
4
8
8

2

4
6
7
4
5

10
11
8

T-H

10
11
11

T

3

5
7
9
5
5

11
11
5

12
11
11
12

3

5
2
3
4
5
8
5
8

Partial order

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1

Partial order

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 1 1 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1

Table 8.11. The joint isotone homomorphic image L of the semigroups
A and T

Element

B = l
S = 3

Right mult, table

Generatora

1

1
1

3

1
3

Partial order

1 1
0 1

The generator C is equal to the generator B.
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Table 8.12. The n-relations na on A and nz on T corresponding to the
joint isotone homomorphic image L

K

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00 1 0 0 0 0 0 00 1 0 0 0 0 0 100 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 1 0 0 1

Table 8.13. Minimal derived set associations with L in the Altneustadt
and Towertown blockmodels and corresponding derived networks

Blockmodel Derived set Derived network

Altneustadt {(14), (23)} 1 0 1 0 1 0
1 1 1 1 0 1

Towertown {1, (234)} 1 1 1 1 1 0
1 1 11 1 1

{1,2} 11 11 1 0
11 11 1 1

{1, (23)} 11 11 1 0
11 11 11

{1, (24)} 11 11 1 0
11 11 11

on the other. Blocks A\ and AA express no ties of any kind to blocks
A2 and A3; blocks A2 and A3 report Business/Professional and Com-
munity Affairs ties, but not Social ties, as links to blocks Al and A4.
In the Towertown blockmodel, the relational form corresponding to L
may be traced to the links between block Tl and block T2, the latter
sometimes in combination with other blocks. Block Tl expresses Social
ties only among its own members whereas Business/Professional and
Community Affairs ties are seen as linking members of block Tl to those
of block T2.

Thus, the common relational forms in the two networks may be de-
scribed in terms of a single component recording the strength of Social ties
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in comparison to other assessed network links. The network domains
possessing this relational form have been identified in each elite
blockmodel. All other relational forms characterising relational structure
in the blockmodels are distinct; as for the analyses of the self-analytic
groups, these distinctive forms can be described using the method of
analysing a single network system that has been advanced.

Social structure

How can the representations that have been described be used as models
for the structure of social relations? The representations encode relations
between paths in networks, and paths define the possible routes by
which social processes flow. A number of models for social processes
have been discussed in the literature - for instance for such phenomena
as the transfer of job information (Boorman, 1975; Granovetter, 1973),
alcohol consumption (Skog, 1986), the spread of infection (Rapoport,
1983; Klovdahl, 1985) and the diffusion of technical innovations
(Coleman, Katz & Menzel, 1957; Fennell & Warnecke, 1988). These
models derive the course and outcome of the diffusion processes that
they represent, for example, the proportion of people knowing about a
fact X, adopting a method Y, or being in a state Z. The derivation of
these results requires assumptions about the probabilities of transmis-
sions and about network structure. As noted earlier, the assumptions
made about network structure are critical to the results obtained, but
most reported models have used very simple ones. For instance, Rapoport
(1979) discussed generalisations of the assumption of uniform con-
nectivity in a single relation to admit biases to reciprocity and tran-
sitivity in diffusion models, and Boorman (1975) assumed uniform
connectivity for strong and weak relations in his model of job information
transmission. These assumed forms for the structure of network relations
have received at best moderate empirical support, and the uniform
connectivity model seems quite implausible in the light of most of the
literature on network structure. Thus, the challenge in constructing social
process models is to use empirically plausible assumptions about net-
work structure in the place of assumptions such as that of uniform
connectivity. For example, can the calculations made by Boorman (1975)
on job information transmission in networks of strong and weak ties be
repeated, using one of the Strong-Weak tie models of Table 8.1 instead
of uniform connectivity? Can diffusion processes in a single large network
be assessed if we assume that the network conforms to Johnsen's "39+"
model or to a related model expressed in the form of a partially ordered
semigroup?
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These questions can only be answered with (a) a much better know-
ledge of the applicability of models for network structure such as those
listed in Table 8.1 and (b) some substantial mathematical developments.
They are important questions to consider, however, because the ability to
model faithfully a wide range of diffusion processes is important in
understanding many social phenomena. The focus of the representa-
tions that we have been considering on labelled paths in networks should
assist the project because the processes in such models may be postu-
lated to traverse certain types of network paths.

Analysing large networks

Almost all of the analyses presented here have been for small networks or
for large networks summarised in the form of a blockmodel. There have
been two reasons for this: for ease of presentation and computational
simplicity, and because the representation and its analysis lead to a full
and detailed description of the network. The analysis is neither a means
of extracting only some of the relational forms present in the network
nor a procedure for summarising its most "salient" forms: instead, it
yields a description of all maximally heterogeneous relational forms.

