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Our final solution (RMSE=0.8712) consists of blending 107 individual results. Since 
many of these results are close variants, we first describe the main approaches behind 
them. Then, we will move to describing each individual result.   
 
The core components of the solution are published in our ICDM'2007 paper [1] (or, 
KDD-Cup’2007 paper [2]), and also in the earlier KDD'2007 paper [3].  We assume 
that the reader is familiar with these works and our terminology there. 
 
 
Neighborhood-based model (k-NN) 
 
A movie-oriented k-NN approach was thoroughly described in our KDD-Cup'2007 
paper [kNN]. We apply it as a post-processor for most other models. Interestingly, it 
was most effective when applied on residuals of RBMs [5], thereby driving the Quiz 
RMSE from 0.9093 to 0.8888.  
An earlier k-NN approach was described in the KDD'2007 paper ([3], Sec. 3) [Slow-
kNN]. It appears that this earlier approach can achieve slightly more accurate results 
than the newer one, at the expense of a significant increase in running time. 
Consequently, we dropped the older approach, though some results involving it 
survive within the final blend. 
We also tried more naïve k-NN models, where interpolation weights are based on 
pairwise similarities between movies (see [2], Sec. 2.2). Specifically, we based 
weights on corr2/(1-corr2) [Corr-kNN], or on mse-10 [MSE-kNN]. Here, corr is the 
Pearson correlation coefficient between the two respective movies, and mse is the 
mean squared distance between two movies (see definition of sij in Sec. 4.1 of [2]). 
We also tried taking the interpolation weights as the "support-based similarities", 
which will be defined shortly [Supp-kNN].  
Other variants that we tried for computing the interpolation coefficients are: (1) using 
our KDD-Cup’2007 [2] method on a binary user-movie matrix, which replaces every 
rating with “1”, and sets non-rated user-movie pairs to “0” [Bin-kNN]. (2) Taking 
results of factorization, and regressing the factors associated with the target movie on 
the factors associated with its neighbors. Then, the resulting regression coefficients 
are used as interpolation weights [Fctr-kNN]. 
As explained in our papers, we also tried user-oriented k-NN approaches. Either in a 
profound way (see: [1], Sec. 4.3; [3], Sec. 5)  [User-kNN], or by just taking weights as 
pairwise similarities among users [User-MSE-kNN], which is the user-oriented 
parallel of the aforementioned [MSE-kNN]. 
Prior to computing interpolation weights, one has to choose the set of neighbors. We 
find the most similar neighbors based on an appropriate similarity measure. In Sec. 
4.1 of [2] we mention a correlation-based similarity measure and a distance-based 
similarity measure. Another kind of similarity is based solely on who-rated-what (we 
refer to this as "support-based" or "binary-based" similarity). The full details are given 
in an Appendix 1. Interestingly, when post-processing residuals of factorization or 



RBMs, these seemingly inferior support-based similarities led to more accurate 
results. 
 
A factorization model 
 
The earlier factorization model that we employed is fully described in our KDD'2007 
paper ([3], Sec. 4). Later we moved to a more powerful model, which is described at 
Section 5.1 of [1]. The essence of these models is alternating between computing all 
movie factors and all user factors, by optimally solving regularized least squares 
problems; also known as alternating least squares. The KDD'2007 paper [3] 
suggested computing each factor separately while performing simple shrinkage 
[IncFctr]. The ICDM'2007 paper [1] suggested computing all factors associated with a 
single user/movie simultaneously, while using Ridge regression [SimuFctr]. An 
additional accuracy boost was achieved when we required all factors to be non-
negative [NNMF], by employing a non-negative least squares solver. Another 
alternative that we tried is replacing the Ridge regression (L2-norm penalty) by Lasso 
regression (L1-norm penalty) [LassoNNMF]. In general, the Lasso regularization was 
far less effective, but somewhat contributed to our overall blend. 
 
