
�

�

�

��������	
�����
�������	����������������	��

�������	�
����	�

�����������
������

��������
�����������
���������
��

���
��
�����������������
������ �����!���

��

��

��"���	���	#�	�
��	�$�
��

������ !"�
�

�

�

�

�

�

���������%�
�	�&����
�

�"�'�(�&��"�	�)�����*�

+����������	�)��,�����*�

�-�.�/�		�

�

0���"���1"��	�

��	��"���.����

�
�

�

���������

�

�

��������	
����
���	������
	�	��	������
�	������	������������	����	��	�������
��	�

����	���������������
���	����	
����������
�����������
���
!������
�	�"�#������
����������

����	�����������$����	
	������������������
	����	���������	����%�	�����	��		��

�	�	���	���������$���	��	
$�����
	������	��	�����������	�����������	��������	������
�	�

	����	���������
���	��"��

�

&����'�
(����������'�������	��
	������$��	���)**����!�'�
(�����'������	���������

	������	���	���	��������
	�	������������������	��
	����	���������	�����������

��	��������$������������	�����������$������	
��
����	�����	���	
�������������
�	+����	�

�����	�����
�
	����	��	
��$��	���������	��	����������	������������
������
"��

�

&�	��������
����	
����
���	�'�
(��������
���	�� ����������������������'�����,����	
��

'	
	��	�	��	����
���	��
	�	�������������	�'�
(�����������'�����-����	
��'	
	��$���	�

�����
������	�������	���������	��	�������
��	�����	������"�&�	�'�
(����������	�	��'����

��	�($���	����
	������./����
����0�	
�������������1	����	��	
�2$��	��3��$�4����

5����
�����	�0���	
���$�������������'����
����	��������	'���������
	��	�	����	�������

	����	��	
��$��	������	�������������������������	����	�������$���������	���������	�

��
���	�����	%�	����
	�	���������������������������������	���
���������"�

�

&�	�'�
(������
�����	
��'�������(��������(���	������
�������	��������	�����	
�����	�

�	��	
�������	��
��
����������		���
��
����������
	����
	��	'�������	�����������������

�	��������
��������������������	��������'�������'����������'�
(�����'������������	��		��

�������	"��

�

6�����$��'	�'����������	���
�������������	��	������$�����������������
�������	�������������

��
������	�'�
(����"�7	�������	��������	$�'������	��������
��	
�������	�������	���	������

	����	��	
��$��	�����������	'���������������	�	����	����������	���
����
��	��

���
����	�������	����������������	��	�������
���	�"�

�

8���4	��	�����	�����"��

���
�	��/�(����0���	
���$����������
�����2���*�	���

9	�����)�
	��:��+����
;��#&<&�5���++1	�	�
���

*���	��5	��
	��0���	
���$����=�	�	�����>���
	���:0=#>;�

#�	��&��������:����
;���90�2�	
���

���������	�
��
�����

�

�

������������	

���

�

�� ?	����#������������0���	
���$����>���	�����

�� *		��(�#��
'����9����@�1	�	�
���

�� 2������4	
(���($��0���	
���$����>	����
�	��

�� 1�����4�
(��*	�����0���	
���$��

�� &������A��������?����	�

��)�
��(�A�������
��&�	�7��
����2�������0���	
���$�����	���$�������

�� B���A�������	���2���	�

�� ?	�
�	�)�
$�����0���	
���$����>���	������

�� 1���$$��)
���������>0�

�� 4����5����0���	
���$����������������������

�� 4	��>�
�����0���	
���$����&�
�����

�� 4�������>�����	
��*	�����0���	
���$��

�� ��
	��1���(
��������C�
������&	���

�� 8����1�	����0���	
���$����>���	������

�� ����
����2�$����0���	
���$����������
������
���	�
��

�

���������

��������	
��
�
��������
��
�
����
��
�
����
��

�

	
����

�

��
����
���������
��
�������
�����

�

����������

�

�

�

A Modified Fuzzy C-Means Algorithm For Collaborative
Filtering

Jinlong Wu
LMAM and School of Mathematical Sciences,

Peking University
Beijing 100871, China

jinlon.wu@gmail.com

Tiejun Li
LMAM and School of Mathematical Sciences,

Peking University
Beijing 100871, China

tieli@pku.edu.cn

ABSTRACT

Two major challenges for collaborative filtering problems are
scalability and sparseness. Some powerful approaches have
been developed to resolve these challenges. Two of them
are Matrix Factorization (MF) and Fuzzy C-means (FCM).
In this paper we combine the ideas of MF and FCM, and
propose a new clustering model — Modified Fuzzy C-means
(MFCM). MFCM has better interpretability than MF, and
better accuracy than FCM. MFCM also supplies a new per-
spective on MF models. Two new algorithms are developed
to solve this new model. They are applied to the Netflix
Prize data set and acquire comparable accuracy with that
of MF.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning;
H.3.3 [Information storage and retrieval]: Information
search and retrieval—Information filtering

General Terms

Algorithms, Experimentation, Performance

Keywords

Collaborative Filtering, Clustering, Matrix Factorization,
Fuzzy C-means, Netflix Prize

1. INTRODUCTION
Recommendation systems are usually constructed on the

basis of two types of different methods — content-based fil-
tering (CBF) and collaborative filtering (CF). Content-based
filtering methods provide recommendations based on fea-
tures of users or items. However, it is difficult to extract
features from users or items in some circumstances. For
example, how can one extract features from a shirt to de-
pict whether it is beautiful or not? Collaborative filtering
methods circumvent this difficulty. They just use the known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Netflix-KDD Workshop, August 24, 2008, Las Vegas, NV, USA.
Copyright 2008 ACM 978-1-60558-265-8/08/0008 ...$5.00.

ratings of items made by users to predict ratings of new
user-item pairs. The philosophy of collaborative filtering is
that two users probably continue choosing similar products
if they have already chosen similar ones. We will consider
the collaborative filtering algorithms in this paper.

Many algorithms for CF problems have been developed,
such as regressions, clusterings, matrix factorizations, latent
class models and Bayesian models etc [3, 5]. In this paper
we propose an efficient clustering model — Modified FCM
(MFCM), which is motivated by Fuzzy C-means (FCM)
but aims to minimize Root Mean Squared Error (RMSE).
MFCM supplies a new perspective on matrix factorization
(MF) methods. It gives a more reasonable explanation why
MF works well for CF problems. Furthermore, two new algo-
rithms MFCM1 and MFCM2 are proposed to realize MFCM
in this paper.

This paper is arranged as follows. In Section 2 we briefly
review FCM and MF algorithms. Our new model MFCM
and algorithms MFCM1 and MFCM2 are described in Sec-
tion 3. In Section 4 we show the results of these algorithms
applied to the Netflix Prize data set. Finally we make con-
clusions in Section 5.

2. FCM AND MF ALGORITHMS

2.1 Fuzzy C-means (FCM)
The idea of clustering users is quite natural since a col-

laborative filtering algorithm usually tries to make recom-
mendations to a user based on the histories of other users
who showed similar preferences or tastes with this user. We
can cluster the users into different classes. The users in the
same class will be assumed to have similar preferences and
those in different classes will be assumed to have distinct
preferences.

One of the simplest clustering algorithms is K-means. K-
means is understandable and implementable easily. How-
ever, every user is only put into one class eventually, which
is too rigorous for most real-world problems. For CF prob-
lems it usually sounds more reasonable to allow that users
belong to different classes. FCM takes this idea and classifies
every user into different classes with suitable probabilities.

Denote the rating of movie m made by user u as ru,m. All
ratings made by the user u form a vector rrru. Denote the
set of all user-item pairs in the training set by P. That is,
P ={(u, m)|ru,m is in the training set}. Denote {m|(u, m) ∈
P} by Pu and {u|(u, m) ∈ P} by Pm. Let zu,k be the
probability that user u belongs to cluster k, and ZZZ = (zu,k)
is the U × K probability matrix, where U and K is the

number of users and classes respectively. Let ck,m be the
center vaule of movie m in class k, and CCC = (ck,m) is the
K × M center matrix, where M is the number of movies.
The goal of FCM is to choose the matrix ZZZ and the center
matrix CCC in order to minimize the objective function:

F (ZZZ,CCC) =

U
∑

u=1

K
∑

k=1

zα
u,k ‖ rrru − ccck ‖2

=

U
∑

u=1

K
∑

k=1

zα
u,k

∑

m∈Pu

(ru,m − ck,m)2

(1)

with the constraints Z1 = 1 and Z ≥ 0 1 since ZZZ is a
probability matrix, where α is a user-defined positive real
number, ccck is the center vector of cluster k, that is, ccck =
(ck,1, . . . , ck,M). Typically α is taken to be 2.

A standard iteration algorithm to learn ZZZ and CCC has been
proposed. After the algorithm converges, we achieve the

final probability and center matrix ẐZZ and ĈCC. A new pair of
user-movie can be predicted by

r̂u,m =

K
∑

k=1

ẑu,k ĉk,m. (2)

2.2 Matrix Factorization (MF)
The philosophy of matrix factorization (MF) is from SVD.

It aims to find two matrices WWW and VVV to minimize some
norm of the residual

‖ RRR −WWWVVV T ‖, (3)

where RRR = (ru,m) is the rating matrix with size U×M , WWW =
(wu,k) and VVV = (vm,k) are U × K and M × K respectively,
both of which will be learned from the data. Usually the
norm ‖ · ‖ is taken as the Frobenius norm and only ru,m ∈ P
are considered. K is a relatively small user-defined positive
integer.

To prevent overfitting, some shrinkage method should be
applied to shrink the parameters in WWW and VVV . Usually Ridge
shrinkage is useful [7, 8, 9]. To summarize, the objective
function we should minimize is

G(WWW,VVV) =
1

2

∑

(u,m)∈P

[

(ru,m −wwwuvvvT
m)2

+ λ(‖ wwwu ‖2
2 + ‖ vvvm ‖2

2)
]

,

(4)

where wwwu and vvvm is the u-th row of WWW and the m-th row
of VVV respectively, and λ is the shrinkage coefficient. The
steepest descent method is usually used to solve (4).

One commonly used explanation why MF works well for
CF problems is that each row of WWW represents one user’s
preference factors and each row of VVV one movie’s attribute
factors. When these two match for a particular user and a
movie, the rating is probably high.

3. A NEW CLUSTERING MODEL — THE

MODIFIED FCM
In comparison with the factor-based explanation of MF,

we think the idea of fuzzy clustering in FCM is more natural.
But the objective function in (1) is a little confusing. Since
our goal is to find ZZZ and CCC to achieve the best prediction
accuracy, why not minimize the prediction errors directly?

1Z ≥ 0 means that every element of ZZZ is not less than 0 .

A more natural objective function is

H(ZZZ,CCC) =‖ RRR −ZZZCCC ‖2
F

=
∑

(u,m)∈P

(ru,m −

K
∑

k=1

zu,kck,m)2

=
∑

(u,m)∈P

[

K
∑

k=1

zu,k(ru,m − ck,m)
]2

(5)

with the constraints

ZZZ111 = 111 and ZZZ ≥ 0 (6)

since ZZZ is a probability matrix. Hence the new constrained
optimization problem that we need to solve is

min
Z1Z1Z1=111,ZZZ≥0

H(ZZZ,CCC). (7)

After ZZZ and CCC are obtained, (2) can be used to predict any
new user-movie pair. Since the new model is motivated by
FCM, we refer to it as Modified FCM (MFCM).

Note that if we take α = 2 in (1), Equation (1) can be
rewritten as

∑

(u,m)∈P

K
∑

k=1

[zu,k(ru,m − ck,m)]2,

which is similar with our new objective function (5). How-
ever, the optimization problem (7) in MFCM is much more
difficult to be solved than the original one in FCM. For Equa-
tion (1) we can iteratively update the probability zu,k and
the center ck,m explicitly from the equations ∂F/∂zu,k = 0
and ∂F/∂ck,m = 0 until the algorithm converges. But zu,k

and ck,m can not be obtained explicitly from the above equa-
tions. Hence the same method is not applicable for our new
problem. This may be the reason why FCM choose to min-
imize (1) instead of (5).

If the constraints in (7) are neglected, our new objective
function (5) is completely the same as equation (3) in MF.
Our new fuzzy clustering idea also supplies a new explana-
tion why MF is reasonable for CF problems.

MF can be solved efficiently by steepest descent (or called
gradient descent with the momentum 0) method. Since our
new problem (7) is similar with that in MF, we expect that
a similar algorithm can be applied for (7) .

The simplest method to handle the constraints is to pe-
nalize the parameters zu,k when they do not satisfy the
constraints. All our algorithms are applied to the residu-
als of the original ratings, thus it is reasonable to shrink
the center ck,m when it is far from 0. We also penalize the
probability zu,k if it is far from 0 or disobeys the probabil-
ity constraints (6). To summarize, the previous constrained
problem is transformed into an unconstrained problem:

H1(ZZZ,CCC) =
1

2

∑

(u,m)∈P

[

(ru,m − zzzucccm)2 + λ ‖ cccm ‖2
2

+ λ(‖ zzzu ‖2
2 +(zzzu111 − 1)2+ ‖ zzzu ‖2

2)
]

,

(8)

where vvv = (v1 , . . . , vn) and vi = max{0,−vi} . In our ex-
periments the penalization parameter λ is taken to be small
values. Thus the aim of the penalization terms is just to
shrink the parameters to alleviate overfitting rather than to
constrain the parameters to satisfy (6) strictly. (8) is actu-
ally a modified version of (4). Hence the method to minimize

(4) can be used directly to minimize (8). We refer to this
algorithm as MFCM1.

The accuracy of MFCM1 is usually a little better than
that of MF according to our experiments (see more details
in Section 4), but the resulting probability matrix ZZZ can not
satisfy the constraints in (6) strictly, which loses its inter-
pretability somewhat.

The difficulty of solving (7) originates from its constraints
(6). The other natural idea to handle (6) is to enforce them
into the objective function:

H̃(ZZZ,CCC) =
∑

(u,m)∈P

(ru,m −

K
∑

k=1

pu,kck,m)2, (9)

where pu,k = ezu,k/
∑K

l=1 ezu,l is the probability that user
u belongs to cluster k . Then PPP = (pu,k) satisfies all the
constraints in (6) automatically.

With the same reason as in MFCM1, center ck,m should be
penalized if it is far from 0. zu,k is also regularized towards
0 since zu,k = 0 (k = 1, . . . , K) means that user u belongs to
every cluster with the same probability. When this is taken
into consideration, our final objective function becomes:

H2(ZZZ,CCC) =
1

2

∑

(u,m)∈P

(

ru,m −
1

∑K

k=1 ezu,k

K
∑

k=1

ezu,kck,m

)2

+ λ(‖ cccm ‖2
2 + ‖ zzzu ‖2

2).

(10)

(10) can be solved efficiently by gradient descent with nonzero
momentum. We refer to this algorithm as MFCM2.

4. EXPERIMENTS

4.1 The Netflix Prize Data Set
The Netflix Prize was founded by an online movie rental

company Netflix at October, 2006. Its aim is to improve
the accuracy of Netflix’s movie recommendation system —
CinematchSM by 10% percent. Three data sets are public
for competitors: the training set, probe set (a small part
of the training set) and quiz set (or qualifying set). They
involves 480, 189 different users who own unique user IDs
ranging from 1 to 2, 649, 429, and 17, 770 different movies
with unique movie IDs ranging from 1 to 17, 770. Each rat-
ing has a value belonging to {1, 2, . . . , 5}. The whole train-
ing set is composed of 100, 480, 507 user-movie pairs, The
probe set is composed of 1, 408, 395 pairs which are included
in the training set, and the quiz set consists of 2, 817, 131
pairs. All ratings in the training set are given to learn mod-
els, and ratings in the quiz set are kept by Netflix in order
to check the accuracy of competitors’ models. Root Mean
Squared Error (RMSE) is used to decide which predictions
are the best. The RMSE of CinematchSM for the quiz set
is 0.9514, and anybody who achieves 10% improvement of
RMSE, namely 0.8514, will get 1 million dollars from the
Netflix. The readers may be refered to [2] for more details.

4.2 Data Preprocessing
Suppose r̃u and r̃m are the average ratings of user u and

movie m respectively, and r̄ is the global average rating. All
the averages are computed only by ratings in the training
data P.

Table 1: RMSE for different models. We take K =
40, η = 0.004 and ε = 10−5 in all the three models. The

shrinkage coefficient λ = 0.025 in MF and MFCM1,

and λ = 0.0002 in MFCM2. The momentum µ = 0.85.
Models NO. of Iterations RMSE

MF 37 0.920124
MFCM1 40 0.918029
MFCM2 112 0.922317

Since typically a user rates a small proportion of movies,
the value of r̃u is usually not very reliable compared to the
global average r̄. Hence it is reasonable to shrink r̃u to
approach r̄ :

r̄u =
|Pu|r̃u + κ1r̄

|Pu| + κ1
= r̄ +

|Pu|

|Pu| + κ1
(r̃u − r̄), (11)

where κ1 is a positive constant value and called the shrink
factor of users. Similar method can be used to shrink r̃m :

r̄m =
|Pm|r̃m + κ2r̄

|Pm| + κ2
= r̄ +

|Pm|

|Pm| + κ2
(r̃m − r̄), (12)

where κ2 is the shrink factor of movies. r̄u and r̄m are
thought to be more reliable averages compared to r̃u and
r̃m, and they are used in our experiments.

