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Chapter 1
Introduction

Abstract Representing data in lower dimensional spaces has been used extensively
in many disciplines such as natural language and image processing, data mining, and
information retrieval. Recommender systems deal with challenging issues such as
scalability, noise, and sparsity and thus, matrix and tensor factorization techniques
appear as an interesting tool to be exploited. That is, we can deal with all afore-
mentioned challenges by applying matrix and tensor decomposition methods (also
known as factorization methods). In this chapter, we provide some basic defini-
tions and preliminary concepts on dimensionality reduction methods of matrices and
tensors. Gradient descent and alternating least squares methods are also discussed.
Finally, we present the book outline and the goals of each chapter.

Keywords Matrix decomposition · Tensor decomposition

1.1 Recommender Systems

The Web contains more than 4.9 billion pages until the date this book was pub-
lished and it is growing rapidly day by day. There is a huge amount of information,
which burdens people to find what they may need. To overcome this problem, we
often rely on recommendations from others who have more experience on a topic.
In the Web, this is attained with the help of a collaborative filtering (CF) algorithm,
which provides recommendations based on the suggestions of users, who have sim-
ilar preferences for products. Basically, it is an algorithm for matching people with
similar interests under the assumption that similar people like similar products. These
kind of recommendations are provided from systems, known as recommender sys-
tems. Recommender systems use techniques, which are widely studied in research
communities of information retrieval, machine learning, and data mining [16, 36].
These systems have been developed to effectively support the customer’s
decision-making process mainly for commercial purposes (i.e., what product to buy
on Amazon.com, what TV show or movie to rent on Netflix.com, etc.).

© The Author(s) 2016
P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques
for Recommender Systems, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-41357-0_1
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4 1 Introduction

In the following, we will discuss an example of a simple recommender system
with four users, who have rated four movies, as shown in Fig. 1.1.

Fig. 1.1 Four users have rated four movies using a [1–5] rating scale

Figure1.1 presents a weighted user-movie bipartite graph, where each edge
between a user and a movie has a weight which indicates the degree of preference of
a user for that movie (using a [0–5] rating scale). For reasons of clarity, in Fig. 1.1,
we present only “positive” ratings (≥4). Let us assume in our running example that
we want to predict the rating of user 4 onmovie 4 (X-Men). To show this assumption,
we use a dotted line for the edge that connects user 4 with movie 4 and the possible
rating is shown with a question mark. The challenge of a recommender system is to
correctly predict a rating for those items for which a user has not expressed explicitly
her preference (with no rating value at all). In case our recommender system pre-
dicts this rating as positive (i.e., higher than 4 in the rating scale 0–5), then, it could
recommend movie 4 (X-Men) to the target user 4.

Our example of Fig. 1.1 can be represented with a user–item rating matrix A,
which is shown in Fig. 1.2a. Please notice that in contrast to Fig. 1.1, Fig. 1.2 also
presents ratings with values 0, 1, 2, and 3. In the case that we read matrix A horizon-
tally, Fig. 1.2 represents the ratings that a user Ui gives to a set of movies I j , where
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j ≥ 1. In the case that we read the matrix A vertically, Fig. 1.2 represents the ratings
that one movie (i.e., I1) receives from several users Ui , where i ≥ 1.

To ease the discussion, we will use the running example illustrated in Fig. 1.2
where I1−4 are items and U1−4 are users. As shown, the example data set is divided
into training and test sets. The null cells (no rating) are presented as zeros.

I1 I2 I3 I4
U1 4 1 1 4
U2 1 4 2 0
U3 2 1 4 5

(a)
I1 I2 I3 I4

U4 1 4 1 ?

(b)

Fig. 1.2 a Training set (3 × 4), b Test set (1 × 4)

1.2 Recommender Systems in Social Media

Online social networks (OSNs) contain gigabytes of data that can bemined to provide
product recommendations to a target user.Besides explicit friendship relations among
users, there are also other implicit relations. For example, users can co-comment on
products and can co-rate them. Thus, item recommendation can be provided in such
systems based on the suggestions of our friends whom we trust. Recommender
systems are widely used by OSNs to stimulate users to extend their personal social
graph or for marketing purposes by recommending products that their friends have
liked. Moreover, recommender systems can act like filters, trying to provide the right
personalized information to each different user. Typically, a recommendation algo-
rithm takes as input the preferences of the user and her friends from their profile and
conscripts them to yield recommendations for new ties such as friends, companies,
places, products, etc.

In the following, we will discuss a more extended example, where we will try to
provide recommendations to user 4 by exploiting both her ratings on movies and her
friendship network, as shown in Fig. 1.3, which consists of two layers. The first layer
contains the friendship network among users, whereas the second layer shows the
movies, which are rated only positively by users.

Our recommender system’s task is to predict a rating for user 4 on movie 4.
As shown, user 4 is a friend of user 2, who does not like the X-Men movie at all
(rated it with 0 in the [0–5] rating scale as shown in Fig. 1.2a). Based on the theory of
homophily, which claims that friendsmay share common characteristics (i.e., beliefs,
values, preferences, etc.), we cannot predict a high rating for user 4 on the X-Men
movie. This is a simple example of how a social network (i.e., friendship network)
can help a recommender system to leverage the quality of its recommendations by
exploiting the information from the friendship network.
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Fig. 1.3 The users’ friendship network and the user-movie rating information

1.3 Matrix Factorization

Recommender systems mainly base their suggestions on rating data of two entities
(users and items), which are often placed in a matrix with one representing users
and the other representing items of interest. For example, Netflix collects ratings for
movies using the five-star selection schema, and TiVo users indicate their prefer-
ences for TV shows by pressing thumbs-up and thumbs-down buttons. These ratings
are given explicitly by users creating a sparse user–item rating matrix, because an
individual user is likely to rate only a small fraction of the items that belong to the
item set. Another challenging issue with this user–item rating matrix is scalability
of data (i.e., the large number of possible registered users or inserted items), which
may affect the time performance of a recommendation algorithm.

We can deal with all aforementioned challenges by applying matrix decomposi-
tion methods (also known as factorization methods). Matrix factorization denotes a
process, where a matrix is factorized into a product of matrices. A matrix factoriza-
tion method is useful for solving plenty of problems, both analytical and numerical;
an example of a numerical problem is the solution of linear equations and eigenvalue
problems. Its importance relies on the exploitation of latent associations that exist
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in the data among participating entities (e.g., between users and items). In a trivial
form, the matrix factorization method uses two matrices, which hold the information
of correlation between the user-feature and item-feature factors, respectively.

Figure1.4 shows an example of latent factors, which could be revealed after
performing matrix decomposition. As shown, the X′X axis divides both people and
movies according to sex (e.g., male or female). When a movie is closer to the female
part of X′X axis, it means that this movie is most popular among women rather than

Fig. 1.4 A simplified illustration of the latent factors, which characterizes both users and movies
using two axes—male versus female and war-like versus romantic
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men. The Y′Y axis divides people and movies as “war-like” and “romantic.” A “war-
like” viewer is assumed to prefer movies showing blood and deaths. In contrast, a
“romantic” viewer chooses movies that present love and passion. To predict a user’s
rating of a movie, we can compute the dot product of the movie’s and user’s [x,
y] coordinates on the graph. In addition, Fig. 1.4 shows where movies and users
might fall on the basic two dimensions. For example, we would expect user 3 to love
“Casablanca,” to hate “TheKing’s Speech,” and to rate “Amelie” above average. Note
that some movies (i.e., “Taken 3”) and users (i.e., user 4) would be characterized as
fairly neutral on these two dimensions.

One strong point of matrix factorization is that it also allows the incorporation
of additional information. When explicit feedback is not available, recommender
systems can infer user preferences using implicit feedback, which indirectly reflects
opinions by observing user behavior including purchase history, browsing history,
search patterns, or even mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically represented by a densely filled
matrix [26].

There are many matrix factorization methods (see Chap.2). The popularity of
these methods and the motivation to study them more in recent years came by their
advantage of combining high-performance scalability with good predictive accuracy.

1.4 Tensor Factorization

Standard CF-based algorithms operate on matrices (second-order tensors) repre-
senting relations between users and items. However, real-world problems usu-
ally consist of more than two participating entities. For example, social tagging
systems (STSs) mainly consist of three participating entities (users, items, and
tags). Moreover, in location-based social networks (LBSNs), we have also three
interacting entities (users, locations, and tags). In LBSNs, users can share location-
related information with each other to leverage the collaborative social knowledge.
LBSNs consist of a new social structure made up of individuals connected by in-
terdependency derived from their locations in the physical world as well as their
location-tagged media content, such as photographs, videos, and texts. As shown in
Fig. 1.5, users visit locations in the real world and provide geo-tagged information
content (e.g., comments, photographs, videos). In particular, Fig. 1.5 presents three
layers, namely user, location, and content. It is obvious that someone could exploit
information from each layer independently to leverage recommendations. However,
in a more advanced case, we could also exploit ternary relation among entities (i.e.,
user, location, and content), which goes through all layers.

Because of the ternary relation of data in many cases (e.g., STSs, LBSNs,
etc.), many recommendation algorithms originally designed to operate on matrices
cannot be applied. Higher order problems put forward new challenges and oppor-
tunities for recommender systems. For example, ternary relation of STSs can be
represented as a third-order tensorA = (au,i,t ) ∈ R

|U |×|I |×|T |. Symeonidis et al. [44],

http://dx.doi.org/10.1007/978-3-319-41357-0_2
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Fig. 1.5 Visual representation of users, locations, and content (i.e., photographs/videos, tags, etc.)

for example, proposed to interpret the user assignment of a tag on an item, as a
binary tensor where 1 indicates observed tag assignments and 0 missing values (see
Fig. 1.6):

au,i,t :=
{
1, if user u assigns on item i tag t

0, otherwise

Tensor factorization techniques can be employed in order to exploit the underlying
latent semantic structure in tensor A. While the idea of computing low-rank tensor
approximations has already been used in many disciplines such as natural language,
image processing, data mining and information retrieval [11, 13, 24, 28, 42, 43,
46], just a few years ago, it was applied to recommendation problems in STSs and
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Fig. 1.6 Tensor
representation of a STS
where positive feedback is
interpreted as 1 (i.e.,
autr := 1) and the rest as 0
(i.e., autr := 0)

users

items

tags

LBSNs. The basic idea is to transform the recommendation problem as a third-order
tensor completion problem, by trying to predict nonobserved entries in A.

1.5 Mathematical Background and Notation

In this section, we provide all important notations of variables and symbols, which
will be used throughout the book. Moreover, we provide some basic theorems or
mathematical definitions as preliminary knowledge to help the reader understand
more easily the concepts that will be discussed later.

The notation of every matrix, variable symbol, and any other basic mathematical
term is presented in Tables1.1 and 1.2, respectively.

Linear algebra plays an important role inmatrix and tensor decomposition. There-
fore, preliminary concepts on matrices drawn from linear algebra are reviewed in
this section.

A diagonal matrix (also known as square matrix) is a matrix in which entries
outside the main diagonal are all zero. Thus, a matrix A with N × N dimensions is
diagonal if the following constraint is satisfied:

ai j = 0 i f i �= j ∀i, j ∈ {1, 2, . . . , N } (1.1)

The (column) rank of a matrix A ∈ R
N×M is defined to be the number of linearly

independent column vectors. The (row) rank of A is defined to be the number of
linearly independent row vectors of A.

A square matrix A ∈ R
N×N is called invertible (or nonsingular), if there is a

matrix B ∈ R
N×N such that:

AB = I and BA = I (1.2)

where I ∈ R
N×N is the identity matrix. A square matrix that is not invertible is called

singular. A is singular, if its rank is less than N .
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Table 1.1 Definition of matrices and variables that will be used throughout this book

Matrices and variables

I Identity matrix An n × n square matrix with 1 s on the
main diagonal and 0s elsewhere

R Real numbers The set of real numbers

A User–item rating matrix This is the user–item rating matrix, which
holds ratings of users on movies. Cells
with zeros denote the absence of a rating

Â Prediction matrix This is a user–item rating matrix, which
holds predicted ratings

U User-latent feature matrix This matrix holds preferences of users
over items on a latent feature space of
dimensionality f . In the CUR method, U
has another meaning (see Sect. 2.6)

V Item-latent feature matrix This matrix expresses how much an item
is preferred by users on a latent feature
space of dimensionality f

Λ Eigenvalue matrix An r × r diagonal matrix filled with
nonzero eigenvalues of matrix A

E Eigenvector matrix E (n × r matrix) stores eigenvectors of A

Γ Symmetric nonnegative matrix with
diagonal elements equal to zero and other
elements greater than zero

C Randomly chosen set of r columns of
matrix A

R Randomly chosen set of r rows of matrix
A

F Friendship matrix Stores the friendship information among
users. 1s declare friendship and 0s no
friendship

λ Eigenvalue An eigenvalue λ

e Eigenvector An eigenvector e

η eta This variable controls the size of the step
toward minimization of an objective
function

β beta The coefficient that regularize predicted
users’ ratings on items

γ gamma The coefficient that regulates the
contribution of the friendship network

An eigenvector of a square matrix AN×N is a nonzero vector e ∈ R
N that satisfies

the following equation:
Ae = λe, (1.3)

meaning that the vector Ae follows the direction of e. λ is the eigenvalue of A
corresponding to the eigenvector e.

http://dx.doi.org/10.1007/978-3-319-41357-0_2


12 1 Introduction

Table 1.2 Definition of mathematical symbols that will be used throughout this book

Symbols

i, j Indices Denote the position of an element inside a
matrix

�= Not equal Is not equal to

≤ Inequality Is less than or equal to

≥ Inequality Is greater than or equal to

≈ Approximately equal Is approximately equal to

B	 Transpose symbol Reflects matrix B over its main diagonal
(which runs from top-left to bottom-right)
to obtain B	

B−1 Inverse symbol The inverse of a square matrix is a matrix
such that BB−1 = I

∀ For all

∈ Set membership Is an element of

/∈ Set membership Is not an element of

→ Material implication if . . . then

⇐⇒ Material equivalence if and only if

b Vector Euclidean vector

∧ And

∨ Or

· Dot product The dot product of vectors or matrices

‖ . . . ‖ Norm Euclidean norm∑
Sum The sum of elements from beginning to

end

∂ Partial derivative The partial derivative of a function

A square matrix A ∈ R
N×N is called orthogonal, if column vectors of A form an

orthonormal set in ∈ R
N . In other words, an orthogonal matrix is a square matrix

with real numbers as entries, whose columns and rows are orthogonal unit vectors
as shown below:

AA	 = A	A = I : I is the identity matrix (1.4)

This leads to equivalent characterization: a matrix A is orthogonal if its transpose
is equal to its inverse:

A	 = A−1 (1.5)

The Frobenius norm ||A|| of a matrix is given by:

||A|| =
N∑
i=1

M∑
j=1

ai j
2. (1.6)
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1.6 Book Outline

In the sequel, a brief introduction to each chapter of the book follows:

Chapter 2. Related Work on Matrix Factorization
In this chapter, we provide the related work on basic matrix decomposition meth-
ods. The first method that we discuss is known as eigenvalue decomposition, which
decomposes the initial matrix into a canonical form [1, 20, 34, 35, 48]. The sec-
ond method is nonnegative matrix factorization (NMF), which factorizes the initial
matrix into two smaller matrices with the constraint that each element of the fac-
torized matrices should be nonnegative [3, 7, 8, 14, 18, 22, 29–31, 47]. The third
method is probabilistic matrix factorization (PMF), which scales well to large data
sets. The PMF method performs well on very sparse and imbalanced data sets using
spherical Gaussian priors. The last but one method is probabilistic latent semantic
analysis (PLSA) which is based on a mixture decomposition derived from a latent
class model. This results in a more principled approach which has a solid foundation
in statistics. The last method is CUR decomposition, which confronts the problem
of density in factorized matrices (a problem that is faced when handling the SVD
method) [15, 32, 33].

Chapter 3. Performing SVD on Matrices and Its Extensions
In this chapter, we describe singular value decomposition (SVD), which is applied
on recommender systems [2, 5, 9, 12, 19, 27, 40, 41]. We discuss in detail the math-
ematical background and present (step by step) the SVDmethod using a toy example
of a recommender system. We also describe UV decomposition [38] in detail, which
is an instance of SVD, as we have mathematically proven. We minimize an objec-
tive function, which captures the error between the predicted and the real value of a
user’s rating. We also provide a step-by-step implementation of UV decomposition
using a toy example, which is followed by a short representation of the algorithm in
pseudocode form [4, 17, 49]. Finally, an additional constraint of friendship is added
to the objective function to leverage the quality of recommendations [25].

Chapter 4. Experimental Evaluation on Matrix Decomposition Methods
In this chapter, we study the performance of described SVD and UV decom-
position algorithms, against an improved version of the original item-based CF
algorithm [23, 39] combined with SVD. For the UV decomposition method, we
will present the appropriate tuning of parameters of its objective function to have an
idea of how we can get optimized values of its parameters. We will also answer the
question if these values are generally accepted or if they should be different for each
data set. The metrics we will use are root-mean-square error (RMSE), precision,
and recall. The size of a training set is fixed at 75%, and we perform a fourfold
cross-validation.

http://dx.doi.org/10.1007/978-3-319-41357-0_2
http://dx.doi.org/10.1007/978-3-319-41357-0_3
http://dx.doi.org/10.1007/978-3-319-41357-0_4
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Chapter 5. Related Work on Tensor Factorization
In this chapter, we provide a preliminary knowledge overview of tensors. Moreover,
we provide the related work on tensor decomposition methods. The first method that
is discussed is the Tucker Decomposition (TD) method [45], which is the underlying
tensor factorization model of Higher Order Singular Value Decomposition [28]. TD
decomposes a tensor into a set of matrices and one small core tensor. The second one
is the PARAFAC method (PARAllel FACtor analysis) [10, 21], which is the same
as the TD method with the restriction that the core tensor should be diagonal. The
third one is the Pairwise Interaction Tensor Factorization method [37], which is a
special case of the TD method with linear runtime both for learning and prediction.
The last method that is analyzed is the low-order tensor decomposition (LOTD). This
method has low functional complexity, is uniquely capable of enhancing statistics,
and avoids overfitting compared with traditional tensor decompositions such as TD
and PARAFAC [6].