All factorization models significantly benefit from recomputing user-factors in a 
neighborhood-aware fashion, in the spirit described in our KDD'2007 paper ([3], Sec. 
4.4), modified according to the actually employed model. In this process, we adapt the 
computed user factor to the given query, by weighting all related ratings by movie-
movie similarities. Here, choosing the most effective movie-movie similarities 
involves more art than science. Our recommended choice is taking sij=MSE(i,j)-6, 
where MSE(i,j) is the mean squared distance between ratings of movie i and those of 
movie j [MseSim]. Other approaches for the movie-movie similarities that were used 
are: (1) sij=corr(i,j)2/(1-corr(i,j)2), where corr(i,j) is the Pearson correlation coefficient 
[CorrSim]. (2) Compute all similarities simultaneously as we compute interpolation 
weights in the KDD-Cup'2007 paper ([2], Eq. (13)) [SimuSim]. (3) Basing similarities 
on the inverse of the edit distance of movie titles, accounting also for gap of release 
year [EditSim]; see Appendix 2. (4) Support-based similarities, which were 
mentioned earlier [SuppSim]; see Appendix 1. 
In addition, no matter how similarities are computed, we also introduce a "date factor" 
into them. That is, when measuring the similarity between two ratings, we also 
account for the date gap between them. More specifically, if movie i was rated x days 
later than movie j, we multiply their similarity (sij) by exp(-x/600). The denominator 
600 (days) was determined by cross validation, and reflects the fact that after two 
years, similarity decays by approximately a factor of 3. 
 
Regularization based on a Gaussian prior: 
While Ridge-regression was proved very effective when deriving factors, it offers a 
quite limited model by assuming that all factors belong to a normal distribution with 
zero mean, and a uniform diagonal covariance matrix. A richer model, will not 
impose these restrictions, but assume a general normal distribution for the factors 
[GaussFctr]; see, e.g., Zhang and J. Koren [6]. In practice, we have found a rich 
Gaussian prior being very effective when computing user factors, but less so when 
dealing with movie factors. Consequently, we mainly apply it on the users’ side. 
 
 



Restricted Boltzmann Machines 
 
Restricted Boltzmann Machines (RBM) for collaborative filtering were recently 
described by one of the leading teams in this challenge [5]. We implemented their 
idea, and could verify most claims of the authors. (We used almost the same 
parameter setting as suggested in [5], except doubling the learning rate to 0.02.) We 
have found that RBMs lead to competitive results in terms of accuracy, with a 
relatively low sensitivity to parameter setting. While the basic approach is fully 
detailed in the paper, one modification that we tried is replacing the multinomial 
visible units with Gaussian ones. This way the RBMs can post-process the residuals 
of global effects or any other method. 
 
 
Asymmetric factor models  
 
The factorization model offered a symmetric view of users and movies, by directly 
parameterizing each of them. However, this practice involves a clear redundancy, as 
user parameters ("factors") are dependent on the movie-parameters, and vice-versa. 
An interesting family of models differs from the factorization model by 
parameterizing only the movies, which have higher support in the training data. 
Consequently, no explicit user factors are computed, but a user factor is implicitly 
derived by aggregating the movie factors associated with the movies liked by that user 
(taking the view that a user is "a bag of movies"). 
This aggregate is often a plain sum of the respective movie factors, transformed by a 
function that accounts for the deviations in the number of summed values. The 
approach was first publicly mentioned by Paterek (Section 3.2 of [4], 
[NSVD1,NSVD2]). Paterek suggested normalizing this sum by the square root of the 
support of the respective user. Initially, we followed this approach. Later, we found 
two more efficient related models that we outline in the followings. 
 
A weighted scores model: 
Let n be the number of movies, m the number of users, and k the number of factors. 
Let us denote by g the number of different scores (g=5 for the Netflix data). 
We estimate rui, rating by user u of movie i, as follows: 
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Here, the constant score(u,j) is the score given by user u to movie j (an integer 
between 1 to g). Whenever this score is unknown, but we know that the rating exists 
(e.g., (u,j) belongs to the Qualifying set), we set score(u,j)=0. 

( )xσ  is the Sigmoid function, defined as: 1( )
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The following parameters should be learnt from the data: 
(1) Two sets of "movie factors": an nxk matrix P={pif}, and an nxk matrix Q={qif}.  
(2) A set of k intercepts - the bf's.   
(3) The g+1 weights: w0,w1,...,wg. 
 