Of course, useful algorithms for performing an initial summary of net-
work structure have been developed for several applications. For instance,
there are algorithms for grouping members of an entire network who share
similar network relations in the sense of being structurally equivalent
(Breiger et al., 1975; Burt, 1976), automorphically equivalent (Borgatti,
Boyd, &c Everett, 1989; Pattison, 1988; Winship, 1988), regularly equiva-
lent (White &c Reitz, 1983, 1989), local role equivalent (Mandel, 1983;
Winship & Mandel, 1983) or indegree or outdegree equivalent (Pattison,
1988). The results of each of these clustering algorithms may be used
to define a blockmodel of relations among the clusters of network
members or abstracted network positions (Pattison, 1988), and this
blockmodel may be submitted to the detailed analysis that has been
developed. For local networks, variety of procedures, including those
described by Mandel (1983), Winship and Mandel (1983) and Breiger
and Pattison (1986), may be adapted to aggregate members of a local
network and hence to construct a smaller abstracted local network, as
illustrated by Pattison (1988).

Another useful approach for a large entire network may be to perform
exact analyses for each of the local networks defined by its members.
The partially ordered semigroup of the entire network is a two-sided
role algebra, and we can think of that role algebra as the intersection
of the local role algebras of the individual network members. Whereas
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the upper limit on semigroup size for a network of n members is 2*, where
k = 2n, the upper limit on distinct relations in any individual role alge-
bra is 2W. Thus, a considerable reduction in the size of the algebras with
which we need to deal can be achieved by this strategy. The analysis
will produce a list of features of local networks - some common to
more than one local network and some unique to a particular network
- that when used in conjunction with the Correspondence Definition
will identify the nature and location of many of the relational forms
contributing to structure in the entire network.

In the case of very large networks, it may also be useful to consider
a model-fitting approach rather than a descriptive one. The steps taken
by Pattison et al. (1988) may be particularly helpful in this regard.
Their procedure may be used not only to assess the level of fit of
network data to a model but also to identify regions in the network
where fit is poor. An approach developed by Krackhardt (1988) may
also be used to fit network models expressed in linear terms. In either
case, a more descriptive local approach could be applied where the fit
of the model is poor. Detailed analysis of a partial algebra such as the
partial role algebra defined in chapter 2 is another possibility, but the
merits and hazards of this strategy require further exploration.

Nonetheless, full analysis of larger networks may sometimes be of in-
terest, and it will be necessary to improve the computational efficiency
of the algorithms that have been presented for the analysis of entire and
partial networks. There are no major computational obstacles to extending
the algorithms to somewhat larger networks and somewhat larger semigroups
and role algebras. One major limitation of the current implementation of
the factorisation algorithm is an upper limit on semigroup or role algebra
size of about 40. This upper limit could be increased by more efficient
use of storage. A second area where additional computational improve-
ments can be made is in the development of an efficient lattice-searching
algorithm for determining minimal derived set associations for a com-
ponent of a partially ordered semigroup or a role algebra.

Though the representations and analyses that have been proposed for
entire and local networks have made some progress towards the represen-
tational goals that were identified in chapter 1, there is still a great need
for development. Not only do we need to develop more efficient algo-
rithms to conduct the analyses that have been described and to apply
them to a great deal more network data, but it seems particularly
important to address the problem of constructing network process models
sympathetic to the outcomes of such analyses.
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Appendix A
Some basic mathematical terms

A set X is a collection of objects or elements; we use x eX to indicate
that the element x is a member of the set X and we can write X as
{x: x eX}. The intersection X n Y of two sets X and Y is the set of ele-
ments belonging to both X and Y; that is,

XnY={z:zeX and zeY],

The union X u Y of X and Y is the set of elements that are members
of at least one of the sets X and Y; that is,

X u Y={z: zeX or zeY (or zeXnY)}.

The null set or empty set is the set { } containing no elements. Two sets
are disjoint if their intersection is null.

The Cartesian product X x Y of two sets X and Y is the set of all
ordered pairs of elements from X and Y, that is,

XxY={(x,y):xeX,yeY}.
A binary relation R on a set X is a subset of the Cartesian product
X x X. A binary relation R on X is reflexive if (x, x) eR, for all x eX;
it is symmetric if (x, y) eR implies (y, x) eR, for any x, y eX; and it is
transitive if (x, y) eR and (y, z) eR implies (x, z) eR, for any x, y, z eX.
A binary relation that is reflexive, symmetric and transitive is termed an
equivalence relation. If R is an equivalence relation, we can define its
equivalence classes as subsets of elements of X that are related by R to
x, that is,

nx = {yeX: (x9y)eR).
Classes of an equivalence relation are either disjoint or identical and
define a partition on X; that is, we can write X as the union of disjoint
subsets, each of which is a class of the equivalence relation R.

