
The BellKor solution to the Netflix Prize

Robert M. Bell, Yehuda Koren and Chris Volinsky
AT&T Labs – Research

BellKor@research.att.com

Our final solution (RMSE=0.8712) consists of blending 107 individual results. Since
many of these results are close variants, we first describe the main approaches behind
them. Then, we will move to describing each individual result.

The core components of the solution are published in our ICDM'2007 paper [1] (or,
KDD-Cup’2007 paper [2]), and also in the earlier KDD'2007 paper [3]. We assume
that the reader is familiar with these works and our terminology there.

Neighborhood-based model (k-NN)

A movie-oriented k-NN approach was thoroughly described in our KDD-Cup'2007
paper [kNN]. We apply it as a post-processor for most other models. Interestingly, it
was most effective when applied on residuals of RBMs [5], thereby driving the Quiz
RMSE from 0.9093 to 0.8888.
An earlier k-NN approach was described in the KDD'2007 paper ([3], Sec. 3) [Slow-
kNN]. It appears that this earlier approach can achieve slightly more accurate results
than the newer one, at the expense of a significant increase in running time.
Consequently, we dropped the older approach, though some results involving it
survive within the final blend.
We also tried more naïve k-NN models, where interpolation weights are based on
pairwise similarities between movies (see [2], Sec. 2.2). Specifically, we based
weights on corr2/(1-corr2) [Corr-kNN], or on mse-10 [MSE-kNN]. Here, corr is the
Pearson correlation coefficient between the two respective movies, and mse is the
mean squared distance between two movies (see definition of sij in Sec. 4.1 of [2]).
We also tried taking the interpolation weights as the "support-based similarities",
which will be defined shortly [Supp-kNN].
Other variants that we tried for computing the interpolation coefficients are: (1) using
our KDD-Cup’2007 [2] method on a binary user-movie matrix, which replaces every
rating with “1”, and sets non-rated user-movie pairs to “0” [Bin-kNN]. (2) Taking
results of factorization, and regressing the factors associated with the target movie on
the factors associated with its neighbors. Then, the resulting regression coefficients
are used as interpolation weights [Fctr-kNN].
As explained in our papers, we also tried user-oriented k-NN approaches. Either in a
profound way (see: [1], Sec. 4.3; [3], Sec. 5) [User-kNN], or by just taking weights as
pairwise similarities among users [User-MSE-kNN], which is the user-oriented
parallel of the aforementioned [MSE-kNN].
Prior to computing interpolation weights, one has to choose the set of neighbors. We
find the most similar neighbors based on an appropriate similarity measure. In Sec.
4.1 of [2] we mention a correlation-based similarity measure and a distance-based
similarity measure. Another kind of similarity is based solely on who-rated-what (we
refer to this as "support-based" or "binary-based" similarity). The full details are given
in an Appendix 1. Interestingly, when post-processing residuals of factorization or

RBMs, these seemingly inferior support-based similarities led to more accurate
results.

A factorization model

The earlier factorization model that we employed is fully described in our KDD'2007
paper ([3], Sec. 4). Later we moved to a more powerful model, which is described at
Section 5.1 of [1]. The essence of these models is alternating between computing all
movie factors and all user factors, by optimally solving regularized least squares
problems; also known as alternating least squares. The KDD'2007 paper [3]
suggested computing each factor separately while performing simple shrinkage
[IncFctr]. The ICDM'2007 paper [1] suggested computing all factors associated with a
single user/movie simultaneously, while using Ridge regression [SimuFctr]. An
additional accuracy boost was achieved when we required all factors to be non-
negative [NNMF], by employing a non-negative least squares solver. Another
alternative that we tried is replacing the Ridge regression (L2-norm penalty) by Lasso
regression (L1-norm penalty) [LassoNNMF]. In general, the Lasso regularization was
far less effective, but somewhat contributed to our overall blend.