Chapter 6. Performing HOSVD on Tensors and Its Extensions
In this chapter, we describe tensor decomposition for recommender systems in detail.
Wewill use—as a toy example—a tensor with three dimensions (i.e., user–item–tag).
The main factorization method that will be presented in this chapter is higher order
SVD (HOSVD), which is an extended version of the Singular Value Decomposition
(SVD) method. In this chapter, we will present a step-by-step implementation of
HOSVD in our toy example. Then, we will present how we can update HOSVD
when a new user is registered in our recommender system. We will also discuss
how HOSVD can be combined with other methods for leveraging the quality of
recommendations. Finally, we will study limitations of HOSVD and discuss in detail
the problem of non-unique tensor decomposition results and how we can deal with
this problem. We will also discuss other problems in tensor decomposition, e.g.,
actualization and scalability.

Chapter 7. Experimental Evaluation on Tensor Decomposition Methods
In this chapter, we will provide experimental results of tensor decomposition meth-
ods on real data sets in STSs.Wewill discuss the criteria that wewill set for testing all
algorithms and the experimental protocol we will follow. Moreover, we will discuss
the metrics that we will use (i.e., Precision, Recall, root-mean-square error, etc.).
Our goal is to present the main factors that influence the effectiveness of algorithms.

Chapter 8. Conclusions and Future Work
In this chapter, we will discuss the main conclusions of the experimental evaluation,
limitations of each algorithm, and will provide future research directions.
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Chapter 2
Related Work on Matrix Factorization

Abstract In this chapter, we provide the related work of basicmatrix decomposition
methods. The first method that we discuss is known as eigenvalue decomposition,
which decomposes the initial matrix into a canonical form. The second method is
nonnegative matrix factorization (NMF), which factorizes the initial matrix into two
smaller matrices with the constraint that each element of the factorized matrices
should be nonnegative. The third method is latent semantic indexing (LSI), which
applies singular value decomposition (SVD) that uses singular values of the initial
matrix to factorize it. The last method is CUR decomposition, which confronts the
problem of high density in factorized matrices (a problem that is faced when using
the SVDmethod). This chapter concludes with a description of other state-of-the-art
matrix decomposition techniques.

Keywords Matrix decomposition

2.1 Dimensionality Reduction on Matrices

Many problems in our life are represented with matrices. Due to high dimensionality
of data in these problems, the initial matrix is usually factorized into two or more
“smaller” matrices. Thesematrices have the advantage of smaller dimensions, result-
ing in reduced required storage space and less required time for processing them.
Therefore, they can be processed more efficiently by algorithms than the initial
matrix. There are many methods [19–21] on how to decompose a matrix and deal
with a high-dimensional data set.

Principal component analysis (PCA) is a data mining technique that replaces the
high-dimensional original data by its projection onto the most important axes. This
technique maps linearly the data to a lower dimensional matrix in such a way that the

© The Author(s) 2016
P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques
for Recommender Systems, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-41357-0_2
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variance of data in the low-dimensional representation is maximized. It is a simple
method, which is based on eigenvalues and the eigenvectors of a matrix, which will
be discussed in the next section.

2.2 Eigenvalue Decomposition

In this section, we present a decomposition method known as eigenvalue decompo-
sition. In linear algebra, the eigenvalue decomposition method is the factorization
of a matrix A into a canonical form. The eigenvalues and the eigenvectors of A are
used to represent the matrix. To apply this method on a matrix, the matrix should not
only be square but also diagonalizable [1, 11, 18].

Let A be a square and diagonalizable matrix, and let λ be a constant and e a
column nonzero vector with the same number of rows as A. Then λ is an eigenvalue
of A and e is the corresponding eigenvector of A if:

Ae = λe (2.1)

For a matrix A of rank r , we can group r nonzero eigenvalues in an r × r diagonal
matrix Λ and their eigenvectors in an n × r matrix E . So we have:

AE = EΛ (2.2)

Moreover, in case that the rank r of the matrix A is equal to its dimension n, then
the matrix A can be factorized as:

A = EΛE−1 (2.3)

which is a diagonalization similar to SVDwhich will be described particularly in the
next chapter.

Next, based on Eq.2.3, we perform eigenvalue decomposition on the following
2 × 2 matrix A:

A =
[
1 0
1 3

]
(2.4)

The task is to decompose matrix A into a diagonal matrix through multiplication
of a nonsingular matrix B:

B =
[
a b
c d

]
∈ R

2×2 (2.5)

Considering the theory of eigenvalues and eigenvectors of a matrix and Eq.2.3,
we take:
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A = BΛB−1 ⇐⇒
AB = BΛ ⇐⇒[

1 0
1 3

] [
a b
c d

]
=

[
a b
c d

] [
λ1 0
0 λ2

]
(2.6)

Using linear algebra rules, the above equation can be written as:

[
1 0
1 3

] [
a
c

]
=

[
aλ1

cλ1

]
[
1 0
1 3

] [
b
d

]
=

[
bλ2

dλ2

]
⎫⎪⎪⎬
⎪⎪⎭

⇐⇒[
1 0
1 3

] [
a
c

]
= λ1

[
a
c

]
[
1 0
1 3

] [
b
d

]
= λ2

[
b
d

]
⎫⎪⎪⎬
⎪⎪⎭ (2.7)

The next step is to let a =
[
a
c

]
and b =

[
b
d

]
, this gives us two vector equations:

Aa = λ1a

Ab = λ2b

}
(2.8)

Equation2.8 can be described with a single vector equation involving two
solutions as eigenvalues. Based on Eq.2.1, with λ representing the two eigenval-
ues λ1 and λ2, respectively, e is a and b. Now shifting the λe to the left-hand side of
the equation we get:

Ae − λe = 0 ⇐⇒
(A − λI )e = 0 ⇐⇒
B:nonsingular ⇐⇒ e:nonzero−−−−−−−−−−−−−−−−→
(A − λI ) = 0 ⇐⇒∣∣∣∣1 − λ 0
1 3 − λ

∣∣∣∣ = 0 ⇐⇒
(1 − λ)(3 − λ) = 0 (2.9)

So we can now compute solutions and take eigenvalues of the matrix A which are
λ1 = 1 and λ2 = 3. The resulting matrix from the eigenvalue decomposition of A is:

λ =
[
1 0
0 3

]
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Putting solutions back into Eq.2.7, we get:

[
1 0
1 3

] [
a
c

]
= 1

[
a
c

]
[
1 0
1 3

] [
b
d

]
= 3

[
b
d

]
⎫⎪⎪⎬
⎪⎪⎭ (2.10)

Solving equations we have:

a = −2c, a ∈ R (2.11)

∧
b = 0, d ∈ R (2.12)

Finally, matrix B is

[−2c 0
c d

]
and the solution to the requested example is:

[
1 0
1 3

]
=

[−2c 0
c d

] [
1 0
0 3

] [−2c 0
c d

]−1

, c, d ∈ R

2.3 Nonnegative Matrix Factorization

Another widely known method in dimensionality reduction and data analysis is
nonnegative matrix factorization (NMF). In this section, we will discuss how the
NMF algorithm works and apply it to the training data of the running example.

The NMF algorithm factorizes a matrix A in two matrices U and V, with the
property that all three matrices have no negative elements. This nonnegativity makes
resulting matrices more suitable for the clustering of objects.

Let us assume that ai , . . . , aM are M nonnegative initial vectors and we organize
them as the columns of a nonnegative data matrix A. NMF produces a small set of K
nonnegative representative vectors ui , . . . ,uK that can bemultiplied with vi , . . . , vK
vectors to approximate initial vectors ai , . . . , aM [14], as follows:

A ≈ UV (2.13)

and

ai ≈
K∑

k=1

umkvkn, 1 ≤ m ≤ M, 1 ≤ n ≤ N (2.14)
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Please notice that multiplied unk and vkm coefficients are restricted to being non-
negative [6]. There are several ways in which matrices U and V of Eq.2.13 can
be computed. Lee and Seung [13] proposed the definition of a cost function (i.e.,
‖A −UV ‖2), which can be minimized using either multiplicative update rules or
additive update rules of the gradient descent method. In other words, they use a cost
function for measuring the divergence between A and UV . The cost function quan-
tifies the approximation error in (2.13), based on the Frobenius norm (square of the
Euclidean distance) between matrices A and UV :

‖A −UV ‖2 =
K∑

k=1

(amn − umkvkn)
2 (2.15)

is lower bounded by zero and clearly vanishes if and only if A = UV .
Thus, an NMF variant arises from the following minimization problem:

Minimize ‖A −UV ‖2, subject toU, V ≥ 0.

Please notice that the Frobenius norm cost function is not convex in U and V
simultaneously. The gradient descent can be applied, but it has slow convergence
and is sensitive to the choice of gradience step size [31].

The multiplicative update rules can be used for iteratively solving the above-
mentioned minimization problem. They take the following form for the Frobenius
norm:

U ← U
AV T

AVV T , V ← V
UT A

UTUV
(2.16)

Moreover, Dhillon and Sra [5] proposed multiplicative update rules that
incorporate weights for the importance of elements of the approximation matrix.
As already mentioned, the objective function ‖A −UV ‖2 is convex in U only or
V only. However, it is not convex in both variables together. Thus, we can only
guarantee for finding a local minimum solution, rather than a global minimum of
the cost function. Moreover, since the problem does not have an exact solution, in
general, the computation of matrices U and V is commonly approximated numeri-
cally with methods such as gradient descent or alternating least squares. Recently,
Lin [15] proposed an algorithm variation that resolves one of the convergence issues.
His algorithm guarantees the convergence to a stationary point. However, Lin’s algo-
rithm requires even more execution time per iteration than the Lee and Seung [13]
NMF algorithm. The basic gradient descent algorithm [3] for computing matricesU
and V , which is based on the additive update rules, is shown in Fig. 2.1:
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Fig. 2.1 Basic gradient descent algorithm for NMF

As shown, in Fig. 2.1, the gradient descent algorithm always takes a step in the
direction of the negative gradient, i.e., the steepest descending direction of the func-
tion. Step size parameters ηU and ηV usually take a small value close to zero. Please
notice that in order to prevent values of matrices U and V from becoming negative,
after the application of each update rule, we set any derived negative value ofmatrices
U and V to be equal to 0.

Finally, we will apply the NMF algorithm to our running example of Fig. 1.2
in Sect. 1.1 of Chap.1. The resulting matrices after the application of NMF to the
training data of our running example are shown in Fig. 2.2. Please notice that in
Chap.3,wewill describe in detail theUVdecompositionmethod,which is an instance
of NMF without the constraint of nonnegativity of U and V matrices.

Fig. 2.2 Âm×n (initial matrix A) is the predicted matrix after the application of NMF algorithm

2.4 Latent Semantic Indexing

Furnas, Deerwester et al. [8] proposed the latent semantic indexing (LSI) in informa-
tion retrieval to deal with high dimensionality of document-term matrix.
More specifically, LSI uses SVD to capture latent associations between terms and
documents. SVD is a well-known factorization technique that factors a matrix
into three matrices. Document-term model and SVD are used in [8] for retriev-
ing information. Documents and queries are represented with vectors and SVD is
used for reducing these vector dimensions. Berry et al. [2] carried out a survey of
computational requirements for managing (e.g., folding-in1) LSI-encoded databases.

1Folding in terms or documents is a simple technique that uses existing SVD to represent new
information.

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_3
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He claimed that the reduced-dimensions model is less noisy than the original data.
Hofmann [12] proposed a model-based algorithm which relies on latent semantic
and statistical models.

One main category of collaborative filtering (CF) algorithms in recommender
systems are model-based algorithms, which recommend to first develop a model
of user ratings for items. It has been shown that model-based algorithms can
efficiently handle scalability and improve accuracy of recommendations in large data
sets. Model-based approaches can combine the effectiveness of nearest-neighbor
CF algorithms in terms of accuracy with efficiency in terms of execution time.
Toward this direction, LSI is a technique that has been extensively used in infor-
mation retrieval. LSI detects latent relationships between documents and terms. In
CF, LSI can be used to form users’ trends from individual preferences, by detecting
latent relationships between users and items. Therefore, with LSI, a higher level rep-
resentation of the original user–item matrix is produced, which presents a threefold
advantage: (i) It contains the main trends of users’ preferences, (ii) noise is removed,
and (iii) it is much more condensed than the original matrix thus it favors scalability.

Awell-known latent factormodel formatrix decomposition is SVD.TheSVD[26]
of a matrix AI1×I2 can be written as a product of three matrices, as shown in Eq.2.17:

AI1×I2 = UI1×I1 · SI1×I2 · V�
I2×I2 , (2.17)

where U is the matrix with left singular vectors of A, V� is the transpose of the
matrix V with right singular vectors of A, and S is the diagonal matrix of ordered
singular values of A. Please note that singular values determined by the factorization
of Eq.2.17 are unique and satisfy σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σI2 ≥ 0.

By preserving only the largest c < min{I1, I2} singular values of S, SVD results
in matrix Â, which is an approximation of A. In information retrieval, this technique
is used by LSI [8], to deal with latent semantic associations of terms in texts and to
reveal major trends in A. Please notice that in Chap.3, we will describe in detail the
SVD decomposition method, which is the core method that LSI relies on.

2.5 Probabilistic Latent Semantic Indexing

Probabilistic latent semantic indexing (PLSI), which is the probabilistic case of the
LSI technique, can also be used either for discovering main trends of a user–item
rating matrix in recommender system domain or for discovering abstract “topics”
that occur in a collection of documents in the information retrieval domain.

http://dx.doi.org/10.1007/978-3-319-41357-0_3
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In PLSA for the information retrieval domain, it is assumed that there are k latent
topics, stated as T1, . . . , Tk . PLSI predicts frequency values of a document-word
matrix A in two steps. First the algorithm chooses a latent topic Tl with probability
P(Tl) and then it generates the indices (i, j) of the document-word matrix with
probabilities P(di |Tl) and P(w j |Tl), respectively. All terms used in the Probabilistic
Latent Semantic Analysis (PLSA) algorithm, such as P(Tl), P(di |Tl), and P(w j |Tl),
must be computed from observed frequencies in the document-term matrix A.

The aforementioned three key sets of parameters create an SVD-like matrix fac-
torization of the m × n document-term matrix A. Therefore, the (i, j)th value of A
can be interpreted as an “observed instantiation” of the probability P(di , w j ). If Uk

is the m × k matrix, in which the (i, l)th entry is P(di |Tl), Sk is the k × k diagonal
matrix in which the lth diagonal value is P(Tl), and Vk is the n × k matrix in which
( j, l)th entry is P(w j |Tl), then P(di , w j ) of matrix A is computed as illustrated in
Eq.2.19.

R = Uk × Sk × V T
k (2.18)

P(di , w j ) =
k∑

l=1

P(di |Tl)P(Tl)P(w j |Tl) (2.19)

The left-hand side of Eq.2.19 is the (i, j)th value of A, whereas the right-hand side
is the (i, j)th entry of the productUk × Sk × V T

k . Depending on the number of topics
k, the PLSA calculation can only be an approximation of the matrix A. PLSI supplies
us with a different and quite strong technique for applying dimensionality reduction
and has many advantages over its ancestor (LSI). One of its main advantages is
that it performs a nonnegative matrix factorization, which makes it adequate for
recommender systems, since it does not predict negative ratings. However, it also
has some limitations. For example, the number of parameters grows linearly with the
number of documents/items, which increases drastically the time/space complexity
of the algorithm.

2.6 CUR Matrix Decomposition

In this section, we are going to present another matrix decomposition method, which
is known as CUR matrix decomposition, because the initial matrix A is factorized to
threematrices (C ,U , and R). In high-dimensional data sets, several matrix decompo-
sition methods, such as the SVD method, produce decomposed matrices which tend
to be very dense, a fact that makes their processing a challenge in terms of efficiency.
In contrast, the CUR decomposition method confronts this problem as it decomposes
an original matrix into two sparse matrices C and R and only one dense matrix U ,
whose size is quite small. Moreover, CUR gives an exact decomposition no matter
how many dimensions picked from the origin matrix (i.e., how big is parameter c),
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whereas in SVD, the parameter c should be at least equal to the rank of the origin
matrix A [7, 16, 20].

Next, we will describe briefly the process of CUR decomposition. Let A be a
matrix with m rows and n columns and c the number of main dimensions that we
want to keep after decomposing A. The basic components of CUR decomposition
of A are the following three matrices:

1. Based on selected c columns of A, we produce the m × c matrix C .
2. Based also on selected c columns of A, we construct the c × n matrix R.
3. We build a c × c matrix U , which is constructed as follows:

• First of all, we define a matrix W that is the intersection of chosen columns
and rows of matrices C and R, respectively.

• Next, we compute the SVD decomposition of W : W = Ũ S̃Ṽ� and we also
compute the Moore–Penrose pseudoinverse S̃+ of the diagonal matrix S̃. To
do this, we replace every nonzero element s of the diagonal matrix S̃ with 1

s .

• Finally, matrix U is computed as follows: U = Ṽ (S̃+)
2
Ũ�.

One quick observation about CUR decomposition is that row and column that
are used to construct matrices C and R are randomly selected from matrix A. It is
obvious that this selection will affect CUR approximation. For this reason, both the
row and column selection process should be biased, in a way so that more important
rows or columns have a better chance of being picked. To select the most important
row/column of matrix A, we can use the square of the Frobenius norm of A, which
is the square root of the sum of the absolute squares of the elements of a matrix.2

Then, we can define as Prob(i) the probability for a row/column to be selected
as follows:

Prob(i) =
n∑
j=1

a2i, j
‖A‖F

(2.20)

We will apply Eq.2.20 in the training data of our running example of Fig. 1.2 in
Sect. 1.1 of Chap.1, as shown in Table2.1:

Table 2.1 The training data of our running example of matrix A with the calculated Frobenius
norm per row/column

4 1 1 4 34

1 4 2 0 21

2 1 4 5 46

21 18 21 41 202

A3×4

The last column of Table2.1 presents the sum of its row elements’ squares.
Respectively, the last row of Table2.1 represents the sum of squares of elements

2Let A be an m × n matrix. So the Frobenius norm is ‖A‖F =
√∑m

i=1
∑n

j=1 |ai, j |2.

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
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for each column of matrix A. Finally, the element (202) of the intersection of the
fourth row and fifth column of Table2.1 is the Frobenius norm of matrix A. Now
we can define the probability P(i) for every row or column. For example, the prob-
ability for the first row to be selected is 34

202 = 0.16. This means that there is a 16%
probability to select the first row of the matrix A.