A binary relation R on X is a quasi-order if R is reflexive and tran-
sitive. R is antisymmetric if (x, y) eR and (y, x) eR implies x - y, for any
x, y e X. A quasi-order that is also antisymmetric is termed a partial order.
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Quasi-orders and partial orders are often represented as relations <
or > such that x < y or x > y if and only if (x, y) GR. Given a quasi-
order > defined on a set X, we can also define the following relations on
X:

x = y iff x > y and y > x; x9 y e X;
x > y iff x > y but not x = y; x9 y e X;
x < y iff y > x; x,y eX; and
x < y iff x < y but not x = y; x9 y e X.

The compound relation RS formed from two binary relations R and
S on a set X is the set {(x, z): (x, y) eR and (y, z) eS for some y eX).
The converse of the relation R is the relation R' defined by

(x,y)eR'iff (y9x)eR.

A mapping or function 0 from a set X to a set Y is an assignment of
a unique element of Y to each element of X. We write

The unique element of Y associated with x eX is denoted by 0(JC). The
image of the function 0 is

Im 0 = {y G Y: y = 0(x), for some x eX}.

If Im 0 = Y, then 0 is termed a surjection. lix^y implies </>(x) * 0(y), for
any JC, y e X, then 0 is an injection. If 0 is both a surjection and an
injection, then it is termed a bisection or one-to-one mapping.

A binary operation f on a set X is a mapping from the set X x X to
X; that is,

f: XxX->X.
The binary operation f is associative if /"(/"(x, y),z) = /"(#, /"(y, ̂ )) for any
x, y, z€ X; it is commutative if /"(*, y) = f(y9 x) for all x, yeX. A
semigroup is a set S together with an associative binary operation on S.
A partially ordered semigroup is a semigroup S with a partial ordering
< on S for which 5 < t implies us < ut and su < tu, for all ueS; s, £, e S.

A lattice is a set L and a partial order < in which, for any JC, y eL,
there exist unique elements glb(x, y) or meet (x9 y) (the meef or greatest
lower bound of x and y) and lub (x, y) or join(x, y) (the join or

bound of x and y) such that

1 gib (*,y)<*, glb(x, y)<y;
2 x < lub(x, y), y < lub(x, y);
3 if x < z and y < z9 then lub(x, y) < z; and
4 if 2: < x and z < y, then z < glb(x, y).
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An equivalent definition of a lattice is as a set L together with two
commutative and associative binary operations (termed meet and join)
also satisfying

1 idempotence: glb(x, x) = x, lub(x, x) = x; and
2 absorption: glb(x, lub(x, y)) = lub(*, glb(x, y)) - x.



Appendix B Proofs of theorems

THEOREM 3.4. Let Q be reflexive transitive relation defined on the par-
tially ordered semigroup S. Then Q is a n-relation corresponding to some
homomorphism § on S if and only if, for any s , t e S,

(s, t) G Q implies (su, tu) G Q and (us, ut) G Q, for each u G S.

Proof: First, define the relation £2 corresponding to an isotone homo-
morphism 0 by (s, t) e Q if and only if 0(s) > 0(f). Then, 12 is clearly
reflexive and transitive and (s, t) e Q implies (j> (s) > (j> (t); and hence
0(s)0(«) >  0(£)0(M), for any MGS. Thus, 0(SM) > 0(*w), so that (s«, tu)  G 12.
Similarly («s, «f)  G X2, and so Q has the properties stated in the theorem.

Conversely, suppose Q is a relation on S with the stated properties.
Define an equivalence relation eQ on S by (s, f) G efl if and only if (s, t) e Q
and (̂ , s) G £2; s, £ GS. Define a mapping 0 on S by 0(s) = [s], where [s]
is the class of ea containing s. Let [s][t] = [st] and let [5] < [t] if and only
if s<t, for some SG[S] , te[t]. Then the image 0(S) is well-defined,
because (a) for any s' e [s], t' e [t]9 it follows that (s, s'), (s', s), (t91') and
(f', f) G 12, so that (s^, s't') and (s7', ŝ ) G 12, and hence s7 ' G [st]; and (b)
S7G [s], t'e[t] and s < ^ implies (^, t)9 (t9s) and (s, s') G X2, and hence
(^', s') G X2 and so s' < t'. Clearly also (f> has the properties of an isotone
homomorphism, so that the result is established.

THEOREM 3.6. The collection L(R) of partially ordered semigroups on a
set R of generator labels forms a lattice under the partial ordering:

Sj <S2 iff there is an isotone homomorphism from S2 onto St.