All factorization models significantly benefit from recomputing user-factors in a
neighborhood-aware fashion, in the spirit described in our KDD'2007 paper ([3], Sec.
4.4), modified according to the actually employed model. In this process, we adapt the
computed user factor to the given query, by weighting all related ratings by movie-
movie similarities. Here, choosing the most effective movie-movie similarities
involves more art than science. Our recommended choice is taking sij=MSE(i,j)-6,
where MSE(i,j) is the mean squared distance between ratings of movie i and those of
movie j [MseSim]. Other approaches for the movie-movie similarities that were used
are: (1) sij=corr(i,j)2/(1-corr(i,j)2), where corr(i,j) is the Pearson correlation coefficient
[CorrSim]. (2) Compute all similarities simultaneously as we compute interpolation
weights in the KDD-Cup'2007 paper ([2], Eq. (13)) [SimuSim]. (3) Basing similarities
on the inverse of the edit distance of movie titles, accounting also for gap of release
year [EditSim]; see Appendix 2. (4) Support-based similarities, which were
mentioned earlier [SuppSim]; see Appendix 1.
In addition, no matter how similarities are computed, we also introduce a "date factor"
into them. That is, when measuring the similarity between two ratings, we also
account for the date gap between them. More specifically, if movie i was rated x days
later than movie j, we multiply their similarity (sij) by exp(-x/600). The denominator
600 (days) was determined by cross validation, and reflects the fact that after two
years, similarity decays by approximately a factor of 3.

Regularization based on a Gaussian prior:
While Ridge-regression was proved very effective when deriving factors, it offers a
quite limited model by assuming that all factors belong to a normal distribution with
zero mean, and a uniform diagonal covariance matrix. A richer model, will not
impose these restrictions, but assume a general normal distribution for the factors
[GaussFctr]; see, e.g., Zhang and J. Koren [6]. In practice, we have found a rich
Gaussian prior being very effective when computing user factors, but less so when
dealing with movie factors. Consequently, we mainly apply it on the users’ side.

Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBM) for collaborative filtering were recently
described by one of the leading teams in this challenge [5]. We implemented their
idea, and could verify most claims of the authors. (We used almost the same
parameter setting as suggested in [5], except doubling the learning rate to 0.02.) We
have found that RBMs lead to competitive results in terms of accuracy, with a
relatively low sensitivity to parameter setting. While the basic approach is fully
detailed in the paper, one modification that we tried is replacing the multinomial
visible units with Gaussian ones. This way the RBMs can post-process the residuals
of global effects or any other method.

Asymmetric factor models

The factorization model offered a symmetric view of users and movies, by directly
parameterizing each of them. However, this practice involves a clear redundancy, as
user parameters ("factors") are dependent on the movie-parameters, and vice-versa.
An interesting family of models differs from the factorization model by
parameterizing only the movies, which have higher support in the training data.
Consequently, no explicit user factors are computed, but a user factor is implicitly
derived by aggregating the movie factors associated with the movies liked by that user
(taking the view that a user is "a bag of movies").
This aggregate is often a plain sum of the respective movie factors, transformed by a
function that accounts for the deviations in the number of summed values. The
approach was first publicly mentioned by Paterek (Section 3.2 of [4],
[NSVD1,NSVD2]). Paterek suggested normalizing this sum by the square root of the
support of the respective user. Initially, we followed this approach. Later, we found
two more efficient related models that we outline in the followings.

A weighted scores model:
Let n be the number of movies, m the number of users, and k the number of factors.
Let us denote by g the number of different scores (g=5 for the Netflix data).
We estimate rui, rating by user u of movie i, as follows:

(,)
1

k

ui if f score u j jf
f j rated by u

r p b w qσ
=

⎛ ⎞⎛ ⎞
= ⋅ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑

Here, the constant score(u,j) is the score given by user u to movie j (an integer
between 1 to g). Whenever this score is unknown, but we know that the rating exists
(e.g., (u,j) belongs to the Qualifying set), we set score(u,j)=0.

()xσ is the Sigmoid function, defined as: 1()
1 xx

e
σ −=

+
 .

The following parameters should be learnt from the data:
(1) Two sets of "movie factors": an nxk matrix P={pif}, and an nxk matrix Q={qif}.
(2) A set of k intercepts - the bf's.
(3) The g+1 weights: w0,w1,...,wg.

All these 2kn+k+g+1 parameters are learnt by gradient descent that minimizes the
related cost function:

2

(,)
1ui

k

ui if f score u j jf
given rating r f j rated by u

r p b w qσ
=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟− ⋅ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑ ∑

Optimization process should be regularized by penalizing the magnitudes of the learnt
parameters [SIGMOID1] (learning rate=0.002, regularization=0.01).
One can use a single set of movie factors, by equating the matrices P and Q
[SIGMOID2] (learning rate=0.001, regularization=0.01).
Typically, we apply this method to residuals of global effects, so the above rui would
symbolize a residual, rather than a raw score.