Till now, we have shown how a column or row of A is being selected in CUR
decomposition. Before it becomes a column/row of matrices C and R, respectively,
we have to rescale it up accordingly. To do this, we divide each column’s element
of matrix A by the square root of the expected number of times this column would
be picked (i.e.,

√
c × P(i)). Thus, if we set c = 2 and we then choose the first row

with probability 0.16, the vector will be divided by
√
2 × 0.16. The new scaled row

would be [7.07 1.76 1.76 7.07]. The same procedure is followed for scaling all chosen
columns of A, which become columns for matrices C and R, respectively.

Next, we will present the U ’s construction through an example. Let us assume
that we chose the first and the second rows and the last two columns of matrix A of
Table2.1. In this way, matrix W would be equal to:

W =
[
1 4
2 0

]

Here is the SVD of W :

That is, the threematrices on the right are Ũ , S̃, and Ṽ�, respectively.Matrix S̃ has
no zeros along the diagonal, so each element is replaced by its numerical inverse to
get itsMoore–Penrose pseudoinverse S+ matrix, by replacing every nonzero element
s of the diagonal matrix S̃ with 1

s .

S+ =
[
0.24 0
0 0.52

]

So finally,

U = Ṽ S+Ũ�

⇐⇒
U =

[
0.31 −0.95
0.95 −0.31

]
×

[
0.06 0
0 0.27

]
×

[
0.99 0.15
0.15 −0.99

]
=

[−0.02 0.25
0.04 0.09

]

As we discussed earlier, approximation is only guaranteed to be close only when
parameter c is large enough. However, the Frobenius norm helps us to select the
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Fig. 2.3 Â4×3 (initial matrix A) is the predicted matrix after the application of CUR algorithm

most important rows and columns and as a result, CUR decomposition tends to
have high effectiveness. For our running example, the resulting matrices after CUR
decomposition are shown in Fig. 2.3.

In conclusion, when we apply the CUR method on a sparse matrix A, there is a
main advantage over the SVD method. The two large matrices C and R, which are
analogous toU and V of SVDmethod, control the sparsity property from the original
matrix A. Only the matrixU (analogous to S) is dense, but this matrix is small, so the
density does not affect the performance of an algorithm that would process thematrix
data. However, we should emphasize the fact that CUR approximation matrices are
less accurate than SVD approximation matrices. Lastly, since the rows and columns
in CUR come from the original matrix (rather than left and right singular vectors as
in SVD), the CUR approximation matrix is often easier for users to comprehend.

2.7 Other Matrix Decomposition Methods

In addition to methods presented in this chapter, there are many other interesting
matrix decomposition approaches.

Sarwar et al. [22–24] applied dimensionality reduction for the user-based CF
approach. He also used SVD for generating rating predictions. The case study of [17]
presents two different experiments that compare the quality of a recommender sys-
tem using SVD with the quality of a recommender system using naive collaborative
filtering. The results suggest that SVD has the potential to meet many of the chal-
lenges of recommender systems, under certain conditions. However, in contrast to
Symeonidis et al.’s [27–30] work, Sarwar et al. [23, 24] did not consider two signif-
icant issues: (i) Predictions should be based on the users’ neighbors and not on the
test (target) user, as the ratings of the latter are not a priori known. For this reason,
Symeonidis et al. rely only on the neighborhood of the test user. (ii) The test users
should not be included in the calculation of the model, because they are not known
during factorization phase. For this reason, Symeonidis et al. introduced the notion
of pseudo-user in order to include a new user in the model (folding-in), from which
recommendations are derived. We have to mention that for high-dimensional data
sets (i.e., with number of dimensions more than 1000), dimensionality reduction is
usually performed prior to applying a k-nearest neighbor algorithm (k-NN). Please
notice that for very high-dimensional data sets (i.e., live video streams, DNA data,
or high-dimensional time series data), running a fast approximate k-NN search using
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“locality-sensitive hashing,” “random projections,” and “sketches” might be the only
feasible option [4, 25].

Other related work also includes Goldberg et al. [10], who applied PCA to facili-
tate offline dimensionality reduction for clustering the users, and therefore manages
to have rapid online computation of recommendations. Hofmann [12] proposed a
model-based algorithm which relies on latent semantic and statistical models. More-
over, the authors in [9] propose a method that creates self-similarity matrices from
eigenvectors calculated by SVD, in a way that separates the concepts. Then, these
matrices are combined into a new matrix by applying an aggregating function.

Finally, another decomposition approach, known as Cholesky decomposition,
decomposes a n × n symmetric, positive-definitematrix A into the product of a lower
triangular matrix with positive diagonal elements B and its conjugate transpose B∗
[32]

A = BB∗, (2.21)

Please notice that if A is not symmetric and positive definite, then the algorithm
may have a zero entry in the diagonal of B. Cholesky factorization is an efficient
algorithm, which is faster than other similar decomposition algorithms and produces
good approximations of the initial matrix A.
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Chapter 3
Performing SVD on Matrices
and Its Extensions

Abstract In this chapter, we describe singular value decomposition (SVD), which
is applied on recommender systems. We discuss in detail the method’s mathematical
background and present (step by step) the SVD method using a toy example of a
recommender system. We also describe in detail UV decomposition. This method is
an instance of SVD, as wemathematically prove.Weminimize an objective function,
which captures the error between the predicted and real value of a user’s rating.
We also provide a step-by-step implementation of UV decomposition using a toy
example, which is followed by a short representation of the algorithm in pseudocode
form. Finally, an additional constraint of friendship is added to the objective function
to leverage the quality of recommendations.

Keywords Singular value decomposition · UV decomposition

3.1 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a very important linear algebra tool that we
use to solve many mathematical problems. The SVD method is a factorization of a
real or complex matrix [1]. In this section, we present the mathematical formulation
of SVD and some of its variations.

First of all, we present SVD’s connection with the eigenvalue decomposition
method,which is described in Sect. 2.2. The relation betweenSVDand the eigenvalue
decomposition method comes from a special case of the latter one which will be
analyzed subsequently.

© The Author(s) 2016
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for Recommender Systems, SpringerBriefs in Computer Science,
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If and only if, a matrix A is symmetric and positive definite (i.e., A ⇐⇒ A =
A� ∧ ∀e ∈ E, e > 0), then SVD and eigenvalue decomposition both coincide as
follows:

A = U SU� = EΛE−1 (3.1)

with U = E and S = Λ.
In case that matrix A is a nonsquare matrix and its factorization can be written

as A = U SV �, then there are two other matrices M1 = A� A and M2 = AA� and
their factorization, which is of special interest:

M1 = A� A ⇐⇒
M1 = (U SV �)�(U SV �) ⇐⇒

M1 = (V S�U�)(U SV �) ⇐⇒ U -unitary−−−−−→
M1 = V S� I SV � ⇐⇒

M1 = V S�SV � ⇐⇒ S-orthogonal−−−−−−−→
M1 = A� A = V S2V � (3.2)

∧
M2 = AA� ⇐⇒

M2 = (U SV �)(U SV �)� ⇐⇒
M2 = (U SV �)(V S�U�) ⇐⇒ V -unitary−−−−−→

M2 = U SI S�U� ⇐⇒
M2 = U SS�U� ⇐⇒ S-orthogonal−−−−−−−→

M2 = AA� = U S2U� (3.3)

Please notice that for both matrices (M1 and M2), the application of SVD on the
original matrix A can be used to compute their own SVD factorization. And since
these matrices are by definition symmetric and positive definite, this is also their
eigenvalue decomposition, with eigenvalues Λ = S2. For example, we can calculate
SVD decomposition of M1 matrix as follows:

M1 = A� A = V S2V � (3.4)

The S matrix holds in its diagonal the eigenvalues of A, and matrices A and A�
are known. So, we can compute matrix V from Eq.3.4. It remains to compute only
matrix U . Its computation can be done, using the basic equation of the SVD method
as follows:
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A = U SV � ⇐⇒
AV = U SV V � ⇐⇒ V -unitary−−−−−→

AV = U SI ⇐⇒
AV = U S ⇐⇒

AV S−1 = U SS−1 ⇐⇒
AV S−1 = U I ⇐⇒

AV S−1 = U (3.5)

Based on Eq.3.5, we can compute matrix U and now we have known all parts to
apply the SVD algorithm on matrix A.

Analogously, we can computematrix V using M2 matrix. The explanation is given
subsequently:

M2 = AA� = U S2U� (3.6)

∧
A = U SV � ⇐⇒

U� A = U�U SV � ⇐⇒ U -unitary−−−−−→
U� A = I SV � ⇐⇒
U� A = SV � ⇐⇒

S−1U� A = SS−1V � ⇐⇒
S−1U� A = I V � ⇐⇒

S−1U� A = V � (3.7)

A reasonable question arises according to the above calculation methods. When
do we use matrix M1 and when matrix M2? The answer is simple. We choose the
minimum dimension of the matrix A. With mathematical explanation, if matrix A is
an n × m matrix, we choose M1 matrix when m 	 n and M2 matrix when n 	 m.
Let us give an example to make it more clear. If matrix A is a 1.000 × 100 matrix, we
prefer to use M1 matrix which will be a square matrix with 100 × 100 dimensions.
On the other hand, if matrix A is a 100 × 1.000 matrix, we choose to use the matrix
M2 with its dimensions 100 × 100 also. This selection saves data space and makes
the SVD calculation easily and faster.

In this point, we have to analyze and represent more particularly the implemen-
tation of the SVD method. Formally, applying SVD on a matrix A means that A can
be written as a product of three matrices, as shown in Eq.3.9:

Am×n = Um×m · Sm×n · V T
n×n (3.8)

whereU is an m × m real or complex unitary matrix, S is an m × n rectangular diag-
onal matrix with nonnegative real numbers on the diagonal, and V � (the conjugate
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transpose of matrix V , or simply the transpose of V if V is real) is an n × n real or
complex unitary matrix. The diagonal entries Si,i of matrix S are known as singular
values of A. The m columns of matrix U and the n columns of matrix V are called
left singular vectors and right singular vectors of A, respectively.

The singular value decomposition and eigenvalue decomposition are closely
related. Namely:

• The left singular vectors of A are eigenvectors of A · A�.
• The right singular vectors of A are eigenvectors of A� · A.
• The nonzero singular values of A (found on diagonal entries of S) are square roots
of nonzero eigenvalues of both A� · A and A · A�.

To perform the SVD over a user–item matrix A, we tune the value of parameter
c, of singular values (i.e., dimensions) with the objective to reveal major trends. The
tuning of c is determined by the rank of matrix A. A rule of thumb for defining
parameter c is to compute the sum of elements in the main diagonal of matrix S (also
known as nuclear norm). Next, we preserve sufficient percentage of this sum for
the creation of an approximation of the original matrix A. If we have the allowance
to use less information percentage with similar results, we just have to reduce the
value of c and sum the corresponding elements of the main diagonal of S matrix.
Therefore, a c-dimensional space is created and each of the c dimensions corre-
sponds to a distinctive rating trend. Next, given current ratings of the target user
u, we enter pseudo-user vector in c-dimensional space. Finally, we find k-nearest
neighbors of pseudo-user vector in c-dimensional space and apply either user- or
item-based similarity to compute the top-N recommended items. Conclusively, pro-
vided recommendations consider the existence of user-rating trends, as similarities
are computed in the reduced c-dimensional space, where dimensions correspond to
trends.

To ease the discussion, we will apply the SVD algorithm on our running example
of Fig. 1.2 in Sect. 1.1 of Chap.1. The same figure is represented again below in
Fig. 3.1 for convenience. As shown, the example data set is divided into training and
test sets. The null cells (no rating) are presented as zeros.

Fig. 3.1 a Training set
(3 × 4), b Test set (1 × 4)

I1 I2 I3 I4
U1 4 1 1 4
U2 1 4 2 0
U3 2 1 4 5

(a)
I1 I2 I3 I4

U4 1 4 1 0

(b)

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
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3.1.1 Applying the SVD and Preserving the Largest Singular
Values

Initially, we apply SVD to an n × m matrix A (i.e., the training data of our running
example) that produces the decomposition shown in Eq.3.9. The matrices of our
running example are shown in Fig. 3.2.

An×m = Un×n · Sn×m · V �
m×m . (3.9)

⎡
⎣4 1 1 4
1 4 2 0
2 1 4 5

⎤
⎦ =

⎡
⎣−0.61 0.28 −0.74
−0.29 −0.95 −0.12
−0.74 0.14 0.66

⎤
⎦ ×

⎡
⎣8.87 0.00 0.00 0.00
0.00 4.01 0.00 0.00
0.00 0.00 2.51 0.00

⎤
⎦

An×m Un×n Sn×m

×

⎡
⎢⎢⎣
−0.47 −0.28 −0.47 −0.69
0.11 −0.85 −0.27 0.45
−0.71 −0.23 0.66 0.13
−0.52 0.39 −0.53 0.55

⎤
⎥⎥⎦

V �
m×m

Fig. 3.2 Example of An×m (initial matrix A), Un×m (left singular vectors of A), Sn×m (singular
values of A), V �m×m (right singular vectors of A)

It is possible to reduce the n × m matrix S to have only c largest singular values.
Then, the reconstructed matrix is the closest rank-c approximation of the initial
matrix A, as it is shown in Eq. (3.10) and Fig. 3.3:

Ân×m = Un×c · Sc×c · V �
c×m . (3.10)

We tune the number, c, of singular values (i.e., dimensions) with the objective to
reveal the major trends. The tuning of c is determined by the information percentage
that is preserved compared to the original matrix. Therefore, a c-dimensional space
is created and each of the c dimensions corresponds to a distinctive rating trend. We
have to notice that in the running example, we create a two-dimensional space using
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⎡
⎣2.69 0.57 2.22 4.25
0.78 3.93 2.21 0.04
3.17 1.38 2.92 4.78

⎤
⎦ =

⎡
⎣−0.61 0.28
−0.29 −0.95
−0.74 0.14

⎤
⎦ ×

[
8.87 0.00
0.00 4.01

]

Ân×i Un×c Sc×c

×
[−0.47 −0.28 −0.47 −0.69
0.11 −0.85 −0.27 0.45

]

V �
c×m

Fig. 3.3 Example of Ân×m (approximation matrix of A), Un×c (left singular vectors of Â), Sc×c
(singular values of Â), V ′

c×m (right singular vectors of Â)

83.7% of the total information of the matrix (12.88/15.39). Please note that the
number 15.39 is the sum of elements in the main diagonal of Sc×c (singular values
of Â).

3.1.2 Generating the Neighborhood of Users/Items

Having a reduced dimensional representation of the original space, we form the
neighborhoods of users/items in that space. Please note that the original space consists
of two subspaces:

• range of (A) whose U (see Fig. 3.3) is an orthonormal basis. This vector space is
the column space of A referred to users.

• range of (A�) whose V (see Fig. 3.3) is an orthonormal basis. This vector space
is the row space of A referred to items.

In particular, there are two subspaces: The first is the range of A, whose matrix
Un×c is its orthonormal basis. This vector space is the column space of A and refers
to users. The second is the range of A�, whose matrix Vm×c is its orthonormal basis.
This vector space is the row space of A and refers to items.

A user-based approach relies on the predicted value of a rating that a user gives
on an item I j . This value is computed as an aggregation of the ratings of the user’s
neighborhood (i.e., similar users) on this particular item, whereas an item-based
approach takes under consideration only the user–item rating matrix (e.g., a user
rated a movie with a rating of 3).

For the user-based approach, we find the k-nearest neighbors of pseudo-user
vector in the c-dimensional space. The similarities between training and test users
can be based on cosine similarity. First, we compute the matrix Un×c · Sc×c, and
then, perform vector similarity among rows. This n × c matrix is the c-dimensional
representation for the n users.

For the item-based approach, we find the k-nearest neighbors of item vector in
the c-dimensional space. First, we compute the matrix Sc×c · V �

c×m and then we
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perform vector similarity among columns. This c × m matrix is the c-dimensional
representation for the m items.

3.1.3 Generating the Recommendation List

The most often used technique for the generation of the top-N list of recommended
items is the one that counts the frequency of each item inside the found neighborhood
and recommends the N most frequent ones. Henceforth, this technique is denoted
as most-frequent item recommendation (MF). Based on MF, we sort (in descending
order) items according to their frequency in the found neighborhood of the target
user and recommend the first N of them.

As another method, someone could use predicted values for each item to rank
them.This ranking criterion, denoted as highest predicted rated item recommendation
(HPR), is influenced by the mean absolute error (MAE1) between the predicted and
real preferences of a user for an item. HPR opts for recommending the items that are
more probable to receive a higher rating.Notice thatHPRshowspoor performance for
classic collaborative filtering (CF) algorithms. However, it shows very good results
when it is used in combination with SVD. The reason is that in the latter, it is based
only on major trends of users.

As another method, we can sum positive ratings of items in the neighborhood,
instead of just counting their frequency. This method is denoted as highest sum of
ratings item recommendation (HSR). The top-N list consists of N items with the
highest sum. The intuition behind HSR is that it takes into account both frequency
(asMF) and actual ratings, because it wants to favor items that appearmost frequently
in the neighborhood and have the best ratings. Assume, for example, an item I j that
has just a smaller frequency than an item Ik . If I j is rated much higher than Ik , then
HSR will prefer it from Ik , whereas MF will favor Ik .

3.1.4 Inserting a Test User in the c-Dimensional Space

Related work [5] has studied SVD on CF considering the test data as a priori known.
It is evident that, for the user-based approach, the test data should be considered as
unknown in the c-dimensional space. Thus, a specialized insertion process should
be used. Given current ratings of the test user u, we enter a pseudo-user vector in the
c-dimensional space using Eq. (3.11) [4]. In the current example, we insert U4 into
two-dimensional space, as it is shown in Fig. 3.4:

unew = u · Vm×c · S−1
c×c (3.11)

1M AE = 1
n

∑n
i=1 | fi − yi |: The mean absolute error (MAE) is the average of the absolute errors

ei = fi − yi where fi is the prediction and yi the true value.
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[−0.23 −0.89
]

=
[
1 4 1 0

] ×

⎡
⎢⎢⎣
−0.47 0.11
−0.28 −0.85
−0.47 −0.27
−0.69 0.45

⎤
⎥⎥⎦ ×

[
0.11 0.00
0.00 0.25

]

unew u Vm×c S−1
c×c

Fig. 3.4 Example of unew (inserted new user vector), u (user vector), Vm×c (two right singular
vectors of V), S−1

c×c (two singular values of inverse S)

In Eq. (3.11), unew denotes mapped ratings of the test user u, whereas Vm×c and
S−1

c×c are matrices derived from SVD. This unew vector should be added in the end
of the Un×c matrix which is shown in Fig. 3.3.

