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ABSTRACT
This paper explores the effectiveness of the Scale Invariant
Feature Transform (SIFT) for image matching. There is a
popularly used interest point detection method often applied
to image matching, the Harris corner detector. The Harris
corner detector is non-invariant to scale change. The experi-
ments of image matching based on both the SIFT and the Har-
ris corner detector are performed to show the effectiveness of
the scale invariant property of the SIFT method. Furthermore,
the image matching method based on SIFT is applied to point
tracking, and comparison with Kanade-Lucas-Tomasi (KLT)
feature point tracker is also studied.

Index Terms— Image matching, interest point detection,
point tracking, object tracking, panoramic image stitching

1. INTRODUCTION

Image matching is a fundamental aspect of many problems in
computer vision, including object or scene recognition, solv-
ing for 3D structure form multiple images, stereo correspon-
dence, and motion tracking. Scale-invariant feature transform
(or SIFT) proposed by David Lowe in 2004 [10] is an algo-
rithm for extracting interest point features from images that
can be used to perform reliable matching between different
views of an object or scene. The features are invariant to
image scale, rotation, and partially invariant (i.e. robust) to
change in 3D viewpoint, addition of noise, and change in il-
lumination. They are well localized in both the spatial and
frequency domains, reducing the probability of disruption by
occlusion, clutter, or noise. Large numbers of features can
be extracted from typical images with efficient algorithms. In
addition, the features are highly distinctive, which allows a
single feature to be correctly matched with high probability
against a large database of features, providing a basis for ob-
ject and scene recognition.

2. PREVIOUS WORKS

Several previous techniques related to SIFT were also exam-
ined.

2.1. Harris Corner Detector

Corner detection or the more general terminology interest point
detection is an approach used with computer vision systems
to extract certain kinds of features and infer the contents of an
image. There are several applications of interest point detec-
tion such as motion detection, tracking, image stitching, 3D
modeling, and object recognition.

An interest point is a point in an image which has a well-
defined position and can be robustly detected. A corner is a
feature often used as an interest point because of its locality,
and orientation invariance.

Since the application of the Moravec interest operator in
1979 [14], a lot of research has been done in corner and in-
terest point detection. Harris corner detector [6] proposed by
Harris and Stephens in 1988 is a popularly used interest point
detector.

2.1.1. How It Works

Let the image given by I . The Hessian matrix is given by

C =
[ ∑

I2
x

∑
Ixy∑

Ixy

∑
I2
y

]
. (1)

The summations are taken over a small region, and the deriva-
tives are estimated by taking differences of neighboring points.

The strength of the corner is determined by ’how much’
second derivative there is. This is done by considering the
eigenvalue (λ1 and λ2) of C. Based on the magnitudes of the
eigenvalues, the following inferences can be made:

1. If λ1 and λ2 are both large, a corner is found.
2. If λ1 À λ2 or λ2 À λ1, an edge is found.
3. If λ1 and λ2 are both small, there are no features of

interest at this pixel (x, y).
Thus, the strength of corner response can be computed by

R = λ1λ2 − κ (λ1 + λ2)2. (2)

where κ is a tunable parameter which determines how ’edge-
phobic’ the algorithm is.



Harris and Stephens note that exact computation of the
eigen values is computationally expensive and instead suggest
the following function,

R = Det(C)− κTr2(C) (3)

because Det(C) = λ1λ2 and Tr(C) = λ1 + λ2.
The value of κ has to be determined empirically, and in the

literature values in the range 0.04 - 0.15 have been reported
as feasible.

2.1.2. Discussion

As mentioned, a corner is well localized, and invariant to ro-
tation. Furthermore, Harris corner detector is partially invari-
ant to affine intensity change (translation or scaling in the
intensity domain) because only derivatives of intensities are
used. However, Harris corner detector is non-invariant to im-
age scaling. This defect is resolved by SIFT.

Fig. 1. An example showing scale non-invariant property.
Left: Edges. Right: A corner. Edges are recognized as a
corner by scaling down

2.1.3. Application to Image Matching

After detecting interest points in two images, we are possi-
bly able to find corresponding points in the two images. This
process is called as image matching and it can furthermore
applied for image stitching, point tracking, automatic deter-
mination of epipolar geometry.

There are several image matching methods based on Har-
ris Corner detector, affine invariant [17], rotation invariant
[13], and deformation invariant [7] methods. But, we sim-
ply compute Sum of Squared Difference (SSD) within a small
search window around the detected corner pairs in the two im-
ages. Then we recognize two points as a corresponding pair
if their SSD is the smallest among other corner points. This
method is translation invariant, but non-invariant to image ro-
tation, and scale.