Weighting with residuals:
Let us denote by resui the residual of the rating by user u of movie i after removing
global effects (one can alternatively just use double centering, which will lead to
somewhat inferior results).
We estimate resui, the residual of the rating by user u of movie i, as follows:

1 uj

k

ui if f jf uj jf
f j rated by u known rating r

res p b q res pσ
=

⎛ ⎞⎛ ⎞
⎜ ⎟= ⋅ + + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑

The following parameters should be learnt from the data:
(1) Two sets of "movie factors": an nxk matrix P={pif}, and an nxk matrix Q={qif}.
(2) A set of k intercepts - the bf's.

All these 2kn+k parameters are learnt by gradient descent that minimizes the related
quadratic error cost function. Optimization process should be regularized by
penalizing the magnitudes of the learnt parameters [SIGMOID3] (learning rate=0.001,
regularization=0.02).
The astute reader will find distinct relations between this residual-based model and
RBMs with Gaussian visible units.

Regression models

Regression can be performed in two symmetric ways:
1. A user-centric approach: The sample is all movies rated by a specific user. The

response variable is rating of a movie by this user. The predictor variables are
different attributes associated with the movies.

2. A movie-centric approach: The sample is all users that rated a specific movie. The
response variable is rating of the movie by a user. The predictor variables are
different attributes associated with the users.

The central issue is how to create predictor variables. A few approaches were
beneficial to us. The relatively low number of movies facilitates building movie-based
predictor variables by concentrating on movie-movie relationships, including:

1. Estimating the movie-movie covariance matrix, and then taking its top k
eigenvectors as the predictor variables. This is akin to Principal Components
Analysis [PCA].

2. Embedding all movies in a k-D Euclidean space, by solving a multidimensional
scaling (MDS) problem, based on minimizing the stress energy by majorization.
Typical values of k lie between 40 and 100 [STRESS].

3. Build a user-movie binary matrix, where an entry value is "1" iff the
corresponding user rated the corresponding movie. Interestingly, this matrix
contains no missing value, so we can directly extract its SVD vectors and use
them as predictor variables [BIN-SVD]. In some variants we considered all ratings
smaller than 3 as zeros [BIN-SVD3]. When working with these binary-based
factors, we suggest normalizing the vector of factors associated with each movie,
to offset for movie popularity.

These movie-based predictors were used within a user-centric regression approach. In
order to use a movie-centric regression, we need to derive user-based predictors,
which are more challenging due to the huge number of users in the dataset. To
overcome this, we first derive the movie-based predictors as above, and then infer
from them the user-based predictors in one of the following two methods:
1. Regress user-based predictors from the movie-based predictors using a user-

centric regression (within the binary representation). This way, [BIN-SVD] and
[BIN-SVD3] become [BIN-SVD-USER] and [BIN-SVD3-USER], respectively.
Once again, we suggest normalizing the vectors of factors associated with each
user.

2. A barycentric assignment: A user predictor is taken as a weighted average of the
movie predictors, for movies rated by this user. Here, we used those weights
found in the "weighted scores model" mentioned above. This way, [PCA] and
[STRESS] become [PCA-USER] and [STRESS-USER], respectively.

Unless stated otherwise, we apply the regression models on residuals of global effects.

Combining multiple results

Predictive accuracy is substantially improved when blending multiple predictors. Our
experience is that most efforts should be concentrated in deriving substantially
different approaches, rather than refining a single technique. Consequently, our
solution is an ensemble of many methods.
We approach blending as a linear regression problem. We ought to regress a target
ratings vector on multiple predictors. The target rating vector can be the true ratings
of the Probe set, and the predictors are the respective estimates for the Probe set by an
ensemble of methods. The solution is the coefficients, or the weights, that should be
given to each of the predictors in the ensemble.
An extension would be to slice and dice the target vector based on some criteria. This
allows overweighting certain methods on some user-movie pairs, while overweighting
different methods on other user-movie pairs. The criterion we used is the support of
the user-movie pair, which we define as the minimum between the support associated
with the user and the support associated with the movie. (A support of a user refers to
the number of ratings made by this user. Similarly, a support of a movie is the number
of ratings given to it.) Consequently, we typically partition the Probe (or Qualifying)
sets into 15 bins, based on the support level. Then, we solve a different regression