Similarly, the collection A(R) of abstract semigroups with generator labels
R is a lattice under the partial ordering:

Sj <S2 iff there is an (abstract) homomorphism from S2 onto St.

The set Ls of isotone homomorphic images of a finite partially ordered
semigroup S from L(R) is a finite sublattice of L(R), and the set As of
abstract homomorphic images of a semigroup S from A(R) is a finite
sublattice of A(R).

292
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Proof: Each isotone homomorphic image S{ of S is associated with an
isotone homomorphism 0, of S and a relation nt on S defined by (s, t) en,
if and only if 0, (s) > 0, (£). We show that the greatest lower bound of
a collection of images {Su S 2 , . . . , Ŝ } of S is an image S' with corre-
sponding relation n' = n1np2r\ - - - n nq and hence that LK(S) is a
lattice (Birkhoff, 1967, p. 112). Then, because Sx <S2 if and only if n2
is contained in nl9 the set Ln(S) of relations n corresponding to isotone
homomorphisms of S, partially ordered by set inclusion, is isomorphic
to the dual of the partially ordered set Ls. Consequently, Ln(S) is a lattice
if and only if Ls is a lattice.

Let {nu 7r25. . . , nq\ be a set of relations corresponding to {S1? S 2 , . . . , Sq]
in L5, and define

Then (s, £) e if implies 0,(s) > 0,(£), for each / = 1, 2 , . . . , q. Define a
mapping 0': S -> S' such that 0'(s) > 0'(£) if and only if (s, £) e n'. The
image of 0 ' is the set of classes of S under the equivalence relation
£ ' = {(s, t): (s, t)e if and (£, s) e rf}; moreover,

1 s>t implies (s, t) € /r, for each / and hence 0'(s) > (j)'(t); and
2 07 is a homomorphism: if 0 ' ta) = 0/(s2) and <t>'(tx) = ^(^2)j then

^(st) = 0f-(s2) and 0,(^) = 0,(^2), for each i,
and because each 0 ;is a homomorphism, <f*i{sxtx) - 0,(s2£2), for
each *', and so ^\sxtx) = 0/(s2^2). Thus, the equivalence relation
on S associated with 0' has the Substitution Property, and 0'
is a homomorphism (Birkhoff, 1967).

Thus, n' corresponds to an isotone homomorphism <f>' on S, so that
by Birkhoff's result, both Ln(S) and Ls form a lattice. To show that L(R)
is also a lattice, it suffices to demonstrate that any two semigroups Sa
and S2 in L(R) possess a unique least upper bound. Define a relation ;r
on FS(R) by (s, £) e /r if and only if t < s in Sx and £ < s in S2. Then the
semigroup S' defined on the equivalence classes e^ of the relation n, with
[t] < [s] in S' if and only if (s, t) e ;r, for some s e [s], t e [t] (where [s]
denotes the class of e^ containing s), is indeed a semigroup. Further Sx < S\
S2^S' and S' is the least semigroup for which this is so. Thus, S' is
the least upper bound of Sx and S2, and the result follows.

The results for A(R) follow similarly.

THEOREM 3.11. The collection M(R) of role algebras having the set R of
generator labels forms a lattice whose partial order is given by T < Q //
and only if T is nested in Q. For any local role algebra Q e M(R), the
collection LQ of role algebras nested in Q defines a finite sublattice of
M(R).
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Proof: We show that any pair of role algebras P, T in M(R) possess a
unique greatest lower bound and least upper bound, given by

1 glb(P, T) = PnT; and
2 lub(P, T) = (PT)°°.

In fact, it suffices to prove the result for glb(P, T); the result for lub(P, T)
then follows because it defines the least role algebra containing P and
T (Birkhoff, 1967). P n T i s clearly a quasi-order; also (s,t)ePnT
implies (s, t) eP and (s, t) eT, hence (su, tu) eP and (s«,  £M) e T and so
(s«,  tu) eP n T. Thus, P n T is a role algebra and is the greatest lower
bound of P and T. By induction, nx n ^2

 n * * * n nkIS a r°le algebra and
is the greatest lower bound of [nly TT2, • •  • ,  Kk] and so M(R) is a lattice.
Consequently, LQ is also a finite sublattice of M(R) for any role algebra
Q e M(R).

THEOREM 3 A 2. If T is a role algebra nested in the role algebra Q, £^e«
7CT /s ^ reflexive and transitive relation on eQ w/iYfe the property that
($*, t*) enT implies fsu*, tu*j GTIT, for any u G F S ^ . Conversely, ifn is
a transitive and reflexive relation on the classes of eQ with the property
that (s*, t*) en implies (su*, tu*j en, for any u eFS(R), then n is the n-
relation corresponding to some role algebra nested in Q.

