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Abstract 
Recommender systems represent user preferences for the purpose of suggesting 
items to purchase or examine. They have become fundamental applications in 
electronic commerce and information access, providing suggestions that 
effectively prune large information spaces so that users are directed toward those 
items that best meet their needs and preferences. A variety of techniques have 
been proposed for performing recommendation, including content-based, 
collaborative, knowledge-based and other techniques. To improve performance, 
these methods have sometimes been combined in hybrid recommenders. This 
paper surveys the landscape of actual and possible hybrid recommenders, and 
introduces a novel hybrid, EntreeC, a system that combines knowledge-based 
recommendation and collaborative filtering to recommend restaurants. Further, 
we show that semantic ratings obtained from the knowledge-based part of the 
system enhance the effectiveness of collaborative filtering. 
 

 

1. Introduction 
Recommender systems were originally defined as ones in which “people provide recommendations as inputs, which 
the system then aggregates and directs to appropriate recipients” (Resnick & Varian 1997). The term now has a 
broader connotation, describing any system that produces individualized recommendations as output or has the effect 
of guiding the user in a personalized way to interesting or useful objects in a large space of possible options. Such 
systems have an obvious appeal in an environment where the amount of on-line information vastly outstrips any 
individual’s capability to survey it. Recommender systems are now an integral part of some e-commerce sites such as 
Amazon.com and CDNow (Schafer, Konstan & Riedl, 1999). 

It is the criteria of “individualized” and “interesting and useful” that separate the recommender system from 
information retrieval systems or search engines. The semantics of a search engine are “matching”: the system is 
supposed to return all those items that match the query ranked by degree of match. Techniques such as relevance 
feedback enable a search engine to refine its representation of the user’s query, and represent a simple form of 
recommendation. The next-generation search engine Google1 blurs this distinction, incorporating “authoritativeness” 
criteria into its ranking (defined recursively as the sum of the authoritativeness of pages linking to a given page) in 
order to return more useful results (Brin and Page, 1998). 

One common thread in recommender systems research is the need to combine recommendation techniques to 
achieve peak performance. All of the known recommendation techniques have strengths and weaknesses, and many 
researchers have chosen to combine techniques in different ways. This article surveys the different recommendation 
techniques being researched  — analyzing them in terms of the data that supports the recommendations and the 
algorithms that operate on that data — and examines the range of hybridization techniques that have been proposed. 
This analysis points to a number of possible hybrids that have yet to be explored. Finally, we discuss how adding a 
hybrid with collaborative filtering improved the performance of our knowledge-based recommender system Entree. 

                                                           
†To appear in User Modeling and User-Adapted Interaction. 
1 <URL http://www.google.com/> 
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In addition, we show that semantic ratings made available by the knowledge-based portion of the system provide an 
additional boost to the hybrid’s performance. 

1.1. Recommendation Techniques 
Recommendation techniques have a number of possible classifications (Resnick & Varian 1997; Schafer, Konstan & 
Riedl 1999; Terveen & Hill, 2001). Of interest in this discussion is not the type of interface or the properties of the 
user’s interaction with the recommender, but rather the sources of data on which recommendation is based and the 
use to which that data is put. Specifically, recommender systems have (i) background data, the information that the 
system has before the recommendation process begins, (ii) input data, the information that user must communicate to 
the system in order to generate a recommendation, and (iii) an algorithm that combines background and input data to 
arrive at its suggestions. On this basis, we can distinguish five different recommendation techniques as shown in 
Table I. Assume that I is the set of items over which recommendations might be made, U is the set of users whose 
preferences are known, u is the user for whom recommendations need to be generated, and i is some item for which 
we would like to predict u’s preference. 

Collaborative recommendation is probably the most familiar, most widely implemented and most mature of the 
technologies. Collaborative recommender systems aggregate ratings or recommendations of objects, recognize 
commonalities between users on the basis of their ratings, and generate new recommendations based on inter-user 
comparisons. A typical user profile in a collaborative system consists of a vector of items and their ratings, 
continuously augmented as the user interacts with the system over time. Some systems used time-based discounting 
of ratings to account for drift in user interests (Billsus & Pazzani, 2000; Schwab, et al. 2001). In some cases, ratings 
may be binary (like/dislike) or real-valued indicating degree of preference. Some of the most important systems 
using this technique are GroupLens/NetPerceptions (Resnick et al. 1994), Ringo/Firefly (Shardanand & Maes, 
1995), Tapestry (Goldberg et al. 1992) and Recommender (Hill et al. 1995). These systems can be either memory-
based, comparing users against each other directly using correlation or other measures, or model-based, in which a 
model is derived from the historical rating data and used to make predictions (Breese et al. 1998). Model-based 
recommenders have used a variety of learning techniques including neural networks (Jennings & Higuchi, 1993), 
latent semantic indexing (Foltz, 1990), and Bayesian networks (Condliff, et al. 1999). 

The greatest strength of collaborative techniques is that they are completely independent of any machine-readable 
representation of the objects being recommended, and work well for complex objects such as music and movies 
where variations in taste are responsible for much of the variation in preferences. Schafer, Konstan & Riedl (1999) 
call this “people-to-people correlation.” 

Demographic recommender systems aim to categorize the user based on personal attributes and make 

 
Table I: Recommendation Techniques 

 
Technique Background Input Process 
Collaborative Ratings from U of items in I. Ratings from u of items 

in I. 
Identify users in U similar 
to u, and extrapolate from 
their ratings of i. 

Content-based Features of items in I u’s ratings of items in I Generate a classifier that 
fits u’s rating behavior and 
use it on i. 

Demographic Demographic information 
about U and their ratings of 
items in I. 

Demographic 
information about u. 

Identify users that are 
demographically similar to 
u, and extrapolate from 
their ratings of i. 

Utility-based Features of items in I. A utility function over 
items in I that describes 
u’s preferences. 

Apply the function to the 
items and determine i’s 
rank. 

Knowledge-
based 

Features of items in I. 
Knowledge of how these 
items meet a user’s needs. 

A description of u’s 
needs or interests. 

Infer a match between i 
and u’s need. 
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recommendations based on demographic classes. An early example of this kind of system was Grundy (Rich, 1979) 
that recommended books based on personal information gathered through an interactive dialogue. The users 
responses were matched against a library of manually assembled user stereotypes. Some more recent recommender 
systems have also taken this approach. Krulwich (1997), for example, uses demographic groups from marketing 
research to suggest a range of products and services. A short survey is used to gather the data for user categorization. 
In other systems, machine learning is used to arrive at a classifier based on demographic data (Pazzani 1999). The 
representation of demographic information in a user model can vary greatly. Rich’s system used hand-crafted 
attributes with numeric confidence values. Pazzani’s model uses Winnow to extract features from users’ home pages 
that are predictive of liking certain restaurants. Demographic techniques form “people-to-people” correlations like 
collaborative ones, but use different data. The benefit of a demographic approach is that it may not require a history 
of user ratings of the type needed by collaborative and content-based techniques.  

Content-based recommendation is an outgrowth and continuation of information filtering research (Belkin & Croft 
1992). In a content-based system, the objects of interest are defined by their associated features. For example, text 
recommendation systems like the newsgroup filtering system NewsWeeder (Lang 1995) uses the words of their texts 
as features. A content-based recommender learns a profile of the user’s interests based on the features present in 
objects the user has rated. Schafer, Konstan & Riedl call this “item-to-item correlation.” The type of user profile 
derived by a content-based recommender depends on the learning method employed. Decision trees, neural nets, and 
vector-based representations have all been used. As in the collaborative case, content-based user profiles are long-
term models and updated as more evidence about user preferences is observed. 

Utility-based and knowledge-based recommenders do not attempt to build long-term generalizations about their 
users, but rather base their advice on an evaluation of the match between a user’s need and the set of options 
available. Utility-based recommenders make suggestions based on a computation of the utility of each object for the 
user. Of course, the central problem is how to create a utility function for each user. Tête-à-Tête and the e-commerce 
site PersonaLogic2 each have different techniques for arriving at a user-specific utility function and applying it to the 
objects under consideration (Guttman 1998). The user profile therefore is the utility function that the system has 
derived for the user, and the system employs constraint satisfaction techniques to locate the best match. The benefit 
of utility-based recommendation is that it can factor non-product attributes, such as vendor reliability and product 
availability, into the utility computation, making it possible for example to trade off price against delivery schedule 
for a user who has an immediate need.  