Notice that the inserted vector values of test user U4 are very similar to those of
U2 after the insertion, as shown in Fig. 3.5.

Fig. 3.5 The new Un+1,c
matrix containing the new
user (unew) that we have
added

⎡
⎢⎢⎣
−0.61 0.28
-0.29 -0.95
−0.74 0.14
-0.23 -0.89

⎤
⎥⎥⎦

This is reasonable, because these two users have similar ratings as it is shown in
Fig. 3.1a, b.

3.2 From SVD to UV Decomposition

In this section, we present the theoretical and mathematical background of a UV
decomposition algorithm. We will use the UV decomposition method to predict the
blank/zero entries in the user–item rating matrix A. First, we will make predictions
based only on the user–item rating matrix. Then, we will try to improve our rating
predictions by exploiting also additional resources (i.e., the friendship network of
users). The UV decomposition can be considered as an instance of SVD, which is
described as follows:

A = Ũ · S̃ · Ṽ � (3.12)

This claim can bemathematically proved using the properties of linear regression.
Let us assume that:

• U = Ũ where Ũ holds the top-k left singular vectors of A.
• V = S̃Ṽ � where S̃ = diag(σ1, . . . , σk) and Ṽ holds the top-k right singular vec-
tors of A.
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More particularly, linear regression searches for two matrices U ∈ R
m×k and V ∈

R
k×n , where k ≤ rank(A) to minimize the following equation:

minimizeU�U=Ik ‖A − UV‖2F (3.13)

Note that matrix U should be orthogonal for convention.
Given a vectora ∈ R

m and amatrix U ∈ R
m×d , linear regressionfinds a coefficient

vector v ∈ R
d that approximates a linearly based on U . The vector v minimizes

‖a − Uv‖22 by assuming that rank(U) = d, such that v can be expressed as:

v = (U�U)−1U�a (3.14)

Based on the Frobenius norm, we can rewrite Eq.3.14 as:

vi = (U�U)−1U�ai (3.15)

and hence

V = (Ũ�Ũ )−1Ũ� A ⇐⇒
V = (Ũ�Ũ )−1Ũ�U SV � ⇐⇒
V = I −1

k (Ũ�U )SV � ⇐⇒
V = I −1

k [Ik 0]SV � ⇐⇒
V = SV � (3.16)

Based on Eq.3.16, we can rewrite SVD and Eq.3.12 as follows:

A = UV (3.17)

Based on the above proof, there is a matrix V , which is the product of S and V �.
In other words, S is left-blended into matrix V � and produces matrix V . We can
assume that the new matrix V contains both the information on eigenvalues of the
utility matrix A and the information of the matrix V . For the UV decomposition
method, henceforth, we will use the same symbols U and V for factorized matrices
of the method and there will be no relationship with U, V matrices of the SVD
method. An easy way to estimate blank/zero entries in the user–item rating matrix
A is to conjecture that the utility matrix is actually the product of two long, thin
matrices U and V . To ease the discussion, we will present (step by step) the UV
decomposition method on the user–item rating matrix A of our running example of
Fig. 1.2 in Sect. 1.1 of Chap.1. Please notice that in this case, we merge the training
set of Fig. 1.2a with the test set of Fig. 1.2b. This merging results in a matrix A with 4
rows and 4 columns. The user–item rating matrix A of our running example has now
|I | rows and |J | columns (size |I | × |J | = 4 × 4) and want to find a matrix U (with
the size of |I | × K = 4 × K ) and a matrix V (with the size of |J | × K = 4 × K ),

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
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so that their product approximates A:

A ≈ U V � = Â (3.18)

More generally, if we have a matrix A with n rows and m columns, we can find
two matrices: matrix U with n rows and k columns and matrix V with m rows and
k columns, such that U V � approximates A, where most of its blank/zero entries
are filled and there is a small divergence among its initial and predicted values of A
(Fig. 3.6).

⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ =

⎡
⎢⎣
u11 · · · u1k
...

. . .
...

um1 · · · umk

⎤
⎥⎦ ×

⎡
⎢⎣
v11 · · · v1n
...

. . .
...

vk1 · · · vkn

⎤
⎥⎦

Am×n Um×k V �
k×n

Fig. 3.6 The general form of the UV decomposition. The initial matrix A can be presented as a
product of two (smaller than A in dimensions) matrices U and V

To get the prediction of a rating that a user would give on an item, we can calculate
the dot product of the two vectors, which correspond to ui and v j :

âi j = uiv�
j =

K∑
k=1

uikvk j (3.19)

The next step of the method is to find a way to obtain U and V . One way to solve
the problem is to initialize the twomatrices with some random values and to calculate
how “different” is their product compared with A. Then, we can try to minimize this
difference, iteratively. Such a numerical approximation method is called gradient
descent, aiming to find a local minimum of the difference. The difference actually
is the error between the real rating and the predicted one and can be computed for
each user–item pair using Eq.3.20:

e2i j = (ai j − âi j )
2 = (ai j −

K∑
k=1

uikvk j )
2 (3.20)

Please notice that we compute the squared error in Eq.3.20, because the predicted
rating can be either higher or lower than the real rating. In addition, by computing
the square of the error, we “reward” the small errors and “penalize” the greater ones.
Figure3.7 visualizes function f (x) = x2.
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Fig. 3.7 Using function
f (x) = x2, we “reward”
small errors and “penalize”
great ones

−4 −2 0 2 4
0

5

10

15

20

25

x

f
(x

)
=

x
2

Graph of the range of the errors between real and estimated ratings

Great error
Small error

As shown in Fig. 3.7, the green line part is the area that the square error is small
and we “reward” these differences against the red-colored area where the error is
significant and we “penalize” these differences.

3.2.1 Objective Function Formulation

In this section, we formulate the objective function, to present the additive update
rules. As we have already described in Sect. 3.2, we formulate our objective function
as follows:

G = ‖A − Â‖2F = ‖A − U V ‖2F = e2i j = (ai j −
K∑

k=1

uikvk j )
2 (3.21)

As shown by Eq.3.21, our objective function equals the square error function
of Eq.3.20. So the challenge is to minimize the error among the real and predicted
ratings of the user–item rating matrix A. Since there is no closed form solution for
function G, we use a numerical approximation method, such as gradient descent, to
solve it. Gradient descent finds the direction of change for each rating of matrix A,
whichmost decreases the error function. In particular, to minimize the error function,
we have to know in which direction to modify the values of uik and vk j of Eq.3.21. In
other words, to minimize the error function, the partial derivatives of G with respect
to U and V are computed:
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∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )

∂

∂uik
(ai j − âi j ) ⇐⇒

∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )(−vk j ) ⇐⇒

∂G

∂U
= ∂

∂uik
e2i j = −2ei jvk j (3.22)

∧
∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )

∂

∂vk j
(ai j − âi j ) ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )(−uik) ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = −2ei j uik (3.23)

Having obtained the gradient, we can now formulate additive update rules for
both uik and vk j :

u′
ik = uik − η

∂

∂uik
e2i j = uik + 2ηei jvk j (3.24)

∧
v′

k j = vk j − η
∂

∂vk j
e2i j = vk j + 2ηei j uik (3.25)

Here,η is a constantwhose value determines the rate of approaching theminimum.
Usually, we choose a small step value for η such as 0.0002. The reason is that if we
make a large step toward the minimum, we may run the risk of missing the minimum
and end up oscillating around the minimum.

3.2.2 Avoiding Overfitting with Regularization

A common problem in prediction modeling is overfitting. That is, a prediction model
is typically trained andmaximizes its performance based on some set of training data.
However, its effectiveness is determined not by its performance on the training data
but by its ability to perform well on unseen/test data. The overfitting problem occurs
when amodel begins to “memorize” training data rather than “learning” to generalize
from the trend of training data. We can avoid overfitting, by adding to our objective
function a parameter β and modifying the squared error as follows:

G = e2i j = (ai j −
K∑

k=1

uikvk j )
2 + β

2

K∑
k=1

(‖U‖2 + ‖V ‖2) (3.26)
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The new parameter β is used to control magnitudes of user-feature and item-
feature vectors. In particular, it downsizes the possible large number values of one
vector, so that they cannot dominate the possible smaller number values of the other
vector. In practice, β is set to some values in the range of 0.02. To minimize the
extended error function, again partial derivatives of G with respect to U and V
should be recomputed:

∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )

∂

∂uik
(ai j − âi j ) + βuik ⇐⇒

∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )(−vk j ) + βuik ⇐⇒

∂G

∂U
= ∂

∂uik
e2i j = −2ei jvk j + βuik (3.27)

∧
∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )

∂

∂vk j
(ai j − âi j ) + βvk j ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )(−uik) + βvk j ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = −2ei j uik + βvk j (3.28)

The new additive update rules for both uik and vk j are as follows:

u′
ik = uik − η

∂

∂uik
e2i j = uik + η(2ei jvk j − βuik) (3.29)

∧

v′
k j = vk j − η

∂

∂vk j
e2i j = vk j + η(2ei j uik − βvk j ) (3.30)

3.2.3 Incremental Computation of UV Decomposition

In this section, we apply incrementally the UV decomposition method in our running
example of Fig. 1.2 in Chap.1. Please notice that in this case, we merge the training
set of Fig. 1.2a with the test set of Fig. 1.2b. That is, the test user is included in the
calculation of UV decomposition, for reasons of brevity. The new merged initial
user-rating matrix A of our running example is shown in Fig. 3.8. As it is shown in

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
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Fig. 3.8, we decompose A into a 4-by-2 and a 2-by-4 matrix, U and V , respectively.
This means that we create a two-dimensional feature space (k = 2).

Fig. 3.8 Applying the UV
decomposition to our
example with K = 2 and
trying to figure out U and V
matrices

⎡
⎢⎢⎣
4 1 1 4
1 4 2 0
2 1 4 5
1 4 1 ?

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
u11 u12
u21 u22
u31 u32
u41 u42

⎤
⎥⎥⎦ ×

[
v11 v12 v13 v14
v21 v22 v23 v24

]

A4×4 U4×2 V �
2×4

UV decomposition starts with some arbitrarily chosen U and V , and then repeat-
edly adjusts U and V to decrease the root-mean-square error (RMSE), which is
shown in Table4.1.

RM SE =
√∑n

i=1

∑m
j=1 (ai j − âi j )2

D
, ∀i ∈ n and j ∈ m : ai j �= 0 (3.31)

where D is the sum of the nonzero entries in matrix A. Let us now assume, that in
our running example, we set equal to 1 all initial elements of U and V matrices,
whereas their product creates matrix Â, which holds predicted ratings, as it is shown
in Fig. 3.9.

Fig. 3.9 Matrices U and V
with all elements equal to 1

⎡
⎢⎢⎣
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1
1 1
1 1
1 1

⎤
⎥⎥⎦ ×

[
1 1 1 1
1 1 1 1

]

Â4×4 U4×2 V �
2×4

Then, we can compute the RMSE for A and Â matrices of Figs. 3.8 and 3.9,
respectively, based on Eq.3.31. For instance, to compute RMSE for the first rows of
A and Â matrices, we subtract 2 from each of the element in the first row of A, to
get 2,−1, −1, and 2. We square and sum these to get 10. In the second row, the last
column is zero, so this element is ignored when computing RMSE. The differences
are −1, 2, and 0 and the sum of squares is 5. For the third row, the differences are 0,
−1, 2, and 3 and the sum of squares is 14. The fourth row has a blank/zero entry in
the fourth column, so the differences are −1, 2, and −1 and the sum of squares is 6.
When we add the sums from each of the four rows, we get 10 + 5 + 14 + 6 = 35.
Finally, we divide by 14 (the number of nonzero elements in A) and take the square
root. In this case,

√
35/14 = 1.581 is the RMSE.

http://dx.doi.org/10.1007/978-3-319-41357-0_4
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To decrease RMSE of our objective function incrementally, we can make adjust-
ments to each separate element of U or V matrices. In our running example, we
adjust elements of U and V of Fig. 3.9, where all entries are initially set equal to 1,
and find values of those entries that give the largest possible improvement in RMSE.
Having matrices of Fig. 3.9 as the starting point of UV decomposition, we initially
change the value of element u11 of matrix U to reduce RMSE as much as possible.
Let us denote element u11 as variable x , as shown in Fig. 3.10.

Fig. 3.10 The first step of
UV decomposition method.
We set element u11 of matrix
U to be variable x

⎡
⎢⎢⎣
x+ 1 x+ 1 x+ 1 x+ 1
2 2 2 2
2 2 2 2
2 2 2 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x 1
1 1
1 1
1 1

⎤
⎥⎥⎦ ×

[
1 1 1 1
1 1 1 1

]

Â4×4 U4×2 V �
2×4

Please notice in Fig. 3.10 that the only elements of the Â matrix that change are
those in the first row. Thus, when we compare Â with A, the only change to RMSE
comes from the first row.

Fig. 3.11 The only change
to RMSE comes from first
row

⎡
⎢⎢⎣
4 1 1 4
1 4 2 0
2 1 4 5
1 4 1 0

⎤
⎥⎥⎦ &

⎡
⎢⎢⎣
x+ 1 x+ 1 x+ 1 x+ 1
2 2 2 2
2 2 2 2
2 2 2 2

⎤
⎥⎥⎦

Â4×4 A4×4

The contribution to the sum of squares from the first row is as follows:

C = (4 − (x + 1))2 + (1 − (x + 1))2 + (1 − (x + 1))2 + (4 − (x + 1))2 ⇐⇒

C = (16 − 2(4(x + 1)) + (x + 1)2) + (1 − 2(x + 1) + (x + 1)2)+
+ (1 − 2(x + 1) + (x + 1)2) + (16 − 2(4(x + 1)) + (x + 1)2) ⇐⇒

C = (16 − 8x − 8 + x2 + 2x + 1) + (1 − 2x − 2 + x2 + 2x + 1)+
+ (1 − 2x − 2 + x2 + 2x + 1) + (16 − 8x − 8 + x2 + 2x + 1) ⇐⇒

C = (9 − 6x + x2) + x2 + x2 + (9 − 6x + x2) ⇐⇒

C = (3 − x)2 + x2 + x2 + (3 − x)2 = 2((3 − x)2 + x2) ⇐⇒
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C = 2(9 − 6x + 2x2) (3.32)

We want to find the value of x that minimizes the sum. On Eq.3.32, we take the
derivative and set it equal to 0 as follows:

∂C

∂x
= −6 + 4x = 0 ⇐⇒

x = 1.5 (3.33)

After computing the value of variable x , initially by predicted values of the first
row’s elements of Â, which are shown in Fig. 3.9, can be recomputed. The new
predicted values of the first row elements of Â are now shown in Fig. 3.12.

Please notice that for the first row of A and Â matrices, the sum of the square has
been reduced now from 10 to 9. Thus, the total RMSE has been now decreased from
1.581 to 1.558. Let us now assume that we want to change the value of v11 element
of matrix V . Let us denote the element v11 as variable y, as shown in Fig. 3.13.

Fig. 3.12 The results after
the first step of the UV
decomposition algorithm

⎡
⎢⎢⎣
2.5 2.5 2.5 2.5
2 2 2 2
2 2 2 2
2 2 2 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1.5 1
1 1
1 1
1 1

⎤
⎥⎥⎦ ×

[
1 1 1 1
1 1 1 1

]

Â4×4 U4×2 V �
2×4

Fig. 3.13 The second step
of UV decomposition
method. We set element v11
of matrix V to be variable y

⎡
⎢⎢⎣
1.5y + 1 2.5 2.5 2.5
y + 1 2 2 2
y + 1 2 2 2
y + 1 2 2 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1.5 1
1 1
1 1
1 1

⎤
⎥⎥⎦ ×

[
y 1 1 1
1 1 1 1

]

Â4×4 U4×2 V �
2×4

In a similar way as Fig. 3.11, we can notice as shown in Fig. 3.14 that only the
first column of matrix Â is affected by y. Thus, when we compare Â with A, the
only change to the RMSE comes from the first column.
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Fig. 3.14 The only change
to RMSE comes from the
first column

⎡
⎢⎢⎣
4 1 1 4
1 4 2 0
2 1 4 5
1 4 1 0

⎤
⎥⎥⎦ &

⎡
⎢⎢⎣
1.5y + 1 2.5 2.5 2.5
y + 1 2 2 2
y + 1 2 2 2
y + 1 2 2 2

⎤
⎥⎥⎦

Â4×4 A4×4

The contribution to the sum of squares from the first column is as follows:

D = (4 − (1.5y + 1))2 + (1 − (y + 1))2 + (2 − (y + 1))2 + (1 − (y + 1))2 ⇐⇒

D = (16 − 2(4(1.5y + 1)) + (1.5y + 1)2 + (1 − 2(y + 1)) + (y + 1)2+
+ (4 − 2(2(y + 1)) + (y + 1)2 + (1 − 2(y + 1)) + (y + 1)2 ⇐⇒

D = (16 − 12y − 8 + 2.25y2 + 3y + 1) + (1 − 2y − 2 + y2 + 2y + 1)+
+ (4 − 4y − 4 + y2 + 2y + 1) + (1 − 2y − 2 + y2 + 2y + 1) ⇐⇒

D = (9 − 9y + 2.25y2) + y2 + (1 − 2y + y2) + y2 ⇐⇒

D = 10 − 13y + 5.25y2 ⇐⇒
(3.34)

As given earlier on Eq.3.33, we want to find the value of the variable y that
minimizes the sum. So on Eq.3.34 we take the derivative and set it equal to 0, as
follows:

∂ D

∂y
= −11 + 10.5y = 0 ⇐⇒

y = 1.047 (3.35)

After computing the value of variable y, initial by predicted values of the first
column’s elements of Â, which are shown in Fig. 3.12, can be recomputed. The new
predicted values of first row elements of Â are now shown in Fig. 3.15.