All these 2kn+k+g+1 parameters are learnt by gradient descent that minimizes the 
related cost function: 
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Optimization process should be regularized by penalizing the magnitudes of the learnt 
parameters [SIGMOID1] (learning rate=0.002, regularization=0.01). 
One can use a single set of movie factors, by equating the matrices P and Q 
[SIGMOID2] (learning rate=0.001, regularization=0.01). 
Typically, we apply this method to residuals of global effects, so the above rui would 
symbolize a residual, rather than a raw score. 
 
Weighting with residuals: 
Let us denote by resui the residual of the rating by user u of movie i after removing 
global effects (one can alternatively just use double centering, which will lead to 
somewhat inferior results). 
We estimate resui, the residual of the rating by user u of movie i, as follows: 
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The following parameters should be learnt from the data: 
(1) Two sets of "movie factors": an nxk matrix P={pif}, and an nxk matrix Q={qif}.  
(2) A set of k intercepts - the bf's.   
  
All these 2kn+k parameters are learnt by gradient descent that minimizes the related 
quadratic error cost function. Optimization process should be regularized by 
penalizing the magnitudes of the learnt parameters [SIGMOID3] (learning rate=0.001, 
regularization=0.02). 
The astute reader will find distinct relations between this residual-based model and 
RBMs with Gaussian visible units. 
 
 
Regression models 
 
Regression can be performed in two symmetric ways: 
1. A user-centric approach: The sample is all movies rated by a specific user. The 

response variable is rating of a movie by this user. The predictor variables are 
different attributes associated with the movies. 

2. A movie-centric approach: The sample is all users that rated a specific movie. The 
response variable is rating of the movie by a user. The predictor variables are 
different attributes associated with the users. 

 
The central issue is how to create predictor variables. A few approaches were 
beneficial to us. The relatively low number of movies facilitates building movie-based 
predictor variables by concentrating on movie-movie relationships, including: 
 



1. Estimating the movie-movie covariance matrix, and then taking its top k 
eigenvectors as the predictor variables. This is akin to Principal Components 
Analysis [PCA]. 

2. Embedding all movies in a k-D Euclidean space, by solving a multidimensional 
scaling (MDS) problem, based on minimizing the stress energy by majorization. 
Typical values of k lie between 40 and 100 [STRESS].  

3. Build a user-movie binary matrix, where an entry value is "1" iff the 
corresponding user rated the corresponding movie. Interestingly, this matrix 
contains no missing value, so we can directly extract its SVD vectors and use 
them as predictor variables [BIN-SVD]. In some variants we considered all ratings 
smaller than 3 as zeros [BIN-SVD3]. When working with these binary-based 
factors, we suggest normalizing the vector of factors associated with each movie, 
to offset for movie popularity. 

 
These movie-based predictors were used within a user-centric regression approach. In 
order to use a movie-centric regression, we need to derive user-based predictors, 
which are more challenging due to the huge number of users in the dataset. To 
overcome this, we first derive the movie-based predictors as above, and then infer 
from them the user-based predictors in one of the following two methods: 
1. Regress user-based predictors from the movie-based predictors using a user-

centric regression (within the binary representation). This way, [BIN-SVD] and 
[BIN-SVD3] become [BIN-SVD-USER] and [BIN-SVD3-USER], respectively. 
Once again, we suggest normalizing the vectors of factors associated with each 
user. 

2. A barycentric assignment: A user predictor is taken as a weighted average of the 
movie predictors, for movies rated by this user. Here, we used those weights 
found in the "weighted scores model" mentioned above. This way, [PCA] and 
[STRESS] become [PCA-USER] and [STRESS-USER], respectively. 

 
Unless stated otherwise, we apply the regression models on residuals of global effects. 
 