Knowledge-based recommendation attempts to suggest objects based on inferences about a user’s needs and 
preferences. In some sense, all recommendation techniques could be described as doing some kind of inference. 
Knowledge-based approaches are distinguished in that they have functional knowledge: they have knowledge about 
how a particular item meets a particular user need, and can therefore reason about the relationship between a need 
and a possible recommendation. The user profile can be any knowledge structure that supports this inference. In the 
simplest case, as in Google, it may simply be the query that the user has formulated. In others, it may be a more 
detailed representation of the user’s needs (Towle & Quinn, 2000). The Entree system (described below) and several 
other recent systems (for example, [Schmitt & Bergmann, 1999]) employ techniques from case-based reasoning for 
knowledge-based recommendation. Schafer, Konstan & Riedl call knowledge-based recommendation the “Editor’s 
choice” method.  

The knowledge used by a knowledge-based recommender can also take many forms. Google uses information 
about the links between web pages to infer popularity and authoritative value (Brin and Page, 1998). Entree uses 
knowledge of cuisines to infer similarity between restaurants. Utility-based approaches calculate a utility value for 
objects to be recommended, and in principle, such calculations could be based on functional knowledge. However, 
existing systems do not use such inference, requiring users to do their own mapping between their needs and the 
features of products, either in the form of preference functions for each feature in the case of Tête-à-Tête or answers 
to a detailed questionnaire in the case of PersonaLogic.  

2. Comparing Recommendation Techniques 
All recommendation techniques have strengths and weaknesses discussed below and summarized in Table II. 
Perhaps the best known is the “ramp-up” problem (Konstan, et al. 1998). This term actually refers to two distinct but 
related problems.  

                                                           
2 For example, see the college guides available at <http://www.personalogic.aol.com/go/gradschools/> 
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New User: Because recommendations follow from a comparison between the target user and other users based solely 
on the accumulation of ratings, a user with few ratings becomes difficult to categorize.  
New Item: Similarly, a new item that has not had many ratings also cannot be easily recommended: the “new item” 
problem. This problem shows up in domains such as news articles where there is a constant stream of new items and 
each user only rates a few. It is also known as the “early rater” problem, since the first person to rate an item gets 
little benefit from doing so: such early ratings do not improve a user’s ability to match against others (Avery and 
Zeckhauser, 1997). This makes it necessary for recommender systems to provide other incentives to encourage users 
to provide ratings. 

Collaborative recommender systems depend on overlap in ratings across users and have difficulty when the space 
of ratings is sparse: few users have rated the same items. The sparsity problem is somewhat reduced in model-based 
approaches, such as singular value decomposition (Strang, 1988), which can reduce the dimensionality of the space 
in which comparison takes place (Foltz, 1990; Rosenstein & Lochbaum, 2000). Still sparsity is a significant problem 
in domains such as news filtering, since there are many items available and, unless the user base is very large, the 
odds that another user will share a large number of rated items is small. 

These three problems suggest that pure collaborative techniques are best suited to problems where the density of 
user interest is relatively high across a small and static universe of items. If the set of items changes too rapidly, old 
ratings will be of little value to new users who will not be able to have their ratings compared to those of the existing 
users. If the set of items is large and user interest thinly spread, then the probability of overlap with other users will 
be small.  

Collaborative recommenders work best for a user who fits into a niche with many neighbors of similar taste. The 
technique does not work well for so-called “gray sheep” (Claypool, et al. 1999), who fall on a border between 
existing cliques of users. This is also a problem for demographic systems that attempt to categorize users on personal 
characteristics. On the other hand, demographic recommenders do not have the “new user” problem, because they do 
not require a list of ratings from the user. Instead they have the problem of gathering the requisite demographic 
information. With sensitivity to on-line privacy increasing, especially in electronic commerce contexts (USITIC, 
1997), demographic recommenders are likely to remain rare: the data most predictive of user preference is likely to 
be information that users are reluctant to disclose. 

Content-based techniques also have a start-up problem in that they must accumulate enough ratings to build a 
reliable classifier. Relative to collaborative filtering, content-based techniques also have the problem that they are 
limited by the features that are explicitly associated with the objects that they recommend. For example, content-
based movie recommendation can only be based on written materials about a movie: actors’ names, plot summaries, 
etc. because the movie itself is opaque to the system. This puts these techniques at the mercy of the descriptive data 
available. Collaborative systems rely only on user ratings and can be used to recommend items without any 
descriptive data. Even in the presence of descriptive data, some experiments have found that collaborative 
recommender systems can be more accurate than content-based ones (Alspector, et al. 1997). 

The great power of the collaborative approach relative to content-based ones is its cross-genre or “outside the 
box” recommendation ability. It may be that listeners who enjoy free jazz also enjoy avant-garde classical music, but 
a content-based recommender trained on the preferences of a free jazz aficionado would not be able to suggest items 
in the classical realm since none of the features (performers, instruments, repertoire) associated with items in the 
different categories would be shared. Only by looking outside the preferences of the individual can such suggestions 
be made. 

Both content-based and collaborative techniques suffer from the “portfolio effect.” An ideal recommender would 
not suggest a stock that the user already owns or a movie she has already seen. The problem becomes quite tricky in 
domains such as news filtering, since stories that look quite similar to those already read may in fact present some 
new facts or new perspectives that would be valuable to the user. At the same time, many different presentations of 
the same wire-service story from different newspapers would not be useful. The DailyLearner system (Billsus & 
Pazzani, 2000) uses an upper bound of similarity in its content-based recommender to filter out news items too 
similar to those already seen by the user. 

Utility-based and knowledge-based recommenders do not have ramp-up or sparsity problems, since they do not 
base their recommendations on accumulated statistical evidence. Utility-based techniques require that the system 
build a complete utility function across all features of the objects under consideration. One benefit of this approach is 
that it can incorporate many different factors that contribute to the value of a product, such as delivery schedule, 
warranty terms or conceivably the user’s existing portfolio, rather than just product-specific features. In addition, 
these non-product features may have extremely idiosyncratic utility: how soon something can be delivered may 
matter very much to a user facing a deadline. A utility-based framework thereby lets the user express all of the 
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considerations that need to go into a recommendation. For this reason, Guttman (1999) describes Tête-à-Tête as 
“product and merchant brokering” system rather than a recommender system. However, under the definition given 
above, Tête-à-Tête does fit since its main output is a recommendation (a top-ranked item) that is generated on a 
personalized basis. 

The flexibility of utility-based systems is also to some degree a failing. The user must construct a complete 
preference function, and must therefore weigh the significance of each possible feature. Often this creates a 
significant burden of interaction. Tête-à-Tête uses a small number of  “stereotype” preference functions to get the 
user started, but ultimately the user needs to look at, weigh, and select a preference function for each feature that 
describes an item of interest. This might be feasible for items with only a few characteristics, such as price, quality 
and delivery date, but not for more complex and subjective domains like movies or news articles. PersonaLogic does 
not require the user to input a utility function, but instead derives the function through an interactive questionnaire. 
While the complete explicit utility function might be a boon to some users, for example, technical users with specific 
purchasing requirements, it is likely to overwhelm a more casual user with a less-detailed knowledge. Large moves in 
the product space, for example, from “sports cars” to “family cars” require a complete re-tooling of the preference 
function, including everything from interior space to fuel economy. This makes a utility-based system less 
appropriate for the casual browser. 

Knowledge-based recommender systems are prone to the drawback of all knowledge-based systems: the need for 
knowledge acquisition. There are three types of knowledge that are involved in such a system: 
Catalog knowledge: Knowledge about the objects being recommended and their features. For example, the Entree 
recommender should know that “Thai” cuisine is a kind of “Asian” cuisine. 
Functional knowledge: The system must be able to map between the user’s needs and the object that might satisfy 
those needs. For example, Entree knows that a need for a romantic dinner spot could be met by a restaurant that is 
“quiet with an ocean view.” 
User knowledge: To provide good recommendations, the system must have some knowledge about the user. This 
might take the form of general demographic information or specific information about the need for which a 
recommendation is sought. Of these knowledge types, the last is the most challenging, as it is, in the worst case, an 
instance of the general user-modeling problem (Towle & Quinn, 2000). 

Despite this drawback, knowledge-based recommendation has some beneficial characteristics. It is appropriate for 
casual exploration, because it demands less of the user than utility-based recommendation. It does not involve a start-
up period during which its suggestions are low quality. A knowledge-based recommender cannot “discover” user 
niches, the way collaborative systems can. On the other hand, it can make recommendations as wide-ranging as its 
knowledge base allows. 

Table II summarizes the five recommendation techniques that we have discussed here, pointing out the pros and 
cons of each. Collaborative and demographic techniques have the unique capacity to identify cross-genre niches and 
can entice users to jump outside of the familiar. Knowledge-based techniques can do the same but only if such 
associations have been identified ahead of time by the knowledge engineer.  