2.2. Kanade-Lucas-Tomasi (KLT) Feature Tracker

The KLT tracker is used to derive interesting features and
follow them through an image sequence. The collection of

feature points can then be applied to typical computer vision
problems as object recognition, tracking or structure from
motion. [12] [16] [15] [1].

2.2.1. Image Motion Models

For a simplified feature based tracker two motion models are
required: a local model to monitor tracking quality by mea-
suring image dissimilarities between feature windows (reg-
istration problem) and an affine map model to compute dis-
placement vectors (tracking problem). The goal is to find the
displacement d of a window center point x = (u, v) on a fea-
ture image patch. Because individual pixels can change with
noise and be confused with neighbors or move out of view
from frame to frame, it is necessary for the tracker to exam-
ine features through a window of pixels. Patterns move in the
image stream according to function I(u, v, t) and satisfies

I(u, v, t + τ) = I(u− ξ(u, v, t, τ), v − η(u, v, t, τ), t).

The next image J(x) = I(x, t + τ) at time t + τ , which can
be obtained by moving every point in the image at time t by
a certain amount. The amount of motion δ = (ξ, η) is the
displacement of the image point x = (u, v) between times t
and t+τ . The vector δ is a function of the image position x, so
there exist different displacements within the same window.
Actual tracking is modeled with an affine motion field

δ = Dx + d,

where

D =
[
duu duv

dvu dvv

]

is a deformation matrix and d is the displacement of the win-
dow center, as stated previously. Image coordinates x =
(u, v) are measured with respect to the window’s center. Thus,
x in the first image I moves to point Ax + d in second im-
age J , where A = 1 + D and 1 is the 2 × 2 identity matrix.
Therefore, we have that

J(Ax + d) = I(x) + n(x)

where n is noise as a function of its position in the image
frame. Given two images I and J , and a feature window in
I , we define tracking to be the determination of the 6 param-
eters found in D and d. Camera motion, image texture, and
window size influence the estimates. When the window is
small, D is harder to estimate since the variations of motion
are small and less reliable. Small windows will prevent depth
discontinuities so we often use a pure translation model with
deformation matrix D set to zero and δ = d. This model
works for tracking and is reliable over small interframe cam-
era motion while the affine model can be added to monitor
tracking quality.

To solve the registration problem we monitor residuals.
The image J can be thought of as an intensity function de-
pending upon x = (u, v). Then, when image displacements



are small, the image intensity function J can be approximated
by a Taylor series expansion truncated to the linear term

J(x + d) = J(x) + gT , (4)

where g is the image gradient given by

g =
[
∂uI
∂vI

]
.

The dissimilarity (registration) problem is that of finding the
d that will minimize the residual error ε given a window W
by calculating

ε =
∫∫

W
[J(Ax + d)− I(x)]2w(x)dx, (5)

where w is a weighting function that is usually set to 1, but
could be a Gaussian that best represents the central area of
the feature window W .

2.2.2. Algorithm

To compute image motion we must set up and solve the linear
system to determine the motion parameters found in A above
and d that will minimize the dissimilarity in (5). When look-
ing for a pure translation we let A be the identity matrix. To
minimize the residual in (5) we differentiate it with respect
to the unknown entries of the deformation matrix D and the
displacement vector d and set the result to zero. Linearizing
the resulting system with a truncated Taylor expansion, as in
(4), we get the 6x6 linear system

Tz = a,

where zT = [duu dvu duv dvv du dv] contains the
entries of deformation matrix D and displacement vector d,
and the error vector

a =
∫∫

W
[I(x)− J(x)]
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 w(x)dx (6)

is dependent on the image difference and T, which can be
computed from one image and expressed as

T =
∫∫

W

[
U V
V T Z

]
w(x)dx (7)

where

Z = ggT =
[

∂2
uI ∂uvI

∂uvI ∂2
vI

]
,

U =
[
u2Z uvZ
uvZ v2Z

]
, and

V T =
[
uZ vZ

]
.

This full affine motion system is useful when monitoring fea-
tures for dissimilarities. For tracking to determine d, it is
better to solve the smaller system

Zd = e (8)

where e collects the last 2 elements of vector a in equation
(6). During interframe tracking image motion is small and D
is hard to estimate and nearly singular. D interacts with dis-
placement d through matrix V of equation (7) and any error
in deformation matrix D will cause errors in d. Next we must
consider what features are worth tracking in an image. This
is done using the symmetric 2x2 matrix Z, which must be
above the noise level and well conditioned. To satisfy noise
requirements both eigenvalues of Z must be large, and to be
well conditioned means that the eigenvalues cannot differ by
several orders of magnitude. Two small eigenvalues signal an
approximately constant intensity profile within a window. A
large and a small eigenvalue indicates a unidirectional tex-
ture, and two large eigenvalues represent corners, salt and
pepper textures, or some other reliable feature. Intensity vari-
ations are bounded by a maximum allowable pixel value, so
the eigenvalues are bounded. Finally if the two eigenvalues
of Z are λ1 and λ2 we accept the window if

min(λ1, λ2) > λ (9)

where λ is a predefined threshold. By computing the dissim-
ilarity with the full affine map we can monitor residuals and
occlude those features that have dissimilarities above a certain
threshold.