Combining multiple results 
 
Predictive accuracy is substantially improved when blending multiple predictors. Our 
experience is that most efforts should be concentrated in deriving substantially 
different approaches, rather than refining a single technique. Consequently, our 
solution is an ensemble of many methods.   
We approach blending as a linear regression problem. We ought to regress a target 
ratings vector on multiple predictors. The target rating vector can be the true ratings 
of the Probe set, and the predictors are the respective estimates for the Probe set by an 
ensemble of methods. The solution is the coefficients, or the weights, that should be 
given to each of the predictors in the ensemble. 
An extension would be to slice and dice the target vector based on some criteria. This 
allows overweighting certain methods on some user-movie pairs, while overweighting 
different methods on other user-movie pairs. The criterion we used is the support of 
the user-movie pair, which we define as the minimum between the support associated 
with the user and the support associated with the movie. (A support of a user refers to 
the number of ratings made by this user. Similarly, a support of a movie is the number 
of ratings given to it.) Consequently, we typically partition the Probe (or Qualifying) 
sets into 15 bins, based on the support level. Then, we solve a different regression 



problem within each bin, thereby obtaining unique combination coefficients for each 
bin. For example, we have found that RBMs should be overweighted on low support 
pairs, while factorization should be overweighted on high support pairs. 
Since the ratings of the Qualifying pairs are unknown, we cannot simply regress them. 
One can "borrow" the combination coefficients learnt for the Probe set. Accuracy can 
be improved by partitioning the Probe set into several disjoint sets. Then, learn 
combination coefficients for each portion of the Probe set separately, while including 
the rest of the Probe set within the training data. This better reflects the situation with 
the Qualifying set, where all Probe set is included within the training data. Finally, for 
the Qualifying coefficients, one can average the coefficients derived for the multiple 
portions of the Probe set. Alternatively, sufficient statistics that enable regressing 
directly the Quiz set can be obtained with the aid of the RMSEs reported for each 
predictor. 
 
Our predictors 
 
Below, we list all 107 results that were blended to deliver RMSE=0.8712, with their 
weights within the ensemble. The results are grouped based on the type of method 
that produced them. 
We strongly believe that the success of an ensemble approach depends on the ability 
of its various predictors to expose different, complementing aspects of the data. 
Experience shows that this is very different from optimizing the accuracy of each 
individual predictor. Quite frequently we have found that the more accurate predictors 
are less useful within the full blend. Therefore, the RMSEs listed below should be 
considered just as a reference of our experience, and we would not encourage the 
readers to repeat the same RMSEs, but rather to concentrate on achieving the “spirit” 
of the listed methods. 
Please note that before submitting a result, we translate it so its mean will coincide 
with the mean of the Quiz set, which is known to be 3.67441.  Also, before mixing the 
results, each of them is centered (to have zero mean). Later, the final blend is 
translated back so its mean coincides with the Quiz mean.  
 
Asymmetric factor models 
 
1. rmse=0.9194, weight=-0.0382    

SIGMOID3 with k=30 
2. rmse=0. 9286, weight=-0.0481   

SIGMOID2 with k=40 
3. rmse=0. 9383, weight=0.0514  

NSVD2 with k=40 
4. rmse=0. 9245, weight=-0.0393   

SIGMOID1 with k=40 
5. rmse=0. 9114, weight=0.0574   

40 neighbors kNN on residuals of NSVD1 with k=200. 
6. rmse=0.9236., weight=0.0550  

NSVD1 with k=200 
7. rmse=0.9259, weight=0.0832    

NSVD1 with k=150 
                                                 
1 See Winsteps post at http://www.netflixprize.com//community/viewtopic.php?id=503 



8. rmse=0. 9134, weight=0.0660    
30 neighbors kNN on residuals of non-regularized NSVD1 with k=200 

9. rmse=0. 9260, weight=-0.0484   
NSVD1 with k=40 

 
Regression models  
 
10. rmse=0.9269, weight=-0.0370  

PCA-USER, based on top 40 PCs 
11. rmse=0.9302, weight=-0.0499  

STRESS with 40 coordinates per movie 
12. rmse=0.9335, weight=-0.1145    

BIN-SVD-USER based on 256 vectors 
13. rmse=0. 8996, weight=0.1350  

50 neighbors kNN on residuals of BIN-SVD-USER (256 vectors) 
14. rmse=0.9290, weight=-0.0626  

BIN-SVD3-USER based on 65 vectors 
15. rmse=0.9394, weight=0.0311    

BIN-SVD3-USER based on 256 vectors 
16. rmse=0.9241, weight=-0.0692    

PCA based on top 40 PCs  
17. rmse=0.9212, weight=-0.0639  

PCA based on top 50 PCs  
18. rmse=0. 9451, weight=-0.0484    

BIN-SVD-USER based on 60 vectors  
19. rmse=0. 9610, weight=0.0401    

BIN-SVD-USER based on 100 vectors, but here we regressed residuals of double 
centering rather than the usual residuals of global effects 