All of the learning-based techniques (collaborative, content-based and demographic) suffer from the ramp-up 
problem in one form or another. The converse of this problem is the stability vs. plasticity problem for such learners. 
Once a user’s profile has been established in the system, it is difficult to change one’s preferences. A steak-eater who 
becomes a vegetarian will continue to get steakhouse recommendations from a content-based or collaborative 
recommender for some time, until newer ratings have the chance to tip the scales. Many adaptive systems include 
some sort of temporal discount to cause older ratings to have less influence, but they do so at the risk of losing 
information about interests that are long-term but sporadically exercised (Billsus & Pazzani, 2000; Schwab, et al. 
2001). For example, a user might like to read about major earthquakes when they happen, but such occurrences are 
sufficiently rare that the ratings associated with last year’s earthquake are gone by the time the next big one hits. 
Knowledge- and utility-based recommenders respond to the user’s immediate need and do not need any kind of 
retraining when preferences change. 

The ramp-up problem has the side-effect of excluding casual users from receiving the full benefits of collaborative 
and content-based recommendation. It is possible to do simple market-basket recommendation with minimal user 
input: Amazon.com’s “people who bought X also bought Y” but this mechanism has few of the advantages 
commonly associated with the collaborative filtering concept. The learning-based technologies work best for 
dedicated users who are willing to invest some time making their preferences known to the system. Utility- and 
knowledge-based systems have fewer problems in this regard because they do not rely on having historical data 
about a user’s preferences. Utility-based systems may present difficulties for casual users who might be unwilling to 
tailor a utility function simply to browse a catalog. 
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3. Hybrid Recommender Systems 
Hybrid recommender systems combine two or more recommendation techniques to gain better performance with 
fewer of the drawbacks of any individual one. Most commonly, collaborative filtering is combined with some other 
technique in an attempt to avoid the ramp-up problem. Table III shows some of the combination methods that have 
been employed. 

3.1. Weighted 
A weighted hybrid recommender is one in which the score of a recommended item is computed from the results of all 
of the available recommendation techniques present in the system. For example, the simplest combined hybrid would 
be a linear combination of recommendation scores. The P-Tango system (Claypool et al. 1999) uses such a hybrid. It 
initially gives collaborative and content-based recommenders equal weight, but gradually adjusts the weighting as 
predictions about user ratings are confirmed or disconfirmed. Pazzani’s combination hybrid does not use numeric 
scores, but rather treats the output of each recommender (collaborative, content-based and demographic) as a set of 
votes, which are then combined in a consensus scheme (Pazzani, 1999). 

The benefit of a weighted hybrid is that all of the system’s capabilities are brought to bear on the recommendation 
process in a straightforward way and it is easy to perform post-hoc credit assignment and adjust the hybrid 
accordingly. However, the implicit assumption in this technique is that the relative value of the different techniques 
is more or less uniform across the space of possible items. From the discussion above, we know that this is not 
always so: a collaborative recommender will be weaker for those items with a small number of raters. 

3.2. Switching 
A switching hybrid builds in item-level sensitivity to the hybridization strategy: the system uses some criterion to 
switch between recommendation techniques. The DailyLearner system uses a content/collaborative hybrid in which a 
content-based recommendation method is employed first. If the content-based system cannot make a 

Table II: Tradeoffs between Recommendation Techniques 

 
Technique Pluses Minuses 
Collaborative 
filtering (CF) 

A. Can identify cross-genre niches. 
B. Domain knowledge not needed. 
C. Adaptive: quality improves over 
time. 
D. Implicit feedback sufficient 

I. New user ramp-up problem 
J. New item ramp-up problem 
K. “Gray sheep” problem 
L. Quality dependent on large historical 
data set. 
M. Stability vs. plasticity problem 
 

Content-based (CN) B, C, D I, L, M 
Demographic (DM) A, B, C I, K, L, M 

N. Must gather demographic information 
Utility-based (UT) E. No ramp-up required 

F. Sensitive to changes of 
preference 
G. Can include non-product features 
 

O. User must input utility function 
P. Suggestion ability static (does not learn) 

Knowledge-based 
(KB) 

E, F, G 
H. Can map from user needs to 
products 

P 
Q. Knowledge engineering required. 
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recommendation with sufficient confidence, then a collaborative recommendation is attempted.3 This switching 
hybrid does not completely avoid the ramp-up problem, since both the collaborative and the content-based systems 
have the “new user” problem. However, DailyLearner’s content-based technique is nearest-neighbor, which does not 
require a large number of examples for accurate classification.  

What the collaborative technique provides in a switching hybrid is the ability to cross genres, to come up with 
recommendations that are not close in a semantic way to the items previous rated highly, but are still relevant. For 
example, in the case of DailyLearner, a user who is interested in the Microsoft anti-trust trial might also be interested 
in the AOL/Time Warner merger. Content matching would not be likely to recommend the merger stories, but other 
users with an interest in corporate power in the high-tech industry may be rating both sets of stories highly, enabling 
the system to make the recommendation collaboratively. 

DailyLearner’s hybrid has a “fallback” character – the short-term model is always used first and the other 
technique only comes into play when that technique fails. Tran & Cohen (1999) proposed a more straightforward 
switching hybrid. In their system, the agreement between a user’s past ratings and the recommendations of each 
technique are used to select the technique to employ for the next recommendation. 

Switching hybrids introduce additional complexity into the recommendation process since the switching criteria 
must be determined, and this introduces another level of parameterization. However, the benefit is that the system 
can be sensitive to the strengths and weaknesses of its constituent recommenders. 

3.3. Mixed 
Where it is practical to make large number of recommendations simultaneously, it may be possible to use a “mixed” 
hybrid, where recommendations from more than one technique are presented together. The PTV system (Smyth and 
Cotter 2000) uses this approach to assemble a recommended program of television viewing. It uses content-based 
techniques based on textual descriptions of TV shows and collaborative information about the preferences of other 
users. Recommendations from the two techniques are combined together in the final suggested program.  

The mixed hybrid avoids the “new item” start-up problem: the content-based component can be relied on to 
recommend new shows on the basis of their descriptions even if they have not been rated by anyone. It does not get 
around the “new user” start-up problem, since both the content and collaborative methods need some data about user 
preferences to get off the ground, but if such a system is integrated into a digital television, it can track what shows 
are watched (and for how long) and build its profiles accordingly. Like the fallback hybrid, this technique has the 
desirable “niche-finding” property in that it can bring in new items that a strict focus on content would eliminate. 

The PTV case is somewhat unusual because it is using recommendation to assemble a composite entity, the 
viewing schedule. Because many recommendations are needed to fill out such a schedule, it can afford to use 
suggestions from as many sources as possible. Where conflicts occur, some type of arbitration between methods is 
                                                           
3 Actually Billsus’ system has two content-based recommendation algorithms, one short-term and one long-term, and the fallback strategy is 

short-term/collaborative/long-term. 

Table III: Hybridization Methods 
 

Hybridization method Description 
Weighted The scores (or votes) of several recommendation techniques are 

combined together to produce a single recommendation. 
Switching The system switches between recommendation techniques 

depending on the current situation. 
Mixed Recommendations from several different recommenders are 

presented at the same time 
Feature combination Features from different recommendation data sources are thrown 

together into a single recommendation algorithm. 
Cascade One recommender refines the recommendations given by another. 
Feature augmentation Output from one technique is used as an input feature to another. 
Meta-level The model learned by one recommender is used as input to 

another. 
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required – in PTV, content-based recommendation take precedence over collaborative responses. Other 
implementations of the mixed hybrid, ProfBuilder (Wasfi, 1999) and PickAFlick (Burke et al. 1997; Burke, 2000), 
present multiple recommendation sources side-by-side. Usually, recommendation requires ranking of items or 
selection of a single best recommendation, at which point some kind of combination technique must be employed.  

3.4. Feature Combination 
Another way to achieve the content/collaborative merger is to treat collaborative information as simply additional 
feature data associated with each example and use content-based techniques over this augmented data set. For 
example, Basu, Hirsh & Cohen (1998) report on experiments in which the inductive rule learner Ripper was applied 
to the task of recommending movies using both user ratings and content features, and achieved significant 
improvements in precision over a purely collaborative approach. However, this benefit was only achieved by hand-
filtering content features. The authors found that employing all of the available content features improved recall but 
not precision.  

The feature combination hybrid lets the system consider collaborative data without relying on it exclusively, so it 
reduces the sensitivity of the system to the number of users who have rated an item. Conversely, it lets the system 
have information about the inherent similarity of items that are otherwise opaque to a collaborative system.  
3.5. Cascade 
Unlike the previous hybridization methods, the cascade hybrid involves a staged process. In this technique, one 
recommendation technique is employed first to produce a coarse ranking of candidates and a second technique 
refines the recommendation from among the candidate set. The restaurant recommender EntreeC, described below, is 
a cascaded knowledge-based and collaborative recommender. Like Entree, it uses its knowledge of restaurants to 
make recommendations based on the user’s stated interests. The recommendations are placed in buckets of equal 
preference, and the collaborative technique is employed to break ties, further ranking the suggestions in each bucket.  