problem within each bin, thereby obtaining unique combination coefficients for each
bin. For example, we have found that RBMs should be overweighted on low support
pairs, while factorization should be overweighted on high support pairs.
Since the ratings of the Qualifying pairs are unknown, we cannot simply regress them.
One can "borrow" the combination coefficients learnt for the Probe set. Accuracy can
be improved by partitioning the Probe set into several disjoint sets. Then, learn
combination coefficients for each portion of the Probe set separately, while including
the rest of the Probe set within the training data. This better reflects the situation with
the Qualifying set, where all Probe set is included within the training data. Finally, for
the Qualifying coefficients, one can average the coefficients derived for the multiple
portions of the Probe set. Alternatively, sufficient statistics that enable regressing
directly the Quiz set can be obtained with the aid of the RMSEs reported for each
predictor.

Our predictors

Below, we list all 107 results that were blended to deliver RMSE=0.8712, with their
weights within the ensemble. The results are grouped based on the type of method
that produced them.
We strongly believe that the success of an ensemble approach depends on the ability
of its various predictors to expose different, complementing aspects of the data.
Experience shows that this is very different from optimizing the accuracy of each
individual predictor. Quite frequently we have found that the more accurate predictors
are less useful within the full blend. Therefore, the RMSEs listed below should be
considered just as a reference of our experience, and we would not encourage the
readers to repeat the same RMSEs, but rather to concentrate on achieving the “spirit”
of the listed methods.
Please note that before submitting a result, we translate it so its mean will coincide
with the mean of the Quiz set, which is known to be 3.67441. Also, before mixing the
results, each of them is centered (to have zero mean). Later, the final blend is
translated back so its mean coincides with the Quiz mean.

Asymmetric factor models

1. rmse=0.9194, weight=-0.0382

SIGMOID3 with k=30
2. rmse=0. 9286, weight=-0.0481

SIGMOID2 with k=40
3. rmse=0. 9383, weight=0.0514

NSVD2 with k=40
4. rmse=0. 9245, weight=-0.0393

SIGMOID1 with k=40
5. rmse=0. 9114, weight=0.0574

40 neighbors kNN on residuals of NSVD1 with k=200.
6. rmse=0.9236., weight=0.0550

NSVD1 with k=200
7. rmse=0.9259, weight=0.0832

NSVD1 with k=150

1 See Winsteps post at http://www.netflixprize.com//community/viewtopic.php?id=503

8. rmse=0. 9134, weight=0.0660
30 neighbors kNN on residuals of non-regularized NSVD1 with k=200

9. rmse=0. 9260, weight=-0.0484
NSVD1 with k=40

Regression models

10. rmse=0.9269, weight=-0.0370

PCA-USER, based on top 40 PCs
11. rmse=0.9302, weight=-0.0499

STRESS with 40 coordinates per movie
12. rmse=0.9335, weight=-0.1145

BIN-SVD-USER based on 256 vectors
13. rmse=0. 8996, weight=0.1350

50 neighbors kNN on residuals of BIN-SVD-USER (256 vectors)
14. rmse=0.9290, weight=-0.0626

BIN-SVD3-USER based on 65 vectors
15. rmse=0.9394, weight=0.0311

BIN-SVD3-USER based on 256 vectors
16. rmse=0.9241, weight=-0.0692

PCA based on top 40 PCs
17. rmse=0.9212, weight=-0.0639

PCA based on top 50 PCs
18. rmse=0. 9451, weight=-0.0484

BIN-SVD-USER based on 60 vectors
19. rmse=0. 9610, weight=0.0401

BIN-SVD-USER based on 100 vectors, but here we regressed residuals of double
centering rather than the usual residuals of global effects

20. rmse=0. 9414, weight=0.0424
BIN-SVD3-USER based on 40 vectors

21. rmse=0. 9067, weight=0.0689
20 neighbors Corr-kNN on residuals of BIN-SVD-USER (60 vectors)

22. rmse=0. 9020, weight=0.0556
50 neighbors kNN on residuals of BIN-SVD-USER (60 vectors)

23. rmse=0.9030, weight=-0.0491
50 neighbors kNN on residuals of BIN-SVD-USER (100 vectors)

24. rmse=0. 9223, weight=0.0763
BIN-SVD3 based on 40 vectors

Restricted Boltzmann Machines with Gaussian visible units
The default is to apply the machine in a "conditional RBM" mode on data normalized
by applying all global effects that we describe in the KDD-Cup'2007 paper ([2], Sec.
3), except the last four, which interact movies/users with popularity.