Proof: (s*,t*) enT implies (s', t') eT for any s' es*, t' et*, because Tis
a role algebra. Hence (S'M, t'u) eT for any u GPS(R), and so (s'w*, ^#*)
G nT for any «, as  required. Conversely, define a relation T on FS(R) by
(s, t) e T if and only if (s*, £*) G K. Clearly, T is a quasi-order nested in
Q; further, (s, f )eT implies (s*, ̂ *) en and hence (su*,tu*) en for any

). AS a result, (s«,  ŵ) eT, and T is a role algebra.

THEOREM 3.13. For any T e Un, S(Tj ̂  distinct relations T, T 2 , . . . , Tw

products in S(T) defined by

partial order in S(Tj /s

T1 < Tj iff i >n and j < n.

(7« fact,  Tn /5 ^ ^ ««//  relation.)

Proof: Let JC be the source of the tree T, and let xT% = [y e X: (x, y) e
T1}. Then clearly xT1 n ^T; = 0, for any /, /; further, JCT' is nonempty
whenever i < n. Thus, T, T2,. . . , T""1 are distinct, non-null and
unordered with respect to one another; also Tn is null, Tn < T' for any
/ < «, and  Tn+j- Tw, for any / > 0. Hence the relations just stated all
hold.
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THEOREM 3.14. Let TuT2eTn. Then the multiplication tables of
S({TU 1\}) and S({T2, T^}) are isomorphic, where T* denotes the con-
verse of the relation T.

Proof: Let L eTn be a chain of length n - 1, and label the elements of
the chain by members of the set {1, 2 , . . . , « }  so that there is a path of
length / - i from i to / whenever i < j . Let [a, b] = {m: a<m<b and m e Z},
where Z is the set of integers.

Firstly, we describe the elements of the semigroup SL = S({L,L*}). Any
compound relation W generated by the relations L and L* can be
represented as a sequence of positive or negative integers (il9 il9.. . , ik)9
in which ir denotes a compound of ir copies of L if ir is positive, and
a compound of —i r copies of L* if ir is negative. We show that (p, q) e W
if and only if p and q simultaneously satisfy the following three
conditions:

(a)

(b)

(c)

1

P

<p<

P "•

1

n, 1 <
k

r=\

—  min

q<n;

and
m
f t ir9 n - max

m

Now, if p and ^ satisfy (a) through (c), then (/?, ̂ ) € W. Suppose con-
versely that (/?, q) e W. Then conditions (a) and (b) must clearly hold;
(c) follows because p must satisfy the set of inequalities

l<p<n
l<p + ix<n
1 < p + ix + i2 < n

and hence

r=0 r=0

Secondly, we consider a compound relation V generated by the
relations T and T* for an arbitrary tree T e Tn; V may be represented by
a sequence of integers (il9 il9..., ik)9 just as for compounds constructed
from the chain L. Let x9 y be any elements of the set of vertices of the
tree T, and let u be the unique maximal vertex of the tree. Then, using
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an argument similar to the preceding, we may show that (x, y) e V if and
only if

(a) d(u,y)-d(uyx)=j^ir

where d(v, w) is the length of the unique path from v to w/, if it
exists;

(b) 1 + d(u, x)e[l- imim n - imax],

where i0 - 0, and where
m m

/min = min ]T ir, imax = max £ /r;and
«6[0,*] rT{ m e [ 0 , * ] ~

(c) there exists a vertex z such that

J(z, x) > 0, d(z, y) > 0 and imm < d(x, z) < /max.

Thus, connections in T are wholly determined by the collection of partial
sums

Thirdly, let W and 17 be compound relations represented by the
sequences (iu i2,..., ik) and (/i,/2, •. • , jh)> respectively. We need to
establish that W=U in ST = S({T,T*}) if and only if W = U in SL.
Let

*min ~~
n

and
m m

'max = m
m ^ X *»  /max =J^f[ X 1*'

Now we have established that W= U in SL or in ST if and only if
k h

(a) X;, = 2 / ,
r=l r=\

\C) 'max "" /max*

Hence, the equations in the semigroups SL and ST are identical, and so
they are isomorphic.