Cascading allows the system to avoid employing the second, lower-priority, technique on items that are already 
well-differentiated by the first or that are sufficiently poorly-rated that they will never be recommended. Because the 
cascade’s second step focuses only on those items for which additional discrimination is needed, it is more efficient 
than, for example, a weighted hybrid that applies all of its techniques to all items. In addition, the cascade is by its 
nature tolerant of noise in the operation of a low-priority technique, since ratings given by the high-priority 
recommender can only be refined, not overturned. 

3.6. Feature Augmentation 
One technique is employed to produce a rating or classification of an item and that information is then 

incorporated into the processing of the next recommendation technique. For example, the Libra system (Mooney & 
Roy 1999) makes content-based recommendations of books based on data found in Amazon.com, using a naive 
Bayes text classifier. In the text data used by the system is included “related authors” and “related titles” information 
that Amazon generates using its internal collaborative systems. These features were found to make a significant 
contribution to the quality of recommendations. 

The GroupLens research team working with Usenet news filtering also employed feature augmentation (Sarwar et 
al. 1998). They implemented a set of knowledge-based “filterbots” using specific criteria, such as the number of 
spelling errors and the size of included messages. These bots contributed ratings to the database of ratings used by 
the collaborative part of the system, acting as artificial users. With fairly simple agent implementations, they were 
able to improve email filtering.  

Augmentation is attractive because it offers a way to improve the performance of a core system, like the 
NetPerceptions’ GroupLens Recommendation Engine or a naive Bayes text classifier, without modifying it. 
Additional functionality is added by intermediaries who can use other techniques to augment the data itself. Note that 
this is different from feature combination in which raw data from different sources is combined.  

While both the cascade and augmentation techniques sequence two recommenders, with  the first recommender 
having an influence over the second, they are fundamentally quite different. In an augmentation hybrid, the features 
used by the second recommender include the output of the first one, such as the ratings contributed by GroupLens’ 
filterbots. In a cascaded hybrid, the second recommender does not use any output from the first recommender in 
producing its rankings, but the results of the two recommenders are combined in a prioritized manner. 
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3.7. Meta-level 
Another way that two recommendation techniques can be combined is by using the model generated by one as the 
input for another. This differs from feature augmentation: in an augmentation hybrid, we use a learned model to 
generate features for input to a second algorithm; in a meta-level hybrid, the entire model becomes the input. The 
first meta-level hybrid was the web filtering system Fab (Balabanovic 1997, 1998). In Fab, user-specific selection 
agents perform content-based filtering using Rocchio’s method (Rocchio 1971) to maintain a term vector model that 
describes the user’s area of interest. Collection agents, which garner new pages from the web, use the models from 
all users in their gathering operations. So, documents are first collected on the basis of their interest to the 
community as a whole and then distributed to particular users. In addition to the way that user models were shared, 
Fab was also performing a cascade of collaborative collection and content-based recommendation, although the 
collaborative step only created a pool of documents and its ranking information was not used by the selection 
component. 

A meta-level hybrid that focuses exclusively on recommendation is described by Pazzani (1999) as “collaboration 
via content”. A content-based model is built by Winnow (Littlestone & Warmuth 1994) for each user describing the 
features that predict restaurants the user likes. These models, essentially vectors of terms and weights, can then be 
compared across users to make predictions. More recently, Condliff et al. (1999) have used a two-stage Bayesian 
mixed-effects scheme: a content-based naive Bayes classifier is built for each user and then the parameters of the 
classifiers are linked across different users using regression. LaboUr (Schwab, et al. 2001) uses instance-based 
learning to create content-based user profiles which are then compared in a collaborative manner. 

The benefit of the meta-level method, especially for the content/collaborative hybrid is that the learned model is a 
compressed representation of a user’s interest, and a collaborative mechanism that follows can operate on this 
information-dense representation more easily than on raw rating data.  

3.8. Summary 
Hybridization can alleviate some of the problems associated with collaborative filtering and other 

recommendation techniques. Content/collaborative hybrids, regardless of type, will always demonstrate the ramp-up 
problem since both techniques need a database of ratings. Still, such hybrids are popular, because in many situations 
such ratings already exist or can be inferred from data. Meta techniques avoid the problem of sparsity by 
compressing ratings over many examples into a model, which can be more easily compared across users. 
Knowledge-based and utility-based techniques seem to be good candidates for hybridization since they are not 
subject to ramp-up problems. 

Table IV summarizes some of the most prominent research in hybrid recommender systems. For the sake of 
simplicity, the table combines knowledge-based and utility-based techniques (since utility-based recommendation is 
a special case of knowledge-based).4  

There are four hybridization techniques that are order-insensitive: Weighted, Mixed, Switching and Feature 
Combination. With these hybrids, it does not make sense to talk about the order in which the techniques are applied: 
a CN/CF mixed system would be no different from a CF/CN one. The redundant combinations are marked in gray.  

The cascade, augmentation and meta-level hybrids are inherently ordered. For example, a feature augmentation 
hybrid that used a content-based recommender to contribute features to be used by a second collaborative process, 
would be quite different from one that used collaboration first. To see the difference, consider the example of news 
filtering: the former case, content-based/collaborative, would correspond to a learning content-based version of the 
GroupLens “filterbot” idea. The latter arrangement, collaborative/content-based, could be implemented as a 
collaborative system that assigns users to a clique or cluster of similar users and then uses the clique ids as input to a 
content-based system, using these identifiers as well as terms from the news articles to produce the final 
recommendation. We would expect these systems to have quite different characteristics. With cascade, feature 
augmentation and meta-level hybrids therefore all permutations must be considered and these columns do not contain 
any redundancies.  

There are 60 non-redundant spaces in the table, but some combinations are not possible. Since a knowledge-based 
technique may take into account any kind of data, feature combination does not really represent a possible hybrid. 

                                                           
4 We ignore hybrids that combine techniques of the same type, although some do exist. PickAFlick (Burke et al. 1997), for example, is a 

knowledge-based/knowledge-based mixed hybrid combining two different knowledge-based strategies. 
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Conversely, the demographic technique is similar to the collaborative in its approach (comparing users against each 
other), just using different features (demographic data vs. ratings) to do so. Therefore, it does not make sense to 
distinguish a content-based/demographic (CN/DM) meta-level hybrid from a content-based/collaborative (CN/CF) 
one. The illogical hybrids are marked in black. The white areas of the table enumerate 53 different possible hybrid 
recommender systems. Of the possible hybrids, only 14 seem to have been explored, leaving significant room for 
further research.  

This chart suggests some interesting types of recommenders that do not yet exist. Although collaborative filtering 
is the most fully explored technique, a number of its hybrids remain unexplored.  
� Content-based/collaborative feature augmentation hybrid. This possibility was described earlier: a content-based 

“filterbot”. 
� Collaborative/content-based meta-level hybrid, in which collaborative information is used to generate a 

representation of overall user ratings for an item and this representation is then used to compare across items.  
� Collaborative/demographic augmentation hybrid in which a collaborative technique is used to place the user in a 

niche of like-minded users, and this information is used as a feature in a demographic rater. 
� In addition, four cascade recommenders involving collaborative recommendation appear untried. 

Other techniques show even fewer examples. Demographic techniques are poorly represented because this kind of 
data is more difficult to obtain than user ratings. Only 4 of the possible 25 such hybrids appear to have been 
attempted. Knowledge- and utility-based techniques are also relatively under-explored with 4 of the possible 26 of 
these combinations researched. Together these techniques account for 36 of the 39 possible hybrid recommenders 
not yet explored. One reason for this focus on collaborative and content-based techniques is the availability of 
ratings databases, such as the popular EachMovie database, which has approximately 45,000 ratings for 250 users. 
When combined with public data on movies, this database has enabled researchers to explore content-based and 

Table IV: Possible and Actual (or Proposed) Recommendation Hybrids 
 

 Weighted Mixed Switching Feature 
Combination 

Cascade Feature 
Aug. 