20. rmse=0. 9414, weight=0.0424    
BIN-SVD3-USER based on 40 vectors 

21. rmse=0. 9067, weight=0.0689   
20 neighbors Corr-kNN on residuals of BIN-SVD-USER (60 vectors) 

22. rmse=0. 9020, weight=0.0556    
50 neighbors kNN on residuals of BIN-SVD-USER (60 vectors) 

23. rmse=0.9030, weight=-0.0491   
50 neighbors kNN on residuals of BIN-SVD-USER (100 vectors) 

24. rmse=0. 9223, weight=0.0763   
BIN-SVD3 based on 40 vectors 
 

Restricted Boltzmann Machines with Gaussian visible units  
The default is to apply the machine in a "conditional RBM" mode on data normalized 
by applying all global effects that we describe in the KDD-Cup'2007 paper ([2], Sec. 
3), except the last four, which interact movies/users with popularity. 
 
25. rmse=0.9052, weight=0.0704    

800 hidden units 
26. rmse=0.9044, weight=0.0739  

400 hidden units 
27. rmse=0.9056, weight=0.0771    

256 hidden units 



28. rmse=0.9068, weight=0.0433  
100 hidden units 

29. rmse=0.9121, weight=-0.0268  
40 hidden units 

30. rmse=0.9429, weight=0.0220    
100 hidden units, applied on raw data (no normalization/centering) 

31. rmse=0.9489, weight=-0.0295    
50 hidden units, applied on raw data (no normalization/centering) 

32. rmse=0.9267, weight=-0.0726    
100 hidden units, without conditional RBM, on residuals of full global effects 

 
Restricted Boltzmann Machines 
We use conditional RBMs as described in [5]. 
33. rmse=0.9029, weight=0.0785    

256-unit RBM 
34. rmse=0.9029, weight=-0.0700   

200-unit RBM 
35. rmse=0.9093, weight=-0.0977    

100-unit RBM 
36. rmse=0.9206, weight=-0.0239    

40-unit RBM 
Using RBM as a pre-processor: 
37. rmse=0.8960, weight=0.0577   

Postprocessing residuals of 100-unit RBM with factorization 
38. rmse=0.8905, weight=0.1839    

50 neighbors kNN on 200-unit RBM 
39. rmse=0.8904, weight=0.0576    

40 neighbors kNN on 150-unit RBM 
40. rmse=0.8888, weight=0.1387     

50 neighbors kNN on 100-unit RBM  
 
Matrix factorization 
41. rmse=0.9135, weight=-0.0302  

IncFctr (40 factors) 
42. rmse=0. 8992, weight=0.0436    

IncFctr (80 factors), adaptive user factors by [MseSim] 
43. rmse=0.9042, weight=0.0339    

IncFctr (40 factors), adaptive user factors by [SuppSim] 
44. rmse=0.9083, weight=-0.0389  

IncFctr (40 factors), adaptive user by [EditSim]  
45. rmse=0. 9002, weight=-0.0907    

SimuFctr (40 factors), adaptive user factors by [MseSim] 
46. rmse=0. 9050, weight=0.1178    

SimuFctr (40 factors), adaptive user factors with sij=MSE(i,j)-12 
47. rmse=0. 9035, weight=-0.0546    

MSE-kNN  applied to residuals of SimuFctr (60 factors) 
48. rmse=0. 9515, weight=-0.0146   

NNMF (5 factors) 
49. rmse=0.9347, weight=-0.0227   

NNMF (20 factors), training set excluded Probe set 



50. rmse=0.9084, weight=-0.0342   
NNMF (20 factors), adaptive user factors by [SimuSim] 

51. rmse=0. 9073, weight=-0.0353  
NNMF (20 factors), adaptive user factors by [EditSim] 

52. rmse=0.9094, weight=-0.1412  
NNMF (40 factors) 

53. rmse=0.9018, weight=0.2535  
NNMF (40 factors, adaptive user factors by [EditSim] 

54. rmse=0.8986, weight=-0.1093  
NNMF (40 factors, adaptive user factors by [MseSim] 