2.2.3. Occlusion handling

A statistical based occlusion handling routine was implemented
to filter outlier track points. Given two images In and In+1

and a feature list of k corresponding tracked points present in
both images, compute the interframe displacement dk of each
feature. Next find the mean µ and standard deviation σ2 and
compute the z-score

zk =
dk − µ

σ

Any dk that exceeds 3.25 standard deviations, such that zk >
3.25, is then occluded. These steps are implemented over the
entire image sequence to filter outliers that could deteriorate
tracking quality over the entire image sequence.

2.2.4. Experiments and Results

KLT Detector functions were applied, and experiments were
performed for an image and its scale downed image (25%).
The results are shown at Fig. 11.



2.2.5. Discussion

The KLT tracker is an important automation step in that it
finds certain features to track and will follow them through
the image sequence as long as image contrast, noise, and il-
lumination is relatively constant and low. If affine changes
are large it is subject to drift, jump track if substantial clut-
ter enters the scene, or occlude points entirely when there is
a shadow or other illumination change. For example, when
tracking a bowtie if another object with a similar feature or
corner comes into view it can choose that feature on the other
object and begin tracking it instead. In many cases the matrix
Z defined above may be ill-conditioned and the eigenvalues
may not be above the threshold requirement min(λ1, λ2) > λ
and occlude a point otherwise observable by a human. Also
when another feature in the window satisfies the requirement
to minimize ε in (5) the wrong feature displacement d is com-
puted drift observer perceived drift takes at best. At worst the
new counterfeit image point in the window satisfies the mini-
mal requirement and the jump track case takes place. SIFT
was implemented to be more robust in the presence larger
amounts of clutter, rotation, and illumination changes.

3. SCALE INVARIANT FEATURE TRANSFORM

The SIFT [10] is a method for extracting interest point fea-
tures from images, that is, it not only detects interest point
locations but also extracts features around the points that can
be used to perform reliable matching between different views
of an object or scene. The SIFT features are invariant to not
only to image orientation but also image scale, and provide
robust matching across a substantial range of affine distor-
tion, change in 3D viewpoint, addition of noise, and change
in illumination.

For image matching, SIFT features are first extracted from
a set of reference images and stored in a database. A new im-
age is matched by individually comparing each feature from
the new image to this previous database and finding candidate
matching features based on Euclidean distance of their feature
vectors.

3.1. Algorithm Steps

The major steps in the computation of SIFT are [10]

1. Scale-space construction - construction of Gaussian
and difference-of-Gaussian pyramids.

2. Keypoint localization - keypoint candidates are cho-
sen from the extrema in the scale space, and keypoints
are selected based on measures of their stability.

3. Orientation assignment - orientations are assigned to
each keypoint based on histograms of gradient direc-
tions computed in a 16x16 window.

4. Keypoint descriptor - representation in a 128-dimensional
vector.

Keypoint matching - the best candidate match is found by its
nearest neighbor.

3.2. Scale-Space Construction

Interesting image features or key points are detected using a
cascade filtering approach that identifies image candidate lo-
cations that will be evaluated further later. The first step is to
realize image location coordinates and scales that can be re-
peatably assigned under pose variation of the object of inter-
est. Finding locations that are invariant to scale is performed
by scale function that searches for stable features across dif-
ferent scales. The scale space convolution kernel of choice is
the Gaussian function used to define the scale space function
of an input image according to

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (10)

where ∗ is the convolution operation in x and y with Gaussian

G(x, y, σ) =
1

2πσ
e−(x2+y2)/2σ2

(11)

To detect stable keypoint locations in scale space, the difference-
of-Gaussian (DoG) function convolved with the image D(x, y, σ)
is computed from the difference of two nearby scales sepa-
rated by a constant multiplicative factor k as in

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (12)
= L(x, y, kσ)− L(x, y, σ). (13)

The DOG function is a close approximation to the scale-
normalized Laplacian of Gaussian σ2∇2G. It is known that
the maxima and minima of σ2∇2G produce the most sta-
ble image features compared to a range of other possible im-
age functions, such as the gradient, Hessian, or Harris corner
function.