Intuitively a coarse prediction of ru,m might be r̄u+r̄m−r̄,
that is,

r̂u,m = r̄u + r̄m − r̄

=
|Pu|

|Pu| + κ1
(r̃u − r̄) +

|Pm|

|Pm| + κ2
(r̃m − r̄) + r̄.

(13)

We call this prediction strategy the Average Prediction (AP),
which is also used in [6].

Compared to the preprocessing method proposed by Bell
and Koren [1], this method is symmetric for users and movies.
Its resulting averages do not rely on whether user or movie
averages are first calculated. Moreover, the above prepro-
cessing method generates better predictive results in our ex-
periments.

All of our algorithms in this paper are applied to the resid-
ual ratings ru,m − (r̄u + r̄m − r̄) (κ1 = 50 and κ2 = 100)
except with specific statement. We still use the token ru,m

as the residual rating without confusion.

4.3 Results
In our experiments, FCM only produces RMSE of 0.9469

on the probe set of the Netflix prize data, and MF pro-
duces RMSE of 0.9201, which is much better than that of
FCM. Another advantage of MF is that it converges more
rapidly. Typically MF converges after several dozens of it-
erations and FCM converges after hundreds of iterations.
Our two new algorithms MFCM1 and MFCM2 have similar
RMSE with MF but better interpretability. All the results
are shown in Table 1. Generally MFCM1 generates a little
better results than that MF does, and MFCM2 generates a
little worse results. However, results of MFCM2 have much
better interpretability since they satisfy the probability con-
straints (6) strictly.

A smaller learning rate η usually produces a smaller RMSE
for the algorithms in Table 1 [9]. This can be seen from Ta-
ble 2 obviously. However, the rate of convergence halves
when η halves. A common method to fix the problem is

Table 2: Results of different models when the learn-

ing rate η has different values. All the results orig-

inate from K = 40 and ε = 10−5, and λ is 0.025
for MFCM1 and 0.0002 for MFCM2. In addition,

MFCM2 has the momentum µ = 0.85. η is reduced

by (14) in which η(0) = 0.004 and ε0 = 0.02 for MFCM1,

η is reduced by (15) in which η(0) = 0.006 and N = 80
for MFCM2.

Models η NO. RMSE
0.004 40 0.918029

MFCM1 0.002 85 0.916028
0.001 176 0.915017

Reducing η by (14) 55 0.915165
0.006 81 0.923233

MFCM2 0.004 112 0.922317
0.002 199 0.921644

Reducing η by (15) 121 0.922183

to take a large η in the beginning and decrease η gradually
when iterations continue [4].

For MF and MFCM1, our experiments show the following
strategy of reducing η works well:

η(n+1) =

{

η(n)/2, if δn/η(n) ≤ ε0,

η(n), otherwise ,
(14)

where η(n) and δn are the value of η and the decrease of
RMSE for the n-th iteration respectively, and ε0 is a small
positive constant. If η(0) = 0.004 and ε0 = 0.025, the RMSE
decreases to 0.915165 after 55 iterations.

Unfortunately (14) can not improve the accuracy of MFCM2.
The other strategy we try is

η(n+1) =
η(0)

1 + n/N
, (15)

where N is a user-defined positive constant. If η(0) = 0.006
and N = 80, the RMSE of MFCM2 decreases from 0.923233
to 0.922183 after 121 iterations. The improvement is modest
compared to that of MFCM1.

Another trend for MFCM2 in our experiments is that a
smaller momentum generates better predictions, but causes
a slower convergence rate at the same time.

As stated in Section 4.2, all algorithms in this paper are
applied to residual ratings ru,m − (r̄u + r̄m − r̄). The final
predictions of an algorithm depend much on the values of r̄u

and r̄m, namely the values of κ1 and κ2. A common method
to determine κ1 and κ2 is to try some different values and
the best pair is used at last. A more robust method is to
treat r̄u and r̄m as variables and adjust their values adap-
tively as the model is being established [7]. Their updates
can be achieved by steepest descent method or letting their
derivatives equal 0. Both MFCM1 and MFCM2 are easily
modified to merge these ideas. The RMSE of MFCM1 de-
creases from 0.915165 to 0.910996 and the RMSE of MFCM2
decreases from 0.922183 to 0.920141. Both of them use the
same parameters as shown in Table 2.

5. CONCLUSIONS
In this paper we propose a new clustering model — Modi-

fied Fuzzy C-means (MFCM) for collaborative filtering (CF)
problems. Though motivated by Fuzzy C-means (FCM),

MFCM is designed to minimize Root Mean Squared Error
of predictions directly. It also supplies a new explanation
why matrix factorization usually works well for CF prob-
lems. We then develop two efficient algorithms — MFCM1
and MFCM2 to realize MFCM. Both of them acquire better
predictions than FCM, and comparable accuracy with MF
but better interpretability. Though MFCM proposed above
is to cluster users, it is easy to generalize it to cluster movies
or to cluster users and movies simultaneously.

On the other hand, we believe that there exist more pow-
erful algorithms to solve (7) since MFCM1 and MFCM2 fi-
nally reduce the training RMSE to over 0.76 and 0.78 for
the Netflix data set respectively. For furture work, we will
explore some more efficient algorithms.

In another perspective, MFCM can be used to preprocess
data in order to solve large-scale CF problems more effi-
ciently. For example, the resulting probability matrix ZZZ can
be utilized to calculate similarity between users. Then the
original neighbor-based methods can be used for prediction
with much less computation.

6. ACKNOWLEDGMENTS
All the computations are mainly done with HP clusters in

CCSE, Peking University. This work is partially supported
by the China National Basic Research Program under the
grant 2005CB321704.

7. REFERENCES
[1] R. Bell and Y. Koren. Scalable collaborative filtering

with jointly derived neighborhood interpolation
weights. In Proc. IEEE International Conference on
Data Mining (ICDM’07), 2007.

[2] J. Bennett and S. Lanning. The netflix prize. In
Proceedings of KDD Cup and Workshop, 2007.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, pages 43–52,
1998.

[4] T. Hastie, R. Tibshirani, and J. Friedman. The
elements of statistical learning. Springer-Verlag, 2001.

[5] T. Hofmann, and J. Puzieha, Latent class models for
collaborative filtering. In Proc. 16th International
Joint Conference on Artificial Intelligence, pages
688–693, Morgan Kaufmann Publishers Inc., San
Francisco, USA, 1999.

[6] T. Hong and D. Tsamis. Use of knn for the netflix
prize. http://www.stanford.edu/class/cs229/proj2006/
HongTsamis-KNNForNetflix.pdf.

[7] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDD-Cup
and Workshop. ACM Press, 2007.

[8] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
boltzmann machines for collaborative filtering. In
Proc. 24th Annual International Conference on
Machine Learning, 2007.

[9] G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the
gravity recommendation system. In Proc. of KDD Cup
Workshop at SIGKDD’07, pages 22–30, San Jose,
California, USA, 2007. 13th ACM International
Conference on Knowledge Discovery and Data Mining.

Putting the collaborator back into collaborative filtering
Gavin Potter

Lawford Rd
London, NW5 2LH

England
+ 44 7710 297631

g.potter@btconnect.com

ABSTRACT

Most of the published approaches to collaborative filtering and
recommender systems concentrate on mathematical approaches
for identifying user / item preferences. This paper demonstrates
that by considering the psychological decision making processes
that are being undertaken by the users of the system it is possible
to achieve a significant improvement in results. This approach is
applied to the Netflix dataset and it is demonstrated that it is
possible to achieve a score better than the Cinematch score set at
the beginning of the Netflix competition without even considering
individual preferences for individual movies. The result has
important implications for both the design and the analysis of the
data from collaborative filtering systems.

Categories and Subject Descriptors

J4 [Social and Behavioral Sciences]: Psychology

General Terms
Algorithms, Human Factors,

Keywords
Psychology, Behavioral Economics, recommender systems,
collaborative filtering.

1. INTRODUCTION

Collaborative filtering techniques are increasingly being used to
make personalized recommendations to users based on their
perceived tastes and preferences. These tastes and preferences are
often elicited by asking the user to score items on a scale
(typically, but not always from 1 to 5). From these scores the
underlying preferences are inferred by considering the
interdependencies between different users and different products
based on these scores and then these preferences are used to
recommend items.

It is important to note that when a user is using such a system, the
user is being asked to perform two separate tasks. First they are
being asked to estimate their preference for a particular item and
secondly they are being asked to translate that preference into a
score on whatever rating scale is being used. There is a significant
issue with this approach in that the scoring system, therefore, only
produces an indirect estimate of the true preferences of the user.
In mathematical terms this can be expressed as:

Score = f user(item preference user) (1)

Where fuser() is some, as yet, unspecified scoring function that
translates individual item preferences into a score on the rating
scale being used and maybe different for different users.

If the users of the system are using different scoring functions,
then in order to make true comparisons between the underlying
preferences of different users, it is first necessary to normalize the
effects of the different scoring systems being used by the different
users of the system.

 In October 2006, the online movie rental company, Netflix
announced a contest to predict movie ratings. To achieve this
Netflix released a comprehensive dataset of more than 100 million
ratings made by 480,000 customers on 17,770 movies. We are
indebted to Netflix for releasing such a large dataset of clean data.
This dataset is almost undoubtly the largest dataset of repeated
decisions by individuals available publicly and provides a rich set
of data for the analysis of human decision making.

This paper:

• Examines whether different users use different scoring
functions

• outlines a number of approaches for normalizing the
effects of the different scoring functions being used by
individual users of the system,

• demonstrates the impact that the normalization of the
scoring function can achieve, and

• discusses the implications of the findings for the future
development of collaborative filtering and rating
systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference 2nd Netflix-KDD workshop, August 24th,2008,Las Vegas,NV,USA
Copyright 2008 978-1-60558-265-8/08/0008.

2. Do different users use different scoring
functions?

Apriori, it seems very unlikely that every user utilises exactly the
same scoring function when translating an underlying preference
for an item into a score on a rating scale, especially given the fact
that detailed instructions for the conversion of underlying
preferences into numerical ratings are rarely given to users of
collaborative filtering and recommendation systems.

To investigate whether this was true with the Netflix
recommendation system, we first analysed the mean score for each
user who had more than 100 ratings on the database. The
distribution of the user means are shown below.

Figure 1 – Distribution of mean scores by user

As can be seen, the mean scores by user range from 1 to 4.9, i.e. at
least one user rated all the movies rated a 1 and at least one user
gave an average score of 4.9 out of 5. Even excluding outliers
Figure 1 demonstrates that there is a wide dispersion around the
average score.

It is, impossible, using such a simple analysis, to say with
certainty that the differences are due to the scoring function being
used, as it is possible that an individual has only seen films that
they dislike or like. However, discussions with users of rating
scales suggest anecdotally that they do use the rating system in
different ways – some reserving the highest score only for films
that they regard as truly exceptional, others using the score for
films that they simply enjoy. Indeed some Netflix users (personal
correspondence) go to considerable trouble to calibrate their
scores with others. One group of users, for example, determined
to rank all movies on the Netflix system, joined together and
agreed a specific meaning for each of the scores that were
available to them before starting the scoring exercise. We,
therefore, believe that at least some of the variance of the mean
scores can be attributed to users using the scoring scale in
different ways.

Similarly, we examined the variance of the scores used by each
user, and the results are shown below

Figure 2 – Distribution of variances of scores by customer

Again, it is possible, that these scores represent a consistent
translation of the underlying preferences between the users of the
system for the movies that they have watched, some users having
only small differences in preferences of the films they have rated,
and others having large differences in preferences, but the large
range of the variance of scores used by different users does
potentially imply that different users are translating their
preferences into scores using different scoring functions, with
some users using a much narrower range of scores than others.

3. Developing a scoring function

3.1 Basic scoring Function

There are an infinite number of possible scoring functions that
could be used, and without an explicit explanation from each user
it is impossible to be exact about the function that might be used.

To derive a set of possible candidate functions for examination
and testing, we therefore reversed the problem and considered
what data we had available from which we could derive such
functions.

The Netflix dataset contains triplets comprising of an id for the
movie, an id for the customer and the date on which the rating
was made. This suggests that, at the most abstract level, a starting
point that does not require additional data collection or
experimentation would be to examine functions of the form.

Score = fuser,movie,date (preferenceuser,movie,date) (2)

Where f is a scoring function and preference is a preference
function both depending on the user, the movie and the date.

There are still, of course, an infinite number of functions that meet
the overall structure described in equation 2. We rely heavily on
introspection and discussion with rating scale users to narrow the
candidate set of functions to be examined.

To test the impact of applying different candidate scoring
functions, we first derived a very simple preference function. The
preference function that we used was the mean score for a

particular movie across the whole population. i.e. we assumed
that different films would be preferred in different amounts, but
they would be preferred equally by everyone in the population.
When this function was used on its own, the score achieved on the
probe data set was an rmse of 1.0527.

The initial and simplest scoring function that we explored was
simply to assume that the score consisted of two components:

Scoremovie,customer = preferencemovie + biascustomer (3)

A similar function has already been explored by Bell and Koren
[1]. Their strategy was to consider each effect separately and then
to subtract that effect from the score and to calculate the next
effect on the remaining residual. So with the above function, they
first calculated a movie preference by taking the mean score for
each movie. They then subtracted it from the original rating and
calculated a customer bias based on taking the mean of the
residuals by customer. Their results were further enhanced by the
use of shrinkage factors, whereby only a proportion of the biases
were included depending on the number of datapoints used to
calculate them.

The approach we took was different. The mean score for a film,
may, for example, be influenced by those who have watched it.
So if a film is rated mainly by users who tend to give low scores
then the mean for the movie will be understated when compared
to the mean that would be achieved if the whole population had
rated the movie. Similarly, a customer who had only watched
poor quality (low preference) films will have an average score that
is lower than the average score that would be achieved if they had
watched all the films on the database (and vice versa).

The standard approach within psychology for examining such
effects would be to use factor analysis. However, given the
number of factors that are involved, (480,000 customer factors
and 17,770 movie factors), despite the simplicity of the function it
is not possible to solve for both customer bias and movie
preference simultaneously. We tried a number of approaches to
solving the equations including gradient descent, but found that
the most effective both in computer time and in the accuracy of
results was simply to iterate around the equation. So we first
calculated the preference movie by taking the mean score per movie
and then calculated the bias customer . by taking the mean score of
the residuals once the preferencemovie had been calculated. We then
looped around these equations until the change in the score
achieved on the training values fell below a small threshold value.

To test whether this led to an improvement, we use the published
results from [1] as a comparison. The results are shown in Table
1 below. Including the customer bias does lead to a substantial
improvement in scores, bringing the score on the probe dataset
down to an rmse of 0.9824.

In pseudocode, the algorithm works as follows.

Set movie preference = 0 : customer bias = 0

Loop
 Subtract customer bias
 Add back movie preference
 Calculate movie preference
 Subtract movie preference
 Add back customer bias
 Calculate customer bias
 Calculate training score

End loop when change in score < threshold.

3.2 Including the range of scores used by a
user

Figure 2 suggests that the results might also be improved if we
could take into account the range of the scores used by a user. To
account for the range of scores being used we assumed that the
score for each user,movie pair was a result of three factors, a
movie preference, a customer preference, and the variance of
scores used by the user as shown in (4) below.

Score = (preferencemovie + bias user) * (variance user
) 0.5 (4)

To calculate the parameters in this model, we first divided each
users’ scores by the standard deviation of the scores of the user
and then repeated the iterative algorithm. We then reversed the
process and multiplied the calculated movie preferences and
customer biases by the standard deviation of each user’s scores to
derive the final scores. The results are shown below.

Table 1. Scores of simple bias model

Approach Score*

BellKor [1] .9841

Iterative algorithm .9824

Iterative algorithm plus variance adjustment .9808

*Note all scores are reported on the probe dataset with the probe
data removed from the training data. The scores reported are the
RMSE scores.

Again, an improvement is achieved, suggesting that the
incorporation of a scoring function calibrated for an individual
user can lead to an improvement in results. It is interesting to
note that these scores were achieved without the fitting of any
shrinkage factors.

3.3 Adding other effects

We have considered a wide range of other models. One of the
simplest and most powerful that we found was to include the
impact of the date of the rating. It seems intuitively plausible that

a user would allocate different scores depending on the mood that
they were in on the date of the rating. It also seems unlikely that
an individual user would apply their scoring function in exactly
the same way at each date. The Netflix dataset contains a
considerable number of occasions where a user has rated more
than one movie at a time, so it is possible to extract from the
dataset an average score on a particular day. In this case the
function that we fitted was:

Score = (preference user + bias customer + bias day) * (variance user)
0.5

In this case we found that the simple iterative approach did not
work as well as using gradient descent. To achieve this we
differentiated the function .

Error = (Score/variance user - preference - �biases)2 (6)

by each of the biases and then iterated through each score and
adjusted each of the biases according to the formula:

bias = bias + lrate * difference (7)

where lrate = the learning rate typically 0.001

difference = Score/variance user - �biases

Although we did not introduce any regularization into the
algorithm to control the size of the biases we did find that the
results could be improved if a different learning rate was used for
the different biases. We experimented with a variety of different
learning rates and found that the ones that worked best were of the
form:

Lrate = lrate * n cust / (n cust + �) (8)

Where n = the number of movies scored by a particular customer.

This was used for the customer bias and similar learning rates
were used for the movie preferences and the day bias. When we
calculated these biases using a variable learning rate we achieved
a score of 0.9675 rmse on the probe dataset.

3.4 Adding the effects together

We have used this approach to simultaneously examine many
such effects and have achieved a variety of different scores. For
comparison purposes we have included our results on the above
effects together with the global effects identified by [1]. These
results are shown below.