Fig. 3.15 The results after
the second step of the UV
decomposition algorithm

⎡
⎢⎢⎣
2.571 2.5 2.5 2.5
2.047 2 2 2
2.047 2 2 2
2.047 2 2 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1.5 1
1 1
1 1
1 1

⎤
⎥⎥⎦ ×

[
1.047 1 1 1
1 1 1 1

]

Â4×4 U4×2 V �
2×4
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By repeating the above steps for every element ofU and V matrices, we will try to
further minimize RMSE and produce a predicted matrix Â, which will approximate
real values of A. Figure3.16 shows the final predicted matrix A (η = 0.002, β =
0.02) for our running example.

⎡
⎢⎢⎣
2.56 0.82 2.36 4.08
1.20 3.99 1.71 0.02
3.10 1.13 2.06 4.86
0.74 3.89 1.31 −0.71

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.67 1.67
1.77 0.22
0.86 1.97
1.68 −0.52

⎤
⎥⎥⎦ ×

[
0.82 2.20 1.08 0.30
1.21 −0.39 0.97 2.33

]

Â U V

Fig. 3.16 The product of matrices U and V , which results in the predicted matrix Â

Please notice that the predicted rating of user U4 on item I4 is close to 0. This
is as expected because users U2 and U4 have similar ratings on items I1, I2, and I3.
Thus, user U4 is predicted to have the same rating with U2 on item I4.

3.2.4 The UV Decomposition Algorithm

In Sect. 3.2.3, we described a step-by-step implementation of the UV decomposition
method in our running example. In this section, we present (in pseudocode form) the
algorithm of UV decomposition [2], as shown in Algorithm 3.1.

The input data in Algorithm 3.1 is the objective function G = ‖A − Â‖2, which
should be minimized, the user–item rating matrix A (A ∈ R

m×n), and the user–user
friendship (adjacency) matrix F (F ∈ R

m×m). Moreover, parameter k controls the
latent feature space and the size of U and V matrices, and parameter η controls
the step size in the direction of the negative gradient (i.e., the steepest descending
direction) of the objective function G.

Based on the parameter k, in lines 1–10 of Algorithm 3.1, we initialize with
random values both U and V matrices. Then, as shown in line 11, we initialize
function G and compute its partial derivatives ( ∂G

∂U and ∂G
∂V ) forU and V , respectively.

After the above initializations, the algorithm starts the convergence process of rating
prediction in lines 12–16. In particular, in lines 13 and 14, we use the old value of
Ui and Vi , respectively, and make a step in the direction of the negative gradient of
G. Then, we compute the new gradients ∂G

∂U and ∂G
∂V of G, as shown in line 15. This

process will be repeatedly executed until the error (i.e., ‖A − Â‖2) between the real
and the predicted values of matrices Â and A ceases to improve or until a maximum
number of iterations are reached (line 16). In line 17, we take the product of the
computed U and V matrices, which produces the final prediction rating matrix Â.
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Algorithm 3.1 The UV decomposition algorithm

Require: The objective function G = ‖A − Â‖2, a user–item rating matrix A ∈ R
m×n , a user–user

(adjacency) matrix F ∈ R
m×m , parameter k, which controls the size of U and V matrices, and

parameter η, which controls the step size in the direction of the negative gradient of the objective
function G.

Ensure: An approximation matrix Â ∈ R
m×n .

1: for i = 1 : m do
2: for i = 1 : k do
3: Initialize U ;
4: end for
5: end for
6: for k = 1 : k do
7: for j = 1 : n do
8: Initialize V ;
9: end for
10: end for
11: Initialize G, ∂G

∂U , ∂G
∂V ;

12: repeat
13: U ′

i = Ui − η ∂G
∂U ;

14: V ′
i = Vi − η ∂G

∂V ;

15: Compute the gradients ∂G
∂U , ∂G

∂V ;

16: until ‖A − Â‖2 ceases to improve OR maximum iterations reached
17: Â ← U V ;
18: return Â;

3.2.5 Fusing Friendship into the Objective Function

In this section, we fuse into the objective function G additional information from the
user–user friendship network. To do this, we add a new constraint into the objective
function G, which takes into account the friendship among users [3, 6]. The infor-
mation of the friendship network of users is kept by adjacency matrix F , which is
square and symmetric. The symmetry of matrix F is obvious because if a user Ua is
a friend of user Ub then user Ub is a friend of user Ua , which means that friendship
is reciprocal.

⎡
⎢⎢⎢⎢⎢⎣

0 f12 · · · f1 (n−1) f1n
f21 0 · · · f2 (n−1) f2n
... · · · . . . · · ·

...
f(n−1) 1 f(n−1) 2 · · · 0 f(n−1)n

fn 1 fn 2 · · · fn (n−1) 0

⎤
⎥⎥⎥⎥⎥⎦

Friendship matrix Fn×n
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Both rows and columns of F refer to users, starting with user 1 (U1) from first
row and user n (Un) for nth row. Respectively, from first column to nth column we
have the first user (U1) and the nth user (Un). The entries of matrix F are 0 and 1,
where 0 means no friendship between users and 1 means that there is friendship.
Moreover, intuitively we can notice that the main diagonal of matrix F consists of
zeros because a user cannot be a friend of himself.

Next, we add a new constraint in the objective functionG of Eq.3.26. After fusing,
the friendship is as follows:

G = e2i j = (ai j −
K∑

k=1

uikvk j )
2 + β

2

K∑
k=1

(‖U‖2 + ‖V ‖2)

+ γ

2
(‖U −

∑
f ∈T U f

|T | ‖2) (3.36)

Wehave added the constraint of friendshipwhich practically influences the predic-
tion of ratings because of friendship among users. This constraint is applied only on
the U matrix, the user-feature matrix. Parameter γ is used to control how much
friendship influences prediction. In other words, the parameter γ represents the
weight in percentage that we want to give on friendship. The values of γ ranged
among [0, 1] ∈ R. If we are trying to predict the rating of user Ua , then the |T | is
the set of the users who are friends with Ua . Also, U f is the value of matrix U that
user’s Ua friend has given. In simple words, we take the difference among the value
of user Ua of matrix U , and the mean of the values on matrix U of all Ua’s friends
(mean is equal to the quotient of the sum ofU f and total amount ofUa’s friends |T |).
To minimize the objective function G, we have to compute partial derivatives for U
and V as follows:

∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )

∂

∂uik
(ai j − âi j ) + βuik + γ (uik −

∑
f ∈T u f

|T | ) ⇐⇒
∂G

∂U
= ∂

∂uik
e2i j = 2(ai j − âi j )(−vk j ) + βuik + γ (uik −

∑
f ∈T u f

|T | ) ⇐⇒
∂G

∂U
= ∂

∂uik
e2i j = −2ei jvk j + βuik + γ (uik −

∑
f ∈T u f

|T | ) (3.37)

∧

∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )

∂

∂vk j
(ai j − âi j ) + βvk j ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = 2(ai j − âi j )(−uik) + βvk j ⇐⇒

∂G

∂V
= ∂

∂vk j
e2i j = −2ei j uik + βvk j (3.38)
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The above partial derivatives of objective function G are used to make the new
update rules as we have done in Sect. 3.2.2. So after adding the new constraint, the
new update rules are as follows:

u′
ik = uik − η

∂

∂uik
e2i j = uik + η[2ei jvk j − βuik

− γ (uik −
∑

f ∈T u f

|T | )] (3.39)

∧

v′
k j = vk j − η

∂

∂vk j
e2i j = vk j + η(2ei j uik − βvk j ) (3.40)

To check whether our new extended objective function works properly, we have
recomputed the predicted matrix Â in our running example, by exploiting also the
user–user friendship network (see Fig. 1.3). As shown in Fig. 1.3, user u1 is a friend
of u2 and user u3 is a friend of u4. The final predicted values of the Â matrix are
shown in Fig. 3.17 (γ = 0.08, η = 0.002, β = 0.02):

⎡
⎢⎢⎣
2.54 0.82 2.32 4.04
1.16 3.94 1.67 0.05
3.07 1.14 2.82 4.80
0.80 3.90 1.31 −0.60

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1.12 0.47
−0.18 1.22
1.33 0.61
−0.37 1.15

⎤
⎥⎥⎦ ×

[
1.74 −0.58 1.39 3.34
1.21 3.12 1.57 0.56

]

Â U V

Fig. 3.17 The product of matrices U and V , which results in the predicted matrix Â, which also
takes into consideration the information of the users’ friendship network

3.2.6 Inserting New Data in the Initial Matrix

In this section, we will see how we can add new data (new users-rows or new items-
columns) in the initial matrix A. The process of new data insertion is important for
online collaborative filtering. This method has been developed for real-time data
analysis in an online context. The classic method of UV decomposition has been
used for static data analysis and pattern recognition. The aim of the online version
of UV decomposition is to perform a rapid analysis so that recommendations can be
produced in real time and adapt as new data are inserted into the recommendation
engine.

http://dx.doi.org/10.1007/978-3-319-41357-0_1
http://dx.doi.org/10.1007/978-3-319-41357-0_1
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We begin our study with an initial factorization of matrix A at time point t , where
we have an m × n data matrix A. For simplicity, we claim that Eq.3.18 is applicable.
At time point t + 1, we add the additional data of matrix M into the initial matrix A
resulting in Ã:

Ã =
(

A

M

)
(3.41)

The additional data M are rows and/or columns that are added to our initial matrix
A. In this way, we produce the Ã matrix with more data.

So now the problem of online version of UV is how to integrate U and V into Ũ
and Ṽ so that:

Ã = Ũ Ṽ (3.42)

The following theoremmakes it possible to design an online version ofUVdecom-
position.

Theorem 1 (Full-Rank Decomposition Theorem) If A = U V and A = U ′V ′ are
both full-rank decompositions, then there exists one invertible matrix P satisfying
U = U ′ P and V = P−1V ′.

Proof With the condition U V = U ′V ′, by multiplying V � on both sides we have
U V V � = U ′V ′V �. From full-rank condition, we get U = U ′V ′(V V �)−1 = U ′ P ,
where P = V ′(V V �)−1. As the same, we can get V = (U�U )−1U�U ′V ′ = QV ′.
It is easy to validate P Q = Q P = I where I is the identity matrix. Therefore,
Q = P−1.

Considering the full-rank decomposition theorem, we have

Ã =
(

A

M

)
= Ũ Ṽ =

(
Ũ1

Ũ2

)
Ṽ (3.43)

where Ũ1 and Ũ2 are blocks of Ũ corresponding to A and M , respectively. From
Eq. 3.43 we have:

A = Ũ1Ṽ (3.44)

For Eqs. 3.18 and 3.44, using the full-rank decomposition theorem which is
described above, we will get

Ũ1 = U P (3.45)

∧
Ṽ = P−1V (3.46)

Thus, the factorization problem is converted to:

M = Ũ2Ṽ s.t. : Ṽ = P−1V (3.47)
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To find a solution to Eq.3.47, we consider factorization of the new data matrix by
replacing A by V : (

V

M

)
= U ∗V ∗ =

(
U ∗

1

U ∗
2

)
V ∗ (3.48)

By solving this problem we obtain

V = U ∗
1 V ∗ (3.49)

∧
M = U ∗

2 V ∗ (3.50)

Assume that Ũ ∗
1 is invertible, so from Eq.3.49 we take

V ∗ = U ∗
1

−1V (3.51)

Now,we get the solution to Eq.3.47 by setting Ṽ = V ∗, P = U ∗
1

−1, and Ũ2 = U ∗
2 .

Based on the previous factorization result A = U V = UU ∗
1 V ∗, we have

Ã =
(

UU ∗
1

U ∗
2

)
Ṽ = Ũ Ṽ (3.52)

Finally, we update factor rules:

Ũ =
(

UU ∗
1

U ∗
2

)
(3.53)

∧
Ṽ = U ∗

1
−1V (3.54)

Since the solution to Eq.3.52 is solved by minimizing a target function which
is not convex, the solution to Eq.3.43 is an approximation rather an exact solution.
However, the following analysis shows that the approximate solution is reasonable.

As we have seen, the UV decomposition algorithm tries to find a set of bases to
represent input data by linear combination. When new data arrive, the bases need to
be updated to represent the new data. Since old bases can be used to represent old
data, we can update bases using previous bases and new data instead of using all the
data. This is themain philosophy behind the online version of UV decomposition and
the difference between online and classic UV decomposition. To adjust contributions
of old factors, we modify the online version of UV decomposition by introducing a
weighting schema. That is, we can use SV to replace V in Eq.3.52. The new matrix
S is a diagonal matrix with Sii representing the weight of factor vi . Then, the relation
between old and new factors is as follows:
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V ∗ = U1
−1SV (3.55)

and the update rules become:

Ũ =
(

U S−1U ∗
1

U ∗
2

)
(3.56)

∧
Ṽ = U ∗

1
−1SV (3.57)

When the data are sparse or incomplete in terms of their distribution, the UV-
decomposition method may find latent factors incorrectly. This problem is referred
to as the partial-data problem which is related to the unique solution problem of UV
decomposition.

Theorem 2 Suppose that we are given a nonnegative factorization A = U V , where
U and V satisfy U = P1

(
Δ1

U1

)
, V = (Δ2V1)P2 and where P1 and P2 are permutation

matrices, while Δ1 and Δ2 are diagonal matrices. The factorization is unique under
permutation (apart from a scaling factor).

Theorem2 clarifies the condition for unique UV decomposition. But Theorem2
requires the latent factors to have distinct features from each other and the data
distribution should be complete. To make the solution unique when the data are
incomplete, more strict requirements are needed for factors.

Theorem 3 If we restrict V to satisfy viv j = 0 f or i �= j (vi , v j are the i th and
jth rows of V ), then the nonnegative factorization A = U V is unique under permu-
tation (apart from a scaling factor).

Then,withTheorem3we introduce orthogonal constraints on the online version of
UV decomposition to tackle the partial-data problem. Theorem3 requires the factors
to be orthogonal; thus, the decomposition problem is converted to a minimization
problem:

min J = 1

2
‖A − U V ‖2F s.t. : U ≥ 0, V ≥ 0, viv j = 0, i �= j (3.58)

where ‖A − U V ‖2F = ∑
i j (a − uv)2. By introducing a regularization coefficient for

orthogonality constraint, the minimization problem is further converted to the fol-
lowing problem:

J = 1

2
‖A − U V ‖2F + aΓ V V � (3.59)

where γ is a symmetrymatrix with diagonal elements equal to zero and a is a positive
integer. We can obtain a solution to Eq.3.58 by the following iterative formulas:
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ui j ← ui j
(AV �)i j

(U V V �)i j
(3.60)

∧

vi j ← vi j
(U� A)i j

(U�U V + aΓ V )i j
(3.61)
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Chapter 4
Experimental Evaluation on Matrix
Decomposition Methods

Abstract In this chapter, we study the performance of described SVD and UV
decomposition algorithms, against an improved version of the original item based CF
algorithm combined with SVD. For the UV decomposition method, we will present
the appropriate tuning of parameters of its objective function to have an idea of how
we can get optimized values of its parameters. We will also answer the question if
these values are generally accepted or they should be different for each data set. The
metrics we will use are root-mean-square error (RMSE), precision, and recall. The
size of a training set is fixed at 75%, and we perform a fourfold cross-validation.

Keywords Experiments · SVD decomposition · UV decomposition

4.1 Data Sets

We perform experiments with two real data sets that have been used as benchmarks
in prior work.

The first data set has been extracted from the www.epinions.com website (http://
www.epinions.com). Epinions is a website that contains reviews of users on items
such as electronics, movies, books, music, etc. Users also build their web of trust
within the Epinions community. This web of trust is a list of trusted and distrusted
users. Notice that trusted users’ reviews are promoted, whereas distrusted users’
reviews are less likely encountered. A review contains a rating between 1 and 5 and
a free text message. Reviews can be commented and/or rated. This data set contains
131.828 users who have rated 841.372 items.

© The Author(s) 2016
P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques
for Recommender Systems, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-41357-0_4
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The second data set has been extracted from the following GeoSocialRec website
(http://delab.csd.auth.gr/geosocialrec), which is a location-based social network.We
have chosen a small data set to test our algorithm in a case of severe sparseness and
lack of user’s data. The data set consists of 212 users who rated 649 locations.
GeoSocialRec offers to its users the ability to connect to each other, to declare their
position with a check-in, and to rate the places they have visited.

4.2 Sensitivity Analysis of the UV Decomposition
Algorithm

4.2.1 Tuning of the k Latent Feature Space

In this section, we will examine how parameter k affects the effectiveness and per-
formance of our algorithm. Recall that parameter k controls the size of U and V
matrices which store user-latent features and item-latent features, respectively. Thus,
a small number of k latent features mean that we keep bothmatrices thin, whereas the
required storage space is small. To tune parameter k, we fix the number of algorithm’s
iteration at 5.000, which is the number of times that our algorithm is applied on data
to predict ratings. The procedure goes like this: On the first algorithm’s iteration, we
predict missing ratings and store them in the training set. On the second algorithm’s
iteration, we repredict ratings using the information stored in the previous step and
so on.

For the Epinions data set, as shown in Fig. 4.1, RMSE decreases with increasing
values of parameter k. The best RMSE is attained when parameter k is equal to 16
latent features.

k=2

k=6
k=10

k=16 k=200,4

0,5

0,6

0,7

M
S

E

Number of k latent features vs. RMSE
on Epinions data set

0,0

0,1

0,2

0,3R

# k latent features

Fig. 4.1 RMSE versus different number of k latent features on the Epinions data set

In contrast, for the GeoSocialRec data set, as shown in Fig. 4.2, the best RMSE is
attained for k = 2. That is, for different data sets, there can be no rule for selecting
the optimal value of parameter k, as it depends on the size of the data set, the data
sparseness, and probably other factors, which may be particular for each data set.

http://delab.csd.auth.gr/geosocialrec
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Fig. 4.2 RMSE versus different number of k latent features on the GeoSocialRec data set

4.2.2 Tuning of Parameter β

Parameter β is responsible to control the magnitudes of item-latent features and user-
latent features ofU andV matrices, respectively. Parameterβ overcomes the problem
of overfitting. For both data sets, as shown in Figs. 4.3 and 4.4, RMSE drops slightly
with decreasing values of the parameter β. In particular, with smaller values of β, we
get an improvement of 20% in the Epinions data set and only 2% in GeoSocialRec
data set. As expected, data overfitting does not exist in the GeoSocialRec data set,
since there is not enough training data to bias our algorithm. In contrast, parameter
β is important in the case of the Epinions data set, where it improves drastically the
performance of our algorithm.
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Fig. 4.3 RMSE versus different values of parameter β on the Epinions data set
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Fig. 4.4 RMSE versus different values of parameter β on the GeoSocialRec data set

4.2.3 Optimizing Algorithm’s Parameters

In this section, we present the algorithm’s performance with default values versus
the performance after tuning the parameters of the objective function.
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Fig. 4.5 RMSE results using default versus optimized parameters of the objective function on the
GeoSocialRec

For the Epinions data set, as shown in Fig. 4.5, blue bars present RMSE levels
calculated with the initial algorithm’s parameter values, whereas yellow bars present
RMSE levels after optimizing the parameters of the algorithm’s objective function.
As expected, as algorithm’s iterations for rating predictions are increased, RMSE of
optimized parameters outperforms the performance of initial values. Please notice
that the improvement of optimizedparameters over initial variables is quite significant
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for this data set. The main reason is that there is enough information in the training
data so that the UV decomposition algorithm can make accurate “generalizations”
for the test data.