An approach to construction of D(x, y, σ) is shown in
Fig. 2. The input image is incrementally convolved with
Gaussians using σ =

√
2 to produce images shown stacked in

the left column. That is, the bottom image is first convolved
with Gaussian using σ =

√
2, and then repeated with a fur-

ther incremental smoothing of σ =
√

2 to give the 2nd bot-
tom image, which now has an effective smoothing of σ = 2.
The bottom DoG function is obtained by subtracting the 2nd
bottom image from the bottom image, resulting in a ratio of
2/
√

2 =
√

2 between the two Gaussians. We repeat these
procedures until we generate s + 3 images in the stack of
Gaussian images and thus s + 2 images in the stack of DoG
images on each pyramid level or octave where s is the number
of intervals which we used 2 in our experiment. Fig. 3 shows
one interval of local extrema computation which uses 3 levels
of DoG function.



Fig. 2. Gaussian and DoG Pyramids

Fig. 3. One interval of local extrema detection

To generate the next pyramid level, we downsample the
bottom image of the current level by taking every second pixel
in each row and column, which now has twice the initial value
of σ, that is, has an effective smoothing of σ = 2

√
2. Then,

the same computations are repeated until we obtain the spec-
ified number of pyramid levels which we used 4 in our exper-
iment.

3.3. Keypoint Localization

3.3.1. Local Extrema Detection

Local maxima and minima of the DoG function are detected
as keypoint candidates. To detect local maxima and minima

of the DoG function, D(x, y, σ), each sample point is com-
pared to its eight nearest neighbors in the current image and
nine neighbors in the scale above and below as in Fig. 3.
Selection takes place only when a sample point is larger or
smaller than all neighbors under comparison.

To detect extrema reliably, the right frequency of sam-
pling must be chosen in the image and scale domain. We
can determine the best choices experimentally and the experi-
ments were provided by [10]. Lowe shows 3 intervals on each
pyramid level is the best, but 2 is also reliably good. We chose
2 to reduce the computation time. Lowe also shows, as the to-
tal number of pyramid levels are increased, the total number
of keypoints is increased, but the percent of correctness (re-
peatability) are decreased. He suggested to use 4 levels, and
we also used 4. Lowe also suggests to prior blur with σ = 0.5
to prevent aliasing and then upsample the image by a factor
of 2 using linear interpolation. Lowe claims that the image
doubling increase the number of stable keypoints by almost a
factor of 4.

3.3.2. Rejecting Low Contrast Keypoints

Once a keypoint candidate has been realized, the next step
is to perform a detailed fit to local image data for location,
scale ,and ratio of principal curvatures. With this information
points are rejected that have low contrast because they are
sensitive to noise or are poorly localized along an edge.

A simple approach of the implementation is to locate key-
points at the location and scale of the central sample point.



There is another advanced approach which fit a three dimen-
sional quadratic function to the local sample points to deter-
mine the location of the maximum. This approach provides
improvements to matching and stability.

This approach uses a Taylor expansion (up to the quadratic
terms) of the scale-space function D(x, y, σ) is shifted so the
origin is located at the sample point

D(x) = D +
∂DT

∂x
x +

1
2
xT ∂2D

∂x2
x (14)

where D and its derivatives are evaluated at the sample point
and x = (x, y, σ)T is the offset from the particular point.
The location of the extremum x̂ is determined by taking the
derivative of D with respect to x and setting it to zero such
that

x̂ =
∂2D−1

∂x2

∂D

∂x
(15)

In practice the Hessian and derivative of D are approximated
by using differences of neighboring sample points, resulting
the solution of a 3 × 3 linear system. When the offset, x̂ is
larger than 0.5 in any dimension, then the implication is that
the extremum lies closer to a different sample point. In this
case it is necessary to change sample points and interpolation
is performed about the point instead. The final offset x̂ is
added to the location of its sample point to get the interpolated
estimate for the location of the extremum.

By taking the function value at the extremum, D(x̂), it
is possible to reject unstable extrema with low contrast by
substitution of equation (3.3.2) into (3.3.2) as in

D(x̂) = D +
1
2

∂DT

∂x
x̂ (16)

Lowe suggested to discard extrema with a value |D(x̂)| <
0.03 by experiments.

3.3.3. Eliminating Edge Responses

Using low contrast rejecting criteria alone is not sufficient be-
cause the DoG function will have a strong response at edges
even when the location along the edge is poorly determined
and therefore sensitive to small amounts of noise.

As we’ve studied in Harris corner detector (Sec. 2.1), it is
possible to detect edges by a 2× 2 Hessian matrix.