When the probe data is included within the training data and a
submission made to the competition, the result is 0.9488. This
score comfortably exceeds the score achieved by the Cinematch
algorithm at the beginning of the competition and is achieved

without any consideration of how much an individual user likes or
dislikes an individual movie.

Table 2 – Results of Bellkor vs gradient descent algorithm

Effect Bellkor* New algorithm

Overall mean 1.1296 N/a

Movie effect 1.0527 1.0527

User bias .9841 .9808

Day bias N/a .9675

User * time(user) ^ .5 .9809 .9680

User * Time (movie) ^.5 .9786 .9667

Movie * Time (movie) ^ .5 .9767 .9653

Movie * Time (user) ^.5 .9759 .9643

User * Movie average .9719 .9598

User * Movie support .9690 .9582

Movie * User average .9670 .9561

Movie * User support .9657 .9552

For a description of the global effects see [1].

4. Summary

The above shows that the introduction of even simple individual
scoring functions for users can have a significant impact on the
overall results achieved. Of more importance, developers of
collaborative filtering and recommendation systems need to
recognize that their choice of scale and design of their system will
introduce noise that will mask the real preferences of the
individual.

It is our view that when it is important to extract exact preference
information and preference orderings between items, then the
designers of such systems should consider other options such as
the paired comparison of items. These types of system have a
significant advantage in that they only require users to provide
preference ordering information and the users do not, therefore,
have to translate their preferences into a scale. Because one can
also examine the transitivity of the results these systems provide
an inbuilt estimate of the reliability of the results. The
disadvantage, of course, is a more complex user interface and
users may not be prepared to respond to such types of system.

Decision making biases can be identified in the Netflix dataset
and incorporation of these biases into a scoring function can
significantly improve results. Much more work needs to be done
to understand further these biases and how they can be taken into
account when designing and analyzing collaborative filtering and
recommendation systems.

5. REFERENCES
1. R.Bell and Y.Koren, “Scalable Collaborative Filtering

with Jointly Derived Neighborhood Interpolation
Weights”, IEEE International Conference on Data
Mining (ICDM’07), IEEE, 2007.

From hits to niches? or how popular artists can bias music
recommendation and discovery

Òscar Celma
Music Technology Group
Universitat Pompeu Fabra

Barcelona, SPAIN
oscar.celma@iua.upf.edu

Pedro Cano
Barcelona Music and Audio Technologies

Llacuna 162, 08018
Barcelona, SPAIN

pedro.com

ABSTRACT

This paper presents some experiments to analyse the pop-
ularity effect in music recommendation. Popularity is mea-
sured in terms of total playcounts, and the Long Tail model
is used in order to rank music artists. Furthermore, metrics
derived from complex network analysis are used to detect
the influence of the most popular artists in the network of
similar artists.

The results from the experiments reveal that—as expected
by its inherent social component—the collaborative filtering
approach is prone to popularity bias. This has some conse-
quences on the discovery ratio as well as in the navigation
through the Long Tail. On the other hand, in both audio
content–based and human expert–based approaches artists
are linked independently of their popularity. This allows one
to navigate from a mainstream artist to a Long Tail artist
in just two or three clicks.

Categories and Subject Descriptors

H3.3 [Information Search and Retrieval]: Information
filtering, Selection process; G.2.2 [Graph Theory]: Graph
algorithms

Keywords

recommender systems, popularity, long tail, evaluation, com-
plex network analysis

1. INTRODUCTION
The Long Tail is composed by a very few popular items,

the well–known hits, and the rest, located in the heavy tail,
that does not sell that well [1]. The Long Tail offers the pos-
sibility to explore and discover—using automatic tools; such
as recommenders—from vast amounts of data. Until now,
the world was ruled by the Hit or Miss classification, due in
part to the shelf space limitation of the brick–and–mortar
stores. A world where a music band could only succeed sell-
ing millions of albums, and touring worldwide. Nowadays,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Netflix-KDD Workshop, August 24, 2008, Las Vegas, NV, USA.
Copyright 2008 ACM 978-1-60558-265-8/08/0008 ...$5.00.

we are moving towards the Hit vs. Niche idea, where there
is a large enough availability of choice to satisfy even the
most ‘Progressive–obscure–Swedish–metal” fan. The prob-
lem, though, is to filter and present the right artists to the
user, according to her musical taste.

Indeed, in his book [1], Chris Anderson introduces a cou-
ple of (among others) very important conditions to exploit
the niche markets. These are: (i) make everything avail-
able, and (ii) help me find it. It seems that the former
condition is already fulfilled; the distribution and inventory
costs are nearly negligible. Yet, to satisfy the latter we need
recommender systems that exploit the “from hits to niches”
paradigm. The main question, though, is whether current
recommendation techniques are ready to assist us in this dis-
covery task, providing recommendations of the hidden jewels
in the Long Tail. In fact, recommenders that appropriately
discount popularity may increase total sales [9], as well as
potentially increase the margins by suggesting more novel
or less known tunes.

Some answers are provided in this paper, in the context of
the music domain. The analysis is not performed in terms
of classic precision and accuracy of the recommendations,
but focusing on how the algorithms behave regarding item
popularity. Actually, popularity is the element that defines
the characteristic shape of the Long Tail.

This paper is structured as follows: section 2 introduces
the Long Tail model. This is the first step needed in or-
der to use artist popularity information. Section 3 focuses
on analysing the artists’ similarity graph, created using any
item–based recommendation algorithm. The metrics allows
us to characterise the intrinsic topology of the artist network
(e.g. are the hubs in the recommendation network the most
popular artists?). Then, section 4 presents the experiments
performed in the context of the music domain, comparing
three algorithms (collaborative filtering, content–based, and
human experts). Finally, in section 5 we discuss the main
findings, and conclude with future work in section 6.

2. THE LONG TAIL MODEL
The Long Tail of a catalog is measured in terms of fre-

quency distribution (e.g. purchases, downloads, etc.), ranked
by item popularity. It has been largely acknowledged that
item popularity can decrease user satisfaction and novelty
detection in the recommendation workflow, by providing ob-
vious recommendations [10, 15].

As an example, Figure 1 (left) depicts the Long Tail for
260,525 music artists1. The horizontal axis contains the list

1The data was gathered from last.fm website during July,

Figure 1: (left) The Long Tail of 260,525 music artists. A log–linear plot depicting artist rank in terms
of total playcounts (e.g. at top–1 there is The Beatles with more than 50 million total playcounts). Data
gathered from last.fm, during July 2007. (right) Cumulative percentage of playcounts from the left figure.
Top–737 artists accumulates the 50% of total playcounts (N50). The curve is divided in three parts: head,
mid and tail (Xhead→mid = 82, and Xmid→tail = 6, 655). The fitted model, F (x), has α = 0.73 and β = 1.02.

of artists ranked by total playcounts. E.g. The Beatles, at
position 1, has more than 50 million playcounts.

The Long Tail model, F (x), simulates any Long Tail curve
[12]. It models the cumulative distribution of the Long Tail
data. F (x) equals to the share of total volume covered by
objects up to rank x:

F (x) =
β

(N50

x
)α + 1

(1)

where α is the factor that defines the S–shape of the func-
tion, β is the total volume share (and also describes the
amount of latent demand), and N50 is the number of objects
that cover half of the total volume, that is F (N50) = 50.

Once the Long Tail is modelled using F (x), we can di-
vide the curve in three parts: head, mid, and the tail. The
boundary between the head and the mid part of the curve
is defined by:

Xhead→mid = N
2/3
50 (2)

Likewise, the boundary between the mid part and the end
of the tail is:

Xmid→tail = N
4/3
50 ' X2

head→mid (3)

Figure 1 (right) depicts the cumulative distribution of the
Long Tail of 260,525 music artists. Interestingly enough,
the top–737 artists account for 50% of the total playcounts,
F (737) = 50, and only the top–30 artists hold around 10% of
the plays. In this sense, the Gini coefficient measures the in-
equality of a given distribution, and it determines the degree
of imbalance. In our Long Tail example, 14% of the artists
hold 86% of total playcounts, yielding a Gini coefficient of
0.72. This value denotes an imbalanced distribution, higher

2007. Last.fm provides plugins for virtually any desktop
music player to track users’ listening behaviour.

than the 80/20 Pareto rule (0.6). Figure 1 (right) shows
the head of the curve, Xhead→mid which consists of only 82
artists, whereas the mid part has 6,573 (Xmid→tail = 6, 655).
The rest of the artists are located in the tail part.

An interesting work is to analyse artist similarity accord-
ing to the popularity. In our case, this is performed in the
context of a network that links the artists (nodes) according
to their resemblance. The following section is devoted to
explain the metrics that we use.

3. COMPLEX NETWORK ANALYSIS
We propose several metrics to analyse an item–based rec-

ommendation graph; G := (V, E), being V a set of nodes,
and E a set of unordered pairs of nodes, named edges. In
our case, the items (i.e. music artists) are nodes, and the
edges denote the (weighted) similarity among the items, us-
ing any item–based recommendation algorithm. The metrics
used are derived from Complex Network and Social Network
analysis.

3.1 Metrics

3.1.1 Navigation

The average shortest path (or mean geodesic length)
measures the distance between two vertices i and j. They
are connected if one can go from i to j following the edges
in the graph. The path from i to j may not be unique. The
minimum path distance (or geodesic path) is the shortest
path distance from i to j, dij . The average shortest path in
the network is:

〈d〉 =
1

1
2
n(n + 1)

X

i,j∈V,i6=j

dij (4)

In a random graph, the average path approximates to:

〈dr〉 ∼
logN

log 〈k〉
, (5)

where N = |V |, and 〈k〉 denotes the mean degree of all
the nodes.

The longest path in the network is called its diameter
(D). In a recommender system, average shortest path and
diameter inform us about the global navigation through the
network of items.

The strong giant component, SGC, of a network is the
set of vertices that are connected via one or more geodesics,
and are disconnected from all other vertices. Typically, net-
works possess one large component that contains a majority
of the vertices. It is measured as the % of nodes that includes
the giant component. In a recommender system, SGC in-
forms us about the catalog coverage, that is the total per-
centage of available items the recommender recommends to
users [10].

3.1.2 Connectivity

The degree distribution, pk, is the number of vertices
with degree k:

pk =
X

v∈V | deg(v)=k

1, (6)

where v is a vertex, and deg(v) its degree. More fre-
quently, the cumulative degree distribution (the fraction of
vertices having degree k or larger), is plotted:

P (k) =
∞

X

k′=k

pk′ (7)

A cumulative plot avoids fluctuations at the tail of the
distribution and facilitates the evaluation of the power co-
efficient γ, in case the network follows a power law. In a
directed graph, that is when a recommender algorithm only
computes the top–n most similar items, P (kin) and P (kout),
the cumulative incoming (outcoming) degree distribution,
are more informative. Cumulative degree distribution de-
tects whether a recommendation network has some nodes
that act as hubs. That is, that they have a large amount
of attached links. This clearly affects the recommendations
and navigability of the network.

Another metric used is the degree correlation. It is
equal to the average nearest–neighbour degree, knn, as a
function of k:

knn(k) =
∞

X

k′=0

k′p(k′|k), (8)

where p(k′|k) is the fraction of edges that are attached
to a vertex of degree k whose other ends are attached to
vertex of degree k′. Thus, knn(k) is the mean degree of the
vertices we find by following a link emanating from a vertex
of degree k.

A closely related concept is the degree–degree corre-
lation coefficient, also named assortative mixing, which is
the Pearson r correlation coefficient for degrees of vertices
at either end of a link. A monotonically increasing (decreas-
ing) knn means that high–degree vertices are connected to
other high–degree (low–degree) vertices, resulting in a pos-
itive (negative) value of r [17]. In recommender systems, it
measures to which extent nodes are connected preferentially
to other nodes with similar characteristics.

3.1.3 Clustering

The clustering coefficient, C, estimates the probability
that two neighbouring vertices of a given vertex are neigh-
bours themselves. C is defined as the average over the local
measure, Ci [21]:

Ci =
2|Ei|

ki(ki − 1)
, (9)

where Ei is the set of existing edges that are direct neigh-
bours of i, and ki the degree of i. Ci denotes, then, the
portion of actual edges of i from the potential number of
total edges.

For random graphs, the clustering coefficient is defined
as Cr ∼ 〈k〉 /N . Typically, real networks have a higher
clustering coefficient than Cr.

3.2 Related work in music recommendation
During the last few years, complex network analysis has

been applied to music information retrieval in general, and
music recommendation in particular. In [6], we compared
different music recommendation algorithms based on the
network topology. The results are aligned with our main
findings: social based recommenders present a scale–free
network topology, whereas human expert–based controlled
networks does not.

An empirical study of the evolution of a social network
constructed under the influence of musical tastes, based on
playlist co-occurrence, is presented in [14]. The analysis
of collaboration among contemporary musicians, in which
two musicians are connected if they have performed in or
produced an album together, is presented in [18]. In [2], the
authors present a user clustering algorithm that exploits the
topology of a user–based similarity network.

A network of similar songs based on timbre similarity is
presented in [3]. Interestingly enough, the network is scale–
free, thus a few songs appear in virtually any list of similar
tracks. This has some problems when generating automatic
playlists. [11] presents an analysis of the Myspace social net-
work, and conclude that artists tend to form on-line com-
munities with artists of the same musical genre.

3.3 Network analysis and the Long Tail model
Once each item in the recommendation network is located

in the head, mid, or tail part (see section 2), the next step
is to combine the similarity network with the Long Tail
information. Two main analysis are performed: first, we
measure the similarity among the items in each part of the
curve. That is, for each item that belongs to the head part,
compute the percentage of similar items that are located
in the head, mid and tail part (similarly, for the items in
the mid and tail part). This measures whether the most
popular items are connected with other popular items, and
vice versa. Second, we measure the correlation between an
item’s rank in the Long Tail and its indegree. This allows
us to detect whether the hubs in the network are also the
most popular items. Section 4 presents the experiments re-
garding popularity analysis, comparing three different music
artists recommendation algorithms: collaborative filtering
(CF) from last.fm, content–based audio filtering (CB), and
expert–based recommendations from Allmusic.com (AMG)
musicologists.

Property CF (Last.fm) CB Expert–based (AMG)

N 122,801 59,583 74,494
〈k〉 14.13 19.80 5.47

〈dd〉 (〈dr〉) 5.64 (4.42) 4.48 (4.30) 5.92 (6.60)
D 10 7 9

SGC 99.53% 99.97% 95.80%
γin 2.31(±0.22) 1.61(±0.07) NA (exp. decay)

r 0.92 0.14 0.17
C (Cr) 0.230 (0.0001) 0.025 (0.0002) 0.027 (0.00007)

Table 1: Artist recommendation network properties for last.fm collaborative filtering (CF), content–based
audio filtering (CB), and Allmusic.com (AMG) expert–based. N is the number of nodes, and 〈k〉 the mean
degree, 〈dd〉 is the avg. shortest directed path, and 〈dr〉 the equivalent for a random network of size N , and D
is the diameter of the network. SGC is the size of the strong giant component, γin is the power–law exponent
of the cumulative indegree distribution, r is the indegree–indegree Pearson correlation coefficient (assortative
mixing). C is the clustering coefficient, and Cr for the equivalent random network.

4. EXPERIMENTS
In order to put into practice the Long Tail model, and

the properties of item–based recommendation networks, we
performed several experiments in the music recommendation
field. It is worth noting that music is somewhat different
from other entertainment domains, such as movies, or books.
Tracking users’ preferences are mostly done implicitly, via
their listening habits. Moreover, a user can consume an item
(i.e. a track, or a playlist) several times, even repeatedly
and continuously. Regarding the evaluation process, music
recommendation allows us instant feedback with a, say, 30
seconds excerpt.

The experiments aim at evaluating the popularity effect
using three (music artists) recommendation approaches: col-
laborative filtering (CF), content–based audio similarity (CB),
and human expert–based resemblance. We measure the pop-
ularity effect by contrasting the properties from the net-
work with the Long Tail information of the catalog (e.g. are
the hubs in the recommendation network the most popular
items? Are the most popular items connected with other
popular items, and vice versa?).

4.1 Datasets
CF artist similarity was gathered from last.fm, using Au-

dioscrobbler web services2, and selecting the top–20 similar
artists. Last.fm has a strong social component, and their
recommendations are based on the classic item–based algo-
rithm3 [20].

To compute artist similarity in the CB network, we ap-
ply content–based audio analysis in a music collection (T)
of 1.3 Million tracks of 30 seconds samples. Our audio anal-
ysis considers not only timbral features (e.g. Mel frequency
cepstral coefficients), but some musical descriptors related
to rhythm and tonality, among others [7]. Then, to compute
artist similarity we used the most representative tracks, Ta,
of an artist a, with a maximum of 100 tracks per artist.
For each track, ti ∈ Ta, we obtain the most similar tracks
(excluding those from artist a):

2http://www.audioscrobbler.net/data/webservices/
3Although, is quite possible that they are using, as well,
some information gathered from social tagging.

sim(ti) = argmin
∀t∈T

(distance(ti, t)), (10)

and get the artists’ names, Asim(ti), of the similar tracks.
The list of (top–20) similar artists of a is composed by all
Asim(ti), ranked by frequency and weighted by the audio
similarity distance:

similar artists(a) =
[

Asim(ti), ∀ti ∈ Ta (11)

Finally, we gather expert recommendations from All Mu-
sic Guide (AMG)4. AMG makes use of professional editors
to interconnect artists, according to several aspects, such as:
influenced by, followers of, similar artists, performed songs
by, etc. In order to create an homogeneous network, we only
make use of the similar artists links. Artists from both CB
and expert–based networks are a subset of the CF artists.