THEOREM 3 A 8. Let T be a transition graph on n vertices, with period
sequence n(T) = (ru r2,..., rn) and depth sequence 8(T) = (d0, du ...,
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dn _ t). Then the monogenic semigroup generated by T is of type (h + 1, d),
where

f max {) : dj > 0}
h = / = 0, l,...n-l

[ Oif &s = 0, for all)

and

d = i 1,
[ lifr{= 0, for all i

Proof: Let S = S({T}) be the monogenic semigroup generated by T.
Consider three cases:

Case I Suppose that T is weakly connected; then either
(a) T is a tree: Th is nonempty, Th + 1 = $ = Th + 2 and S is of type
(£ + 1,1); or (b) T is a flower with period fc, where k is
minimal in satisfying T{h + 1) + k = T* + 1, and d = fc. Also, if / < £,
then Tl + 1 + k is not equal to T / + 1 (which follows from consid-
eration of the point(s) of maximal height of T). Thus, in both
(a) and (b), S is of type (h + 1, d).

Case II Suppose that T has two weak components U and V. Let S of
type (h + l,d) and S' of type (g+l,e) be the semigroups
generated by U and V, respectively. Then, in S,U(h + 1) + d = Uh + 1

whereas in S', Vi8+1) + e = V8+\ and £, g, d and e are minimal
integers for which these equations are true. Thus, if T is the
disjoint union of U and V, then k and f are the minimum
integers for which

T 1 k + 1 + f _ '-rk + 1

where k = max(h, f) and /"= l.c.m.(d, e), as required.
Gzse / / / If T has w components, then it follows by induction that S is

of type (h + 1, d), where h and d are as given.

THEOREM 4.1. The partially ordered semigroup S is the direct product of
partially ordered semigroups Su S2,..., Sr if and only if there exist n-
relations nu n2,..., nx e LJS) such that

1 S/ftj is isomorphic to Si9 for each i;
2 glb(7CI, 7C2, . . . , 7Cr) = 7Cw/n;
3 lub(7ti, glb(7C1, TT2, . . . , 71^)) = TC^X, /or ^c/? i; and
4 the n-relations are permutable, that is,

for all i = 1, 2 , . . . , r; j = 1, 2 , . . . , r.
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Proof: We establish the result for the case r = 2; induction may then be
used to establish it for r > 2. If S is isomorphic to Sx x S2, then the n-
relations KX and /r2, associated with the mappings from S onto Sx and
S2, satisfy (a) glb(nl9 n2) = 7rmin, and (b) nxn2 = n2nx = /«&(#!,  TT2) = ;rmax, so
that the stated conditions of the theorem hold.

Conversely, suppose that conditions (i) through (iv) hold, and let n^s)
denote the class of the equivalence relation associated with nx which
contains the element s. Consider the mapping (/> from S onto Sx x S2
given by 0 (s) = (TT^S), 7t2(s)). Clearly (j> is an isotone homomorphism,
because nx and n2 correspond to isotone homomorphisms. Also, if
7ti(s) = i*i(t)9 for each /, then s = t because glb{nu n2) = nmin; thus, 0 is an
injection. Moreover, for any s, teS, there exists an element ueS such
that (s, u) e nx and («, t)  e ;r2, since T ^ = /rmax. Thus, 0 («) = (n x (s), ;r2 (^)),
and so 0 is a surjection. Consequently, 0 is a bijection and S is
isomorphic to Sx x S2.

LEMMA 4.1. Each i7** defines a subdirect representation of S in terms
of irreducible components.

Proof: Suppose that F* * does not define a subdirect decomposition, so
that d = glb(yl9 y2,..., ya) > 7tmin, which is the minimal element of the
^-relation lattice L^S). Then there exists an atom z<d such that
glb(yh z) = z, for all i = 1, 2 , . . . , a. But y, e Cz for some /, which leads
to a contradiction. Thus, glb(yu y2,... ,ya) = /rmin, and f7** defines a
subdirect decomposition.

We now suppose there exists some z* e Cz that is reducible, so that

z*=glb(bl9b2)

with

bi>z*, b2>z*.

If bx > z and b2 > z, then glb(bu b2) = z* >z, which is a contradiction.
Hence, at least one of bx and b2 is a meet-complement of £, contra-
dicting membership of z* in C r Thus, z* is irreducible, and ¥** is  a sub-
direct representation of the partially ordered semigroup S in terms of
irreducible components.

THEOREM 4.6. F is the set of factorisations of S.

Proof: By construction, each F e F is a minimal irredundant subdirect
representation of S and hence a factorisation. It suffices to show, therefore,
that any factorisation F of S comprises maximal meet-complements
corresponding to a subset of atoms of L^S).

Let F = {yu y2,..., yr] and let M = {zl5 z 2 , . . . , za] be the set of atoms
of Ln(S). Suppose that y, does not belong to Cz for any ze M. Clearly,
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glb(yiy z) = 7Cmin for some zf e M. Now yt is irreducible and y{ does not
belong to Cz; thus, the unique element t covering yt satisfies

glb(t, z) = nmin.