A poorly defined peak in the difference-of-Gaussian func-
tion will have a large principal curvature across the edge but a
small curvature in the perpendicular direction. Principal cur-
vatures are computed from the Hessian matrix

H =
[
Dxx Dxy

Dxy Dyy

]
(17)

where the derivatives are found by taking differences of neigh-
boring points. The eigenvalues of H are proportional to the
principal curvatures of D. It is not necessary to compute the
eigenvalues explicitly as only the ratio is interesting. Letting

α be the eigenvalue with largest magnitude and β the smaller,
then the sum of eigenvalues is the trace of H

Tr(H) = Dxx + Dyy = α + β (18)

and the product is the determinant

Det(H) = DxxDyy − (Dxy)2 = αβ (19)

When the determinant is negative, then the curvatures have
different signs so the point is discarded as a candidate ex-
tremum. Letting r be the ratio between the largest magnitude
eigenvalue and the smaller one such that α = rβ then

Tr(H)2

Det(H)
=

(α + β)2

αβ
(20)

=
(rβ + β)2

rβ2
(21)

=
(r + 1)2

r
, (22)

depending only on the ratio of the eigenvalues instead of their
individual values. When the two eigenvalues are equal the
quantity (r + 1)2/r is a minimum and will increase with r.
As a result to make sure the ratio of principal curvatures is
below some threshold, r it is necessary to check,

Tr(H)2

Det(H)
<

(r + 1)2

r
. (23)

Lowe suggested to choose r = 10, which eliminates key-
points that have a ratio obtained by (Eq. 23) greater than 10.

3.4. Orientation Assignment

Consistent orientations based on local image properties are
assigned to each keypoint. Representing the following key-
point descriptor relative to the orientation assignment is a mo-
tivating factor to help achieve invariance to image rotation.

The scale of the keypoint is used to select the Gaussian
smoothed image, L with the closest scale, so that all compu-
tations are performed in a scale invariant manner. For each
image sample, L(x, y) at a particular scale the gradient mag-
nitude, m(x, y), and orientation, θ(x, y), is precomputed:

m(x, y) =
√

L2
x + L2

y (24)

θ(x, y) = tan−1(Ly/Lx) (25)

where Lx = L(x + 1, y) − L(x − 1, y) and Ly = L(x, y +
1)− L(x, y − 1) are pixel differences.

An orientation histogram is formed from the gradient ori-
entations of sample points within a region around the key-
point. The orientation histogram has 36 bins covering the
360 degree range of orientations. Also each sample added
to the histogram is weighted by its gradient magnitude and



by a Gaussian-weighted circular window with a σ that is 1.5
times that of the scale of the keypoint.

The peaks in the orientation histogram correspond to the
dominant directions of local gradients. The highest peak in
the histogram is detected, and then any other local peak that
is within 80% of the highest peak is used to also create a key-
point with that orientation. Therefore, for multiple peaks of
similar magnitude, there will be multiple keypoints created at
the same location and scale but different orientations. Finally
a parabola is fit to the 3 histogram values closest to each peak
to interpolate the peak position for improved accuracy.

3.5. The Local Image Descriptor

After image location,scale, and orientation have been assigned
to each keypoint, it is possible to impose a two dimensional
coordinate system to describe the local image region and pro-
vide invariance with respect to these parameters. The next
step is to compute a descriptor for the local image region that
is distinct yet invariant to additional variations such as change
in illumination and three dimensional pose.

The traditional approach is to sample the local image in-
tensities around the keypoint at the appropriate scale and match-
ing with a normalized correlation measure. This has limita-
tions as it is highly sensitive to changes in the image that cause
misregistration of samples such as in affine or three dimen-
sional pose variations and random noise interference. The
better approach is to allow the gradient at a particular orienta-
tion and spatial frequency to shift locations over a small field
rather than being precisely localized allowing for matching
and recognition of three dimensional objects from a range of
viewpoints. The claim is that matching gradients while allow-
ing for shifts in their position results in better classification
under three dimensional rotation.

3.5.1. Descriptor Representation

To begin representing a keypoint descriptor it is necessary to
sample the image gradients and orientations around the key-
point location by applying the scale of the keypoint to deter-
mine the level of Gaussian blur for the image. Orientation
invariance is achieved by rotating the coordinates of the de-
scriptor and the gradient orientations relative to the keypoint
orientations.