For the GeoSocialRec data set, as shown in Fig. 4.6, improvement of RMSE on
GeoSocialRec data set is not significant. The main reason is that this data set is very
small and there is not enough information in the training set.
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Fig. 4.6 RMSE results using default versus optimized parameters of the objective function on the
GeoSocialRec

4.3 Comparison to Other Decomposition Methods

In this section, we compare the UV decomposition algorithm (with parameters that
attained the best performance in previous experiments) against the following meth-
ods:

• CUR-decomposition algorithm,which confronts the problem of high density in the
factorized matrices (a problem that is faced mainly when using the SVD decom-
position method) [1, 3, 4]. This algorithm is denoted as CUR.

• item-based CF combined with SVD [6]. Item-based CF is an improved version [2]
of thewell-known item-basedCF algorithm thatweights similarities by the number
of common ratings among items. This variation of item-based CF weights the
similarity sim between two items with a parameter γ , as follows: max(c,γ )

γ
· sim,

where c is the number of co-rated users. The best value of parameter γ is fixed at 4
and 2 for the Epinions and the GeoSocialRec data set, respectively. This algorithm
is denoted as item-based SVD.

We will compare all three algorithms in terms of precision, recall, and RMSE
measures. Please notice that RMSE works well for measuring how accurately an
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algorithm predicts the rating of a randomly selected item, but may fail to evaluate
whether an algorithm will provide accurate item recommendations [5]. Therefore,
precision–recall evaluationmeasures, in addition toRMSE, are able to bettermeasure
the quality of recommendations. Moreover, we will use precision–recall diagrams
because they can reveal the robustness of each algorithm in attaining high recall with
minimal losses in terms of precision. We examine the top-N ranked item list, which
is recommended to a target user, starting from the top item. In this case, recall and
precision vary as we proceed with the examination of the top-N list of recommended
items.

For the Epinions data set, in Fig. 4.7a, we plot a precision versus a recall curve
for all three algorithms. As expected, all algorithms’ precision falls as N increases.
In contrast, as N increases, recall for all algorithms increases as well. The UV
decomposition algorithm attains the best results.
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Fig. 4.7 Accuracy performance of algorithms in terms of precision–recall for the a Epinions and
b GeoSocialRec data sets
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For the GeoSocialRec data set, in Fig. 4.7b we also plot a precision versus recall
diagram. The UV decomposition algorithm again outperforms the item-based SVD
and CUR algorithms. Notice that the accuracy performance of all algorithms for the
GeoSocialRec data set is lower than those for the Epinions data set. The reason is
possibly because the latter has more ratings per user and can be considered a more
dense data set.

Next, we measured RMSE for all three examined algorithms on the Epinions
and GeoSocialRec data sets. The results are summarized in Table 4.1. Again, UV
decomposition clearly outperforms the item-based SVD and CUR algorithms in
terms of RMSE. As shown, UV decomposition attains the lowest RMSE values and
item-based SVD is the second best algorithm in both data sets.

Table 4.1 RMSE values for all three algorithms on two real data sets

Algorithm Epinions data set GeoSocialRec data set

UV decomposition 0.38 0.32

Item-based SVD 0.76 0.98

CUR decomposition 0.79 1.08

A smaller value means a better performance

In conclusion, we have to notice that good results of RMSE may not fully charac-
terize users’ experience in web-based recommender systems (Amazon, eBay, etc.),
which propose a top-N ranked list of items to a user. The basic reason is that an error
of size ε has the same impact on RMSE regardless of where that error places the item
in a top-N ranking. In contrast, the results of precision–recall can better characterize
the users’ experience in the aforementioned systems.
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Chapter 5
Related Work on Tensor Factorization

Abstract In this chapter, we provide a preliminary knowledge overview of tensors.
Moreover, we provide the related work on tensor decomposition methods. The first
method that is discussed is the Tucker Decomposition (TD) method, which is the
underlying tensor factorization model of Higher Order Singular Value Decomposi-
tion. TD decomposes a tensor into a set of matrices and one small core tensor. The
second one is the PARAFACmethod (PARAllel FACtor analysis), which is the same
as the TD method with the restriction that the core tensor should be diagonal. The
third method is the Pairwise Interaction Tensor Factorization method, which is a spe-
cial case of the TD method with linear runtime both for learning and prediction. The
last method that is analyzed is the low-order tensor decomposition (LOTD) method.
This method has low functional complexity, is uniquely capable of enhancing statis-
tics, and avoids overfitting compared with traditional tensor decompositions such as
TD and PARAFAC.

Keywords Tensor decomposition

5.1 Preliminary Knowledge of Tensors

Formally, a tensor is a multidimensional matrix. A N -order tensor A is denoted
as A ∈ R

I1...IN , with elements ai1,...,iN . The higher order singular value decomposi-
tion [10] generalizes the singular value decomposition (SVD) computation to tensors.
To apply the higher order singular value decomposition (HOSVD) technique on a
third-order tensorA, threematrix unfolding1 operations are defined as follows [10]:

1We define as “matrix unfolding” of a given tensor the matrix representations of that tensor in which
all column (row, …) vectors are stacked one after the other.
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A1 ∈ R
I1×(I2 I3), A2 ∈ R

I2×(I1 I3), A3 ∈ R
(I1 I2)×I3 (5.1)

where A1, A2, A3 are called the mode-1, mode-2, mode-3 matrix unfolding ofA,
respectively. The unfoldings of A in the three modes are illustrated in Fig. 5.1.

Fig. 5.1 Visualization of the three unfoldings of a third-order tensor

In the following, we will present an example of tensor decomposition adopted
from [10]:

Example 1 Define a tensorA ∈ R
3×2×3 by a1,1,1 = a1,1,2 = a2,1,1 = −a2,1,2 =

1, a2,1,3 = a3,1,1 = a3,1,3 = a1,2,1 = a1,2,2 = a2,2,1 = −a2,2,2 = 2, a2,2,3 =
a3,2,1 = a3,2,3 = 4, a1,1,3 = a3,1,2 = a1,2,3 = a3,2,2 = 0. The tensor and its
mode-1 matrix unfolding A1 ∈ R

I1×I2 I3 are illustrated in Fig. 5.2.

Next, we define the mode-n product of a N -order tensor A ∈ R
I1×···×IN by a

matrix U ∈ R
Jn×In , which is denoted as A ×n U . The result of the mode-n product

is an (I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN )-tensor, the entries of which are
defined as follows:

(A ×n U )i1i2...in−1 jn in+1...iN =
∑

in

ai1i2...in−1in in+1...iN u jn ,in (5.2)
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Fig. 5.2 Visualization of tensor A ∈ R
3×2×3 and its mode-1 matrix unfolding

Since we focus on third-order tensors, n ∈ {1, 2, 3}, we use mode-1, mode-2, and
mode-3 products.

In terms of mode-n products, SVD on a regular two-dimensional matrix (i.e.,
second-order tensor) can be rewritten as follows [10]:

F = S ×1 U
(1) ×2 U

(2) (5.3)

whereU (1) = (u(1)
1 u(1)

2 . . . u(1)
I1

) is aunitary (I1×I1)-matrix,2U (2) = (u(2)
1 u(2)

2 . . . u(2)
I1

)

is a unitary (I2 × I2)-matrix, and S is an (I1 × I2)-matrix with the properties of:

i. pseudodiagonality: S = diag(σ1, σ2, . . . , σmin{I1,I2}) and
ii. ordering: σ1 ≥ σ2 ≥ · · · ≥ σmin{I1,I2} ≥ 0.

By extending this form of SVD, HOSVD of a third-order tensorA can be written
as follows [10]:

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3) (5.4)

where U (1), U (2), U (3) contain the orthonormal vectors (called the mode-1, mode-
2, and mode-3 singular vectors, respectively) spanning the column space of the
A1, A2, A3 matrix unfoldings. S is called the core tensor and has the property of
“all-orthogonality.”3 This decomposition also refers to a general factorization model
known as Tucker decomposition [20].

2An n×nmatrixU is said to be unitary if its column vectors form an orthonormal set in the complex
inner product space Cn . That is, UTU = In .
3All-orthogonality means that the different “horizontal matrices” of S (the first index i1 is kept
fixed, while the two other indices, i2 and i3, are free) are mutually orthogonal with respect to the
scalar product of matrices (i.e., the sum of products of corresponding entries vanishes); at the same
time, different “frontal” matrices (i2 fixed) and different “vertical” matrices (i3 fixed) should be
mutually orthogonal as well. For more information, see [10].
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In the following, we will discuss several factorization models that have been pro-
posed for tag recommendation. We investigate their model assumptions, complexity,
and their relations among each other.

5.2 Tucker Decomposition and HOSVD

The Tucker decomposition (TD) was first introduced by Tucker [20] in 1963. The
Tucker I decomposition method is an important variation of the Tucker decomposi-
tion, which is later known as HOSVD [10]. HOSVD decomposes a tensor into a set
of matrices and one small core tensor. In this section, we elaborate on how HOSVD
can be employed for tensor factorization in social tagging systems (STSs).

The ternary relation of users, items, and tags in STSs can be represented as a third-
order tensorA, such that tensor factorization techniques can be employed in order to
exploit the underlying latent semantic structure inA. The idea of computing low-rank
tensor approximations has already been used for many different purposes [3, 9, 10,
17, 18, 22]. The basic idea is to cast the recommendation problem as a third-order
tensor completion problem by completing the nonobserved entries in A.

Formally, a social tagging system is defined as a relational structure F :=
(U, I, T,Y ) in which

• U , I , and T are disjoint nonempty finite sets, whose elements are called users,
items, and tags, respectively, and

• Y is the set of observed ternary relations between them, i.e., Y ⊆ U × I × T ,
whose elements are called tag assignments.

• A post corresponds to the set of tag assignments of a user for a given item, i.e., a
triple (u, i, Tu,i )with u ∈ U , i ∈ I , and a nonempty set Tu,i := {t ∈ T | (u, i, t) ∈
Y }.
Y which represents the ternary relation of users, items, and tags can be depicted

by the binary tensor A = (au,i,t ) ∈ R
|U |×|I |×|T | where 1 indicates observed tag

assignments and 0 missing values, i.e.,

au,i,t :=
{
1, (u, i, t) ∈ Y

0, else

Now, we express the tensor decomposition as

Â := Ĉ ×u Û ×i Î ×t T̂ (5.5)

where Û , Î , and T̂ are low-rank feature matrices representing a mode (i.e., user,
items, and tags, respectively) in terms of its small number of latent dimensions kU ,
kI , kT , and Ĉ ∈ R

kU×kI×kT is the core tensor representing interactions between the
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Fig. 5.3 Tensor
decomposition in STS.
Figure adapted from [15]

latent factors. Themodel parameters to be optimized are represented by the quadruple
θ̂ := (Ĉ, Û , Î , T̂ ) (see Fig. 5.3).

The basic idea of the HOSVD algorithm is to minimize an elementwise loss on
the elements of Â by optimizing the square loss, i.e.,

argmin
θ̂

∑

(u,i,t)∈Y
(âu,i,t − au,i,t )

2

After the parameters are optimized, predictions can be done as follows:

â(u, i, t) :=
kU∑

ũ=1

kI∑

ĩ=1

kT∑

t̃=1

ĉũ,ĩ,t̃ · ûu,ũ · îi,ĩ · t̂t,t̃ (5.6)

where Û = [ûu,ũ]u=1,...,U
ũ=1,...,kU

, Î = [îi,ĩ ]i=1,...,I
ĩ=1,...,kI

, T̂ = [t̂t,t̃ ]t=1,...,T
t̃=1,...,kT

and indices over the
feature dimension of a feature matrix are marked with a tilde, and elements of a
feature matrix are marked with a hat (e.g., t̂t,t̃ ).

Please notice that there are incremental solutions to update the tensor, as more
data are accumulated to the system. However, please notice that the reason for the
cubic complexity (i.e., O(k3) with k := min(kU , kI , kT )) of HOSVD is the core
tensor.

5.3 AlsHOSVD

The reconstructed tensor of the previous subsection (also known as truncated
HOSVD) is not optimal, but is a good starting point for an iterative alternating least
squares (ALS) algorithm to best fit the reconstructed tensor to the original one [8].
The basic idea of the AlsHOSVD algorithm tries to minimize theerror between the
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initial and the predicted values of the tensor. The pseudocode of the approach is
depicted in Algorithm 5.1.

Algorithm 5.1 AlsHOSVD
Require: The initial tensor A with user, tag, and item dimensions.
Ensure: The approximate tensor Âwith kU , kI and kT left leading eigenvectors of each dimension,

respectively.

1: Initialize core tensor C and left singular vectorsU (1),U (2),U (3) of A1, A2, and A3, respectively.
2: repeat
3: C = A ×1 UkU

(1)T ×2 UkI
(2)T ×3 UkT

(3)T

4: Â = C ×1 UkU
(1) ×2 UkI

(2) ×3 UkT
(3)

5: UkU
(1) ← kU leading left singular vectors of A1

6: UkI
(2) ← kI leading left singular vectors of A2

7: UkT
(3) ← kT leading left singular vectors of A3

8: until ‖A − Â‖2 ceases to improve OR maximum iterations reached
9: return C, UkU

(1),UkI
(2), and UkT

(3)

As shown in line 8 of Algorithm 5.1, AlsHOSVDminimizes an objective function
that computes the error among real and predicted values of original and approximate
tensors. This is done cyclically until our objective function ceases to fit to the original
values or the maximum number of user-defined iterations is reached. Please notice
that values of leading left singular vectors in all three modes (lines 5–7) increased
gradually in each repetition.

5.4 Parallel Factor Analysis (PARAFAC)

The PARAFAC [6] model a.k.a. canonical decomposition [2] (CANDECOMP)
reduces the complexity of the TD model by assuming only a diagonal core tensor.

cũ,ĩ,t̃
!=

{
1, if ũ = ĩ = t̃

0, else
(5.7)

which allows to rewrite the model equation:

âu,i,t =
k∑

f =1

ûu, f · îi, f · t̂t, f , for u = 1, . . . ,U, i = 1, . . . , I, t = 1, . . . , T (5.8)

In contrast to TD, model equation of PARAFAC can be computed in O(k). In total,
model parameters θ̂ of the PARAFAC model are as follows:

Û ∈ R
|U |×k, Î ∈ R

|I |×k, T̂ ∈ R
|T |×k (5.9)

The assumption of a diagonal core tensor is a restriction of the TD model.
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A graphical representation of TD and PARAFAC is shown in Fig. 5.4. It is seen
that any PARAFAC model can be expressed by a TD model (with diagonal core
tensor).

T̂Û ÎĈ xU xI xT T̂Û ÎxU xI xT

0

0
0

0

0

1
1

(a) (b)

Fig. 5.4 Relationship betweenTucker decomposition (TD) andparallel factor analysis (PARAFAC)

Let M be the set of models that can be represented by a model class. In [14], it
is shown that for tag recommendation

MPARAFAC ⊂ MTD (5.10)

This means that any PARAFAC model can be expressed with a TD model but there
are TDmodels that cannot be represented with a PARAFACmodel. In [14, 16] it was
pointed out that this does not mean that TD is guaranteed to have a higher prediction
quality than PARAFAC. On the contrary, as all model parameters are estimated from
limited data, restricting the expressiveness of a model can lead to a higher prediction
quality if the restriction is in line with true parameters.

5.5 Pairwise Interaction Tensor Factorization (PITF)

Rendle and Schmidt-Thieme [13] proposed the (PITF) model, which is a special
case of the TD model with a linear runtime both for learning and prediction. PITF
explicitly models pairwise interactions between users, items, and tags. Whereas TD
and PARAFAC directly express a ternary relation, the idea of PITF is to model
pairwise interactions instead. The motivation is that observations are typically very
limited and sparse in tag recommendation data, and thus it is often easier to estimate
pairwise interactions than ternary ones. This assumption is reflected in the model
equation of PITF which reads:

âu,r,t =
k∑

f

ûu, f · t̂Ut, f +
k∑

f

îi, f · t̂ It, f (5.11)

with model parameters θ̂
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Û ∈ I
|U |×k, Î ∈ I

|I |×k, ˆTU ∈ I
|T |×k, T̂ I ∈ I

|T |×k (5.12)

Note that in contrast to PARAFAC, there are two factor matrices for tags: one (TU )
for the interaction of tags with users and a second one (T I ) for the interaction of tags
with items.

5.6 PCLAF and RPCLAF Algorithms

In this section, we elaborate on how tensor decomposition techniques can be
employed in location-based social networks (LBSNs). The ternary relation of users,
locations, and activities in LBSNs can be represented as a third-order tensor.

Zheng et al. [23] introduced apersonalized recommendation algorithm forLBSNs,
which performs personalized collaborative location and activity filtering (PCLAF).
PCLAF treats each user differently and uses a collective tensor and matrix factoriza-
tion to provide personalized recommendations. As shown in Fig. 5.5, the novelty of
PCLAF lies in the utilization of a user–location–activity tensor along with user–user,
user–location, location–features, and activity–activity matrices.

As also shown in Fig. 5.5, to fill missing entries in the tensor A, PCLAF decom-
poses A w.r.t. each tensor dimension (i.e., user, location, activity). Then, PCLAF
forces latent factors to be shared with additional matrices to utilize their informa-
tion. After such latent factors are obtained, PCLAF reconstructs an approximation
tensor Â by filling all missing entries. Notice that PCLAF uses a PARAFAC-style
regularized tensor decomposition framework to integrate the tensor with additional
matrices. In particular, Zheng et al. [23] construct a third-order tensor A, which
captures relations among users X , locations Y , activities Z , and location featuresU .