55. rmse=0.9026, weight=-0.1159  
Cor-kNN on residuals of NNMF (60 factors) 

56. rmse=0.8963, weight=-0.1032  
NNMF (90 factors), adaptive user factors by [MseSim] 

57. rmse=0.8986, weight=0.0714   
NNMF (90 factors), adaptive user factors by naive [SuppSim] (where xij=ni

.nj/n) 
58. rmse=0.9807, weight=0.0228  

NNMF (90 factors), adaptive user factors by sij=MSE(i,j)-12 
59. rmse=0.8970, weight=0.1028  

NNMF (90 factors), adaptive user factors by [SuppSim] 
60. rmse=0.8978, weight=0.1035  

NNMF (90 factors), adaptive user factors by [CorrSim] 
61. rmse=0.8985, weight=-0.1121   

NNMF (90 factors), adaptive user factors by [EditSim] 
62. rmse=1.1561, weight=-0.0111   

NNMF (128 factors), adaptive user factors by [MseSim], but adaptive user factors 
where computed with Lasso regularization, rather than Ridge regularization  

63. rmse=0.9039, weight=-0.0928  
NNMF (128 factors) 

64. rmse=0.8955, weight=0.1060   
NNMF (128 factors), adaptive user factors by [MseSim] 

65. rmse=0.9426, weight=-0.0564  
LassoNNMF (30 factors) 

66. rmse=0.9327, weight=0.0445  
LassoNNMF (30 factors), adaptive user factors by [SuppSim] 

67. rmse=0.9016, weight=0.0543  
Start with NNMF 40 factors, then alternate between GaussFctr on user side and 
SimuFctr on movie side 

68. rmse=0.8998, weight=0.0958  
Start with SimuFctr 60 factors, then a single GaussFctr iterations on movie side 
followed by many GaussFctr iterations on user side 

69. rmse=0.9070, weight=-0.0954  
Start with NNMF 90 factors, followed by many GaussFctr iterations on user side 

70. rmse=0.9098, weight=0.0720  
Start with SimuFctr 40 factors, followed by many GaussFctr iterations on user 
side 

 
 
 
 



 
 
 
Neighborhood-based model (k-NN) 
Some k-NN results were embedded in the previous sections. Here, we report the rest. 
 
71. rmse=0. 8953, weight=0.0932 

30 neighbors kNN on residuals of NNMF (180 factors) 
72. rmse=0. 9105, weight=-0.1386  

50 neighbors kNN on residuals of all global effects except the last 4 
73. rmse=0. 9082, weight=-0.0456  

50 neighbors kNN on residuals of full global effects  
74. rmse=0.9496, weight=-0.0272  

25 neighbors kNN on raw scores (no normalization) 
75. rmse=0.8979, weight=-0.1099  

60 neighbors kNN on residuals of NNMF (60 factors) 
76. rmse=0. 9247, weight=0.0525  

50 neighbors Bin-kNN on residuals of full global effects, neighbor selection by 
[SuppSim]  

77. rmse=0.9215, weight=0.0783  
50 neighbors Bin-kNN on residuals of full global effects, neighbor selection by 
[CorrSim]  

78. rmse=0.9309, weight=-0.0985  
50 neighbors Fctr-kNN on residuals of full global effects. Weights based on 10 
factors computed on binary matrix 

79. rmse=0.9097, weight=0.0681  
25 neighbors Fctr-kNN on residuals of NNMF (60 factors). Weights based on 10 
NNMF factors 

80. rmse=0.9290, weight=-0.0451  
50 neighbors Fctr-kNN on raw scores. Weights based on 10 factors computed on 
binary matrix 

81. rmse=0.9097, weight=0.0408  
100 neighbors User-kNN on residuals of NNMF (60 factors) 

82. rmse=0. 9248, weight=0.0333  
30 neighbors User-MSE-kNN on residuals of full global effects 

83. rmse=0.9057, weight=0.0550  
50 neighbors Slow-kNN on residuals of full global effects 

84. rmse=0.9170, weight=-0.0648  
Corr-kNN on residuals of full global effects  

85. rmse=0.9237, weight=-0.0561  
MSE-kNN on residuals of full global effects 

86. rmse=0.9110, weight=0.0439  
Supp-kNN on residuals of IncFctr (80 factors) 

87. rmse=0.9440, weight=-0.0422  
Supp-kNN on residuals of full global effects. Here, we used the more naïve 
similarities where xij=ni*nj/n 

88. rmse=0.9335, weight=0.0402  
Supp-kNN on residuals of full global effects  

 
 



 
 
Combinations: 
Each of the following results is based on mixing two individual results. Before mixing 
we split the user-movie pairs into 15 bins based on their support. For each bin we 
compute unique combination coefficients based on regression involving the Probe set.  
 