4.2 Network analysis
The network properties of the three datasets are shown in

Table 1. All the networks present the small–world phenom-
ena [21]. They have a small average directed shortest path,
〈dd〉, similar than its equivalent random network, 〈dr〉. Also
the clustering coefficients, C, are significantly higher than
the equivalent random networks Cr. This is an important
property, because recommender systems can be structurally
optimised so as to allow users surfing to any part of a music
collection with a small number of mouse clicks, and so that
they are easy to navigate using only local information [13].

AMG network has a giant component, SGC, smaller than
CF and CB networks. Around 4% of their artists are iso-
lated, and cannot be reached from rest (in the giant com-
ponent). This has strong consequences with regard to the
coverage of the recommendations, as well as the navigation
for the artists located in the “small islands”.

Regarding cumulative indegree distribution, AMG has an
exponential decay, whereas CF and CB follow a power law.
CF has a power–law exponent, γ = 2.31, similar to those
detected in many scale–free networks, including the world
wide web linking structure [5]. These networks are known
to show a right–skewed power law distribution, P (k) ∝ k−γ

with 2 < γ < 3, relying on a small subset of hubs that
control the network [4].
4http://www.allmusic.com

Figure 2: Indegree–indegree correlation (assortative
mixing) for the three artist recommendation net-
works: last.fm collaborative filtering (CF), Content–
based (CB), and Allmusic.com experts. CF clearly
presents the assortative mixing phenomenon (rCF =
0.92). Neither CB nor Expert–based present any
correlation (rCB = 0.14, rExpert = 0.17).

Another difference is the assortative mixing, or indegree–
indegree correlation, presented in Figure 2. CF presents a
high assortative mixing (r = 0.92). That means that the
most connected artists are prone to be similar to other top
connected artists. Neither CB nor Expert–based present
indegree–indegree correlation, thus artists are connected in-
dependently of their inherent properties.

4.3 Popularity analysis
We have outlined, in the previous section, the main topo-

logical differences among the three networks. Now, we add
the popularity factor (measured in terms of total playcounts
per artist), by combining artists’ rank in the Long Tail with
the results from the network analysis. Two experiments are
performed. The former reports the relationships among pop-
ular (and unknown) artists. The latter experiment aims at
analysing the correlation between artists’ indegree and its
popularity.

4.3.1 Artist similarity

Figure 3 depicts the correlation among artist’s total play-
counts and the total playcounts of its similar artists. That
is, given the total playcounts of an artist (x axis) it shows, in
the vertical axis, the average playcounts of its similar artists.
CF network has a clear correlation (rCF = 0.46); the higher
the playcounts of a given artist, the higher the avg. play-
counts of its similar artists. Neither CB nor AMG present
any correlation (rCB = 0.08, rEX = 0.09). Thus, artists are
linked independently of their popularity.

Table 2 presents artist similarity divided into the three
sections of the Long Tail curve. Given an artist, ai, it shows
(in %) the Long Tail location of its similar artists (results are
averaged over all artists). In the CF network, given a very
popular artist, the probability of reaching (in one click) a
similar artist in the tail is zero. Actually, half of the similar

Method ai → aj Head Mid Tail

CF top–20
Head 45.32% 54.68% 0%
Mid 5.43% 71.75% 22.82%
Tail 0.24% 17.16% 82.60%

CB top–20
Head 6.46% 64.74% 28.80%
Mid 4.16% 59.60% 36.24%
Tail 2.83% 47.80% 49.37%

Expert
Head 5.82% 60.92% 33.26%
Mid 3.45% 61.63% 34.92%
Tail 1.62% 44.83% 53.55%

Table 2: Artist similarity and their location in the
Long Tail. Given an artist, ai, it shows (in %) the
Long Tail location of its similar artists (results are
averaged over all artists). Each row represents, also,
the Markov chain transition matrix for CF, CB, and
expert–based methods.

artists are located in the head part, that contains only 82
artists, and the rest in the mid area. Artists in the mid part
are tightly related to each other, and only 1/5 of the similar
artists are in the tail part. Finally, given an artist in the tail,
its similar artists remain in the same area. Contrastingly,
CB and expert–based promote much more the mid and tail
parts in all the cases (specially in the head part).

Moreover, a Markovian stochastic process [16] is used to
simulate someone surfing the recommendation network. In-
deed, each row in Table 2 can be seen as a Markov chain
transition matrix, M , being the head, mid and tail parts
the different states. The values of M denote the transi-
tion probabilities, pi,j , between two states i, and j (e.g.
pCF

head,mid = 0.5468). The Markovian transition matrix, Mk,
denotes the probability of going from any state to another
state in k steps (clicks). The initial distribution vector, P (0),
sets the probabilities of being at a determined state at the
beginning of the process. Then, P (k) = P (0) × Mk, denotes
the probability distribution after k clicks, starting in the
state defined by P (0).

Using P (k) and defining P (0) = (1H , 0M , 0T), we can get
the probability of reaching the tail, starting in the head part.
Table 3 shows the number of clicks needed to reach the tail
from the head, with a probability phead,tail ≥ 0.4. In CF,
one needs five clicks to reach the tail, whereas in CB and
expert–based only two clicks are needed.

Finally, the stationary distribution π is a fixed point (row)
vector whose entries sum to 1, and that satisfies π = πM .
The last two columns in Table 3 present the stationary dis-
tribution vector for each algorithm, and the number of steps
to converge to π, with an error ≤ 10−6. CF needs more than
three times the number of steps of CB or expert–based in
order to reach the steady state. Even though the probability
to stay in the tail in CF is higher than CB and expert–based,
this is due to the high probability to remain in the tail once
is reached (pCF

tail,tail = 0.8260).

4.3.2 Artist indegree

Up to now, we have analysed popularity in terms of rela-
tionships among the artists. Now we analyse the correlation
between artists’ indegree (potential hubs in the network)
and its popularity. As a starting point, we present in Ta-
ble 4 the top–10 indegree artists for each network. CF and

Method k P(k), with P (0) = (1H , 0M , 0T) and phead,tail ≥ 0.4 π n

CF 5 (0.075H , 0.512M , 0.413T) (0.044H , 0.414M , 0.542T) 26
CB 2 (0.038H , 0.562M , 0.400T) (0.037H , 0.550M , 0.413T) 7

Expert 2 (0.030H , 0.560M , 0.410T) (0.027H , 0.544M , 0.429T) 8

Table 3: Long Tail navigation in terms of a Markovian stochastic process. Second and third columns depict
the number of clicks (k) to reach the tail from the head part, with a probability phead,tail ≥ 0.4. Fourth and
fifth columns show the stationary distribution π, as well as the number of steps, n, to reach π.

Figure 3: A log–log plot depicting the correlation between artist total playcounts and its similar artists
(average values are depicted in black, whilst grey dots display all the values). Pearson r values are: rCF = 0.46
rCB = 0.08, and rEX = 0.09.

CF CB Expert
kin Artist LT pos kin Artist LT pos kin Artist LT pos

976 Donald Byrd 6,362 1,955 George Strait 2,632 180 R.E.M. 88
791 Little Milton 19,190 1,820 Neil Diamond 1,974 157 Radiohead 2
772 Rufus Thomas 14,007 1,771 Chris Ledoux 13,803 137 The Beatles 1
755 Mccoy Tyner 7,700 1,646 The Carpenters 1,624 119 David Bowie 62
755 Joe Henderson 8,769 1,547 Cat Stevens 623 117 Nirvana 19
744 R.E.M. 88 1,514 Peter Frampton 4,411 111 Tool 17
738 Wayne Shorter 4,576 1,504 Steely Dan 1,073 111 Pavement 245
717 U2 35 1,495 Lynyrd Skynyrd 668 109 Foo Fighters 45
712 Horace Silver 5,751 1,461 Toby Keith 2,153 104 Soundgarden 385
709 Freddie Hubbard 7,579 1,451 The Charlie Daniels Band 22,201 103 Weezer 51

Table 4: Top–10 artists with higher indegree (kin) for each recommendation network (spikes in Figure 4).
The table shows too, the artist ranking in the Long Tail (LT pos).

Figure 4: Artist rank in the Long Tail and its indegree, kin (y axis). CF (left) concentrates most of the hubs
in the most popular artists—head and mid parts—, whilst in CB (mid), and expert–based (right) hubs are
spread out through the whole Long Tail.

Figure 5: A log–log plot showing the correlation between artist indegree (kin, in horizontal axis) and its total
playcounts (avg. values in black), in vertical axis. Pearson r values are: rCF = 0.38, rCB = 0.10, and rEX = 0.69.

expert–based contains two and eight mainstream artists, re-
spectively. CF contains U2 and R.E.M., but the rest of the
list if made of more or less well known Jazz musicians, in-
cluding some in the—top of the—tail part. The whole list
in expert–based AMG is made of very popular artists. Our
guess is that the editors connect Long Tail artists with the
most popular ones, either for being influential or because
a lot of bands are followers of these mainstream artists.
On the other hand, CB has a more eclectic top–10 list, as
one could expect. Oddly enough, there is no new or actual
artists, but some classic bands and artists ranging several
musical genres. Some bands are, in fact, quite represen-
tative of a genre (e.g. Lynyrd Skynyrd, and The Charlie
Daniels Band for Southern Rock, The Carpenters for Pop
in the 70’s, George Strait for Country, and Cat Stevens for
Folk Rock). Probably, the indegree is due to being very in-
fluential in its respective musical styles. In some sense, there
are some bands that “cite” their music (i.e. sound similar).
Although, these results might be somewhat biased; CF and
AMG networks are subsets of their whole similar artists’
graph, thus our sampling could not be a good representa-
tion of the whole dataset. Furthermore, the differences in
the maximum indegree value (kin for top–1 artist) among
the three networks are due to the different sizes (N) and av-
erage degree 〈k〉, but mostly to the topology of the networks;
CF and CB follow a power–law cumulative indegree distri-
bution, whereas AMG has an exponential decay. Therefore,
AMG maximum indegree, kin, is much smaller than the CF
and CB ones.

Figure 4 depicts the artist rank in the Long Tail and its in-
degree in the network. The figure shows whether the artists
with higher indegree in the network (hubs) are the most pop-
ular artists, in terms of total playcounts. In both cases, CF
and expert-based networks, the artists with higher indegree
(hubs) are mostly located in the head and mid part, whereas
in CB they are more spread out through all the curve. In a
similar way, Figure 5 presents the correlation between artist
indegree (kin), and total playcounts. Again, both CF and
AMG expert–based confirm the expectations, as there is a
clear correlation between the artist indegree and its total
playcounts (rCF = 0.38, rEX = 0.69). Artists with high
indegree are the most popular ones. In CB, given a high
indegree value it contains—on average—artists ranging dif-
ferent levels of popularity (rCB = 0.10).

5. DISCUSSION
The results show that last.fm CF tends to reinforce pop-

ular artists, at the expense of discarding less–known mu-
sic. Thus, the popularity effect derived from the commu-
nity of users has consequences in the recommendation net-
work. This reveals a somewhat poor discovery ratio when
just browsing through the network of similar music artists.
It is not easy to reach relevant Long Tail artists, starting
from the head or mid parts (see Table 3). Moreover, given
a long tail artist, its similar artists are all located in the tail
area, too. This do not always guarantee novel music; a user
that knows quite well an artist in the Long Tail is likely to
know most of the similar artists, too (e.g. the solo project
of the band’s singer, collaborations with other musicians,
and so on). Thus, these might not be considered good novel
recommendations to that user, but familiar ones. CF con-
tains, then, all the elements to conclude that popularity has
a strong effect in the recommendations because: (i) presents
assortative mixing (indegree–indegree correlation) in Figure
2, (ii) there is a strong correlation between an artist total
playcounts and the total playcounts of its similar artists (see
Figure 3), (iii) most of the hubs in the network are popular
artists (see Figure 5), and (iv) it is not easy to reach relevant
Long Tail artists, starting from the head or mid parts (see
Table 3).

Human expert–based recommendations are more expen-
sive to create, and also have a smaller Long Tail coverage
compared to automatically generated recommendations like
CF and CB. In terms of popularity, the hubs in the expert
network are comprised by mainstream music, thus poten-
tially creating a network dominated by popularity (see Ta-
ble 4 and Figure 5). However, the topology—specially the
exponential decay in the indegree distribution—indicates
that these artists do not act as hubs. Moreover, it does
not present assortative mixing (see Figure 2), so artists are
linked in an heterogeneous way; popular artists are con-
nected with other less–known artists (see Table 2 and Figure
3). According to the stationary distribution π (see Table 3),
the key Long Tail area in CB and expert–based AMG are
the artists located in the mid part. These artists allow to
navigate inside the Long Tail acting as entry points, as well
as main destinations when leaving the Long Tail. Users that
listen to mainly very unknown music are likely to discover
artists that are in the mid part, and that are easily reachable

from the artists in the tail. One should pay attention, too,
to the quality data in the Long Tail. Assuming that there
exists some extremely poor quality music, CB is not able to
clearly discriminate against it. In some sense, the popularity
effect drastically filters these low quality items. Although, it
has been proved in [19] that increasing the strength of social
influence increased both inequality and unpredictability of
success and, as a consequence, popularity was only partly
determined by quality.

Finally, we need to evaluate the quality of the relation-
ships among artists, as well as the popularity effect when
providing novel, unknown recommendations to the users.
Without any user intervention, then, it is impossible to eval-
uate the quality and user satisfaction of the recommenda-
tions, which does not necessarily correlate with predicted
accuracy [15]. In this sense, our incoming work [8] presents
a user–centric experiment done with 288 subjects and 5,573
rated songs. The results indicate that even though CF rec-
ommends less novel items than CB and expert–based, the
users’ perceived quality is better than those recommended
by CB and human expert methods.

6. CONCLUSIONS
Recommender systems should assist us in the process of

filtering and discovering relevant information hidden in the
Long Tail. In our experiments, popularity is the element
that defines the characteristic shape of the Long Tail. In
this sense, we have analysed the popularity effect in three
different music recommendation approaches. We measure
popularity in terms of total playcounts, and the Long Tail
model is used in order to rank all music artists. As expected
by its inherent social component, the collaborative filtering
approach is prone to popularity bias. This has some conse-
quences on the discovery ratio as well as in the navigation
through the Long Tail.

Future work includes expanding the analysis of the recom-
mendation network, taking into account its dynamics. This
could be used, for instance, to detect “hype” items, that be-
come popular in a very short period of time.

7. ACKNOWLEDGMENTS
This work was partially funded by the Pharos (IST-FP6-

45035) and Variazoni (e-Content plus) projects, sponsored
by the European Commission.

8. REFERENCES

[1] C. Anderson. The Long Tail. Why the future of
business is selling less of more. Hyperion Verlag, 2006.

[2] A. Anglade, M. Tiemann, and F. Vignoli.
Complex-network theoretic clustering for identifying
groups of similar listeners in p2p systems. In
Proceedings of the ACM conference on Recommender
systems, pages 41–48, Minneapolis, USA, 2007. ACM.

[3] J.-J. Aucouturier and F. Pachet. A scale-free
distribution of false positives for a large class of audio
similarity measures. Pattern Recognition,
41(1):272–284, 2008.

[4] A. L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512,
October 1999.

[5] A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi.
Power-law distribution of the world wide web. Science,
287:2115a, 2000.

[6] P. Cano, Ò. Celma, M. Koppenberger, and
J. Martin-Buldú. Topology of music recommendation
networks. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 16(013107), 2006.

[7] P. Cano, M. Koppenberger, and N. Wack. An
industrial-strength content-based music
recommendation system. In Proceedings of 28th
International ACM SIGIR Conference, Salvador,
Brazil, 2005.

[8] Ò. Celma and P. Herrera. Evaluating the quality of
novel recommendations. In Proceedings of the 2nd
ACM International Conference on Recommender
Systems, Laussane, Switzerland, 2008.

[9] D. M. Fleder and K. Hosanagar. Blockbuster culture’s
next rise or fall: The impact of recommender systems
on sales diversity. SSRN eLibrary, 2007.

[10] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[11] K. Jacobson and M. Sandler. Musically meaningful or
just noise? an analysis of on-line artist networks. In
Proceedings of the 6th International Symposium on
Computer Music Modeling and Retrieval, Copenhagen,
Denmark, 2008.

[12] K. Kilkki. A practical model for analyzing long tails.
First Monday, 12(5), May 2007.

[13] J. M. Kleinberg. Navigation in a small world. Nature,
406:845, 2000.

[14] J. Martin-Buldú, P. Cano, M. Koppenberger,
J. Almendral, and S. Boccaletti. The complex network
of musical tastes. New Journal of Physics, 9(172),
2007.

[15] S. M. Mcnee, J. Riedl, and J. A. Konstan. Being
accurate is not enough: how accuracy metrics have
hurt recommender systems. In Computer Human
Interaction, pages 1097–1101, New York, USA, 2006.
ACM.

[16] S. P. Meyn and R. L. Tweedie. Markov chains and
stochastic stability. Springer–Verlag, 1993.

[17] M. E. J. Newman. Assortative mixing in networks.
Physical Review Letters, 89(20), 2002.

[18] J. Park, Ò. Celma, M. Koppenberger, P. Cano, and
J. Martin-Buldú. The social network of contemporary
popular musicians. International Journal of
Bifurcation and Chaos, 17(7):2281–2288, 2007.

[19] M. J. Salganik, P. S. Dodds, and D. J. Watts.
Experimental study of inequality and unpredictability
in an artificial cultural market. Science,
311(5762):854–856, February 2006.