Fig. 5.5 Visual representation of a user–location–activity tensor along with user–user, user–
location, location–features, and activity–activity matrices adapted from [23]
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They initially decompose tensor A to three low-dimensional representations with
respect to each tensor entity (i.e., users, locations, and activities). Then, they recon-
struct the tensor trying to fill all its missing entries. To do so, they exploit additional
information from user–user, location–feature, activity–activity, and location–activity
matrices. They want to minimize the error between real and predicted values of the
reconstructed tensor as shown in the following objective function Eq.5.13:

L(X,Y, Z ,U ) = 1

2
‖A − [X,Y, Z ]‖2 + λ1

2
tr(XT LB X)

+ λ2

2
‖C − YUT ‖2 + λ3

2
tr(ZT LDZ) (5.13)

+ λ4

2
‖E − XY T ‖2 + λ5

2
(‖X‖2 + ‖Y‖2 + ‖Z‖2 + ‖U‖2)

where B denotes the user–user matrix, C is the location–feature matrix, D is the
activity–activity matrix, and E is the location–activity matrix. LB and LD are
Laplacian matrices of B and D, respectively (i.e., LB = Q − B and LD = Q − D,
where Q is a diagonal matrix). tr denoted as the trace of a matrix. Finally, λi are
model parameters.

In addition, Zheng et al. [24] proposed the ranking-based personalized collabora-
tive location and activity filtering (RPCLAF). RPCLAF takes a direct way to solve
the recommendation problem using a ranking loss objective function. That is, instead
of minimizing the prediction error between the real and predicted user preference for
an activity in a location, the RPCLAFmethod formulates the user’s location–activity
pairwise preferences by Eq.5.14:

θu,l,a,a′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1, if Au,l,a > Au,l,a′ | (u, l, a) ∈ Ii ∧ (u, l, a′) /∈ Ii ;
0, if Au,l,a = Au,l,a′ | (u, l, a) ∈ Ii ∧ (u, l, a′) ∈ Ii ;
−1, if Au,l,a < Au,l,a′ | (u, l, a) /∈ Ii ∧ (u, l, a′) ∈ Ii ;
?, if (u, l, a) /∈ Ii ∨ (u, l, a′) /∈ Ii

(5.14)

where Ii denotes location–activity pairwise preferences of user i in tensor A, Au,l,a

denotes the preference of user u on the activity a that she performed in location
l, whereas Au,l,a′ denotes the preference for user u on the activity k ′ that she per-
formed in location l. Based on Eq.5.14, RPCLAF distinguishes between positive
and negative location–activity pairwise preferences and missing values to learn a
personalized ranking of activities/locations. The idea is that positive (+1) and neg-
ative examples (−1) are only generated from observed location–activity pairwise
preferences. Observed location–activity pairwise preferences are interpreted as pos-
itive feedback (+1), whereas nonobserved location–activity pairwise preferences are
marked as negative (−1) feedback. All other entries are assumed to be either missing
(?) or zero values.
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Fig. 5.6 Left Tensor’s data representation of the HOSVD algorithm (left) and the RPCLAF
algorithms (right)

To give a more clear view of tensor representation based on ranking, in Fig. 5.6,
we compare tensor representation of the HOSVD [19] algorithm, with the tensor
representation of RPCLAF.

The left-hand side of Fig. 5.6 shows the tensor representation of the HOSVD
algorithm [19], where the positive feedback is interpreted as 1 and the rest as 0. The
right-hand side of Fig. 5.6 shows the tensor representation of the RPCLAF algorithm
where observed location–activity pairwise preferences are considered positive feed-
back (+1), while nonobserved location–activity pairwise preferences are marked as
negative feedback (−1). All other entries are either missing (?) or zero values. For
example, in the right-hand side of Fig. 5.6, the value of tensor element A3,1,1 is +1,
because it holds A3,1,1 > A3,1,2, whereas the value of tensor element A3,1,2 = −1
because A3,1,2 < A3,1,1.

5.7 Other Tensor Decomposition Methods

A drawback of TD models such as HOSVD is the fact that the construction of the
core tensor requires cubic runtime in factorization dimension for both prediction
and learning. Moreover, they suffer from sparsity that incurs in STSs and LBSNs. To
overcome the aforementioned problem,HOSVDcan be performed efficiently follow-
ing the approach of Sun and Kolda [7]. Other approaches to improve the scalability
to large data sets are through slicing [21] or approximation [4]. Rendle et al. [12]
proposed ranking with tensor factorization (RTF), a method for learning optimal
factorization of a tensor for a specific problem of tag recommendations. Moreover,
Cai et al. [1] proposed LOTD, which also targets the very sparse data problem for
tag recommendation. Their LOTD method is based on low-order polynomials that
present low functional complexity. LOTD is capable of enhancing statistics and
avoids overfitting, which is a problem of traditional tensor decompositions such as
Tucker and PARAFAC decompositions. It has been experimentally shown [1] with
extensive experiments on several data sets that LOTD outperforms PITF and other
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methods in terms of efficiency and accuracy. Another method which outperformed
PITF is proposed by Gemmell et al. [5]. Their method builds a weighted hybrid tag
recommender that blends multiple recommendation components drawing separately
on complementary dimensions. Moreover, Leginus et al. [11] improved tensor-based
recommenders with clustering. They reduced the tag space by exploiting clustering
techniques so that both the quality of recommendations and the execution time are
improved.
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Chapter 6
HOSVD on Tensors and Its Extensions

Abstract This chapter describes in detail tensor decomposition for recommender
systems. As our running toy example, we will use a tensor with three dimensions
(i.e., user–item–tag). The main factorization method that will be presented in this
chapter is higher order SVD (HOSVD), which is an extended version of the Singular
Value Decomposition (SVD) method. In this chapter, we will present a step-by-step
implementation of HOSVD in our toy example. Then we will present how we can
update HOSVD when a new user is registered in our recommender system. We
will also discuss how HOSVD can be combined with other methods for leveraging
the quality of recommendations. Finally, we will study limitations of HOSVD and
discuss in detail the problem of non-unique tensor decomposition results and howwe
can deal with this problem. We also discuss other problems in tensor decomposition,
e.g., actualization and scalability.

Keywords HOSVD · Higher order singular value decomposition · Tensor decom-
position

6.1 Algorithm’s Outline

In the following, we provide a solid description of the HOSVD method with an
outline of the algorithm for the case of social tagging systems, where we have three
participatory entities (user, item, and tag). In particular, we provide details of how
HOSVD is applied to tensors and how item/tag recommendation is performed based
on detected latent associations.

The tensor reduction approach initially constructs a tensor, based on usage data
triplets {u, i, t}of users, item, and tag.Themotivation is to use all the three objects that
interact inside a social tagging system. Consequently, we proceed to the unfolding
of A, where we build three new matrices. Then, we apply SVD in each new matrix.
Finally, we build core tensor S and resulting tensor Â. The six steps of the HOSVD
approach are summarized as follows:

© The Author(s) 2016
P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques
for Recommender Systems, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-41357-0_6
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• Step 1: The initial tensor A construction, which is based on usage data triplets
(user, item, tag).

• Step 2: The matrix unfoldings of tensor A, where we matricize the tensor in all
three modes, creating three new matrices (one for each mode). (see Eq. 5.1)

• Step 3: The application of SVD in all three newmatrices, wherewe keep the c-most
important singular values for each matrix.

• Step 4: The construction of the core tensor S that reduces dimensionality (see
Eq. 5.3).

• Step 5: The construction of the Â tensor that is an approximation of tensorA (see
Eq. 5.4).

• Step 6: Based on the weights of the elements of the reconstructed tensor Â, we
recommend an item/tag to the target user u.

Steps 1–5 build a model and can be performed offline. The recommendation in
Step 5 is performed online, i.e., each time we have to recommend an item/tag to a
user, based on the built model.

6.2 HOSVD in STSs

In this section, in order to illustrate how HOSVD works for item recommendation,
we applyHOSVDon a toy example. As illustrated in Fig. 6.1, three users tagged three
different items (web links). In Fig. 6.1, the part of an arrow line (sequence of arrows
with the same annotation) between a user and an item represents that the user tagged
the corresponding item, and the part between an item and a tag indicates that the
user tagged this item with the corresponding tag. Thus, annotated numbers on arrow
lines give the correspondence between the three types of objects. For example, user
u1 tagged item i1 with tag “BMW,” denoted as t1. The remaining tags are “Jaguar,”
denoted as t2, “CAT,” denoted as t3.

From Fig. 6.1, we can see that users u1 and u2 have common interests on cars,
while user u3 is interested in cats.A third-order tensorA ∈ R

3×3×3 can be constructed
from usage data. We use the co-occurrence frequency (denoted as weights) of each
triplet user, item, and tag as elements of tensorA, which are given in Table6.1. Note
that all associatedweights are initialized to 1. Figure6.2 shows the tensor construction
of our running example.

Table 6.1 Associations of the running example

Arrow line User Item Tag Weight

1 u1 i1 t1 1

2 u2 i1 t1 1

3 u2 i2 t2 1

4 u3 i3 t3 1

http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5
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Fig. 6.1 Usage data of the running example

users

items

tags

Fig. 6.2 The tensor construction of our running example

After performing tensor reduction analysis, we can get the reconstructed tensor
of Â, which is presented in Table6.2, whereas Fig. 6.3 depicts the contents of Â
graphically (weights are omitted). As shown in Table6.2 and Fig. 6.3, the output of
the tensor reduction algorithm for the running example is interesting, because a new
association among these objects is revealed. The new association is between u1, i2,
and t2. It is represented with the last (boldfaced) row in Table6.2 and with the dashed
arrow line in Fig. 6.3.

If we have to recommend to u1 an item for tag t2, then there is no direct indication
for this task in the original tensor A. However, we see that in Table6.2 the element
of Â associated with (u1, i2, r2) is 0.44, whereas for u1, there is no other element
associating other tags with i2. Thus, we recommend item i2 to user u1, who used tag
t2. For the current example, the resulting Â tensor is shown in Fig. 6.4.



84 6 HOSVD on Tensors and Its Extensions

Fig. 6.3 Illustration of the tensor reduction algorithm output for the running example

Table 6.2 Associatings derived on the running example

Arrow line User Item Tag Weight

1 u1 i1 t1 0.72

2 u2 i1 t1 1.17

3 u2 i2 t2 0.72

4 u3 i3 t3 1

5 u1 i2 t2 0.44

users

items

tags

Fig. 6.4 The resulting Â tensor for the running example

The resulting recommendation is reasonable, because u1 is interested in cars rather
than cats. That is, the tensor reduction approach is able to capture latent associations
among the multitype data objects: user, items, and tags. The associations can then
be used to improve the item recommendation procedure.
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6.2.1 Handling the Sparsity Problem

Sparsity is a severe problem in three-dimensional data, which could affect the
outcome of SVD. To address this problem, instead of SVD we can apply kernel
SVD [2, 3] in three unfolded matrices. Kernel SVD is the application of SVD in
the kernel-defined feature space. Smoothing with kernel SVD is also applied by
Symeonidis et al. in [11].

For each unfolding Ai (1 ≤ i ≤ 3), we have to nonlinearly map its contents to
a higher dimensional space using a mapping function φ. Therefore, from each Ai

matrix we derive an Fi matrix, where each element axy of Ai is mapped to the
corresponding element fxy of Fi , i.e., fxy = φ(axy). Next, we can apply SVD and
decompose each Fi as follows:

Fi = U (i)S(i)(V (i))T (6.1)

The resulting U (i) matrices are then used to construct the core tensor.
Nevertheless, to avoid explicit computation of Fi , all computations must be done

in the form of inner products. In particular, as we are interested to compute only
matrices with left singular vectors, for each mode i we can define a matrix Bi as
follows:

Bi = Fi F
T
i (6.2)

As Bi is computed using inner products from Fi , we can substitute the computation
of inner products with the results of a kernel function. This technique is called the
“kernel trick” [3] and avoids the explicit (and expensive) computation of Fi . As each
U (i) and V (i) are orthogonal and each S(i) is diagonal, it easily follows from Eqs.6.1
and 6.2 that:

Bi = (U (i)S(i)(V (i))T )(U (i)S(i)(V (i))T )T = U (i)(S(i))2(V (i))T (6.3)

Therefore, each required U (i) matrix can be computed by diagonalizing each Bi

matrix (which is square) and taking its eigenvectors.
Regarding the kernel function, in our experiments, we use the Gaussian kernel

K (x, y) = e− ||x−y||2
c , which is commonly used in many applications of kernel SVD.

As Gaussian kernel parameter c, we use the estimate for standard deviation in each
matrix unfolding.

6.2.2 Inserting New Users, Tags, or Items

As new users, tags, or items are being introduced to the system, the tensor Â, which
provides the recommendations, has to be updated. The most demanding operation is
the updating of SVD of the correspondingmode in Eqs. 6.1 and 6.3. Aswewould like
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to avoid the costly batch recomputation of the corresponding SVD, we can consider
incremental solutions [1, 9]. Depending on the size of the update (i.e., number of new
users, tags, or items), different techniques have been followed in related research. For
small update sizes, we can consider the folding-in technique [4, 9], whereas for larger
update sizes, we can consider incremental SVD techniques [1]. Both techniques are
described next [11].

6.2.3 Update by Folding-in

Given a new user, we first compute the new 1-mode matrix unfolding A1. It is
easy to see that entries of the new user result in appending of a new row in
A1. This is exemplified in Fig. 6.5. Figure6.5a shows the insertion of a new user
in the tensor of the current example (new values are presented with red color).
Notice that to ease presentation, new user tags and items are identical to those of
user U2.

Let u denote the new row that is appended to A1. Figure6.5b shows the new A1,
i.e., the 1-mode unfolded matrix, where it is shown that contents of u (highlighted
with red color) have been appended as a new row in the end of A1.

Since A1 changed, we have to compute its SVD, as given in Eq.6.5. To avoid a
batch SVD recomputation, we can use the existing basisU (1)

c1 of left singular vectors
to project the u row onto the reduced c1-dimensional space of users in the A1 matrix.
This projection is called folding-in and is computed using the following Eq.6.4 [4]:

unew = u · V (1)
c1 · (S(1)

c1 )−1 (6.4)

In Eq.6.4, unew denotes the mapped row, which will be appended toU (1)
c1 , whereas

V (1)
c1 and (S(1)

c1 )−1 are dimensionally reduced matrices derived when SVD was
originally applied to A1, i.e., before insertion of the new user. In the current example,
computation of unew is described in Fig. 3.4.

The unew vector should be appended to the end of theU (1)
c1 matrix. For the current

example, appending should be done to the previously U (1)
c1 matrix. Notice that in

the example, unew is identical with the second column of the transpose of U (1)
c1 . The

reason is that the new user has identical tags and items with userU2 and we mapped
them on the same space (recall that the folding-in techniquemaintains the same space
computed originally by SVD) (Fig. 6.6).

http://dx.doi.org/10.1007/978-3-319-41357-0_3
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Fig. 6.5 Example of folding in a new user: a the insertion of a new user in tensor, b the new 1-mode
unfolded matrix A1

-0.85 0

unew

= 1 0 0 0 1 0 0 0 0

u

×

×

-0.85 0
0 0
0 0
0 0
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0 0
0 0
0 0
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V(1)
c1

× 0.62 0
0 1

(S(1)
c1 )−1

Fig. 6.6 The result of folding-in for the current example

Finally, to update the tensor Â, we have to perform products given in Eq.6.1.
Notice that onlyU (1)

c1 has been modified in this equation. Thus, to optimize insertion
of new users, as mode products are interchangeable, we can perform this product
as

[S ×2 U (2)
c2 ×3 U (3)

c3

] ×1 U (1)
c1 , where the left factor (inside the brackets), which

is unchanged, can be prestored so as to avoid its recomputation. For the current
example, the resulting Â tensor is shown in Fig. 6.7.



88 6 HOSVD on Tensors and Its Extensions

0.72 0

1.17 0

0 0

0

0 0

0 0

0 0.44 

0 0.72 

0 0

0

0

0

0

0

0

0

0

0

 1 

0

0

0 0 0

1.17 0

0.72 0

Fig. 6.7 The resulting Â tensor of running example after the insertion of new user

An analogous insertion procedure can be followed for the insertion of a new item
or tag. For a new item insertion, we have to apply Eq.6.4 on the 2-mode matrix
unfolding of tensor A, while for a new tag, we apply Eq.6.4 on the 3-mode matrix
unfolding of tensor A.

6.2.4 Update by Incremental SVD

Folding-in incrementally updates SVD, but the resulting model is not a perfect SVD
model, because the space is not orthogonal [9]. When the update size is not big,
the loss of orthogonality may not be a severe problem in practice. Nevertheless, for
larger update sizes the loss of orthogonality may result in an inaccurate SVD model.
In this case, we need to incrementally update SVD so as to ensure orthogonality.
This can be attained in several ways. Next, we describe the approach proposed by
Brand [1].

Let Mp×q be a matrix, upon we which apply SVD and maintain the first r singular
values, i.e.,

Mp×q = Up×r Sr×r V
T
r×q (6.5)

Assume that each column of matrix Cp×c contains additional elements. Let
L = U\C = UTC be the projection of C onto the orthogonal basis of U . Let also
H = (I −UUT )C = C −UL be the component of C orthogonal to the subspace
spanned by U (I is the identity matrix). Finally, let J be an orthogonal basis of H
and let K = J\H = J T H be the projection of C onto subspace orthogonal to U .
Consider the following identity:

[U J ]

[
S L
0 K

] [
V 0
0 I

]T

=
[
U (I −UUT )C/K

] [
S UTC
0 K

] [
V 0
0 I

]T

=
[
USV T C

]
= [M C]
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Like an SVD, left and right matrices in the product are unitary and orthogonal. The
middle matrix, denoted as Q, is diagonal. To incrementally update SVD, Q must be
diagonalized. If we apply SVD on Q, we get:

Q = U ′S′(V ′)T (6.6)

Additionally, define U ′′, S′′, andV ′′ as follows:

U ′′ = [U J ]U ′, S′′ = S′, V ′′ =
[
V 0
0 I

]
V ′ (6.7)

Then, the updated SVD of matrix [M C] is as follows:

[M C] = [USV T C] = U ′′S′′(V ′′)T (6.8)

This incremental update procedure takes O((p + q)r2 + pc2) time.
Returning to the application of an incremental update for new users, items, or tags,

as described in Sect. 6.2.3, in each case it resulted in a number of new rows that are
appended to the end of the unfolded matrix of the corresponding mode. Therefore,
we need an incremental SVD procedure in the case where we add new rows, whereas
the aforementioned method works in the case where we add new columns. In this
case, we simply swap U for V and U ′′ for V ′′.