25. rmse=0.9052, weight=0.0704

800 hidden units
26. rmse=0.9044, weight=0.0739

400 hidden units
27. rmse=0.9056, weight=0.0771

256 hidden units

28. rmse=0.9068, weight=0.0433
100 hidden units

29. rmse=0.9121, weight=-0.0268
40 hidden units

30. rmse=0.9429, weight=0.0220
100 hidden units, applied on raw data (no normalization/centering)

31. rmse=0.9489, weight=-0.0295
50 hidden units, applied on raw data (no normalization/centering)

32. rmse=0.9267, weight=-0.0726
100 hidden units, without conditional RBM, on residuals of full global effects

Restricted Boltzmann Machines
We use conditional RBMs as described in [5].
33. rmse=0.9029, weight=0.0785

256-unit RBM
34. rmse=0.9029, weight=-0.0700

200-unit RBM
35. rmse=0.9093, weight=-0.0977

100-unit RBM
36. rmse=0.9206, weight=-0.0239

40-unit RBM
Using RBM as a pre-processor:
37. rmse=0.8960, weight=0.0577

Postprocessing residuals of 100-unit RBM with factorization
38. rmse=0.8905, weight=0.1839

50 neighbors kNN on 200-unit RBM
39. rmse=0.8904, weight=0.0576

40 neighbors kNN on 150-unit RBM
40. rmse=0.8888, weight=0.1387

50 neighbors kNN on 100-unit RBM

Matrix factorization
41. rmse=0.9135, weight=-0.0302

IncFctr (40 factors)
42. rmse=0. 8992, weight=0.0436

IncFctr (80 factors), adaptive user factors by [MseSim]
43. rmse=0.9042, weight=0.0339

IncFctr (40 factors), adaptive user factors by [SuppSim]
44. rmse=0.9083, weight=-0.0389

IncFctr (40 factors), adaptive user by [EditSim]
45. rmse=0. 9002, weight=-0.0907

SimuFctr (40 factors), adaptive user factors by [MseSim]
46. rmse=0. 9050, weight=0.1178

SimuFctr (40 factors), adaptive user factors with sij=MSE(i,j)-12
47. rmse=0. 9035, weight=-0.0546

MSE-kNN applied to residuals of SimuFctr (60 factors)
48. rmse=0. 9515, weight=-0.0146

NNMF (5 factors)
49. rmse=0.9347, weight=-0.0227

NNMF (20 factors), training set excluded Probe set

50. rmse=0.9084, weight=-0.0342
NNMF (20 factors), adaptive user factors by [SimuSim]

51. rmse=0. 9073, weight=-0.0353
NNMF (20 factors), adaptive user factors by [EditSim]

52. rmse=0.9094, weight=-0.1412
NNMF (40 factors)

53. rmse=0.9018, weight=0.2535
NNMF (40 factors, adaptive user factors by [EditSim]

54. rmse=0.8986, weight=-0.1093
NNMF (40 factors, adaptive user factors by [MseSim]

55. rmse=0.9026, weight=-0.1159
Cor-kNN on residuals of NNMF (60 factors)

56. rmse=0.8963, weight=-0.1032
NNMF (90 factors), adaptive user factors by [MseSim]

57. rmse=0.8986, weight=0.0714
NNMF (90 factors), adaptive user factors by naive [SuppSim] (where xij=ni

.nj/n)
58. rmse=0.9807, weight=0.0228

NNMF (90 factors), adaptive user factors by sij=MSE(i,j)-12
59. rmse=0.8970, weight=0.1028

NNMF (90 factors), adaptive user factors by [SuppSim]
60. rmse=0.8978, weight=0.1035

NNMF (90 factors), adaptive user factors by [CorrSim]
61. rmse=0.8985, weight=-0.1121

NNMF (90 factors), adaptive user factors by [EditSim]
62. rmse=1.1561, weight=-0.0111