Meta-level 

CF/CN P-Tango PTV, 
ProfBuilder 

DailyLearner (Basu, Hirsh & 
Cohen 1998) 

Fab Libra  

CF/DM (Pazzani 
1999) 

      

CF/KB (Towle & 
Quinn 2000) 

 (Tran & 
Cohen, 2000) 

    

CN/CF       Fab,  (Condliff, 
et al. 1999), 
LaboUr 

CN/DM (Pazzani 
1999) 

  (Condliff, et al. 
1999) 

   

CN/KB 
 

       

DM/CF 
 

       

DM/CN 
 

       

DM/KB 
 

       

KB/CF     EntreeC GroupLens 
(1999) 

 

KB/CN 
 

       

KB/DM 
 

       

(CF = collaborative, CN = content-based, DM = demographic, KB = knowledge-based / utility-based) 
 

 Redundant 
 Not possible 
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collaborative techniques quite thoroughly. 
While the space remains to be fully explored, research has provided some insight into the question of which hybrid 

to employ in particular situations. The hybridization strategy must be a function of the characteristics of the 
recommenders being combined. With demographic, content and collaborative recommenders, this is largely a 
function of the quality and quantity of data available for learning. With knowledge-based recommenders, it is a 
function of the available knowledge base. We can distinguish two cases: the uniform case, in which one 
recommender has better accuracy than another over the whole space of recommendation, and the non-uniform case, 
in which the two recommenders have different strengths in different parts of the space. If the recommenders are 
uniformly unequal, it may make sense to employ a hybrid in which the inaccuracies of the weaker recommender can 
be contained: for example, a cascade scheme with the stronger recommender given higher priority, an augmentation 
hybrid in which the weaker recommender acts as a “bot” contributing a small amount of information, or a meta-level 
combination in which the stronger technique produces a dense representation that strengthens the performance of the 
weaker one. In the non-uniform case, the system will need to be able to employ both recommenders at different 
times. A switching hybrid is a natural choice here, but it requires that the system be able to detect when one 
recommender should be preferred. Feature combination and mixed hybrids can be used to allow output from both 
recommenders without having to implement a switching criterion. More research is needed to establish the tradeoffs 
between these hybridization options. 

4. A Knowledge-Based Restaurant Recommender System 
As the overview shows, there are a number of areas where the space of hybrid recommendation is not fully 

explored. In particular, there are few examples that incorporate knowledge-based recommendation. Knowledge-
based recommendation is at the heart of a research program known as “Find-Me Systems” (Burke et al. 1997; Burke 
1999a; Burke, 2000). The restaurant recommender Entree is one example of such a system. This section provides a 
brief overview of Entree, and then introduces EntreeC, a hybrid recommender system that adds collaborative filtering 
to Entree, creating a knowledge-based/collaborative cascade hybrid. 

4.1. Entree 
Entree is a restaurant recommendation system that uses case-based reasoning (Kolodner 1993) techniques to select 
and rank restaurants. It was implemented to serve as a guide to attendees of the 1996 Democratic National 
Convention in Chicago and has been operating as a web utility since that time.5  
 A user interacts with the system by submitting an entry point, either a known restaurant or a set of criteria, and is 
shown similar restaurants. The user then interacts with the system in a dialog, critiquing the system’s suggestions and 
interactively refining the search until an acceptable option is achieved. Consider a user who starts browsing by 
entering a query in the form of a known restaurant, Wolfgang Puck’s “Chinois on Main” in Los Angeles, as shown in 
Figure 1. (The user may also make a database query based on desired restaurant features.) As shown in Figure 2, the 
system finds a similar Chicago restaurant that combines Asian and French influences, “Yoshi’s Cafe,” as well as 
other similar restaurants that are ranked by their similarity. Note that the connection between “Pacific New Wave” 
cuisine and its Asian and French culinary components is part of the system’s knowledge base of cuisines. The user, 
however, is interested in a cheaper meal and selects the “Less $$” button. The result shown in Figure 3 is a creative 
Asian restaurant in a cheaper price bracket: “Lulu’s.” However, the French influence is lost — one consequence of 
the move to a lower price bracket. The user can continue browsing and critiquing until an acceptable restaurant has 
been located.  

A key consideration in the design of the system was to support a natural interactive retrieval process. After the 
first page, no action requires more than a single click, an important consideration in efficient use of the web medium. 
The system presents one main result and a small number of neighbors rather than an overwhelming list, and the user 
can explore the space of restaurants, discovering for example, the tradeoffs between price and quality for restaurants 
serving a given cuisine. 

                                                           
5 <URL: http://infolab.ils.nwu.edu/entree/> 
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Entree’s recommendation technique is one of knowledge-based similarity retrieval. There are two fundamental 
retrieval modes: similarity-finding and critique-based navigation. In the similarity case, the user has selected a given 
item from the catalog (called the source) and requested other items similar to it. To perform this retrieval, a set of 
candidate entities is retrieved from the database, sorted based on similarity to the source and the top few candidates 
returned to the user. Navigation is essentially the same except that the candidate set is filtered prior to sorting to 
leave only those candidates that satisfy the user’s critique. For example, if a user responds to item X with the tweak 
“Nicer,” the system determines the “niceness” value of X and rejects all candidates except those whose value is 
greater. Entree does not retain a user profile as such. It is a stateless application – its response completely determined 
by the example to which the user is responding and the specific critique given.  

 
 

Figure 1. The Entree Restaurant Recommender: Initial screen 
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A case-based reasoning (CBR) system is a problem solver that uses the recall of examples as the fundamental 
problem-solving process (Kolodner, 1990). A case-based recommender system is one that treats the objects to be 
recommended as cases, and employs CBR techniques to locate them. A case-based reasoning system contains a 
number of different “knowledge containers” (Richter, 1995): the case base, the vocabulary in which cases are 
described, the similarity measure used to compare cases, and, if necessary, the knowledge needed to transform 
recalled solutions. In building a case-based system, the developer can choose where in the system different types of 
knowledge can reside. A low-level vocabulary for cases may push more complexity and hence more knowledge into 
the similarity measure, for example. The restaurants in Entree use a simple representational vocabulary derived 
directly from the features present in the textual restaurant guide from which they were derived, and as a result have 
somewhat complex similarity metrics.  

The similarity relation between restaurants is decomposed into a set of independent attributes, such as the 
“niceness” of a restaurant, that correspond to users’ high-level perception or interest in the object. For each such 
attribute, a local similarity metric is defined, which measures how similar two items are with respect to that attribute. 
Two restaurants with the same price would get the maximum similarity rating on the metric of price, but may differ 

 
Figure 2. Similarity-based Recommendation 
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greatly on another metric, such as quality or type of cuisine. Each local metric has a small range of integer values as 
its output. 

Once the similarity relations are defined, they are ordered to create a retrieval strategy. For example, in the 
Entree restaurant recommender system, the attributes were cuisine, price, quality, and atmosphere applied in rank 
order. The metrics are combined in a cascaded way: each subsequent metric used only to break ties between 
restaurants ranked equally by higher level metrics. One benefit of combining the local metrics in this way is that the 
global metric is much simpler to design and its behavior easier to predict, as compared to the weighted combinations 
often found in CBR systems.  

The actual knowledge content of Entree’s metric is fairly shallow. It knows that all other things being equal, a 
more expensive restaurant is worse, and a more highly-rated restaurant is better. Its most complex metric is the one 
that compares restaurants on the basis of cuisine. This metric is based on a semantic network containing 
approximately 150 different cuisines. Similarity between cuisines is represented as the inverse of distance in the 
network. 

Entree differs from other recommender systems in several ways. Most strikingly, it uses semantic ratings, 
evaluations that tell the system not just the user’s preference – thumbs up or thumbs down – but also the reason 
behind the rating: too expensive, not fancy enough, etc. The semantic ratings give Entree a level of interactivity not 
found in other recommender systems, and allow it to tailor its suggestions to the user’s particular need of the 
moment, rather than adapting to overall preferences over time. The CoFIND system (Dron et al. 1999) also used 

 

 
Figure 3. Critique-based Navigation (“Less $$”) 
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semantic ratings, allowing users to create dimensions along which to rate web pages as “good for beginners”, 
“comprehensive”, etc. In CoFIND, however, these assessments were not used to navigate between options. 

Relevance feedback (Salton & McGill, 1983) is a well-known technique in information retrieval in which a 
user’s query is refined by taking into account responses to returned items. Entree’s critique-based navigation differs 
from relevance feedback approaches in both explicitness and flexibility. In relevance feedback approaches, the user 
selects some retrieved documents as being more relevant than others, and the system determines how a query is 
refined. In FindMe systems, critiques supply concrete domain-specific feedback that adjusts the search in a particular 
direction. 

One problem that became apparent when Entree went into operation was the issue of inadequate discrimination 
(Burke 1999b). At times, the retrieval process returns a large set of items all of which are equivalent as far as the 
system’s similarity metric can determine. Since the system presents only a small number (to avoid overwhelming the 
user), it essentially picks randomly among this set, and some equally good items are never shown. To achieve finer 
levels of discrimination requires more knowledge: either enhanced case data (difficult or sometimes impossible to 
obtain) or the engineering of a more fine-grained similarity metric. Part of the appeal of building a hybrid 
recommender with Entree was that it offered the possibility of improving the system’s discrimination without 
requiring the need for additional knowledge engineering.  