89. rmse=0.8976, weight=0.0552  

Combination of #67 with #35  
90. rmse=0.8876, weight=0.1471  

Combination of #36 with <NNMF (60 factors) adaptive user factors by MseSim> 
91. rmse=0.8977, weight=0.1053 

Combination of #81 with #75  
92. rmse=0.8909, weight=0.0588  

Combination of #45 with <User-kNN on all global effects but the last 4> 
93. rmse=0.9003, weight=0.0757  

Combination of #50 with <NNMF (20 factors, adaptive user factors by 
[MseSim]> 

94. rmse=0.8906, weight=-0.0634  
Combination of #45 with #73 

95. rmse=0.9024, weight=0.0569 
Combination of #73 with <50 neighbors Slow-kNN on residuals of all global 
effects except last 4> 

96. rmse=0.9078, weight=0.0372  
Combination of #84 with <User-kNN on raw scores> 

97. rmse=0.9046, weight=0.0508  
Combination of #74 with #66 

 
Imputation of Qualifying predictions: 
We had predictions for the Qualifying set with RMSE of 0.8836. Then, we inserted 
the Qualifying set into the training set, while setting unknown scores to the RMSE= 
0.8836 predictions. We tried some of our methods on this enhanced training set:    
 
98.  rmse=0.8952, weight=0.0937  

 MSE-kNN on residuals of SimuFctr (20 factors) 
99. rmse=0.9100, weight=-0.0314  

IncFctr (40 factors)  
100. rmse=0.9039, weight=0.0735  

 IncFctr (40 factors), adaptive user factors by [SuppSim] 
101. rmse=0.9056, weight=-0.1866  

 SimuFctr (20 factors), Probe set is excluded from training set 
102. rmse=0.9093, weight=-0.0769  

IncFctr (40 factors), adaptive user factors by [SuppSim]. Probe set is excluded 
from training set 

103. rmse=0.9005, weight=0.0503  
 MSE-kNN on residuals of IncFctr (40 factors) 

104. rmse=0.8975, weight=0.1155 
A combination (by 15 support-base bins) of  #99 with <SimuFctr (20 factors)>  

 
 



 
Specials: 
 
105. rmse=1.1263, weight=-0.1345  

Take binary matrix (rated=1, not-rated=0), and estimate it by 40 factors.  Using 
this factors, construct predictions for the Probe and Qualifying set and center the 
predictions for each set. Consequently, using the probe set we learn how to regress 
centered true ratings on these predictions, and do the same on the Qualifying set.  

106. rmse=0.9162, weight=-0.0702  
This method fits a series of models, each using the residuals from the previous 
model. There were three stages of models. First, effects were fit for rating date, 
movie, and user. Second, interactions were fit between users and 11 movie factors. 
The first factor was movie effect estimated above, while the last ten factors were 
based on approximate principal components of the movies. The movie and user 
effects and all 11 interactions were shrunk using a form of empirical Bayes. Third, 
residuals of movies in the qualifying data set were predicted using linear 
combinations of residuals of correlation–based nearest neighbors. Predictions for 
the qualifying data equal the sums of the various models. Models from all three 
stages were fit using training data only (without including the Probe set).  

107. rmse=0.9134, weight=0.1051  
This method is similar to #106 with the following exceptions. The main effect for 
date of rating was excluded. After fitting main effects for movie and user, eight 
interactions were included for movie and user support, movie and user effects, and 
four versions of time (see [2], Sec. 3). For these eight interactions, the linear fits 
were replaced by quadratic fits, and empirical Bayes shrinkage was performed on 
both the linear and quadratic terms (after make them orthogonal to each other) 
analogously to the previous method (#106). Models for all three stages were fit 
using the training data plus a random 90 percent sample of the probe data. 