[20] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In A. Press, editor, Proceedings of 10th
International World Wide Web Conference, pages
285–295, Hong Kong, 2001.

[21] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
June 1998.

Investigation of Various Matrix Factorization Methods for
Large Recommender Systems

Gábor Takács
∗

Dept. of Mathematics and
Computer Science

István Széchenyi University
Egyetem tér 1.
Győr, Hungary

gtakacs@sze.hu

István Pilászy
Dept. of Measurement and

Information Systems
Budapest University of

Technology and Economics
Magyar Tudósok krt. 2.

Budapest, Hungary

pila@mit.bme.hu

Bottyán Németh,

Domonkos Tikk
†

Dept. of Telecom. and Media
Informatics

Budapest University of
Technology and Economics

Magyar Tudósok krt. 2.
Budapest, Hungary

{bottyan,tikk}@tmit.bme.hu

ABSTRACT

Matrix Factorization (MF) based approaches have proven
to be efficient for rating-based recommendation systems.
In this work, we propose several matrix factorization ap-
proaches with improved prediction accuracy. We introduce
a novel and fast (semi)-positive MF approach that approx-
imates the features by using positive values for either users
or items. We describe a momentum-based MF approach. A
transductive version of MF is also introduced, which uses in-
formation from test instances (namely the ratings users have
given for certain items) to improve prediction accuracy. We
describe an incremental variant of MF that efficiently han-
dles new users/ratings, which is crucial in a real-life rec-
ommender system. A hybrid MF–neighbor-based method
is also discussed that further improves the performance of
MF. The proposed methods are evaluated on the Netflix
Prize dataset, and we show that they can achieve very favor-
able Quiz RMSE (best single method: 0.8904, combination:
0.8841) and running time.

Categories and Subject Descriptors

H.5.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; H.2.8 [Database
Management]: Database Applications—Data Mining

∗All authors are also affiliated with Gravity Research & De-
velopment Ltd., H-1092 Budapest, Kinizsi u. 11., Hungary,
info@gravitrd.com
†Domonkos Tikk was supported by the János Bolyai Re-
search Scholarship of the Hungarian Academy of Science.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Netflix-KDD Workshop, August 24, 2008, Las Vegas, NV, USA.
Copyright 2008 ACM 978-1-60558-265-8/08/0008 ...$5.00.

General Terms

Algorithms, Experimentation

Keywords

recommender systems, collaborative filtering, Netflix Prize,
matrix factorization, neighbor-based methods, incremental
gradient descent methods

1. INTRODUCTION
Recommender systems attempt to profile user preferences

over items and models the relation between users and items.
The task of recommender systems is to recommend items
that fit the user’s taste, in order to help the user in select-
ing/purchasing items from an overwhelming set of choices.
Such systems have great importance in applications such as
e-commerce, subscription-based services, information filter-
ing, etc. Recommender systems providing personalized sug-
gestions greatly increase the likelihood of a customer making
a purchase compared to unpersonalized ones. Personalized
recommendations are especially important in markets where
the variety of choices is large, the taste of the customer is
important, and typically the price of the items is modest.
Typical areas of such services are mostly related to art (esp.
books, movies, music), fashion, food & restaurants, gaming
& humor.

With the growing significance of e-commerce, an increas-
ing number of web-based merchant and rental services use
recommender systems. Some of the major participants of
e-commerce web, like Amazon.com and Netflix, successfully
apply recommender systems to deliver automatically gener-
ated personalized recommendation to their customers. The
importance of a good recommender system was recognized
by Netflix, which led to the announcement of the Netflix
Prize (NP) competition to motivate researchers to improve
the accuracy of their recommender system called Cinematch.
This competition motivated our present work as well.

The approach which makes use of only user activities of
the past1 (e.g. transaction history or user satisfaction ex-
pressed in rating) is termed collaborative filtering (CF). The

1In contrast to the content-based approaches which use also
demographic data to profile users.

NP contest focuses on the case when users express their opin-
ion of items by means of ratings. In this framework, the user
first provides ratings of some items usually on a discrete nu-
merical scale, and the system then recommends other items
based on ratings similar users have already provided.

Matrix factorization based techniques have proven to be
efficient in recommender systems (see Section 1.1) when pre-
dicting user preferences from known user-item ratings. The
main contribution of this work is a number of novel MF
based algorithms that are accurate in predicting user ratings,
and provide scalable solutions for large-scale recommender
systems. In particular, we present

• an MF with biases, which is currently our best per-
forming approach.

• a novel and fast (semi-)positive MF approach that ap-
proximates the factors by using positive values for ei-
ther users or items;

• a momentum-based MF approach;
• a transductive version of MF that makes use of infor-

mation from test instances (namely the ratings users
have given for certain items) to improve prediction ac-
curacy;

• an incremental variant of MF that efficiently handles
new users/ratings (this is crucial in a real-life recom-
mender systems);

• a hybrid MF–neighbor based method is introduced,
which improves the accuracy of MF considerably.

The proposed methods were evaluated on the Netflix Prize
problem, but this does not limit their applicability to this
specific dataset. The presented methods are parts of the
blended solution of our team Gravity in the NP contest.

1.1 Related Work
The first works on the field of CF have been published

in the early 1990s. The Tapestry system [7] used collab-
orative filtering to filter mails simultaneously from several
mailing lists based on the opinion of the community on read-
ings. Over the last broad decade many CF algorithms have
been proposed that approach the problem by different tech-
niques, including similarity/neighborhood based approaches
[10, 13], Bayesian networks [6], restricted Boltzman ma-
chines (RBM) [12], and various matrix factorization tech-
niques [8, 14].

The NP competition boosted the interest in CF, and yielded
a number of related publications. We should here mention
the NP related 1st Netflix-KDD Workshop in 2007 [4], which
brought together top contenders of the contest. The mem-
bers of BellKor/KorBell team2 presented an improved neigh-
borhood based approach in [2], which removes the global ef-
fect from the data—can be considered as normalization—to
improve the accuracy of similarity based interpolative pre-
dictions. Paterek applied successfully various matrix fac-
torization techniques [9] by adding biases to the regularized
MF, postprocessing the residual of MF with kernel ridge re-
gression, using a separate linear model for each movie, and
by decreasing the parameters in regularized MFs.

Our methods are different from the above ones in vari-
ous aspects. BellKor uses alternate least squares, but we
use incremental gradient descent method at weight updates.
Their method does not use the chronological order of ratings,
while we exploit this information in our approaches. The

2Winner of the Progress Prize 2007, awarded to the leading
team at the one-year anniversary of NP.

accuracy of their published MF variants is inferior to ours.
They use only positive and normal MFs, while we propose
the semi-positive version of MF algorithm. The learning of
BellKor’s positive MF is more complicated and consequently
significantly slower than ours, but this complexity does not
yield improvement on the accuracy. Paterek apply a differ-
ent learning scheme that compares unfavorable to ours in
terms of speed and accuracy. We point out that this dif-
ference result in faster training and better accuracy of our
MF methods. Other differences are that Paterek uses less
meta-parameters for his MF methods. The idea of using
test data has also appeared at various authors for differ-
ent approaches: RBM in [12], LM, NSVD1 and NSVD2 in
[9]. Our presented approaches differ slightly from known
ones but these modifications are together important: simul-
taneous feature training, regularization, bias features, early
stopping criteria, incremental gradient descent training al-
gorithm, and date based ordering of the ratings of users.

2. PROBLEM DEFINITION
We define the problem of collaborative filtering in the fol-

lowing setting. A set of I users and a set of J items are
given. A rating record is a quadruple (i, j, dij , xij) repre-
senting that user i rated item j on date dij as xij , where
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, dij ∈ D the ordered set of
possible dates, and xij ∈ X ⊂ R. Typical rating values can
be binary (X = {0, 1}), integers from a given range (e.g.
X = {1, 2, 3, 4, 5}), or real numbers of a closed interval (e.g.
X = [−1, 10]). We assume that a given user can rate a given
item at most once. This justifies the use of subscripts ij for
dates and rating values. We are given a finite set of rating
records, T , which are used for the training. We refer to the
set of all known (i, j) pairs in T as R. Note that typically
|R| ¿ |I| · |J |, because each user rates only a few items.

The rating values can be organized in a rating matrix X
where elements indexed by (i, j) /∈ R are unknown. In this
paper we adopt the evaluation measure of NP contest, the
root mean squared error (RMSE), which is defined as:

RMSE(T) =

√

1

|T |

∑

(i,j)∈T

(x̂ij − xij)2, (1)

where T (i, j) contains user-item pairs on which the ratings
are predicted. The accuracy of predictors are evaluated on
a validation set V; naturally the ratings of V is not used at
the creation of the predictor. Since in recommender systems
the goal is to predict the user preferences from past ratings,
the ratings of T precedes the ratings of V in time.

From now on, without loss of generality, we use terms item
and movie as synonyms. At the prediction of a given rating
we refer to the user as active user, and to the movie as active

movie. Superscript
”
hat” denotes the prediction of the given

quantity, that is, x̂ is the prediction of x.

3. MATRIX FACTORIZATION METHODS
This section exploits our previous work [15] to introduce

matrix factorization. We there discussed Basic MF and Reg-
ularized MF methods, and the incorporation of constant
values in the matrices. The goal of MF techniques is to
approximate X as a product of two much smaller matrices:

X ≈ UM, (2)

where U is an I × K and M is a K × J matrix.

3.1 Basic MF
In the case of the given problem, X has many unknown

elements which cannot be treated as zero. For this case, the
approximation task can be defined as follows. Let U ∈ R

I×K

and M ∈ R
K×J . Let uik denote the elements of U, and mkj

the elements of M. Let uT
i denote a row of U, and mj a

column of M. Then:

x̂ij =

K
∑

k=1

uikmkj = uT
i mj (3)

eij = xij − x̂ij for (i, j) ∈ R

e′ij =
1

2
e2

ij (4)

SSE =
∑

(i,j)∈R

e2
ij , SSE′ =

1

2
SSE =

∑

(i,j)∈R

e′ij

RMSE =
√

SSE/|R| (5)

(U∗,M∗) = arg min
(U,M)

SSE′ = arg min
(U,M)

SSE = arg min
(U,M)

RMSE

(6)

Here x̂ij denotes how the i-th user would rate the j-th movie,
according to the model, eij denotes the training error on the
(i, j)-th rating, and SSE denotes the sum of squared training
errors. Eq. (6) states that the optimal U and M minimizes
the sum of squared errors only on the known elements of X.

In order to minimize RMSE, which is equivalent to min-
imize SSE′, we have applied a simple incremental gradient
descent method to find a local minimum of SSE′, where one
gradient step intend to decrease the square of prediction
error of only one rating, or equivalently, either e′ij or e2

ij .
Suppose we are at the (i, j)-th training example, xij and its
approximation x̂ij is given.

We compute the gradient of e′ij :

∂

∂uik

e′ij = −eij · mkj ,
∂

∂mkj

e′ij = −eij · uik. (7)

We update the weights in the direction opposite of the gra-
dient:

u′

ik = uik + η · eij · mkj , m′

kj = mkj + η · eij · uik. (8)

that is, we change the weights in U and M to decrease the
square of actual error, thus better approximating xij . Here
η is the learning rate. We refer to this method as Basic MF.

3.2 Regularized MF
Consider the following case: let K = 2, m71 = 1, m72 =

0, m81 = 1, m82 = 0.1, x67 = 4, x68 = 3, |{j : (i, j) ∈
R, i = 6}| = 2. In other words, we have two features, and
the 6th user rated only two very similar movies, the 7th and
the 8th, as a 4 and a 3. In this case, according to eq. (6),
the optimal user features are u61 = 4, u62 = −10, which
perfectly describe the ratings of this user: x̂67 = 4, x̂68 = 3.

Apparently such large feature values (x62 = −10) should
be avoided. The common way of overcoming this consists in
applying regularization by penalizing the square of the Eu-
clidean norm of weights, which results in a new optimization

problem:

e′ij = (e2
ij + λ · uT

i · ui + λ · mT
j · mj)/2 (9)

SSE′ =
∑

(i,j)∈R

e′ij (10)

(U∗,M∗) = arg min
(U,M)

SSE′ (11)

Note that minimizing SSE′ is no longer equivalent to mini-
mizing SSE. Similar to the Basic MF approach, we compute
the gradient of e′ij , and update the weights in the direction
opposite of the gradient:

∂

∂uik

e′ij = −eij ·mkj+λ·uik,
∂

∂mkj

e′ij = −eij ·uik+λ·mkj .

(12)

u′

ik = uik + η · (eij · mkj − λ · uik), (13)

m′

kj = mkj + η · (eij · uik − λ · mkj) (14)

For the learning algorithm used in Regularized MF, see
Algorithm 1.

Input: R,X, η, λ, T,V
Output: U∗,M∗

Initialize U and M with small random numbers.1

loop until the terminal condition is met. One epoch:2

iterate over each (i, j) element of T. For xij :3

compute e′ij ;4

compute the gradient of e′ij , according to (12);5

for each k ∈ {1, . . . , K}6

update the i-th row of U and the j-th column7

of M according to (13)–(14);8

calculate the RMSE on V;9

if the RMSE on V was better than in any prev.10

epoch:11

Let U∗ = U and M∗ = M.12

terminal condition: RMSE on V does not decrease13

during two epochs.14

end15

Algorithm 1: Training algorithm for Regularized MF

We remark that after the learning phase, each value of
X can be computed easily using eq. (3), even the “unseen”
values. In other words, the model (U∗, M∗) provides a
description of how an arbitrary user would rate any movie.

3.3 BRISMF
We found a simple way to boost the performance of Reg-

ularized MF, by fixing the first column of U and the second
row of M to the constant value of 1. Under the expression
“fixing to a constant value” we mean not to apply eqs. (13)–
(14) when updating ui1 and m2j , and in the initialization,
to assign them the constant value instead of random val-
ues. The pair for these features (m1j and ui2) can serve as
a bias feature. This simple extension speeds up the training
phase and yields a more accurate model with better gener-
alization performance. We refer to this method as BRISMF
that stands for Biased Regularized Incremental Simultane-
ous MF. In [15] the insertion of constant values into U and
M was proposed. BRISMF is a special way of inserting con-
stant values: all the inserted values are 1-s. We remark that
the bias feature idea was mentioned also by Paterek in [9],

3.4 Semipositive and positive MF
The presented Regularized MF algorithm can assign not

only positive but also negative feature values. Positive ma-
trix factorization techniques have been succesfully applied
in the field of CF [8]. We present a simple extension of Reg-
ularized MF that can give positive and semipositive factor-
izations. We talk about semipositive MF when exactly one
of U and M contains both positive and negative values, and
positive MF, when both contains only non-negative values.

The idea can be summarized as follows: for the (i, j)-th
training example in a given epoch, if uik or mkj becomes
negative due to the application of eqs. (13)–(14), we reset
it to 0. We describe the modified equations for the case
when both user and movie features are required to be non-
negative:

u′
ik = max{0, uik + η · eij · mkj − λ · uik} (15)

m′
kj = max{0, mkj + η · eij · uik − λ · mkj} (16)

If we allow user features to be negative, we can simply use
eq. (13) instead of eq. (15). Allowing only negative movie
features can be treated similarly.

The presented approach can easily be extended to handle
arbitrary box-constraints (i.e. prescribing a minimum and
a maximum possible value for features e.g. 0 and 1). The
handling of arbitrary box constraints can be thought of as a
generalization of constant features, for example in the case
of bias features, 1 ≤ ui1 ≤ 1 and 1 ≤ m2j ≤ 1.

Though the (semi-)positive MF has no advantage over
Regularized MF in the NP Problem, in real recommender
systems the model can provide a better explanation of users’
behaviour. When box constraints are 0 and 1, the feature
values can be thought of as fuzzy membership values.

3.5 Applying momentum method
We can apply momentum method by a small modifica-

tion of the original learning rule. In each learning step the
modification of the weights are calculated not only from the
actual gradient but from the last weight changes too. With
the modification of (13) and (14) we get the following equa-
tions:

uik(t + 1) = uik(t) + ∆uik(t), (17)

∆uik(t) = η · (eij · mkj − λ · uik(t)) + σ · ∆uik(t − 1),

mkj(t + 1) = mkj(t) + ∆mkj(t), (18)

∆mkj(t) = η · (eij · uik − λ · mkj(t)) + σ · ∆mkj(t − 1)

Here σ is the momentum factor. Though momentum MF
is not among our best MFs, it blends well with other MF
methods.

3.6 Retraining user features
The Regularized MF algorithm has a serious disadvantage:

movie features change while we iterate through users. If the
change is large, user features updated in the beginning of an
epoch may be inappropriate at the end of the epoch.

To overcome this problem, we can completely recompute
the user features after the learning procedure. This method
can serve as an efficient incremental training method for
recommender systems. The algorithm can be summarized
as follows:

1. First training: apply an MF algorithm.
2. Let M = M∗. Initialize U randomly.

3. Second training: Apply the same learning procedure
as in the first training step, with the following restric-
tions: skip the weight initialization step; do not change
weights in M, i.e. do not apply eq. (14) or its variants;
store the optimal number of epochs, denote it n∗.

Note that this method can efficiently handle the addition
of new users, or new ratings for an existing user, which is
very important in a real recommender system: we do not
apply the whole training procedure, just reset the weights
of a certain user, and apply the second training procedure
for n∗ epochs, only for that certain user. Note also, that
the second training procedure needs to iterate through the
entire database, which requires slow disk access operation,
only once (not n∗ times), as the ratings of a user can be
kept in memory and can be immediately re-used in the next
epoch.