NNMF (128 factors), adaptive user factors by [MseSim], but adaptive user factors
where computed with Lasso regularization, rather than Ridge regularization

63. rmse=0.9039, weight=-0.0928
NNMF (128 factors)

64. rmse=0.8955, weight=0.1060
NNMF (128 factors), adaptive user factors by [MseSim]

65. rmse=0.9426, weight=-0.0564
LassoNNMF (30 factors)

66. rmse=0.9327, weight=0.0445
LassoNNMF (30 factors), adaptive user factors by [SuppSim]

67. rmse=0.9016, weight=0.0543
Start with NNMF 40 factors, then alternate between GaussFctr on user side and
SimuFctr on movie side

68. rmse=0.8998, weight=0.0958
Start with SimuFctr 60 factors, then a single GaussFctr iterations on movie side
followed by many GaussFctr iterations on user side

69. rmse=0.9070, weight=-0.0954
Start with NNMF 90 factors, followed by many GaussFctr iterations on user side

70. rmse=0.9098, weight=0.0720
Start with SimuFctr 40 factors, followed by many GaussFctr iterations on user
side

Neighborhood-based model (k-NN)
Some k-NN results were embedded in the previous sections. Here, we report the rest.

71. rmse=0. 8953, weight=0.0932

30 neighbors kNN on residuals of NNMF (180 factors)
72. rmse=0. 9105, weight=-0.1386

50 neighbors kNN on residuals of all global effects except the last 4
73. rmse=0. 9082, weight=-0.0456

50 neighbors kNN on residuals of full global effects
74. rmse=0.9496, weight=-0.0272

25 neighbors kNN on raw scores (no normalization)
75. rmse=0.8979, weight=-0.1099

60 neighbors kNN on residuals of NNMF (60 factors)
76. rmse=0. 9247, weight=0.0525

50 neighbors Bin-kNN on residuals of full global effects, neighbor selection by
[SuppSim]

77. rmse=0.9215, weight=0.0783
50 neighbors Bin-kNN on residuals of full global effects, neighbor selection by
[CorrSim]

78. rmse=0.9309, weight=-0.0985
50 neighbors Fctr-kNN on residuals of full global effects. Weights based on 10
factors computed on binary matrix

79. rmse=0.9097, weight=0.0681
25 neighbors Fctr-kNN on residuals of NNMF (60 factors). Weights based on 10
NNMF factors

80. rmse=0.9290, weight=-0.0451
50 neighbors Fctr-kNN on raw scores. Weights based on 10 factors computed on
binary matrix

81. rmse=0.9097, weight=0.0408
100 neighbors User-kNN on residuals of NNMF (60 factors)

82. rmse=0. 9248, weight=0.0333
30 neighbors User-MSE-kNN on residuals of full global effects

83. rmse=0.9057, weight=0.0550
50 neighbors Slow-kNN on residuals of full global effects

84. rmse=0.9170, weight=-0.0648
Corr-kNN on residuals of full global effects

85. rmse=0.9237, weight=-0.0561
MSE-kNN on residuals of full global effects

86. rmse=0.9110, weight=0.0439
Supp-kNN on residuals of IncFctr (80 factors)

87. rmse=0.9440, weight=-0.0422
Supp-kNN on residuals of full global effects. Here, we used the more naïve
similarities where xij=ni*nj/n

88. rmse=0.9335, weight=0.0402
Supp-kNN on residuals of full global effects

Combinations:
Each of the following results is based on mixing two individual results. Before mixing
we split the user-movie pairs into 15 bins based on their support. For each bin we
compute unique combination coefficients based on regression involving the Probe set.