 
How many results are really needed? 
 
For completeness, we listed all 107 results that were blended in our RMSE=0.8712 
submission. It is important to note that the major reason for using all these results was 
convenience, as we anyway accumulated them during the year. This is the nature of 
an ongoing competition. However, in hindsight, we would probably drop many of 
these results, and recompute some in a different way. We believe that far fewer results 
are really necessary. For example, based on just three results one can breach the 
RMSE=0.8800 barrier: A blend of #8, #38, and #92, with weights 0.1893, 0.4225, and 
0.4441, respectively, would already achieve a solution with an RMSE of 0.8793. 
Similarly, combining #8, #38, and #64 yields RMSE=0.8798. Notice that these 
combinations touch the main approaches (k-NN, factorization, RBMs and asymmetric 
factor models). In addition, we have found that at most 11 results suffice for achieving 
a blend with above 8% improvement over Cinematch score. 
 



Appendix 1 - Estimating similarity scores from binary data 
 
Similarity scores among items are a key component within many collaborative 
filtering techniques.   Here, we suggest a similarity measure for two items - i and j - 
based only on their "binary rating history". That is the identity of the users that rated 
them, rather than the actual ratings that they got. We have found, quite surprisingly, 
that in some occasions, this similarity score was more effective than a score which is 
based on the ratings themselves. 

An obvious input to this score is nij, the number of users who viewed (or, "rated") 
both items.   

However, nij = 5 means very different things depending on whether ni and nj, the 
number of viewings of each item, are on the order of 10 each or 200 each.  
Consequently, some rescaling seems necessary.  One option is to use nij /xij, where xij 
= ninj /n and n is the total number of ratings.  We believe that there are better choices 
for xij. 

Consider two movies that have each been rated 10 times, but differ as follows.  Movie 
j was always rated by someone who had rated only five other movies, while Movie k 
was always rated by active viewers who had each rated 100 other movies.  That is, 
Movie j is part of 50 pairs of movies rated by the same user (including multiple 
occurrences), while Movie k is part of 1000 pairs.  If nij = 3, that is much stronger 
evidence of similarity than if nik = 3.   

Let Ni equal the number of pairs involving Movie i; that is, ∑
≠

=
ij

iji nN , and let 

∑=
i

ji NN  equal twice the total number of pairs.  We propose 

   xij = NiNj/(N-Ni) + NiNj/(N-Ni) . 

This should approximately standardize nij in the sense that  

   ∑∑ ≈
j

ij
j

ij xn    for all i.   



Appendix 2 – Deriving Similarity Scores from Movie Titles [EditSim] 
 
Some similarity information between movies can be captured from the movie titles 
and release year provided in the Netflix Prize data. The resulting similarity values 
were proved useful within the neighborhood-aware factorization. However, we doubt 
their utility to the overall blend. For completeness, we list below the exact formula 
that we used for deriving these similarity weights. 
The following measure is based on our prior experience with disambiguating a user's 
input. We have found that a combination of plain edit distance, with an emphasis on 
full words and prefixes could better uncover the user's intention.  
Let us concentrate on two movies, with titles ttl1 and ttl2, and release years year1 and 
year2, respectively. We use the following notation: 
• |str| is the length of string str. 
• editD(ttl1,ttl2) is the edit distance between ttl1 and ttl2. 
• jointPrefix(ttl1,ttl2) is the longest prefix of ttl1 and ttl2. 
• prefixBonus(ttl1,ttl2) is min(5, |jointPrefix(ttl1,ttl2)|/3). 
• #overlaps(ttl1,ttl2) is the number of full words appearing in both ttl1 and ttl2. 

 
Our adjusted edit distance is defined as: 
 

editD( 1, 2)
max(| 1|,| 2 |) prefixBonus( 1, 2) 

ttl ttldist
ttl ttl ttl ttl

=
⋅

 

 
And the derived similarity score between the two movies is: 
 

( )( ) 
0.3#overlaps( 1, 2)0.2 | 1 2 | 0.7 ttl ttlsim year year dist
−

= ⋅ − + ⋅  
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