We found a simple modification of this algorithm very
effective: in the second training, learn not only U, but M
as well. Though this is not useful for incremental learning in
recommender systems anymore, it boosts the performance
of MF.

3.7 Transductive MF
Transductive learning involves the use of test examples

but not their labels. In the case of CF, this means that the
algorithm“knows”what test examples the model will be ap-
plied for, i.e. the (i, j) ∈ V pairs, but not the corresponding
xij values. For Restricted Boltzmann Machines there is a
straightforward way to get a better model by incorporating
the test set [12].

We have developed a Transductive MF that can incorpo-
rate (i, j) ∈ V information after the learning process. The
idea behind the method is the following: suppose that user
i has the following n ratings in the test set (test ratings)
to be predicted: xi1, . . . , xin. The user has a feature vec-
tor (ui). When we are at the j-th example, we can pre-
dict another feature vector based only on what other movies
(1 ≤ j′ ≤ n, j′ 6= j) are to be predicted. A proper linear
combination – not depending on i or j – of the original user
feature vector and this new feature vector can yield another
feature vector for the prediction of xij that is better than
the original one. Formally:

u′
i(j) =

1
√

|j′ : (i, j′) ∈ R| + 1

n
∑

j′′=1
j′′ 6=j

mj′′ . (19)

x̂′
ij = x̂ij + ν · u′

i(j)
T · mj = uT

i · mj + ν · u′
i(j)

T · mj .

The attenuation factor in eq. (19) ensures that the more
ratings a user has in a training set, the less information
the test set provides, thus x̂′

ij will differ less from x̂ij . In
practice, ν need not be determined: we can use x̂′

ij and

u′
i(j)

T · mj as two predictions for xij , and apply linear re-
gression to get the best RMSE.

Though transductive methods cannot be applied directly
in real applications, the transductive MF can boost up the
performance of a predictor for the Netflix Prize problem.

3.8 Neighbor based correction of matrix fac-
torization

It is known that the combination of MF and NB can lead
to very accurate predictions [2, 3]. However, conventional
NB methods scale up poorly for large problems. The price

of additional accuracy is the loss of scalability.
Here we propose a scalable scheme for using the MF and

NB approaches together. The idea is that we improve an
existing MF model (U,M) by adding an item neighbor based
correction term to its answer in the prediction phase. The
corrected answer for query (i, j) is the following:

r̂ij = uT
i mj + γ

∑

k∈Ti\{j} sjk

(

uT
i mk − rik

)

∑

k∈Ti\{j} sjk

,

where sjk is the similarity between items j and k, and Ti is
the set items rated by user i. The weight of the correction
term γ can be optimized via cross-validation.

The similarity sjk can be defined in many different ways.
Here are two variants that proved to be useful for the Netflix
Prize problem [5].

• (S1): Normalized scalar product based similarity.

sjk =







∑K

`=1 m`jm`k
√

∑K

`=1 m2
`j ·

√

∑K

`=1 m2
`k







α

,

where α is the amplification parameter.

• (S2): Normalized Euclidean distance based similarity.

sjk =







∑K

`=1(m`j − m`k)2
√

∑K

`=1 m2
`j ·

√

∑K

`=1 m2
`k







α

.

In both cases, the value sjk can be calculated in O(K) time,
thus r̂ij can be calculated in O(K ·|Ti|). We remark that one
can restrict to use only the top S neighbors of the queried
item [2], however, it does not affect the time requirement, if
we use the same function for sij and neighbor-selection.

Now let us comment in more details on the time and mem-
ory requirement of our NB corrected MF in comparison with
the improved neighborhood based approach of BellKor [2],
which can also be applied to further improve the results of an
MF. For a give query, the time requirement of our method
is O(K · S), while their method requires to solve a sepa-
rate linear least squares problem with S variables, thus it is
O(S3). Memory requirements: for the i-th user, our method
requires to store in the memory ui and M, that is O(KJ),
while their approach necessitates to store the item-by-item
matrix and the ratings of the user, which is O(J2 + |Ti|).
For all users, our method requires O(IK + KJ) while their
approach requires O(J2 + |R|) memory.

Regardless of the simplicity of our method its effectiveness
is comparable with that of Bell and Koren’s method, see
Section 4.

This model can be seen as a nice unification of the MF
and NB approaches. It is simple, scalable, and accurate.
The training is identical to the regular MF training. The
prediction consists of an MF and a NB term. The similarities
used in the NB term need not to be precomputed and stored,
because they can be calculated very efficiently from the MF
model.

4. EXPERIMENTAL STUDY
The experimentations have been performed on the Net-

flix Prize dataset, being currently the largest available one
for the public. It contains about 100 million ratings from

over 480k users on nearly 18k movies. For more information
on the dataset see e.g. [3, 4]. We decided to validate our
algorithm against the Netflix dataset since currently this is
the most challenging problem for the CF community due to
its challenging properties (see e.g. [1] for a comprehensive
summary of these properties), and the task of the Netflix
Grand Prize.

In this experimentation section we evaluate the presented
methods on a randomly selected 10% subset of the Probe
set3, which we refer to as Probe10. 4 We mention that we
measured only a slight difference between the RMSE values
on the two test sets: our Probe10 and Quiz5. For some
selected methods, we also report on Quiz RMSE values. We
performed all tests on a 2 GHz Intel Pentium M (Dothan)
laptop with 1 GB RAM.

4.1 Parameter settings
All of the presented methods have many pre-defined pa-

rameters that greatly influences the result. A model and the
corresponding parameter setting can be considered useful if
either it results in a very accurate model (low test RMSE)
or the model “blends well” i.e. improves the accuracy of the
blended solution. For combining different models we applied
ridge regression.6

We applied a very simple but effective parameter opti-
mization algorithm. We initialize parameters randomly, then
we select a single parameter to optimize. We assign n (typi-
cally 2) distinct random values to the parameter, and choose
the best performing one by evaluating MF with this param-
eter setting. This method is performed systematically for
all parameters one-by-one.

4.2 Results of Matrix Factorization
We ordered the training examples user-wise and then by

date. By this we model that user’s taste change in time, and
the most recent taste is the dominant. This coincides with
the creation of train-test split of NP dataset. We performed
test runs with numerous parameters settings. We report on
the actual settings of the parameters at each result. Naming
convention for parameters: learning rate and regularization
factor for users and movies (ηu, ηm, λu, λm); the correspond-
ing variables of bias features (ηub, ηmb, λub, λmb); minimum
and maximum weights in the uniform random initialization
of U and M: wu, wu, wm, wm; offset G to subtract from X
before learning.

4.2.1 Comparing Regularized MF and BRISMF

We compare two MFs:

• a Regularized MF, which we name briefly as RegMF#0,
with the following parameter settings: K = 40, η =
0.01, λ = 0.01, wu = −wu = wm = −wm = −0.01

• a BRISMF, which we name briefly as BRISMF#0,
with the following parameter settings: K = 40, η =
0.01, λ = 0.01, wu = −wu = wm = −wm = −0.01

3Probe set: dedicated for testing purpose by Netflix with
known ratings
4A Perl script is available at our homepage, gravityrd.com,
which selects the Probe10 from the original Netflix Probe set
to ensure repeatability.
5Quiz set: to be predicted data, but only Netflix knows the
ratings.
6The source code of our combination algorithm is publicly
available at our web site.

RegMF#0 reaches its optimal Probe10 RMSE in the 13th
epoch: Probe10 RMSE is 0.9214, while these numbers for
BRISMF#0 are: 10th and 0.9113, which is a 0.0101 im-
provement.

4.2.2 Changing the parameters of the BRISMF

Table 1 present the influence of η and λ on the Probe10
RMSE. Other parameters are the same as in BRISMF#0.
Best result: η = 0.007, λ = 0.005. We refer to this MF in
the following as BRISMF#1. The running time for this MF
is only 14 minutes! The number of epochs to get this RMSE
was 10. Note that running time depends only on K and the
number of epochs to get the optimal Probe10 RMSE.

Table 1: Probe10 RMSE / optimal number of
epochs of the BRISMF for various η and λ values
(K = 40)

η
λ

0.005 0.007 0.010 0.015 0.020

0.005 0.9061 0.9079 0.9117 0.9168 0.9168
0.007 0.9056 0.9074 0.9112 0.9168 0.9169
0.010 0.9064 0.9077 0.9113 0.9174 0.9186
0.015 0.9099 0.9111 0.9152 0.9257 0.9390
0.020 0.9166 0.9175 0.9217 0.9314 0.9431

4.2.3 Subsampling users

On Figure 1 we demonstrate how the number of users
(thus, the number of ratings) influences Probe10 RMSE and
the optimal number of training epochs in case of BRISMF#1.
Probe10 RMSE varies between 0.9056 and 0.9677, and the
number of epochs between 10 and 26. The smaller the subset
of users used for training and testing, the larger the Probe10
RMSE and the number of epochs. This means that time-
complexity of MF is sublinear in the number of users, which
is proportional to the number of ratings, the ratio is 209 for
the Netflix dataset.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1⋅10
3

 1⋅10
4

 1⋅10
5

 1⋅10
6

P
ro

b
e
1

0
 R

M
S

E

Number of users

26

23

19

16

13

111010

Figure 1: Effect of the number of users on Probe10
RMSE and on the optimal number of training
epochs.

4.2.4 Retraining user features

We investigated with three parameter settings the effect
of retraining user features: BRISMF#1, and the following
two MFs:

• BRISMF#250: K = 250, wu = −0.01, wu = −0.006,
wm = −0.010, wm = 0.020, ηu = 0.008, ηub = 0.016,
ηm = 0.015, ηmb = 0.007, λu = 0.048, λm = 0.008,
λub = 0.019, λmb = 0, G = 0.

• BRISMF#1000: the same as BRISMF#250, but K =
1000.

The results are summarized on Table 2. Both the sim-
pler case (after the first learning step, reset U and retrain
only U), and the advanced case (after the first learning step,
reset U and retrain both U and M) are reported. We ap-
pend letter “U” to the method name in the simpler case (i.e.
BRISMF#1 becomes BRISMF#1U, etc.), and letters “UM”
in the advanced case (BRISMF#1UM, etc.). We report the
number of epochs required both in the first and the sec-
ond training procedure (if available). Note, that in case of
BRISMF#250 and BRISMF#1000, the retraining of user
features greatly improved the performance of those MFs.

Table 2: Examining the effect of retraining user fea-
tures. We report on Probe10 RMSE and some Quiz
RMSE values.

Model Epochs Probe10 Quiz

BRISMF#1 10 0.9056
BRISMF#1U 10+8 0.9072
BRISMF#1UM 10+6 0.9053
BRISMF#250 14 0.8961 0.8962
BRISMF#250U 14+8 0.8953 0.8954
BRISMF#250UM 14+7 0.8937
BRISMF#1000 14 0.8938 0.8939
BRISMF#1000U 14+8 0.8936
BRISMF#1000UM 14+8 0.8921 0.8918

4.2.5 Accurate MFs

Here we report on some of the most accurate models that
were obtained by the automatic (see above) and manual pa-
rameter optimization methods.

• BRISMF#800: manually parameterized MF, with 800
features. Parameter are set to: K = 800, wu = −wu =
wm = −wm = −0.005, ηu = ηub = 0.016, ηm = ηmb =
0.005, λu = λm = 0.010, λub = λmb = 0, G = 3.6043.
After 9 epochs, learning rates are multiplied by 0.01,
and the model is trained for another 2 epochs.

• SemPosMF#800: this is a semipositive variant of
BRISMF#800, where user features are non-negative,
item-features are arbitrary. Parameter are set to: K =
800, wu = 0, wu = −wm = wm = 0.005, ηu = ηub =
0.016, ηm = ηmb = 0.005, λu = λm = 0.010, λub =
λmb = 0, G = 3.6043. After 12 epochs, learning rates
are multiplied by 0.01, and the model is trained for
another 2 epochs.

• MlMF#200: a BRISMF with 200 features. Automatic
parameter optimization.

• MlMF#80: a BRISMF with 80 features. Automatic
parameter optimization.

• MomentumMF: a BRISMF with momentum method
and 50 features, manually optimized: K = 50, η =
0.01, σ = 0.3 and λ = 0.00005. Learnt in 5 epoch.

Table 3: Probe10 RMSE of accurate MFs without and with applying Q-correction and neighbor corrections
(S1 and S2). At column S1 and S2 we also indicated the optimal value of parameter α

Model basic Q S1 S2 Q+S1+S2 Combination basic Q+S1+S2
1 BRISMF#800 0.8940 0.8930 0.8916(α=8) 0.8914(α=7) 0.8902
2 SemPosMF#800 0.8950 0.8941 0.8916(α=8) 0.8913(α=5) 0.8900 1+2 0.8923 0.8880
3 MlMF#200 0.9112 0.9106 0.9087(α=8) 0.9085(α=6) 0.9076 1+2+3 0.8913 0.8872
4 MlMF#80 0.9251 0.9240 0.9104(α=9) 0.9072(α=2) 0.9058 1+2+3+4 0.8909 0.8863
5 BRISMF#1000UM 0.8921 0.8918 0.8905(α=7) 0.8907(α=5) 0.8901 1+2+3+4+5 0.8895 0.8851
6 MomentumMF 0.9031 0.9020 0.8979(α=6) 0.8956(α=3) 0.8949 1+2+3+4+5+6 0.8889 0.8838

We refer to a variant of the transductive MF algorithm as
Q-correction: in eq. (19) to improve predictions we use only
the ratings in the Qualify set, not in the Probe10+Qualify
set. See Table 3 for the RMSE values of the each method
and their blended versions. We applied two neighborhood
corrections on the MF models, with similarities S1 and S2.

The Q, S1, S2 and Q+S1+S2 columns represents results of
linear regression of multiple columns (2, 2, 2 and 4 respec-
tively) on Probe10 data. The “baisc” column of combina-
tions (1+2, 1+2+3, . . . , 1+2+3+4+5+6) are combinations
of 2, 3, . . . , 6 columns, resp. The Q+S1+S2 column of com-
binations (1+2, 1+2+3, . . . , 1+2+3+4+5+6) are combina-
tions of 8, 12, 16, 20 and 24 columns, resp. In our experi-
ments, blending means ridge regression against the expected
Probe10 values.

One can observe in Table 3 that NB correction improves
significantly the result of MF based methods. Starting from
an average MF (MlMF#80) the reduction of RMSE can be
0.0179, it can reduce the RMSE of the good Momentum MF
by 0.0075, and it even improves slightly (0.0026) the very
accurate BRISMF#800. In comparison, BellKor’s approach
([2], Table 2) results in 0.0096 RMSE reduction, starting
from MF with 0.9167 RMSE, here the reduced RMSE score
is almost identical with our NB corrected MlMF#80 that
has originally only RMSE 0.9251.

If we put in all MFs and all corrections, then the combi-
nation yields an RMSE = 0.8838. However, it brings only
insignificant improvements if one applies Q-correction tech-
nique for all MFs. We get RMSE = 0.8839 if we exclude the
Q-corrections of all MFs but the first from the combination.
Moreover, if we apply neighbor and Q-correction only on
the first MF, then the RMSE increases only to 0.8850. In
general, we can state that one “correction technique” brings
major decrease in the RMSE when applied only to a single
method in the linear combination. If we apply it multi-
ple times, the improvement becomes less. In other words,
Q-corrections or neighbor corrections captures the same as-
pects of the data, regardless of the MF behind them.

4.2.6 Speed vs. accuracy

It is interesting and important to investigate the relation
of accuracy and speed. We run many randomly parameter-
ized MFs with K = 40, and collected the best accuracies
in each epoch. Table 4 summarizes the results. A Probe10
RMSE of 0.9071 can be achieved within 200 seconds (includ-
ing the time to train with the 100 million available ratings
and evaluate on the Probe10)! Netflix’s Cinematch algo-
rithm can achieve Quiz RMSE = 0.9514.

To our best knowledge, the running times presented here
are far more advantageous than of any other methods pub-
lished in the literature of CF—though authors usually do

Table 4: Probe10 RMSE of fast and accurate MFs.

Epoch Training Time (sec) RMSE

1 120 0.9188
2 200 0.9071
3 280 0.9057
4 360 0.9028
5 440 0.9008
6 520 0.9002

not tend to publish running time data. This property pairs
with very accurate models which makes the presented mod-
els and their implementation to be the most favorable matrix
factorization approaches.

4.3 RMSE values reported by other authors
We compare the presented Probe10 RMSE values (which

differ from Quiz RMSE values at most by 0.0003) with other
RMSE values reported for the Netflix Prize dataset.

Authors often report on Probe RMSE or Quiz RMSE val-
ues. Probe RMSE values are calculated by leaving out the
Probe set from the Train set, while Quiz RMSE is often
computed by incorporating the Probe data into the training
of the predictor. Thus, Probe RMSE is often much lower
than Quiz RMSE.

Paterek in [9] introduces the use of bias features. He re-
ports on Quiz RMSE = 0.9070 for his biased regularized MF
(called there RSVD2). Salakhutdinov and Mnih present a
Probabilistic MF approach and its variants in [11]. The
best result they publish is Quiz RMSE = 0.8970, which is
obtained as a combination of 3 MFs. Bell and Koren in
[2] provides a detailed description of their alternating least
squares approach proposed to matrix factorization. Their
matrix factorization approach uses a specialized quadratic
optimizer instead of ridge regression to assure non-negative
weights. They report on Probe RMSE = 0.9167 for their
MF, and their methods need to run either ridge regression
or a specialized quadratic optimizer for (|I|+|J |)/2·n∗ times,
on |R| · n∗ data with K input variables in total, where n∗

is the number of epochs, which is “few tens”. Thus, their
method requires Ω((|I| + |J |) · K3/2 + |R| · K2) · n∗ steps
using either ridge regression or the specialized quadratic op-
timizer. They report on Quiz RMSE = 0.8982 for their
neighbor method executed on the residuals of their MF.