4.3. EntreeC: A Knowledge-Based/Collaborative Cascade Hybrid 
A review of Table IV shows seven possible hybrids between knowledge-based (KB) and collaborative (CF) 
recommenders. The switching and mixed hybrids are appropriate in a non-uniform case, but we did not find that 
Entree’s recommendations were weaker in any one part of the recommendation space. In addition, we wanted to 
maintain the conversational interaction that is the hallmark of FindMe systems. That meant that recommendation had 
to be seen as a direct response to the user’s last critique rather than something more holistic. Thus, neither a KB/CF 
meta-level hybrid nor a KB/CF feature augmentation would have been appropriate, since in both of these 
configurations, it is the collaborative part this is actually recommending. CF/KB feature augmentation and CF/KB 
meta-level hybrids would have been possible, but in the either case, the knowledge-based part of the system would 
have had to make inferences from collaboratively-generated features. This would have entailed additional knowledge 
engineering – exactly what we sought to avoid. That leaves the weighted/cascade category of hybrids. Since Entree’s 
similarity assessment technique already used a cascade, we found it most elegant to simply add collaborative 
recommendation as a final cascaded step. 

To see how such a system would differ from the existing Entree, consider the following example: Alice connects 
to EntreeC, a version of Entree that includes a collaborative filtering component. She starts browsing for Chicago 
restaurants by entering the name of her favorite restaurant at home, Greens Restaurant in San Francisco. Greens is 
characterized as serving “Californian” and “Vegetarian” cuisine. The top recommendation is 302 West, which serves 
“Californian” and “Seafood.” It turns out that Alice is, in fact, a vegetarian, so she critiques the system’s cuisine 
choice and moves back towards vegetarian recommendations. 

After the system has built up a bigger user base, another new user Bob approaches the system with the same 
starting point: Greens. Since the recommendation given to Alice was under-discriminated, her feedback and that of 
other users allow the system to more fully discriminate Bob’s recommendation, and return Jane’s, a vegetarian 
restaurant, now preferring it over 302 West.  

This thought experiment suggests that a cascade using both knowledge-based and collaborative-filtering tech-
niques may produce a recommender system with some of the best characteristics of both. Initial suggestions are 
good, since there is a knowledge base to rely on. As the system’s database of ratings increases, it can move beyond 
the knowledge base to characterize users more precisely. Because the knowledge base is always present, users are 
not trapped by their past behavior. If Alice decides to stop being a vegetarian, she will be able to get 
recommendations for steakhouses by entering one as a starting point. 

5. Experiments 
To evaluate the potential benefit to be achieved with EntreeC, we performed a series of experiments using historical 
data from the use of Entree. Entree has been in continuous operation as a public web utility since July 1996. The 
experiments described below use logs through June 1999. For performance reasons, Entree was implemented without 
internal logging, and it does not use cookies or other mechanisms to identify a user returning to the site. The data for 
our experiments therefore comes from the logs of the web server invoking Entree, rather than from the system itself. 
All of the data discussed below is of the short-term variety, representing a single search attempt by a user. To create 
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these sessions, the web server’s log data was partitioned into sessions, identified by IP address and terminating after 
10 minutes of inactivity. There are approximately 50,000 sessions in the 3 years of usage data.6 

Because only short-term data is available, these experiments may show something of a lower bound on the 
efficacy of collaborative filtering: a site would normally be expected to gather user ratings over multiple sessions of 
interaction and tie them directly to a user identifier, enabling the construction of a long-term user profile. On the 
other hand, ratings gathered over a longer period of time would reflect a diversity of search goals, a diversity 
presumably not present in a single search session. Further research with EntreeC will explore this long-term/short-
term profile trade-off. (See Section 6 below.) 

Each session consists of a list of user actions and associated restaurants. As shown in the screen shot, a number of 
restaurants are retrieved as likely candidates, but one is highlighted as the most similar item. It is to this item that the 
user can respond with a critique. There are eight possible navigation actions a user can take: “Less $$,” “Nicer,” 
“More Creative,” “More Traditional,” “Quieter,” “Livelier,” “Change Cuisine,”7 and “Browse” (the choice to move 
to a different restaurant in the return list.) A user can begin the session with a known restaurant as a starting point or 
with a query that describes the type of restaurant sought, but again, due to constraints on the implementation of the 
original system, these queries were also not logged. So, for each restaurant, we can associate one of 10 actions: Entry 
point, Exit point, or one of the eight critiques. 

The sessions range in length from one to 20 interactions, but typically contain less than ten. On occasion, the same 
restaurant is rated more than once. For example, a user might see a recommendation, browse to the other restaurants 
in the list, return to the original suggestion, and then perform a critique. We discard all but the most recent rating for 
each restaurant.  

5.1. Navigation Actions as Implicit Ratings 
The research reported here attempts to estimate how much improvement might be expected from adding 

collaborative filtering to Entree, and determine what collaborative technique would produce the best performance. 
The central issues are the generation of ratings and the computation of inter-user similarity. The actions that users 
take in the Entree interface are intended primarily for navigation among options, not primarily to record evaluations 
of objects, but they can be considered implicit ratings. 

With critiques, we can be fairly certain of the type of rating that should be inferred, both in terms of its negative 
valence – “give me something else” – and in its meaning –  “this one is too expensive.” Table V shows Nichols 
(1997) proposed scale for interpreting the relative importance of different types of actions interpreted as ratings. The 
idea behind this table is to rate the significance that should to afforded to different types of implicit feedback. 
“Purchase” is the most significant action: if the user bought something, we should be confident that she liked it. On 
the other hand, if the item was only contained on a page that the user saw (“Glimpse”), we can have much less 
confidence. A critique is an assessment, which comes second only to “Purchase” in the list, since the user must 
consider the merits of a suggestion and respond to it. For example, if user A sees “Yoshi’s Cafe” and clicks “Less 
$$,” this can be confidently recorded as a negative rating. 

However, similar certainty is difficult to achieve in terms of positive ratings. If a user enters a restaurant as a 
starting point, we consider this a “referring” action: the user makes references to a known restaurant to find 
something similar. So, the Entry action is fairly certain to indicate a positive rating. If the user stops browsing upon 
encountering some restaurant, we assume that the desired answer has been found. This “Stops looking” datum is a 
weaker data point (perhaps falling between “Examine” and “Mark” on Nichols’ scale), since it is also possible that 
the user has failed to find a restaurant and has given up. 

5.2. Collaborative Techniques 
If we accept navigation actions as implicit ratings, they can be easily turned into numeric ratings of the type used by 
collaborative algorithms. Many collaborative systems work with simple positive/negative ratings: in our case, Entry 
and Exit would be positive, and all others negative. If we wish the numeric ratings to reflect something of the 
semantics of the user’s original action, we can have a more graduated version conversion scale:   

                                                           
6 The Entree data set is available at the UCI KDD Archive <URL: http://kdd.ics.uci.edu/ >. 

7 In the case of the user choosing an alternative cuisine, there is a separate step in which the alternate cuisine is chosen. The retrieval and 
filtering operations are the same as for the other critiques, the log does not record the user’s cuisine choice. 
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• Entry point: The user typed this restaurant in as a starting point so we will assume it is one they liked. 
Rating = 1.0 

• Exit point: The user stopped here. Maybe they found what they sought, but possibly they gave up.  
Rating = 0.8 

• Browse: There is no direct critique of the restaurant, but the user is moving away from it.  
Rating = -0.5. 

• Critiquing: The user is giving direct feedback that there is something undesirable about the restaurant. 
Rating = -1.0 

Assume that we have the log of an interactive session with user A, SA, consisting of restaurant/navigation action 
pairs: <r, a>. This session can be converted to a vector of ratings by substituting the appropriate numeric values for 
the ratings to yield a rating vector RA. Once all sessions have been similarly transformed, we can compare two users 
using standard collaborative filtering algorithms such as Pearson’s correlation coefficient. The correlation between 
two users A and B would be given by   
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When an restaurant is rated in one session, but not in the other, a default score of 0 is given, a technique that has 
been shown to increase accuracy over discarding such ratings (Breese et al., 1998).  

Although a simple numeric conversion of the navigation actions into ratings satisfies the input criteria of 
collaborative filtering algorithms, it is ultimately unsatisfying from a user modeling point of view. The conversion 
loses entirely the reason for the user’s preference, which has been explicitly given to the system. Suppose Alice looks 
at “Chez Frou-Frou” and selects the “Less $$” button and Bob looks at the same restaurant and clicks on “Nicer”. 
The implicit rating approach would count these ratings as evidence that Alice and Bob are similar users, something 
that the semantics of the ratings would suggest is unlikely. 

To avoid losing the semantic details of ratings, we can perform collaborative filtering by looking only for users 
with exactly the same ratings: treating ratings on different dimensions as incommensurable. We would only match 
Alice against others who also thought that “Chez Frou-Frou” was too expensive. The problem then becomes a multi-
dimensional vector-matching problem of the type frequently encountered in information retrieval contexts (Salton & 
McGill 1983). We convert the session to a vector V where each restaurant / rating combination is a separate 
dimension. Alice’s session will show a 1 in the position corresponding to the “Chez Frou-Frou”/“Less $$” 
combination, and Bob’s session would have a 0 there and a 1 in the “Chez Frou-Frou”/“Nicer” dimension. With each 
user represented as a multi-dimensional vector, we can use the cosine measure of similarity.  