6.3 Limitations and Extensions of HOSVD

In this section, we discuss some limitations of HOSVD and describe other extensions
of the HOSVDmethod. In particular, we discuss in detail the problem of non-unique
tensor decomposition results and how we can deal with this problem. We also dis-
cuss other problems in tensor decomposition, e.g., missing data, scalability, and
overfitting.

As far as scalability is concerned, the runtime complexity is cubic in the size
of latent dimensions. This is shown in Eq.5.6, where three nested sums have to
be calculated just for predicting a single (user, item, tag) triplet. In the direction
of solving this scalability issue, there are approaches to improve the efficiency of
HOSVD [5, 12].

As far as non-unique of tensor decompositions (HOSVD and PARAFAC) results
is concerned, since their objective functions are nonconvex, there are a large num-
ber of local optima. That is, starting from different starting points, the iteratively
improved solution may converge to different local solutions (see Sect. 5.3). Duo
et al. [6] have experimentally shown that for all real-life data sets they tested, the
HOSVD solution is unique (i.e., different initial starting points always converge to a
unique global solution), whereas the PARAFAC solution is almost always not unique.

http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5
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Since HOSVD solutions are unique, it means that the resulting approximation tensor
is repeatable and reliable.

Someone could argue that HOSVD does not handle missing data, since it treats all
(user, item, and tag) triplets—that are not seen and are just unknown or missing—as
zeros. To address this problem, instead of SVD, we can apply kernel SVD [2] in the
three unfolded matrices. Kernel SVD is the application of SVD in the kernel-defined
feature space and can smooth the severe data sparsity problem. In the same direction,
lexical similarity between tags can further downsize the sparsity problem. That is,
by considering also the synonymity of tags, we can increase the number of nonzero
elements in the tensor.

Finally, someone could claim that HOSVD supports no regularization, and thus,
it is sensitive to overfitting. In addition, appropriate tuning of selected parame-
ters cannot guarantee a solution to the aforementioned regularization problem.
To address this problem, we can extend HOSVD with L2 regularization, which
is also known as Tikhonov regularization. After the application of a regularized
optimization criterion, possible overfitting can be reduced. That is, since the basic
idea of the HOSVD algorithm is to minimize an elementwise loss on elements
of Â by optimizing the square loss, we can extend it with L2 regularization
terms.

6.3.1 Combining HOSVD with a Content-Based Method

Social tagginghas become increasingly popular inmusic information retrieval (MIR).
It allows users to tag music resources such as songs, albums, or artists. Social tags
are valuable to MIR, because they comprise a multifaceted source of information
about genre, style, mood, users’ opinion, or instrumentation.

Symeonidis et al. [8] examined the problemof personalized song recommendation
(i.e., resource recommendation) based on social tags. They proposed the modeling
of social tagging data with three-order tensors, which capture cubic (three-way) cor-
relations between users–tags–music items. The discovery of a latent structure in this
model is performed with HOSVD, which helps to provide accurate and personalized
recommendations, i.e., adapted to particular users’ preferences.

However, the aforementioned model suffers from sparsity that incurs in social
tagging data. Thus, to further improve the quality of recommendation, Nanopou-
los et al. [7] enhanced the HOSVD model with a tag-propagation scheme that uses
similarity values computed between music resources based on audio features. As a
result, this hybrid model effectively combines both information about social tags and
audio features. Nanopoulos et al. [7] examined experimentally the performance of
the proposed method with real data from Last.fm. Their results indicate superiority
of the proposed approach compared to existing methods that suppress cubic rela-
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tionships that are inherent in social tagging data. Additionally, their results suggest
that combination of social tagging data with audio features is preferable to use the
former alone.

6.3.2 Combining HOSVD with a Clustering Method

In this section,wedescribe howwecan combineHOSVDwith the clusteringof tags in
STSs. In this direction, Panagiotis Symeondis [10] proposed an effective preprocess-
ing step, i.e., the clustering of tags, that can reduce the size of tensor dimensions and
deal with its missing values. To perform clustering of tags, he initially incorporates
in his model two different auxiliary ways to compute similarity/distance between
tags. First, he computes cosine similarity of tags based on term frequency-inverse
document frequency within the vector space model. Second, to address polysemy
and synonymity of tags, he also computes their semantic similarity by utilizing the
WordNet1 dictionary.

After clustering tags, he uses centroids of found tag clusters as representatives for
tensor tag dimension. As a result, he efficiently overcame the tensor’s computational
bottleneck by reducing both factorization dimension and data sparsity. Moreover,
clustering of tags is an effective means to reduce tag ambiguity and tag redun-
dancy, resulting in better accuracy prediction and item recommendations. He used
three different clusteringmethods (i.e., k-means, spectral clustering, and hierarchical
agglomerative clustering) for discovering tag clusters.

The main intuition of combining HOSVDwith a clustering method (e.g., spectral
clustering, k-means, etc.) in STSs is based on the fact that if we perform tag clustering
before tensor construction, we will be able to build a lower dimension tensor based
on found tag clusters. The ClustHOSVD algorithm consists of three main parts:
(i) tag clustering, (ii) tensor construction and its dimensionality reduction, and
(iii) item recommendation based on detected latent associations. Figure6.8 depicts
the outline of ClustHOSVD. The input is the initial usage data triplets (user, tag,
item), a selected user u and a tag t that u is interested in. The output is the reduced
approximate tensor which incorporates the tag cluster dimension and a set of recom-
mended items to user u.

1http://wordnet.princeton.edu.

http://wordnet.princeton.edu
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Algorithm ClustHOSVD
Input
n {user, tag, item}-triplets of the training data.
k: number of clusters
u: a selected user.
t: a selected tag.

Output
Â: an approximate tensor with user, tag cluster, and item dimension.
N : the number of recommended items.

Step 1. Perform clustering (k-means, spectral, etc.) on tag dimension.
1.a) Compute the tag–tag similarities and the k cluster centroids.
1.b) Compute the distance of each tag from the cluster centroid.
1.c) Execute the clustering on tag dimension.

Step 2. Apply HOSVD on Tensor.
2.a) Build the initial A tensor inserting the tag cluster dimension.
2.b) Perform HOSVD to decompose and recompose theA tensor.

(Steps 1–6 of Section 6.1).
Step 3. Generate the item recommendation list.

3.a) Get from the approximate tensor Â the w likeliness that user u
will tag item i with a tag from cluster c.

3.b) Recommend the top-N items with the highest w likeliness
to user u for tag t.

Fig. 6.8 Outline of the ClustHOSVD Algorithm

In step 1, complexity of ClustHOSVD depends on the selected clustering algo-
rithm. In case we apply k-means, its time complexity is O(Ic × k × i × f ), where
|Ic| is the number of tag clusters, k is the number of clusters, i is the number of
iterations until k-means converge, and f is the number of tag features, where each
tag can be expressed as an f -dimensional vector. In case we apply multiway spectral
clustering, we can apply first k-means to cluster the tags of the tripartite graph, and
then we can apply spectral clustering only on cluster centroids (representative tags of
each cluster). Using this implementation, the overall computation cost of multiway
spectral clustering is O(k3) + O(Ic × k × i × f ). Finally, the time complexity of
hierarchical agglomerative clustering takes O(t3) operations, where |t | is the number
of tags, which makes it slow for large data sets.

In step 2, runtime complexity of HOSVD is cubic in the size of latent dimensions.
However, ClustHOSVD algorithm performs clustering on the tag dimension, result-
ing usually in a small number of tag clusters. Notice that the same procedure can be
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followed for other two dimensions (users and items). Thus, it can result a tensor with
a very small number of latent dimensions.

In step 3, top-N recommended items are found after sorting w likeliness values
that user u will tag item i with a tag from cluster c, using a sorting algorithm (quick-
sort) with complexity O(Ii log Ii ), where |Ii | is the number of items.
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Chapter 7
Experimental Evaluation on Tensor
Decomposition Methods

Abstract In this chapter, we will provide experimental results of tensor decomposi-
tion methods on real data sets in social tagging systems (STSs). We will discuss the
criteria that we will set for testing all algorithms and the experimental protocol we
will follow. Moreover, we will discuss the metrics that we will use (i.e., Precision,
Recall, root-mean-square error, etc.). Our goal is to present the main factors that
influence the effectiveness of algorithms.

Keywords Matrix decomposition · Tensor decomposition

7.1 Data Sets

To evaluate examined algorithms, we have chosen real data sets from two differ-
ent STSs: BibSonomy and Last.fm, which have been used as benchmarks in past
works [3].

BibSonomy: We used a snapshot of all users, items (both publication references
and bookmarks), and tags publicly available on April 30, 2007. From the snapshot,
posts from the database and logic programming (DBLP) computer science bibliogra-
phy are excluded since they are automatically inserted and all owned by one user and
all tagged with the same tag (dblp). The number of users, items, and tags is 1,037,
28,648, and 86,563, respectively.

Last.fm: The data for Last.fm were gathered during October 2007, partly through
the web services API-application program interface (collecting user nicknames),
partly crawling the Last.fm site. Here, the items correspond to artist names, which
are already normalized by the system. There are 12,773 triplets in the form user–
artist–tag. To these triplets correspond 4,442 users, 1,620 artists, and 2,939 tags.

Following the approach of [3] to get more dense data, we adapt the notion of a
p-core to tripartite hypergraphs. The p-core of level k has the property, that each
user, tag, or item has/occurs in at least k posts. For both data sets we used k = 5. Thus,

© The Author(s) 2016
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for the BibSonomy data set there are 105 users, 246 items, and 591 tags, whereas for
the Last.fm data set, there are 112 users, 234 items, and 567 tags.

7.2 Experimental Protocol and Evaluation Metrics

For item recommendations, all tensor decomposition algorithms have the task to pre-
dict items of users’ postings in the test set. Higher Order SVD algorithm is modified
appropriately to recommend items to a target user. In particular, the initial tensor
represents a quadruplet {u, t , i , p} where p is the likeliness that user u will tag item
i with tag t . Therefore, items can be recommended to u according to their weights
associated with a {u, t} pair.

We performed a fourfold cross-validation, thus each time we divide the data set
into a training set and a test set with sizes 75% and 25% of the original set, respec-
tively. Based on the approach of [2, 4], amore realistic evaluation of recommendation
should consider the division of items of each test user into two sets: (i) the past items
of the test user and (ii) the future items of the test user. Therefore, for a test user, we
generate recommendations based only on items in his past set. This simulates the real-
world applications, where users gradually tag items and receive recommendations
before they provide all their tags. As most existing works ignore this division, their
reported performance corresponds to the best case, because they indirectly exploit
a priori known information (items in the future set). With the division into past and
future sets, accuracy is expected to decrease compared to the best case when the two
sets are identical. However, reported performance is more indicative of real-world
applications. The default sizes of past and future sets are 50% and 50%, respectively,
of the number of items tagged by each test user.

As performance measures for item recommendations, we use the classic metrics
of precision and recall. For a test user that receives a list of N recommended items
(top-N list), precision and recall are defined as follows:

• Precision is the ratio of the number of relevant items in the top-N list (i.e., those
in the top-N list that belong to the future set of items posted by the test user) to N .

• Recall is the ratio of the number of relevant items in the top-N list to the total
number of relevant items (all items in the future set posted by the test user).

7.3 Sensitivity Analysis of the HOSVD Algorithm

In this section, we first conduct experiments to study the influence of core tensor
dimensions on the performance of the describedHOSVDalgorithm. If one dimension
of the core tensor is fixed, we can find that the recommendation accuracy varies as
the other two dimensions change, as shown in Fig. 7.1. The vertical axes denote
precision and the other two axes denote corresponding dimensions. For each figure,
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one dimension is fixed and the other two dimensions are varied. Thus, for the leftmost
figure, the tag dimension is fixed at 200 and the other two dimensions change. For
the middle figure, the item dimension is fixed at 105. For the rightmost figure, the
user dimension is fixed at 66.
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Fig. 7.1 Performance of the HOSVD algorithm as dimensions of the core tensor vary for the
BibSonomy data set. For the leftmost figure, tag dimension is fixed at 200 and the other two dimen-
sions change. For the middle figure, item dimension is fixed at 105. For the rightmost figure, user
dimension is fixed at 66

Our experimental results indicate that a 70% of the original diagonal of S(1),
S(2), S(3) matrices can give good approximations of A1, A2, A3 matrices. Thus, the
numbers c1, c2, and c3 of left singular vectors of matrices U (1), U (2), U (3) after
appropriate tuning are set to 66, 105, and 200 for the BibSonomy data set, whereas
they are set to 40, 80, and 190 for the Last.fm data set.

Next, we study the influence of the proposed kernel smoothing scheme on recom-
mendation accuracy of the HOSVD algorithm in terms of precision. We present our
experimental results in Fig. 7.2a, b, for both the BibSonomy and Last.fm data sets.
As shown, the smoothing kernel method can improve the performance accuracy. The
results are consistent in both data sets.
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Fig. 7.2 Precision of the HOSVD algorithm associated with and without a smoothing scheme for
the a BibSonomy data set and b Last.fm data set
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7.4 Comparison of HOSVD with Other Tensor
Decomposition Methods in STSs

In this section, we compare several tensor decomposition methods in data sets that
concern the domain of STSs. To evaluate examined algorithms, we have chosen real
data sets from two different social tagging systems: BibSonomy and Last.fm [7]. We
have tested the following state-of-the-art methods:

• ClustHOSVD(tfidf + semantics): This is the ClustHOSVD algorithm [7], which
incorporates TFIDF as a weighting schema and it is combined with the semantic
similarity of tags.

• ClustHOSVD(tfidf): This is the ClustHOSVD algorithm [7], which incorporates
only the term frequency-inverse document frequency.

• TFC: Rafailidis and Daras [6] proposed the Tensor Factorization and Tag Clus-
tering model, which is a tensor factorization and tag clustering model that uses a
TFIDF weighting scheme.

• HOSVD: This is the Tucker’s tensor decomposition method [5].
• LOTD: Cai et al. [1] proposed low-order tensor decomposition (LOTD), which is
based on low-order polynomial terms on tensors (i.e., first and second order).

• FOTD: Full Order Tensor decomposition (FOTD) proposed by Cai et al. [1] which
incorporates, except the first and second terms, also the third-order polynomial
term.

The parameters we used to evaluate the performance of ClustHOSVD(tfidf +
semantics), ClustHOSVD(tfidf), HOSVD, Tensor Factorization and Tag Clustering
model, LOTD, and FOTD are identical to those reported in the original papers. We
measure precision versus recall for all six algorithms. The results for the BibSonomy
and Last.fm data sets are depicted in Figs. 7.3 and 7.4, respectively.

For both data sets,ClustHOSVD(tfidf+ semantics) outperforms the other compar-
ison methods. The reason is that it exploits both the conventional cosine similarity
and the semantic similarity of tags. In contrast, the Tensor Factorization and Tag
Clustering model incorporates the TFIDF weighting scheme without exploiting also
semantic information. FOTD presents the worst results, which are according to what
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Fig. 7.4 Comparison
between variations of
ClustHOSVD(tfidf +
semantics),
ClustHOSVD(tfidf),
HOSVD, and LOTD/FOTD
algorithms in terms of
precision–recall curve for
Last.fm data set
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Cai et al. [1] have reported in their paper. That is, the LOTDmethod had better results
than FOTD in terms of precision–recall diagram, because of the overfitting problem
which existed in all data sets.
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Chapter 8
Conclusions and Future Work

Abstract In this chapter, we will discuss the main conclusions of the experimental
evaluation and the limitations of each algorithm, and will provide the future research
directions.

Keywords Matrix decomposition · Tensor decomposition

This book covered themajor fundamentals and the key advanced topics that shape the
matrix and tensor factorization field. It aimed at advanced undergraduates, graduate
students, researchers, and professionals. That is, it provides researchers and devel-
opers with a comprehensive overview of the general concepts and techniques (e.g.,
models and algorithms) related to matrix and tensor factorization.

This book offered a rich blend of theory and practice. We have presented well-
known decomposition methods for recommender systems, such as singular value
decomposition, nonnegative matrix factorization, UV decomposition, Higher Order
SVD, etc., to address the “information overload” problem. This problem affects our
everyday experience while searching for knowledge on a topic. Naive collaborative
filtering cannot deal with challenging issues such as scalability, noise, and sparsity.
We have dealt with all aforementioned challenges by applying matrix and tensor
decomposition methods. These methods have been proven to be the most accurate
(i.e., Netflix prize) and efficient for handling big data. We described in detail the pros
and cons of each method for matrices and tensors. For each method, we provided a
detailed theoretical mathematical background and a step-by-step analysis, using an
integrated toy example, which run throughout all chapters of the book.

We performed experiments with matrix and tensor decomposition methods in
many real data sets. In particular, in matrix factorization, we compared the perfor-
mance of singular value decomposition (SVD) and UV decomposition algorithms
against an improved version of the original item-based collaborative filtering (CF)
algorithm combined with SVD and CUR decomposition. We ran experiments on
two real-life data sets (i.e., GeoSocialRec and Epinions). In tensor factorization,
we provided experimental results of several tensor decomposition methods (Higher
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Order SVD, ClustHOSVD, Tensor Factorization and Tag Clustering model, etc.) on
two real data sets (BibSonomy, Last.fm) in STS’ domain. As it is experimentally
shown, matrix and tensor decompositions are suitable for scenarios in which the data
is extremely large, very sparse, and too noisy, since the reduced representation of the
data can be interpreted as a de-noisified approximation of the “true” data. However,
all decompositionmethods need appropriate “tuning” of the data latent feature space,
to leverage the accuracy of rating prediction and recommendations.

As a futurework, we could addmore auxiliary information sources into ourmatrix
and tensor decomposition models (i.e., the time dimension, the location dimension,
etc.). This additional information could be used for better and more personalized
recommendations, by taking advantage of the user’s context-awareness.
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