Our presented approaches have O(|R| · K) · n∗ computa-
tional complexity, where n∗ is typically less than 20. Remark
that O(·) is an upper bound, while Ω(·) is a lower bound for
computational complexity.

Here we neglected the cost of parameter optimization.

Our MF has 13 parameters. We perform the parameter
optimization process (Sec. 4.1) with a subset of users (1/6),
and with a small K value (typically K is 20 or 40). The
optimization process requires 100–200 MF runs. In case
of SemPosMF#800, which is manually parameterized, we
performed ∼50 runs. One may argue that parameter op-
timization for alternating least squares type MF is faster,
since there are no learning rates, thus it has just 9 parame-
ters. We observed that the more parameters the MF have,
the easier to tune the parameters to get the same Probe10
RMSE. Consequently, we introduced many parameters, for
example ηu, ηm, ηub, ηmb instead of a single η.

The best results in the NP literature are reported in [3],
where the authors briefly describe their approach for the
Netflix Progress Prize 2007. They use the MF algorithm
presented in [2]. They report only on Quiz RMSE values.
Here we summarize the best results of that paper:

• Best stand-alone positive MF: Quiz RMSE = 0.8998
• Best stand-alone positive MF with “adaptive user fac-

tors”: Quiz RMSE = 0.8955
• Best neighbor method on positive MF: Quiz RMSE =

0.8953
Table 5 compares our best methods with the results re-

ported by [3].

Table 5: Comparison of our best Probe10 and Quiz
RMSE values against the Quiz RMSE values re-
ported by [3]

Method Name of our Our Our Bell et
method Probe10 Quiz al’s Quiz

Simple MF BRISMF 0.8938 0.8939 0.8998
#1000

Tweaked MF BRISMF 0.8921 0.8918 N/A
#1000UM

MF with BRISMF 0.8905 0.8904 0.8953
neighbor #1000UM,
correction S1

Clearly, our matrix factorization methods and our hybrid
MF-neighbor approaches outperform Bell et al’s methods:
they are more accurate, much faster (in the O() sense as
well), simpler, and can handle the change of users’ taste in
time.

5. CONCLUSIONS
This paper presented matrix factorization based approaches

for rating based collaborative filtering problems. We pro-
posed a few novel MF variants including a fast (semi-)positive
MF, a momentum based MF, a transductive MF, and an in-
cremental variant of MF. The neighbor based correction of
MF with two similarity functions was also presented. We re-
ported on the RMSE scores of our algorithms evaluated on
the Netflix Prize dataset. We have shown that the presented
models outperform the already published ones significantly.
It has been also pointed out that our algorithms are very
effective in terms of time requirement, needing in general
only a few minutes to train reasonably accurate models.

6. REFERENCES
[1] R. Bell, Y. Koren, and C. Volinsky. Chasing

$1,000,000: How we won the netflix progress prize.

ASA Statistical and Computing Graphics Newsletter,
18(2):4–12, December 2007.

[2] R. M. Bell and Y. Koren. Scalable Collaborative
Filtering with Jointly Derived Neighborhood
Interpolation Weights. In Proc of. ICDM, IEEE

International Conference on Data Mining, 2007.

[3] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor
solution to the Netflix Prize. Technical report, AT&T
Labs Research, 2007. http://www.netflixprize.com/
assets/ProgressPrize2007_KorBell.pdf.

[4] J. Bennett, C. Eklan, B. Liu, P. Smyth, and D. Tikk.
KDD Cup and Workshop 2007. ACM SIGKDD

Explorations Newsletter, 9(2):51–52, 2007.

[5] J. Bennett and S. Lanning. The Netflix Prize. In Proc.

of KDD Cup Workshop at SIGKDD’07, 13th ACM

Int. Conf. on Knowledge Discovery and Data Mining,
pages 3–6, San Jose, CA, USA, 2007.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of UAI’98, 14th Conference on

Uncertainty in Artificial Intelligence, pages 43–52.
Morgan-Kaufmann, 1998.

[7] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70,
1992.

[8] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[9] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In Proc. of

KDD Cup Workshop at SIGKDD’07, 13th ACM Int.

Conf. on Knowledge Discovery and Data Mining,
pages 39–42, San Jose, CA, USA, 2007.

[10] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for
collaborative filtering of netnews. In Proc. of

CSCW’94, ACM Conference on Computer Supported

Cooperative Work, pages 175–186, Chapel Hill, North
Carolina, United States, 1994. ACM Press.

[11] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In J. C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information

Processing Systems 20, Cambridge, MA, 2008. MIT
Press.

[12] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
Boltzmann machines for collaborative filtering. In
Proc. of ICML’07, the 24th Int. Conf. on Machine

Learning, pages 791–798, Corvallis, OR, USA, 2007.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proc. of WWW’01:

10th Int. Conf. on World Wide Web, pages 285–295,
Hong Kong, 2001. ACM Press.

[14] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola.
Maximum-margin matrix factorization. Advances in

Neural Information Processing Systems, 17, 2005.

[15] G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the
Gravity recommendation system. In Proc. of KDD

Cup Workshop at SIGKDD’07, 13th ACM Int. Conf.

on Knowledge Discovery and Data Mining, pages
22–30, San Jose, CA, USA, 2007.

Improved Neighborhood-Based Algorithms for Large-Scale
Recommender Systems

Andreas Töscher∗
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria

toescher@sbox.tugraz.at

Michael Jahrer∗
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria

jahrmich@sbox.tugraz.at

Robert Legenstein
Institute for Theoretical

Computer Science
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria
legi@igi.tugraz.at

ABSTRACT

Neighborhood-based algorithms are frequently used mod-
ules of recommender systems. Usually, the choice of the
similarity measure used for evaluation of neighborhood re-
lationships is crucial for the success of such approaches. In
this article we propose a way to calculate similarities by for-
mulating a regression problem which enables us to extract
the similarities from the data in a problem-specific way. An-
other popular approach for recommender systems is regular-
ized matrix factorization (RMF). We present an algorithm –
neighborhood-aware matrix factorization – which efficiently
includes neighborhood information in a RMF model. This
leads to increased prediction accuracy. The proposed meth-
ods are tested on the Netflix dataset.

Categories and Subject Descriptors

H.2.8 [Database Applications]: [Data mining, Recom-
mender Systems, Collaborative Filtering, Netflix Competi-
tion]

General Terms

Latent factor model, Similarity matrix, Ensemble perfor-
mance

Keywords

recommender systems, matrix factorization, KNN, Netflix,
collaborative filtering

1. INTRODUCTION
Due to the increasing popularity of e-commerce, there is

growing demand of algorithms that predict the interest of
customers (called users in the following) in some product
(called item in the following). Such interest is commonly

∗These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Netflix-KDD Workshop, August 24, 2008, Las Vegas, NV, USA.
Copyright 2008 ACM 978-1-60558-265-8/08/0008 ...$5.00.

quantified by a non negative number r which we call a rat-

ing in this article. Algorithms which predict a rating for
each user-item pair are called recommender systems [1]. The
predictions of recommender systems are in general based
on a database which contains information about users and
items. The Collaborative Filtering (CF) approach to recom-
mender systems relies only on information about the behav-
ior of users in the past. The pure CF approach is appealing
because past user behavior can easily be recorded in web-
based commercial applications and no additional informa-
tion about items or users has to be gathered. CF algorithms
for recommender systems are therefore easily portable.

More abstractly, the goal of CF is missing value estima-
tion. Consider a system consisting of m users and n items.
We define the set of users as the set of integers {1, . . . , m}
and the set of items as the set of integers {1, . . . , n}. The
m × n rating matrix R = [rui]1≤u≤m;1≤i≤n stores the rat-
ings of users for items where rui is the rating of user u

for item i. The input to a CF algorithm is a set L =
{(u1, i1), . . . , (uL, iL)} of L user-item tuples referred to as
votes and the corresponding ratings in the rating matrix.
We assume that ratings in the rating matrix are non-zero
if they are in the training set and zero if they are not in
the training set, i.e., we assume rui 6= 0 if (u, i) ∈ L and
rui = 0 otherwise. Such ratings not in the training set are
called missing values. The goal of the system is to predict
the missing values of R.

In fall 2006, the movie rental company Netflix started a
competition, the Netflix Prize. The goal of the competi-
tion is to design a recommender system which improves on
the Netflix recommender system Cinematch by 10% with
regard to the root mean squared error (RMSE) on a pub-
lished database. This database contains training data in the
form of about 100 million ratings from about 480,000 users
on 17,770 movies. Each rating in this database is an inte-
ger between 1 and 5. A probe set is provided which can be
used to test algorithms. Furthermore, Netflix published a
qualifying set which consists of user-item pairs but no rat-
ings (the items correspond to movies in this database). The
ranking of a submitted solution is based on this data set.
The Netflix dataset captures the difficulties of large recom-
mender systems. First, the dataset is huge and therefore the
runtime and memory usage of potential algorithms become
important factors. Second, the ranking matrix is very sparse
with about 99 percent of its entries being missing such that
many users have voted for just a few movies. The algorithms

presented in this article were tested on the Netflix dataset.
However, their design is not specific to this dataset, thus the
algorithms can be applied to other CF problems as well.

An obvious way to generate predictions of ratings is to cal-
culate similarities between users and deduce a rating of some
user u for an item i from ratings of that item by users with
high similarity to user u. Similarly, a rating for some item i

by user u can be predicted from ratings by that user for simi-
lar items. Such approaches have successfully been applied to
the Netflix dataset. We deal with pure neighborhood-based
approaches in Section 2. It turned out that they benefit from
simple preprocessing where the ratings are first cleaned from
so called global effects [2]. Global effects are linear relation-
ships between the ratings and some simple variables like the
time of the rating (which is provided in the Netflix dataset).
We introduce in Section 2.1 four global effects which have
not been considered before.

One problem of neighborhood-based approaches is the
choice of the metric, or in other words, the measure of sim-
ilarity between users or items.1 A common way to measure
the similarity between two users is the Pearson correlation
between ratings of items which both users voted for. How-
ever, if two users have just a few common ratings (which
is often the case in the Netflix dataset), the Pearson corre-
lation is a bad estimate for their similarity. In Section 2.2
we propose a method where the similarities between items
themselves are learned by gradient descent. Thus, the choice
of a similarity measure is passed from the designer to the al-
gorithm. One drawback of this method is the huge number
of parameters which are fitted (the whole n × n matrix of
item similarities has to be estimated) and thus its tendency
to overfit the training data. This problem is tackled by a
factorized version described in Section 2.3. This algorithm
does not compute the whole similarity matrix but a low rank
approximation in a linear latent factor model. This reduces
the number of parameters significantly. A further advantage
of factorized similarities is its memory efficiency. While the
whole similarity matrix between users cannot be precom-
puted because of memory restrictions of computers to date,
the online computation of correlations can be very time de-
manding. This makes näıve neighborhood-based approaches
infeasible for large sets of elements like the set of users in the
Netflix database. The factorized similarity model overcomes
this problem. First, for a reasonable number of factors per
user, the factor matrix can easily be held in memory, and
second, for any two users the similarity is computed by just
the inner product of two vectors. This model can also easily
be extended to include information about unknown ratings
(i.e., user-item pairs for which one knows that this user rated
that item but the actual rating is unknown). The inclusion
of unknown ratings in the prediction was first discussed in
[7].

A regularized matrix factorization (RMF) produces a rank
K approximation of the m × n rating matrix by factorizing
it into a m × K matrix of user features and a K × n ma-
trix of item features. RMF models are easy to implement
and achieve good performance. Consequently, they are of-
ten used in CF algorithms. Overspecialization on the data
points can be avoided by careful use of regularization tech-
niques. We show in Section 3 that a hybrid approach which
is partly neighborhood-based and RMF-based is a very ef-

1Obviously, one can also define a similarity measure for user-
item pairs, an approach which is not discussed in this article.

Nb. Side Effect RMSE
10 both Previous effects 0.9659
11 item average movie year 0.9635
12 user movie production year 0.9623
13 user STD of movie ratings 0.9611
14 item STD of user ratings 0.9604

Table 1: Preprocessing for neighborhood models.
The table shows the RMSE on the probe set of the
Netflix dataset when accounting for 10 to 14 global
effects (i.e., the row with Nb. i shows the error when
one accounts for global effects 1 to i). The second
column (“Side”) specifies whether the effect defined
in the third column (“Effect”) needs the estimation
of parameters for the users or for the items.

fective CF method. This method performs slightly better
than well-tuned RMF methods or restricted Boltzmann ma-
chines (RBMs). Additionally, the model can be trained very
quickly.

2. NEIGHBORHOOD-BASED MODELS
Neighborhood-based models for recommender systems com-

monly compute the similarity between users or items and
use these similarities to predict unknown ratings. It is diffi-
cult to pre-calculate correlations between users for the Net-
flix database because the user correlation matrix can not
be held in main memory of current computers. This makes
the evaluation of näıve user-based neighborhood approaches
very slow and therefore unpractical. We will discuss an ef-
ficient algorithm which is based on user similarities in Sec-
tion 2.4. Before that, we discuss our algorithms for the case
of item-based similarities and note that the principles ap-
ply to user-based similarities in the same way. The sim-
ilarity cij between two items i and j is often estimated
by the Pearson correlation between common ratings of that
items, i.e., the correlation between the list of ratings of users
U(i, j) = {u|(u, i) ∈ L and (u, j) ∈ L} which voted for both
items i and j. The full neighborhood information is stored
in the symmetric similarity matrix C = [cij]1≤i,j≤n. Other
similarity measures like the mean squared error (MSE) or a
distance derived from the movie titles can also be used.

Algorithms in the flavor of the k-nearest neighbor (kNN)
algorithm produce ratings based on the ratings of the k most
similar items, i.e., the predicted rating r̂ui of an user u for
item i is computed as

r̂ui =

P

j∈Nk(u,i) cij ruv
P

j∈Nk(u,i) cij

, (1)

where Nk(u, i) denotes the set of the k items most similar
to item i that were rated by user u.

2.1 Preprocessing
In [2], so called ”global effects” of the data were discussed

and the removal of such effects from the data was proposed
as an effective preprocessing step for the Netflix dataset.
Such simple preprocessing turns out very useful if applied
prior to kNN methods. As in [2], we model a global effect
as a linear relationship between the ratings and some simple
property of the votes. For each of the effects, the goal is to
estimate one parameter per user or per item. For example,

the effect may be the dependence of a vote (u, i) on the mean
rating of user u. In this case, one would fit a parameter θi

for each item such that rui ≈ θimean(u) The prediction is
subtracted from the ratings and any further training is done
on the residuals (see [2] for details).

We found four effects not described before which lower the
RMSE on the probe set to 0.9604, see Table 1. The effects
considered are the effect of the average production year of
the movies the given user voted for (”average movie year”),
the production year of the given movie (”movie production
year”), the standard deviation of the ratings for the given
movie (”STD of movie ratings”) and the standard deviation
of the ratings of the given user (”STD of user ratings”).

The algorithms described below are tested for different
preprocessings in order to facilitate comparison with other
algorithms.

2.2 Regression on similarity
One problem of approaches based on the Pearson correla-

tion between item ratings is that for many item pairs, there
are only a few users which rated both items. For any two
items i, j, we define the support sij for these items as the
number of users which rated both items. The reliability of
the estimated correlation grows with increasing support sij .
For the Netflix dataset most correlations between movies are
around 0. In order to decrease the influence of estimated
correlations with low support on the prediction, we found
it useful to weight correlations according to their support
such that the similarity cij between item i and j is given by
cij = c̃ij

sij

sij+α
where c̃ij is the Pearson correlation between

common ratings of the two items and α is a constant in the
range of 100 to 1000 (this procedure was introduced in [3]).

In any case, the choice of the similarity measure is crit-
ical for the success of neighborhood-based algorithms. In
this section we describe an alternative approach where the
matrix of similarities C between items is learned by the
algorithm itself. The matrix can be initialized with small
random values around 0 or with Pearson correlations 2. A
prediction of the rating of user u for item i is calculated sim-
ilar to equ. (1), but over the set N(u, i) = {j 6= i|(u, j) ∈ L}
of all items different from i which user u voted for in the
training set

r̂ui =

P

j∈N(u,i) cij ruj
P

j∈N(u,i) |cij |
. (2)

Since similarities can become negative, we normalize by the
sum of absolute similarities.

The objective function to minimize is given by the MSE
with an additional regularization term

E(C,L) =
1

2

X

(u,i)∈L

(r̂ui − rui)
2 + γ

X

j<k

c
2
jk,

where γ is a regularization constant. The model is trained
by stochastic gradient descent on the objective function. For
each training example we update only those similarities rel-
evant for the example, i.e., for example (u, i) we update cij

if j ∈ N(u, i). The update of similarity cij is then given by

c
new
ij = c

old
ij − η · sign

„

(r̂ui − rui)
∂r̂ui

∂cij

«

− η γ c
old
ij . (3)

2We used a uniform distribution in [−0.1, 0.1] or Pearson
correlations, with similar results.