Let glb(yl9 y 2 , . . . , y,-_ i, yi+i,..., yr) = d; then glb(d, z) = /rmin (since F is
a factorisation). Consider two cases.
Case I Suppose that glb(t, d) = d' > nmin. Then there exists an atom

z' < d' for which
glb(t, z') = z' and glbfa z') = 7tmin.

But t covers yt and is unique in doing so; thus, yt e Cz, con-
tradicting the supposition that yt does not belong to Cz, for any
zeM.

Case II Suppose that glb(t, d) = nmin. If t is irreducible, then F' =
{yu yn • •  •, Vi-u Vi + u • • •  5 ^ }̂ is an irredundant subdirect
representation such that F < F, in contradiction to the minimality
of F. If t is reducible, then it may be expressed as the meet of
irreducible elements:

t = glb(tu t 2 , . . . , ts) a n d F = {yl9 y2,. . . , y,-. i,
yi+»---,yr,tuh,--,t s}

is a subdirect decomposition of S in terms of irreducible ele-
ments. If any of the tm are redundant, they can be deleted from
F, leaving an irredundant subdirect representation of S that is
strictly less than F. Again the minimality of F is contradicted,
and we have established that y, e C2, for some z s M. Thus, each
factorisation arises as an irredundant collection of elements that
are maximal meet-complements of atoms of Ln(S)9 and F is the
set of factorisations of S.

THEOREM 4.7. If z has a unique maximal complement, then n(z) is a it-
relation and C(z) = (n(z)}. Conversely, if n(z) is a n-relation, then it is
the unique maximal complement of z.
Proof: Clearly n(z)>c, for any ceC(z), because (p,q)ec implies

glb(7tpq, Z) - Kaiaa

and hence (/?, q) en(z).
1 Suppose that C(z) = {c}. Then c > nst for each (s, t) e n(z); thus,

c>lub{(nst); s,ten(z)}9

and so c>n(z). Thus, if z has a unique maximal complement,
it is equal to zr(z), as required.
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2 We have noted that K(Z) > c, for any c e C(z); hence if n(z) is a
^-relation, it must be a unique maximal element for C(z).

THEOREM 4.8. Let M = {zl9 z 2 , . . . , z j be the set of atoms of the n-
relation lattice of a partially ordered semigroup S. If, for each zi e M,
Zi has a unique maximal complement ufa), then the factorisation of S
is unique and {n(zt), n(z2),..., n(za)} is the factorising set.

Proof: We show that [n(z\)^ n(z2), • • •,  n(za)} is irredundant and hence
a unique factorising set for S. Because K(Z1) >zi9 for all i >/, it follows
that the omission of n(zt) from {n(zi), n(z2),..., n(za)} leads to a col-
lection of 7C-relations whose meet is strictly greater than nmin. Further,
each n(Zi) is clearly irreducible, so that {n(z1), TC(Z2)9 • •  •,  n(za)} is
irredundant.

THEOREM 4.9. The association index for quotient semigroups of a par-
tially ordered semigroup satisfies

1 0< r(nl9 n2) < 1 and r(nl!t n2) = r(K2, %x), for all nl9 n2 eL^^Sj;
2 r(nl9 n2) = 0 iff S/glbfa, n2) is isomorphic to S/^ x S/n2; and
3 Ifnt= n2, then r(nl3 n2) = 1.

Proof: Let \Slnx\ = a, \Sln2\ = b, \S/glb(nu K2)\ = p9 \S/lub(nu n2)\ = q.

1 Now glb(nl9 n2) = n1n n2, so that p < ab. Also p > max(a, b)9
q < min(^, b) and a9 b, p and q are all positive integers. Thus

ab- ab ab- p _ ab -max(a, b)
ab- q ab- q ab-min(#, b)

2 If nx = 7C2, then lub(nl9 n2) - glb(nl9 n2) so that p = q and conse-
quently r(nl9 K2) = 1.

3 Clearly, r(^l5 n^ - 0 if S/glb(nly 7%) is isomorphic to S/^a x S/%;
to establish the converse result, it is sufficient to demonstrate
that r(nl9 n2) = 0 implies that nxn2 = K2KX = lub(nl9 n2) (by
Theorem 4.1). Let the classes of glb{nu7t2) be denoted by
Cl9 C 2 , . . . , Cp. Because r(nl9 n2) = 0, p - ab. Thus, no 7^-class
may contain more than b classes of glb(nu n1)9 nor may any n2-
class contain more than a classes of glb(;r1, n^. Therefore each
^rclass (;r2-class) contains exactly b (a) classes of glb(nl9 n2).
Now any class Q of glb(nl9 n2) is one of b distinct classes of
glb{nl9 n2) contained in a single ^-class, and each of those b
classes belongs to a different %-class. Hence ^ ^ = fl"max, and
because nx and n2 are permutable, nxn2 = n2nx - lub(Ku n2), as
required.