Each sample point magnitude is assigned a weight by ap-
plying a Gaussian weighting function with σ equal to one half
the width of the descriptor window. The purpose of the Gaus-
sian window is to avoid sudden changes in the descriptor with
small changes in the position of the window and deempha-
size those gradients far from the center of the descriptor. By
generating orientation histograms over 4× 4 sample regions,
it is possible to allow for large shifts in gradient positions.
There are eight directions for each orientation histogram and
the length of the arrow corresponds to the magnitude of a par-
ticular histogram entry. A gradient sample can shift up to four

positions and still participate in the histogram on the right thus
allowing for larger positional shifts.

To avoid boundary affects where the descriptor changes
from one histogram or orientation to another, trilinear interpo-
lation is applied to distribute the value of each gradient sample
into adjacent histogram bins. Each value in a bin is multiplied
by a weight of 1− d for each dimension, d being the distance
of the sample from the central value of the bin based on the
histogram bin spacing.

For a descriptor it is necessary to form a vector of all
orientation histogram entries. Lowe [10] used a 4 × 4 ar-
ray of histograms with eight orientations in each bin, conse-
quently each descriptor vector for a particular keypoint will
be of length 4× 4× 8 = 128.

To limit the effect of illumination changes the descriptor
vector must first be normalized to unit length. When image
contrast is represented by multiplying each pixel value some
constant then he vector normalization will cancel changes be-
cause the gradient is multiplied by the same constant. Like-
wise changing contrast with addition of a constant to each
pixel value will not affect gradient values because they a com-
puted from pixel differences. In either case the descriptor will
be invariant to affine changes in illumination.

Finally it is necessary to manage the effects of nonlin-
ear illumination changes that affect 3D surfaces by different
orientations and magnitudes. Such illumination effects cause
large change in relative magnitudes but not orientations. Con-
sequently large gradient magnitudes are thresholded by a fac-
tor of 0.2 and the entire feature vector is renormalized. This
factor determined experimentally.

3.5.2. Descriptor testing

Two parameters are responsible for descriptor variation, the
number of histogram orientations, r and the width n of the n×
n array of orientation histograms. Therefore the dimension of
the descriptor is nr2. There is a familiar trade off that must
be negotiated as the descriptor complexity grows so does it’s
sensitivity to shape distortions and occlusion. Therefore the
dimension of the descriptor is nr2. There is a familiar tradeoff
that must be negotiated as the descriptor complexity grows so
does it’s sensitivity to shape distortions and occlusion.

Lowe [10] used a 4×4 array of histograms with eight ori-
entations in each bin, consequently each descriptor vector for
a particular keypoint will be of length 4×4×8 = 128. Lowe
also shows that there are no huge improvements between 4x4
and 8x8 array of histograms. Thus, we used 4x4 array of his-
tograms with 8 orientations in our experiments.

4. EXPERIMENTAL RESULTS

The results on each step of SIFT methods are presented here.
The input image is the Lena image shown at Fig. 6 (a). Fig.



Fig. 4. Keypoint descriptor process

5 presents results obtained at the 1st step - Scale-space Con-
struction. Fig. 6 (b), (c), and (d) presents results obtained
at the 2nd step - Keypoint Localization. Fig. 6 (e) gives re-
sults obtained at the 3rd step - Orientation Assignment. The
4th step - Keypoint descriptor does not have any plottable re-
sults, it generates a matrix of values called a descriptor which
means features possibly used for image matching.

4.1. Interest Point Detection

Now, we show comparisons between the Harris corner detec-
tor and the SIFT as interest point detection methods. Fig. 7
shows the original input image (a) and its scale downed (25%)
input image (b), and results of each method applied to each
image. Fig. 7 (c) and (d) shows the result of the Harris corner
detector applied to the original image and its scale downed
(25%) image respectively. After restoring the size of (d), the
distances between the nearest point pairs in (c) and (d) were
computed. The average least distance error was 20.7919. Ex-
periments of SIFT were also performed for the original image
(e) and its scale downed (25%) image (f). Again, the average
least distance error was computed in the same manner, and
the result was 4.4997 which is pretty smaller than the result
of the Harris corner detection. This result shows the scale
invariant effectiveness of the SIFT as an interest point detec-
tor. The scale invariant effectiveness of the SIFT in terms of
image matching is further explored at the next section.

4.2. Image Matching

Image matching based on SIFT is experimented. Fig. 8 gives
the result of image matching obtained by our implementation,
moreover, the result obtained by Lowe’s software [11] is also
presented as a ground truth. The result shows that the Lowe’s
software achieved few errors, thus better than ours. It could
be because we used slightly different parameters with those
described in Lowe paper [10], especially, we decreased the
number of intervals from 3 to 2 to save the computation time.