Preprocessing probe RMSE qual. RMSE
Raw data 0.9574 0.9487
1GE 0.9458 0.9384
2GE 0.9459 0.9384
6GE 0.9372 0.9281
10GE 0.9349 0.9256
14GE 0.9331 0.9239

Table 2: The RMSE of the similarity regression
model on the probe set (middle column) and the
qualifying set (right column) of the Netflix dataset
for preprocessings that accounted for 0 to 14 global
effects (GE). For comparison, the Netflix recom-
mender system achieves a RMSE of 0.9514 on the
qualifying set. The probe RMSE for 10 and 14 global
effects can be compared to the first and the last row
of Table 1.

We opted to use the sign of the error gradient in (3) because
this update turned out to be much more stable than the gra-
dient itself. This choice was inspired by the sign-sign LMS
rule (see, e.g., [5]). The number of trainable parameters
in this model for the Netflix dataset is around 157 million
which is very large. Hence training of the model is prone to
early overfitting. Typical values of γ and η are 0.01. Results
on the Netflix data are shown in Table 2. At a single epoch,
approximately L · sM similarities are updated, where L is
the size of the training set L and sM is the average number
of votes per user (sM is around 200 for the Netflix dataset).
The training time for one epoch is in the range of one hour
on a standard PC and usually a single epoch suffices.

2.3 Regression on factorized similarity
Gradient descent on the elements of the symmetric item

similarity matrix C leads to early overfitting because of the
huge number of trained parameters. In this section, we show
that one can overcome this problem by learning a factorized
version of C. In other words, the algorithm learns two K×n

matrices P and Q with K � n and C is computed as

C = PT Q. (4)

Hence, we learn a rank-k approximation of C which dras-
tically reduces the number of parameters. Only the upper
triangle of PT Q is used to calculate similarities, since sim-
ilarities are assumed to be symmetric, i.e., cij = cji. The
similarity cij between items i and j is then given by

cij =

(

pT
i qj , if i < j

pT
j qi, if i > j,

(5)

where pi and qi denote the ith column of P and Q respec-
tively. Ratings are predicted as in the previous section by
equ. (2).

The training schedule is similar to the direct similarity
regression model with the difference that for every similar-
ity cij (with i < j) we have to update the 2K parameters
p1i, . . . , pKi and q1j , . . . , qKj . Hence the training is slowed
down by a factor of K as compared to direct similarity re-
gression. Results on the Netflix data are shown in Table
3. The results are marginally better compared to the non-
factorized version. Training the model took several hours on
a standard PC.

Preprocessing K RMSE
10GE 80 0.9324
14GE 100 0.9313

Table 3: The RMSE of the factorized item similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

Preprocessing K RMSE
Raw 10 0.9951
2GE 10 0.9539
6GE 10 0.9469
14GE 20 0.9371

Table 4: The RMSE of the factorized user similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

2.4 Factorized user similarity matrix
An advantage of the factorized similarity model is that

similarities between large sets of elements can be stored in
memory. This enables us to store similarities between users
in the factor matrices. In order to learn user similarities
we perform gradient descent on the factorized user similar-
ity matrix. All calculations and update rules are mirrored
versions of those discussed above for the item similarity ma-
trix. For the Netflix dataset the training time increases by
a factor of 30 compared to the training time of the factor-
ized item similarity model since there are approximately 30
times more users than items in the database.

The results of the model for a few different preprocessings
of the data are shown in Table 4.3 Although the results are
similar the those of the factorized item similarity model, the
algorithm is still useful since the information extracted from
user similarities is different from that when item similarities
are used. This contributes to the performance if the models
are finally combined for a single prediction, see Section 4.

2.5 Incorporating unknown ratings
The model can be extended to include unknown ratings.

This helps in general on users with few ratings in the training
set. Let L′ denote the set of votes for which the rating is
unknown (for the Netflix dataset, our set L′ consisted of
votes in the probe set as well as those in the qualifying set).
Let N ′(u, i) = {j 6= i|(u, j) ∈ L′} denote the set of items
different from i user u has voted for with unknown rating.
Then, the prediction r̂ui of a rating for user u on item i is
given by

r̂ui =

P

j∈N(u,i) cij ruj +
P

j∈N′(u,i) cij r̃uj
P

j∈N(u,i) |cij | +
P

j∈N′(u,i) |cij |
, (6)

where r̃uj are estimates of the unknown ratings (they are pa-
rameters of the model which are trained, see below). Train-
ing of the similarities is done as in the basic model (see
equ. (3)) with the difference that for training example (u, i)
we update all cij for j ∈ N(u, i) ∪ N ′(u, i). The unknown
ratings r̃uj are trained simultaneously with gradient descent.

3Because of the time demands of this algorithm, training was
stopped after the presentation of only 30% of the training
set.

One can initialize each unknown rating with the mean rat-
ing of the corresponding item. Slightly better performance
can be obtained if one initializes the unknown ratings with
predictions of a neighborhood-based approach, see equ. (1)
(the reported results were obtained in this manner). On
the Netflix dataset, this model achieved a RMSE of 0.9278
on the probe set with a preprocessing that accounted for
14 global effects. This is an improvement of 0.053 over the
model without unknown ratings (see Table 2).

3. NEIGHBORHOOD-AWARE MATRIX FAC-

TORIZATION
In this section we present an algorithm – neighborhood-

aware matrix factorization (NAMF) – which efficiently in-
corporates a linear regularized matrix factorization (RMF)
in a neighborhood-based model. More specifically, for a
given vote (u, i), the algorithm computes three predictions:
a prediction r̂MF

ui which is based on a RMF, a prediction
r̂user

ui is based on a user-neighborhood model, and a predic-
tion r̂item

ui which is based on a item-neighborhood model.
Both neighborhood-based models utilize predictions from
the RMF model if needed. The final prediction of the al-
gorithm is a combination of the three predictions.

3.1 Regularized matrix factorization model
A RMF computes a rank K approximation R′ = ABT

of the rating matrix R, where A ∈ R
m×K is the user factor

matrix and B ∈ R
n×K is the item factor matrix. The entries

of these matrices are determined such that rui ≈ r′ui for all
votes (u, i) ∈ L. After the factor matrices A and B have
been determined by the training algorithm, the prediction
r̂MF

ui for a vote (u, i) is given by r̂MF
ui = r′ui =

PK

k=1 aukbik.
Because the rating matrix is usually sparse, additional reg-
ularization is needed. Using a regularization as proposed in
[9], [6], [8] leads to the error function

E(A,B,L) =
X

(u,i)∈L

(rui − r̂
MF
ui)2 +

λ

2
(‖A‖2

F +‖B‖2
F), (7)

where || · ||F denotes the Frobenius norm and λ is the reg-
ularization parameter. We use stochastic gradient descent
to minimize this error function. The update equations for a
training example (u, i) are therefore

a
new
uk = a

old
uk + η · (euib

old
ik − λa

old
uk) (8)

b
new
ik = b

old
ik + η · (euia

old
uk − λb

old
ik), (9)

for k = 1, . . . , K and

eui = rui −

K
X

k=1

a
old
uk b

old
ik . (10)

3.2 User-neighborhood model
The similarity of two users can be measured by the Pear-

son correlation ρ̃user
uv between the list of ratings for items

which were rated by both users. In order to decrease the
influence of correlations with low support we shrink each
correlation according to their support suv [3]:

ρ
user
uv =

suv ρ̃user
uv

suv + αuser
, (11)

where the parameter αuser is determined as discussed be-
low (in order to facilitate readability we denote all variables

and parameters of the user-neighborhood model by a “user”
superscript and those of the item-neighborhood model by a
“item” superscript). However, the use of the Pearson corre-
lation may be problematic in some cases. The most severe
problem occurs if the number of common ratings is small for
most user pairs (i.e., the support for most user pairs is low).
In this case, the Pearson correlation between these ratings is
a very unreliable measure of similarity. For many datasets
however there exist for most users other users such that the
number of common rated items is large, and reliable corre-
lations can be calculated for these pairs. We will make use
of this observation below. Another problem of employing
correlations between users is the size of the correlation ma-
trix. For the Netflix dataset where the number of users is
around 480,000, the whole matrix needs about one TByte of
memory. We overcome this problem by storing for each user
u only the correlations with the J users with highest corre-
lation to u. A rating prediction r̂user

ui is then computed as
the weighted sum over the ratings of these best correlating
users where the rating rvi is given by the predicted rating
of the RMF model or a rating from a training example if it
exists

r̂
user
ui =

P

v∈UJ (u) cuser
uv rvi

P

v∈UJ (u) cuser
uv

, (12)

where UJ (u) denotes the set of J users with highest cor-
relation to u. Each weighting coefficient cuser

uv is computed
from the Pearson correlation ρuser

uv by applying a squashing
function

c
user
uv = (σ (suser

ρ
user
uv − b

user))γuser

, (13)

where the scaling factor suser, the bias buser, and the expo-
nent γuser are global parameters which were determined as
described below. The sigmodial squashing function σ(·) is
given by

σ(x) =
1

(1 + exp (−x))
. (14)

3.3 Item-neighborhood model
For the item side the same principle can be applied. Cor-

relations ρ̃item
ij between common rated items are shrunk

ρ
item
ij =

sij ρ̃
item
ij

sij + αitem
. (15)

For each item i only the correlations with the J items with
highest correlation to i are stored. A rating prediction is
then computed as the weighted sum over the ratings of these
best correlating items IJ(i). The weighting coefficients are
given by

c
item
ij =

“

σ
“

s
item

ρ
item
ij − b

item
””γitem

, (16)

where ρitem
ij denotes the Pearson correlation between the

ratings of users that rated both items i and j, and αitem,
sitem, bitem, and γitem are constants. The rating prediction
r̂item

ui for a vote (u, i) is given by

r̂
item
ui =

P

j∈IJ (i) citem
ij ruj

P

j∈IJ (i) citem
ij

. (17)

3.4 Combining the information
The predictions from the RMF model, the user neighbor-

hood model and the item neighborhood model are combined
in a single rating. The obvious way to archive this is an
optimal linear combination of the three predictions. Ex-
periments have shown that the predictive accuracy of the
models strongly depends on the support and the number of
ratings from the training data (as opposed to those from the
RMF model) used in the neighborhood models. So we use
a weighted sum, based on this information to combine the
predictions:

r̂ui =
S̃(u, i)δ · r̂MF

ui + β̂Ŝ(u, i)δ̂ · r̂user
ui + β̄S̄(u, i)δ̄ · r̂item

ui

S̃(u, i)δ + β̂Ŝ(u, i)δ̂ + β̄S̄(u, i)δ̄

(18)

S̃(u, i) = min{Nu, Ni}. (19)

In the equation above, Nu = |{i|(u, i) ∈ L}| denotes the
number of votes of user u, and Ni = |{u|(u, i) ∈ L}| de-
notes the number of votings for item i. S̄(u, i) = |{v ∈

UJ (u)|(v, i) ∈ L}| and Ŝ(u, i) = |{j ∈ IJ(i)|(u, j) ∈ L}|
denote the number of votes from the training set used to
calculate the corresponding ratings.

The training schedule can be summarized as follows. First,
correlations ρ̃user

uv between users and correlations ρ̃item
ij be-

tween items are computed. The best correlating users/items
are computed according to the shrunken correlations (we
used αuser = 10 for user correlations and for item correla-
tions αitem = 30) and the corresponding correlations (not
shrunk) are stored. This step is the computationally most
demanding one. Then the RMF is computed. Once this
is done, the predictions of the neighborhood models can be
computed very efficiently. Then, good values for the 13 con-
stants αuser, αitem, β̄, β̂, suser, sitem, buser, bitem, γuser,
γitem, δ, δ̄, and δ̂ in the model are determined with a ge-
netic algorithm. Because the evaluation of individuals is
very fast, this optimization step can be done quite efficiently
(on a standard PC this step needed 1-2 hours). Once the
model is trained, predictions can be generated very quickly.

3.5 Experimental results
The RMF model was trained on the residuals of the first

global effect (movie effect) described in [2]. The use of
this effect slightly improves RMF performance whereas the
use of all global effects decreases the performance of the
RMF model. All RMF models were trained with stochas-
tic gradient descent using η = 0.002 and λ = 0.02. The
weights were initialized to small values sampled from a nor-
mal distribution with zero mean and standard deviation
0.001. The neighborhood models were trained on prepro-
cessed data that incorporated 10 global effects. The results
are shown in Table 5. The time to train the whole model
for K = 600 features was about 24 hours on a standard PC.

In comparison, a restricted Boltzmann machine on the
Netflix probe data achieved a RMSE of 0.907 (see Fig. 4
in [7]). Another approach which combines a neighborhood
model with a RMF was described in [2]. This algorithm
obtained a RMSE of 0.9071 on the Netflix probe set. Also,
a matrix factorization where the features were trained with
respect to some neighborhood relation was outlined in [8].
However, this method was only used for data visualization.

Features K of the RMF RMSE
10 0.9175
50 0.9069
100 0.9056
300 0.9046
600 0.9042

Table 5: RMSE of different neighborhood-aware ma-
trix factorizations on the Netflix probe data. Pre-
processing for the neighborhood model was done on
10 global effects, the neighborhood size was J =50.

4. ENSEMBLE PERFORMANCE
The final goal of each team that participates in the Netflix

contest is the prediction of unknown ratings with optimal ac-
curacy. In order to achieve maximal prediction accuracy, it is
a common strategy to combine predictions of different algo-
rithms into a final one. We did linear blending on the probe
set, which was not used for training, similar to [4]. Whether
an algorithm is particularly powerful on a given data point
(u, i) depends strongly on the support of the vote, i.e., the
number of votes of user u and the number of votes for item
i. Consequently, a linear combination of predictions for data
points with low support will be quite different from a linear
combination for data points with high support. We there-
fore divided the probe set into slots based on the support of
the data points. To obtain a single value from the user sup-
port and the item support we combined them by taking the
minimum of both. This procedure is called “slot blending”
[4]. The slot boundaries were chosen such that the number
of ratings in the slots was approximately uniform.

For each slot, the final prediction is then computed as a
linear combination of the predictions of the individual algo-
rithms. Suppose one wants to combine the predictions of N

algorithms. These predictions are first stored in a predictor
matrix P ∈ R

l×N where l is the number of votes in the slot
and pij is prediction of algorithm j for the i-th vote in the
slot. The interpolation weights w are computed with the
pseudo-inverse of P as w = (PT P)−1PT q where q is the
column vector of probe ratings of the slot. The final predic-
tion for a vote from the qualifying set which falls – according
to its support – into this slot is then given by the linear com-
bination of the individual predictions with the interpolation
weights w.

Using this method, we calculated the ensemble perfor-
mance of the algorithms proposed in this article. The RMSE
of the ensemble on the probe set was 0.8981 which results
in a RMSE of 0.8919 on the qualifying set (for predictors
which were re-trained after blending with the probe ratings
included). This is an improvement of 6.25% over the Cine-
match system. The proposed methods can well be combined
with other powerful algorithms like different kinds of matrix
factorizations and restricted Boltzmann machines to further
improve prediction accuracy.

5. CONCLUSIONS
In this article, we proposed several neighborhood-based

algorithms for large-scale recommender systems. An impor-
tant property of these algorithms is that their memory usage
scales linearly with the number of users or items as com-
pared to a quadratic scaling of most other neighborhood-

based approaches. This makes the algorithms scalable to
large-scale problems. To date it seems that powerful solu-
tions for collaborative filtering problems need to combine
the predictions of a diverse set of single algorithms. This
procedure is able to combine the specific advantages of sin-
gle algorithms. The standard approach is linear blending,
where the predictions are simply combined in a linear way
after training. The neighborhood-aware matrix factoriza-
tion algorithm tries to combine the advantages of two pow-
erful methods – a RMF approach and neighborhood-based
approach – in a more direct way: The predictions of one al-
gorithm are used to estimate unknown variables in the other
ones. One can therefore hope that the combination of them
is more than the (weighted) sum of its parts. Such hybrid
models are promising candidates for future research.

6. ACKNOWLEDGMENTS
We thank Netflix for providing this nice dataset. We also

thank the participants of the previous KDD workshop in
2007 for providing their inspiring ideas in the field of recom-
mender algorithms. Also thanks to the active Netflix com-
munity for discussing all kind of things regarding various
implementation details on proposed algorithms. R. L. was
partially supported by project # FP7-216886 (PASCAL2)
of the European Union.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.

on Knowl. and Data Eng., 17(6):734–749, 2005.

[2] R. Bell and Y. Koren. Scalable collaborative filtering
with jointly derived neighborhood interpolation
weights. In IEEE International Conference on Data

Mining. KDD-Cup07, 2007.

[3] R. Bell, Y. Koren, and C. Volinsky. Modeling
relationships at multiple scales to improve accuracy of
large recommender systems. In KDD ’07: Proceedings

of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 95–104,
New York, NY, USA, 2007. ACM.

[4] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor
solution to the Netflix prize. Technical report, AT&T
Labs - Research, October 2007.

[5] S. Dasgupta, C. R. Johnson, and A. M. Baksho.
Sign-sign LMS convergence with independent stochastic
inputs. IEEE Transactions on Information Theory,
36(1):197–201, 1990.

[6] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. Proceedings of

KDD Cup and Workshop, 2007.

[7] R. Salakhutdinov, A. Mnih, and G. E. Hinton.
Restricted boltzmann machines for collaborative
filtering. In ICML, pages 791–798, 2007.

[8] G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the
gravity recommendation system. In KDD Cup

Workshop at SIGKDD 07, pages 22–30, August 2007.

[9] M. Wu. Collaborative filtering via ensembles of matrix
factorizations. Proceedings of KDD Cup and Workshop,
2007.