THEOREM 4.10. Let § be a homomorphism on a semigroup S. Then the
relation n^ on S given by
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( s , t ) 6 7Ĉ  / # > ( s ) = <|>(t); s , t e S

is reflexive, symmetric and transitive and has the substitution property:
(s, t) GTĈ  iff (us, ut) en^ and (su, tu) en^ for any ueS.

Conversely, any reflexive, symmetric and transitive relation having the
substitution property corresponds to a homomorphism of S.
Proof: Clearly n^ is reflexive, symmetric and transitive. Also, because 0
is a homomorphism, (s, t) en^ implies 0(s) = (f>(t), and so <f>(su) = <f>(s)<t>(u)
- 0(£)0(u) = (j)(tu), and so (su, tu) e n$. Similarly, (us, ut) e n^ and n^ has
the properties asserted in the theorem. Conversely, if n is an equivalence
relation possessing the substitution property, the mapping 0 on S given
by 0(s) = [s], where [s] is the equivalence class of n containing s, estab-
lishes a homomorphism on S because (a) [s][t] = [st] is a well-defined
operation on the classes of n by virtue of the substitution property, and
SO (b) <f>(st) =

THEOREM 5.7. Let C be a partition on X satisfying the central repre-
sentatives condition for the network R on X, and let T be the derived
network ofR induced by C. Then S(T) is an isotone homomorphic image
of S(R).
Proof: Define </>: S(R) - » S(T) by

= TIC,

where Te S(R) and TIC is the induced relation on the equivalence
classes of C (i.e., if Cx denotes the class containing x9 (Q, Cy) s TIC if
and only if, there is some x e Cx,ye Cy such that (x, y) e T). It is readily
shown that Tx < T2 implies TXIC < T2/C, hence proving that

(T1T2)/C = (T1/C)(T2/C)
establishes that 0 is an isotone homomorphism.

Now (Q., Cy) e.(T{T2)IC if and only if there exist central representa-
tives xa e Cx, ya e Cy such that (xa, ya) e TXT2 and so if and only if there
exists a central representative za e Cz such that (xa, za) e Tx and
(za, ya) E T2. Hence (Cx, Cy) E (TtTjJ/C if and only if (Cx, CJ € T^C and
(Q, Cy) eT2/C, that is, if and only if (Q., Cy) s(TxT2)IC, as required.
THEOREM 5.9. The semigroup of the network induced by the subset U
is an isotone homomorphic image of the semigroup of R.
Proof: Let x,y eU and suppose (JC, y) e RT for relations R, T e R. Then
there exists an element zeX such that (x, z) eR and (z, y) e T. By the
definition of [7, therefore, there exist elements z\ z" e U such that (x, z')
e R and (z" , y) e T. Further, because elements of U satisfy the condition
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Gh (x, w)eR and (w, y) eT for some weU. Consequently, (x9 y) eRT
in S(U), where U is the derived network of R induced by 17. It follows
therefore that S(U) is an isotone homomorphic image of S(R).

THEOREM 5.10. Let T be the derived network induced by a receiver
subset Y of X. Then S(T) is an isotone homomorphic image of S(R).

Proof: Define <p : S(R) -> S(T) by

where (x, y) eT" if and only if (x, y) eT and x9y eY. It is sufficient to
establish that <t>(TU) = 0(T)0(U) and hence that 0 is a homomorphism
and a surjection.

Let (x, y) G 0(TU). Then there exists z e X such that (x, z) eT and (z, y)
e [7. But because Y is a receiver subset, it follows that z e Y and so that
(xy y) e 0(T)0(U). Conversely, it is readily shown that (x, y) e 0(T)0(17)
implies (x, y) e</)(TU); hence 0(TU) = 0(T)0(U), as required.

THEOREM 5.11. Let V be a partition on a set X on which a local network
R is defined, and let |i be the partial function on X associated with P.
If P *'s # regular equivalence, then the local role algebra of \i(l) in the
derived local network T is nested in the local role algebra of node 1 in
R.

Proof: Let Q be the local role algebra of node 1 in R, and let T be the
local role algebra of node jU(l) in T. Now if (s, t) e Q , for some s, te
ES(R), then ( l ,z) et implies (l,z) e s , for all zeX. Suppose now that
(jU(l),z') et for some class z' of P. Then because P is a regular
equivalence, (l,z)et for some Z G Z ' , and hence (l,z)es. Thus,
(//(I), /*(*)) es, that is, (JU(1), z') es . Thus, (s, ^ ) G Q implies (5, t) eT, and
T is nested in Q.
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