Next, we examine the scale invariant property of the SIFT
method by comparing with image matching based on Har-
ris corner detector. As described in Sec. 2.1.3, the image
matching based on Harris corner detector is simply performed
by computing Sum of Squared Difference (SSD) within a
small search window around the corner pairs in the two im-
ages. This method is invariant to image translation, but non-
invariant to orientation and scale. Let call the method Harris
based method. Fig. 9 (a) shows translation invariant property
of the Harris based method.

Now, a scale downed image to 25% of the original size
is prepared. The resulted transformation is considered as not
only a scale transformation but also a translation transforma-
tion. Because we know the Harris based method is translation
invariant, we can examine its scale non-invariant property us-
ing this image. We show the scale non-invariant defect of
Harris based method is resolved by the SIFT. Fig. 9 presents
the result of (b) Harris based method and (c) image matching
based on SIFT. It shows that SIFT correctly detected corre-
sponding points although Harris based method did not (cor-
rect corresponding pairs will not create crossing lines). We
can realize scale non-invariant property of the Harris based
method and the scale invariant property of the SIFT from this
experiments.

4.3. Application to Point Tracker

We considered the following two image sequences to evaluate
SIFT’s ability to track derived keypoints in Fig. 10 and Fig.
12. Fig. 11 and 13 shows tracking results on both the SIFT
based tracking and the KLT feature tracking method. The first
frame image is shown and starting points are denoted by star
(yellow), and tracking results are denoted by lines (green).

4.3.1. Implementation

We implemented and tested the SIFT algorithm by deriving
keypoints and following them through a sequence of one hun-
dred images. Those points that are erroneously tracked are



deleted for mismatched keypoints and the matching keypoints
are displayed as a green line to follow image motion. Track-
ing begins by computing derived SIFT keypoints found in the
first image with function SIFT.m to get position, scale, orien-
tation, and a descriptor for each keypoint in the image. Func-
tion sifttracker.m, uses each descriptor in successive images to
follow corresponding matches to be selected in the next im-
age. On output the U and V matrices are returned to represent
keypoint positions in each image frame of the sequence.

4.3.2. Discussion

SIFT identifies keypoints in the global region of the image
that are stable with respect to rotation, clutter and changes in
illumination. The hotel image sequences (Fig. 10) were taken
careafully in a laboratory so that they will not have noises,
changes in illumination, and deformations so much. For these
pictures, The KLT tracker worked pretty well, but the SIFT
tracker did not. After repeating the SIFT point matching pro-
cedures for 100 image sequences only a few of all keypoints
were remained to track. However, for castle image sequences
(Fig. 12) which were taken in the outside (thus, have noises,
changes in illumination, and large deformations) and are not
well continued, the SIFT tracker worked better than the KLT
tracker. Because only 13 images were used for tracking, the
enough number of tracking points were remained in the SIFT
tracking. The reason why that the KLT tracker did not work is
that the KLT tracker can track only points whose coordinates
are close in the previous frame (they should not jump around),
and is feasible to noises, or changes in illumination.

4.4. Application to Panoramic Image Stitching

There is another interesting famous application of SIFT method,
panoramic image stitching [4]. We briefly demonstrate panoramic
image stitching using autostitch software provided by M. Brown
[3]. Fig. 14 (a) shows input images which are exteriors of the
KIM building at the University of Maryland. The (b) shows
the stitched result.

5. CONCLUSION

The Scale Invariant Feature Transform (SIFT) [10] and the
Harris corner detector [6] were implemented, furthermore, a
simple image matching method based on the Harris corner de-
tector was invented. The SIFT method is invariant to image
scale, rotation, and robust to change in 3D viewpoint, addition
of noise, and change in illumination. These properties, espe-
cially, the important advantage of SIFT features, scale invari-
ance, were verified by comparative experiments between the
Harris corner detector and the SIFT as an interest point de-
tection method, moreover, between image matching methods
based on the Harris corner detector and the SIFT. The result

showed the effectiveness of the scale invariant property which
the SIFT method has.

Furthermore, the SIFT image matching method was ex-
tended into a point tracking method. Experiments were per-
formed on both the SIFT based point tracker and KLT point
tracker and compared. There was no real advantage of SIFT
over KLT for hotel image sequences (Fig. 10). They are care-
fully taken pictures in a laboratory so that they have low levels
of noise, small illumination changes, and mild affine deforma-
tions and rotations. However KLT is sensitive to noise, large
amounts of clutter, or partially occluded objects. SIFT on
the other hand performs well in the midst of objects that are
occluded by clutter, or have significant affine deformations.
Comparative experiments were also operated for the castle
image sequences (Fig. 12 which were taken in the outside,
thus have high levels of noise, large illumination changes, and
high affine deformations and rotations. The results (Fig. 13)
showed the defect of the KLT tracker, and the advantage of
the SIFT tracker. Future efforts should be directed toward
applying SIFT to recognizing objects with large amounts of
clutter, noise and illumination changes.
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7. APPENDIX - LIST OF CODES