Table V. Implicit Ratings in Order of Strength  
after Nichols (1997). (Addition in italics.) 

 
 Action 

1 Purchase 
2 Assess 
3 Repeated Use 
4 Save / Print 
5 Delete 
6 Refer 
7 Reply 
8 Mark 
9 Terminate Search 

10 Examine / Read 
11 Consider 
12 Glimpse 
13 Associate 
14 Query 
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However, with several thousand restaurants and 10 possible ratings, we have a high-dimensional vector space and 
a highly sparse comparison problem: we will only compare users whose reactions are largely identical, meaning that 
predictions will be based on a much smaller number of users than in the single-scale collaborative approach. 

A third technique takes into account the semantics of the ratings themselves: we establish a similarity metric 
between ratings based on their characteristics. In the example above, we should probably rate Alice and Bob as 
dissimilar even though they both disliked the same restaurant – they did so for essentially opposite reasons. This is a 
“heuristic similarity” approach, a familiar idea in case-based reasoning. It does not establish a single numeric scale to 
which all actions are converted, but rather looks at the similarity of users on a rating by rating basis. This metric 
takes the qualitative differences between ratings into account, but it allows more kinds of inter-user comparison than 
the sparse metric. A similarity value is assigned to each possible pair of ratings, using an adjacency table generated 
by considering the semantics of each response type, and a few common-sense considerations:  

• A rating is maximally similar to itself.  
• “Browse” is not similar to any other rating.  
• Some ratings have natural opposites: “Livelier” / “Quieter”, “Traditional” / “Creative.” 
The full comparison table is shown in Table VI. Let the function from action pairs to distances described by this 

table be represented by the function d(a1, a2). Let R be the set of restaurants that appear in both SA and SB. Heuristic 
similarity h between users is determined by averaging their distances for all restaurants rated in common. 

R

bad
BAh Rr

∑
∈=

),(
),(  where <r,a>∈SA and <r,b>∈SB. 

Experimentation with this heuristic indicates that it is relatively insensitive to the magnitude of the values in the 
table, but highly sensitive to their sign: it is important that “Livelier” be represented as opposite from “Quieter”. 

To see the difference between the techniques, consider the following example shown in Figure 4. Alice has been 
looking for a restaurant using EntreeC and has accumulated the profile shown. The system has in it three other 
profiles: Bob, Carol, and Dan. Using correlation, computation would proceed as shown in Table VII. The profiles 
are transformed into numeric vectors, which are then correlated as shown in Table VIII. A look at the original data 
shows that Bob and Alice probably have quite different tastes in restaurants: Bob cannot find any restaurant that is 
nice enough for him, while Alice is often looking for a bargain. Yet Bob is the most similar user by this measure. 

Using the sparse vector technique requires that we create binary vectors that are large enough to incorporate every 
combination of rating and restaurant. Table IX shows condensed versions of these vectors, omitting the all-zero 
columns. When these vectors are compared, Bob is no longer such a good match, since his actions do not match up 
well with Alice’s. As Table X shows, Carol is the one who comes closest, and she is certainly a better candidate than 
Bob. However, inspection shows certain incompatibilities that this technique does not recognize. For example, both 
La Italia and Chez Nouvelle are critiqued by Alice but liked by Carol.  

Table VI. Similarity Matrix for Entree Ratings 

Br. Ch. Ni. Tr. Cr. Li. Qu. Cu. En. Ex  
1 0 0 0 0 0 0 0 0 0 Browse 

 1 -1 -0.5 -0.5 -0.5 -0.5 0 0 0 Cheaper 
  1 0.5 0.5 -0.5 0.5 0 0 0 Nicer 
   1 -1 -0.5 0.5 0 0 0 Trad. 
    1 0.5 -0.5 0 0 0 Creat. 
     1 -1 0 0 0 Lively 
      1 0 0 0 Quiet 
       1 0 0 Cuisine 
        1 1 Entry 
         1 Exit 
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Figure 4. Sample Entree Sessions 

Table VII: Profile Representation 1 – Rating Vector 

 Cafe 
Milano 

Chez 
Frou-Frou 

Chez 
Nouvelle 

El Gato La Italia Le 
Expense 

Ribs R Us 

Alice 1 -1 -1 -1 -1 -1 -1 
Bob 0 -1 -1 -1 -1 -1 -1 
Carol 0 -1 0.8 -1 1 0 -1 
Dan 0.8 -1 0 0 -1 0 -1 

 
Table VIII: Similarity Computation 1 – Correlation  

User Correlation 
Bob 1.00 
Carol 0.08 
Dan 0.70 
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Table IX: Profile Representation 2 – Sparse Vector 

 Cafe 
Milano 

Chez 
Frou-
Frou 

Chez 
Nouvelle 

El Gato La Italia Le 
Expense 

Ribs R Us 

 Entry 

Exit 

C
heaper 

N
icer 

C
heaper 

M
ore Trad. 

Exit 

M
ore C

reative 

N
icer 

Livelier 

M
ore Trad. 

Entry 

M
ore C

reative 

N
icer 

C
heaper 

N
icer 

Livelier 

Q
uieter 

Alice 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 
Bob 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 
Carol 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 
Dan 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

 

Table X: Similarity Computation 2 – Cosine 

User Cosine 
Bob 0.024 
Carol 0.057 
Dan 0.036 

Table XI: Local and Global Heuristic Distances 

 Cafe 
Milano 

Chez 
Frou-
Frou 

Chez 
Nouvelle 

El Gato La Italia Le 
Expense 

Ribs R 
Us 

Average 
distance 

Bob 0 -1 -0.5 0.5 -0.5 -1 1 -0.21 

Carol 0 -1 0 1 0 0 -0.5 -0.07 

Dan 1 1 0 0 0.5 0 0.5 0.43 
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Using the third technique, the ratings are not transformed but rather compared individually using the distance 
measure described above. The local distances between Alice and the other users and the global averages are shown 
in Table XI. Here we see that the heuristic technique brings out the similarity between Dan and Alice. Dan does not 
have many identical ratings, but his ratings have similar semantics and suggest he may really be the most similar 
user. 

This simple example illustrates how differences in the interpretation of the navigation actions result in different 
assessments of similarity between users. The three techniques, which were the subject of the experiments described 
below, are summarized in Table XII. 

5.3. Methodology 
Our evaluation methodology needed to be sensitive to the goal of the combined hybrid. With a cascade, we need 

the secondary, collaborative, recommender to refine the candidates left under-discriminated by the knowledge-based 
system. The task therefore becomes one of selecting the best candidate out of a set rather than surveying the entire 
universe of possible recommendations.  

To evaluate the different collaborative filtering approaches, the Entree session data was partitioned into equal-
sized training and test sets of approximately 25,000 sessions. The training/test split was performed five times for 
cross-validation. The training set was used as the profile database from which collaborative recommendations were 
made. From the test set, highly active users were extracted, those with at least 15 restaurants rated, about 200 users in 
total. (Later evaluations looked at less active users.) Again, because of the way in which actions were recorded, only 
short-term sessions were accessible from this data, and in order to have sufficient profile data, we could only take 

Table XII: Comparison of the Three Collaborative Techniques 

Collaborative 
Technique 

Profile conversion Distance metric 

Correlation Actions converted to numeric preference values Correlation 
Sparse Restaurant/action pairs converted to dimensions 

in a multi-dimensional vector space 
Vector cosine 

Heuristic None Average heuristic 
similarity 

 

Let S = a session: {s0, .., sn} where each si consists of a
pair <restaurant, action>

r = a pair with a positive action (Entry or Exit) from S
T = test data for the session, initially { }
P(S, t), a prediction function that predicts the rating of test

item t, given ratings from profile data in S.
m = maximum predicted rating so far, initially -1
M = restaurant with maximum predicted rating, initially null

move r from S to T
move 6 random s from S to T
for each t in T

p = P(S, t)
if p > m

m = p
M = t

if M = r then
prediction correct

else
prediction incorrect

 
Figure 5. The Evaluation Algorithm 
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advantage of those few users who examined 15 or more restaurants in a single sitting. A commercial system that used 
cookies to identify returning users would accumulate 15 ratings for a user very quickly. 