89. rmse=0.8976, weight=0.0552

Combination of #67 with #35
90. rmse=0.8876, weight=0.1471

Combination of #36 with <NNMF (60 factors) adaptive user factors by MseSim>
91. rmse=0.8977, weight=0.1053

Combination of #81 with #75
92. rmse=0.8909, weight=0.0588

Combination of #45 with <User-kNN on all global effects but the last 4>
93. rmse=0.9003, weight=0.0757

Combination of #50 with <NNMF (20 factors, adaptive user factors by
[MseSim]>

94. rmse=0.8906, weight=-0.0634
Combination of #45 with #73

95. rmse=0.9024, weight=0.0569
Combination of #73 with <50 neighbors Slow-kNN on residuals of all global
effects except last 4>

96. rmse=0.9078, weight=0.0372
Combination of #84 with <User-kNN on raw scores>

97. rmse=0.9046, weight=0.0508
Combination of #74 with #66

Imputation of Qualifying predictions:
We had predictions for the Qualifying set with RMSE of 0.8836. Then, we inserted
the Qualifying set into the training set, while setting unknown scores to the RMSE=
0.8836 predictions. We tried some of our methods on this enhanced training set:

98. rmse=0.8952, weight=0.0937

 MSE-kNN on residuals of SimuFctr (20 factors)
99. rmse=0.9100, weight=-0.0314

IncFctr (40 factors)
100. rmse=0.9039, weight=0.0735

 IncFctr (40 factors), adaptive user factors by [SuppSim]
101. rmse=0.9056, weight=-0.1866

 SimuFctr (20 factors), Probe set is excluded from training set
102. rmse=0.9093, weight=-0.0769

IncFctr (40 factors), adaptive user factors by [SuppSim]. Probe set is excluded
from training set

103. rmse=0.9005, weight=0.0503
 MSE-kNN on residuals of IncFctr (40 factors)

104. rmse=0.8975, weight=0.1155
A combination (by 15 support-base bins) of #99 with <SimuFctr (20 factors)>

Specials:

105. rmse=1.1263, weight=-0.1345

Take binary matrix (rated=1, not-rated=0), and estimate it by 40 factors. Using
this factors, construct predictions for the Probe and Qualifying set and center the
predictions for each set. Consequently, using the probe set we learn how to regress
centered true ratings on these predictions, and do the same on the Qualifying set.

106. rmse=0.9162, weight=-0.0702
This method fits a series of models, each using the residuals from the previous
model. There were three stages of models. First, effects were fit for rating date,
movie, and user. Second, interactions were fit between users and 11 movie factors.
The first factor was movie effect estimated above, while the last ten factors were
based on approximate principal components of the movies. The movie and user
effects and all 11 interactions were shrunk using a form of empirical Bayes. Third,
residuals of movies in the qualifying data set were predicted using linear
combinations of residuals of correlation–based nearest neighbors. Predictions for
the qualifying data equal the sums of the various models. Models from all three
stages were fit using training data only (without including the Probe set).

107. rmse=0.9134, weight=0.1051
This method is similar to #106 with the following exceptions. The main effect for
date of rating was excluded. After fitting main effects for movie and user, eight
interactions were included for movie and user support, movie and user effects, and
four versions of time (see [2], Sec. 3). For these eight interactions, the linear fits
were replaced by quadratic fits, and empirical Bayes shrinkage was performed on
both the linear and quadratic terms (after make them orthogonal to each other)
analogously to the previous method (#106). Models for all three stages were fit
using the training data plus a random 90 percent sample of the probe data.

How many results are really needed?

For completeness, we listed all 107 results that were blended in our RMSE=0.8712
submission. It is important to note that the major reason for using all these results was
convenience, as we anyway accumulated them during the year. This is the nature of
an ongoing competition. However, in hindsight, we would probably drop many of
these results, and recompute some in a different way. We believe that far fewer results
are really necessary. For example, based on just three results one can breach the
RMSE=0.8800 barrier: A blend of #8, #38, and #92, with weights 0.1893, 0.4225, and
0.4441, respectively, would already achieve a solution with an RMSE of 0.8793.
Similarly, combining #8, #38, and #64 yields RMSE=0.8798. Notice that these
combinations touch the main approaches (k-NN, factorization, RBMs and asymmetric
factor models). In addition, we have found that at most 11 results suffice for achieving
a blend with above 8% improvement over Cinematch score.

Appendix 1 - Estimating similarity scores from binary data

Similarity scores among items are a key component within many collaborative
filtering techniques. Here, we suggest a similarity measure for two items - i and j -
based only on their "binary rating history". That is the identity of the users that rated
them, rather than the actual ratings that they got. We have found, quite surprisingly,
that in some occasions, this similarity score was more effective than a score which is
based on the ratings themselves.

An obvious input to this score is nij, the number of users who viewed (or, "rated")
both items.