7.1. Harris Corner Detector

• harris.m - The Harris corner detector

• harrismatch.m - Image matching based on Harris corner
detector

• demo harris.m - demo of harris.m

7.2. KLT Tracker

• klt/* - KLT Tracker provided by Birchfield [2]

7.3. SIFT

• SIFT pyramid.m - The 1st step, scale-space construc-
tion, of SIFT

• SIFT keypoint.m - The 2nd step, keypoint localization

• SIFT orientation.m - The 3rd step, orientation assign-
ment

• SIFT descriptor.m - The 4th step, keypoint descriptor

• SIFT.m - The SIFT, uses above fours.



• SIFT cache.m - save SIFT results into file, and load at
the next time. This allows to use a software provided
by Lowe [11], too

• siftmatch.m - Image matching based on SIFT

• sifttracker.m - Point tracking based on SIFT

• siftDemoV4/* - Software provided by Lowe [11]

• demo SIFT pyramid.m - demo of SIFT pyramid.m

• demo SIFT keypoint.m - demo of SIFT keypoint.m

• demo SIFT orientation.m - demo of SIFT orientation.m

• demo SIFT descriptor.m - demo of SIFT descriptor.m

• demo SIFT.m - demo of SIFT.m

• demo sifttracker.m - demo of sifttraker.m

7.4. Utilities

• gaussian filter.m - The gaussian filter

• resizeImageFig.m - resize figure plotted

• imgread.m - read an image as an gray scale image

• appendimages.m - Merge an image next to another im-
age

• display keypoints.m - Display SIFT Keypoints, used
for demo.
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(a)

(b)

Fig. 5. The result of the first step of SIFT computation. Pyramids generated with 4 levels (or octaves) and the number of
intervals, s, is 2. (a) Gaussian Pyramid. The number of Gaussian functions in each level is s + 3 = 5. (b) DoG Pyramid. The
number of DoG function in each level is s + 2 = 4.



(a) (b) (c)

(d) (e)

Fig. 6. The result of the second (b-d) and the third (e) step of the SIFT computation. (a) Input Image (b) Detected DoG extrema
points (1294 points) (c) After removing low contrast extrema with threshold 0.03 (605 points) (d) After removing edge points
with curvature ratio r = 10.0 (328 points) (e) Orientation Assignment



(a)

(b)

(c) (d)

(e) (f)

Fig. 7. Comparison between Harris corner detection and SIFT as an interest point detector. (a) Input image. (b) Scale downed
input image (25%). (c) The Result of the Harris corner detection applied to (a). (d) The Result applied to scale downed image,
and resized. The average least distance error between results of (c) and (d) is 20.7919. (e) The Result of the SIFT after keypoint
detection step applied to (a). (f) The Result applied to scale downed image, and resized. The average least distance error
between results of (e) and (f) is 4.4997.



(a)

(b)

(c)

Fig. 8. Image Matching based on SIFT: Comparison with a ground truth (a) Input Images (b) Result of image matching
obtained by our implementation (c) Result of image matching obtained by Lowe’s software [11]



(a)

(b)

(c)

Fig. 9. Invariant Property Test (a) Translation invariant test for our Harris based method (b) Our Harris based method is feasible
(non-invariant) to scale change (c) SIFT is invariant to scale (correct corresponding will not create crossing lines)



(a) (b) (c)

Fig. 10. baseline Hotel image sequence (a) The 1st frame (b) The 50th frame (c) The 100th frame

(a) (b)

Fig. 11. Interest point tracking. The first frame picture is shown, and starting points are shown by star (yellow) points, tracking
results are shown by lines (green). (a) Result of the point tracking based on SIFT (18 points remained). (b) Result of KLT Point
Tracker (248 points remained). About 500 interest points were detected in each frame on both SIFT and KLT.

(a) (b) (c)

Fig. 12. baseline Castle image sequence, totally 13 frames. (a) The 1st frame (b) The 2nd frame (c) The 13th frame



(a) (b)

Fig. 13. Interest point tracking. The first frame picture is shown, and starting points are shown by star (yellow) points, tracking
results are shown by lines (green). (a) Result of the point tracking based on SIFT (83 points remained). (b) Result of KLT Point
Tracker (131 points remained). About 5000 interest points were detected in each frame on both SIFT and KLT.

(a)

(b)

Fig. 14. Panoramic Image Stitching (a) Input Images - KIM building at the University of Maryland (b) Result