The goal of collaborative filtering for Entree was not strictly to predict ratings, but rather to improve the quality of 
the recommendations made by the knowledge-based component. The evaluation technique reflects this application. 
See the outline of the algorithm in Figure 5. For each session S, the system first isolates a positively rated restaurant r 
— an item the user found satisfactory. The goal is to bring this restaurant to the user’s attention as soon as possible, 
so the evaluation task for the CF system is to pick this positively-rated item from a group of negatively-rated ones. 
To simulate this situation, the system randomly selects 6 items from S with a negative rating, and groups them with r 
so that there are seven restaurants in the test data T. Eight items then become profile data for a particular user, excess 
ratings being discarded at random. (Five such profile/test splits are generated for each session for a second level of 
cross-validation.) Using the profile, a prediction is made for the rating of each test item t ∈T, and the one with the 
highest predicted score is selected as the recommendation. To look at each algorithm’s learning performance, we can 
vary the amount of profile data that is given to it, and look at differences in predictive performance. 

Figure 6 illustrates a simplified version of this process for the evaluation of a single recommender on the seven 
items of Alice’s data. Four ratings are put into the test data set including her lone positive rating. The remaining three 
ratings become the profile set. As indicated in Figure 7, the recommender is then given the profile data and asked to 
rate each of the items in the test set. The restaurant that the recommender with highest predicted rating (in this 
example, “Chez Frou-Frou”) becomes the “recommendation” from the test set. This does not match Alice’s known 
favorite “Cafe Milano” and so this recommendation interaction would be counted as a failure. 

 For the correlation technique, predictions of the rating of a test item t are made by selecting all users who have 
rated t, selecting those who meet a minimum threshold of correlation with the test user based on the training data, 
and averaging their ratings of t. The same experimental scheme was applied also to the sparse metric, using cosine 
similarity. For the heuristic metric, the single nearest neighbor was used for prediction. As a baseline, we also used a 
predictor based on the average rating of a restaurant across all users.  

For our first experiment, we examined the effect of different conversions from navigation actions to implicit 
ratings. We tested four recommenders: the Correlation algorithm described above with scalar-valued ratings and also 
the same algorithm with binary (like/dislike) ratings; and for comparison, a recommender using just the overall 
average rating for each restaurant also implemented with scalar and binary ratings. Figure 8 shows the accuracy of 
each technique (percentage of correct identifications of the user’s preferred item) as the amount of training data is 
increased from 4 ratings to 8. We see a significant benefit (p < 0.01, using the sign test) in all three conditions when 
correlation is computed using binary ratings over scalar ones. For the Average, there is a small but insignificant 
benefit to using binary ratings in computing the average.  
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Figure 6. Evaluation Example: Test and Profile Data 
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These results were surprising in that the scalar ratings were designed to capture some of the differences in meaning 
between different ratings and yet failed to produce better performance. This most likely indicates that it is a mistake 
to consider “Browse” to be less negative a critique than the more direct navigation operations. After all, the critique 
operations indicate that the user found something to like about the current restaurant, whereas browsing away does 
not. For the remainder of our experiments, only binary ratings were used. 

Our next experiment had five conditions: a Random ranking (essentially what Entree does without hybridization), 
the Average rating of all users, inter-user Correlation, the Sparse metric using cosine similarity and the Heuristic 
metric. Figure 9 shows the results of this experiment. The Correlation technique outperformed the Sparse version, 

Recommender
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? ? ?
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Figure 7. Evaluation Example: Process 

0%

5%

10%

15%

20%

25%

30%

4 6 8
Training data

A
cc

ur
ac

y

Correlation (binary) Correlation (scalar) Ave (binary) Ave (scalar)
 

Figure 8. Comparing Binary and Scalar Ratings, Session Size = 15 
(5x5 cross-validation, n=4,632) 
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but both only outperformed the simple average by single digits. Both techniques' learning curves were essentially 
flat, indicating that the 15-item profile is not really enough to get the full power of these techniques. The Heuristic 
technique was the clear winner, achieving 42% accuracy after seeing eight ratings, and even with only four ratings, it 
had 38% accuracy. The results for all pairs of techniques at each increment of training data were compared using the 
sign test. All within-condition differences were significant at the p < 0.01 level. 

Since 15 rating sessions were such a small percentage of the data that we had from Entree, we conducted similar 
experiments using shorter sessions. Figures 10 and 11 show the results for 10 and 5 item sessions respectively. For 
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Figure 9. Comparing Collaborative Algorithms,  Session Size = 15 
(5x5 cross-validation, n=4,632) 
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Figure 10. Comparing Collaborative Algorithms, Session Size = 10 
(50% sample, 5x5 cross-validation, n=17,030) 
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these experiments, we sampled the data (50% and 20%, respectively) rather than use every session of the requisite 
size. The important thing to notice about these conditions is that the baseline is significantly raised — in the 10 
rating session, we use five ratings for testing and five as the profile, so a random method is 20% accurate at finding 
the right answer from the remaining five. In the five rating sessions, two ratings formed the profile and three the test 
data, so the random baseline is 33%. Still, the relative performance of the techniques is similar to that found in the 
initial experiment. The other techniques are relatively flat, but the Heuristic technique has a significant advantage 
that improves with more data. This effect is clearly seen in Figure 12, which plots the boost over the average that 
each technique achieves for the different size sessions. 

6. Discussion 
These experiments illustrate a synergy that is possible in the knowledge-based/collaborative hybrid. As with other 

experiments with a range of hybrid designs, our results confirm the benefits of hybrid recommendation. In addition, 
because the knowledge-based part of Entree solicits semantic ratings, the collaborative component can take 
advantage of the extra user knowledge available in these ratings to improve on the standard collaborative technique.  

Because the knowledge-based recommender comes first in the cascade, the system does not suffer significantly 
from the ramp-up problem. If there is no collaborative data to work from, the recommender relies on its knowledge 
base and selects randomly when items are under-discriminated. The system therefore has an immediate benefit to the 
casual user, but still improves its recommendations over time as a user’s niche is better defined. What we give up in 
this hybrid is the ability to make cross-genre discoveries. The employment of collaborative data is circumscribed to 
discriminating the results of previous retrieval, so it cannot bring in novel suggestions. 

The knowledge-based part of the hybrid also helps avoid the stability/plasticity problem. A user who has built up a 
history of vegetarian choices will still see her results biased in that direction, but only within a particular search 
context. If the user starts EntreeC with a steakhouse as an example, the most similar restaurants will all be 
steakhouses, and her fellow vegetarians in her (former) collaborative niche will not have many ratings.  

Three directions for future research follow. First would be to examine content-based hybrids involving the Entree 
base system. The Entree system itself uses the known features of restaurants to reason about similarity. These same 
features could be used to induce a content-based filter to combine with the knowledge-based recommender. 
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Figure 11. Comparing Collaborative Algorithms, Session Size = 5 
(20% sample, 5x5 cross-validation, n=41,697) 
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However, the data used in our experiments so far has very short session lengths, and it seems likely that 10 or 15 
examples would not be enough to provide good recommendations for any one user. 

We can address the short session problem by changing the way that we aggregate data. Our current design simply 
looks for a temporally-contiguous series of interactions within a short timeframe. Longer (but potentially noisier) 
sessions could be accumulated by treating the IP addresses of incoming web requests as permanent identifiers, 
enabling the accumulation of multi-visit profiles. Using long-term sessions will satisfy the data needs of the 
knowledge-weak recommendation methods, the question is how this change will interact with the very goal-focused 
design and interface of Entree. Such an experiment will let us determine whether restaurant preferences at the 
detailed level of navigational critiques are stable over time or if the specific context of each meal tends to override. 

Finally, the heuristic method of comparing users is appealing, since it does not lose the semantics of users’ 
choices, but the metric itself must be crafted with these semantics in mind. The metric used in these experiments was 
developed by enumerating all possible comparisons and exercising simple logical considerations. In effect, we have 
substituted one type of knowledge engineering (determining the similarity of ratings) for another (developing more 
finely discriminating similarity metrics). Although the manual crafting of the heuristic similarity metric was 
successful in this case, this approach is not scalable, especially for domains with more complex navigation options. 
For the heuristic metric to be useful in other domains, we would need a method of computing or inferring the 
similarity between ratings. 

7. Conclusion 
All existing recommender systems employ one or more of a handful of basic techniques: content-based, 
collaborative, demographic, utility-based and knowledge-based. A survey of these techniques shows that they have 
complementary advantages and disadvantages. This fact has provided incentive for research in hybrid recommender 
systems that combine techniques for improved performance. A significant amount of recent research has been 
dedicated to the exploration of various hybrids, including the six hybridization techniques discussed in this paper: 
weighted, mixed, switching, feature combination, feature augmentation, and meta-level. A survey of the prominent 
research in the field indicates that less than half of the 41 possible recommender hybrids have been explored. 

Particularly lacking from the literature has been research in knowledge-based recommendation. This article has 
shown EntreeC, an example of a hybrid recommender system that combines knowledge-based and collaborative 
techniques using a cascade hybrid. Experiments with EntreeC indicate that collaborative filtering does improve the 
performance over the knowledge-based component acting alone. Further, the semantic ratings gathered by the 
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knowledge-based component enabled more accurate prediction of user preference than possible with simple numeric 
ratings. 
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