However, nij = 5 means very different things depending on whether ni and nj, the
number of viewings of each item, are on the order of 10 each or 200 each.
Consequently, some rescaling seems necessary. One option is to use nij /xij, where xij
= ninj /n and n is the total number of ratings. We believe that there are better choices
for xij.

Consider two movies that have each been rated 10 times, but differ as follows. Movie
j was always rated by someone who had rated only five other movies, while Movie k
was always rated by active viewers who had each rated 100 other movies. That is,
Movie j is part of 50 pairs of movies rated by the same user (including multiple
occurrences), while Movie k is part of 1000 pairs. If nij = 3, that is much stronger
evidence of similarity than if nik = 3.

Let Ni equal the number of pairs involving Movie i; that is, ∑
≠

=
ij

iji nN , and let

∑=
i

ji NN equal twice the total number of pairs. We propose

 xij = NiNj/(N-Ni) + NiNj/(N-Ni) .

This should approximately standardize nij in the sense that

 ∑∑ ≈
j

ij
j

ij xn for all i.

Appendix 2 – Deriving Similarity Scores from Movie Titles [EditSim]

Some similarity information between movies can be captured from the movie titles
and release year provided in the Netflix Prize data. The resulting similarity values
were proved useful within the neighborhood-aware factorization. However, we doubt
their utility to the overall blend. For completeness, we list below the exact formula
that we used for deriving these similarity weights.
The following measure is based on our prior experience with disambiguating a user's
input. We have found that a combination of plain edit distance, with an emphasis on
full words and prefixes could better uncover the user's intention.
Let us concentrate on two movies, with titles ttl1 and ttl2, and release years year1 and
year2, respectively. We use the following notation:
• |str| is the length of string str.
• editD(ttl1,ttl2) is the edit distance between ttl1 and ttl2.
• jointPrefix(ttl1,ttl2) is the longest prefix of ttl1 and ttl2.
• prefixBonus(ttl1,ttl2) is min(5, |jointPrefix(ttl1,ttl2)|/3).
• #overlaps(ttl1,ttl2) is the number of full words appearing in both ttl1 and ttl2.

Our adjusted edit distance is defined as:

editD(1, 2)
max(| 1|,| 2 |) prefixBonus(1, 2)

ttl ttldist
ttl ttl ttl ttl

=
⋅

And the derived similarity score between the two movies is:

()()
0.3#overlaps(1, 2)0.2 | 1 2 | 0.7 ttl ttlsim year year dist
−

= ⋅ − + ⋅

Acknowledgments
We would like to thank AT&T Labs for supporting and facilitating this work. We are
very lucky to work in a place that values true long term research.
We had interesting discussions with some of our competitors. Especially, we would
like to thank the ML@Toronto team for making their inspiring work publicly
available. To Lester Mackey from Dinosaur Planet team for his clear explanations on
RBMs. To Arek Paterek for NSVD1/2. To all competitors, especially the Gravity
team, for giving us a hard time and driving us to distil our techniques and seek new
directions. Also, to all people that took their time for posting in the web forum.
Finally, we are grateful to Netflix for putting on this amazing competition and
conducting it flawlessly.

References

1. R. Bell and Y. Koren, ``Scalable Collaborative Filtering with Jointly Derived
Neighborhood Interpolation Weights", IEEE International Conference on
Data Mining (ICDM'07), IEEE, 2007.

2. R. Bell and Y. Koren, ``Improved Neighborhood-based Collaborative
Filtering", KDD-Cup and Workshop, ACM press, 2007.

3. R. Bell, Y. Koren and C. Volinsky, ``Modeling Relationships at Multiple
Scales to Improve Accuracy of Large Recommender Systems", Proceedings of
the 13th ACM Int. Conference on Knowledge Discovery and Data Mining
(KDD'07), ACM press, 2007.

4. A. Paterek, ``Improving regularized singular value decomposition for
collaborative filtering", KDD-Cup and Workshop, ACM press, 2007.

5. R, Salakhutdinov, A. Mnih and G. Hinton, ``Restricted Boltzmann machines
for collaborative filtering", Proceedings of the 24th International Conference
on Machine Learning (ICML'07), 2007.

6. Y. Zhang and J. Koren, ``Efficient Bayesian Hierarchical User Modeling for
Recommendation Systems", Proceedings of the 30st Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR'07), ACM press, 2007.

